
Master Thesis, Institute of Computer Science, Freie Universität Berlin

Biorobotics Lab, Intelligent Systems and Robotics

Temporal Analysis of
Honey Bee Interaction Networks

Based on Spatial Proximity

Alexa Schlegel

Supervisor: Prof. Dr. Tim Landgraf, Freie Universität Berlin
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auch nicht veröffentlicht.
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Abstract

The BeesBook system provides high-resolution data about bee movements within
a single colony by automatically tracking individual honey bees inside a hive over
their entire life. This thesis focuses on the process of designing and implementing a
network pipeline to extract interaction networks from this data. Spatial proximity is
used as an indicator for interactions between bees. Social network analysis methods
were applied to investigate the static and dynamic properties of the resulting social
networks of honey bees on a global, intermediate and local level. The resulting
networks were characterized by a low hierarchical structure and a high density. The
global structure of the colony seems to be stable over time. The local structure
is highly dynamic, as bees change communities as they age. Communities in the
honey bee network are formed by age groups that show a high spatial fidelity. The
findings are in line with the established state of research that colonies are organized
around age-based task division. The results of the analysis validate the implemented
pipeline and the inferred networks. Consequently, this work provides an excellent
foundation for future research focusing on temporal network analysis.

Keywords – social insects, spatial proximity network, interaction network, Apis
mellifera, community detection, social network analysis
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Chapter 1

Introduction

A social insect society is formed by thousands of individuals that continuously in-
teract with each other inside a dark nest. Honey bees are organized in colonies,
which are a complex and dynamic system. Observing individual honey bees and
their interactions with each other is vital for understanding collective behavior and
the organization of tasks within the colony.

Within the BeesBook project of the Biorobotics Lab of Freie Universität Berlin,
Wario, Wild, Couvillon, et al. [1] developed technologies to automatically track all
individuals of a honey bee (Apis mellifera) colony that are inside the honeycomb.
Shortly after hatching, each bee is marked with a circular 12-bit tag (Figure 1.1) on
their thorax and then added to the observation colony. Several cameras observe the
colony over a period of nine weeks. An image analysis pipeline evaluates each frame
automatically. The resulting dataset contains the exact position of each detected
bee on the honeycomb and its age for each frame.

In this thesis, worker-worker interaction networks, based on spatial proximity, are
derived from the described dataset. Each node in the network is a bee and a link
between two nodes results if two bees are located close to each other for a specified
period. The networks are time-aggregated, which means that one network repre-
sents the data of multiple frames. After extracting the static networks, social net-
work analysis methods are applied to determine the characteristics of the resulting
networks and its social structure.

Figure 1.1: Tagged bees inside the observation hive.
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1.2. Research Goal and Method

1.1 Motivation

Manual insect tagging and tracking are widely applied in the behavioral sciences.
Insects are marked using colored paint or numbered tags to distinguish individuals,
and then they are observed using a video recorder or by taking photos. The interac-
tion data is obtained by repeatedly watching the video files and manually extracting
events. Labeling only a small group of the colonies’ individuals, short observation
periods, a low sampling resolution, or limiting the observation to only a small area
of the hive is very common.

Consequently, most insect related studies, in the field of animal social network analy-
sis, examine only a limited subset of the life of a colony. Due to technical limitations,
the majority of social insect interaction network studies focus on static aspects. Re-
cently, automated tracking of insects has become technically feasible [1]–[3]. Using
automated high resolution tracking data, which includes all individuals of the en-
tire hive over an extended period, allows for more advanced analysis focusing on
temporal dynamics.

Automatic tracking data of ant colonies [4] has already been investigated with net-
work analysis methods. Mersch, Crespi, and Keller [4] used a dataset, obtained
by long-term observation of six ant colonies including all individuals, to investigate
temporal aspects of the ants’ social network. Their study was able to provide new
insights into the dynamics of the colonies’ functional units.

Applying network analysis methods on data that was obtained by automatic tracking
of honey bees offers the possibility to investigate temporal aspects of bees’ social
networks. Therefore it holds the potential to reveal new insights in the area of
behavioral sciences. My work contributes to lay the foundation for following this
new path of research.

1.2 Research Goal and Method

The aim of this thesis is to investigate whether the BeesBook data of tracked honey
bees is useful for creating worker-worker interaction networks using spatial proximity
as an indicator for interactions between bees. Thus, I will implement a pipeline to
extract networks out of the given data. Furthermore, I will investigate if the resulting
networks are suitable for social network analysis.

I want to achieve my research goals by answering the following questions:

1. Is it possible to infer temporal networks with the provided honey bee tracking

data?

What challenges and limitations arise from using this data?
What pipeline parameters are necessary?

2. What kind of worker-worker interaction networks emerge and how are they

structured?

What is their topology?
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1.3. Outline

What are the properties of the networks and how do they differ from randomly
generated networks?

3. Does the network display a meaningful community structure?

How are the identified communities characterized?
Do they reflect already known colony behavior concerning age and spatial
distribution?

4. How do these communities develop over time?

Do the communities have stable properties?
How do members move between communities?

This work is meant to establish the foundation for future research using a network
science approach to study the complex system of honey bee colonies and their col-
lective behavior.

The methodology of this work consists of two parts, described in detail in Chapter 3.
The first part details the approach to infer and define spatial proximity networks us-
ing the honey bee tracking data. The second part analyzes properties, communities,
and the development of the identified networks.

1.3 Outline

This thesis is organized as follows. Chapter 2 is a short introduction to social
network analysis. I define network measures, terms, and algorithms used throughout
this work and provide a brief summary of the current state of research concerning
social insect networks, temporal networks and community detection in animal social
networks. In Chapter 3, I describe my research approach in general and how the
pipeline infers networks out of the given dataset, what steps are needed and what
parameters it uses. Also, I explain and justify what decisions I took during the
network analyses and community detection process. In Chapter 4, I report the
results of the network analysis and the characteristics of the extracted communities.
Finally, in chapter 5, I summarize the results, discuss limitations and conclude with
directions for future work.
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Chapter 2

Theoretical Background for Network
Analysis of Insect Colonies

The following chapter gives a short introduction into social network analysis (SNA)
and introduces social insect interaction networks, as a specific type of a biological
network. It defines terms and concepts used throughout this work and explains the
applied network metrics and algorithms. I also provide a summary of the most rele-
vant studies that use a network analysis approach to investigate interaction networks
of social insect colonies.

2.1 Social Network Analysis

A social network is a representation of a social structure comprising actors such
as individuals, affiliations, as well as their social interactions. The network model
conceptualizes social, economic, or political structures as lasting patterns of inter-
actions between actors [5]. In mathematical terms, networks are graphs and thus
consist of nodes (vertices, representing individuals), and links (edges, relationships
or interactions). Social network analysis provides a set of methods, measures, and
theories, borrowed from network and graph theory, to investigate social structures
and their dynamics.

This work focuses on the special case of social insect networks, where individuals are
nodes and links represent interaction events between individuals. Those networks
are called interaction networks or association networks. According to Charbonneau,
Blonder, and Dornhaus [6], the interactions used as a link can be of four differ-
ent types when looking at social insect networks: spatial proximity, physical contact
(usually with antennae, “antennation”), a food exchange event (trophallaxis), or spe-
cific communication signals. Trophallaxis is the directed mouth-to-mouth transfer
of fluids and is used by social insects to exchange information and food.

Links can be directed or undirected and weighted or unweighted. The link weights
represent the strength of the relationship; commonly the number or duration of
interactions is used [7].

In the course of this work I use the term frequency to refer to the total number of
occurences (absolute frequency), as opposed to the use of this term in physics.
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2.1. Social Network Analysis

Table 2.1: Definitions Basic network science terms and definitions.

Network size N is the total number of nodes, representing the number of
animals in a network.

Number of links L is the total number of links in a network, representing social
interactions.

Link weight wij of an link lij between node i and j is an indicator of how
important that link is.

Component is a subnet of nodes in a network so that there is a path be-
tween any two nodes that belong to the component.

Degree ki of a node i represents the number of other animals the i-th
animal interacts with.

Average degree 〈k〉 is the number of interaction partners an animal has, on
average, in the network.

Shortest path length dij is the shortest number of links between the nodes i and j,
also called distance.

Average shortest 〈d〉 is the average of all shortest paths between all
path length pairs of nodes.

Diameter dmax represents the length of the longest of all shortest paths,
the longest possible path length in the network.

2.1.1 Network Measures and Metrics

The following definitions are mainly taken from Barabási [8] and Newman [9] and
refer to undirected and unweighted static network measures, except for strength.
Table 2.1 summarizes the basic variables and terms used in the course of this work.

