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Summary

This thesis studies problems concerning the interaction between polytopes and lattices.

Motivation for the study of lattice polytopes comes from two very different fields: dis-

crete optimization, in particular integer linear programming, and algebraic geometry,

specifically the study of toric varieties.

The first topic we study is the existence of unimodular covers for certain interesting

families of 3-dimensional lattice polytopes. A unimodular cover of a lattice polytope

is a collection of unimodular simplices whose union equals the polytope. Admitting

a unimodular cover is a weaker property than admitting a unimodular triangulation,

and stronger than having the integer decomposition property (IDP). This last property

is particularly interesting in the algebraic context, and there are various conjectures

relating it to smoothness ([Oda97]). We show that unimodular covers exist for all 3-

dimensional parallelepipeds and for all Cayley sums of polygons where one polygon is

a weak Minkowski summand of the other. For both classes of polytopes only the IDP

property was previously known.

We then explore questions related to the so-called flatness constant, the largest width

that a hollow convex body can have in a given dimension. A hollow convex body is one

that contains no lattice points in its interior. The flatness constant was shown to be finite

in work of Kinchin ([Khi48]), and upper bounds for it have been well studied, among

other reasons because it played a crucial role in the first polynomial time algorithm for

integer linear programs in fixed dimension ([Len83]). In this thesis, we focus on lower

bounds for the flatness constant, and for some specializations of it. In particular, we

construct a wide hollow tetrahedron, and conjecture that in dimension three there are no

hollow convex bodies of larger width. As evidence for this conjecture, we can show that a

local version of it: every small perturbation of our tetrahedron that maintains hollowness

decreases in width. We further construct the first known examples of lattice polytopes

of width larger than their dimensions. We then exploit these explicit constructions to

obtain asymptotic lower bounds for the flatness constant.

Finally, we study a somehow opposite question: how small can the covering radius of a

non-hollow lattice polytope be. We conjecture that a certain explicit family of polytopes

achieves the minimum covering radius, and show that this conjecture can be translated

into the language of covering minima, introduced by Kannan and Lovász ([KL88]) with

the purpose of finding upper bounds for the flatness constant mentioned above. From our

investigation of this conjecture, a natural definition of a discrete surface area emerges.

We then formulate a stronger conjecture, which proposes an upper bound for the covering

radius of simplices in terms of the newly defined discrete surface area and the normalized

volume.
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Zusammenfassung

Diese Disseration beschäftigt sich mit dem Zusammenspiel von Polytopen und Gittern. Die Mo-

tivation für die Untersuchung von Gitterpolytopen kommt dabei aus zwei sehr unterschiedlichen

Gebieten: der diskreten Optimierung, insbesondere der ganzzahligen linearen Optimierung und

der algebraischen Geometrie, genauer dem Studium von torischen Varietäten.

Das erste Thema, das wir untersuchen, ist die Existenz von unimodularen Überdeckungen für

bestimmte Familien von 3-dimensionalen Gitterpolytopen. Eine unimodulare Überdeckung eines

Gitterpolytopes ist eine Menge, bestehend aus unimodularen Simplizes, deren Vereinigung gleich

dem Polytop ist. Die Eigenschaft eine solche unimodulare Überdeckung zu besitzen ist schwächer,

als eine unimodulare Triangulierung zu besitzen und impliziert die Integer Decomposition Pro-

perty (IDP). Letztere Eigenschaft ist von besonderem Interesse hinsichtlich ihrer algebraischen

Bedeutung und es gibt verschiedene Vermutungen, die diese Eigenschaft mit dem Konzept der

Glattheit eines Gitterpolytopes verbinden ([Oda97]). Wir zeigen, dass für alle 3-dimensionalen

Parallelepipede und alle Cayley-Summen von Polygonen, von denen das Eine ein schwacher

Minkowski-Summand des Anderen ist, eine unimodulare Überdeckung existiert. Bisher war nur

bekannt, dass diese beiden Klassen die IDP-Eigenschaft erfüllen.

Als Nächstes widmen wir uns verschiedenen Fragen die sogennante Flatness-Konstante betref-

fend. Dies ist die größte Gitterweite, die ein hohler konvexer Körper in gegebener Dimension

annehmen kann. Hierbei ist ein hohler konvexer Körper ein konvexer Körper, der keine Gitter-

punkte in seinem Inneren hat. In einer Arbeit von Kinchin ([Khi48]) wurde die Endlichkeit dieser

Konstanten gezeigt. Darüber hinaus gab es viele Untersuchungen hinsichtlich oberer Schranken,

unter anderem, da die Flatness-Konstante eine entscheidende Rolle in dem ersten Algorithmus

zur Lösung ganzzahliger linearer Optimierungsprobleme in fester Dimension in polynomieller

Zeit spielt ([Len83]). In dieser Arbeit konzentrieren wir uns auf untere Schranken der Flatness-

Konstanten und auf einige ihrer Spezialisierungen. Wir konstruieren einen breiten hohlen Te-

traeder, von dem wir vermuten, dass es keinen hohlen konvexen Körper mit größerer Weite in

Dimension 3 gibt. Als Indiz für Richtigkeit dieser Vermutung können wir eine lokale Version

beweisen: jede kleine lokale Modifikation dieses Tetraeders, die die Eigenschaft der Hohlheit

erhält, verringert die Weite. Darüber hinaus konstruieren wir die ersten bekannten Beispiele

von Gitterpolytopen, deren Weite größer als deren Dimension ist und nutzen diese expliziten

Konstruktionen um asymptotische untere Schranken für die Flatness-Konstante zu zeigen.

Zuletzt untersuchen wir wie klein der Überdeckungsradius eines nicht-hohlen Gitterpolytop sein

kann. Wir vermuten, dass der minimale Überdeckungsradius von einer bestimmten, expliziten

Familie von Polytopen angenommen wird und übersetzen diese Vermutung in eine Vermutung

über Überdeckungsminima. Überdeckungsminima wurden von Kannan und Lovasz ([KL88])

eingeführt um obere Schranken für die Flatness-Konstante zu finden. Unsere Untersuchungen

führen auf natürliche Art und Weise zu der Definition eines diskreten Oberflächenmaßes. Da-

durch können wir eine stärkere Vermutung formulieren, mit deren Hilfe wir eine obere Schranke

für den Überdeckungsradius von Simplizes vorschlagen, die von der neu eingeführten diskreten

Oberfläche und dem normalisierten Volumen des Simplizes abhängt.
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Notation

Z,Z≥0,R the integer, nonnegative integer, and real numbers

[n] the set of natural numbers {1, 2, . . . , n}
e1, . . . , ed the canonical basis of Rd

1d the vector in Rd with all entries equal to 1

lin(S) the linear span of the set S

aff (S) the affine span of the set S

cone(S) the conical hull of the set S

conv(S) the convex hull of the set S

P a polytope

f(P ) the f-vector of the polytope P

∂(P ) the boundary of P

int(P ) the interior of P

relint(P ) the relative interior ofP

N (P ) the normal fan of P

T a triangulation

Cay(P,Q) the Cayley sum of polytopes P and Q

P ⊕Q the direct sum of polytopes P and Q

Λ a lattice

vol(C) the Euclidean volume of C

Vol(C) the normalized volume of C

width(C,Λ) the lattice width of C with respect to the lattice Λ

µi(C,Λ) the i-th covering minimum of C with respect to Λ

µ(C,Λ) the covering radius of C with respect to Λ





Chapter 1

Introduction

This thesis deals with questions regarding polytopes (and generalizations or restrictions

thereof) in the presence of a lattice. In this first chapter, we introduce the precise topics

we are interested in and some background. We start with Section 1.1, dedicated to

an overview of basic concepts regarding polytopes, which will be useful throughout.

In Section 1.2, we truly enter into the spirit of this thesis: we define and give basic

properties of lattices and of lattice polytopes, that is, polytopes whose vertices lie on

the lattice, and discuss some of the many contexts in which lattice polytopes appear.

In Section 1.3 we define unimodular triangulations and covers of lattice politopes and

the IDP property, emphasising their relevance in Ehrhart theory and in toric geometry.

In Section 1.4 we will broaden our focus and consider the interaction of more general

convex bodies with lattices. There we will see definitions of lattice width, covering radius

and covering minima of convex bodies, and state important theorems which play key

roles in Chapters 3 to 5. We give an overview of the results presented in the following

chapters in Section 1.5.

1.1 Polytopes

A polytope P is the convex hull of a finite set of points X in Euclidean space, that is, it

is the smallest convex body containing X; this is denoted by P = conv(X). Polytopes

have been the subject of ample study, touching on different mathematical topics, such

as commutative algebra, toric geometry, discrete optimization, convex geometry and

many others. For a thorough introduction to polytope theory, and an overview of many

topics of current interest, we point the reader for example to [Zie95]. Here we will limit

ourselves to recalling some basic notions that will be useful throughout this thesis.

1
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The definition we have given above of polytopes is sometimes called the V -description of

a polytope. An equivalent definition of a polytope is that it is the intersection of finetely

many closed halfspaces, whenever the intersection is bounded. A closed halfspace H is

of the form H− = {x ∈ Rd|aᵀi x ≤ bi}, for some ai ∈ Rd, bi ∈ R. This representation is

called the H-description. Any polytope P can be expressed via both the V -description

and H-description,

P = conv(X) = {x ∈ Rd|Ax ≤ b}.

The affine span aff (P ) of the polytope P is the smallest affine space containing it. The

dimension of P is the dimension of aff (P ). A face of a polytope is any set of the form

H ∩ P , where H is an affine hyperplane in Rd such that P is contained in one of the

closed halfspaces H defines. By convention, the polytope itself is considered a face. A

face of a polytope is itself a polytope. A proper face is any face which is not empty and

not the whole polytope. The boundary ∂P of the polytope is the union of all its proper

faces, and the interior of P is its complement, int(P ) = P \ ∂P .

Faces of dimension 0 are called vertices, of dimension 1 edges, of dimension d − 1

facets, and of dimension d− 2 ridges. The f -vector of the polytope is a vector f(P ) =

(f−1(P ), f0(P ), . . . , fd(P )) ∈ Zd≥0 whose entry fi(P ) records the number of i-dimensional

faces of P .

The normal cone of a face F of P is the cone of all linear functions which achieve their

maximum over the polytope on F :

NF = {c ∈ (Rd)∗| c(x) ≥ c(y) ∀x ∈ F, y ∈ P}.

Then the normal fan of P is the collection of all its normal cones, that is,

N (P ) = {NF : F is a face of P}.

The first and most well-known examples of polytopes are probably the standard simplex

and the hypercube, and to these two we add the cross-polytope:

Example 1.1. Let e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1) be the coordinate points in

Rd. The d-dimensional...

...standard simplex ∆d is the convex hull of the origin and all the coordinate points

ei ∈ Rd.
... cube Cd is the convex hull of all points of the form (±1, . . . ,±1).

... cross-polytope C∗d is the convex hull of all points of the form ±ei.

The simplex and cube are examples of simple polytopes, while simplex and cross-

polytope are simplicial. Simple polytopes are characterized by having exactly d edges
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Figure 1.1: The standard simplex, cube, and cross-polytope in dimension three

meet in each vertex, if d is the dimension, while simplicial polytopes are those whose

proper faces are all simplices, or equivalently, those whose facets contain exactly d ridges.

Many interesting questions arise when one investigates how polytopes can be decom-

posed. Subdivisions and triangulations are a special kind of decomposition of polytopes

into subpolytopes. More details can be found in [DLRS10].

A subdivision of a polytope P is a collection S of polytopes contained in P such that

(a) if σ ∈ T then τ ∈ T for any face τ of σ,

(b) if σ1, σ2 ∈ T , then σ1 ∩ σ2 is a face of both.

A triangulation of P is a subdivision containing only simplices. In other words, a

triangulation of P is a geometric simplicial complex whose support is equal to P . We

can talk of the f-vector fT of the triangulation, defined in the same way as for simplicial

polytopes.

The Minkowski sum and Cayley sum are important (and closely related, as we will see)

operations on polytopes.

Definition 1.2. Let P and Q be two polytopes in Rd. The Minkowski sum of P and

Q is the polytope

P +Q := {p+ q ∈ Rd : p ∈ P, q ∈ Q} ⊂ Rd.

See Figure 1.2.

Definition 1.3. The Cayley sum of two polytopes P,Q ⊂ Rd is the polytope in Rd+1

defined as

Cay(P,Q) = conv(P × {0} ∪Q× {1}).

See Figure 1.3.
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+ =

1 2

3

a b

cd

1 + a

1 +

3 + c

3 + b

3 + d

2 + b

Figure 1.2: The Minkowski sum of a triangle and a square

Figure 1.3: The Cayley sum of a triangle and a square

The Cayley Trick explains the connection between these two constructions: intersecting

the Cayley sum of two polytopes with a hyperplane separating the embedded polytopes,

one sees (a scaled copy of) their Minkowski sum. In formula, we have the following:

2 Cay(P,Q) ∩ (Rd × {1}) ∼= P +Q.

Figure 1.4: “Cutting” the Cayley sum down the middle we obtain a scaled copy of the
Minkowski sum

A mixed subdivision of a Minkowski sum P + Q is a subdivision which respects the

structure of the summands, or more precisely, it is a subdivision where all cells are of

the form F + G, with F ⊂ P and G ⊂ Q, and the intersection of two cells F + G and

F ′ + G′ satisfies (F + G) ∩ (F ′ + G′) = (F ∩ F ′) + (G ∩ G′). We say that a mixed

subdivision is fine if it cannot be properly refined by a mixed subdivision.

The Cayley Trick is particularly useful when discussing subdivisions of Cayley and

Minkowski sums, since it provides the following canonical bijections:
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13 + cd

1 +

abc

23 + bc

Figure 1.5: Two examples of mixed subdivisions of the Minkowski sum of Figure 1.2, with
full-dimensional cells labeled; the mixed subdivision on the right is fine, while the one on the

left is not, since the cell 1 + abcd could be replaced by cells 1 + abc and 1 + acd.

polyhedral subdivisions of Cay(P,Q) ↔ mixed subdivisions of P +Q,

triangulations of Cay(P,Q) ↔ fine mixed subdivisions of P +Q.

In [DLRS10] one can find more details on the Cayley Trick and on triangulations and

mixed subdivisions.

Another important operation on polytopes is the direct sum, defined only for polytopes

containing the origin.

Definition 1.4. Let P ⊂ Rd and P ′ ⊂ Rd′ be two polytopes, each containing the origin.

Then their direct sum is

P ⊕ P ′ = conv({(p, 0) ∈ Rd+d′ |p ∈ P} ∪ {(0, p′) ∈ Rd+d′ |p′ ∈ P ′}).

Remark 1.5. In the definition of direct sum, it is important where the origin lies inside

of each summand. In Figure 1.6, we see how the direct sum of two segments can yield

three different polytopes depending on where the origin lies in each of the segments.

[0, 2]⊕ [0, 2] [−1, 1]⊕ [0, 2] [−1, 1]⊕ [−1, 1]
O

O

O

Figure 1.6: Three examples of direct sums of two segments of length two.

1.2 Lattices and lattice polytopes

We begin with the definition of the other central player of this thesis, the lattice, and

give some properties and further definition needed in the following chapters. A more
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complete introduction to lattices and lattice polytopes can be found in the upcoming

book on lattice polytopes by Haase, Nill and Paffenholz ([HNP2x]), or in lecture notes

by Carsten Lange ([Lan16]).

Definition 1.6. A linear lattice is a discrete additive subgroup of a finite real vector

space (which we usually assume to be Rd). An affine lattice is any translation of a linear

lattice.

We will usually say lattice to mean linear lattice, and will explicitely say so when we

consider affine lattices.

The rank of the lattice Λ is the dimension of its linear span lin(Λ). It is not hard to

show that if a lattice has rank r, it has a lattice basis of cardinality r, that is, there are

v1, . . . vr ∈ Rd such that

Λ =

∑
i∈[r]

λivi|λi ∈ Z for all i ∈ [r]

 .

This shows in particular that any linear lattice is linearly isomorphic to the standard

lattice Zr, for some r ∈ Z≥0.

A vector v ∈ Λ is said to be primitive if it is not an integer multiple of any other vector

in Λ. Clearly a basis is a set of affinely independent primitive vectors, but the converse

is not always true.

Given a full-dimensional lattice Λ ⊆ Rd, its dual lattice Λ∗ is

Λ∗ = {f ∈ (Rd)∗|f(v) ∈ Z for all v ∈ Λ},

which is itself a lattice. If B is a lattice basis of Λ, then the basis of (Rd)∗ dual to B is

also a lattice basis for Λ∗.

Associated to a lattice basis B = {v1, . . . , vr} is a fundamental parallelepiped Π(B),

defined as

Π(B) =

∑
i∈[r]

λivi|0 ≤ λi < 1 for all i ∈ [r]

 .

It is called fundamental parallelepiped because any point of lin(Λ) can be written

uniquely as the sum of a lattice point and a point in Π(B). That is, its closure is a

fundamental domain of lin(Λ) with respect to the action of Λ by translations.

Given lattices Λ and Λ′, a unimodular transformation (or lattice transformation) is a

linear map φ̃ : lin(Λ) → lin(Λ′) which restricts to a bijection Λ → Λ′. A linear map
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is unimodular if and only if the matrix representing it with respect to lattice bases has

determinant equal to one.

In particular, we now see that given a lattice basis B of Λ, B′ is also a lattice basis if and

only if there is a unimodular transformation of Λ which restricts to a bijection between

B and B′. This also shows that the volume of any fundamental parallelepiped, which is

the determinant of the the corresponding basis, is independent of the chosen basis. This

is called the determinant of Λ.

A sublattice Γ of a lattice Λ is a subgroup Γ ≤ Λ. The index of Γ in Λ is |Λ/Γ|, the

cardinality of the set of cosets Λ/Γ. This cardinality is infinite if rank(Γ) < rank(Λ). If

instead the ranks are equal, one can show that the index is equal to the determinant of

the matrix representing the identity map lin(Λ) → lin(Γ) with respect to a basis of Λ

and a basis of Γ; that is, it equals det(Λ)/det(Γ).

We say that a subspace L of Rd is a Λ-rational subspace (or lattice subspace, when Λ is

understood) if a lattice basis of L ∩ Λ is a linear basis of L, or equivalently, if

rank(L ∩ Λ) = dim(L).

We can now give the definition of lattice polytope:

Definition 1.7. A lattice polytope is a polytope in Rd whose vertices lie in a given

lattice Λ ⊆ Rd.

The most basic lattice polytope is a unimodular simplex, a lattice simplex whose ver-

tices form an affine basis for the lattice. This includes the standard simplex ∆d =

conv(0, e1, . . . , ed) of Example 1.1, with respect to the standard lattice Zd, which we call

the standard simplex. We say that two lattice polytopes P and P ′ with respect to lattices

Λ and Λ′ are unimodularly equivalent if there is an (affine) unimodular transformation

of the lattices which sends vertices of P to vertices of P ′. For example, all unimodular

simplices are unimodularly equivalent.

Unimodular simplices are the lattice polytopes with smallest possible volume, equal to
1
d! vol(ΠΛ), where vol() denotes the usual euclidean volume, and ΠΛ is any fundamental

parallelepiped of Λ. The volume of any other lattice polytope is an integer multiple of

this; this suggests the following definition of normalized volume of a lattice polytope P :

VolΛ(P ) :=
d!

vol(Π(BΛ))
vol(P ),

which is an integer for any lattice polytope and is equal to 1 for a unimodular simplex.
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In dimension 2, there is a special relationship between the number of lattice points in a

lattice polytope and its volume, as described by the following theorem, known as Pick’s

theorem (for more details see for example [BR15]):

Theorem 1.8 (Pick’s theorem). Let P be a lattice polygon with i interior lattice points,

b lattice points on the boundary, and (Euclidean) volume a. Then a = i+ b
2 − 1.

In particular, a lattice triangle which contains no other lattice points except its vertices

must be unimodular. There is no such direct relation between volume and lattice points

in higher dimension: lattice simplices which contain no lattice points other than its

vertices are called empty simplices, and already in dimension 3 there are empty sim-

plices which are not unimodular simplices. Indeed, the following theorem, due to White

[Whi64], is a complete classification of empty tetrahedra up to unimodular equivalence,

and shows that there are empty simplices with (normalized) volume equal to any natural

number:

Theorem 1.9 (White 1964). Every empty tetrahedron of (normalized) volume q ∈ N is

unimodularly equivalent to

T (p, q) := conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)},

for some p ∈ Z with gcd(p, q) = 1. Moreover, T (p, q) is equivalent to T (p′, q) if and only

if p′ = ±p±1 mod q.

There are many different contexts in which lattice polytopes appear naturally. This will

be visible in the following sections: in Section 1.3 we discuss unimodular triangulations,

covers and the IDP property, which have strong connections to toric geometry and

Ehrhart theory. Section 1.4 highlights connections to integer linear programming, via

certain parameters such as width.

1.3 Unimodular triangulations, covers, and the IDP prop-

erty

We now highlight certain properties of lattice polytopes that we will need in Chapter 2.

For more details, see [BR15] and [BS18].

A lattice triangulation of a lattice polytope P is a triangulation with the additional

property that all simplices in the triangulation are themselves lattice polytopes. An

important class of such triangulations is the following.
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A unimodular triangulation of a lattice polytope is a triangulation composed only of

unimodular simplices. Not all lattice polytopes admit a unimodular triangulation. What

one can always do is triangulate a lattice polytope into empty simplices. In dimensions

one and two, this implies that any lattice polytope has a unimodular triangulation,

since all empty simplices in these dimensions are unimodular. However, as we saw in

Theorem 1.9, starting in dimension 3 many empty simplices are not unimodular. Since

the only lattice points in an empty simplex are the vertices, these clearly only admit a

unimodular triangulation if they are themselves unimodular.

Having a unimodular triangulation is a much-studied property of lattice polytopes,

which falls into a hierarchy of several covering properties, see, e.g., [BG09, Section

2.D], [HPPS14, Sect. 1.2.5], [mfo04, p. 2097], [mfo07, p. 2313].

In particular, having a unimodular triangulation implies having a unimodular cover:

Definition 1.10. A unimodular cover of a lattice polytope P is a collection of unimod-

ular simplices whose union equals P .

Having a unimodular cover is in turn stronger than having the integer decomposition

property, or abbreviated, being IDP: a lattice polytope P is IDP if for every positive

integer n, every lattice point p ∈ nP ∩ Zd can be written as the sum of n lattice points

in P .

Both having a unimodular triangulation and being IDP have important consequences in

Ehrhart theory and in algebraic geometry. One example is the following theorem, due

to Stanley.

Theorem 1.11. Let P be a lattice polytope which admits a unimodular triangulation T .

Then

h∗P (x) = hT (x),

where h∗P (x), the h∗-polynomial of P , is a central object of study in Ehrhart theory: it is

the numerator of rational function of the Ehrhart series, which encodes the information

of how many lattice points are contained in all the integer dilations of the polytope.

The IDP property is also of great interest in Ehrhart theory; it appears for example

in long-standing conjectures about classes of polytopes whose h∗-polynomial may be

unimodal (see [Bra16]). It can be translated into algebraic terms for the toric variety

associated to the lattice polytope, and is studied in toric geometry. It is sometimes

hard to show that certain classes of lattice polytopes have the integer decomposition

property directly, and it can be more convenient to show the stronger property of having

a unimodular cover.
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Following [HH17, Tsu18], we say that a pair (P,Q) of lattice polytopes has the integer

decomposition property, or that the pair (P,Q) is IDP, if

(P +Q) ∩ Zd = P ∩ Zd +Q ∩ Zd.

A lattice polytope Q is called smooth if it is simple and the primitive edge directions

at every vertex form a linear basis for the lattice; equivalently, if the projective toric

variety defined by the normal fan of Q is smooth.

Oda posed several questions regarding smoothness and the IDP property for lattice

polytopes ([Oda97]). The following versions of Oda’s questions are now considered

conjectures [HNPS08, mfo07], and they are open even in dimension three:

Conjecture. (i) (Related to problems 2 and 5 in [Oda97]) Every smooth lattice poly-

tope is IDP.

(ii) (Related to problems 1, 3, 4, 6 in [Oda97]) Every pair (P,Q) of lattice polytopes

with Q smooth and the normal fan of Q refining that of P is IDP.

When the normal fan of a polytope Q refines that of another polytope P , as in the second

conjecture, we say that P is a weak Minkowski summand of Q, since this is easily seen to

be equivalent to the existence of a polytope P ′ such that P +P ′ = kQ for some dilation

constant k > 0. This property has the following algebraic implication for the projective

toric variety XQ: P is a weak Minkowski summand of Q if and only if the Cartier

divisor defined by P on XQ is numerically effective, or “nef” (see [CLS11, Cor. 6.2.15,

Prop. 6.3.12], but observe that what we here call “weak Minkowski summand” is simply

called “Minkowski summand” there).

1.4 Width and covering minima

We will now broaden our focus to convex bodies, that is, convex and bounded sets,

and their interaction with a lattice Λ. We often assume that Λ is the integer lattice,

which is no loss of generality since the properties we study are invariant under affine

transformations.

Geometry of numbers is a field of mathematics where geometry is employed to obtain

results in number theory. Hermann Minkowski, who pioneered the subject, studied in

particular O-centrally symmetric convex bodies; a convex body C is called O-centrally

symmetric if x ∈ C implies −x ∈ C. A fundamental result in geometry of numbers is

Minkowski’s First Theorem, which states that any O-centrally symmetric convex body
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Figure 1.7: With respect to the lattice functional (−1, 1), the polygon has width 4; with respect
to (1, 0), it has width 2. Because of the interior lattice point, there is no lattice functional that

can give width less than 2, and therefore the lattice width of the polytope is 2.

in Rd which contains no lattice point other than the origin in its interior has volume

bounded above by 2d det(Λ). It is easy to see that this upper bound is tight: the cube

[−1, 1]d achieves the bound for Λ = Zd.

If one drops the O-centrally-symmetric requirement, it is natural to study convex bodies

containing no interior lattice points at all:

Definition 1.12. A convex body is hollow (or lattice-point-free) if it contains no lattice

point in its interior.

For (non-symmetric) hollow convex bodies, we cannot hope to prove an analogue of

Minkowski’s theorem, since no upper bound on the volume exists: we can fit a convex

body of arbitrarily large volume between two consecutive lattice hyperplanes; and this

will clearly contain no lattice points in its interior. The ‘right’ parameter to study in

this case is the width, which, informally speaking, tells us how ‘flat’ the convex body is.

Definition 1.13. The width of a convex body C ⊂ Rd with respect to a linear functional

f ∈ (Rd)∗ is

width(C, f) := max
x∈C

f(x)−min
x∈C

f(x).

Equivalently, it is the length of the segment f(C).

The lattice width of C is the smallest width with respect to any lattice functional:

width(C,Λ) := inf
f∈Λ∗\0

width(C, f).

The infimum is achieved for some lattice functional, and we can thus exchange it in the

definition with min. See Figure 1.7 for an example of calculation of lattice width of a

polygon.

The celebrated flatness theorem ([Khi48]) states that hollow bodies in fixed dimension

d have bounded lattice width. That is,
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Theorem 1.14 (Kinchin (1948)). For each fixed d, the supremum of width(C) among

all hollow bodies C ⊂ Rd is a certain constant wc(d) <∞.

Since we approach from the perspective of lattice polytopes, the following specializations

of the flatness constant wc are also of interest: wp(d), defined as the maximum width

among all hollow lattice d-polytopes; ws(d), the maximum width among hollow lattice

d-simplices; and we(d), the maximum width among empty d-simplices; here a lattice

simplex is empty if its only lattice points are its vertices. Clearly, since we(d) ≤ ws(d) ≤
wp(d) ≤ wc(d), all of these are finite.

The flatness theorem is well known today thanks in part to its role in the 1983 polynomial

time algorithm to solve the integer linear programming problem in fixed dimension, due

to Lenstra ([Len83]). An integer linear programming problem is an optimization problem

where one seeks to optimize a linear functional c over a polyhedron (called feasible set)

defined by the constraints Ax ≤ b, for some matrix A and vector b, subject to the

additional constraint that the solution should be an integer point. If one does not fix

the dimension, feasibility of integer linear programs is known to be NP-complete. Lenstra

proved an algorithmic version of the flatness theorem, which allows one to explicitly find

either a lattice point in the feasible set, or a direction in which the polyhedron is flat.

Iterating this procedure provides a polynomial time algorithm for integer progamming

in fixed dimension.

Lenstra’s result in fixed dimension rekindled interest in the flatness constant, and upper

bounds for wc(d) are thus well studied (see references, e.g., in the introductions to [KL88,

BLPS99]). The current best upper bound is wc(d) ∈ O∗(d4/3) [Rud00], where the

notation O( )∗ denotes that a polylog factor is neglected. Better upper bounds are known

for restricted classes of convex bodies. For example, it is known that the maximum width

of hollow (not necessarily lattice) simplices [BLPS99] and of centrally symmetric hollow

bodies [Ban96] is in O(n log n).

Exact values are much harder to come by, and work on lower bounds for the flatness

constants is very scarce. Chapter 4 is dedicated to the study of such lower bounds, that

is, to constructions of explicit hollow convex bodies (and hollow lattice polytopes, hollow

lattice simplices, empty lattice simplices) of large width.

