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ABSTRACT

Abstract

The analysis of the structural and the dynamical behavior of biomolecules is very important to under-

stand their biological function, stability or physico-chemical properties. In this thesis, it is highlighted

how di↵erent theoretical methods to characterize the aforementioned structural and dynamical properties

can be used and combined, to obtain kinetic information or to detect biomolecule-ligand interactions.

The basis for most of the analyses, performed in the course of this work, are molecular dynamics sim-

ulations sampling the conformational space of the biomolecule of interest. Using molecular dynamics

simulations, the remarkable stable water-soluble-binding-protein is examined first. On a theoretical ba-

sis, structural modifications that can influence the stability of the protein are discussed. Additionally,

by combining the simulations with a QM/MM optimization scheme and quantum chemical calculations,

spectroscopical properties can be investigated.

Markov State Models are applied frequently to capture the slow dynamics within simulation trajectories.

They are based on a discretization of the conformational space. This discretization, however, introduces

an error in the outcome of the analysis. The application of a core-set discretization can reduce this error.

In this thesis, it is discussed how density-based cluster algorithms can be used to determine these core

sets, and the application on linear and cyclic peptides is highlighted. The performance of a promising

cluster algorithm is investigated and error sources in the construction of the Markov models are discussed.

Finally, it is shown how molecular docking combined with molecular dynamics simulations can be used

to determine the binding behavior of ligands towards biomolecules. In this context, the important in-

teractions within the active site of an enzyme, and di↵erent binding modes of DNA intercalators are

identified.
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ZUSAMMENFASSUNG

Zusammenfassung

Die Analyse der strukturellen und dynamischen Eigenschaften von Biomolekülen ist wichtig, um ihre bio-

logische Funktion, ihre Stabilität oder ihre physikalisch-chemischen Eigenschaften zu verstehen. In dieser

Arbeit wird gezeigt, wie unter Verwendung und Kombination verschiedener theoretischer Methoden, die

strukturelle und dynamische Eigenschaften charakterisieren können, kinetische Information erhalten oder

Biomolekül-Ligand-Wechselwirkungen detektiert werden können.

Als Basis für die meisten in dieser Arbeit verwendeten Analysen dienen moleküldynamische Simulatio-

nen, in denen der Konformationsraum des untersuchten Biomoleküls gesampelt wird. Im ersten Teil

dieser Arbeit wird mit Hilfe der moleküldynamischen Simulationen die hervorzuhebende Stabilität des

wasserlöslichen, Chlorophyll-bindenden Proteins erforscht. Auf theoretischer Ebene werden Modifika-

tionen, welche die Stabilität des Proteins beeinflussen können, diskutiert. In Kombination mit einem

QM/MM-Optimierungsschema und quantenchemischen Berechnungen werden zudem spektroskopische

Eigenschaften untersucht.

Markov Modelle werden häufig verwendet, um die langsamen Dynamiken innerhalb der Simulations-

trajektorien einzufangen. Die Modelle basieren auf einer Diskretisierung des Konformationsraumes.

Diese Diskretisierung führt jedoch zu einem Fehler in der Analyse. Unter Verwendung einer Core-Set-

Diskretisierung ist eine Reduzierung des Fehlers möglich. In dieser Arbeit wird diskutiert, wie man mit

Hilfe von dichte-basierten Clusteralgorithmen diese Core-Sets bestimmen kann und deren Anwendung

an linearen und cyclischen Peptiden aufgezeigt. Des Weiteren wird die Leistungsfähigkeit eines vielver-

sprechenden Clusteralgorithmus untersucht und Fehlerquellen in der Konstruktion von Markov Modellen

diskutiert.

Abschließend wird gezeigt, wie Dockinguntersuchungen in Kombination mit moleküldynamischen Simula-

tionen genutzt werden können, um das Bindungsverhalten von Liganden zu Biomolekülen zu bestimmen.

Wichtige Wechselwirkungen im aktiven Zentrum eines Proteins werden identifiziert und die Bindungsarten

von DNS-Interkalatoren untersucht.
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1 INTRODUCTION

1 Introduction

Analyzing properties of biomolecular systems on a theoretical level has become quite important in the last

few decades. Frequently applied techniques in this context are computational simulations [1]. They can

be based on a classic mechanical level [2], sometimes incorporating quantum mechanical e↵ects [3]. The

simulations can be used to model the dynamics of the biomolecule in order to understand its structural

and dynamical properties [4] as well as its function [5], and to interpret experimental findings [6]. Tools

such as Markov State Models [7–14], clustering [15–17] and other methods accounting for intramolecu-

lar stability of the biomolecule [18–20], provide insights into the biomolecular metastable conformations,

kinetics and further dynamical properties. Besides computational simulations, other techniques such as

binding mode prediction of biomolecule-ligand interactions using molecular docking [21–23], or theoretical

spectroscopy [24, 25] are performed frequently.

The aim of this section is to provide a general overview over the analyzed systems and the methods used

in this thesis. For the latter, the focus lies on applications, advantages and drawbacks. The corresponding

theory behind these methods is discussed in section 2.

1.1 Investigated Biomolecules

1.1.1 Proteins and Peptides

Proteins are important biomolecules, which can be found within intra- and extracellular environments.

Their function is quite diverse. They can, for example, e�ciently and selectively catalyze chemical reac-

tions in cells, act as transmitters, or provide structural properties for the cell’s stability and flexibility.

Proteins are therefore an important research topic regarding diseases [26–29], catalysis [30–32], and the

understanding of cell properties [33, 34].

Proteins, and their smaller versions peptides, consist of building blocks, called amino acids, forming a

polymer. Each protein has a primary sequence of these amino acids, determining its overall structure and

function. Two amino acids are connected via a peptide bond that is formed by a condensation reaction

(see figure 1.1). There exist 20 canonical amino acids in all living creatures. Each amino acid consists of

a backbone and a side chain, where the latter varies for every amino acid and features di↵erent bulkiness,

polarity and functionality.

1
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+ +

Figure 1.1: Reaction of two amino acids to a dipeptide. The amino acids in the dipeptide are connected

via a peptide bond.

The sequence of amino acids is called primary structure. The spatial arrangement of this chain, also called

protein folding, is achieved by interactions of the amino acids. Hydrogen bonding of the backbone forms

the secondary structure. The main motives are ↵-helical structures and extended structures (�-sheets)

linked by turns, loops or random coils. The structural arrangement of an ↵-helix and a �-sheet is pre-

sented in figure 1.2.

Carbon

Oxygen

Nitrogen

Hydrogen

Side chain

1

Figure 1.2: Main secondary structure motives of proteins: ↵-helix (left) and �-sheet (right). Backbone

hydrogen bonds are highlighted.

Each secondary structure motive can be classified by analyzing the dihedral angles of the backbone. The

backbone of an amino acid residue in a peptide chain has three torsion angles !, � and  (figure 1.3).

As the peptide bond features a partial double-bond character, ! is usually assumed to be fixed while the

angles � and  can rotate freely. The only exception is the amino acid proline, where the rotation around

� is limited. The combination of � and  can be displayed using a Ramachandran plot [35], where each

combination accounts for a specific secondary structure arrangement (figure 1.3).

2
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Carbon

Oxygen

Nitrogen

Hydrogen

Side chain

1

Figure 1.3: Dihedral angles !, � and  of the amino acid backbone (left). Distribution of angles � and

 of alanine dipeptide depicted in a Ramachandran plot (right). Corresponding secondary structures are

highlighted. As the angle ! is usually fixed due to a partial double bond character, it is not displayed in

the plot.

In addition to the backbone interactions, interactions of the side chains form the tertiary structure of

the protein. These interactions include ionic interactions by charged residues, hydrogen bonding by polar

amino acids or hydrophobic interactions by nonpolar amino acids between side chain and/or backbone

moieties. Another possible interaction is the formation of a covalent disulfide bridge between two cysteines.

For some proteins, an interaction of multiple folded proteins is observed forming the quarternary structure.

The structure of a peptide is not entirely limited to the folding of the linear amino acid chain. It can

also incorporate covalent bonds between di↵erent amino acids forming a cyclic peptide. This peptide can

either be connected via its backbone connecting both termini, as in cyclosporines [36, 37], and/or via its

side chains, as in amanitin [38]. Also, a connection between a terminus and a side chain is possible [39].

The cyclization of a peptide can improve its stability [40, 41], can limit its conformational space [42]

and/or can increase its membrane permeability. The capability of passive membrane di↵usion di↵ers for

every cyclic peptide and is a recent field of research [43–47].

Proteins catalyzing chemical reactions are called enzymes and are classified with respect to their reaction

type. Ligases, for example, form covalent bonds which can be split by hydrolases catalyzing hydrolysis,

or oxidoreductases catalyzing redox reactions. For the reaction the substrate(s) have to bind to the active

center of the molecule. This active center consists of a binding site and a catalytic site [48]. Due to

the constitution of the binding site, enzymes are highly specific with respect to the bound substrate (see

figure 1.4). For the binding of the substrate, di↵erent mechanisms were proposed. Emil Fischer pro-

posed a lock-and-key binding mechanism where the substrate has to fit perfectly into the active center.

Since this mechanism is too simplistic, two other mechanisms were introduced and are currently used:

the induced-fit and the conformational-selection mechanism. In both mechanisms, a rearrangement of

3



1 INTRODUCTION

the protein is permitted, either upon or before binding of the substrate [49–52]. Some enzymes need ad-

ditional cofactors such as metal ions, or coenzymes such as adenosine triphosphate, to fulfill their function.

  

Figure 1.4: Depiction of a ligand binding to the active site of a protein. Side chain hydrogen bonding

(blue), backbone hydrogen bonding (green) and charge-charge interactions (orange) are highlighted.

To observe the structural arrangement of proteins, di↵erent experimental techniques can be used. Large

proteins can be investigated using cryo-electron microscopy, however, the resolution is limited [53, 54].

To get a deeper insight into the protein constitution, X-ray crystallography [55] or nuclear magnetic

resonance (NMR) [56, 57] measurements can be performed. Average size and shape can be determined

using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) [58–60]. Given a

protein structure, dynamical information can be obtained from molecular dynamics (MD) simulations [2].

1.1.2 Deoxyribonucleic Acid

The deoxyribonucleic acid (DNA) encodes the information for the synthesis of proteins. Similar to pro-

teins, the DNA consists of small building blocks. These building blocks are called nucleotides and consist

of a nucleobase, the sugar deoxyribose and a phosphate-moiety. The sugar and the phosphate constitute

an alternating chain forming the negatively charged backbone of the DNA. The sequence of the nucle-

obases contains the information stored in the DNA. There exist four di↵erent nucleobases, which are

highlighted in figure 1.5. DNA forms a double-stranded helical structure, with a small minor groove and a

larger major groove. The helix is stabilized by hydrogen bonds between pairs of nucleobases (figure 1.5).

These nucleobase pairs are Adenine-Thymine and Guanine-Cytosine. The complementary base pairing

allows for easy replication of the DNA and error detection during the replication process.
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Figure 1.5: Nucleobase pairs (left): adenine (green) - thymine (blue) and guanine (red) - cytosine

(purple) with antiparallel phosphate-sugar backbone (orange). Helical structure of the DNA (right,

PDB:1ZEW [61]); The nucleosides (sugar and nucleobase) are shown explicitly.

There are three di↵erent types of double-stranded helical DNA: A-DNA, B-DNA and Z-DNA with B-DNA

considered the main type of DNA in cells. B-DNA is a right-handed helix with nucleobases orientated

orthogonal to the helical axis. The A-DNA features a broader diameter than the B-DNA and the nucle-

obases are not orthogonal anymore with respect to the helical axis. Contrary to the A- and B-DNA, the

Z-DNA is a left-handed helical structure [62, 63]. Besides the helical arrangements of the DNA, there also

exists circular plasmid DNA occurring in bacteria.

Due to the planar structure of the nucleobase pairs, it is possible for other planar, in the best case positively

charged molecules, to be inserted between two nucleobase pairs. This insertion is called intercalation and

results in a small unwinding of the DNA at the position of the intercalation. DNA-intercalators can be

used as a fluorescent tag [64], as an inhibitor for DNA replication [65, 66], or as a carrier for metal ions to

the sugar-phosphate backbone in order to cleave the DNA [67–69]. Thus, the design of DNA-intercalators

is important e.g. as a anti-cancer drug [70, 71].

1.2 Computational Simulations

1.2.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are a powerful tool in the analysis of biomolecular properties. They

are based on a propagation of an atomic structure with respect to Newton’s equations of motion incorpo-

rating the forces acting on every single atom within the system. These interactions are typically stored in
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a force field, acting as a potential energy function for all interatomic interactions. A detailed description

of the theory behind MD simulations is given in section 2.1.1.

Compared to other methods like quantum mechanics (QM), MD simulations are computationally cheap

as every atom is treated as one particle. Additionally, no reevaluation of the force field parameters de-

scribing the simulated system is typically done during the simulation [72]. Incorporating all dynamical

properties of the system such as the bond vibration requires propagation time steps in the femtosecond

regime (10�15 seconds) or lower [73]. In a feasible amount of real time thus it is possible to gain to-

tal simulation lengths of microseconds (10�6 seconds) to milliseconds (10�3 seconds) [74]. However, the

dynamics of some biomolecules are in the range of seconds or even longer [75]. If in the kinetics are

also of interest, transitions between di↵erent conformations have to be sampled multiple times to obtain

significant estimates of the relative populations and the transition rates.

To improve simulation times within the limitations of the available computational power, enhanced sam-

pling techniques have been developed. These methods include, amongst others, replica exchange molecular

dynamics [76–78], umbrella sampling [79, 80] and metadynamics [81–83]. All of these methods bias the

kinetics and therefore can not be directly used to extract dynamical properties such as rate constants.

For some of these techniques, reweighting schemes have been developed taking this bias into account and

restoring the correct kinetics [84–86]. Another approach to reduce the computational costs is to treat the

environment of the simulated system implicitly. However, this simplification often reduces the accuracy

of the simulation [87]. Moving from all-atomistic simulations to coarse-grained simulations by grouping

a set of atoms into one particle, also reduces the computational costs. However, this results in a worse

resolution compared to all-atomistic simulations [88–90].

One big drawback of MD simulations is that they rely on the incorporated force field. With respect to

the kinetics, it was shown that for small peptides the chosen force field, which is used to propagate the

structure, highly influences the dynamic properties [91]. Another drawback of classical MD simulations,

that emerges, is the treatment of every atom as a charged mass point. It is therefore hard to incorporate

e↵ects that involve electrons such as polarization or bond rearrangement. To account for polarization

e↵ects, special force fields have been developed [72, 92]. To include bond breaking such as chemical

reactions or hydrogen rearrangement, techniques on a higher theory-level like QM/MM [93–95] have to

be applied.
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1.2.2 Quantum Mechanics/Molecular Mechanics

To reduce the drawbacks of classical MD simulations, quantum mechanics (QM) can be incorporated into

the simulation. As most biomolecules are too large to be treated completely on a QM level, quantum

mechanics and molecular mechanics (MM) can be combined [3, 93–98]. The resulting QM/MM method

was first introduced in Ref. [95] and was rewarded with a Nobel prize in chemistry in 2013 (M. Karplus,

M. Levitt and A. Warshel). In a QM/MM calculation, the simulated system is split into at least two

parts: A QM part describing the reaction center, and an MM part accounting for the environment. With

respect to enzymes the reaction center is often chosen to be the active site, whereas the environment is

the rest of the protein. The splitting of the two parts, later referred to as layers, is possible since the

e↵ect of most chemical reactions in solution is often strongly localized. By considering the part that is not

involved in the reaction as an environment, which is propagated on an MM level, allows for a dynamical

electrostatic representation [94]. A detailed description of QM/MM can be found in section 2.1.2.

1.3 Analysis of the Computational Simulations

1.3.1 Markov State Models

To get an insight into the dynamics of the simulated system, a Markov State Model (MSM) can be con-

structed. An MSM is a stochastic model in which the MD trajectory is approximated as a stochastic

jump-process between di↵erent discrete states. The key component of an MSM is a transition probability

matrix T(⌧). The matrix elements T
ij

represent the probability to observe a transition starting in state

C
i

and ending up in a state C
j

after a certain time ⌧ . This time ⌧ is called the lag time and denotes a

parameter of the constructed transition probability matrix. The lag time ⌧ has to be chosen such that the

analyzed dynamics are Markovian, i.e. they have no knowledge about the history of the jump-process and

the transition probability towards any state only depends on the current state [11, 99]. If this applies, the

transition matrix can be constructed on a large set of trajectories. This has the advantage that, although

the total simulation length might not be reduced, multiple simulations can be run in parallel [100]. Nev-

ertheless, finding an appropriate lag time often depends on the definition of the discrete states [101].

Projecting the continuous dynamics onto a set of discrete states causes a loss of information within these

states and therefore a loss of Markovianity. To restore this Markovianity, the lag time has to be increased.

Using a carefully optimized discretization, however, one can minimize this discretization error [11] as

highlighted in figure 1.6. One way to achieve this, is the use of a very fine discretization [9, 102, 103]. Due

to an exponential scaling of the micro states needed to maintain the fine discretization with respect to in-

creasing dimensionality of the investigated conformational space, this type of discretization, however, gets
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impractical for high-dimensional systems. In addition, due to the finite simulation length, the statistical

uncertainty of the model increases as the number of microstates increases [104]. Using a discretization

that accounts for the slow dynamics instead of a fine grid, the increasing dimensionality can be handled

for higher dimensional conformational spaces. This can be achieved either by clustering [15, 105, 106]

or by using human-made borders [91]. Nonetheless, these states have to be chosen properly to reduce

recrossing at the borders between the states [12].

Figure 1.6: Depiction of a) a double-well potential and b) a time-dependent trajectory for a molecule

moving in this potential; c) The dynamic process for the continuous dynamics is highlighted in black with

an approximated process (blue) for di↵erent discretizations. The error that is induced by the discretization

is highlighted by the filled area. The trajectory is projected onto two (left) and eight states (middle)

covering the full sampled potential. In the right panel, two core sets were chosen. The position of the

energy barrier of the potential is highlighted as a red, dashed line in the right panel.

During the estimation of the transition probability between two states, C1 and C2, crossings across the

boundary between these states are usually observed, which are not observed in continuous dynamics (fig-

ure 1.6b) and are an artifact of the discretization. These “artificial” transitions incorporate memory,

i.e. knowledge about the previous jump-process history, that harm the Markovianity. To minimize the

discretization error, the discretization has to be chosen in such a way that the recrossing is reduced. This

can, for example, be achieved by introducing core sets [12, 14, 107]. A core set describes a discrete state

C
i

, in which the trajectory stays for a long time. The core set is separated towards any other discrete
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state C
j

by a transition region (as shown in figure 1.6 upper right). The transition region is not assigned

to any state and modeled by committor or milestoning functions [108–111].

A definition of these core sets can be quite challenging since most data sets are high-dimensional. In

addition, the core sets can feature arbitrary sizes and shapes. To utilize a core set discretization, an

automatic approach that can detect core sets in a high dimensional data space is required. In the course

of this work, an approach to solve this issue is introduced. The corresponding Markov Model based on

this type of discretization, is referred to as core-set Markov State Models (cs-MSM) and is discussed in

detail in section 2.2.2.2.

The reaction coordinates included in the construction of the model are another crucial point in finding a

suitable set of discrete states. As it is often not feasible to discretize the full conformational space, owing

to its high dimensionality, the conformational space is usually split into relevant and non-relevant coor-

dinates [100]. Removing these non-relevant coordinates, however, introduces a projection error, which

can cause a loss of information important for the analyzed kinetics [11, 112–114] as depicted in figure

1.7. Using dimensionality reduction techniques, such as principle component analysis (PCA) [115, 116] or

time-lagged independent component analysis (TICA) [112, 117] to construct linear-optimized, indepen-

dent reaction coordinates, can help to minimize this projection error. The theory behind these techniques

is given in section 2.2.1.

Figure 1.7: Depiction of a two-dimensional density projected onto the x- and y-axis, respectively. In

both cases, the projection reduces all four peaks to two peaks. An extraction of these density peaks using

a density threshold (e.g. by applying density-based clustering), is highlighted by a dashed line.

For MSMs constructed at a lag time that reduces the discretization error such that Markovianity is

restored, an analysis of the eigenvectors and the corresponding eigenvalues of the transition probabil-
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ity matrix can be performed. Analyzing these quantities yields information about dynamic modes and

their corresponding time scales. A detailed description of Markov Models and their analysis is given in

section 2.2.2.

1.3.2 Clustering

Analyzing MD simulations involves the investigation of a large amount of data. To handle these data

and to classify discrete states in the MD simulation, as for example necessary to construct MSMs, cluster

algorithms can be applied. The challenge of the cluster algorithm is to group similar conformations in one

cluster separated from other more diverse conformations [13, 118]. In order to do this, a set of descriptors

or reaction coordinates that accounts for the diversity of the conformations has to be defined in a first

step. Ideally, these discrete states characterize metastable conformations, i.e. minima in the free energy

landscape of the simulated molecule [119, 120]. This, however, can get more di�cult with increasing di-

mensionality of the system, since the distance between two conformations gets more and more equivalent

[121].

In order to use cluster algorithms, every MD structure has to be interpreted as a data point in a

high-dimensional space. Assuming that this space is constructed to separate di↵erent conformations

well enough, the next challenge lies in the identification of these conformations. There is a huge vari-

ety of di↵erent cluster algorithms featuring, for example, partitioning [122–124], hierarchical [125, 126],

fuzzy [127, 128] or density-based clustering [16, 129–133]. All algorithms use di↵erent criteria to decide

whether two data points belong to the same cluster. For every data set, the type of clustering algorithm

has to be chosen such that it fits the challenges of the analyzed data set. This includes, beside others,

cluster sizes, shapes and number [134].

Since the goal of MD simulations is the identification of metastable conformations, i.e. conformations that

frequently appear during the MD simulation, density-based cluster algorithms are a good choice [135–137].

In density-based clustering, clusters are defined as areas which cover a large number of data points. They

have the advantage that the cluster number is not predefined and clusters of arbitrary shapes can be

extracted. The outcome, however, always depends on the chosen density threshold that is used for the

clustering [138].

An example for a density-based clustering outcome for a two-dimensional data set is shown in figure 1.8.

This data set is quite challenging and features several properties also observed for MD simulation data.

It includes clusters of di↵erent shapes and di↵erent sizes as well as noise. In addition, some clusters are

intertwined and/or connected via a (sine-like) line.
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Figure 1.8: Example of a clustering outcome for a two-dimensional data set [139] with respect to a

density criterion. a) Original data set and b) data set after clustering. Each cluster is highlighted with a

separate color. Not assigned data points are shown in black.

Since density-based clustering algorithms use a density threshold to determine whether two data points

belong to the same cluster, they can handle intertwined clusters of di↵erent shapes and noise. In addition,

the outcome is not influenced by the line of data points connecting the clusters as the data point density

of this line is below the threshold. The algorithms used in this thesis are described in section 2.2.3.

1.3.3 Theoretical Absorption Spectroscopy

For simulations of macromolecules containing chromophores, absorption spectra can be calculated. For

these calculations, snapshots of the MD simulation can be taken. Using time-dependent density func-

tional theory (TD-DFT), it is possible to calculate the electronic excitations of the chromophore from

these snapshots [140]. Combining the calculation with a QM/MM optimization of the snapshot yields

a geometry-optimization of the chromophore on the QM level, accounting for interactions and changes

of the surroundings. The inclusion of the surroundings as a point charge field in the absorption spectra

calculation further improves the excitation energies [141].

1.4 Molecular Docking

For modeling the binding modes of ligands towards biomolecules, often called target, molecular docking

can be used. In molecular docking, a binding mode is predicted with respect to steric and energetic

properties of the target molecule or rather its active site [142], as shown in figure 1.9.
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Figure 1.9: A simplified representation of a ligand (orange) binding to the active site of a target

molecule (blue) with respect to steric properties. Left to right: optimal to sterically hindered ligand. A

more detailed description including also the energetic properties, can be found in figure 1.4.

Docking can be used, amongst others, to examine potential binders out of a large set of ligands (vir-

tual screening) [143] or to understand the important interactions that stabilize or destabilize bound

ligands [144] as highlighted in figure 1.4. To do this, a scoring function is calculated and used to estimate

the likelihood of the formation of a protein-ligand complex with respect to a certain ligand conformation.

This scoring function accounts for van der Waals and electrostatic interactions as well as for entropy

and desolvation e↵ects [142, 145]. For the inclusion of dynamical e↵ects into the docking procedure, a

combination of molecular docking with MD simulations is often helpful. It can be used to obtain di↵erent

starting conformations of the target [146, 147], to check for stability of the target-ligand complex analyzing

favorable interactions [148], or to account for changes in the target upon docking of a ligand [149, 150].

The docking software and its procedure used for this work are discussed in section 2.4.

1.5 This Thesis

The work presented in this thesis, focuses on the theoretical analysis of the dynamical properties of

proteins, on method development in the field of kinetic analyses and on binding mode prediction of

biomolecule-ligand complexes. In section 2, the theoretical background of the methods used during this

thesis is highlighted. Sections 3 to 5 account for the research done during the PhD studies and are set

into context to current research questions. Every section is dedicated to a main focus:

• In section 3, the focus lies on the analysis of the water-soluble-chlorophyll-binding protein (WSCP),

which shows a remarkably high stability towards environmental changes.

By performing MD simulations, it is intended to identify the key components that grant this high

stability, as most of the former analyses are based on a static view. Additionally, the influence of

structural modifications such as the removal of chlorophylls or the formation of disulfide bridges,

on the overall dynamics and stability is investigated. For the formation of disulfide bridges, no

literature was found. Hence, it is examined on a theoretical level, how an introduction of disulfide

bridges would a↵ect former findings as this should increase the stability of the WSCP. The results

are presented in section 3.1.
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Based on these simulations, absorption spectra are calculated incorporating QM/MM optimization

potentials, as presented in section 3.2. The spectra are calculated for di↵erent conformations ex-

tracted from the MD simulations. The influence of di↵erent treatments of these conformations on

the calculated spectra such as di↵erent optimization potentials or the removal of the environment

is compared. Furthermore, the influence of structural modifications on the absorption spectra, and

the coupling between di↵erent chlorophylls are investigated.

• The main focus of section 4 is on method development with respect to cs-MSMs and the density-

based Common-Nearest-Neighbor (CNN) clustering.

For a long time no method for the identification of core sets was known. Therefore, it is investi-

gated in section 4.1 whether a suitable definition of these core sets can be obtained by applying

density-based clustering. For this purpose, di↵erent cluster algorithms are evaluated. A hierar-

chical clustering approach extracting clusters of di↵erent densities is introduced. Furthermore, the

cs-MSMs based on the identified core sets are compared to conventional full-partitioning MSMs.

In section 4.2, the most promising clustering algorithm, the CNN algorithm, is then benchmarked

using a variety of di↵erent data sets. It is investigated how the CNN algorithm performs with respect

to typical challenges of data sets. These challenges include, amongst others, clusters of di↵erent size,

shape or density.

In section 4.3, the combination of CNN clustering and cs-MSMs is applied to the cyclic peptide cy-

closporine A and its derivative cyclosporine E simulated in water and chloroform, respectively. In this

section, the advantages of a core-set discretization are discussed and compared to a full-partitioning

discretization, highlighting disconnections in the data set. Additionally, it is investigated how spe-

cific reaction coordinates, included in the state definition, influence the quality of the MSM. In a

last step, both molecules are compared using a joint discretization to characterize unique and shared

conformations.

• Section 5 covers molecular modeling of biomolecule-ligand interactions.

In section 5.1, the substrate scope of the enzyme tubuline-tyrosine ligase is interpreted utilizing

flexible ligand docking. By combining this docking with MD-simulations, the flexibility and the

stability of the protein-ligand complex are investigated. Furthermore, an insight into the important

interactions and spatial properties for the protein-ligand binding is gained. Based on these findings,

predictions with respect to other ligands can be made without former synthesis.

Section 5.2 is attempted to find an explanation for the di↵erent inhibition e�ciencies of DNA

replication of quite-similar DNA intercalators. This is done by performing molecular modeling of

di↵erent intercalator comformations and intercalation modes. Conformations that are only possible

with a certain intercalator constitution are identified.
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The thesis is concluded in section 6. In this section, the findings are summarized and the remaining

research questions are highlighted. An outlook on further analyses that can be performed to deepen the

knowledge and understanding of the investigated biomolecular system is emphasized. The framework of

this thesis is highlighted in figure 1.10.

System of Interest

MD
Simulation

State Space
Reduction

Clustering

cs-MSM

QM/MM

TD-DFT Analysis

Docking

Protein vs.
Ligand

DNA vs.
Intercalator

Kinetic
Information

Spectroscopic
Information

Structural
Information

Biomolecule-Ligand
Interactions

Section 3

Section 4

Section 5

Figure 1.10: Framework of this thesis colored according to the corresponding section; MD simulations

are involved in all three sections; The last row summarizes the information obtained in each corresponding

section.
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2 Methods and Theory

2.1 Simulations

2.1.1 Molecular Dynamics

The theory presented in this section was taken from Ref. [73, 151].

