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Chapter 1

Introduction

In many areas one is interested in understanding the statistical behaviour of random dy-
namical systems. Often this amounts to understanding the transition events from a pre-
defined set A which is called the reactant set to a predefined set B called the product set.
In particular one is interested in statistics of those parts of trajectories of the process that
exit set A and enter set B before returning to A, the so-called reactive trajectories. Figure
1.1 shows some examples of reactive trajectories.

By ‘statistics of reactive trajectories’ we mean calculating the net amount of reactive
trajectories going through a given state, i.e. the so-called probability current of reactive
trajectories, the frequency of transition between sets A and B, i.e. the so-called reaction
rate and describing the mechanism of transition, i.e. the most probable transition tubes
or transition streamlines. This problem of understanding statistics of reactive trajectories
becomes more difficult in the scenario when the process is metastable, meaning that it
spends long time intervals trapped in sets A and B and rarely transits between them.

For example, in chemistry one is often interested in transitions between stable con-
formations of molecules that occur as a result of collisions with atoms in the molecule’s
environment. These transition events are rare and happen at the timescale that is several
orders of magnitude smaller than the timescale at which the random collisions with atoms
happen. Therefore using simple Monte Carlo sampling of trajectories to obtain statistics
requires significant computation time and is often impractical.

Transition path theory provides the means to describe the statistics of reactive traject-
ories using deterministic objects. These objects are the committor function, the probability
current of reactive trajectories and the streamlines of the probability current. The commit-
tor function is one of the main objects of transition path theory. To every point or state
in the state space of the random dynamical system, it assigns the probability of reaching
the set B before reaching the set A, conditioned on starting from the given state. Using
the committor function and an invariant probability density of the dynamical process one
is then able to describe the statistics of reactive trajectories. In particular, one can obtain
the probability density of observing a reactive trajectory at any state, i.e. the probability
density of reactive trajectories. Furthermore, using the committor function and the invari-
ant probability density one can obtain the probability current of reactive trajectories, the
reaction rate and the streamlines.

Transition path theory for diffusion processes has been introduced in [14]. The com-
mittor function corresponding to a diffusion process is obtained by solving a boundary
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Figure 1.1: Reactive trajectories are depicted in red.

value problem for the backward Kolmogorov equation, which is a linear second order par-
tial differential equation that involves an operator called the infinitesimal generator of the
diffusion. Analytic solutions to such boundary value problems are in general not available.

Several techniques have been employed to discretise the continuous infinitesimal gen-
erator and numerically compute committor functions. These include a method based on
finite differences [35] and on finite volumes [26] using uniform meshes. Finite element
methods for non-uniform meshes of the continuous infinitesimal generator in 2 and 3 di-
mensions was suggested as being less prone to the curse of dimensionality compared to
the standard finite differences approach [25]. Realisable discretisation schemes have been
analysed in [3], for which the discretised infinitesimal operator yields the generator of a
Markov jump process which can be simulated using Monte Carlo methods. Recently a dis-
cretisation scheme on a cloud of data points has been suggested for numerically calculating
the committor function [24]. In addition, artificial neural networks have been employed in
a discretisation scheme [22,28].

In practice, the infinitesimal generator is often not available, whereas the diffusion pro-
cess can be observed. Therefore one is interested in estimating the infinitesimal generator
from observations. It was only after transition path theory was developed for Markov jump
processes and Markov chains [32] that the framework of transition path theory became
widely applicable. Continuous objects of transition path theory for diffusion processes are
replaced with the discrete transition path theory objects corresponding to Markov jump
processes on discrete (and often finite) state spaces. Therefore instead of analysing the
transitions of a diffusion process between two subsets of the continuous state space, one
approximates the diffusion process by a Markov jump process and analyses transitions
between two disjoint subsets of nodes in the corresponding graph. In this way the problem
of solving the partial differential equation is replaced by the problem of solving a system
of linear equations. In connection to this approach, the following questions arise.

1. How should the state space be discretised?

2. How should the generator of the approximating Markov jump process or the transition
probability matrix of the approximating Markov chain be estimated?



Discretisation approaches

The most popular discretisation schemes involve discretisation of both the state space
and time, yielding a Markov chain called the Markov state model [5,47,48]. Standard
Markov state models involve full partitions of the state space, and Galerkin approximation
by characteristic functions of the partition sets. Voronoi tessellations have been used to
partition the state space for Markov state models [29,42]. In addition to discretisation of
the state space, Markov state models involve a time discretisation which is achieved by
choosing a lag time parameter. This parameter describes the time interval, or resolution,
at which the process is observed.

When approximating the continuous process with the discrete Markov chain, we are also
interested in the approximation errors that we make and whether such an approximation
reproduces the long timescale behaviour of the original process. The long time behaviour
of the Markov state models is analysed in [11], while a bound on the approximation error
of the Markov state model has been provided in [44]. The error bound in [44] reveals a
relationship between the accuracy of the approximation, the choice of the partition, and
the lag time for which the transition probability matrix of Markov chain is computed.
Specifically, increasing the number of sets in the partition decreases the approximation
error of the Markov state model. However, it is not always practical to increase the
number of sets in the partition. Therefore, adaptive discretisation techniques of the state
space have been suggested in order to improve the approximation error of the model [42].

Spatial discretisation brings with it a problem of the effect of memory. Namely, a
Markov chain is a memoryless process, meaning that the future of the process depends
only on the present state, and is independent of the past. The process obtained by space
and time discretisation is however not Markovian; see [43, Section 2.1] or [42].

The effect of memory can be counterbalanced by the choice of lag time parameter. The
lag time needs to be adapted to the analysed process. However, there is no recipe that
works for all cases. In general, increasing the lag time can improve the accuracy [42], while
experimental results show that increasing the lag time and therefore reducing the time
resolution of the model can increase the approximation error [47], and cause a systematic
bias in calculating the transition path theory objects [51]. It is known that Markov state
models in general can not reproduce the long time behaviour of the original process [39].
Some approaches therefore abandon altogether the assumption of Markovianity of the
discretised process and include the history information [50,51].

A hidden Markov model has been suggested for approximation of the non-Markovian
process obtained by state space discretisation [39]. This approximation is shown to be
accurate under certain assumptions on the eigenfunctions of the propagator, that is, the
continuous analogue of the transition probability matrix of the dynamical system. However,
these assumptions are often impossible to verify in practice because the eigenfunctions of
the propagator are not known a priori. In [59], the assumptions on the eigenfunctions
were weakened, and an approximation using a generalisation of hidden Markov models,
the so-called ‘observable operator models’, was proposed.

An alternative approach is the use of milestoning [47,48]. In the milestoning approach
developed in [16], disjoint subsets or ‘milestones’ of the state space are preselected such that
their union is a proper subset of the original state space. For example, one could choose
the milestones to be hypersurfaces in state space. Afterwards the jump statistics between
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the milestones are observed, usually by reinitialising the trajectories of the process from
milestones. In principle, reinitialising is done according to the probability density of the
position at which a long ergodic trajectory first hits the milestone. Milestoning renders
a reduced representation of the original process while avoiding the need for decreasing
the time resolution of the approximation. In addition, it avoids the problem of high
computational cost due to partitions that consist of a large number of sets.

Unlike the Markov state model with full partitioning of state space, the milestoning
approach is known to be robust to the effect of memory. Indeed, it has been shown
in [55] that there exist milestones such that the transitions between them are statistically
independent. Such milestones are isocommittor surfaces. Recently, isocommittor surfaces
corresponding to the backward committor function have been proven to capture some
kinetic features of the original system [30]. In particular, this choice of milestones enables
exact calculation of the reaction rates of the process.

FEdges of the sets in a Voronoi tessellation, i.e. of the Voronoi cells are suggested
as milestones in the approach called Markovian milestoning [54]. The improvement in
Markovian milestoning compared to the general milestoning procedure lies in the fact
that the trajectories do not need to be reinitialised from milestones. Thus, one does not
need to approximate the probability distribution for reinitialisation of trajectories. This is
convenient as the probability distribution for reinitialisation of trajectories is not known
in general [55].

Generator and transition probability matrix estimation

If the infinitesimal generator of the underlying process is unknown, the infinitesimal gener-
ator of the approximating Markov jump process has to be estimated from the observation
data. Numerous approaches are developed for estimating the infinitesimal generator of a
Markov jump process [33,34].

Molecules in thermal equilibrium have reversible dynamics. Therefore it is desirable
that the transition probability matrix obtained from observations satisfies the discrete
detailed balance condition. A definition of reversibility and of detailed balance condition for
diffusion processes is given in Section 2.5. For the detailed balance condition of a continuous
time jump process on the discrete state space see [32]. Reversible maximum likelihood
estimators of the transition probability matrix have been developed in [4,38,42, 53] while
a Bayesian estimator is given in [52]. An approach using a Gibbs sampler is presented
in [37].

Once the generator or the transition probability matrix has been approximated, the
discrete committor function corresponding to the Markov jump process or Markov chain
needs to be computed. Prinz et al. performed a numerical approximation and sensitiv-
ity analysis of the committor function [41]. Specifically, they quantified how sensitive the
discrete committor function is to changes in the transition probability matrix and quan-
tified its statistical uncertainty when the transition matrix is not exactly known. In [57]
a graph transformation method has been suggested to calculate the discrete committor
function. This method is based on the assumption that the dynamics can be modeled as
a Markov chain and involves removing states from a Markov chain, one at a time followed
by renormalising the transition probabilities.



Sampling of reactive trajectories

Sampling of the reactive trajectories by Monte Carlo method is often too time consuming
due to the large range of timescales in the dynamics. Transition path theory therefore
avoids sampling of reactive trajectories by solving partial differential equations. This is
difficult in dimensions greater than three. Importance sampling technique on the path
space using optimal control have been used to estimate committor values and avoid the
sampling of reactive trajectories of the original process. The idea behind this approach is
to change the measure which is sampled into a measure which is easier to sample. This is
achieved by reweighting of the potential function such that the transitions occur more often.
For a summary of the importance sampling techniques in molecular dynamics see [27].

Recently, theoretical approaches for generating reactive trajectories have been de-
veloped. Cameron et al. [7] propose a method that generates the reactive trajectories
directly and a method that generates no-detour trajectories, i.e. trajectories that take
productive steps towards the product state which can be understood as discrete versions
of streamlines. In particular, they show how to obtain Markov jump processes from the
original Markov jump process that generate the reactive or no-detour trajectories. The
statistical analysis of these trajectories can be used to analyze the flows in networks. Their
approach can be seen as an extension of transition path theory for Markov jump processes.

Similarly, transition path theory for diffusion processes has been extended by providing
ways to generate reactive trajectories of the diffusion process [31]. The results in [31]
use knowledge of the committor function to directly sample reactive trajectories without
needing to sample long trajectories of the original process. Even though the true continuous
committor function is not available in practice, these theoretical results may be useful in
the design of numerical algorithms for sampling trajectories.

As in the approach of Cameron et al. [7] mentioned above, a Markov process that gen-
erates reactive trajectories is described in [56]. However, in [56] the ergodicity assumption
of the analysed process is removed. The ergodicity assumption is one of the main assump-
tions of the transition path theory and it guarantees that the dynamical statistics of the
process can be obtained by analysing only one inifinitely long trajectory of the process.
Furthermore, in [56] it is shown how to generate nonreactive trajectories, i.e. trajectory
segments that leave A and return to A before reaching B. They also study the ensemble of
first passage paths, where a first passage path is a trajectory segment that starts outside
B and ends at a point in B, thus containing both reactive and nonreactive parts. In the
particular case when the jump processes is an ergodic Markov jump process, the analysis
in [56] explains the relations between the study of the first passage paths and the study of
the transition paths in transition path theory. Therefore, [56] can be seen as an extension
of the discrete transition path theory framework of Metzner et al. [32] to non-ergodic sys-
tems. Algorithms for numerical computation of statistics of the first passage path ensemble
are also provided.

Our approach

In this thesis, we extend the transition path theory to discrete-state space non-Markovian
processes. More precisely, we develop the theory for analysing the statistics of reactive tra-
jectories, for a process that is obtained from a continuous Markov process by discretising
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the state space. We justify the introduced approach by proving convergence results and
error bounds that show that the results of our approach approximate the results of trans-
ition path theory for diffusion processes. Our error bounds and convergence results hold in
the case when the continuous Markov process is an ergodic diffusion process, whereas the
definitions of the discrete transition path theory objects that we introduce are independent
of the diffusion coefficients and can be applied to a wider spectrum of processes. To the
best of our knowledge, our definitions, error bounds and convergence results are new.

The presented approach avoids solving the partial differential equation; this is also
done in the transition path theory for Markov jump processes. However, by removing the
assumption of Markovianity, our approach avoids estimating the generator matrix. This
makes it more general than transition path theory for Markov jump processes.

In Chapter 2 of the thesis we provide an introduction to the theory of stochastic pro-
cesses. In particular, we focus on diffusion processes, and provide the theory necessary
for understanding the transition path theory for diffusion processes which is summar-
ised in Chapter 3. In Chapter 4 we introduce our approach, define the discrete committor
function, isocommittor surfaces, probability current of reactive trajectories and streamlines.
Furthermore, we prove the error bounds that measure the discrepancy between the discrete
objects we introduced and the corresponding continuous objects of transition path theory
for diffusion processes. All of the provided error bounds scale linearly with the diameter
of the largest cell in the partition. This provides the convergence in the limit of infinitely
fine partition of the discrete objects we define to the continuous analogues in transition
path theory for diffusion processes. Finally, in Chapter 5 we provide numerical results and
use these to compare our approach to the approach of transition path theory for Markov
chains, as well as to the finite differences approximation of objects from transition path
theory for diffusion processes.



Notation

In this section we summarise some standard notation used throughout this thesis. The
set of real numbers we denote by R and by R we denote a two point compactification of
real numbers, i.e. R = RU {—o00,00}. We use R> to denote the set of nonnegative real
numbers.

Let (2, A, 1) denote a measure space. LP(Q, A, u;R), for 0 < p < oo is a space of
A-measurable functions from  to R for which the p-th power of the absolute value is

u-integrable on 2, i.e.
1
p
191, i= ([ 157 an)" < oc.

We will shorten the notation and denote LP(Q2, A, u; R) by LP(£2, p) or LP(u) when there
is no risk of confusion. L*>(Q, A, u; R) is a space of functions from €2 to R for which there
exists C' > 0 such that |f(x)| < C for for u-almost all x € Q, and

|| fllo :==Inf{C >0 : |f(z)] < C, for almost every z € Q}.

1
The vector L” norm we denote by ||, i.e. for z € R9, where d € N, |z, = ( 4. ]:xi\p) P

We will use the standard notation for continuous functions, denoting by f € C*(U;V)
when f: U — V is k times continuously differentiable, i.e. when f has all the derivatives
up to order k. If U = Uy x Uy we denote f € CFH(Uy x Up; V) if function f is C* with
respect to the first and C* with respect to the second component. By Co(U; V) we denote
the set of continuous functions f : U — V with compact support. Similarly C’(I}’ (U;V)
denotes the set of f € C*(U;V) functions with compact support. Sometimes, when there
is no risk of confusion, we will omit the codomain V from the notation.

Let X be a random variable. We denote the probability distribution of random variable
X by Po X~ 1. By 0(X) we denote the o-algebra generated by X. The Borel o-algebra on
set S is denoted by B(S). In the special case of real numbers we denote B := B(R) and
B := B(RY).

By §(-) we denote the Dirac delta measure at the origin, i.e. for every f € C5°(RY) and
any = € R? we have

flx)= | fly)(x—y).
]Rd

The characteristic function of the set A we denote by 14, i.e.

1, if zx€A
1A(x)_{0, if =¢ A.






Chapter 2

Stochastic processes

In this chapter we present some prerequisites from probability theory, stochastic processes
and diffusion processes which are necessary for understanding transition path theory, which
will be presented in Chapter 3.

2.1 Probability theory background

Let (£21,.41) and (€9, A2) be measurable spaces. A random variable on (£1,.4;) that takes
values in ({22,.42) is a measurable function X : Q1 — g, i.e. X : Q) — Oy is a random
variable if preimages of measurable sets in {29 are measurable in ;:

V Ag € Ao, Xﬁl(AQ):{WGQl :X(w)EAQ}E.Al.

The triple (21, A1, P) where P is a probability measure, i.e. a measure for which P(£;) =1,
is called a probability space.

The integral of the random variable X with respect to the probability measure P is
called the expectation and it is denoted by

EX]= [ X(w)P(dw).
951
Let B € A; such that P(B) > 0. The conditional probability of an event A € Ayj,
conditioned on the event B € A; is defined as

Mmmzmﬁgﬂ

It can be shown that if P(B) > 0, P( - |B) is a probability measure on (£,.4;) [23,
Theorem 8.4].

In order to introduce conditional probabilities that allow conditioning on events of
measure zero, we need to introduce a more general concept of conditional expectation. The
conditional expectation of X given a o-algebra F C A; denoted by E [X|F], is a random
variable Y such that Y is F-measurable and for any A € F we have E[14X]| =E[14Y] i.e.

Axww@@zéy@w@q
9
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For B € Aj, the conditional probability of B given the o-algebra F is given by P(B|F) :=
E[1p|F].
Let X and Y be arbitrary random variables defined on the same probability space and
X € LY(P). Then we define
E[X|Y] =E[X]|o(Y)].

Let X,Y be random variables on a probability space (1,.41,P) such that X, Y, XY €
LY(P), and F' C F be sub-o-algebras of A;. Recall the following properties of the condi-
tional expectation:

1. If Y is F-measurable then
E[XY|F] = YE[X|F]. (2.1)

E[E[X|F]|F| = E[E[X|F|F] =E[X|F]. (Tower law) (2.2)
3. If 0(X) and F are independent then

E[X|F] = E[X]. (2.3)

Now let us turn to the question of defining the conditional probability, where the set
we are conditioning on has a P-measure zero. We define it using the factorisation lemma;
see [23, Corollary 1.97].

Lemma 2.1.1 (factorisation lemma). Let (€2,.A2) be a measurable space and let 1 be a
nonempty set. Let f : Q1 — Qo be a map. A map g: Q1 — R is o(f) — B(R) -measurable

if and only if there is an Ay — B(R)-measurable map ¢ : Qo — R such that g = p o f.

Let X, Z be random variables such that X takes values in a measurable space (E, &)
and let Z be real valued and o(X) — B(R)-measurable. For f = X and g = Z, according
to Lemma 2.1.1, there exists a & — B(R) measurable map ¢ such that p(X) = Z.

Let now X : (Q1,A41) — (E,&) and Y be such that Y € L'(P) and Z = E[Y|X]. By
definition, Z is o(X) — B(R)-measurable. For this special choice of random variables X
and Z we know there exists a measurable function ¢, such that ¢(X) = Z, and therefore
we define the conditional expectation of Y given X = = by E[Y|X = z] := ¢(x) and the
conditional probability by P(A|X = z) := E[14]|X = z] for A € A.

In general, the function P(-|X = x) is not a probability measure, because there may
exist x for which P(-|X = x) is not defined. That implies that for any A € A there might
exist a null set N4 C F such that for all z € Ny, P(A|X = z) is not defined. Since in
general, there are uncountably many A € A, we cannot claim that Jgc 4 Vs is a null set.
If, however, the o-algebra A can be represented by countably many sets A, there exists
a function called the regular conditional distribution that gives a probability measure for
almost all w € Q. This is derived in the remainder of this section. We first define a

transition kernel [23, Definition 8.25].

Definition 2.1.2 (Transition kernel, Markov kernel). Let (21,.41), (Q2,.42), be measur-
able spaces. A map k : 1 X As — [0, 00] is called a o—finite transition kernel from 4 to
Qg if:
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(i) (-, A2) is Aj-measurable for any Ay € Ay

(ii) k(wi,-) is a o—finite measure on ({2, As) for any wy € Q.

If in (ii) the measure is a probability measure for all w; € 4, then k is called a
stochastic kernel or a Markov kernel.

Using transition kernels we define the regular conditional distribution [23, Definition
8.28].

Definition 2.1.3. Let (©1,.4;,P) be a probability space, (E, ) be a measurable space,
Y : Q1 — F be a random variable, and F be a sub-o-algebra of A;. A stochastic kernel
ky,r from (1, F) to (E,€) is called a regular conditional distribution of Y given F if

ky,F(w,C) =P (Y € C|F) (w)

for P—almost all w € €7 and for all C € £. If F is generated by a random variable X on
(Q1,A1,P) that takes values in some measurable space (E’,£’), i.e. F = o(X) then the
stochastic kernel for all w € X~1({x}) satisfies

kyx(2,C) =P (Y € C|X =) = ky,(x)(w, O) (2.4)

is called a regular conditional distribution of Y given X. For x ¢ X (1), sy x(z,C) is the
function from the factorisation lemma with an arbitrary value.

It can be shown [23, Theorem 8.37] that for a random variable Y on (4,41, P) that
takes values in a Borel space (E, &) and for F C A, there exists a regular conditional
distribution ky 7 of Y given F. We list one more result [23, Theorem 8.38] that we use
later in Section 4.

Theorem 2.1.4. Let Y be a random variable on (£21,.A1,P) with values in a Borel space
(E,E). Let F C Ay be a o-algebra and let ky r be a regular conditional distribution of Y
given F. Further, let f : E — R be measurable and E[|f(Y)|] < co. Then

E(YIFI@) = [ Fw)rvrte,dy)

for P-almost all w.

2.2 Markov processes

Let [to,T] C [0,00). A family of Q-valued random variables {X;},cp, 7 defined on a
probability space (21,.41,P) is called a stochastic process or random process, and the set
s is called the state space. In the following, we will consider R valued stochastic processes,
or more precisely we will have (€2, A2) = (R, BY) where B¢ is the Borel g-algebra on R

From the definition of a stochastic process it holds that for a fixed value t € [to, T,
X;(+) is an R valued random variable on (1, Ay, P), while for a fixed w € Q;, X.(w) is an
R valued function defined on [tg, T]. The function X.(w) : [tg, T] — R, for a fixed w €
is called a sample path (or sample trajectory or realisation) of the stochastic process.
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A stochastic process defined on a probability space (€21,.41,P) with index set [tg,T] C
[0, 00) satisfies the Markov property if for all tg < s <t < T and all B € B? the following
holds with probability 1:

P(X: € Blo([to, s])) = P(X: € B|X;)

where o ([to, s]) = o(Xt, to <t < s)isthe o-algebra generated by the collection { X; },<t<s-
The Markov property can be interpreted in the following way: When the present is known,
information about the past of the Markov process does not bring any additional information
about the probable development of the process in the future, i.e. given the present, the
future of the Markov process is independent of its past.

