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We consider the Kondo effect arising from a hydrogen impurity in graphene. As a first approximation, the
strong covalent bond to a carbon atom removes that carbon atom without breaking theC3 rotation symmetry, and
we only retain the Hubbard interaction on the three nearest neighbors of the removed carbon atom which then
behave as magnetic impurities. These three impurity spins are coupled to three conduction channels with definite
helicity, two of which support a diverging local density of states (LDOS)∝ 1/

[
|ω| ln2 (Λ/ |ω|)

]
near the Dirac

point ω → 0 even though the bulk density of states vanishes linearly. We study the resulting 3-impurity multi-
channel Kondo model using the numerical renormalization group method. For weak potential scattering, the
ground state of the Kondo model is a particle-hole symmetric spin-1/2 doublet, with ferromagnetic coupling
between the three impurity spins; for moderate potential scattering, the ground state becomes a particle-hole
asymmetric spin singlet, with antiferromagnetic coupling between the three impurity spins. This behavior is
inherited by the Anderson model containing the hydrogen impurity and all four carbon atoms in its vicinity.

I. INTRODUCTION

Interest in graphene magnetism and its potential applications in spintronics started to grow soon after the isolation and charac-
terization of this two-dimensional material[1–9]. One particularly intensively explored approach to making graphene magnetic
is through point defects[10–16], such as adsorbing adatoms[17–24] and vacancies[25–34]. While transition metal adatoms with
d or f electrons constitute an obvious option, rather amazingly, it has been shown both theoretically and experimentally that
hydrogen impurities in graphene are also capable of inducing local magnetic moments[35–42], of the order of one Bohr magne-
ton per defect. An intuitive explanation follows from the strong coupling between the hydrogen impurity and the carbon atom
directly below it[43, 44]. In the limit of this coupling going to infinity, the large energy cost of transferring an electron from or
to the hydrogen-carbon pair effectively removes the pz orbital of the carbon atom from the graphene sheet. If we approximate
graphene as a Hubbard model defined on the bipartite honeycomb lattice, then Lieb’s theorem predicts that the total spin of the
ground state should be 1/2 after the removal of the pz orbital[45].

In metals with dilute magnetic impurities, conduction electrons screen the impurity magnetic moments at low temperatures,
forming many-body singlets in the famous Kondo effect[46, 47]. Now understood in great detail, the Kondo effect is frequently
employed in various unconventional materials in order to locally probe the bulk properties of the conducting host. From a
theoretical perspective, graphene is predicted to support many exotic variants of the Kondo effect[48], thanks to the Dirac cones
in its electronic structure and a diversity of possible impurity locations in the unit cell[49, 50].

On the experimental side, it has been found early on that irradiation induced carbon vacancies in single-layer graphene produce
a resistivity minimum versus temperature[51], which is consistent with a high Kondo temperature (∼ 70K) if attributed to Kondo
effect. However, subsequent magnetization measurements in irradiated thick graphite laminates suggest paramagnetism down
to the lowest accessed temperatures[52]. While alternative explanations of the resistivity minimum based on weak localization
or electron-electron interactions have been proposed[53–55], the apparent contradiction between resistivity and magnetization
measurements is eventually resolved by scanning tunneling spectroscopy[56, 57]. The Kondo screening of vacancy-induced mo-
ments generally takes place when the graphene layer is not locally perfectly flat, and the Kondo temperature depends sensitively
on the local curvature. In corrugated graphene samples, vacancies come with different local curvatures and are subjected to vary-
ing degrees of screening, but the distribution of Kondo temperatures is not fully captured by either resistivity or magnetization
measurements, with the former probing screened moments and the latter probing unscreened ones.

Unlike a carbon vacancy which is subject to the Jahn-Teller distortion, a hydrogen impurity preserves the C3 rotational
symmetry of the graphene lattice around the carbon atom directly below it (henceforth referred to as the “central site”). The
induced magnetic moment predominantly resides on the carbon sublattice where the impurity is not adsorbed. Despite extending
many lattice constants, the magnetization is the strongest on the three nearest neighbors of the central site[14, 36, 38, 40, 42].
This has motivated Ref. 38 to examine, among other models, a reduced Hamiltonian where the Hubbard interactions are taken
into account only on the 5-atom cluster including the hydrogen impurity, the central site and its three nearest neighbors. To
study the Kondo effect, Ref. 38 replaces the rest of the system by a non-interacting bath of Dirac electrons; the cluster hybridizes
with the bath via a local density of states (LDOS) that vanishes linearly as a function of energy near the Dirac points, as is
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characteristic of the density of states in bulk graphene[3].
Upon closer inspection, however, one realizes that the system with the 5-atom cluster removed cannot be equivalent to bulk

graphene, but rather comes with a 4-site vacancy: one site is removed from one of the sublattices and three sites are removed
from the other. In the nearest-neighbor tight-binding model, it is known that a sublattice site number imbalance produces the
same number of zero energy states (or “zero modes”) dwelling exclusively on the sublattice with more sites[58]. In the simpler
case of a single-site vacancy, the single zero mode produced by the vacancy cannot be normalized, because its wave function
decays as 1/r away from the vacancy[59–62]. This is intimately related to a strongly enhanced LDOS around the vacancy[58],
which diverges as 1/

[
|ω| ln2 (Λ/ |ω|)

]
(Λ is a high-energy cutoff) near the Dirac point ω → 0. (We refer to this as a “logarithmic

divergence” in the following.) When an impurity magnetic moment located at the vacancy is coupled to the rest of the graphene
sheet, the divergent LDOS has a profound impact on the ensuing single-channel Kondo effect at half filling[63–67]: in stark
contrast to the linear-LDOS case[68–72], both potential scattering and Kondo scattering perturbations become strongly relevant
in the renormalization group (RG) sense, leading to a high Kondo temperature, and the low-energy behavior of the system is
always controlled by a strong-coupling fixed point. Similar impurity-related LDOS enhancement mechanisms and their effects
on Kondo screening have been discussed in the context of d-wave superconductors[73, 74].

In this paper, we apply the above considerations to the hydrogen impurity problem under the 5-atom cluster approximation.
The non-interacting bath with the 4-site vacancy allows 3 − 1 = 2 zero modes, both of which are non-normalizable. Corre-
spondingly, we show that two conduction channels with a diverging hybridization appear in the Kondo problem. There is a third
conduction channel with a vanishing LDOS at low energies, but the perturbations associated with it are strongly irrelevant; its
importance is therefore diminished by the other two channels.

As a first approximation, we consider the limit of infinite coupling between the hydrogen impurity and the central site. The
central site is essentially eliminated from the low-energy theory in this limit. Consequently, only the three nearest neighbors of
the central site are left to host the magnetic moment, mapping to a 3-impurity Kondo problem where the impurities are symmetric
under Z3 permutations. In a metallic host, this problem is known to yield a rich phase diagram[75, 76], and many insights are
carried over to our case of a diverging hybridization.

To tackle the 3-impurity problem, we first construct an auxiliary problem: a single impurity spin of arbitrary size S coupled
to two conduction channels through the same diverging hybridization. This is analyzed with the aid of the numerical renormal-
ization group (NRG) algorithm[77–79]. Systematic studies have been performed on the pseudogap case where the hybridization
vanishes at zero energy[80]. However, as in the single-channel case, the diverging hybridization makes a qualitative difference.
We find that all low-energy fixed points are strong-coupling and Fermi-liquid like; in particular, in the presence of particle-hole
(p-h) symmetry, the low-energy fixed point involves the impurity spin screened by conduction electrons from both channels,
forming a residual spin of size |S − 1| for any S, including S = 1/2 together with two phase-shifted conduction channels. This
is very different from the 2-channel spin-1/2 Kondo problem with a constant hybridization, whose ground state is a non-Fermi
liquid[81–84].

Returning to the 3-impurity Kondo model, we map out the phase diagram by NRG and study the thermodynamics and the
impurity spin correlations in each phase. The most important coupling constants are the relevant ones associated with potential
and Kondo scattering in the two conduction channels with a diverging hybridization. For weak and intermediate potential
scattering, we find two stable low-energy fixed points: a p-h symmetric spin-1/2 fixed point with the Kondo effect taking place
in the spin sector which we label as K-S, and a p-h asymmetric spin-singlet fixed point which we label as AF-ASC. The latter
is connected to an unstable fixed point of the Kondo effect taking place in the isospin sector. K-S is favored by weak potential
scattering at the impurities and ferromagnetic Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling between the impurities, and
exhibits ferromagnetic impurity spin correlations, whereas AF-ASC exhibits antiferromagnetic impurity spin correlations; the
transition between the K-S phase and the AF-ASC phase is shown to be a simple level crossing. On the other hand, we find that
very strong potential scattering can overwhelm the Kondo scattering and suppress the Kondo effect, in which case the impurity
spins couple to form a magnetic moment decoupled from the conduction electrons. Finally, the divergence of the hybridization
is inevitably cut off at low energies in more realistic models of graphene[58], and we examine the consequences of such a cutoff
on a phenomenological level.

We then proceed to analyze with NRG the Anderson model with Hubbard interactions on the 5-atom cluster. The system flows
to the p-h symmetric spin-1/2 K-S fixed point when p-h symmetry breaking perturbation is weak, and to the p-h asymmetric
spin-singlet AF-ASC fixed point otherwise; the two phases are again respectively characterized by ferromagnetic and antiferro-
magnetic impurity spin correlations. We conclude that the Kondo effect occurs at the hydrogen impurity both in the 3-impurity
Kondo model and the 5-atom cluster Anderson model.

The rest of this paper is organized as follows. In Sec. II, we introduce the 3-impurity Kondo model of a hydrogen impurity
in the infinite hydrogen-carbon coupling limit, highlighting the diverging hybridization between the magnetic impurities and
the two conduction channels. Sec. III is devoted to the 3-impurity Kondo model: we give the scaling behavior of various
perturbations and the RKKY interactions in the weak-coupling limit in Sec. III A, then discuss the NRG results on the 2-channel
spin-S Kondo model with a diverging hybridization in Sec. III B. The numerical results on the 3-impurity Kondo model with a
diverging hybridization are analyzed in depth in Sec. III C. Sec. III D closes our discussion of the 3-impurity Kondo model by
demonstrating the effects of a low-energy cutoff on the divergent LDOS. In Sec. IV we interpret our numerical results for the
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5-atom cluster Anderson model with a diverging hybridization. Sec. V concludes the paper and discusses some open problems.
Appendix A contains a derivation of the divergent LDOS from the 4-site vacancy lattice model, and the corresponding zero
mode solutions of this model are discussed in Appendix B. Finally, in Appendix C, we calculate the RKKY interaction in the
3-impurity Kondo model to the second order in Kondo couplings. The abbreviations used in this paper are summarized in Table I.

TABLE I. Abbreviations used in this paper.

Abbreviation Meaning

LDOS local density of states

RG renormalization group

NRG numerical renormalization group

p-h particle-hole

RKKY Ruderman-Kittel-Kasuya-Yosida

ALM p-h asymmetric local moment fixed point of the
2-channel spin-S Kondo problem with a loga-
rithmically divergent LDOS

SSC p-h symmetric strong-coupling fixed point of
the 2-channel spin-S Kondo problem with a
logarithmically divergent LDOS

LM free-spin p-h symmetric local moment fixed
point

free-ALM free-spin p-h asymmetric local moment fixed
point

K-S ferromagnetic p-h symmetric Kondo fixed point

F-ALM ferromagnetic p-h asymmetric local moment
fixed point

K-I antiferromagnetic p-h symmetric isospin Kondo
fixed point

AF-ASC antiferromagnetic p-h asymmetric strong-
coupling fixed point

AF-ALM antiferromagnetic p-h asymmetric local mo-
ment fixed point

F-ASC ferromagnetic p-h asymmetric strong-coupling
fixed point

II. MODEL

We consider the nearest-neighbor tight-binding model of a graphene layer defined on a bipartite honeycomb lattice with
two sublattices A and B. The “central site”, to which the hydrogen impurity is coupled, is assumed to be on the A sublattice.
Throughout the paper, we follow Ref. 38 and only retain the local Hubbard interactions on the 5-atom cluster, composed of the
hydrogen impurity, the central A site and its three nearest-neighbor B sites. To highlight the Kondo physics, in this section we
furthermore approximate the hydrogen-carbon coupling as infinity, which leaves both the hydrogen and the central site decoupled
from the rest of the system. In the limit of strong Hubbard interactions, we effectively localize the electrons on the three nearest-
neighboring B sites. The effect of the hopping from the 3 B sites to the 6 outer A sites can be considered to leading order in
perturbation theory. The associated Anderson model corresponds to 3 interacting impurities hybridizing with a non-interacting
bath through the outer A electrons:

H = Hvac +Hhyb +Himp. (2.1)

The non-interacting bath part of the effective 3-impurity Hamiltonian describes a graphene sheet with a 4-site vacancy
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Hvac = −t
∑′

~R

{[
b†
(
~R
)

+ b†
(
~R− ~a2

)
+ b†

(
~R− ~a1

)]
a
(
~R
)

+ h.c.
}
, (2.2)

where the summation excludes the central A site and its three nearest neighbor B sites, as shown in Fig. 1. Here, ~R = n~a1 +m~a2

are the Bravais lattice vectors with

~a1 =
a

2

(√
3, 1
)
,~a2 =

a

2

(√
3,−1

)
, (2.3)

where a is the lattice constant, and the B site labeled by ~R is displaced by (a/
√

3, 0) from the corresponding A site. The four
sites removed from Hvac are then labeled by a(~0), b(~0), b (−~a1) and b (−~a2).

