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Abstract: This paper explores new notions of approximate minimality in set optimization using a
set approach. We propose characterizations of several approximate minimal elements of families
of sets in real linear spaces by means of general functionals, which can be unified in an inequality
approach. As particular cases, we investigate the use of the prominent Tammer–Weidner nonlinear
scalarizing functionals, without assuming any topology, in our context. We also derive numerical
methods to obtain approximate minimal elements of families of finitely many sets by means of our
obtained results.
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1. Introduction

Set optimization has become an important research area and has gained tremendous interest
within the optimization community due to its wide and important applications; see, e.g., [1–4]. There
exist various research fields that directly lead to problems which can most satisfactorily be modeled
and solved in the unified framework provided by set optimization. For example, duality in vector
optimization, gap functions for vector variational inequalities, fuzzy optimization, as well as many
problems in image processing, viability theory, economics etc. all lead to optimization problems that
can be modeled as set-valued optimization problems. For an introduction to set optimization and its
applications, we refer to [5].

For example, it is well known that uncertain optimization problems can be modeled by means of
set optimization. Uncertainty here means that some parameters are not known. Instead, possibly only
an estimated value or a set of possible values can be determined. As inaccurate data can have severe
impacts on the model and therefore on the computed solution, it is important to take such uncertainty
into account when modeling an optimization problem. If uncertainty is included in the optimization
model, one is left with not only one objective function value, but possibly a whole set of values.
This leads to a set-valued optimization problem, where the objective map is set-valued.

Recently, it has been shown that certain concepts of robustness for dealing with uncertainties
in vector optimization can be described using approaches from set-valued optimization (see [2,3]
and a practical application in the context of layout optimization of photovoltaic powerplants in [6]).
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The concept of interval arithmetic for computations with strict error bounds [7] is also a special case of
dealing with set-valued mappings.

To obtain minimal solutions of a set-valued optimization problem, one must analyze whether
one set dominates another set in a certain sense, i.e., by means of a given set relation. As it turns out,
however, (depending on the chosen set relation), this intuitive and natural mathematical modeling
framework often reaches its limitations and leads to very large or—even worse—empty solution
sets. This is especially important throughout the design and implementation process of numerical
algorithms for set optimization problems: The criteria involved in the definition of the set relations
are usually based on set inclusions which for continuous problems are very sensitive to numerical
inaccuracies or even just round-off errors.

A simple way to remedy this is to use approximate solution concepts: Here, the strict set inclusions
are in a way relaxed by extending (enlarging/translating) the quantities that are to be compared such
that one obtains more robust results for the involved inclusion tests.

The goal of this paper lies in the characterization of several well-known set relations by means of
a very broad, manageable and easy-to-compute functional in the context of approximate solutions to
set optimization problems using the set approach. In contrast to recent results in this area (for example
see [8–11]), we assume that the spaces in which the sets are compared are not endowed with a particular
topology. Therefore, our results generalize those found in the literature by dismissing topological
properties. Please note that the references [10,11] present results on scalarizing functionals, but the
functional acts on a real linear topological space and no relation to approximate solutions is presented
there. Moreover, in [8,9], the oriented distance functional (which implicitly requires a topology) is used
to derive characterizations of set relations. To the best of our knowledge, our approach of combining
algebraic tools with approximate minimality notions in set optimization is original. That way, our
results are not only valid in a broader mathematical setting but also provide some further insight into
the purely algebraic tools and theoretical requirements necessary to acquire our findings. This is not
only mathematically interesting, but deepens the theoretical understanding of approximate minimality
in set optimization. It is furthermore in line with the recent increased interest in studying optimality
conditions and separation concepts in spaces without a particular topology underneath it, see [12–21]
and the references therein.

2. Preliminaries

Throughout this work, let Y be a real linear space. Following the nomenclature of [22], for a
nonempty set F ⊆ Y, we denote by

core F := {y ∈ Y | ∀v ∈ Y ∃λ > 0 s.t. y + [0, λ]v ⊆ F}

the algebraic interior of F and for any given k ∈ Y, let

vclk F := {y ∈ Y | ∀λ > 0 ∃λ′ ∈ [0, λ] s.t. y + λ′k ∈ F}.

We say that F is k-vectorially closed if vclk F = F. Obviously, it holds F ⊆ vclk F for all k ∈ Y.
We denote by P(Y) := {A ⊆ Y | A is nonempty} the power set of Y without the empty set.

For two elements A, B of P(Y), we denote the sum of sets by

A + B := {a + b | a ∈ A, b ∈ B}.