We have presented the flatness theorem as a natural counterpart to Minkowki’s first

theorem for non-symmetric convex bodies. This analogy was recognized and pushed

further by Kannan and Lovász in their seminal paper [KL88]. Here, Kannan and Lovász

define a sequence of numbers, called the covering minima, which are reminiscent of

successive minima, defined and used by Minkowski to refine his first theorem.
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For any O-symmetric convex body K and any lattice Λ in Rd, the i-th successive mini-

mum λi(K,Λ) is the smallest real number λ by which it is necessary to dilate K so that

λK contains i linearly independent lattice points. Since an O-symmetric convex body K

contains no lattice point other than the origin if and only if λ1(K) ≥ 1, Minkowski’s first

theorem can be reformulated to say that λ1(K,Λ)d VolΛ(K) ≤ 2d. Using the successive

minima, Minkowski was able to strengthen the bound to Πd
1λi(K,Λ) VolΛ(K) ≤ 2d.

Kannan and Lovász defined the covering minima as follows.

Definition 1.15. The j-th covering minimum of a convex body K ⊆ Rd with respect

to a lattice Λ ⊆ Rd is defined as

µj(K,Λ) := max
π

µ(π(K), π(Λ)),

where π runs over all linear projections π : Rd → Rj such that π(Λ) is a lattice.

Whenever the lattice the operator refers to is clear from the context, we will drop it from

our notation: for example, we will use width(K) to indicate width(K,Λ). It is easy to

see that an equivalent definition of the covering minima is that µj is the smallest number

µ such that any (d − j)-dimensional affine subspace intersects some lattice translation

of µK.

Kannan and Lovász exploited relations between the covering minima to give an upper

bound of O(d2) for the flatness constant. The first step is to establish the following easy

connection between the first covering minimum and the width of a convex body:

µ1(K,Λ) = (width(K,Λ))−1.

Thus the covering minima interpolate between two well known and studied quantities:

the width µ−1
1 (K) on the one hand, and the covering radius µd(K) (highest dimensional

covering minima) on the other.

The covering minima are interesting in their own right. In the same paper ([KL88]),

Kannan and Lovász also searched for a statement regarding covering minima similar to

Minkowski’s second theorem. As we have already noted, it is not possible to bound the

volume of hollow convex bodies. What Kannan and Lovász could prove is that there

is a projection which is ‘almost’ hollow and whose volume normalized to the projected

lattice is bounded by a function of the dimension.

The covering minima have not been studied as extensively as the successive minima,

and many basic questions about them remain unanswered. As an example, consider the
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simplex

S(1d+1) := conv({−1d, e1, . . . , ed}),

where 1d = (1, . . . , 1) denotes the all-one vector in dimension d, and ei denotes the ith

coordinate unit vector. It contains a unique interior lattice point, the origin. Its covering

radius, that is, the d-th covering minimum, was computed in [GMS17, Prop. 4.9]:

µ(S(1d+1),Zd) =
d

2
. (1.1)

We can use this equality, along with the fact that S(1n+1) projects to S(1d+1) for every

d < n, to obtain

µd(S(1n+1)) ≥ µd(S(1d+1)) =
d

2
. (1.2)

The converse inequality was conjectured in [GMS17]:

Conjecture ([GMS17, Rem. 4.10], Conjecture B in Chapter 5). For every n ∈ N and

d ≤ n,

µd(S(1n+1)) =
d

2
. (1.3)

It might be surprising at first that the covering minima are not known even for this

specific simplex. Indeed, this seemingly simple question was the starting point for the

work presented in Chapter 5, where we show the equivalence of Conjecture B to a

conjecture regarding the covering radius of all non-hollow lattice polytopes.

1.5 Summary of results

In this section, we give an overview of the results presented in the rest of the thesis.

After the introduction, the thesis is divided into four chapters, reflecting four projects I

have worked on regarding lattices and polytopes.

Chapter 2 deals with unimodular covers of 3-dimensional polytopes. It consists of joint

work with F. Santos and is based on the paper [CS19b]. We show the existance of

unimodular covers of two classes of polytopes, which were previously known to be IDP.

Theorem (Corollary 2.3). Any 3-dimensional lattice parallelepiped admits a unimod-

ular cover.

Theorem (Theorem 2.7). If Q is a lattice polygon, and P is a weak Minkowski summand

of Q, then their Cayley sum Cay(P,Q) has a unimodular cover.
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Chapters 3 and 4 concern lower bounds for the flatness constant.

Chapter 3 focuses on dimension three. Sections 3.1 and 3.2 of Chapter 3 are based on

joint work with Francisco Santos ([CS19a]), while Section 3.3 is based on joint work

with Gennadiy Averkov, Antonio Macchia and F. Santos ([ACMS19]). We construct an

explicit example of a wide hollow tetrahedron, thus providing a lower bound for wc(3).

Theorem (Theorem 3.1). There is a hollow (non-lattice) 3-simplex of width 2 +
√

2 '
3.4142.

We further conjecture that this tetrahedron is the hollow convex body in dimension

three of largest width (Conjecture 3.2), and provide some evidence for this conjecture.

In particular, we show that a local version of it holds:

Theorem 1.16 (Corollary 3.10). The tetrahedron of Theorem 3.1 is a strict local max-

imizer for width among hollow convex 3-bodies.

Chapter 4 is joint work with Francisco Santos, and is based on [CS19a]. In it, we study

lower bounds, both asymptotically and in fixed dimension, for the flatness constants

wc(d), wp(d), ws(d), we(d) defined in Section 1.4. We show certain lower bounds in fixed

dimension for wp (resp. ws) by constructing an explicit example of a hollow lattice

polytope (resp. simplex) of width larger than its dimension:

Theorem (Theorem 4.1). There is a hollow lattice 14-polytope of width 15 and a hollow

lattice 404-simplex of width 408.

In personal communication, F. Santos informed us that he has found an empty 10-

simplex of width 11. Combining these results in fixed dimensions with the technical tool

of direct sums (introduced in section 5.1) allows us also to prove the following asymptotic

lower bounds:

Theorem (Theorem 4.4).

lim
d→∞

wp(d)

d
= lim

d→∞

wc(d)

d
≥ 2 +

√
2

3
= 1.138 . . .

lim
d→∞

ws(d)

d
≥ 11

10
= 1.1

For empty simplices, our results are slightly weaker:

Theorem (Theorem 4.6). For every d,m ∈ N we have

we(dm) ≥ (m− 3)we(d).
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In particular,

lim sup
d→∞

we(d)

d
= sup

d∈N

we(d)

d
≥ 1.1

In Chapter 5, based on the paper [CSS19] joint with F. Santos and Matthias Schymura,

we explore how small the covering radius of non-hollow lattice polytopes can be, a

somewhat opposite problem to that of Chapter 4.

We propose several conjectures.

Conjecture (Conjecture A). Let P ⊆ Rd be a non-hollow lattice d-polytope. Then

µ(P ) ≤ d

2
,

with equality if and only if P is obtained by direct sums and/or translations of simplices

of the form S(1l).

We show that this is equivalent to Conjecture B stated at the end of the previous section

regarding the covering minima of the simplex S(1d+1) (Theorem 5.2), and that it holds

in dimensions two and three (Theorem 5.3).

We then propose the following definition:

Definition 1.17. Let S = conv({v0, . . . , vd}) be a d-simplex with the origin in its

interior. We say that S has rational vertex directions if the line through the origin and

the vertex vi has rational direction, for every 0 ≤ i ≤ d.

Writing πi : Rd → Rd−1 for the linear projection vanishing at vi, we define the discrete

surface area of such a simplex S as

SurfZd(S) :=
d∑
i=0

Volπi(Zd)(πi(S)).

This allows us to formulate the following conjecture.

Conjecture (Conjecture C). Let S be a d-simplex with the origin in its interior and

with rational vertex directions. Then

µ(S) ≤ 1

2

SurfZd(S)

VolZd(S)
. (1.4)

We prove that this conjecture implies Conjecture A (Corollary 5.35), that it holds in

dimension two (Corollary 5.43) and in Theorem 5.4 show that it holds with equality
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for the following simplices S(ω) (which include S(1d+1) as a special case): For each

ω = (ω0, . . . , ωd) ∈ Rd+1
>0 ,

S(ω) := conv({−ω01d, ω1e1, . . . , ωded}).

A different way to extend conjecture A is to ask for the maximal covering radius among

lattice polytopes with at least k ≥ 1 interior lattice points. The natural conjecture in

this setting is:

Conjecture (Conjecture D). Let k, d ∈ N be nonnegative integers. Then, for every

lattice d-polytope P with k interior lattice points we have

µ(P ) ≤ d− 1

2
+

1

k + 1
.

Equality holds for k = 1 if and only if P is obtained by direct sums and/or translations

of simplices of the form S(1l), and for k ≥ 2, if and only if P is obtained by direct sums

and/or translations of the segment [0, k + 1] and simplices S(1l).

We prove that this conjecture holds in dimension two (Theorem 5.55).





Chapter 2

Unimodular covers of 3-polytopes

This chapter is dedicated to showing that certain classes of lattice polytopes have uni-

modular covers. A unimodular cover of a polytope P is a collection of unimodular

simplices whose union equals P . Having a unimodular cover is one of the properties

of lattice polytopes discussed in Section 1.3. Recall that it is stronger than the IDP

property: a lattice polytope P ⊂ Rd is said to have the integer decomposition property

if for every positive integer n, every lattice point p ∈ nP ∩ Zd can be written as a sum

of n lattice points in P .

We recall here Oda’s conjectures regarding smoothness and the IDP property, also in-

troduced in Section 1.3.

Conjecture 2.1. (i) (Related to problems 2 and 5 in [Oda97]) Every smooth lattice

polytope is IDP.

(ii) (Related to problems 1, 3, 4, 6 in [Oda97]) Every pair (P,Q) of lattice polytopes

with Q smooth and the normal fan of Q refining that of P is IDP.

Motivated by these and other questions, several authors have studied the IDP property

for different classes of lattice polytopes. For example, very recently Beck et al. [BHH+19]

proved that all smooth centrally symmetric 3-polytopes are IDP. More precisely, they

show that any such polytope can be covered by lattice parallelepipeds and unimodular

simplices, both of which are trivially IDP.

In Section 2.1 we show:

Theorem 2.2. Every 3-dimensional lattice parallelepiped has a unimodular cover.

This, together with the mentioned result from [BHH+19], gives:

19
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Corollary 2.3. Every smooth centrally symmetric lattice 3-polytope has a unimodular

cover.

These results leave open the following important questions:

Question 2.4. Do 3-dimensional parallelepipeds have unimodular triangulations?

Question 2.5. Higher dimensional parallelotopes (affine images of cubes) are IDP. Do

they have unimodular covers?

The two-dimensional case of Conjecture 2.1(ii) is known to hold, with three different

proofs by Fakhruddin [Fak02], Ogata [Oga06] and Haase et al. [HNPS08]. This last one

actually shows that smoothness of Q is not needed. In dimension three, however, the

conjecture fails without the smoothness assumption. Indeed, if we let P = Q be any

non-unimodular empty tetrahedron, then P is obviously a weak Minkowski summand of

Q but the pair (P,Q) is not IDP. By an empty tetrahedron we mean a lattice tetrahedron

containing no lattice points other than its vertices (see the proof of Lemma 2.11 for a

classification of them).

An alternative approach to Conjecture 2.1(ii) is via Cayley sums, which we discuss

in Section 2.2. Recall from Section 1.1 that the Cayley sum of two lattice polytopes

P,Q ⊂ Rd is the lattice polytope

Cay(P,Q) := conv(P × {0} ∪Q× {1}) ⊂ R3.

We normally require Cay(P,Q) to be full-dimensional (otherwise we can delete coordi-

nates) but this does not require P and Q to be full-dimensional. All that is needed is

that the linear subspaces parallel to them to span Rd.

From the Cayley trick (also explained in Section 1.1), it is easy to prove the following

theorem.

Proposition 2.6 (see, e.g. [Tsu18, Thm. 0.4]). If Cay(P,Q) is IDP then the pair (P,Q)

is mixed IDP.

In particular, the following statement from Section 2.2 is stronger than the afore-

mentioned result of [Fak02, HNPS08, Oga06]:

Theorem 2.7. Let Q be lattice polygon, and P a weak Minkowski summand of Q. Then

the Cayley sum Cay(P,Q) has a unimodular cover.

This has the following two corollaries, also proved in Section 2.2. A prismatoid is a

polytope whose vertices all lie in two parallel facets. A polytope has width 1 if its
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vertices lie in two consecutive parallel lattice hyperplanes. Observe that this is the same

as being (SL(Z, d)-equivalent to) a Cayley sum.

Corollary 2.8. Every smooth 3-dimensional lattice prismatoid has a unimodular cover.

Corollary 2.9. Every integer dilation kP , k ≥ 2, of a lattice 3-polytope P of width 1

has a unimodular cover.

A special case of the latter are integer dilations of empty tetrahedra. That their dilations

have unimodular covers is [SZ13, Cor. 4.2] (and is also implicit in [KS03]).

We believe that the 3-polytopes in all these statements have unimodular triangulations,

but this remains an open question.

2.1 Parallelepipeds

The main tool for the proof of Theorem 2.2 is what we call the parallelepiped circum-

scribed to a given tetrahedron, defined as follows:

Definition 2.10. Let T be a tetrahedron with vertices p1, p2, p3, and p4. Consider the

points qi = 1
2(p1 + p2 + p3 + p4)− pi, i ∈ [4], and let

C(T ) = conv(pi, qi : i ∈ [4]).

C(T ) is a parallelepiped with facets conv(pi, pj , qk, ql) for all choices of {i, j, k, l} = [4].

We call it the parallelepiped circumscribed to T .

For each i ∈ [4], let Ti = conv(qi, pj , pk, pl), with {i, j, k, l} = [4]; we call these Ti the

corner tetrahedra of C(T ). Together with T they triangulate C(T ).

Modulo an affine transformation, the situation of T and C(T ) is exactly that of the

regular tetrahedron inscribed in a cube; see Figure 2.1.

Lemma 2.11. Let T = conv{p1, p2, p3, p4} be an empty lattice tetrahedron that is not

unimodular. Let C(T ) be the parallelepiped circumscribed to T and let T1, T2, T3 and T4

be the corresponding corner tetrahedra in C(T ). Then, every Ti contains at least one

lattice point different from {p1, . . . , p4}.

Proof. By White’s classification of empty tetrahedra ([Whi64], see also, e. g. [HPPS14,

Sect. 4.1]), there is no loss of generality in assuming T = conv(p1, p2, p3, p4) with

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 0, 1), p4 = (a, b, 1).
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Figure 2.1: In red we have a tetrahedron T , in black its circumscribed parallelepiped C(T ),
and in blue the corner simplex T4.

where b ≥ 2 is the (normalized) volume of T , and a ∈ {1, . . . , b−1} satisfies gcd(a, b) = 1.

This gives

q1 =

(
1 + a

2
,
b

2
, 1

)
, q2 =

(
a− 1

2
,
b

2
, 1

)
,

q3 =

(
1 + a

2
,
b

2
, 0

)
, q4 =

(
1− a

2
,− b

2
, 0

)
.

Then, the inequalities b ≥ 1 + a ≥ 2 imply:

u := (1, 1, 0) ∈ conv(p1p2q3) ⊂ T4, v := (0,−1, 0) ∈ conv(p1p2q4) ⊂ T3.

Observe that u + v = p1 + p2 = q3 + q4. Now, this implies that the quadrilateral

conv(p1q4p2q3) contains a fundamental domain for the lattice Z2 × {0}. Hence, its

translate conv(q2p3q1p4) contains a fundamental domain for Z2 × {1} and, in particu-

lar, it contains at least one lattice point other than p3 and p4. By central symmetry

around its center
(
a
2 ,−

b
2 , 1
)
, conv(q2p3q1p4) must contain lattice points in both triangles

conv(q2p3p4) ⊂ T1 and conv(q1p3p4) ⊂ T2.

Figure 2.2: The parallelograms conv(p1p2q3q4) and conv(q2q1p4p3). The large red dots are
lattice points.
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Lemma 2.12. Let P be a lattice parallelepiped and let T ⊂ P be a tetrahedron. Then,

at least one of the four corner tetrahedra Ti of the circumscribed parallelogram C(T ) is

fully contained in P .

Proof. Let us denote the vertices of T by p1, p2, p3, p4 and the vertices of C(T ) not in T

by q1, q2, q3, q4, with the conventions of Definition 2.10.

We call band any region of the form f−1([α, β]) for some functional f ∈ (R3)∗ and closed

interval [α, β] ⊂ R. We claim that any band containing T must contain at least three of

the qis. This claim implies that the parallelepiped P , which is the intersection of three

bands, contains at least one of the qis and hence it fully contains the corresponding Ti.

To prove the claim, suppose that q1 6∈ B := f−1([α, β]) for a certain band B ⊃ T .

Without loss of generality, say f(q1) < α. Then the equalities q1 + q2 = p3 + p4 and

q1 + p1 = q2 + p2 respectively give:

f(q2) = f(p3 + p4 − q1) = f(p3) + f(p4)− f(q1) > 2α− α = α, (2.1)

f(q2) = f(q2 + p2 − p1) = f(q2) + (f(p2)− f(p1)) < α+ (β − α) = β, (2.2)

so that q2 ∈ B.

Inequality (2.1) also implies

f(q1) < f(pi) < f(q2), for i = 3, 4. (2.3)

The translation of vector 1
2(p1 + p2 − p3 − p4) sends q1, q2, p3, p4 to p2, p1, q4, q3 (in this

order). By applying this to inequality (2.3), we obtain

α ≤ f(p2) < f(qi) < f(p1) ≤ β, for i = 3, 4,

so that q3, q4 ∈ B. This finishes the proof of the claim, and of the lemma.

Corollary 2.13. Let T be an empty lattice tetrahedron contained in a lattice paral-

lelepiped P . Then, T can be covered by unimodular tetrahedra contained in P .

Proof. We proceed by induction on the (normalized) volume of T , which is a positive

integer. If this volume equals 1 then T is unimodular and there is nothing to prove, so

we assume T is not unimodular. Let p1, p2, p3, p4 denote the vertices of T .

Lemma 2.12 guarantees that one of the corner tetrahedra Ti of the parallelepiped C(T )

is contained in P . Without loss of generality, suppose T4 = conv(p1, p2, p3, q4) is in P .

By Lemma 2.11, we know that T4 contains a lattice point other than the pis, which
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we denote by u. Then S = conv(T ∪ {u}) can be triangulated in two different ways:

S = T ∪ T ′4, where T ′4 = conv(p1, p2, p3, u) ⊆ T4 and S = S1 ∪ S2 ∪ S3, with

S1 = conv(p2, p3, p4, u), S2 = conv(p1, p3, p4, u), S3 = conv(p1, p2, p4, u).

Each of the tetrahedra Si has lattice volume strictly smaller than T because, for each i, pi

is the unique point of C(T ) maximizing the distance to the opposite facet conv(pj , pk, pl)

of T . Thus, S1, S2 and S3 cover T and have volume strictly smaller than T . The Si may

not be empty, but we can triangulate them into empty tetrahedra, which by inductive

hypothesis they can be covered unimodularly.

Proof of Theorem 2.2. Arbitrarily triangulate the parallelepiped into empty lattice tetra-

hedra and apply Corollary 2.13 to these tetrahedra.

Let us say that a lattice 3-polytope P has the circumscribed parallelepiped property if

it satisfies the conclusion of Lemma 2.12: “for every empty tetrahedron T contained in

P at least one of the four corner tetrahedra in C(T ) is contained in P”. If this holds

then P has a unimodular cover, since then the proofs of Corollary 2.13 and Theorem 2.2

work for P . Hence, a positive answer to the following question would imply that every

smooth 3-polytope has a unimodular cover, which in turn implies Conjecture 2.1(i) in

dimension three.

Question 2.14. Does every smooth 3-polytope have the circumscribed parallelepiped

property?

Our proof that parallelepipeds have the property (Lemma 2.12) is based on the fact that

they have only three (pairs of) normal vectors. The proof, and the property of being

IDP, fail if there are four of them:

Example 2.15 (Non-IDP octahedron and triangular prism). The following lattice oc-

tahedron Q and triangular prism P are not IDP:

Q = conv((0, 1, 1), (1, 0, 1), (1, 1, 0), (0,−1,−1), (−1, 0,−1), (−1,−1, 0)), (2.4)

P = conv((0, 1, 1), (1, 0, 1), (1, 1, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1)). (2.5)

Indeed, in both polytopes the only lattice points are the six vertices and the origin. The

point (1, 1, 1) lies in the second dilation but is not the sum of two lattice points in the

polytope. Hence, they are not IDP, which implies they do not admit unimodular covers.
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2.2 Cayley sums

We now turn our attention to Theorem 2.7. A triangulation of Cay(P,Q) ⊂ R3 consists

of tetrahedra of types (1, 3), (2, 2) and (3, 1), where the type denotes how many vertices

they have in P and in Q. Empty tetrahedra of types (1, 3) or (3, 1), which are Cayley

sums of a triangle in P and a point in Q, or viceversa, are automatically unimodular.

The case that we need to study are therefore tetrahedra of type (2, 2), which are Cayley

sums of a segment p ⊂ P and a segment q ⊂ Q. The following lemma, whose proof

we postpone to Section 2.3, is crucial to understand how to unimodularly cover these

tetrahedra. We use the following conventions: if a, b are points, we denote by [a, b] and

(a, b) respectively the closed and open segments with endpoints a, b. Given a segment

s = [a, b], we denote the vector −→s := b− a and the line spanned by −→s by 〈−→s 〉.

Lemma 2.16. Let Q be a two-dimensional lattice polytope and P a weak Minkowski

summand of it. Let p = [p1, p2] ⊂ P and q = [q1, q2] ⊂ Q be two primitive and non-

parallel lattice segments, and let 〈−→p 〉 and 〈−→q 〉 be the lines spanned by them. If the

parallelogram p+ q is not unimodular, then at least one of the regions

((p1, p2) + 〈−→q 〉) ∩ P, and ((q1, q2) + 〈−→p 〉) ∩Q

contains a lattice point. See Figure 2.3.

Figure 2.3: The strips of Lemma 2.16

Corollary 2.17. Let T be an empty lattice tetrahedron contained in the Cayley sum

Cay(P,Q), where Q is a lattice polygon and P is a weak Minkowski summand of Q.

Then, T can be covered by unimodular tetrahedra contained in Cay(P,Q).

Proof. The proof is by induction on the normalized volume of T , which we assume to be

at least 2. This implies that T is of type (2, 2), since empty tetrahedra of types (1, 3) and

(3, 1) are unimodular. Thus, T is the Cayley sum of primitive segments p = [p1, p2] ⊂ P
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and q = [q1, q2] ⊂ Q. Let u be the lattice point whose existence is guaranteed by

Lemma 2.16. Assume (the other case is similar) that

u ∈ ((p1, p2) + 〈−→q 〉) ∩ P,

and call t the triangle t = conv(u, p1, p2) ⊂ P .

Let us denote ũ, p̃1, p̃2, q̃1, q̃2 the points corresponding to u, p1, p2, q1, q2 in Cay(P,Q).

That is, p̃i = p × {0}, q̃i = p × {1}, and ũ = u × {0}. Observe that the assumption

u ∈ ((p1, p2)+〈−→q 〉 implies that of the segments [u, qi] crosses the triangle conv(p1, p2, qj),

where {i, j} = {1, 2}.

In turn, this means that the polytope conv(ũ, p̃1, p̃2, q̃1, q̃2) = Cay(t, q) has the following

two triangulations:

T + := {Cay(p, q),Cay(t, {qi})} ,

T − := {Cay([p1, u], q),Cay([p2, u], q),Cay(t, {qj})}.

The tetrahedra Cay(t, {qj}) and Cay(t, {qi}) are unimodular, which implies that T =

Cay(p, q) has volume equal to the sum of the volumes of Cay([p1, u], q) and Cay([p2, u], q).

In particular, we have covered T by the three tetrahedra in T −, which are of smaller

volume and hence have unimodular covers by inductive assumption.

Proof of Theorem 2.7. Arbitrarily triangulate Cay(P,Q) into empty lattice tetrahedra

and apply Corollary 2.17 to these tetrahedra.

Let us now show how to derive Corollaries 2.8 and 2.9 from this theorem. Prismatoids

were defined in [San12] as polytopes whose vertices all lie in two parallel facets. In

particular, a lattice prismatoid is any d-polytope SL(Z, d)-equivalent to one of the form

conv(Q1 × {0} ∪Q2 × {k}),

where Q1, Q2 are lattice (d− 1)-polytopes and k ∈ Z>0. This is almost a generalization

of Cayley sums, which would be the case k = 1, except the definition of prismatoid

requires Q1 and Q2 to be full-dimensional, while the Cayley sum only requires this for

Q1 +Q2.

Proposition 2.18. Let Q1, Q2 be two lattice polygons and consider the prismatoid

P := conv(Q1 × {0} ∪Q2 × {k}),

with k ≥ 2. If P ∩ (R2 × {1}) is a lattice polygon then P has a unimodular cover.
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Proof. The condition that P ∩ (R2 × {1}) is a lattice polygon implies the same for

P ∩ (R2 × {i}), for every i. Indeed, the condition implies that every edge of Cay(P,Q)

of the form [u× {0}, v × {k}] has a lattice point in R2 × {i}, and hence it has a lattice

point in P ∩ (R2 × {i}), for every i.

Observe that for every i ∈ {1, . . . , k − 1} the intersection P ∩ (R2 × {i}) has the same

normal fan as Q1 +Q2. Thus, each slice

P ∩ (R2 × [i− 1, i])

is a Cayley polytope. For i ∈ {2, . . . , k − 1}, both bases have the same normal fan (and

therefore each is a weak Minkowski summand of the other); for i ∈ {1, k} one base is a

weak Minkowski summand of the other. We can therefore apply Theorem 2.7 to each

slice and combine the covers thus obtained to get a unimodular cover of P .

Proof of Corollaries 2.8 and 2.9. In both cases the polytope under study satisfies the

hypotheses of Proposition 2.18: in Corollary 2.8, the smoothness of the prismatoid

implies that every edge of the form [u× {0}, v × {k}] has lattice points in all slices. In

Corollary 2.9, since P has width one, P ∼= Cay(Q1, Q2) for some Q1 and Q2. Hence,

kP ∩ (R2 × {1}) = (k − 1)Q1 +Q2.

2.3 Proof of Lemma 2.16

Let fq be the primitive lattice functional constant on q and fp the one constant on p.

We assume that fq(p1) < fq(p2) and fp(q1) < fp(q2).

Observe that in the strip q+ 〈−→p 〉, there is a unique lattice point on the line fq(x) = −1;

indeed, since q is primitive, the only way that in the strip there could be two lattice points

on fq(x) = −1 is if they were on the boundary of the strip, which would however imply

that p + q is a unimodular paralellogram, against our assumptions. Since translating

the polytopes by lattice vectors will not result in any loss of generality, we can assume

that p1 is that unique lattice point. That is, fq(p1) = −1, or equivalently, the triangle

conv(q1, q2, p1) is unimodular. Similarly, the unique lattice point in the strip on the line

fq(x) = 1 is then q1 + q2 − p1.

We let H1 = {fq(x) ≤ 0} and H2 = {fq(x) ≥ 0}; similarly let V1 = {fp(x) ≤ 0} and

V2 = {fp(x) ≥ 0}. In the figures, we draw p as a vertical segment and q as a horizontal

one, so that Hi ∩ Vj are the four quadrants. See Figure 2.4.
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Figure 2.4: Setup for the proof of Lemma 2.16

Let w = area(p + q) ≥ 2, where area denotes the area normalized to a fundamental

domain. Then:

w = widthfq(p+ 〈−→q 〉) = widthfq(p) = widthfp(q) = widthfp(q + 〈−→p 〉).

Proof of Lemma 2.16. Suppose by contradiction that there is no lattice point as de-

scribed in the lemma. In particular, no lattice point on the boundary of Q can be in

the interior of the strip q + 〈−→p 〉. Thus the boundary of Q contains two primitive seg-

ments which each have one vertex on each side of the strip q + 〈−→p 〉; we will call these

b = [b1, b2], t = [t1, t2], with b and t crossing the strip in H1 and H2 respectively and the

convention that fp(b2) > fp(b1) and fp(t2) > fp(t1). This readily implies

fp(t1) ≤ fp(q1), fp(t2) ≥ fp(q2),

fp(b1) ≤ fp(q1), fp(b2) ≥ fp(q2).
(2.6)

The same holds for P and the strip p + 〈−→q 〉, and we call the segments ` = [l1, l2] and

r = [r1, r2], with ` and r crossing the strip p+ 〈−→q 〉 in V1 and V2 respectively. The only

difference is that in the case that P is one dimensional we have ` = r = p. Again we

have

fq(l1) ≤ fq(p1), fq(l2) ≥ fq(p2),

fq(r1) ≤ fq(p1), fq(r2) ≥ fq(p2).
(2.7)

Observe that a priori one of l and r can coincide with p, if this is on the boundary of P ,

and similarly one of t, b might be q, if this is on the boundary of Q.

Claim 2.19. The following inequalities hold,

widthfq(`),widthfq(r),widthfp(t),widthfp(b) ≥ w.

Each inequality is strict, unless the segment in question coincides with p or q.



2.3. Proof of Lemma 2.16 29

Proof. The inequality ≥ w follows in each case from equations (2.7) and (2.6).