Since (R?, B%) is a Borel space, as mentioned in the previous section, Theorem 8.37 in
[23] guarantees the existence of a regular conditional probability of X}, given X,. Therefore
we define

P(s,z,t,B) :=P(X; € B| X5 = x).

The function P(s,z,t,B) where tg < s <t < T , x € RY B € B¢ has the following
properties:

1. For arbitrary tg < s <t < T and = € R?, P(s,z,t,-) is a probability measure on B%.
2. For arbitrary tg < s <t < T and B € B%, P(s,-,t,B) : R? — [0, 1] is B%measurable.

3. The Chapman-Kolmogorov equation holds, i.e. for any = € R¢,
P(s,z,t,B) = /Rd P(u,y,t, B)P(s,x,u,dy),
where u € (s,t) is arbitrary.
If in addition to conditions (1-3), for arbitrary s € [ty, T] and B € B?, it holds that
P(s,z,s,B) =1p(x), (2.5)

then the function P(t,x,s, B) is called the transition probability of Markov process.
A Markov process is called time homogeneous if the condition

P(s,z,t,B) = P(s+ h,z,t + h, B)

holds for all tg —h < s <t < T —hand all h € [0, — to]. Therefore, the transition
probability for a time homogeneous Markov process depends only on the difference h := t—s
and can be written as

P(s,z,t,B) = P(h,z,B), for 0<h<T —t.

We can then rewrite the Chapman-Kolmogorov equation for time homogeneous Markov
process as

Pl +ha,a,B) = [ Plhoy. B)P(h,.dy).

Every Markov process {X;}c[s,, 71 can be transformed into a time homogeneous Markov
process {Y; beefo, 7] = 1(t, Xt) beeto,7), Dy considering time as a state component [1, Remark
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(2.2.9)]. The state space of {Y;}yc[s,,1) 18 therefore [to, T] x R and the transition probab-
ilities of {Y;}iepy 1), Py (t,y, B) where B = C x D, and C € B([to,T]), D € B* are given
by

Py (t,y,C x D) = Py(t,(s,z),C x D) = P(s,z,s+t,D)1c(s+1t).

At every time t € [tg,T] the state of a Markov process is a random variable having
some distribution. We assume that the distribution of X, is absolutely continuous with
respect to Lebesgue measure. The probability density p;, of X, is a nonnegative function
such that for all B € B¢

P(X,, € B) = /B pey ()da.

The function py, is called the initial probability density of the process {Xi}icp, 7). Let
{Xt}te[to,T] be a time homogeneous Markov process with initial density p;,. The probability
of the Markov process {Xt}te[to,T] to visit some set B € B? at time ¢ is then given by

P(X; € B) = /]R P(t,z, B)pyy(x)da.

A probability measure p on the state space R is called an invariant probability measure
if the probability measure does not change under the stochastic dynamics of the Markov
process, i.e. if for every B € B% it holds that

o P(t,z, B)u(dz) = u(B). (2.6)

Let an invariant probability measure be absolutely continuous with respect to Lebesgue
measure. Then the Radon-Nikodym derivative p(x) that satisfies

plw)dz = u(da)

is called the invariant or equilibrium probability density.

2.2.1 Infinitesimal operator

Let {X¢}iep,7) denote a time homogeneous Markov process with transition probability
P(h,z,B). Let B(R?) := B(R% R) be the space of bounded, measurable, R-valued func-
tions on R%. Equip B(RY) with the L> norm. On B(R?), we define the operator T,
as

Thg(@) = Exlg(Xn)) = [ 9(u)P(hz,dy). (2.7

for h € [0,T — to], where E;[g(X})] denotes the expectation of g(X}) conditioned on
X4, = x. According to (2.5) it holds that P(0,x,-) = 1.(x). By substituting this into (2.7)
we obtain Tpg(z) = g(x). Therefore Tj is the identity mapping.

For g(x) = 1p(x) we have

Tylp(x) = P(h,z, B).

Therefore, transition operators T}, can be used to derive the transition probability. Moreover,
there exists a single operator that can represent the dynamics of Markov process.
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The infinitesimal operator or gemerator A of a time homogeneous Markov process
{Xit}efto,m) is defined by

Ag(z) = lim M, g € B(RY). (2.8)
h—0 h
The value of Ag(z) can be interpreted as the mean infinitesimal rate of change of g(Xy,),
given that X;, = . We will denote the set of functions g : R? — R for which this limit
exists for all z € R% by D 4.

As every Markov process {Xi}c,,m can be transformed into a time homogeneous
Markov process {Y; }ero 1) = {(t, X¢) }repso 1] taking values in [to, T] x R? C R, we can
define the transition operators {7}, }pe[s,,r and the infinitesimal operator A of the process
{Yi}iejto, 1) to be the same as those of { X;}e(y, 7. Namely, for h € [0,T — s, on the space
of bounded measurable functions in [tg, 7] x R? we define

Thg(s,2) = Bu (s +h Kol = [ ols+ ho)P(s,a.s +hdy),

and

. Thg(s,x) —g(s,x
Ag(s.2) = lim h9( >h 9(s,2)

2.3 Diffusion processes

Diffusion processes are Markov processes that have continuous sample paths. In literature,
there exist two approaches to studying them. The first approach involves posing constraints
on transition probabilities, while the second studies the change of process {X; }4¢s, 7 With
respect to time, which leads to a stochastic differential equation.

We provide a definition of a diffusion process [1, Definition 2.5.1] based on the first
approach.

Definition 2.3.1 (Diffusion process). A Markov process {X}c(s,,m With almost cer-
tainly continuous sample functions is called a diffusion process if its transition probabilities
P(s,z,t, B), satisfy properties (2.9), (2.10), and (2.11) for every s € [tg,T), = € R%, and
e >0

. 1
lim
t—=st— s

[ Pty =0 (2.9)
B(z,e)C

there exists a function b(s, z) : [to, T] x R — R? such that

lim
t—st— s

/ (y — @) P(s, 2,1, dy) = b(s, ), (2.10)
B(z,e)

there exists a function A(s, ) : [tg, T] x R? — R%*? such that

lim
t>st— s

/ (y —z)(y — a:)TP(s, x,t,dy) = A(s, z). (2.11)
B(z,)
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The functions b and A are referred to as the coefficients of the diffusion process. The
function b is called the drift vector of the diffusion process and A is the diffusion matriz.
The diffusion matrix is positive semidefinite and symmetric.

The condition (2.9) of Definition 2.3.1 implies that the probability of big changes in the
value of X; during the infinitesimally short time interval [s,¢] is vanishingly small. From
condition (2.10) b(s, ) can be interpreted as the mean velocity vector of {X;}ye(y, ) under
the assumption that X; = = and from Condition (2.11) A(s,z) can be interpreted as a
measure of average fluctuations of Xy — X, around the mean, if X, = x.

2.3.1 Stochastic differential

Differential equations of the form
Xt = b(t,Xt) =+ O'(t,Xt)gt, t c [tQ,T], Xto = C

where & is m-dimensional white noise, X; and b are R%valued functions, ¢ is an R¢¥™-
valued function, and c is some random variable, often occur in the analysis of stochastic
dynamic systems.

The above differential equation can also be written in integral form

t t
Xe=c+ | b(s,Xs)ds+ [ o(s,Xs)dWs, t€ [to,T], (2.12)
to to

where W; stands for the m-dimensional Wiener process. The first integral on the right-
hand side of (2.12) is a Riemann integral, while the second one is an It6 stochastic integral.
For the definition of It6 stochastic integral see [1, Section 4.4] or [23, Section 25].

We can therefore rewrite (2.12) as

dX; = b(t, Xt)dt + O'(t, Xt)th, t e [to, T], Xto =c (213)

and say that the stochastic process {X;}ycs, 7] has the stochastic differential b(t, Xy)dt +
o(t, X;)dW;. Let now b and o be defined and measurable on [ty, T] x R?. Equation (2.13)
is called a stochastic differential equation and the random variable ¢ is called the initial
value of {Xi}ier,r)- Next we give a formulation [1, Theorem 5.3.8] of 1t6’s formula for
computing how smooth functions act on stochastic differentials.

Theorem 2.3.2 (It6’s formula). Let the stochastic process {Xi}ie, 1) be defined by the
stochastic differential equation

dXt = b(t, Xt)dt + O'(t, Xt)th,

and let u € CY*([ty,T] x REGRF).  Then the k-dimensional process {Yi}iep, 1) where
Y: = u(t,Xy) with initial value Y, = u(to, Xy,) also possesses a stochastic differential
with respect to the same Wiener process Wy and

d
dY; = (Ut(t,Xt) + ug(t, Xe)b(t) + % Z Uz, (t, X¢)(o(t, Xe)o(t, Xt)/)ij> dt
ij=1

+ um(ta Xt)a(ta Xt)th

It6’s formula is a stochastic analogue of the chain rule.
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2.3.2 Existence and uniqueness theorem

We give sufficient conditions for existence and uniqueness of a solution to the stochastic
differential equation [1, Theorem 6.2.2].

Theorem 2.3.3 (Existence and uniqueness). Suppose that the stochastic differential equa-
tion (2.13) holds, with ¢ being independent of Wy — Wy, for t € [to,T| and that b and o
are measurable functions on [tg, T] x R, Suppose the following two properties hold:

1. There exists a constant K > 0 such that for all t € [ty,T], and all z,y € R?

|b(t,x) —b(t,y)| + |o(t,x) —o(t,y)| < K|z —y|. (Lipschitz continuity)

2. For allt € [to,T] and all v € R?

b(t, )| + |o(t,z)|> < K2(1 + |z|?), (Linear growth)

where |o|? = Zazj. Then the equation (2.13) has a unique solution { Xt} and this
solution is almost surely continuous.

The following theorem [1, Theorem 9.3.1] states the conditions under which the unique
solution of (2.13) is a diffusion process.

Theorem 2.3.4. Consider the stochastic differential equation (2.13), and suppose that the
conditions of Theorem 2.5.3 hold. If functions b and o are continuous with respect to t then
the solution {Xi}yep,,m) of equation (2.13) is a d-dimensional diffusion process on [to, T
with drift vector b and diffusion matriz A(t,z) = o(t,z)o(t,z)".

2.3.3 Operators

In this section we establish a connection between the infinitesimal operator defined in
Section 2.2.1 and a partial differential operator defined using diffusion coefficients. We will
use this connection to show that under certain regularity conditions on the coefficients b
and o of the stochastic differential equation, the transition probability P(s,x,t, B) can be
uniquely determined from the drift vector b and the diffusion matrix A = oo |. We present
the theory for time homogeneous diffusion processes. The following theorem [40, Theorem
7.3.3] expresses the infinitesimal generator as a partial differential operator.

Theorem 2.3.5. Let {Xt}te[to,T] be a time homogeneous diffusion process given by
dXt = b(Xt)dt + O'(Xt)th, Xto = C. (214)

Let A denote the generator of { Xi}iep,,m) defined in (2.8) and let D4 denote the set of all
functions g : RT — R for which Ag(z) exists for all x € R%. If g € C3(R?) then g € D4
and

d 0g 1 & 0%g
Ag(x) = b;(x T)+ = a;i (1) =———(x). 2.15
o) = 3030+ 5 3 ale) 5o (215)

Thus, the generator of a diffusion process can be completely characterised by its diffu-
sion coefficients.
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Theorem 2.3.6. [40, Theorem 7.4.1 and Theorem 8.1.1] Let {Xi}epy,,1) be a time ho-
mogeneous diffusion process given by

dX, = b(X)dt + o(X;)dW, (2.16)
with generator A and let g € CZ(RY). Define
ult,z) = Be [g(X,)]
Then u(t,x) is differentiable with respect to t, u(t,-) € D4 for each t and

% + Au(t,z) =0, (t,x) € [to, T] x R4 ‘
u(to,z) = g(z), = eR

The equation (2.17) is called Kolmogorov’s backward equation where ‘backward’ corres-
ponds to differentiation with respect to the backward time; for intuition on this matter see
the nonhomogenous Kolmogorov’s backward equation in [1, Theorem 2.6.3]. Kolmogorov’s
backward equation describes the evolution of the conditional expectations of functions of
X;. Compared to equation (2.8), Kolmogorov’s backward equation is valid for any time .

The evolution of the probability density of { X;},¢(4, 1) is described by the Fokker-Planck
equation or Kolmogorov’s forward equation, given in the following theorem [1, Theorem
2.6.9]. Here ‘forward’ corresponds to differentiation of the transition density with respect
to forward time ¢ and state y. Let A* be defined by

(2.17)

d
1 5~ Plaiy)p) ofb 2.18
Z Oy 8y j Z 8 Yi . ( . )

1,j=1 =1

Theorem 2.3.7. Let {Xt}te[to,T] be a time homogeneous diffusion process for which the
limit conditions (2.9), (2.10) and (2.11) of Definition 2.3.1 hold uniformly in s € [to,T] and
x € R and let p(t — s,2,7) be its transition density. If p(-,z,y) € C*((to, T);R) for every
z,y € RY and b;(-)p(t,z,-) € CLR%LR), ai;()p(t, z,-) € C‘Q(Rd7 R), for t,z € [to, T] x RY,
then for a fized s and x, the transition density p(t — s, x,y) is a fundamental solution of
the following equation

dp

ot

Remark 2.3.8. Since the invariant probability density p(x) of a Markov process {Xt}te[tO,T]
is time independent, (2.19) reduces to

= A*p. (2.19)

A*p(x) =0, VreR?

and it follows that the invariant probability density is the solution of the stationary forward
Kolmogorov equation.

Remark 2.3.9. The partial differential operator A* is the L*-adjoint of the operator A,
i.e. for every u,v € L*(R? dx)

/ vAudx:/ uA*vdz.
R4 R4

For the boundary conditions under which the adjointness condition holds see for example
[21, Section 2].



18 Chapter 2 Stochastic processes

Next we give a guarantee [49, Theorem 2.2.9] for the uniqueness of the solution of the
forward Kolmogorov equation (2.19) for time homogeneous diffusions.

Theorem 2.3.10. Let A be given as in equation (2.15) with time independent coefficients,
i.e. a;j(t,z) = a;j(z) and b;(t,x) = b;(x). Let a;j,b; € C*(R%R), let their first derivatives
be bounded, and let their second derivatives have at most polynomial growth, that is there
exist C > 0 and r € NU {0} such that

f(2)] < C(A+ |z|*),

2. .
for f = ai:é;l or f = (% aw and k,l € {1,...d}. Then there exists a unique continuous
transition probability P(t,x dy) with tmnsztzon density p(t,x,y) satisfying

etz = o)+ [ [ A(w)p(r,z,y)dud, (2.20
R4 0 JRd

for any ¢ € C?*(R%R) with bounded second order derivatives. Furthermore, for each
measure v with moments of all orders, there exists a measure (A, t) defined as

(A, t) = /A/Rd p(t,z,y)v(dz)dy, Ae B?

such that p is the unique solution of

Lewntann - [ e@van= [ [ Acwutyran @

for any ¢ € C3(R%R).

Let us interpret the equation (2.20). The following computations are not rigorous,
because the Dirac delta measure does not have a density. However, the computations are
intended to communicate the main idea. Note first that ¢(z) can be written as

@)= [ »y)(z—y) =/ o(y)p(0, 2, y)dy.
Rd Rd

Using this in the first equality and the fact that A and A* are adjoint in the second, we
obtain

o(y)p (twydy—/ oy 0wydy+// Ap(y)p(T, z,y)dydr

= /Rd @(y)p(ovw,y)dw/ﬂ%d@(y)/o A'p(r, 2, y)drdy.

R4

Since the above equation holds for every ¢ € C?(R%; R), it follows that

t
p(t,z,y) = p(0,2,y) +/O Ap(r, z,y)dr.
Thus, by using the fundamental theorem of calculus we obtain

Op(r, 2, y)
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Therefore equation (2.20) of Theorem 2.3.10 tells us that the transition probability density
p(t,z,y) is the only solution to the forward Kolmogorov equation (2.19) for the initial
condition p(0,x,y) = §(z — y).

A more general result given in equation (2.21) tells us that for any initial distribution v
there exists a unique distribution u that depends on v and whose corresponding probability
density p,(t,z,y), if it exists, solves the forward Kolmogorov equation (2.19).

2.4 Time reversed diffusion process

Let {Xi}iepr,,r) be a diffusion process satisfying the stochastic differential equation
dXt = b(t, Xt)dt + O'(t, Xt)th7 Xt() = C.

In this section we introduce the time reversed process {X{ };cj¢, 7], give conditions that
guarantee that {X{},cp, 7] is also a diffusion process, and give explicit formulae for the
diffusion coefficients of the time reversed process { X{ }scps,,77-

Let {X{ }iejto, 7] denote the time reversal of the process { Xt} 1), 1. X{ = X1y
The Markov property treats past and future symmetrically, i.e. past and future are inde-
pendent of each other given the present. Therefore, the time reversed process { X} }yef, 1)
is again a Markov process. The following result of [19, Theorem 2.1 and Theorem 3.1] gives
conditions under which {X} },¢f, 7 is a diffusion process.

Theorem 2.4.1. Let b(t, X) and o(t, X:) be such that the conditions of Theorem 2.3.3
hold. Let the law of X, have a density py, such that for some A < 0

/]Rd pp, () (1 + lz[H) Mz < oco.
If either of the following two conditions hold

i) there exists o > 0 such that A(t,z) > al,

i) 2% e [°((t, T) x RY), for alli,j € {1,...,d},
k2 CL']
then {X[}te[to,ﬂ is a diffusion process which satisfies the stochastic differential equation
dX{ =0"(t, Xy)dt + 0" (¢, Xi)dW;, Xy = Xr

where

Ed: 9 (aif(T — t,2)p(T —t,1)) (2.22)

bi (t,x) = =b;(T — t,z) + B
J

p(T —t,x) ]:1

with p(t,x) denoting the density of Xy, and aj;(t,x) = a;;(T —t,z).
The infinitesimal generator of the time reversed process is then given by

T d 82
Z by (t, x) Z )5 T (2.23)
7=1 J
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One might notice that in Theorem 2.4.1 the assumptions differ from the assumptions
given in [19]. In particular, we omit the assumption of Borel-measurability of functions
b(t, X;) and o(t, X;) because it is implied by the Lipschitz continuity. Namely, every
Lipschitz continuous function is continuous, hence Borel-measurable. Furthermore, the
linear growth condition in [19]

|b(t,z)| + |o(t,x)] < K(1+ |z|), (2.24)

is equivalent to the linear growth condition in Theorem 2.3.3. We show this using the
inequality ab < %(a2 + b?). By multiplying this inequality by 2 and adding a? + b? to both
sides we obtain

(a+0)* < 2(a® + b?). (2.25)

Let (2.24) hold. Therefore
b(t, 2)* + |o (¢, 2)] + 2 [b(t, 2)] o (8, 2)] < K2(1+ [2])* < 2K3(1+ [2f).

where the first inequality was obtained by squaring (2.24) and the second using (2.25).
Since 21|b(t, x)| |o(t,xz)] > 0 the linear growth condition from Theorem 2.3.3 holds with
constant v/2K.

Let now the linear growth condition from Theorem 2.3.3 hold, i.e. let

[b(t, )[* + [o(t,2)[> < K21+ [2]*).
By multiplying the previous inequality by 2 we obtain

([b(t )] + o (t,2))* < 2(1b(t, 2)* + |o(t, )*) < 2K (1 + [«]*)
<2K2(1 + |z)?) + 4K? |z] = 2K2(1 + |z])?,

where we used (2.25) in the first and the fact that 4K? |z| > 0 in the last inequality. After
taking the square root we see that the condition (2.24) holds with constant equal to v/2K.

2.5 Reversibility

In this section, we focus only on time homogeneous diffusion processes. A diffusion process
is time reversible or reversible if the original and time reversed process are probabilistically
the same.

Let {Xi}iefto, 7] be a time homogeneous Markov process given by

dXt = b(Xt)dt + O'(Xt)th, Xt() = ¢,

taking values in S = S U S, where S C R%, and let p(t,z,y) be its transition probability
density. Note that due to the assumption of time homogeneity, the diffusion coefficients
are independent of t. Let { X} };cp, 7] be the time reversal of the process {X}cs, 7 and
let p"(t,z,y) := p(t,y, ) be its transition probability density. With this notation in mind,
a diffusion process is time reversible if p(¢, z,y) = p(t, y, z).

In the remainder of this section we will give a necessary and sufficient condition for a
diffusion process to be reversible. We introduce symmetric diffusions for this reason.



2.5 Reversibility 21

A diffusion process is v-symmetric if for some function v(x) > 0 on S, the transition
probability density p(t, z,y) satisfies the following condition:

p(t,zy) _ plt,y, )
v(y) v(z)

(2.26)

A function p(t, z,y) is a minimal fundamental solution of the time homogeneous back-
ward Kolmogorov equation (2.17) if for any other fundamental solution u(¢,x,y) of the
backward Kolmogorov equation it holds that p(t,z,vy) < u(t,z,y), for all t € [to,T], z,y €
R

In the following theorem we give a necessary and sufficient condition [21, Theorem
4.1] for the minimal fundamental solution of the backward Kolmogorov equation to be
v-symmetric.

Theorem 2.5.1. Letv € C?(S;Rw) and let p(t, z,y) be the minimal fundamental solution
of the backward Kolmogorov equation (2.17). p(t,x,y) is v-symmetric if and only if

d d A
Z a”(:v)(g: = (2[)1' — Z &L”U) V. (2.27)

The equation (2.27) is called the detailed-balance equation. However, in the community
of chemical physics and Markov state models the equation

p(t,z,y)p(z) = p(t,y, x)p(y).

is known as the detailed-balance equation.

The following result due to Kolmogorov [21, Theorem 4.2] gives a necessary and suffi-
cient condition for the existence of a function v(z) for which the solution of the backward
Kolmogorov equation is v-symmetric.

Theorem 2.5.2. The minimal fundamental solution of the backward Kolmogorov equation
(2.17) is v-symmetric for some function v if and only if there exists a scalar function

o(z) € C?(S;R) such that the following holds

80,” d (x)
2bi _Z Owj Z ij

We now state the necessary and sufficient condition for the reversibility of a diffusion
process [21, Theorem 6.1].

Theorem 2.5.3. Let p(t,z,y) be the minimal fundamental solution of the backward Kolmogorov
equation (2.17). The time-homogeneous diffusion process { Xt }ye[s,,m) with transition dens-

ity p(t,=,y) is time reversible if and only if { X}y, has an equilibrium density v(x)
with respect to which p(t,x,y) is v-symmetric.

The function p(t,z,y) can be interpreted as the transition probability density of a
diffusion on the domain S. On a compact domain S the minimality condition is not
needed. For more details on existence of the minimal fundamental solution see [21, Section
2]. From the definition of a reversible diffusion process it follows that the equilibrium

densities of a diffusion process and its time reversal coincide.
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Lemma 2.5.4. Let {Xi}ey,, 1) be a reversible time homogeneous process with equilib-
rium density p(x). Then p(z) is also an equilibrium density of the time reversed process

{XZ' }tE [to,T} .