The set F ⊆ Y is a cone if for all f ∈ F and λ ≥ 0, λ f ∈ F holds true. The cone F is convex if F + F ⊆ F.
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Now let ∅ 6= C ⊆ Y and k ∈ Y \ {0}. We recall the functional zC,k : Y → R∪ {+∞} ∪ {−∞} =: R̄
from Gerstewitz [23] (which has very recently been extended to the space Y without assuming any
topology, see [24] and the references therein)

zC,k(y) :=

{
+∞ if y /∈ Rk− C,

inf{t ∈ R | y ∈ tk− C} otherwise .
(1)

The functional zC,k was originally introduced as scalarizing functional in vector optimization. Please
note that the construction of zC,k was mentioned by Krasnosel’skiĭ [25] (see Rubinov [26]) in the context
of operator theory. Figure 1 visualizes the functional zC,k, where C = R2

+ has been taken as the natural
ordering cone in R2 and k ∈ core C. We can see that the set −C is moved along the line R · k up until y
belongs to tk− C. The functional zC,k assigns the smallest value t such that the property y ∈ tk− C
is fulfilled.

C
k

y

tk− C

t · k

Figure 1. Illustration of the functional zC,k(y) := inf{t ∈ R|y ∈ tk− C}.

The functional zC,k plays an important role as nonlinear separation functional for not necessarily
convex sets. Applications of zC,k include coherent risk measures in financial mathematics (see,
for instance, [27]) and uncertain programming (see [2,3]). Several important properties of zC,k (in the
case that Y is endowed with a topology) were studied in [28,29]. Now let us recall the definition of
E-monotonicity of a functional.

Definition 1. Let E ∈ P(Y). A functional z : Y → R̄ is called E-monotone if

y1, y2 ∈ Y : y1 ∈ y2 − E⇒ z(y1) ≤ z(y2) .

Below we provide some properties of the functional zC,k introduced in (1).

Proposition 1 ([22]). Let C and E be nonempty subsets of Y, and let k ∈ Y \ {0}. Then the following
properties hold.

(a) ∀ y ∈ Y : zC,k(y) ≤ 0⇐⇒ y ∈ (−∞, 0]k− vclk C.
(b) ∀ y ∈ Y : zC,k(y) < 0⇐⇒ y ∈ (−∞, 0)k− vclk C.
(c) zC,k is E-monotone if and only if E + C ⊂ [0,+∞)k + vclk C.
(d) ∀ y ∈ Y, ∀ r ∈ R : zC,k(y + rk) = zC,k(y) + r.

The set relations to be defined below rely on set inclusions where the set C is attached pointwise
to the considered sets A, B ∈ P(Y). The following corollary relates A + C and A− C respectively by
means of the functional zC,k in the case that C is a convex cone.
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Corollary 1 ([14], Corollary 2.3). Let C ⊆ Y be a convex cone, A ∈ P(Y) and k ∈ Y \ {0}. Then it holds

sup
a∈A

zC,k(a) = sup
y∈A−C

zC,k(y) and inf
a∈A

zC,k(a) = inf
y∈A+C

zC,k(y) .

A well-known set relation is the upper set less order relation introduced by Kuroiwa [30,31].
We recall a generalized version of this relation here, where the underlying set C is not necessarily a
convex cone and thus the resulting relation is not necessarily an order.

Definition 2 (Upper Set Less Relation, [32]). Let C ⊆ Y. The upper set less relation �u
C is defined for two

sets A, B ∈ P(Y) by
A �u

C B :⇐⇒ A ⊆ B− C.

The following theorem shows a first connection between the upper set less relation and the
nonlinear scalarizing functional zC,k.

Theorem 1 ([14], Theorem 3.2). Let C ⊆ Y be a convex cone, A, B ∈ P(Y) and k ∈ Y \ {0}. Then

A �u
C B =⇒ sup

a∈A
zC,k(a) ≤ sup

b∈B
zC,k(b).

The converse implication in Theorem 1 is not generally fulfilled, even if the underlying sets are
convex, see ([33], Example 3.2). However, we have the following result.

Theorem 2 ([14], Theorem 3.3). Let C ⊆ Y. For two sets A, B ∈ P(Y) and k ∈ Y \ {0}, it holds

A �u
C B =⇒ sup

a∈A
inf
b∈B

zC,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infb∈B zC,k0(a− b) is attained for all
a ∈ A, C is k0-vectorially closed and [0,+∞)k0 + C ⊆ C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 =⇒ A �u
C B .

Remark 1. (1) Please note that for any A, B ∈ P(Y), the set relation A �u
C B by Theorem 2 also implies

supk∈Y\{0} supa∈A infb∈B zC,k(a− b) ≤ 0.
(2) Let A, B ∈ P(Y) and C ⊆ Y. If there exists an element k0 ∈ C \ {0} such that infb∈B zC,k0(a − b)

is attained for all a ∈ A, C is k0-vectorially closed and [0,+∞)k0 + C = C, then it follows from
Theorem 2 that

A �u
C B ⇐⇒ sup

a∈A
inf
b∈B

zC,k0(a− b) ≤ 0

⇐⇒ sup
k∈Y\{0}

sup
a∈A

inf
b∈B

zC,k(a− b) ≤ 0.