In molecular dynamics (MD) simulations, a system of atoms is propagated according to the laws of classical

mechanics. The propagation is performed by integrating Newton’s equations of motion:

F
i

= m
i

· a
i

(1)

F
i

denotes the force on a particle i with mass m
i

and acceleration a
i

. Each atom in the simulation is

treated as a mass point with a position ri = xê
x

+ yê
y

+ zê
z

in a Cartesian coordinate system, with

the unit vectors in direction j ê
j

. The set of positions of all Natoms atoms at a time t is given by

r(t) = {r
i

(t)}Natoms

i=1 and describes one configuration of the system. Associated to each coordinate r
i

(t) at

time t is a velocity v
i

(t) with v
i

= v
x

ê
x

+ v
y

ê
y

+ v
z

ê
z

and v(t) = {v
i

(t)}Natoms

i=1 . The time evolution of the

configurations, and if needed of the velocities, is called trajectory x
t

. The connection of the position r
i

to the velocity v
i

and the acceleration a
i

is defined by:

dr
i

dt
= v

i

(t) (2)

d2r
i

dt2
=

dv
i

dt
= a

i

(t) (3)

To integrate Newton’s equations of motion the continuous time t is described by a set of discrete time

steps with a spacing of �t. For this case the propagated positions and velocities, if needed, at time t + �t

can be approximated as a Taylor series expansion by:

r
i

(t± �t) =
1X

n=0

(±1)n
r(n)
i

(t)

n!
�tn (4)

v
i

(t± �t) =
1X

n=0

(±1)n
v(n)
i

(t)

n!
�tn (5)

with r(n)
i

(t) denoting the nth derivative of r
i

at the point t. According to equations 1 to 3 the new

position of atom i is approximately obtained by taking the velocity of the atom as well as the force acting

on the system into account in order to propagate it in time. Neglecting all higher order terms results in an
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error scaling with �t3. By adding the forward propagated position r(t+ �t) and the backward propagated

position r(t� �t) and rearranging, equation 6 is obtained:

r
i

(t + �t) = 2r
i

(t) � r
i

(t� �t) +
F

i

(t)

m
i

�t2 + O(�t4) (6)

This algorithm is called Verlet-integrator [152] and has an error scaling with �t4. In addition, the new

position only depends on the acceleration or the force respectively and no longer on the velocities. Nu-

merical problems may occur as a term scaling with �t2 is added to two terms scaling with �t0. A more

robust way, compared to using the Verlet-integrator, is to propagate the system in time by applying the

leap-frog integrator [153]. In the leap-frog integrator the position r
i

(t) is propagated in time steps of �t/2.

By adding up the forward and the backward propagation equation 7 is obtained:

r
i

(t + �t) = r
i

(t) + v
i

(t +
�t

2
)�t + O(�t3) (7)

The interesting property of this algorithm is that the velocities are estimated at time steps of t ± �t/2,

which causes the position and velocities to leap over each other, hence causing the name of the algorithm.

The velocities are estimated via:

v
i

(t +
�t

2
) = v

i

(t� �t

2
) +

F
i

(t)

m
i

�t + O(�t3) (8)

giving an error scaling with �t3. The algorithm has the advantage that the velocity is taken explicitly

into account to estimate the new position. As already mentioned, position and velocity are not calculated

at the same time step. This has the consequence that the velocity v(t) at time t, which is required to

calculate the kinetic energy

Ekin(t) =
1

2
mv(t)2, (9)

has to be approximated by averaging over the velocities v(t + �t/2) and v(t� �t/2) by:

v(t) =
v(t + �t/2) + v(t� �t/2)

�t
(10)

The initial positions for the simulation are given by a reference structure such as a crystal structure ob-

tained by X-ray crystallography. The initial velocities are drawn from a Maxwell-Boltzmann distribution.

The probability p(v
x,i

) for a certain velocity v
x,i

of atom i in direction x is obtained by

p(v
x,i

) =

✓
m

i

2⇡kBT

◆ 1

2

exp

 
�1

2

m
i

v2
x,i

kBT

!
, (11)

16



2 METHODS AND THEORY

where T denotes the temperature of the simulated system and kB denotes the Boltzmann constant.

The force acting on atom i depends on the atom’s connectivity and surroundings. Taking the definition

of the force

F
i

(t) = �r
i

V (r(t)) (12)

as the negative gradient r
i

of a potential V (r(t)) as well as the additivity of energies into account,

the force can be described by a sum over all possible interactions that participate to the total force F
i

acting on atom i. The potential V (r(t)) is called force field and describes a Born-Oppenheimer potential

energy surface on which the movement of atom i occurs. The potential can be interpreted containing

bonded interactions V (r)bonded, which are based on the connectivity of the atoms as well as non-bonded

interactions V (r)non�bonded taking the surroundings into account:

V (r(t)) = V (r(t))bonded + V (r(t))non�bonded (13)

In this approximation the bonded part can be described by di↵erent contributions as:

V (r(t))bonded =
N

bondsX

j

V (l
j

(t)) +

N

anglesX

j

V (✓
j

(t)) +
N

dihed.X

j

V (!
j

(t)) +

N

imp.dihed.X

j

V (⇣
j

(t)) (14)

A typical formulation for the di↵erent potentials is shown in figure 2.1. In addition to the formulation, a

sketch of the various terms of the potential energy function is presented.
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Bonds Angles

V (l
j

(t)) = 1
2kl,j(lj(t) � l0,j)2 V (✓

j

(t)) = 1
2k✓,j(✓j(t) � ✓0,j)2

Dihedrals Improper dihedrals

V (!
j

(t)) = k
!,j

(1 + cos(n!
j

(t) � �)) V (⇣
j

(t)) = 1
2k⇣,j(⇣j(t) � ⇣0,j)2

Figure 2.1: Depiction of the potentials included in the bonded part of the force field and their corre-

sponding equations.

Typically, the bonds are modeled as a spring according to Hooke’s law describing the bond vibration. A

more accurate description can be obtained by using a Morse potential. However, as the deviation from

the reference bond length l0,j is small in MD simulations, a harmonic approximation is often su�cient.
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Each bond can be described by a force constant k
l,j

considering the bond strength and the bond length

l
j

(t) at time t. The angle bending motion can also be approximated by a harmonic potential with a force

constant k
✓,j

, a reference angle ✓0,j as well as the angle ✓
j

(t) at time t.

The last type of bonded interactions that is typically considered in the potential energy of bonded inter-

actions are the dihedral angles. These angles describe the torsion of the molecule. There are two types

of torsion motion: proper and improper torsions. Proper torsions describe the 1,4-interactions along a

bond with respect to the angle !
j

(t) at time t. It is typically modeled by a cosine function connected

to a force constant k
!,j

. The number of minima is defined by the multiplicity n and can di↵er for dif-

ferent hybridizations, such as for two connected sp3-hybridized atoms n=3, whereas for two connected

sp2-hybridized atoms n=2 is used. The position of the minima is defined by the phase shift �. Improper

dihedrals account for the out-of-plane bending motion of planar systems. This motion can be modeled by

a harmonic potential with a force constant k
⇣,j

, a reference dihedral angle ⇣0,j and the dihedral angle ⇣
j

(t)

at time t. Depending on the force field, other terms can be incorporated such as cross terms coupling two

motions.

Alongside the bonded interactions also non-bonded interactions between two atoms i and j have to be

taken into account:

V (r(t))non�bonded =
N

atomsX

i

N

atomsX

j>i

 
4✏

ij

"✓
�
ij

r
ij

(t)

◆12

�
✓

�
ij

r
ij

(t)

◆6
#

+
q
i

q
j

4⇡✏0rij(t)

!
(15)

with r
ij

(t) = |r
i

(t)� r
j

(t)|. These interactions include van der Waals interactions, which can be modeled

by a (6,12)-Lennard-Jones potential as well as a Coulomb potential accounting for charge-charge inter-

actions. Both interactions depend on the distance r
ij

between two atoms i and j. The Lennard-Jones

potential consists of two terms and incorporates quantum e↵ects into the model. The first term is a

repulsive potential decaying with r�12 which incorporates the Pauli exclusion principle and is therefore

called Pauli repulsion. The second term decays with r�6 and accounts for dispersive interactions. Disper-

sive interactions describe changes of the electron density generating instantaneous dipoles and therefore

dipole-dipole interactions. The other two parameters in the (6,12)-Lennard-Jones potential ✏
ij

and �
ij

denote the depth of the potential with respect to V
LJ

= 0 and the distance at which V
LJ

= 0 holds. The

connection between �
ij

and the reference distance (minimum) is r0,ij = 21/6�
ij

.

To every atom a partial point charge q
i

is assigned. The interactions between these point charges is mod-

eled by a Coulomb potential decaying with r�1. Therefore, the Coulomb potential represents long-range

interactions while the Lennard-Jones potential models interactions at short-range. The parameter ✏0 de-
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notes the vacuum permittivity. A sketch of the potentials is given in figure 2.2.

Lennard-Jones Coulomb

Figure 2.2: Depiction of the potentials included in the non-bonded part of the force field; In the Lennard-

Jones potential plot the green curve represents the repulsive (r�12) and the orange curve highlights the

attractive (r�6) interactions.

Since a simulation is typically run for a huge number of time steps, the choice of the time step is crucial.

A too short chosen time step results in a decreased total simulation length, a too large chosen time step

can cause numerical instabilities during the integration process. These numerical instabilities can result

from atoms coming too close to each other resulting in a high energy, and therefore a high gradient, in

the Lennard-Jones potential. As a consequence, a large force arises between these atoms, which can result

in an unphysical behavior and a breakdown of the simulation. A typically used time step for an MD

simulation of a biomolecular system is 0.5 fs, since the fastest motion, the X-H bond vibration, is in the

range of 10 fs. Using a distance constraint for the X-H bond the time step can be increased to 2 fs. Several

algorithms like SHAKE and LINCS [154, 155] were developed to achieve this by removing the vibration

of the X-H bond.

To prevent the molecules from leaving the simulation box, periodic boundary conditions are introduced.

Let’s consider a cubic box with box length L. If a molecule leaves the box in x direction such that the

new position will be L+ �x an equivalent molecule enters the box from the other side with a new position

of �x. Thus, the system is treated as a unit cell with “infinite” exact copies in all directions. This fact
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is very important for the calculation of Coulomb interactions as those interactions occur on a long range

decaying with r�1. A depiction of the periodic boundary conditions is shown in figure 2.3.

Figure 2.3: Periodic boundary conditions in two dimensions highlighting the movement of a particle

leaving the box. The red circle indicates a cuto↵ e.g. for the calculation of non-bonded interactions.

So far, systems with constant energy which can not interact with their surroundings were discussed.

Accordingly, the simulation setup accounts for an isolated system, also called micro-canonical or NV E

ensemble, with a constant number of particles N , a constant volume V and a constant energy E. To ac-

count for more realistic systems, which can di↵er in energy, the simulation box can be coupled to a thermal

reservoir. This results in a canonical or NV T ensemble with a constant temperature T representing a

closed system. Numerically, this is achieved by introducing thermostats [156–158], which modify either

the velocities at certain time steps or add additional degrees of freedom to the system. The probability

that a system with energy ✏r is realized in an NV T ensemble is given by the Boltzmann distribution:

p(r) =
exp(�✏r/kBT )R
d✏ exp(�✏/kBT )

(16)

Introducing non-rigid boundaries results in an isobaric-isothermal or NPT ensemble with a constant

pressure P . This is achieved by introducing a barostat in addition to the thermostat [157, 159].

2.1.2 Quantum Mechanics/Molecular Mechanics

The theory described in this section is based on Ref. [3, 93–98, 160, 161].

Linking molecular dynamics (MD) simulations with quantum mechanical (QM) calculations combines the

advantages of both methods. Using the MD level, one can benefit from the speed and hence acquire long

simulation time scales, as well as incorporate the full complexity of the simulated system. Taking into

account the QM level allows for bond-breaking and electronic rearrangement embedded in an electrostatic

environment.
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For practical applications the system is split into di↵erent layers: An inner layer treated on a QM level

and an outer layer treated on a molecular mechanics (MM) level. If needed, more layers can be added

on top to either freeze the rest of the system or to account for other interactions, like an implicit solvent

model. The connection of both parts, the QM and the MM part, can either be performed using an additive

or a subtractive scheme. In this work a two-layer system is used. The following equations thus will be

written for a two-layer system. In an additive scheme, the potential of each layer is calculated on the

respective level of theory. An additional term is added that accounts for the interaction between the two

layers according to

VQM/MM = VQM(QM) + VMM(MM) + VQM�MM(QM + MM), (17)

resulting in the full QM/MM potential VQM/MM. In general, VK(x) denotes the potential energy of the

layer K using the atoms associated with x. In a subtractive QM/MM scheme, the full system is calculated

on an MM level. In a further step, the potential energy of the QM region computed on the MM level is

subtracted and replaced by the corresponding potential calculated on QM level according to:

VQM/MM = VQM(QM) + VMM(QM + MM) � VMM(QM) (18)

A subtractive scheme in its standard implementation lacks the explicit interaction between the MM

charges with the QM region, which determines the spectroscopic properties inferred by the Coulombic

protein interactions from the macromolecular environment. Thus, an additive QM/MM scheme will be

used in this thesis.

The next important step is the embedding of the QM layer into the MM layer. The most basic approach

is the treatment of the QM-MM interactions on an MM level (force field), called mechanical embedding.

In this method the QM atoms are linked by force field terms to the MM level. Thus, no polarization of

the electronic wave function on QM level is possible. The electrostatic embedding, where the MM atoms

are treated as a point charge field (PCF) in the QM calculation, o↵ers a more suitable way. This ensures

that polarization e↵ects can be treated as well. This is achieved by adding one-electron terms

ĥ
QM/MM
i

= ĥQM
i

�
N

pcX

j

e2Q
j

4⇡✏0|ri �R
j

| (19)

to the electronic Hamiltonian of the QM system, while the interactions with the nuclei are computed

classically. In this equation ĥQM
i

denotes the one-electron operator for electron i at position r
i

interacting

with the point charge j with partial charge Q
j

and position R
j

(accounting for kinetic, nuclear attraction).

However, one has to adjust the charges properly to circumvent an over-polarization close to the boundary.
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The most accurate way to embed the QM atoms into the MM region is the polarization embedding. Using

polarizable force fields, it is possible to allow for a change in the MM charge field as well. In this work

electrostatic embedding will be used.

All QM/MM calculations in this work are performed using the software gmx2qmmm developed by Dr.

Jan P. Götze. For the MM calculations, a steepest descent algorithm is applied which propagates the

MM-atoms with respect to

r
i

(t + �t) = r
i

(t) +
F

i

(t)

max(|F(t)|)g(t) (20)

until a certain energy threshold is reached. In this equation r
i

(t) denotes the position of atom i at time t.

F
i

accounts for the force acting on atom i and g(t) represents a maximal displacement. If the potential

energy of the new state r
i

(t+�t) is smaller than the potential energy of the old state r
i

(t), the propagation

step is accepted and the maximal displacement is modified according to g(t+ �t) = 1.2 · g(t). For a higher

potential energy the propagation step is rejected and has to be repeated with a new maximal displacement

of g(t) = 0.2 ·g(t). The QM-layer is treated at DFT level, which will be discussed in detail in section 2.3.1.

For the electrostatic embedding link-atoms are added at the boundaries to satisfy the QM system. To

circumvent overpolarization, a charge shift along the boundaries was used by including compensating

dipoles along broken bonds.

2.2 Analysis on MD-Level

This section will focus on the analysis of the data generated by MD simulations with respect to dynamic

properties and metastable states. Further analysis, like hydrogen-bond networks, secondary structure

prediction (DSSP) [19] or root-mean square deviation (RMSD) analysis will not be discussed in this

section.

2.2.1 State Space Reduction

This section is based on Ref. [112, 117, 162].

The outcome of an MD simulation is a trajectory x
t

of length NT containing the positions and the veloc-

ities for N system particles. This results in 6N coordinates per particle. Neglecting the velocities reduces

the dimensionality to 3N . By treating only the solute, and therefore removing the degrees of freedom

of the solvent, the dimensionality can be reduced further. For realistic systems the remaining number

of degrees of freedom is often still too large and needs further reduction. This can be achieved either

manually by neglecting all degrees of freedoms which are considered “fast”, or by methods like principal
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component analysis (PCA) or time-lagged independent component analysis (TICA).

In PCA and TICA a set of relevant input coordinates {z
j

(x
t

)}Nz

j=1 with a number of Nz coordinates z
j

(x
t

) is

extracted from the trajectory and transformed into mean free coordinates {�
j

}Nz

j=1 by

�
j

(x
t

) = z
j

(x
t

) � hz
j

(x
t

)i. For PCA, typically only the Cartesian coordinates are used. For TICA,

these coordinates can be chosen arbitrarily like positions, angles or other data, but have to cover the

slow dynamics of the analyzed system. The aim of both methods is to project these data onto a space of

linearly uncorrelated coordinates. The projected coordinate ⇣
i

(x
t

) is given by:

⇣
i

(x
t

) =
N

zX

j=1

u
ij

�
j

(x
t

) (21)

Using Ritz method [163] the weights u
j

can be calculated by solving the eigenvalue problem

C̃uj = �̃
j

Suj, (22)

where C̃ denotes the covariance matrix of the basis {�
j

}Nz

j=1 and �̃
j

the j-th eigenvalue. In PCA C̃ is

given by the covariance matrix C̃(0) with elements c̃
ij

according to:

c̃
ij

=
1

T � 1

TX

t=1

�
i

(x
t

)�
j

(x
t

) (23)

The matrix S is the identity matrix. The eigenvalues denote the autocovariance �2
j

. Thus, equation 22

can be rewritten as:

C̃(0)u
j

= �2
j

u
j

(24)

In TICA C̃ denotes the time-lagged covariance matrix C̃(⌧). Their elements c̃
ij

are defined as:

c̃
ij

=
1

T � k � 1

T�kX

t=1

�
i

(x
t

)�
j

(x
t+⌧

) (25)

C̃(⌧) accounts for the covariance after a lag time ⌧ = k�t, where �t is the time resolution of the

trajectory. S denotes the overlap matrix and is defined by the covariance matrix C̃(0) (equation 23). For

TICA equation 22 is given as:

C̃(⌧)uj = �̃
j

(⌧)C̃(0)uj (26)

In PCA as well as in TICA the eigenvectors (weights) can be sorted with respect to the largest autocovari-

ance �2
j

and time-lagged autocovariance �̃
j

, respectively. Choosing the Nr dominant eigenvectors a state
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space reduction with respect to the autocovariance is achieved and a projected trajectory x̂
t

is obtained

by

x̂
t

= hU,�(x
t

)i (27)

with U = [u1,u2, . . . ,uN

r

].

2.2.2 Markov State Models

The theory described in this section focuses on Ref. [7–9, 11, 13, 14, 101, 164]. For the core-set Markov

state models Ref. [10, 12, 102, 107–111] were additionally taken into account.

In a Markov State Model (MSM) analysis the trajectory x
t

= [x0,x1, . . . ,xT

] of length NT produced by

MD simulation (or the projected trajectory x̂
t

) is analyzed as a Markov chain. A Markov chain is a series

of random experiments where every event depends only on the current state. Therefore, in Markov State

Models the following properties are assumed to be valid:

• The trajectory is memory-less (Markovian) in state space ⌦, i.e. the next sampled state only depends

on the current state without any knowledge about the history. The probability p(x,y; ⌧) for this

process is defined as:

p(x,y; ⌧)dx = P [x
t+⌧

= y|x
t

2 xdx] (28)

with x,y 2 ⌦ and ⌧ 2 R0+. Therefore, a transition from state xdx to state y in time ⌧ is equally

probable at every time the system is in xdx.

• The trajectory is ergodic, i.e. there exists no dynamically disconnected pair of states in ⌦. Addi-

tionally, for an infinite simulation time, each state will be visited an infinite amount of times. If

both criteria hold, the relative population of each state is represented by its equilibrium probability

density µ. For a simulation at constant temperature T the corresponding Boltzmann distribution

(Equation 16) will be sampled. This density is a unique invariant measure for the analyzed system.

• The trajectory is reversible, i.e. the simulation sampled equilibrium dynamics. These dynamics

have a mean density flux between two states x and y of zero and fulfill the criterion of detailed

balance:

µ(x)p(x,y; ⌧) = µ(y)p(y,x; ⌧) 8 x,y (29)

In this section the description of the MSM will be done on a continuous state space ⌦ and is transferred

to a discrete description in the subsections 2.2.2.1 and 2.2.2.2.
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Within a continuous state space ⌦ one can define a propagator P(⌧) that propagates a density p
t

(y),

which is not the stationary density µ(y), by a time step ⌧ to a density p
t+⌧

(y). The density is given by

an ensemble of molecular systems at time t.

p
t+⌧

(y) = P(⌧)p
t

(y) =

Z
dx p(x,y; ⌧)p

t

(x) (30)

The propagation is done by taking the transition probability density p(x,y; ⌧) for all starting states x

into account. Analogue to the propagator P(⌧) one can define the transfer operator T (⌧). Instead of

densities, this operator transports functions u
t

in time according to:

u
t+⌧

(y) = T (⌧)u
t

(y) =
1

µ(y)

Z
dx p(x,y; ⌧)µ(x)u

t

(x) (31)

The densities p
t

(x) and the functions u
t

(x) are connected via the stationary distribution µ(x) according

to:

p
t

(x) = µ(x)u
t

(x) (32)

u
t

(x) = µ(x)�1p
t

(x) (33)

By propagating p
t

(x) and u
t

(x) k times, respectively, the equations 30 and 31 can be reformulated to

fulfill the Chapman-Kolmogorov property:

p
t+k⌧

(x) = P(k⌧)p
t

(x) = P(⌧)kp
t

(x) (34)

u
t+k⌧

(x) = T (k⌧)u
t

(x) = T (⌧)ku
t

(x) (35)

For k ! 1, p(x) converges to the stationary density µ(x) and u(x) converges to a constant function 1(x).

The dynamics can be analyzed with respect to the eigenvalue spectrum. Both operators share the same

eigenvalues �
i

with corresponding eigenfunctions l
i

(x) for P(⌧) and r
i

(x) for T (⌧):

P(⌧)l
i

(x) = �
i

(⌧)l
i

(x) (36)

T (⌧)r
i

(x) = �
i

(⌧)r
i

(x) (37)
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Under the assumption of reversible dynamics the eigenfunctions are connected via:

l
i

(x) = µ(x)r
i

(x) (38)

In addition, all eigenfunctions as well as the corresponding eigenvalues are real-valued. The eigenvalues are

bound in the interval ]�1, 1], where the eigenvalue �1 = 1 is unique for an ergodic system according to the

Perron-Frobenius theorem. The corresponding eigenfunctions l1 and r1 have only positive-valued entries

and describe the equilibrium state. The sign structure of the other eigenfunctions with eigenvalues < 1

accounts for dynamic processes. Two eigenfunctions r
i

and l
j

are orthonormal with respect to the inner

product hr
i

, l
j

i = �
ij

, where �
ij

denotes the Kronecker delta. This feature is a consequence of the self-

adjointness of the operators with respect to a weighted inner product for a reversible Markov process:

hf |T (⌧)gi
µ

�1

= hg|T (⌧)fi
µ

�1

(39)

with

hf |T (⌧)gi
µ

�1

=

Z
dx f(x)µ�1T (⌧)g(x) (40)

The eigenvalue spectrum can be split into the Perron-cluster with eigenvalues close to one

{�1 = 1,�2 < 1, . . . ,�
m

� 0}, which are separated by a spectral gap to the other eigenvalues in the

spectrum. Together with the Chapman-Kolmogorov property the transfer operator can be decomposed

into a fast and a slow decaying part:

u
t+k⌧

= T (k⌧)u
t

(x) =
X

i=1

�k
i

hu
t

, r
i

i
µ

r
i

(x) =
mX

i=1

�k
i

hu
t

, r
i

i
µ

r
i

(x) + T
fast

(k⌧)u
t

(x) (41)

For k ! 1 all processes corresponding to r
i

,�
i

with i > 1 will decay exponentially towards 0. The higher

the eigenvalue �
i

the slower the decay. Hence, the Perron-cluster forms m dominant processes decaying

much slower than all other processes towards equilibrium. Due to this, we will only focus on the dominant

processes. A consequence of the Markovian behavior is that the decay of each eigenvalue follows a single

exponential decay with respect to ⌧/t
i

. The parameter t
i

denotes the implied timescale of the dynamic

process and can be calculated by:

t
i

= � ⌧

ln |�
i

| (42)

Thus, t
i

has to be constant for a valid MSM. An example for an MSM analysis is shown in figure 2.4.
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Figure 2.4: Sketch of an MSM analysis. In a) a triple-well potential with corresponding stationary

density is shown. Constructing an MSM the eigenvalue spectrum (b) is obtained; The dominant and the

non-dominant eigenvalues are separated by a spectral gap (grey). c) The corresponding implied timescales

are highlighted. In d) the left and in e) the right eigenvectors are shown, colored with respect to the

corresponding eigenvalue. The trajectory containing 106 time steps was generated using a Markov-Chain

Monte-Carlo sampling algorithm (� = 1, � = 1) [165].

For practical applications one shifts from a continuous description of the states towards a discrete one.

Subsections 2.2.2.1 and 2.2.2.2 will discuss two ways to describe a MSM on a discrete space. A detailed

description of how to determine the discrete states is presented in section 2.2.3.

2.2.2.1 Full-partitioning Markov State Models

Using the variational principle and the Ritz ansatz, the continuous eigenfunctions r
i

(x) of the Trans-

fer operator T (⌧) can be approximated by a linear expansion in a finite basis {�
j

}NC

j=1 with unknown

coe�cients a
ij

:

r
i

(x) ⇡
N

CX

j=1

a
ij

�
j

(x) (43)

Each basis function describes one discrete state C
j

of the system. Due to this, the complete system

is projected onto NC discrete states {C
j

}NC

j=1. In full-partitioning Markov State Models (fp-MSMs) the

discrete states cover the full state space ⌦ and are not overlapping such that [N

C

j=1Cj

= ⌦ and C
i

\C
j

= ;.
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A discussion of the definition of the states for an fp-MSM is described in section 2.2.3.2. To obtain an

optimal set of coe�cients the following eigenvalue problem can be solved:

T(⌧)a
i

= �
i

(⌧)a
i

(44)

Due to the variational approach the eigenvalue �
i

will always be smaller or equal to the corresponding

eigenvalue of the continuous functions. Equation 44 is a discrete version of equation 37. The operator T(⌧)

denotes the transition matrix, whose elements T
ij

(⌧) denote the probability to find the system in state C
i

at time t and in state C
j

at time t + ⌧ :

T
ij

(⌧) = P [x
t+⌧

2 C
j

|x
t

2 C
i

] (45)

In this equation x
t

denotes the analyzed trajectory as already described in section 2.2.2 or the projected

trajectory x̂
t

as described in section 2.2.1. The transition matrix elements can be obtained by Galerkin

discretization of T (⌧) with:

T
ij

=
h�

i

, T (⌧)�
j

i
µ

h�
i

,1i
µ

(46)

For a full-partitioning discretization the continuous eigenfunctions can be expanded to a set of indicator

or step functions. These indicator functions are equal to 1 if the system is in the corresponding discrete

state or equal to 0 otherwise. In general they can be written as:

�
j

(x) =

8
><

>:

1, for x 2 C
j

0, for x 62 C
j

(47)

For practical applications the transition matrix elements can be estimated by a counting matrix C(⌧)

using a sliding window approach. For this approximation ⌧ is set as ⌧ = k�t which is a k-fold of the time

step �t separating the neighboring elements of the trajectory x
t

. The elements c
ij

of the counting matrix

can then be calculated by:

c
ij

(⌧) =
T�kX

t=0

�
i

(x
t

)�
j

(x
t+k

) (48)

A set of trajectories can be treated as well by summing up the counting matrices for the single trajectories.

As the simulation time is finite it is not possible to achieve perfectly reversible dynamics. Therefore, the

reversibility can be introduced artificially by averaging over associated elements of the transition matrix:

c
ij,rev(⌧) =

c
ij

+ c
ji

2
(49)
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To ensure the validity of equations 45 and 46 the elements of the counting matrix are normalized by the

row sum to obtain the transition matrix elements T
ij

:

T
ij

(⌧) =
c
ij,rev(⌧)P

j

c
ij,rev(⌧)

(50)

A direct calculation of T(⌧) from the non-reversible counting matrix would yield the maximum probabil-

ity estimator of C(⌧). However, by enforcing reversibility the property gets lost. Algorithms have been

developed to account for this, as described in Ref. [11], by finding the maximum probability estimator

for the reversible case.

Projecting the continuous trajectory onto discrete states causes a loss of Markovianity as the exact infor-

mation within a state C
j

gets lost during the projection. Thus, to fulfill the Markov property several lag

times have to be tested to find a range of lag times for which constant implied timescales t
i

are achieved.