Proof. The claim follows from the fact that for a reversible process p"(t,x,y) = p(t, z,y).
Namely, it holds that

/Rd/Bp’"(t,x,y)dy p(dz) :/Rd/Bp(t,x,y)dy u(dz) = pu(B),

where p(dz) = p(z)dx and we used the definition of the invariant probability measure (2.6)
in the second equality. Therefore by (2.6) p is an equilibrium density of the time reversed
process { X{ }iejo,77- O

Theorem 2.5.5. Let {Xt}te[to,T] be a diffusion process with time independent coefficients
and generator A. Let A" be the generator of the time reversed process {X[}te[to’T]. If
{Xt}te[to,T} is reversible, then the generators of these two processes are the same, i.e.

A=A".

Proof. From the formula (2.23) for the generator of the time reversed process, A" is given
by

d d 2
8 1 0
Z 8:& Z i (33) 8@6:3] '

=1 i7j:1

Substituting the expression (2.22) for b] and the equilibrium density p(z) instead of p(T" —
t,z), which we may do due to Lemma 2.5.4, we have

r_d i o L Nm0(ai(@)p(a) | D
32
3 Z 81‘185%

7]1

From Theorem 2.5.3 it follows that the transition probability density of { X };epy, 1) 18
symmetric with respect to p(z) and by Theorem 2.5.1 the symmetry condition is equivalent
to the detailed balance condition, i.e.

d Ip(z) _ dagj(z
;aij(m) or; Z 8% (z)

J

holds, or equivalently

d d
- St %)+ £ - LD,y

By substituting (2.29) into (2.28) we obtain
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d 1< 8>
"= —b; 2b; -
A= (o) 4 20(e)) gk 5 3 o)
d d 2
1 0
N Z: ox; * 2 Z_: aij( )6%833]
= 2,7=1
O
2.6 Smoluchowski dynamics
Smoluchowski dynamics is described by the following stochastic differential equation
dX; = —I'VV(X,)dt + /26~ 2dW, (2.30)

where X; € RY represents the position of a particle at time ¢, I' = diag(vyi, ..., V) is
a diagonal matrix with friction coefficients 7; > 0, and the function V : R? — R is a
potential. The parameter § represents the inverse temperature and it is related to the

actual temperature T of the system by
1
f=—
kT

where kg denotes the Boltzmann constant.
By setting b = —I'"'VV and ¢ = /26-1T1/2 in equation (2.15), we obtain the
infinitesimal operator of Smoluchowski dynamics,

1 Ly~ 1 &
=-I"VV(z)- V+— .
Similarly, by equation (2.18) the adjoint operator A* is given by
d 2 d d 2
8 oV (xz) dp 0°V(x
Ap=p Y ar g+ S T e T e
Ox; Ox; p Ox;

The invariant probability density of the process defined by (2.30) is given by
p(z) = Z e PV

where
Z = e V@ g,
Rd
Indeed, we check that the invariant density p satisfies the forward Kolmogorov equation
(2.19), with A* given in equation (2.31).

d 2 17v d 1,—BV d
A IZ 0% Z B Zavaz B )+Z_1 _Wzyﬂav

oV 0%V 82V d 70V \2
BV ov o9V _ —
Z ( ( :cl> ax? + Ox? 'BZ (81:) ) 0

i i=1
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Since .
Oa;; oV
2 — > L =2y —
P a.%'j ’YZ Ba:j’

7j=1

and

where we used that a;; is constant in the first equality and that is zero for i # j, there
exists a scalar function op(x) € C%(S;R) such that

The function ¢ is a scalar multiple of V € C?(S;R), i.e. ¢ = —BV(z). Then by Theorem
2.5.2, the minimal fundamental solution of the backward Kolmogorov equation correspond-
ing to the Smoluchowski dynamics is v-symmetric for some function v. The function v is
related to ¢ in the following way: v(z) := e#(*), i.e. by Theorem 2.5.1 the minimal funda-
mental solution of the backward Kolmogorov equation corresponding to the Smoluchowski
dynamics is symmetric with respect to the function v = e V() Since p is a scalar mul-
tiple of v by (2.26) the minimal fundamental solution of the backward Kolmogorov equation
corresponding to the Smoluchowski dynamics is p-symmetric as well. By Theorem 2.5.3 it
follows that the Smoluchowski process { X },c[t,, 1) given in (2.30) is time reversible.

2.7 Dirichlet problem

Let L be a linear second order partial differential operator on the space of C?(R%;R) defined
by

1< 92 d )

with real coefficients a;;(z), b;(x), and c(x). If the matrix A(z) = o(z)o(x)" is positive
definite on a bounded domain D, i.e.

AX)E>0, VEER", £€+#0, VzeD, (2.32)

then the partial differential operator L satisfying condition (2.32) is called elliptic. If
instead of condition (2.32) there exists a constant k& > 0 such that

gA()E > kE]?, VEER", £#0, VazeD,

then the operator L is called uniformly elliptic.
For a given g € C(D) and function ¢ € C(9D), consider the problem of finding a solution
u € C?(D;R) of the boundary problem:

(x) xeD

g
u(z) =¢(x) x€dD. (2:33)
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The problem defined in equation (2.33) is called a Dirichlet problem. The following theorem
gives a sufficient condition for existence and uniqueness [17, Section 6.5] of a solution of
the Dirichlet problem.

Theorem 2.7.1 (Existence and uniqueness). Let L be a uniformly elliptic partial differ-
ential operator on D with uniformly Lipschitz continuous coefficients b; and a;; on D and
coefficient ¢ < 0 which is uniformly Hélder continuous on D. Let 0D € C?. For any g
uniformly Hélder continuous on D and any ¢ continuous on 0D, the Dirichlet problem
(2.33) has a unique solution.

The unique solution whose existence is guaranteed in the previous theorem has the
form given in the following theorem [17, Theorem 6.5.1]. The representation of the unique
solution follows from It&’s formula given in Theorem 2.3.2.

Theorem 2.7.2. Let the conditions of Theorem 2.7.1 hold. The unique solution of the
Dirichlet problem (2.33) is given by

uw) = [orxess [ ["etxoas] | - [ [Cacxpem | [ eoxas] o]
where T is the exit time from D, i.e,

T=inf{t >ty | X; € DE}.






Chapter 3

Transition path theory for diffusion pro-
cesses

In this section we summarise the main ideas of the transition path theory. Transition
path theory is a statistical theory developed for the analysis of rare transition events of
a diffusion process, between two pre-specified subsets of the state space of the diffusion.
More precisely, it provide us with tools to describe the mechanism of transitions, i.e. the
paths of transitions, their probability density and reaction rates.

In this section we consider an ergodic diffusion process { X; }+~¢ taking values in S C R,
given by the following stochastic differential equation

where X; € S, b(X;) € R? is the drift vector, o(X;) € R¥¢ and W; is a d-dimensional
Brownian motion. Note that the process given in equation (3.1) is time homogeneous.

A diffusion process is called ergodic if it has a unique invariant measure and its sta-
tionary statistics can be realised by an infinitely long trajectory, i.e. b and ¢ are such that
there exists a unique invariant probability measure p(dz) = p(z)dx, where p denotes the
equilibrium probability density function and

1 T
Jim = [ pxods = [ @y,

for all f € L*(p).

Let A, B C S be two pu-measurable, disjoint sets with smooth boundaries. By ergodicity
it follows that the process {X;};~o makes the transition from set A to set B, as well as
the transition from B to A, infinitely often. We are interested in understanding how these
transitions occur. While having knowledge of p suffices for obtaining the proportion of
time that the process spends in a predefined open set C C S\ (AU B), as m, this
does not give us the proportion of time that the process spends in the set C' while making
transitions from A to B, because this quantity does not differentiate between transitions
from A to B or from B to A. To be able to understand the statistics of transitions between
sets A and B, we need to introduce new notions, such as the notion of reactive trajectories,
committor functions and probability density of reactive trajectories.

27
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3.1 Reactive trajectories and their probability density

Let us define the set of reactive times R as the set of times that the process spends while
transitioning from A to B, i.e. R = ey (t* t; ) where t; and ¢ for all i € N are such

that X, € 9A, X,y € 0B and Xy € S\ (AUB), for all t € (t; , ).

A portlon of a trajectory during which the process makes a transition between the
sets A and B is called an AB-reactive trajectory, that is, an AB-reactive trajectory is
a trajectory segment corresponding to a reactive time (¢;, t;r), for some i € N. Unless
otherwise stated, in the following text we are interested in transitions from A to B. Thus
we simplify the notation and refer to AB-reactive trajectories as reactive trajectories. The
ensemble of reactive trajectories is the set of all reactive trajectories. By ergodicity and
the definition of the reactive times R, the ensemble of reactive trajectories is { X }ier.

We wish to obtain the probability distribution of reactive trajectories pr which is the
invariant probability distribution with respect to which reactive trajectories are ergodic,
i.e. for any p-measurable set C C S\ (AU B) it holds

. Jropr Lo(Xy)dt
lim
T—o0 fRﬂ[O,T} dt

= pur(C).

Important objects for expressing the probability distribution of reactive trajectories ug are
the forward and backward committor functions.

3.2 Committor functions

The forward committor function q : S\ (AU B) — [0,1] is defined at any point = €
S\ (AU B) as the probability of reaching first B rather than A when starting from point
x. Similarly, the backward committor function g, : S\ (AU B) — [0,1] is defined at any
point z € S\ (AU B) as the probability that a trajectory arriving at z last came from A,
rather than B.

Note that we can extend the definitions of ¢ and ¢, onto the whole space S, while
preserving the interpretation of values of committor functions as probabilities. We define
q(z) =0 for all z € A and ¢(x) =1 for all x € B. Similarly, we have ¢,(z) =1 for z € A
and gp(z) =0 for z € B.

Remark 3.2.1. The backward committor function can be interpreted as the forward com-
mittor function of the time reversed diffusion process { X} }+~0, when the roles of the sets A
and B are reversed, i.e. when we observe transitions from B to A of the process {X{ }i>0.

Let Taup denote the first hitting time of the process {X;}i~o with respect to the set
AUB,i.e.
TAUB({Xt}tZO) = inf{t >0: X, € AU B} (32)

Then the forward committor function can be expressed as

q(z) = P(X

TAUB

S B\onx) =E, [1B(XTAUB)]‘ (33)
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As defined in Section 2.3.3 the generator of the diffusion process given in (3.1) is the
second order partial differential operator given by

1 ¢ o b9
=5 AT A i 4
A 2 Z ajal'ia.%'j + ;b 8.% (3 )

ij=1

where a;; are the elements of the diffusion matrix A of the process (3.1) defined by A(X;) =
o(Xy)o(X;)T € R¥¥4, The forward committor function satisfies the backward Kolmogorov
equation (2.17) associated with process (3.1)

Ag=0, z€8\(AUB)

3.5
qloa =0, qlop =1. (3:5)

From Theorem 2.7.2 for the case that the operator L is given by A (and thus ¢(z) = 0),
it follows that if there exists a solution to problem (3.5), it is equal to E; [1p(X+, ;)]
According to the expression of the forward committor given in equation (3.3), we see that
q(z) is the solution of (3.5).

Similarly, the backward committor function satisfies the backward Kolmogorov equa-
tion associated with the time reversed process

Agy =0, z€S\(AUB)
®loa=1, @lop =0, '

where A" is the generator of the time reversed process { X[ };~0, defined in Section 2.4.
If the process (3.1) is reversible, from Theorem 2.5.5 it follows that A = A" and
therefore

@(r) =1 —q(z). (3.6)

In the following theorem [14, Proposition 2] we give the expression of the probability density
of reactive trajectories using the forward and backward committor functions.

Theorem 3.2.2. If the probability distribution of reactive trajectories pr admits a density
pr S — R>o with respect to Lebesque measure, then pr satisfies

pr(z) = Z5'q(2)q(2)p(2)

where

Zp = /S g (@)

We refer to the function pr in Theorem 3.2.2 as the probability density of reactive
trajectories. High values of pg indicate the regions where reactive trajectories spend long
times. Such regions are called bottlenecks. While pg offers useful information on the regions
in which the reactive trajectories spend long times, it is also useful for determining the
regions that are likely to be visited by reactive trajectories, regardless of the time spent in
the region. This information can be described by the hitting point distribution of reactive
trajectories, which is defined as the distribution of points where the reactive trajectories
hit a surface while crossing it.
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3.3 Hitting point distribution

Let S be a codimension 1 piecewise continuously differentiable surface in S\ (AU B) and
let os(dz) denote the surface measure on S with respect to Lebesgue measure. Define
a probability distribution vg supported on S that is induced by the invariant probability
measure p on S according to

vs(dz) = C5'p(z)os(dz),

where
Cs — /S p(2)os(dz).

The probability distribution vg gives the probability that the diffusion hits a subset of the
surface § when passing through S.

For any p-measurable set C C S\ (AU B) and an e-slab around S, ie. S;:={z | Jy €
S, ||z —yl|| < e}, we define the hitting point distribution of the surface S as

1 X,)dt
vs,r(CNS) = lim lim Jrapo.r Lons. (Xi) .
e0T—00 [ 7y Ls. (Xe)dt

(3.7)

The following theorem [14, Proposition 3| gives us an expression for the probability
distribution of the hitting points of the reactive trajectories on S in terms of the forward
and backward committors and the equilibrium probability density p.

Theorem 3.3.1. Let S C S\ (AU B) be a C! surface, and let vs g be the corresponding
hitting point distribution. Then the following holds:

vs.r(dz) = C5 ga(z)as(x)p(z)os(d),

with
Cs.p= /S 4(2)gb(z) ()05 ().

Let M C S be a set whose boundary is of codimension 1, such that A C int(M) and
B C int(MY). The boundary S = OM is then called a dividing surface.

For a given reactive trajectory {X;} te(t b and a C'! dividing surface S, we define the
last hitting point on S as the point on the surface S that is last visited by the reactive
trajectory, i.e. the last hitting point is some x € S such that
tF) and X, e int(MY) Vte (tf,th).

Xy =, forsome t; € (t; it

17

The last hitting point distribution I/‘l& r of reactive trajectories on § is defined such that for
any p-measurable set C C S\ (AU B)

N—oco N —

1 N
Vé,R(C NS) = lim N_1 Z Lons(Xer). (3.8)
=1

We now choose the surface S to be a level set of the committor function. Level sets of
the committor function are called isocommittor surfaces and we denote them by

o ={z: q(z) =a}. (3.9)



3.4 Probability current of reactive trajectories 31

By definition, {qq }4e(0,1) form a partition of the state space S, that is

Ga N qy =0 for a # a', and U Ga = S.
a€(0,1)

The isocommittor surface defined in equation (3.9) is continuously differentiable be-
cause it is the level set of the committor function ¢(z), which is itself twice continuously
differentiable on the interior of S\ (AU B), as it satisfies the Dirichlet problem (3.5). Fur-
thermore, the isocommittor surface g, is for every a € (0,1) a dividing surface, under the
assumption that ¢ has no critical points on S\ (AU B). In particular, for every a € (0,1)

it holds that A C Uae[o,a) qo and B C (Uae[o,a) qa) and ¢, is a codimension 1 surface in

S\ (AUB). It is known that when one chooses a dividing surface S to be an isocommittor
surface ¢, for some a € (0,1), the hitting point distribution and the last hitting point
distribution on S coincide. We state this in the following theorem [14, Proposition 4].

Theorem 3.3.2. For every a € (0,1)

— 1
an,R = VQH.yR’

where vy, r denotes the hitting point distribution defined in equation (3.7) and I/émR denotes
the last hitting point distribution given in equation (3.8).

This implies that reactive trajectories get conserved, in the sense that the probability
of reactive trajectories hitting the surface g, and the probability of reactive trajectories
leaving the surface g, are the same for any subset of q,.

3.4 Probability current of reactive trajectories

On its own, the probability density of reactive trajectories does not describe the mechanism
of reaction. In order to characterise the reaction pathway the probability current of reactive
trajectories is defined.
The probability current of reactive trajectories Jg(x) is a vector field Jg : S\ (AUB) — R4
such that for every region C whose boundary is piecewise continuously differentiable and
0C C S\ (AU B), it holds that

N T |

lim — lim — 1o (Xy) 1.c (Xits) — 1.c (Xp) 1o (Xpys) dt

s—=0+ 8 T—oo T" JRA[0,T] (3.10)

= Jr(z) - no(x)oc(dz),
oC

where nc(z) is the outward pointing unit normal on 0C and o¢(dz) is the surface measure
on C, i.e. the surface measure induced by Lebesgue measure. The probability current can
be interpreted as the probability of AB-reactive trajectories crossing the surface 0C in one
direction minus the probability of reactive trajectories crossing this surface in the opposite
direction, i.e. the net probability flux of reactive trajectories crossing the surface 0C in an
infinitesimal time period.

The following theorem [32, Equation (3.15)] gives the expression for the probability
current using committors, diffusion coefficients, and the equilibrium density.
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Theorem 3.4.1. The probability current of reactive trajectories can be expressed as

Jri(r) = q(x)gp(z )J'(ﬂf)

(z) 3% (2)
+ap(z Z azg 8£Uj q(x Z az] 8LU] )

where

1< o
Jix) = bi(w)p(z) - 5 > %(aij(fv)p(:v))-
7=1

The probability current is divergence free. This was stated without proof in [32]. We
provide a proof in Appendix A. As a consequence, by Gauss’ theorem, the probability
current over the surface OC of any set C' contained in S\ (AU B) is zero i.e.

Jr(z) - ne(x)oc(dz) = / div Jr(z)dz = 0.

oC C

Thus the definition of Jr(z) given in (3.10) is independent of the choice of the set C.
Note that (3.10) is the definition from [32]. The definition of the probability current

given in equation (50) of [14] is

lim L lim ~ / Lo (X)) 15 (1) < 77 (8)) X Leo (Xews) L (¢ + 5) < 78 (t +5))

s—0+ § T—oo T

= | Jr(x) nc(x)oc(dw),
e
(3.11)

where for an arbitrary set D C S
TH(t) =inf{t' > t: X; € D}, and 7, (t) =sup{t' <t: Xy € D}.

The difference between (3.10) and (3.11) is twofold. First, (3.11) does not represent a
net probability, but the probability of crossing the surface OC in one direction only, in
particular, when going from A to B. The probability current Jgr defined in (3.11) is
divergence free as well; see Remark A.0.3. Therefore, the definition of Jr(z) at any point
x is independent of the surface dC. Thus in [14] the surface OC is assumed to be a dividing
surface, that is A C C and B C C. The second difference between the two corresponding
definitions is the condition on trajectories being reactive at time ¢. In (3.10) this condition
is given in the domain of integration and can be expressed as the probability of trajectory
coming last from A and going to B next, rather than returning to A. In contrast, in (3.11)
the condition is expressed as the probability of coming last from A and going to set B
next, rather than returning to the set C.

3.5 Reaction rate

The reaction rate kr is defined as the integral of the probability current over any dividing
surface S = 9C that is a boundary of the region C' C S,

k= /S ne(x) - Jp(x)os(de), (3.12)
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where ne(z) denotes the unit normal on dC pointing towards B. Since the probability
current is divergence free, the probability flux over any dividing surface equals the total
probability flux of reactive trajectories. Therefore the reaction rate is independent of the
set C and represents the average number of crossings from set A to set B per unit of time,
i.e. the frequency of reactive trajectories

NE
— lim =L 1
b= fim = (3.13)

where N represents the number of reactive trajectories that occur until time 7'.

The reaction rate of transitions from set B to set A is also kg, because every AB-
reactive trajectory corresponds to a B A-reactive trajectory. Namely, every time the process
trasitions from set A to set B, it has to to return from set B to set A in order to make
another transition from A to B. Therefore, in any time interval, the number of AB-reactive
trajectories and the number of B A-reactive trajectories can differ by one at most.

Theorem 3.5.1. [32, Equation 3.19] The reaction rate can be expressed as:

_ 1 9q(x) 9q(x)
kR_/S\(AUB) p(m)2i§:1a”(x) Ox; 0Oz;j dr.

The result above does not imply that the average time necessary for the process to go
from A to B is the same as the average time the process takes to go from B to A. Let us
denote the total time in [0,7] during which the last visited set by the trajectory is set A
by T4, and the analogous time for B by Tp. Then we have T4 + Tp = T. We compute
the average time the process takes to go from set A to set B, t4p and the average time
the process takes to go from set B to set A, tp4 as

¢ lim A d t lim B
= 11m —= an = 11m —-.
AB T—oc0 NZE, BA T—00 NYE

These two average transition times differ and rates %13 and tgk differ from the reaction
rate kg.

If we define T T
— Tim A — Lim B
PA = TIE)I;O T PB lim ) (314)

T—o00

then since T4 +Tp =T we have pp =1 — pa and

pa = /Sp(ﬂf)qb(x)dx, pp=1- /Sp(w)%(ﬂﬁ)dx = /Sp(ﬂf)(l — o(z))dz.

Using (3.13) and (3.14) the following expressions [15, Equation 34] for the average times

tap and tpa hold:

15,43:']%4 and tBA:pE

R kr’

Therefore, the time necessary to go from A to B is the same as the time necessary to go
from B to A only if py = 1/2.
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3.6 Streamlines and transition tubes

Let the equation

ds(7)

dr

admit a unique solution for every x € 9JA. The solution s(7) of (3.15) is called the
transition streamline corresponding to x € JA. For each initial condition the corresponding
streamline connects the sets A and B and represents the averaged behaviour of reactive
trajectories. A bundle of streamlines with initial conditions belonging to some set A’ C A
is called the transition tube corresponding to A’.

= Jr(s(r)), s(0) =z € A (3.15)

3.7 Transition path theory for Smoluchowski diffusion

In this section we show the transition path theory objects on an example - the Smoluchowski
diffusion process introduced in Section 2.6. Recall that the stochastic differential equation
of Smoluchowski diffusion is given by

dX; = —TIVV(X,)dt + 1/28-1T2dW,,

where I' € R? is a diagonal matrix with friction coefficients ;, 8 = 1/kgT is the inverse
temperature parameter, kp is the Boltzmann constant and V : R — R is a potential
function. The corresponding infinitesimal operator is given by

e d_162
A=-T7'VV(z) - V+ = Z

Therefore, according to equation (3.5) the corresponding forward committor ¢ is a
solution of the system

= : _182
—T7'VV(x) Z =0, z€S\(AUB)
q():() x € 0A
q(z) =1, x € 0B.

