C Petrological studies on xenoliths

In addition to the seismological investigations, xenoliths from a Quaternary tephra deposit were
sampled to study the presumed source region of the CO,-dominated gas petrologically. After the
description of the sample site, an introduction into the used chemical analytical methods and into the
geothermobarometry follows. Then the samples are described. Finally, the obtained petrological and
mineral-chemical results are presented and discussed. Pressure-temperature (p-T) conditions of

equilibration or crystallization are estimated from mineral-chemistry.

C.1 Sample site

Several (ultra-) mafic xenoliths/nodules as well as crustal xenoliths were sampled from a temporary
outcrop in a tephra deposit in Mytina (50.005°N, 12.444°E), approximately 1.5 km north of the
Quaternary scoria cone Zeleznd Hirka (49.992°N, 12.444°E; Figures C.1, C.2) [Kdmpf et al., 1998;
Geissler et al., 2004b]. First detailed works on the tephra deposit as well as the ultramafic nodules and

megacrysts were done by Reuss [1852] and Proft [1894].

The temporary outcrop was documented lithostratigraphically (Figure C.3), and samples were
geochemically analysed using XRF and ICP-MS. Samples of wall rock (large blocks within the lower
unit UF) and nephelinitic bombs were analysed for comparison. The excavated profile (approximately
4 m thick) consists of clayey material (weathered bedrock) at the base, tuff (lower unit with three
sequences: UFa, UFb, UFc) and overlying tephra (upper unit, three sequences: OFa, OFb, OFc). The
tuff is well stratified showing an average layer thickness of 1 to 3 cm. The middle part of the lower

unit (UFb) contains a lot of wall rock fragments with a maximum dimension of 60 x 40 x 40 cm.

The petrochemical data (see Appendix C.i) were used to estimate the juvenile (magmatic) or wall rock

content of the different tephra layers.

)(sample — Xwall rock

(C.1) magmatic component [%]=
Xvnephelinite — Xowall rock

For this estimation contents of TiO,, MgO, CaO, P,0s, Sr, Cr, Nb, and V were used (Figure C.3).
Similar results can be obtained using other trace elements and REEs. Obviously, the magmatic
components in UF rise from about 15% to 30 % topwards, whereas it is about 60% in OF. The
reciprocal content of wall rock in UF ranges from about 85% to 70%, similar to values known from

the West Eifel maar deposits (about 80%, according to Zimanowski [1986]).
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Figure C.1

Location of the temporary exploratory excavation “Mytina”, the approximate positions of previous temporary
outcrops are marked (1 — sampling by Kdmpf 1996; 2 — sampling by Schwarzkopf 1997), supposed tephra
deposits (T) in the surrounding of the Zelezna Hiirka (3 — outcrops of tephra in a former quarry). The assumed
boundaries of the tephra deposits are supported by the interpretation of field studies and aerial photographs
(Bayerisches Landesvermessungsamt 1993 and 2001, nr. 93101/0 014 and 101007/0 316). From Geissler et al.
[2004b].

The age of the tephra deposit was determined by Wagner et al. [2002] to about 300 ky using fission
track and alpha-recoil track measurements on apatites and phlogopite [Geissler et al., 2004b]. The
Zelezna Hiirka scoria cone (lower unit) is approximately 500 ky old according to Wagner et al. [2002],

however the uncertainties of the dating methods used are very high.
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Figure C.2

The tephra-tuff deposit north of Mytina, (temporary exploratory excavation); location in Figure C.1 (photographs
by W.H. Geissler). (a) Total view (October 2002, fresh), (b) Total view (June 2003, weathered); note the high
number of thin layers within the Lower Unit (arrows). From Geissler et al. [2004b].

C.2 Analytical methods and basics of geothermobarometry

Samples from nephelinitic host rock, ultramafic nodules/xenoliths, and crustal xenoliths were analysed
for their chemical and mineralogical composition by microscopy and several chemical procedures,
including X-ray fluorescence (XRF), inductively coupled plasma mass-spectrometry (ICP-MS), and
mineral-chemical analyses by electron-microprobe analysis (EMPA). Whole-rock chemistry, both
major and trace elements including rare earth elements (REE), were analysed in the laboratories of the
GeoForschungsZentrum Potsdam. Results from mineral-chemical investigations can be used for
geothermobarometric calculations, which are mainly based on empirically and experimentally

calibrated formulas.
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Sample preparation for whole-rock chemical analyses (ICP-MS, XRF) includes crushing to a grain
size <62 um and homogenisation. Thin-sections for microscopy and electron-microprobe analyses
were made by the preparation laboratory of the GFZ Potsdam. The sections have commonly a

thickness of 25 um.

C.2.1 Geochemical (XRF, ICP-MS) and mineral-chemical (EMPA) investigations

In this chapter the basics of the analytical methods for rock and mineral chemistry will be introduced.
A more detailed description of the theories, instruments, and analytical procedures can be found, e.g.,

in Zussmann [1977], Gray [1988], Klein and Hurlbut [1993], and Dulski [2001].

C.2.1.1  X-ray fluorescence spectrometry (XRF)

The sample, grounded to a fine powder, is compressed into a circular pellet or fused into a glass disc.
This pellet/disc is shortly irradiated with primary X-rays. X-rays are absorbed by the sample according
to Beer’s law. The absorbed X-ray energy cause generation of a secondary X-ray emission spectrum,
which is characteristic for each element in the sample. During absorption of the primary X-rays
electrons in the inner shell are displaced. Vacancies will most probably be filled by electrons from the
next outer shell creating a new vacancy. “Electron jumps” cause emission of energy in the form of the
characteristic secondary X-radiation. The emission phenomenon is called X-ray fluorescence. Each
element has characteristic spectral lines. The secondary X-ray spectrum (consisting of a low-intensity
continuous background and element peaks) is resolved into spectral lines by an X-ray spectrometer,
consisting of a diffracting crystal and an X-ray detector (X-ray counting device: scintillation counter

or flow proportional counter).

C.2.1.2  Inductively coupled plasma mass-spectrometry (ICP-MS)

ICP-MS is a multi-element analytical method, which allows the quantification of concentrations of
many trace elements, including the rare earth elements (REE) within rocks, minerals and natural

waters [Dulski, 2001]. The method is described by Gray [1988] in more detail.

Inductively coupled plasma is produced, if energy is transmitted via an induction coil to a gas. The
soluted sample is transformed into a gas-supported aerosol using a pneumatolytic nebulizer and is

subsequently introduced into the plasma. The reproducible extraction of ions from the plasma to the
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mass-spectrometer is complicated, because both have totally different temperature and pressure
conditions (1 atm, 7000K and <10” mbar, 300K, respectively). The ions are collected by a conic
collector and separated by mass using a quadrupol mass filter. The counting of ions is done in an

electron multiplicator in the impulse counting mode.

C.2.1.3  Electron microprobe analysis (EMPA)

The methodology of electron microprobe analysis is similar to the XRF method. Only the primary X-
radiation is replaced by a sharply focused electron beam, which allows the qualitative and quantitative
analysis of a minute volume of material (10-20 um® or 10™"'g minimum for silicate materials). The
heart of the electron microprobe is an X-ray spectrometer. X-rays within the sample volume are
excitated by an electron beam, which is sharply focused by electromagnetic lenses down to a diameter
of 2 to 10 (20) um. A heated tungsten filament serves as the source of the free electrons (energy
source). The electron beam has enough energy to displace inner-shell electrons of the constituent
atoms of the sample. Outer shell electrons fill inner-shell vacancies and loose their energy, which is
emitted as characteristic X-rays. The characteristic X-ray spectrum of the elements within a crystal or
glass is recorded wavelength dispersive by a crystal spectrometer or energy dispersive by a
semiconductor spectrometer. The duration of point measurements range between 2 and 7 min

depending on the number of analysed elements and required accuracy (counting times).

Using the electron microprobe two-dimensional element scans or line scans are possible to study the
zoning of elements within minerals (e.g., Al or Ti in clinopyroxene). The focused electron beam
causes heating of the sample analysis area. Therefore, the beam diameter should be greater analysing

samples with a higher content of H,O, F, and alkalis (e.g., feldspars, mica and glass analyses).

C.2.2 Geothermobarometry of xenoliths

To combine petrologic and seismic data, it is necessary to estimate the depth of origin of the xenoliths.
In the past, strong efforts were made to calibrate geothermobarometer, empirically and experimentally,
for mineral assemblages equilibrated under pressures typical for the lower crust (garnet-bearing
metamorphic rocks) and upper mantle (spinel and garnet lherzolites [see Pearson et al., 2004]).
Unfortunately, the Mytina (ultra-) mafic xenolith suite provides no possibility to use these standard
upper mantle geothermobarometers, which are calibrated for orthopyroxene- and garnet-bearing upper
mantle rocks. Calibrations for other assemblages are rare, however, Ernst and Liu [1998] and

Huckenholz et al. [1992] proposed geothermobarometers for amphibole-bearing xenoliths. Nimis and
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Ulmer [1998] and Nimis [1999] published barometric formulations for clinopyroxenes. Temperature of
equilibration can be estimated using the Mg®" - Fe*" partitioning between coexisting olivine and spinel.

Geothermobarometers used in this study are outlined below.

C.2.2.1 Amphibole thermobarometry

Ti-rich amphiboles, found as phenocrysts and xenocrysts in many alkali basaltic rocks, are a near-
liquidus phases, stable up to ca. 31 kbar and 1100°C [Schulze, 1987]. Several studies showed that the
chemistry of amphiboles is sensitive to pressure, temperature, oxygen and water fugacities [e.g., Helz,
1982; Spear, 1981; Wones and Gilbert, 1981]. There exist a lot of empirical and experimentally
calibrated thermo/barometers for mostly amphibole-bearing quartz-rich intrusions [e.g., Otten, 1984;
Hammarstrom and Zen, 1986; Hollister et al., 1987; Johnson and Rutherford, 1989; Schmidt, 1992].
They are calibrated for a mineral assemblage of hornblende, melt, fluid, biotite, quartz, sanidine,

plagioclase, sphene, magnetite or ilmenite.

Ernst and Liu [1998] compiled a p-T scheme based on the Al,0; and TiO, contents in amphiboles.
This scheme can be used for metabasaltic assemblages containing coexisting Al-rich (e.g., plagioclase,
epidote, garnet) and Ti-rich phases (e.g., ilmenite, titanite, rutile), and closely approached chemical
equilibrium under crustal or uppermost mantle conditions. It should be also applicable, with caution,
to inhomogeneous specimens. Al increases with both p and T, but also compositional variations (high
proportions of melt) seem to influence partitioning of Al,O5 in Ca-amphibole. TiO, content correlates
positively with temperature and can be used as a geothermometer above 500°C, where solubility of Ti
in calcic amphiboles becomes substantial. According to Ernst and Liu [1998], the Al- and Ti-contents
of amphibole can give an estimate for the solidification depth of an intrusion, or the equilibrium
pressure of a magma chamber before eruption. This thermobarometer should be especially applicable

at crustal/lithospheric pressures (up to ~1.2 GPa).