2.2.2.2 Core-set Markov State Models

Instead of using a full partitioning of the state space, a discretization into core sets can be chosen. Core sets

C
i

describe a subset of the state space ⌦ such that [N

C

j=1Cj

⇢ ⌦ and that there exists a space ⌦\[{C
j

}NC

j=1

that is not assigned to any discrete state. As for the full-partitioning discretization the core sets are not

overlapping C
i

\C
j

= ;. A method to obtain the core set is discussed in section 2.2.3.1. The construction

of the core-set MSM (cs-MSM) is in most steps similar to the full-partitioning case. As in equation 43

the continuous eigenfunctions can be expanded in a finite basis �̃
i

. Instead of indicator functions for a

core-set Markov State Model committor functions q
i

(x) are applied:

�̃
i

(x) = q
i

(x) =

8
>>>><

>>>>:

1, for x 2 C
i

0, for x 2 C
j

8j 6= i

q
i

(x) 2 (0, 1), for x 62 [N

C

j=1Cj

(51)

A committor function q
i

(x) can be interpreted as a probability to be in a certain discrete state. If the

trajectory is in core set C
i

the associated committor function q
i

(x) will be equal to 1 and all other

functions q
j

(x) 8j 6= i will be equal to 0. If the trajectory is in no core set the commitor function q
i

(x)

assigns a probability that the core set C
i

will be hit before any other core set C
j

8j 6= i . As a consequence

the following equation has to be fulfilled:

N

CX

i=1

q
i

(x) = 1 (52)
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Similar to the fp-MSM the expansion coe�cients ã
ij

for the expansion in the basis of the committor

functions can be estimated solving the generalized eigenvalue problem

T(⌧)ã
i

= �
i

(⌧)Mã
i

, (53)

where the operator M accounts for the overlap of the basis functions as the committor functions are

not orthogonal anymore, compared to the indicator functions. This generalized eigenvalue problem is

similar to equation 44, since for an orthogonal basis, as described in section 2.2.2.1, M = I
N

C

is applied,

where I
N

C

denotes the identity matrix with NC rows and columns. In a non-orthogonal basis M can be

approximated as:

M
ij

=
h�

i

,�
j

i
µ

h�
i

,1i
µ

(54)

Instead of committor functions, one can use milestoning functions for the Markov State Model construction

as they are easier to calculate. One distinguishes between two di↵erent milestoning functions: The

backward milestoning function m�
i

(x)

m�
i

(x) =

8
>>>><

>>>>:

1, for x 2 C
i

1, for x 62 [N

C

j=1Cj

and last came from C
i

0, else

(55)

and the forward milestoning function m+
i

(x)

m+
i

(x) =

8
>>>><

>>>>:

1, for x 2 C
i

1, for x 62 [N

C

j=1Cj

and will go next to C
i

0, else

. (56)

In the case of the trajectory being in a core set C
i

both milestoning functions will share the same value.

If this is not true, the backward milestoning functions m�
i

(x) is 1 if the last visited core set was C
i

.

Complementary, the forward milestoning function m+
i

(x) is 1 if the next visited core set will be C
i

.

Based on the milestoning functions the counting matrix can be described analogously to equations 48 to 50

for practical applications as:

c
ij

(⌧) =
T�kX

t=0

m�(x
t

)m+
j

(x
t+k

) (57)
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Similar to the transition matrix, the overlap matrix can be estimated as:

m
ij

=
TX

t=0

m�(x
t

)m+
j

(x
t

) (58)

To obtain a reversible overlap matrix, an equivalent formalism as described in equation 49 is applied,

followed by a normalization using the row sum according to:

M
ij

=
m

ij,revP
j

m
ij,rev

(59)

Equation 53 can be connected to equation 37 and 44 by defining an “e↵ective” transition matrix

T
Q

(⌧) = T(⌧)M�1.

2.2.3 Clustering

A data set S can be described as a set of N data points S = {x1, x2, ..., xN

}. Each data point x
i

denotes

an M -dimensional vector in a space ⌦ 2 RM . The aim of cluster algorithms is to assign every data

point x
i

2 S to a cluster C
j

, with C
j

⇢ S. The assigned data point can either belong to a certain cluster

(“hard” or “non-overlapping” clustering [122]) or to more than one cluster with a certain degree (“soft”

or “overlapping” clustering [127]).

This thesis will focus on “non-overlapping” clustering. In “non-overlapping” clustering each data point is

assigned to exactly one cluster such that C
j

\ C
k

= ;. The clusters can either cover the complete data

set such that [{C
j

}NC

j=1 = S or only a subset such that [{C
j

}NC

j=1 ⇢ S. For the latter case an additional

subset Z = S\ [ {C
j

}NC

j=1 is defined that includes all not assigned data points, later denoted as noise.

The main focus in this thesis will be on the density-based Common-Nearest-Neighbor (CNN) algorithm

[16, 135, 166] as well as on the centroid-based k-Means++ algorithm [15, 122, 167].

2.2.3.1 Common-Nearest-Neighbor Algorithm

The CNN algorithm partitions the data set with respect to two parameters in a set of clusters {C
j

}NC

j=1

and a set of noise Z. The first parameter is a distance measure R describing the neighborhood of every

data point x
i

within the data set S, later denoted as R-neighborhood. The second parameter N denotes,

in conjunction with R, a density threshold. In the CNN algorithm, two data points belong to the same

cluster if they share at least N neighbors with respect to their R-neighborhood (figure 2.5). In addition,

both data points themselves have to be neighbors with respect to R. The CNN algorithm is a cluster

growing algorithm [168] and can be described by the following scheme:
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1. Parameter choice: Define a parameter set {R,N}

2. Cluster initialization:

i Initiate a new cluster C
j

= {}

ii Choose an arbitrary data point x
i

from the set of unclustered data points U , add it to C
j

and

remove it from U . Store x
i

to a set of newly added data points L.

3. Cluster expansion:

i Select a data point xnew from L

ii Add all data points from the set of unclustered data points U for which the density criterion

with respect to xnew is fulfilled to C
j

and L and remove them from the set U .

iii Remove xnew from L

iv Repeat steps i to iii until no new data point is assigned (L = {}).

4. Clustering: Repeat steps 2 to 3 until the set of unclustered data points is empty (U = {})

5. Termination: Assign all clusters with only 1 assigned data point to Z

A depiction of this scheme is given in figure 2.5. The CNN algorithm is fully deterministic. Therefore,

the selection of xnew can be done arbitrarily. However, to speed up the algorithm the data point in U

with the highest number of neighbors is chosen to initiate a new cluster (Step 2). An additional speed

up is achieved by the criterion that two data points have to be neighbors of each other. Hence, all data

points that can be added in Step 3 have to be located within R of xnew.

If two data points x
i

and x
j

are closer than a distance R and fulfill the density criterion with respect to

each other, they are density-reachable. However, as the algorithm is a cluster growing algorithm also two

data points x
i

and x
k

that are not density-reachable from each other can belong to the same cluster. This

property is called density-connectivity [130]. Two data points x
i

and x
k

are density-connected if there is

a chain of density-reachable data points connecting x
i

and x
k

(figure 2.5, lower right). For example, if x
j

is density-reachable from x
i

and x
k

then x
i

and x
k

are density-connected via x
j

.
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Figure 2.5: Depiction of the clustering process according to the presented scheme: The data set is

clustered with respect to a parameter set {R,N} (Step 1); A cluster is initiated (Step 2) and expanded

with respect to the cluster criterion (Step 3); Using an iterative procedure the complete data set is

assigned to clusters (Step 4); After a termination step the final outcome is obtained (Step 5); In the lower

right the principle of density-connectivity is presented: Although the blue and the red data point are

not density-reachable with respect to {R,N}, they are density-connected with respect to the green data

point.

Former studies [135] showed that the algorithm can yield a high number of small clusters containing only

a few data points. To compensate these “artifacts” a third parameter M is added. M denotes the minimal

cluster size and is typically set to 0.1 % of the data set size. If M > 2 all clusters that are smaller than

M will be added to Z and removed from the set of clusters. This modifies steps 1 and 5 as follows:

1. Parameter choice: Define a parameter set {R,N,M}

5. Termination: Assign all clusters with less than M assigned data points to Z

A drawback of density-based-cluster algorithms is the extraction of clusters with a huge di↵erence in data

point density between these two clusters. In the CNN algorithm this can be compensated by applying

a hierarchical clustering scheme as introduced in Ref. [135]. In a hierarchical approach the data set

is clustered with a “low” density threshold {R
s

, N
s

} in a first step. A “low” density threshold refers

to either a large cuto↵ R
s

or a small number of shared neighbors N
s

. In the second step all clusters

that are not refined satisfactorily are clustered again using a “higher” density threshold {R
h

, N
h

}, i.e.

either decreasing R
h

or increasing N
h

with respect to {R
s

, N
s

}. This procedure can be repeated until the

clustering is satisfactory. With this approach clusters of di↵erent data point density can be separated,
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which would not be possible using a single parameter set as illustrated in figure 2.6. A discussion on how

to estimate a good parameter set as well as on how to estimate the quality of the clustering can be found

in Ref. [16, 135, 166].

Figure 2.6: Depiction of a hierarchical clustering approach using the density thresholds {R
s

, N
s

} and

{R
h

, N
h

}; Both parameter sets themselves are not feasible to extract all three clusters. Using an hierar-

chical approach by applying first {R
s

, N
s

}, extracting the green cluster and reclustering the violet cluster

with {R
h

, N
h

} yields the expected clustering; Extracted/Transferred clusters are highlighted by a colored

box.

2.2.3.2 k-Means++ Algorithm

The k-Means algorithm is a centroid-based algorithm partitioning the data-set into Voronoi-cells (fig-

ure 2.7). The algorithm needs only the number of clusters n as an input parameter. Based on this input

a set of n centroids C = {c
j

}n
j=1 is randomly initiated and optimized such that a function � is minimized:

� =
NX

i=1

min
cj2C

||x
i

� c
j

||2 (60)

The k-Means algorithm can be described by the following scheme:

1. Parameter choice: Define a number of clusters n

2. Cluster initialization: Choose n centroids randomly

3. Cluster optimization:

i Assign all data points to their closest centroids

ii For each cluster compute the center of mass as the new centroid
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iii Repeat steps i to ii until the change of the centroid drops below a predefined threshold

In general the cluster centroids are drawn from a uniform distribution. The random choice of the initial

clusters can bias the outcome [169]. Consequently, di↵erent techniques were developed to optimize step 2.

One method was proposed in Ref. [167] named the k-Means++ algorithm. In the k-Means++ algorithm

step 2 is modified in the following way:

2. Cluster initialization:

i Choose the first centroid from a uniform distribution

ii Choose a further centroid with a probability of p(x) = D(x)2/
P
x2S

D(x)2 (with D(x) being the

distance to the closest centroid)

iii Repeat step ii until n centroids are chosen

The addition of these steps speeds up the k-Means algorithm and yields a better partitioning of the data

set compared to a random selection of the initial centroids. The drawbacks of the algorithm are, on the

one hand, the non-deterministic behavior (dependency on the initial centroids) and, on the other hand,

the characterization of di↵erent shapes due to the use of the distance to the nearest centroid as a clustering

criterion.

Figure 2.7: Depiction of a Voronoi partitioning. The circles represent the centroids of the cluster, the

solid red lines represent the border; connected centroids (dashed lines) are bisected midway.

2.3 Analysis on QM-Level

The theory explaining density functional theory is based on Ref. [170–172]. For time-dependent density

functional theory it is additionally referred to Ref. [173–176].

2.3.1 Density Functional Theory

All equations in this chapter are given in atomic units (~ = 1 a.u, m
e

= 1 a.u., e = 1 a.u., 1
4⇡✏

0

= 1 a.u.).

As MD simulations based on classical mechanics are limited with respect to bond breaking and are strongly

biased by the used force field, one can increase the level of theory to get an insight into the electronic
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structure. Assuming a system without time dependency, we can obtain information about the electronic

structure by solving the time-independent Schrödinger equation

Ĥ (r, r2, . . . , rNe ,R) = E (r, r2, . . . , rNe ,R), (61)

where Ĥ denotes the Hamiltonian of the system with eigenfunctions  (r, r2, . . . , rNe), also called wave

functions and eigenvalues E, accounting for an energy. The vector ri denotes the position of electron i

of a total N
e

electrons and R denotes the position of all nuclei. By applying the Born-Oppenheimer

approximation, which assumes the position of the nuclei as fixed, the Hamiltonian can be split into

a nuclear Ĥn and an electronic Hamiltonian Ĥel. The electronic Hamiltonian consists of three terms

according to

Ĥel = T̂ + V̂ee + V̂ext , (62)

where T̂ represents the kinetic energy operator of the electrons:

T̂ = �1

2

NeX

j=1

r2
j

(63)

r2
j

is the Laplace operator with respect to j defined as r2
j

= @

2

@x

2

j
+ @

2

@y

2

j
+ @

2

@z

2

j
in Cartesian coordinates.

The term V̂
ee

accounts for the electron-electron repulsion and is defined as:

V̂ee =
1

2

NeX

i 6=j

1

|r
i

� r
j

| =
NeX

i=1

NeX

j>i

1

|r
i

� r
j

| (64)

In order to avoid double counting, the factor 1
2 is applied. The last term V̂ext accounts for a one-body

potential

V̂ext =
NeX

j=1

vext(rj) (65)

and describes in most cases the interaction of the electrons with the nuclei. Additional terms may arise

in case, e.g., of the application of an external potential such as an electric field. In density functional

theory (DFT), one uses the electron density ⇢(r) instead of a wave function representation. The electron

density ⇢(r) addresses the probability of detecting an electron in the volume d3r around r according to:

⇢(r) = N
e

Z
d3r2 . . .

Z
d3r

Ne | (r, r2, . . . , rNe ;R) |2 =
NeX

j=1

|�
j

(r)|2 (66)
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with normalization:

Z
d3r ⇢(r) = N

e

(67)

A common way to obtain the electronic kinetic energy within DFT is the use of Kohn-Sham functions �
i

.

�
i

is a single electron wave function of a system of fictitious non-interacting electrons. The Kohn-Sham

functions are used to obtain the total density according to equation 66 and can be obtained similar to

equations 61-65 by solving the Kohn-Sham equation:

✓
�1

2
r2 + ve↵(r)

◆
�
i

= ✏
i

�
i

(68)

In this equation, ve↵(r) denotes the e↵ective potential

ve↵(r) = vext(r) + vH(r) + vxc(r) (69)

accounting for an external potential vext, a Hartree potential vH defined as

vH =

Z
d3r0

⇢(r0)

|r� r0| (70)

and an exchange-correlation potential v
xc

vxc =
�Exc

�⇢(r)
(71)

with the exchange-correlation energy Exc = Ex + Ec. The exchange-correlation energy is necessary since

the approximation of non-interacting electrons causes an error in the total energy. It can be broken down

into an exchange energy Ex and a correlation energy Ec. Both energies compensate missing e↵ects like

exchange and correlation of electrons.

Di↵erent functionals can be used to define the exchange-correlation energy. The most basic functional

is the local-density approximation (LDA) which assumes the electrons to be distributed in a uniform

electron gas. For this simple approximation, ELDA
xc can be written as

ELDA
xc [⇢] =

Z
d3r ⇢(r)✏xc(⇢(r)) (72)
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with ✏xc(⇢(r)) denoting the exchange-correlation energy per particle. The inclusion of electron spins ↵

and �, with ⇢ = ⇢
↵

+ ⇢
�

, allows for spin-polarization and one obtains:

ELSDA
xc [⇢

↵

, ⇢
�

] =

Z
d3r ⇢(r)✏xc(⇢↵(r), ⇢

�

(r)) (73)

To arrive at a more accurate model for systems where the assumption of a uniform electron gas does not

hold, one can apply the generalized gradient approximation (GGA) instead of LDA. In GGA one adds

the gradient of the electron density r⇢(r) to take the non-homogeneous distribution of the electrons into

account. In general, the functional for GGA can be written as:

EGGA
xc [⇢

↵

, ⇢
�

] =

Z
d3r f(⇢

↵

(r), ⇢
�

(r),r⇢
↵

(r),r⇢
�

(r)) (74)

The exchange energy dominates in most cases. Thus, using hybrid functionals that contain the exact

exchange energy E
x

and are obtained from a wave function based ansatz, one can further modify the

exchange-correlation energy via

EHyb
xc [⇢

↵

, ⇢
�

] = a
�
Ex � EGGA

x [⇢
↵

, ⇢
�

]
�

+ EGGA
xc [⇢

↵

, ⇢
�

] (75)

with a scaling factor a.

2.3.2 Linear Response Time-dependent Density Functional Theory

Spectroscopy is intrinsically a time-dependent process involving an external electromagnetic field and the

corresponding response of the material. To include time-dependent properties into the DFT calculations,

one has to solve the time-dependent Kohn-Sham equation

i
@�

i

(r, t)

@t
=


�1

2
r2 + ve↵(r, t)

�
�
i

(r, t) (76)

with a time-dependent e↵ective potential ve↵(r, t)

ve↵(r, t) = vext(r, t) + vH(r, t) + vxc(r, t) (77)

and time-dependent Kohn-Sham functions �
i

(r, t). Similar to equation 66 one can formulate a time-

dependent electron density ⇢(r, t) according to:

⇢(r, t) =
NeX

j=1

|�
i

(r, t)|2 (78)
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For calculations of small perturbations of the external potential

vext(r, t) = vext(r) + �vext(r, t) (79)

with �vext(r, t) ⌧ vext(r), like that obtained by standard spectroscopy, linear response theory can be

applied. For small perturbations and the assumption that the initial state is the ground state (GS), one

can write the changes in the densities with respect to the ground state as

⇢(r, t) = ⇢GS(r, t) + �⇢(r, t) (80)

with incremental, time-dependent changes �⇢(r, t) and �vext(r, t). Defining the susceptibility of the ground

state towards small changes � [⇢GS] (r, r0, t� t0) as

� [⇢GS] (r, r
0, t� t0) =

�⇢(r, t)

�vext(r0, t0)

����
v

ext,0

(81)

yields a way to describe the changes in the electron density according to:

�⇢(r, t) =

Z
dt0
Z

d3r0� [⇢GS] (r, r
0, t� t0)�vext(r

0, t0) (82)

Linking this linear response approach to the Kohn-Sham formalism with respect to the susceptibility of a

Kohn-Sham system

�KS [⇢GS] (r, r
0, t� t0) =

�⇢(r, t)

�ve↵(r0, t0)

����
v

eff

[⇢
GS

]

(83)

equation 82 can be reformulated according to

�⇢(r, t) =

Z
dt0
Z

d3r0�KS [⇢GS] (r, r
0, t� t0)�ve↵(r0, t0) (84)

since both equations have to yield the same outcome. The change in the e↵ective potential is defined as:

�ve↵(r, t) = �vext(r, t) +

Z
d3r0

�⇢(r0, t)

|r� r0| +

Z
dt0
Z

d3r0fxc [⇢GS] (r, r
0, t� t0)�⇢(r0, t0) (85)

with

fxc [⇢GS] (r, r
0, t� t0) =

�vxc(r, t)

�⇢(r0, t0)

����
⇢=⇢

GS

(86)
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The functional fxc [⇢GS] (r, r0, t� t0) denotes the exchange-correlation kernel, which is a functional of the

ground state density.

In the course of this thesis, TD-DFT is used to calculate UV/Vis absorption spectra. Every peak in

these spectra accounts for the energy di↵erence between two solutions of the time-dependent Kohn-Sham

equation (equation 76). For the excitations, the same geometry of the ground and the excited state is

assumed. Every excitation from the ground to an excited state incorporates an oscillator strength. The

oscillator strength accounts for the absorption probability and thus for the intensity of the peak in the

spectrum.

2.4 Docking

The theory of the docking and of the used docking software were taken from Ref. [142, 177–179].

In molecular docking an optimal binding mode between a small molecule (ligand) and a target is predicted.

This prediction can either be done on a rigid level, where only a “rigid” rotation of both compounds is

allowed, following the lock-and-key model or on a flexible level enabling conformational changes of the

ligand as well as (partially) of the target. The latter case would refer to an induced-fit or conformational-

selection model. Di↵erent binding modes are ranked with respect to a scoring function, which is based on

the interaction between ligand and target. Other features like desolvation, entropy or accessible surface

area of the solvent can also be included into the scoring function. There is a wide variety of software and

scoring functions, which is too complex to be discussed in the course of this thesis. The following section

will thus focus on the theory behind the applied software AutoDock4 [179], which allows a flexible docking

of both, ligand and target.

During the docking, di↵erent binding modes are evaluated with respect to a semi-empirical scoring function

estimating the free energy of binding �Gbind according to:

�Gbind = (V L�L
bound � V L�L

unbound) + (V P�P
bound � V P�P

unbound) + (V P�L
bound � V P�L

unbound +�Sconf) (87)

The first two parentheses of the scoring function take the energy di↵erence of the bound and unbound

ligand L as well as the protein P into account. The third parenthesis accounts for the interactions between

the protein and the ligand including an entropic term that accounts for the conformational entropy loss,

which is caused by the binding procedure. The unbound state for the ligand can be treated as either

an extended conformation, the bound conformation or an optimized conformation. For the protein a

reference structure, like a crystal structure, can be used, i.e. in the case of a rigid protein the bound and
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the unbound energy are equal and the term vanishes. For the protein-ligand interactions it is assumed

that at a long distance, the interactions will decay towards zero.

The potential energy V for pairwise interactions is given by the following equation:

V = Wvdw

X

i,j

 
A

ij

r12
ij

� B
ij

r6
ij

!
+ WHbond

X

i,j

E(✓)
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ij

r12
ij

� D
ij

r10
ij

!

+ Welec

X
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q
i

q
j

✏(r
ij

)r
ij

+ Wsolv

X

i,j

(S
i

V
j

+ S
j

V
i

) exp

 
� r2

ij

2�2

! (88)

All terms depend on the pair distance r
ij

and a weight W that accounts for non-bonded interactions

and e↵ects including van der Waals interactions (vdw), hydrogen bonding (Hbond), electrostatic interac-

tions (elec) and desolvation (solv). E(✓) is a function depending on the angle of the hydrogen bonding,

A
ij

, B
ij

, C
ij

, D
ij

are constants with respect to the potential. For the electrostatic interactions partial

charges q
i

are taken into account. In the desolvation potential S
i

accounts for a solvation parameter, V
i

for the spherical atomic volume, and � for a distance weight. The conformational entropy loss due to

binding is calculated based on the number of rotatable bonds N
torsions

:

�Sconf = WconfNtorsions (89)

For a fast computation of the scoring function a grid-based approach is applied. In this approach, the

interesting part of the target is described by a fine grid. For each grid-point an energy for a probe with

a certain feature, like hydrogen donor/hydrogen acceptor capability or atom type, is calculated. This is

possible due to the additivity of the energy. This method enables the creation of some kind of dictionary

for every grid point and a fast evaluation of di↵erent binding modes.

The generation of di↵erent docking poses for the ligand is performed by a Lamarckian genetic algo-

rithm (LGA). In a genetic algorithm a random population of starting poses is generated, which is opti-

mized with respect to a fitness score. In every generation the poses with the highest fitness are selected,

modified and evaluated again. This procedure is repeated until a threshold criterion is met. In the mod-

ification step two di↵erent modifications are performed. In a first step some conformational features of

random selected poses are mixed (crossover mutation). In a second step random mutations are intro-

duced by adding a real number drawn from a Cauchy distribution to the conformational features. In

LGA, for each generation a local search of a subset of the population is performed allowing to scan the

local conformational space and increasing the fitness score for this subset.
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3 ANALYSIS OF THE WATER-SOLUBLE CHLOROPHYLL-BINDING PROTEIN

3 Analysis of the Properties of the Water-Soluble Chlorophyll-

binding Protein (WSCP)

Molecular dynamics (MD) simulations are a powerful tool for the investigation of dynamical properties

of biomolecules. MD simulations can be applied, among other things, to predict the stability and to

highlight flexible parts of the investigated system, or to sample the conformational space the biomolecule

can adapt. Including small structural changes in the biomolecule, MD can additionally be used to ob-

serve changes in the dynamics induced by these constitutional modifications. By adding further analyses

such as hydrogen bond network analysis, force distribution analysis or clustering, a deep insight into the

dynamical behavior of the biomolecule can be achieved.

The tetrameric water-soluble chlorophyll binding protein (WSCP) is a quite remarkable protein. Although

WSCP has not been observed to be participating in any photosynthetic process it contains up to four

chlorophyll (Chl) molecules [180–182]. It further shows a high stability towards extreme temperature and

extreme pH [182–184] as well as a higher photostability of the Chls compared to free Chls [185–188]. While

its biological function is still unknown, there are several functions proposed. As the apo-WSCP is located

in the endoplasmic reticulum [189, 190], it was assumed to be part of the pathogen recognition [187].

Another proposed function is the role as a scavenger for free Chls during chloroplast degradation [189].

The research presented in this work focuses on the finding of explanations for the high stability of WSCP

and the bound Chls. The work is split into two parts. The first topic, described in section 3.1, focuses

on the stability of WSCP using MD simulations. Within this context, a possible function of WSCP is

discussed. Section 3.2 deals with the examination of the spectral properties of the bound Chls.

3.1 On the Stability of the Water-Soluble Chlorophyll-binding Protein (WSCP)

Studied by Molecular Dynamics Simulations

In this section, the stability of WSCP is discussed based on MD simulations. WSCP consists of four

non-covalently bound subunits, each capable of binding one Chl molecule. The overall structure forms a

dimer of dimer structure where the porphyrine-rings of the Chls within one dimer are closer to each other

than the porphyrine-rings of the other dimer. It was found that WSCP is stable if at least two Chls in

one dimer are bound [182].

In this study, the stability of WSCP is estimated using structural properties, root-mean-squared devi-

ation (RMSD), force distribution (FDA) and hydrogen bonding analysis. Additionally, the dynamical
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changes by removing Chl molecules are investigated. During the structural analysis of WSCP, two cys-

teines per protein subunit were observed to form a disulfide bridge within the subunit. In the MD

simulation, these cysteines showed no strong conformational changes. Since the cysteines are located

directly at the interface between two dimers, a reconnection of these cysteines between di↵erent sub-

units was tested in order to determine the e↵ects on the dynamical properties. This was done under the

assumption that the stability of the tetrameric structure is improved. The research was submitted to

J. Phys. Chem. B.

The following document is the unedited author’s version of a submitted work, which was submitted

to J. Phys. Chem. B, copyright © American Chemical Society after peer review.
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Abstract

The water-soluble chlorophyll-binding Protein (WSCP) is assumed to be not part of

the photosyntetic process. Applying molecular dynamics (MD) simulations we aimed to

obtain insight into the exceptional stability of WSCP. We analyzed dynamical features

such as the hydrogen bond network, flexibility and force distributions. The WSCP

structure contains two cysteines at the interfaces of every protein chain, which are

in close contact to the cysteines of the other dimer. We tested if a connection of

these cysteines between different protein chains influences the dynamical behavior to

investigate any influences on the thermal stability. We find that the hydrogen bond

network is very stable regardless of the presence or absence of the hypothetical disulfide

bridges and/or the chlorophyll units. Furthermore, it is found that the phytyl chains

of the chlorophyll units are extremely flexible, much more than what is seen in crystal

structures. Nonetheless, they seem to protect a photochemically active site of the

chlorophylls over the complete simulation time. Finally, we also find that a cavity in

the chlorophyll-surrounding sheath exists, which may allow access for individual small

molecules to the core of WSCP.

1 Introduction

Molecular dynamics (MD) simulations have become a valuable tool in the last decades to

study the dynamical properties of biological systems.1–5 With the help of these simulations

combined with other analysis techniques it is possible to make statements regarding confor-

mational dynamics,6–10 allostery,11 protein misfolding12 and many other relevant biological

features. The investigated systems are quite diverse and can reach from small13–15 to larger

biomolecules3,11,16 or even complexes consisting of multiple biomolecules and/or ligands.17–22

Using MD simulations the water-soluble chlorophyll-binding protein (WSCP) is analyzed

in the course of this article. WSCP differs from other chlorophyll carriers such as reaction
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centres or antenna systems as it is located in the cytoplasm. It is not inserted into the

thylakoid membrane and fully water-soluble.23 WSCP was not detected to be involved in

any photosynthetic processes.24 Its function, however, is still unknown and there are sev-

eral suggestions towards it, like the function as a chlorophyll scavenger,25 as a signaler for

pathogen attack26 or as an agent involved in programmed cell death.27,28

The protein itself consists of a tetrameric structure, showing a pseudo-tetrahedral confor-

mation. Every protein subunit contains one chlorophyll (Chl), which was detected by X-Ray

crystal structure in 2006.29 It was reported that WSCP can bind chlorophyll a (Chla), chloro-

phyll b (Chlb) as well as other chlorophyll derivatives. The ratio of selectivity is depending

on the primary sequence of the WSCP.30 Due to the overall 222 symmetry, WSCP can

be described as a dimer of dimers, where the porphyrin rings within a dimer are in close

contact.29 Former studies31 showed that if only one dimer is binding 2 Chls, the tetrameric

WSCP complex is still stable towards dissociation. WSCP features additionally the capabil-

ity for uptake of further Chls from thylakoid membranes23,32 to saturate the dimer lacking

Chls. Lacking all Chls, no stability was observed. It was proposed that the phytyl chains

of the Chls stabilize the WSCP complex as they are forming a hydrophobic cavity in the

protein.29,33 Other studies showed that the phytyl chains are not needed for the stability at

ambient, but at higher temperatures.26

The WSCP is formed under stressful conditions34–37 and therefore was assumed to have

a protective function.38 It shows a high thermal39,40 as well as a high pH stability.31 Fur-

thermore, the bound Chls possess a high resistance towards photobleaching although the

Chls within a dimer form an excitonic couple41 and no photoprotective carotenoids are

present.23,32 It is known that excited Chls in a triplet state can transfer their excitation en-

ergy towards oxygen, which leads to the formation of singlet oxygen or other reactive oxygen

species (ROS).42 With respect to the singlet oxygen production Schmidt et al.23 reported

3

3 ANALYSIS OF THE WATER-SOLUBLE CHLOROPHYLL-BINDING PROTEIN

47



that Chl bound to WSCP shows a reduced singlet oxygen formation, which might explain

the higher stability. Based on the crystal structure and this observation it was assumed that

the protein forms a diffusion barrier towards the interaction of oxygen and excited Chls.38

In contrast, Agostini et al.26 recorded that the singlet oxygen formation is equal as for free

Chl and the phytyl chains of the Chls act as a shield for a photochemically active sites of

the protein and therefore are the key for their photostability.