In the second part of Theorem 2, we need the assumption that there exists a k0 ∈ Y \ {0}
such that infb∈B zC,k0(a − b) is attained for all a ∈ A. Sufficient conditions for such an attainment
property, i.e., assertions concerning the existence of solutions of the corresponding optimization
problems (extremal principles) are given in the literature. The well-known Theorem of Weierstrass says
that a lower semi-continuous function on a nonempty weakly compact set in a reflexive Banach
space has a minimum. An extension of the Theorem of Weierstrass is given by Zeidler ([34],
Proposition 9.13): A proper lower semi-continuous and quasi-convex function on a nonempty closed
bounded convex subset of a reflexive Banach space has a minimum. Since the functional zC,k0 is
studied here in the context of real linear spaces that are not endowed with a particular topology,
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we cannot rely on continuity assumptions. Therefore, we propose the following theorem without any
attainment property.

Theorem 3 ([14], Theorem 3.6). Let C ⊆ Y, A, B ∈ P(Y) and k0 ∈ Y \ {0} such that (−∞, 0)k0 −
vclk0 C ⊆ −C and vcl−k0(B− C) ⊆ B− C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 =⇒ A �u
C B .

We also consider the following set relation, which compares sets based on their lower bounds
(compare [30,31] for the according definition for orders).

Definition 3 (Lower Set Less Relation, [32]). Let C ⊆ Y. The lower set less relation �l
C is defined for

two sets A, B ∈ P(Y) by
A �l

C B :⇐⇒ B ⊆ A + C.

Because A �u
C B is equivalent to−B �l

C −A, we obtain the following corollaries from Theorems 1,
2 and 3.

Corollary 2 ([14], Corollary 3.9). Let C ⊆ Y be a convex cone, A, B ∈ P(Y) and k ∈ Y \ {0}. Then

A �l
C B =⇒ inf

a∈A
zC,k(a) ≤ inf

b∈B
zC,k(b).

Corollary 3 ([14], Corollary 3.10). Let C ⊆ Y. For two sets A, B ∈ P(Y) and k ∈ Y \ {0}, it holds

A �l
C B =⇒ sup

b∈B
inf
a∈A

zC,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infa∈A zC,k0(a− b) is attained for all
b ∈ B, C is k0-vectorially closed and [0,+∞)k0 + C ⊆ C. Then

sup
b∈B

inf
a∈A

zC,k0(a− b) ≤ 0 =⇒ A �l
C B .

Corollary 4 ([14], Corollary 3.11). Let C ⊆ Y, A, B ∈ P(Y) and k0 ∈ Y \ {0} such that (−∞, 0)k0 −
vclk0 C ⊆ −C and vcl−k0(A− C) ⊆ −A− C. Then

sup
b∈B

inf
a∈A

zC,k0(a− b) ≤ 0 =⇒ A �l
C B .

We also study the so-called set less relation (see [35,36] for the case where the underlying set C is a
convex cone).

Definition 4 (Set Less Relation, [32]). Let C ⊆ Y. The set less relation �s
C is defined for two sets

A, B ∈ P(Y) by
A �s

C B :⇐⇒ A �u
C B and A �l

C B.

We immediately obtain the following results.

Corollary 5 ([14], Corollary 3.13). Let C ⊆ Y be a convex cone, A, B ∈ P(Y) and k ∈ Y \ {0}. Then

A �s
C B =⇒ sup

a∈A
zC,k(a) ≤ sup

b∈B
zC,k(b) and inf

a∈A
zC,k(a) ≤ inf

b∈B
zC,k(b).
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Corollary 6 ([14], Corollary 3.14). Let C ⊆ Y. For two sets A, B ∈ P(Y) and k ∈ Y \ {0}, it holds

A �s
C B =⇒ sup

a∈A
inf
b∈B

zC,k(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zC,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infb∈B zC,k0(a− b) is attained for all
a ∈ A, and there exists k1 ∈ Y \ {0} such that infa∈A zC,k1(a− b) is attained for all b ∈ B, C is both k0- and
k1-vectorially closed, [0,+∞)k0 + C ⊆ C and [0,+∞)k1 + C ⊆ C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zC,k1(a− b) ≤ 0 =⇒ A �s
C B .

Corollary 7 ([14], Corollary 3.15). Let C ⊆ Y, A, B ∈ P(Y) and k0, k1 ∈ Y \ {0} such that (−∞, 0)k0 −
vclk0 C ⊆ −C, (−∞, 0)k1 − vclk1 C ⊆ −C, vcl−k0(B− C) ⊆ B− C and vcl−k1(A− C) ⊆ A− C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zC,k1(a− b) ≤ 0 =⇒ A �s
C B .

3. Approximate Minimal Elements of Set Optimization Problems

The following definition describes minimality in the setting of a family of sets (see ([5],
Definition 2.6.19) for the corresponding definition for preorders).