Density D is the number of realized links divided by the number of theoretically
possible links is defined as

D =
2L

N(N − 1)
. (2.1)

Strength si of a node i is also called the weighted degree. It measures the total
weight of links connected to that node. The average strength is denoted as 〈s〉.
According to Barrat, Barthelemy, Pastor-Satorras, et al. [10] it is defined as

si =
N
∑

j=1

wij. (2.2)

Global clustering coefficient (gcc) c∆ is also called transitivity. The gcc is based
on triplets. A connected triplet consists of three nodes connected by two links. A
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2.1. Social Network Analysis

triangle consists of three connected triplets. According to Wasserman and Faust [5]
the gcc is defined as

c∆ =
(number of triangles)× 3

(number of connected triples)
. (2.3)

Local clustering coefficient (lcc) ci of a node i quantifies how close the node’s
neighborhood is to beeing a complete subgraph and is defined as

ci =
(number of pairs of neighbors of i that are connected)

(number of pairs of neighbors of i)
. (2.4)

Centrality When looking at the node level structure of a network, it is possible to
identify nodes, which are important or central to different aspects of the network.
This concept is called centrality and measures the influence of a node in a network.

Degree Centrality C i
D is the normalized degree ki of a node i in relation to the

whole network. It is calculated as

C i
D =

ki

N − 1
. (2.5)

Closeness Centrality C i
C of a node i measures how close this node is to all other

nodes in the network. It is the average length of shortest paths between node i and
all other nodes in the network and is calculated as

C i
C =

N
∑

j dij
. (2.6)

Betweenness Centrality C i
B of a node i measures the extent to which a node lies

on shortest paths between other nodes. Nodes that occur on many shortest paths
between other nodes have a higher betweenness that those that do not.

2.1.2 Community Detection

To understand the large-scale structure of networks, one can look at the network’s
community structure. Communities are naturally occurring groups within a network,
usually also called clusters, cohesive groups or modules and have no widely accepted,
unique definition [11]. For my work, I adapt the definition according to Barabási
[8, p. 322]: “In network science, we call a community a group of nodes that have a
higher likelihood of connecting to each other than to nodes from other communities.”
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2.1. Social Network Analysis

In contrast to a simple graph partition, the number and size of communities is not
predetermined or set in advance.

In animal social networks, communities refer to groups of individuals that are asso-
ciated more with each other than they are with the rest of the population. These
communities reflect an intermediate level of social organization, which is located
between the individual and population level [12].

There are a lot of different approaches and algorithms that address the detection
of communities. Fortunato [13] gives an extensive overview of the various types of
community detection algorithms. Explaining any of those would be beyond the scope
of this work. For example, traditional methods include algorithms based on graph
partitioning, hierarchical clustering, and spectral clustering. There are also divisive
and agglomerative algorithms. The algorithms used in this work are described in
the following sections and include the leading eigenvector [14] and walktrap [15]
algorithm.

Modularity

Modularity is a quantity that measures the quality of a partitioning. It can be used
to compare one community partition to another and to decide which is the better
one. Modularity optimization is also used for community detection algorithms. A
high modularity of a network indicates more connections between nodes within a
community and fewer connections between nodes of different communities. The
basic idea is: If the fraction of links inside the community is higher than expected
in the same community of a corresponding random graph with the same degree
distribution, then it is a community in the sense of modularity. This difference is
summed up and normalized.

Fewer links inside the community than expected result in a negative value, more
links positive. If all nodes fall into one community, the modularity is zero.

Leading Eigenvector and Walktrap

The leading eigenvector algorithm was proposed by Newman [14]. It uses the eigen-
vectors of matrices for finding community structures in networks. It is a top-down
hierarchical approach that optimizes modularity. The algorithm starts with all nodes
inside one community (modularity is 0). In each step, the network is split into two
parts, so that the modularity of the new separation increases. The splitting is done
by first calculating the leading eigenvector of the modularity matrix and then split-
ting the network in a way that maximizes the modularity improvement based on
the leading eigenvector. The algorithm stops if the modularity does not further
increase.

The walktrap algorithm by Pons and Latapy [15] is based on random walks. The
authors use random walks as a tool to calculate the similarity between nodes of a
network. The algorithm uses a bottom-up hierarchical approach, which means the

7



2.1. Social Network Analysis

algorithm starts with each node in a single community. The basic idea of walktrap
is that short distance random walks (the step size is a parameter) tend to stay in the
same community because there are only a few links that lead outside a given com-
munity. The results of these random walks are used to merge separate communities.
Again modularity can be used to cut the dendrogram at an optimal place.

2.1.3 Temporal Networks

When modeling temporal or dynamic networks, two main approaches exist: (1) time-
aggregated (discrete), where the data is aggregated either in a disjoint, overlapping
or cumulative snapshot; and (2) the time-ordered (continuous) approach, with in-
teractions having a start and end timestamp [16]–[18].

The time-aggregated approach cumulates the data for each snapshot and reduces the
available information per link. In contrast, the time-ordered approach retains the
information about when interactions occurred and how long they lasted. It provides
a detailed insight when timing and order of interactions are important. It can be
used to model the topological flow of information through a network.

Choosing a suitable time interval for data aggregation is challenging [17], but many
methods for analyzing time-aggregated networks already exists, whereas, for time-
ordered networks, only a limited toolset is available. To model nodes and link
weights in time-aggregated networks can be challenging, when since interactions,
which occurred earlier or later in time, should be weighted accordingly.
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2.2. Related Studies

2.2 Related Studies

Studies using a network analysis approach focusing on interaction networks to inves-
tigate the behavior of social insects, especially honey bees are relevant for my work. I
mainly reviewed studies mentioned in the survey papers of Pinter-Wollman, Hobson,
Smith, et al. [17], Krause, James, Franks, et al. [19, Chapter 15] and Charbonneau,
Blonder, and Dornhaus [6].

The most relevant studies were classified by:

• Type of analysis

temporal or static analysis using automated or manual tracking over a long or
short term

• Studied species

honey bees or other social insects

I reviewed the limitations of the studies in regards to time, space, and the number of
tracked individuals. Table A.2 (Appendix A) summarizes the selected studies and
the characteristics of: duration of study, observation period, sampling resolution,
the number of colonies, the number of marked individuals, and space limitations. I
also recorded whether the studies included age cohorts in their analysis and listed
the software tools used for network analysis.

Within the scope of my literature review, I found a lot of studies in the field of
static network analysis of ants [20]–[25], wasps [26] and bumblebees [27], but only a
few related to honey bees [28]–[31]. I did not find any studies focused on temporal
aspects of honey bee colonies, but I did find several studies focused on temporal
aspects of ant colonies [4], [32], [33].

2.2.1 Static Network Analysis of Honey Bee Colonies

The most advanced work studying honey bees using a network science approach is by
Baracchi and Cini [28]. Their study revealed a highly compartmentalized structure
inside the honey bee colony: Bees organize by age groups, which occupy separate
areas of the comb and perform different tasks. There is limited contact between
these groups.

Generally, the theory that bees change tasks over the course of their lifetime, starting
as nurses in the nest and ending as foragers outside, termed as temporal polyethism,
is widely accepted and has been studied for a long time [34]–[36]. Johnson [35] ob-
served two groups of within-nest bees: young bees responsible for the brood care and
middle-aged bees specialized on nectar processing and nest maintenance. Seeley [34]
observes four age subcastes among worker bees besides the queen cast: cell cleaning,
brood nest, food storage, forager.
Lindauer [36] defined certain tasks a bee can perform at any given age. Also, a bee
can perform several different tasks per day. The bee is flexible and responds to the
given needs of the hive. Young bees mostly clean cells and old bees mainly forage,
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2.2. Related Studies

instead middle-aged bees perform several tasks. [36]

Baracchi and Cini [28] use the frequency of interactions between bees as link weights
in an undirected worker-worker interaction network. The body length of a bee defines
the radius of spatial proximity. Baracchi and Cini use the node level measures
strength (weighted degree), closeness and eigenvector centrality to investigate the
networks. They also perform a cluster analysis using as similarity the local network
measures. The main shortcomings of their work are sample size and observation
frequency. They studied one colony with 4,000 individuals, marking only 211 bees
from three predefined age cohorts, and observed only one side of the observation
hive for ten hours by capturing with a low resolution of one frame per minute.

Scholl and Naug [30] investigated the mechanism behind the emergence of organi-
zational immunity of honey bee colonies by using unweighted, undirected physical
contact and trophallaxis networks. They observed one hour per day, with three
days of observation spread over three weeks. In the field of network analysis, they
investigated the interactions between three predefined age cohorts.

Naug [29] inspects the network structure of weighted, directed trophallaxis networks
using four age cohorts. He evaluates the changes in transmission dynamics produced
by experimental manipulation. The dataset is limited to one hour of observation
and only first- and second-order trophallaxis interactions are considered. The food
transfer from the forager to a worker bee is called first level interaction, the food
transfer from that worker bee to other bees is called second-order.