Most of the suggestions regarding the stability and properties of WSCP are based on

crystal structures and not on the dynamical behavior, which could strongly influence these

properties. To strengthen or refute the found characteristics the dynamical behavior has to

be investigated as well. To our knowledge, this has not been done up to now and is an open

field of research. In this work, we therefore focus on the analysis of the dynamical behavior of

WSCP during molecular dynamics (MD) simulations at room temperature starting from the

crystal structure.29 Additionally, we aim to identify the important interactions and capture

their dynamical behavior that can increase the stability of the WSCP complex. By removing

Chls from the simulation setup, changes in the properties are investigated, which might be

of importance to understand the uptake of Chls.

During the course of this study we discovered that on the interfaces between the dimers

(later referred to as interfaces ICA,CD and ICB,CC) 2 cysteines per subunit (C45 and C92) are

present (Figure 1). In the crystal structure,29 which was used as a starting structure for

the simulation, the cysteines form a disulfide bridge within the subunit. Due to the close

proximity of the cysteines it might be conceivable that a reconnection of these cysteines

between different subunits is possible. Further, we found that at these interfaces hydrogen

bonds are formed that are in close proximity to the cysteines. At this point the question arises

if these disulfide bridges are needed to get the hydrogen bonds into contact. On the contrary,

it might be that the hydrogen bonds allow the cysteines of the subunits to get close enough
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for a covalent connection between the subunits. An interesting fact is that only 2 cysteines

are present in every subunit. Of these 2 cysteines per subunit, both are located at potentially

dimer-connecting interface positions. Combining this observation with the hydrogen bonding

of the neighboring amino acids, strengthens the hypothesis that a crosslinking of the cysteines

between the dimers is possible. Furthermore, it might be a key for the high stability of WSCP.

Utilizing MD simulations we investigate how a (hypothetical) crosslinking of these cysteines

influences the properties examined in this article. The information gained by this analysis

can on the one hand be used to check if this crosslinking distorts the quarternary structure

of the WSCP and on the other hand be used to identify characteristics that are only present

if the cysteines are crosslinked.

  

Figure 1: Tetrameric structure of WSCP with highlighted cysteines C45 and C92 at the
interfaces ICA,CD and ICB,CC.

This publication aims to characterize the dynamical properties of WSCP and investigate

their changes when either Chls are removed to a certain amount or the tertiary structure is

modified by crosslinking specific cysteine residues. In Section 2 the setup for the simulations

and analyses are highlighted. Based on these simulations, several analyses with respect

to dynamic behavior, flexibility and energetics were carried out (Section 3) and set into

context to properties observed in experiments (Section 4). In Section 5 the observations are
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summarized.

2 Methods

MD Simulations

MD simulations were performed using the GROMACS 2016.1 simulation package.43 All

calculations were run in an NPT ensemble at T=300 K using leap-frog integration,44 the

CHARMM36 force field45,46 and the TIP3P water model.47 As a starting structure the PDB

entry 2DRE29 was used (protonated: N-terminus, Lys, Arg; deprotonated: C-terminus, Asp,

Glu). Missing amino acids were added manually assuming 4 equal subunits followed by an

energy minimization using the steepest decent algorithm (emtol = 100 kJ mol�1 nm�1).

The parameters for Chla were obtained from Ref. 48–52. After solvation and neutralization,

adding 40 sodium ions, the system was energy minimized using a steepest decent algorithm,

followed by an NVT and an NPT equilibration of 100 ps each. The temperature was kept

constant using a v-rescale thermostat53 (ref_t = 300 K, tau_t = 0.01 ps). The WSCP com-

plex as well as the rest of the system (solvent and ions) were coupled to separate thermostats.

For the NPT calculations a Parrinello-Rahman barostat54 (ref_p = 1.0 bar, tau_p = 2 ps)

was added as well. Bonds between hydrogen and heavy-atoms were constrained using the

LINCS algorithm55 (lincs_iter = 1, lincs_order = 4). Long range interactions were cal-

culated using a Particle-Mesh-Ewald summation56 (pme_order = 4, fourierspacing = 0.16)

and cut-offs (rlist = 1.2 nm, rvdw = 1.2 nm, rcoulomb = 1.2 nm) with a force-switch (rvdw

= 1.0 nm). After equilibration, each investigated system was simulated with a time step of 2

fs, saving system’s coordinates every 10 ps. The described setup was used for all simulations

if not stated differently. For all simulations of complexes, which differ from the original 4

Chls with 4 protein chain, modifications such as removal of Chls or reconnection of bonds

were performed manually on an equilibrated structure of the holoprotein and solvated again.

All simulations with no crosslinking of the cysteines were started from the same equilibrated
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structure. For the simulations with a crosslinking of the disulfide bridges, a snapshot taken

at 150 ns of the simulation containing 4 Chls was used as a starting structure.

In total 5 different systems were simulated containing 4, 2 or 0 Chls. In the case of 2

Chls, the 2 Chls of one dimer were kept, whereas the Chls of the other dimer were removed.

For the formation of disulfide bridges, which will be discussed in Section 3, calculations for

4 and 2 Chls were performed. The 8 symmetric disulfide bridges were formed manually

(using GROMACS trjconv -ss flag) and energy minimized to obtain a starting structure for

the simulation. The simulation length, modifications as well as the later used labels are

summarized in Table 1.

Table 1: Labeling of the different simulation setups with respect to the number

of Chls, structural modifications and the total simulation length;

†
For the system

Nat4_Pulled 3 simulations with 300 ns each were performed.

Label #Chl Structure modification Duration/ns
Nat4 4 – 450
Nat2 2 – 300
Nat0 0 – 300
Sulf4 4 Formation of disulfide bridges between the dimers 300
Sulf2 2 200

Nat4_P_all 4 Subunits pulled apart by 1 nm 900†
Nat4_P_protein 4 Protein chains pulled apart by 1 nm 300

Nat_Chl 4 Removal of the protein chains 100
Nat_Chl_P 4 Removal of the protein starting from Nat4_P_all 100

To study the dynamical behavior of the monomers as well as the tetramer formation

further simulations were performed using the same simulation setup as described above. In

these simulations, the subunits were pulled apart along the axes of a tetrahedron by 1 nm

each for further simulations. For this, the coordinates of the protein chains and the Chls

were modified manually to obtain starting structures. A detailed description for the pulling

is given in the supporting information. Different simulations were performed where either

complete subunits or only the protein chains were pulled apart. Two additional simulations

were performed that contained no apoprotein and thus only Chls; one with the Chls in their

original conformation and another with the Chls pulled apart as described above saving the
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coordinates every 1 ps. All further information are reported in Table 1.

Analysis

RMSD calculations were done using the GROMACS 2016.1 simulation package with a ref-

erence structure taken at t = 1 ns from each simulations. RMSDs were averaged over 1ns

and plotted with their corresponding minimal and maximal value every nanosecond. Force

distribution analysis was performed for the simulation Nat2 using the gmx_fda package.57

For the analysis the non-bonded forces (Coulomb, Lennard-Jones (LJ)) were calculated and

summed for different groups. These groups were defined as subunits of the protein (CA, CB,

CC, CD) with coordinated Chls for the dimer formed by CA and CB. Non-binding energies

were calculated using the GROMACS 2016.1 simulation package for the same classes. Ad-

ditionally, the energy between the Chl of subunit CA and CC as well as their counterparts

were taken into account. The Coulomb and LJ energy values were added up and averaged

over the complete trajectory.

Hydrogen bond analysis was performed using the GROMACS 2016.1 simulation package

with an angle cutoff of 30� and a distance cutoff of 0.35 nm. All hydrogen bonds within a

subunit were neglected and only hydrogen bonds between different subunits or the protein

and Chl were taken into account. In addition a overall population of 10 % was set as a

minimal threshold to characterize the significant hydrogen bonds. In the analysis hydrogen

bonds between equivalent parts of the protein were averaged with the counter part of the

other dimer, assuming a symmetric structure.

3 Results

3.1 Benchmark and Dynamical behavior

In a first step the dynamical properties of the simulated systems were compared with static

reference values (theoretical and experimental). Beside the systems containing 4, 2 or 0
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Chls, 2 further simulations are included in the analysis with a modification of the tertiary

structure. As already described in section 1, we tested how a (hypothetical) reconnection of

the cysteines, covalently linking the dimers, influences the dynamical properties.

The investigated properties are reported in Table 2. These features include the angle of

the Mg ion with respect to the porphyrin ring, the angle between the porphyrin rings (denoted

as plane) within the dimer or between different dimers as well as the distance between the

Mg ions. Horigome et al.29 reported that the coordination of the Mg ion is essential for the

binding towards the protein. Therefore, the distance between the coordinating P36 backbone

oxygen and the Mg ion was tracked. Palm et al.30 proposed that the phytyl chains block

a photochemically active site of the Chl. Due to this, the shortest distance between the

photochemically active methine-20 and the phytyl chains is reported as well; numbering of

Chl is depicted in Figure S1.

Table 2: Dynamic chlorophyll properties (mean value ± standard deviation)

of selected systems. Plane-Plane and Mg-Mg properties between chlorophylls

of the same (s) or the opposite (o) dimer are reported. The angle between

the planes was calculated using the plane’s perpendicular. For the distance

between the methine-20 atom of the prophyrin system, which was reported to

be a photochemically active site of the Chl,

30
the shortest distance between the

methine-20 carbon and any atom of the phytyl chains of all Chls is reported.

Label Nat4 Disulf4 Nat2 Disulf2 Ref.
Angle (Mg - Plane)/� 5.8 ± 2.4 4.8 ± 2.4 6.3 ± 1.9 4.2 ± 2.3 11.729

Angle (Plane - Plane)/� s 34.7 ± 5.4 38.0 ± 7.0 30.3 ± 4.5 38.3 ± 4.8 3058

o 98.1 ± 5.6 98.8 ± 7.3 – – –

Distance (Mg - Mg)/Å s 10.3 ± 0.6 10.5 ± 0.6 10.1 ± 0.4 10.3 ± 0.6 1026

o 20.2 ± 1.0 19.4 ± 1.3 – – 2026

Distance (Mg - P36)/Å 2.3 ± 0.3 2.5 ± 0.4 2.2 ± 0.1 2.5 ± 0.4 2.129

Distance (Phythyl - C20)/Å 4.3 ± 0.6 4.2 ± 0.6 4.2 ± 0.4 4.3 ± 0.7 4.029

Analyzing the dynamical properties it can be observed that the Mg ion is permanently

coordinated by P36, with a slightly increased average distance compared to the reference

values. In addition, it can be seen that a phytyl chain is always in close contact to the

methine-20 carbon and shows only a small fluctuation. The distance between the Mg ions
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matches the reference values as well. From Table 2 three notable observations can be made.

Firstly, the angle of the Mg ion with respect to the porphyrin plane does not match the

reference value. This is an artifact of the force field as the atoms are not treated on an elec-

tronic level, confirmed by preliminary QM/MM calculations (data not shown, optimization

of a snapshot taken at 1 ns: 8.5 ! 9.9 �). Due to the tight packing and the presence of the

protein, acting as a cage for the Chls, only the magnesium position seems to be affected by

this artifact. To confirm this, the distance of the magnesium to the center of the porphyrine

plane was calculated as well for Nat4 with 0.24 ± 0.04 Å(Reference:29 0.49 Å). The difference

of 0.2–0.3 Å is counteracted by the enlarged distance between Mg and P36, which can be

considered a fortuitous error cancellation.

Secondly, removing 2 Chls (Nat2) reduces the fluctuation of the angle between the pro-

phyrine rings within a dimer. This may be explained as the binding cavity containing only

2 Chls is not as packed compared to the presence of 4 Chls. As a consequence, the por-

phyrin rings may more likely form favorable interactions that stabilize the conformation.

This can also be observed for the P36-Mg distance. Lastly, we can see that introducing

disulfide bridges (Disulf4 and Disulf2) has no strong influence on the observed properties

with exception to the angle between different porphyrins. The explanation for this can be

found in a small conformational change of the protein by reconnecting the cysteines. How-

ever, as for all other properties the changes in the protein conformation are surprisingly small.

For the coordination of the phytyl chains towards the methine-20 carbon of the Chls,

we also examined to which Chl the phytyl chain belonged. In roughly 22 % of all cases

the phytyl chains belonged to the same molecule, in roughly 74 % to the same dimer. For

Nat4 in roughly 6 % of all frames a coordination of a phytyl chain of the other dimer was

observed. In some cases the phytyl chain of one Chl was able to coordinate towards both

methine-20 within the dimer. This was possible due to the methyl groups of the phytyl
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chain and can also be observed in the crystal structure of a WSCP mutant.30 This indicates

a strong variance of the phytyl chain structure over time.

All investigated systems remained in their tetrameric form during the complete simula-

tion. For Nat0, this is not in agreement with the experimental observations. The reason for

this can be either found in an over-stabilization of the protein interactions induced by the

force field or an dissociation time scale beyond >300 ns. In the latter case it might be as well

a consequence of the chosen starting structure. As the starting structure was taken from

the simulation of the system containing 4 Chls, all hydrogen bonds, hydrophobic and ionic

contacts were already formed stabilizing the molecule. Starting from 4 monomers it might

be very improbable to form these kind of interactions spontaneously. Different simulations

with separated monomers either with bound or unbound Chl were performed, see Section

3.5.

3.2 Effect of Chl presence and Cys-Cys linking

We continued to investigate the effect of Chls and/or disulfide bridges on the structure. The

first investigated observable is the root-mean-squared-deviation (RMSD). The mean RMSD

for every nanosecond (100 frames) and the fluctuation (minimal and maximal RMSD per

nanosecond) was analyzed (Figure 2). In the former section we observed that the tetramer

was stable over the full 300 ns that were simulated. Hence, all changes in the RMSD are

caused by conformational changes and not by dissociation. For Nat4 a constant RMSD with

only a small fluctuation is observed, which indicates the high stability of the holoprotein. As

the starting structures of all other simulations were taken from Nat4, they can be compared

directly.

Removing 2 Chls (Nat2) increases the RMSD after roughly 40 ns. This observed time,

however, is only based on one simulation. As no reversibility is observed during the simu-
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Figure 2: Mean RMSD over 1 ns for all investigated simulations. The error bars depict the
minimal and maximal RMSD value within an interval of 1 ns.

lation this time is not significant and can only be seen as an indicator. The increase in the

RMSD is caused by a movement of the monomers not containing any Chl and might be a

requirement for the uptake of 2 further Chls. Connecting the disulfide bridges (Disulf4 and

Disulf2) between different dimers yields a comparable behavior with respect to Nat4 and

Nat2. Reconnecting the cysteines does not affect the flexibility.

After removal of the last 2 Chls (Nat0) we observed that this fluctuation gets larger and

faster. After a few ns, an RMSD increase compared to Nat2 and Nat4 is observed, which

shows a much stronger fluctuation within 1 ns compared to Nat4. In addition, a larger

overall fluctuation over the complete simulation is observed compared to the other systems.

3.3 Hydrogen Bond Network

In a next step the hydrogen bond network was analyzed to find an explanation for the be-

havior of the RMSD and to investigate the conformational changes of the systems Nat2 and

Disulf2. For the analysis only hydrogen bonds between either different subunits or between

protein and Chl were analyzed. Using a threshold of at least 10 % occurrence over the whole

simulation, the high number of hydrogen bonds can be reduced to the most important in-

teractions (Figure 3).
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Figure 3: Dominant hydrogen bond donors and acceptors; (a) between the protein chains
CA (blue), CB (cyan), CC (orange) and CD (red), highlighting the interfaces ICC,CD and the
interfaces ICA,CD. The amino acid labels are colored according to their parent protein chain.
Note, although only 2 interfaces are presented a symmetric behavior is observed for the
interfaces ICA,CB and ICB,CC; (b) between the protein and Chl highlighting the coordinating
amino acids. Q57 can either coordinate towards the same-chain Chl (as shown) or towards
the other Chl within the same dimer (alternative coordination site, oxygen, depicted as a
red sphere).

For the interactions between the 2 subunits within a dimer, symmetric hydrogen bonding

between Q57 and G59 was observed with a population of 40-60 %. Q57 seems to play an

important role for the overall stability as it can also coordinate towards both Chls within the

dimer. Horigome et al.29 already described the bonding of Q57 towards the Chl, however,

only to the Chl of the other subunit. In the MD simulation a more complex behavior of Q57

could be observed (Figure 4).

Further hydrogen bonding between the protein and Chl was observed by the amino acids

T52 and S53 showing a high population over the complete trajectory. Remarkably, S53 can

coordinate with both, the backbone as well as the side chain, towards the porphyrin ring of

Chl.

For the interaction between the dimers at the interfaces ICA,CC and ICB,CD, no hydro-

gen bonding matching the threshold of 10 % occurrence was observed. These interfaces are

formed by hydrophobic residues (L41, L153 and W154). In addition, the area between these
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Figure 4: Hydrogen bonds of simulation Nat4 between donor ’D’ and acceptor ’A’ with an
occurrence larger than 10 % within the same dimer, between different dimers and between
the protein and Chl; Coordination via main chain ’m’ or side chain ’s’. Labelling D(X/Y)-
A(X’/Y’) reads as follows: donor X towards acceptor X’ and donor Y towards acceptor
Y’.

subunits is by a factor of three smaller compared to the interfaces ICA,CD and ICB,CC.29 At the

latter interfaces, hydrogen bonding between L44 towards L91 is present with an occurrence

of 50-60 %. Both amino acids are directly neighboring a cysteine (C45 or C92). This close

proximity at the interface strengthens the hypothesis for a covalent linking of the dimers by

reconnecting the cysteines.

Forming all possible inter-dimer cysteine bridges (CA-CD and CB-CC) results only in a

small change for the overall dominant hydrogen bond network (Figure S2). In this situation,

hydrogen bonds between the newly linked interfaces (ICA,CD and ICB,CC) are strengthened.

The hydrogen bond between Q57 and G59 becomes weaker, however, a stronger coordination

of Q57 towards both Chls is observed. In addition, a high stability between the monomers is

achieved by the interactions of the Chls, which will be discussed in detail in the next section.

Removing 2 Chls (Nat2, Disulf2) in one dimer weakens the interaction at the interface

ICC,CD (Figures S3 and S4). As a consequence, a small opening at the interface ICC,CD is
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possible as no stabilizing Chls are present anymore. This results in a conformational change

as observed in the RMSD. The interfaces ICA,CD and ICB,CC show only small changes in

the population. Hence, a reconnection of the cysteines at these interfaces does not affect

the conformational flexibility as already observed in the RMSDs. Removing the last 2 Chls

(Nat0) results in a change of the overall hydrogen bond network (Figure S5). Although some

hydrogen bonds stay in contact, a change over time as observed in the RMSD is detected

which also affects the hydrogen bond network. Further discussion is omitted as the stability

of the starting structure is likely artificial due to the pre-formed hydrogen bond network.

3.4 Non-bonded Forces and Energies

To get a better understanding of the protein-protein and protein-Chl interactions, non-

bonded energies (electrostatics and van-der-Waals interactions) as well as the force distribu-

tion during the simulation (Figures 5 and S6) were analyzed. The simulated system Nat2

consists of one dimer containing Chls and one dimer lacking Chls, and was thus chosen as

the reference system. Here, the interaction within a dimer as well as the interaction between

the two differently constituted dimers can be analyzed. As reference points, the systems

Nat4 and Nat0 were analyzed, too, but will only partly be included in the discussion. The

force distribution analysis as well as the non-bonded energies for all three analyzed systems

are reported in the supporting information (Figures S8 and S9 as well as Table S1).

The force distributions and non-bonded energies between the two dimers and subunits

of different dimers were examined in a first step. For the interactions between the dimers, a

Gaussian distribution with a mean close to 0 nN was observed pointing towards equilibrium

dynamics. This was also observed for the systems Nat0 and Nat4 with a small shift to repul-

sive forces for Nat4, most probably induced by the tight packing of the Chls. A remarkable

behavior can be found analyzing the force distribution of Nat0. For every combination of

subunits different distributions are obtained pointing towards a distortion of the tetrameric
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a

b

Figure 5: Force distribution analysis between different parts of the protein (Nat2), where
the subunits are denoted as CA to CD, with CA and CB belonging to the Chl-containing
and CC and CD to the Chl-deficient dimer; In (a) only the discussed interactions are shown.
A full depiction can be found in the SI (Figure S6); in (b) the difference between the dimer
CC+CD (orange in (a)) and the Chl-containing dimer CA+CB (blue in (a)) is depicted.

structure. This is in agreement with changes in the hydrogen bond network and the increased

RMSD. Analyzing the non-bonded energies an attractive energy of -113.2 ± 12.0 kJ/mol is

obtained for the system Nat2 for the interaction of the protein chains of different dimers,

which is comparable to both Nat0 and Nat4.

For the interactions of the Chls towards the protein chains of the Chl-free dimer, we

observed only a small amount of attractive non-bonded energies (-20.5 ± 5.5 kJ/mol),

most likely due to the phytyl chains interacting with the hydrophobic interfaces (ICA,CC

and ICB,CD). This is in agreement to the values obtained for Nat4. For the system Nat4

the interaction between Chls located in different dimers was examined as well. In the force

distribution analysis only weak forces are observed with a mean slightly shifted to attrac-

tive forces. This weak interaction can also be observed analyzing the non-bonded energies

between the Chls. For the interactions between the Chls of different dimers a non-bonded

energy of -14.5 ± 2.8 kJ/mol is observed, which is weaker than all other analyzed energies.
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In a next step the interactions within the dimers were analyzed. For the protein chains

within the Chl-free dimer (Figure 5a, orange), more attractive than repulsive forces are ob-

served over time. The amount and strength of these attractive forces increases even more

for the Chl-containing dimer (Figure 5a+b, blue) resulting in a higher stability compared

to the dimer not containing any Chl. Hence, the close packing of the Chl affects the in-

teractions and conformations within a dimer and thus generates stronger attractive forces.

This can also be found in the case of Nat4 where a comparable force distribution is observed.

Comparing the non-bonded energies, a slightly stronger interaction between the protein

chains belonging to the Chl-free dimer with -236.7 ± 12.0 kJ/mol is observed, compared to

-174.8 ± 32.8 kJ/mol between the protein chains of the Chl-containing dimer. However, it

has to be kept in mind that the Chl-containing dimer is further stabilized by the interactions

between the Chls (-136.3 ± 9.8 kJ/mol) and the interaction between the Chl and the other

protein chain of the Chl-containing dimer (-30.3 ± 9.5 kJ/mol) i.e. Chl of CA interacts

with CB and Chl of CB interacts with CA. For Nat4 an energy of -224.5 ± 37.0 kJ/mol is

observed, which is larger as for Nat2. Remarkably, for the system Nat0 an even stronger

non-bonded energy of -311.0 ± 68.0 kJ/mol was observed. This increase is caused by a rear-

rangement of the protein chains optimizing the non-bonded interactions as observed in the

force distribution analysis and the change of the hydrogen bond network. This is possible as

no Chls are present that can prevent this rearrangement. However, it may very well be that

such an arrangement would never come to be in vivo, as the protein chains would likely not

come together without Chls bound in the first place.

The force distribution between the Chls within a dimer (Figure 5a, green) shows a be-

havior differing from the other cases as it does not display a Gaussian-like shape. For the

interaction of the Chls, a dual-peak distribution is obtained with a drop in density at 0
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nN. This is observed for both systems, Nat2 and Nat4. Hence, a breathing motion due to

compact packing of the Chls in the center of the WSCP can be assumed. Analyzing the time

series of the forces (SI, Figure S7), a fast change between attractive and repulsive forces

can be observed. This strong breathing motion can be seen as an indicator for the stability

caused by the close packaging of the Chl. If the distance between the Chls gets too large

attractive forces cause the Chls to move together again.

In a last step, the forces within a subunit are investigated. For the forces within a subunit,

a weakly repulsive mean is observed between the protein and the Chl (Figure 5, violet). The

protein-Chl non-bonded energy is, however, with -355.6 ± 15.7 kJ/mol the highest among

all analyzed non-bonded energies causing the protein and Chl to stick close together. This

behavior is also observed for analyzing the stability of this contact using MD-simulations,

which will be discussed in the next section of in this article.

3.5 Formation of Tetrameric Structure

To investigate the formation of the tetrameric structure, the behavior of the mostly hy-

drophobic Chls without the protein was examined. In a first simulation the protein was

removed and the Chl tetramer was simulated in explicit water (Nat_Chl). In a second

simulation the Chls were separated along the tetrahedron axis by 1 nm in the beginning

(Nat_Chl_P) as described in section 2.

Nat_Chl showed no dissociation during the simulation time, likely due to the mostly hy-

drophobic character of the Chls. Using Common-Nearest-Neighbor-Clustering7,59–61 based

on the internal coordinates of the Mg ions towards the center of mass (see SI), it was possi-

ble to characterize different conformations. The most prominent conformation was a weakly

distorted tetrahedron-like conformation with the Mg ions on the vertices (Figure 6). The

phytyl-chains are clustered inside the tetrahedron. Thus, a micelle-like structure can be
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assumed. The distortion arises from the phytyl chains not fitting perfectly inside the cavity.

This structure is different from the one in the WSCP complex; it minimizes the solvent

accessible surface of the molecule. The Mg ions are pointing to the outside. Hence, it is

possible for other molecules to coordinate. In addition, other hydrogen bond acceptor are

present on the porphyrin ring that can coordinate towards the solvent.

  

13.7 Å 11.4 Å

13.1 Å

12.3 Å

11.7 Å

11.9 Å

Figure 6: Most dominant conformation of isolated Chls in explicit water; the Mg ions as well
as their distorted tetrahedral arrangement are highlighted.

In Nat_Chl_P, the phytyl chains may likely act as a scanner for other phytyl chains,

due to their strongly hydrophobic character. The first dimer was formed within 1 ns and the

tetramer after 3 ns. Afterwards, as observed in the former simulation no separation of the

Chls was observed.

When repeating this kind of analysis while keeping the protein present, a notable be-

havior is observed. If the protein chains are pulled apart and the Chls kept in place

(Nat4_P_protein), all protein chains coordinate towards the Chls after 150 ns. However, the

native coordination of P36 towards the Mg ion is not observed. In contrast, when separating

the subunits including Chls (Nat4_P_all), the Chl coordination pattern is not affected. In

Nat4_P_all, only a dimer formation can be observed (SI, Figure S10) where the phytyl
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chains again can act as a scanner towards other hydrophobic molecules. This dimer lacks

at one side an open spot towards the Chls and needs to be shielded from the solvent. In

the Nat4_P_all simulation, a formation of trimeric structures is also found, which is not

stabilized over a long period. Based on these observations, we can assume that in a first

step a dimer has to be formed containing Chls. In a next step either another dimer of the

same constitution has to associate, forming a homo-tetrameric structure or two Chl-deficient

subunits attach, shielding the hydrophobic parts of the dimerized Chls. However, both de-

scribed scenarios were not observed within the simulated amount of time and it is therefore

still unclear how the tetrameric structure is formed.

4 Discussion

Disulfide bridges connecting different subunits

The MD simulations showed that the cysteines C45 and C92 are extremely well suited to be

covalently linked towards the subunit of another dimer, which should increase the thermal

stability of the WSCP further as already observed for other proteins.62 In addition it was al-

ready reported that the apo-protein of the WSCP is located in the endoplasmic reticulum25,63

where disulfide bond formation occurs64 catalyzed by the protein disulfide isomerases.65,66 We

could also show that forming the disulfide bridges induces no large conformational changes.

In addition, we highlighted that the structure shows no loss in flexibility despite the overall

increase in stability, which may allow for unmitigated chance of Chl uptake even if a Chl

dimer is already bound.

Palm et al.67 showed that the Lepidium virginicum WSCP favors binding of Chlb over

Chla. They proposed that a hydrogen bond between the amide of L91 (directly neighbour-

ing C92) and a Chlb-specific formyl-group at the Chlb carbon C7’ (see Figure S1), is one

key factor to favor Chlb over Chla. Connecting the cysteines causes a small conformational
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change of the protein. However, the contact to the amide of L91 is not lost. Although we did

not simulate Chlb, we expect only minute differences as Chlb and Chla are identical except

for the aforementioned formyl-group. The C7’ of the Chl shows roughly a distance of 3 - 4

Å to the amide of L91. Hence, it is still in the range for hydrogen bonding. In addition, a

water molecule is observed close to the L91 amide, serve as a bridge between Chl and L91.