Definition 5 (Minimal Elements). Let A be a family of elements of P(Y). A ∈ A is called a minimal
element of A w. r. t. � if

A � A, A ∈ A =⇒ A � A .

The set of all minimal elements of A w. r. t. � will be denoted by Amin.

Please note that if the elements of A are single-valued and A � A :⇐⇒ A ∈ A − C with
C ⊆ Y being a convex cone, then Definition 5 reduces to the standard notion of minimality in vector
optimization (compare, for example, ([15], Definition 4.1)). From vector optimization, it is well known
that usually, the existence of minimal elements can only be guaranteed under additional assumptions
(for an existence result of minimal elements in set optimization, see, for example, [37]). Since the set
Amin may be empty, it is common practice to use a weaker notion of minimality, so-called approximate
minimality. For this reason, we extend three notions of approximate minimality that were originally
introduced in [38]. In [38], the following definitions are given for� = �l

C (see Definition 3). In order to
stay as general as possible, we define approximate minimality using set relations that are not required
to possess any ordering structure.

Definition 6. Let A be a family of elements of P(Y), H ∈ P(Y), H 6= Y and � be a binary relation on A.

(a) A ∈ A is called an H1–approximate minimal element of A w. r. t. � if

A � A, A ∈ A =⇒ A � A + H .

(b) A ∈ A is called an H2–approximate minimal element of A w. r. t. � if

A + H � A, A ∈ A =⇒ A � A + H .

(c) A ∈ A is called an H3–approximate minimal element ofA w. r. t.� if A+ H 6� A, for all A ∈ A\ A.

The set of all Hi–approximate minimal elements of A w. r. t. � (i = 1, 2, 3) will be denoted by AHi .

Please note that Definition 6 (a) is a natural formulation for approximate minimality,
while Definition 6 (b) is derived from the standard notion of approximate efficiency for vector-valued
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maps (see ([38], Remark 2.5)). Definition 6 (c) represents an approximate version of the well-known
nondomination concept of vector optimization.

Here we consider a set-valued optimization problem in the following setting: Let S ⊆ Rn,
a set-valued mapping F : S ⇒ Y and a set relation � be given. We are looking for approximate
minimal elements w. r. t. the order relation � in the sense of Definition 6 of the problem

min
x∈S

F(x) . (2)

We say that x ∈ S is an Hi–approximate minimal solution (i = 1, 2, 3) of (2) w. r. t. � if F(x) is an
Hi–approximate minimal element of the family of sets F(x), x ∈ S w. r. t. �. The family of sets F(x),
x ∈ S, is denoted by A.

Now we will present characterizations of approximate minimal solutions of (2) w. r. t. �. In what
follows, we will use the following notation. For some x ∈ S, let us denote

[F(x)]H
1

� := {x ∈ S | F(x) � F(x), F(x) � F(x) + H}

and
[F(x)]H

2

� := {x ∈ S | F(x) + H � F(x), F(x) � F(x) + H} .

The following proposition will be useful in the theorem below.

Proposition 2. x ∈ S is an H1-approximate minimal solution of the problem (2) w. r. t. � if and only if for any
x ∈ S \ [F(x)]H

1

� , we have F(x) 6� F(x).

Proof. First note that x ∈ S \ [F(x)]H
1

� means that x ∈ S such that F(x) 6� F(x) or F(x) 6� F(x) + H.
Let x ∈ S be an H1-approximate minimal solution of the problem (2) w. r. t. �. Then we must consider
two cases:
Case 1: For x ∈ S and F(x) 6� F(x), there is nothing left to show.
Case 2: For x ∈ S and F(x) 6� F(x) + H, we obtain F(x) 6� F(x) due to x’s H1-approximate minimality,
as desired.

Conversely, assume that for all x ∈ S \ [F(x)]H
1

� , F(x) 6� F(x) holds true. Suppose,
by contradiction, that x is not an H1-approximate minimal solution of the problem (2) w. r. t. �.
This implies the existence of some x ∈ S with the properties F(x) � F(x) and F(x) 6� F(x),
in contradiction to the assumption.

Now we consider a functional gH1
: S× S→ R∪ {±∞} with the property

∀ x, x ∈ S : gH1
(x, x) ≤ 0 ⇐⇒ F(x) � F(x).

Then we have the following characterization for H1-approximate minimal solution of the problem (2)
w. r. t. �.

Theorem 4. x ∈ S is an H1-approximate minimal solution of the problem (2) w. r. t. � if and only if the
following system (in the unknown x)

gH1
(x, x) ≤ 0, x ∈ S \ [F(x)]H

1

� ,

is impossible.
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Proof. First note that due to Proposition 2, x ∈ S is an H1-approximate minimal solution of the
problem (2) w. r. t. � if and only if for x ∈ S \ [F(x)]H

1

� , we have F(x) 6� F(x). Furthermore, we have

gH1
(x, x) ≤ 0, x ∈ S \ [F(x)]H

1

� is impossible

⇐⇒ @x ∈ S \ [F(x)]H
1

� : gH1
(x, x) ≤ 0

⇐⇒ ∀x ∈ S \ [F(x)]H
1

� : gH1
(x, x) > 0

⇐⇒ ∀x ∈ S \ [F(x)]H
1

� : F(x) 6� F(x).