Since the Smoluchowski dynamics is reversible as shown in the end of Section 2.6, the
backward committor g is given by ¢,(xz) = 1 — ¢(z) (3.6). Since the invariant probability
density of the Smoluchowski diffusion process is the Boltzmann density given by

p(z) = Z_le_ﬁv(m), Z = ) e_ﬂv(x)dx,
R

by Theorem 3.2.2 the probability density of reactive trajectories is given by

pr(z) = Zg'q(2)(1 - g(2))e V),

= 2)(1 = g(z))e V@),
Zn = /S\(AUB)« )1 - q(a))

where
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The probability current of reactive trajectories corresponding to the Smoluchowski
dynamics [35] is given by

Jr(x) = 2717 e V@ DP-1yg(z) (3.16)

Thus by (3.12) the corresponding reaction rate over a dividing surface S = 9C' for some
region C' C S is given by

kr = Z_lﬁ_l/ eV @Ono(x) - T7Ve(z)oo(dz),
S
or alternatively, by Theorem 3.5.1

kp=2"1""1 / e VDY) T Vg(x)da.
S\(AUB)






Chapter 4

Convergent discretisation schemes

In this chapter, we define transition path theory objects for projections of diffusion pro-
cesses onto discrete state spaces, where the discrete state spaces are generated by partitions
of state space. We show that in the limit of small partition width - i.e. in an appropriate
‘continuum limit’ - the objects we define converge to the corresponding objects of transition
path theory for diffusion processes. More precisely, we define the discrete analogues of the
committor function, isocommittor surfaces, probability current, and streamlines defined in
Chapter 3. We prove the convergence of the committor function, probability current and
streamlines with respect to an appropriate metric, to the respective continuous objects of
diffusion processes. These results are based on the results of [9)].

4.1 Setup

Let X = {X;}+>0 be an ergodic diffusion process taking values in a bounded subset S C
R? with reflecting boundary conditions. Suppose that the invariant measure p of X is
absolutely continuous with respect to Lebesgue measure, so that there exists a density
p: S — R such that for all t > 0,

(A) = 1y (A) = P(X, € A) = /A p(x)dz, VA€ B(S).

We consider a partition of the state space S, i.e. a collection {Si,...,S,} of nonempty
subsets of S such that U7_,5; =5, and 5; N .S; have Lebesgue measure zero for ¢ # 4. In
particular, we consider a Voronoi tessellation of S associated to a finite set of generators
{g1,...,9n} C S for some n € N. A Voronoi tessellation is a collection {Si,...,S,} of
nonempty subsets of S, where each Voronoi cell S; is defined by

Siz={resS : |v—gly <|lx—gjl,, Vi#i}

That is, S; is the closed set consisting of all points in state space that are closer to the gen-
erator g; than to any other generator. Since every Voronoi cell S; is a closed neighbourhood
of its generator g;, it has strictly positive Lebesgue measure. Observe that

S=1{JSi SinS;=05nN0S;, i#j

=1

37
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so that Voronoi cells intersect at most at their boundaries, which are sets of strictly positive
codimension and hence have Lebesgue measure zero; note that this intersection may be
empty. This motivates the following definition.

Definition 4.1.1. Two distinct Voronoi cells S; and S; are adjacent if they share a common
facet, i.e. if
dlm(Sz N Sj) =d-1.

Given a Voronoi tessellation {S;};cr, with I = {1,...n} the dual object is the Delaunay
graph G = (I, FE) with vertex set I and edge set E consisting of all pairs (7, j) such that
S; and S; are adjacent.

Recall that, given a nonempty set A C R%, the Euclidean diameter of A is defined by

diam(A) = sup{|z —yl, : =,y € A}.
This leads us to the next definition.

Definition 4.1.2. The width p of a Voronoi tessellation {S;};cs is the largest Euclidean
diameter of the Voronoi cells, i.e.

p({Sitier) := max diam(S;).

When there is no risk of confusion, we will omit the argument {S;};cs of the width and
simply write p. The smaller (respectively larger) the width, the finer (resp. coarser) the
tessellation. We are interested in obtaining error bounds in the limit of small width, i.e. as
p decreases to 0. As p decreases to zero, the number n of cells in the Voronoi tessellation
must increase to infinity. The converse is not true: it is possible for the number of cells
to increase to infinity, while the width p stays bounded away from zero. For example, let

a sequence of partitions {{SZ-(k)},;6 I(k) Jken be generated by the strictly increasing nested

sequence of collections of generators {{gi(k)}iel(k)}keN7 that is, {{g§k)}i61(k)}keN is such that
k 1 k ! o

‘{92‘( )}iEI(k)’ < ‘{gi( )}iel(l)‘ and {90 }iergy € {0\ Vierq) when k < 1. That implies that

the sequence of partitions {{Si(k)}ie I(k) Jken is refined as k — oo by adding new generator
points to the existing generators. If there exists a subset of the state space in which no
new generator point is added, that is if there exists a set C' C S and some n € N such that

<{g'§k+1)}i61(k+1) \ {gz(k)}zej(k)) NC =10

for all k > n, then the diameter of the cells inside C' does not decrease. Therefore, in this
case, the width of partitions does not decrease to zero, even though the number of cells
increases to infinity as k — oo. With this example in mind, we will impose a constraint on
the Voronoi tessellations that we use to discretise state space, namely that as the width
decreases to zero, the Voronoi cells shrink in a uniformly controlled way to their associated
generators. This uniform controlled shrinkage describes the continuum limit in which the
objects we define in this chapter converge to the objects of the transition path theory for
diffusion processes.

Given a Voronoi tessellation {S;};c; with finite index set I and its associated Delaunay
graph G = (I, E'), we construct a jump process Y = {Y; };>¢ on the index set I, by setting
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Y; = i whenever X; € S;. For the case that X; € S; N S; for a pair (5;,5;) of adjacent
Voronoi cells, then we set Y; = k € {i,j}, where k is the index set of the cell such that
the diffusion process X was ‘most recently’ in the interior of Sy prior to time t. To be
precise, if there exists some £ > 0 such that X, € Sy for all s € (t —¢,t), then we set
Y, = k. The jump process Y is non-Markovian, i.e. it is not memoryless which shows in
the increased probability of recrossing back after the process Y crosses a boundary of a
cell; see [43, non-MarkovianSection 2.1] or [42].

We write A, B C S to denote the reactant and product sets of states for the diffusion
process of interest. We will assume that A and B are simply connected, open and that
their closures are disjoint.

In the following section we define the first object of our transition path theory on dis-
crete state spaces, namely the committor of the process {Y;};>0 with state space {S;}icr.
Furthermore, we prove the convergence of our discrete committor to the continuous (for-
ward) committor function defined in (3.3), in the limit of small partition width.

4.2 Committors

Recall the forward committor function ¢ : S — [0,1] defined in (3.3). For i € I where
I:={1,...,n}, define

R 1

where 1g, : S — {0,1} is the indicator function of S; and (,-), is the inner product with
respect to the invariant measure p of the process Xy, i.e.

(w0 = [ v(@u@)n(da).

Using the collection {§; }icr, we can construct a function that is piecewise constant on the
interiors of the Voronoi cells, the projected forward committor function ¢ : S — [0, 1]:

Q(x) =) Giling(s;) (@) (4.2)

iel

Note that we are abusing notation, by using ¢ to denote the function constructed from the
numbers §¢;, ¢ € I. Later, we will write g|s, to denote the restriction of the function § to
the set .5;.

To complete the definition of ¢, we need to specify its values on the intersections of the
closed Voronoi cells. However, since the union of the intersections has Lebesgue measure
zero and since we will measure the error of § with respect to ¢ using an LP norm, the values
that we prescribe will not be important. One straightforward assignment is as follows: If
x ¢ int(S;) for all ¢ € I, then there must be a nonempty set C' C I such that x € 95, for
all ¢ € C; for such z, define §(z) according to

q(x) = X -
Other assignments are possible, e.g. the minimum or the mean of §. over ¢ € C.

Now we define the discrete forward committor function ¢ : I — [0, 1], which is the
forward committor function that corresponds to the time continuous process {Y;}:>0 on
the discrete state space. We will make the following assumption.
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Assumption 4.2.1. The sets A and B are open convex sets such that AN B = () and
there exist disjoint subsets J, K C I such that A = UjesS; and B = Uker Sk

Thus, J and K are the metastable sets for the jump process Y that correspond to
the metastable sets A and B for the diffusion process X. The assumption is justified in
the limit of small width, since one can approximate any convex body by collections of
arbitrarily small Voronoi cells [46].

Given J and K, define the first hitting time of the jump process Y of J U K by

TJuK(Y) = mf{tZO 1 Y, € JUK}

Lemma 4.2.2. The first hitting time Tjux (Y) of the jump process Y and the first hitting
time Taup(X) of the diffusion X defined in (3.2) coincide, i.e.

Tjuk (Y) = TauB(X). (4.3)

Proof. Let us observe a trajectory {X:};>o of the process X initiated from a point in
S\ (AU B) and let T denote the first time the trajectory reaches the set AU B, i.e.

T:=inf{t >0: X, € AU B}.

Then there exist € such that the trajectory X; € S\ (AUB) fort € (1—¢,7), X; € 0AUOB
and Xy € AU B for (1,7 4+ ¢). Let € be small such that X; € int(S;) C S\ (AU B) for
some i € I, for all (7 — e, 7). Given our definition of Y, then Y; =i, for t € (1 —e,7) and
Y;=i.lf Xy e Afort € (1,74+¢) thenY; € J for t € (1,7 + ¢), due to Assumption 4.2.1.
Otherwise, if X; € B fort € (1,7 +¢) then Y¥; € K for t € (1,7 +¢). Since A and B are
disjoint, we have that 7 = inf{t > 0:Y; € JUK}, i.e. Tjur(Y) = Taup(X). O

We now define the discrete forward committor, the first object of our discrete transition
path theory.

Definition 4.2.3. The discrete forward committor at any i € I is the probability that
starting from the state i, the process Y reaches K before J:

]P(YTJUK €K, Y= Z)

P (Yo =)

We will prove that §; = §; for all 4, using the notion of a regular conditional distribution
defined in Definition 2.1.3. The existence of the regular conditional distribution of Y
defined on the probability space (£, .4,P) given some sub-o algebra F C A is given in [23,
Theorem 8.37].

Lemma 4.2.4. The committor function q given in (3.3) is a reqular conditional probability.

Proof. Recall the definition of the regular conditional probability (2.4). By setting the
random varaibles Y and X and the set C in (2.4) to be X, .(x) and Xy and the set B
respectively, we obtain

(z,B) =P (X

TAUB(

X) EB‘X():w),

HXTAUB(X)’XO

which is the definition of the forward committor function (3.3). O
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The following lemma is a corollary of Theorem 2.1.4 and we will use it in our proof
of the convergence of the discrete forward committor function ¢ defined in (4.4) to the
continuous committor function ¢ defined in (3.3).

Lemma 4.2.5. Let X and Y be random variables on (Q1, A1, P), taking values in the
measurable spaces (E',E") and (E, &) respectively. Then for any C € € and D € &',

P(Y €C,X €D)= /D ry.x(z,C)P o X~} (dz).
Proof. By definition of expectation
E[1p(X)E[lc(Y)|o(X)]] = /Q 1p (X(w)) E[1c(Y)|o (X)|(w)P(dw). (4.5)

Using Theorem 2.1.4 in the first equality, (2.4) in the second, and the fact that a stochastic
kernel is a probability measure for fixed w € €2 in the third equality we obtain:

E [Le(Y)|o(X)) (@) = [ Le()rvocn (@.dy) = [ Lo()rrx(X (@), dy)
=I<ay7x(X(w),C).

(4.6)

Using (4.6) in the first equation and the change of variables formula in the second we have:

[ 10 (X@) BLoM)Io(X))w)B(de) = [ 1p (X(@) kxy (X().C) Pldw)
(4.7)
= [ 1@y (@, CP o X (do)

Let G := {0,Q} be the trivial o-algebra on 2. By using the property of conditional
expectation (2.1) in the first, (2.3) in the second and the tower law (2.2) in the third
equality we obtain:

E[1p(X)E[1c(Y)[o(X)]] =E[E[1p(X)1c(Y)|o(X)]]
=E[E[1p(X)1c(Y)|o(X)]|G]
= E[1p(X)1c(Y)] = P(Y € C, X € D). (4.8)

Finally, combining (4.5), (4.7) and (4.8) proves the claim

P(Y € C,X € D) = /E 1p(2)kxy (z, C)P o X~} (dz).

O]

We now use the previous lemma to prove that the projected forward committor § and
the discrete forward committor ¢ are equal.

Proposition 4.2.6. Suppose that Assumption 4.2.1 holds. Let the projected forward com-
mittor ¢; and discrete forward committor §; be defined as in (4.1) and (4.4), respectively.
Assume that Xg is distributed according to the equilibrium distribution u. Then §; = §,
foralli e 1.



42 Chapter 4 Convergent discretisation schemes

Proof. Let i € I be arbitrary. Recall from (4.1) that

N 1 1
= (0 = ey [ a@)s @)u(an).

The definition (4.4), equation (4.3), the construction of Y, and the hypothesis that Xy is
distributed according to the equilibrium measure p imply that

P (YmK<Y) €K, Y= Z) P (XTAUB(X> €B, Xp€ SZ-)
W= P(Yb = Z) - P(XO S SZ)
P (XTAUB(X) €B, X, ¢ Si)

w(Si)

Thus, to prove the proposition, it suffices to show that

/S a(@)1s, (@)u(dr) = P (X, 00 € B, Xo € 51).

By Lemma 4.2.4, the left-hand side can be rewritten in terms of a regular conditional
probability,

[ a@1s @) = [ 1s(@rx,, 0.5 @ Bud)
S S

- /S ’QXTAUB(X%XO (LIZ, B),u(dﬂ?)
Using that 4 = Po X, ! and Lemma 4.2.5, we obtain

/Si HXTAUB(X)’XO (.T}, B)M(dm) - /5'1 HXTAUB(X)aXO (.ﬁL‘, B)]P) o Xo_l(dx)
=P(X,, 5x) € B, X0 € S)),
yielding the desired conclusion. -

The following lemma guarantees that in every cell there exists a point at which the value
of the continuous committor function equals that of the projected committor function. We
shall use the lemma later to prove the convergence of the discrete forward committor
function § to the continuous forward committor function q.

Lemma 4.2.7. Let {S;}icr be a Voronoi tessellation of S, and let §; be defined as in (4.1).
For every i € I, there exists some x; € S; such that q(x;) = §;.

Proof. If q is constant on S;, then because §; is the p-weighted average of the values of ¢
in the interior of S;, ¢ must equal §; on S;, and so there exist uncountably many x; which
satisfy the desired property. Therefore, suppose that ¢ is not constant on .S;, and partition
S, into the disjoint subsets S; == {z € S; : q(z) < dls,}, S :=={x €S, : q(z) > g|s,}
and SY .= {z € S; : q(x) = §|s,}. Since ¢ is continuous and not constant on S;, there
must exist some a € S;” and b € S;r . It follows from the intermediate value theorem that
there exists a ¢t € (0,1) such that x;(t) := (1 —t)a+tb satisfies ¢(x;(t)) = §;. Since a,b € S,
and since any Voronoi cell S; is convex, it follows that z;(t) belongs to S;. O
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Remark 4.2.8. Note that Lemma 4.2.7 still holds if set S; is only pathwise connected.
Namely, if S; is pathwise connected, that means that for every x,y € S;, there exists a
continuous function f : [0,1] — S; such that f(0) = = and f(1) = y. Therefore, for the
points a and b from the proof of Lemma 4.2.7 there exists a point ¢ € (0,1) such that
q(f(c)) = G; since q is continuous and thus maps intervals to intervals.

Next, we show that our choice of the projected committor function (4.1) is valid, by
proving an error bound for the error incurred when approximating the true forward com-
mittor ¢ with the projected forward committor § defined in (4.2).

Theorem 4.2.9 (Error bound for projected committor). Suppose that the forward commit-
tor q : S — [0,1] has bounded derivatives of first order, i.e. Vq € L, and let p € [1,00).
If there exists a constant K independent of x and x; such that for close enough x,x; € S

g(x) — q(z:) — (Vq(xi), 2 — 25)| < K|z — 4]y, (4.9)
then there exists some C' > 0 that depends only on q, such that for any Voronoi tessellation
{Si}tier of S with width p, the corresponding projected committor function q satisfies

lg = dllzeeuy < Cp.

In particular, as the width of the Voronoi tessellation decreases to zero, the LP(u) error of
q decreases linearly with p.

Proof. Tt suffices to prove the first statement, since the second statement follows from the
first. Fix an arbitrary p € [1,00), and fix an arbitrary i € I. By Lemma 4.2.7, there exists
an z; € S; such that ¢(z;) = ¢ = qls,-

Computing the LP(u)-error of the restrictions of ¢ and ¢ to S;, using that §|s, = ¢(z;)
by definition of x;, we obtain

10 @) 5.0 = |, la(e) — ) uda) = [ Jata)  a(w) ()
= [ la(@) = a(w) ~ (Valai),a = ) + (Valai),a = )" w(de)
<27 ([ late) = a(w) = (Vo). = @)l n(da) + [ [(Va(w,).z

<2 ([ kol ) + [ (1l o= 2], n(do))
<2 (P (S0 + [Vl 7(51)

where we used the inequality (a + b)P < 2P~1(aP + bP) in the first inequality, (4.9) and
the Cauchy-Schwarz inequality in the second and the fact that z,z; € S; implies that
|z — x;] < p in the third. Therefore, we have that

lg — ‘jHIip(u) = Z (g = qA)|5iHi,,(#)

el
<o (W <Z u(&)) + Vg2 (Z u<si>)> .
el el
< 2(IVdll + K)p)?

) )
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where we used that >;c; u(S;) = 1, 2P~ < 2P and a” + WP < (a + b)P, for a,b > 0 and
p > 1 in the second inequality. This proves the claim for C' = 2 (||Vq||, + K) . O

Inequality (4.9) is inspired by the Taylor expansion of g about x;:
q(x) = q(x;) + (Va(zi), x — x) + R(|x — xi]y), x,2; € 8.

In particular, by (4.9) we assume that the remainder of the first order Taylor expansion
of ¢ about x;, R(|x — ;],) is bounded by K |z — z;|, with K that does not depend on the
point of expansion x;.

In an analogous way to how in (4.2) we defined the function ¢ : S — [0, 1] using the
finite collection {§;}ic; of values, using the collection {g;};c; we can define a function
g : S — [0,1] that is constant on the interior of each S; with value g;. The values of ¢
on the boundaries of Voronoi cells are not important for the error analysis, so we will not
specify them here. This yields the following corollary.

Corollary 4.2.10 (Error bound for discrete committor). Suppose that Assumption 4.2.1
and the assumptions of Theorem 4.2.9 hold. Then for the same scalar C' as in Theorem
4.2.9, it holds that for any Voronoi tessellation {S;}icr of S with width p, the function §
satisfies

lg = dllze(u) < Cp,

and the LP(u) error of § decreases linearly with the width p.

Proof. The result follows from Theorem 4.2.9 and Proposition 4.2.6. O

Corollary 4.2.10 implies that for a sequence of partitions with widths decreasing to
zero, the error between the discrete committor function ¢ and the continuous committor
function ¢ corresponding to the diffusion process decreases to zero linearly with the width.
In the following section we define the discrete isocommittor surfaces using the discrete
committor function defined in this section.

4.3 Isocommittor surfaces

Let us recall the definition of the isocommittor surface corresponding to a diffusion process.
For a given value a in the unit interval [0, 1], the corresponding isocommittor surface g, is
the a-level set of the forward committor g, i.e.

¢ ={x €S : q(x) =a}.

We assume ¢, to be a surface of codimension 1 for a € (0,1). Note that by definition of ¢
given in (3.3) g0 = A, and ¢; = B. Therefore the dimension of g, changes at the endpoints
of the unit interval, because for a € {0,1} ¢, is not a surface, but a full dimensional set.
Thus there is a disagreement between mathematical and linguistic description of sets ¢,
for a € {0,1}.

We describe a procedure for obtaining reasonable discrete isocommittor surfaces. We
make the following assumption.
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Assumption 4.3.1. The true forward committor q defined in (3.5) is globally Lipschitz
continuous with constant K > 0, i.e.

lg(z) —q(y)| < K|z —yly, Vz,yeSs.

Remark 4.3.2. Globally Lipschitz continuously differentiable functions have bounded de-
rivatives, therefore, the assumption that Vq € L™ wused in Theorem 4.2.9 is implied by
Assumption 4.3.1. Furthermore, the global Lipschitz continuity of q is implied by Vq € L>®
under the assumption that S is open and convex. Namely, by the mean value theorem, for
every x,y € C, there exists a f(x,y) € (0,1) such that

q(y) — q(z) = Vq((1 = B)z + By) - (y — x).

Using the Cauchy-Schwarz inequality it follows then that

lq(y) — q(@)] < [Va((1 = B)z + By)l ly —z| < |Vl [y — 2] -

Here we could bound the Vq at the given point since ¢ € C?, as it satisfies (3.5). This
implies that q is Lipschitz continuous on S. Therefore, on the interior of the convex state
space S the global Lipschitz continuity of continuously differentiable committor function q
is equivalent to Vq € L*°.

Fix a Voronoi tessellation {S;};c; with width p. Recall the definitions (4.4) and (4.1)
of ¢; and §; respectively, and that §; = ¢; by Proposition 4.2.6. We shall use the following
lemma.

Lemma 4.3.3. Suppose that Assumption 4.3.1 holds with the constant K. Let {S;}icr be
a Voronoi tessellation with width p. Then for any i € I, it holds that

Gi—Kp<qly) <@+ Kp, Vyes.
Proof. Fix an arbitrary ¢ € I. Given Assumption 4.2.1, it holds that
lg(z) —qW)| < K|z —y| < Kp, Va,y € Si.

Now recall that, by Lemma 4.2.7, there exists at least one z; € S; such that ¢(z;) = §;.
Hence by Proposition 4.2.6, ¢(z;) = ¢;. Therefore, we have

G — a(y)| = la(z:) — q(y)| < K |zi —y| < Kp,
which proves the claim. ]

Definition 4.3.4. Suppose that Assumption 4.3.1 holds with the constant K > 0 and
suppose we have a Voronoi tessellation {S;};c; of width p, together with the associated
set {Gi}ier of discrete committor values. For a given a € (0, 1) the corresponding discrete
isocommittor surface 4,(p) is defined by the index set I, and corresponding subset of state
space,

I,.={iel :|Gg—a|l < Kp}, qulp):=Uicr,Si. (4.10)
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Note that the discrete isocommittor surface ¢,, unlike g, is not a surface as it has full
dimension d. Definition 4.3.4 is motivated by Corollary 4.2.10, which suggests that as the
width decreases, the deviation of ¢;(x) from ¢(z) at any point = € S; is small. Therefore,
for a € (0,1) there should exist a set of indices I such that the deviation of ¢; from a is
not too large for all 7 € I.