Other possible interactions that were not analyzed

Another attractive interaction of Chls with their respective subunits are ⇡-stacking interac-

tions by W90 and W154. This interaction is based on induced dipole moments, which are

not properly accounted for using the regular CHARMM force field. As such, we will omit

the corresponding discussion here.

Singlet Oxygen Production

Agostini et al. proposed recently26 that WSCP shows a 1O2 production comparable to free

Chls and that the phytyl chains are involved in the photoprotection of the Chls. During the

MD-simulations it could be observed that it was possible for a water molecule to diffuse into

the hydrophobic cavity of the WSCP. The diffusion occurred via a pore (L41, S42, I89, L91,

W154) that was already described by Horigome et al.29

Up to now it was considered that this pore was blocked by the Chls in the cavity. How-

ever, due to the dynamic movement and the breathing motion of the Chls it was possible

for water to move into the pocket (Figure 7). The water molecule remained in the pocket

during the course of our simulations. This is either an artifact of the force field as the water

molecule was permanently coordinating the Mg ion of one Chl, or an indicator for the rare

event of the diffusion into the hydrophobic cavity of the WSCP. Although the diffusion of

water itself can also be an artifact of the force field, it can not be excluded that other small

molecules like oxygen can diffuse into the cavity. For molecular oxygen, the likelihood to
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diffuse into the pocket is probably higher than that of water, as the electrostatic interaction

with the solvent is much weaker.

  

S42
L41

W154

L91

I89

Figure 7: Surface plot of the WSCP highlighting the pore for which a diffusion of a water
molecule towards the inside of the cavity was observed. Red areas denote acidic, blue areas
denote basic residues, The Chls are shown as green spheres. Amino acid labels colored
according to their parent protein chain, see Figure 3.

Protein Charge

The protein-Chl complex shows a charge of -10 per subunit at neutral pH, which was as-

sumed in the simulation, resulting in a total charge of -40. Most of the charged residues are

located on the surface of the complex and are most likely involved in the solubility68 of the

molecule. Apparently, only the C-terminal amino acids R176, E177 and D179 are involved

in stabilizing the dimer at the interface of the subunits. A charge-charge interaction on the

interfaces towards other dimers is not observed in the simulation.

Another reason for the high number of charged residues might be the �-barrel-like ter-

tiary structure arising from the supersecondary structure, stabilizing the subunits. However,

the quite high negative total charge of the protein is remarkable and might, beside the in-

creased solubility, be important for the function of the WSCP. Taking into account the highly

negative surface of membranes one possibility might be a protection of the cell nucleus and

therefore of the DNA with respect to oxidative damage by singlet oxygen, due to repulsive
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interactions. However, this assumption seems to contradict the extraction of Chls from thy-

lakoid membranes as described by Satoh et al.32

Considering that most of the charged residues are on the surface of the tetrameric struc-

ture, which is not stable without Chl, we have to investigate the monomeric structure. Here,

only one positively charged residue (R51) is present in a 1 nm distance to the potential Mg

binding site. In a larger radius of 1.5 nm, we find a total of 2 positively and 2 negatively

charged residues. Hence, we find no evidence which contradicts the possibility of WSCP

extracting Chls from membranes, as the lack of negative charges towards the Chl-binding

site would indeed allow for a weak WSCP/membrane interaction. Upon formation of the

tetramer, the less charged site becomes buried inside to complex. Yet, it was shown that

WSCP may be stable with only 2 Chls present, while retaining the ability for uptake of more

Chl molecules.31 Due to the unknown binding mode towards the membrane and due to the

high computational costs associated with corresponding simulations, however, we did not

pursue this line of thought further.

Quarternary Structure Formation

Analyzing the formation of the quarternary structure, we could observe that the Chls are

needed at least in a dimeric form for the stabilization of the protein Chl complex. In this

dimeric form further protein chains are required to shield the open hydrophobic site. How-

ever, we were unable to simulate a complete regeneration of the native coordination pattern

or complex formation. For determining the mechanism of the tetramer formation, the up-

take of the Chls may be the key. A potential mechanism could involve pre-formation of Chl

aggregates, such as the presented tetramer (Figure 6), either in solution or in the thylakoid

membranes. These aggregates might then be bound by WSCP. Another possibility would be

that a small amount of micelle-like Chl agglomerates can leave the membrane and WSCP

acts as a scavenger. As WSCP is formed under stress conditions,34–37 this Chl scavenging
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function might either preserve the Chl compounds or protect the cell from harmful photo-

products.

Another open question is how the Chls are released from the protein, as it is highly stable

towards pH and temperature changes.31,39,40 One possibility might be the presence of another

protein acting as a extraction agent of the Chls. Another possibility would be an injection

of the Chls back into the thylakoid membranes. However, as long as the function of WSCP

is unknown this questions is hard to answer. As a tentative prediction, if our scavenger role

is indeed correct, older or stressed cells may accumulate WSCP-bound Chl as they seek to

protect themselves from the remains of damaged chloroplasts.

Stability of the Chl-deficient system

Studying the stability of the protein lacking Chls, we observed a stable protein. The reason

for this might be the starting structure (equilibrated crystal structure with removed Chls) as

all attractive interactions are already in place. Further, the lack of Chls leads to a reduced

steric hindrance, leading to a small rearrangement of the subunits. As a result, the inter-

actions are optimized and the initial structure becomes more stable. An indicator for this

process is found by analysis of the non-bonded protein-protein interactions of Chl-deficient

dimers. In addition a distortion of the tetrameric structure could be observed in the force

distribution analysis. Due to these strong non-bonding energies, long dissociation times can

be expected, which were not achieved within the simulated amount of time. Without the

phytyl-chain interactions of Chl units bound to their apoprotein subunits, the tetrameric

structure might not be formed at all. Combined with the simulations of separated Chl units

we can assume that the Chls are needed to bring these interactions into the right contact as

every subunit has to match the perfect binding position with respect to the other subunits.

Additionally, it shows a larger fluctuation compared to the WSCP containing 4 Chls, which

is an indicator for a reduced stability.
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5 Conclusion

Using MD simulations of WSCP complexes with different numbers of Chls as well as ter-

tiary structure modification, it was possible to point out the main contributors stabilizing

the WSCP-Chl complex. The binding of the Chl towards the Mg-coordinating subunit was

the strongest non-bonded energy contribution observed in the analysis. This binding is

supported by the coordination of P36 towards the Mg ion of the Chl as well as hydrogen

bonding by the amino acids T52, S53 and Q57. The phytyl chains of the Chls in the protein

are intertwined forming a hydrophobic cavity at the center of the protein. In addition, they

are always in close contact to the photochemically active site of the Chls, which strengthens

a photoprotective role. Analyzing the force distribution for the Chl interaction a strong

breathing motion was observed, which is assumed to come into play because of the close

packing of the hydrophobic cavity.

At the protein interfaces within a dimer (ICA,CB and ICC,CD), charge-charge interactions

between R176, E177 and D179 were observed. However, as at least one pair of Chl has

to be present for a stable complex, this interaction between the interfaces seems either not

strong enough to avoid dissociation or it is not formed if no Chls are present as assumed

by pulling simulations. In addition, it was observed that the presence of Chls results in

more and stronger attractive forces between the protein chains within a dimer, stabilizing

the complex further. Another stabilizing factor comes into play with amino acid Q57, as it

shows the capability to coordinate between the protein chains and additionally towards both

Chls within the dimer. If a subunit does not contain Chls, a higher flexibility was observed

in the simulation pointing towards the possibility of uptake of 2 Chls.
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At the interfaces between different dimers either hydrophobic interactions formed by

L41, L153, W154 and the phytyl chains (ICA,CC and ICB,CD) or strong hydrogen bonding

(ICA,CD and ICB,CC) were observed. For the latter interfaces, bidirectional hydrogen bonding

between L44 and L91 backbones were observed, which are directly neighboring C45 and

C92. We showed that it is hypothetical possible to reconnect the cysteines between different

protein chains resulting in no strong effect on the overall dynamical properties. However,

they can be expected to greatly increase WSCP stability via means not captured by our

simulations, as the crosslinking leads to two covalent disulfide bonds between the subunits

which stabilize the complex already by themselves. As such, they do not necessarily need

to have an impact on the hydrogen bonding or the interaction energies analyzed in this study.

For all analyzed systems, simulation times of 200–450 ns were achieved. In this time it

was possible to characterize the dynamic behvaior of different contributors to the stability

of WSCP. For upcoming studies the conformational space of the WSCP can be investigated

further. For this, much longer simulation times are needed. Due to the high stability and

size of the WSCP-complex also other techniques than classical all-atomic MD simulations

should be considered such as coarse-graining or enhanced sampling techniques. The latter

one can additionally be applied to generate starting structures for classical MD-simulations

to obtain an insight into the confromational space of the WSCP. Another interesting field

of research are the dynamical changes in the optical properties of WSCP analyzing the

photochemical protection in more detail on a quantum mechanical level. This research is

part of an upcoming publication.
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1 Supporting Figures

  

Figure S1: Numbering of the porphyrin ring of chlorophyll a. The positions mentioned in
the paper are highlighted.

  

Figure S2: Hydrogen bonds of simulation Disulf4 between donor ’D’ and acceptor ’A’ with
an occurrence larger than 10 % within the same dimer, between different dimers and between
the protein and Chl; Coordination via main chain ’m’ or side chain ’s’. Labelling D(X/Y)-
A(X’/Y’) reads as follows: donor X towards acceptor X’ and donor Y towards acceptor
Y’.
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Figure S3: Hydrogen bonds of simulation Nat2 between donor ’D’ and acceptor ’A’ with an
occurrence larger than 10 % within the same dimer, between different dimers and between
the protein and Chl; Coordination via main chain ’m’ or side chain ’s’. Labelling D(X/Y)-
A(X’/Y’) reads as follows: donor X towards acceptor X’ and donor Y towards acceptor
Y’.

  

Figure S4: Hydrogen bonds of simulation Disulf2 between donor ’D’ and acceptor ’A’ with
an occurrence larger than 10 % within the same dimer, between different dimers and between
the protein and Chl; Coordination via main chain ’m’ or side chain ’s’. Labelling D(X/Y)-
A(X’/Y’) reads as follows: donor X towards acceptor X’ and donor Y towards acceptor
Y’.
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Figure S5: Hydrogen bonds of simulation Nat0 between donor ’D’ and acceptor ’A’ with an
occurrence larger than 10 % within the same dimer, between different dimers and between
the protein and Chl; Coordination via main chain ’m’ or side chain ’s’. Labelling D(X/Y)-
A(X’/Y’) reads as follows: donor X towards acceptor X’ and donor Y towards acceptor
Y’.

  

Figure S6: Force distribution analysis between different parts of the protein (Nat2), where
the sub units are denoted as CA to CD, with CA and CB belonging to the Chl-containing
dimer and CC and CD to the Chl-deficient dimer; All analyzed distributions are highlighted.

Figure S7: Fluctuation of the forces between the Chl during the simulation Nat2.
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Figure S8: Force distribution analysis between different parts of the protein (Nat0), where
the sub units are denoted as CA to CD; All analyzed distributions are highlighted.

  

Figure S9: Force distribution analysis between different parts of the protein (Nat4), where
the sub units are denoted as CA to CD. The Chls are denoted as Chl (belonging to the same
subunit) or Chl_X (belonging to subunit X); All analyzed distributions are highlighted.
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Table S1: Non-bonded energies between different parts for the systems Nat4,

Nat2, Nat0; (Chl) indicates dimers containing Chl; Additional labels: ’s.d.’:

same and ’o.d.’: opposite dimer and ’s.su.’ ’same’ subunit;

†
Interactions be-

tween Chl of subunit CA with protein chain CC and between Chl of subunit

CB with protein chain CD. The interaction with the other subunit (CD/CC) is

neglectable. All energy values are given in kJ/mol.

Nat4 Nat2 Nat0

Protein - Protein
s.d. (Chl) -224.5 ± 37.0 -174.8 ± 32.8 –

s.d. – -236.7 ± 12.0 -311.0 ± 68.0
o.d. -91.9 ± 15.0 -113.2 ± 12.0 -100.8 ± 10.5

Protein - Chl
s.su. -334.5 ± 11.4 -355.6 ± 15.7 –
s.d. -38.6 ± 3.5 -30.3 ± 9.5 –
o.d.† -24.1 ± 3.3 -20.5 ± 5.5 –

Protein - Chl s.d. -122.8 ± 8.7 -136.3 ± 9.8 –
o.d. -14.5 ± 2.8 – –

  

Figure S10: Dimer formed during the simulation Nat4_P_all. Every subunit is highlighted
by a separate color.

2 Clustering

To analyze the conformations of chlorophyll a in solution a Common-Nearest-Neighbor clus-

tering was performed1–3 using the software provided at GitHub.4 For further explanation

with respect to the input parameter, the algorithm and the outcome we refer to Ref. 3.
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As input coordinates the positions of the magnesium ions were chosen. To remove the rota-

tional degrees of freedom all positions were transformed into internal coordinates (distance

r, polar angle ✓ and azimuthal angle �) with respect to the center of mass, located at (0,0,0).

For each frame, the magnesium ion closest to the center of mass was rotate onto the z axis.

The next closest magnesium ion was rotated along the z-axis and settled in the x-z-plane.

This selection of the two closest magnesium ions as reference points ensures the exchange-

ability of the chlorophylls. To account for periodicity the sine and cosine of the angles were

taken for further analysis. By normalization all data were bound between [0,1].

For the clustering the data set was reduced by a taking every tenth frame resulting in a data

set size of 10,001 data points. Between all data points the euclidean distance between the

normalized coordinates was calculated and used as a distance measure. In a first clustering

step (parameter set: R=0.15, N=5, M=10) 28 clusters were isolated with 26 % of the data

set declared as noise. The 2 most populated clusters were refined (parameter set: R=0.15,

N=10, M=10) in an hierarchical approach according to Ref. 2 yielding 23 new clusters,

resulting in a total of 49 clusters. The noise was increased to a total of 40 %. The most

dominant clusters, representing slightly distorted tetrahedron structures, are reported in

Figure S11.

S7

3 ANALYSIS OF THE WATER-SOLUBLE CHLOROPHYLL-BINDING PROTEIN

88



  

C1

C1‘

C2

C2‘

Figure S11: Plot of the internal coordinates (r, ✓, �) for the conformations of the 4 largest
clusters. The coloring is according to the distance between the magnesium ion and the center
of mass from closest to largest: blue, orange, green, red. The ’ indicates that the cluster is
a mirror image with respect to the exchange of the red and green labeled magnesium ions;
Note that as the closest magnesium ion was rotated on the z-axis (blue) � and ✓ are always
0, for the magnesium ion settled in the x-z-plane (orange) � is always 0.
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3 Pulling of the WSCP subunits

For the pulling of the WSCP a conformation extracted at 1 ns of the simulation Nat4 was

used. The system was translated to set the center of mass to (0,0,0). The system was

rotated such that the average point on the vector connecting Ile124-C↵ of subunits CA and

CB was located onto the z-axis to a coordinate (0,0,z). A second rotation along the z-

axis was performed to locate the Ile124-C↵ of subunit CA in the xz-plane onto coordinate

(x,0,z’). The coordinates of subunit CA and its chlorophyll were modified by adding (c,0,c)

with c = 1p
2

to their coordinates. For the other subunits, modifications of: CB (-c,0,c), CC

(0,c,-c) and CD (0,-c,-c), were applied. For Nat4_P_all, these modfications were done for

all atoms, for Nat_Chl_P only for the Chls with the protein chains being removed. For

Nat4_P_protein, only the protein coordinates were modified and the Chl coordinates kept

in place. A starting structure where all coordinates were modified is shown in figure S12

Figure S12: Pulled starting structure for the simulation Nat4_P_all. The dimer CA-CB is
shown in the foreground, the dimer CC-CD in the background.
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3.2 Analyzing the Spectral Properties of WSCP Comparing Di↵erent Calcu-

lation Setups

3.2.1 Introduction

Besides the high stability of the WSCP holoprotein, a high resistance of the chlorophyll (Chl) with respect

to photobleaching was reported [185]. This is quite remarkable since no carotenoids (Crts) are present that

could protect the Chl from oxidative damage. As it is known that Chl can transfer energy towards oxygen

generating highly reactive singlet oxygen, Crts are assumed to act as Chl triplet quenchers [191, 192],

oxygen scavenger [193] and harvesters of high energetic light [141, 194].

Former studies [185] proposed that the resistance of WSCP towards photobleaching is achieved by a lower

singlet oxygen production. The reason for this is assumed to be a di↵usion barrier formed by the pro-

tein preventing oxygen to di↵use into a cavity within the WSCP. Other mechanisms such as intersystem

crossing reducing the lifetime of the excited state, or Chl triplet quenching, were ruled out [195]. In

the MD simulations presented in the previous section, however, we discovered that this di↵usion barrier

might not be that strong, since di↵usion of water into the cavity of the WSCP was detected. This is in

agreement with recent studies reporting a singlet oxygen production comparable to that of free Chls. In

this research [188], the phytyl chains are assumed to act as protection against oxidative damage.

Since the electronic excitations of the Chls are important for the photostability, the spectral properties of

Chl bound to WSCP are investigated in this section. Chl absorbs in two regimes of the UV/Vis spectrum:

A low energy regime around 650 nm (red/yellow) containing two states Q
y

and Q
x

, and a high energy

regime about 440 nm (blue) containing several states, the so-called Soret-states [141, 196, 197]. The

spectrum features a “green gap” between these two regions resulting in the green color of Chl. It was

found that the two Chls within a dimer are strongly excitonic coupled. The excitation energy transfer

between the other Chls in the WSCP was expected to occur via a Förster-type energy transfer [195, 198].

For the research described in the previous section 3.1, a large amount of simulation data for WSCP

containing di↵erent numbers of Chls or disulfide bridges within or between subunits were produced.

Within the simulations, di↵erent conformations of the WSCP were sampled, which can be used to calculate

absorption spectra of the Chls using time-dependent density function theory (TD-DFT). This has the

advantage that an average absorption spectrum for an ensemble of di↵erent WSCP conformations can be

obtained. In the following section, it is investigated how this absorption spectrum varies by comparing

di↵erent simulation setups. Additionally, it is examined how di↵erent optimization potentials such as
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QM/MM influence the absorption spectra as well as the coupling of the Chls within the WSCP. The

research focuses only on chlorophyll a. Thus, the abbreviation Chl refers to chlorophyll a in this section.

3.2.2 Methods

3.2.2.1 Computational Details

Snapshots from MD simulations performed with the GROMACS simulation package 2016.1 [199], were

taken as a basis for the calculations. For all calculations, the same MD simulations as discussed in sec-

tion 3.1 were used. Optimization of the snapshots at an MM level were performed using the steepest

descent algorithm implemented in the GROMACS simulation package 2016.1. For optimizations at a

QM/MM level, the software gmx2qmmm developed by Dr. Jan Götze was applied. For this purpose,

the system was separated in 3 layers: The inner layer consisting of the porphyrine ring of the Chl and

the coordinating P36 residue of the protein (QM), the central layer containing all residues and solvent

molecules within a 1.2 nm range of the magnesium ion of the optimized Chl (MM) and the outer layer

including the rest of the WSCP and all solvent molecules at a distance larger than 1.2 nm and smaller

than 4 nm with respect to the magnesium ion (frozen). Solvent molecules at the interface between two

layers were always assigned to the respective inner layer. The MM-layer was optimized using the steepest

descent algorithm. For the QM-layer, DFT calculations using the CAM-B3LYP functional [200] and the

6-31G* basis set [201–204] were performed. The QM system is electrostatically embedded in the MM sys-

tem and utilizes link atoms to saturate the QM system, and charge shifts to counteract overpolarization.

The QM/MM optimizations were truncated after 20 optimization steps to save computational costs as no

significant changes in geometries were observed thereafter.

Absorption spectra were calculated with TD-DFT (CAM-B3LYP/6-31G*) using Gaussian 16 [205–212].

10 excited states per Chl were computed in the TD-DFT calculation. The TD-DFT system was identical

to the QM-layer, as mentioned above. The environment consisting of the rest of the protein and all water

molecules within a 4 nm range of the magnesium ion of the Chl was treated as a point charge field, unless

not stated di↵erently. For every investigated system, several snapshots from the MD simulations were

extracted and optimized as summarized in table 3.1, taking into account di↵erent conformations. Since

every snapshot contains up to four Chls, several absorption spectra could be calculated from one snapshot.

This allows for further comparison such as the relative orientations of transition dipole moments within

one snapshot.
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Table 3.1: Systems for the TD-DFT calculations based on snapshots extracted from MD simulations;

N
Chl

denotes the number of Chls in the MD simulation. N
snap

snapshots were taken every �t ns.

Thus, a total number of N
Chl

·N
snap

TD-DFT calculations were performed; † The TD-DFT calculation

includes both Chl and the coordinating P36 within the dimer reducing the total number of calculations

to N
Chl

·N
snap

/2; * Changes in the MD simulation setup.

N
Chl

Optimization potential �t/ns N
snap

Total Notes

4 – 1.0 25 100 –

4 MM 1.0 25 100 –

4 QM/MM 1.0 25 100 –

4 QM/MM 3.0 8 32 in vacuo

4 MM 1.0 25 50 Two Chls on QM level†

2 QM/MM 1.5 17 34 Two Chl in MD simulation*

4 QM/MM 2.0 12 48 Disulfide bridges*

The first five calculations mentioned in table 3.1 were based on the MD simulation starting from the crys-

tal structure (see simulation Nat4, section 3.1), varying the optimization potential or the environment for

the TD-DFT calculation. In these calculations the absorption spectrum of one Chl was calculated. Addi-

tionally, absorption spectra for both Chls within one dimer were calculated using an MM optimization of

the snapshots. Snapshots from MD simulations containing only two Chl (see simulation Nat2, section 3.1)

or protein units linked via disulfide bridges (see simulation Disulf4, section 3.1) were examined as well.

For the depicted absorption spectra, the calculated excitations were grouped with a bin size of 10 nm by

summing up the oscillator strength and normalizing by the total number of calculations. Therefore, the

absorption spectra can be seen as an average spectrum over all snapshots with an artificial broadening of

10 nm. Further broadening accounts for conformational changes. To obtain a smooth spectrum, a spline

function with a resolution of 1 nm was calculated. As the order of the molecular orbitals (MOs) and

the excitations can change for every snapshot, we developed a mapping procedure, which is described in

section 3.2.2.2.

3.2.2.2 Mapping Procedure

For the mapping of the excitations to a reference set, a two-step procedure was used: In the first step,

the order of the MOs is adjusted. The comparison of the excitations is done in a second step. For the

mapping of the MOs, the full snapshot is rotated by superposing the QM system with respect to a refer-

ence structure. In this reference structure, the Chl of interest is set such that the magnesium ion denotes

the origin, the coordinating oxygen of P36 denotes the z-axis and the nitrogen of the ring carrying the
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phytyl chain is located in the x-z-plane. For the rotated system, the 855 MO coe�cients of the 10 highest

occupied (HOMO) and the 10 lowest unoccupied MOs (LUMO) are compared to the MO coe�cients of

a reference set by calculating the euclidean distance. For every MO of the reference set, the MO with

the closest distance is mapped using a maximal distance cuto↵ of 0.8. An error function for the MOs is

utilized, which accounts for all orbitals that could not be mapped.

In the second step, the rearranged MOs are used to map the excitations with respect to a reference set.

As a reference set, the excitations of the same calculation as for the MO-mapping were used. This is

necessary because multiple transitions are involved to a certain degree. The transitions are arranged in

a 10⇥10 matrix where each row represents a LUMO and each column a HOMO. The matrix elements

contain the squared contribution of the corresponding transition to the overall excitation. The element-

wise euclidean distance is calculated to compare two matrices. The closest distance (cuto↵ 0.3) is set as

a mapping criterion. As for the MOs, an error function for the excitations is included, accounting for all

excitations that could not be mapped to the reference set. The reference set is chosen in a way that only

a small error function arises, and the spectrum can be reproduced by di↵erent reference sets. A depiction

of the mapping is shown in figure 3.1.

In the case of two Chls in the TD-DFT calculation, the mapping algorithm is modified to detect equivalent

MOs of both Chls. These MOs are labeled equally. As a consequence, it is possible to detect coupled

excitations. For this analysis, the excitations per snapshot are separated into a higher and a lower energy

excitation.
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Coefficients
# Basis Functions: 855

1 1  C  1S -0.00063
2 2S 0.00134
3 2PX 0.00079
...

Fit conformation
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Figure 3.1: Mapping procedure starting from the raw data. In a first step (left), the MOs are mapped.

In a second step (right), the excitations are relabeled and mapped using the mapped MOs, resulting in a

spectrum where every peak accounts for a specific excitation character (right) rather than for the energetic

ordering of the excitations in every snapshot (left).

3.2.3 Results and Discussion

3.2.3.1 Comparison of Di↵erent Optimization Potentials

In a first step, it is examined how di↵erent optimization potentials influence the absorption spectrum of

Chl. The MD snapshots were either considered directly without further optimization (w/o) or optimized
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by either an MM potential or a QM/MM potential. For the QM/MM potential, it was investigated how

many optimization steps are necessary until the excitation energy and the transition dipole moments

converged. Thus, for one snapshot an optimization was performed until the truncation criterion of the

QM/MM scheme was met. The two investigated properties, excitation energy and transition dipole

moment, are shown in figure 3.2 as a function of the optimization progress.

Figure 3.2: Convergence of the excitation energy (left) and of the angle between the transition dipole

moment and the z-axis (right) depending on the progress of the QM/MM optimization. Only data for

the first six excitations are shown.

Since all investigated excitation energies and transition dipole moment orientations (except for green)

were converged after 20 optimization steps, the QM/MM optimization was truncated after 20 steps to

save computational resources. The third excited state (green) only shows a low oscillator strength and

will therefore not be considered in the further analysis. The spectra obtained for di↵erent optimization

methods are shown in figure 3.3, and a qualitative scheme of the four dominant transitions is depicted in

figure 3.4.
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Figure 3.3: Comparison of di↵erent optimization potentials: Vertical absorption spectrum of 1 Chl

averaged over several snapshots. The overall as well as the detailed absorption spectrum are shown; For

every detailed spectrum, the black curve denotes an error function for those excitations which could not

be mapped.

Comparing the overall spectra, similar peak positions with only a small blue-shift are obtained for the

non-optimized and the MM-optimized systems. This is assumed to be caused by a movement of the

WSCP conformation around the minimum during the MD simulation. The steepest descent algorithm

moves the extracted conformations further towards the minimum. As a consequence, sharper peaks for

the spectrum are obtained, compared to those using no optimization potential. For the calculations

using no optimization, a broadening of the peaks can be seen, which is caused by structural fluctuations.

The obtained absorption spectrum thus incorporates di↵erent conformations of the WSCP which are all

located around one minimum and get lost using an optimization potential.
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Figure 3.4: MOs involved in the four dominant excitations Q
y

, Q
x

, S1 and S2. The highlighted ex-

citations account for the MO pair with the highest contribution. The contribution is given and colored

according to the excitation and to figure 3.3 (QM/MM).

Treating the snapshots at a QM/MM level causes a strong blue shift. This is caused by an adaptation

of the potential energy landscape, which is not allowed with the applied MM-method. Since the confor-

mational change follows the ground state gradient, the optimization results in an increase of the energy

gap between the ground and the excited state. Vertical excitations do not account for any excited state

relaxation, which will likely result in higher excitation energies when optimizing the ground state. The

largest conformational change in the WSCP ground state using a QM/MM optimization, occurred in the

out-of-plane movement of the magnesium ion. In the previous section, we showed that the position of

the magnesium ion above the ring is not well supported by the used force field. An optimization at QM

level thus corrects this error by moving the angle between the magnesium ion and the ring closer to the

experimentally observed value.

In addition to the absorption spectra of the single Chls, the coupling between the states of the Chls

within a snapshot was also examined. For this examination, the collinearity c according to Ref. [141] was

calculated. The collinearity is defined by the angle between relative transition dipole moments ✓(~µ0n~µ0m)

as

c =
|✓(~µ0n~µ0m) � ⇡

2 |
⇡

2

(90)
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and can yield values between 0 and 1. A value of 0 denotes an angle of 90�, whereas a value of 1 de-

notes an angle of 0� or 180�. Note, the sign of the transition dipole vector is arbitrary since they are

taken from DFT calculations. The variable ~µ0n denotes the transition dipole moment between the ground

state and the excited state n. If the collinearity is close to 1, a stronger coupling of the two states is

present. In contrast, a collinearity close to 0 prevents this coupling [213]. For both peaks of the Q-band

(Q
y

and Q
x

) and the two dominant peaks of the Soret-band (S1 and S2), the collinearity is given in table

3.2. In a first analysis, only the coupling between the same excited states of di↵erent Chls was investi-

gated. As every snapshot contains four Chls bound to subunits CA-CD, two values for c within a dimer

(CA-CB and CC-CD) and four values for c between di↵erent dimers can be calculated. The latter four

can be split in two times two values for c taking into account the dimer of dimer structure. Note, besides

the collinearity, the strength of this state coupling depends on the length of the transition dipole moment

as well as on the distance between the two Chls.