Huckenholz et al. [1992] studied the exchange reactions of Ca, Ti and Na between coexisting calcic
amphiboles (potassian and titanian pargasites) and clinopyroxenes (diopside), which crystallized from
a melt with magnesio-hastingsite composition. Their results provide pressure constraints for calcic
amphiboles (potassian and titanian pargasites) coexisting with clinopyroxenes. Huckenholz et al.
[1992] proposed that the Na/Ca exchange between both minerals could be used for pressure estimates

in alkali basalt systems (4-45 kbar).

(Na/ Ca)amph
(C.2) Plkbar]+ 2 kbar =48.04 -23.94In——
(Na/Ca)

cpx
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Pressure estimates of natural amphibole-clinopyroxene pairs can be made, when alkali basalts close to
nepheline basanite, olivine nephelinite, or pargasite composition is available with Na/Ca ratios of 0.25
to 0.60, and they bear both amphibole and clinopyroxene. The barometer is not applicable for

peridotite systems and alkali basalts + H,O-excess systems (then Kp, > 6).

C.2.2.2  Olivine-spinel thermometry (spinel barometry)

Mg®" - Fe’* partitioning between coexisting spinel and olivine (formula C.3) was first suggested as

potential geothermometer by /rvine [1965]:
(C3)  1/2Fe,Si0, + Mg(Cr, Al jFe}"),0, =1/2Mg,SiO, + Fe(Cr, Al ,Fe>"), 0,

where a, B, and y are the atomic fractions of the respective trivalent cations. This exchange is
temperature-sensitive, especially for Cr-rich spinels. The first calibration was made by Jackson [1969]
from available thermo-chemical data. Roeder et al. [1979] re-evaluated this formulation of the /rvine
olivine-spinel geothermometer using a different free energy value of FeCr,O,. Their equation to

estimate the temperature of equilibration is:

3480c + 1018 — 1720y + 2400

(C4) T[K]=
2.23c+2.568—3.08y —1.47+1.987In K,

Cr Al Fe*

- = y=———— and
Cr+ Al + Fe** p Cr+ Al + Fe** 4 Cr+ Al + Fe**

where o =

_ (XMg /XFe“ )olivine
(X / X )

(C35) K,

spinel

is the equilibrium constant for the Mg*"/Fe*" exchange between coexisting olivine and spinel. Fabries
[1979] pointed out that there are problems with end-member spinels, especially spinels with low
Cr/(Cr+Al) ratios as common in lherzolitic rocks. In this case the calculated temperatures could be too

high. His formulation of the olivine-spinel thermometer is given below:

4250 Y7 +1343
InKj) +1.825Y% +0.571

(C.6) T[K]=

InK) =InK, —4.0 Y;fh [according to Irvine, 1965]

InKj) =InK, -2.0Y" (T = 1200°C, Roeder et al. [1979])

F63+
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According to Fabries [1979], the uncertainty due to analytical errors in the determination of Mg and
Fe** in spinel and olivine, and Cr, Al, and Fe'" in spinel is about +50 K [see also Jackson, 1969].
These first versions of olivine-spinel thermometer did not take into account the influence of oxygen
fugacity fo, [O’Neill, 1981]. Ballhaus et al. [1991] calibrated a oxygen geobarometer and provided a

corrected and simplified version of the olivine-spinel thermometer from O 'Neill and Wall [1987]:

(C.7)
K] (6530+280p+7000+108p) (1-2X 7, ) =1960 (X 3, = X .. ) +16150X 7 +25150(X 7., + X7
RInK,{Mg/Fe*},, , +4.705

(X /X

Fe2+ )olivine

X7 is the number of Ti cations in spinel to 4 oxygens, K, {Mg/Fe**},, I =
Xy X, 20

9
spinel
3+ 3+

XP and X7, are the and ratios in spinel, respectively. R is the molar constant R =
r Fe ZR 3+ ZR 3+

8.3143 J'mol'K™". p is in GPa.

The formulation of O 'Neill and Wall [1987] is:

(C.8)
K] 6530+ 28p + (5000 +10.8p) (X 5p, —2X70) ~1960(1+ X7 ) (X3h, — X 7. ) +18620X % +25150(X 7. + X7
- RInK,{Mg/Fe*'},, , +4.705

The pressure dependence of the olivine-spinel thermometer resulted from the work of O 'Neill [1981].
O’Neill [1981] found that the Cr-content of spinels influences the depth (pressure) of the transition

between spinel and garnet lherzolite and can be used as a maximum pressure (depth) indicator:

(C9  p=p"+279(XL +X7.)

whereas p° is approximately 17.6-19.8 kbar at 1100°C, and X? and X 5. are the mole fractions of

chromium and ferric iron in spinel.

Medaris et al. [1999] used the olivine-spinel thermometer as a barometer. They fitted temperature data
derived with the formulation of Ballhaus et al. [1991] to a model geotherm (underplating scenario
with subsequent cooling) to get depth estimates for spinel peridotite nodules from the Kozakov

volcano (Elbe Zone, CZ).
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There are several limitations of the olivine-spinel geothermometry, which have to be kept in mind.
The equilibrium exchange of Mg®" and Fe** between spinel and olivine is one of the fastest exchange
reactions. It is still effectively during cooling down to relatively low temperature (subsolidus), while
other exchange reactions in peridotites (e.g., pyroxene exchange reactions) are blocked at higher
temperatures (Fabries, 1979). The decision if olivine and spinel are coexistent equilibrium phases and
the estimation of Fe*" contents from electron microprobe data via stoichiometric derivation are further

problems.
C.2.2.3 Pyroxene thermometry
Furthermore, the chemical composition of coexisting clinopyroxene and orthopyroxene can be used as

a geothermometer. On the basis of experiments and ability tests Brey and Koehler [1990] formulated

new versions of the two-pyroxene thermometer:

23664 +(24.9+126.3 X ¥*)p
13.38+(InK,)* +11.59 X 2

(C.10) Ty [K]

=Gy . ™ o
with K =U=CO) oyt GO g e o Te
(1-Ca )™ 11— Na Fe+ Mg

The Ca content of orthopyroxene alone can be used as a geothermometer:

6425+ 26.4p
cll) T, . [K]=
(CID - Teuineope LK —InCa®™ +1.843

The partitioning of Na between orthopyroxene and clinopyroxene is also temperature sensitive

(thermometer calibrated from natural rock data):

35000+ 61.5p
(InD,,)* +19.8

(C.12) TP [K]=

Na

pisinkbar, D,, = N

An older version of the pyroxene thermometer was suggested by Wells [1977], however Lindsley
[1983] pointed out, that it should not be used any longer. Brey and Koehler [1990] pointed out that
Well’s formulation reproduces the experimental results at 900°C, but increasingly underestimates them

at higher temperatures.
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C.2.2.4 Phlogopite-liquid (glass) thermobarometry

Righter and Carmichael [1996] published results from experiments on olivine and augite minette
powders at 1 bar to 2 kbar (water-saturated) and 900 to 1300°C. The oxygen fugacity was controlled
between the nickel-nickel oxide (NNO) and hematite-magnetite (HM) oxygen buffers. Righter and
Carmichael [1996] showed that the partitioning of TiO, between biotite and liquid is temperature
dependent (uncertainty of £50 K), whereas the BaO partitioning is pressure and temperature dependent

(uncertainty of +4 kbar).

(C.13) Dy =%+ b

. . N ' . TiOP" [wt%
with the TiO, partition coefficient D]’;]g”’q = #
2 TloigaSS[Wt%]

and a, b as regression coefficients (a = 17600, b =-12.1). T'is in Kelvin.

(C.14) p=z(lnDBa0—a—§—dlnaH20)
c

with the BaO partitioning coefficient D2"/" = M ,

BaO% [wt%)]
and the regression coefficients a = -2.167, b = 4553, ¢ = -130.7, and d = -0.388. T is in Kelvin; p is in
kbar. Where phlogopite is close to liquidus amo can be set to 1 (phlogopite/biotite as phenocrysts
together with either olivine or augite). Reducing ay,o to 0.8 the calculated pressure increases by 10%

[Righter and Carmichael, 1996].

C.2.2.5 Olivine-clinopyroxene barometry

Kdéhler and Brey [1990] established a geobarometer, which is based on the calcium exchange between

_ Mg

olivine (
Mg + Fe

)" 0.9 coexisting with clinopyroxene in natural lherzolitic compositions:

~TInD,, —11982+3.61T
56.2

(C.15)  plkbar]= . T>(127525+2.827p) [K]

~TInD,, —5792-125T
(C.16)  p[kbar]=—_—"ca o : T<(1275.25 +2.827 p) [K]
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ol

Ca . . .
where D, ZW’ and Ca”, Ca™”™ are the atomic proportions of Ca in the structural formulae of
7P

olivine and clinopyroxene based on 4 and 6 oxygens, respectively. According to Kéhler and Brey
[1990] the uncertainties are in the range of £1.7 kbar (1c).

O’Reilly et al. [1997] described the limitations of the above geobarometer. The Ca and Ti contents in
olivines in spinel peridotites are well correlated with one another and with temperature, whereas the
Ca content is poorly correlated with pressure. A strong temperature dependence of the Ca-in-olivine
barometer exists. A temperature uncertainty of £50 K results in a pressure uncertainty of +8 kbar.

Therefore, pressure estimates span the entire width of the spinel-lherzolite field at 900-1200°C.

C.2.2.6  Clinopyroxene barometry

Nimis and Ulmer [1998] performed crystal structure modelling of Ca-rich clinopyroxene coexisting
with basic and ultrabasic melts and calibrated a geobarometer that is based on the structural
parameters unit-cell volume (V) and M1-site volume (V). It should be applicable to anhydrous
and hydrous melt compositions (quartz-normative basalts to nephelinite, excluding melts coexisting
with garnet or melilite), pressure conditions pertinent to the crust and upper mantle (0 to 24 kbar), as
well as a variety of fy, conditions. At a given melt composition, V. and Vy;; decrease linearly as
pressure increases. The expanded version of the geobarometer (valid for an/hydrous compositions) is

very temperature sensitive (underestimating 7 by 20 K cause 1 kbar increase of calculated p).

The best way is using of X-ray diffraction data as input for the calculations, however another approach
is the calculation from mineral chemical analyses (atomic fractions from microprobe data, via
chemistry-structure coefficients; for details see Nimis [1995] and Nimis and Ulmer [1998]). For

pressure calculations the Excel-Worksheet provided by Nimis [1999] was used.