2.2.2 Temporal Network Analysis of Insect Colonies

Mersch, Crespi, and Keller [4] apply similar methods to my work. They automat-
ically tracked all individuals of six ant colonies over a period of 41 days using a
resolution of two frames per second. For each observation day, the authors ex-
tracted time-aggregated weighted contact networks per colony, using antennation as
the physical contact event. They applied the Infomap community detection algo-
rithm to each daily network and revealed three distinct and robust groups. Each
group represents a functional behavioral unit, with ants changing groups as they
age. Except for community detection, they did not use any other network science
methods to investigate the network properties.

Jeanson [33] also used automatic tracking. His work is focused on the investigation
of the temporal stability of spatial proximity networks in four ant colonies over three
weeks. Here, proximity is defined as 4/3 of an ant’s body length. Per week and per
colony they generated weighted time-aggregated networks, using the total duration
of interaction as the link weights. They investigated the strength, betweenness and
closeness centrality and found that the networks are stable over time, without the
queen contributing to the network structure. Also they state that individuals with
long lasting interactions seem to have a reduced tendency to move, while mobile
ants interact homogeneously with their nestmates. The observed colonies ranged in
size from 55 to 58 individuals.

10



2.2. Related Studies

In these studies, each of the observed ant colonies contained a maximum of 200
individuals. This number is relatively small compared to the size of honey bee
colonies used in the static analysis approaches.

11



Chapter 3

Methodology

In this chapter, I outline the methodology I applied to reach my research goals. In the
first section, I describe the data and the experimental setup. In the second section, I
share my findings concerning data quality and the steps needed to obtain a reliable
dataset. Then I describe my approach to infer networks. The last section explains
the methods I used to analyze the properties, communities, and development of the
resulting networks.

3.1 The Experimental Setup and Dataset

The dataset is derived from high-resolution video files that capture tagged honey
bees of one colony in a single frame observation hive. The bees are uniquely tagged
with circular 12-bit markers (Figure 1.1, section 1). Two cameras per side filmed the
complete honeycomb. Figure 3.1 illustrates the camera setup. The recording period

lasted nine weeks (63 days), from July 19, 2016 until September 19, 2016, with some
interruptions due to maintenance work and technical failures. An overview about
the complete recording period is given in Figure B.2.

All four cameras, each with a resolution of 4000×3000 pixel, recorded 3.5 frames per
second. An image analysis pipeline [1] detects all bees in each frame. The resulting
detection data is stored in a binary file format. A python library1 provides a frame-
level access to those binary files. The size of the dataset is 470 GB, about 7.5 GB
of binary data per day.

The 67 day tagging period began on June 28, 2016 and lasted until September 2, 2016,
resulting in 3,191 tagged bees. Bees were already tagged three weeks before the
observation started. The young bees, which were raised in a separate incubator,
were tagged and then added to the observation hive at noon each day. Figure B.1
shows the frequency of tagged bees per day. The hatching day for each bee is
documented and therefore the age of each bee at a particular point in time can be
calculated. The life expectancy of a honey bee during summer ranges from 30 to 60
days, according to Menzel and Eckoldt [37, p. 27] The maximum number of present
bees in the hive is about 1,600.

1The library is called bb-binary and is created by the Biorobotics Lab. It can be found on GitHub:
https://github.com/BioroboticsLab/bb binary; Last accessed: February 16, 2016; 4:28 p.m.
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3.2. Data Quality and Data Cleansing
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Camera 1 
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Camera 2 Camera 3 Camera 0 Camera 1

Figure 3.1: Observation setup Each side of the honeycomb is filmed by two cameras.
The two cameras per side overlap, so bees inside this area are detected from both cameras.

3.2 Data Quality and Data Cleansing

In this section, I describe the data scheme and investigate the quality of the tracking
data and completeness of bee tracks. I propose a way to filter invalid detections to
gain a cleaned and valid dataset, which can be used to infer networks. Frequently
used terms are listed in Table 3.1.

3.2.1 Data Scheme

The data is organized in frame containers. Each frame container corresponds to one
video file from a particular camera and contains aproximately 1,024 frames. Each
frame contains a list of bees, which were detected by the image analysis pipeline. A
bee detection includes following attributes:

x pos x coordinate of bee with respect to the image in pixel

y pos y coordinate of bee with respect to the image in pixel

decoded ID decoded 12-bit ID

cam ID ID of the camera: 0, 1, 2, 3

timestamp unix timestamp with milliseconds
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3.2. Data Quality and Data Cleansing

Table 3.1: Terms related to the dataset

Frame container Contains all frames, which belong to a specific video file of a cer-
tain camera.

Frame A frame is one picture of one camera and includes all bee detec-
tions.

Detection Detection of a bee at a certain point in time.

Decoded ID Identifier of a bee consisting of twelve probability values, represent-
ing twelve bits.

ID Decimal representation of a decoded ID.

Bee time series Binary sequence, indicating the absence and presence of a certain
bee in a particular time interval.

Pair time series Binary sequence, indicating whether or not two bees are close to
each other, in a particular time interval.

The data can be accessed by iterating on the frame level, using a start and end
timestamp for specifying time interval. The complete data scheme can be found on
GitHub2.

3.2.2 ID Probabilities, Confidence Level, and Quality

Twelve bits can encode the identity of 4,096 bees. Each bit of the decoded ID
represents a probability between 0 and 255, normalized to a value between 0 and
1. Therefore, a bit indicates the confidence of the image analysis pipeline for that
specific bit. I define the confidence c for a bit b, analogously to Leon Sixt [38, p. 14],
as

c(b) = 2 · |b− 0.5| (3.1)

The confidence of a decoded ID is, accordingly, the minimum of all twelve bits’
confidences. Detections with a confidence below a certain level are removed from
the dataset. Consequently, a high level of confidence reduces the amount of data
available for further processing.

I use the age of the bees to check the quality of the remaining data. If the pipeline
detected a code that has not been assigned a bee will have a negative age value.
A bee has a negative age, if the pipeline detected a code, that was not used yet. I
examined the number of remaining bee detections and IDs, depending on the chosen
confidence by calculating the age of each bee detection and ID. A bee detection with
a negative age is counted as an invalid detection and an ID with a negative age is
counted as an invalid ID.

As expected, with increasing confidence levels, the number of remaining detections

2https://github.com/BioroboticsLab/bb binary/blob/master/bb binary/bb binary schema.
capnp; Last accessed: February 16, 2016; 4:46 p.m.
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Figure 3.2: Quality of detections and IDs Light green represents the number of
remaining data and dark green indicates the fraction of invalid data. (a) Proportion of
remaining and invalid detections. (b) IDs, that are detected at least once, in relation to
invalid IDs. [Dataset: ten minutes; four cameras; July 26, 2016; 4 p.m.]

and IDs decreases (Figure 3.2), as does the fraction of invalid detections and IDs.
With a confidence level of 100%, the fraction of invalid detections reaches 2.5%.
However, the fraction of invalid IDs detected during a time interval of ten minutes
remains at the high value of 30.2%. Consequently, selecting a high level of confidence
is not sufficient. To obtain a more reliable dataset, invalid detections need to be
filtered out.

3.2.3 Detection Frequency Filter

A good indicator if a bee detection represents a real bee on the comb is the detection
frequency of its ID. Individuals with a very low detection rate may be detection
errors. To check this hypothesis, I investigate the correlation between the detection
frequency of bees and their age. Figure 3.3 shows that bees with a negative age are
observed less often than bees with a positive age.

During my analysis, I noticed the existence of a group of bees with a negative age and
a high detection frequency. I inspected the corresponding photos and confirmed that
those bee detections correspond to living individuals and are not artifacts. This re-
sults likely from a mistake in the reported hatching date for each bee. Consequently,
these bess were excluded from the analysis. Also I excluded bees (n = 10), whose
age is unknown.

For each analysis day, the number of detections per ID is calculated, excluding
the mentioned IDs. To obtain a reliable dataset, I filtered invalid detections, by
discarding all detections with an ID frequency below the 99th percentile of the
negative IDs.
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Figure 3.3: Detection frequency of IDs Orange corresponds to bees with a negative
age and green displays bees with a positive age. The gray line represents the 99th per-
centile of bees with a negative age. [Dataset: August 20, 2016; 24 hours, number of total
frames: 302,400]

3.2.4 Time Series of Bees and Bee Pairs

I investigated the quality of the initial data regarding its completeness of bee tracks.
A bee track represents the movement of an individual over time. I transformed the
initial dataset into binary bee time series, depicted in Figure 3.4 left and middle. A
bee time series, similar to a track, represents the absence and presence of a bee over
a specified sequence of frames. For further processing I use the bee time series to
extract pair time series of bees that are spatially close (Figure 3.4, right). A one
indicates that a pair of bees is detected and both bees are spatially close in a certain
frame.
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Figure 3.4: Structure of dataset Left : original dataset - containing a sequence of
frames with bee detections; Middle: binary bee time series - zero and one indicate absence
and presence of a bee; Right: binary pairs time series - zero and one indicate the absence
and presence of two bees in the same frame.