A 

B 

𝑎 1 

𝑎 2 

FIG. 1. Schematic representation of the effective model for a hydrogen impurity in graphene. The central site on the A sublattice, which is
directly coupled to the hydrogen impurity, is marked by a solid red circle. Its three nearest neighbors on the B sublattice are marked by solid
green circles. The repulsive Hubbard interactions only reside on these four sites and the hydrogen impurity. The outer 6 next-nearest neighbors
on the A sublattice are marked by dashed blue circles. Each pair of these hybridizes with one of the nearest-neighboring (green) B sites. When
the hydrogen-carbon coupling goes to infinity, the central (red) A site is removed from the model along with the hydrogen impurity itself, and
the nearest-neighboring (green) B sites become the effective impurities.

The impurity-bath hybridization, given by

Hhyb = −
√

2t

3∑
j=1

a†
jbj + h.c., (2.4)

is invariant under C3 rotations. Here we have relabeled the 3 impurity B sites as

b(~0) = b1, b (−~a2) = b2, b (−~a1) = b3, (2.5)
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and defined the symmetric linear combinations of pairs of the neighboring a†(~R) electrons as

a†
1 =

1√
2

[
a† (~a1) + a† (~a2)

]
, (2.6a)

a†
2 =

1√
2

[
a† (−~a2) + a† (~a1 − ~a2)

]
, (2.6b)

a†
3 =

1√
2

[
a† (−~a1) + a† (−~a1 + ~a2)

]
. (2.6c)

Finally, the Hamiltonian of the 3 nearest-neighbor B sites consists of a local Hubbard interaction term and a local on-site
potential term:

Himp =

3∑
j=1

(εbnb,j + Unb,j↑nb,j↓) (2.7)

where nb,jα = b†jαbjα, and nb,j = nb,j↑ + nb,j↓ is the number operator for B electrons at site j. This model is p-h symmetric
when εb = −U/2 and the chemical potential µ = 0.

The lattice with a 4-site vacancy inherits the C3 symmetry of the pristine lattice. Hence, we can construct helicity eigenstates
h = 0, 1, 1̄ from the a†

1,2,3 states:

c†h=0 =
1√
3

(
a†

1 + a†
2 + a†

3

)
(2.8a)

c†h=1 =
1√
3

(
a†

1 + e−i
2π
3 a†

2 + ei
2π
3 a†

3

)
(2.8b)

c†
h=1̄

=
1√
3

(
a†

1 + ei
2π
3 a†

2 + e−i
2π
3 a†

3

)
. (2.8c)

A counter-clockwise 2π/3 rotation about the central A site acts as a permutation of the three a†
1,2,3 states. Then, under this

rotation we have c†h → ei2πh/3c†h.
In the limit U ∼ |εb| � t, by applying a Schrieffer-Wolff projection as in Ref. 75, we obtain an effective Kondo model which

includes potential scattering and Kondo interactions:

H =Hvac + V0n0 + V1 (n1 + n1̄) + J00s00 ·S0

+ J11 (s11 + s1̄1̄) ·S0 + J11̄ (s11̄ ·S1 + s1̄1 ·S1̄)

+ J01

[
(s01 + s1̄0) ·S1 + (s10 + s01̄) ·S1̄

]
, (2.9)

where the local moment operators of definite helicities are[75, 76]

Sh =

3∑
j=1

e−ih2π(j−1)/3Sj , Sj =
1

2

∑
αβ

b†jασαβbjβ , nb,j = 1. (2.10)

We note that Sh=0 is simply the total impurity spin operator, and the total impurity spin quantum number can be S = 3/2 (one
quartet) or S = 1/2 (two doublets); the two S = 1/2 doublets can be distinguished by their behavior under the Z3 permutation
of impurity spins. We have also defined the particle number operators for ch, nh =

∑
α c

†
hαchα, and the spin operators

shh′ =
1

2

∑
αβ

c†hασαβch′β (2.11)

which can involve conduction electrons of different helicities. For our particular microscopic model, the unrenormalized cou-
plings are
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Jhh′ ≈
4

3
t2
(

1

U + εb
+

1

−εb

)
, Vh ≈ t2

(
1

−εb
− 1

U + εb

)
(2.12)

Generally |Vh| /Jhh′ ≤ 3/4. Note that Vh will be generated by breaking the p-h symmetry. This can occur not only when εb 6=
−U/2, but also when we move away from the charge neutrality point or take into consideration second neighbor hopping[85].

The scaling dimensions of the various couplings inH are determined by the LDOS of the ch conduction channels for the 4-site-
vacancy graphene. A detailed solution of this non-interacting problem in Appendix A gives the following leading contributions
to the ch channels:

c†0 ≈ −
3

3
4 a

4π
1
2

∫ ∞
−∞

dk
√
|k|
(
φ̃†
~K,0,k

+ φ̃†
~K′,0,k

)
(2.13a)

c†1 ≈ −i
π

1
2

3
1
4

∫ ∞
−∞

dk
sgn k√

|k|
(

ln Λ2

(vF k)2
− iπ sgn k

) φ̃†
~K,−1,k

(2.13b)

c†
1̄
≈ −iπ

1
2

3
1
4

∫ ∞
−∞

dk
sgn k√

|k|
(

ln Λ2

(vF k)2
− iπ sgn k

) φ̃†
~K′,1,k

. (2.13c)

where Λ ∼ t is an ultraviolet energy cutoff, vF =
√

3ta/2 is the Fermi velocity, and φ̃†
~K/ ~K′,m,k

creates an electron in the

eigenstate of Hvac in valley ~K or ~K ′ =
(√

3,±1
)

(2π/3a), with angular momentum m and momentum amplitude k. (The low
energy Dirac theory has full rotational symmetry so that eigenstates can be labeled by m, the 2-dimensional angular momentum
quantum number[69].) Note that the low-energy spectrum is determined from ε ~K+~k ≈ vF k. Due to the additional factor of a
in Eq. (2.13a), c0 should become less and less important compared to c1 and c1̄ at low energy scales, as will be confirmed in
Sec. III. From this, is it straightforward to determine the leading contributions to the LDOS for ch in the low-energy limit:

ρh=0 (ω) =
3
√

3a2

8πv2
F

|ω| , (2.14)

ρh=1,1̄ (ω) ≈ π√
3 |ω| ln2 Λ2

ω2

. (2.15)

While the helicity-0 channel has a behavior similar to pristine graphene, helicities 1 and 1̄ show a logarithmic divergence in
their LDOS. We attribute such a divergence to the presence of two non-normalizable zero modes in the 4-site-vacancy graphene,
whose wave functions behave as 1/r when the distance to the vacancy r is large[59, 60, 62]; see Appendix B for details. Because
NA = 1 A site andNB = 3 B sites are removed, there are |NA −NB | = 2 zero modes (for each spin) living on the A sublattice;
due to the C3 symmetry in this case, these two zero modes can be chosen as helicity eigenstates[58]. Even though these zero
modes are not true eigenstates in an infinite system, they hybridize strongly with the low-energy itinerant states in pristine
graphene, forming low-energy scattering states which are true eigenstates of Hvac and contribute to the divergent LDOS[62].

III. KONDO MODEL

In this section, we establish the phase diagram of the 3-impurity 3-channel Kondo model Eq. (2.9), using a combination of
analytical arguments and NRG.

A. Scaling and RKKY interactions at weak coupling

It is instructive to begin by analyzing the weak-coupling fixed point. To find the scaling behavior of various coupling constants,
we first define dimensionless couplings at the running energy cutoff D:

vh (D) ≡ ρh (D)Vh (D) , (3.1)
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and

jhh′ (D) ≡
√
ρh (D) ρh′ (D)Jhh′ (D) . (3.2)

The second-order weak-coupling RG equations then read

− dj11

d lnD
=

(
1− 2

ln Λ
D

)
j11 +

(
j2
11 + j2

11̄ + j2
01

)
, (3.3a)

− dj11̄

d lnD
=

(
1− 2

ln Λ
D

)
j11̄ +

(
2j11j11̄ + j2

01

)
, (3.3b)

− dj00

d lnD
= −j00 + j2

00 + 2j2
01, (3.3c)

− dj01

d lnD
= − 1

ln Λ
D

j01 + j01 (j11 + j11̄ + j00) , (3.3d)

− dv0

d lnD
= −v0, (3.3e)

− dv1

d lnD
=

(
1− 2

ln Λ
D

)
v1. (3.3f)

From these equations we can also see that the relation J11 = J11̄, if true for the bare couplings, is preserved along the RG flow.
Due to the singular LDOS for helicities 1 and 1̄, J11 and J11̄ are relevant at low energies (D � Λ), in analogy to the single-

channel problem with a divergent LDOS discussed in Ref. 63. This leads to a greatly enhanced Kondo temperature for the
corresponding Kondo couplings:

TK ∝ JK/ ln2 (Λ/JK) , (3.4)

where JK is either J11 (D0) or J11̄ (D0), D0 being the initial semi-bandwidth of the Kondo model. The potential scattering
term V1 is likewise relevant, and has its own characteristic energy scale

TP ∝ V1 (D0) / ln2 (Λ/V1 (D0)) , (3.5)

at which it flows to strong-coupling. On the other hand, J01 is weakly irrelevant, becoming almost marginal only at very low
energies, even though it generates relevant couplings J11 and J11̄ at the second order. Finally, the linear LDOS of the helicity-0
channel renders V0 and J00 strongly irrelevant.

It is also possible to consider the RKKY interactions between magnetic impurities at weak coupling mediated by conduction
electrons[75, 86]; this gives us some intuition on possible magnetic orders of the impurities. It should be clarified that these
interactions are only introduced to help us understand the Kondo model; they are not part of the NRG input (as the Kondo
couplings are), and we make no a priori assumptions about the associated RKKY energy scale in our NRG calculations. As in
Refs. 75 and 76, the RKKY interactions are of the form

HRKKY = I
∑
i<j

Si · Sj , (3.6)

where we labeled a generic RKKY interaction by I in order to avoid confusion with the valley-momenta ~K, ~K ′. This expression
can be re-cast as
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HRKKY =
I

2

(
S 2
h=0 − S2

1 − S2
2 − S2

3

)
. (3.7)

HRKKY takes the value 3I/4 in the S = 3/2 multiplet state, and −3I/8 otherwise. Hence, strong antiferromagnetic RKKY
interactions (I > 0) project onto the S = 1/2 manifold, while strong ferromagnetic RKKY (I < 0) prefers the S = 3/2
configuration.

The RKKY coupling strength I has been evaluated in bulk graphene[87–91], under the assumption that each magnetic impurity
interacts with one carbon atom but does not disrupt the graphene lattice (e.g. by introducing vacancies). In that case, it has been
shown to be ferromagnetic between impurities on the same sublattice, and antiferromagnetic between impurities on different
sublattices. Nevertheless, antiferromagnetic RKKY interactions have also been reported between same-sublattice magnetic
impurities when other non-magnetic impurities are present[92], or when a large on-site potential energy is associated with the
magnetic impurities[93].

In Appendix C, we analyze the RKKY interaction between the three effective magnetic impurities b1,2,3 generated by Kondo
couplings to O

(
J2
hh′

)
, carefully including the effects of the vacancy. At low temperatures, we find I ∝ J2

11̄ − 2J2
11; thus I is

ferromagnetic in a model with J11 only, and antiferromagnetic in a model with J11̄ only. In the Kondo model obtained through
the Schrieffer-Wolff transformation, where J11 = J11̄, I is expected to be ferromagnetic. The RG flow of the RKKY interaction
is controlled by

−
d
(
j2
11̄ − 2j2

11

)
d lnD

=

(
2− 4

ln Λ
D

)(
j2
11̄ − 2j2

11

)
+ 2 (j11̄ − 2j11) j2

01 − 4j3
11. (3.8)

In other words, the RKKY interaction does not change sign along the RG flow near the weak coupling fixed point.