The following lemma suggests that our definition is reasonable because the discrete
isocommittor “surface” contains the true isocommittor surface.

Lemma 4.3.5. Fix an arbitrary a € (0,1) and let q, denote the corresponding continuous
isocommittor surface. Then g, C o (p).

Proof. Let S; be a partition set such that S; N g, # 0, and suppose that i ¢ I,. According
to Definition 4.3.4, if i ¢ I, then either ¢; < a—Kp or ¢; > a+ Kp. If §; < a— Kp, then the
right inequality of Lemma 4.3.3 yields that ¢(y) < i+ Kp < a, for all y € S;. This implies
that g, N'S; = (), which contradicts the assumption that S; N ¢, is nonempty. Similarly,
if i > a + Kp, then the left inequality of Lemma 4.3.3 yields that a < ¢ — Kp < q(y)
for all y € S;, which again produces a contradiction with the assumption that S; N q, is
nonempty. Thus, if S; N ¢, is nonempty, then ¢ must belong to I,. By definition of the
discrete isocommittor g, (p), it follows that S; C Gu(p).

Since S; was taken to be an arbitrary partition set that had nonempty intersection with
qa, it follows that every such partition set is contained in G,(p). Since ¢, is contained in
the union of sets 5; such that .S; N ¢, is nonempty, and since every such S; is contained in
Ga(p), it follows that g, is contained in G,(p). O

In the following proposition we define an envelope D, (p) of the continuous isocommittor
surface g, as a full dimensional set which depends on the partition width p and contains
the discrete isocommittor surface ¢,.

Proposition 4.3.6. Suppose that Assumption 4.3.1 holds. Let a € (0,1) be arbitrary,
and let {S;}icr be an arbitrary Voronoi tessellation of S with width p. Let Gq(p) be the
associated discrete isocommittor surface given in Definition 4.3.4. There exists a set Dq(p),
that depends solely on q,a and p such that Dy(p) D da(p).

Proof. Let a € (0,1) be arbitrary. Fix an arbitrary Voronoi tessellation {.S;};cr with width
p, let I, be as in (4.10), and fix an arbitrary i € I,. Then by definition of I, given in (4.10)
it holds that

a—Kp<g <a+ Kp.

Combining these inequalities with the result of Lemma 4.3.3 yields
a—2Kp<qy) <a+2Kp, Vyes,.
Therefore, it holds that
lg(y) —a| <2Kp, YyeS; Viel,. (4.11)
For any p’ > 0 not necessarily equal to p, define the set

Dy(p):={z e S : |q(z) —a] <2K)'}. (4.12)
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From the definition of g, and D,(p’), it follows that q, C Dy(p’), for any p’ > 0. From
(4.11), it follows that S; C D,(p) for all ¢ € I,. Thus

da(p) = U Si C Da(p).
i€l,

Therefore ¢,(p) C D4(p) which proves the claim.
O

Suppose that Assumption 4.3.1 holds. Let a sequence {px }ren C (0, +00) be decreasing

to zero and for each py, let {SZ-(k)} keI(k) be an arbitrary Voronoi tessellation of S with width
pi- Fix a € (0,1) and let {go(pr) }ren be the associated sequence of discrete isocommittor
surfaces and {D,(pr) }ren the sequence of envelopes defined in (4.12). By Lemma 4.3.5
and Proposition 4.3.6 we then have

qa C (ja(pk) C Da(pk), (4.13)

for every a € (0,1) and every pi. Note that when {pj }ren decreases to zero, the sequence
of envelopes {Dg(pr)}ren decreases to g,. Thus the sequence of discrete isocommittor
surfaces {Gq(pr) }ren decreases to g, when {py }ren decreases to zero. Therefore, Definition
4.3.4 of the discrete isocommittor surfaces is reasonable.

In the preceding section and this section we defined the discrete committor function
and the discrete isocommittor surfaces on the Voronoi tessellation, respectively. We proved
the convergence of the discrete committor function to the committor function of transition
path theory for diffusion processes. For the isocommittor surfaces, we did not prove the
convergence result in the Hausdorff metric, but we provided the set inequality (4.13) which
implies that the discrete isocommittor surfaces decrease to the continuous isocommittor
surfaces of transition path theory for diffusion processes when the partition width decreases.
Note however, that we have not used any properties of the Voronoi tessellation except that
the Voronoi cells are pathwise connected sets; see Remark 4.2.8. The following step is to
define the discrete probability current and prove its convergence to the probability current
of the transition path theory for diffusion processes. In order to achieve this we will use
more of the properties of the Voronoi tessellation. In particular, we will use that the
partition sets in the Voronoi tessellation are polytopes. Therefore, in the following section
we digress and summarise some properties of polytopes that we will use in the proof of
the convergence of the discrete probability current that we give in Section 4.5. The results
presented in the following section are based on the results of [10].

4.4 Properties of polytopes

We begin with the definition of a d-dimensional polytope P in R%. Let N € N. For
i € {1,...,N}, let a; € R? satisfy |a;|, = 1, a; # a; for i # j, and let b; € R. The set
{r € R : ax = b;} defines a hyperplane with normal vector a; and b; is the offset of
the hyperplane from the origin; see [6, Section 2.2.1]. The set H; := {x € R? : o)z < b;}
defines a half-space. We define a polytope to be the intersection of half-spaces, i.e. P =
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Note that P can be written as a system of linear inequalities
P={zecR?: Az < b}, (4.14)

where A € RV*4 hag row vectors a,iT and vector b € N has components b; and < denotes
the componentwise inequality between vectors. The terminology is not standard and in
some uses a polytope may be an unbounded or a nonconvex set. The polytopes we discuss
in this thesis are bounded and convex.

Note that a polytope P C R? defined in (4.14) need not have the full dimension d. This
means that the intersection of two halfspaces is at most d — 1-dimensional, i.e. there exist
i,j € {1,...,N}, i # j such that dim(H; N H;) < d— 1. A facet of the polytope is the
intersection of one of the supporting hyperplanes {z : a;x = b;} with the polytope itself:

{reR:a]z=0}NP

An outer unit normal associated to a facet of a polytope P is a unit vector that is orthogonal
to the facet and points out of P.

In the following proposition we prove that for d > 1 any d-dimensional polytope in R?
has at least d + 1 facets.

Proposition 4.4.1. Let P € R? be a polytope given by P = {x € R? : Az < b} where
d > 1. Then the matriz A € RN*? is such that N > d + 1.

Proof. We prove the claim by induction.

Base case: Let d = 2. A full-dimensional polytope in R? with the smallest number of
facets is a triangle, which has 3 = d 4 1 facets.

Suppose that the claim holds for a (d — 1)-dimensional polytope.

Induction step: Let d > 3, and assume that there exists a d-dimensional polytope with
only d facets. These d facets are (d — 1)-dimensional polytopes. Furthermore, each facet
intersects at most d — 1 other facets, since there are d facets in total by assumption. This
yields that there exist (d — 1)-dimensional polytopes with at most d — 1 facets, which
contradicts the base case. Thus any d-dimensional polytope must have at least d + 1
facets. O

Corollary 4.4.2. Let P be a d-dimensional polytope in RY given by (4.14). Then A has
at least d linearly independent rows, i.e. P has at least d linearly independent outer unit
normals.

Proof. By Proposition 4.4.1, P has at least d + 1 facets, and therefore at least d + 1 outer
normals. We will prove by contradiction that there exist d linearly independent outer
normals.

Suppose P has no more than d — 1 linearly independent outer normals. Then the
normals to the facets of P span at most a (d — 1)-dimensional space, which implies that
there exists a hyperplane H in R? containing all the outer normals of P. Let v be normal
to H, and let n be an arbitrary outer normal associated to some facet F' of P. Then v
and n are orthogonal, which implies that v is parallel to F', and thus F' is unbounded
along the direction of v. This implies that P is unbounded, which produces the desired
contradiction. O
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Let
A=UxV"

denote the singular value decomposition of A, where U € RV*N and V € R4 are or-
thogonal matrices with columns {uq,...,un} and {v1,...,v4} forming orthonormal bases
of RY and R? respectively, and ¥ € RV*9 is a diagonal matrix with the singular values
01,...,04 of matrix A on the diagonal. In the following we assume that o1 > 09 > -+ > 0y.
Then oy := 04 > 0, since rank(A) = d by Corollary 4.4.2. The matrix A can be written
as a sum of rank one matrices in the following way:

d
A= Z o, (4.15)
i=1

In the remainder of this section we establish the connection between the geometry of
a polytope and the smallest singular value of the corresponding matrix A of unit normals.
We first define the Chebyshev centre and the inner radius of a polytope.

The centre of the largest ball inscribed in the polytope is known as the Chebyshev centre
of the polytope [6, Section 4.3.1] and it is the point that lies furthest away from any point
on the boundary of the polytope. Let us denote the Chebyshev centre of the polytope P
by x..

Let the inner radius of a polytope P C R? be defined as the radius of the largest ball
inscribed in P. We denote the inner radius of P by inrad(P). According to the definition
of the Chebyshev centre, the problem of finding inrad(P) is equivalent to the problem of
finding the largest ball inscribed in P that is centred at x.. More precisely, the problem
of finding inrad(P) is equivalent to maximising the radius r of the ball B(z.,r) such that
B(ze,7) C P, ie.

inrad(P) := sup{r > 0: B(z.,r) C P}.

This implies that every point x € B(x.,r) satisfies all the inequality constraints of (4.14),
ie.

aj  <b;, forallie{l1,...,N} forall z€ B(z,r). (4.16)

Since B(z,r) can be written as B(z.,r) = {z.+u : |u], <7}, (4.16) can be rewritten
as the linear program

maximise T
subject to luly <7 (4.17)
a; (ze+u) <b;, i€{l,...,N}.

The solution of the linear program (4.17) corresponding to the Chebyshev centre x. is
inrad(P). Since sup{a;u : |ul, <1} = 7]a;|,, we arrive at the following formulation of
the linear program (4.17):

maximise r

subject to a; w. +7a;ly < b, i€ {l,...,N}. (4.18)

Now, since the rows of the matrix A have unit norms, we can compactly rewrite (4.18) as

maximise r

subject to Axz.+ re < b, (4.19)
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where e = [1,...,1]T € RV,

Using the inner radius of a set, we define the degeneracy ratio of a set. We will use
this to characterise the geometry of polytopes. We define the degeneracy ratio of a d-
dimensional set P by
inrad(P)

oP) = diam(P)’

to quantify how close a d-dimensional set P is to being (d — 1)-dimensional. Note that
0(P) <1/2, since %(P) > inrad(P) for any set P, with equality attained for d-dimensional
Euclidean balls.

Recall that a homothetic transformation is a similarity mapping that preserves the
proportion of distances of any point of a set P to a preselected fixed point. Therefore
the image of a set P under homotheties is a scaled version of P. Since the scaling factor
appears in both the numerator and the denominator of the degeneracy ratio, we conclude
that the degeneracy ratio §(P) is invariant under homotheties.

We motivate the degeneracy ratio as follows: Suppose that P, and P, are d-dimensional
sets with 6(P;) < 0(FP2), and let P| be a homothetic image of P; such that diam(P]) =
diam(P,) and 6(P;) = §(Py); then

inrad(P])  inrad(P) - inrad(P,)
diam(P})  diam(P;) ~ diam(P)’

(4.20)

Since diam(P;]) = diam(P,), it holds that P| and P, are of equal ‘size’ in the sense that
the minimal circumscribed balls of P| and P> have the same radius. On the other hand,
from (4.20) it follows that inrad(P]) < inrad(P,) which means that P] is ‘thinner’ than P,
because the radius of the maximal inscribed ball of Pj is smaller than that of the maximal
inscribed ball of P,. Loosely speaking, the set Ps is closer to being d-dimensional than the
set P|. The set P| will be at most d — 1-dimensional when inrad(P;) equals zero.

We will relate the degeneracy ratio of a polytope P to the smallest singular value
corresponding to the polytope P, i.e. the smallest singular value of matrix A. In particular
let { Py }ren be a sequence of d-dimensional polytopes and {Ag }ren be the sequence of the
matrices of unit normals corresponding to {Pj}ren. We prove that when the sequence
of polytopes is such that the corresponding smallest singular value decreases to zero, the
degeneracy ratio of the polytopes decreases to zero, i.e. if omin(Ag) — 01 then §(BP) — 0.

In the following lemma we prove that the inner radius of a polytope is invariant under
translations.

Lemma 4.4.3. Let P be a polytope given by (4.14). If P’ is a polytope obtained from P
by translation, i.e.
P={zecR? : z—sc P},

for some s € R?, then inrad(P’) = inrad(P).

Proof. Let x. denote the Chebyshev centre of P and r denote the inner radius of P, i.e.
r = inrad(P). Thus z. and r satisfy (4.19).
Let P’ be given as in the statement of the lemma. Then

P ={zecR?: Alz—s)=bl={zecR? : Az <V},



4.4 Properties of polytopes 51

where b’ = b+ As. By adding As to both sides of the constraint in (4.19) we obtain the
following linear program that optimises for inrad(P’)

maximise r

subject to Azl +re XV, (4.21)

where z/, = .+ s. Since the constraint sets in (4.21) and (4.19) are related by translation,
the solutions of the linear programs in (4.19) and (4.21) are the same, and thus inrad(P’) =
inrad(P). O

Note that any polytope P can be translated such that 0 € int(P). The following lemma
provides the information on the sign of the offsets b; of the facets of the polytope P when
0 € int(P).

Lemma 4.4.4. If P is a d-dimensional polytope given by (4.14) such that 0 € int(P), then
b >0 forallie{1,...,N}.

Proof. If 0 € P then x = 0 satisfies the inequality constraint in (4.14), which implies
that b; > 0 for all i« € {1,..., N}. Suppose that there exists some i € {1,..., N} such
that b; = 0. Then for z = 0, az-Tx = 0 = b;, and hence the origin lies on a supporting
hyperplane of the polytope P, and thus the origin belongs to the boundary of P. Taking the
contrapositive, if the origin lies in the interior of P, then for alli € {1,..., N}, b; > 0. O

Lemma 4.4.4 will be useful in proving the relation between the minimal singular value
of A and the degeneracy ratio of P which we give in the following theorem. Recall the
singular value decomposition (4.15) of the matrix A; 04(A) denotes the smallest singular
value of A.

Theorem 4.4.5. Let P = {x € R? : Az = b} be a d-dimensional polytope with 0 € int(P),
and let o4 be the smallest strictly positive singular value of the matriz A. Then

5(P) < a4(A).

Proof. By singular value decomposition, vg denotes the right singular vector of A corres-
ponding to o4(A). The intersection of span(vy) and the polytope P is a line segment. Let
f,g € OP denote the end points of this line segment, i.e. points where span(vg) intersects
OP. Then f = \vg and g = A\gv, for some A1, A2 € R. Since 0 € int(P) and 0 € span(vg),
it holds that the line segment connecting f and ¢ contains the origin 0 € R% and therefore

sign(A1) = —sign(A2). (4.22)

Since f,g € OP there exist 7,j € {1,..., N} such that f and g satisfy Az < b with equality
for components ¢ and j, that is (Af); = b; and (Ag); = b; or equivalently

3 4, such that aZTf =b; and a;—g =b;. (4.23)

If i = j, then the two distinct points f and g lie on the hyperplane {z € R¢ : aiTx =b;}.
More precisely, they lie on the facet {x € R? : a2z = b;} N P. Since the line segment
connecting f and g contains the origin 0 € R?, the origin belongs to the facet {x € R? :
a; x = b;} N P. This contradicts the assumption that 0 € int(P). Therefore i # j.
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The points f and g are mapped by the linear mapping A to the points

d
fli=Af = A\vg = Z Uiuivz-—rklvd = og\1Uqg (4.24)
i=1
and
d
g = Ag = Algvg = Z Jiuivi—r)\gvd = ogM\aly (4.25)
i=1

respectively, where we used (4.15) in the second equations of both (4.24) and (4.25), and
the fact that {v1,...,v4} form an orthonormal system in the third equations of both (4.24)
and (4.25).

The length of the line segment connecting the points f and g in R? is

|f = gly = [Mva — Aawaly = [A1 — Ao Jvgly = [A1 — Ao, (4.26)

where we used that |v4], = 1 in the last equality. Analogously using |uq|, = 1 we obtain
the length of the line segment connecting f’ and ¢’ in RV:

‘f/ — g'|2 = |ogAiug — ogAougl, = 04| A — Aaf [ugly = 0| A1 — 2] (4.27)

Due to the linearity of the mapping A, the line segment connecting f and g is mapped
to the line segment connecting f' and ¢’. According to (4.23), f; = b; and g; = b;.
Furthermore,

9i = (0arauq); = (O'd)\lud)ii\j = f[;\i = bii\j,

where we used (4.25) in the first equality and (4.24) in the third. Let ¥’ € RY be such
that b, := g for all k € {1,...N}\ {i} and b, = b;. Consider the triangle with vertices
f',¢" and V/. This triangle is right-angled with right angle at the vertex &', because the line
segment between f’ and b’ is contained in the hyperplane {z € RY : x; = b;} and the
line segment between ¢’ and ¥’ is contained in the hyperplane {x € RY : z; = b;} and
these two hyperplanes are orthogonal to each other because i # j. Since ¢’ and b differ in
the i-th coordinate only, the length of the side connecting ¢’ and ¥’ is

).

where we used Lemma 4.4.4 and (4.22) in the first equality and the fact that 1 + %

positive in the second. Furthermore, since the triangle formed by o, f’ and ¢’ is right
angled with right angle at the vertex ¥, it follows that the hypotenuse is given by the line
segment joining f’ and ¢/, and that the length of the hypotenuse is greater than the length
of the line segment connecting ¢’ and o’. Therefore

)
z>\1

Ao
1 _Z
+ "

A2
bi — bi2| = b, —b (142
(+)\1

is

A
4| A — A2 > b; (1 + ’2
A1

) > b, (4.28)

where we used (4.27). The last inequality uses the fact that the absolute value is non-
negative and that A\; and Ay are nonzero.
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The radius of the largest inscribed ball in P solves the linear program (4.19). By
Lemma 4.4.3, we know that the inner radius of a polytope is invariant under translations.
Therefore, we may assume without loss of generality that . = 0. Substituting . = 0 into
the linear program (4.19) yields that the radius inrad(P) of the largest inscribed ball in P
satisfies inrad(P)e < b, where e = [1,...,1]" € RV, In particular, it follows that

inrad(P) < b; forevery i€ {l,...,N}. (4.29)
Therefore it follows that for some i € {1,..., N}
oq diam(P) > oq|f — gl = 0a |\1 — A2| > b; > inrad(P),

where we used that f and g are in 9P in the first inequality, equation (4.26) in the equality,
and (4.28) and (4.29) in the second and third inequalities respectively. Finally,

inrad(P)

dam(p) =)

o4 >

O]

Theorem 4.4.5 gives a geometric interpretation of the shape of a polytope whose smallest
singular value is close to zero. In particular, if the smallest singular value of the polytope
P is close to zero, the radius of the largest inscribed ball in P, inrad(P) is small compared
to its diameter, which means that P is ‘thin’ in the direction of the right singular vector
corresponding to the smallest singular value of matrix A in (4.14). This result is interesting
in its own right and to the best of our knowledge it is the only result relating the smallest
singular value corresponding to a polytope to the shape of the polytope. Theorem 4.4.5
will be the crucial ingredient in the proof of convergence of the discrete probability current
which we define in the following section.

4.5 Probability current

In this section we define a discrete probability current of reactive trajectories Jr which
is obtained by observing the diffusion process in the state space discretised by a Voronoi
partition. As with Sections 4.2 and 4.3 we assume that we can observe the continuous
process {Y;}+>0. This means that at any moment ¢ > 0 we know in which Voronoi cell S;
the diffusion process {X;};>0 is located. However, we cannot detect the exact location of
the diffusion process within the cell.

Recall that the probability current Jr : S\ (AU B) — R? (3.10) represents the prob-
ability of the flow of reactive trajectories. We repeat the definition from (3.10) below for
convenience. This definition was taken from [32, Equation (3.14)]. On any surface 05;,
which is the boundary of S; C S\ (AU B) it is defined implicitly via

11
i

= Jr(y) - ns;(y)os, (dy)
a5,
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Notice that for a Voronoi cell S; we have

Ta(y) - ns, (y)os, (dy) = 3 / ) - i (1) 55, (dy),

aS; kEN; aS; ﬂask

where N; denotes the set of indices of cells adjacent to S;, i.e.
N; = {j el : lel(@SZ N GSJ) =d— 1},

and n;; € R? is the unit vector that points out of S; and is orthogonal to the hyperplane
that contains the facet 9.5; N dSy. Thus, for any k € N; we have

.1 1
Qi = lim — lim — 1Si (Xt) 1Sk (Xt+s) - 1Sk (Xt) 1Si (Xt+s) dt
s—=0T § T—oo T RN[0,T] (4 30)

= / Jr(Y) - nikos,ns, (dy)
85;NdSy,

Following the same strategy as for the discrete committor function, we define the dis-
crete probability current Jr S\ (AU B) — R to be a piecewise constant function, equal
to some vector Jg; € R? on the interiors of each Voronoi cell int(S;). Choosing a piecewise
constant function motivates the relation

/ JR(y) Nk O S;NSy (dy) = jR,i . nikd(asi N 8Sk)7 Vk € M
85,M0S,

Since we can observe the process {Y; }+>0, we can approximate the quantity o by using
sample data from reactive trajectories. Combining (4.30) with the preceding equation, it
follows that for every k € N; we want to have

Qi = Nk + jR,iO'(asi N 8Sk)
We can rewrite the above as a matrix-vector equation
NiJr; = d; € R*i, (4.31)

where d; is a vector of length #MN; with k-th entry given by (d;)x = i x/0(9S; N ISk),
and N; is a (#MN}) x d matrix with real entries such that the k-th row is nl. A necessary
condition for the existence of a solution .J R, to the equation (4.31) is that &; must belong
to the column space of IN;. However, we do not expect the latter condition to hold in
general, since Proposition 4.4.1 indicates that #N; > d + 1, so the column space of N; will
be a subspace of strictly positive codimension. However, according to Corollary 4.4.2, the
rank of matrix N; is d. As a consequence, we can substitute the problem given in equation
(4.31) with the normal equation

N,"NiJr; = N;"a; € R%. (4.32)

Since N; € R#Nixd hag rank d, the square matrix NZ-TNZ- € R%*4 hag full rank and thus
it is invertible. Therefore, we can define the discrete probability current Jr on the interior
of every Voronoi cell using equation (4.32). Note however, that solving (4.32), as well as
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storing the matrix NZ-TNi will be computationally expensive for large d, since in the case
of meshless discretisations NZ-TNi is not sparse.