By analyzing the resulting pair time series, I noticed that detection sequences were
often interrupted by short intervals without valid detections. As stated before, the
higher the level of confidence, the more data is discarded. This data reduction leads
to more zeroes (gaps) in both time series. Gaps in the pair time series frequently
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correspond to gaps in one or both bee time series and are thus the result of missing
detections of the required confidence and do not represent any meaningful behavior
of the bees. Bees are not able to approach each other and move apart within a
second because they simply do not move that fast. Therefore, I concluded, that
those gaps originate from detection errors and consequently need to be treated in
an appropriate way during further data processing.

3.3 Inferring Spatial Proximity Networks

The network interference was driven by a combination of an exploratory data anal-
ysis and an iterative pipeline development process. It serves as a prerequisite for
the network analysis part of this thesis. To generate functional and non-functional
requirements of the pipeline, I conducted an analysis of the tracking data and a lit-
erature review, presented in Section 2.2. The analysis led to a general understanding
of the data, its structure, characteristics and an estimation of its quality. The pur-
pose of the literature review was to get an overview of the common methods and
approaches regarding network analysis in the field behavioral insect studies.

Both results are then used to select a network type and to define its nodes and links.
Furthermore, I inferred specific pipeline parameters and decided for the procedure
of network extraction. The pipeline was developed, tested and refined in an iterative
process. Accordingly, the results of the evaluation lead to new or changing functional
requirements. The evaluation is conducted by reviewing the pipeline parameters’
effects on network properties and checking the validity and quality of the networks
by investigating the age of bees in the resulting network.

3.3.1 Defining the Network and its Parameters

As this work constitutes the first step towards network analysis using this tracking
data I chose to infer a time-aggregated spatial proximity network. Accordingly, the
interactions are undirected but weighted. Methods for analyzing static networks are
widely established. Static tools and algorithms are already implemented and used by
a large community. The results of the network analysis are easy to understand and
interpret. Additionally, static networks are the precondition for applying traditional
community detection algorithms. My choice also establishes the comparability with
Mersch, Crespi, and Keller [4].

Each node in the network represents a bee, identified by an ID. The network consists
only of bees that interact with other bees at least once, during the specified time
interval. Two bees are associated (spatially close to each other) if their distance is
smaller than a maximum distance. Using only this criterion leads to many interac-
tions, resulting in a very dense network, because an interaction could only last for
0.33 seconds. Therefore, an additional parameter, the minimum contact duration,
is introduced. It specifies the minimum time two bees have to spend close to each
other to be called associated. Links are assigned two attributes. The first one is the
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3.3. Inferring Spatial Proximity Networks

frequency of contacts, meaning how often they share a close position. The second
parameter refers to the total duration of all contacts.

The network pipeline takes two types of parameters. The first set of parameters
defines the resulting network and the exact type of spatial proximity. The second
set relates to the given data. Both parameter types are described below.

Pipeline parameters for network

Maximum distance Level of closeness between to individual bees. (in pixel)

Minimum The number of frames two individuals need to spend close.
contact duration to each other to count it as an interaction (in frames)

Start timestamp Starting point of the network aggregation. (as UTC string)

Window size Size of time window for aggregating the network. (in minutes)

Pipeline parameters for data

Confidence Level of confidence, as described in Section 3.2.2. (in percent)

Valid IDs List of valid IDs within a specified time interval, as described in
Section 3.2.3. (in CSV file format)

Gap Size Gaps in time series of bee pairs are assumed to be the result of
missing detections. Gaps of this size are filled up. (in frames)

Number of CPUs Number of used CPUs for parallelization.

Year Calculate bee IDs and stitching of camera images according to
the observation period. (2015 or 2016)

3.3.2 Choosing Parameter Values for Network Analysis

For network analysis, I chose three days: August 20, August 22, and August 24, 2016.
These days were selected because bees from a wide range of age groups were present
and older bees, which are likely to be foragers, were more represented in the hive
during these days. Additionally, no data is missing due to camera failures. The
following values are chosen according to biological constraints and similar to other
studies, for better comparability.

I chose the length of a bee body, according to Baracchi and Cini [28], as the maximum
distance between two bees (Figure 3.5). The average bee length of 212px (±16px)
was determined by manually measuring the length of all bees (n = 337) in images
from the four cameras using the tool ImageJ3. The minimum contact duration is set
to three frames (one second). This value corresponds to Mersch, Crespi, and Keller
[4], as they also exclude interactions below one second. The networks are aggregated
for ten hours during daylight; this corresponds to the biological rhythm of bees.

3http://imagej.net/Welcome; Last accessed: February 22, 2016; 12:34 p.m.
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3.3. Inferring Spatial Proximity Networks

Table 3.2: Parameters chosen for network analysis The maximum distance corre-
sponds to the length of a bee body and the minimum contact duration is about one second.
The networks are aggregated for ten hours.

Parameter Value Unit

Maximum distance 212 px
Minimum contact duration 3 frames

Window size 600 minutes

Confidence 95 percent
Gap size 2 frames

The confidence level is set to 95%, which will keep about 60% of the data. The gap
size is set to two frames. This value corresponds to the median gap length in the
time series of bee pairs.

3.3.3 Summary

The goal, as mentioned in 1.2, was to answer the question whether it is possible to
infer temporal networks with the provided honey bee tracking data and to work out
challenges and limitations regarding the provided dataset. Furthermore, it was a
goal to identify the parameters necessary for the pipeline.

Pipeline Parameters

This analysis results in two types of pipeline parameters. The first category specifies
the resulting network, concerning the definition of spatial proximity, duration of
interaction and size of the aggregated time window. The second type represents
parameters resulting out of the characteristics of the dataset.

(a) Body length of a bee (b) Contact radius

Figure 3.5: Maximum distance of bees: A length of a bee body is chosen as the
maximum distance between two bees.
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3.4. Methods for Analyzing Spatial Proximity Networks

1. Pipeline parameters for network

maximum distance, minimum contact duration, start timestamp, window size

2. Pipeline parameters for data

confidence, list of valid IDs, gap size, number of CPUs, year

Limitations

It is possible to infer networks, but a complex preprocessing of the dataset is essential
with two major steps:

1. Reduction of data

Reduce the amount of data to obtain a reliable dataset, by filtering out detec-
tions with a low confidence value or by IDs with a low detection frequency.

2. Combine camera data

This step consist of the time synchronization of each of the two cameras and
the joining of the data per frame.

A tradeoff exists between the remaining amount of data that can be used for network
inference and the data’s. A high confidence value reduces the amount of data and
produces gaps. The gap size parameter tries to fix this problem.

It is also possible to infer time-aggregated networks, but with restrictions. When
limiting the window size for network aggregation to the biological rhythms of day
and night, only a small amount of useful analysis days remain due to a large num-
ber of interruptions. Any other window size entails the inclusion of the duration of
biological processes related to honey bees, I would need to know beforehand. Alter-
natively, I would need to apply a method to infer an appropriate window size out of
the given data, this it out of scope.

3.4 Methods for Analyzing Spatial Proximity

Networks

This section outlines the methods I used to investigate the networks on a global,
intermediate and local level. I present the choice of network measures used for the
global analysis and explain the decision to use a community detection algorithm. I
illustrate the methods to examine the segregation of communities by age and spatial
distribution. Furthermore, I describe the approach used to study the development
of communities.

3.4.1 Investigating the Topology and Network Characteristics

I summarized the network analysis methods of the reviewed studies (Chapter 2.2)
to gain an overview of established procedures in the field of social insect networks.
I grouped the methods by global measures, node level measures and other network
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Figure 3.6: Frequency and total duration of interaction The two link weight values
show a strong positive correlation. The data of the three snapshots is aggregated.

analysis methods. Table A.3 summarizes the network analysis methods applied by
the reviewed studies. The network measures I chose for the global and node level
analysis are listed in Table 3.3 and were defined in Chapter 2.1.1.

Each link in the network is attributed with the frequency of interactions and total
duration of interactions between the two individuals. Figure 3.6 shows a strong
positive correlation between those two values. For further analysis I decided to use
the frequency of interactions as the weight for links, analogously to [4], [28].

The degree of a bee represents the number of other bees this focal animal interacts
with. Bees with a high number of interaction partners have a high degree. This
measure was chosen because it reveals a lot about the general topology of a network.
The strength of a bee is the sum of its link weights. A high strength refers either
to a large number of interaction partners with a low link weight or a low number
of interaction partners with high link weights. Especially for aggregated networks
this measure accumulates valuable information regarding the interaction activity of
bees. The local clustering coefficient (lcc) of a bee indicates how close its interaction
partners are to form a complete subgraph. A large lcc shows that most of its inter-
action partners interact with each other. A low lcc indicates the absence of those
interactions. It is a good indicator for the embeddedness of single bees.