B. Auxiliary model: 2-channel spin-S Kondo model with a logarithmically divergent LDOS

The weak-coupling analysis in Sec. III A shows that all coupling constants associated with the helicity-0 conduction channel
are irrelevant, and the collective state of the impurity spins can be either an S = 3/2, helicity-0 multiplet or an S = 1/2,
helicity-±1 multiplet. We are therefore motivated to study the 2-channel spin-S Kondo model where both conduction channels
1 and 1̄ are characterized by the logarithmically divergent LDOS Eq. (2.15):

H = Hvac + V (n1 + n1̄) + J (s11 + s1̄1̄) · S (3.9)

with an antiferromagnetic Kondo coupling J > 0. Although this model is interesting in its own right, it is quite different from
Eq. (2.9) even after ignoring the helicity-0 conduction channel [see Eq. (3.10)]. In Eq. (2.9) we have spin operators of conduction
electrons that are diagonal (s11, s1̄1̄) and off-diagonal (s11̄, s1̄1) in the helicity basis, while in Eq. (3.9) we only have diagonal
operators in the helicity basis; also, the impurity in Eq. (2.9) comprises three S = 1/2 spins appearing in different total spin
sectors and different helicity combinations, whereas the impurity in Eq. (3.9) is a single spin of rigid size S. Nevertheless, as
we will show in Sec. III C, the auxiliary model Eq. (3.9) provides helpful intuitions for understanding the limiting cases of the
3-impurity model, where the impurity can be effectively viewed as a rigid spin. The auxiliary model also serves as an excellent
benchmark for the impurity contributions to thermodynamic quantities, which we will discuss later in this section.

Let us briefly review the case where both channels have a constant LDOS. In this case, at the weak-coupling fixed point, V
is exactly marginal and J is marginally relevant due to the dynamics of the impurity spin. It is well known that the low-energy
behavior of this problem depends on the size of the impurity spin[94, 95]. When S > 1 (underscreened) or S = 1 (exactly
screened), the low-energy fixed point is simply the strong-coupling one. This involves a decoupled residual impurity spin of
size S − 1 (when S > 1) and a Fermi liquid theory for the conduction electrons, with a phase shift π/2 + δ (δ being an odd
function of V ) for each conduction channel taking part in the screening of the impurity. On the other hand, in the overscreened
case S = 1/2, the strong-coupling fixed point is no longer stable. If we consider a naive J → +∞ theory on a nearest-neighbor
tight-binding lattice with hopping amplitude t � J , then the electrons c1, c1̄ are strongly bound to the impurity spin, forming
an effective spin-1/2. The effective spin is in turn coupled to the lattice with c1 and c1̄ removed (which we name as the “strong-
coupling lattice”). This O

(
t2/J

)
coupling constant is antiferromagnetic, which we already know to be marginally relevant. In

contrast, the underscreened strong-coupling fixed point is stable because the large-J effective model is a Kondo model with a
ferromagnetic Kondo coupling, which is marginally irrelevant (and turns the system into a singular Fermi liquid[96]). The stable
low-energy fixed point in the overscreened case is therefore an intermediate-coupling, non-Fermi-liquid one. Its properties can
be obtained by a range of theoretical methods, including boundary conformal field theory[81], Bethe ansatz[83, 84] and Abelian
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bosonization[97]; in particular an impurity entropy of 1
2 ln 2 and an impurity magnetic susceptibility that depends logarithmically

on temperature have been predicted and numerically verified.
We return to the 2-channel Kondo model Eq. (3.9) with a divergent LDOS Eq. (2.15). As discussed in Sec. III A, at the

weak-coupling, p-h symmetric local moment fixed point, both J and V are relevant on account of the energy dependence of
the LDOS. It is therefore natural to investigate the corresponding strong-coupling theories on a lattice with hopping amplitude
t � J . The J → +∞ lattice theory as before gives rise to an effective impurity spin of size |S − 1| formed by the impurity
spin and the electrons c1 and c1̄, which is coupled to the remaining “strong-coupling lattice” with an either ferromagnetic (when
S > 1) or antiferromagnetic (when S = 1/2) coupling constant of O

(
t2/J

)
. In the V → ±∞ lattice theory, on the other hand,

no Kondo physics takes place; the c1 and c1̄ states become nevertheless inaccessible to other conduction electrons, being either
empty or occupied depending on the sign of V , and the original spin S is coupled to the remaining “strong-coupling lattice”.

At this point we should accentuate the crucial difference between the logarithmically divergent LDOS and the constant LDOS.
In the constant LDOS case, removing c1 and c1̄ from the original lattice does not change the LDOS at the sites which the effective
impurity can couple to, because the original lattice and the “strong-coupling lattice” are both composed of one-dimensional
chains. In graphene with a 4-site vacancy, however, projecting out c1 and c1̄ will remove the logarithmic divergence in the
LDOS, and the leading contribution to the LDOS becomes linear near the Dirac point as in the bulk. This can be shown
explicitly using the method outlined in Appendix A. On a more intuitive level, we can also explain the disappearance of the
logarithmic divergence through the removal of the two non-normalizable zero modes. In Appendix B, we see that the wave
functions associated with c1 and c1̄ cannot be simultaneously zero for a nontrivial zero-energy solution of the lattice Schrödinger
equation; in other words, if we project out c1 and c1̄ from the lattice, i.e. demand the wave functions associated with c1 and c1̄
should vanish, then no zero mode exists.

Because of the linear LDOS in the “strong-coupling lattice”, any perturbation at the naive strong-coupling fixed point– Kondo
coupling or potential scattering– is strongly irrelevant[71]. It is therefore reasonable to conclude that the large-J and large-V
strong-coupling fixed points are stable in the 2-channel Kondo model Eq. (3.9) with a divergent LDOS Eq. (2.15), irrespective
of the size of the impurity spin S.

This picture is verified by NRG calculations, which we perform with the “NRG Ljubljana” code[79]. The schematic phase
diagram is shown in Fig. 2. As conjectured, the two regimes are controlled by the large-J p-h symmetric strong-coupling (SSC)
fixed point and the large-V p-h asymmetric local moment (ALM) fixed point, with residual spin sizes |S − 1| and S respectively.
At both fixed points it is possible to construct the entire finite-size spectrum from single-particle excitations, in contrast to the
non-Fermi-liquid overscreened Kondo fixed point in the case of constant LDOS. As in the single-channel spin-1/2 case discussed
in Ref. 63, the two phases are separated by a second-order transition.

To shed further light on the nature of the low-energy fixed points, let us examine their thermodynamic properties. The impurity
contribution to any quantity Ω in a quantum impurity system is defined as Ωimp = Ω− Ω0, the difference between this quantity
evaluated in the entire impurity system and in the reference “clean” system without the impurity. In our case, there are two
possibilities for the reference system: the pristine graphene, and the non-interacting bath of a 4-site-vacancy graphene lattice
with a logarithmically divergent LDOS. Following Ref. 63, we choose the 4-site-vacancy graphene as the reference system
while presenting our numerical results, but impurity quantities measured with respect to pristine graphene will also be discussed
because they are experimentally directly accessible (see Table II). We focus on the impurity entropy Simp = −∂Fimp/∂T (F
being the free energy) and the impurity magnetic susceptibility χimp =

〈
S2
z

〉
imp /T .

It is useful to first discuss the effect of non-normalizable zero modes. In short, with respect to pristine graphene, each non-
normalizable zero mode contributes ln 4 to the zero-temperature impurity entropy, and 1/ (8T ) to the magnetic susceptibility[63].
We can directly derive these results by viewing pristine graphene as a (non-interacting) resonant-level model with a logarithmi-
cally divergent LDOS, as has been done in Appendix B of Ref. 63. Alternatively, when we calculate the impurity-induced density
of states (which appears in the Friedel sum rule)[47] in the single-vacancy graphene lattice, we find a δ-function peak at zero
energy[59, 60, 62]; this δ-function is what contributes to the zero-temperature impurity entropy and the impurity susceptibility,
as if it were a real spin-degenerate single-particle eigenstate of the system. When the non-normalizable zero mode is removed,
for instance at strong coupling, the impurity contributions vanish correspondingly. This applies equally to the 4-site-vacancy
graphene lattice, except there are now two channels with a logarithmically divergent LDOS, so that the strength of the δ-function
peak is doubled together with the impurity entropy and impurity magnetic susceptibility.

We can now determine the limiting behavior of the thermodynamic properties at the fixed points of the 2-channel spin-S Kondo
model Eq. (3.9) with a divergent LDOS Eq. (2.15). At the ALM fixed point, the non-normalizable zero modes are removed
by potential scattering; the local moment then results in a zero-temperature impurity entropy of Simp (T = 0) = ln (2S + 1)
and an impurity susceptibility of χimp = S (S + 1) / (3T ) relative to pristine graphene. At the SSC fixed point, the zero
modes are removed by strong Kondo screening, so the residual spin |S − 1| yields Simp (T = 0) = ln (2 |S − 1|+ 1) and
Tχimp = |S − 1| (|S − 1|+ 1) /3. Finally, at the p-h symmetric local moment fixed point, the zero modes together with the
local moment give Simp (T = 0) = ln (2S + 1) + 2 ln 4 and Tχimp = 1/4 + S (S + 1) /3.

The high- to low-temperature crossover of Simp and Tχimp is plotted in Fig. 3, with the reference system chosen as the 4-site-
vacancy graphene (where Simp (T = 0) = 2 ln 4 and Tχimp = 2 · 1/8 = 1/4). In the S = 1/2 case, the crossover between the
unscreened S = 1/2 and the overscreened S = 1/2 is clearly visible from the non-monotonicity of Tχimp. At low temperatures,
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FIG. 2. Schematic phase diagram of the 2-channel Kondo model Eq. (3.9) with a single spin-S impurity and the logarithmically divergent
LDOS Eq. (2.15) on the J-V plane. There are two phases, the p-h symmetric strong-coupling (SSC) phase and the p-h asymmetric local-
moment (ALM) phase, characterized by J → ∞ and V → ∞ respectively. The residual spin is of size |S − 1| in the maximally screened
SSC phase, and S in the unscreened ALM phase. The two phases are separated by a second-order phase transition, as in the single-channel
case of Ref. 63. Note that these results are independent of the impurity spin size S.

Simp and Tχimp have logarithmic corrections in the form of 1/ ln (Λ/T ) near all fixed points[63]. However, unlike in a singular
Fermi liquid, this logarithmic behavior does not originate from a marginally irrelevant operator, because the allowed operators
at any of these fixed points are strongly irrelevant irrespective of the spin size. We can verify that the logarithmic corrections
vanish when the reference system is pristine graphene (in the form of a non-interacting 4-site cluster coupled to the 4-site-
vacancy graphene); therefore, the logarithmic behavior in Fig. 3 can be fully attributed to the non-normalizable zero modes of
the reference system.

C. Phases of the 3-impurity model

We are in the position to present the NRG results on the 3-impurity 3-channel Kondo model Eq. (2.9). Again, as a first
approximation, we neglect the helicity-0 conduction channel entirely on the grounds that all couplings J00, J01 and V0 associated
with it are irrelevant; we shall see later that this approximation is usually justified. This leaves us with a 3-impurity 2-channel
Kondo model,

H = Hvac + V1 (n1 + n1̄) + J11 (s11 + s1̄1̄) ·S0 + J11̄ (s11̄ ·S1 + s1̄1 ·S1̄) , (3.10)

with two relevant Kondo couplings J11 and J11̄ as well as a relevant potential scattering V1. As in Refs. 75 and 76, one may mea-
sure the relative strengths of J11 and J11̄ with the dimensionless RKKY coupling strength Ĩ ≡

(
J2

11̄ − 2J2
11

)
/
(
2J2

11 + 2J2
11̄

)
.

J11 = J11̄ = V1 = 0 marks the unstable p-h symmetric local moment (“LM”) fixed point, which has three decoupled impurity
spins and two non-normalizable zero modes; therefore, at the LM fixed point, Simp (T = 0) = 3 ln 2 + 2 ln 4 = 7 ln 2, and
Tχimp = 3 · 1/4 + 2 · 1/8 = 1 relative to pristine graphene.

In Fig. 4 we present the NRG phase diagram of the 3-impurity 2-channel Kondo model Eq. (3.10). Panel (a) is the phase
diagram on the Ĩ-V1 plane when J2

11 + J2
11̄ = (0.1D0)

2, and panel (b) is the phase diagram on the J11-V1 plane for J11 = J11̄.
We also show the high- to low-temperature crossover of Simp and Tχimp in different phases in Figs. 5 and 6.