If one of the inequalities, say the one for `, is not strict, then ` has one endpoint on each

of the boundary lines of (p + 〈−→q 〉). Unless ` = p, one of the endpoints of ` is not an

endpoint of p, say l1 6= p1. Thus the triangle T = conv(p2, p1, l1) is contained in P and

its edge [p1, l1] is an integer dilation of q. Since widthfq(T ) = w ≥ 2, T must contain a

lattice point in the interior of the strip.

Claim 2.20. fq(b2 − b1) and fq(t2 − t1) are non-zero and have the same sign. That is,

fq achieves its maximum over b and over t on the same halfplane V1 or V2.

Proof. Suppose by contradiction that the maximum of fq on t lies in V1 and that the

maximum on b lies in V2.

Then Q ∩ V2 is contained in the open strip {−1 < fq(x) < w − 1}, of width w. This

cannot contain a translated copy of r, since widthfq(r) ≥ w, see Figure 2.5. This is a

contradiction, since P is a Minkowski summand of Q and therefore Q must have an edge

parallel to t.

Figure 2.5: Illustration of the proof of Claim 2.20

We assume w.l.o.g. that the maximum on t (and hence on b) is achieved in V2, that is

to say, fp and fq increase in the same direction along t (and hence along b).

Claim 2.21. Assume w.l.o.g. that b and t either are parallel or their affine spans cross

in V2. Then,

1. The intersection of Q with any line parallel to p in V2 has width w.r.t. fq strictly

smaller than w.

2. fp(r2) > fp(r1), that is, fp achieves its maximum over r in H2.
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Proof. Both t and b must intersect p, otherwise p1 or p2 are the lattice points we are

looking for in Q. Their intersections with p are thus endpoints of a segment of width

w.r.t fq less than w, the width of p. Since t and b cross in V2, the same is true for any

segment parallel to p contained in Q ∩ V2.

Figure 2.6: Illustration of the proof of Claim 2.21

For part (b), If fp(r2) ≤ fp(r1), it would be impossible to fit a translated copy r′ of r

in the correct side of Q: r would need to lie inside the triangle delimited by the affine

line 〈t〉 and the inequalities fq(x) ≥ fq(r1), fp(x) ≤ fp(r1). However, this triangular

region has width less than w w.r.t. fq, by combining part (a) with the fact that fp and

fq increase in the same direction along t, see Figure 2.6.

The last two claims can be summarized as saying that in the pictures b, t and r have

positive slope. Observe that this implies that q is not in the boundary of Q and p 6= r,

so both P and Q are full dimensional.

Let g be the primitive lattice functional constant on [p1, q2] (and therefore constant also

on [q1, q1 + q2−p1]). By the assumption on p1, the values of g on these segments differer

by 1. We choose the sign of g so that

g([p1, q2]) = g([q1, q1 + q2 − p1]) + 1.

Claim 2.22. g(t1) > g(t2), g(b1) > g(b2), and g(r1) < g(r2).

Proof. Since b and t must respectively separate p1 and q1 + q2 − p1 from the other two

vertices of the parallelogram conv(q1, p1, q2, q1+q2−p1), they must respectively intersect

its (parallel) edges [p1, q2] and [q1, q1 + q2− p1], which implies the stated inequalities for

b and t. The same argument applied to the parallelogram conv(p1, q2, p2, p1 + p2 − p2),

yields the inequalities for ` and r.
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Figure 2.7: Illustration of the proof of Claim 2.22

We are now ready to show a contradiction. Since the normal fan of Q refines that of P ,

Q must have an edge r′ which is a translated copy of r. Let r′1 and r′2 be its endpoints.

Now consider the lattice line d through r′1 parallel to [p1, q2], that is, g is constant on d.

Let d′ be the parallel line defined by g(d′) = g(d) + 1.

Consider the segment s contained in r′1 + 〈−→p 〉 with endpoints s1 = r′1 on d and s2 on d′.

Since t separates q1 and q1 + q2 − p1 and g decreases from t1 to t2 (by Claim 2.22), the

inequality g(x) < g(d′) holds on Q ∩ V2, and in particular for r′2. Since r′2 is a lattice

point, g(r′2) ≤ g(d) = g(r′1), which contradicts Claim 2.22).





Chapter 3

The flatness constant in

dimension three

This chapter focuses on the flatness constant in dimension three. Recall from Section 1.4

that the flatness constant in dimension d is

wc(d) := sup
C hollow d-dim

convex body

width(C,Λ),

and was shown to be finite in each dimension by Khinchin (Theorem 1.14).

Upper bounds of the flatness constant have been widely studied (for an overview of

some of these results see Section 1.4). However, the only values of the flatness constant

which are known exactly are the trivial wc(1) = 1, and wc(2) = 1 +
√

3
2 , proved by

Hurkens in [Hur90]. In Chapter 4, we will see his construction of the hollow triangle

which achieves this width in detail.

We show that the flatness constant in dimension three is at least 2+
√

2 by constructing

an explicit example (section 3.2):

Theorem 3.1. There is a hollow (non-lattice) tetrahedron ∆ of width 2 +
√

2 ' 3.4142.

The tetrahedron ∆ of Theorem 3.1 is symmetric with respect to the fcc-cubic lattice

and has width 2 +
√

2 for seven different linear functionals (the three coordinates and

four diagonals of the cube). To certify that no integer functional gives smaller width to

it we develop in Section 3.1 a method which may be of independent interest, based on

existence of long piecewise-linear paths of rational directions.

This tetrahedron maximizes width among a two-parameter family of hollow tetrahedra

that contains two of the five existing hollow 3-polytopes of width 3 (see Theorem 3.7

33
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in Section 3.2), in much the same way as the value of wc(2) = 1 + 2/
√

3 is attained by

optimizing a perturbation of the second dilation of the unimodular triangle (see details

in Section 4.2). This makes us conjecture that:

Conjecture 3.2. The tetrahedron ∆ in Theorem 3.1 is the convex 3-body of largest

width; that is, wc(3) = 2 +
√

2.

As further evidence for this conjecture, in Section 3.3 we show that a local version of it

holds:

Theorem 3.3. ∆ is a strict local maximizer for width among hollow convex 3-bodies.

3.1 A certificate for width

In Sections 4.2–4.3, we construct explicit examples of polytopes of width larger than

their dimension. Before that, we show a heuristic method to certify the width of a

convex body. This method indirectly takes advantage of the fact that in our examples

the width is attained with respect to several different functionals.

By a rational path Γ in Rd, with respect to a certain lattice Λ, we mean a concatenation

of segments in rational directions. That is, Γ is given as a sequence p0, p1, . . . , pt of

points in Rd such that for every i the vector pi+1 − pi is parallel to a lattice vector.

This allows us to define the lattice length of each segment [pi, pi+1] as the scalar λ > 0

such that 1
λ(pi+1 − pi) is primitive, meaning that it is the shortest integer vector in its

direction. The lattice length of the rational path Γ is the sum of the lattice lengths of

the individual segments; we denote this by lengthΛ(Γ).

We say that a functional f is strictly increasing along Γ if

f(p0) < f(p1) < · · · < f(pt).

The open polar cone of Γ, denoted cone(Γ)◦, is the set of functionals f ∈ (Rd)∗ that are

strictly increasing along Γ.1

Lemma 3.4. Let P ⊂ Rd be a convex body. Let Γ be a rational path of lattice length

w for a certain lattice Λ, with the first and last points of Γ in P . Then any lattice

functional in the open polar cone of Γ gives width at least w to P .

1The notation cone(Γ)◦ comes from the fact that this cone is the (open) polar, in the standard sense,
of the cone generated by the vectors pi+1 − pi, i = 1, . . . , t.
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Proof. If f ∈ cone(Γ)◦ then

width(P, f) ≥ lengthΛ(Γ) = w,

since f takes an integer positive value in the primitive vector parallel to each segment

of Γ.

Remark 3.5. As a consequence of the lemma, if Γ1, . . . ,Γk is a collection of rational

paths with end-points in P , all of length at least w, and with the property that

k⋃
i=1

cone(Γi)
◦ = Rd \ {0},

then the lattice width of P is at least w.

Example 3.6. The necessity for using the open polar cone cone(Γ)◦ and not the closed

one in Lemma 3.4 can be illustrated by considering P to be the square [0, 1]2. The two

boundary paths between opposite vertices in P have lattice length two and by Lemma 3.4

this guarantees that the width of P with respect to any functional in Λ∗ \ (〈e∗1〉 ∪ 〈e∗2〉)
is at least two. But, of course, the width of P with respect to the functionals e∗1 and e∗2

is 1, and these two functionals are weakly increasing along the boundary paths.

3.2 A hollow 3-simplex of width 3.4142

Consider the (dilated) face-centered cubic lattice

Λ := {(a, b, c) : a, b, c ∈ 2Z, a+ b+ c ∈ 4Z} ,

with dual

Λ∗ =

{
(a, b, c) ∈ 1

4
Z : a+ b, a+ c, b+ c ∈ 1

2
Z3

}
.

Here and in what follows we use the standard coordinates in (R3)∗, so that (a, b, c)

denotes the functional (x, y, z) 7→ ax+ by + cz.

For the sake of symmetry, all constructions in this section are with respect to the fol-

lowing affine lattice, which is a translation of Λ:

Λ1 := Λ− (1, 1, 1) = {(a, b, c) : a, b, c ∈ 1 + 2Z, a+ b+ c ∈ 1 + 4Z} .

By lattice width with respect to Λ1 we mean the lattice width with respect to Λ.
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Consider the following lattice tetrahedron (see Figure 3.1) of width three in Λ1:

∆0 := conv{(3, 1, 5) , (−1, 3,−5) , (−3,−1, 5) , (1,−3,−5)}.

∆0 is (modulo unimodular transformation) the hollow 3-simplex of normalized volume

25 and width 3 that appears in [AKW17, Figure 2] and [AWW11, Figure 1(h)]. We

[−5,−5]

[−3, 1] [−1, 3]
[5, 5]

[5, 5]
[−1, 3] [−3, 1]

[−5,−5]

x

y

Figure 3.1: Projection along the z-axis of the hollow lattice 3-simplex ∆0 of width three in
the lattice Λ1 := {(a, b, c) : a, b, c ∈ 1 + 2Z, a+ b+ c ∈ 1 + 4Z}. Dots represent (projections of)
vertical lattice lines. For those that intersect ∆0, next to the dot we show the interval of values
of z in the intersection. For example, the interval [−1, 3] next to the dot with coordinates (1, 1)
indicates that the points (1, 1,−1) and (1, 1, 3) are in the boundary of ∆0. At the four vertices

of ∆0 the interval degenerates to a point.

want to modify ∆0 to a non-hollow simplex of larger width, in the spirit of the previous

section. We chose this ∆0 because it achieves its lattice width only with respect to two

lattice functionals, namely x/4 and y/4. This gives a certain freedom to scale down the

z coordinate and enlarge the other two, thus increasing the minimum width. We can

simultaneously rotate the whole tetrahedron around the z axis.

To formalize this, we consider the family of tetrahedra that share the following properties

with ∆0: they are circumscribed around the unimodular simplex

conv{(−1, 1, 1), (−1,−1,−1), (1,−1, 1), (1, 1,−1)},

and they are invariant under the order four isometry (x, y, z) 7→ (−y, x,−z). Put differ-

ently, for each (x, y, z) ∈ R3 we define ∆(x, y, z) to be the tetrahedron with vertices

A = (x, y, z), B = (−y, x,−z), C = (−x,−y, z), D = (y,−x,−z).

We constrain (x, y, z) to satisfy that (−1, 1, 1), (−1,−1,−1), (1,−1, 1) and (1, 1,−1)

lie, respectively, in the planes containing ABC, BCD, ACD and ABD. By symmetry,
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these four conditions are equivalent to one another and an easy computation shows that

they translate to the equality

z =
x2 + y2

x2 + y2 − 2x− 2y
. (3.1)

In the rest of this section we show the following, which implies Theorem 3.1:

Theorem 3.7. Let (x, y, z) ∈ R3 be a point satisfying the constraint of Equation (3.1).

Then, the width of ∆(x, y, z) with respect to Λ is at most 2 +
√

2, with equality if and

only if

(x, y, z) ∈
{ (

2 +
√

2,
√

2, 2 +
√

2
)
,
(√

2, 2 +
√

2, 2 +
√

2
) }

.

Proof of the upper bound in Theorem 3.7. Let us consider the functionals (1
2 , 0, 0), (0, 1

2 , 0),

and (0, 0, 1
2), which are in Λ∗. The width of ∆(x, y, z) with respect to first two equals

max{|x|, |y|}, and with respect to the third equals |z|. We are going to show that when-

ever max{|x|, |y|} ≥ 2 +
√

2 we have |z| ≤ 2 +
√

2. Let

f(x, y) :=
x2 + y2

x2 + y2 − 2x− 2y

be the function giving z in terms of x and y. The assumption max{|x|, |y|} ≥ 2 +
√

2

implies that the denominator of f is positive, since it is only negative (or zero) inside

(or on) the circle with center (1, 1) and radius
√

2. The numerator is also obviously

positive, and thus z is positive. The equation

f(x, y) =
x2 + y2

x2 + y2 − 2x− 2y
= 2 +

√
2

defines again a circle, with center (
√

2,
√

2) and radius 2. Outside the circle z is smaller

than 2 +
√

2 and inside the circle at least one of |x| and |y| is.

Thus, for the rest of the section we fix ∆ = ∆(2 +
√

2,
√

2, 2 +
√

2), which has the

following vertices and is depicted in Figure 3.2:

A =
(

2 +
√

2,
√

2, 2 +
√

2), B =
(
−
√

2, 2 +
√

2, −2−
√

2),

C =
(
− 2−

√
2, −

√
2, 2 +

√
2), D =

( √
2, −2−

√
2, −2−

√
2).

(3.2)

Observe that the width of ∆ with respect to the following 14 lattice functionals equals

2 +
√

2:

±1
2(1, 0, 0), ±1

2(0, 1, 0), ±1
2(0, 0, 1), 1

4(±1,±1,±1). (3.3)
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[−3,−α]

[−α, 1]

[−1, α]

[α, 3]

[α, 3]

[−1, α]

[−α, 1]

[−3,−α]

x

y

A

B

C

D

Figure 3.2: The hollow 3-simplex ∆ of width 2 +
√

2, drawn with the same conventions as in
Figure 3.1. We abbreviate α = 1 +

√
2.

We now prove that this is the width of ∆.

Proof of the equality in Theorem 3.7. In Figure 3.2 we have written, next to each verti-

cal lattice line ` = (x0, y0) × R intersected by ∆, the interval {z ∈ R : (x0, y0, z) ∈ ∆}.
Hollowness follows from this information, since the intervals do not contain points of Λ in

their interior. To check correctness of these computations observe that the facet-defining

inequality for triangle ABC is

z ≤ x− y√
2
− y + 2 +

√
2.

Plugging in the coordinates (x0, y0) ∈ {(−3,−1), (−1, 1), (−1, 3), (1, 1)} of the four ver-

tical lines meeting the triangle ABC we get that the highest points of ∆ on each are

indeed

(−3,−1,3), (−1, 1,1), (−1, 3,−1−
√

2), (1, 1,1 +
√

2).

The rest of upper and lower bounds for the intervals in Figure 3.2 follow by symmetry.

To show that the width is at least 2 +
√

2 we apply Lemma 3.4 to various paths. For

example, the expression

D = C +

(
1

2
+

√
2

2

)
(4, 0, 0) +

1

2
(0,−4, 0) +

(
1 +

√
2

2

)
(0, 0,−4).

gives a rational path from vertex C to vertex D with directions (4, 0, 0), (0,−4, 0) and

(0, 0,−4) and of length(
1

2
+

√
2

2

)
+

1

2
+

(
1 +

√
2

2

)
= 2 +

√
2.
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The open polar cone of this rational path is the octant {(a, b, c) ∈ (R3)∗ : a > 0, b <

0, c < 0}, so all lattice functionals in the interior of the octant give width at least 2+
√

2

to ∆. The same path in reverse implies the same for the opposite octant, and the

symmetry of order 4 in ∆ implies it for the eight open octants.

We now define a second family of paths whose open polar cones are the connected

components of (R3)∗ \ {(a, b, c) : a = ±b}. (Observe that these are non-pointed cones).

The first one goes from B to D based on the equality

D = B + (−2,−2, 0) + (1 +
√

2)(2,−2, 0).

Its length is 1 + (1 +
√

2) = 2 +
√

2 and its open polar cone is

{(a, b, c) : a+ b < 0, a− b > 0}.

Again, symmetry of ∆ gives paths for the other three connected components of (R3)∗ \
{(a, b, c) : a = ±b}.

Together, these two sets of paths show width ≥ 2 +
√

2 for all lattice functionals except

for the integer multiples of 1
2(0, 0, 1), 1

2(1, 1, 0) and 1
2(1,−1, 0). These three give widths

2 +
√

2, 2 + 2
√

2 and 2 + 2
√

2 to ∆, respectively.

Remark 3.8. The family of tetrahedra ∆(x, y, z) also contains

∆(3, 3, 3) = conv{(3, 3, 3), (3,−3,−3), (−3, 3,−3), (−3, 3,−3)},

which is the third dilation of a unimodular simplex. In this sense, ∆(x, y, z) is a common

generalization of two of the three existing lattice tetrahedra of maximal width [AKW17].

This is further motivation for Conjecture 3.2.

3.3 Local maximality of the tetrahedron ∆

As further evidence for Conjecture 3.2, we can prove a local version of it, namely:

Theorem 3.9. ∆ is a strict local maximizer for width among hollow tetrahedra. That

is, every small perturbation of ∆ is either non-hollow or has width strictly smaller than

2 +
√

2.

Corollary 3.10. ∆ is a strict local maximizer for width among hollow convex 3-bodies.

That is, every convex body K in a neighborhood of ∆ is either non-hollow or has width

strictly smaller than 2 +
√

2.
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Proof. Let p1, . . . , p4 denote lattice points lying respectively in the relative interior of

the four facets of ∆; their specific coordinates are given in Section 3.3.1, and are not

needed here. Let K be a hollow convex body in a neighborhood of ∆. Let H1, . . . ,H4

be planes weakly separating K from p1, . . . , p4, respectively. The fact that K is close to

∆ and each pi is in the relative interior of a different facet of ∆ implies that H1, . . . ,H4

are close to the facet planes of ∆. The tetrahedron ∆′ defined by H1, . . . ,H4 contains

K and by Theorem 3.9 has width bounded by 2 +
√

2.

To prove Theorem 3.9, in Section 3.3.1 we transform it into the more explicit Theo-

rem 3.11. Then, in Section 3.3.2 and Section 3.3.3 we give two proofs of the latter; the

first one uses the KKT criterion, and the second one is more direct and elementary,

although it amounts to the same computations.

3.3.1 Setting the problem

To prove Theorem 3.9 we find more convenient to look at perturbations of the lattice,

keeping ∆ fixed, rather than the other way around. That is to say, we fix ∆ to have the

vertex coordinates shown in (3.2) and let Λ(t) be the affine lattice generated by:

p1 = (−1,−1,−1) + (t11, t12, t13), p2 = (1,−1, 1) + (t21, t22, t23)

p3 = (1, 1,−1) + (t31, t32, t33), p4 = (−1, 1, 1) + (t41, t42, t43)

where the tij ’s are variables. Observe that Λ(0) = Λ. Our task is to study the width of

∆ with respect to Λ(t) as a function of t and show that 0 is a strict local maximizer of

it, under the constraint that ∆ is hollow.

Since a tetrahedron of maximal width necessarily has at least one lattice point on (the

relative interior of) every facet, and since the facets of ∆ contain each a single point of

Λ, there is no loss of generality in constraining the variables tij to values where we have

the coplanarities a1a2a3p4, a1a2p3a4, a1p2a3a4 and p1a2a3a4. In practice this means we

can express the t∗3’s in terms of the t∗1’s and t∗2’s as follows:

t13 = −(2 +
√

2)t11 +
√

2t12

2
, t23 =

−
√

2t21 + (2 +
√

2)t22

2
,

t33 =
(2 +

√
2)t31 +

√
2t32

2
, t43 =

√
2t41 − (2 +

√
2)t42

2
.

Thus, in what follows we denote

t := (t11, t12, t21, t22, t31, t32, t41, t42)
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our vector of only eight variables.

In this setting the seven functionals that attain the maximum width of ∆ are no longer

linear in t. To derive their exact form, consider the 3× 3 matrix

M(t) =


p4(t)− p1(t)

p2(t)− p1(t)

p3(t)− p1(t)


as a function of t. The rows of M are a basis for the linear lattice

−→
Λ (t), so the columns

of its inverse N(t) := M(t)−1 form the corresponding dual basis in
−→
Λ (t)∗. That is, the

columns of N(0) are the functionals

1

4
(−1, 1, 1),

1

4
(1,−1, 1),

1

4
(1, 1,−1) ∈

−→
Λ ∗

and the columns of N(t) are their respective perturbations in
−→
Λ (t)∗. Hence, denoting

N i(t) the i-th column of N(t), the seven lattice functionals that attain the maximum

width of ∆ at t = 0 are

c+++(t) := N1(t) +N2(t) +N3(t), c−++(t) := N1(t),

c+−+(t) := N2(t), c++−(t) := N3(t),

cx(t) := N2(t) +N3(t),

cy(t) := N1(t) +N3(t),

cz(t) := N1(t) +N2(t).

In Theorem 3.11 below, we will show that for every t close enough to 0 at least one of

these functionals gives width less than 2 +
√

2 to ∆, which implies Theorem 3.9.

The width of ∆ with respect to cz(t) is difficult to express because cz(0) attains its

maximum at two of the vertices of ∆ (a1 and a3) and its minimum at the other two

(a2 and a4). But for each of the other six functionals, at t = 0 we have a unique

maximizing and minimizing vertex of ∆. Hence, for t close to 0 those vertices still

maximize and minimize, and we get closed expressions for the width of ∆ with respect
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to each functional:

f1(t) := width(∆, c+++(t)) = 〈c+++(t), a1 − a4〉,

f2(t) := width(∆, c−++(t)) = 〈c−++(t), a3 − a4〉,

f3(t) := width(∆, c++−(t)) = 〈c++−(t), a2 − a3〉,

f4(t) := width(∆, c+−+(t)) = 〈c+−+(t), a1 − a2〉,

f5(t) := width(∆, cx(t)) = 〈cx(t), a1 − a3〉,

f6(t) := width(∆, cy(t)) = 〈cy(t), a2 − a4〉.

Then, Theorem 3.9 is a direct consequence of the following statement, of which we give

two proofs in the rest of the paper:

Theorem 3.11. The system of 6 inequalities in eight variables

fi(t) ≥ 2 +
√

2, i ∈ {1, . . . , 6}

has an isolated solution at t = 0.

3.3.2 A proof via the KKT theorem

We use the following version of the Karush-Kuhn-Tucker (KKT) conditions for optimal-

ity. Suppose we have the following problem on n variables x ∈ Rn:

maximize f(x)

subject to gi(x) ≥ 0, i = 1, . . . ,m.

Assume all the functions are twice continuously differentiable.

Define the associated Lagrangian function as

L(x,λ) = f(x) +
m∑
i=1

λigi(x),

where λ = (λ1, . . . , λm) ∈ Rm is a vector of Lagrange multipliers.

In this setting, the following is Theorem 14.19 in [GNS09]:

Theorem 3.12. Let R = {x : gi(x) ≥ 0 for all i} and let x∗ be a point in R. Suppose

there exists a vector λ∗ ∈ Rm such that

1. ∇xL(x∗,λ∗) = 0,
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2. λ∗ ≥ 0,

3. 〈λ∗, gi(x∗)〉 = 0 for every i,

4. ∇2
xxL(x∗,λ∗) is negative definite in the subspace {∇xgi(x∗) = 0 ∀i}.

Then x∗ is a strict local maximizer of f on R.

First proof of Theorem 3.11. Let us define gi(t) = fi(t)− (2 +
√

2) for i = 2, . . . , 6 and

f(t) = f1(t). Then, our statement is equivalent to the following: The origin is a strict

local maximizer of f on the region R := {t : gi(t) ≥ 0 ∀i ∈ {2, . . . , 6}}. We prove this

by applying Theorem 3.12 to the functions f(t) and gi(t). All computations are done

in Sagemath [SageMath].

We first compute the gradients of the functions f, g2, . . . , g6 and evaluate them at 0,

obtaining:

∇f(0) =
1

4
(−1, 1,−1,−2, 0, 0,−2, 1) +

√
2

8
(−2, 0, 1,−1, 0, 0,−3, 1)

∇g2(0) =
1

4
(−2, 1, 0, 0, 1, 2, 1, 1) +

√
2

8
(−1,−1, 0, 0, 1, 3, 0, 2)

∇g3(0) =
1

4
(0, 0, 2,−1, 1,−1, 1, 2) +

√
2

8
(0, 0, 3,−1, 2, 0,−1, 1)

∇g4(0) =
1

4
(−1,−2,−1,−2, 2,−1, 0, 0) +

√
2

8
(−1,−3, 0,−2, 1, 1, 0, 0)

∇g5(0) =
1

2
(1, 0,−1, 0,−1, 0, 1, 0) +

√
2

2
(1, 0, 0, 0,−1, 0, 0, 0)

∇g6(0) =
1

2
(0, 1, 0, 1, 0,−1, 0,−1) +

√
2

2
(0, 0, 0, 1, 0, 0, 0,−1)

This set of six vectors happens to have rank five. The following is the unique dependence

among them:

∇f(0) +∇g2(0) +∇g3(0) +∇g4(0) +
√

2
(
∇g5(0) +∇g6(0)

)
= 0.

Observe that the coefficients of the dependence are all positive. We define λ∗ as the

vector of these coefficients (forgetting the coefficient of ∇f):

λ∗ := (1, 1, 1,
√

2,
√

2).
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The Lagrangian function at λ∗ is thus:

L(t,λ∗) =f(t) + g2(t) + g3(t) + g4(t) +
√

2
(
g5(t) + g6(t)

)
.

The linear dependence among the gradients at 0 implies the first condition in Theo-

rem 3.12, namely

∇L(0,λ∗) = 0.

Condition (2) is true by construction and condition (3) is obvious since gi(0) = 0.

Thus, only condition (4) is still to be verified. For this we need to compute the Hessian

of L(0,λ∗) in the 3-dimensional vector subspace {∇gi(0) = 0 : i = 2, . . . , 6}. This

subspace admits the parametric form {v(s1, s2, s3) : s1, s2, s3 ∈ R}, where

v(s1, s2, s3) :=

(
1, 0, 0, 0,

√
2

2
,

√
2

2
,−
√

2

2
,

√
2− 2

2

)
s1

+

(
0, 1, 0,−

√
2,

2−
√

2

2
,
2−
√

2

2
,

√
2

2
,
2− 3

√
2

2

)
s2

+

(
0, 0, 1,−1, 1−

√
2, 1, 0,−

√
2

)
s3.

The Hessian of L(v(s1, s2, s3),λ∗) at s1 = s2 = s3 = 0 is

∇2
ttL(v(0, 0, 0),λ∗) =


−19

√
2

2 − 13 −5
√

2
2 − 4 −

√
2− 2

−5
√

2
2 − 4 −39

√
2

2 − 27 −16
√

2− 22

−
√

2− 2 −16
√

2− 22 −19
√

2− 26

 ,
which is indeed negative definite.

3.3.3 A proof using linear functions as multipliers

We keep the notation of the previous section, except we now define gi(t) = fi(t)−(2+
√

2)

for i = 1, . . . , 6 (instead of only i ≥ 2) and have no functional f . We have seen that

there is a unique positive dependence
∑6

i=1 λi∇gi(0) = 0 between ∇gi(0), namely

λ∗ = (1, 1, 1, 1,
√

2,
√

2).
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Using Taylor expansion we consider the functions λigi decomposed into a linear term

(gradient), a quadratic term (Hessian) and higher order terms:

λigi(t) = li(t)︸︷︷︸
linear

+ qi(t)︸︷︷︸
quadratic

+ ri(t).︸ ︷︷ ︸
rest

The condition
∑6

i=1 λi∇gi(0) = 0 just means that
∑6

i=1 li is identically zero. We now

consider a positive constant c ∈ R≥0 (to be specified later) and define the function

g =
6∑
i=1

(c− li)(li + qi + ri)

= c
6∑
i=1

li︸ ︷︷ ︸
=0

+
6∑
i=1

(cqi − l2i )︸ ︷︷ ︸
=:q (quadratic)

+
6∑
i=1

cri − li(qi + ri)︸ ︷︷ ︸
=:r rest

.

Lemma 3.13. If the Hessian of g is negative definite at t = 0 then Theorem 3.11 holds.

Proof. Since g = 0 and ∇g = 0 at the origin, the Hessian being negative definite, there is

a neighborhood U1 of the origin such that g is strictly negative in U1 \{0}. On the other

hand, there is another neighborhood U2 in which all the multipliers c − li are positive,

since c > 0 and li(0) = 0.

Thus, for any t ∈ U1 ∩ U2 \ {0} there is an i such that λigi(t) < 0; that is, fi(t) ≤
2 +
√

2.

Lemma 3.14. The Hessian of g is negative definite at t = 0 for any sufficiently small

c > 0.

Proof. The Hessian of g is

6∑
i=1

(cqi − l2i ) = c
6∑
i=1

qi −
6∑
i=1

l2i .

At c = 0 this equals −
∑6

i=1 l
2
i , which is negative semi-definite with null-space equal to

V = {∇gi(0) = 0 : i = 2, . . . , 6}.