Table 3.2: Comparison of di↵erent optimization potentials: Collinearity c between the transition dipoles

of the same excited states and relative intensity I of the dominant peaks in the absorption spectrum of Chl

for Chls in the same (s) or in the opposite (o) dimer. The opposite dimer is split in Chl coupling between

CA-CC and CB-CD (o1) as well as between CA-CD and CB-CC (o2); The relative intensity denotes the,

with respect to Q
y

, normalized sum of the oscillator strength for the corresponding transition.

w/o MM QM/MM

c rel. I c rel. I c rel. I

Q
y

s 0.62 ± 0.04

1.00

0.62 ± 0.04

1.00

0.62 ± 0.03

1.00o1 0.79 ± 0.07 0.77 ± 0.05 0.70 ± 0.06

o2 0.67 ± 0.08 0.69 ± 0.04 0.77 ± 0.07

Q
x

s 0.58 ± 0.21

0.11

0.63 ± 0.08

0.12

0.20 ± 0.07

0.62o1 0.26 ± 0.17 0.27 ± 0.10 0.51 ± 0.05

o2 0.17 ± 0.13 0.16 ± 0.08 0.05 ± 0.03

S1

s 0.77 ± 0.15

2.07

0.76 ± 0.07

2.63

0.68 ± 0.16

3.28o1 0.24 ± 0.15 0.25 ± 0.11 0.27 ± 0.08

o2 0.22 ± 0.14 0.20 ± 0.09 0.20 ± 0.07

S2

s 0.53 ± 0.14

1.69

0.59 ± 0.04

2.23

0.56 ± 0.09

3.22o1 0.63 ± 0.19 0.71 ± 0.07 0.70 ± 0.11

o2 0.58 ± 0.21 0.69 ± 0.05 0.63 ± 0.16

Analyzing the collinearity, a value for c > 0.5 for most of the cases of coupling within the same dimer is

observed. In the case of opposing dimers, a strong dependency on the excited state is obtained. For the

Q
y

transition, for instance, a strong collinearity around 0.7 is observed. For coupling within S1, values
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for c around 0.2 are found. The optimization shows no big influence on the average value of c with the

exception of the Q
x

peak. On the one hand, c drops from 0.6 to 0.2 within the same dimer, i.e. moving

from a strong to a weak coupling. On the other hand, the subunits of the opposing dimer are no longer

equivalent. This is due to the fact that in one case c decreases close to 0 denoting a perpendicular ar-

rangement, whereas for the other Chl pair it increases to 0.5. In addition to the change in the collinearity,

an increased intensity for Q
x

is observed in the case of a QM/MM optimization, which is accompanied

by a drop of the intensity in Q
y

. By comparing the fluctuations, an increased fluctuation is observed in

the case of using no further optimization techniques. As for the spectral broadening, this is also assumed

to be caused by a fluctuation of the Chl conformation.

Up to this point, only the coupling of the same excited states of di↵erent Chls has been investigated.

However, a coupling between di↵erent excited states can be possible, if the energy di↵erence is not too

large. To determine whether this occurs, the collinearity for the coupling Q
x

! Q
y

and S2 ! S1 for

the snapshots optimized at a QM/MM level was examined. Additionally, the coupling from S2 to S1 via

an intermediate excited state S’ (brown in figure 3.3) was investigated to determine its influence on the

energy transfer. The values for c are reported in table 3.3.

Table 3.3: Collinearity c between the transition dipoles of di↵erent excited states based on the snapshots

that were optimized at a QM/MM level for Chls in the same (s) or in the opposite (o) dimer. The opposite

dimer is split in Chl coupling between CA-CC and CB-CD (o1) as well as between CA-CD and CB-CC

(o2).

Q
x

! Q
y

S2 ! S1 S2 ! S’ S’ ! S1

s 0.35 ± 0.07 0.15 ± 0.11 0.45 ± 0.13 0.27 ± 0.21

o1 0.56 ± 0.06 0.34 ± 0.12 0.59 ± 0.19 0.35 ± 0.13

o2 0.23 ± 0.06 0.12 ± 0.12 0.55 ± 0.21 0.15 ± 0.12

For the coupling between the Q-peaks, Q
x

and Q
y

, a better collinearity is observed compared to the

coupling within the Q
x

itself, as reported in table 3.2. A di↵erentiation between the two Chls of di↵erent

dimers can be observed for this coupling as well. The coupling between the two dominant Soret-states

S1 and S2 shows a low collinearity within a dimer, however, this improves for Chls of di↵erent dimers.

For the coupling towards an intermediate state S’, an even better collinearity is observed, which can then

again couple to S1.

Within the same Soret-state, a comparable collinearity was observed for the coupling between Chls of the

di↵erent dimers (o1 and o2). Thus, the Chl of the opposing dimer could be assumed to be equivalent.

For the collinearity between di↵erent Soret-states, however, a larger di↵erence can be observed. This
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di↵erence emphasizes that the Chls of the opposing dimer have to be treated separately, not only within

the Q-states but also within the Soret-states.

3.2.3.2 Comparison of Di↵erent Modifications

In a next step, it is investigated how di↵erent structural modifications influence the spectra. For this, the

MD simulation with introduced disulfide bridges between the dimers and the MD simulation containing

only 2 Chl molecules were analyzed. Since the QM/MM optimization showed a remarkable e↵ect on

the peak position and the collinearity within the Q
x

-state, further investigations were conducted at a

QM/MM-optimized level. The spectra for the investigated system are shown in figure 3.5. As a reference

system the QM/MM-optimized spectrum presented in figure 3.3 is chosen.

Figure 3.5: Comparison of di↵erent modifications: Vertical absorption spectrum of 1 Chl averaged over

several snapshots. The overall as well as the detailed absorption spectrum are shown; For every detailed

spectrum, the black curve denotes an error function for those excitations which could not be mapped.

The analysis of this figure shows that introducing disulfide bridges has only a minute influence on the

overall spectrum. Only a small red shift of the Q-band and small changes in the Soret-band are observed.

In the Soret-band, however, four dominant states are detectable now. The reason for this is most likely

the change in the angle between the porphyrine planes, as reported in section 3.1. Removing 2 Chl causes

a small blue shift of the Q-band. The collinearity is reported in table 3.4.
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Table 3.4: Comparison of di↵erent modifications: Collinearity c between the transition dipoles of the

same excited states and relative intensity I of the dominant peaks in the absorption spectrum of Chl for

Chls in the same (s) or in the opposite (o) dimer. The opposite dimer is split in Chl coupling between

CA-CC and CB-CD (o1) as well as between CA-CD and CB-CC (o2). Since in the case of the system

with disulfide bridges between the dimers four dominant peaks in the Soret-band are present, they are

labeled S
i

and S
i

’; The relative intensity denotes the, with respect to Q
y

, normalized sum of the oscillator

strength for the corresponding transition.

Disulfides Only 2 Chl Reference (QM/MM)

c rel. I c rel. I c rel. I

Q
y

s 0.56 ± 0.04

1.00

0.67 ± 0.04

1.00

0.62 ± 0.03

1.00o1 0.64 ± 0.08 – 0.70 ± 0.06

o2 0.75 ± 0.07 – 0.77 ± 0.07

Q
x

s 0.20 ± 0.10

0.65

0.12 ± 0.06

0.72

0.20 ± 0.07

0.62o1 0.56 ± 0.07 – 0.51 ± 0.05

o2 0.07 ± 0.04 – 0.05 ± 0.03

S1

s 0.80 ± 0.14

2.20

0.63 ± 0.17

3.57

0.62 ± 0.27

0.98o1 0.25 ± 0.07 – 0.23 ± 0.12

o2 0.22 ± 0.07 – 0.20 ± 0.14

S1’

s 0.36 ± 0.23

1.81

– 0.68 ± 0.16

3.28o1 0.35 ± 0.17 – 0.27 ± 0.08

o2 0.28 ± 0.23 – 0.20 ± 0.07

S2

s 0.42 ± 0.20

2.25

0.63 ± 0.08

3.02

0.42 ± 0.15

1.21o1 0.44 ± 0.25 – 0.51 ± 0.21

o2 0.41 ± 0.21 – 0.47 ± 0.22

S2’

s 0.33 ± 0.13

1.81

– 0.56 ± 0.09

3.22o1 0.52 ± 0.11 – 0.70 ± 0.11

o2 0.27 ± 0.29 – 0.63 ± 0.16

For a better comparison, the collinearity c for the small peaks in the reference system is also calculated.

The system containing disulfide bridges that are linking the dimers shows di↵erent values for c in the Q
x

-

peaks for o1 and o2. This is in agreement with the behavior observed in the reference system. Although

the Soret-band does not change in the overall spectrum if disulfide bridges are formed, the transition

dipole moment and the intensities of the single excitations are a↵ected. The changes are caused by a

slightly di↵erent conformational orientation of the Chl compared to the reference system. Thus, it is

di�cult to compare the collinearity as the contribution of the MOs to the transitions in the Soret-band

changes as well. Fitting the excitations based on the contribution of the MOs that are involved in the
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excitation process would link “Reference (QM/MM)” S1 to “Disulfides” S1’ and “Reference (QM/MM)”

S1’ to “Disulfides” S1. For the states S2 and S2’ the same relationship is observed. Removing 2 Chls

causes a small change in c. The trend, however, remains the same compared to the reference system, and

the relative intensities are in agreement. It can thus be concluded that the two dimers may interact with

each other, but the structural e↵ects on the Chl excitations are local.

3.2.3.3 Comparison of Di↵erent Environments

In a next step, it is compared how the environment in the TD-DFT calculation a↵ects the absorption

spectrum. For this, the absorption spectra for the chromophore were computed in vacuo, neglecting the

point charge field (PCF). The spectra are presented in figure 3.6.

Figure 3.6: Comparison of di↵erent environments during the TD-DFT calculation: Vertical absorption

spectrum of 1 Chl averaged over several snapshots. The overall as well as the detailed absorption spectrum

are shown; For every detailed spectrum, the black curve denotes an error function for those excitations

which could not be mapped.

Comparing the spectra, a small red shift of the two Q-peaks and of one dominant Soret-peak is observed.

Like for the systems using either no optimization or an MM optimization, two dominant Soret-peaks are

present in the overall spectrum now. These separate peaks merge into one using the QM/MM optimization

and a PCF environment. Comparing the collinearity as summarized in table 3.5, only minor influence
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of the environment can be observed. The only significant di↵erence can be found in the collinearity of

the transition dipole moments of the S1-peak within a dimer. Comparing the relative intensities (see

table 3.5), a weaker Q
x

-peak is observed for the system treated in vacuo during the TD-DFT calculation.

This indicates that the function of the protein is more likely to be found in the structural arrangement of

the Chls than in a direct modification of the spectroscopic properties.

Table 3.5: Comparison of di↵erent environments during the TD-DFT calculation: Collinearity c between

the transition dipoles of the same excited states and relative intensity I of the dominant peaks in the

absorption spectrum of Chl for Chls in the same (s) or in the opposite (o) dimer. The opposite dimer

is split in Chl coupling between CA-CC and CB-CD (o1) as well as between CA-CD and CB-CC (o2);

The relative intensity denotes the, with respect to Q
y

, normalized sum of the oscillator strength for the

corresponding transition.

in vacuo Point charge field

c rel. I c rel. I

Q
y

s 0.63 ± 0.04

1.00

0.62 ± 0.03

1.00o1 0.75 ± 0.03 0.70 ± 0.06

o2 0.73 ± 0.05 0.77 ± 0.07

Q
x

s 0.22 ± 0.04

0.36

0.20 ± 0.07

0.62o1 0.50 ± 0.04 0.51 ± 0.05

o2 0.05 ± 0.03 0.05 ± 0.03

S1

s 0.89 ± 0.06

2.95

0.68 ± 0.16

3.28o1 0.21 ± 0.04 0.27 ± 0.08

o2 0.20 ± 0.04 0.20 ± 0.07

S2

s 0.53 ± 0.13

2.77

0.56 ± 0.09

3.22o1 0.64 ± 0.17 0.70 ± 0.11

o2 0.60 ± 0.12 0.63 ± 0.16

In the previous analysis, it was observed that removing the PCF has only little influence on the collinear-

ity for most of the transition dipole moments. Since this only accounts for environmental e↵ects, it is of

interest how the transition dipole moments behave with respect to the orientation of the chromophore. In

the MD simulation we observed that the angle between the Chls can change slightly over time. Therefore,

it is of interest whether these conformational changes influence the angle between the transition dipole

moments.

To get an idea of the fluctuation of the transition dipole moments with respect to conformational changes

of the chromophores, the angle between the transition dipole moments and the perpendicular of the por-
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phyrine plane is analyzed. For this analysis, 12 perpendicular lines with respect to the position of three

out of the four nitrogens of the porphyrine plane are calculated and averaged. In a next step, the angle ✓

between the transition dipole moments of the states Q
x

, Q
y

, S1 and S2 and the averaged perpendicular

is calculated.

For all four states, angles close to 90� were detected. This means that all transition dipole moments are

located within or close to the ring-plane. Thus, changes in the porphyrine orientation between two Chl

a↵ect the dipole moment orientation to each other. For the Q-peaks, standard deviations around 1�,

and for the dominant S-peaks, deviations around 2� were observed. A comparable behavior was observed

by calculating this angle, neglecting the PCF (Q
y

: 88.7 ± 1.0 �, Q
x

: 88.4 ± 1.0 �, S1: 86.9 ± 1.7 �,

S2: 86.9 ± 3.2 �) with the only di↵erence being a larger fluctuation of the S2-state.

Apart from the conformational changes, a fluctuation of the transition dipole moment is also possible.

To test this, the dihedral angle � between the transition dipole moments of the same excited state was

calculated. The magnesium-magnesium distance was chosen as a connection between the transition dipole

vectors. The calculated properties are summarized in table 3.6.

Table 3.6: Analysis of the fluctuation between two transition dipole moments of the same excited state.

✓ denotes the angle between the planes’ averaged perpendicular and the transition dipole moment, �

denotes the dihedral angle between two transition dipole moments and c denotes the collinearity; The

analysis was based on the snapshots that were optimized at a QM/MM level with the QM part being

embedded in a PCF during the absorption spectrum calculation.

✓/� �/� c

Q
y

s

88.4 ± 1.1

13.6 ± 7.3 0.62 ± 0.03

o1 43.7 ± 9.5 0.70 ± 0.06

o2 40.6 ± 15.4 0.77 ± 0.07

Q
x

s

88.2 ± 1.2

80.7 ± 6.8 0.20 ± 0.07

o1 44.7 ± 4.1 0.51 ± 0.05

o2 29.5 ± 8.4 0.05 ± 0.03

S1

s

86.4 ± 2.0

29.7 ± 15.3 0.68 ± 0.16

o1 62.7 ± 15.5 0.27 ± 0.08

o2 57.5 ± 7.4 0.20 ± 0.07

S2

s

87.6 ± 1.6

12.9 ± 11.2 0.56 ± 0.09

o1 35.2 ± 15.8 0.70 ± 0.11

o2 54.4 ± 20.6 0.63 ± 0.16
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The analysis of the dihedral angle shows that a strong fluctuation of the dihedral angle can be observed.

This fluctuation is stronger for the Soret-states than for the Q-states. This is in agreement with the

corresponding fluctuation of the collinearity. In summary, changes in the conformational orientation of

the rings with respect to each other as well as fluctuations of the dihedral angle between the transition

dipoles can influence the coupling strength between two Chls.

3.2.3.4 Comparison of Di↵erent Number of Chlorophylls

Since the two Chls within a dimer are strongly excitonically coupled, it is subsequently investigated how

the inclusion of both Chls in the TD-DFT calculation a↵ects the absorption spectrum. In addition, it

can directly be checked whether coupling of the degenerated excited states of the Chls exist. Since an

optimization at the QM/MM-level for two Chls in the active part is computationally expensive to be

carried out for multiple snapshots, the focus lies on a discussion based on the MM-optimization. The

mapping of the excitations gets more complicated for treating more than one chromophore since degener-

ated states have to be considered now. A discussion of the mapping for this system can be found following

the analysis of the absorption spectrum (figure 3.7).

In figure 3.7, nearly no change in the overall absorption spectrum is observed when two Chls are included

in the TD-DFT calculation. The major di↵erence can be found in the Q
y

-peak which is split into two

peaks with a relative intensity ratio of 0.26. Remarkably, the oscillator strength for the state at lower

energy/higher wave length is smaller compared to the state at higher energy. This behavior is not typical.

In strongly coupled chromophores of light harvesting complexes, for example, the opposite behavior is

observed [195, 214]. Taking into account the detailed spectrum, a coupling of the excited states can be

detected for all excitations featuring a high oscillator strength. In those cases, the same behavior as for

the Q
y

-state is observed with a dominating intensity for the excited state at higher energy. The ratios

are: Q
x

(orange) 0.61, S1 (red) 0.42 and S2 (violet) 0.46. Note, the wave length di↵erence between the

peaks does not scale linearly with the energy di↵erence. Analyzing the mean energy di↵erence induced

by the coupling results in: Q
y

57 meV and Q
x

21 meV as well as S1 66 meV and S2 99 meV. The weak

coupling in the Q
x

-band is in agreement with a small collinearity as observed for a single Chl optimized

at a QM/MM level. This could not be achieved by only using an MM optimization. In future work, it

should be investigated how this coupling and the ratios change using a QM/MM optimization for both

Chls simultaneously.
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Figure 3.7: Comparison of di↵erent numbers of Chls in the TD-DFT calculation: Vertical absorption

spectrum of 1 Chl or 2 Chls averaged over several snapshots. The overall as well as the detailed absorption

spectrum are shown; Note, due to the degeneracy and the coupling of the excited states including two

Chls, the y-axis of the detailed spectrum is scaled down by a factor of 2. Equivalent excitations are

highlighted in the same color. The coupled excitation with lower energy is drawn with a solid line, the

other with a dashed line; For every detailed spectrum the black curve denotes an error function for those

excitations which could not be mapped.

The increase in dimensionality might be a problem for the mapping of the MOs for multiple Chls. For 1

Chl, 855 expansion coe�cients are compared by calculating the euclidean distance. This number increases

for 2 Chls to 1710. Due to the curse of dimensionality, the distance becomes less significant when doubling

the number of dimensions. Another problem arises since degenerated MOs have to be taken into account

now. These MOs are no longer independent of each other, since they can show coupling. Furthermore,

MOs do not have to be localized at one chromophore but can be found on both.
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4 Kinetic Analysis of MD Simulations Based on Core Sets

To extract kinetic information from MD simulations, Markov state models (MSMs) are applied fre-

quently [13, 136, 137, 215, 216]. In these models, the transition probability between di↵erent discrete

states is estimated. The quality of the MSM, however, depends strongly on the definition of these states.

If every simulation frame has to be assigned to a discrete state, the optimal boundary between two states

has to be set on top of the energy barrier between these states. However, as MD simulations are performed

in a high-dimensional potential energy surface, the exact location of these boundaries is hard to estimate.

To counteract this problem, a high number of states is usually necessary [9, 102].

Since the interest usually is not on the exact location of the boundaries, but rather on the metastable

states of the investigated molecule, a core-set definition of the discrete states can be applied [12, 14, 107].

A core set denotes an area in which the simulation stays for a long time until a fast transition towards

another core set is observed. This definition thus describes metastable conformations of the analyzed

system. A general definition of these states, however, was not known.

As presented in section 4.1, the capability of density-based clustering for the definition of these core sets

was therefore examined by comparing di↵erent density-based cluster algorithms. The extracted core sets

were then used for the construction of a core-set MSM (cs-MSM) [12, 14, 107–111] analyzing the dynamics

of the simulated systems. Among these, the most promising algorithm, the Common-Nearest-Neighbor

(CNN) algorithm, was benchmarked with respect to a variety of di↵erent challenges. The results of this

study are reported in section 4.2. In the final investigation, presented in section 4.3, the developed workflow

(using CNN clustering) was applied to the cyclosporines A and E, simulated in water and chloroform,

respectively. In this work the focus lies on a comparison between the two molecules in the two solvents.

The importance of certain reaction coordinates for the construction of an MSM is discussed.

4.1 Density-based Cluster Algorithms for the Identification of Core Sets

Although the core-set approach was already known for several years, it was not clear how to find a suitable

definition of the core sets. Since core sets account for metastable states and therefore for frequently

sampled minima in the potential energy surface, we proposed that a suitable definition of core sets should

be obtained using density-based cluster algorithms. For this clustering, it is assumed that every frame can

be represented as a data point in this high dimensional data space. The density-based cluster algorithm

is then capable of extracting areas, which show a drop in data point density towards other areas, with

each area representing a core set.
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In the presented work, it is shown that an extraction of these core sets can be done by density-based

clustering. In this context, three di↵erent algorithms, the Jarvis-Patrick- [129], the DBSCAN- [130] and

the Common-Nearest-Neighbor algorithm [16], were compared as every algorithm uses another criterion

to determine whether two data points belong to the same cluster. The investigated systems were a

two-dimensional potential, the alanine dipeptide as well as a 14-residue �-hairpin peptide, ordered by

increasing complexity. For the biomolecular systems, the di↵erence between two conformations was de-

scribed by an RMSD of the backbone’s atom positions. Since the sample frequency and therefore the

data point density of a metastable conformation highly depends on its energy, a hierarchical clustering

approach was developed that can be used to extract clusters with varying density.

The presented research was published in: Lemke, O.; Keller, B. G. “Density-based cluster algorithms

for the identification of core sets”, J. Chem. Phys. 2016, 145, 164104; doi: 10.1063/1.4965440.
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4.2 Common-Nearest-Neighbor Clustering – a Benchmark

In section 4.1 it is shown that it is possible to extract core sets from MD simulations applying density-based

clustering and to use them to construct suitable cs-MSMs. Thus, the performance of the most-promising

algorithm, the Common-Nearest-Neighbor (CNN) algorithm, was evaluated on a series of benchmark data

sets. These data sets were designed to exhibit features which are known to cause wrong clustering results

in commonly used cluster algorithms. For this investigation, the performance with respect to di↵erent

properties of data sets was examined. These properties included dimensionality, cluster size, cluster num-

ber, cluster shape, overlapping clusters, clusters with di↵erent data point density and noise. Lastly, the

performance with increasing data set size was investigated. The clustering results were compared to the

k-Means++ algorithm [122, 167] and the DBSCAN algorithm [130]. The implemented cluster algorithm

is available, see Ref. [217].

The presented research was published in: Lemke, O.; Keller, B. G. “Common Nearest Neighbor Clustering

– A Benchmark”, Algorithms 2018, 11, 19; doi: 10.3390/a11020019.
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4.3 Comparison of Kinetic Models of the Cyclosporines A and E

4.3.1 Introduction

We set up a workflow for the construction of cs-MSMs based on density-based clustering, as shown in

section 4.1. Since the CNN algorithm showed a remarkable performance towards typical challenges re-

lated to data sets, as shown in section 4.2, it was included in this workflow. With this workflow at hand,

conformational di↵erences between the cyclic peptides cyclosporines A and E are examined in a next step.

Cyclic peptides have gained high interest recently [218–221]. However, they often su↵er in bioavailability

because of their complexity, size and solubility [222]. Cyclosporine A (CsA), a cyclic undecamer with seven

methylated backbone amides, is an exception. It is applied as an immunosupressive drug for kidney and

liver transplants [223, 224], since it can bind to the cytosol protein cyclophilin [225] and it consequently

diminishes the T-cells’ function [226]. The high bioavailability is achieved by passive di↵usion through

the membrane [44, 45]. It is assumed that CsA can change between “open” and “closed” conformations

and can thus adapt to the polarity of its environment [36, 37, 44, 45]. Furthermore, it is assumed that

“congruent” conformations exist, which are soluble in both the cytosol and the membrane [36, 37]. The

reason for the di↵usion is thus located in the dynamics of the molecule. By removing one backbone

methylation, the derivative cyclosporine E (CsE) is obtained, whose membrane permeability is one order

of magnitude lower than that of CsA. Sticking to the assumptions concerning the membrane di↵usion, this

worse membrane permeability is caused by changes in the molecule’s kinetics. Utilizing MD simulations

of both molecules, in water and chloroform respectively, as well as full-partitioning MSMs (fp-MSMs),

these changes were discussed in Ref. [36, 37].

In Ref. [36, 37], several distinct conformations, including “congruent” conformations, could be observed.

For CsE, one “congruent” conformation that was observed for CsA was missing. In addition, higher

conformational conversion times for CsE were observed compared to CsA which are assumed to be one

reason for the worse membrane permeability of CsE [36, 37]. Within these studies, a relatively fast cis-

trans-isomerization of the 9-MeLeu-10-MeLeu peptide bond compared to other conformational changes

was observed for some cyclosporine-solvent combinations. This seems to be very unlikely since a cis-trans-

isomerization along a partial double bond is linked to a transition above a high energy barrier and would

therefore be suggested to occur on slower timescales than other conformational changes. An acceleration of

this configurational change might come into play due to the ring structure, since it can tense the molecule.

The work presented in this section is an extension of these former studies in collaboration with Dr. Jagna

Witek and Prof. Dr. Sereina Riniker (ETH Zurich, Switzerland) who provided the simulation trajectories.
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The work can therefore be set into relation to these former studies as the same trajectories were analyzed.

Applying the developed workflow, cs-MSMs were constructed for CsA and CsE in water and chloroform

respectively. For the construction of the cs-MSMs, di↵erent sets of input coordinates were tested. Both

molecules show the ability of a configurational isomerization of the peptide bond between MeLeu-9 and

MeLeu-10, changing between a cis- and a trans-configuration. The e↵ect of including or neglecting this

information in the cs-MSM construction was investigated, since the dihedral angle of the peptide bond !

is usually assumed to be fixed.

Since the clustering of the MD simulation data is hard to realize in a high dimensional state space due

to the curse of dimensionality [101], i.e. the higher the dimensionality is, the worse it gets to find a

good discretization, the dimensionality has to be reduced. To achieve this dimensionality reduction, the

time-lagged independent component analysis (TICA) [112, 117] was included in the workflow. In this

analysis all slow degrees of freedom are provided as input data and the linearly optimized reaction coordi-

nates that show the highest time-lagged variance are extracted as an outcome. The big advantage is that

further information can be included, which is extractable from the full state space. This information can

include, for example, hydrogen bonding, atom-atom distances or other structural information. Recently,

a combination of TICA and MSMs was applied to obtain kinetic information of di↵erent biomolecules

[43, 137, 227]. Besides the construction of cs-MSMs, joint spaces were set up utilizing TICA [112, 117] for

the direct comparison of either both molecules in one solvent or of one molecule in two di↵erent solvents.

Using this kind of analysis, it is possible to characterize unique conformations as well as “congruent” states.

The cs-MSMs are compared to fp-MSMs, which are constructed with the use of the commonly applied

k-Means algorithm and its variation k-Means++[11, 15, 122, 167]. Full-partitioning discretizations often

su↵er from a recrossing problem by “badly” assigned borders [12] and thus the quality of the MSM

is often diminished. To check this quality, for example, the implied timescales obtained by the MSM

can be examined with respect to convergence, which is sometimes only achieved on a logarithmic scale

[9, 36, 37, 228, 229].

4.3.2 Methods

4.3.2.1 Simulation Details

In total, 4 setups were simulated: CsE and CsA in either water or chloroform. The simulation data for

CsA were taken from Ref. [36], and for CsE from Ref. [37]. The simulations were performed using the

GROMOS package [230, 231]. As a force field, GROMOS 54A7 was applied [232]. The simulations were

carried out in an NPT ensemble at a temperature T = 300 K using periodic boundary conditions and a
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time step of 2 fs. Solute coordinates were written to file every 5 ps. For the solvents, the SPC water model

[233] and the GROMOS chloroform model [234] were used. The system was coupled to a temperature

bath with a coupling constant of 0.1 ps [157]. The pressure was set to 1 atm and kept constant using

a pressure bath with a coupling constant of 0.5 ps. Non-bonded interactions were calculated using a

twin-range cuto↵ scheme (0.8 and 1.4 nm). Bond lengths were constrained using the SHAKE algorithm

[154].

To generate starting structures for the production simulations, enhanced sampling techniques were applied.

For detailed information, it is referred to Ref. [36] and Ref. [37]. Starting from 100 di↵erent starting

conformations (196 for CsE in water), each structure was simulated for 100 ns resulting in a total simulation

length of 10 µs (19.6 µs for CsE in water) per setup.

4.3.2.2 Reaction Coordinates and State Space Reduction

For the analysis, the focus was laid on three main reaction coordinates: The backbone dihedral angles �

and  , hydrogen bonds and the dihedral angle of the 9-10-peptide bond !9,10. Backbone dihedral angles

and hydrogen bonds were isolated using the GROMOS software package [230, 231]. For the hydrogen

bonds, a cuto↵ distance of 2.5 Å and an angle cuto↵ of 135� were applied. The dihedral angle of the

9-10-peptide bond was extracted using the Python package MDTraj [18]. For the state space reduction,

the dihedral angles were shifted to the interval ]0�, 360�] and normalized to the interval ]0, 1]. For the

9-10-peptide bond, its absolute values were used and also normalized to the interval ]0, 1]. The hydrogen

bonds were translated into binary information. Each hydrogen bond is represented as a single array with

“1” if the hydrogen bond is present, and “0” if not.