In the following we discuss the different regimes in the phase diagram. We begin by considering each of the two relevant
Kondo couplings J11 and J11̄ separately.

(i) J11 > 0, J11̄ = 0:
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FIG. 3. Impurity entropy Simp and impurity magnetic susceptibility multiplied by temperature, Tχimp, versus temperature T in the 2-channel
Kondo model Eq. (3.9) with a single spin-S impurity and a logarithmically divergent LDOS Eq. (2.15). Note that the reference “clean” system
is taken to be 4-site-vacancy graphene rather than pristine graphene. We have chosen Λ = 1.5D0 in Eq. (2.15), where D0 is the initial
semi-bandwidth of the Kondo model, and have used J = 0.1D0, V = 0 for the SSC curves, and J = 0, V = 0.1D0 for the ALM curves.

The RKKY interaction is ferromagnetic (Ĩ = −1), favoring S = 3/2; therefore it is plausible that, at low energies, the model
is reduced to a 2-channel problem with a logarithmically divergent LDOS and a single S = 3/2 impurity. This picture for
J11̄ = 0 is confirmed by NRG, and the coupling between the two spin sectors S = 3/2 and S = 1/2 turns out to be irrelevant.

Applying our results from Sec. III B, we find two different phases: a p-h symmetric strong-coupling phase and a p-h asym-
metric local moment phase. In the symmetric phase, the effective S = 3/2 impurity is strongly screened by both c1 and c1̄, and
a residual S = 1/2 impurity emerges; thus we name it “K-S” after the Kondo screening taking place in the spin sector. In the
asymmetric phase, the effective S = 3/2 local moment is unscreened, while both c1 and c1̄ are blocked locally by strong po-
tential scattering; we call this phase “F-ALM” after the ferromagnetic RKKY interaction. K-S and F-ALM are both stable fixed
points as discussed in Sec. III B; they are separated by a critical boundary marked by |V1| /J11 ∼ O (1), in analogy to the single-
channel case[63]. The low-temperature thermodynamic properties of K-S (F-ALM) is identical to those of the SSC (ALM) fixed
point in the 2-channel S = 3/2 problem with a logarithmically divergent LDOS. Therefore, at K-S, Simp (T = 0) = ln 2 and
Tχimp = 1/4 relative to pristine graphene; at F-ALM, Simp (T = 0) = ln 4 and Tχimp = 5/4 relative to pristine graphene.

While our heuristic picture correctly predicts the thermodynamic quantities and the finite-size spectrum, it would only be
strictly true had we introduced by hand a strong ferromagnetic RKKY interaction Eq. (3.6) into the Hamiltonian, assuming that
the RKKY strength I were much greater in magnitude than any other energy scale in the problem. In reality, there might be no
clear separation between the RKKY energy scale, at which the effective S = 3/2 impurity forms, and the Kondo temperature
TK (or TP ), at which J11 (or V1) flows to strong coupling. These energy scales must be extracted numerically, e.g. from
thermodynamics (Fig. 5) and impurity spin correlations (Fig. 7 which we will discuss later).

(ii) J11̄ > 0, J11 = 0:
The RKKY interaction is now antiferromagnetic (Ĩ = 1/2), and favors the S = 1/2 state for the magnetic impurities. While

one might assume that the low-energy physics would be captured by the 2-channel S = 1/2 Kondo model with a logarithmically
divergent LDOS, we must also take note of the additional helicity degeneracy of the S = 1/2 subspace, and the fact that J11̄ is
not a conventional Kondo coupling.

We can again glean some insight from the constant-LDOS version of this problem[75, 76]. In the constant-LDOS 3-impurity
3-channel Kondo problem, when the RKKY interactions are antiferromagnetic and J11̄ overwhelms J01, it has been reported
that the helicity-0 channel decouples, and the low-energy effective model is a 2-channel spin-1/2 Kondo model with spin and
isospin sectors interchanged. (The isospin for helicities 1 and 1̄ is defined as usual by Îz = 1

2

∑
h=±1,α

(
c†hαchα − 1/2

)
and Î+ = 1

2

∑
h=±1,αβ εαβc

†
hαc

†
h̄β

, where εαβ is the Levi-Civita symbol.) To be more concrete, the effective model involves
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FIG. 4. Phase diagram of the 3-impurity 2-channel Kondo model Eq. (3.10) with a logarithmically divergent LDOS given by Eq. (2.15). We
have again chosen the ultraviolet cutoff as Λ = 1.5D0. (a): phase diagram on the Ĩ-V1 plane, where Ĩ ≡

(
J2

11̄ − 2J2
11

)
/
(
2J2

11 + 2J2
11̄

)
is

the dimensionless RKKY interaction. We fix J2
11 + J2

11̄ = (0.1D0)2. When V1 = 0, we find an underscreened Kondo strong-coupling phase
(K-S) with an effective impurity spin S = 3/2 in the ferromagnetic RKKY limit (Ĩ = −1), and a spin-singlet isospin-doublet phase (K-I)
with an isospin 1/2 in the antiferromagnetic RKKY limit (Ĩ = 1/2). For Ĩ = −1, sufficiently strong potential scattering V1 will overcome
the strong-coupling phase at V1/J11 ≈ O(1), resulting in a p-h asymmetric S = 3/2 local-moment (F-ALM) phase. For Ĩ = 1/2, even
an infinitesimal V1 drives the system into a p-h asymmetric, exactly screened strong-coupling phase (AF-ASC) with S = 0 (lower inset),
characterized by antiferromagnetic impurity spin correlations. A larger V1 comparable to J11̄ leads to a p-h asymmetric local-moment phase
(AF-ALM) with S = 1/2. Finally, a p-h asymmetric strong coupling phase with S = 1 and ferromagnetic impurity spin correlations (F-ASC)
exists in a small region of the parameter space, and separates the three phases K-S, F-ALM and AF-ASC (upper inset). (b): phase diagram on
the J11-V1 plane for J11 = J11̄ (i.e. Ĩ = −1/4). We find that the critical value of V1/J11 at the K-S/AF-ASC transition becomes smaller as
J11/D0 is reduced.

an isospin-1/2 impurity screened by two conduction channels, one spin-up and the other spin-down. We emphasize that such
a fictitious isospin-1/2 impurity is only invoked to describe the isospin state of the conduction electrons, since the impurities
themselves always possess p-h symmetry and have isospin 0 by construction. The resulting low-energy non-Fermi-liquid fixed
point, dubbed “isospin Kondo” in Ref. 75, is unstable against an infinitesimal p-h symmetry breaking perturbation V1, which
plays the role of a magnetic field in the isospin sector; the system flows to a Fermi-liquid state in the presence of V1.

In our problem with a logarithmically divergent LDOS, the condition of J11̄ dominating over J01 is always satisfied when the
bare couplings are weak, since J11̄ is relevant while J01 is irrelevant. We find that, as in the constant-LDOS case, the low-energy
physics is governed by a 2-channel spin-1/2 Kondo model with spin and isospin sectors interchanged; however, as shown in
Sec. III B, the logarithmically divergent LDOS dictates that the low-energy fixed point for V1 = 0 should be located at strong
coupling rather than intermediate coupling. We label this strong-coupling fixed point as “K-I” due to the Kondo effect taking
place in the isospin sector. The ground state of K-I has spin zero and isospin 1/2, i.e. one electron is either removed from or
added to half filling. This yields Simp (T = 0) = ln 2 and Tχimp → 0 at the K-I fixed point relative to pristine graphene. As an
intuitive picture, in the lattice version of K-I, the impurity spins form an effective spin-1/2, which is in turn strongly coupled to
(i.e. screened by) one of the conduction channels; the other conduction channel can be either empty or doubly occupied at the
lattice site closest to the impurity.

K-I is unstable against an infinitesimal V1, which picks out a preferred isospin state from the doublet (i.e. one electron removed
from or added to half filling). We call the resulting p-h asymmetric strong-coupling fixed point “AF-ASC”. In the lattice version
of AF-ASC, one conduction channel forms a spin singlet with the impurities, and the other channel takes advantage of the
local potential scattering to lower the ground state energy; the remaining conduction electrons are essentially free apart from
constraints imposed by the Pauli principle. With the isospin symmetry broken and the ground state a spin singlet, we simply
have Simp (T = 0) = 0 and Tχimp → 0 at AF-ASC relative to pristine graphene. Fig. 6 shows how the system flows from K-I to
AF-ASC for V1/D0 ranging from from 10−7 to 0.1.

Increasing V1 further, for sufficiently large |V1| /J11 ∼ O (1), we eventually encounter a second transition to the large-V1
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FIG. 5. Simp and Tχimp versus T in various phases of the 3-impurity 2-channel Kondo model Eq. (3.10) with a logarithmically divergent
LDOS given by Eq. (2.15). Note again that the reference “clean” system is taken to be graphene with a 4-site vacancy rather than pristine
graphene. Λ = 1.5D0; (J11, J11̄, V1) /D0 = (0.1, 0, 0) for K-S, (0, 0.1, 0.1) for AF-ASC, (0.1, 0, 0.3) for F-ALM, (0, 0, 0.1) for free-ALM,
(0, 0.1, 0.3) for AF-ALM, and (0.075, 0.0661438, 0.139) for F-ASC. Data for F-ASC is not z-averaged[98] and therefore contains spurious
oscillations. The K-I fixed point is shown separately in Fig. 6.

fixed point, where both c1 and c1̄ become blocked by strong potential scattering and the ground state electric charge differs
from half-filling by two. The antiferromagnetic RKKY interactions remain in effect even though the impurity spins are already
decoupled from the conduction electrons, so we are left with an S = 1/2 local moment with an additional helicity degeneracy
h = ±1. Therefore, at this fixed point which we call “AF-ALM”, Simp (T = 0) = ln 4 and Tχimp = 1/4 relative to pristine
graphene.

In addition to cases (i) and (ii), it is also worth mentioning that taking J11 = J11̄ = 0 but V1 6= 0 will lead to another
free-spin p-h asymmetric local moment fixed point (“free-ALM”), where the impurity spins completely decouple and the non-
normalizable zero modes vanish. This is an unstable fixed point, because even an infinitesimal RKKY interaction induced by
J11 or J11̄ drives the impurity spins into the S = 3/2 or the S = 1/2 state. Obviously, due to the three impurity spins, the
free-ALM fixed point has Simp (T = 0) = 3 ln 2 and Tχimp = 3/4 relative to pristine graphene. The three fixed points F-ALM,
AF-ALM and free-ALM differ only in their impurity spin states.

Cases (i) and (ii) represent the limits of maximally ferromagnetic and maximally antiferromagnetic RKKY interaction respec-
tively. As shown in Fig. 4, when J2

11 + J2
11̄ = (0.1D0)

2 and Λ/D0 = 1.5, the K-S fixed point controls a large region of the
parameter space where J11/J11̄ is not too small and V1 is not too large. The K-I phase only occurs when the p-h symmetry
is preserved and J11/J11̄ is very small (i.e. Ĩ > Ĩc0 where Ĩc0 is close to 1/2)[99], but its direct descendant– the AF-ASC
phase– becomes progressively more important at intermediate values of V1 when the RKKY interactions are not too strongly
ferromagnetic. Finally, at very large values of V1, the F-ALM and AF-ALM phases come into play, separated approximately by
the Ĩ = 0 line.

While the phase boundaries between K-S, AF-ASC and F-ALM seemingly meet at a single tricritical point on the Ĩ-V1 plane,
a more careful survey of the parameter space reveals the presence of another phase in a small area separating these three phases.
The ground state in this phase is again p-h asymmetric with one electron removed from or added to half filling. However,
in contrast to the AF-ASC phase, the ground state has a residual S = 1 impurity, consistent with the ferromagnetic RKKY
interaction (Ĩ < 0); thus we name this phase “F-ASC”. Because one of the two conduction channels couples to the impurity
spins and the other is blocked by potential scattering, the S = 1 residual impurity in the ground state can form in two distinct
helicities. Combined with the threefold degeneracy of the spin state, this helicity degeneracy gives an impurity entropy of
Simp (T = 0) = ln 6 relative to pristine graphene. The impurity susceptibility from the residual impurity is simply Tχimp = 2/3.