This is the same 3-dimensional subspace as in the first proof (we now have an extra

gradient ∇g1(0) but it is a linear combination of the other five). On the other hand,

the other summand
∑6

i=1 qi is nothing but the Hessian of the Lagrangian L(0,λ∗) that

we defined in that proof, which we showed to be negative definite on V . Thus, for a

sufficiently small c the sum of the two is negative definite.
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Remark 3.15. One advantage of the second proof over the first one is that it gives

explicit sufficient conditions for a neighborhood U = U1 ∩ U2 to have 0 as the unique

solution of the system. As a first step towards constructing an explicit neighborhood U

we have checked that any c ∈ (0, 0.4) is valid for Theorem 3.14.



Chapter 4

Hollow polytopes of large width

In this chapter, we investigate lower bounds on the flatness constants. Recall that in

Section 1.4 we introduced the flatness theorem, which states that in a fixed dimension

d, the width of hollow convex bodies is bounded above by a constant; we denoted this

constant by wc(d). Here,we are also interested in the following specializations of the

constant:

The flatness constant is

wc(d) := sup
C hollow d-dim

convex body

width(C,Λ),

while wp(d), ws(d) and we(d) are the supremums of the same, respectively over all hollow

lattice d-polytopes, hollow lattice d-simplices, and empty lattice d-simplices.

Observe that the specializations wp, ws and we take integer values. Clearly we have

we(d) ≤ ws(d) ≤ wp(d) ≤ wc(d),

and by the flatness theorem (theorem 1.14) we know they are all finite. A first, easy

lower bound for ws(d) (and thus for wp(d) and wc(d)) is d ≤ ws(d), since d∆d, the d-th

dilation of the unimodular d-simplex, is a hollow d-dimensional lattice simplex, and its

width is exactly d (see Figure 4.1).

To the best of our knowledge, what is known about lower bounds for the flatness con-

stants in low dimension can be summarized as follows.

- Since the d-th dilation of a unimodular d-simplex is hollow and has width d,

ws(d) ≥ d.

47
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Figure 4.1: The third dilation of the standard unimodular tetrahedron; it is hollow and has
width 3.

- Sebő [Seb99] showed we(d) ≥ d− 2.1

- Conway and Thompson (see [MH73, Theorem I.9.5]) showed a lower bound of Ω(d)

for the maximum width of hollow ellipsoids.

- Dash et al. [DDG+14] (Theorem 3.2 and the paragraphs before it) show that

3.1547 . . . = 2 +
2√
3
≤ ws(3) ≤ wc(3) ≤ 1 +

2√
3

+

(
90

π

)1/3

= 4.2439 . . .

- The following exact values are known for small d:

d we(d) ws(d) wp(d) wc(d)

1 1 1 1 1

2 1 2 2 1 + 2√
3

[Hur90]

3 1 [Whi64] 3 [AKW17] 3 [AKW17]

4 4 [IVnS19]

In this paper we establish some new lower bounds, both for specific dimensions (Sec-

tions 4.2 and 4.3) and in the asymptotic sense (Section 4.4).

In Sections 4.2 and 4.3, we show wp(14) ≥ 15 and ws(404) ≥ 408:

Theorem 4.1. There is a hollow lattice 14-polytope of width 15 and a hollow lattice

404-simplex of width 408.

We do not know of any hollow lattice d-polytope of width larger than d in previous

literature, although Francisco Santos has since made us aware in personal communication

of a 10-dimensional empty simplex of width 11.

1As Sebő points out, for even d the bound can be increased to d− 1.
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Our main technical tool, both in Theorem 4.1 and for the asymptotic results, is to use

dilated direct sums of polytopes and convex bodies. Let Ci ⊂ Rdi , i = 1, . . . ,m, be

convex bodies containing the origin. Their direct sum [HRGZ97] (sometimes called free

sum [AB15]) is defined as

C1 ⊕ · · · ⊕ Cm :=

{
(λ1x1, . . . , λmxm) : xi ∈ Ci, λi ≥ 0,

m∑
i=1

λi = 1

}
.

For a constant k ∈ R≥0, kC denotes the dilation of C by a factor of k. For a given

lattice polytope or convex body C containing the origin (not necessarily in the interior)

let us denote C⊕m =
⊕m

i=1mC, the m-fold direct sum of mC with itself. The following

proposition is a particular case of Theorem 4.8 in Section 4.1.

Proposition 4.2. 1. width(C⊕m) = m width(C).

2. If C is hollow then C⊕m is hollow.

A consequence of this is the following statement, proved in Section 4.4.

Theorem 4.3. Let w∗ : N→ R denote any of the functions ws, wp, or wc. Then

lim
d→∞

w∗(d)

d
= sup

d∈N

w∗(d)

d
.

This, in turn, implies our main asymptotic result:

Theorem 4.4.

lim
d→∞

wp(d)

d
= lim

d→∞

wc(d)

d
≥ 2 +

√
2

3
= 1.138 . . .

lim
d→∞

ws(d)

d
≥ 102

101
= 1.1 . . .

Proof. From Theorem 4.3, together with the explicit lower bounds wc(3) ≥ 2 +
√

2

(Theorem 3.1) and ws(10) ≥ 11 (personal communication from Francisco Santos), we

obtain

lim
d→∞

wc(d)

d
≥ 2

3
+

√
2

3
, lim

d→∞

ws(d)

d
≥ 102

101
.

Thus, we only need to show the equality

sup
d∈N

wc(d)

d
= sup

d∈N

wp(d)

d
.

The “≥” is obvious. For the “≤”, let C be a hollow convex body such that width(C)/ dim(C)

is very close to supdwc(d)/d. We can approximate C arbitrarily by a hollow rational
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polytope P , and choose an integer m such that mP is a lattice polytope. By Proposi-

tion 4.2 we have that P⊕m is a hollow lattice polytope of dimension m dim(C) and

width(P⊕m)

dim(P⊕m)
=

width(P )

dim(P )
' width(C)

dim(C)
.

Another implication of our analysis of direct sums together with the values wc(2) =

2.1547 . . . and wc(3) ≥ 3.4142 . . . (proved in Section 3.2) is

Proposition 4.5 (Section 4.4). For every d we have

wc(d+ 1) ≥ wc(d) + 1,

wc(d+ 2) ≥ wc(d) + 2.1547 . . . ,

wc(d+ 3) ≥ wc(d) + 3.4142 . . . ,

As a consequence,

wc(d)

d
≥ 1

2
2.1547 · · · = 1.0773 . . . ∀d ≥ 2.

In Section 4.5 we study the width of empty simplices. We do not know whether

limd→∞
we(d)
d exists. However, we can prove the following slightly weaker result, us-

ing as a base case the empty 10-dimensional simplex of width 11 found by Francisco

Santos.

Theorem 4.6 (Section 4.5). For every d,m ∈ N we have

we(dm) ≥ (m− 3)we(d).

In particular,

lim sup
d→∞

we(d)

d
= sup

d∈N

we(d)

d
≥ 1.1

Theorem 4.6 disproves the following guess from [Seb99, p. 403]: “it seems to be rea-

sonable to think that the maximum width of an empty integer simplex in Rn is n +

constant” (unless the constant is zero).

We believe our results are a first step towards the main goal concerning flatness lower

bounds, which would be to show that supdw∗(d)/d =∞, at least for wc.
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4.1 Hollow direct sums

Since we will often be using direct sums of polytopes, let us remind the reader of their

combinatorial structure.

Lemma 4.7. Let P = P1 ⊕ · · · ⊕ Pm be a direct sum of polytopes. Then:

1. If Fi is a face of Pi that does not contain the origin for each i then the join

F1 ∗ · · · ∗ Fm of them is a face of P that does not contain the origin of dimension∑
i dim(Fi) + m − 1. All faces of P that do not contain the origin arise in this

way.

2. If Fi is a face of Pi that contains the origin for each i then the direct sum F1 ⊕
· · · ⊕Fm of them is a face of P that contains the origin of dimension

∑
i dim(Fi).

All faces of P that contain the origin arise in this way.

In particular, the non-zero vertices of P are the points of the form (0, . . . , 0, v, 0, . . . , 0),

with v a non-zero vertex of the corresponding Pi, and 0 is a vertex of P if and only if it

is a vertex of every Pi.

Our main technical result is the following theorem. Proposition 4.2 is the case C1 =

· · · = Cm and ki = m of it. Part (4) of Theorem 4.8 is equivalent to Corollary 5.5(a) in

[AB15].

Theorem 4.8. Let C1, . . . , Cm be convex bodies containing the origin and let k1, . . . , km >

0 be dilation factors. Let

C :=
⊕
i

kiCi = k1C1 ⊕ · · · ⊕ kmCm.

Then:

1. If kiCi is a lattice polytope for every i then C is a lattice polytope.

2. If Ci is a simplex with a vertex at the origin for every i then C is a simplex with

a vertex at the origin.

3. The width of C equals mini{ki width(Ci)}.

4. If Ci is hollow for every i and
∑

i
1
ki
≥ 1 then C is hollow.

Proof. Part (1) is obvious, from the description of the vertices of direct sums in Lemma 4.7.

For part (2) let di be the dimension of Ci. Each Ci has di non-zero vertices plus the
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origin so, by the same Lemma, C has d1 + · · · + dm vertices plus the origin. Since C

lives in dimension d1 + · · ·+ dm, it must be a simplex.

To prove (3), first note that width(kiCi) = ki width(Ci), so we can assume w.l.o.g. ki = 1

for all i. Let fi ∈ Λ∗i be a lattice direction for which width(Ci) is obtained. Then

width(P ) ≤width(C, (0, . . . , 0, fi, 0, . . . , 0))

= width(Ci, fi) = width(Ci).

This proves that width(C) ≤ mini{width(Ci)}. For the other inequality, given any

lattice functional g = (g1, . . . , gm) ∈ Λ∗ \ {0} = ⊕iΛ∗i \ {0}, we want to show that

width(C, g) ≥ width(Ci) for some i. For this, let us choose any i with gi 6= 0. Then:

width(C, g) = max
c,c′∈C

|gᵀc− gᵀc′|

≥ max
ci,c′i∈Ci

|gᵀ(0, . . . , 0, ci, 0, . . . , 0)− gᵀ(0, . . . , 0, c′i, 0, . . . , 0)|

= width(Ci, gi) ≥ width(Ci) ≥ min
j

width(Cj).

Finally, to prove part (4), suppose by contradiction that C is not hollow, and let c ∈
intC ∩ Λ. Since c ∈ intC, we can write c = (λ1k1c1, . . . , λmkmcm) with ci ∈ intCi and

λi > 0 with
∑
λi = 1. On the other hand, since c ∈ Λ, we know that each λikici ∈ Λi.

Since Ci is hollow and ci ∈ intCi, we have that λiki > 1. This implies
∑ 1

ki
<
∑
λi = 1,

contradicting our assumption.

Observe that the assumption that the Cis contain the origin is no loss of generality:

lattice polytopes can be translated to have the origin as a vertex; convex bodies can first

be enlarged so that they have lattice points in the boundary, then translated. In both

cases, the direct sum C of Theorem 4.8 can be constructed using these modified Cis.

4.2 A hollow lattice 14-polytope of width 15

Let A, B and C be the vertices of an equilateral triangle ∆ in the plane; without loss of

generality, A = (0, 0), B = (1, 0), C =
(

1
2 ,
√

3
2

)
. Let Λ be the lattice they generate:

Λ :=
{

(a, b
√

3) ∈ R2 : 2a, 2b, a+ b ∈ Z
}
.
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Figure 4.2: Left: the hollow equilateral triangle T (x, y) circumscribed to the triangle ∆,
depending on the position of (x, y) along the circle S1 (Hurkens position, maximizing width, is
shown in the picture). Right: the refinement of the lattice by a factor of seven creates a lattice

point in the circle and close to Hurkens position.

We consider the family {T (x, y)} of equilateral triangles circumscribed around ∆, where

(x, y) denotes, by convention, the vertex lying between A and C. A point (x, y) defines

such a triangle if and only if it lies outside ∆ and along the circle

S1 :=

(x, y) : x2 +

(
y −
√

3

3

)2

=
1

3

 .

It is easy to see that every triangle in the family is hollow. For example, T (−1
2 ,
√

3
2 ) is

a hollow lattice triangle of width two, unimodularly equivalent to the second dilation of

∆. The triangle T
(
−
√

3
3 ,
√

3
3

)
, pictured in Figure 4.2 (left) maximizes the width of the

family and was shown by Hurkens [Hur90] to maximize width among all hollow convex

2-bodies (see also Averkov and Wagner [AW12]).

We now consider the seventh refinement Λ′ := 1
7Λ of Λ. The circle S1 contains, apart

from the points A,B,C, additional points of Λ′. In particular, if we fix T := T (D) for

the point D =
(
−4

7 ,
2
√

3
7

)
∈ Λ′ ∩ S1 we get a triangle with vertices in Λ′ and of width

close to the maximum, since D is close to Hurken’s point
(
−
√

3
3 ,
√

3
3

)
(See Figure 4.2,

again). Specifically:

T := T (D) = conv

((
−4

7
,
2
√

3

7

)
,

(
17

14
,
9
√

3

14

)
,

(
6

7
,−3
√

3

7

))
.

Lemma 4.9. The triangle T defined above is hollow and of width 2 + 1/7 = 2.1419 with

respect to Λ. It is also rational, with its seventh dilation being a lattice triangle.

Proof. It is clear by our construction that T is hollow with respect to Λ, and since it

has its vertices in Λ′, its seventh dilation is a lattice triangle of Λ.
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We now claim that the width of T in Λ′ is 15. It is easy to check that it has width

15 with respect to the three functionals f0, f1 and f2 that define edges of ∆. We call

E and F the vertices of T in clockwise order from D. To show that the width of T

is at least 15, we apply Lemma 3.4 to each of the three paths DHE (drawn in red in

Figure 4.2), EIF and FGD. These paths have lattice length equal to 15. It is easy to

see that the polar cones of the paths are cone(f0, f1), cone(f0, f2) and cone(f1, f2), so

by Lemma 3.4, functionals in the interior of any of these cones give width at least 15

to T . The only (primitive) functionals not in the open cones are precisely f0, f1 and f2

which, as said above, yield width 15.

We can now prove the first half of Theorem 4.1:

Theorem 4.10. T⊕7 is a 14-dimensional hollow lattice polytope of width 15. It has 21

vertices and 27+7 facets (27 simplices and seven combinatorially of the form segment⊕triangle⊕6).

Proof. The first claim follows from Proposition 4.2 and Lemma 4.9. T⊕7 has 21 vertices

by the description of vertices of direct sums in Lemma 4.7. The same lemma implies

the following description of the facets:

1. Facets of T⊕7 that do not contain the origin are the joins of edges of T that do not

contain the origin. Since there are two such edges to chose from in T and joins of

simplices are simplices, we obtain the 27 stated simplices.

2. Facets of T⊕7 that contain the origin are of the form

T ⊕ · · · ⊕ T ⊕ F ⊕ T ⊕ · · · ⊕ T

where F is the edge of T that contains the origin. Since F can be placed anywhere

in the sum, we have seven such facets.

4.3 A hollow lattice 404-simplex of width 408

We now turn back to the question of lower bounds for the specializations of the flatness

constant; here we focus on ws. In particular, we construct a lattice simplex of width

larger than its dimension. To do this via Theorem 4.8, we need a rational hollow simplex

with the origin as a vertex and of width larger than its dimension, which can be found

in dimension four. We do not know whether one exists in dimension three.

Lemma 4.11. There is a rational hollow 4-simplex S of width 4 + 4/101 and with a

lattice vertex whose 101-th dilation is a lattice simplex.
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Proof. It is known that the following lattice 4-simplex is empty, that is, it has no lattice

points other than its vertices, and it has width four ([HZ00, IVnS19]):

S0 := conv{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (6, 14, 17, 101)}.

Observe that the facet of S0 opposite the origin lies in the hyperplane 101x1 + 101x2 +

101x3 − 36x4 = 101. Since 101 is coprime with 36, dilating S0 by a factor of 102/101

gives a hollow simplex S: apart of the five vertices of S0 (which lie in the boundary

of S) all other lattice points must be in the facet-defining hyperplane 101x1 + 101x2 +

101x3 − 36x4 = 102.

Applying Proposition 4.2 to the hollow simplex S, we obtain that S⊕101 is a 404-

dimensional lattice simplex of width 408. This proves the second half of Theorem 4.1.

Remark 4.12. Any dilation of S0 by a factor strictly greater than 102/101 is not hollow

anymore, since the point

(1, 2, 3, 14) =
17

101
(1, 0, 0, 0) +

6

101
(0, 1, 0, 0) +

65

101
(0, 0, 1, 0) +

14

101
(6, 14, 17, 101)

lies in the relative interior of the facet of S opposite the origin.

4.4 General lower bounds

In this section, we apply Theorem 4.8 to the explicit examples from Sections 4.2–4.3 to

obtain lower bounds for wc(d), wp(d) and ws(d) in general dimension d. In particular,

we prove Theorem 4.3 and Proposition 4.5.

Corollary 4.13. For w∗ = wc, wp or ws we have that

w∗(md) ≥ mw∗(d), ∀m ∈ N.

For wc we have the more general result

wc(d1 + · · ·+ dm) ≥ wc(d1) + · · ·+ wc(dm), ∀d1, . . . , dm ∈ N. (4.1)

Proof. For the first inequality, let K be a hollow convex d-body (resp., a lattice d-

polytope, a lattice d-simplex) achieving wc(d) (resp. wp(d), ws(d) and, in the case of

a lattice polytope, assume without loss of generality that the origin is a vertex of K).

Then, apply Theorem 4.8 with Ci = K and ki = m for all i. This gives a dm-dimensional

hollow convex body (resp., a lattice polytope, a lattice simplex) of width mw∗(d).
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For the case of wc we have more freedom, since we do not need the kis to be integers.

Thus, if for each i = 1, . . . ,m we let the Cis in Theorem 4.8 be hollow convex bodies of

width wc(di) and we take ki = (
∑

j wc(dj))/wc(di) for each i, we obtain a hollow convex

body C of width
∑

j wc(dj) and dimension
∑

j dj .

Inequality (4.1) implies that wc is strictly increasing. For wp and ws we can only prove

weak monotonicity:

Corollary 4.14.

wp(d+ 1) ≥ wp(d), ws(d+ 1) ≥ ws(d).

Proof. Let C1 = [0, 1] and let C2 be a lattice polytope (resp. a hollow simplex) of

dimension d and with width(C) = w∗(d). Apply Theorem 4.8 with k1 > w∗(d) and

k2 = 1.

Question 4.15. Are wp, ws or we strictly increasing? Since these w∗ take only integer

values, strict monotonicity is equivalent to the inequality

w∗(d+ 1) ≥ w∗(d) + 1.

(For we even non-strict monotonicity is unclear, due to its more arithmetic nature).

We can now prove Theorem 4.3 and Proposition 4.5:

Proof of Theorem 4.3. By Corollaries 4.13 and 4.14, the three sequences wc(d), wp(d)

and ws(d) satisfy the conditions of the following elementary statement:

If a sequence (ad)d∈N satisfies ad+1 ≥ ad and amd ≥ mad ∀d,m ∈ N, then

lim
d→∞

ad
d

= sup
d∈N

ad
d
.

Proof of Proposition 4.5. The inequalities

wc(d+ 1) ≥ wc(d) + 1,

wc(d+ 2) ≥ wc(d) + 1 + 2√
3
,

wc(d+ 3) ≥ wc(d) + 2 +
√

2,

follow from applying Equation (4.1) of Corollary 4.13 with wc(1) = 1 wc(2) = 1 +
2√
3

[Hur90] and wc(3) ≥ 2 +
√

2 (Section 3.2).



4.5. Lower bound for empty simplices 57

Any integer d ≥ 2 can be written as d = 2a + 3b for some nonnegative integers a, b.

Then for all d ≥ 2, the inequalities above yield

wc(d) ≥ wc(2)a+ wc(3)b ≥
(

1 +
2√
3

)
a+

(
2 +
√

2
)
b

≥
(

1

2
+

1√
3

)
(2a+ 3b) =

(
1

2
+

1√
3

)
d.

4.5 Lower bound for empty simplices

To prove the asymptotic lower bound of Theorem 4.6, we use the following lemma:

Lemma 4.16. Let P = conv(0, v1, . . . , vd) ⊂ Rd be an empty d-simplex of width w and

let m ≥ 2 be an integer. For each i ∈ [d] and j ∈ [m], let

v
(j)
i := 0⊕ · · · ⊕ vi ⊕ · · · ⊕ 0 ∈ Rmd

with vi in the j-th summand, and define

w
(j)
i := (m− 2)v

(j)
i + v

(j+1)
i+1 ∈ Rmd,

with i taken modulo d and j modulo m. Let

Pm := conv
({

0
}
∪
{
w

(j)
i : (i, j) ∈ [d]× [m]

})
.

Then: (1) width(Pm) ≥ (m− 3)w; and (2) Pm is empty.

Proof. Observe that Pm is contained in P⊕m =
⊕m

j=1mP and tries to approximate it:

the vertices of P⊕m are 0 and {mv(j)
i : (i, j) ∈ [d] × [m]}, and the vertices w

(j)
i of Pm

are close to them.

To prove (1), let f = f1 ⊕ · · · ⊕ fm be an integer functional. Assume without loss of

generality that

max
j
{width(P, fj)} = width(P, f1).

Let us denote v0 = 0 and let i+, i− ∈ {0, . . . , d} be indices such that f1(vi+) and f1(vi−)

are the maximum and minimum values of f1 on P , respectively. Then,

|f(w
(1)
i+
− w(1)

i− )| ≥ |f1((m− 2)vi+ − (m− 2)vi−)| − |f2(vi++1 − vi−+1)|

≥ (m− 2)|f1(vi+ − vi−)| − |f1(vi+ − vi−)|

= (m− 3)|f1(vi+ − vi−)| ≥ (m− 3)w.
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For part (2), to search for a contradiction assume Pm is not empty. Let z ∈ Pm ∩ Zdm

be an integer point different from 0 and from the w
(j)
i s. We can then write z as a convex

combination of the vertices of Pm. That is:

z =

m∑
j=1

d∑
i=1

λ
(j)
i w

(j)
i =

m∑
j=1

d∑
i=1

((m− 2)λ
(j)
i + λ

(j−1)
i−1 )v

(j)
i , (4.2)

with λ
(j)
i ≥ 0 and

∑
i,j λ

(j)
i ≤ 1.

But since Pm ⊂ P⊕m, we can also write

z = µ1z1 ⊕ · · · ⊕ µmzm, (4.3)

with each zj ∈ P , µjzj ∈ Zd, µj ≥ 0 and
∑

j µj ≤ m. Comparing Equations (4.2) and

(4.3) we obtain

µjzj =

d∑
i=1

((m− 2)λ
(j)
i + λ

(j−1)
i−1 )vi. (4.4)

Claim:
∑

i λ
(j)
i 6= 0 for every j. Indeed, if there is a j where this sum is zero, assume

without loss of generality that
∑

i λ
(j−1)
i 6= 0. Then Equation (4.4) gives

µjzj =
d∑
i=1

λ
(j−1)
i−1 vi,

which is a nonzero point in P . Since P is empty and µjzj ∈ Zd, we conclude that one

of the λ
(j−1)
i s equals 1, so that z = w

(j−1)
i , a contradiction because z was assumed not

to be a vertex of Pm.

From the claim and Equation (4.4) it follows that µjzj 6= 0 for all j. In order for µjzj to

be a lattice point we need µj ≥ 1 (because 0 < µj < 1 implies µjzj to be a lattice point

in P but not a vertex of P , which is not possible). Since on the other hand
∑

j µj ≤ m,

we conclude that µj = 1 for every j. This implies that every zj is a non-zero lattice

point of P ; that is, for each j there is an ij such that zj = vij . Equation (4.4) now

becomes

vij =

d∑
i=1

((m− 2)λ
(j)
i + λ

(j−1)
i−1 )vi.

Since the vis are independent, we have

1 = (m− 2)λ
(j)
ij

+ λ
(j−1)
ij−1 , ∀j.
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Summing over j we get the contradiction

m =
∑
j

(m− 2)λ
(j)
ij

+
∑
j

λ
(j−1)
ij−1 ≤ (m− 2) + 1 = m− 1.

Remark 4.17. Lemma 4.16 and its proof generalize Sebő’s construction of empty m-

simplices of width m− 2 [Seb99]. Indeed, letting P = [0, 1], our lemma gives an empty

m-simplex of width (at least) m−3. Sebő’s m−2 is obtained with an additional argument

that works for [0, 1] but not (as far as we can see) for an arbitrary P .

Proof of Theorem 4.6. Let P be an empty d-simplex of maximum width; that is, with

width(P ) = we(d). Applying Lemma 4.16 to P we obtain a sequence (Pm)m∈N of empty

md-simplices of width (m− 3)we(d), which implies we(dm) ≥ (m− 3)we(d).

From this fact, combined with we(1) = 1, we obtain

lim sup
d→∞

we(d)

d
= sup

d∈N

we(d)

d
≥ 1.





Chapter 5

Covering radius and a discrete

analogue of surface area

Recall from Section 1.4 the definition of the covering radius of a convex body K in Rd

with respect to a lattice Λ:

µn(K,Λ) = min
{
µ ≥ 0 : µK + Λ = Rd

}
.

Throughout this chapter, we may leave out the subscript n whenever it is clear that

we are dealing with the covering radius, and not lower covering minima. Unless stated

otherwise, we consider Λ = Zd and drop it from the notation. The covering radius will

therefore often be simply denoted by µ(K).

In the chapter, we are interested in upper bounds on the covering radius of non-hollow

lattice polytopes, that is, polytopes all of whose vertices are lattice points. If we drop the

non-hollow condition it is easy to show that the maximum covering radius of a lattice

d-polytope equals d, with equality if and only if the polytope is a unimodular simplex ;

that is, one of the form conv({0, b1, . . . , bd}) where {b1, . . . , bd} is a lattice basis for Λ, or

a lattice translate of that. (See corollary 5.45 for a proof of a more general statement).

The existence of interior lattice points makes the problem more difficult and interesting.

The natural candidate to play the role of the unimodular simplex is

S(1d+1) := conv({−1d, e1, . . . , ed}),

since it is the unique non-hollow d-polytope of minimum volume (see [BHW07, Thm. 1.2]).

Here 1d = (1, . . . , 1) denotes the all-one vector in dimension d, and ei denotes the ith

61
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coordinate unit vector.1

The covering radius of S(1d+1) was computed in [GMS17, Prop. 4.9]:

µ(S(1d+1),Zd) =
d

2
. (5.1)

Since the covering radius is additive with respect to direct sums (see Section 5.1), direct

sums of simplices of the form S(1l) or lattice translates thereof also have covering radius

equal to d/2. We conjecture that this procedure gives all the non-hollow lattice polytopes

of maximum covering radius in a given dimension:

Conjecture A. Let P ⊆ Rd be a non-hollow lattice d-polytope. Then

µ(P ) ≤ d

2
,

with equality if and only if P is obtained by direct sums and/or translations of simplices

of the form S(1l).

Example 5.1. In dimension two, S(13) has covering radius 1, and so do the following

triangle and square:

S(12)⊕ ((1 + S(12)) = conv({(1, 0), (−1, 0), (0, 2)}),

S(12)⊕ S(12) = conv({(1, 0), (−1.0), (0, 1), (0,−1)}).

In dimension three, translations and/or direct sums of the S(1l)s produce nine pair-

wise non-equivalent non-hollow 3-polytopes of covering radius 3/2, that we describe in

Lemma 5.24.

One motivation for conjecture A comes from a seemingly simple question about covering

minima, whose definition we now recall from Section 1.4. The d-th covering minimum

of a convex body K ⊆ Rn with respect to a lattice Λ ⊆ Rn (Definition 1.15) is

µd(K,Λ) := max
π

µ(π(K), π(Λ)),

where π runs over all linear projections π : Rn → Rd such that π(Λ) is a lattice.

Since S(1n+1) projects to S(1d+1) for every d < n, we use (5.1) and get

µd(S(1n+1)) ≥ µd(S(1d+1)) =
d

2
. (5.2)

1The notation S(1d+1) comes from the fact that this is a particular case of the simplices S(ω),
ω ∈ Rd+1

>0 introduced below. We call S(1d+1) the standard terminal simplex since terminal is used in
the literature for lattice simplices with the origin in the interior and no lattice points other than the
origin and the vertices.
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The converse inequality was conjectured in [GMS17]:

Conjecture B ([GMS17, Rem. 4.10]). For every n ∈ N and d ≤ n,

µd(S(1n+1)) =
d

2
. (5.3)

In section 5.2 we prove:

Theorem 5.2 (Equivalence of Conjectures A and B). For each d ∈ N, the following are

equivalent:

(i) µ(P ) ≤ `
2 for every non-hollow lattice `-polytope P and for every ` ≤ d.

(ii) conjecture B holds for every ` ≤ d. That is, µ`(S(1n+1)) = `
2 , for every `, n ∈ N

with ` ≤ d ≤ n.

Theorem 5.3 (Corollary 5.21 and Theorem 5.29). Conjecture A, hence also conjec-

ture B, holds in dimension up to three.

The computation of the covering radius for S(1d+1) can be generalized to the following

class of simplices: For each ω = (ω0, . . . , ωd) ∈ Rd+1
>0 , we define

S(ω) := conv({−ω01d, ω1e1, . . . , ωded}).

In section 5.4 we derive the following closed formula for µ(S(ω)). Therein and in the

rest of the paper we denote by VolΛ(K) the normalized volume of a convex body K with

respect to a lattice Λ, which equals the Euclidean volume vol(K) of K normalized such

that a unimodular simplex of Λ has volume one.