We now extend the definition of the discrete probability current to the boundaries of
Voronoi cells. Let 2/ denote the power set of any countable set I. Define the maps

C
hq : (U int(Si)> — 21, X {Z el:ze 851}

JR’j‘Z 1] € J}

ho: 20 1, J = 5" ::argmax{

C

h: (U int(S¢)> — I, x> hgohi(x).
el

The map h; assigns to every point x on a boundary of some Voronoi cell S;, the set of

indices of all Voronoi cells that share a facet containing x with the cell S;. This set of

indices includes ¢ as well. To this set of indices of Voronoi cells, the map hs assigns the

index of the cell in the given set for which the discrete probability current in its interior

has the maximal norm. Finally, we are able to give a definition of the discrete probability
current on S\ (AU B).

Definition 4.5.1. The discrete probability current Jp : S\ (AU B) — R? associated to a
Voronoi tessellation {S;}ier is given by the function:

jR(SL') — {JR,i T € int(SZ-)

JNR’h(x) otherwise.

The function Jg is piecewise constant on the interiors of the Voronoi cells, and for any
x not in the interior of a Voronoi cell, the probability current is the L2-norm maximising
current chosen from among the cells whose boundary contains z. For the purposes of
establishing a convergence of Jg to Jg in the L2(S\ (AU B), j1; R%) topology the definition
of Jr on the complement of the interiors is not important, as this set has Lebesgue measure
zero. However, for the purposes of defining discrete streamlines, which we consider in
Section 4.6, this case is important.

Remark 4.5.2. Note that Definition 4.5.1 does not require the knowledge of the stochastic
differential equation corresponding to the diffusion process X. Therefore, the definition can
potentially be applied to a wider spectrum of continuous processes with different boundary
conditions. However, the convergence results we prove below hold only in the case when X
is an ergodic diffusion process.

Let us denote M; := NiTNi and §; :== Nl-Tdi. Equation (4.32) then becomes
M;Jr; = Bi.

Note that the singular values of the matrix M; are equal to the squared singular values of
the matrix N;. Indeed, let N; = ULV T be a singular value decomposition of matrix N,

i
then M; = N:Ni = (UEVT) USVT =VETEVT is the singular value decomposition of

matrix M;.
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Since the matrix NV; is determined by the polytope S;, we may consider the smallest
and largest singular values oy (IV;) and opmax(V;) of N, i.e.

Umin(si) = Jmin(]\[i) = Umin(Mi)7 Umax(si) = Umax(Ni) = Umax(Mi)~ (434)

We use this property in the proof of the following theorem to show that when Jgr belongs
to a certain class of functions, then the error between Jr and Jg is bounded on every cell
in S\ (AU B), and approaches zero in the limit of small partition width.

Theorem 4.5.3 (Error bound for discrete probability current). Let Jr be a globally
Lipschitz function on S\ (AU B) with Lipschitz constant L, and let {S;}ier be a Voronoi
tessellation of S with width p. Then for everyi € I\ (JUK), there exists some C; > 0
that does not depend on p, such that

‘jp%i — JR(x)’2 < pCi, VzeSb;.

In particular, for any well defined discrete probability current Jr: S\ (AUB) — R? that
is equal to Jp; on int(S;) for everyi e I\ (JUK), we have

e

< pmax C;. (4.35)
L2(S\(AUB),u;R%) iel
Proof. The second statement follows from the first. Namely, the first statement proves
the convergence of Jx to Jgr on the interior of each cell S; for i € I\ (J U K). Since
the complement of interiors of cells has Lebesgue measure zero, it does not affect the
convergence of Jp to Jg in the L2(S \ (AU B), u;R%) topology. Thus it suffices to prove
the first statement.

Fix an arbitrary z € S; with i € I \ (J U K). According to Corollary 4.4.2, the matrix
N; has full rank. Therefore M; is invertible and we can write

‘jR,i - JR($)’2 = ‘MflMi (jR,z‘ - JR(fU)) ‘2
< Omax (Mi_l) M; (jR,i — JR(SC))‘

2

= Uminl(Mi) ‘Mi (jR,i - JR(x)) ‘2
= 02‘1(51‘) ’Mz (jAB,i - JAB@)) ’2 : (4.36)

where we used the following inequality from linear algebra
omin(G) | — yly < |G(z — Y|y < omax(G) |2 — yl,,

where G is a d-dimensional matrix, to obtain the inequality, for G = M;, and (4.34) to
obtain the last equality.
For H € R1*42 and v € RY it follows from the Cauchy-Schwarz inequality that

)t

i=1

da

2
h:v‘

dy
2 2
< Z hil [v]3
=1

|Hol; = i (i hz’jvj) = i (

=1 \y=1 =1

hij’l)j
j=1
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where h, is the i-th row of H. Therefore

‘Mz' (jR,i — JR(iL‘>) ‘z = ‘NZTNZ‘ (jR,i — JR(.%')> ’z
< zd: Ini;*[5 ’Ni (jR,z' - JR(»’U)) z, (4.37)
j=1

where (nij*)T is the j-th row of matrix N; T, ie. n;;* is the j-th column of N;. Since the

rows of the matrix N; are unit normals for all j € {1,...,#N;}, we know that the absolute
value of each entry of vector n;; is at most one. Thus the absolute value of each entry of
matrix NV; is bounded from above by one. Therefore

s ™13 < #N. (4.38)
It follows from (4.31) that
. 2 _ , )
INi(Tri = Jr(@)], = 3 |nis - (Jrs = @) = lais = nig - Jn(@)*. (4:39)
Jj=1 j=1
By (4.30)
1
i j — nij - Jr(x)| = (5,1 05;) /asmasj nij - (Jr(y) — Jr(z)) 0os,nos; (dy)
1
S 5 A5 ij — 0. (d
= 0(8S; N dS;) /85,~masj nijly | TR(Y) — Jr(2)|; 005,008, (dy)
1
S —Ac Ao Ly — x|, 0ss. (d
~ 0(05;N0S;) /65masj ly ly 0as,n0s; (dY)
Lp

< ———————0(05;N0S;) = Lp, 4.40
where we used the Cauchy-Schwarz inequality to obtain the first inequality, the fact that
ni; is a unit vector for all i € I and j € {1,...,#M\;} and the Lipschitz continuity of Jg to
obtain the second inequality, and the fact that |z — y|, < p for any z,y € 9S; C S; in the
last inequality. Combining the inequalities (4.36), (4.37), (4.38), (4.39) and (4.40) yields

- 1 .
’JR,i—JR($)‘2 < m Mi (JAB,i_JAB(x))‘z
d
S > ni* |5 ‘Ni (jRi - JR(OC)) ’2
= o (S0) = 72 ’ 2
1 d )
< #M a,‘;—ninRm)
(5 N 2 0w = mig - Ta(e)
< o\ #NA (L)
N Ur%lin(si)
#Nid
— [ Ni%
pamin(Si)

so that the desired error bound holds with C; := #N;dLo -2 (Si). O

min
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Define the smallest singular value of a Voronoi tessellation {S;}icr via
Omin({Si fier) = 1?61}1 Omin(54),

and let
#Nmax({si}ief) = I?S‘IX(#M)

The error bound (4.35) of Theorem 4.5.3 can then be written as

o

< BN ({Sidie D)L (omin({Si}ier)) P (441)

L2(S\(AUB) ;R

To obtain a convergence theorem from the bound above, we must ensure that the sequence
{#Nmax({si(k)}ie I(k))}k N associated to the sequence of Voronoi tessellations with de-
€

creasing widths remains bounded and that the sequence {amin({Si(k)}ie I(k))}keN remains

bounded away from zero. For the first sequence to be bounded we introduce an additional
assumption which uniformly bounds the number of facets of every Voronoi cell.

Assumption 4.5.4. The sequence of Voronoi tessellations {{Si(k)}iel(k)}kEN is such that
there exists a constant K1 > 0 such that #Nmax({Si(k)}ieI(k)) < Ki, i.e. the mazimal

number of neighbours of a cell in the partition {S,L'(k)}iej(k) 18 bounded from above by K1,
for every k € N.

To achieve that the sequence {amin({Si(k)}ie (k) }keN remains bounded away from zero

we use the degeneracy ratio defined in Section 4.4. Theorem 4.4.5 gives a necessary con-
dition for the smallest singular value of a polytope to be close to zero, namely that the
degeneracy ratio of the polytope must be close to zero. Therefore, by contraposition, keep-
ing the degeneracy ratio of all polytopes in a partition bounded away from zero ensures
that the smallest singular value for any polytope in the partition stays bounded away from
zero. This motivates the following assumption.

Assumption 4.5.5. For the sequence of Voronoi tessellations {{Si(k)}z‘el(k)}keN there ex-
ists a constant Ko > 0 such that 6(SZ~(k)) > Ko for alli € I(k) and all k € N.

Finally, we prove the convergence of the discrete probability current Jz to the continu-
ous probability current Jg.

Proposition 4.5.6. Let Jr be a globally Lipschitz function on S\ (AU B) with Lipschitz
constant L. Let {py}ren be an arbitrary sequence in (0, 00) decreasing to zero and for each

k, let {Si(k)}iel(k) be a Voronoi tessellation with width py. Let the sequence of partitions
{{Si(k)}iel(k)}keN satisfy Assumptions 4.5.4 and 4.5.5 with constants K1 > 0 and Ky >
0 respectively. If j}(zk) denotes the discrete probability current corresponding to partition
{SZ-(k)}iE[(k) then, for every x € S\ (AU B) there exists a constant C > 0 independent of
k such that "

T (@) = Jr(@)|, < Coy. (4.42)
Furthermore .

178 — IRl 12\ (auB) k) < Cpi-
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Proof. Since Assumption 4.5.5 is satisfied with constant K5 for all k € N it follows that the
smallest degeneracy ratio over all cells and all partitions stays bounded away from zero.
Equivalently, there exists Ko > 0 such that

0(S;) > Ky, forall i€ I(k) andall keN.
By Theorem 4.4.5 then
Omin(9;) > Ko, forall i€ I(k) and forall ke N,

which implies
Umin({Si}iel(k)) > K, forall keN.

Using the error bound from the proof of Theorem 4.5.3, the discrepancy at any point
xz € S\ (AU B) becomes
F(k
T (@) = Tn(@)], < Cpr,

for
dK L < VAK1L
—_— 2 )
020 (1S Yici) — K3

where we used Assumption 4.5.4 to bound the maximal number of neighbours of a cell in

{Sgk)}iel(k) for any k € N by K7 and Assumption 4.5.5 to bound the degeneracy ratio of
all the cells in the partition from away from zero and thus bound the smallest singular
value of all cells away from zero by Theorem 4.4.5.

Furthermore, using (4.42) in the first inequality, the constant C' given above in the
second, and the fact that u(S\ (AU B)) < u(S) =1 in the last equality it follows that

1
|’j§zk) — JrllL2(s\(AUB) i) = / ‘jl(%k) (x) — JR(x)‘Qu(dx) 2
H S\(AUB) 2

dK1L 2
ozin({S: Yier(r)) S\(AUB)

< VIRLISTAEY , VKL,
2

k-

O]

The most relevant result of this section is given in Theorem 4.5.3. This theorem is
an important ingredient for proving the convergence of the discrete streamlines, which we
shall define in the next section, to their continuous counterparts from the transition path
theory for diffusion processes.

4.6 Streamlines

We introduce the discrete streamlines using the discrete probability current defined in the
previous section. In order to be able to compare the discrete and the continuous streamline
and prove the convergence of the former to the latter in the limit of small width, we fix
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a starting point to be the same for both the continuous and discrete streamlines and let
them evolve for the same time interval.

As given in Section 3.6, a streamline of diffusion process transition path theory between
the reactant set A and the product set B for a given initial condition sg € A is the solution
{5(t) }ejo,7(s0)) Of the initial value problem

W) = In(s(t)), € [0,7(s0)] (4.430)

T(so) :=inf{t' >0 : s(t') € B}. (4.43Db)

s(0) = so,

We make the following assumption.
Assumption 4.6.1. For all sg € 0A, T(sg) is finite and strictly positive.

We define the discrete streamline § on the partitioned state space such that it starts
from the same initial point 5y := sy € A and such that it evolves for the same amount of
time T'(sg) as the continuous streamline. For the definition we use the discrete probability
current Jp : S\ (AUB) — R? defined in Section 4.5. Since Jg is piecewise constant on the
interiors of the cells of a Voronoi tessellation, we would like to use (4.43) to construct for
every initial condition 5y a streamline that is piecewise linear on the interiors of the Voronoi
cells. Since the discrete probability current converges to the true probability current in the
L?-topology, we expect that for any given initial condition sy € JA, the discrete streamline
starting at sop converges to the true streamline starting at sg.

A problem with the approach described above is that the discrete probability current
Jr is not continuous. Hence, the standard existence and uniqueness theorems for solutions
of ordinary differential equations do not apply. Nevertheless, we can define a continuous,
piecewise linear trajectory that solves the analogue of (4.43a) with Jg replaced by Jr:
since the differential equation (4.43a) can be written in integral form as

w

s(t') = sp + : Jr(s(r))dr, 0<t <T(sp), (4.44)

we define the discrete streamline in the following way.

Definition 4.6.2. The discrete streamline § with an initial point §y € JA is given by
5(tY=30+ [ Jr(3(r)dr, 0<t <T(5). (4.45)
0

Note that if o = sg, then the upper time limit in (4.45) equals T'(sp).

In the remainder of this section we give an error bound for the discrete streamlines in
a fixed partition and show that for a sequence of partitions of decreasing width this error
bound decreases linearly with the width of partition. In order to prove this we will need
the integral form of Gronwall’s inequality [2].

Theorem 4.6.3 (Gronwall-Bellman inequality). Let y(t), f(t) and g(t) be non-negative
functions on [0, T]. If f(t) is nondecreasing and

)< £+ [ als)ulsnds for alt 1 0,7],
then .
y(t) < f(t)exp </0 g(s)ds> for all t€[0,T].
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Theorem 4.6.4 (Error bound for discrete streamlines). Let Jr : S\ (AU B) — R? be
a globally Lipschitz vector field with Lipschitz constant L, and let {S;}icr be a Voronoi
tessellation of S with width p > 0 and let K1 > 0 be such that #Nmnax({Si }icr) < Ky. Let
there exist Ko > 0 for which §(S;) > Ka for alli € 1. Fiz so = 59 € 0A, and let s and §
be the true and discrete streamlines defined according to (4.44) and (4.45) respectively. If
Assumption 4.6.1 holds, then

lIs = 8ll 2o, (s0),at) < CP
where C does not depend on p.

Proof. Fix an arbitrary t € [0,T(so)]. Since so = 8o from (4.44) and (4.45) it follows that

5(0) =50y < [ [7nlsr)) = Tn(sr))] .

2

By the triangle inequality and Lipschitz continuity of Jgr, we have

Tr(s(r) = Jr((r)|, < [a(s(r)) = Ta(3()ly + | Tr(3(r) = Ja(3(r))]

< LIs(r) = 80l + | Ta(3(r)) = Ja(3(r))],

2

Recall that Proposition 4.5.6 yields

. VAKL
Tr(@) = Jr(x)|, < S50
2

Therefore,
TR(E(r) = Tr((r)|, < pLVAK K, ¥r € [0,T(s0)]
Combining the preceding estimates yields
t
) = 5(0))> < [ (PLVARIK: + L1s(r) = 5(r)l,) dr
t
< pL\/dK1K2_2t—|—L/ |s(r) — 3(r)], dr
0
By the Gronwall-Bellman inequality given in Theorem 4.6.3, for
y(t) := |s(t) —3(t)|y, [f(t):=pLV/dKiKy* and g(t):=L
it follows that for all ¢ € [0, T (s)]
t
|s(t) — 3(t)|y < pLV/dK 1K *texp (/ Lds) = pL/dK Ky *texp (Lt),
0
and therefore

|s(t) — 3(t)], < pLVdK1 Ky % exp (LT (s0)) T(s0), ¥t € [0,T(s0)]-
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Since the right-hand side of the inequality above does not depend on ¢, the desired conclu-
sion follows from:

T'(s0) 2
18 = sllL2(jo,7(s0)),dt) = (/0 15(t) — s(t)[3 dt)
1
_ VAR Lexp (LT(s0)) T(s0) ( /T(SO> dt) 2
- 0

K2 P
VAR Lexp (LT (s0)) T(s0)?

O]

The final step is to prove convergence of the discrete streamlines, given a sequence of
Voronoi tessellations with decreasing widths.

Corollary 4.6.5 (Convergence of discrete streamlines). Let {pi}ren be an arbitrary se-

quence in (0,00) decreasing to zero. For each k, let {Si(k)}z'el(k) be a Voronoi tessellation
of width px, such that Assumptions 4.5.4 and 4.5.5 hold with constants K1 and Ko re-
spectively, where both K1 and Ko are independent of k. Fix so = 59 € 0A, let s be the
streamline generated by s, and let 3%) be the discrete streamline generated by 3o and the
discrete probability current associated to {Si(k)}z‘el(k)- Under Assumption 4.6.1 there exists
some C' > 0 that does not depend on k, such that

< Cpk.

J+ =51
L2([0,7(s0)]t)

Proof. By Theorem 4.6.4, we have

_ (k) 3 —9
|s =5 , ooy = LEPELT(s0))T (s0) VAK K3 ?py,
which proves the claim for C' = Lexp(LT(so))T(so)%\/dKlKQ_Q. O

Since the constant C' in Corollary 4.6.5 is finite, we have proven the convergence of the
discrete streamlines to the continuous streamlines of the diffusion process in the limit of
partition width decreasing to zero.
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Numerical example

In this section we present an example on which we compare our approach and the approach
for transition path theory (TPT) for Markov chains [36]. To the best of our knowledge,
there are no theoretical results that prove the convergence of the objects of transition
path theory for Markov jump processes or Markov chains to the objects of transition path
theory for diffusions, and we do not aim to investigate this convergence in the experiments
shown in this section. That being said, we will not perform the state space discretisation
refinement. Instead, we will fix one discretisation of the state space and investigate if the
transition path theory objects for Markov chains differ from those of our approach for the
same discretisation. In addition, we present the results of the TPT for diffusion processes
obtained using the finite differences approximation and use them as the ground truth for
comparison with other two approaches.

The example we chose is a 2-dimensional Smoluchowski diffusion process with the
triple well potential. We introduced the Smoluchowski diffusion in Section 2.6, but for
convenience we repeat here the corresponding stochastic differential equation:

dX, = ~T-IVV(X,)dt + /28-1 T~ 3dW;,

where V : R — R denotes the potential function, § is an inverse temperature parameter,
ie. = kBLT with Boltzmann constant denoted by kg and T' € R%*? is a diagonal matrix
with friction coefficients on the diagonal.

In our example d = 2, we choose § = 1.67, I' = I and the potential function is given by

-

Vi) =3 (m3)" — et (i)

ey g (a2

1, 1, 1,

Set (y— - 5.1

+ert oy - 3)% (5.1)

on the state space S = {(z,y) € R? : —2 <2 <2, —1.5 <y < 2.5}. Figure 5.1 shows

the graph of the potential function V(x,y) which is also called the energy landscape. We
employed reflective boundary conditions.

For the reactant and product state A’ and B’ we choose basins on the energy landscape
containing minima of the potential function (£1,0). In particular we choose A’ = {(x,y) €
S @ V(x,y) <=3, <0}and B'={(z,y) €S : V(z,y) < -3, x>0}

63
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Figure 5.1: Potential function V'(z,y) given in (5.1) on S

We discretise the state space S by a uniform 20 x 20 mesh. The uniform mesh is a
special case of a Voronoi tessellation, where each partition set is a square. For the chosen
state space S, the partition sets {S1, ..., Si0} are squares with side length 0.2. We made
the choice to use a uniform discretisation in order to be able to compare the results of
our approach and the results of the transition path theory for Markov chains with the
numerical solution obtained using the finite difference approach. The discrete reactant set
A we obtain as a set of those partition sets for which at least one vertex of the partition
set belongs to the set A’. Similarly, we define the discrete product set B to be the set of
partition sets with at least one vertex belonging to B’. See Figure 5.2 for an illustration.

In order to obtain the committor and the probability current of our approach or the
transition probabilty matrix of the Markov chain TPT we need to simulate the diffusion
process on the continuous state space and project it to the discretised state space. We
simulate the diffusion process using the Euler-Maruyama method with the time step At =
0.001.

5.1 Committor function

Our approach

In order to compute the discrete committor function ¢ of our approach, from each partition
set S;, 4 € {1,...,400} we sampled 10* trajectories. The initial condition of each trajectory
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Figure 5.2: Colors correspond to the values of the potential function V(z,y) as denoted
in colourbar on the right. Continuous sets A" and B’ are denoted in white. The 20 x 20
discretisation of the state space is shown. Partition sets that belong to the discrete sets A
and B are outlined in red.

was drawn from the uniform distribution on S;. We terminated each trajectory when it
reached A U B, i.e. one of the sets A or B. Then we computed the discrete committor
value on each of the partition sets as the relative frequency of trajectories that reach B.

Transition path theory for Markov chains

In order to obtain the transition probability matrix of the Markov chain, starting from
each partition set S;, i € {1,...,400} we simulated 2 x 10° short trajectories. The initial
condition of each trajectory was drawn from the uniform distribution on S;. Every short
trajectory was £ time steps long, where the time step is At = 0.001. We compared the
performance for the whole range of parameters ¢ € [1,200], meaning that we sampled the
whole range of transition probability matrices, depending on the parameter ¢ by observing
the state that the process reached after £Af time steps — the so called lag time. If a
trajectory starting in S; ended in a point in S; for some j € {1,...,400}, we considered
this as a transition from S; to S;, regardless of the partition sets visited at intermediate
time steps. By doing this for every partition set S; we counted the transitions that occur
between .S; and each of the remaining partition sets Sj, j # 4. In this way we obtained the
count matrix for the lag time 7 = ¢At'. We normalised the count matrix row-wise in order
to obtain the row-stochastic matrix. The procedure that we used to obtain the transition
probability matrix is summarised in Algorithm 1 with #cells := 400, #iterations := 2x10°

!The choice of lag time was suggested to be the one for which the implied timescales converge [42].
However, implied timescales do not converge in this example so we chose the whole range of lag time
parameters 7. Selecting a large lag time parameter was advised in [42,44].
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and ¢ € [1,200].

input : zero matrix C € R#cellsxtcells parameter ¢
output: transition probability matrix P

for i =1 : #cells do

for j = 1: #iterations do
select a point p € S; from the uniform distribution on Sj;
simulate a trajectory T of length ¢ steps such that Ty = p;
find j € {1,...,400} such that T, € S;;
CZ'J — Cm + 1;

end

end

P +— row-wise normalised C

Algorithm 1: Estimates the transition probability matrix P of the Markov chain
on the discretised state space for a given parameter ¢ denoting the length of sampled
trajectories.