According to Nimis and Ulmer [1998], most useful results can be obtained for cumulitic products
(pyroxenitic xenoliths, megacrysts), but the geobarometer should also be applicable to mantle
equilibrium partial-melting residua. Clinopyroxenes that re-equilibrated after magmatic crystallization
or melting during subsolidus processes are unsuitable for geobarometric purposes, unless their primary
composition can be recovered. Nimis [1999] discussed the uncertainties of the clinopyroxene
barometry. The errors for the expanded version of the barometer are about 3.1 kbar; low-pressure data
(<15 kbar) are better reproduced (standard deviation ¢ = 2.6 kbar) than high-pressure data (>18 kbar;
= 6.1 kbar). The standard deviation is about 1.75 kbar for anhydrous basic or ultrabasic systems. In
comparison to the uncertainties of the barometric formulation, the uncertainties in chemical analyses

(e.g., by electron microprobe) cause negligible errors.
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C.3 Sample description

C3.1 Mantle xenoliths (ultramafic nodules)

Mantle xenoliths can generally be divided into two groups according to Lloyd and Bailey [1975], Frey
and Prinz [1978], and Lloyd [1981, 1987]:

Group I:  spinel lherzolites, spinel harzburgites, wehrlites, dunites (composed of olivine, ortho- and
clinopyroxene and minor amounts of amphibole and dark mica).

Group II: pyroxenites (mainly clinopyroxene, minor amounts of orthopyroxene and olivine)
containing significant amounts of hydrous minerals (titaniferous phlogopite, amphibole)

and titanite, (perovskite), titanomagnetite (ilmenite?), apatite, rarely calcite and feldspar.

The (ultra-) mafic xenolith-suite (nodules; further mostly referred as mantle xenoliths) sampled from
the Mytina tephra deposit includes wehrlites, clinopyroxenites, hornblendites (Table C.I; for
nomenclature see Figure C.4), chromite-bearing olivine-clinopyroxene aggregates, and megacrysts of
olivine, clinopyroxene, amphibole and phlogopite (Plate 1). The xenoliths and megacrysts are

commonly coated by the host rock and form cored bombs.

The volcanic host rock (dark grey, vesicular scoria and bombs) can be classified as olivine mela-
nephelinite [Le Bas, 1987; Le Bas et al., 1992; Le Maitre, 1989]. The only partly re-crystallized glassy
groundmass contains olivine and strongly zoned titanian diopside phenocrysts, euhedral in form and
commonly up to 1 mm maximal size. No feldspathic minerals (plagioclase, alkali-feldspar, nepheline)
can be observed by optical microscopy. Additionally to the phenocrysts olivine and clinopyroxene

xenocrysts with fragmented or irregular edges in contact to the host rock also occur.

Most of the xenoliths show cumulus textures (Plates 2, 3). No (shear) deformation textures could be

observed in the Mytina samples, but some samples exhibit high porosity (only partly filled with glass).

Wehrlites  MXZH1, -2, -3, -4, -67; Plates 1, 2)

Several wehrlitic samples were identified. The main components are green clinopyroxene and olivine;
minor constituents are brown mica (phlogopite) and glass. All samples show a cumulus texture and
contain some percent open pore space (in some thin-sections filled with coloured glue) [see Kdmpf et
al., 1999b]. Euhedral to anhedral crystals occur together in one sample. Grain size is variable in
different samples (from less then 1 mm up to more than 1 cm). Boundaries of some nodules imply that
the samples have a xenolithic origin rather than being cumulates from the host magma. Spongy zones

(sieve texture) can be observed in some clinopyroxenes, especially near the rim.
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Figure C.4

TUGS classification of ultramafic plutonic rocks [after Le Maitre, 1989].

No modal composition was determined, however most of the analysed xenoliths are olivine-clinopyroxene-
bearing samples and would plot in the wehrlite and olivine-clinopyroxenite fields (no orthopyroxene) (a).
Amphibole and clinopyroxene rich samples (no or minor amounts of olivine) plot in the hornblende- (hbl-)
pyroxenite and pyroxene- (cpx-) hornblendite fields (b). Sample MXZH66 can be classified as (pyroxene-)
hornblende- (hbl-) peridotite; sample MXZH68 is a hornblendite (almost 100% amphibole). The olivine-
orthopyroxene-clinopyroxene-bearing samples from Gottleuba (Go01-1) and Zinst (Zinst-1) would plot in the
harzburgite and lherzolite fields, respectively.

Hornblende-peridotite (MXZHG66; Plates 1, 3)

Sample MXZH66 contains olivine, clinopyroxene, amphibole and spinel as main phases and shows an
equigranular, cumulus texture. This sample is classified as hornblende-peridotite to distinguish it from
the typical wehrlites containing olivine, clinopyroxene and phlogopite (£ glass). Amphibole and spinel
are partly euhedral, whereas olivine and clinopyroxene are anhedral. The average grain size is up to 5

mm. Only one sample was found up to now.

Olivine-clinopyroxene-spinel cumulates (MXZHS, -18, -61, -64; Plate 2)

Additionally to the wehrlitic samples, olivine-clinopyroxene-spinel aggregates were investigated.
Commonly there are smaller than the wehrlitic samples and show no regular boundaries, indicating
crystallization from the melt (at least for some of the constituents). They also contain dark-brown Cr-
rich spinel. Clinopyroxenes have a less spongy appearance than that in the wehrlites. They show

titanian diopsidic rims towards the melt (nephelinite).

Clinopyroxenites (MXZHS, -11, -33; Plate 3)

There are several samples containing clinopyroxene as the main constituent. Further minerals are
amphibole (up to 50%), ilmenite (£ titano-magnetite), apatite (MXZHSY), and titanite (MXZH11). They
are equigranular and show cumulus textures; the average grain size is several mm, but may reach up to

1 cm. There seem to exist two generations of amphibole in sample MXZH33.
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Hornblendites  MXZH12, -13, -68; Plate 3)

Hornblendites are mainly composed of pitch-black amphibole (brown in thin-sections; euhedral to
anhedral crystals). Minor phases are clinopyroxene, ilmenite (+ titano-magnetite), phlogopite, and
sulphide inclusions. Normal grain size is some mm. In samples MXZH12 and MXZH13 up to cm-size
amphibole crystals overgrow small clinopyroxene crystals. Glass, phlogopite, skeletal olivine, titano-

magnetite, and clinopyroxene phenocrysts occur in vugs in both samples.

Spinel lherzolites/harzburgites (Zinst-1, Go01-1; Plate 2)

Spinel lherzolites are the typical upper mantle xenoliths in the mafic Cainozoic volcanics of Central
Europe [e.g., Menzies and Bodinier, 1993]. Up to now, such rock fragments could not be found within
the Quaternary volcanics in the area under study. For comparison, two spinel peridotite xenoliths from
the Mariengriindel, about 1km south-southeast of Bad Gottleuba, Saxony (50.842°N, 13.952°E; Elbe
Zone; late Miocene?), and from the Wunschenberg quarry near Zinst, NE-Bavaria (49.90°N, 11.94°E;
Franconian Lineament; K-Ar whole rock age 28.8+1.8 Ma, according to Todt and Lippolt [1975]), are
investigated. The average grain size in both samples is up to 5 mm. Most crystals have anhedral grain
boundaries. Sample Zinst-1 contains several volume percent clinopyroxene, whereas Go0O1-1 has only

a small amount of clinopyroxene.

Table C.I. Mineral parageneses of studied samples. (Mineral abbreviation according to Krefz, 1983; am - amphibole,
fsp - feldspar, gl - glass, sp - spinel, sulph - sulphide).

sample paragenese rock type
ol cpx opx fsp am phl sp ilm mag ap ttn rt gl sulph

fo%
Zelezna Hirka
EB1 82..85 X ol-megacryst
EB5-0l9 89..85 X ol-phenocryst
Mytina
XKZH1 X X X X X x) X norite
XKZH2 X X ?
XKZH3 X X X ? (+zrn)
MXZH66 82 X X X x) hbl-peridotite
MXZH5 X X X X hbl-clinopyroxenite
MXZH11 X X X X hbl-clinopyroxenite
MXZH33 X X (X X X hbl-clinopyroxenite
MXZH12 x) X X X X X cpx-hornblendite
MXZH13 X X ? X X cpx-hornblendite
MXZH68 X x) X hornblendite
MXZH1,3 88 X X wehrlite
MXZH2 88 X wehrlite
MXZH4 88 X wehrlite
MXZH8 88 X X ol-cpx-cumulate
MXZH18 88 X ? X X ol-cpx-cumulate
MXZH64 86..88 x X ol-cpx-cumulate
MXZH61 83.87 x X X ol-cpx-cumulate
MXZH17 (gm) 88 X ol-phenocryst
MXZH24 82.87 (x) X X ol-megacryst
MXZH69 86 X X X X ol-megacryst
sp-lherzolites
Zinst-1 90 X X X sp-lherzolite
Go01-1 90 X X ? X sp-lherzolite (harzburgite)
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C3.2 Megacrysts

The Zelezna Hiirka and the tephra deposit in Mytina have been known at least since the 19" century
for the occurrence of megacrysts (large single crystals), several cm in size [Reuss, 1852; Proft, 1894].
A number of samples from both localities, including olivine, clinopyroxene, amphibole and phlogopite

crystals, were investigated (Plates 1, 3).

Olivine (MXZH7, -19, -24, -69; EB1)

Some olivine megacrysts occur as euhedral crystals, partly showing skeletal growth. Other samples
have irregular grain boundaries. Rounded samples are a third group, indicating disequilibrium with the
host melt (e.g., MXZH19). Composite megacryst samples consist of three ore more large olivine
crystals (e.g., MXZH69). Most of the olivine megacrysts are porous. Pore boundaries are crystal faces
only in a few samples. The vugs are partly filled with glass and groundmass crystals (mostly
clinopyroxene); bigger exemplars are empty showing only a thin coating of the pore walls by glass and
micro-phenocrysts. One olivine megacryst from Zelezna Hirka (EB-1) contains an amphibole

inclusion [see Kdmpf et al., 1993].

Clinopyroxene (MXZH9, -14, -17, -62; EB2, -6, -7)

Two types of clinopyroxene megacrysts occur, black and green in colour, the latter ones mostly in
olivine-clinopyroxene-spinel aggregates. Almost all samples are zoned/rimmed. One sample from the
Zelezna Harka shows sector zoning (EB2). Some samples have a spongy appearance, which stems
from small melt pockets. Also composite samples (spongy + not spongy crystals) occur (MXZH62).
Clinopyroxene megacrysts show all kinds of grain boundaries (subhedral to anhedral, broken,

rounded).