In a similar manner as Proposition 2 and Theorem 4, one can verify the following results. For this,
we assume that we are given a functional gH2

: S× S→ R∪ {±∞} with the property

∀ x, x ∈ S : gH2
(x, x) ≤ 0 ⇐⇒ F(x) + H � F(x).

Proposition 3. x ∈ S is an H2-approximate minimal solution of the problem (2) w. r. t. � if and only if for any
x ∈ S \ [F(x)]H

2

� , we have F(x) + H 6� F(x).

Theorem 5. x ∈ S is an H2-approximate minimal solution of the problem (2) w. r. t. � if and only if the
following system (in the unknown x)

gH2
(x, x) ≤ 0, x ∈ S \ [F(x)]H

2

� ,

is impossible.

Let us now consider problem (2) with the set relation � = �u
C. Motivated by Theorem 3 and

Corollary 4 above, we consider the functionals gHi
u : S× S→ R∪ {±∞} (i = 1, 2) defined by

gH1

u (x, x) := sup
y∈F(x)

inf
y∈F(x)

zC,k(y− y),

gH2

u (x, x) := sup
y∈F(x)+H

inf
y∈F(x)

zC,k(y− y).

Assumption 1. For C ⊆ Y, k ∈ Y \ {0}, and x ∈ S we assume that

(a-H1) C is k-vectorially closed, [0,+∞)k +C ⊆ C, and for all x ∈ S \ [F(x)]H
1

�u
C

and y ∈ F(x), the infimum

infy∈F(x) zC,k(y− y) is attained;
(a-H2) C is k-vectorially closed, [0,+∞)k + C ⊆ C, and for all x ∈ S \ [F(x)]H

2

�u
C

and y ∈ F(x) + H,

the infimum infy∈F(x) zC,k(y− y) is attained;
(b) (−∞, 0)k− vclk C ⊆ −C and vcl−k(F(x)− C) ⊆ F(x)− C.

We next present a sufficient and necessary condition for H1-approximate minimal solutions of the
problem (2) w. r. t. the relation �u

C.

Corollary 8. Let Assumption 1 (a-Hi) or (b) be satisfied. Then x ∈ S is an Hi-approximate minimal solution
(i = 1, 2) of the problem (2) w. r. t. �u

C if and only if the following system (in the unknown x)

gHi

u (x, x) ≤ 0, x ∈ S \ [F(x)]H
i

�u
C

,

is impossible.
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Proof. The proof follows by Theorems 2, 3, 4 and 5.

Furthermore, let us consider problem (2) with � = �l
C. We define the functions gHi

l : S× S →
R∪ {±∞} for i = 1, 2 by

gH1

l (x, x) := sup
y∈F(x)

inf
y∈F(x)

zC,k(y− y)

gH2

l (x, x) := sup
y∈F(x)

inf
y∈F(x)+H

zC,k(y− y).

Assumption 2. For C ⊆ Y, k ∈ Y \ {0}, and x ∈ S we assume that

(a-H1) C is k-vectorially closed, [0,+∞)k +C ⊆ C, and for all x ∈ S \ [F(x)]H
1

�l
C

and y ∈ F(x), the infimum

infy∈F(x) zC,k(y− y) is attained;
(a-H2) C is k-vectorially closed, [0,+∞)k +C ⊆ C, and for all x ∈ S \ [F(x)]H

2

�l
C

and y ∈ F(x), the infimum

infy∈F(x)+H zC,k(y− y) is attained;
(b) (−∞, 0)k− vclk C ⊆ −C and for all x ∈ S : vcl−k(−F(x)− C) = −F(x)− C.

In the following, we present a sufficient and necessary condition for Hi-approximate minimal
solutions of the problem (2) w. r. t. �l

C.

Corollary 9. Let Assumption 2 (a-Hi) or (b) be satisfied. Then x is an Hi-approximate minimal solution
(i = 1, 2) of the problem (2) w. r. t. �l

C if and only if the following system (in the unknown x)

gH1

l (x, x) ≤ 0, x ∈ S \ [F(x)]H
i

�l
C

,

is impossible.

Proof. The proof follows by Corollaries 3 and 4 as well as Theorems 4 and 5.

Finally, we have the following result for Hi-approximate minimal solutions of the problem (2)
w. r. t. �s

C.