The betweenness of a bee measures the number of shortest paths between two other
bees that go through that bee. A bee with a high betweenness would be important
for the information flow of the network. Removing this bee from the hive would
lead to the breakdown of information or food flow and would negatively affect the
robustness of the network. The closeness of a bee measures how fast this bee can
reach all others in the network. A high closeness would indicate a very short path
to every other bee. A bee with high closeness can spread information to all other
bees very quickly.

I examined all node level measures concerning the age of bees and their detection
frequency. The global network measures are compared to an Erdős-Rényi random
network, by averaging over 100 runs.
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Table 3.3: Measures used for analysis Each measure is explained in Chapter 2.1.1

Global level measures Node level measures

Number of nodes N and links E Degree k

Average degree 〈k〉 Strength s

Average strength 〈s〉 Local clustering coefficient c
Density D Closeness centrality CC

Diameter dmax Betweenness centrality CB

Number of components
Global clustering coefficient c∆
Average shortest path length 〈d〉
Link weights w

3.4.2 Detecting Communities

For finding an appropriate community detection algorithm, I checked the reviewed
studies for applicable methods and scanned papers that compare various community
detection algorithms. I identified a subset of algorithms as suitable and checked
them.

The reviewed studies only include one examples of community detection and one
example of cluster analysis. Mersch, Crespi, and Keller [4] used the infomap [39],
[40] algorithm. According to the authors, this algorithm only works with sparse
networks and is therefore not applicable in my case of densely connected spatial
proximity networks. Baracchi and Cini [28] use a hierarchical clustering to infer
groups of bees within the network that are similar in strength, eigenvector, and
betweenness centrality. In contrast to the resulting groups of community detec-
tion, groups identified by hierarchical clustering do not automatically refer to dense
subgraphs of the network.

Abundant literature on the comparative analysis of community detection algorithms
exists, e.g. [41], [42]. Some studies seem to be promising for choosing an appropriate
algorithm, but assume either a power law degree distribution or evaluate networks
with a low density, which is not applicable here. Thererfore, I tested community
detection algorithms, implemented in python, to find an algorithm that works well
for animal social networks. The three most common python libraries for network
analysis were reviewed: NetworkX4, igraph5, and graph-tool6. The algorithm needs
to fulfill the following criteria: support for large ((N = 1000) and dense (D > 50%)
networks, support for weighted links, as well as a fast runtime.

Table 3.4 gives an overview about the algorithms reviewed. Five algorithms did not
terminate after 15 minutes and were therefore excluded from further investigations.
Infomap and label propagation tend to partition all nodes into a single community,

4https://networkx.github.io/; Last accessed: March 16, 2016; 6:36 p.m.
5http://igraph.org/python/; Last accessed: March 16, 2016; 6:38 p.m.
6https://graph-tool.skewed.de/; Last accessed: March 16, 2016; 6:39 p.m.
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3.4. Methods for Analyzing Spatial Proximity Networks

Table 3.4: Comparing community detection algorithms Comparison of algorithms
implemented in python. Criteria are the support of weighted links, runtime and number
of communities. A runtime indicated by “−” means no termination after 15 minutes.
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Link weights × × × × × × × × × ×

Runtime in sec 3.6 6.3 11.7 0.7 19.4 13.2 0.2 − − − − −

Communities 3 2 2 3 2 1 1 − − − − −

Size 473 488 469 462 490 922 922
434 434 453 427 431
15 33 (1)

1 igraph, 2 NetworkX, 3 graph-tool

this is known, especially in dense graphs [13], [41]. The Louvain algorithm imple-
mented in networkX is the same as multilevel implemented in igraph, but takes
longer and produces almost the same communities and was also excluded. Walktrap
was tested for different step size parameters, as suggested in [15], the communities
remained almost the same, only a few nodes switched communities.

I examined the number and size of detected communities for the algorithms fast-
greedy, leading eigenvector, multilevel, and walktrap for all three snapshots. Ta-
ble 3.5 gives an overview of the results. All algorithms found at least two communi-
ties. Except for leading eigenvector, most tend to find three communities.

I decided to use two algorithms for community detection: leading eigenvector and
walktrap. Farine and Whitehead [7] explain that leading eigenvector is often used
with animal social networks and works well. Walktrap is also chosen for also exam-
ining the third community (Table 3.5).

Age and Spatial Distribution of Communities

To answer the question whether communities reflect different age groups, I examined
the average age and the general age distribution of the communities. I also inves-
tigated, if the age division persists in each snapshot. A two-sample Kolmogorov-
Smirnov test was used to determine the statistical difference of the age distribution
between communities.
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Table 3.5: Number of community members per algorithm and snapshot Four
algorithms were tested and compared regarding the number of detected communities and
the size of the communities.
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Snapshot 1 473 488 462 490
434 434 427 431
15 33 (1)

Snapshot 2 504 503 481 372
467 475 439 311
7 58 294

(1)

Snapshot 3 534 537 505 310
388 385 415 390

(2) 231
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3.4. Methods for Analyzing Spatial Proximity Networks

To investigate whether communities reflect groups of bees working in different areas
of the comb, I used heat maps to determine the core regions per group. I stored the
positions of all bees present within the ten hour time windows in an SQLite database
for faster access to the data and to eliminate the time-consuming parsing.

3.4.3 Development of Community Members

According to Aynaud, Fleury, Guillaume, et al. [43] and Bródka, Saganowski, and
Kazienko [44], there are three main approaches for community detection in tem-
poral networks (sometimes referred to as community tracking): (1) using a static
community detection algorithm on several snapshots and then solving a matching
problem, (2) using algorithms that are directly suited for temporal networks and (3)
using incremental or online algorithms when processing data streams. For each of
the three approaches, several methods already exist. As community tracking is not
the main focus of this work, I chose to apply the most natural method: detecting
static communities for each snapshot and then matching those communities using
set theory.

Two communities at successive times are matched if they share enough nodes. The
match value between two communities C and D according to Hopcroft et al. [45] is
defined as

match(C,D) = min

(

|C ∩D|

|C|
,
|C ∩D|

|D|

)

. (3.2)

This value is between 0 and 1. A high match value occurs, if two communities
share many nodes and are of a similar size. Communities with high match values
represent the same community at different points in time. The author suggests
applying a threshold to more precisely define what “share enough nodes” means.
Otherwise, communities with only 0.1% of nodes overlapping could be matched.

To investigate the total number of bees that remain in the network over the three
snapshots, I inspected the match value of bees in consecutive snapshots. I also
calculated all match values between communities in consecutive snapshots and the
number of intersecting bees. I visualize the dynamic movement of bees between
groups of different snapshots with a flowchart diagram using the JavaScript library
D3.js7.

7https://d3js.org/; Last accessed: April 19, 2016; 3:18 p.m.
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Chapter 4

Results of Network Analysis

This chapter summarizes the results of the analysis of the temporal, spatial proximity
network of honey bees, consisting of three consecutive time-aggregated snapshots.
Section 4.1 describes static aspects of the network and Section 4.2 focuses on the
temporal network aspects. The last section of this chapter summarizes the main
results and discusses the findings.

4.1 Static Perspectives of Honey Bee Networks

The networks are examined on three levels. First, I examine the network’s global
structure and derive properties of the overall colony (global level). Next, I study the
characteristics of individual bees (local level) and the relation of the characteristics
to detection frequency and age. Finally, I investigate the intermediate level of the
colonies social organization by detecting communities and inspecting their practical
meaning. I analyzed a temporal network, consisting of three time-aggregated snap-
shots; these are referred to below as snapshot 1 (N = 922), snapshot 2 (N = 978) and
snapshot 3 (N = 922). The snapshots are aggregated for ten hours (108,000 frames)
starting at 8 a.m. and lasting until 6 p.m. See Table 4.1 for details about the
bees added each day. Figure 4.1 shows the proportion of intersecting bees between
consecutive snapshots. This figure illustrates the stability of the network size.

Table 4.1: Sampling period Overview of the chosen aggregated daily snapshots includ-
ing the number of added bees and the time they were added to the hive.

8/20/2016 8/21/2016 8/22/2016 8/23/2016 8/24/2016

Snapshot ID 1 − 2 − 3
Number of bees added 0 0 110 60 0

Time added − − 2 p.m. 6 p.m. −
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4.1. Static Perspectives of Honey Bee Networks

Figure 4.1: Transitions of bees per snapshot Each column represents a time step, the
dark gray rectangles represent the snapshot for each step, and the height of the rectangles
corresponds to the amount of members, as referenced by the number. The light gray boxes
represent the number of bees that are added to the colony and bees that disappear. This
figure shows the amount of bees for each snapshot and the proportion of intersection.