Amphibole MXZH10, -15, -32, -35, -39, -42, -1a, -9)

Amphibole megacrysts look pitch-black in hand specimen and dark-brown in thin-sections. Almost all
samples are rounded, indicating disequilibrium with the host melt, at least under conditions during the
ascent within the magma column. Only a few samples show well developed crystal faces in hand
specimen. But most samples show perfect cleavage under the microscope. Some of the amphibole

megacrysts are also porous, containing vugs, partly filled with glass.

Phlogopite MXZH21, -22, -74)
Thin black mica flakes are very common in the tephra and as inclusions in volcanic bombs. Their
length is up to 7 cm. Flake boundaries are rounded. One sample with dimensions of 35x35x35 mm

was found (MXZH74).
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Plate 1

Photographs of typical hand specimen of (ultra-) mafic nodules from the Mytina tephra. (a) Amphibole
megacrysts are commonly rounded and have vugs filled with nephelinitic glass; (b) phlogopite megacrysts can
normally be found as flakes; (c) and (d) olivine megacryst MXZH19 showing atypically large vugs, which are
only partly filled with nephelinitic glass; (e) porous wehrlitic xenolith MXZH3, consisting mainly of olivine and
clinopyroxene and minor phlogopite; (f) black coloured clinopyroxene megacryst showing typical conchoidal
fracture; (g) amphibole-bearing peridotite (olivine, clinopyroxene, amphibole, spinel); (h) porous wehrlitic
xenoliths MXZH67 consisting only of olivine and clinopyroxene. (Photographs by E. Gantz, GFZ Potsdam)
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Plate 2
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Plate 3
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Plate 2

Photographs of thin-sections (left: single, and right: crossed nicols) of typical wehrlitic xenoliths or olivine-
clinopyroxene cumulates from the Mytina tephra (a) to (f); and a spinel lherzolite xenolith from the
Wunschenberg (Zinst, NE-Bavaria).

Samples MXZH67 (a+b) and MXZH1 (c+d) consist of olivine and clinopyroxene up to several millimetre in
grain size. Both samples are porous. MXZH1 further contains phlogopite; and some clinopyroxene grains show
zoning (mainly in Ti and Cr, from microprobe measurements). This is probably an indication for an overprinting
of sample MXZH]1 by heating or metasomatic reactions. MXZH18 (e+f) consists of olivine, clinopyroxene (both
up to cm-size) and dark-brown chromium-rich spinel. The space in-between the mineral grains is partly filled
with nephelinitic groundmass containing phenocrysts; some “pores” contain scoriaceous glass. Spinel lherzolite
sample Zinst-1 (g+h) consists of olivine, clinopyroxene, orthopyroxene, and dark-brown spinel.

Plate 3

Photographs of thin-sections of amphibole-bearing xenoliths and an amphibole megacryst.

(a) MXZHS: apatite- and amphibole-bearing clinopyroxenite; (b) MXZH11: amphibole- and Ti-magnetite-
bearing clinopyroxenite, containing also minor titanite (sphene); (¢) and (d) MXZH12, MXZH13: hornblendite
samples, consisting mainly of amphibole, which partly overgrows small clinopyroxene grains (poikilitic), as well
as of phlogopite and magnetite; (¢) MXZH33: ilmenite-bearing hornblende-clinopyroxenite; (f) MXZH66:
amphibole-bearing peridotite consisting of olivine, clinopyroxene and dark-brown spinel; (g) MXZH6S:
hornblendite, consisting only of amphibole and minor magnetite and sulphide inclusion; (h) MXZHIS:
amphibole megacrysts showing inclusion (magnetite and sulphide) trails.

C.33 Crustal xenoliths

Crustal xenoliths in the lower unit of the tephra deposit range in size from ash particles up to several
decimetre big samples [see Geissler et al., 2004b]. Within the upper unit, their size is up to 10 cm;
most samples are coated with the host rock, forming cored bombs. Many samples show primary
sedimentary layering (bedding), overprinted by foliation. Main components are quartz and mica
(muscovite and biotite); minor constituents are feldspar, garnet, and zircon and others (see Appendix
C.ii). Commonly the samples show small grain sizes of the minerals. Samples can be classified by
their textures and mineral composition into the following groups: quartzitic (quartz-rich) rocks,
phyllitic rocks and mica schists, and feldspar-rich rocks (Plates 4, 5). A transition exists from phyllitic

quartzites to quartzitic phyllites/mica schists.

Quartzitic xenoliths show generally an alternated stratification of quartz-rich and mica-rich (mostly
muscovite) layers. These rocks have light-grey colours; some samples are whitish. Minor components
beside quartz and muscovite are feldspar, biotite, and rounded zircon (sometimes enriched in specific
layers/samples; e.g., XKZHS58, XKZH61). The phyllitic and mica schist xenoliths are more mica-rich
(muscovite, biotite) than the quartzitic samples. They mostly have dark-grey (greenish) colours. Minor

components are feldspar, garnet, staurolite, and (?) cordierite.
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b

XKZH53

Plate 4

Photographs of typical hand specimen of crustal xenoliths from the Mytina tephra. (a) XKZH]1: noritic sample
(mainly plagioclase + orthopyroxene + clinopyroxene) showing weak layering of the main components; (b) and
(¢) XKZH2, XKZH3: feldspar rich samples; (d) XKZH4: quartz-rich xenolith, probably a fragment of a quartz
vein; (e¢) XKZHI12: quartzitic mica-schist; (f) XKZHS50: mica-schist; (g) XKZHS53: quartzite; (h) XKZH65:
quartz-feldspar-bearing xenolith, which may belong to meta-tuff layers (within the “Neualbenreuth layers”).
(Photographs by E. Gantz, GFZ Potsdam).
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Plate 6
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Plate 5

Photographs of thin-sections (left: single, and right: crossed nicols) of typical crustal xenoliths.

Sample XKZH4 (a+b) shows a sharp contact between quartzite and garnet-bearing mica schist. XKZH4 might
be a fragment of a quartz vein or dike (“Pfahl”), which are common in the area; (c+d) XKZH12: garnet- and
staurolite-bearing quartzitic mica schist; (etf) XKZHS50: garnet-bearing mica schist; (g+h) XKZH65:
porphyroclastic quartz-feldspar-bearing rock (meta-tuff?).

Plate 6

Photographs of thin-sections (single and crossed nicols) of feldspar-dominated crustal xenoliths.

Noritic sample XKZH1 (a-d) consists mainly of plagioclase and orthopyroxene, minor components are
amphibole, rutile, brown mica, and fine grained intergrowth of orthopyroxene and clinopyroxene; (e+f) XKZH2:
glass- (brown) bearing sample mainly composed of albite; contains also minor amounts of zircon and a Nb-Ta-
bearing ore [Kdmpf, personal communication]; (g+h) XKZH3: feldspar rich sample, which additionally contains
pyroxene (green), zircon (?), apatite, and titanite.

The porous texture of sample XKZH2 and XKZH3 as well as the glass formation in XKZH?2 is most probable
related to the heating in the host magma, whereas the origin of fine grained orthopyroxene-clinopyroxene
intergrowth might be related to previous metamorphic/metasomatic overprinting.

Besides the majority of quartz- and mica-rich crustal xenoliths also light grey more feldspar-rich
samples could be found (XKZHI1, -2, -3, -6, -65, -66; Plates 4, 6). Three analysed feldspar-rich
xenoliths are strongly influenced by heating in the host magma. One of them (XKZH1) shows layering
of the major components feldspar and orthopyroxene indicating some metamorphic overprinting of a
probable primary magmatic texture. Minor components in sample XKZH]1 (Plate 6) are clinopyroxene,
dark mica, rutile and amphibole. In the two other analysed feldspar-rich samples (XKZH2, XKZH3)
the heating in the host magma resulted into glass formation. This might be an indication for a deeper
than uppermost crust origin of these xenoliths (due to a longer residence time in the magma).

Light grey samples XKZH65, XKZH66 (Plates 4, 5) and XKZH6 show coarse feldspar and quartz

remnants resting in a (partly re-crystallized) matrix of quartz, feldspar, and mica.

C.4 Data

Cd4.1 Whole-rock major and trace element chemistry

Samples were grounded in an agate mill to less than 62 pm and homogenised. Major element oxides
and most trace elements were analysed by X-ray fluorescence spectrometry on fused glass pellets on a
Siemens SRS 303 spectrometer at the GFZ Potsdam by Dipl.-Krist. Rudolf Naumann. H,O and CO,
were determined by IR-spectrometry (LECO CH elemental analyser) or thermal conductivity
measurements (vario EL) after decomposition of the rock powder in a 1000°C oxygen stream. FeO
was analysed by potentiometric titration using a modification of the Wilson procedure [Wilson, 1955].
Trace and Rare Earth (REE) elements were analysed by inductively-coupled plasma mass-
spectrometry (ICP-MS) on a Perkin-Elmer/SCIEX Elan 5000 ICP mass-spectrometer at the GFZ
Potsdam by Dr. Peter Dulski. For details on ICP-MS sample preparation (mixed acid digestion

procedure), calibration, conditions of measurement, and error discussion see Dulski [2001].
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Table C.II. Whole-rock chemistry of (ultra-) mafic nodules and host rock samples (XRF, ICP-MS).