Corollary 10. Let i ∈ {1, 2} and suppose that Assumptions 1 (a-Hi) and 2 (a-Hi) or Assumptions 1 (b) and
2 (b) are satisfied for the same k ∈ Y \ {0}. Then x is an Hi-approximate minimal solution of the problem (2)
w. r. t. �s

C if and only if the following system (in the unknown x):

gHi

u (x, x) ≤ 0 and gHi

l (x, x) ≤ 0, x ∈ S \
(
[F(x)]H

i

�u
C
∪ [F(x)]H

i

�l
C

)
,

is impossible.

4. Numerical Procedure for Computing Hi-Approximate Minimal Elements of a Family of
Finitely Many Elements

Finding Hi-approximate minimal elements of a family of finitely many elements of P(Y) is
very important. A first approach to deriving and implementing numerical methods for obtaining
Hi-approximate minimal elements has been presented in [38] for the lower set less relation �l

C.
The assumption that the given family is finitely valued is oftentimes not a restriction, as many
continuous set optimization problem can be appropriately discretized, see the discussion in [39] and
the theoretical investigations for linear programs [40] as well as the numerical studies in [41]. In this
section, we propose numerical methods for obtaining approximate minimal elements as proposed in
Definition 5 for general set relations under suitable assumptions.
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Please note that the following algorithms can be found in [38] for the specific case that the set
relation is equal to �l

C. We present them here for general set relations �. The following algorithm is
an extension of the so-called Graef-Younes method [42,43] and it is useful for sorting out elements which
do not belong to the set of Hi–approximate minimal elements.

Algorithm 1: (Method for sorting out elements of a family of finitely many sets which are not
H1- (H2-, H3-, respectively) approximate minimal elements).

Input: A := {A1, . . . , Am}, set relation �, H ∈ P(Y)
% initialization
T := {A1},
% iteration loop
for j = 2 : 1 : m do

if
(

A � Aj, A ∈ T =⇒ Aj � A + H
)((

A + H � Aj, A ∈ T =⇒ Aj � A + H
)
, respectively

)
,(

A + H 6� A, A ∈ T , respectively
)

, then

T := T ∪ {Aj}
end if

end for
Output: T

Remark 2. 1. Please note that the if-condition in Algorithm 1 is usually not implemented straightforwardly
but instead an additional loop over the elements of the set T is performed. We nevertheless use the above
notation of this step to be consistent with the literature on algorithms of Graef-Younes type.

2. Note also that the if-condition describes approximate minimality in the set T . Therefore, Definition 6 does
not have to be applied to the whole set A, but to a smaller set T , which can drastically reduce the numerical
effort. In this way, non-approximate minimal elements can be eliminated from the set A, as the following
theorem shows.

Theorem 6. 1. Algorithm 1 is well-defined.
2. Algorithm 1 generates a nonempty set T ⊆ A.
3. Every H1- (H2-, H3-, respectively) approximate minimal element of A w. r. t. � also belongs to the set T

generated by Algorithm 1.

Proof. The statements 1 and 2 are easily checked (We loop over a finite number of elements, all the
necessary comparisons are well-defined and after the first step, the set T already consists of an element.)
and therefore, their proofs are omitted. Now let Aj be an H1- (H2-, H3-, respectively) approximate
minimal element of A. Then we have

A � Aj, A ∈ A =⇒ Aj � A + H

(A + H � Aj, A ∈ A =⇒ Aj � A + H, respectively),

(A + H 6� A, A ∈ A, respectively).

Because of T ⊆ A, by the above implications we directly obtain

A � Aj, A ∈ T =⇒ Aj � A + H

(A + H � Aj, A ∈ T =⇒ Aj � A + H, respectively),

(A + H 6� Aj, A ∈ T , respectively).

which verifies that the if-condition in Algorithm 1 is satisfied and Aj is added to T .
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After the application of Algorithm 1 we have only created a smaller set T containing all the
approximate minimal elements of the original family of sets. To filter out solely the approximate
minimal elements, another step is required which we handle in the following algorithm:

Algorithm 2: (Method for finding H1- (H2-, H3-, respectively) approximate minimal elements
of a family A of finitely many sets).

Input: A∗ := {A1, . . . , Am}, set relation �, H ∈ P(Y)
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if
(

A � Aj, A ∈ T =⇒ Aj � A + H
)((

A + H � Aj, A ∈ T =⇒ Aj � A + H
)
,(

A + H 6� Aj, A ∈ T , respectively
)

, then

T := T ∪ {Aj}
end if

end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if
(

A � Aj, A ∈ U =⇒ Aj � A + H
)((

A + H � Aj, A ∈ U =⇒ Aj � A + H
)
,(

A + H 6� Aj, A ∈ U , respectively
)

, then

U := U ∪ {Aj}
end if

end for
Output: U
{A1, . . . , Aq} := U
V := ∅
% final comparison
for j = 1 : 1 : q do

if
(

A � Aj, A ∈ A \ U =⇒ Aj � A + H
)((

A + H � Aj, A ∈ A \ U =⇒ Aj � A + H
)
, respectively

)
,(

A + H 6� Aj, A ∈ A \ U , respectively
)

, then

V := V ∪ {Aj}
end if

end for
Output: V

Remark 3. 1. Again, for determining whether the implications in the definition of minimality are fulfilled,
one must loop over the elements of the sets of T , U and A \ U , resp.