4.1.1 Properties of the Bee Colony

Each snapshot consists of one component. The density D is over 50% for all snap-
shots (69%; 54%; 61%). The diameter 〈d

max
〉 is 3 and the average shortest path

length 〈d〉 is between 1 and 2. The global clustering coefficient (gcc) c∆ of all snap-
shots is higher than compared to an Erdős-Rényi random graph, averaged over 100
runs using the same number of nodes and links. On average, each bee is connected
to at least 50% of the colony (68%; 52%; 61%). During the ten-hour observation
period, a bee interacts over 4,000 times (5,680; 3,978; 4,206) on average. Table 4.2
summarizes the basic network properties for each snapshot and lists the values of its
corresponding random graph.

For further analysis, I select snapshot 3 because no young bees were added to the
colony during that day and, unlike snapshot 1, bees below the age of five days were
part of the colony (Figure C.10). Figure 4.2b shows the age distribution of snap-
shot 3. This distribution corresponds to the artificial tagging of the bees. Conse-
quently, bees of certain age groups are simply not present. The detection frequency
of an individual bee is negatively correlated with its age (Figure 4.2a). The link
weight distribution is shown in Figure 4.2c. Most links have a low weight; only a
few links have a high weight. The logarithmized frequency distribution of the link
weights appears to be an exponential decay function with an exponent of 0.015. The
fitted plot is shown in Figure C.2.

4.1.2 Characteristics of Bees

I inspected the properties of each honey bee in snapshot 3. Properties included in the
analysis were its degree k, strength s, local clustering coefficient (lcc) c, betweenness
centrality CB and closeness centrality CC .
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Figure 4.2: Age distribution, correlation with detection frequency and link
weight distribution of snapshot 3 (a) Detection frequency and the age of a honeybee
seem to be negatively correlated. (b) The age of bees ranges from 1 to 60 days, but some
age groups are missing. (c) The link weight as a log-log plot.
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Table 4.2: Global network properties N number of nodes, L number of links, D

diameter, 〈dmax〉 average path length, 〈d〉 diameter, c∆ global clustering coefficient, 〈k〉
average degree and 〈s〉 represents the average strength, as introduced in Section 2.1.1.

N L D 〈dmax〉 〈d〉 c∆ 〈k〉 〈s〉

Snapshot 1 922 291,179 0.69 3 1.32 0.79 631.62 5,680.17
Random 1 922 291,179 0.69 2 1.31 0.69 631.62 -

Snapshot 2 978 256,066 0.54 3 1.46 0.72 523.65 3,977.94
Random 2 978 256,066 0.54 2 1.46 0.54 523.65 -

Snapshot 3 922 259,421 0.61 3 1.39 0.75 562.74 4,205.99
Random 3 922 259,421 0.61 2 1.39 0.61 562.74 -

Low Hierarchical Structure

The degree is normally distributed (panel (a) in Figure 4.3). Therefore most bees
have the same high number of interaction partners. The absence of hubs, a small
number of highly connected bees, indicates a low hierarchical structure of the net-
work. Strength and lcc are also normally distributed (panel (d) and (g) in Fig-
ure 4.3). That also shows the absence of extreme values and confirms that bees
are similar to each other regarding those properties. Closeness and betweenness
centrality (panel (j) and (m) in Figure 4.3) also follow a normal distribution. This
distribution leads to the assumption that no central or important bees exist. How-
ever, this could be a consequence of the definition of interaction (spatial proximity).
All bees are similarly close to all other bees in the network, and every bee can
reach any other bee with a few steps. That also corresponds to the low average
path length, and the small diameter of the network described in Section 4.1.1. The
absence of bees with a high betweenness suggests that the colonies functionality is
robust concerning the disappearance of single individuals.

Local Network Measures and Detection Frequency

Degree, strength, closeness and betweenness (panel (b), (e), (k), and (n) in Fig-
ure 4.3) are positively correlated with the detection frequency. A low value corre-
sponds to a low detection frequency. In contrast, the lcc (panel (h) in Figure 4.3)
and detection frequency are negatively correlated.

Local Network Measures and Age of Bees

The histograms of degree, strength, betweenness, and closeness show a normal distri-
bution with a tendency for bimodality. The lcc distribution is instead right skewed,
with one peak at 0.75.

There is no sharp border between the two modes in the degree distribution plot (a),
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4.1. Static Perspectives of Honey Bee Networks

but a value around 0.4 can be estimated. The strength histogram (d) seems to have
a border at 1,000. For closeness (j) and betweenness (m), a border can be seen at 0.6
and 0.0001. All distributions indicate a small group (100 bees) and a second larger
group containing the rest of the colony. The correlation between all measures is
depicted in the scatter plot in Figure C.9.

The first small group interacts on average with 20% of the colony and has a very low
strength (number of total interactions below 250). The closeness value is compared
to the second group smaller but still over 0.5. The betweenness has a small range and
is close to 0 for the first smaller group. The second group interacts with about 80%
of the colony with an average strength of 5,000. A high strength can result from
lots of neighbors with low link weights or a few neighbors with high link weights.
As only a few links with high weights exist (Figure 4.2c), the second option can be
excluded. The second group is characterized by a very high closeness (0.75) and a
still very low betweenness but higher than the first group (0.0005).

All age-correlation plots show a seperate group of bees older than 45 days, corre-
sponding to the first smaller group of bees described above. This older group is
characterized by a low degree, a low strength, and low closeness and betweenness.
In contrast, a high lcc, compared to the younger group is noticeable. The younger
group has a high degree and strength, as well as a high betweeness and closeness
compared to the first group, but a lower lcc. The high lcc of the older group indicates
high connectivity within the younger group and less connectivity between bees of
the older group.

4.1.3 Functional Groups within the Colony

The leading eigenvector (LE) community detection algorithms revealed two commu-
nities with a similar size (modularity score of 0.25). The walktrap algorithm (WT)
discovered three communities instead, also evenly distributed (modularity score
of 0.23). Table 4.3 lists the precise number of members per community and algorithm
for snapshot 3.

For both algorithms the communities correspond to different age groups. For LE,
the average age of the young community is 13.2 days and the average age of the
old community is 28.7 days. For WT, the average age of the young community
is 6.6 days and 29.3 days for the older commmunity. The average age of the third
middle-aged community of WT is 25.1 days. The age distribution for each algorithm
is represented in Figure 4.4a and 4.4b. The two sample Kolmogorov-Smirnov test
confirmed that the age distributions per community are significantly different. The
corresponding p-values are listed in Table 4.4.

Each community occupies a different region of the comb. Figure 4.4 shows that the
young communities spend the most time in the comb center and the old communities
closer to the hive exit. The middle-aged community is positioned between the young
and old community and in the periphery of the comb.
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Figure 4.3: Local measures of snapshot 3
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4.1. Static Perspectives of Honey Bee Networks

(a) Leading eigenvector (LE) communities

(b) Walktrap (WT) communities

Figure 4.4: Age and spatial distribution of communities Green represents the
young community occupying the center area of the comb and orange the old community,
which is situated closer to the hive access. For WT, the gray middle-aged community is
positioned between the other to and in the periphery of the comb.
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4.2. Temporal Perspectives of Honey Bee Networks

Table 4.3: Communities per algorithm Communities marked with * contain the
queen. Age and standard deviation (SD) are measured in days. The queen and nine
bees with a negative age are excluded from this analysis.

Community ID Members Proportion Age SD

LE CY ∗381 41.78% 13.15 ±13.50
CO 531 58.22% 28.70 ±11.67

WT CY ∗229 25.11% 6.55 ±10.36
CM 298 32.68% 25.08 ±11.97
CO 385 42.21% 29.29 ±11.44

Table 4.4: Kolmogorov-Smirnov test p-values for leading eigenvector (LE) and walk-
trap (WT)

Communities LE p-value WT p-value

CY, CO 5.10× 10−66 5.51× 10−67

CY, CM 1.10× 10−95

CM, CO 1.98× 10−05

4.2 Temporal Perspectives of Honey Bee Networks

I investigate the stability of local and global properties, as well as the stability of age
and spatial distribution of functional groups of bees. Furthermore, the dynamics of
individual bees’ group membership over time are examined.

For all three snapshots, the same link weights distribution can be seen in Figure C.1.
The analysis of snapshot 1 and 2 showed that the same characteristic distribution
of degree, strength, lcc, betweenness, and closeness for snapshot 1 (Figure C.7)
and snapshot 2 (Figure C.8) exists. They also follow a normal distribution. The
correlation between the local measure and detection frequency and age remains.
All of this shows that the characteristics described in Section 4.1.2 apply for all
three snapshots and are therefore stable for the investigated time interval. A low
hierarchical structure and the correlation with age and detection frequency seem to
be global properties of the colony.

4.2.1 Stability of Functional Groups

Table 4.5 lists the exact number of bees per community for each algorithm and
snapshot. For each snapshot, LE detected two communities with about the same
number of bees. The first communities CY(1,2,3) contain the queen and on average
younger bees than the second communities CO(1,2,3).