Theorem 5.4. For every ω ∈ Rd+1
>0 , we have

µ(S(ω)) =

∑
0≤i<j≤d

1
ωiωj∑d

i=0
1
ωi

=
1

2

∑d
i=0 Volπi(Zd)(πi(S(ω)))

VolZd(S(ω))
,

where πi : Rd → Rd−1 is the linear projection vanishing at the ith vertex of S(ω).

In [GMS17], the authors conjecture an optimal lower bound on the covering product

µ1(K) · . . . · µd(K) · VolZd(K) for any convex body K ⊆ Rd. As a consequence of

the explicit formula for µ(S(ω)), we confirm this conjecture for the simplices S(ω) (see

corollary 5.51).

Observe that the volume expression on the right in theorem 5.4 can be defined for every

simplex with the origin in its interior as follows:
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Definition 5.5. Let S = conv({v0, . . . , vd}) be a d-simplex with the origin in its interior.

We say that S has rational vertex directions if the line through the origin and the vertex

vi has rational direction, for every 0 ≤ i ≤ d.

Writing πi : Rd → Rd−1 for the linear projection vanishing at vi, we define the discrete

surface area of such a simplex S as

SurfZd(S) :=
d∑
i=0

Volπi(Zd)(πi(S)).

Note that Volπi(Zd)(πi(S)) = Volπi(Zd)(πi(Fi)), with Fi being the facet of S opposite

to the vertex vi. In this sense, the sum of these numbers is indeed a version of the

“surface area” of S, except that the volume of each facet is computed with respect to

its projection from the opposite vertex.

Motivated by this definition and theorem 5.4 we propose the following conjecture, which

is the main object of study in this chapter:

Conjecture C. Let S be a d-simplex with the origin in its interior and with rational

vertex directions. Then

µ(S) ≤ 1

2

SurfZd(S)

VolZd(S)
. (5.4)

In Section 5.3 we give additional motivation for this conjecture. We show that it implies

conjecture A (corollary 5.35), that it holds in dimension two (theorem 5.41), and that

in arbitrary dimension it holds up to a factor of two (proposition 5.36).

Covering criteria such as the one in Conjecture C are rare in the literature, but very useful

as they reduce the question of covering to computing less complex geometric functionals

such as volume or (variants of the) surface area (cf. [Gru07, Sect. 31]). A classical

inequality of this type is the following result of Hadwiger. We regard conjecture C as a

discrete analog thereof.

Theorem 5.6 (Hadwiger [Had70]). For every convex body K in Rd

µ(K) ≤ 1

2

surf(K)

vol(K)
,

where vol(K) and surf(K) are the Euclidean volume and surface area of K.

Observe that the statement of conjecture C is more intrinsic than Hadwiger’s inequality.

This is because the Euclidean surface area is not invariant under unimodular transfor-

mations, so that the bound in theorem 5.6 depends on the particular representative of
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K in its unimodular class. Moreover the inequality only holds for the standard lattice

Zd and cannot easily be transfered to other lattices (cf. [Sch92] for partial results for

arbitrary lattices). In constrast, our proposed relation in conjecture C is unimodularly

invariant and there is no loss of generality in restricting to the standard lattice as we

do (see lemma 5.34 for details on these claims). Moreover, our proposed inequality in

conjecture C is tight for the large class of simplices S(ω).

At the end of Section 5.3, we complement our investigations on conjecture C by extending

it to the case where the origin lies in the boundary of the simplex S, rather than in the

interior.

Another way to extend conjecture A is to ask for the maximal covering radius among

lattice polytopes with at least k ≥ 1 interior lattice points. The natural conjecture is:

Conjecture D. Let k, d ∈ N be nonnegative integers. Then, for every lattice d-polytope

P with k interior lattice points we have

µ(P ) ≤ d− 1

2
+

1

k + 1
.

Equality holds for k = 1 if and only if P is obtained by direct sums and/or translations

of simplices of the form S(1l), and for k ≥ 2, if and only if P is obtained by direct sums

and/or translations of the segment [0, k + 1] and simplices S(1l).

In section 5.5, we prove this conjecture in dimension two (see theorem 5.55). Observe

that no analog of conjecture D makes sense for other covering minima. Indeed, the max-

imum dth covering minimum µd among non-hollow lattice n-polytopes with k interior

lattice points does not depend on k or n, for d < n: It equals the maximum covering

radius among non-hollow lattice d-polytopes, since every non-hollow lattice d-polytope

can be obtained as the projection of a (d + 1)-polytope with arbitrarily many interior

lattice points. In fact, assuming conjecture A this maximum is given by

µd(S(k, 1, . . . , 1)) = µd(S(1d+1)) =
d

2
, for all n > d and k ∈ N.

In summary, we prove the following relationships between our conjectures:

conjecture C

⇓
conjecture D ⇒ conjecture A

⇓
conjecture A without equality case

m
conjecture B
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We further prove that all these conjectures hold in dimension two, that conjecture A

holds in dimension three and that conjecture C holds for the simplices of the form S(ω).

5.1 Preliminaries

This section develops some tools that will be essential for our analyses. We first describe

how the covering radius behaves with respect to projections, and more importantly, that

it is an additive functional on direct sums of convex bodies and lattices. Afterwards we

introduce and study the concept of tight covering that facilitates our equality charac-

terizations, for example the one in Theorem 5.3.

Projection and direct sum

Lemma 5.7. Let K ⊆ Rd be a convex body containing the origin, and let π : Rd → Rl

be a rational linear projection, so that π(Zd) is a lattice. Let Q = K ∩ π−1(0) and let

L = π−1(0) be the linear subspace spanned by Q. Then, we have

µ(K,Zd) ≤ µ(Q,Zd ∩ L) + µ(π(K), π(Zd)).

Proof. Let us abbreviate µQ = µ(Q,Zd ∩ L) and µπ = µ(π(K), π(Zd)). Let x ∈ Rd be

arbitrary. Then, π(x) is covered by µπ · π(K) + π(Zd) = π
(
µπK + Zd

)
. Hence, there

exists a point x′ ∈ Rd such that the segment [x, x′] is parallel to L and such that x′ is

covered by µπK +Zd. On the other hand, y = x− x′ ∈ L is covered by µQQ+ (Zd ∩L).

Since Q ⊆ K, this implies that x = y+x′ is covered by (µQ+µπ)K+Zd, as claimed.

A particularly interesting case of the above result is when K decomposes as a direct

sum. Let Rd = V ⊕W be a decomposition into complementary linear subspaces with

dim(V ) = ` and dim(W ) = d− `. The direct sum of two convex bodies K ⊆ V,L ⊆ W

both containing the origin is defined as

K ⊕ L := {λx+ (1− λ)y : x ∈ K, y ∈ L, λ ∈ [0, 1]} ⊆ Rd.

The direct sum of two lattices Λ ⊆ V , Γ ⊆W is defined as

Λ⊕ Γ := {x+ y : x ∈ Λ, y ∈ Γ} ⊆ Rd.

With these definitions we can now formulate:
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Corollary 5.8. Let Rd = V ⊕W be a decomposition as above, let K ⊆ V , L ⊆ W be

convex bodies containing the origin, and let Λ ⊆ V , Γ ⊆W be lattices. Then,

µd(K ⊕ L,Λ⊕ Γ) = µ`(K,Λ) + µd−`(L,Γ).

Proof. The inequality µd(K ⊕ L,Λ ⊕ Γ) ≤ µ`(K,Λ) + µd−`(L,Γ) is a special case of

Lemma 5.7, via the natural projection Rd = V ⊕W → V .

For the other inequality, let x ∈ V be a point not covered by cK + Λ for some c <

µ`(K,Λ) and let y ∈ W be a point not covered by c̄L + Γ for some c̄ < µd−`(L,Γ).

We claim that x + y ∈ V ⊕W = Rd is not covered by (c + c̄)(K ⊕ L) + Λ ⊕ Γ, and

thus c + c̄ ≤ µd(K ⊕ L,Λ ⊕ Γ). Since, c and c̄ were taken arbitrarily, this implies

µ`(K,Λ) + µd−`(L,Γ) ≤ µd(K ⊕ L,Λ⊕ Γ).

Assume to the contrary, that x+y ∈ (c+ c̄)(K⊕L)+Λ⊕Γ, that is, x+y = (c+ c̄)(λp+

(1− λ)q) + w + z, for some λ ∈ [0, 1], p ∈ K, q ∈ L, w ∈ Λ, and z ∈ Γ. Since the sums

are direct, we get x = (c+ c̄)λp+ w and y = (c+ c̄)(1− λ)q + z, which by assumption

implies (c + c̄)λ > c and (c + c̄)(1 − λ) > c̄. These two inequalities cannot hold at the

same time, and we arrive at a contradiction.

Tight covering

Definition 5.9. Let K ⊆ Rd be a convex body and let Λ be a lattice. Then, K is called

tight for Λ if for every convex body K ′ ) K, we have

µ(K ′,Λ) < µ(K,Λ).

Definition 5.10. Let K ⊆ Rd be a convex body of covering radius µ with respect to a

lattice Λ. A point p ∈ Rd is last covered by K if

p /∈ int(µ ·K) + Λ.

Let P be a d-polytope, let F be a facet of P , and let p be a point that is last covered

by P . We say that p needs F if p ∈ relint(µ · F ) + Λ.

Lemma 5.11. Let K ⊆ Rd be a convex body of covering radius µ with respect to a lattice

Λ. Then, the following properties are equivalent:

i) K is tight for Λ.

ii) K is a polytope and for every facet F of K and for every last covered point p, p

needs F .
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iii) K is a polytope and every facet of every hollow translate of µ ·K is non-hollow.

iv) Every hollow translate of µ · K is a maximal hollow convex body with respect to

inclusion.

Proof. The equivalence of iii) and iv) is the characterization of maximal hollow convex

bodies by Lovász [Lov89]. For the equivalence of i) and iv) observe that, by definition,

µ is the largest constant such that (a) µ ·K has a hollow lattice translate and (b) the

inequality µ(K ′,Λ) < µ(K,Λ) in the definition of tightness is nothing but maximality

of all such hollow translates.

We now show the equivalence of i) and ii). Suppose there is a facet F of K that is not

needed by some last covered point p. Let K ′ = conv(K ∪ {x}), where x /∈ K is a point

beyond F , meaning that x violates the inequality that defines F , but satisfies all other

facet-inducing inequalities of K. Then

µ(K ′,Λ) = µ(K,Λ),

because p is still a last covered point of K ′ (for the same dilate µ).

Conversely, if K is not tight let K ′ be a convex body strictly containing K and that has

the same covering radius. Let F be a facet of K with relint(F ) ⊆ int(K ′). Let p be a

point that is last covered by K ′. Since the covering radii are equal and K ( K ′, p must

also be last covered by K. Since we chose F so that relint(F ) is in the interior of K ′, p

does not need F .

Example 5.12. It is not sufficient for tightness that “every facet is needed by some last

covered point.” An example showing this is the hexagon P = conv({±(1, 0),±(0, 1),±(1, 1)})
with respect to the integer lattice. P has covering radius 2/3, the same as the triangle

conv({(−1, 1), (2, 1), (−1,−2)}) that properly contains it, so it is not tight. It has two

orbits of last covered points, with representatives ± (2/3, 1/3), each of which needs three

of the six edges of P .

Lemma 5.13. Every simplex is tight for every lattice.

Proof. We use Lemma 5.11. Let ∆ be a simplex of covering radius µ with respect to

a lattice Λ, and let p be a point last covered by ∆. That is, p /∈ int(µ∆) + Λ. Let

F0, F1, . . . , Fd be the facets of ∆, with interior facet normals v0, . . . , vd.

Every neighborhood of p is covered by µ∆ + Λ, and p can only lie in lattice translates

of the boundary of µ∆. Suppose, in order to get a contradiction, that a certain facet Fi
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is not needed by p. This implies that for every µ∆ + z (z ∈ Λ) containing p there is a

facet Fj 6= Fi such that µ∆ + z ⊂ Hp
j , where

Hp
j := {x ∈ Rd : vᵀj x ≤ v

ᵀ
j p}

is the translation to p of the j-th facet-defining half-space of ∆. This implies that we

have a neighborhood of p covered by the d affine half-spaces with p in the boundary

corresponding to the indices j 6= i. This is impossible since the corresponding d normals

are linearly independent.

Lemma 5.14. Let K1 and K2 be convex bodies containing the origin and let Λ1 and

Λ2 be lattices. Then, K1 and K2 are tight for Λ1 and Λ2, respectively, if and only if

K1 ⊕K2 is tight for Λ1 ⊕ Λ2.

Proof. First of all, let K ′ ) K1 ⊕ K2 be a convex body and let K ′1 and K ′2 be the

projection of K ′ onto the linear span of K1 and K2, respectively. Clearly, either K ′1 ) K1

or K ′2 ) K2, so that by Corollary 5.8 and the tightness of K1 and K2, we have

µ(K1 ⊕K2,Λ1 ⊕ Λ2) = µ(K1,Λ1) + µ(K2,Λ2) > µ(K ′1,Λ1) + µ(K ′2,Λ2)

= µ(K ′1 ⊕K ′2,Λ1 ⊕ Λ2) ≥ µ(K ′,Λ1 ⊕ Λ2),

since K ′1 ⊕K ′2 ⊆ K ′. Therefore, K1 ⊕K2 is tight for Λ1 ⊕ Λ2.

Conversely, if say K1 is not tight for Λ1, then there exists K ′1 ) K1 such that µ(K1,Λ1) =

µ(K ′1,Λ1). Then, K ′1 ⊕K2 ) K1 ⊕K2 and by Corollary 5.8

µ(K ′1 ⊕K2,Λ1 ⊕ Λ2) = µ(K ′1,Λ1) + µ(K2,Λ2) = µ(K1,Λ1) + µ(K2,Λ2)

= µ(K1 ⊕K2,Λ1 ⊕ Λ2),

so K1 ⊕K2 is not tight for Λ1 ⊕ Λ2.

Lemma 5.15. Let Λ′ ( Λ be two lattices in Rd, and let K ⊆ Rd be a convex body.

Then,

µ(K,Λ) ≤ µ(K,Λ′).

Proof. Let µ = µ(K,Λ) and µ′ = µ(K,Λ′). Then, µ′K + Λ′ ⊆ µ′K + Λ, so µ ≤ µ′.

An example where equality holds is the following: Let K = [−1, 1]d and let Λ be an

arbitrary refinement of Zd contained in Rd−1×Z. Then, µ(K,Zd) = µ(K,Λ) = 1/2.

Remark 5.16. The inequality in Lemma 5.15 may not be strict, even for simplices. An

example is the simplex (I ⊕ I ′)′ ⊕ I of Lemma 5.24 below. It has the same covering
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radius as S(14) (equal to 3/2), yet it is isomorphic to S(14) when regarded with respect

to the sublattice of index two generated by its vertices and its interior lattice point. This

can easily be derived from its depiction in the bottom-center of Figure 5.2, or from its

coordinates in Table 5.1 (in these coordinates the sublattice is {(x, y, z) ∈ Z3 : x ∈ 2Z}).

5.2 Conjectures A and B: Equivalence and small dimen-

sions

Equivalence of Conjectures A and B

As an auxiliary result we first reduce conjecture A to lattice simplices.

Lemma 5.17. Every non-hollow lattice polytope contains a non-hollow lattice simplex

of possibly smaller dimension.

Proof. Consider a triangulation T of the given lattice polytope P whose only vertices

are the vertices of P . Since P is non-hollow it contains an interior lattice point, say

p ∈ int(P ) ∩ Zd. Let S be the unique, possibly lower-dimensional, simplex in T that

contains p in its relative interior. By definition, S is non-hollow and contained in P .

Corollary 5.18. Conjecture A reduces to lattice simplices. More precisely, conjecture A

holds in every dimension ≤ d, if and only if it holds for lattice simplices in every dimen-

sion ≤ d.

Proof. One direction is trivially true. We prove the other one by induction on d. Let

P ⊆ Rd be a non-hollow lattice polytope. In view of lemma 5.17, we find an `-dimensional

non-hollow lattice simplex S ⊆ P . If ` = d, then we simply have µ(P ) ≤ µ(S). So, let

us assume that ` < d and assume that conjecture A is proven for any dimension < d.

Assume also that S contains the origin in its interior and write LS for the linear hull of S.

We now apply lemma 5.7 to the projection π onto L⊥S . Observe that S ⊆ P ∩ π−1(0) =

P ∩ LS , and that S is non-hollow with respect to Zd ∩ LS and π(P ) is non-hollow with

respect to the lattice π(Zd). We get that

µ(P ) ≤ µ(S,Zd ∩ LS) + µ(π(P ), π(Zd)) ≤ `

2
+
d− `

2
=
d

2
.

Proof of theorem 5.2. Suppose first that for ` ≤ d every lattice `-polytope P has µ(P ) ≤
`/2. Since S(1n+1) projects to S(1`+1), we have by (5.1)

µ`(S(1n+1),Zn) ≥ µ`(S(1`+1),Z`) =
`

2
.
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For the converse inequality, let π : Rn → R` be an integer projection along which the

value of µ`(S(1n+1)) is attained. Then, π(S(1n+1)) is non-hollow with respect to the

lattice π(Zn), and thus

µ`(S(1n+1),Zn) = µ`(π(S(1n+1)), π(Zn)) ≤ `

2
.

For the reverse implication (ii) ⇒ (i), suppose conjecture B holds in every dimension

` ≤ d. Let P be a lattice `-polytope with at least one interior lattice point, which without

loss of generality we assume to be the origin 0. By corollary 5.18 we can assume P to

be a simplex, and we let v0, . . . , v` be its vertices. Let (b0, . . . , b`) ∈ N`+1 be a multiple

of the barycentric coordinates of 0 in P ; that is, assume that

0 =
1

N

∑̀
i=0

bivi, (5.5)

where N =
∑`

i=0 bi ≥ `+ 1. Consider the (N − 1)-dimensional simplex S(1N ), and the

affine projection π : RN−1 → R` that sends exactly bi vertices of S(1N ) to vi, i = 0, . . . , `.

Expression (5.5) implies that π sends the origin to the origin, which in turn implies π

to be an integer projection. In particular,

µ(P,Z`) ≤ µ`(π(S(1N )), π(ZN−1)) ≤ µ`(S(1N ),ZN−1) =
`

2
,

since π(ZN−1) ⊆ Z`.

Conjecture A in dimensions 2 and 3

We here prove conjecture A in dimensions two and three, including the case of equality.

We bigin in dimension two.

Let I = [−1, 1] and I ′ = [0, 2] be intervals of length two centered at 0 and 1, respectively.

Lemma 5.19. The three polygons S(13), I ⊕ I, and I ⊕ I ′ have covering radius equal

to one.

Proof. For S(13) this is just eq. (5.1). For the other two polygons it follows from

Corollary 5.8, since they are unimodularly equivalent to direct sums of segments of

length two.

We now show that every other non-hollow lattice polygon contains a (unimodularly

equivalent) copy of one of these three, which implies Conjecture A. For this let us
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Figure 5.1: The non-hollow lattice polygons S(13), I ⊕ I and I ⊕ I ′ of covering radius equal
to one.

consider the following auxiliary family of lattice triangles with k interior lattice points:

For each k ∈ N, and α ∈ {0, 1} let

Mk(α) = conv({(−1, 0), (1, α), (0, k + 1)}). (5.6)

Observe that

M1(0) = I ⊕ I ′, M1(1) ∼= S(13), and ∀k ≥ 2, Mk−1(α) (Mk(α).

Lemma 5.20. Every non-hollow lattice polygon P contains a unimodular copy of either

M1(0) = I ⊕ I ′, M1(1) ∼= S(13) or I ⊕ I.

Proof. Without loss of generality, assume the origin is in the interior of P . Consider the

complete fan whose rays go through all non-zero lattice points in P . We call this the

lattice fan associated to P , and it is a complete unimodular fan. Since a 2-dimensional

fan is uniquely determined by its rays, we denote F{v1, . . . , vm} the fan with rays through

v1, . . . , vm ∈ R2. In particular, the lattice fan of P is denoted F{P ∩ Z2}.

By the classification of complete unimodular fans, see [Ewa96, Thm. V.6.6], F{P ∩ Z2}
can be (modulo unimodular equivalence) obtained by successively refining the lattice

fan of either S(13) or

Fl := F{(0,−1), (0, 1), (−1, 0), (1, l)},

for some l ∈ Z≥0. Observe that F0 is the lattice fan of I ⊕ I, F1 refines the lattice fan of

S(13) ∼= M1(1) and, for every l ≥ 2 we have that Fl is unimodularly equivalent to the

fan of Mk(0) if l = 2k is even, and

Mk(1) if l = 2k − 1 is odd.

This, together with the fact that M1(α) ⊆ Mk(α) for every k ≥ 1, implies that P

contains one of M1(0), M1(1) or I ⊕ I.
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Corollary 5.21. Let P be a non-hollow lattice polygon. Then

µ(P ) ≤ 1,

with equality if and only if P is unimodularly equivalent to one of S(13), I⊕I, or I⊕I ′.

Proof. By Lemma 5.20, unless P is one of S(13), I ⊕ I or I ⊕ I ′ it strictly contains one

of them. If the latter happens then its covering radius is strictly smaller than 1, since

the three of them are tight by Lemma 5.13 and Lemma 5.14.

Remark 5.22. The covering radius of Mk(α) can be computed explicitly via

Mk(0) ∼= I ⊕ [0, k + 1], and Mk(1) ∼= S(k, 1, 1).

Indeed, this implies

µ(Mk(0)) =
1

2
+

1

k + 1
=

k + 3

2k + 2
, and µ(Mk(1)) =

1 + 2
k

2 + 1
k

=
k + 2

2k + 1
,

by Corollary 5.8 and Theorem 5.4, respectively. We see that, indeed, their covering

radius equals 1 for k = 1 and is strictly smaller for greater k.

We now proceed to the three-dimensional case of Conjecture A. We first need to introduce

the following concept:

Definition 5.23. A minimal d-polytope is a non-hollow lattice d-polytope not properly

containing any other non-hollow lattice d-polytope.

In this language, our results in dimension 2 can be restated as: There are exactly three

minimal 2-polytopes, they have covering radius 1, and every other non-hollow lattice

2-polytope has strictly smaller covering radius.

In dimension three things are a bit more complicated. To start with, instead of three

direct sums of (perhaps translated) simplices of the form S(1i) there are nine, that we

now describe. As in the previous section, let I = [−1, 1] = S(12) and I ′ = [0, 2]. In a

similar way we define:

S′(13) = (1, 1) + S(13) = conv({(0, 0), (2, 1), (1, 2)}),

(I ⊕ I ′)◦ = (0,−1) + (I ⊕ I ′) = conv({(0, 1), (±1,−1)}),

(I ⊕ I ′)′ = (0,−2) + (I ⊕ I ′) = conv({(0, 0), (±1,−2)}).
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Put differently, S′(13) is S(13) translated to have the origin as a vertex; the other two

are I ⊕ I ′ translated to have the origin in the interior and at the “apex”, respectively.

Lemma 5.24. There are the following nine non-equivalent lattice 3-polytopes of covering

radius 3/2, obtained as direct sums of (perhaps translated) simplices of the form S(1d):

S(14),

S(13)⊕ I, S′(13)⊕ I, S(13)⊕ I ′,
I ⊕ I ⊕ I, I ⊕ I ⊕ I ′,

(I ⊕ I ′)◦ ⊕ I, (I ⊕ I ′)′ ⊕ I, (I ⊕ I ′)◦ ⊕ I ′.

The last five polytopes are illustrated in Figure 5.2, which is borrowed from [BS19,

p. 123]. Observe that the last three can equally be written as

I ⊕ (I ⊕ I)′, I ⊕ (I ′ ⊕ I)′, I ⊕ (I ⊕ I ′)′′,

where (I ⊕ I)′ denotes I ⊕ I translated to have the origin as a vertex and (I ⊕ I ′)′′ is

I ⊕ I ′ translated to have the origin at an endpoint of its edge of length two.

Figure 5.2: The five non-hollow lattice 3-polytopes that can be obtained by translations and
direct sums of I = [−1, 1].

Proof. That all the described direct sums are non-hollow follows from the following more

general fact: The direct sum of two or more non-hollow lattice polytopes containing the

origin is non-hollow if (and only if) all but at most one of the summands has the origin

in its interior. Indeed, if the summand exists then its interior point(s) are interior in the

sum; if it doesn’t then the origin is an interior point in the sum.

With this in mind, we only need to check that the nine described polytopes are pairwise

unimodularly non-equivalent, which is left to the reader.

A second difference with dimension two is that these nine non-hollow lattice 3-polytopes

are no longer the only minimal ones. Minimal non-hollow 3-polytopes have been clas-

sified and there are 26 with a single interior lattice point (see [Kas10, Thm. 3.1] and

Tables 2 & 4 therein) plus the infinite family described in Theorem 5.26 below.
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To prove conjecture A in dimension three we show that, on the one hand, the covering

radii of the 26 with a single interior lattice point can be explicitly computed and/or

bounded, giving the following result, the proof of which we postpone to Section 5.6.1.

Theorem 5.25. Among the 26 minimal non-hollow 3-polytopes with a single interior

lattice point, all except the nine in Lemma 5.24 have covering radius strictly smaller

than 3/2.

On the other hand, all the (infinitely many) minimal non-hollow 3-polytopes with more

than one interior lattice point have covering radius strictly smaller than 3/2, as we now

prove. For any k ∈ N and α, β ∈ {0, 1}, we define Mk(α, β) to be the following lattice

tetrahedron:

Mk(α, β) = conv({(1, 0, 0), (−1, 0, α), (0, 1, k + 1), (0,−1, k + 1− β)}). (5.7)

Theorem 5.26 ([BK16, Prop. 4.2]). Every minimal 3-polytope with k ≥ 2 interior lattice

points is equivalent by unimodular equivalence or refinement of the lattice to Mk(α, β)

for some α, β ∈ {0, 1}.

Theorem 5.26 is a version of [BK16, Prop. 4.2], although more explicit than the original

one. An example where refinement is needed in the statement is Mk(0, 0) considered

with respect to the lattice Λ generated by Z3 and (1/q, 1 − 1/q, 0), with q and k + 1

coprime. Mk(0, 0) is still minimal with respect to Λ because it contains no point of

Λ \ Z3.

Proof. Let P be a minimal lattice 3-polytope with more than one interior lattice point,

and let L be a line containing two of them. Without loss of generality we assume that

L = {(0, 0, z) : z ∈ R} and L ∩ P is the segment between (0, 0, z1) and (0, 0, z2), with

z1 ∈ [0, 1) and z2 ∈ (r, r+ 1] for some r ∈ {2, . . . , k}, so that L contains r interior lattice

points of P .

Claim 1: The minimal faces of P containing respectively (0, 0, z1) and (0, 0, z2) are non-

coplanar edges. Let F1 and F2 be those faces. If one of them, say F1, had dimension two,

then conv(F1∪{(0, 0, r)}) would be a non-hollow lattice polytope strictly contained in P .

If one of them, say F1, had dimension zero then necessarily F1 = {(0, 0, z1)} = {(0, 0, 0)}.
This would imply conv(P∩Z3\{0}) to be a non-hollow lattice polytope strictly contained

in P . Thus, F1 and F2 are both edges of P . They cannot be coplanar, since otherwise

there would be vertices p and q of P , one on either side of the hyperplane aff (F1 ∪ F2),

and the polytope conv(F1 ∪ {(0, 0, r), p, q}) would be non-hollow and strictly contained

in P .
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Hence, conv(F1 ∪ F2) is a non-hollow lattice tetrahedron and by minimality, P =

conv(F1 ∪ F2). We denote vi and wi the vertices of Fi, for i = 1, 2.

Claim 2: All the lattice points in the tetrahedron P other than the four vertices are

on the line L. Let Hi be the plane containing the line L and the edge Fi, for i = 1, 2.

The polytope Q = conv(L ∩ P ∪ {v1, w1, v2}) ⊂ P is contained in H+
1 , one of the two

halfspaces defined by H1; furthermore, the facet of Q lying on H1 is non-hollow, since

(0, 0, 1) is in its relative interior. Therefore, if P contained any lattice point u other than

the vertex w2 in the open halfspace (H−1 )o then conv(Q ∪ {u}) would be a non-hollow

lattice polytope strictly contained in P . Thus there are no lattice points in the open

halfspace (H−1 )o. Since the same can be said for the other halfspaces, H+
1 and H±2 , all

lattice points of P except its four vertices must lie on L.

In particular, we have r = k.

Claim 3: The endpoint (0, 0, zi) equals the mid-point of the edge Fi = conv({vi, wi}).
Let us only look at i = 1, the other case being symmetric. Let u1 = (0, 0, 1) and

u2 = (0, 0, 2) be the first two interior lattice points of P along L. The triangles

conv({u1, u2, v1}) and conv({u1, u2, w1}) are empty lattice triangles in the plane H1,

hence they have the same area. Thus, v1 and w1 are at the same distance from (and on

opposite sides of) the line L, which implies the statement.

In particular, z1 ∈ [0, 1) and z2 ∈ (k, k + 1] are either integers or half-integers, so they

can be written as z1 = α/2 and z2 = k + 1− β/2 for some α, β ∈ {0, 1}. It is now clear

that the affine transformation that fixes L and sends v1 7→ (1, 0, 0) and v2 7→ (0, 1, k+1),

sends P to Mk(α, β). The map may send Z3 to a different lattice Λ, but Λ refines Z3

since (1, 0, 0), (0, 1, k + 1), (0, 0, 1) and (0, 0, 2) are in Λ and they generate Z3.