These matrices with parameter ¢ € [1,200] were used to obtain the range of commit-
tor functions ¢M¢(¢) of Markov chains using the PyEMMA package [45]. We compare
the committor function of TPT for Markov chains with the discrete committor function
obtained using our approach later in this section.

Numerical approximation using the finite differences method

Since we observe the two-dimensional Smoluchowski diffusion for which we know the
stochastic differential equation, we can numerically estimate the committor function using
the centred finite differences method. For this method we have used a finer discretisation
of the state space with mesh width 0.05, however in order to compare these results with the
committor function of our approach and with the committor function of TPT for Markov
chains, we use only the values of the finite differences committor function on the coarser
grid with mesh width 0.2, as we did in the other two cases. We denote this approximation
by ¢'P and we use it as ground truth against which we compare the committor function
of our approach and that of TPT for Markov chains.

Results

In Figure 5.3 we compare the committor function of our approach ¢ and the committor
functions of TPT for Markov chains ¢™¢(¢), for a range of parameters ¢ € [1,200], in
L?-norm to the ground truth ¢©”. Since the committor function of our approach does
not depend on the lag time parameter, the shown error is constant with respect to £. As
suggested in [42,44] the error of the committor function of TPT for Markov chains decreases
as we increase the lag time parameter. The minimal error occurs at about £ = 95, and
any further increase in parameter ¢ yields the slight increase in the error. While sampling
more than 10* trajectories starting from each partition set could decrease the error of the
discrete committor function of our approach ¢, it is also costly. Therefore we observe that
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Figure 5.3: The error between the ground truth ¢©” and the committor function of TPT
for Markov chains (g™ (¢)) with lag time /At shown in red and between the ground truth

¢"'P and the discrete committor function of our approach § shown in blue.

for the right choice of the lag time parameter the committor function of TPT for Markov
chains can approximate the ground truth better than our approach on this fixed partition.

5.2 Probability current

Our approach

In order to compute the discrete probability current of our approach we need to estimate
the net flow of reactive trajectories. We estimate the net flow of reactive trajectories from
10° reactive trajectories that we sampled by generating one long trajectory with 5.1 x 10°
steps starting from the point (—1,0) in S.

Recall that the net flow of reactive trajectories oy for any two adjacent partition sets
Sj, Sk is given in (4.30) by

. 1 . 1
Gk = W0 S AT o 8 (0 1 Kee) — L (X)L, (Xigs)

For any two adjacent partition sets Sj, Sy where j,k € {1,...,400} we compute the net
flow of reactive trajectories «;;, by

1 105 [length(T*)—1

= 1. (X;)1g, (X — 15, (X;)1g. (X
ik #steps; ; s, (Xt)1ls, (Xiv1) — L, (Xe) s, (Xet1) |
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where #steps = 5.1 x 10°, the first sum goes through all reactive trajectories and the
second counts the net transitions between adjacent partition sets S; and S} that occur
within the i-th reactive trajectory T°.

Using the aj that we obtain in this way, we obtain the discrete probability current
Jr, for each of the partition sets S;, i € {1,...,400} using normal equations (4.32). We
repeat the normal equations here

N;"N;Jg; = N;"@; € R?, (5.2)

where N; € R#Vixd jg o matrix for which the j-th row is an outer unit normal to the j-th
facet of S;, #N; is the number of adjacent partition sets to the partition set S;, and &; is
a vector in R#Vi such that

(&)k = /0 (9S; N OS). (5.3)

For every two adjacent partition sets S; and Sy the surface measure o(9S; N 9Sk) = 0.2,
since in our discretisation each partition set is a square with side length 0.2.

The number #N; of partition sets adjacent to the partition set S; depends on the
position of the set in the state space. The partition set S; whose boundaries lie in the
interior of the state space S have four immediate neighbours. The matrix N; of the unit
normals is

)

0
1 0
1
0 -1

where the rows of matrix N; viewed from top to bottom correspond to the left, right,
top and bottom neighbours of the the partition set S;. The partition sets whose one
side is contained in the boundary of S have three immediate neighbours, and the unit
normal corresponding to the side aligned with the boundary of .S is omitted such that the
corresponding matrix N; has only three rows. The partition sets lying in the corners of
S whose 2 sides align with the boundary of S have only two immediate neighbours and
the corresponding matrix N; has two rows. Note that regardless of the number of rows of
the matrix N; corresponding to the partition set S;, (5.2) is a system of 2 linear equations
with a solution J, R,i- The procedure for obtaining the discrete probability current that we
just described is summarised in Algorithm 2.

input : partition, net flow estimate o, for every two adjacent partition sets
Sjs Sk
output: discrete probability current

for every partition set S; do
for all neighbours Sy of S; do
obtain outer unit normal to .S; on joint facet SE N.S; ;
calculate (@;)x using (5.3);
end
solve system of equations (5.2);
end

Algorithm 2: Obtains the discrete probability current from the estimates of the
net flow between every two adjacent partition sets.
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Transition path theory for Markov chains

As mentioned in Section 5.1, we obtained a whole range of transition probability matrices
of the Markov chain, depending on the lag time parameter. We used these transition
probability matrices to obtain the range of probability currents of Markov chains using
the PyEMMA package. The probability current of Markov chains is a scalar valued func-
tion that to each pair of adjacent partition sets (S;,Sy) assigns the net flow of reactive
trajectories fjf . between those partition sets [36]. Using the normal equations (5.2) with

a; i replaced by the net flow fsz estimated using the TPT for Markov chains, we obtain
the piecewise constant vector field Jﬁ/[c, ie. J I{‘zj € is obtained using Algorithm 2 with
Qg = ffk We repeated this procedure for different values of parameter ¢, obtaining the
range of discrete probability currents JA C(0), for £ € [1,200]. These vector fields we then
compared to the discrete probability current Jr that we obtained using our approach and
the finite differences approximation of the probability current of the underlying diffusion
process. We describe the procedure used to obtain the finite differences approximation
below.

Numerical approximation using the finite differences method

As mentioned in Section 5.1, we can numerically estimate the committor function using the
centred finite differences method, since in our example the stochastic differential equation
is known and the problem is 2-dimensional. Using the same method we approximate the
gradient of the committor function and compute the probability current using (3.16). The
estimate of the probabilty current using finite differences on the grid of width 0.2 we
denote by J ED . For brevity we sometimes refer to the finite differences approximation of
probability current J ED as the ground truth.

Results

We compare the probability current of our approach Jr with the discrete probability
current of the transition path theory for Markov chains J g[ € () while we use the probability
current obtained using the finite differences method J ED as the ground truth. In Figures
5.4 and 5.5, we compare J%C(%) and Jg to the ground truth JgD respectively using
the Matlab built-in function ‘quiver’. In Figure 5.4 presented is the probability current of
Markov chains computed using the lag time 7 = 95A¢ that corresponds to the minimal
error of the committor function of TPT for Markov chains, which was shown in Figure 5.3.
The lengths of vectors in Figures 5.4 and 5.5 are scaled such that they do not overlap, and
therefore these two figures are intended to merely show that the directions of the probability
current of transition path theory for Markov chains JA(95) and the probability current
of our approach Jg do not differ drastically from the directions of the ground truth .J ED .

Notice the discrepancies that occur on the boundary of the set B between the probab-
ility current of TPT for Markov chains JA(95) and the finite differences approximation
of the probability current of TPT for diffusion processes J gD . In particular, J % €(95) is
zero on some cells close to the set B which one can recognise as a missing red arrow over
the existing black arrow in Figure 5.4. This occurs because the implementation of TPT for
Markov chains includes the cells into sets A and B depending on their committor values,
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Figure 5.4: Velocity plot of the probability current for Markov chains (JA(95)) with lag
time 7 = 95At compared with the ground truth (J5P).

i.e. if they are close to 0 or 1 respectively. We will therefore ignore the discrepancies in
probability current that occur in these regions, as they result from the used implementation
of TPT for Markov chains, and not the approach itself.

In order to closer investigate the discrepancies between Jg, J }]‘%4 C(¢) and J gD , we in-
vestigate separately the following two criteria: the angle alignment between the vectors of
Jr, J % C(¢) and J gD and the discrepancies in the lengths of the vectors of the probability
current between Jp, J %C(ﬁ) and JED . We first investigate the angle alignment between
the directions of the vectors of the probability current regardless of their intensities. In
Figure 5.6 we compare the angle alignment between the vectors of probability current
obtained using the TPT for Markov chains and that of our approach with the ground
truth on every partition set. The angle discrepancies in degrees are colour-coded; dark
red corresponds to large angle discrepancies of 50° or more? and dark blue corresponds to
almost perfect alignment, i.e. angle discrepancies of only a few degrees. We observe that
the biggest discrepancies in angles for both of the approaches occur close to the boundary
of the state space. This is to be expected in our approach, and can be explained by the
statistical error. Namely, very few reactive trajectories populate these regions and there-
fore the obtained statistics is insufficient to describe the probability current of reactive
trajectories. It is interesting to observe that the directions of Jp on the partition sets

2In order to achieve better visibility of the discrepancies in the central part of the state space, we
have thresholded the angles greater than 50°. The discrepancies greater than 50° are presented as the
discrepancy of 50° degrees and depicted in dark red.
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Figure 5.5: Velocity plot of the discrete probability current obtained using our approach
(Jr) compared with the ground truth (J5P).
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Figure 5.6: Angle discrepancies of the estimated probability current vectors. As shown
in the colourbar, the dark red colour denotes the biggest difference amounting to angle
discrepancies of 50° or more while the dark blue colour denotes the partition sets on which
the angle discrepancy is low, i.e. the direction of the probability current is well approxim-
ated. Left: Discrepancies in angles between the probability current J ]%4 ¢ of Markov chains
for lag time 7 = 95At and the ground truth J5P. Right: Angle discrepancies between the
probability current Jr obtained using our approach and the ground truth J ED .

lying further away from the boundary of S align with the ground truth better than the
directions of JH(95). This corresponds to the larger dark blue area of the right figure
figure showing angle discrepancies of Jr compared to the figure in the left showing angle
discrepancies of JAC(95). As before, we have used the lag time 7 = 95A¢ to obtain the
transition probability matrix of the Markov chain. With a change in the lag time we noted
no improvement in the pattern of the angle alignment between the probabilty current of
TPT for Markov chains JA(¢) and the ground truth JEP. However, increasing the lag
time above 125At decreases the accuracy and angle discrepancies greater than 50° occur
even in partition sets that are close to the centre of the state space.

We now investigate the second criterion - the approximation accuracy of the intensities
of the vectors of JED by Jr and J%C(f). Note that, even though the vectors of JED
seem well approximated by the probability current of TPT for Markov chains, as shown in
Figure 5.4, this is not the case because the presented vectors are rescaled. In particular,
for all £ € [1,200] the intensities of vectors of the JAC(¢) on any partition set are several
orders of magnitude smaller than that of the J ED 3

In order to be able to compare how well the relative intensities of the probability
current calculated using the TPT for Markov chains and our approach approximate the
relative intensities of the ground truth probability current we have scaled the length of
vectors of probability current for all three approaches to lie in the unit interval [0, 1].
We denote the scaled probability currents by J MC*(E), JEP *, and jl*% and analyse the

3This is not necessarily a problem for the following reason: The probability current of TPT for Markov
chains is used to obtain the most probable paths using a recursive algorithm [36, Algorithm 2] which takes
into account the relative intensities of the probability current only. The most probable path is found
recursively as the path that has the maximal minimal flow among all other paths. Therefore, the scaling
does not affect the relative transport conducted by each of the paths.
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. *
ratios ’ JED

TR @), and [TEP] /17
differ only slightly and on the small number of partition sets, that would mean that the
probability currents approximate the ground truth well. Values of ratio greater than 1, or
smaller than 1 on the partition sets in S\ (AU B) indicate the areas where the intensity of
the rescaled probability current J 1]%/[ C*(f) or j]’fz underestimates or overestimates the ground
truth J ED * respectively. For better visibility, we have thresholded all the scaling factors
greater than 2.5 and presented them as the ratio of 2.5.

In Figure 5.7 we present the ratio ’J FD *’2 / ‘J M C*(Z)’2 for the probability current of

TPT for Markov chains computed for different values of lag time 7 = ¢At. The ratio is
colour-coded according to the colourbar shown in the right of the figure. On the partition
sets coloured in red and yellow the scaled probability current of transition path theory
for Markov chains is underestimating the ground truth, while on the cells having a dark
blue shade the probability current is overestimated. Ideally the entire figure should have
the green-blue shade corresponding to 1 on the colourbar. Even though there was little
effect of the change in the lag time parameter of the TPT for Markov chains when we
compared the angle alignments between J ED and J 1]%/[ €(¢), the lag time parameter plays a
more important role when comparing the intensities of the vectors J g D* and J 1{\{[ C*(E). For
the lag time 7 = 15At a significant part of the upper and lower transition channel has the
shade corresponding to the ratio value 1. For the same lag time the probability current in
the regions close to the boundary of the state space are overestimated. We notice that by
increasing the lag time, the region where the probability current is underestimated becomes
larger. For the lag time 7 = 95A¢, which is the lag time for which the best approximation
of the committor function is achieved, we observe that the probability current on the
partition sets belonging to the lower transition channel is underestimated. This can be
observed in Figure 5.4 as well, where the intensities of vectors corresponding to J 1]%/[ €(95)
are smaller than the intensities of vectors corresponding to J ED . According to Figure 5.7,
smaller lag time, seems to yield better approximation of the probability current. This
contradicts the behavior of the error of committor function that we observed in Figure 5.3
where increasing the lag time decreased the error. This unusual behavior occurs due to the
fact that we used the net flow of reactive trajectories of TPT for Markov chains fjfi'k(ﬁ) in

)" Namely, if these ratios are close to 1, and

normal equations, to obtain the piecewise constant vector field J }]‘%4 C(¢). However, as the
lag time increases, the process is less likely to be found in the adjacent cells after £ time
steps. Instead, the process spreads further, and therefore the flow of reactive trajectories
to the immediate neighbours is not well presented by values of f;’k (¢) for large 2.

In Figure 5.8 we compare the ratio between the rescaled probability current obtained
using our approach j}“% and the rescaled ground truth probability current obtained using
the finite differences approach J g D* We can see that the ratio on the central area of S is
close to 1. This is a good sign, because this region contains the two transition channels.
The accurate estimation on these channels is the most important for good prediction of
the preferred transition paths. The probability current using our approach has the same
problem of overestimating the length of the vectors close to the boundary of the state space.
However, the overestimation is smaller than that of the TPT for Markov chains for £ = 15.
Namely, compare the shade of blue on the part of the state space close to the boundaries
in Figures 5.8 and 5.7 for £ = 15. Observe that the shade of blue is lighter in this region
for Figure 5.8 compared to the shade of blue in this region for Figure 5.7. Furthermore,
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Figure 5.7: The value of ratio ‘JED*’2 / ‘J%C*(@‘Q for ¢ € {15,55,95,130}.

our approach does not underestimate the length of the probability current on the lower
transition channel like TPT for Markov chains does for larger ¢. Note however that in the
area above and to the right side of the set B our approach systematically underestimates
the true probability current. We believe this happens due to insufficient sampling. Namely,
very few of the reactive trajectories actually populate these regions. Instead, the reactive
trajectories get attracted to the minimum in the set B.

5.3 Streamlines

Finally, we use the obtained probability current for TPT for Markov chains J ﬁ/[ €(¢) and
that that of our approach Jr to show the corresponding streamlines.

In TPT for Markov chains usually the most probable paths are analysed instead of the
streamlines. The most probable paths are obtained in a recursive procedure [36, Algoritm
2] using the net flow values f;r (£). The most probable paths of TPT for Markov chains are
ordered according to the flow that gets transported using each of them [36, Algoritm 2].
However, the most probable paths are sets, each consisting of partition sets that connect
A and B. As such they do not show the exact location within a partition set but merely
connect the neighbouring sets. On the other hand our discrete streamlines defined in
(4.45) are piecewise linear functions whose relative position in a partition set depends on
the point of entrance to the partition set. Therefore, the comparison of these two objects
seems unfair, at least on the coarse discretisation mesh; we are not comparing the objects of
the same type. Thus, we will compare the discrete streamlines obtained using the piecewise
constant vector fields JA¢(¢) and Jr with the discrete streamlines obtained using the finite
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Figure 5.8: The value of ratio ‘JII;:D*‘Q / ‘j};
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differences approximation J ED of the probability current for diffusion processes TPT. We
denote the respective streamlines by s™¢(¢), 5 and s"P. We show the results for two
values of ¢ € {15,95} which were the two values that we determined to be optimal with
respect to two different criteria — the error in the intensities of the probability current and
the error of committor function respectively. The discrete streamlines we present are the
integral lines of the corresponding discrete probability current.

For each point on the boundary of the set A we obtain the streamline by following the

discrete probabilty current until the set B is reached. We summarise this procedure in
Algorithm 3.

input : a point p on the boundary of A; discrete probability current J, small
time step ¢
output: streamline s starting at p

Sold <— P;

§ [Sold];

while s,q ¢ B do
Snew € Sold T+ J(Sold)t;
s <—[8, Spew);
Sold < Snew;

end

Algorithm 3: Obtains the discrete streamline corresponding to a given discrete
probability current and a point on the boundary of A.

In order to be able to compare the streamlines s (¢), 5 and sP we started them
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(a) £=15 (b) £=95

Figure 5.9: The discrete streamlines corresponding to J 1]%4 (0, Jr and J ED , denoted by
sMC(p), 5, sT'P respectively for two different values of £.

from the same initial point on the boundary of A. Figure 5.9 compares the streamlines
for the three discrete probability currents started from 9 points on 0A for two values of £.
For the chosen discretisation mesh it is difficult to see if either s (¢) or 5 approximate
the ground truth s better than the other one in the region of the high barrier of the
energy landscape, i.e. in the region located between the sets A and B. However, in the
regions above and below the high barrier, through which the top two and bottom two
groups of streamlines pass, the discrepancies between s (¢) and s™P are larger than the
discrepancies between § and s''P, for both values of £. In particular, the error accumulates
over time. This is a characteristic of Algorithm 3 for obtaining the streamlines. However,
for our approach we have proven the upper bound on the discrepancy at any point, and
as the mesh size decreases, so does the error. Contrarily, this has not been proven for the
TPT approach for Markov Chains.

In the example presented above we observe that for the right choice of the lag time
parameter the error of the discrete committor function of TPT for Markov chains is smaller
than the error of the discrete committor function of our approach when compared to the
committor function of TPT for diffusion processes. We have not tested if the performace
of our approach would improve compared to that of the TPT for Markov chains on the
meshes of finer width. We observe that the vectors of the discrete probability current
obtained using TPT for Markov chains and the discrete probability current obtained using
our approach approximate the probability current of the underlying diffusion process well.
In particular, we compared the angle discrepancies between either of these two approaches
and the ground truth as well as the intensities of the vectors of the respective probability
currents. The intensities of the vectors of the discrete probability currents obtained by
TPT for Markov chains and our approach differ by several orders of magnitude from the
ground truth and therefore the results we show are qualitative rather than quantitative.
This extends to the experiments involving the streamlines as well, because the streamlines
are defined using the probability current. For quantitative results one would need to
understand the source of the difference in scaling and perform the experiments on the
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meshes of decreasing width. However, we believe that the presented experiments show
the potential of our approach to approximate the ground truth in a more principled way
compared to the results of the TPT for Markov chains obtained with roughly the same
amount of data. This is because our approach does not depend on the choice of the lag
time parameter.

Our experiments also show a drawback which results from the statistical nature of
our approach and is not explicitly accounted for in the error bounds given in Chapter 4.
Namely, in Section 4.5 we assume that the net flow of reactive trajectories is given. Since in
practice we need to estimate the net flow of reactive trajectories by sampling the reactive
trajectories, the accuracy on each discretisation set depends on the number of reactive
trajectories going through that set. Since the reactive trajectories populate some regions
very rarely, the statistics may be insufficient for accurate estimates.






Chapter 6

Conclusion

We aimed to develop an approach to analyse the statistics of a diffusion process on a
bounded state space. In particular, for given two disjoint subsets A and B of the state space
we aimed to describe the most probable path the diffusion process takes when going from
set A to set B. This is exactly the same problem that transition path theory for diffusion
processes was formulated to solve, with one key difference. Namely, we were motivated by
applications where one can observe a diffusion process but the corresponding stochastic
differential equation is either not available, or the state space is high dimensional and
applying the transition path theory for diffusion processes is computationally difficult. The
transition path theory for Markov jump processes (or for Markov chains) has been suggested
for this purpose, however, we notice two drawbacks of using the transition path theory for
Markov jump processes or Markov chains when aiming to describe the dynamics of the
underlying diffusion process. First, the jump process that is obtained by projecting the
diffusion process onto a discretised state space is not a Markov jump process, and second,
there are no proofs that guarantee that in the limit of the partition width approaching
zero that the results of the transition path theory for Markov jump processes approaches
the results of transition path theory for diffusion processes. As in the applications one
is interested in how well the results of any approach approximate the ground truth, we
set out to develop a numerical approach that is proven to provide increasingly accurate
approximations of the underlying diffusion process, in an appropriate limit.

We achieved this by defining some discrete transition path theory objects on Voronoi
tessellations: the discrete forward committor, discrete isocommittor surfaces, the discrete
probability current and discrete streamlines. These discrete objects are piecewise constant
functions on the interiors of Voronoi cells that preserve certain key properties of the cor-
responding continuous objects of the transition path theory for diffusion processes. The
discrete committor function, probability current and the discrete streamlines converge to
their continuous couterparts, as we have shown in Section 4. Moreover, we have proven er-
ror bounds for the three objects. The convergence of all three objects is linear in the width
of the partition, i.e. in the diameter of the largest partition set in the tessellation. To the
best of our knowledge, this is the first discrete approach for computation of the transition
path theory objects that provably converges to the continuous objects of transition path
theory for diffusion processes.

Our approach is data driven and does not impose any additional assumptions on the
model. In particular, unlike the existing approaches for the discrete transition path theory

79
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[36] it does not assume the Markovianity of the jump process. Instead, we observe a non-
Markovian jump process that occurs by projection of a diffusion process to the discrete
state space. Furthermore, the definitions of the discrete objects we introduced do not
require the estimation or a priori knowledge of the drift or diffusion coefficients of the
stochastic differential equation that defines the underlying diffusion process. Therefore the
definitions that we introduced can be applied to a wider spectrum of processes. However,
the convergence results that we showed hold only for diffusion processes.