In comparison, WT identified three communities in snapshot 2 and 3 but only two
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4.2. Temporal Perspectives of Honey Bee Networks

Table 4.5: Overview about communities per snapshot Communities marked with
* contain the queen. Age and standard deviation (SD) are measured in days. For each
network the queen and bees with a negative age are excluded: snapshot 1: 12 bees,
snapshot 2: 119 bees, snapshot 3: 10 bees.

ID Members Proportion Age SD

Leading eigenvector (LE)

Snapshot 1 CY1 ∗430 47.25% 17.12 ±10.97
CO1 480 52.75% 27.24 ±10.96

Snapshot 2 CY2 ∗392 45.63% 20.24 ±12.01
CO2 467 54.37% 28.10 ±10.88

Snapshot 3 CY3 ∗381 41.78% 13.15 ±13.50
CO3 531 58.22% 28.70 ±11.67

Walktrap (WT)

Snapshot 1 CY1 ∗427 46.92% 17.07 ±10.92
CO1 482 52.97% 27.23 ±11.00

Snapshot 2 CY2 ∗263 30.62% 18.23 ±11.46
CM2 305 35.51% 25.20 ±11.47
CO2 291 33.88% 29.47 ±10.06

Snapshot 3 CY3 ∗229 25.11% 6.55 ±10.36
CM3 298 32.68% 25.08 ±11.97
CO3 385 42.21% 29.29 ±11.44

communities in snapshot 1. The first communities CY(1,2,3) consist of the queen and
on average younger bees than the second CM(2,3) and third communities CO(1,2,3).
The bees in CM2 and CM3 are on average younger than the bees in CO2 and CO3.
Figure C.5 and C.6 depicts the age distribution for each community and snapshot.

A two-sample Kolmogorov–Smirnov test showed that the age distributions are sig-
nificantly different (p < 0.001) for both algorithms. The spatial segregation of the
communities is very similar in all three snapshots. For further reference see the heat
maps in C.4 and C.3. The detected communities seem to differ in their respective
age and occupy different areas of the comb, but remain stable over this inpected
time interval.

4.2.2 Dynamic of Individual Bees

Figure 4.5a (LE) and Figure 4.5b (WT) show the flow of bees between consecutive
snapshots and communities. For LE communities, the majority of bees stay in their
age group, and a small fraction of bees switch to older communities. Only a few
bees change to younger communities.

The new middle-aged communities (CM2) of WT are formed equally by members of
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4.3. Discussion of Results

Table 4.6: Kolmogorov-Smirnov test p-values for leading eigenvector (LE) and walk-
trap (WT) for each snapshot and its communities.

LE p-value WT p-value

Snapshot 1 CY1, CO1 2.18× 10−33 1.52× 10−32

Snapshot 2 CY2, CO2 2.99× 10−20 2.3× 10−32

CY2, CM2 4.72× 10−10

CM2, CO2 1.00× 10−04

Snapshot 3 CY3, CO3 5.10× 10−66 5.51× 10−67

CY3, CM3 1.10× 10−95

CM3, CO3 1.98× 10−05

the young (CY1) and old (CO1) communities. The switching behavior of individuals
between communities is similar to LE. Individual bees change communities as they
age.

4.3 Discussion of Results

In the following chapter, I summarize and discuss my results considering the current
state of research. This part is structured according to the research goals, listed in
Section 1.2. First I discuss the topology of the spatial proximity networks of honey
bees and its characteristic properties. Secondly, I compare the observed commu-
nities and their development over time with existing theories regarding temporal
polyethism.

4.3.1 Network Topology and Properties of Honey Bee Colonies

The honey bee spatial proximity networks are characterized by a high density (69%,
54%, 61%), which means the bees encounter many nestmates during the ten hours
of data aggregation. This results either from high activity or the fact that the comb
is simply very full. The latter increases the probability that two bees are close to
each other.
Comparing this result to the ant contact networks of Mersch et al.[4] (D = 72%±5.3),
the values are similar. In contrast, when compared to Baracchi and Cini [28] (D =
0.15) the density is higher, probably due to their lower observation resolution of one
frame per minute.

The small diameter (d
max

= 3) of my investigated networks and the low average short-
est path of 1.4 in combination with a high global clustering coefficient (0.79, 0.72,
0.75) are characteristic for a class of networks known as small-world networks [46].
This type of networks allows for rapid and efficient communication between individ-
uals.
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4.3. Discussion of Results

(a) Leading eigenvector (LE) communities

(b) Walktrap (WT) communities

Figure 4.5: Dynamics of bees Each column represents a time step, the colored rectan-
gles represent the communities for each step, and the height of the rectangles corresponds
to the amount of its community members, as referenced by the number. Green indicates
the community containing young bees and the queen, gray represents the community con-
taining middle-aged bees (only for WT), and orange the community containing old bees.
This figure shows that the major part of the bees either stays in the same aged community
or switches to an older group. The light gray boxes represent the number of bees that are
added to the colony and bees that disappear.
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4.3. Discussion of Results

Charbonneau, Blonder, and Dornhaus [6] state that it is assumed that many biolog-
ical networks, including insect colonies, approximate scale-free networks. For some
of them, the scale-free property has been shown, but for social insect networks this
question remains open. Investigated social insect colonies are often small and there-
fore the methods for the recognition of scale-free phenomena are limited. They do
not specify the type of social insect networks, whether the inference of interactions
is based on spatial proximity, physical contacts, or food transfer events.
The network I explored is large compared to past studies (Section 2.2). The degree
distribution of the investigated spatial proximity network of honey bees does not fol-
low a power-law; the absence of hubs and a non-hierarchical structure characterizes
this network. This result corresponds to the decentralized structure of a honey bee
colony, and the absence of a central authority described by Seeley [47].

I noticed bimodal degree, strength, closeness and betweenness distributions and a
right skewed lcc distribution, corresponding mainly to bees older than 45 days. While
inspecting this group of bees, I found that this group has a very low detection rate
and is not part of any other following snapshot. Probably this group of bees dies
during that day. Bees who are present in the hive earlier that day and are then
absent for the rest of the day have very low network measure values. The total
number of old bees is relatively small compared to other age groups. Consequently,
low network measure values strongly affect the mean of that old group and should
be excluded in future studies.

Generally, I observed a correlation between the detection frequency of a bee, its age,
and its corresponding network measure value. Older bees are detected less often
than younger bees and therefore differ in their network measures. The age-based
task division of bees in a colony observed by Seeley [48] might be an explanation;
namely, old bees are foragers, the middle-aged bees conduct several tasks inside the
hive but mainly they store resources, and young bees are primarily nursing. Baracchi
and Cini [28] also assumed that the time which bees spend outside the hive probably
affects their connectedness within the interaction network.

4.3.2 Characterization of Functional Groups and its Dynamics

According to the definition of communities in Section 2.1.2, I found two to three
communities, depending on the algorithm applied.

The algorithms (LE and WT) detected communities, despite a high network density
and without thresholding links of low values, as opposed to Mersch, Crespi, and
Keller [4]. The authors reduced the network’s density artificially to 25% to apply
the infomap algorithm.

I also examined the spatial fidelity of the revealed communities and their age com-
position, similar to Baracchi and Cini [28]. I found that younger bees are located
close to the brood (upper center of the comb); older bees are situated closer to the
hive exit, and middle-aged bees are placed between the two groups and around the
brood, where the cells for honey storage are located.
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4.3. Discussion of Results

I inspected three snapshots over a period of five days and found that the detected
communities are stable over time. Age-division and spatial fidelity can be observed
in all the snapshots. Bees from younger communities move to older communities as
they age. Only a few bees changed from older to younger communities.

It is surprising that my results align with Baracchi and Cini [28], because they did
not use a community detection algorithm. The authors conducted a hierarchical
clustering based on the network measures strength, eigenvector and betweenness
centrality of individual bees. Moreover, their colony contained bees of three prede-
termined age cohorts, instead of representing all age groups ranging from 0 to 60
days, as in my study.

The communities I detected are similar to the groups of bees formed by temporal
polyethism. The old bees positioned closer to the hive exit may be the foragers,
the middle-aged group spatially close to the storage cells may be the food storage
bees and the group of young bees may be the cell cleaning and brood care bees
because they are located close to the brood. My findings are very close to the ones
of Baracchi and Cini [28].

The two approaches discovered the same functional groups of the bee colony, on
the one hand by node level network measures (hierarchical clustering) and on the
other hand by a higher than expected density of nodes (community detection). That
acknowledges the existence of the age-based division of labor in honey bee colonies
as well as the higher communication frequency within groups than between groups.
Nevertheless, the low modularity score indicates that the segregation of groups is
not that obvious and strict; therefore a lot of interaction between groups exists.