sample wehrlites, ol-cpx-aggregates hbl-pt
MXZH1 MXZH2 MXZH3 MXZH4 MXZH8  MXZH18 MXZH18D MXZH67 MXZH66
SiO; (wt.%) 47.4 46.2 46.3 43.7 475 475 475 46.0 40.3
TiO, 0.897 0.534 0.957 0.482 0.741 1.166 1.166 0.704 1.032
Al,O4 49 3.4 5.1 27 4.3 6.5 6.4 3.8 52
Fe,04(t) 1.77 1.10 2.09 1.66 1.47 2.07 6.31 1.80 2.80
FeO 413 552 4.39 6.91 4.27 3.81 5.16 10.27
MnO 0.110 0.115 0.117 0.135 0.109 0.116 0.115 0.114 0.166
MgO 22.69 29.48 24.52 35.48 24.69 17.85 17.83 27.03 31.14
Ca0o 16.36 12.69 14.91 8.80 15.28 17.54 17.54 13.11 6.30
Na,O 0.52 0.38 0.46 0.26 0.49 0.85 0.86 0.50 0.53
KO 0.06 <0,02 0.12 <0,02 0.01 0.24 0.24 0.04 0.47
P,O5 0.114 0.042 0.153 0.076 0.073 0.190 0.193 0.075 0.047
H,O 0.90 0.66 0.85 0.89 0.53 1.04 1.04 0.72 0.76
CO, 0.26 0.33 0.19 0.37 0.33 0.22 0.22 0.12 0.14
Total 100.11 100.45 100.16 101.46 99.80 99.09 99.41 99.74 100.32
Cs (ppm) ICP-MS 0.05 <0.01 0.08 0.02 0.06 0.34 0.03 0.10
Rb XRF <10 <10
ICP-MS 47 0.4 6.5 0.7 31 19.5 2.2 5.4
Sr XRF 101 85
ICP-MS 148 56 181 48 97 255 108 91
Ba XRF 53 91
ICP-MS 108 34 199 36 64 215 68 86.3
Zr XRF 41 35
ICP-MS 46 19 49 22 33 73 33 26
Nb XRF
ICP-MS 14 10
Ta ICP-MS 1.2 <1
Th ICP-MS 1.03 0.31 1.35 0.51 0.68 214 1.02 0.59
U ICP-MS 0.23 0.07 0.29 0.12 0.13 0.51 0.18 0.15
Pb ICP-MS 0.43 0.25 0.67 0.39 0.36 0.91 0.57 0.49
\Y XRF 160 176
Cr XRF 3485 2622
Ni XRF 681 562
Zn XRF 37 67
Y XRF <10 <10
ICP-MS 6.1 3.6 6.5 3.0 5.1 9.0 49 42
La ICP-MS 9.84 3.69 11.9 4.32 6.16 16.9 7.34 4.94
Ce ICP-MS 211 7.98 241 9.67 14.1 34.0 16.2 11.0
Pr ICP-MS 273 1.27 3.16 1.36 2.02 4.28 2.08 1.50
Nd ICP-MS 11.2 5.61 12.4 5.57 8.39 17.0 9.18 6.96
Sm ICP-MS 2.41 1.33 2.59 1.26 2.04 3.38 1.93 1.57
Eu ICP-MS 0.75 0.46 0.81 0.40 0.62 1.07 0.60 0.48
Gd ICP-MS 2.24 1.38 2.32 117 1.89 3.15 1.72 1.49
Tb ICP-MS 0.27 0.18 0.29 0.14 0.24 0.40 0.22 0.19
Dy ICP-MS 1.46 0.87 1.51 0.77 1.26 2.10 117 0.98
Ho ICP-MS 0.25 0.14 0.26 0.12 0.21 0.36 0.19 0.16
Er ICP-MS 0.55 0.34 0.60 0.29 0.48 0.86 0.48 0.46
m ICP-MS 0.07 0.04 0.07 0.03 0.05 0.10 0.05 0.04
Yb ICP-MS 0.46 0.25 0.51 0.25 0.39 0.69 0.32 0.33
Lu ICP-MS 0.05 0.03 0.06 0.02 0.05 0.08 0.04 0.04
Hf ICP-MS 1.43 0.71 1.42 0.71 1.16 1.99 1.02 0.97
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Table C.II. (continued).

sample hornblendites, clinopyroxenites am-X cpx-X ol-X phl-X
MXZH5  MXZH12 MXZH11 MXZH13 MXZH68 MXZH15  MXZH16 MXZH19 MXZH22

SiO; (wt.%) 39.5 39.6 39.2 40.0 40.5 40.8 495 39.2
TiO, 2.487 3.430 3.846 3.280 3.233 3.131 1.076 0.082
Al,O4 9.8 125 6.0 126 136 14.4 6.6 05
Fe,04(t) 5.44 6.00 11.43 5.28 4.28 2.64 1.95 3.51
FeO 5.46 6.34 8.55 6.61 5.36 4.84 3.34 15.18
MnO 0.155 0.128 0.228 0.126 0.097 0.075 0.104 0.226
MgO 10.79 13.35 10.06 13.28 14.35 15.70 14.88 46.39
Ca0o 19.40 12.74 18.88 13.03 11.55 11.56 20.46 0.38
Na,O 1.34 1.97 0.76 1.94 2.29 1.96 0.85 <0,1
KO 0.68 1.65 0.06 1.67 1.98 221 <0,02 <0,02
P,O5 2524 0.005 0.111 0.006 0.042 0.031 0.031 0.029
H,O 1.53 1.48 0.66 1.20 1.18 1.35 0.80 0.27
CO, 0.23 0.24 0.19 0.18 0.09 0.35 0.33 0.14
Total 99.34 99.44 99.97 99.21 99.11 99.05 99.92 105.91
Cs (ppm) ICP-MS 0.67 0.16 0.10 0.22 0.04 0.01 <0.01 0.03 1.81
Rb XRF 15

ICP-MS 42.0 21.8 8.6 23.8 18.2 145 <02 1.0 321
Sr XRF 321

ICP-MS 474 419 240 427 344 282 93 11.3 142
Ba XRF 254

ICP-MS 320 342 107 380 242 185 46 123 2379
Zr XRF 73

ICP-MS 236 222 201 235 54 37 43 4.4 6.6
Nb XRF

ICP-MS 16
Ta ICP-MS 1.8
Th ICP-MS 3.05 0.50 1.97 0.56 0.37 0.10 0.08 0.15 0.17
U ICP-MS 0.73 0.13 0.46 0.14 0.09 0.04 0.02 0.04 0.02
Pb ICP-MS 112 0.67 0.62 0.76 0.60 0.25 0.18 0.21 0.60
\Y XRF 365
Cr XRF 13
Ni XRF 75
Zn XRF 35
Y XRF 11

ICP-MS 17.7 11.0 11.9 111 9.4 8.2 8.9 0.45 0.18
La ICP-MS 33.8 9.02 18.0 9.70 6.93 3.55 2.68 1.14 0.44
Ce ICP-MS 78.0 28.2 454 293 20.6 11.8 9.56 210 0.86
Pr ICP-MS 10.6 4.60 6.41 4.83 3.29 212 1.86 0.25 0.09
Nd ICP-MS 433 21.2 26.9 222 16.3 10.5 9.46 0.87 0.33
Sm ICP-MS 8.34 4.96 5.39 5.04 3.99 2.86 2.69 0.15 0.06
Eu ICP-MS 251 1.53 1.66 1.59 1.30 0.99 0.95 0.05 < 0.008
Gd ICP-MS 7.07 4.37 4.57 4.46 3.60 2.89 2.99 0.13 0.04
Tb ICP-MS 0.82 0.54 0.56 0.55 0.45 0.37 0.40 0.01 <0.008
Dy ICP-MS 419 2.70 2.90 2.82 2.38 2.01 215 0.09 0.04
Ho ICP-MS 0.69 0.44 0.48 0.46 0.40 0.33 0.36 0.02 0.01
Er ICP-MS 1.62 1.03 1.15 1.08 0.93 0.80 0.83 0.04 0.02
m ICP-MS 0.20 0.12 0.14 0.13 0.09 0.10 0.10 0.01 < 0.006
Yb ICP-MS 1.34 0.84 0.96 0.87 0.60 0.63 0.65 0.04 0.03
Lu ICP-MS 0.16 0.10 0.13 0.10 0.08 0.07 0.07 < 0.009 < 0.009
Hf ICP-MS 4.26 7.49 6.75 8.07 2.23 1.69 217 0.10 0.19
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Table C.II. (continued).

sample host rock (nephelinite)
My1 My1-B My2 My2-B BK-2 BK-2B Go-01 Go-02

SiO; (wt.%) 40.0 39.8 41.3 411 39.9 39.4 41.8 420
TiO, 2.958 2.933 2.898 2.869 2.840 2.906 2.377 2.385
Al,O4 115 1.4 11.6 11.6 112 11.3 122 122
Fe,04(t) 5.58 5.63 5.68 5.39 12.35 7.02 3.45 4.05
FeO 5.26 5.11 5.05 5.27 4.00 7.85 7.41
MnO 0.188 0.187 0.185 0.185 0.210 0.198 0.182 0.182
MgO 13.64 13.70 12.60 12.68 13.05 12.25 11.72 11.93
Ca0o 12.67 12.54 12.41 12.31 12.69 13.15 11.54 11.35
Na,O 253 2.61 2.30 2.40 3.40 3.47 3.00 3.10
KO 1.55 1.53 1.42 1.42 2.1 217 1.38 1.29
P,O5 0.667 0.724 0.654 0.714 0.740 0.757 0.755 0.751
H,O 221 2.28 251 275 0.75 1.07 1.80 1.80
CO, 0.1 0.10 0.1 0.10 0.10 0.17 0.68 0.31
Total 99.38 98.49 99.33 98.78 99.30 97.81 98.75 98.69
Cs (ppm) ICP-MS 0.91 0.89 2.09 2.03 0.81 1.14 1.03
Rb XRF 61 59 208 208 58 54 56

ICP-MS 71 69 246 241 71 64 59 64
Sr XRF 707 708 681 687 868 842 830

ICP-MS 759 748 738 724 943 874 916 906
Ba XRF 780 770 752 738 734 559 569

ICP-MS 776 761 740 708 678 730 554 542
Zr XRF 225 220 247 243 259 202 197

ICP-MS 237 239 242 243 218 269 212 211
Nb XRF 93 91 105

ICP-MS 134 116 73 112 126 109 109
Ta ICP-MS 9.8 6.7 5.9 6.4 73 7.7 12
Th ICP-MS 8.9 9.0 9.5 9.6 8.9 9.6 7.7 7.6
U ICP-MS 24 2.4 2.4 25 2.4 28 23 23
Pb ICP-MS 29 3.1 37 4.0 27 46 46
\Y XRF 315 320 316 306 308 220 220
Cr XRF 726 735 586 582 495 317 309
Ni XRF 249 na. 225 na. na. 246 255
Zn XRF 70 72 74 75 76 89 88
Y XRF 21 22 22 24 23 23 24

ICP-MS 21 21 23 22 23 24 24 24
La ICP-MS 68.4 68.3 70.3 68.2 73.9 60.9 60.4
Ce ICP-MS 131 128 135 129 141 113 112
Pr ICP-MS 14.8 14.8 156 14.7 16.1 126 125
Nd ICP-MS 56.2 55.7 59.0 55.6 61.1 47.7 476
Sm ICP-MS 9.61 9.65 10.2 9.66 10.6 8.64 8.58
Eu ICP-MS 2.92 2.83 2.90 2.77 3.09 2.60 2.61
Gd ICP-MS 7.69 7.42 8.17 7.73 8.40 7.50 7.37
Tb ICP-MS 0.97 0.97 1.03 1.00 1.08 1.00 1.01
Dy ICP-MS 4.94 4.89 5.22 4,98 5.40 5.36 5.36
Ho ICP-MS 0.81 0.83 0.86 0.84 0.94 0.96 0.93
Er ICP-MS 2.06 2.05 2.23 210 2.32 2.43 2.43
m ICP-MS 0.25 0.26 0.28 0.27 0.28 0.30 0.31
Yb ICP-MS 1.51 1.51 1.66 1.59 1.73 1.88 1.84
Lu ICP-MS 0.21 0.20 0.24 0.23 0.25 0.27 0.27
Hf ICP-MS 5.26 5.35 5.30 5.34 6.10 4.64 4.73
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The analytical precision for all methods is better than 10% and was checked against international rock
and in-house laboratory standards. The accuracy of ICP-MS measurements is in the range of +5%
[Dulski, 2001]. The analyses of Nb and Ta are less accurate due to the unstable behaviour of these
elements in solution. The results are listed in Table C.II and Appendix C.ii for mantle and crustal
xenoliths, respectively. Figure C.5 and Appendix C.iii show the chondrite (C1)-normalized REE

patterns of the investigated samples.