It is also enlightening to look at the correlation between the impurity spins. In Fig. 7 we plot the expectation value 〈S1 · S2〉
as a function of temperature at various points in the phase diagram. At high temperatures its sign is simply opposite to that
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FIG. 6. Simp and Tχimp versus T in a crossover from the unstable K-I fixed point to the stable AF-ASC fixed point as the p-h symmetry breaking
potential scattering V1 is increased. Λ = 1.5D0, J11 = 0, J11̄ = 0.1D0, and different curves correspond to different values of V1/D0. Solid
red squares represent the K-I fixed point V1 = 0, and solid black diamonds represent V1 = 0.1D0. In the Simp plot, the open black circles
correspond to V1/D0 = 10−7, 10−6, 10−5,10−4, 10−3 and 0.01 in the direction of the arrow; in the Tχimp plot, only V1 = 0.01D0 is shown
in open black circles for clarity. Data in these figures is not z-averaged and therefore contains spurious oscillations.

of Ĩ , as perturbation theory predicts. At low temperatures, 〈S1 · S2〉 takes the minimum possible value −1/4 in the K-I, AF-
ASC and AF-ALM phases, and the maximum possible value 1/4 in the F-ALM phase; these results are consistent with our
previous analysis that the impurity spins form a spin-1/2 in the K-I, AF-ASC and AF-ALM phases, and a spin-3/2 in the F-
ALM phase. The low-temperature spin correlation in the K-S phase is more interesting: 〈S1 · S2〉 varies smoothly from 1/4 to
0 as Ĩ increases from −1 to Ĩc0 (recall that the K-I phase takes over for Ĩ > Ĩc0 and V1 = 0), and is only weakly dependent on
V1 as long as the system remains in the K-S phase. Therefore, away from the strongly ferromagnetic limit Ĩ = −1, the impurity
spins generally form a superposition of spin-3/2 and spin-1/2 states in the K-S phase, even though the residual spin is always
1/2, with two electrons participating in screening. A similar statement can be made for the F-ASC phase: the impurity spins
form a superposition of spin-3/2 and spin-1/2 states, which couples to one conduction electron to produce a residual spin-1.

In the Kondo model obtained by Schrieffer-Wolff transforming the 3-impurity Anderson model, J11 = J11̄ and Ĩ = −1/4;
in this case it is clear from Fig. 4 that K-S and F-ALM control small- and large-V1 physics respectively as in the strongly
ferromagnetic RKKY limit, whereas the AF-ASC phase sets in for intermediate values of V1 as in the strongly antiferromagnetic
RKKY limit. For J11 = J11̄ = 0.1D0/

√
2, the AF-ASC phase occurs for 0.126 < |V1| /D0 < 0.152; this cannot be realized

by a Schrieffer-Wolff transformation which requires |V1| /J11 . 3/4. However, panel (b) of Fig. 4 indicates that when J11 =
J11̄ . 10−4D0, the critical value of |V1| /J11 at the K-S/AF-ASC transition can be reduced dramatically, well below 3/4. This
strongly suggests that both K-S and AF-ASC (or at least their generalizations) are accessible in an Anderson model, although
F-ALM and AF-ALM may still be out of reach. We will confirm this picture in Sec. IV.

We now examine the K-S/AF-ASC transition, motivated by the observation that a transition of similar nature may exist
in an Anderson model. For J11 = J11̄ = 0.1D0/

√
2, the K-S/AF-ASC transition takes place at |V1| /D0 = vc ≈ 0.126.

Fig. 8 shows the high- to low-temperature crossover of Simp and Tχimp as V1/D0 − vc sweeps from −0.01 to 0.1, and Fig. 9
shows the corresponding behavior of 〈S1 · S2〉. We can explain the unstable critical point separating the two phases as a
simple level crossing of the spin-1/2 doublet ground states in the K-S phase and the spin singlet ground state in the AF-ASC
phase. The doublet and the singlet do not mix, as they belong in different sectors of the Hilbert space. At the critical point,
Simp (T = 0) = − ln (16/3) relative to the 4-site-vacancy graphene, which is greater than the AF-ASC value by ln 3, a signature
of the accidental degeneracy. Moreover, the values of both Tχimp and 〈S1 · S2〉 at the critical point can be obtained as weighted
averages of the K-S value (with weight 2/3) and the AF-ASC value (with weight 1/3). We mention that this simple level crossing
picture also applies to the AF-CR critical point in the single-channel case[63].
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FIG. 7. Equal-time impurity spin correlation 〈S1 · S2〉 in the Kondo model Eq. (3.10) with a logarithmically divergent LDOS given by
Eq. (2.15). Λ = 1.5D0 and J2

11 + J2
11̄ = (0.1D0)2. The topmost solid black circles represent a K-S system in the maximally ferromagnetic

RKKY limit, with Ĩ = −1 and V1 = 0; solid black squares correspond to a K-S system close to the K-S/K-I transition, with Ĩ = 0.4926 and
V1 = 0; the open black symbols represent K-S systems between these two limiting cases, with V1 = 0.02D0, and Ĩ = −0.46, −0.25, −0.04,
0.125 and 0.365 from top to bottom. Solid red up-pointing triangles represent an AF-ASC system with Ĩ = −0.25 (i.e. J11 = J11̄) and
V1 = 0.14D0, solid blue down-pointing triangles represent an AF-ASC system with Ĩ = 0.5 and V1 = 0.1D0, solid cyan diamonds represent
a K-I system with Ĩ = 0.5 and V1 = 0, and solid pink left-pointing triangles represent an F-ASC system with Ĩ = −0.344 and V1 = 0.139D0.
F-ALM systems behave qualitatively similarly to K-S systems with Ĩ < 0, and AF-ALM systems behave qualitatively similarly to AF-ASC
systems with Ĩ > 0.

Finally we briefly discuss the effect of the helicity-0 channel. We assume that the irrelevant couplings J00, J01 and V0

are not too large compared to the relevant couplings, so that the intermediate-coupling phase transition identified in Ref. 68
does not take place. In most cases, these irrelevant couplings merely shift the phase boundaries without modifying the phase
diagram qualitatively. A notable exception is the K-I fixed point. In the p-h symmetric strongly antiferromagnetic RKKY limit
J11 = V1 = 0 and J11̄ 6= 0, we find that V0 by itself or the combination of J00 and J01 does not affect the low-energy K-I
behavior. However, the combination J00 6= 0, J01 = 0 and V0 6= 0 drives the system into the K-S phase, while the combination
J00 = 0, J01 6= 0 and V0 6= 0 drives the system into the AF-ASC phase. Therefore, as with its constant-LDOS analog[75], the
K-I phase is highly fragile against p-h symmetry breaking, and unlikely to be experimentally observed.

We summarize our results on the fixed points of the 3-impurity 3-channel Kondo model Eq. (2.9) in Table II. The results for
Simp (T = 0) and Tχimp are in full agreement with Figs. 5 and 6 upon changing the reference system to graphene with a 4-site
vacancy, i.e. subtracting 2 ln 4 from Simp and 1/4 from Tχimp.

D. Logarithmic LDOS with an infrared cutoff

In a more realistic model of the graphene sheet, the small next-nearest-neighbor hopping t′ between carbon atoms replaces the
zero mode associated with a vacancy by a number of quasi-localized states shifted slightly away from the Dirac point. While the
LDOS remains strongly enhanced near the energies of these quasi-localized states, it is no longer logarithmically divergent[58].
Nevertheless, following Ref. 63, we can fine-tune the Fermi energy to the vacancy-induced peak of the LDOS, and heuristically
model the effect of a next-nearest-neighbor hopping by imposing an infrared energy cutoff X on the LDOS.

To be concrete, we replace ρ (ω) by a constant ρ (X) for |ω| < X in Eq. (2.15), so that the LDOS becomes a large constant
value at small energies. Whereas such a “hard” cutoff scheme is slightly different from the “soft” cutoff adopted in Ref. 63, we
can verify that the two cutoff schemes do not lead to qualitatively different results. In the X → 0 limit our LDOS recovers the
logarithmic divergence in the t′ = 0 case. For our choice of the ultraviolet energy cutoff in the LDOS Λ = 1.5D0, we find
that X/D0 ∼ 0.01 reproduces the LDOS peak height found by solving the tight-binding model[58] with the experimentally
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FIG. 8. Simp and Tχimp versus T in the vicinity of the K-S/AF-ASC phase transition of the Kondo model Eq. (3.10) with a logarithmically
divergent LDOS given by Eq. (2.15). Λ = 1.5D0; J11 = J11̄ = 0.1D0/

√
2, and different curves correspond to different values of V1. The

critical value |V1| /D0 = vc ≈ 0.126 is shown in solid red squares; solid black symbols are in the K-S phase, and open black symbols are
in the AF-ASC phase, with |V1/D0 − vc| = 10−7 (right-pointing triangles), 10−6 (left-pointing triangles), 10−5 (diamonds), 10−4 (down-
pointing triangles), 10−3 (up-pointing triangles), 0.01 (circles) and 0.1 (squares, only for K-S) in the direction of the arrow. Data in these
figures is not z-averaged and therefore contains spurious oscillations.

estimated value t′ ≈ 0.1t[100]. Fig. 10 shows Simp and Tχimp in the K-S phase of the 3-impurity 2-channel Kondo model
Eq. (3.10) as we increase the infrared cutoff X from 0 to 10−2D0, and Fig. 11 shows the corresponding behavior of 〈S1 · S2〉.

At sufficiently low energies T � X , there is no longer any contribution to Simp and Tχimp from the non-normalizable zero
mode, so both Simp and Tχimp recover their values in the constant-LDOS spin-3/2 2-channel Kondo problem in this limit,
namely ln 2 and 1/4. Also, when X is far smaller than TX=0

K (the Kondo temperature at X = 0), the RG flow is still towards
the K-S fixed point in the energy range X � T � TX=0

K . These features are also present in the single-channel case[63]. On the
other hand, asX increases, Figs. 10 and 11 both show an increase of the total impurity spin at low energies, which is particularly
pronounced for larger X (X & 10−4D0). When X = 10−2D0, 〈S1 · S2〉 is close to 1/4, so that the effective spin is almost
completely a spin-3/2; this effective spin controls the physics across a wide range of energies between its formation around
T ∼ 10−3D0 and the onset of screening below T ∼ 10−6D0.

IV. ANDERSON MODEL

Having discussed the 3-impurity Kondo model in great detail, in this section we turn back to our initial approximation of
ignoring the hydrogen impurity and the central A site. This approximation is based on an infinite hydrogen-carbon coupling
strength. Realistic estimates put the hydrogen-carbon coupling around twice the nearest-neighbor hopping between carbon
atoms[43, 44, 101]; it is therefore important to check whether our intuitions from the Kondo model carry over to the full 5-atom
cluster Anderson model. This Anderson model is also represented by the Hamiltonian

H = Hvac +Hhyb +H ′imp; (4.1)

Hvac and Hhyb are already given in Eqs. (2.2) and (2.4). The impurity Hamiltonian has additional terms:
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symbols are in the AF-ASC phase, with |V1/D0 − vc| = 10−8 (hexagons), 10−7 (right-pointing triangles), 10−6 (left-pointing triangles),
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TABLE II. Properties of various fixed points of the 3-impurity 3-channel Kondo model Eq. (2.9). The charge number is measured relative to
half-filling; we assume a negative charge if the p-h symmetry is explicitly broken by potential scattering. Pristine graphene is chosen as the
reference system for Simp and χimp. Spin (1/2)3 refers to three independent spin-1/2 impurities; 0 < 〈S1 · S2〉 ≤ 1/4 in the K-S phase. The
results for K-S and AF-ASC also apply to the 5-atom-cluster Anderson model (see Sec. IV), with the exception that −1/4 ≤ 〈S1 · S2〉 < 0
in the AF-ASC phase of the Anderson model.

Fixed point Stability
Non-

normalizable
zero modes

Spin Charge Helicity
degeneracy Simp Tχimp 〈S1 · S2〉

free-spin symmetric local
moment (LM) unstable 2

(
1
2

)
3

0 - 7 ln 2 1 0

free-spin asymmetric local
moment (free-ALM) unstable 0

(
1
2

)
3

−2 - 3 ln 2 3
4

0

ferromagnetic symmetric
Kondo (K-S) stable 0 1

2
0 - ln 2 1

4
∈
(
0, 1

4

]
ferromagnetic asymmetric

local moment (F-ALM) stable 0 3
2

−2 - ln 4 5
4

1
4

antiferromagnetic symmetric
isospin Kondo (K-I) unstable 0 0 ±1 - ln 2 0 − 1

4

antiferromagnetic asymmetric
strong-coupling (AF-ASC) stable 0 0 −1 - 0 0 − 1

4

antiferromagnetic asymmetric
local moment (AF-ALM) stable 0 1

2
−2 2spin ln 4 1

4
− 1

4

ferromagnetic asymmetric
strong-coupling (F-ASC) stable 0 1 −1 2channel ln 6 2

3
∈
(
0, 1

4

)
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FIG. 11. 〈S1 · S2〉 in the Kondo model Eq. (3.10) with different infrared cutoffs X on the logarithmically divergent LDOS Eq. (2.15).
Λ = 1.5D0; (J11, J11̄, V1) =

(
0.1/
√

2, 0.1/
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D0. The thick line corresponds to X = 0, and X takes the following values along the

direction of the arrow: 10−4, 10−3, 10−2.5 and 0.01.
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H ′imp =

3∑
j=1

(εbnb,j + Unb,j↑nb,j↓) + εana,0 + Una,0↑na,0↓ + εHnH + UHnH↑nH↓

−
[(
tHg

† + t0b
†
1 + t0b

†
2 + t0b

†
3

)
a0 + h.c.