Corollary 5.27. Every minimal 3-polytope with k ≥ 2 interior lattice points has cover-

ing radius strictly smaller than 3/2.

Proof. The projection of Mk(α, β) along the z direction is I ⊕ I and the fiber over the

origin is the segment {0} × {0} × [α/2, k + 1− β/2], of length k + 1− (α+ β)/2. Thus,

by Lemma 5.7,

µ(Mk(α, β)) ≤ µ(I ⊕ I) + µ([α/2, k + 1− β/2]) = 1 +
1

k + 1− α+β
2

≤ 3

2
.

Moreover, the last inequality is met with equality only in the case k = 2, α = β = 1.

But for M2(1, 1) we can consider the projection (x, y, z) 7→ x, whose image is I and

whose fiber is

conv({(0, 1/2), (1, 3), (−1, 2)}) ∼= S(3/2, 1, 1).
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Thus, by Lemma 5.7 and Theorem 5.4, we have

µ(M2(1, 1)) ≤ µ(I) + µ(S(3/2, 1, 1)) =
1

2
+

7/3

8/3
=

11

8
<

3

2
.

In fact we can be more explicit:

Remark 5.28. The covering radius of Mk(α, β) admits a closed expression:

µ(Mk(0, 0)) = µ(I ⊕ [0, k + 1]⊕ I) = 1 +
1

k + 1
.

µ(Mk(1, 0)) = µ(Mk(0, 1)) = µ(I ⊕Mk(1)) = 1 +
3

4k + 2
,

µ(Mk(1, 1)) = 1 +
1

2k
.

The first formula directly follows from lemma 5.7. The second one also does, using

Remark 5.22. For the third one, see lemma 5.65. For k = 1 the three expressions reduce

to 3/2, which is consistent with the descriptions M1(0, 0) ∼= I ⊕ (I ⊕ I ′)′, M1(0, 1) ∼=
I ⊕ S(13), and M1(1, 1) ∼= S(14).

We are now ready to prove conjecture A in dimension three:

Theorem 5.29. Let P be a non-hollow lattice 3-polytope. Then

µ(P ) ≤ 3

2
,

with equality if and only if P is unimodularly equivalent to one of the nine polytopes in

Lemma 5.24.

Proof. Let P be a non-hollow lattice 3-polytope, and let T be a minimal one contained

in it. If T is not one of the nine in Lemma 5.24 then T , and hence P , has covering radius

strictly smaller than 3/2 by either Corollary 5.27 or Theorem 5.25. If T is one of the

nine and P 6= T then

µ(P ) < µ(T ) =
3

2
,

since these nine are tight by Lemma 5.13 and Lemma 5.14.

Another proof of conjecture A in dimension two

Let v ∈ Rd≥1 and let ∆v := conv({−v, e1, . . . , ed}). The following result says that bounds

for the covering radii of this class of simplices translate to bounds for all non-hollow

lattice polytopes (cf. corollary 5.18).
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Lemma 5.30. Let ∆ be a non-hollow lattice d-simplex. Then, there is a vector v ∈ Qd
≥1

such that

µ(∆) ≤ µ(∆v).

Proof. Write ∆ = conv({w0, w1, . . . , wd}) and assume without loss of generality that 0 ∈
int(∆)∩Zd. Let (β0, β1, . . . , βd) be the barycentric coordinates of the origin with respect

to ∆. That is, βi ≥ 0,
∑d

i=0 βi = 1, and 0 =
∑d

i=0 βiwi. We may assume without loss

of generality that 0 < β0 ≤ βi, for all i ∈ {1, . . . , d}. Now, let W = (w1, . . . , wd) ∈ Zd×d

and let v ∈ Rd be such that W∆v = ∆. Clearly, β0v = W−1
(∑d

i=1 βiwi

)
=
∑d

i=1 βiei,

and hence v = (β1β0 , . . . ,
βd
β0

) ∈ Qd
≥1.

With these observations, we get

µ(∆) ≤ µ(∆,WZd) = µ(W∆v,WZd) = µ(∆v),

as desired.

In dimension two, this approach leads to another proof of conjecture A:

Proposition 5.31. For every v ∈ R2
≥1, we have

µ(∆v) ≤ 1.

Equality holds if and only if v ∈ {(a, 1), (1, a)}, for some 1 ≤ a ≤ 2.

Proof. Due to symmetry, we can assume v = (v1, v2) with v1 ≥ v2. If v2 > 1, then ∆v

strictly contains the triangle ∆w, for some w = (w1, 1) ∈ R2
≥1. By lemma 5.13 triangles

are tight for every lattice, so that µ(∆v) < µ(∆w) and it thus suffices to consider

v = (a, 1), for a ≥ 1.

Let F0 be the edge of ∆v not containing v, and let F1 and F2 be the edges of ∆v not

containing e1 and e2, respectively. Further, let ` = {(x, y) : x + y = 1} be the line

containing F0. An elementary calculation provides us with the following intersection

points:

` ∩ (F1 + e1) =
{(

2
a+2 ,

a
a+2

)}
, ` ∩ (F2 + e2) =

{(
1

a+2 ,
a+1
a+2

)}
,

` ∩ (F1 + (1, 1)) =
{(

2−a
a+2 ,

2a
a+2

)}
, ` ∩ (F2 + (1, 1)) =

{(
2

a+2 ,
a
a+2

)}
.

This already shows that the translates {0, 1}2 + ∆v cover the unit cube [0, 1]2, for every

a ≥ 1, so that µ(∆v) ≤ 1 as claimed.
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In order to decide the equality case, observe that in the covering of [0, 1]2 by these four

translates, the point
(

2
a+2 ,

a
a+2

)
is covered last, and is not contained in the interior of

any of the four triangles. However, the translate (2, 1) + ∆v may contain this point in

the interior. Noting that

` ∩ (F1 + (2, 1)) =
{(

4−a
a+2 ,

2a−2
a+2

)}
,

this happens if and only if 4− a < 2, that is, a > 2.

Unfortunately, the analogous result fails in higher dimensions:

Example 5.32. The method described in section 5.6.2 can be used to compute that

µ(∆(3/2,1,1)) =
14

9
>

3

2
.

Counterexamples in higher dimensions can be constructed from this example as follows:

Let v ∈ Rd≥1 be such that µ(∆v) >
d
2 , and let S be the non-hollow lattice (d+1)-simplex

arising as the direct sum of ∆v and I ′ = [0, 2]. In view of lemma 5.30, there exists

w ∈ Rd+1
≥1 such that

µ(∆w) ≥ µ(S) = µ(∆v) + µ(I ′) >
d

2
+

1

2
=
d+ 1

2
,

where we also used corollary 5.8.

5.3 Conjecture C

We here focus on conjecture C. We show that it implies conjecture A, we prove it up

to a factor of two in arbitrary dimension, and we prove it in dimension two. In the last

paragraph, we investigate how the proposed bound changes if we allow the origin to be

contained in the boundary of the given simplex.

As a preparation, let us first reinterpret conjecture C in terms of (reciprocals of) certain

lengths. To this end, let S = conv({v0, . . . , vd}) be a d-simplex with the origin in its

interior, and assume that it has rational vertex directions, that is, the line through the

origin and the vertex vi has rational direction, for every 0 ≤ i ≤ d.

As in conjecture C, let πi be the linear projection to dimension d − 1 vanishing at vi.

Finally, let `i be the lattice length of S ∩ π−1
i (0). Put differently, let ui be the point

where the ray from vi through 0 hits the opposite facet of S and let `i be the ratio

between the length of [ui, vi] and the length of the primitive lattice vector in the same
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direction. In formula:

`i := VolZd∩Rvi([ui, vi]).

Lemma 5.33. For every i ∈ {0, 1, . . . , d}, we have

1

`i
=

Volπi(Zd)(πi(S))

VolZd(S)
.

In particular, Conjecture C is equivalent to the inequality

µ(S) ≤ 1

2

d∑
i=0

1

`i
. (5.8)

Proof. By construction, we have πi(S) = πi(Fi), where Fi is the facet of S opposite to

the vertex vi. Therefore, vol(S) = 1
d vol(πi(S)) vol([ui, vi]). The determinants of the

involved lattices are related by 1 = det(Zd) = det(πi(Zd)) det(Zd ∩ Rvi) (cf. [Mar03,

Prop. 1.2.9]). Hence,

VolZd(S) =
d! vol(S)

det(Zd)
=

(d− 1)! vol(πi(S))

det(πi(Zd))
vol([ui, vi])

det(Zd ∩ Rvi)

= Volπi(Zd)(πi(S)) VolZd∩Rvi([ui, vi]),

as desired.

We now also detail the claim in the introduction, that the discrete surface area defined

in definition 5.5 is invariant under unimodular transformations.

Lemma 5.34. Let S be a d-simplex with the origin in its interior and with rational

vertex directions. Let A be an invertible linear transformation. Then

SurfAZd(AS) = SurfZd(S).

In particular, if A is unimodular, we have SurfZd(AS) = SurfZd(S).

Proof. As before we write S = conv({v0, . . . , vd}) and we let πi be the projection van-

ishing at vi, for 0 ≤ i ≤ d. Clearly, AS = conv({Av0, . . . , Avd}) and the corresponding

projection π̄i vanishing at Avi can be written as π̄i = πiA
−1. Therefore, we get

SurfAZd(AS) =
d∑
i=0

Volπ̄i(AZd)(π̄i(AS)) =
d∑
i=0

Volπi(Zd)(πi(S)) = SurfZd(S),

as claimed.
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Conjecture C implies Conjecture A

Corollary 5.35. conjecture C =⇒ conjecture A.

Proof. In view of Corollary 5.18, it suffices to consider lattice simplices. Therefore,

let S = conv({v0, . . . , vd}) be a lattice d-simplex containing the origin in its interior.

Furthermore, let ωi be the lattice length of the segment [0, vi]. Then, 1 − ωi/`i is the

i-th barycentric coordinate of the origin with respect to the vertices of S, so that

d∑
i=0

(
1− ωi

`i

)
= 1

and, hence,
∑d

i=0 ωi/`i = d. On the other hand, for a lattice simplex we have ωi ≥ 1.

Thus, assuming Conjecture C holds for S, we have

µ(S) ≤ 1

2

d∑
i=0

1

`i
≤ 1

2

d∑
i=0

ωi
`i

=
d

2
.

Conjecture C holds up to a factor of two

In the formulation of lemma 5.33, conjecture C is easily proved inductively up to a factor

of two.

Proposition 5.36. Let S = conv({v0, . . . , vd}) be a d-simplex with the origin in its

interior and with rational vertex directions. Then

µ(S) ≤
d∑
i=0

1

`i
,

with the lattice lengths `i defined as above.

Proof. As above, let ui be the intersection of the line Rvi with the facet F of S opposite

to vi, so that `i is the lattice length of Q := [ui, vi] ⊆ S. Note, that ui lies in the relative

interior of F . Also, let πi be the linear projection vanishing at vi. By the assumptions

on S, the projection πi is rational and thus πi(S) is a (d−1)-dimensional simplex having

the origin in its interior and with rational vertex directions with respect to πi(Zd).

Using lemma 5.7 and the induction hypothesis for πi(S), we get

µ(S,Zd) ≤ µ(Q,Zd ∩ LQ) + µ(πi(S), πi(Zd)) ≤
1

`i
+
∑
j 6=i

1

`′j
, (5.9)
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where the `′j are the corresponding lattice-lengths in πi(S). Thus, to prove the proposi-

tion we only need to show that `′j ≥ `j , for all j 6= i. In fact, since the one-dimensional

lattice πi(Zd) ∩ πi(Rvj) refines πi(Zd ∩ Rvj), we have

`j = VolZd∩Rvj ([uj , vj ]) = Volπi(Zd∩Rvj)([πi(uj), πi(vj)])

≤ Volπi(Zd)∩πi(Rvj)([πi(uj), πi(vj)]) ≤ `
′
j .

Here, the last inequality comes from the fact that [πi(uj), πi(vj)] ⊆ πi(S) is contained

in the ray from the vertex πi(vj) of πi(S) through the origin.

Remark 5.37. Corollary 5.43 in the next section proves Conjecture C in the plane.

So we can base the inductive proof above on the stronger assumption that µ(S′) ≤
cd−1

∑d−1
i=0

1
`′i

, where S′ is a (d− 1)-dimensional simplex and cd−1 is a suitable constant

with c2 = 1/2. Summing the thus modified inequality (5.9) for all indices 0 ≤ i ≤ d,

yields the recursion (d+ 1)cd = 1 + dcd−1. Solving it shows that

µ(S) ≤ 2d− 1

2d+ 2

d∑
i=0

1

`i
,

for all d-simplices S with the origin in its interior and with rational vertex directions.

This is a good bound in R3 since c3 = 5/8.

Conjecture C in dimension two

We will now prove Conjecture C in dimension two. Our first remarks however are valid

in arbitrary dimension.

Throughout this paragraph, let S = conv({v0, . . . , vd}) be a simplex with the origin

in its interior and with rational vertex directions. For each i = 0, . . . , d, let pi be the

primitive positive multiple of vi. Let α = (α0, . . . , αd) ∈ Nd+1 be the primitive integer

linear dependence among the pi’s. That is,

d∑
i=0

αipi = 0 and gcd(α0, . . . , αd) = 1.

Also, for each i, let βi = αi‖pi‖/‖vi‖ ∈ R>0, so that

d∑
i=0

βivi =
d∑
i=0

αipi = 0.



5.3. Conjecture C 83

Remark 5.38. The fact that the pi’s are primitive imposes some condition on the vector

α ∈ Nd+1. Namely, for each i ∈ {0, . . . , d}, we have

gcd(αj : j 6= i) = 1.

Indeed, let Λ be the lattice generated by {p0, p1, . . . , pd}, and let Λi be the sublattice

generated by {pj : j 6= i}. Then, the primitive vector of Λi in the direction of pi is∑
j 6=i αjpj

gcd(αj : j 6= i)
=

−αipi
gcd(αj : j 6= i)

,

which is an integer multiple of pi if, and only if, gcd(αj : j 6= i) = 1.

As in the previous sections, for each i let `i be the lattice length of S∩Rvi. The following

lemma says that the vectors α and β = (β0, β1, . . . , βd) contain all the information about

S needed to compute the right-hand side in (5.8).

Lemma 5.39. The lattice length of S ∩ Rvi equals

`i =
αi
βi

+
αi∑
j 6=i βj

=
αi
βi
·
∑d

j=0 βj∑
j 6=i βj

.

Proof. To slightly simplify notation, we do the computations for i = 0. For this, let

us use the vectors p1, . . . , pd as the basis for a linear coordinate system in Rd. In these

coordinates, p0 becomes

p0 = − 1

α0
(α1, . . . , αd) .

On the other hand, the equation of the facet of S opposite to v0 is

d∑
j=1

βj
αj
xj = 1,

so that this facet intersects the line spanned by p0 in the point

(α1, . . . , αd)∑d
j=1 βj

=
−α0∑d
j=1 βj

p0.

Thus, the segment S ∩ Rv0 has endpoints α0
β0
p0 and −α0∑d

j=1 βj
p0, which implies the state-

ment.

Remark 5.40. Observe that the quantity ωi in the proof of corollary 5.35 equals αi/βi.

With this in mind, one easily recovers the equality
∑

i
ωi
`i

= d used in that proof, from

lemma 5.39.
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Our proof of Conjecture C in two dimensions is based on applying Lemma 5.7 to the

projection π : R2 → R along the direction of vi, for some fixed i ∈ {0, 1, 2}. Then, with

the notation above,

(i) α0, α1 and α2 are pairwise coprime, by Remark 5.38.

(ii) The lattice length of S ∩ π−1(0) is `i.

(iii) The lattice length of π(S) equals

αjαk
βj

+
αjαk
βk

=
αjαk
βjβk

(βj + βk),

where {j, k} = {0, 1, 2} \ {i}. Here we use that the projection of the segment

[0, vj ] =
αj
βj

[0, pj ] has length αk
αj
βj

, since gcd(αj , αk) = 1 implies that π(
pj
αk

) is a

primitive lattice point in the projection.

Writing L = π−1(0), Lemma 5.7 gives us

µ(S) ≤ µ(S ∩ L,Z2 ∩ L) + µ(π(S), π(Z2)).

Hence, the inequality (5.8) would follow from:

1

`j
+

1

`k
− 1

`i
≥ 2βjβk
αjαk(βj + βk)

. (5.10)

We prove this inequality under mild assumptions.

Theorem 5.41. Let S = conv({v0, v1, v2}) ⊆ R2 be a triangle with the origin in its

interior and with rational vertex directions. Let the vectors α and β, and the lengths `i

be defined as above, and let p0, p1 and p2 be primitive in the directions of v0, v1 and v2.

Assume that (α0, α1, α2) 6= (1, 1, 1). Then, the inequality (5.10) holds for some choice

of i ∈ {0, 1, 2}.

Moreover, the inequality is strict unless (α0, α1, α2) = (2, 1, 1) and β1 = β2, up to

reordering the indices.

Example 5.42.

(i) The necessity of (α0, α1, α2) 6= (1, 1, 1) is shown by the following example. If

S = S(1, 1, 1) (so that αi = βi = 1 for all i), then

1

`j
+

1

`k
− 1

`i
=

2

3
and

2βjβk
αjαk(βk + βk)

= 1,

so the inequality fails.
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(ii) Even if (α0, α1, α2) 6= (1, 1, 1), it is not true that (5.10) holds for every i ∈ {0, 1, 2}.
For ω > 0, consider the simplex

S = conv({(0, ω), (−1,−1), (1,−1)}).

It has parameters (α0, α1, α2) = (2, 1, 1), (β0, β1, β2) =
(

2
ω , 1, 1

)
, `0 = ω + 1, and

`1 = `2 = 2ω+2
ω+2 . For i = 0, we indeed have

1

`1
+

1

`2
− 1

`0
= 1 =

2β1β2

α1α2(β1 + β2)
.

But for i ∈ {1, 2}, we get

1

`j
+

1

`k
− 1

`i
=

1

`0
=

1

ω + 1
<

2

ω + 2
=

2βjβk
αjαk(βj + βk)

.

Proof of Theorem 5.41. Case 1: At most one of the αis equals 1. Say α1 6= 1 6= α2.

With no loss of generality assume `2 ≥ `1. Then, by Lemma 5.39,

1

`0
+

1

`1
− 1

`2
≥ 1

`0
=
β0

α0
· β1 + β2

β0 + β1 + β2
>
β0

α0
· β1

β0 + β1
≥ 2β0β1

α0α1(β0 + β1)
.

Case 2: Two of the αis equal 1. Assume that α1 = α2 = 1. The condition (α0, α1, α2) 6=
(1, 1, 1) then implies α0 ≥ 2, so that Lemma 5.39 gives

1

`1
+

1

`2
− 1

`0
=

β1(β0 + β2)

β0 + β1 + β2
+

β2(β0 + β1)

β0 + β1 + β2
− β0

α0
· β1 + β2

β0 + β1 + β2

=
2β1β2 +

(
1− 1

α0

)
β0(β1 + β2)

β0 + β1 + β2

∗
≥

2β1β2 + 1
2β0(β1 + β2)

β0 + β1 + β2
.

Thus, the inequality we want to prove is

2β1β2 + 1
2β0(β1 + β2)

β0 + β1 + β2
≥ 2β1β2

β1 + β2

or, equivalently,

2β1β2(β1 + β2) +
1

2
β0(β1 + β2)2 ≥ 2β1β2(β0 + β1 + β2).

This is equivalent to (β1 + β2)2
∗
≥ 4β1β2, which clearly holds.

The two inequalities we used, marked with “
∗
≥”, are equalities if and only if α0 = 2 and

β1 = β2, respectively.
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We now prove Conjecture C for d = 2, which together with corollary 5.21 and proposi-

tion 5.31, gives the third proof of conjecture A in the plane.

Corollary 5.43. Conjecture C holds in dimension two.

Proof. Let S = conv({v0, v1, v2}) ⊆ R2 be a triangle with the origin in its interior and

with rational vertex directions. Let the vectors α and β, and the lengths `i be defined

as above, taking p0, p1 and p2 primitive. In view of Lemma 5.33 we need to show that

µ(S) ≤ 1

2

(
1

`0
+

1

`1
+

1

`2

)
.

If (α0, α1, α2) = (1, 1, 1), then consider the lattice Λ generated by p0, p1, p2. Let A be

the linear transformation sending ei to pi, for i = 1, 2. Then, Λ = AZ2 and S = AS(ω)

for a suitable ω ∈ R3
>0. Moreover, since the pis are primitive, the lattice lengths `i are

the same for every pair (S,Z2), (S,Λ), and (S(ω),Z2). Observing that Λ ⊆ Z2 is a

sublattice, we may therefore apply Theorem 5.4 and get

µ(S) ≤ µ(S,Λ) = µ(S(ω),Z2) =
1

2

(
1

`0
+

1

`1
+

1

`2

)
.

So, we assume that (α0, α1, α2) 6= (1, 1, 1) and thus we can apply Theorem 5.41, which

provides us with an index i ∈ {0, 1, 2} such that the inequality (5.10) holds. As we saw

above, this implies the desired bound.

Analogs to conjecture C with the origin in the boundary

As we said in the introduction, the question analogous to Conjecture A for general lattice

polytopes has an easy answer: the maximum covering radius among all d-dimensional

lattice polytopes equals d and is attained by, and only by, unimodular simplices. This

phenomenon generalizes to analogs of theorem 5.4 and conjecture C, which admit easy

proofs. The generalization concerns the simplices S(ω), except we now allow one of the

entries of ω (typically the first one) to be zero so that the origin becomes a vertex:

Proposition 5.44. For an ω ∈ Rd>0 let

S(0, ω) := conv({0, ω1e1, . . . , ωded}).

Then

µ(S(0, ω)) =

d∑
i=1

1

ωi
=

∑d
i=1 Volπi(Zd)(πi(S(ω)))

VolZd(S(ω))
,

where πi : Rd → Rd−1 is the linear projection that forgets the i-th coordinate.
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Proof. S(0, ω) can be redescribed as{
x ∈ Rd≥0 :

d∑
i=1

xi
ωi
≤ 1

}
.

In this form it is clear that µ(S(0, ω)) equals the unique µ ∈ [0,∞) such that 1d lies in

the boundary of µ · S(0, ω), which equals
∑

i
1
ωi

, as stated.

Corollary 5.45. Let S = conv({0, v1, . . . , vd}) ⊆ Rd be a d-simplex with rational vertex

directions. For each i = 1, . . . , d, let πi : Rd → Rd−1 be the linear projection vanishing

at vi. Then,

µ(S) ≤
∑d

i=1 Volπi(Zd)(πi(S))

VolZd(S)
,

with equality if and only if S is unimodularly equivalent (by a transformation fixing the

origin) to S(0, ω) for some ω ∈ Rd>0.

Proof. Let p1, . . . , pd ∈ Zd be the primitive vertex directions of S, so that vi = ωipi,

where ωi is the lattice length of the segment [0, vi], for each i = 1, . . . , d. Then, the

linear map sending pi 7→ ei, i = 1, . . . , d, sends S to S(0, ω) and Zd to a lattice Λ

containing Zd. This implies

µ(S,Zd) = µ(S(0, ω),Λ) ≤ µ(S(0, ω),Zd) =

∑d
i=1 Volπi(Zd)(πi(S))

VolZd(S)
,

by Proposition 5.44.

The ‘if’ in the equality case is obvious: in this case Λ = Zd. For the ‘only if’ suppose

that Λ is a proper superlattice of Zd and let p ∈ Λ ∩ [0, 1)d \ {0} be a non-zero lattice

point in the half-open unit cube. Let µ = µ(S(0, ω),Zd) =

∑d
i=1 Vol

πi(Zd)
(πi(S))

VolZd (S) . Then,

the point 1 is the only point in the unit cube [0, 1]d that is last covered by Zd+µ·S(0, ω).

Since 1 lies in the interior of p + µ · S(0, ω), the covering radius of S(0, ω) is strictly

smaller with respect to Λ than it is with respect to Zd.

Our next results say that proposition 5.44 and corollary 5.45 are not only analogs (with-

out the factor of two) of theorem 5.4 and conjecture C, but also a limit of them when

we make one of the vertices tend to zero. We consider this as additional evidence for

Conjecture C. Formally:

Theorem 5.46. Let S = conv({v0, . . . , vd}) be a d-simplex with the origin in its interior

and with rational vertex directions. For each i ∈ {0, . . . , d} consider the one-parameter

family of simplices

S
(i)
t := conv({v0, . . . , tvi, . . . , vd}), t ∈ [0, 1],
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so that S
(i)
1 = S and S

(i)
0 = conv({v1, . . . ,0, . . . , vd}). For each i = 0, . . . , d let πi : Rd →

Rd−1 be the linear projection vanishing at vi.

Then, there is an index j ∈ {0, . . . , d} such that

lim
t→0

1

2

∑d
i=0 Volπi(Zd)(πi(S

(j)
t ))

VolZd(S
(j)
t )

≥
∑d

i=0,i 6=j Volπi(Zd)(πi(S
(j)
0 ))

VolZd(S
(j)
0 )

, (5.11)

with equality if and only if the primitive lattice vectors parallel to v0, . . . , vd add up to

zero.

Observe that the condition for equality includes, but is more general than, the case when

S is of the form S(ω).

Proof. For each i, let ui be the primitive lattice vector parallel to vi, and let U =

{u0, . . . , ud}. We choose j to be an index minimizing the (absolute value of the) deter-

minant of U \ {ui} among all i. Observe that S is of the form S(ω) if and only if all

those determinants are equal to 1.

To simplify notation, in the rest of the proof we assume j = 0 and we drop the superindex

from the notation S
(j)
t .

Since the volume functional is continuous, we have

lim
t→0

VolZd(St) = VolZd(S0),

and, for each i = 1, . . . , d,

lim
t→0

Volπi(Zd)(πi(St)) = Volπi(Zd)(πi(S0)).

Thus, the only thing to prove is that

lim
t→0

Volπ0(Zd)(π0(St)) ≥
d∑
i=1

Volπi(Zd)(πi(S0)).

The volume on the left-hand side does not depend on t because the vertex of St that de-

pends on t is projected out by π0. Moreover, this volume equals
∑d

i=1 Volπ0(Zd)(π0(Fi)),

where Fi is the facet of S0 opposite to vi. Similarly, Volπi(Zd)(πi(S0)) = Volπi(Zd)(πi(Fi)).

Hence, the inequality follows from

Volπ0(Zd)(π0(Fi)) ≥ Volπi(Zd)(πi(Fi)). (5.12)
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Both sides of eq. (5.12) are integer multiples of VolZd∩aff (Fi)(Fi), with the proportionality

factors being the lattice distances from Fi to u0 and to ui, respectively. These distances

are proportional to the determinants of U \ {ui} and U \ {u0}, so our assumption on u0

minimizing this implies the statement. Moreover, we have equality if, and only if, all

the determinants of U \ {ui} are equal to that of U \ {u0}. This in turn is equivalent to∑d
i=0 ui = 0.

Corollary 5.47. In the conditions of theorem 5.46 and for the index j mentioned

therein, we have

lim
t→0

µ(S
(j)
t ) ≤ lim

t→0

1

2

∑d
i=0 Volπi(Zd)(πi(S

(j)
t ))

VolZd(S
(j)
t )

,

with equality if and only if the primitive lattice vectors parallel to v0, . . . , vd add up to

zero.

Proof. This follows from theorem 5.46 since

lim
t→0

µ(S
(j)
t ) = µ(S

(j)
0 ) ≤

∑d
i=0,i 6=j Volπi(Zd)(πi(S

(j)
0 ))

VolZd(S
(j)
0 )

,

where the last inequality is corollary 5.45.

Remark 5.48. eq. (5.11) is not true for all choices of j. Without any assumption on j

the proof of theorem 5.46 carries through up to the point where we say that eq. (5.11)

would follow from eq. (5.12), but the latter inequality is not true in general. For a

specific example, let S = conv({(0,−1), (1, 1), (−1, 1)}) and consider j = 0. Then, for

i = 1, 2,

Volπ0(Zd)(π0(Fi)) = 1 < 2 = Volπi(Zd)(πi(Fi)).

This gives

lim
t→0

1

2

∑d
i=0 Volπi(Zd)(πi(S

(0)
t ))

VolZd(S
(0)
t )

=
1

2
· 2 + 2 + 2

2
=

3

2
,

and ∑d
i=1 Volπi(Zd)(πi(S

(0)
0 ))

VolZd(S
(0)
0 )

=
2 + 2

2
= 2.

We finally look at the intermediate case where 0 is in the boundary of S = conv({v0, . . . , vd})
but not a vertex. We can generalize conjecture C to

Conjecture E. Let S = conv({v0, . . . , vd}) be a d-simplex with 0 ∈ S\{v0, . . . , vd}, and

with rational vertex directions. Let πi : Rd → Rd−1 be the linear projection vanishing
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at vi. Let I ⊂ {0, . . . , d} be the set of labels of facets of S containing 0. Then

µ(S) ≤ 1

2

∑d
i=0 Volπi(Zd)(πi(S)) +

∑
i∈I Volπi(Zd)(πi(S))

VolZd(S)
. (5.13)

Proposition 5.49. conjecture E ⇐⇒ conjecture C.