1E+03

—— nephelinites (ZH, Mytina) —=—-BK-2B
— wehrlites, ol-cpx cumulates —a— My1
—— cpx-ites, hbl-ites —My1-B
—— hbl-peridotite —— My2
—— megacrysts
—— leuconorite

—o—My2-B
—8- MXZH1
—&— MXZH2
—o— MXZH3
—u— MXZH4
—— MXZH8
—— MXZH18
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Figure C.5
Chondrite (C1)-normalized REE patterns of host mela-nephelinites and (ultra-) mafic nodules from the tephra
deposit in Mytina (see Table C.II). REE values of C1-chondrites are taken from Anders and Grevesse [1989].

C4.2 Mineral-chemical analyses (EMPA)

Minerals of several mantle xenoliths, megacrysts, and three crustal xenoliths were analysed for their
chemical composition. Major and minor elements of minerals (olivine, clinopyroxene, amphibole,
phlogopite, spinel, titanite, ilmenite, apatite) were determined with the CAMECA SX50 and
CAMECA SX100 microprobes of the GFZ Potsdam, which are equipped with four wave-length
dispersive spectrometers, using an acceleration voltage of 15 kV, a beam current of 20 nA, and a beam
diameter of 2 um (for mica, feldspar, and glass analyses 10 um, because of the higher concentration of
diffusion endangered elements like Na, F, K). Counting time for the peak was 20 seconds, and for the
background 10 seconds on each side of the peak. Ca in olivine was measured as a trace element (50.2
nA, 15 kV, 300s counting time for peak and background) in selected samples to perform pressure

estimations with the olivine-clinopyroxene barometer.
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The amount of Fe'" in spinel was calculated from stoichiometry by the algorithm in the CAMECA
software. Natural and synthetic standards (Smithsonian Standards; Astimex Scientific Limited) were
used for calibration. To test the degree of equilibration between and within mineral grains (intra-grain
heterogeneity), a large number of point analyses and profiles were performed. The consistency of the
data set was checked by repeated measurements for some samples. The accuracy of microprobe
analyses is in the range of 0.05 to 0.2 wt.%. The matrix correction was done by the algorithm that is
implemented in the software of the CAMECA microprobes (PAP algorithm; Pouchou and Pichoir,
1984). The results of the microprobe measurements are listed in Tables C.I1I to C.XIII.

Olivine analyses

The investigated olivines have forsterite contents between 0.82 and 0.88 (Tables C.III, C.IV, C.VII,
C.X, C.XII) and differ from olivines in spinel lherzolites (0.90 to 0.91) from nearby localities in NE-
Bavaria [Huckenholz and Kunzmann, 1993; own data], the Rhon [Franz et al., 1997], and the Elbe
Zone [Medaris et al., 1997; Kramer and Seifert, 2000; own data]. Normal and reversed zoning of Mg
and Fe could be observed in many of the investigated grains. CaO contents are relatively high in the
analysed olivines from Mytina (wehrlitic samples: 0.17 wt.%; megacrysts cores and MXZH66: 0.15
wt.%; phenocryst cores: 0.18 wt.%) comparable to olivines from Zelezna Hirka (0.14 to 0.17 wt.%),
whereas olivines in spinel lherzolites have lower CaO contents (Zinst-1: 0.09 wt.%; GoO1-1: 0.04
wt.%). Rims of phenocrysts and megacrysts have CaO contents > 0.25 wt.%, but analyses may be

influenced by the so-called phase boundary fluorescence effect.

Clinopyroxene analyses

Analysed clinopyroxenes can be classified as chromian or aluminian diopsides and augites, according
to Morimoto [1988] (Tables C.III-C.VI, C.VIII, C.X, C.XII; Figure C.6). Cr-rich clinopyroxenes
commonly belong to the spinel lherzolites, wehrlites or olivine-clinopyroxene-spinel cumulates. The
composition of groundmass clinopyroxenes and rims is titanian aluminian diopsidic (up to > 6 wt.%
TiO,; up to 12 wt.% Al,Os). The Cr-content of clinopyroxenes within wehrlites (e.g., MXZH1) is

highly variable, indicating magmatic/metasomatic overprinting of the samples.

Amphibole analyses

The investigated amphiboles (polycrystalline and megacrysts) are Fe-, Ti-rich calcic amphiboles
(potassian titanian pargasites, according to Leake et al. [1978, 1997]; Tables C.III-C.V, C.IX, C.XIII).
They show widespread K,O/Na,O ratios (composite samples 0.5 to 1.0; megacrysts 0.8 to 1.0).
Mg/(Mg+Fe) values are 0.67 for clinopyroxene-hornblendites, 0.73 for hornblendite, 0.57 to 0.6 for
hornblende-clinopyroxenites, and 0.79 for hbl-peridotite. Mg/(Mg+Fe) values of analysed amphibole
megacrysts are close to 0.8. The TiO, content is about 2.5 wt.% in clinopyroxenites, > 3 wt.% in

hornblendites as well as in sample MXZH66. TiO, content of megacrysts is 3.3 to 3.4 wt.%. Al,O;
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varies between 12.7 wt.% (MXZH33) and 14.6 wt.% (MXZH66) for xenoliths, and between 13.8 and
14.7 wt.% for megacrysts. Only amphibole in sample MXZH66 (0.8 wt.%) and amphibole megacrysts
(0 to 0.3 wt.%) contain significant amounts of Cr,0s.

A Fe¥'/Fe*" ratio of 0.5 was determined for amphibole megacryst MXZH15 from the whole-rock
chemistry (Table C.II). This sample and hornblendite sample MXZH68 also contain rounded Ni, Co,
Pt and Cu bearing magnetite-sulphide inclusions (average sulphide analyses: 57.7 wt.% Fe, 38.7 wt.%
S, 3.3 wt.% Ni, 0.2 wt.% Co, up to 4 wt.% Cu, up to 0.7 wt.% Pt; pyrrhotite). Such sulphide inclusions
are common in metasomatized mantle xenoliths [e.g., Shaw, 1997] and may result from the
immiscibility of sulphide liquids with the magma [Deer et al., 1963].

Amphibole in the crustal xenolith XKZH1 has lower TiO, (1.65 wt.%), Al,O; (11.5 wt.%) and K,O
(0.55 wt.%) than amphiboles in the other analysed (ultra-) mafic samples.

Phlogopite analyses
Micas, occurring as megacrysts and within xenoliths, are Ti-rich phlogopites (3.8 to 4.8 wt.% TiO,, 18
to > 20 wt.% MgO; Tables C.V-C.VII, C.IX) [see also Seifert and Kdampf, 1994].

m megacrysts

¢ sp-lherzolites, peridotite

o cpx-ites, hbl-ites

x wehrlites, ol-cpx cumulates
+ rim, groundmass

+ XKZH3 + XKZH1

+

augite

pigeonite

5/ clinoenstatite clinoferrosilite \

En 50 Fs

Figure C.6

Ternary classification diagram for clinopyroxenes [after Morimoto, 1988]. Cr-rich clinopyroxenes of spinel
lherzolites, peridotite, wehrlites, olivine-clinopyroxene-spinel cumulates, and clinopyroxene in XKZH1 plot
close to the augite-diopside boundary. Clinopyroxenes within clinopyroxenites and hornblendites can be
classified as diopsides. Clinopyroxene rims and groundmass crystals plot above the 50% Wollastonite line due to
very high Al and Ti contents. Sample XKZH3 contains Na-rich augitic clinopyroxene (aegirine-augite).
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C.5 Interpretation of the petrological data

C.s5.a Composition and origin of xenoliths and megacrysts

Already in the 19™ century, there was a controversy on the origin of the ultramafic nodules (mantle
xenoliths) and megacrysts from Mytina, whether they are true xenoliths or cumulates that crystallized
in the host magma. Whereas Reuss [1852] argued that the olivine, amphibole, and augite nodules are
evidence for a previous basaltic activity and that they were partly re-melted or became scoria-like,

Proft [1894] favoured the early crystallization in the basaltic host magma.

C.5.1.1 Mantle xenoliths and cumulates

The magmatic textures of most ultramafic nodules indicate the crystallization from a melt not long
before the entrainment into the host magma; otherwise textural equilibration and development of
metamorphic fabric would be expected [Best, 2003]. The mineral chemistry (relatively low Mg
content of olivine, low Cr,O; contents of clinopyroxenes, high TiO, contents of diopsidic
clinopyroxenes and amphiboles, widespread K,O/Na,O ratios of amphiboles) as well as the occurrence
of titaniferous micas let me argue that the majority of the investigated samples are directly related to
alkaline magmatism, associated with incompatible element enrichment of peridotite wall-rocks in the
immediate vicinity of frozen conduits [see Wilkinson and Le’Maitre, 1987; Witt and Seck, 1989].
According to Huckenholz et al. [1992], amphiboles crystallized from basaltic magmas have a “convex-
up shaped” Eu and Sm anomaly in the Cl-normalized REE pattern; and amphiboles in veins, small
dikes or selvages have lower mg-values and overlap for Na, K, Ti with megacrysts. The REE C1-
normalized patterns of the analysed amphibole-bearing xenoliths (LREE enriched convex-upward;
Figure C.5) resample that of vein amphiboles from ultramafic Alpine massifs and xenoliths, as

compiled by Downes [2001], supporting the interpretation of a magmatic origin.

Pargasites within sample MXZH66 (mg 0.8, 0.5-0.8 wt.% Cr,O;) show some similarities to
amphiboles of secondary origin, which commonly occur interstitially in the olivine-orthopyroxene-
clinopyroxene-spinel matrix of peridotites (mg 0.82-0.94, >1 wt% Cr,Os; see Huckenholz et al.,
[1993]). MXZH66 might represent a sample from near a hornblendite vein; such veins are widely
observed in ultramafic Alpine massifs [e.g., Lherz massif, French Pyrenees; McPherson et al., 1996;

Woodland et al., 1996; Zanetti et al., 1996; Fabries et al., 2001].