]
. (4.2)

Here we have labeled the hydrogen impurity as g, the central A site a(~0) as a0, and defined na,0α ≡ a†
0αa0α, nHα ≡ g†

αgα,
na,0 = na,0↑ + na,0↓ and nH = nH↑ + nH↓. Compared to Eq. (2.1), Eq. (4.1) has a number of new coupling constants: the
on-site chemical potentials εa and εH , the Hubbard interaction on the hydrogen impurity UH , the hydrogen-carbon coupling
strength tH , and the nearest-neighbor hopping between the central A site and its nearest neighbors t0. t0 is generally different
from t due to the presence of the hydrogen impurity[38]. We also note that, due to the two additional impurity sites, Eq. (4.1)
cannot be mapped to the simple Kondo model Eq. (2.9) even in the limit U ∼ |εb| � t.

Because of the immense size of the parameter space, we now focus on the experimentally relevant regime where all parameters
(including U and UH ) are of comparable magnitudes. We also continue to neglect the helicity-0 channel with a linear LDOS
and keep only the helicity-±1 channels with a logarithmically divergent LDOS. Under these assumptions, quite generally, we
find that the ground state of the system is a charge-neutral spin doublet state when the p-h symmetry breaking terms are weak,
or a spin singlet state with charge +1 (or −1) when the p-h symmetry breaking terms are strong. For reasons that will become
clear later we again call these two phases K-S and AF-ASC respectively.

To be more concrete, we choose U = t, UH = 2.8t, εb = −U/2, tH = 2t and t0 = 0.6t. When εa = −U/2 − 0.7t and
εH = −UH/2, a Hartree-Fock calculation of the LDOS in the full Anderson-Hubbard model (where the Hubbard interaction is
also included inHvac) has been reported to agree qualitatively with density-functional theory results[38]. However, we argue that
the p-h symmetry breaking should be stronger on the hydrogen impurity than on the central A site. In the following we therefore
let εa = −U/2 and vary εH instead, placing the p-h symmetry breaking term on the hydrogen impurity. We nevertheless note
that our results below are not qualitatively modified by the presence of additional p-h symmetry breaking terms on the central A
site or its nearest-neighboring B sites, as long as these terms are not too large compared to t.

Fig. 12 shows the typical behavior of Simp and Tχimp in the K-S and the AF-ASC phases and across the phase transition in
between. The K-S/AF-ASC transition occurs at (εH + UH/2) /t = ε̃c ≈ −1.055, and we tune (εH + UH/2) /t from 0 to −2.
The low-temperature behavior of Simp and Tχimp is completely identical to that of their Kondo model counterparts, not only
inside each phase but also at the transition (cf. Figs. 5 and 8). The K-S/AF-ASC transition can again be explained as a simple
level crossing of the spin-1/2 doublet ground states in the K-S phase and the spin singlet ground state in the AF-ASC phase.
It is also interesting to consider the equal-time spin correlations 〈S1 · S2〉 and 〈S1 · SH〉, where S1 is again the spin on the
nearest-neighbor B site b1, and SH ≡ 1

2

∑
αβ g

†
jασαβgjβ is the spin on the hydrogen impurity; these are plotted in Fig. 13 for

different values of εH . We see that 〈S1 · S2〉 is ferromagnetic in the K-S phase, but becomes antiferromagnetic in the AF-ASC
phase (although now much smaller in magnitude than −1/4), changing sign across the phase transition as in the Kondo model
(cf. Figs. 7 and 9). A similar behavior is seen in 〈S1 · SH〉, i.e. the spin correlation between the hydrogen impurity and the
nearest-neighbor B sites also goes from ferromagnetic to antiferromagnetic across the K-S/AF-ASC transition. On the other
hand, the spin correlations involving the spin on the central A site, S0 ≡ 1

2

∑
αβ a

†
0ασαβa0β , are almost unchanged at the

transition.
Further information of the K-S and AF-ASC phases is given in Fig. 14, where we plot the low-energy expectation values of

the following operators: the total spin on the nearest neighbor B sites (S1 + S2 + S3)2, the total spin on the hydrogen impurity
and the central A site (S0 + SH)2, the total spin on the 5-atom cluster S2

tot ≡ (S1 + S2 + S3 + S0 + SH)2, the occupancy
of a nearest-neighbor B site nb,1, the occupancy of the central A site na,0, and the occupancy of the hydrogen impurity nH .
(S0 + SH)2 is almost unchanged across the phase transition and remains small (less than 1/4) for −2t ≤ εH + UH/2 ≤ 0,
while both (S1 + S2 + S3)2 and S2

tot fall dramatically when the system goes from the K-S phase to the AF-ASC phase. While
(S1 +S2 +S3)2 decreases from 1.6 to 1.0, S2

tot undergoes a sharper drop from 1.7 to 0.8, which is a natural result of 〈S1 · SH〉
changing from ferromagnetic in the K-S phase to antiferromagnetic in the AF-ASC phase. Recalling that the K-S phase has
total spin 1/2 and the AF-ASC phase has total spin 0, we conclude that the spin of the 5-atom cluster is Kondo-screened by
the conducting channels in both the K-S phase and the AF-ASC phase. We stress that, in contrast to the linear-LDOS case[38],
such a Kondo effect does not require a very strong coupling between the 5-atom cluster and the surrounding non-interacting
bath. Meanwhile, nb,1, na,0 and nH all experience a sudden increase across the transition as εH < −UH/2 decreases, which
is consistent with the total charge in the ground state increasing by one; nb,1 increases by the largest amount of the three, from
0.98 to 1.2.

Finally, we briefly discuss the effect of an infrared energy cutoff X of the LDOS on the Anderson model. Fig. 15 shows Simp
and Tχimp for different values of X in both the K-S phase and the AF-ASC phase. Not too surprisingly, the behavior of Simp and
Tχimp approaches the X = 0 case at intermediate energy scales X � T � TX=0

K , while at lower energies T � X , Simp and
Tχimp return to their values in the constant-LDOS version of the model where there is no contribution from non-normalizable
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FIG. 12. Simp and Tχimp versus T in the vicinity of the K-S/AF-ASC phase transition of the Anderson model Eq. (4.1) with a logarithmically
divergent LDOS given by Eq. (2.15). Λ = 1.5D0; U = t, UH = 2.8t, εa = εb = −U/2, tH = 2t, t0 = 0.6t, and different curves correspond
to different values of εH . The critical value (εH + UH/2) /t = ε̃c ≈ −1.055 is shown in solid red squares; solid black symbols are in the
K-S phase, and open black symbols are in the AF-ASC phase. (εH + UH/2) /t = 0 for solid black squares, −0.75 for solid circles, −1.25
for open circles and −2 for open squares. Closer to the transition, |(εH + UH/2) /t− ε̃c| = 10−8 (left-pointing triangles), 10−6 (diamonds),
10−4 (down-pointing triangles), 0.01 (up-pointing triangles) in the direction of the arrows. Data in these figures is not z-averaged and therefore
contains spurious oscillations.

zero modes. While increasing X also leads to an increase in magnitude for the spin correlations 〈S1 · S2〉 and 〈S1 · SH〉, this is
a tiny effect in comparison with the spin correlation of the Kondo model shown in Fig. 11.

To summarize this section, our results indicate that the behavior of the Anderson model which contains the hydrogen impurity
and the four nearest carbon atoms is qualitatively captured by the 3-impurity Kondo model. There exist a p-h symmetric spin-
1/2 K-S phase where the impurity spins align ferromagnetically, and a p-h asymmetric spin-singlet AF-ASC phase where the
impurity spins align antiferromagnetically. It is possible that the K-S/AF-ASC transition picture is applicable to even more
realistic models of the hydrogen impurity: weaker p-h symmetry breaking favors ferromagnetic spin correlation and leads to
magnetic ground states, while stronger p-h symmetry breaking favors antiferromagnetic spin correlation and tends to suppress
the ground state degeneracy.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the Kondo effect associated with a single hydrogen impurity on graphene. The hydrogen
impurity is strongly coupled to the “central” carbon atom directly below it. First we consider the limit of infinite coupling, so
that the hydrogen atom and the central carbon atom are effectively decoupled from the rest of the system, but the C3 rotation
symmetry of the system is preserved. To model the induced magnetization, we place a strong Hubbard interaction on the three
nearest neighbor carbon atoms, creating three magnetic impurities. The remaining graphene sheet with four vacancy sites,
approximated to be nearest-neighbor and non-interacting, supports two conduction channels which hybridizes with the three
impurities with a local density of states diverging logarithmically as a function of energy near the Dirac point, in addition to a
conduction channel whose LDOS vanishes linearly.

We study the resulting 3-impurity, 3-channel Kondo model with the numerical renormalization group method. Couplings to the
conduction channel with a linear LDOS are irrelevant and usually negligible, and the phase diagram is controlled by the Kondo
and potential scattering coupling constants associated with the two conduction channels with a logarithmically divergent LDOS.
The regime where the potential scattering is not too strong sees the competition between a p-h symmetric Kondo phase (K-S)
and a p-h asymmetric strong-coupling phase (AF-ASC). Ferromagnetic RKKY interactions between the magnetic impurities
and weaker potential scattering favor the K-S phase, where the p-h symmetric ground state is a residual spin-1/2 after screening
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FIG. 13. Equal-time impurity spin correlations 〈S1 · S2〉 and 〈S1 · SH〉 in the vicinity of the K-S/AF-ASC phase transition of the Anderson
model Eq. (4.1) with a logarithmically divergent LDOS given by Eq. (2.15). Λ = 1.5D0; U = t, UH = 2.8t, εa = εb = −U/2, tH = 2t,
t0 = 0.6t, and different curves correspond to different values of εH . The critical value (εH + UH/2) /t = ε̃c ≈ −1.055 is shown in solid red
squares; solid black symbols are in the K-S phase, and open black symbols are in the AF-ASC phase. (εH + UH/2) /t = 0 for solid black
squares, −0.75 for solid circles, −1.25 for open circles and −2 for open squares. Closer to the transition, |(εH + UH/2) /t− ε̃c| = 10−8

(left-pointing triangles), 10−6 (diamonds), 10−4 (down-pointing triangles), 0.01 (up-pointing triangles) in the direction of the arrows.
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FIG. 14. Low-energy total impurity spins and orbital occupancies as a function of εH in the Anderson model Eq. (4.1) with a logarithmically
divergent LDOS given by Eq. (2.15). See main text for an explanation of the plotted quantities. Λ = 1.5D0; U = t, UH = 2.8t, εa = εb =
−U/2, tH = 2t, t0 = 0.6t.

by the two conduction channels, and the impurity spins tend to align ferromagnetically. On the other hand, antiferromagnetic
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FIG. 15. Simp and Tχimp in the Anderson model Eq. (4.1) with different infrared cutoffs X on the logarithmically divergent LDOS Eq. (2.15).
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takes the following values along the direction of the arrows: 10−8, 10−6, 10−4, 10−3, and 0.01.

RKKY interactions and stronger potential scattering favor the AF-ASC phase, where the ground state is a spin singlet with
one electron removed from or added to half filling, and the impurity spins align antiferromagnetically. In the strong potential
scattering regime, the potential scattering coupling strength renormalizes to infinity, and the magnetic impurities decouple from
the conduction channels, forming a local moment whose size depends on the RKKY interactions.

Relaxing the approximation of infinite hydrogen-carbon hybridization, we obtain an Anderson model with 5 impurity sites:
the hydrogen atom, the central carbon atom and its three nearest neighbors in the tight-binding model. For realistic Hubbard
interaction strengths on impurities, we find through NRG that the ground state is the p-h symmetric spin-1/2 K-S phase when
the p-h symmetry breaking is not too strong, and the particle-hole asymmetric spin singlet AF-ASC phase otherwise. Kondo
screening is shown to take place in both phases of the Anderson model. In the K-S phase, the spins of the nearest neighbor
carbon atoms align ferromagnetically with each other and with the spin of the hydrogen atom, whereas in the AF-ASC phase
they align antiferromagnetically with each other and with the hydrogen spin.These provide evidence that our 3-impurity Kondo
model approximation is qualitatively reasonable.