The assumptions we use are fairly general. They include the global Lipschitz continuity
of the committor function as well as the global Lipschitz continuity of the probability
current of the transition path theory for diffusion processes. For convergence of the discrete
probability current we make additional assumptions on the shape of the discrete partition
sets. In particular, we assume that the number of neighbors of each partition set is bounded
by a constant independently of the number of sets in the partition. Furthermore, we assume
that all the partition sets in the partition retain the dimension of the state space, regardless
of the partition width and number of cells in the partition. This assumption is motivated
by a linear algebra result given in Theorem 4.4.5 which gives a relationship between the
shape of the polytope and the smallest singular value of the matrix of the corresponding
system of linear inequalities. We believe that this result is interesting in its own right.

Critique and future work

In our future work we would aim to weaken the assumptions. The first assumptions
that we would seek to weaken would be the assumptions of global Lipschitz continuity
of the committor function and of the probability current. Furthermore, we suspect that
Assumption 4.5.4 is implied by Assumption 4.5.5, because if the partition sets behave
nicely enough, and shrink uniformly in all directions as the partition width decreases, then
the number of neighbors of each cell should stay unchanged and therefore bounded. We
aim to prove this in future work.

Several open questions remain. The construction of the partition with partition sets
satisfying Assumptions 4.5.4 and 4.5.5 is one of them. We believe that one solution is
given by centroidal Voronoi tessellations [13] whose generators are the centres of the mass
of corresponding Voronoi cells. We will investigate this in future, as finding methods for
constructing suitable partitions will improve the applicability of our approach.

Another open question is the extension of our theory to include reaction rates. Recall
that the reaction rate for the transition path theory for diffusion processes is defined as the
integral of the probability current over any dividing surface (3.12). Naturally, we would
observe a flow of reactive trajectories over some discrete dividing surface composed by a
set of Voronoi cells. The problem arises when trying to approximate some dividing surface
using a sequence of discrete dividing surfaces. If the discrete dividing surface converges to a
continuous dividing surface of co-dimension 1, the convergence of the reaction rate should
follow. However, the convergence of the surfaces is not a trivial matter. In particular,
surface area cannot be defined as the limit of the area of inscribed polygonal surfaces in
general. This was shown by Schwarz and Peano independently and is known as Schwarz’s
example or paradox [8,60]. Therefore, we would first have to ensure that using the partition
sets described in this thesis we do not encounter this paradox.

On the one hand, when compared to transition path theory for diffusion processes our
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approach might seem more applicable, as it does not require the knowledge of diffusion
coefficients of the underlying diffusion process. On the other hand, when the diffusion
coefficients are known, and the process is high dimensional our approach is not necessarily
computationally more efficient than transition path theory for diffusion processes. We
replaced the problem of solving the high dimensional backward Kolmogorov equation by
the problem of computation of the facets of all the cells in the Voronoi partition. This
is not easy in high dimension, as every d-dimensional polytope has at least d + 1 facets.
However, one could reduce the dimension of the state space if some prior knowledge of the
system is available. In particular, if one has knowledge of the reaction coordinates which
characterize the conformations of the system corresponding to some metastable states of
the dynamics, one could observe the process in the lower dimensional space spanned by
these coordinates, instead of the original state space. Once the dimensions is reduced, one
could perform our approach on this reduced space.

Another weakness of our approach is that the constant in the error bound of the discrete
probability current given in Proposition 4.5.6 depends on the dimension of the state space.
Consequently the error bounds of the discrete streamlines given in Theorem 4.6.4 and
Corollary 4.6.5 depend on the dimension of the state space as well. The dependence of the
constant in the error bound on the dimension of the state space is problematic in the case
of high-dimensional systems that often occur in the applications. While the convergence is
still linear with respect to the diameter of the largest partition set, finer discretisations are
required for higher dimensional state spaces than for lower-dimensionoal state spaces in
order to achieve a certain approximation error, thus inducing higher computational costs.
We aim to address this problem in our future work.

By being data-driven, the performance of our approach in estimating the objects of
transition path theory for diffusion processes improves as the amount of data increases.
However, this is at the same time the main weakness of our approach, because for com-
puting the streamlines, we need to sample reactive trajectories, which is costly in the case
of rare events. Future work would be to adapt our approach to work without the need
for sampling reactive trajectories. We believe that this can be achieved by combining our
definition for the discrete committor function given in Section 4.2 with the method presen-
ted in [31] for generating reactive trajectories of diffusion processes when the committor
function is known. An alternative approach that could avoid sampling reactive trajectories
is to define the streamlines using the discrete committor function or the discrete isocom-
mittor surfaces. In particular, the presented definitions of the committor function and the
isocommittor surfaces and the corresponding convergence result for the committor function
are independent from the results concerning the probability current and the correspond-
ing streamlines, i.e. our definition of the discrete probability current does not involve the
committor function. However, note that, since the gradient of a function is orthogonal to
its level sets, streamlines corresponding to the probability current (3.16) are orthogonal to
the isocommittor surfaces for Smoluchowski diffusion in the case when all friction coeffi-
cients are equal. One could therefore try to generalise this property and define the discrete
streamlines as sequences of cells that are orthogonal to each isocommittor surface they
cross. This approach has already been exploited in [58] where isocommittor surfaces are
used as reaction coordinates. However, our discrete isocommittor surfaces are not surfaces
in mathematical sense and therefore it is not straightforward how to use them as reaction
coordinates, because it is unclear how to define the orthogonality of a sequence of cells to
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the discrete isocommittor surface.

Even if we managed to avoid sampling reactive trajectories, the problem of computing
the discrete committor function still requires sampling of the process in order to estimate
the conditional probabilities of reaching the set B before the set A when starting from
a given state outside A and B. Therefore, an even more interesting open question is to
develop a discrete transition path theory that uses short trajectories only, or no trajectory
data. An approach for estimating the infinitesimal generator of a diffusion process without
trajectory sampling which relies on the knowledge of the underlying stochastic differential
equation is presented in [18]. Alternatively, the square root approximation approach [29]
obtains the transition rate matrix of the Markov chain without sampling trajectories. Re-
cently, the transition rate matrix obtained using the square root approximation was proven
to converge in some sense to the infinitesimal generator of a diffusion process [12,20]. Com-
bining the square root approximation approach [29] or the infinitesimal generator approach
for estimating the long term behavior [18] with ours would improve the applicability of our
approach by avoiding the sampling of trajectories. Additionally, the square root approx-
imation approach does not suffer from the curse of dimensionality. Namely, the approach
uses the Voronoi tessellation to partition the state space, but does not require computation
of the vertices or facets of Voronoi cells; it solely uses the information on the adjacency
of the cells. Since in our approach we used the Voronoi tessellation to discretise the space
and compute the discrete objects on it, our approach is inherently meshless and therefore
has the potential to alleviate the curse of dimensionality which often occurs in approaches
that use regular grids. However, our approach requires the computation of the facets of
Voronoi cells in order to obtain the probability current. This makes the computational cost
of our approach scale poorly with the dimension of the problem. Therefore, the compu-
tational aspects of our approach could be improved by combining it with the square root
approximation approach. This will be part of our future work.



Appendix A

Divergence-free property of the probabil-
ity current

In this section we show that probability current Jg [32], defined in Section 3.4 is divergence-
free. The statement is proven in Theorem A.0.6 and it is preceded with technical Lemmas
which we use for its proof.

First, let us introduce a shorhand notation A : B for the Frobenius inner product of
two matrices A and B of the same dimensions, i.e.

A:B:= Zaijbij.

1,3
Using this notation we can express the generator A given in (3.4) as
1
szb.vw+§A: VvV, (A.1)

where V denotes the gradient and VV the Hessian operator. Similarly, the generator of
the reversed process given in (2.23) can be expressed by

Ap = —b - Vip + %div(Ap) VY + %A L VYV,

where p denotes the equilibrium probability density of the diffusion process corresponding
to A. Recall that the forward committor function solves the equation

Ag =0, (A.2)
while the backward committor function solves the equation
A"qp = 0. (A.3)

Let M : R? — R4 denote a matrix-valued function with (i,j)-th entry m;; for
1 <14,7 < d. Divergence of the matrix valued function M is a d-dimensional vector with
components

om;
(div(M i . (A.4)
Z ax,
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Given a vector-valued function V : R — R? its divergence is defined in the usual way:

<oV (x)

div(V) =V -V = o

(A.5)

=1

This yields the following identity. For a matrix-valued function M : R? — R%*? and a
scalar-valued function h : R? — R,

0% (m(z)h(z))

div(div(Mh)) = ! =E: Mh

din(m) = S VV(Mh),

where E € R¥? with all elements equal to 1, i.e. e;; = 1 for all 4,5 € {1,...,n}.
According to equation (2.18), adjoint operator of generator is given by

w1 0% (aij(t, x) d (b )Y)
A = 2 Z 0x;0x; Z &L‘z

ij=1 i=1

_ éE L VV(AY) — V- (b)),

Notice that by (A.4) and (A.5) A* is a divergence-form operator, i.e.

. 0 (1 0aiinp
w3 2 (520 )

J=1

(A.6)
1
= div(§div(A1/)) — by).
Recall that for the unique equilibrium density p of the diffusion process corresponding to

generator A we have

A*p=0. (A.7)

Let V as before, be a vector-valued function and let f, g be scalar-valued functions. By
applying the definition of the divergence of a vector valued function given in (A.5) and the
product rule we have

div(Vfg) =g div(Vf)+Vf-Vg. (A.8)

Lemma A.0.1. Let M € CY(R% R be such that m;;(x) = mji(z) for all z € R and
alli,j € {1,...,d} and let f,g € C1(R%;R) be arbitrary. Then

div(div(M fg)) = g div(div(M f)) +2 div(M f) - Vg + fM : VVg.

Proof. Observe first that

d
CRTEE SE axjm“””

d
A(mij(z 39(1‘)
z:: 8% + Z i (@ 8xj
g(di
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where m; = (m;(z))" denotes the i-th row of matrix M (z). This follows by using the

definition of the divergence of the matrix valued function (A.4) to obtain the first and
the third equality and the product rule to obtain the second equality. Using the previous
equation, the definition of divergence of a vector valued function (A.5) and the product
rule yields

d
div(div(M fg)) = 3 L AVMI))i + Vg - i

=1 81’1
: L)) Y
iv
; [axZ div(Mf))i + T 8% (Vg-mif)].
The second term of (A.9) can be written as
d d d
Z dw v ])e) gZ o Z Amig @) @) _ o giv(div(p f)), (A.10)
1 Zq i Zj

where we used the definition of the divergence of the matrix valued function (A.4). The
third summand of (A.9) can be expressed as

o d
Z al‘l (Vg . mlf Z o (Z z]f) le 8{[:@ (axj z]f)

d
9g O(mi; f)
migf + 3 dr; 9, (A.11)

— fM :VVy +Z dg Z m]l)f

i Oz
=fM: VVg—i—Vg-dlv(Mf),

where we used the product rule to obtain the third equality, the fact that M is symmetric
in the fourth and (A.5) in the last equality. By substituting equations (A.10) and (A.11)
into (A.9) we obtain

div(div(M fg)) = Vg - div(M f) + gdiv(div(M f)) + fM : VVg+ Vg - div(M f)
which completes the proof. ]

Let J be a vector valued function J : R* — R? defined by
.1
J = bpay — div(5Apgy), (A.12)

where A : R? — R4 and b : R — R? are the diffusion coefficients corresponding to the
generator A and p is its equilibrium density.

Corollary A.0.2. It holds that
div(J) = gp(—A%p) + p(—A"q) =

i.e. J is a divergence-free vector field.
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Proof. Since divergence div(-) is a liner operator, applying div(+) individually to the terms
of (A.12), using Lemma A.0.1 with M = A, V =b, f =m and g = g, (A.8), (A.6) yields

div(J) = div(bpg,) — %div(div(qub))
= div(bpgp) — % [qpdiv(div(Ap)) + 2div(Ap) - Vg, + pA : VV )
= qdiv(bp) +bp - Vo — % [qpdiv(div(Ap)) + 2div(Ap) - Vg, + pA : VVgq]
= b (~A%) + bp - Vg, — div(Ap) - Vay — 5pA: YV,
= a(=A0) + o (b Y~ Sdiv(Ap) - Vay = 54: TV,
=q(—=A"p) + p(—A"qp) =0
where the last equality follows from (A.7) and (A.3). O

Remark A.0.3. By Proposition 5 of [14], J in equation (A.12) is equivalent to the prob-
ability current of [14] given in 3.11. Therefore, by Corollary A.0.2, the probability current
of [14] is divergence-free.

Lemma A.0.4. Let M € CY(R% R be such that m;;(x) = mji(z) for all z € R and
alli,j € {1,...,d} and let f,g € CY(R%R). Then

div(fMVg) = Vg - div(fM) + fM : VVyg.

Proof. By product rule we have

d d d
aiv(sarvg) =y PIIVD _yn 0 (f > mjag>

i=1 i=1 j=1 Iz
d
B of dg dg
_1:1 (axlz Z]a +fza ( 2]8 >)
—Ed: of zd: fzamu dg s 9%g
B -1 Oz; ~,1mwa al'] K 8@695]
1= =
4 99 & o (fmiy)
=y = 94 M VVg=Vg-div(fM)+ fM: VVg.
o 0ry i ox;

O

Lemma A.0.5. Let M € CY(R% R be such that m;;(x) = myi(z) for all z € R and
alli,j € {1,...,d} and let fi, fo,h € CY(R%R). Then

div(f1hMV fa) — div(fohMV f1) = div(hM) - (f1V f2 — 2V f1)

(A.13)
L hAM VYV s — hfaM : VVfi.
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Proof. Applying (A.8) for V.= MV fo, f = h and g = f1 we have
div(hfi MV f3) = fidiv(hMV fa) + hMYV fo - V f1.
Using the previous equation and Lemma A.0.4 it follows that
div(hfiMV fa) = f1 (V fa - div(hM) + hM : VV fa) + hMV f3 - V fi.

Since the last term is symmetric with respect to fi and fs, it cancels out when taking the
difference on the left-hand side of (A.13).

div(f1ihMV fo) — div(foh MV f1) = f1(V f2 - div(hRM) + hM : VV f5)
— f2(V f1 - div(hM) + hM : V'V fy).

Collecting the remaining terms yields the desired conclusion. O

In the following theorem we show that the probability current Jgr defined in (3.10) is
divergence-free.

Theorem A.0.6. Let Jr be defined as in (3.10), then
div(Jg) = qdiv(J) + gpp.Ag = 0.

Proof. According to Theorem 3.4.1, the probability current (3.10) can be expressed in
vector form

1 1
Jr = qp K + §qprVq - §ququ>,

where ]
K =bp— 5 div(Ap). (A.14)

Since divergence is a linear operator,
1 1
div(Jg) = div(qgp K) + idiv(qprVq) - idiv(ququ). (A.15)

By (A.8) with V = K and g = ¢ and the definition (A.14) of the vector field K it follows
that

div(ggp K) = qdiv(Kqy) + Kq, - Vg
— adiviay (b — 5iv(49) )+ (bp - 3div(4p)) - Vg (A16)
=q (diV(beP) - ;diV(qbdiV(Ap))> + (bp - ;diV(Ap)> - Vg.
Another application of (A.8) with V' =div(Ap), g = ¢ and f =1 yields
div(gpdiv(Ap)) = qpdiv(div(A4p)) + div(Ap) - g (A.17)
Lemma A.0.1 with M = A, f = p and g = ¢ yields

div(div(Apgp)) = qpdiv(div(A4p)) + 2div(Ap) - Vg, + pA : VV g,
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and therefore

gpdiv(div(Ap)) = div(div(Apgy)) — 2div(Ap) - Vg, — pA : VV .
By substituting the last equation into (A.17) we obtain

div(gpdiv(Ap)) = div(div(Apgs)) — div(Ap) - Vg, — pA : VVqp.

Now by supplementing the last expression into (A.16) we have

- 5 (div(div(Apa)) — div(Ap) - Va, ~ pA: VVa)

div(ggpK) = ¢ <diV(qbbp)
+ @ (bp - ;diV(Ap)> - Vq
=q (diV(qbbp) - ;div(diV(APQb))) + éq (div(Ap) - Vg, + pA: VVq)
+a (b= 5div(ap)) - Vg
= qdiv(J) + %q (div(Ap) - Vg, + pA: VVq) + qp (bp - ;diV(Ap)> - Vg,

where J is given by (A.12). Since div(J) = 0 by Corollary A.0.2, we have

. . 1.
div(gayK) = 5q(div(Ap) - Vay + pA: VVG) + gy (bp - leV(AP)) -Vq

(A.18)
1. 1
= 5div(4p) - (aVay — @ Va) + abp - Va + 54pA : VV gy
Applying (A.13) of Lemma A.0.5 with M = A, h=p, fi = q, f2=q, yields
div(gpAVq) — div(gpAVeqy) = div(pA) - (Ve — ¢V ) (A.19)

+ @Ap : VVq—qAp: VVq.
By substituting (A.19) and (A.18) into (A.15) we obtain
. 1
div(Jr) = apA: VVa+abp- Vg
= @pAq =0,
where we used (A.1) and (A.2). O



Summary

Many applications involve analysing dynamical systems that undergo rare transitions
between two metastable subsets A and B of state space. For example, in clinical dis-
ease modelling, one can model a patient’s state as a metastable stochastic process that
occasionally transits from a ‘healthy’ subset A to a ‘diseased’ subset B. We develop a
numerical method for analysing the statistics of transitions of a diffusion process between
the two disjoint subsets of the bounded state space.

Transition path theory (TPT) was first formulated to solve this problem for ergodic
diffusion processes. The main object of this theory is a committor function, which at any
state of the state space is defined as the probability of reaching the set B before reaching
the set A, conditioned on starting from the given state. The computation of the com-
mittor function requires solving a second order partial differential equation involving the
generator of the process. Therefore, TPT for diffusion processes requires the knowledge of
the stochastic differential equation governing the process. Furthermore, the high dimen-
sional nature of many problems makes solving such partial differential equations difficult
in practice. In order to perform computations, a discretisation method is needed. TPT for
Markov jump processes has been developed for this reason. However, space discretisation
results in a loss of the Markov property.

We discretise the state space using Voronoi tessellations and model the underlying
diffusion process by a non-Markovian jump process on the associated Delaunay graph. To
this process we associate the analogues of the committor function, isocommittor surfaces,
the probability current and streamlines. These objects are the key objects in both TPT
for diffusion processes and TPT for Markov jump processes. In this thesis, we define these
objects for the non-Markovian jump process described above. All of the objects we define
can be computed using sampled trajectories, thus our approach is completely data-driven
and does not rely on the knowledge of the stochastic differential equation governing the
underlying process. This differentiates our approach from TPT for diffusion processes.
Furthermore, we do not assume Markovianity which differentiates our approach from TPT
for Markov jump processes.

We prove the convergence of three of our objects to their analogues in TPT for diffusion
processes, in the limit of infinitely fine discretisation. This validates the discrete approach
we suggest. Moreover, we prove error bounds for the committor function, the probability
current and the associated streamlines. To the best of our knowledge this is the first
discrete TPT approach that comes with rigorous proofs of convergence.
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Zusammenfassung

Viele Anwendungen beinhalten die Analyse dynamischer Systeme, die seltene Ubergéinge
zwischen zwei metastabilen Teilmengen A und B des Zustandsraums durchlaufen. Beis-
pielsweise kann der Zustand eines Patienten als metastabiler stochastischer Prozess mod-
elliert werden, der gelegentlich von einer “gesunden” Teilmenge A zu einer “krankhaften”
Teilmenge B iibergeht. Wir entwickeln ein numerisches Verfahren zur Analyse der Statistik
der Ubergiinge eines Diffusionsprozesses zwischen den beiden disjunkten Teilmengen des
begrenzten Zustandsraums.

Transition Path Theory (TPT) wurde zunéchst formuliert, um dieses Problem fiir er-
godische Diffusionsprozesse zu l6sen. Das Hauptobjekt dieser Theorie ist eine Committor-
Funktion, die in jedem Zustand des Zustandsraums definiert ist als die Wahrscheinlichkeit,
die Menge B zu erreichen, bevor die Menge A erreicht wird, bedingt auf das Starten aus dem
gegebenen Zustand. Die Berechnung der Committor-Funktion erfordert das Losen einer
partiellen Differentialgleichung zweiter Ordnung, an welcher der Generator des Prozesses
beteiligt ist. Daher erfordert TPT fiir Diffusionsprozesse die Kenntnis der stochastischen
Differentialgleichung, die den Prozess steuert. Dariiber hinaus erschwert die hohe Di-
mensionalitit vieler Probleme die Losung solcher partiellen Differentialgleichungen in der
Praxis. Um Berechnungen durchfithren zu konnen, ist eine Diskretisierungsmethode er-
forderlich. Aus diesem Grund wurde TPT fiir Markow-Sprungprozesse entwickelt. Die
Diskretisierung des Raumes fiihrt jedoch zum Verlust der Markow-Eigenschaft.

Wir diskretisieren den Zustandsraum mit Hilfe von Voronoi-Diagrammen und model-
lieren den zugrunde liegenden Diffusionsprozess durch einen nicht-Markowschen Sprung-
prozess auf dem zugehdorigen Delaunay-Diagramm. Diesem Prozess ordnen wir die Analoga
der Committor-Funktion, die Isocommittor-Oberflachen, den Wahrscheinlichkeitsstrom und
die Stromlinien zu. Diese Objekte sind die Schliisselobjekte sowohl in TPT fiir Diffu-
sionsprozesse als auch in TPT fiir Markow-Sprungprozesse. In dieser Arbeit definieren
wir diese Objekte fiir den oben beschriebenen nicht-Markowschen Sprungprozess. Alle
von uns definierten Objekte konnen mit simulierten Trajektorien berechnet werden, so-
dass unser Ansatz vollstdndig datenbasiert ist und sich nicht auf das Wissen der stochas-
tischen Differentialgleichung stiitzt, die den zugrunde liegenden Prozess steuert. Dies unter-
scheidet unseren Ansatz von TPT fiir Diffusionsprozesse. Dariiber hinaus setzen wir keine
Markow-Eigenschaft voraus, was unseren Ansatz von TPT fir Markow-Sprungprozesse
unterscheidet.

Wir beweisen die Konvergenz von drei unserer Objekte zu ihren Analoga in TPT fiir
Diffusionsprozesse, im Limes der unendlich feinen Diskretisierung. Dies bestéatigt den von
uns vorgeschlagenen diskreten Ansatz. Dariiber hinaus beweisen wir Fehlerabschatzungen
fiir die Committor-Funktion, den Wahrscheinlichkeitsstrom und die damit verbundenen
Stromlinien. Nach unserem besten Wissen ist dies der erste diskrete TPT-Ansatz, der mit
rigorosen Konvergenznachweisen einhergeht.
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