2. Please note that we formulated Algorithm 2 to have two outputs U and V . For practical purposes it would
suffice to use V which in fact contains all the approximate minimal elements and no more. However,
the theoretical investigations below show that the set U is in its own right interesting to be examined
further.
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We start the investigation of the above algorithms for the (arguably simplest) case of
H3-approximate minimality. The following result shows that every element of the set U is an
H3-approximate minimal element of U w. r. t. � (but not necessarily an H3-approximate minimal
element of the set A).

Lemma 1. Every element of U generated by Algorithm 2 after the backward iteration is also an H3-approximate
minimal element of U w. r. t. �.

Proof. Let Aj ∈ U = {A1, . . . , Aq}. By the forward iteration, we obtain

∀ i < j (i ≥ 1) : Ai + H 6� Aj.

The backward iteration yields

∀ i > j (i ≤ q) : Ai + H 6� Aj.

This means that

∀ i 6= j (1 ≤ i ≤ q) : Ai + H 6� Aj,

which is equivalent to

∀ Ai ∈ U \ {Aj} : Ai + H 6� Aj.

This is the definition of an H3-approximate minimal element of U w. r. t. �.

Theorem 7. Algorithm 2 generates exactly all H3-approximate minimal elements of A w. r. t. � within the
set V .

Proof. Let Aj be an arbitrary element in V . Then Aj ∈ U , as V ⊆ U , and due to the third if-statement
in Algorithm 2

A + H 6� Aj, A ∈ A \ U . (3)

Suppose that Aj is not H3-approximate minimal in A. Then there exists some A ∈ A \ Aj such that

A + H � Aj. (4)

If A /∈ U , then this is a contradiction to (3). If A ∈ U , then due to the H3-approximate minimality of Aj
in U (see Lemma 1), we obtain A + H 6� Aj, a contradiction to (4).

Conversely, let Aj be H3-approximate minimal in A. This means, by definition that

A + H 6� Aj, A ∈ A \ Aj.

Now let us assume, by contradiction, that Aj /∈ V . Then, there exists some A ∈ A\U with A+ H � Aj,
a contradiction.

To obtain similar results as in Lemma 1 and Theorem 7 for H1- (H2-, respectively) approximate
minimal elements of U w. r. t. �, we need the following assumption.

Assumption 3. Suppose that one of the following conditions holds:

1. The set relation � is irreflexive.
2. The set relation � is reflexive and for every A ∈ A, A � A + H.



Mathematics 2020, 8, 143 13 of 17

Assumption 4. Suppose that for all A ∈ A, it we have A + H 6� A or A � A + H.

Below we give some examples of set relations that fulfill the above assumptions.

Example 1. 1. Consider the certainly less relation, which is defined as (see ([32], Definition 3.12))

A �cert
C B ⇐⇒ ∀ a ∈ A, ∀ b ∈ B : a ∈ b− C,

where C ∈ P(Y). Then �cert
C is irreflexive if C is pointed, i.e., C ∩ (−C) = ∅ (hence, 0 /∈ C).

2. Let us recall the possibly less relation, given as (compare [32,37,44])

A �p
C B ⇐⇒ ∃ a ∈ A, ∃ b ∈ B : a ∈ b− C,

where C ∈ P(Y) such that 0 ∈ C. Then �p
C is reflexive. If C is a convex cone with H ⊆ C, then A �p

C
A + H for all A ∈ A.

3. If C is a convex cone with 0 ∈ C and H ⊆ −C, then A �u
C A + H holds true for all A ∈ A.

Lemma 2. Let Assumption 3 (Assumption 4, respectively) be fulfilled. Then every element of U generated by
Algorithm 2 is also an H1- (H2-, respectively) approximate minimal element of U w. r. t. �.

Proof. Let Aj ∈ U = {A1, . . . , Aq}. By the forward iteration, we obtain

∀ i < j (i ≥ 1) : Ai � Aj =⇒ Aj � Ai + H, (5)(
∀ i < j (i ≥ 1) : Ai + H � Aj =⇒ Aj � Ai + H, respectively

)
. (6)

The backward iteration yields (5) ((6), respectively) for every i > j (i ≤ q). Together, this means that

∀ i 6= j : Ai � Aj =⇒ Aj � Ai + H, (7)(
∀ i 6= j : Ai + H � Aj =⇒ Aj � Ai + H, respectively

)
. (8)

Since the set relation is, due to Assumption 3 either irreflexive or reflexive and for every A ∈ A, A �
A+ H, (7) is equivalent to the implication given in Definition 6 (a), and hence, Aj is an H1–approximate
minimal element of U w. r. t.�. Similarly, according to Assumption 4, it holds for all A ∈ A A+ H 6� A
or A � A + H. With this in mind, the implication (8) coincides with Definition 6 (b), and hence,
Aj ∈ UH2 .