Many open questions remain to be answered. First of all, we have assumed throughout this work that the bulk chemical
potential is fine-tuned to the singularity of the vacancy-induced logarithmically divergent LDOS, which coincides with the zero
point of the bulk density of states. Perturbations at the LM fixed point are thus strongly relevant for the helicity-1, 1̄ channels with
a logarithmically divergent LDOS, and strongly irrelevant for the helicity-0 channel with a linear LDOS. If the bulk chemical
potential is shifted by an applied gate voltage, it is interesting to check whether the helicity-0 channel will have a progressively
more important influence on the Kondo temperature and the transport properties of the system, as one may expect from results
on the single-channel Kondo problem in gated or doped graphene[57, 102–105].

As a closely related point, in obtaining the 5-impurity Anderson model, we have neglected the next-nearest-neighbor hopping
between carbon atoms. While imposing an infrared cutoff on the logarithmically divergent LDOS partially mimics its effects[58],
the next-nearest-neighbor hopping will also change the wave functions of the bulk conduction electrons and their coupling to
the hydrogen impurity. A more careful treatment of the next-nearest-neighbor hopping is thus necessary for a quantitative
comparison with experiments.

The electron-electron interaction on carbon atoms farther away from the hydrogen impurity than the three nearest neighbors is
another essential ingredient in a more realistic model, since experiments have shown that the spin-polarized state induced by the
hydrogen impurity has a large spatial extension[40]. Such interactions have been taken into account in previous studies within the
Hartree-Fock approximation[11, 38] and using dynamical mean-field theory[14, 16]. To the best of our knowledge, it is not clear
how the vacancy-induced non-normalizable zero modes behave in the presence of bulk electron-electron interactions when they
are not strong enough to turn graphene into a Mott insulator. Addressing this issue will be useful for a theoretical understanding
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of the unusually long-ranged coupling between the magnetic moments induced by different hydrogen adatoms[40, 106].
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Appendix A: Conduction channels at low energies

In this appendix we derive the low-energy behavior of the three conduction channels of definite helicities, Eqs. (2.13a),
(2.13b) and (2.13c). This is achieved by diagonalizing the non-interacting Hamiltonian with a 4-site vacancy Hvac and finding
the scattering state wave functions.

The vacancy can be implemented by strong potential scattering: Hvac = H0 + Vi, with H0 describing the translationally
invariant pristine graphene,

H0 = −t
∑

~R

{[
b†
(
~R
)

+ b†
(
~R− ~a2

)
+ b†

(
~R− ~a1

)]
a
(
~R
)

+ h.c.
}

, (A1)

and Vi simulating the vacancy,

Vi = U1a
†
(
~0
)
a
(
~0
)

+ U2

[
b†
(
~0
)
b
(
~0
)

+ b† (−~a2) b (−~a2) + b† (−~a1) b (−~a1)
]

. (A2)

The limit U2 → ±∞ corresponds to the vacancy sites a(~0), b(~0), b (−~a2) and b (−~a1). Physically we do not expect the value of
U1 to affect the scattering state wave functions in the U2 → ±∞ limit, because a(~0) will be isolated from the other sites.

We will work in the basis of the H0 eigenstates. These are given by

(
ψ+~k

ψ−~k

)
=

1√
2

 1 − 1+e−i
~k·~a1+e−i

~k·~a2

|1+ei
~k·~a1+ei

~k·~a2 |
1 1+e−i

~k·~a1+e−i
~k·~a2

|1+ei
~k·~a1+ei

~k·~a2 |

( a~k
b~k

)
; (A3)

here we have performed the Fourier transform

a
(
~R
)

=

∫
1BZ

d2k√
S1BZ

ei
~k·~Ra~k,

b
(
~R
)

=

∫
1BZ

d2k√
S1BZ

ei
~k·~Rb~k, (A4)

where S1BZ = 8π2/(
√

3a2) is the area of the hexagonal first Brillouin zone. It is straightforward to rewrite H0 and Vi in terms
of ψ±,

H0 =

∫
1BZ

d2kε~k

(
ψ†

+~k
ψ+~k − ψ

†
−~k
ψ−~k

)
, (A5)

with the dispersion

ε~k = t
∣∣∣1 + ei

~k·~a1 + ei
~k·~a2

∣∣∣ , (A6)

and
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Vi =
1

2

∫
1BZ

d2kd2k′

S1BZ

{[
U1

(
ψ†

+,~k
+ ψ†

−,~k

)(
ψ+,~k′ + ψ−,~k′

)]
+ U2

[
1 + ei(

~k−~k′)·~a1 + ei(
~k−~k′)·~a2

]
×1 + e−i

~k·~a1 + e−i
~k·~a2∣∣∣1 + ei~k·~a1 + ei~k·~a2
∣∣∣ 1 + ei

~k′·~a1 + ei
~k′·~a2∣∣∣1 + ei~k′·~a1 + ei~k′·~a2

∣∣∣
(
ψ†

+,~k
− ψ†

−,~k

)(
ψ+,~k′ − ψ−,~k′

) . (A7)

The scattering states are given by

φ†
±,~p = ψ†

±,~p +

∫
1BZ

d2p′
[
G±,+ (~p, ~p′)ψ†

+,~p′ +G±,− (~p, ~p′)ψ†
−,~p′

]
, (A8)

where for λ, λ′ = ±1, Gλ,λ′ (~p, ~p′) (λε~p − λ′ε~p′) is finite. By definition φ diagonalizes Hvac:

[
Hvac, φ

†
±,~p

]
= ±ε~pφ†

±,~p. (A9)

The energy eigenvalues are those of the H0 eigenstates because the impurity is localized. This equation is then solved for
Gλ,λ′ (~p, ~p

′).
In the limit of U2 → ±∞, the scattering states are indeed independent of U1:

φ†
+,~p = ψ†

+,~p +

∫
1BZ

d2k

S1BZ

(
− 1

ε~p − ε~k + i0
ψ†

+,~k
+

1

ε~p + ε~k + i0
ψ†
−,~k

)
1

3
2L (ε~p + i0)− ε~p

6t2 [−2 + ε~pL (ε~p + i0)]

×

[1 + ei(
~k−~p)·~a1 + ei(

~k−~p)·~a2
] 1 + ei~p·~a1 + ei~p·~a2

|1 + ei~p·~a1 + ei~p·~a2 |
1 + e−i

~k·~a1 + e−i
~k·~a2∣∣∣1 + ei~k·~a1 + ei~k·~a2
∣∣∣ − 1

2

{
1−

L (ε~p + i0)
ε~p
3t2 [−2 + ε~pL (ε~p + i0)]

}
ε~pε~k
t2

 .

(A10)

The negative-energy states are found by interchanging + with −, and inverting the signs of all absolute values. We have
introduced the shorthand

L (z) ≡
∫

1BZ

d2q

S1BZ

2z

z2 − ε2~q
. (A11)

It is useful to give a low-energy asymptotic formula for L (ω+) ≡ L (ω + i0), valid for |ω| � Λ ∼ t, obtained by only keeping
contributions from near the two Dirac points:

L
(
ω+
)
≈ 2

√
3a2

8π2

∫
d2k

2ω+

(ω+)
2 − v2

F k
2
≈ − 2ω√

3πt2

(
ln

Λ2
0

ω2
+ iπ sgnω

)
, (A12)

where Λ0 = Λe
π

6
√

3 is another ultraviolet energy cutoff.
Using Eqs. (A4) and (A3), we can rewrite a in terms of φ:

a
(
~R
)

=
1√
2

∫
1BZ

d2p√
S1BZ

[(
ei~p·

~R − 1

L (ε~p + i0)− L (~a1, ε~p + i0)

{
1 + ei~p·~a1 + ei~p·~a2

|1 + ei~p·~a1 + ei~p·~a2 |

[
L̃
(
−~R, ε~p + i0

)
+e−i~p·~a1L̃

(
−~R− ~a1, ε~p + i0

)
+ e−i~p·~a2L̃

(
−~R− ~a2, ε~p + i0

)]
+

1

2

[
1− 3t2

ε~p

L (ε~p + i0)

−2 + ε~pL (ε~p + i0)

]
×

[
2ε~p
t2
δ~R~0 −

ε2~p
t2
L
(
~R, ε~p + i0

)]})
φ+,~p + (ε~p → −ε~p)

]
, (A13)

where the ε~p → −ε~p part is the contribution from the negative energy eigenstates φ−,~p, and we have further defined
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L
(
~R, z
)
≡
∫

1BZ

d2k

S1BZ
ei
~k·~R 2z

z2 − ε2~k
, (A14)

L̃
(
~R, z
)
≡
∫

1BZ

d2k

S1BZ
ei
~k·~R

2t
(

1 + ei
~k·~a1 + ei

~k·~a2
)

z2 − ε2~k
. (A15)

It is useful to note that L
(
~R, z
)

have all the symmetries of the hexagonal lattice, and that L (~a1, z) is related to L (z) by

3 [L (z) + 2L (~a1, z)] =
1

t2
[
−2z + z2L (z)

]
. (A16)

According to Eq. (A13), the symmetric linear combinations a1,2,3 have the form

a1 =
1

2

∫
1BZ

d2p√
S1BZ

[(
ei~p·~a1 + ei~p·~a2

)
− 1

L (ε~p + i0)− L (~a1, ε~p + i0)

(
1 + ei~p·~a1 + ei~p·~a2

|1 + ei~p·~a1 + ei~p·~a2 |

×
{
−2

t
+
ε~p
t

[L (ε~p + i0)− L (~a1, ε~p + i0)]

}
−

ε~p
3t2

[−2 + ε~pL (ε~p + i0)] +
ε~p
3

L (ε~p + i0)L (~a1, ε~p + i0)

−2 + ε~pL (ε~p + i0)

)]
× φ+,~p + (ε~p → −ε~p) , (A17a)

a2 =
1

2

∫
1BZ

d2p√
S1BZ

[(
e−i~p·~a2 + ei~p·(~a1−~a2)

)
− 1

L (ε~p + i0)− L (~a1, ε~p + i0)

(
1 + ei~p·~a1 + ei~p·~a2

|1 + ei~p·~a1 + ei~p·~a2 |
e−i~p·~a2

×
{
−2

t
+
ε~p
t

[L (ε~p + i0)− L (~a1, ε~p + i0)]

}
−

ε~p
3t2

[−2 + ε~pL (ε~p + i0)] +
ε~p
3

L (ε~p + i0)L (~a1, ε~p + i0)

−2 + ε~pL (ε~p + i0)

)]
× φ+,~p + (ε~p → −ε~p) , (A17b)

a3 =
1

2

∫
1BZ

d2p√
S1BZ

[(
ei~p·(~a2−~a1) + e−i~p·~a1

)
− 1

L (ε~p + i0)− L (~a1, ε~p + i0)

(
1 + ei~p·~a1 + ei~p·~a2

|1 + ei~p·~a1 + ei~p·~a2 |
e−i~p·~a1

×
{
−2

t
+
ε~p
t

[L (ε~p + i0)− L (~a1, ε~p + i0)]

}
−

ε~p
3t2

[−2 + ε~pL (ε~p + i0)] +
ε~p
3

L (ε~p + i0)L (~a1, ε~p + i0)

−2 + ε~pL (ε~p + i0)

)]
× φ+,~p + (ε~p → −ε~p) .

For the helicity-±1 combinations ch=1 and ch=1̄, at low energies it is permissible to keep only the terms that are logarithmically
divergent at the Dirac points:

ch=1 =
1√
3

(
a1 + ei

2π
3 a2 + e−i

2π
3 a3

)
≈ 1

3
1
4

√
2

∫
d2k

 ieiθ~kφ ~K,+,~k

k
(

ln Λ2

v2F k
2 + iπ

) +
ieiθ~kφ ~K,−,~k

−k
(

ln Λ2

v2F k
2 − iπ

)
 , (A18)

ch=1̄ =
1√
3

(
a1 + e−i

2π
3 a2 + ei

2π
3 a3

)
≈ 1

3
1
4

√
2

∫
d2k

 ie−iθ~kφ ~K′,+,~k

k
(

ln Λ2

v2F k
2 + iπ

) +
ie−iθ~kφ ~K′,−,~k

−k
(

ln Λ2

v2F k
2 − iπ

)
 . (A19)

Here φ ~K,±,~k ≡ φ±, ~K+~k. On the other hand, for the helicity-0 linear combination ch=0, the divergent terms are suppressed by
O
(
k2 ln k

)
at low energies, and the constant incident terms dominate instead:
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ch=0 =
1√
3

(a1 + a2 + a3)

=
1

2
√

3

∫
1BZ

d2p√
S1BZ

({
−3 +

L (ε~p + i0)

L (ε~p + i0)− L (~a1, ε~p + i0)

[
ε2~p
t2
−

ε~pL (~a1, ε~p + i0)

−2 + ε~pL (ε~p + i0)

]}
φ+,~p + (ε~p → −ε~p)

)

≈ − 3
3
4 a

4
√

2π

∫
d2k

(
φ ~K,+,~k + φ ~K′,+,~k + φ ~K,−,~k + φ ~K′,−,~k

)
. (A20)

We now take advantage of the rotational invariance at low energies, and introduce angular momentum eigenmodes labeled by
the quantum number m:

φ ~K/ ~K′,±,~k =
1√
2πk

∞∑
m=−∞

eimθ~k φ̃ ~K/ ~K′,m,±|k|. (A21)

These eigenmodes φ̃ obey

{
φ̃ ~K,m,k, φ̃

†
~K,m′,k′

}
= δmm′δ (k − k′) , (A22)

and in terms of φ̃,

HVac =

∫ ∞
−∞

dk vF k
∑
m

(
φ̃†
~K,m,k

φ̃ ~K,m,k + φ̃†
~K′,m,k

φ̃ ~K′,m,k

)
. (A23)

Inserting Eq. (A21) into Eqs. (A18), (A19) and (A20) then yields Eqs. (2.13a), (2.13b) and (2.13c).