Proof. The implication conjecture E =⇒ conjecture C is obvious, since the latter is the

case I = ∅ of the former.

For the other implication, for each i = 0, . . . , d, let

`i =
VolZd(S)

Volπi(Zd)(πi(S))
,

which equals the lattice length of the segment S ∩ lin({vi}). The inequality in conjec-

ture E we want to prove becomes

µ(S) ≤ 1

2

∑
i 6∈I

1

`i
+
∑
i∈I

1

`i
.

Let SI = conv({vi : i 6∈ I}), and SI = conv({0} ∪ {vi : i ∈ I}). Observe that SI equals

the intersection of the facets of S containing 0, hence it is a (d− |I|)-simplex with 0 in

its relative interior. SI is an |I|-simplex with 0 as a vertex. Hence, conjecture C and

proposition 5.44 respectively say:

µ(SI) ≤
1

2

∑
i 6∈I

1

`i
and µ(SI) ≤

∑
i∈I

1

`i
.

Consider the linear projection πI : Rd → RI vanishing on SI . By lemma 5.7

µ(S) ≤ µ(SI) + µ(πI(S)),

so it only remains to show that

µ(πI(S)) ≤ µ(SI).

This holds because πI is an affine bijection from SI to πI(S), so that πI(S) can be

considered to be the same as SI except regarded with respect to a (perhaps) finer

lattice.
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(ω1, 0)

(0,ω2)

(−ω0,−ω0)

Figure 5.3: An example of a simplex S(ω) in dimension two, with ω = (2, 4, 1)

5.4 Covering minima of the simplex S(ω)

The covering radius of S(ω)

We here prove theorem 5.4. That is, we compute the covering radius of simplices of the

form

S(ω) = conv({−ω01d, ω1e1, . . . , ωded}),

see Figure 5.3.

Proof of theorem 5.4. The simplex S(ω) can be triangulated into the d+ 1 simplices

Si = conv({0, ω0e0, ω1e1, . . . , ωded} \ {ωiei}), 0 ≤ i ≤ d,

where e0 = −1d. Writing [d]0 := {0, 1, . . . , d}, we define

P̊i =

{ ∑
j∈[d]0\{i}

αjej : 0 ≤ αj < 1

}

the half-open parallelotope spanned by the primitive edge directions of Si incident to

the origin. Let i ∈ [d]0 be fixed. Then, for any x ∈ Rd there is a lattice point vi ∈ Zd

such that x ∈ vi + λSi and the dilation factor λ ≥ 0 is the smallest possible. Let Li(x)

be the set of all such lattice points vi. For a fixed v ∈ Zd, we define

Ri(v) =
{
x ∈ Rd : v ∈ Li(x)

}
to be the region of points that are associated to v in this way.
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Explicitly these regions are translates of the P̊i, more precisely we claim that Ri(v) =

v + P̊i, for all i ∈ [d0].

Indeed, let x ∈ Ri(v), and let λ ≥ 0 be smallest possible such that x ∈ v + λSi. By the

definition of Si, we can write x − v =
∑

j∈[d]0\{i} αjej , for some αj ≥ 0. If there would

be an index j such that αj ≥ 1, then x ∈ v+ej +λSi and the intersection of this simplex

and v+λSi is a smaller homothetic copy of Si containing x. Thus, λ is not minimal and

this contradiction implies that x ∈ v + P̊i. Conversely, if x− v =
∑

j∈[d]0\{i} αjej ∈ P̊i,
and λ ≥ 0 is minimal such that x ∈ v + λSi, then x − v lies in the facet of λSi not

containing the origin. Since 0 ≤ αj < 1, for all j ∈ [d]0 \ {i}, the scalar λ is not only

minimal for v, but for any lattice point. Hence, v ∈ Li(x).

With this observation, the regions Ri(v) are seen to be induced by the arrangement of

the hyperplanes {xi = a}, {xi − xj = a} for all j ∈ [d]0 \ {i} and a ∈ Z, where we define

x0 = 0. We call this arrangement Aid. Moreover, for a point x in the interior of Ri(v),

the associated lattice point is unique, and we call it vi(x).

The smallest common refinement Ad of the arrangements A0
d, . . . ,A

d
d is known as the

alcoved arrangement (see [BS18, Ch. 7] for a detailed description). The full-dimensional

cells of Ad, also called its chambers, are lattice translations of the simplices

Cπ = conv
({

0, eπ(1), eπ(1) + eπ(2), . . . , eπ(1) + . . .+ eπ(d)

})
,

where π is a permutation of {1, . . . , d}.

Each chamber of Ad is the intersection of regions Ri(v). More precisely,

int(Cπ) = R0(0) ∩Rπ(1)(eπ(1)) ∩ . . . ∩Rπ(d)(eπ(1) + . . .+ eπ(d))

= P̊0 ∩ (eπ(1) + P̊π(1)) ∩ . . . ∩ (eπ(1) + . . .+ eπ(d) + P̊π(d)).

Therefore, the chambers Cπ are exactly those regions of points in Rd that, for each i ∈
[d]0, are associated to the same lattice point, that is, vi(x) = vi(y) for all x, y ∈ int(Cπ).

After these preparations, we are ready to compute the covering radius of S(ω). Note

that, since [0, 1]d is a fundamental cell of Zd, we only need to find the smallest dilation

factor µ so that the lattice translates of µS(ω) cover the unit cube. Moreover, we may

focus on what happens within one chamber Cπ, and by symmetry we assume that π = Id.

Among all points in CId = conv ({0, e1, e1 + e2, . . . , e1 + . . .+ ed}), we are looking for a

point y which is last covered by dilations of Si + e[i], for some i ∈ [d]0, and the factor of

dilation needed. Here, we write e[i] = e1 + . . . + ei. If we let `i : Rd → R be the linear

functional which takes value 1 on the facet Fi of S(ω) that is opposite to ωiei, this is
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equivalent to

y = argmax
x∈CId

min
i∈[d]0

|`i(x− e[i])|.

The key observation is that y is the point where all the values |`i(y − e[i])|, 0 ≤ i ≤ d,

are equal. This is because `i(x− e[i]) is nonnegative for x ∈ CId and because there is a

positive linear dependence among the functionals `i, so there cannot be a point y′ where

they all achieve a larger value than at a point where they all achieve the same value.

Therefore, y satisfies the conditions

`0(y) = `i(y − e[i]), for every 1 ≤ i ≤ d.

The explicit expression of the functionals `i is

`0(x) =
d∑
j=1

ω−1
j xj and `i(x) =

∑
j∈[d]\{i}

ω−1
j xj −

 ∑
j∈[d]0\{i}

ω−1
j

xi.

Thus we need to solve the system of the following equations:

d∑
j=1

ω−1
j yj =

∑
j∈[d]\{i}

ω−1
j yj −

 ∑
j∈[d]0\{i}

ω−1
j

 yi + ω−1
0 +

∑
j>i

ω−1
j , 1 ≤ i ≤ d.

This system is solved by y = (y1, . . . , yd) with

yi =
ω−1

0 + ω−1
i+1 + . . .+ ω−1

d

ω−1
0 + ω−1

1 + . . .+ ω−1
d

.

The value that the functionals take at y is by what we said above the covering radius of

S(ω), and it is given by

µ(S(ω)) = `0(y) =

∑
0≤i<j≤d ω

−1
i ω−1

j∑d
i=0 ω

−1
i

,

as desired.

Corollary 5.50. Let S ⊆ Rd be a simplex with the origin it its interior and with

rational vertex directions. If the primitive vertex directions p0, p1, . . . , pd of S satisfy

p0 + p1 + . . .+ pd = 0, then Conjecture C holds for S.

Proof. The proof is basically given already in Corollary 5.43. Consider the lattice Λ

generated by p0, p1, . . . , pd, and let A be the linear transformation sending ei to pi, for

i = 1, . . . , d. Then, Λ = AZd and S = AS(ω) for a suitable ω ∈ Rd+1
>0 . Since the pis

are primitive, the lattice lengths `i =
VolZd (S)

Vol
πi(Zd)

(πi(S)) are the same for every pair (S,Zd),
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(S,Λ), and (S(ω),Zd). Using that Λ ⊆ Zd is a sublattice, we therefore apply Theorem 5.4

and get

µ(S) ≤ µ(S,Λ) = µ(S(ω),Zd) =
1

2

d∑
i=0

1

`i
.

Observe that theorem 5.4 says that eq. (5.4) in conjecture C is an equality for simplices

of the form S(ω). Other simplices may also produce an equality, as the triangle T =

S(12)⊕ S′(12) shows:

1

2

∑2
i=0 Volπi(Z2)(πi(T ))

VolZ2(T )
=

1

2
· 3 + 3 + 2

4
= 1 = µ(T ).

The covering product conjecture

The following conjecture was proposed in [GMS17], which was the initial motivation to

compute the covering minima of the simplex S(1d+1).

Conjecture F ([GMS17, Conj. 4.8]). For every convex body K ⊆ Rd,

µ1(K) · . . . · µd(K) · vol(K) ≥ d+ 1

2d
.

Equality is attained for the simplex S(1d+1).

conjecture F is known to hold for d = 2 [Sch95]. We show it in arbitrary dimension for

the simplices S(ω).

Corollary 5.51. For every ω ∈ Rd+1
>0 , we have

µ1(S(ω)) · . . . · µd(S(ω)) ·VolZd(S(ω)) ≥ (d+ 1)!

2d
.

Equality can hold only if ω0 = ω1 = . . . = ωd.

Proof. Since every permutation of the vertices of S(1) is a unimodular transformation,

and since the considered product functional is invariant under unimodular transforma-

tions, we can assume that ω0 ≤ ω1 ≤ . . . ≤ ωd. By Theorem 5.4, the covering radius of

S(ω) is given by

µ(S(ω)) =
σd−1(ω0, ω1, . . . , ωd)

σd(ω0, ω1, . . . , ωd)
,

where σj(ω0, ω1, . . . , ωd) =
∑

0≤i1<...<ij≤d
∏j
`=1 ωi` is the j-th elementary symmetric

function in the ωi’s. Writing ωI = (ω0, ωi1 , . . . , ωij ), for every index set I = {i1, . . . , ij} ⊆
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{1, . . . , d}, |I| = j, we project onto the j-dimensional coordinate plane indexed by I and

obtain µj(S(ω)) ≥ µj(S(ωI)). In particular, choosing I = {1, . . . , j}, we have

µj(S(ω)) ≥ σj−1(ω0, ω1, . . . , ωj)

σj(ω0, ω1, . . . , ωj)
. (5.14)

Next, in view of ωj ≥ ωj−1 ≥ . . . ≥ ω0, we get

σj−1(ω0, . . . , ωj)

σj−1(ω0, . . . , ωj−1)
=
σj−1(ω0, . . . , ωj−1) + ωj σj−2(ω0, . . . , ωj−1)

σj−1(ω0, . . . , ωj−1)

= 1 +
ωj σj−2(ω0, . . . , ωj−1)

σj−1(ω0, . . . , ωj−1)
≥ 1 +

(
j
2

)
j

=
j + 1

2
, (5.15)

with strict inequality unless ωj = ωj−1 = . . . = ω0.

Finally, computing the volumes of the pyramids over the d+ 1 facets of S(ω) with apex

at the origin, we obtain VolZd(S(ω)) = σd(ω0, ω1, . . . , ωd). Combining this with (5.14)

and (5.15) yields

µ1(S(ω)) · . . . · µd(S(ω)) ·VolZd(S(ω)) ≥
d∏
j=1

σj−1(ω0, . . . , ωj)

σj(ω0, . . . , ωj)
σd(ω0, . . . , ωd)

=
d∏
j=1

σj−1(ω0, . . . , ωj)

σj−1(ω0, . . . , ωj−1)
≥ (d+ 1)!

2d
.

Furthermore, equality can only hold if ω0 = ω1 = . . . = ωd as otherwise (5.15) would be

strict for j = d.

Note that if Conjecture B holds, then the simplex S(1d+1) attains equality in Corol-

lary 5.51 (this was the original motivation in [GMS17] to state Conjecture B).

With the notation of the proof above, for each I ⊆ {1, . . . , d}, |I| = j, we have

µj(S(ωI)) ≤ µj(S(ω0, ω1, . . . , ωj)), just because S(ω) ⊆ S(ω̄), whenever ωi ≤ ω̄i, for

all i. Therefore, the bound in (5.14) is maximal among coordinate projections of S(ω).

This suggests the following common generalization of Conjecture B and Theorem 5.4.

Conjecture 5.52. For every ω ∈ Rd+1
>0 with ω0 ≤ ω1 ≤ . . . ≤ ωd, and every j ∈

{1, . . . , d}, the j-th covering minimum of the simplex S(ω) is attained by the projection

to the first j coordinates. That is:

µj(S(ω)) = µj(S(ω0, . . . , ωj)) =
σj−1(ω0, ω1, . . . , ωj)

σj(ω0, ω1, . . . , ωj)
.

Besides the case j = d (Theorem 5.4) also the case j = 1 of conjecture 5.52 holds.

Assuming that ω0 ≤ ω1 ≤ . . . ≤ ωd, it states that µ1(S(ω)) = 1
ω0+ω1

. Since (5.14)
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provides the lower bound, this is equivalent to

det(Zd|Lz) ≤
‖S(ω)|Lz‖
ω0 + ω1

,

for all primitive z ∈ Zd \ {0}, where Lz = lin{z}. In view of det(Zd|Lz) = ‖z‖−1 and

ei|Lz = zi
‖z‖2 z, it follows from an elementary computation.

5.5 Conjecture D: Lattice polytopes with k interior lattice

points

We now look at Conjecture D, that is, we investigate the maximum covering radius

among lattice d-polytopes with at least k ≥ 2 interior lattice points. The conjectured

maximum covering radius d−1
2 + 1

k+1 is attained by the polytopes of the form

[0, k + 1]⊕ T1 ⊕ · · · ⊕ Tm,

where each Ti is a non-hollow lattice di-polytope of covering radius di/2, with
∑m

i=1 di =

d− 1. The different Ti can be translated to have their (unique) interior lattice point at

different positions along the segment [0, k+ 1] in much the same way as in the examples

of Lemma 5.24. In the following we analyze the possibilities in dimensions two and three:

Example 5.53. In dimension two we have a single Ti, the segment [−1, 1], but we

can place it at different heights with respect to [0, k + 1]. For each k we can construct

b(k+3)/2c non-isomorphic lattice polygons with k interior lattice points and of covering

radius 1
2 + 1

k+1 , namely:

conv({(0, 0), (0, k), (−1, i), (1, i)}), i = 0, . . . , b(k + 1)/2c.

The case i = 0 coincides with the triangle Mk(0); the cases i > 0 produce kite-shaped

quadrilaterals.

Observe that the triangle Mk(1) ∼= S(k, 1, 1) is very similar to but has smaller area

than Mk(0). One could expect it to achieve a larger covering radius but it does not, as

computed in remark 5.22:

µ(Mk(1)) =
k + 2

2k + 1
=

1

2
+

3

4k + 2
<

1

2
+

1

k + 1
, if k ≥ 2.

Example 5.54. In dimension three we can have [0, k + 1] ⊕ T with dim(T ) = 2 or

[0, k + 1]⊕ T1 ⊕ T2 with dim(T1) = dim(T2) = 1.
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If the latter happens then T1 = T2 = [−1, 1] = I and, again, they can be placed

at different heights along the segment [0, k + 1]. This gives quadratically many non-

isomorphic octahedra (when both T1 and T2 intersect [0, k + 1] in the interior), linearly

many triangular bipyramids (when one intersects in the interior and the other at an end-

point), plus the square pyramid [0, k + 1] ⊕ I ⊕ I and the tetrahedron Mk(0, 0) (when

both intersect at end-points).

In the case [0, k+1]⊕T , T can be either S(13) or I⊕I ′; the case T = I⊕I being already

covered above. This produces two tetrahedra [0, k + 1] ⊕ S(13) and [0, k + 1] ⊕ I ⊕ I ′,
plus linearly many triangular bipyramids.

As happened in dimension two, the computations of remark 5.28 show that Mk(1, 0)

and Mk(1, 1) have covering radius strictly smaller than 1 + 1
k+1 , even if their volume is

smaller than that of Mk(0, 0).

The rest of this section is devoted to prove conjecture D in dimension two. Since we

proved conjecture A in the plane (corollary 5.21), it suffices to consider lattice polygons

with at least two interior lattice points. More precisely, we show:

Theorem 5.55. Let P be a non-hollow lattice polygon with k ≥ 2 interior lattice points.

Then µ(P ) ≤ 1
2 + 1

k+1 , with equality if and only if P is the direct sum of two lattice

segments of lengths 2 and k + 1.

Our proof is split up into five steps distinguishing cases with respect to the following

parameters: A lattice polytope P has (lattice) width ω ∈ N if there is an affine integer

projection from P to the segment [0, ω] but not to [0, ω− 1]. Remember that the width

is the reciprocal of the first covering minimum. The numbers m, m′, and k will denote

the maximum number of collinear lattice points, maximum number of collinear interior

lattice points, and the number of interior lattice points of P , respectively. We proceed

as follows:

Step 1: (ω = 2) in lemma 5.56

Step 2: (ω ≥ 3,m ≥ 4) except for (ω = 3,m = 4, k ≥ 5) in lemma 5.57

Step 3: (ω = 3,m = 4, k ≥ 5) in lemma 5.59

Step 4: (ω ≥ 3,m′ ≥ 3) in lemma 5.60

Step 5: (ω ≥ 3,m′ ≤ 2)

It will turn out that equality in the bound of theorem 5.55 can only occur in the first

case, that is, when P has width two.
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Lemma 5.56. Let P be a lattice polygon with k ≥ 2 interior lattice points. Then, the

following are equivalent:

(i) P has width equal to two.

(ii) All the interior lattice points of P are collinear.

Moreover, if this happens then P satisfies conjecture D, with equality if and only if P is

the direct sum of two lattice segments of lengths 2 and k + 1.

Proof. The fact that width two implies that all interior lattice points are collinear is

obvious. For the converse, without loss of generality assume that the k interior lattice

points of P are (0, 1), . . . , (0, k). We claim that P ⊂ [−1, 1]×R. Suppose to the contrary

that P has a lattice point (x, y) with |x| ≥ 2. Then the triangle T with vertices (0, 1),

(0, 2) and (x, y) is fully contained in int(P ) except perhaps for the vertex (x, y) which

may be in the boundary of P . Now, since T is a non-unimodular triangle it contains at

least one lattice point other than its vertices. That point is in int(P ), which contradicts

the collinearity assumption.

This finishes the proof of the stated equivalence. Let us now show conjecture D for a

lattice polygon P satisfying (i) and (ii). We keep the convention that the interior lattice

points in P are (0, 1), . . . , (0, k). Let S be the segment P ∩ ({0} × R). We distinguish

three cases, depending on whether none, one, or both of the end-points of S are lattice

points:

- If exactly one is a lattice point, then P contains a copy of Mk(1), whose covering

radius is strictly smaller than 1
2 + 1

k+1 (see example 5.53).

- If none is a lattice point then S = {0} × [1/2, k + 1/2]. Without loss of generality

we have

P = conv({(−1, 0), (−1, a), (1, 1), (1, 1 + b)}),

where a and b are nonnegative integers with a+b = 2k. There are two possibilities:

If a = b = k then P is a parallelogram of covering radius at most 1/2, because 1
2P

contains a fundamental domain of Z2. If a 6= b then one of them, say a, is at least

k + 1. In this case, P contains the triangle conv({(−1, 0), (−1, a), (1, 1)}) whose

covering radius is bounded by 1/2 + 1/a ≤ 1/2 + 1/(k + 1). Since triangles are

tight, equality can only hold when P coincides with this triangle, implying b = 0.

But in that case a = 2k and 1/2 + 1/a < 1/2 + 1/(k + 1), since k ≥ 2.

- If both end-points of S are lattice points, then they are given by (0, 0) and (0, k+1).

Applying lemma 5.7 to the projection that forgets the second coordinate gives the
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upper bound: the fiber S has length k+1 and the projection has length 2. For the

case of equality, observe that if P has lattice points u ∈ {−1}×R and v ∈ {1}×R
such that the mid-point of uv is integral then P contains (an affine image of) the

direct sum of [−1, 1] and a segment of length k+ 1. Since that direct sum is tight

(lemma 5.14), P either equals the direct sum or it has strictly smaller covering

radius.

Thus, we can assume that P does not have such points u and v. Put differently,

P has a single lattice point on each side of S and the height of these points have

different parity. Without loss of generality we can assume

P = conv({(0, 0), (0, k + 1), (−1, 0), (1, a)}),

for an odd a ∈ [1, 2k + 1]. We claim that the proof of lemma 5.7 implies that

µ(P ) is strictly smaller than λ := 1/2 + 1/(k + 1). Indeed, that proof is based on

the fact that λP contains the following parallelogram Q, which is a fundamental

domain for Z2:

Q = conv

({(
−1

2
, 0

)
,

(
−1

2
, 1

)
,

(
1

2
,
a

2

)
,

(
1

2
, 1 +

a

2

)})
.

But we can argue that, moreover, the vertices of Q are its only points not contained

in the interior of λP , and that each of these vertices is in the interior of some lattice

translation of λP because the vertical offset of the left and right edges of Q is not

an integer. This implies λ to be strictly larger than µ(P ).

For the rest of the proof of theorem 5.55, we can now assume that the width ω of P is

at least three. Let L be the line containing the maximum number m of collinear lattice

points in P . We will frequently use the following upper bound, obtained from lemma 5.7

applied to the projection along the direction of L:

µ(P ) ≤ 1

ω
+

1

m− 1
. (5.16)

Lemma 5.57. If P is a non-hollow lattice polygon with (ω ≥ 3,m ≥ 4, k ≥ 2), except

for (ω = 3,m = 4, k ≥ 5), then P satisfies conjecture D with strict inequality.

Proof. We look separately at the possibilitites for maximum number m of collinear

interior lattice points of P :

If m ≥ 7 then eq. (5.16) gives

µ(P ) ≤ 1

ω
+

1

m− 1
≤ 1

3
+

1

6
=

1

2
,
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and there is nothing to prove.

If m ∈ {5, 6} then the same argument works as long as ω ≥ 4. If ω = 3, then we have

k ≤ 2m, because all interior lattice points lie in two parallel lines orthogonal to the

direction in which the width is attained. Thus, we get the following, depending on the

value of m:

µ(P ) ≤ 1

3
+

1

5
=

8

15
<

15

26
=

1

2
+

1

13
≤ 1

2
+

1

k + 1
, if m = 6.

µ(P ) ≤ 1

3
+

1

4
=

7

12
<

13

22
=

1

2
+

1

11
≤ 1

2
+

1

k + 1
, if m = 5.

So, for the rest of the proof we assume m = 4. If ω ≥ 6 then eq. (5.16) again gives

µ(P ) ≤ 1
6 + 1

3 . Thus, assume ω ∈ {3, 4, 5} and suppose without loss of generality that

P ⊂ [0, ω]×R. The observation that k ≤ 4(ω− 1) (because there are ω− 1 intermediate

lines {i} × R, each with at most m = 4 lattice points) discards the case ω = 5:

µ(P ) ≤ 1

5
+

1

3
=

8

15
<

19

34
≤ 1

2
+

1

k + 1
.

In the case ω = 4 we could a priori have up to 3 × 4 = 12 interior lattice points. But

more than 10 would imply at least three in each of the three lines {i} × R, i = 1, 2, 3.

This would make P contain a parallelogram Q with vertical edge of length two and

horizontal width two. Such a Q has µ(Q) ≤ 1
2 , since 1

2Q contains a fundamental domain

of Z2. Thus, we can assume k ≤ 10 and we get

µ(P ) ≤ 1

4
+

1

3
=

7

12
<

1

2
+

1

11
≤ 1

2
+

1

k + 1
.

In the final case, m = 4, ω = 3, and k ≤ 4, we get

µ(P ) ≤ 1

3
+

1

3
=

2

3
<

1

2
+

1

5
≤ 1

2
+

1

k + 1
.

Remark 5.58. Lattice polytopes with m ≤ 3 contain at most nine lattice points in

total, since they cannot have two points in the same residue class modulo (3Z)2. In

particular, they have k ≤ 6. On the other hand, the polytopes with (ω = 3,m = 4) have

k ≤ 8 because they have at most four points in each of the two intermediate lines along

the direction where ω = 3 is attained. Thus, the cases not covered by lemma 5.56 and

lemma 5.57 have between 3 and 8 interior lattice points. Castryck [Cas12] enumerated

all lattice polygons with k ≤ 30 up to unimodular equivalence, and showed that there

are 120 + 211 + 403 + 714 + 1023 + 1830 of them with k equal to 3, 4, 5, 6, 7, and 8. The

rest of the section could be replaced by a computer-aided computation of the covering

radius of these 4301 polygons.
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The missing case (ω = 3, m = 4, k ≥ 5) in lemma 5.57 is dealt with separately, since it

needs some ad-hoc arguments.

Lemma 5.59. Suppose P has width 3 (assume it is contained in [0, 3]×R), its maximum

number of collinear points is 4, and it has k ≥ 5 interior lattice points. Then at least

one of the following conditions holds:

(i) P has four collinear lattice points along one of the intermediate vertical lines {1}×R
or {2} × R and (at least) three of them are interior to P ,

(ii) P contains a parallelogram with one vertical edge of length two and horizontal width

two.

In both cases we have

µ(P ) <
1

2
+

1

k + 1
.

Proof. We first prove the conclusion. If P contains a parallelogram Q as stated in

(ii) then µ(P ) ≤ µ(Q) = 1
2 and we are done. Suppose, then, that P contains the four

collinear points (1, i), i = 1, 2, 3, 4 and that the first three are interior. Then the segment

P ∩ {x = 1} has length at least 3 + 1
3 = 10

3 , because its bottom end-point cannot be

above (1, 2
3). Thus

µ(P ) ≤ 1

3
+

3

10
=

19

30
<

9

14
=

1

2
+

1

7
≤ 1

2
+

1

k + 1
,

if k ∈ {5, 6}. In the case k ≥ 7, we can assume the four collinear lattice points (1, i),

i = 1, 2, 3, 4 are actually interior to P . Therefore, the segment P ∩ {x = 1} has length

at least 3 + 2
3 = 11

3 , because its bottom end-point cannot be above (1, 2
3) and its top

end-point cannot be below (1, 4 + 1
3). Thus

µ(P ) ≤ 1

3
+

3

11
=

20

33
<

11

18
=

1

2
+

1

9
≤ 1

2
+

1

k + 1
.

Let us now assume that P is neither in the conditions of (i) or (ii) and let us derive a

contradiction. By (the negation of) (i), P has at most three interior lattice points along

each of the two vertical lines. Since it has at least five in total, we assume without loss

of generality that

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2) ∈ int(P ).

The proof is based on arguing that certain additional points must or cannot be in P .

This is illustrated in fig. 5.4 where the points that must be in P are drawn as black dots

and the ones that cannot as crosses. The initial points that we assume in int(P ) are
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drawn as white dots. The labels of the points indicate the order in which they appear

in the proof:

1

4

4

1

5

5

2

2

3

6

5 1

1

6

Figure 5.4: Illustration of the proof of lemma 5.59.

1) None of the points (1, 0), (1, 4), (2,−1), or (2, 4) can be in P , since their presence

would give condition (i).

2) The left end-point of the top (respectively, bottom) edge of P meeting the line {x = 1}
must then be of the form (0, a) with a ≥ 3 (respectively, with a ≤ 2). Hence, (0, 2)

and (0, 3) are in P .

3) One of (0, 1) or (0, 4) must be in P , for otherwise the edges going from (0, 2) and

(0, 3) to the right must go strictly below and above (2, 0) and (2, 3) respectively,

giving four interior points along {x = 2}. Assume without loss of generality that

(0, 1) ∈ P .

4) Since we already have an intersection of length two with {x = 0}, the intersection

with {x = 2} must have length strictly smaller than 2, in order for P not to be in

the conditions of part (ii). Thus, (2, 0), (2, 3) 6∈ P .

5) Now the top edge of P crossing {x = 1} must have its left end-point above (0, 3),

because (2, 3) /∈ P , which implies (0, 4) ∈ P . Since we already have four collinear

points in {x = 0}, neither (0, 0) nor (0, 5) is in P .

6) Now the only possibility for the right end-points of the top and bottom edges of P

are (3, 0) and (3, 2) (remember that the white dots in the figure are meant to be in

the interior of P ).

This gives a contradiction, since P is now as described in part (ii).

Lemma 5.60. Suppose P has width at least three and three interior collinear lattice

points. Then, P has four collinear lattice points.
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4

1

2

3

1

3
4

3

3

Figure 5.5: Illustration of the proof of lemma 5.60.

Proof. Suppose P contains (1, 1), (1, 2) and (1, 3) in its interior and moreover that P

does not contain four collinear lattice points. We are going to arrive to a contradiction.

Similarly to the proof of lemma 5.59, we illustrate our reasoning in fig. 5.5:

1) (1, 0) and (1, 4) are exterior to P , and the length of P ∩ {x = 1} is greater than two.

2) Since P does not have a vertex in {x = 1}, one of the intersections P ∩ {x = 0} or

P ∩ {x = 2} has at least the same length as P ∩ {x = 1}. Suppose it is P ∩ {x = 0}.
If P does not have a vertex in {x = 0} then it has at least three lattice points in

{x = −1} and at least one in {x ≥ 2}. That would make at least ten lattice points

in total, which would imply m ≥ 4 as we observed in Remark 5.58. So, without loss

of generality we assume that the top edge crossing {x = 1} has a vertex at (0, 3).