The input data were processed by time-lagged independent component analysis (TICA) using the pyEMMA

package [15]. The lag time was fixed to 5 ns as for this lag time a convergence of the implied timescales

was observed. For the research presented in this section, four di↵erent TICA-spaces were constructed

for each system: Space 1 included only the backbone dihedral angles without the dihedral angle of the

9-10-peptide bond. For Spaces 2 and 3, the hydrogen bonds and the dihedral angle of the 9-10-peptide

bond were added. For Space 3, all replicas which contain at least one conformation with a 9-10-peptide

bond in cis-configuration were rejected. The results for Spaces 1 to 3 are presented in section 4.3.3.1. For

Space 4, a combined TICA-space of two systems (only those replicas where the 9-10-peptide bond is in

trans-configuration the whole simulation time), sharing either the solvent or the molecule, was constructed

(section 4.3.3.3). To simplify the di↵erentiation of the investigated reduced state spaces, the spaces are

summarized according to table 4.1.
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Table 4.1: Names and included information of the di↵erent setups for the reduced state space construc-

tion.

Name Information included in reduced space construction Section

Space 1 backbone dihedral angles �, 

4.3.3.1Space 2 Space 1 + hydrogen bonds + 9-10-peptide bond !9,10

Space 3 Space 2 - trajectories containing cis-states

Space 4 joint space of two Space 3 4.3.3.3

For the Spaces 1–3, the first 5 time-lagged independent components (TICs) were used for further analysis.

For Space 4, 7 TICs were used. Using more TICs was tested as well, but showed no significant changes.

In addition, with increasing dimensionality of the reduced space some connectivity issues can come into

play, which will be explained in detail in section 4.3.3.1.

4.3.2.3 Core-set Markov State Models

The trajectories projected on the reduced state spaces were clustered using the CNN algorithm [217]. The

data set for the clustering was reduced by extracting every 200th frame for Spaces 1–3 (section 4.3.3.1).

For Space 4 (section 4.3.3.3), where two systems were combined into one space, the stride was reduced to

150 for CsE in chloroform and increased to 350 for CsE in water to guarantee equally sized parts within

the resulting data set.

As a distance metric for the clustering, the euclidean distance was applied. For each setup, a screen over

80 di↵erent parameter sets was performed (10 R values and 8 N values). This is possible as the calculation

of the distance matrix, which is the most expensive step, is only done once. All values of R were set to be

located before the first maximum of the distance distribution of the data set [16]. N was increased from

2 to 30. The parameter M was fixed to 10 for all data sets smaller or equal than 10,000 data points. For

CsE in water as well as for the combined spaces, M was increased to 20. The outcome of every clustering

step was ranked empirically according to three properties: the number of clusters NC, the percentage of

the largest cluster pl and the percentage of data points assigned to noise pn according to

p
NC · exp

✓
� (pl � µl)2

2�2
l

◆
· exp

✓
� (pn � µn)2

2�2
n

◆
(91)

with µl = 0.25, µn = 0.25, �n = 0.2 and

�l =

8
><

>:

0.1; for pl < µl

0.2; for pl � µl

.
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For the chosen parameter sets, all data points were projected back onto the clusters with respect to the

cluster parameters. A data point is assigned to a cluster, if it has at least N neighbors in the reduced

data set within a cuto↵ distance R. The drawback of this approach is that data points of the reduced

data set can be rejected from the cluster since some neighbors in the reduced data set are declared as

noise. However, this happens only to the border points of the cluster and can therefore be neglected. The

parameter sets chosen to construct the cs-MSMs are summarized in table 4.2.

Table 4.2: Parameters and outcome of the CNN clustering.

System Solvent Space cis? Data set size Parameter Outcome

R N M #Cluster Noise / %

CsE

CHCl3

1 yes 10,000 0.20 5 10 10 34

2 yes 10,000 0.25 10 10 13 16

3 no 6,700 0.15 3 10 11 32

H2O

1 yes 19,600 0.20 2 20 6 15

2 yes 19,600 0.20 3 20 6 11

3 no 15,800 0.20 5 20 7 32

CsA

CHCl3

1 yes 10,000 0.35 3 10 12 9

2 yes 10,000 0.50 3 10 13 1

3 no 9,600 0.35 5 10 6 7

H2O

1 yes 10,000 0.25 5 10 16 26

2 yes 10,000 0.25 5 10 17 26

3 no 9,300 0.25 5 10 14 28

CsE
Both

4 no 18,142 0.25 2 20 19 25

CsA 4 no 18,900 0.25 5 20 10 54

Both
CHCl3 4 no 18,578 0.25 3 20 21 22

H2O 4 no 18,464 0.30 3 20 17 28

Using the resulting discrete trajectories, cs-MSMs were constructed according to Ref. [12, 135]. For the

construction of the cs-MSMs, the detailed balance criterion was applied by counting each transition from

C
i

to C
j

also as a transition from C
j

to C
i

[11]. The analysis was focused on the largest connected

set rejecting all disconnected states. For CsE in chloroform, one cluster for the cs-MSM was removed

manually, as it was only connected by one transition leading to an implied timescale much larger than

the total simulation length of 10 µs and therefore to a statistical error. In cs-MSMs, every trajectory is

truncated at the position of the first and the last assigned frame. As the trajectories are relatively short

(20,000 frames) and not all frames are assigned to a discrete state, a minimal length of the truncated
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trajectories was set to 10 ·�t. �t denotes the time step for the construction of the MSM. All trajectories

which were smaller were rejected.

For all systems, the cs-MSM was constructed for lag times ⌧ in the range of 0.5 ns to a maximum of 50 ns

(if not limited by the shortest discrete state trajectory). �t was set to 0.5 ns. For every lag time ⌧ , the

corresponding implied timescale (equation 42) was calculated and plotted in dependency to the lag time.

Since a valid MSM has to be independent of the lag time, the region in which the implied timescales

are converged was investigated further. The chosen lag times and further parameters are summarized in

table 4.3.

Table 4.3: Parameters for the construction of the fp-MSM and the cs-MSM with the maximal evaluated

lag time ⌧
Max

and the lag time used for the model construction ⌧
Mkv

. For Space 4: The first row denotes

the MSM parameters for CHCl3 or for CsE, respectively.

System Solvent Space cis? cs-MSM fp-MSM

⌧
Max

/ ns ⌧
Mkv

/ ns ⌧
Max

/ ns ⌧
Mkv

/ ns

CsE

CHCl3

1 yes 46.0 15.0 50.0 15.0

2 yes 21.0 5.0 50.0 30.0

3 no 50.0 20.0 50.0 30.0

H2O

1 yes 34.0 9.0 50.0 15.0

2 yes 50.0 10.0 50.0 20.0

3 no 36.0 10.0 50.0 20.0

CsA

CHCl3

1 yes 50.0 20.0 50.0 15.0

2 yes 50.0 20.0 50.0 30.0

3 no 35.5 20.0 50.0 20.0

H2O

1 yes 21.5 20.0 50.0 15.0

2 yes 29.5 20.0 50.0 30.0

3 no 29.5 15.0 50.0 30.0

CsE

Both

4 no
50.0 20.0 – –

36.0 5.0 – –

CsA 4 no
13.0 10.0 – –

15.0 10.0 – –

Both

CHCl3 4 no
50.0 20.0 – –

24.0 20.0 – –

H2O 4 no
38.0 10.0 – –

36.0 20.0 – –
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4.3.2.4 Full-partitioning Markov State Models

Fp-MSMs were constructed as reference systems. For every setup, the reduced state space was divided

into 500 clusters using the k-Means++ algorithm that is implemented in the pyEMMA package [15]. The

MSM was constructed like the cs-MSM to provide an easier comparison. The eigenvalue spectrum was

calculated for 50 ns with a time step of 0.5 ns. As for the cs-MSM, the lag time interval, in which the

implied timescales were converged, was used for further analysis. The parameters for the fp-MSM are

summarized in table 4.3.

For an easy interpretation of the outcome of the MSM (and the cs-MSM), the discrete states were lumped

into metastable states using the PCCA+ algorithm [235] that is implemented in EMMA [105]. The

number of metastable states was chosen manually by the number of dominant implied timescales.

4.3.3 Results

The importance of I) the input data used in the reduced space construction (section 4.3.3.1), and of II) the

discretization method (section 4.3.3.2) is investigated with respect to the reproduction of the dynamics

of CsA and CsE observed in the MD simulations. For I), the main focus is set on the explicit treatment

of the dihedral angle formed by the 9-10-peptide bond (!9,10), as these dihedral angles are usually ne-

glected in the analysis of MD data. For an easier understanding, conformations with cis-configuration are

called cis-states and conformations with trans-configuration are called trans-states analogously. For II),

full-partitioning and core-set discretizations within these di↵erent spaces are compared. For every model,

the dynamics of CsA and CsE in water as well as in chloroform are investigated. A full-partitioning dis-

cretization is obtained using the k-Means++ algorithm. For a core-set discretization, the CNN algorithm

is used instead. By using a joint reduced space, two systems are compared in a last step (section 4.3.3.3).

As a reference for an accurate model, four criteria are defined:

1. The implied timescales of the constructed MSM are converged (on a linear timescale), indicating a

su�cient assignment of the discrete states.

2. The isolated cis-states are “pure” and do not contain any conformation in trans-state.

3. The lumping of discrete states to metastable states using PCCA+ does not merge clusters in cis-

states to trans-states assuring a slow cis-trans-isomerization.

4. The kinetics for the cis-trans-isomerization are comparable to those observed in the MD simulations.

For the last point, the maximal and minimal absolute dihedral angle of the 9-10-peptide bond was an-

alyzed for every replica (figure 4.1). This analysis showed that for CsE and CsA in chloroform only in
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one replica a transition is observed, switching between a cis- and a trans-state. For CsE in water, in no

replica a complete cis-trans transition (180� flip) is observed. CsA in water shows two transitions between

cis- and trans-configurations. In replica 14 the transition occurs at the end of the simulation containing

only a few cis-states. The coloring of the trajectories containing cis-states is according to the dynamical

connectivity. Except for CsA in water, the dynamically connected cis-states (highlighted in red) are for

all systems “open” ones, the dynamically disconnected conformations are “closed” ones (highlighted in

yellow). For CsA in water, the opposite behavior is observed. In summary, for CsE in water, no transition

between a cis- and a trans-state is expected. For the other three systems, the transition should be in the

µs regime or close to it.

  

Figure 4.1: Minimal and maximal dihedral angle of the 9-10-peptide bond for every replica for CsE (a)

in chloroform and (c) in water as well as CsA (b) in chloroform and (d) in water; Categorization of the

replicas (according to figures 4.4 and 4.5): Replicas that stay only in trans-state and are not connected

to any isolated cis-state (blue), that contain connected cis-states (red), that contain isolated cis-states

(figure 4.6) (yellow).

4.3.3.1 Choice of Input Coordinates Using a Core-set Discretization

Dihedral angles � and  without a treatment of the 9-10-peptide bond explicitly

To investigate the influence of the input data for the reduced state space construction on the outcome of

the MSM analysis, a reduced space was constructed on the basis of the backbone angles � and  (Space 1)

first. The ! dihedral angle along the peptide bond is usually assumed to be fixed by the partial double

bond character and therefore often neglected. Hence, the dihedral angle of the 9-10-peptide bond, for
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which an impact on the dynamics was already reported, was not included in the reduced space construc-

tion.

The first analysis focused on CsE analyzing the dynamics in chloroform (figure 4.2a) and water (fig-

ure 4.2b) using a core-set discretization. For both systems, it is possible to isolate core sets, which

dominantly contain cis-states without treating the 9-10 peptide-bond in the state space construction ex-

plicitly. This conformation is in both solvents a “closed” conformation. In addition, in chloroform an

“open” conformation is achieved. The overall purity of these cis-states is 99.9% in chloroform and 99.9%

in water.

  

Figure 4.2: Dynamics of CsE (a) in chloroform and (b) in water (Space 1); The configuration of the

9-10-peptide bond is highlighted; The populations are calculated with respect to the clusters (they do not

sum up to 100 %). Implied timescales in dependence of the lag time ⌧ : CsE in chloroform for (c) cs-MSM

and (d) fp-MSM; CsE in water for (e) cs-MSM and (f) fp-MSM. The fp-MSMs were constructed using

the k-Means++ algorithm; The vertical line represents the lag time ⌧ that was used for the analysis.
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To examine whether this purity is su�cient enough to reproduce the dynamics that were observed in

the MD simulation, the quality of the cs-MSMs based on these core sets is investigated in a next step.

Therefore, the convergence of the implied timescales is analyzed first.

The well converged implied timescales of the cs-MSMs (figure 4.2c+e), which only show a small drift

on a linear scale, indicate a su�cient assignment of the discrete states. However, the cis-states for CsE

in chloroform (“open” and “closed”) are merged into the same metastable state using the PCCA+ al-

gorithm indicating a fast dynamical exchange between both conformations. This does not match the

behavior observed in the MD simulation, as described above. In water, the PCCA+ cluster that contains

cis-states is formed by only one core set, which strengthens the assumption that the assignment su�ces

the expectations for this system. In both solvents, a cis-trans-isomerization of the 9-10-peptide bond

can be detected, which was also observed by Witek et al. [37]. However, in chloroform this cis-trans-

isomerization is on a relatively fast timescale around 300 ns, which again does not match the findings

described above, although a purity of 99.9% was achieved. In water, where no cis-trans-isomerization

should occur according to the former analysis, a cis-trans-isomerization around 3 µs is observed. The

other dynamic modes represent opening and closing movements of trans-states. Although the implied

timescales indicate a good discretization, the behavior observed in figure 4.1a+c could not be reproduced

by a cs-MSM constructed on a reduced space in which the cis-trans-isomerization of the 9-10-peptide

bond was neglected. Hence, the model for CsE has to be improved.

The full analysis (figure 4.3) was repeated for the dynamics of CsA in Space 1 using a core-set discretiza-

tion. In water, a “closed” cis-state was isolated with a purity of 97.8 % using the core-set discretization.

In chloroform, an “open” (purity of 96.6 %) as well as a “closed” cis-state (purity of 63.0 %) were ob-

served. The purity of the former two core sets is in the same range as for CsE. Therefore, it is examined

again how this impurity a↵ects the MSM analysis.

As for CsE, well converged implied timescales are observed on a linear scale. However, due to the

poor purity of the “closed” cis-state in chloroform, it is not directly involved in the slow dynamics and

is merged in the PCCA+ assignment into trans-states. The “open” cis-state forms an own PCCA+

cluster. A timescale close to the µs regime is obtained matching the expected dynamics. In water, the

cis-trans-isomerization is again on a fast timescale, which is not reproducing the behavior described in

the reference. Nevertheless, the cis-states form an own PCCA+ cluster as in the case of CsE in water,

suggesting a su�cient discrete state definition.
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Figure 4.3: Dynamics of CsA (a) in chloroform and (b) in water (Space 1); The configuration of the

9-10-peptide bond is highlighted; The populations are calculated with respect to the clusters (they do not

sum up to 100 %). Implied timescales in dependence of the lag time ⌧ : CsA in chloroform for (c) cs-MSM

and (d) fp-MSM; CsA in water for (e) cs-MSM and (f) fp-MSM. The fp-MSMs were constructed using

the k-Means++ algorithm; The vertical line represents the lag time ⌧ that was used for the analysis.

For all investigated systems in Space 1, it was not possible to reproduce the dynamics of the MD data using

a core-set discretization. To evaluate the error source, another discretization method is tested first. There-

fore, the core-set discretization is compared to a full-partitioning discretization. For the full-partitioning

discretization, it is again possible to isolate metastable states that dominantly contain cis-states. The pu-

rity of these states is slightly lower than for the core-set discretization, with 98.1 % for CsE in chloroform

and 99.7 % for CsE in water. For CsA in chloroform, a purity of 67.9 % and for CsA in water, a purity of

91.0 % was achieved. The purities were averaged over all metastable states mainly containing cis-states.

For the implied timescales of the fp-MSM (figure 4.2d+f), also a comparable behavior is observed. Thus,

the discretization method is not the error source for the wrong dynamical behavior that is obtained by

the MSMs. Hence, the error source is likely to be found in the reduced space construction and therefore
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in the used input coordinates. To test this, more specific coordinates have to be included in the reduced

space construction such as the dihedral angle of the 9-10-peptide bond or the hydrogen bond network. A

detailed discussion and further comparison between core-set and full-partitioning discretization as well as

their influence on the quality of the MSMs will be covered in section 4.3.3.2.

Treating the 9-10-peptide bond explicitly

To examine whether the reduced space can be improved including more specific input coordinates, the

absolute value of the dihedral angle of the 9-10-peptide bond as well as hydrogen bonds were added into

the reduced space construction (Space 2). As for Space 1, it is possible to extract cis-states using a

core-set discretization. However, now a purity of 100 % is achieved for all 4 investigated systems. All

trans-states show a purity of 100 % as well.

  

Figure 4.4: Dynamics of CsE (a) in chloroform (Space 2); The configuration of the 9-10-peptide bond is

highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.

To evaluate the e↵ect of the 100 % purity of the isolated cis-states, the reproduction of the reference data

by a cs-MSM is examined in the next step. As for Space 1, the dynamics of CsE in chloroform and water

are analyzed first. The 100 % purity leads to a big improvement of the quality of the model. On the one

hand, a better convergence to higher implied timescales in comparison to figure 4.2c+e can be observed
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in both solvents. On the other hand, a better reproduction of the dynamics as described above is obtained.

For CsE in chloroform, the cis-trans-isomerization is on the slowest implied timescale around 2 µs (fig-

ure 4.4a+b) now, which is much higher compared to the cs-MSM in Space 1. Also the PCCA+ clusters

show a 100 % purity (i.e. core sets containing cis-states are neither merged into trans-states nor into other

cis-states showing a di↵erent conformation). At this point, it has to be mentioned that the dynamically

connected cis-conformation (CE1) is an “open” one (present in the red highlighted replicas in figure 4.1a).

The “closed” conformation was isolated by the CNN algorithm as well, but it is not found to be dynami-

cally connected in the cs-MSM, which again matches the MD data. For the trans-states, “open” as well

as “closed” conformations are found with dynamic modes occurring on timescales of hundreds of ns.

  

Figure 4.5: Dynamics of CsE (a) in water (Space 2); The configuration of the 9-10-peptide bond is

highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.

For CsE in water, a comparable behavior of the improved purity as in chloroform is observed (figure 4.5).

The cis-trans-isomerization is not present anymore, matching the observations of figure 4.1c. The “closed”

cis-state was isolated by the CNN algorithm and is, as in chloroform, dynamically not connected to other

core sets of the cs-MSM. In addition, a highly populated, “closed” trans-state is observed showing a

higher purity than observed in Space 1. This shows that including more specific coordinates into the re-
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duced space construction does not only improve the cis-trans-isomerization but also other dynamic modes.

Similar analyses for CsA in chloroform and water were performed (supporting figures: figure 4.12 and

figure 4.13), but will not be discussed in detail, since the same behavior as for CsE in Space 2 is observed.

A direct comparison of CsE and CsA is made in section 4.3.3.3.

For all setups in Space 2 (CsA/CsE in chloroform/water), one dynamically disconnected cis-state is

observed (figure 4.6) using a core-set discretization. The corresponding replicas are highlighted in yellow

in figure 4.1. For 3 out of 4 setups, this conformation is a “closed” one. Hence, a high stability of this

conformation can be assumed. This is in agreement with NMR measurements, where a stable, “closed”

cis-state was characterized for CsA and CsE in chloroform [36, 37], as well as with the behavior directly

observed within the MD data. Only for CsA in water, the “closed” cis-conformation shows a transition

towards the trans-states in the model. Note, for the “closed” cis-state one additional hydrogen bond

between Val-11-NH and DAla-8-CO can be observed for CsE, which is not present in CsA due to the

backbone methylation at Val-11. Based on this dynamical disconnection an insu�cient sampling can be

assumed. Hence, for a statistical treatment the sampling has to be improved.

  

Figure 4.6: Superimposed disconnected cis-states (structure and hydrogen bond population) for CsE

(a) in chloroform and (c) in water and CsA (b) in chloroform and (d) in water; The population with

respect to the CNN clustering is highlighted.

Excluding trajectories containing cis-states

Since a significant statistical analysis of the cis-trans-isomerization is not feasible with the current data,

only the changes in the cs-MSMs exclusively containing trans-states are investigated in the next step.

Therefore, it is tested whether an exclusion of replicas containing cis-states changes the kinetics of the
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trans-states. The results are summarized in figure 4.7 and in the supporting figures 4.14 to 4.16.

For all setups in space 3, comparable kinetics as for space 2 are observed with small di↵erences in the

population and the timescales. Both can be explained due to missing replicas containing cis-states. Only

for CsA in water, a small drop of the slowest implied timescale is observed. However, the underlying

dynamics are not a↵ected. The most constant system is CsE in water as the MD data did not show any

cis-trans-isomerization (figure 4.7). A detailed discussion of this behavior is presented in section 4.3.3.2.

Based on these findings the cis-states were excluded for further analysis (section 4.3.3.3).

  

Figure 4.7: Dynamics of CsE (a) in water (Space 3); The configuration of the 9-10-peptide bond is

highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.

Summarizing section 4.3.3.1, it could be observed that the information of the cis-trans-isomerization of

the 9-10-peptide bond has to be treated explicitly in the construction of the reduced state space. Within

these reduced state spaces, it is possible to obtain a 100 % separation of cis- and trans-states as well as a

di↵erentiation between di↵erent conformations within both classes using a core-set discretization. Due to

this good separation, it could also be observed that neglecting the cis-states for further analysis no or only

small changes for the description of the dynamics of the trans-states occur. In a next step, the impact

and di↵erences between a core-set and a full-partitioning discretization in the Spaces 1–3 are examined.
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4.3.3.2 Comparing Full-partitioning and Core-set Discretization

In the former section, it was shown that using specific input coordinates for the reduced state space con-

struction, it is possible to obtain accurate models matching the behavior observed in the MD data if a

core-set discretization is used. In this section, it is examined whether this outcome is also possible with

a full-partitioning discretization using the k-Means++ algorithm.

The first investigated space is Space 1, using only the backbone dihedral angles � and  . As described

in section 4.3.3.1, cis-states with a purity comparable to the core-set discretization are obtained. The

purity for CsE is 98.1 % in chloroform and 99.7 % in water. For CsA in chloroform, a purity of 67.9 %

and in water a purity of 91.0 % was observed. Although the purity of the cis-states is comparable, the

convergence of the implied timescales is not (figure 4.2d+f for CsE and figure 4.3d+f for CsA). For 3

out of the 4 systems, the implied timescales for the fp-MSM are not converging on a linear scale at all.

For the core-set discretization, this was not the case. The only investigated system for which comparable

results as for a core-set discretization and well converging implied timescales can be observed is CsA in

chloroform. Hence, the cs-MSM outperforms the fp-MSM in Space 1.

For Space 2, cis-states with 100 % purity have been observed for all investigated systems using a core-set

discretization. For the full-partitioning discretization (figures 4.17 and 4.18), this is also achieved for 2 out

of 4 systems: CsE in chloroform and CsA in water. For CsE in water, a cis-state with a purity of 99.9 %

is obtained. For CsA in chloroform, the PCCA+ algorithm lumped cis-states together with trans-states

resulting in a purity of 70.7 % for this metastable state. The remaining metastable trans-states, however,

are pure in the case of CsA in chloroform. The same is true for CsE in water. This is not the case for

the other systems as for CsA in water two metastable trans-states contain cis-states to a small amount.

For CsE in chloroform, a comparable behavior is observed for one metastable trans-state. This analysis

again showed that including the 9-10-peptide bond explicitly into the reduced space construction, more

accurate reduced spaces with respect to the quality of the MSMs are obtained.

However, for all investigated systems, except for CsA in chloroform, the cs-MSM yielded more accurate

models with respect to the reference data than the full-partitioning MSM. As already observed for Space 1,

the implied timescales of the fp-MSM are worse or not converging compared to the cs-MSM. Although the

slowest implied timescales tend to converge to higher values compared to the cs-MSMs, no convergence

of these implied timescales is observed after half of the simulation time of a single replica (50 ns). For the

cs-MSM, this is not the case and all implied timescales converged after a few nanoseconds. The reason

behind this behavior is recrossing and is discussed in detail in section 4.3.4. Although the purity of the
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cis-states is 100 % in most cases, the “closed” and “open” cis-states are not separated well enough in the

full-partitioning discretization, since mixing of cis- and trans-states is observed to a small amount. Hence,

recrossing between conformations, which are dynamically not connected in the MD data, is present. As

shown in section 4.3.3.1, this issue can be solved using the cs-MSM as core sets do not need any definition

of the exact border between two states.

Using the core-set discretization, one dynamically disconnected cis-state in either an “open” or a “closed”

conformation was observed for each system. For the full-partitioning discretization, this is only achieved

for CsA in chloroform. For this system, the same “closed” conformation as for the core-set discretization

is found to be not connected in the fp-MSM, which might explain the similar quality of the fp-MSM and

the cs-MSM for this system. This is possible, because of well separated minima in the reduced state space

of CsA in chloroform for Space 2. To estimate this property, the distance distribution of all data points in

this space can be analyzed. If the minima are well separated, sharp peaks with only a poorly populated

transition region will be present (figure 4.8b). Hence, the accuracy of the fp-MSM strongly depends on

the constitution of the reduced space. If the reduced state space consists of well separated minima, the

fp-MSM yields a comparable reproduction of the reference data as the cs-MSMs with respect to the slow

dynamic modes and dynamical connectivity.

  

Figure 4.8: Distance distribution in the TICA-space (Space 2) for CsE (a) in chloroform and (c) in

water and CsA (b) in chloroform and (d) in water.
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If the cis-states are excluded in the reduced space construction (Space 3), the quality of the fp-MSMs

can be improved. In most cases, except for CsA in chloroform, the slow not-converging implied timescales

vanish (figures 4.14c to 4.16c). This observation strengthens the assumption, that they were caused by

recrossing of the cis-states due to a full-partitioning of the conformational space. However, although

some not-converging implied timescales, caused by the badly connected cis-states, are missing, the overall

convergence of the fp-MSM is worse than for the cs-MSM. This is again caused by recrossing between the

remaining trans-states, which is not present in a core-set discretization.

4.3.3.3 Comparison of Two Di↵erent Models in a Joint State Space

To compare the kinetics of two systems that share either the same molecule or the same solvent, a joint

reduced space (Space 4) can be constructed. The condition for this construction is that both compared

systems can be described by the same set of input coordinates. Since only the solvent or a backbone

methylation is varied in the case of CsA and CsE, it can be used as a strong tool to characterize overlaps

within the conformational spaces of these systems. In section 4.3.3.1, it could be shown that the exclusion

of cis-states does not a↵ect the dynamics between the trans-states. Thus, only trans-states are taken into

account for this analysis.

Performing a clustering on this joint space results in three kinds of clusters: Clusters that are only present

for system A, clusters that are only present for system B and clusters that are shared by both systems.

Since the interest lies in the dynamics and therefore the dominant metastable states, cs-MSMs for both

systems were constructed separately. After lumping the discrete states using PCCA+, the outcome is

analyzed with respect to shared and unique conformations. For the analysis, all possible combinations

are investigated. The implied timescale tests for the cs-MSMs of each system are depicted in figure 4.19

for spaces sharing the same solvent, and figure 4.20 for spaces sharing the same molecule. These implied

timescale tests are comparable with those of Space 3. A detailed discussion can be found in section 4.3.4.

In figure 4.9 the conformations and in figure 4.10 their hydrogen bond pattern are presented. All systems

share one “semi-closed” conformation. This conformation is characterized by a partially closing of the C-

terminal part of the molecule that is indicated by an hydrogen bond between Ala-7-NH and MeLeu-10-CO

(highlighted in blue in figure 4.10). Although this hydrogen bond is not always present, this closing can

be observed analyzing the distance between Ala-7-NH and MeLeu-10-CO in all setups. The conformation

shows a population of 30 to 60 % and is quite di↵use. In addition to this shared conformation between

all four systems, also other shared conformations either present in one solvent or for one molecule can

be observed. One state is only present in 3 of the 4 setups and yields another “congruent” conformation
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for CsA. This state is an “open” conformation showing a relatively large distance between Ala-7-NH and

MeLeu-10-CO.

  

Figure 4.9: Analysis of the joint TICA-spaces; All framed states are shared by at least two systems.

Another “congruent” state is only present in CsA with a population of 20 to 30 %. This state was also

observed as a “congruent” state in an earlier analysis [36]. It denotes a “semi-closed” conformation with

a hydrogen bond between Val-5-NH and MeLeu-10-CO (highlighted in magenta in figure 4.10). Another

shared state could be found for CsE and CsA in chloroform, which is not present in water. This state

is an “open” one showing a strongly populated hydrogen bond between DAla-8-NH and MeLeu-6-CO

(highlighted in red in figure 4.10).