Appendix B: Non-normalizable zero modes

This appendix elaborates on the zero modes of the infinite graphene sheet with 4 vacancy sites. As discussed in Sec. II, these
non-normalizable zero modes are responsible for the logarithmic divergence in the LDOS of our impurity models. We will solve
the lattice Schrödinger equation by generalizing the method of Ref. 59, give the long-distance asymptotics of the two solutions,
and briefly discuss their fate in the strong-coupling regime of the impurity models.

It is convenient to relabel the lattice sites as in Fig. 16, with the two solid red lines dividing the plane into three parts: the left
half-plane with a zigzag edge, the right half-plane with a “bearded” edge, and the middle strip that contains the four vacancy
sites. The zero mode wave functions vanish on the entire B sublattice, so we focus on the wave function on the A sublattice,
which we denote as φl,j ; here l is an integer and j is either an integer or a half-integer, but l + 2j is always even.

Away from the vacancy, the Schrödinger equation at zero energy reads

φl,j + φl,j+1 + φl−1,j+ 1
2

= 0; (B1)

this allows the expansion of the zero mode wave function on the left half-plane in edge states of the zigzag edge[107],

φl,j =

∫ 4π
3a

2π
3a

dk

2π

(
−2 cos

ka

2

)−l−1

eikjaφLk (l ≤ −1) . (B2)

as well as the expansion on the right half-plane in edge states of the bearded edge,

φl,j =

∫ 2π
3a

− 2π
3a

dk′

2π

(
−2 cos

k′a

2

)−l+1

eik
′jaφRk′ (l ≥ 1) . (B3)

Inserting these expansions into the l = 0 and l = 1 equations and eliminating φ0,j , we have
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FIG. 16. The alternative labeling scheme of 4-site-vacancy graphene lattice sites used in Appendix B. We divide the lattice into three parts: the
left half-plane with a zigzag edge (l < 0), the right half-plane with a “bearded” edge (l > 0), and a middle strip that contains the 4 vacancy
sites (l = 0).

∫ 2π
3a

− 2π
3a

dk′

2π
eik
′(j+ 1

2 )a
(

2 cos
k′a

2

)2

φRk′ =

∫ 4π
3a

2π
3a

dk

2π
eik(j+

1
2 )aφLk , (B4)

which is true for any integer j as long as j 6= 0 and j 6= −1. Using the relation

∫ 2π
3a

− 2π
3a

dk′

2π
eik
′ja = −

∫ 4π
3a

2π
3a

dk

2π
eikja (B5)

valid for nonzero integer j, we find two nontrivial solutions by inspection:

φ
L,(1)
k = −e−i ka2 , φR,(1)

k′ =
e−i

k′a
2(

2 cos k
′a
2

)2 (B6)

and

φ
L,(2)
k = −ei ka2 , φR,(2)

k′ =
ei
k′a
2(

2 cos k
′a
2

)2 . (B7)

These solutions are linearly independent, and are therefore the only zero energy solutions allowed[58].
We can show the long-distance asymptotic behavior of these solutions is given by

φ
(1)
l,j ∼ (−1)

l+1 1

2π

(
ei

2π
3 je−i

π
3

1

x+ iy
+ e−i

2π
3 jei

π
3

1

x− iy

)
, (B8)

and

φ
(2)
l,j ∼ (−1)

l+1 1

2π

(
ei

2π
3 jei

π
3

1

x+ iy
+ e−i

2π
3 je−i

π
3

1

x− iy

)
, (B9)

where x =
√

3la/2, y = ja, and r =
√
x2 + y2 →∞. For instance, on the right half-plane, the first solution
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φ
(1)
l,j =

∫ 2π
3a

− 2π
3a

dk′

2π

(
−2 cos

k′a

2

)−l+1

eik
′ja e−i

k′a
2(

2 cos k
′a
2

)2 (B10)

is dominated by momenta near k′a = ±2π/3 when l� 1:

φ
(1)
l,j ≈ (−1)

l+1
ei

2π
3 je−i

π
3

∫ 2π
3a

2π
3a−Λ̃

dk′

2π
e

[√
3

2 (l−1)+ij
]
(k′a− 2π

3 )

+ (−1)
l+1

e−i
2π
3 jei

π
3

∫ − 2π
3a+Λ̃

− 2π
3a

dk′

2π
e

[
−
√

3
2 (l−1)+ij

]
(k′a+ 2π

3 ) (B11)

where Λ̃ is a momentum cutoff of O (1/a). Performing the integrals and taking the Λ̃→∞ limit, we promptly obtain Eq. (B8).
Eqs. (B8) and (B9) suggest that the linear combinations e−i

π
3 φ(1) − eiπ3 φ(2) and ei

π
3 φ(1) − e−iπ3 φ(2) are eigenstates of the C3

rotation, which is indeed the case: the former has helicity 1 and the latter has helicity 1̄.
Since φ(1) and φ(2) are linearly independent, we are unable to construct a normalizable zero mode whose wave function drops

to zero faster than 1/r as r =
√
x2 + y2 → ∞. However, if we consider removing even more sites from the graphene lattice,

more than two zero modes may be allowed. (The simplest example of removing a site together with its three nearest neighbors
and six next nearest neighbors produces |1 + 6− 3| = 4 zero modes.) In such a situation, at most two zero modes decaying as
1/r are linearly independent, which we can choose as 1/ (x+ iy) and 1/ (x− iy); any other zero mode can be combined with
these two non-normalizable modes to yield a wave function that decays faster than 1/r. In other words, at most two conduction
channels have a logarithmically divergent LDOS.

We conclude this appendix by explaining why the zero modes cease to exist in the “strong-coupling lattice”. The removal
of c1 and c1̄ from the original lattice amounts to the condition that the corresponding wave functions vanish. We can directly
calculate these wave functions for the two solutions:

c
(1)
1 = c

(2)

1̄
= − e

i 2π3
√

6a
, c

(1)

1̄
= c

(2)
1 = −e

−i 2π3
√

6a
. (B12)

It is easy to verify that ch̄ vanishes for the helicity-h zero mode e−ih
π
3 φ(1) − eihπ3 φ(2). However, ch does not vanish for the

helicity-h solution, which means the electronic states c1 and c1̄ cannot be projected out without removing both zero modes.

Appendix C: RKKY interaction in graphene with a 4-site vacancy

In this appendix we calculate the RKKY interaction between magnetic impurities in the Kondo model Eq. (2.9) to the second
order in the Kondo couplings. We show that the RKKY interaction at low temperatures is dominated by the helicity 1 and 1̄
channels, and remains ferromagnetic despite the presence of the vacancy.

Following Ref. 91, to the second order in Kondo couplings Jhh′ , we can write the RKKY interaction between b1 and b2 as

HRKKY,12 = −
[
J2

00χ00 + J2
11 (χ11 + χ1̄1̄) + J2

11̄

(
ei

2π
3 χ11̄ + e−i

2π
3 χ1̄1

)
+J2

01

(
ei

2π
3 χ01 + ei

2π
3 χ1̄0 + e−i

2π
3 χ01̄ + e−i

2π
3 χ10

)]
S1 · S2, (C1)

where the (isothermal) static spin susceptibilities χhh′ are evaluated using Wick’s theorem for the non-interacting Hamiltonian
with a 4-site vacancy HVac,

χhh′ ≡ −
1

4

∫ β

0

dτGchh (τ)Gch′h′ (−τ) . (C2)

The factor of 1/4 comes from spin degrees of freedom, and β = 1/T . The imaginary time Green’s function Gc is defined by

Gchh′ (τ) ≡ −
〈
Tτ ch (τ) c†h′ (0)

〉
. (C3)
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Gc is diagonal in the helicity index, and may be expressed as linear combinations of the real space Green’s functionGaa
(
~R, ~R′, τ

)
≡

−
〈
Tτa

(
~R, τ

)
a†
(
~R′, 0

)〉
.

We proceed to find Gaa by solving its equation of motion (coupled with that of Gba (τ) ≡ −
〈
Tτ b (τ) a† (0)

〉
) in momentum

space[60, 61]. The result is

Gaa

(
~R, ~R′, iωn

)
=

1

2
L
(
~R− ~R′, iωn

)
− 1

2

1

L (iωn)− L (~a1, iωn)

{
L̃
(
−~R, iωn

)
L̃
(
−~R′, iωn

)
+ L̃

(
−~R− ~a1, iωn

)
L̃
(
−~R′ − ~a1, iωn

)
+ L̃

(
−~R− ~a2, iωn

)
L̃
(
−~R′ − ~a2, iωn

)
− 1

t2
(iωn)

2
L
(
~R, iωn

)
×L

(
~R′, iωn

) L (~a1, iωn)

L (iωn) + 2L (~a1, iωn)

}
, (C4a)

where the fermionic Matsubara frequency iωn = (2n+ 1)π/β. With the help of Eq. (A16) and the identity

z2

t2
L (~a1, z) = [L (z) + 5L (~a1, z) + 2L (~a1 + ~a2, z) + L (2~a1, z)] , (C5)

we find Gchh in particularly simple forms:

Gc00

(
ω+
)

=
ω+

2t2
− 3

2

L (ω+)

−2 + ω+L (ω+)
≈ ω

3t2
−
√

3

2π

ω

t2

(
ln

Λ2

ω2
+ iπ sgnω

)
, (C6)

Gc11

(
ω+
)

= Gc1̄1̄

(
ω+
)

=
ω+

2t2
+

6

−2ω+ +
[
(ω+)

2 − 9t2
]
L (ω+)

≈ π√
3

1

ω
(
ln Λ2

ω2 + iπ sgnω
) . (C7)

The low-energy expressions of these Green’s functions can also be found from Eqs. (2.13a), (2.13b) and (2.13c). One can show,
term by term, that Gchh (z) is analytic everywhere except on the real axis.

We are ready to compute χhh′ :

χhh′ = − 1

4β

∑
iωn

Gchh (iωn)Gch′h′ (iωn) =
1

4

∫ ∞
−∞

dω

2πi
nF (ω)

[
Gchh

(
ω+
)
Gch′h′

(
ω+
)
−Gchh

(
ω−
)
Gch′h′

(
ω−
)]

=
1

2

∫ ∞
−∞

dω

2π
nF (ω)

[
ImGchh

(
ω+
)

ReGch′h′
(
ω+
)

+ ReGchh
(
ω+
)

ImGch′h′
(
ω+
)]

, (C8)

where nF (ω) = 1/
(
eβω + 1

)
, ω± ≡ ω ± i0, and we have deformed the contour of integration into two straight lines Im z =

±0+.
While χ00 and χ01 = χ01̄ = χ10 = χ1̄0 are finite, it turns out that χ11 = χ11̄ = χ1̄1 = χ1̄1̄ is divergent for temperatures

T � Λ:

χ11 ∼
π2

3

∫ Λ

−Λ

dω

2π
nF (ω)

−π sgnω ln Λ2

ω2

ω2
(
ln2 Λ2

ω2 + π2
)2

=
π2

6

∫ Λ

−Λ

dω

[
nF (ω)− 1

2

] − sgnω ln Λ2

ω2

ω2
(
ln2 Λ2

ω2 + π2
)2

∼ π2

3

1

T ln3 Λ2

T 2

. (C9)

Inserting this into Eq. (C1), we find that at TK � T � Λ, the RKKY interaction can be approximated as

HRKKY,12 ∼
[
J2

11̄ (T )− 2J2
11 (T )

] π2

3

1

T ln3 Λ2

T 2

S1 · S2, (C10)
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where Jhh′ (T ) are the renormalized Kondo couplings at energy scale T .
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