3) Then (0, 0) and (0, 4) are exterior to P , in order not to have four collinear points,

and (0, 2) and (0, 1) are interior to P , since P ∩ {x = 0} has length larger than two.

4) The edges crossing {x = 1} must cross {x = 2} above (2, 3) and below (2, 2) respec-

tively, so these two points are also in the interior of P .

So, we have identified eight lattice points in P . But none of them can be an end-point

of the bottom edge of P crossing {x = 1}. Thus, P has at least ten lattice points, which

implies m ≥ 4.

Proof of theorem 5.55. After Lemmas 5.56–5.60, the only case left to consider is when P

has at least three interior lattice points (since otherwise it has width two), but no three

of them collinear. Moreover, we can assume P does not contain four collinear points.

Let Q be the convex hull of all the interior lattice points in P . Q has at most four lattice

points, because if there were five then two of them would be in the same residue class
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modulo (2Z)2, giving three collinear ones. This gives only three possibilities for Q: it is

equivalent to either a unimodular triangle, a unit parallelogram, or S(13).

No boundary lattice point p of P can be at lattice distance more than one from Q,

because otherwise the triangle with vertices p and two of the lattice points in Q would

contain additional lattice points, which would necessarily be in the interior of P . Thus,

P is fully contained in one of the three polygons drawn in fig. 5.6. In each case, let R

denote the polygon in the figure; we want to show that every subpolygon of R containing

all the white dots (the polygon Q) in its interior has covering radius strictly smaller than
1
2 + 1

k+1 , where k = 3 in cases (A) and (B), and k = 4 in case (C):

(A) (C)(B)

Figure 5.6: The three cases in the proof of theorem 5.55.

(A) If Q = S(13), then R = 2Q = S(2, 2, 2). The only lattice subpolygon of R contain-

ing Q in its interior is R itself, whose covering radius is 1/2 by theorem 5.4 (or by

the fact that it coincides with 2S(13)).

(B) If Q is a unit parallelogram, without loss of generality we assume that Q = [1, 2]2

and R = [0, 3]2. We distinguish cases:

1) P contains at least one lattice point from the relative interior of each edge of R.

The only possibility for R not to contain four collinear points is that P equals

S := conv({(1, 0), (3, 1), (2, 3), (0, 2)}) (or its mirror reflection). It is easy to

calculate that µ(S) = 3
5 < 1

2 + 1
5 , since Q, which is a fundamental domain, is

inscribed in the dilation of S of factor 3
5 centered at (3

2 ,
3
2).

2) Along some edge, P does not contain any relative interior point of R. Say P

contains neither (1, 0) nor (2, 0). Then, it must contain the edge from (0, 0) to

(3, 1) (or its mirror reflection, which gives an analogous case). If P contains (0, 1)

then we have four collinear points. If it does not, then it contains the edge from

(0, 0) to (1, 3). In particular, P contains the triangle with vertices (0, 0), (3, 1)

and (1, 3). This triangle is a translate of S(1, 2, 2), hence its covering radius

equals 5
8 <

1
2 + 1

5 by theorem 5.4.
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(C) IfQ is a unimodular triangle, then without loss of generality we can assume thatQ =

conv({(1, 1), (1, 2), (2, 1)}), so that P is contained inR = conv({(0, 0), (4, 0), (0, 4)}).
There are two possibilities:

1) P contains a vertex of R, say (0, 0). It must also contain (at least) one lattice

point on the opposite edge {x+ y = 4}. But:

i) If (2, 2) ∈ P then µ(P ) ≤ µ([0, 2]2) = 1
2 .

ii) If (4, 0) or (0, 4) is in P then P contains five collinear points.

iii) If (3, 1) is in P then P ∩{y = 1} has length at least 8/3. Lemma 5.7 for the

projection along this line gives µ(P ) ≤ 1
3 + 3

8 = 17
24 <

3
4 . The case (1, 3) ∈ P

is symmetric to this one.

2) P does not contain a vertex of R. Then, in order for (1, 1) to be in the interior

of P , P must contain (at least) one of the points (1, 0) or (0, 1). The same

reasoning for the other two interior points gives that P contains one of (3, 0)

and (3, 1), and one of (0, 3) and (1, 3). Out of the eight combinations of one

point from each pair the only ones that do not produce four collinear points in

P are the triangle conv({(0, 1), (3, 0), (1, 3)}) and its reflection along the diagonal

{x = y}. In lemma 5.66 we compute the covering radius of this triangle to be

5/7, which is smaller than 3/4.

5.6 The 26 minimal 1-point lattice 3-polytopes

The 26 minimal non-hollow lattice 3-polytopes with a single interior lattice point were

classified by Kasprzyk [Kas10]. We describe them in Tables 5.1 and 5.2, in the same

order as they appear in Kasprzyk’s Tables 2 and 4. Table 5.1 contains the 16 that are

tetrahedra and Table 5.2 the 10 that are not. For each of them we list its vertices as

the columns of a matrix and include a description that is explained in section 5.6.1.

For the tetrahedral examples in Table 5.1 we also include the volume vector (a, b, c, d)

consisting of the normalized volumes of the pyramids from the origin over the facets.

The given descriptions allow us to bound the covering radius away from 3/2 for each

of the 17 polytopes that are not equivalent to one in lemma 5.24, thus obtaining a

first proof of Theorem 5.25. A second proof is by explicitly computing their covering

radius via solving a suitable mixed-integer linear program as explained in section 5.6.2.

The covering radius obtained for each is also shown in the tables, and is highlighted in

bold-face for the nine of Lemma 5.24, which are the ones with µ = 3/2.
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 −1 1 0 0
−1 0 1 0
−1 0 0 1

  −2 2 0 0
−2 1 1 0
−1 0 0 1

  −5 5 0 0
−3 2 1 0
−2 1 0 1

  −1 1 0 0
−1 0 1 0
−2 0 0 1


(1, 1, 1, 1) (2, 2, 2, 2) (5, 5, 5, 5) (1, 1, 1, 2)

S(14) = T (1, 1, 1, 1) (I ⊕ I ′)′ ⊕ I T (5, 5, 5, 5) T (1, 1, 1, 2)

µ = 3/2 µ = 3/2 µ = 9/10 µ = 7/5 −1 1 0 0
−1 0 1 0
−3 0 0 1

  −1 1 0 0
−2 0 1 0
−2 0 0 1

  −1 1 0 0
−2 0 1 0
−3 0 0 1

  −1 1 0 0
−2 0 1 0
−4 0 0 1


(1, 1, 1, 3) (1, 1, 2, 2) (1, 1, 2, 3) (1, 1, 2, 4)

S(13)⊕ I ′ S(13)′ ⊕ I T (1, 1, 2, 3) (I ⊕ I ′)◦ ⊕ I ′
µ = 3/2 µ = 3/2 µ = 9/7 µ = 3/2 −1 1 0 0
−3 0 1 0
−4 0 0 1

  −1 1 0 0
−3 0 1 0
−5 0 0 1

  −1 1 0 0
−4 0 1 0
−6 0 0 1

  −2 1 0 0
−3 0 1 0
−5 0 0 1


(1, 1, 3, 4) (1, 1, 3, 5) (1, 1, 4, 6) (1, 2, 3, 5)

Pyr3(S(13)) I ′ ⊕M2(1) I ′ ⊕M2(0) T (1, 2, 3, 5)

µ = 11/9 µ = 13/10 µ = 4/3 µ = 12/11 −3 1 0 0
−4 0 1 0
−5 0 0 1

  −1 1 0 0
−3 0 2 0
−4 0 1 1

  −3 2 0 0
−4 1 1 0
−5 1 0 1

  −4 3 0 0
−3 1 1 0
−5 2 0 1


(1, 3, 4, 5) (2, 2, 3, 5) (2, 3, 5, 7) (3, 4, 5, 7)

T (1, 3, 4, 5) Pyr4(S(13)) T (2, 3, 5, 7) T (3, 4, 5, 7)

µ = 14/13 µ = 7/6 µ = 1 µ = 18/19

Table 5.1: The covering radius of the minimal non-hollow tetrahedra with exactly one interior
lattice point.

5.6.1 First proof of Theorem 5.25: theoretical bounds

The 26 polytopes of Table 5.1 and Table 5.2 are as follows. In some cases the description

allows us to compute the covering radius exactly, and in other cases to show that it is

strictly smaller than 3/2:

- The nine from Lemma 5.24, of covering radius 3/2.

- There are three more in Table 5.1 that decompose as direct sums, namely (trans-

lations of) I ′⊕M2(1), I ′⊕M2(0), and I ⊕Q4. Here Mk(α) = Mk(2, 1;α, 0) is the

triangle defined in Equation (5.6) and

Q4 =

(
2 1 0 0

0 1 0 −1

)
.
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 1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 0

  1 0 0 −2 −1
0 1 0 −1 0
0 0 1 0 −1


S(13)⊕ I I ⊕Q4

µ = 3/2 µ = 4/3 1 0 −1 1 −1
0 1 −1 2 −2
0 0 0 3 −3

  1 0 0 −2 −2
0 1 0 −1 0
0 0 1 0 −1


Bipyr3(S(13)⊕ I) I ⊕ I ⊕ I ′

µ = 17/18 µ = 3/2 1 0 0 0 −2
0 1 0 0 −1
0 0 1 −1 0

  1 0 −2 1 −3
0 1 −1 1 −1
0 0 0 2 −2


(I ⊕ I ′)◦ ⊕ I Bipyr2(I ⊕ I ⊕ I ′)
µ = 3/2 µ = 7/8 1 0 −2 1 −1

0 1 −1 1 −1
0 0 0 2 −2

  1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


Bipyr2((I ⊕ I ′)◦ ⊕ I) I ⊕ I ⊕ I

µ = 1 µ = 3/2 1 0 0 −1 1
0 1 0 −1 1
0 0 1 0 −1

  1 0 −1 0 1 −1
0 1 0 −1 1 −1
0 0 0 0 2 −2


Pyr3([0, 1]2) Bipyr2(I ⊕ I ⊕ I)

µ = 4/3 µ = 3/4

Table 5.2: The covering radius of the minimal non-hollow non-tetrahedra with exactly one
interior lattice point.

For the first two the decomposition is enough to compute their covering radius,

via Remark 5.22:

µ(I ′ ⊕M2(1)) = µ(I ′) + µ(M2(1)) =
1

2
+

4

5
=

13

10
,

µ(I ′ ⊕M2(0)) = µ(I ′) + µ(M2(0)) =
1

2
+

5

6
=

4

3
.

For the third one we use that Q4 strictly contains S(13) and that S(13) is tight

(lemma 5.13) to obtain:

µ(I ⊕Q4) = µ(I) + µ(Q4) < µ(I) + µ(S(13)) =
3

2
.

- There are four in Table 5.2 that are the same as the four of covering radius 3/2

except considered with respect to a finer lattice. Since they are also (skew) bipyra-

mids, they are marked as Bipyri(–), where i is the index of the superlattice. Let

P be one of them. In each case the intersection of P with the plane z = 0 is a

non-hollow lattice polygon (in fact, it is one of the three of covering radius equal
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to one). Applying Lemma 5.7 to the projection π onto the z-coordinate we get:

µ(P ) ≤ µ(P ∩ {z = 0}) + µ(π(P )) ≤ 1 +
1

4
=

5

4
,

since π(P ) has length at least four in all cases.

- The three marked as Pyri(Q) are (skew) pyramids of height i over a polygon Q.

More precisely: Pyr3(S(13)) and Pyr4(S(13)) are both tetrahedra with a facet

isomorphic to S(13) in the plane x − 2y + z = 2 and the opposite vertex at

distance three and four, respectively, from that facet. Pyr3([0, 1]2) is a pyramid

with base a unimodular parallelogram in the plane x + y + z = 1 and the apex

at distance three. In the three cases, µ(Q) = 1 so that Lemma 5.7 applied to the

projection that has the base of the pyramid as fiber gives

µ(Pyri(Q)) ≤ µ(Q) +
1

i
= 1 +

1

i
≤ 4

3
.

- The eight described as T (a, b, c, d) in Table 5.1 are the terminal tetrahedra, that is,

the lattice tetrahedra with only five lattice points, their four vertices plus the origin.

These have previously been classified by Kasprzyk [Kas06] and Reznick [Rez06,

Thm. 7], and appear also as the last eight rows in [BS16, Table 1]. The parameters

a, b, c, and d are the normalized volumes of the pyramids from the origin over the

facets. One of them coincides with S(14) = T (1, 1, 1, 1). The rest of this paragraph

describes a way to bound their covering radius when a+ b+ c+ d is relatively big.

In the next paragraph we compute it exactly when it is small.

Let A, B, C, D be the vertices of T (a, b, c, d) labeled in the natural way (so that a is the

determinant of BCD, b is the determinant of ACD, etc.). Since T (a, b, c, d) is terminal,

the triangle formed by the origin and any two vertices is unimodular, and so there is no

loss of generality in taking C and D to be the points (1, 0, 0) and (0, 1, 0), respectively.

Once this is done, A and B must have z coordinate equal to b and −a (or vice versa),

in order for the determinants of BCD and ACD to be a and b, respectively. Then,

in order for the determinants of ABD and ACD to be c and d, the segment AB must

intersect the plane z = 0 at (−c/(a + b),−d/(a + b)). That is, T (a, b, c, d) ∩ {z = 0} is

the triangle ∆(c/(a+b),d/(a+b)) seen in Lemma 5.30. Then, Lemma 5.7 applied to the z

coordinate gives:

µ(T (a, b, c, d)) ≤ µ
(

∆( c
a+b

, d
a+b)

)
+

1

a+ b
.

Now, Proposition 5.31 says that whenever c, d ≥ a+ b the first summand is ≤ 1. Thus:

µ(T (1, 2, 3, 5)) ≤ 4

3
, µ(T (1, 3, 4, 5)) ≤ 5

4
, µ(T (2, 3, 5, 7)) ≤ 6

5
.
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For the simplex T (5, 5, 5, 5) we can use that the triangle ∆(1/2,1/2) coincides with S(1, 1, 1/2),

so Theorem 5.4 gives us its exact covering radius 5/4. Thus:

µ(T (5, 5, 5, 5)) ≤ 5

4
+

1

10
<

3

2
.

The same applies to T (3, 4, 5, 7) since ∆(5/7,1) contains the point (1/2, 1/2) and hence

the triangle ∆(1/2,1/2):

µ(T (3, 4, 5, 7)) ≤ µ
(

∆( 5
7
,1)

)
+

1

7
≤ µ

(
∆( 1

2
, 1
2)

)
+

1

7
=

5

4
+

1

7
<

3

2
.

This shows the desired inequality for all the tetrahedra T (a, b, c, d) except the two

smallest ones, T (1, 1, 1, 2) and T (1, 1, 2, 3). For these two, corollary 5.63 below shows

µ(T (1, 1, 1, 2)) = 7
5 and µ(T (1, 1, 2, 3)) = 9

7 .

Computing the covering radius of a lattice simplex

Let T = conv({v0, v1, . . . , vd}) be a lattice simplex of normalized volume V = VolΛ(T )

with respect to a certain lattice Λ. The affine map defined by v0 7→ 0 and vi 7→ V · ei,
i = 1, . . . , d, sends T to the dilated standard simplex V · conv({0, e1, . . . , ed}) and Λ to

an intermediate lattice between Zd and V Zd, which we still denote by Λ. Observe that

ΛT := Λ/V Zd is a subgroup of Zd/V Zd = (ZV )d of order V and that

Zd/Λ = (ZV )d/(Λ/V Zd)

is, hence, a finite abelian group of order V d−1. The Cayley graph G associated with the

quotient group Zd/Λ is the directed graph with vertex set Zd/Λ and edges (x + Λ, x +

ei + Λ), for x ∈ Zd and 1 ≤ i ≤ d. The following is a particular case of [MS13, Lem. 3

& 4] (cf. also [GMS17, Thm. 4.11]):

Lemma 5.61. In the above conditions, let G be the Cayley graph of the quotient group

Zd/Λ and let δ = δ(G) be the (directed) diameter of G. Equivalently, δ is the maximum

distance from 0 to any other node of G. Then,

µ(T ) =
δ + d

V
.

Proof. The covering radius of the standard d-simplex conv({0, e1, . . . , ed}) with respect

to a sublattice Λ of Zd equals δ + d. (This is the case v = (1, . . . , 1) of [GMS17,

Thm. 4.11]). We divide this by V since we are looking at the V th dilation of the

standard simplex.
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In all cases of interest for us the group ΛT is cyclic; that is, there is a lattice point

p ∈ Λ such that Λ equals the lattice generated by the vertices of T together with p. We

say that T is a cyclic simplex when this happens. In these conditions, let 1
V (a0, . . . , ad)

be the barycentric coordinates of p, so that a0, . . . , ad are integers which add up to V .

Then,

Zd/Λ ∼= (ZV )d/〈(a1, . . . , ad)〉.

In particular:

Corollary 5.62. Let T be a cyclic simplex of normalized volume V with generator
1
V (a0, . . . , ad) and let G(V ; a1, . . . , ad) be the Cayley graph of Zd/Λ ∼= (ZV )d/〈(a1, . . . , ad)〉
with respect to the standard generators. Then

µ(T ) =
δ + d

V
,

where δ is the diameter of G(V ; a1, . . . , ad).

Let us now look at an arbitrary lattice tetrahedron with an interior lattice point p and

let a, b, c, d ∈ N be the normalized volumes of the pyramids with apex at p over the

facets of T . When gcd(a, b, c, d) = 1 we have that ΛT is cyclic of order V = a+ b+ c+ d

and with generator 1
V (a, b, c). Thus, corollary 5.62 gives an easy way to compute the

covering radius of T . The case a = 1 is particularly simple, since then G(V ; a, b, c)

coincides with the Cayley graph of (ZV )2 with respect to the generators (1, 0), (0, 1) and

(−b,−c). That is, G(V ; a, b, c) has (ZV )2 as vertex set and from each vertex (i, j) we

have the following three arcs:

(i, j)→ (i, j + 1), (i, j)→ (i+ 1, j), (i, j)→ (i− b, j − c).

With this in mind, fig. 5.7 shows the computation of δ(G(5; 1, 1, 1)) and δ(G(7; 1, 1, 2))

in the following way: a grid with V 2 cells represents the nodes of G(V ; 1, b, c) with the

origin at the south-west corner. In each cell we have written its distance from the origin.

The grid has to be regarded as a torus, so that every cell has an east, west, north and

south neighbor. Moving to the north or east increases the distance from the origin by

at most one unit, and when it does not increase the corresponding wall is highlighted

in bold to signify that the corresponding arc of G(V ; a, b, c) is not used in any shortest

path from the origin. Observe that, by commutativity, most of the arcs of the form

(i, j) → (i − b, j − c) are irrelevant for the diameter: only those arriving to cells with

bold south and west are needed in order to verify that the diagrams are correct. Such

cells have their distances also in bold. For example, the cell (V − b, V − c) is the one

labeled 1 and with south and west edges in bold.
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3 4 5 4 5 5 2
2 3 4 3 1 2 3 4 5 6 4 1
3 4 4 2 3 4 5 5 6 6 3 4
2 3 3 4 4 3 4 5 6 5 2 3
1 2 3 4 3 2 3 4 5 4 5 5
0 1 2 3 2 1 2 3 4 3 4 4

0 1 2 3 4 5 3
G(5 ;1,1) G(7; 1,2)

3 4 5 4 5 5 2
2 3 4 3 1 2 3 4 5 6 4 1
3 4 4 2 3 4 5 5 6 6 3 4
2 3 3 4 4 3 4 5 6 5 2 3
1 2 3 4 3 2 3 4 5 4 5 5
0 1 2 3 2 1 2 3 4 3 4 4

0 1 2 3 4 5 3
G(5 ;1,1) G(7; 1,2)

G(5; 1, 1, 1) G(7; 1, 1, 2)

Figure 5.7: Graphical computation of δ(G(5; 1, 1, 1)) = 4 and δ(G(7; 1, 1, 2)) = 6, which imply
µ(T (1, 1, 1, 2)) = 7

5 and µ(T (1, 1, 2, 3)) = 9
7 .

Corollary 5.63. µ(T (1, 1, 1, 2)) = 7
5 and µ(T (1, 1, 2, 3)) = 9

7 .

Remark 5.64. The condition a = 1 used in the computations can be weakened to

gcd(a, V ) = 1, since in this case G(V ; a, b, c) = G(V ; 1, ba−1, ca−1), where a−1 denotes

the inverse of a modulo V . Although we only show the computations for T (1, 1, 1, 2) and

T (1, 1, 2, 3), fourteen of the sixteen simplices in Table 5.1 satisfy this; all but (I⊕I ′)′⊕I
and T (5, 5, 5, 5).

This method can also be applied to the minimal tetrahedra Mk(1, 1) of Equation (5.7):

Lemma 5.65. For every k ∈ N we have

µ(Mk(1, 1)) = 1 +
1

2k
.

Proof. Mk(1, 1) has normalized volume 4k and the point p = (0, 0, 1) has barycentric

coordinates 1
4k (1, 1, 2k − 1, 2k − 1). Thus, µ(Mk(1, 1)) equals (δ + 3)/4k where δ is the

diameter of the graph G(4k; 1, 2k − 1, 2k − 1). This diameter equals 4k − 1, as derived

from fig. 5.8.

Also, we can easily compute the covering radius of the triangle needed at the end of the

proof of theorem 5.55.

Lemma 5.66.

µ(conv({(0, 1), (3, 0), (1, 3)})) =
5

7
.

Proof. The triangle has normalized area 7 and the point (1, 1) has barycentric coordi-

nates 1
7(1, 2, 4). Thus,

µ(conv({(0, 1), (3, 0), (1, 3)})) =
δ(G(7; 1, 2)) + 2

7
=

3 + 2

7
.

The (easy) computation δ(G(7; 1, 2)) = 3 is left to the reader.



112 Chapter 5. Covering radius and a discrete analogue of surface area

4k-1 4k-1 2k-1

4k-1

5

3
2k+2

1
2k+1 2k 4k-1

4k-1 4k-1

2k-2

4

2
2k+1 2k+2

0

Figure 5.8: Computation of µ(Mk(1, 1)) = 1 + 1/2k via δ(G(4k; 1, 2k − 1, 2k − 1)) = 4k − 1.
Only the distance to some cells is shown. The ones achieving the diameter are highlighted in

yellow.

5.6.2 Second proof of Theorem 5.25: computer calculations

Here we describe an algorithmic computation of covering radii based on a formulation

of µ(P ) as the optimal value of a mixed-integer program. This formulation is already

implicit in Kannan’s paper [Kan92, Sect. 5].

Let P = {x ∈ Rd : aᵀi x ≤ bi, 1 ≤ i ≤ m} be a polytope with outer facet normals ai ∈ Rd

and right hand sides bi ∈ R. Without loss of generality, we assume that bi > 0, that

is, P contains the origin in its interior. Since P is bounded, there exists a finite subset

NP ⊆ Zd such that µ(P )P +NP contains the unit cube [0, 1]d.
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Proposition 5.67. The covering radius µ(P ) is equal to the optimal value of the fol-

lowing linear mixed-integer program:

maximize µ

s.t. aᵀi x ≥ µbi + aᵀi `−M(1− y`i ), ∀i = 1, . . . ,m, ∀` ∈ NP∑m
i=1 y

`
i ≥ 1, ∀` ∈ NP

y`i ∈ {0, 1}, ∀i = 1, . . . ,m, ∀` ∈ NP

x ∈ [0, 1]d.

The constant M > 0 is chosen large enough such that every non-active inequality in-

volving M is redundant.

Proof. By the periodicity of the arrangement µP + Zd, we get that

µ(P ) = min{µ ≥ 0 : [0, 1]d ⊆ µP +NP }.

Hence, the covering radius equals the minimal µ ≥ 0 such that for all x ∈ [0, 1]d there

exists an ` ∈ NP such that x ∈ µP+`. This gives a mixed-integer program with infinitely

many constraints. In order to turn it into a finite program, we may also interpret the

covering radius as the supremum among µ ≥ 0 such that there exists an x ∈ [0, 1]d such

that x /∈ µP +NP .

Modeling this non-containment condition can be done as follows: For a fixed ` ∈ NP ,

we have x /∈ µP + ` if and only if there exists a defining inequality of P that is violated,

that is, there exists an i ∈ {1, . . . ,m} such that aᵀi x > µbi + aᵀi `. Introducing the

binary variable y`i for each 1 ≤ i ≤ m and each ` ∈ NP , and using a large enough

constant M > 0, this is modeled by the first two lines in the program, as the condition∑m
i=1 y

`
i ≥ 1 ensures that at least one inequality is violated for `.

We can replace the supremum by a maximum and the strict inequality aᵀi x > µbi + aᵀi `

by a non-strict one, since P is compact and the covering radius is in fact an attained

maximum.

In order to make this formulation effective, we need to find a suitable finite subset

NP ⊆ Zd: A point x ∈ [0, 1]d is contained in z + µ(P )P , for some z ∈ Zd, if and only

if z ∈ [0, 1]d − µ(P )P . Hence, for any theoretically proven upper bound µ(P ) ≤ µ,

we can solve the mixed-integer program in Proposition 5.67 with respect to NP =

([0, 1]d − µP ) ∩ Zd and obtain the covering radius of P .
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Based on these considerations, we employed the SCIP solver in exact solving mode [CKSW13]

and computed the covering radius of the 26 minimal lattice 3-polytopes with the results

given in Tables 5.1 and 5.2.
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[AKW17] Gennadiy Averkov, Jan Krümpelmann, and Stefan Weltge, Notions of max-

imality for integral lattice-free polyhedra: the case of dimension three, Math.

Oper. Res. 42 (2017), no. 4, 1035–1062.

[AW12] Gennadiy Averkov and Christian Wagner, Inequalities for the lattice width of

lattice-free convex sets in the plane, Beitr. Algebra Geom. 53 (2012), no. 1,

1–23.

[AWW11] Gennadiy Averkov, Christian Wagner, and Robert Weismantel, Maximal

lattice-free polyhedra: finiteness and an explicit description in dimension three,

Math. Oper. Res. 36 (2011), no. 4, 721–742.

[BK16] Gabriele Balletti and Alexander M. Kasprzyk, Three-dimensional lattice poly-

topes with two interior lattice points, Preprint at arxiv:1612.08918, 2016.

[Ban96] Wojciech Banaszczyk, Inequalities for convex bodies and polar reciprocal lat-

tices in Rn. II. Application of K-convexity, Discrete Comput. Geom. 16

(1996), no. 3, 305–311.

117



118 BIBLIOGRAPHY

[BLPS99] Wojciech Banaszczyk, Alexander E. Litvak, Alain Pajor, and Stanislaw J.

Szarek, The flatness theorem for nonsymmetric convex bodies via the local

theory of Banach spaces, Math. Oper. Res. 24 (1999), no. 3, 728–750.

[BHH+19] Matthias Beck, Christian Haase, Akihiro Higashitani, Johannes Hofscheier,

Katharina Jochemko, Lukas Katthän, and Mateusz Micha l ek, Smooth cen-

trally symmetric polytopes in dimension 3 are IDP, Ann. Comb. 23 (2019),

no. 2, 255–262.

[BR15] Matthias Beck and Sinai Robins, Computing the continuous discretely, second

ed., Undergraduate Texts in Mathematics, Springer, New York, 2015.

[BS18] Matthias Beck and Raman Sanyal, Combinatorial reciprocity theorems: An

invitation to enumerative geometric combinatorics, Graduate Studies in Math-

ematics, vol. 195, American Mathematical Society, Providence, Rhode Island,

2018.

[BHW07] Christian Bey, Martin Henk, and Jörg M. Wills, Notes on the roots of Ehrhart

polynomials, Discrete Comput. Geom. 38 (2007), no. 1, 81–98.

[BS16] Mónica Blanco and Francisco Santos, Lattice 3-polytopes with few lattice points,

SIAM J. Discrete Math. 30 (2016), no. 2, 669–686.

[BS19] , Non-spanning lattice 3-polytopes, J. Combin. Theory Ser. A 161

(2019), 112–133.

[Bra16] Benjamin Braun, Unimodality problems in ehrhart theory, pp. 687–711,

Springer International Publishing, 2016.

[BG09] Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and K-theory,

Springer Monographs in Mathematics, Springer, Dordrecht, 2009.

[Cas12] Wouter Castryck, Moving out the edges of a lattice polygon, Discrete Comput.

Geom. 47 (2012), no. 3, 496–518.

[CS19a] Giulia Codenotti and Francisco Santos, Hollow polytopes of large width, Pro-

ceedings of the AMS (to appear) (2019), Preprint at arXiv:1812.00916.

[CS19b] , Unimodular covers of lattice parallelepipides and nef cayley polytopes,

Preprint at arXiv:1907.12312, 2019.

[CSS19] Giulia Codenotti, Francisco Santos, and Matthias Schymura, The cover-

ing radius and a discrete surface area for non-hollow simplices, Preprint at

arXiv:1903.02866, 2019.



BIBLIOGRAPHY 119

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter, A hy-

brid branch-and-bound approach for exact rational mixed-integer programming,

Math. Program. Comput. 5 (2013), no. 3, 305–344.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate

Studies in Mathematics, vol. 124, American Mathematical Society, Providence,

RI, 2011.

[DDG+14] Sanjeeb Dash, Neil B. Dobbs, Oktay Günlük, Tomasz J. Nowicki, and Grze-
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