Some wehrlitic samples containing Cr-bearing diopside and olivine (Fo 88) and showing cumulus
textures are possibly related to alkaline metasomatism (by alkaline-carbonatitic melts) of the

uppermost mantle (see below). Generally, samples similar to the analysed (meta-) cumulates,
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pyroxenites and hornblendites are also reported from the North Hessian Depression, the Eifel, the

Urach and the Hegau volcanic fields [e.g., Becker, 1977; Vinx and Jung, 1977; Mengel et al., 1991].

C.5.1.2  Megacrysts — high pressure precipitates or fragments of pegmatites or dikes ?

According to Irving [1984] and Schulze [1987], basaltic megacrysts can be divided into two groups:
Group A, including aluminian augite, olivine, kaersutitic amphibole, may have been crystallized from
the host basalts or similar magmas; and Group B, including Ti-rich mica, apatite, ilmenite, is
considered to represent (pegmatitic) xenocrysts, belonging originally to more evolved magmas
(possibly related to the host) intruded to shallower depths prior to the host magma [Schulze, 1987].
Righter and Carmichael [1993] argued that large, unzoned, inclusion-free megacrysts cannot have
grown from the basalt host during ascent, because that would require unreasonable large growth and
diffusion rates. According to Righter and Carmichael [1993], the unzoned nature of many megacrysts
indicate a slow crystallization in magma chambers or as pegmatites. The growth of 1-cm crystals may
last thousands of years, which requires long-lived magma chambers. In such reservoirs with stable
temperature-pressure conditions close to mineral liquidus, small crystals of a specified mineral may
dissolve and large crystals grow by the process of textural coarsening [e.g., Higgins and Roberge,
2003]. Arguments for a xenocryst origin of megacrysts are the fragmented or irregular edges in contact
with the host basalt; some coarse xenocrysts show also fracturing [Righter and Carmichael, 1993].
Shape, composition and size indicate derivation from disaggregated gabbroic, pyroxenitic, wehrlitic
dikes and pegmatites. Some coarse subhedral crystals could be real phenocrysts [Righter and
Carmichael, 1993]. Furthermore, isotopic studies can be useful to clarify the relationship between

megacrysts and the host rock [see Schulze, 1987].

Most of the olivine megacrysts from Mytina show a narrow range in chemical composition of mineral
cores (Fo 82 to 83; see Table C.VII). The core composition of megacrysts differs strongly from core
analyses of the magnesium rich phenocrysts in the host rock (Fo 88 to 89; Table C.X). Towards the
rim many megacrysts are more magnesian (Fo 85 to 86) indicating changing chemical conditions [see
Kdmpf et al., 1993], magmatic overprinting (diffusion), or further crystallization in the host magma.
This rim composition of olivine megacrysts is similar to that of olivine crystals (both pheno- and
xenocrysts) from the Zelezna Hiirka scoria (see Table C.XII). Generally, the existence of large melt
inclusion can be interpreted as an effect of fast crystallization (skeletal growth) in a magma reservoir,
but it cannot be excluded that this porosity is also an effect of magmatic resorption due to melt
infiltration. The different core compositions of most phenocrysts and megacrysts from the Mytina
tephra let me argue, that they at least did not crystallize in one single magma chamber. Maybe the less

magnesian megacrysts are related to shallower reservoirs.
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Most single clinopyroxene megacrysts, sampled from the Mytina tephra and the Zelezna Hiirka scoria,
can be classified as aluminian augites (see Table C.VIII; Figure C.6). However, also large chromian
diopside crystals occur in olivine-clinopyroxene-spinel aggregates (MXZH61, MXZH64). Narrow
rims are always titanian diopsidic in composition, similar to Ti-rich diopside phenocrysts in the host
rock. Aluminian augites are the most likely candidates for high-pressure phenocrysts [Schulze, 1987].
The equilibrium composition (with host melt) depends strongly on p-T conditions. For a primary
origin of some clinopyroxene-megacrysts as phenocrysts argue the fact that they grew on smaller
crystals (e.g., MXZH62: chromian augite xenocryst; EB2: olivine xenocryst). In the ternary Wo-En-Fs
diagram (Figure C.6) aluminian augite megacrysts plot close the clinopyroxenes (chromian augites to

diopsides) from wehrlitic samples and olivine-clinopyroxene cumulates.

The chemical composition of amphibole megacrysts from the Mytina tephra is similar to that of
amphiboles in clinopyroxenites and hornblendites (Tables C.IX and C.III-C.V). All samples can be
classified as titanian pargasites [Leake, 1978, 1997], however Al and Cr contents vary between
samples. Ti-rich amphibole is a near liquidus phase in alkali basaltic systems [e.g., Allen et al., 1975]

and could represent deep-seated phenocrysts.

The coarse grain size of Ti-rich ferromagnesian micas (phlogopite), which are relatively uncommon as

megacrysts in alkali basalts [according to Schulze; 1987], may indicate their origin as phenocrysts.

C.5.1.3 Crustal rocks

Sample XKZH]1 could be a rare fragment of feldspar-rich meta-intrusive rocks noritic in composition.
Similar rock types (charnockitic, noritic, gabbroic), which might be related to magmatic intrusions into
the lower crust, were described as xenoliths from the Elbe Zone and the Ceske stfedohoii Mts. by
Opletal [1967], Kramer [1988], Opletal and Vrdana [1989], and Kramer and Seifert, [2000]. However,
the ages of these rocks and therefore the times of intrusion are unknown. Sample XKZH1 shows weak
metamorphic layering, which constrains an older age and implies that the samples are not directly

related to the Tertiary-Quaternary volcanic/magmatic episode.

Upper crustal xenoliths (quartzites, phyllites, and mica schists) are most probably fragments of the
uppermost kilometre(s) of the crust in the area around Mytina. According to Richter and Stettner
[1993] and Fiala and Vejnar [2004], the uppermost crust in the vicinity of Mytina consists of an
Upper Cambrian to Ordovician alternated stratification of quartzites and phyllites or mica schists
(Figure C.7). Lapp and Weber [1992] described a similar metagreywacke-phyllite-unit (about 250 m

thick) from a core drilled near Neualbenreuth (south of Mytina). Assuming no thin-skinned tectonic
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stacking and the eruption of the tephra from the Zelezna Hiirka vent, which is located within the
Cambrian mica schist units [cb; see Bayerisches Geologisches Landesamt, 1998], the samples should
not originate from the stratigraphical higher Frauenbach and Phycoden units. The REE pattern of
XKZH60 (pronounced negative Eu anomaly; see Appendix C.iii) shows similarities to the “muscovite
gneisses” of the Erzgebirge. The magmatic protoliths of these gneisses were probably derived from

high-silica per-aluminous rhyolites [see Mingram et al., 2004].
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Lithostratigraphical section of the uppermost crust in the vicinity of Neualbenreuth (southern Waldsassener
Schiefergebirge) in comparison to the western Fichtelgebirge [from Richter and Stettner, 1993].

1 — shales and phyllites with silty layers; 2 — quartzites, quartzitic schists; 3 — alternated stratification
quartzites/phyllites or mica schists; 4 — phyllite and mica schist; 5 — carbonate and calc-silicate intercalations; 6 —
acid volcanics (tuffs, ignimbrites).

MXZH6, MXZH65, and MXZH66 (Plates 4, 5) might be samples from acid meta-tuffs, which belong to the
“Neualbenreuth layers” in cbl [Richter and Stettner, 1993]. Zircon enriched samples (e.g., XKZH51, 58, 59, 61
with Zr values >1000 ppm, see Appendix C.ii) might belong to zircon rich layers (placer like) in cb3. Richter
and Stettner [1993] described zircon rich quartzite layers in the Frauenbach and the cb3 (cb5?) units.
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CS5.2 Depth origin of xenoliths (geothermobarometry)

Geobarometric estimations for lower crust and upper mantle samples were performed because they
may report more or less the conditions close to their formation or metamorphic overprinting at the
present depth level. The results of the geothermobarometric calculations for the different types of
(ultra-) mafic nodules (cumulates, hornblendites and megacrysts) are shown in Figure C.8
(amphiboles) and listed in Table C.XIV. No geothermobarometric calculations were carried out for
upper crustal xenoliths in this study.

Different mineral pairs within one sample record sometimes different pressure-temperature conditions,
which may be related to the formation, cooling history, or to later overprinting of the mineral
assemblage. Now, I try to interpret the p-T estimates calculated for different samples and mineral pairs
from the Mytina ultramafic xenolith suite (Table C.XIV). However, this give only some constraints on
the true pressure-temperature conditions, because the geothermobarometers based on inter-crystalline

exchange of elements also show complex dependences on element concentrations.

Magma temperature (olivine-spinel and phlogopite-glass thermometry)

The olivine-spinel thermometers are strongly sensitive to sub-solidus reactions, however from spinel
inclusion in olivine phenocrysts it should be possible to estimate the temperature during crystallization
of the mineral pair. Values of about 1100°C and 1170°C can be calculated for spinel inclusions within
olivine phenocrysts (samples EB5-9, MXZH17) using the geothermometric formulation of Ballhaus et
all. [1991] and O Neill and Wall [1987], respectively. Because of the fast undercooling during ascent
and eruption, I think that sub-solidus reactions did not take place and these values can be assumed to
be the temperature of the magma (liquidus). A similar temperature range (1130 to 1150°C) was
estimated using the phlogopite-glass geothermometer of Righter and Carmichael [1996] for samples
MXZH24 and MXZH69. A temperature of 1140°C can be estimated for the combination MXZH21
(phlogopite megacryst) and Myl (nephelinite).

Hbl-peridotite (p-T; MXZH66)

For the amphibole-bearing peridotite xenolith MXZH66 two pressure (depth) estimates were obtained.
Using the Al/Ti diagram proposed by Ernst and Liu [1998] a pressure of 8 to 9 kbar (30 km depth) and
a temperature of 960°C is indicated (Figure C.8a). Using the formulation of Huckenholz et al. [1993],
the pressure estimate is about 15 kbar (50 km). The discrepancy in pressure estimates might be related
to disequilibrium between the mineral phases (post-entrainment modification) or the fact that some
assumptions of one of the geobarometers are not fulfilled. Maybe the elevated Cr (and Fe**?) content
of the amphibole makes the sample not suitable to plot it in the Al-Ti diagram, or at least enforce some
corrections before plotting. Because the clinopyroxene barometer of Nimis and Ulmer [1998] also

gives values around 15 kbar (for a olivine-spinel temperature of 1060°C), I prefer this pressure
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estimate. Temperatures calculated with the olivine-spinel thermometers of Ballhaus et all. [1991] and

O’Neill and Wall [1987] are 950°C and 1060°C, respectively.