Theorem 8. Let Assumption 3 (Assumption 4, respectively) be fulfilled. Then Algorithm 2 generates exactly
all H1- (H2-, respectively) approximate minimal elements of A w. r. t. �.

Proof. Let Aj be an arbitrary element in V . Then Aj ∈ U , as V ⊆ U , and due to the third if-statement
in Algorithm 2

A � Aj, A ∈ A \ U =⇒ Aj � A + H, (9)(
A + H � Aj, A ∈ A \ U =⇒ Aj � A + H, respectively

)
. (10)

Suppose that Aj is not H1- (H2-, respectively) approximate minimal in A. Then there exists some
A ∈ A such that

A � Aj and Aj 6� A + H, (11)(
A + H � Aj and Aj 6� A + H, respectively

)
(12)
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If A /∈ U , then this is a contradiction to (9) ((10), respectively). If A ∈ U , then Aj � A + H, as Aj is
H1- (H2-, respectively) approximate minimal in U according to Lemma 2. But this contradicts the
implication (11) ((12), respectively).

Conversely, let Aj be an H1- (H2-, respectively) approximate minimal element in the set A, i.e.,

A � Aj, A ∈ A =⇒ Aj � A + H,(
A + H � Aj, A ∈ A =⇒ Aj � A + H, respectively

)
.

(13)

Now let us assume, by contradiction, that Aj /∈ V . Then, there exists some A ∈ A \ U with A � Aj
(A + H � Aj, respectively), but Aj 6� A + H, a contradiction to (13).

To illustrate the algorithms, we will apply the forward and backward iteration for a rather
academic example in R2. Note, however, that its (even computerized) application is not limited to
these finite-dimensional structures as the algorithms are based on elementary finite iteration loops.
So, once a way has been established to numerically assert the relation A � B for two sets A and B out
of a certain family of sets, the algorithms can directly be applied. For the case of polyhedral sets, such a
comparison principle has, for example, been established in [45] and similar computational approaches
were developed in [46].

Example 2. For this example, let C := R2
+, �:=�cert

C and H = {(1, 1)T}. As the family of sets A, we have
randomly computed 1000 sets, for easy comparison each set is a ball of radius one in R2. We are interested in
the H2-approximate minimal elements of the set A and make use of Algorithm 2 to obtain those. Notice that
Assumption 4 is trivially fulfilled. Out of the 1000 sets, a total number of 177 are H2-approximate minimal
w. r. t. to �. Algorithm 2 generates at first 189 sets in T ; then, 177 sets are collected within the set U and
V . We used the same data as in Example 4.7 and 4.14 from [32], and according to our earlier results, a total
number of 93 elements are minimal. In Figure 2, the sets within T are the lightly and darkly filled circles,
while the H2-approximate minimal elements of the setA (that is, the sets in U and V) are the darkly filled circles.
For comparison, Algorithm 2 is also used on the same family of sets with H = {(0, 0)T} (see ([32], Example 4.7
and 4.14)), with 103 sets within T and 93 sets within U and V , see Figure 3. Let us note that this example is
chosen to illustrate the efficiency of Algorithm 2 as it is to be expected for problems with relatively homogeneous
distribution of set size and structure, see the according discussion in the vector-valued case [15,43].
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Figure 2. A randomly generated family of sets. The lightly and darkly filled circles belong to the set T
generated by Algorithm 2, while the H2-approximate minimal elements of the set A are exactly the
darkly filled circles (see Example 2).
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Of course, the notion of approximate minimality makes sense when minimal elements do not exist (in the
vector-valued case, this can happen when the set of feasible elements in the objective space is open). In the future,
we will study continuity notions of set-valued mappings that appear in set optimization problems and investigate
existence results.

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

Figure 3. The randomly generated family of sets from Example 2 with H = {(0, 0)T}, i.e., we do not
consider approximate minimal elements here, but look for the minimal elements of the family of sets A.
The lightly and darkly filled circles belong to the set T generated by Algorithm 2, while the minimal
elements of the set A are the darkly filled circles.

5. Conclusions

This paper investigates different kinds of approximate minimal solutions of set optimization
problems. In particular, we present an inequality approach to characterize these approximate minimal
solutions by means of a prominent scalarizing functional. To be as general as possible, our analysis
is developed in real linear spaces without assuming any topology on the spaces and therefore bases
only on algebraic relations and set inclusions between all the involved quantities. It would be
interesting to study whether different scalarizing functionals may be used for a similar analysis
as the separation functionals of Tammer–Weidner type have recently been embedded into a larger class
of functionals [47]. We have proposed effective algorithms that select approximate minimal elements
out of a family of finitely many sets. As a next step, it will be necessary to test our algorithms on
practical examples.
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