The same hydrogen bond is also strongly present in the unique, “closed” state of CsE in chloroform, but

is not observed for CsE in water. In addition, a strongly populated hydrogen bond is present with Val-11-

NH as a donor, which can not be formed in CsA due to the methylation at this position. In chloroform,

the hydrogen bond is dominantly formed towards MeLeu-9-CO (highlighted in cyan in figure 4.10), and

in water dominantly towards Ala-7-CO (highlighted in orange in figure 4.10). Due to this behavior and

the hydrogen bond between DAla-8-NH and MeLeu-6-CO, which might cause this change in hydrogen
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bonding of Val-11-NH, this “closed” conformation is unique for CsE in chloroform. Nevertheless, a shared,

“closed” conformation for CsE is observed as well. Note, that for both “closed” conformations a hydrogen

bond between Ala-7-NH and Val-11-CO is observed (highlighted in green in figure 4.10), which might be

disfavored in CsA due to steric hindrance.

  

Figure 4.10: Hydrogen bonds of the conformations extracted using a joint discretization; Characteristic

hydrogen bonds are highlighted.

Based on this analysis, two “congruent” states for CsE and three for CsA could be observed in total. At

this point, it has to be remembered that only trans-states were taken into account and that there might
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be “congruent” cis-states as well. Especially, the “closed” cis-state, which was present in the simulation

data of all four systems, might be a “congruent” state as well.

4.3.4 Discussion

4.3.4.1 Results

In the previous section, it was shown that the choice of the input data is of great importance. Leaving

out important reaction coordinates results in a projection error. This error can reduce the quality of the

model, since it can cause a loss of important information like the cis-trans-isomerization. Although it was

possible in State 1 to extract di↵erent cis-states, they were either on a too fast timescale with respect

to the cis-trans-isomerization or merged together using the PCCA+ algorithm. Therefore, they did not

match the reference data described in section 4.3.3.

An explicit treatment of the important reaction coordinate resulted in an increased quality of the model,

with higher valued and faster converging implied timescales. For some systems, a relatively fast statis-

tical instability was observed for timescales in the µs regime. This might be caused on the one hand by

insu�cient sampling (total simulation time 10 - 20 µs) or on the other hand by the short length of the

single replica (100 ns per replica).

For all systems, it could be observed that the cis-states are either not or only poorly connected. Hence, a

quantitative interpretation of the implied timescales is not possible as transitions were not sampled well

enough. Therefore, for further analysis, trajectories containing cis-states were removed. However, it has

to be kept in mind that they are important for the dynamics. To circumvent this problem in future,

enhanced sampling techniques can be used. However, using these techniques, the dynamic information

gets lost. To counteract this, reweighting methods such as introduced in Ref. [84] for MSMs have to be

used, which can be a future extension of this work.

Nonetheless, it was shown that if only the trans-states are analyzed using a joint discretization, a deeper

inside into the dynamics of CsE and CsA can be obtained. In the joint discretization, one “semi-closed”

conformation was observed which is present in all setups and can therefore work as a “congruent” state

for the di↵usion through the membrane. In addition, one has to keep in mind that, although cis-states

were excluded in the joint model construction, the analysis on Space 2 revealed a “closed” cis-state. This

cis-state featured a comparable hydrogen bond pattern in all systems and could therefore work as a “con-

gruent” state as well. For CsE, an additional hydrogen bond between Val-11-NH and DAla-8-CO, which
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is not possible for CsA due to the methylation of the backbone amide at Val-11, was present.

For CsA, two additional “congruent” states were observed. These two states (one of them populated

with more than 20 % in both solvents, also reported in Ref. [36]) might be one reason for the faster

di↵usion of CsA since for CsE only one additional “congruent” state could be observed. Another rea-

son for the enhanced membrane permeability of CsA compared to CsE could be revealed analyzing the

unique conformation of CsE in chloroform. In this simulation, a “closed” trans-state was observed, which

was not shared beyond the solvents. Hydrogen bond network analysis showed that it di↵ers from other

“closed” trans-states by several hydrogen bonds, which can be assumed to be solvent-dependent. Taking

into account the presence of a “closed” cis-state shared between all four systems, the unique, “closed”

trans-state might act as an antagonist. For CsA, comparable “closed” conformations are present as well,

but only to a small amount (0.6 % for CsA in water and 0.3 % in chloroform). They could be isolated

applying a hierarchical cluster approach as introduced in section 4.1, but they were merged to the “con-

gruent” states by PCCA+. Hence, they show a fast change towards other conformations. The reason for

this can again be found in the hydrogen bond network. Besides the additional hydrogen bonds in CsE

that are possible due to the missing backbone methylation and can stabilize the “closed” conformation, a

(nearly) unique hydrogen bond between Val-7-NH and Val-11-CO is observed for CsE, further stabilizing

the “closed” trans-states.

A third reason for the enhanced membrane permeability of CsA compared to CsE can be observed by

analyzing the implied timescales for the formation of the shared “semi-closed” conformation as summarized

in table 4.4 and proposed in Ref. [37]. The shared conformation shows a 2.5-time faster formation for

CsA than for CsE. This observation strengthens the experimental outcome.

Table 4.4: Implied timescales (Space 3) for the formation of the shared “semi-closed” trans-state; For

the implied timescales, all replicas containing cis-states were rejected due to insu�cient sampling.

System Solvent Implied timescale (Shared)

CsE
CHCl3 520 ns

H2O 250 ns

CsA
CHCl3 200 ns

H2O 100 ns

To link the clusters isolated on the basis of a joint discretization (Space 4) to the clusters isolated on a

non-joint space (Space 3), one can compare the frames assigned to each cluster, as exemplarily depicted

in figure 4.11.
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Figure 4.11: Analysis of the cluster decomposition (Space 4): for (a) CsE and (b) CsA in chloroform;

As a reference the clusters of Space 3 are used; each column is normalized to 1. Clusters that are not

present in one system are highlighted by grey columns.

Applying this kind of analysis results not only in the direct translation of the isolated clusters to earlier

isolated structures but also yields three further advantages. First, unique clusters can be observed by one

glance as they are not present in the other model (highlighted in figure 4.11). Second, one can observe

whether some clusters were lost in the new space. This is, for example, the case in figure 4.11b, where

the small clusters 5 and 6 are missing for CsA. Analyzing these clusters, however, showed their minor

importance as they are merged to a much larger cluster using PCCA+ and therefore validate the joint

discretization. Third, it can be checked whether isolated clusters are a mix of two or more reference

clusters. If this is the case, the clustering may not be su�cient enough and has to be repeated or modified

including a hierarchical approach. Alternatively, the PCCA+ assignment of the reference set can be

checked. If, as in the case presented in figure 4.11a, the not separated clusters are merged together in the

PCCA+ analysis of the reference set, the clustering can be seen as su�cient enough.
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4.3.4.2 Comparison to Former Models

As stated in the introduction, the same data as in Ref. [36, 37] were used. Thus, a direct comparison of

the cs-MSMs presented in this section and the MSMs constructed in Ref. [36, 37] is possible. In contrast

to the use of an euclidean distance in a reduced state space, the assignment of discrete states was based

on a clustering on the basis of the backbone root-mean-square derivation (RMSD) in these MSMs.

Based on the hydrogen bond network, an assignment of the metastable states to the reference model

was possible. For CsE [37] in chloroform, a cis-trans-isomerization and an interconversion between the

“closed” and “open” cis-states on timescales of several hundreds ns were reported. In the cs-MSM pre-

sented in this section, the latter transition was not observed at all. For the cis-trans-isomerization, a

timescale in the µs regime was achieved.

For CsE in water, no complete cis-trans-isomerization was observed in the MD-simulation data at all, as

discussed in section 4.3.3. In the MSM reported in Ref. [37], however, this isomerization, which was not

observed in the cs-MSM, is on a timescale of approximately 200 ns. As this transition was characterized

between a “closed” cis-state and a “closed” trans-state, it can be assumed that it is caused by impurity

of the clusters due to the used distance measure. The backbone RMSD might not be well suited to di↵er-

entiate between a “closed” cis-state and a “closed” trans-state, since they consist of a comparable atom

position pattern. The formation of the “closed” trans-state was characterized on a timescale of sereval

hundred ns and is comparable to the timescale that was obtained by the cs-MSM.

A comparable behavior for the cis-trans-isomerization was reported for CsA [36] in chloroform. For the

formation of the “closed” cis-state an interconversion timescale of approximately 100 ns was found. In

the cs-MSM, this interconversion could not be detected. Furthermore, the formation of the “semi-closed”

trans-state (CA1 in figure 4.12) is one order of magnitude smaller than in the cs-MSM. An indicator that

this behavior is caused by the used distance measure can be found, since also in the case of the fp-MSM

a comparable timescale like for the cs-MSM was present.

For CsA in water, the formation of the “closed” cis-state was again reported to be on a relatively fast

timescale (smaller than 100 ns). It is thus one order of magnitude below the value obtained in the cs-

MSM. The formation of the “semi-closed” trans-state was reported in the same range. In the cs-MSM,

this transition could not be detected at all. In the fp-MSM, it was found in the µs-regime. However,

since the implied timescale was not converged, this connection can be interpreted as an artifact of the

full-partitioning discretization.
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For all systems, comparable populations of the metastable states in the fp-MSM and in the MSMs de-

scribed in Ref. [36, 37] were found with only small deviations. Thus, the improvement of the dynamic

behavior is caused by the inclusion of a state space reduction method into the MSM construction. As

already discussed in the former section, a further improvement is obtained when a core-set discretization

instead of a full-partitioning discretization is used.

4.3.4.3 Model Construction

For the clustering, a screen over di↵erent parameter sets was applied to obtain a good cs-MSM. This

screen is relatively robust as small di↵erences in the parameters do not a↵ect the dominant kinetics in

most cases. However, applying such a scheme has three advantages. First, some clusters can get lost if

a too small cuto↵ parameter is applied as shown in section 4.2. Testing di↵erent combinations, however,

can circumvent this error. Second, the clusters of di↵erent parameter sets can be compared. Using this

comparison (analogously to figure 4.11), it is easy to analyze which clusters can be split or which clusters

might get lost using another parameter set. With this information, a hierarchical clustering scheme can be

applied as introduced in section 4.1 to optimize the clustering and isolate clusters of di↵erent data point

density. For the systems analyzed in this section, this was not necessary. Third, an evaluation function

can be used to determine which parameter set is most promising with respect to cluster number, cluster

size, and percentage of data points assigned to noise.

For the construction of a joint discretization, it is harder to find a suitable set of parameters as it has

to match with both systems. However, using a parameter screen, this step can be simplified and it was

possible to identify at least one suitable parameter set for every combination. The implied timescales

of the models constructed in Space 4 (supporting figures 4.19 and 4.20) are comparable to the implied

timescales constructed in Space 3. Nonetheless, it can become harder to stabilize transitions, which are

badly sampled. For CsE in chloroform (same solvent), one conformation with badly sampled transitions

had to be removed manually. However, due to the analysis described in figure 4.11, it was possible to

include this conformation in the analysis, such that no information got lost. The same holds for CsA in

water, where the “congruent” state was dynamically not connected, but could be identified analyzing the

cluster decomposition.

4.3.4.4 Density-based Clustering

The k-Means++ algorithm partitions the data set into NC Voronoi-cells, where each data point is closer

to the centroid of its associated cluster than to the centroid of any other cluster. For this algorithm, the

number of clusters NC has to be defined as an input parameter for the clustering. To obtain a su�cient
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enough clustering, in most cases NC has to be set to values with at least three digits. The biggest problem

with the k-Means algorithm is the non-deterministic behavior as the initial cluster centroids determine

the final outcome. There are several approaches to optimize this algorithm [167, 236, 237]. However, due

to its objective function it fails extracting convex or non-spherical clusters [16].

The CNN algorithm is a deterministic clustering algorithm that can isolate non-spherical clusters, as

shown in Ref. [16] and sections 4.1 and 4.2. It uses a pairwise density estimation to determine whether

two frames belong to the same cluster or not. The pairwise density estimation requires a pairwise distance

calculation which is computationally expensive. However, this calculation has to be only done once. The

clustering step itself can cluster 10,000 data points within seconds. In section 4.1, an approach using these

characteristics was presented. Instead of the full trajectory only a sub part of the sampled conformational

space was clustered, typically in the range of 10,000 to 20,000 frames (extracted equidistantly). This

approach yields two big advantages: On the one hand, hundreds of parameter sets can be evaluated

within minutes. On the other hand, these tests can be run in parallel on multiple CPUs. To assign the

complete trajectory to the clusters, the complete trajectory is mapped onto the extracted clusters applying

the cluster parameters in a second step. The final outcome assigns all data points either to a cluster or

as noise. Hence, they can be treated as core sets. Although the outcome is only an approximation of the

clustering of the complete data set, we could show that the approximation is su�cient enough to build

cs-MSMs on it, which outperform conventional fp-MSMs.

4.3.4.5 Full-partitioning MSMs versus Core-set MSMs

In section 4.3.3.2, it was shown that cs-MSMs based on the CNN algorithm outperformed fp-MSMs based

on the k-Means++ algorithm. If the core sets are defined well, this behavior can be generalized, since cs-

MSMs can minimize the discretization error [238]. The reason for this is that only the metastable states

have to be defined and no knowledge about the energy barrier is needed. In comparison, in fp-MSMs

the position of the energy barriers has to be guessed exactly to minimize this error. The convergence

behavior of the implied timescales can be used as an indicator for this error. The larger the error gets, the

slower the implied timescales converge. This behavior can, for example, be seen by comparing the cs- and

fp-MSMs, as done in section 4.3.3.2. For the fp-MSMs, a worse convergence compared to a cs-MSM or

no convergence at all were observed for the slow implied timescales. The reason for this bad convergence

are badly connected states as for all systems except for CsA in chloroform all 500 states were connected.

Badly assigned borders between the clusters in a full-partitioning discretization generate recrossing and

therefore “pseudo-transitions”. As these “pseudo-transitions” are not sampled in the MD simulation and

are an artifact of the discretization, they can destabilize the MSM as observed in figure 4.4 and 4.5 as

well as figure 4.13. As shown in section 4.3.3.1, this also holds true, if the reduced space is not capable
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to represent the correct dynamics due to projection errors. In Space 1 for example, impure core sets

were obtained for CsE as well as for CsA. These isolated core sets dominantly featured cis-states but also

contained a small number of trans-states. This mixing introduced recrossing, resulting in the count of

“pseudo-transitions” also in the case of the core sets.
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4.3.5 Supporting Figures

  

Figure 4.12: Dynamics of CsA (a) in chloroform (Space 2); The configuration of the 9-10-peptide bond

is highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.
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Figure 4.13: Dynamics of CsA (a) in water (Space 2); The configuration of the 9-10-peptide bond is

highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.
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Figure 4.14: Dynamics of CsE (a) in chloroform (Space 3); The configuration of the 9-10-peptide bond

is highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.
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Figure 4.15: Dynamics of CsA (a) in chloroform (Space 3); The configuration of the 9-10-peptide bond

is highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.

177



4 KINETIC ANALYSIS OF MD SIMULATIONS BASED ON CORE SETS

  

Figure 4.16: Dynamics of CsA (a) in water (Space 3); The configuration of the 9-10-peptide bond is

highlighted; The populations are calculated with respect to the clusters (they do not sum up to 100 %);

(b-c) Implied timescales in dependence of the lag time ⌧ using di↵erent cluster algorithms: (b) CNN and

(c) k-Means++; (d) Hydrogen bond population.

  

Figure 4.17: Dynamics of CsE (a) in chloroform and (b) in water (Space 2) using the k-Means++

algorithm; The configuration of the 9-10-peptide bond is highlighted.
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Figure 4.18: Dynamics of CsA (a) in chloroform and (b) in water (Space 2) using the k-Means++

algorithm; The configuration of the 9-10-peptide bond is highlighted.

  

Figure 4.19: Implied timescales for the joint space (Space 4) for CsE (a) in chloroform and (c) in water

and CsA (b) in chloroform and (d) in water sharing the same solvent.
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Figure 4.20: Implied timescales for the joint space (Space 4) for CsE (a) in chloroform and (c) in water

and CsA (b) in chloroform and (d) in water sharing the same molecule.
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5 Molecular Modeling of the Binding Modes of Ligands towards

Biomolecules

Since for the function of biomolecules further molecules might be necessary, the cooperation between two

or more molecules is of importance. This cooperation can include interactions between two biomolecules

such as protein-protein [239] or protein-DNA [240], or interactions between a biomolecule and one or

multiple ligands. The latter case includes, for example, enzyme-substrate interactions, which are impor-

tant for the enzyme’s catalytic function as well as specificity [31], or the intercalation of planar molecules

into DNA [64]. The prediction of these binding modes and the characterization of important interactions

between these molecules thus form another interesting field of research.

The work presented in section 5.1, is focused on modeling the interactions between an enzyme and small

organic molecules that can function as a substrate for the enzyme. In section 5.2, di↵erent intercalation

modes of DNA intercalators that can inhibit DNA replication are discussed.

5.1 Broad Substrate Tolerance of Tubulin Tyrosine Ligase Enables One-step

Site-Specific Enzymatic Protein Labeling

Enzymes form a large class of proteins, catalyzing chemical reactions in the cell. They are usually highly

specific with respect to the substrates that can bind to their active site. This specificity is caused by

a particular arrangement of the amino acids pointing into the active site. The amino acids can serve

as hydrogen bond donors or acceptors, can contribute charges or ⇡-stacking interactions, or can create

a hydrophobic environment. Due to this high specificity of the active site, the substrate scope of an

enzyme is usually quite narrow. Therefore, using enzymes in chemical catalysis is limited to a small set

of substrates, without an additional protein engineering of the active site [241].

The enzyme tubulin tyrosine ligase (TTL) shows a remarkable substrate scope towards unnatural amino

acids. In cells, TTL ligates a tyrosine-moiety to the C-terminus of a detyrosinated ↵-tubulin using ATP

as a coenzyme [242, 243]. Former studies [31], however, showed that any protein that incorporates a

“Tub-tag”, a specific amino acid sequence, at its C-Terminus, can be used as a target for ligation of

a tyrosine. It was shown that TTL is not only limited to ligate tyrosine since it is also able to add

tyrosine-derivatives carrying functional groups. These functional groups can later be used in bioorthogo-

nal reactions to enable further modifications.
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The presented study focuses on an expansion of this substrate scope by adding molecules that are larger

and sterically more demanding than tyrosine such as a coumarine derivative. The work was a collabora-

tion with the chemical biology group of Prof. Dr. Christian Hackenberger (FMP Berlin, Germany), the

biochemical group of Prof. Dr. Heinrich Leonhardt (LMU Munich, Germany) and the biocatalytical group

of Prof. Dr. Nediljko Budisa (University of Manitoba, Canada). During this work, molecular docking anal-

ysis was utilized to explain the broad substrate scope of TTL. Analyzing the observed docking poses of

the ligand, the important interactions present in the active site such as ⇡-stacking and hydrogen bonding,

were characterized. Combining molecular docking with MD simulations yielded additional information

concerning the stability and the strength of specific interactions.

The presented research was published in: Schumacher, D.; Lemke, O.; Helma, J.; Gerszonowicz, L.;

Waller, V.; Stoschek, T.; Durkin, P. M.; Budisa, N.; Leonhardt, H.; Keller, B. G.; Hackenberger, C. P.

R. “Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein

labeling”, Chem. Sci. 2017, 8, 3471–3478; doi: 10.1039/c7sc00574a.
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5.2 Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Con-

densers and DNA/RNA Synthesis Inhibitors

DNA is the information storage within the cells. Errors in the DNA induced by damage or mutations

can thus have a big impact on the cell’s function. If the damage occurs in replicating cells and is not

repaired correctly or not inhibited by cell death, it can cause diseases like cancer [244, 245]. To inhibit the

replication of these cells, DNA intercalators can be used. DNA intercalators are small planar molecules

that can bind to the DNA by intercalating between two base pairs. The induction of this binding can

inhibit DNA replication [65, 66] or, if the intercalator carries a metal ion, cleave the DNA [67–69]. They

can also be used as DNA condensing agent [246].

The presented work was a collaboration with the bioinorganic group of Prof. Dr. Nora Kulak (FU Berlin,

Germany), the biophysical group of Prof. Dr. Viktor Brabec (Czech Academy of Science, Czech Republic)

and the organometallic group of Prof. Dr. Ingo Ott (TU Braunschweig, Germany). It was focused on the

ability of anthraquinone-based (AQ-based) DNA intercalators for DNA condensation and DNA replication

inhibition. Cu(II)-carrying cyclenes modified with one to three AQ units, were examined with respect to

these properties. Di↵erent binding modes of these molecules were tested to explain the di↵erent activities

in DNA condensation and DNA replication inhibition. The studies were based on the generation of dif-

ferent conformations of the intercalator, which were investigated with respect to their DNA intercalation

ability. We proposed a bis-intercalation binding mode that matches the experimental findings.

The presented research was published in: Hormann, J.; Malina, J.; Lemke, O.; Hülsey, M. J.; Wede-

pohl, S.; Pottho↵, J.; Schmidt, C.; Ott, I.; Keller, B. G.; Brabec, V.; Kulak, N. “Multiply Intercalator-

Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors”, Inorg.

Chem. 2018, 57, 5004–5012; doi: 10.1021/acs.inorgchem.8b00027.
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6 Conclusion and Outlook

In the presented work, di↵erent theoretical methods were applied to obtain information about structural

and/or dynamical properties of biomolecules. The investigated biomolecules ranged from small linear or

cyclic peptides to larger proteins or DNA. In addition protein/DNA-ligand interactions were examined.

The work was split into three main topics:

• In section 3, the dynamical and spectroscopic properties of the water-soluble chlorophyll-binding

protein (WSCP) were discussed with respect to its remarkable stability. Using MD simulations,

an ensemble of di↵erent WSCP conformations was sampled. Including simulations with a varied

number of chlorophylls, it was possible to point out the important interactions that stabilize the

molecule. In addition to this, it was examined how structural modifications by reconnecting cysteine

bridges a↵ect the important interactions, since these cysteine bridges should increase the stability.

As no experimental literature was found that discusses the possibility of disulfide-bridge formation,

theoretical studies were used to investigate how this structural modification a↵ects the molecule’s

properties. Subsequently, experiments are necessary to determine whether the found properties can

be validated.

Applying QM/MM and TD-DFT calculations, the spectral properties of the bound chlorophylls

(Chls) were examined. Within the course of this analysis, it was shown that the setup for the

absorption spectrum calculation is very important, since several factors can influence the position

and strength of the excitation. Calculating the collinearity, it was possible to investigate the coupling

between the di↵erent Chls bound to the WSCP. In this study, it was shown that an optimization at a

QM/MM level can strongly influence the absorption spectrum. Optimizing multiple Chls, however,

can be computationally expensive, but needs to be done in future. In addition, we developed a

mapping scheme comparing di↵erent TD-DFT calculations. For a single Chl, this scheme worked

well. For more Chls, however, problems due to high dimensionality and degeneracy were detected.

Thus, it is of importance to optimize the mapping with respect to these properties in future.

• In section 4, a method to estimate core sets for the construction of core-set Markov state models

(cs-MSM) was discussed, which was an unsolved problem for a long time. It was shown that by

applying density-based clustering a reliable core-set discretization is obtained since metastable states

of the analyzed system can be extracted. Additionally, it was highlighted how cs-MSMs outperform

conventional MSMs owing to the fact that the discretization error can be reduced. Recently, several

studies were published applying density-based clustering for the definition of core sets [43, 137]. Also

related approaches, like dynamical coring, were introduced using density-based clustering [136].

In this study, the Common-Nearest-Neighbor (CNN) algorithm [16, 135, 166] (available at Ref. [217])
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was the most promising algorithm. It is capable of extracting clusters of di↵erent size, shape or

number, and can also handle di↵erent densities by using the introduced hierarchical clustering

scheme. The outcome, however, is strongly biased on the used parameter set. We proposed two

schemes to find a suitable set of parameters. The next step would be the development of an algorithm

that can find an optimal parameter set, since this is strongly data-set dependent. In a further step,

these algorithms could be enhanced to determine multiple parameter sets enabling hierarchical

clustering. Also the introduction of weights for every data point could enhance the algorithm [247].

Recently, the CNN algorithm was used in a pharmacophore-prediction software [248].

Applying the setup for the construction of cs-MSMs combined with a TICA state space reduction,

yielded early converging implied timescales for the cyclosporines A and E. We showed that the

information included in the TICA-space construction bias the analysis as leaving out slow reaction

coordinates such as the cis-trans-isomerization of a peptide bond results in a projection error and

introduces recrossing. However, as the reaction coordinates are not independent of each other

it was still possible to extract conformations mainly in the cis-configuration. Including the cis-

trans-isomerization explicitly in the TICA-space construction improved the results significantly.

In addition, we highlighted a method to compare both molecules directly by using a joint space

describing their properties. During this analysis, it was shown that by using a core-set discretization,

disconnections within the sampled conformational space can be detected if the analyzed data consist

of multiple simulation trajectories. In some cases this may not be possible, if all data points are

assigned to a cluster (full-partitioning). To remove the disconnection either longer simulation times

or enhanced sampling techniques such as metadynamics [81–83], are required. Longer simulation

times might yield a connection of all data. The slow interconversion times, however, may not be

significant, if these interconversions are not sampled several times. Enhanced sampling techniques

bias the kinetics. To remove this bias, reweighting methods such as Girsanov reweighting [84, 85]

have to be applied.

• In section 5, the important energetic and steric properties for the conversion of non-natural amino

acids by the tubulin tyrosine ligase (TTL) were determined. On the basis of this knowledge, it is

possible to predict the binding e�ciency of other potential ligation candidates. The exception of

this are ligands carrying a moiety connected via a long linker. Due to the open binding site, it is

hard to predict how the linker would behave. For smaller molecules, however, the knowledge was

applied to decide whether the synthesis of an interesting ligand is promising or not.

Applying theoretical intercalation studies with respect to DNA, it was possible to predict a bis-

intercalating binding mode, explaining the experimental findings. For this analysis, the structural

and energetic properties of both the DNA and the intercalator, have to be taken into account. As
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this requires complex experiments, a theoretical analysis can be done in a first step. Based on this

analysis, the properties can be discussed and it can be decided whether experiments regarding this

question are worth of being carried out afterwards.
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[138] Kriegel, H.-P.; Kröger, P.; Sander, J.; Zimek, A. “Density-based clustering”. WIREs Data Min.

Knowl. 2011, 1, 231–240.

[139] Karypis, G.; Han, E.-H.; Kumar, V. “Chameleon: A hierarchical clustering algorithm using dynamic

modeling”. IEEE Trans. Comput. 1999, 32, 68–75.
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selbstständig und ohne unerlaubte Hilfe angefertigt und nur die aufgeführten Hilfsmittel und Quellen

verwendet habe.

Zusätzlich versichere ich, dass ich meine Dissertation nicht schon einmal in einem anderen Promotionsver-

fahren eingereicht habe.


	List of Publications
	Contribution to the Publications
	List of Abbreviations
	Abstract
	Zusammenfassung
	Introduction
	Investigated Biomolecules
	Proteins and Peptides
	Deoxyribonucleic Acid

	Computational Simulations
	Molecular Dynamics Simulations
	Quantum Mechanics/Molecular Mechanics

	Analysis of the Computational Simulations
	Markov State Models
	Clustering
	Theoretical Absorption Spectroscopy

	Molecular Docking
	This Thesis

	Methods and Theory
	Simulations
	Molecular Dynamics
	Quantum Mechanics/Molecular Mechanics

	Analysis on MD-Level
	State Space Reduction
	Markov State Models
	Full-partitioning Markov State Models
	Core-set Markov State Models

	Clustering
	Common-Nearest-Neighbor Algorithm
	k-Means++ Algorithm


	Analysis on QM-Level
	Density Functional Theory
	Linear Response Time-dependent Density Functional Theory

	Docking

	Analysis of the Properties of the Water-Soluble Chlorophyll-binding Protein (WSCP)
	On the Stability of the Water-Soluble Chlorophyll-binding Protein (WSCP) Studied by Molecular Dynamics Simulations
	Analyzing the Spectral Properties of WSCP Comparing Different Calculation Setups
	Introduction
	Methods
	Computational Details
	Mapping Procedure

	Results and Discussion
	Comparison of Different Optimization Potentials
	Comparison of Different Modifications
	Comparison of Different Environments
	Comparison of Different Number of Chlorophylls



	Kinetic Analysis of MD Simulations Based on Core Sets
	Density-based Cluster Algorithms for the Identification of Core Sets
	Common-Nearest-Neighbor Clustering – a Benchmark
	Comparison of Kinetic Models of the Cyclosporines A and E
	Introduction
	Methods
	Simulation Details
	Reaction Coordinates and State Space Reduction
	Core-set Markov State Models
	Full-partitioning Markov State Models

	Results
	Choice of Input Coordinates Using a Core-set Discretization
	Comparing Full-partitioning and Core-set Discretization
	Comparison of Two Different Models in a Joint State Space

	Discussion
	Results
	Comparison to Former Models
	Model Construction
	Density-based Clustering
	Full-partitioning MSMs versus Core-set MSMs

	Supporting Figures


	Molecular Modeling of the Binding Modes of Ligands towards Biomolecules
	Broad Substrate Tolerance of Tubulin Tyrosine Ligase Enables One-step Site-Specific Enzymatic Protein Labeling
	Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors

	Conclusion and Outlook
	References