Hbl-clinopyroxenites and cpx-hornblendites, amphibole megacrysts (p-T)

The pressure-temperature conditions of formation of the amphibole-bearing samples
(clinopyroxenites, hornblendites), including the amphibole megacrysts were estimated using the Al/Ti
plot of Ernst and Liu [1998]. The polycrystalline samples plot almost all in a narrow p-T range (see
Figure C.8a) of 6 to 8 kbar (22 to 29 km) and 900 to 970°C, only the apatite-bearing sample MXZHS5
as well as sample MXZH66 show higher pressures of up to 10 kbar (about 35 km). The amphibole
megacrysts plot between 7 and 10 kbar (25 to 35 km) at a very narrow temperature range around

970°C (Figure C.8b).
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Figure C.8
Results from the Al-Ti amphibole thermobarometry [Ernst and Liu, 1998] (a) for amphibole-bearing xenoliths
and (b) megacrysts.
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Pressures calculated with the formulation of Huckenholz et al. [1993] give slightly higher pressure
estimates between 5/8 and 12 kbar (22/29 to 40 km) for the clinopyroxene-amphibole-bearing
samples. The differences between pressure estimates from both methods are within the given
uncertainties. A comparison with experimental partitioning data for Ti, Ho, Lu, Sr between amphibole
and basanitic melt from Adam and Green [1994] indicates the crystallization of amphibole megacryst
MXZH15 at pressures above 1 GPa, assuming that the nephelinite sample Myl represents also the

melt composition in the magma reservoir.

The relatively high temperatures obtained for the amphibole-bearing samples, possibly originating
from near the crust-mantle boundary, are most probably crystallization (magmatic) temperatures.
These values are valid for small dikes or intrusion at the time of their formation and do not necessarily
represent temperatures valid for the crust-mantle transition and lower crust on the regional scale. If the
amphibole megacrysts would be high-pressure precipitates of the host melt, then the p-T estimates
provide constraints for the depth and temperatures of the palaco-magma reservoirs near the crust-
mantle boundary. The rounding of most amphibole megacrysts might be an effect of the upward

transport (decompression) in a hotter and reactive melt.

Wehrlites, olivine-clinopyroxene aggregates and clinopyroxene-megacrysts (p-T)

For most wehrlitic samples (MXZH1, -2, -4), olivine-clinopyroxene aggregates (MXZH18, -64), and
clinopyroxene megacrysts and phenocrysts (groundmass crystal in MXZH?24), depths of origin of 29
to 38 km (8 to 11 kbar) could be estimated using the olivine-clinopyroxene barometer of Kéhler and
Brey [1990] and the clinopyroxene barometer of Nimis and Ulmer [1998]. However, both barometers
are strongly temperature sensitive. Assuming a temperature of 1150°C, the estimates from both
calibrations are more or less the same. This high temperature value (near liquidus) indicates that most
samples are somehow related to the host magma or at least to the same Late Cainozoic magmatic
activity. A comparison with experimental partitioning data for Ti and Ho between clinopyroxene and
basanitic melt from Adam and Green [1994] indicates the crystallization of amphibole megacryst
MXZH16 at pressures above 1 GPa, assuming that the nephelinite sample Myl represents also the

melt composition in the magma reservoir.

Spinel lherzolites

The commonly applied geothermobarometers for spinel lherzolitic samples were tested on samples
Go01-1 and Zinst-1, which are included in this study for comparison reasons.

The harzburgitic sample Go0O1-1 from the Elbe Zone was equilibrated at a pressure of about 19 kbar
(more than 60 km depth), according to the formulation of Kohler and Brey [1990]. Temperature values
(olivine-spinel, two-pyroxene) range from 920 to 980°C, depending on the formulation used. For the

pressure calculation the temperature estimate from the two-pyroxene thermometer of Brey and Kéhler
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[1990] was used. The temperature estimate is closer to values reported from the eastern Erzgebirge
than to values from the Elbe Zone [Kramer and Seifert, 2000]; the sample locality is close to the
boundary of both areas.

A pressure of 21 kbar (approximately 70 km depth) was estimated for the sample from Zinst, NE-
Bavaria. Calculated temperatures are in the range of 1000 to 1100°C, close to estimates from nearby

localities (see references in section A.3.3, Table A.1).

Noritic xenolith (XKZH1)

For the noritic xenolith, depth and temperature estimation was possible using the Al/Ti-in-amphibole
plot of Ernst and Liu [1998]. The sample plots at about 6 kbar (about 22 km) and 800°C (see Figure
C.8a). An identical temperature (800°C) could be obtained using the Ca-in-orthopyroxene
thermometer of Brey and Koéhler [1990] and rim composition of the orthopyroxene close to the
analysed amphibole. The core composition gives values of 860°C. This difference between rim and
core might be related to cooling (after intrusion or during tectonic uplift) or a post-intrusion
overprinting at lower temperatures. Temperatures between 700-900°C were also reported by Mengel
[1990] for mafic and noritic granulites from the North Hessian Depression, which are interpreted as
high-grade equivalents of subduction-related volcanics and cumulates.

Higher temperature values (970°C/1125°C) were obtained using analyses from areas of
orthopyroxene-clinopyroxene intergrowth using two different formulations of Brey and Kohler [1990].
Because both temperature values differ strongly, the analysed minerals might not be in equilibrium.
This may be an effect of magmatic overprinting (heating) of the sample in the host magma, or may be

related to an earlier metasomatic event.

C53 p-T data and regional geotherms

The p-T estimates for xenoliths can generally provide constraints on the recent thermal structure of the
deep crust and uppermost mantle. As shown in Figure C.9, most analysed samples plot close to the
alkaline province geotherm [Jones et al., 1983], that means above proposed regional geotherms
[Cermdk, 1994] derived from surface heat-flow studies.

Moho temperatures, calculated from regional surface heat flow data differs from 450°C up to 750°C
[see Forster et al., 2003]. The problem in extrapolating the regional surface heat-flow data to depth is
the strong influence of high-radioactive, heat-producing granitic rocks in the upper crust. Therefore, it
is difficult to estimate the regional Moho heat-flow and temperatures [Férster and Forster, 2000].
However, from the p-T xenolith data, which is so far available for the area under investigation, it is
impossible to construct a regional xenolith geotherm to get better constraints on the recent or at least

Late Cainozoic thermal structure of the lower crust and upper mantle.
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Figure C.9

Results of p-T calculations plotted into a diagram of Green and Falloon [1998]. The alkaline province geotherm
[Jones et al., 1983], regional geotherms (BM1 -Bohemian Massif minimum, KHM - Krusne Hory Mts., CT -
Cretaceous Basin; Cermdk, 1994), and one KTB-value [Clauser et al., 1997] are included. The p-T field for
granulite-facies metabasite ejecta from Engeln (Eifel, Germany) is shown for comparison with sample XKZH1
[adopted from Jones et al., 1983; data from Okrusch et al., 1979]. p-T estimates from the Rhon and the Kozékov
are adopted from Franz et al. [1997] and Medaris et al. [1997], respectively.

Wilson and Downes [1992] described the frequently occurring/widespread melilite nephelinites as most likely
candidates for primary melts from the asthenosphere/basal lithosphere. According to Wilson et al. [1995], melt
coexisting with lherzolitic rocks at T >1025°C and pressures in the garnet stability field is in composition similar
to ol-melilitite, whereas at lower pressures in the spinel stability field, silicate melt resamples ol-nephelinites.

C.6 Petrological indications for processes at the crust-mantle boundary

The p-T estimates indicate a depth origin of ultramafic nodules within the lower crust and uppermost
mantle (approximately 20 to 50 km, with a maximum at 30 to 35 km). No orthopyroxene-bearing
spinel-lherzolitic xenoliths could be found in the Quaternary volcanics; such xenoliths are thought to

represent normal lithospheric upper mantle beneath Central Europe. The results indicate that possibly
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large parts of the uppermost mantle beneath NW-Bohemia might be affected by mantle metasomatism
around 0.3 Ma (due to infiltration of alkaline melts), which resulted in a mantle composition
dominated by olivine and clinopyroxene (+amphibole, +phlogopite).

The amphibole-rich nodules from about 20 to 35/40 km depth could represent fragments of magmatic
dikes within the uppermost mantle and lower crust, which may be a more widespread phenomenon in
the study area. According to Barclay and Carmichael [2004], isobaric crystallization of amphibole
(hornblende) in a subduction related hornblende-basaltic melt near the base of the crust can influence
the magma’s capacity to flow (viscosity). And once amphibole crystallizes, the magma’s ascent might
be retarded by its high crystallinity. As Barclay and Carmichael [2004] pointed out, great proportions
of basaltic bulk composition can crystallize as amphibole (as can be also seen in the similar chemical
compositions of the pargasites and the nephelinitic host rock from Mytina), and therefore most magma
intrusions may stop in the lowermost crust due to cooling (freezing) by the surrounding “cold” crust.
Maybe the uppermost mantle and lowermost crust beneath the western Eger Rift experienced many
intrusions of small amounts of alkaline melt during the late Tertiary and Quaternary; only very few of

these melts reached the surface.

The content and distribution of REEs in the nephelinitic host rock of the Mytina tephra and from the
Zelezna Hirka scoria cone (Figure C.5) can be interpreted in terms of low percentage (approximately
1 %) of partial melting in a garnet-bearing source [according to Rollinson, 1993]. However, 1 %
partial melt may be the amount of melt in the source region (90 to 100km depth?); more than 1 %
could be present in the ponding region in the uppermost mantle (25 to 50 km depth), where it may
form magma reservoirs. High “porosity”, which can be observed in some ultramafic nodules, may
indicate that this samples originate as “wall rock” of magma chambers, as discussed by Taif [1988] or

may represent itself parts of a sponge-like magma reservoir.

Origin of CO, — related to alkaline-carbonatitic mantle metasomatism ?

According to Green and Falloon [1998], olivine-nephelinitic to olivine-melilitic melts originate at
depths of about 90 to 100 km in a garnet-bearing source region (asthenosphere). Garnet remains in the
residuum (might be inferred from the REE pattern). The ascending melts crystallize amphibole and
phlogopite. This modal metasomatism of garnet/spinel lherzolite might leave carbonatitic residual
melts, which react with enstatite and spinel to form olivine + (diopside + jadeite) + chromite + COs,.
The metasomatic lithosphere becomes enriched in clinopyroxene, illustrated by the formation of
wehrlites (olivine + clinopyroxene + apatite + chromite) [see also Yaxley et al., 1991, Rudnick et al.,
1993]. The CO, is released and migrates to the surface. This might be a possible scenario for the study
area as well. However, up to now there are no further indications for the involvement of carbonatitic
melts, as for instance carbonate inclusions in olivine and clinopyroxene or carbonate globules in

silicate glass as observed by Seifert and Thomas [1995] in samples from the Elbe Zone, Germany.

100