Mersch, Crespi, and Keller [4] revealed that the behavioral maturation of ants is a
slow and noisy process. Instead of investigating the transition of individuals day
wise, they grouped 41 days in four periods. For each period they assigned each ant
to a community if it was found in this community 70% of the time. It seems that
honey bee transitions are in contrast to ants faster and smoother.
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Chapter 5

Conclusions

The purpose of this thesis was to investigate worker-worker interaction networks of
a honey bee colony. To achieve this, I implemented a pipeline for the extraction
of time-aggregated networks using high-resolution honey bee tracking data. The
topology, community structures and development of community members were ex-
amined from the resulting weighted, undirected, spatial proximity networks of three
consecutive time steps.

As opposed to most real-world networks, the examined honey bee interaction net-
works are not scale-free. They are characterized by a non-hierarchical topology and
a decentralized structure. The small-world characteristic of honey bee networks al-
lows for efficient communication within the bee colony. The observed communities
within the honey bee colony, are formed of age-based functional groups with a spatial
fidelity towards different areas of the comb. There are different types of cells (e.g.
brood, honey, and pollen) and honeybees occupying different areas have distinct
tasks.

The global network structure of the honey bee colony is stable over time, but its
local structure is highly dynamic. Individual bees change communities as they age.
My results are in agreement with the established state of the research: the absence of
a central authority and the decentralized organization of honey bee colonies shaped
by temporal polyethism.

My network analysis results verify the network pipeline, my definition of spatial prox-
imity networks and the initially chosen parameters. The network pipeline provides
an excellent foundation for further investigations.

5.1 Limitations

The following section outlines limitations concerning the accuracy and quality of
the resulting networks. Especially, consequences of the networks’ high density are
pointed out.

Despite a complex preprocessing procedure, several shortcomings concerning the the
quality of the extracted networks still exist. I filtered out erroneous detections before
network generation; however a few individuals remain in the extracted networks that
should not exist according to the tagging and hatching documentation. Besides this,
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bees which are dying at some point during the aggregation period, are part of the
network. This fact needs to be considered depending on the research context.

The prefiltering of detections, as well as the synchronization of four cameras, reduces
the amount of data that remains for the extraction of interactions. The gap size
parameter was an attempt to compensate for this shortcoming of the data but does
not perfectly solve the problem. I believe that some observed interactions are shorter
than they are in reality, which distorts the networks.

Spatial proximity is an indicator for interaction but it does not capture actual inter-
actions. The definition of spatial proximity by a maximal distance and a minimum
contact duration is very loose, especially on a honeycomb with limited space. It leads
to many links and a high density of the network resulting in high noise. This noise
creates a blurred image of real interactions between bees. My choice of aggregating
the networks for ten hours fosters this noisiness, resulting in a global state of the
colony, rather than capturing finer granular dynamics.

In this context, the network property strength is the only measure, that profits from
the aggregation. All other measures are less meaningful. Due to the high density and
size of the network, the methods I can apply for community detection are limited.
The selection of an algorithm for detecting communities is restricted to algorithms
finding only non-overlapping structures.

5.2 Recommendations

This sections list recommendations for improving the applied methods. I am focusing
on concepts to reduce the noise within the network.

More Dynamic and Temporal Analysis Lowering the window size of the aggre-
gated network and investigating different granularities could allow more dynamic
analysis of the networks. Instead of using time-aggregated networks, one could shift
towards the use of time-ordered networks by using time-stamped interactions.

Focusing on Important Interactions The space on the honeycomb is limited and
crowded. For reducing the number of link to only meaningful interactions, I see
three main approaches. For the time being, it is an option to fine tune the pipeline
parameters by lowering the size of the maximum distance and by raising the number
of frames for minimum contact duration. Instead of keeping the definition of spatial
proximity, I would recommend extracting contact events (e.g. by including an angle,
so bees facing each other) or trophallaxis events for defining the links, especially when
using those networks to investigating more specific biological research questions.

Using the Potential of Weighted Links A simple global threshold for excluding
links below a certain value could be used. Instead of applying a global threshold
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5.3. Outlook

to reduce the density, a network reduction algorithm could be implemented to ex-
tract the backbone structure of the network. Serrano, Boguná, and Vespignani [49]
propose a disparity filter algorithm, which seems promising but needs further in-
vestigation. The disparity measure characterizes the level of local heterogeneity of
links [50]. For all network measures utilized in this work, weighted versions exist.
The weighted measures (e.g., closeness and betweenness) implemented in igraph and
networkX favor link weights over the number of links and simply apply Dijkstra [51]
for calculating the shortest paths. Opsahl, Agneessens, and Skvoretz [52] propose
weighted network measures by providing a generalized degree and shortest path al-
gorithm. The tuning parameter, Opsahl et al. introduce, has to be chosen. This
parameter defines whether to emphasize the number of links or the weights of links
and must be selected according to a predefined research question.

Normalizing by the Detection Frequency of Individuals Depending on the topics
of further research a normalization of the networks regarding the detection rate of
individuals could be useful. I propose two options: either normalize the link weight
by applying the simple ratio index1 (SRI) [23] or normalize the particular node level
measure by taking the detection frequency of that focal individual into account.

Random Geometric Graph Instead of comparing the honeybee network to an
Erdős-Rényi graph a new model could be implemented. As the starting point, a
random geometric graph [53] can be used. In each frame, the nodes could be placed
not completely randomly, preferably by modeling the behavior of a bee as a random
walker. The direction of movement could be chosen randomly, but the distance of a
step might be selected according to the average speed of bees.

5.3 Outlook

To fine tune the pipeline parameters for the network, one should systematically in-
vestigate the parameters effects on network properties. I started to analyze this, but
only for a few combinations of values and for window sizes up to one hour. Simi-
larly, the robustness of the detected communities regarding the pipeline parameters
is worthy of further study. In addition, the provided dataset facilitates the inves-
tigation of seasonal change in honey bee colonies using network analysis methods.
Long-term dynamics offer a high potential for further studies. It would be interest-
ing to compare my network analysis results of domesticated honey bees to the social
networks of wild honey bees, to discover differences regarding individual behavior
and global colony organization.

1Dividing the link weight by the proportion of times two individuals were seen together out of
the total number of times those individuals were observed.
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5.4. Closing Remarks

5.4 Closing Remarks

My work was an important first step to gain trust in the honey bee tracking data
generated by the BeesBook system. It identifies limitations, pinpoints scope for
improving the system and lays the foundations for further network analysis.

Studying non-human animal data in an explorative way that fosters the framing of
novel biological hypotheses demands a profound domain knowledge or the constant
support of experts of the studied species. The process of manual data collection by
observing the animals face to face creates valuable information which is beneficial for
data analysis and understanding the context of research. An automatic observation
process veils this part and therefore increases the abstraction level and encourages
alienation between the researchers and observed animals.

The automatic tracking of a vast number of animals over an extended observation
period with a high sampling resolution leads to an enormous amount of data. Ap-
plying network analysis methods to novel datasets, which were not collected for a
specific study, opens the space to investigate the data in an explorative way and to
discover the unexpected. However, it also carries the risk of either simply describ-
ing network structures of various species or leading to the restating of well-known
facts.

Framing biological research questions that benefit from network science methods or
the development of new techniques in the field of network analysis with the help of
this unique dataset should be the overall goal.
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Appendix B

Additional Information about the
Dataset

Figure B.1: Tagging frequency The bees were primarily tagged during the week. On
average 48 bees were tagged each day, considering only tagging days, the average is about
91.
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B. Additional Information about the Dataset

Figure B.2: Recording season with maintainance and failures Green indicates
recording went without any big interruption; Yellow indicates maintainance work or tech-
nical failures of one or all cameras. This is calculated using the expected number of files
produced by each camera per hour.

54



Appendix C

Network Analysis
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Figure C.2: Link weight fit
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C. Network Analysis

(a) Snapshot 1

(b) Snapshot 2

(c) Snapshot 3

Figure C.3: Communities per network for LE The green colour represents the
younger community, containing the queen. The orange color represents the older com-
munity. The hive exit on side A is on the bottom right and on side B on the bottom left.
The data is aggredated for the complete timeframe of ten hours.
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C. Network Analysis

(a) Snapshot 1

(b) Snapshot 2

(c) Snapshot 3

Figure C.4: Communities per network for WT The green colour represents the
younger community, containing the queen. The orange color represents the older commu-
nity. The gray represents the middle-age community. The hive exit on side A is on the
bottom right and on side B on the bottom left. The data is aggredated for the complete
timeframe of ten hours.
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Figure C.5: Age distribution for LE
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Figure C.6: Age distribution per snapshot for WT
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Figure C.7: Snapshot 1: Local measures in relation to age and detection fre-
quency
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Figure C.8: Snapshot 2: Local measures in relation to age and detection fre-
quency
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Figure C.9: Snapshot 3: Scatter plot for node level measure
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Figure C.10: Age distribution per snapshot
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