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Summary

The study of structure-property relationships is one of the key steps in developing

efficient materials for challenging processes of our time, e.g. energy conversion and

charge-transfer processes. In this regard, especially computer simulation techniques

that enable insights on an atomistic scale are a powerful tool for finding new ways of

improving material properties. However, since such predictions become increasingly

difficult to perform depending on factors like energy gauges, extended system sizes

and timescales of the processes, highly advanced simulation techniques and carefully

selected model systems are required. In this dissertation, three examples for studying

material properties on different timescales (nanoseconds to femtoseconds), energetic

regimes (infra-red to X-ray response) and system sizes (nanoscopic to molecular) are

presented for applications in energy and charge-transfer-related technologies.

In the first study, the aim is to find the best-possible arrangement for a pair of charged

quantum dots that drive the interatomic Coulombic decay (ICD) process after excita-

tion with infra-red light. In this process, one of the charged quantum dots is excited

by an external field to drive an electron ejection from a neighboring quantum dot. For

describing such a highly correlated system of several nanometers in size including elec-

tron transitions into the continuum, the effective mass approximation (EMA) is applied

and the very flexible multi-configurational time-dependent Hartree (MCTDH) electron

dynamics description is utilized. Upon quantum dot size variations, it is found that

there exists an intricate balance between the polarization of the electron cloud within

the quantum dots and the Coulomb repulsion between them, which drives the process.

This balance leads to general curves of size ratios that lead to maximum ICD rates for

a given distance between the quantum dots.

In a second project, the capabilities and limitations of a database approach are ex-

plored for interpreting X-ray absorption (XA) responses of amorphous substances. The

approach is based on the fact that the absorption spectrum of any material can be ob-

tained as a sum of all individual atom’s responses in their exact environment. By

establishing a database of XA fingerprint spectra for carbon atoms in unique surround-

ings up to a fixed radius, the most prominent oxidized functional groups are identified

in different experimental samples of graphene oxides. The database of XA spectra is

obtained by applying time-dependent density functional theory (TDDFT) calculations

of local excitations in arbitrarily functionalized graphene oxide model molecules. The

non-local effects following such high-energy excitations are shown to be in principle

recoverable by expanding the radius for distinguishing the unique surroundings in this
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database. Conclusively, the method is suitable for extracting local structural patterns

from amorphous materials.

At last, the first partial reaction of the photochemical water-splitting on the edge of

nitrogen-doped graphene oxides (NGO) is investigated. In this proton-coupled electron

transfer (PCET), one electron and one proton of the water molecule are transferred onto

the NGO catalyst in a concerted way. By performing TDDFT calculations on a large

set of model molecules, the structural characteristics that lead to an efficient charge

transfer are identified. Therefore, time-dependent configuration interaction (TDCI)

calculations are applied for the electron dynamics that include explicit non-adiabatic

coupling terms describing the hydrogen transfer. The results show that structures with

conjugated ketone groups in the vicinity of the proton-accepting nitrogen atom are

especially well suited for the electron transfer. Furthermore, the rate of the overall

PCET process is strongly limited by the initial electronic excitation dynamics.
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Zusammenfassung

Der Zusammenhang zwischen der Struktur eines Materials und seinen Eigenschaften

stellt einen wichtigen Baustein in der Entwicklung effizienter Materialen für En-

ergieumwandlung und Ladungstransfer dar. Um diese zu verstehen sind besonders

computergestützte Simulationen eine hervorragende Methode, da sie es ermöglichen

ohne vorherige Synthese die Eigenschaften von Substanzen auf atomarer Ebene zu un-

tersuchen. Je nach der Größenordnung des Systems, der Energien und der Zeitskalen

der untersuchten Prozesse müssen jedoch verschiedene, sorgfältig ausgewählte Modelle

zur Berechnung genutzt werden. In dieser Dissertation werden daher drei verschiedene

Charakterisierungsmethoden für Anwendungen aus dem Bereich der Energieforschung

vorgestellt.

In der ersten Studie wird nach dem bestmöglichen Arrangement eines Paares geladener

Quantenpunkte gesucht um den schnellstmöglichen interatomaren Coulombischen Zer-

fallsprozess (ICD) nach Anregung mit Infrarotlicht zu ermöglichen. Im ICD Prozess

löst einer der geladenen Quantenpunkte nach Anregung mit einem Laser die Emission

eines Elektrons in einem benachbarten Quantenpunkt aus. Um elektronische Übergänge

in Kontinuumszustände zu beschreiben bei denen Elektronenkorrelation eine tragende

Rolle spielt wird die effektive Massennäherung und die sehr flexible multi configu-

ration time-dependent Hartree(MCTDH) Methode genutzt. Dabei wird festgestellt,

dass ein empfimdliches Gleichgewicht von Polarisation der Elektronenwolke in den

Quantenpunkten sowie der Coulombabstoßung zwischen ihnen existiert - wovon let-

ztere für den ICD Prozess verantwortlich ist. Dieses Gleichgewicht führt schließlich zu

optimalen Abstandsverhältnissen für maximale ICD Raten in Abhängigkeit von den

Größenverhältnisse der beiden Quantenpunkte.

In einem zweiten Projekt werden die Möglichkeiten und Grenzen eines Datenbank-

Ansatzes für die Interpretation von Röntgen-Absorptionsspektren (XA) amorpher Sub-

stanzen untersucht. Der Ansatz beruht auf der Erkenntnis, dass das kollektive Anre-

gungsspektrum sich als Summe der Beiträge aller einzelnen Anregungen jedes Atoms

in seinem genauen Umfeld darstellen lässt. Indem eine Datenbank von Röntgen-

Absorptionsspektren von Kohlenstoffatomen in verschiedenartigen Umgebungen kata-

logisiert und bis zu einem selbst gewählten Abstand zusammengefasst wird, können

die häufigsten, sauerstoffhaltigen funktionellen Gruppen aus verschiedenen experi-

mentellen Proben von Graphenoxid identifiziert werden. Die zugrunde liegende Daten-

bank wird aus Rechnungen zu zeitabhängiger Dichtefunktionaltheorie (TDDFT) für

die lokale Anregung einzelner Atome in verschieden funktionalisierten Graphenoxid
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Modellmolekülen erhalten. Die Ergebnisse zeigen, dass die nicht-lokalen Effekte, die

bei solchen hochenergetischen Anregungen von Bedeutung sind, prinzipiell durch die

Ausdehnung des Katalogisierungs-Radius wiederhergestellt werden können und die

Datenbank-Methodik somit ein systematisches Werkzeug für die Identifizierung amor-

pher Substanzen darstellt.

Schließlich wird der erste Teilschritt der photochemischen Wasserspaltung an der

Kante von Stickstoff-dotierten Graphenoxiden (NGO) untersucht. In diesem so genan-

nten Protonen-gekoppelten Elektronentransfer (PCET) wird ein Elektron und ein

Proton gleichzeitig vom Wasser an den NGO Katalysator abgegeben. Aus TDDFT

Berechnungen zu mehreren Modellmolekülen kann zunächst bestimmt werden, welche

strukturellen Merkmale zu einem effizienten Ladungstransfer führen. Wegen der nicht-

adiabatischen Natur des gekoppelten Elektronen- und Protonentransfer Prozesses wird

eine modifizierte zeitabhängige Konfigurations-Interaktions (TDCI) Rechenmethode

entwickelt, welche die nicht-adabiatischen Kopplungsterme explizit im Propagator

berücksichtigt. Besonders Strukturen mit konjugierten Ketogruppen in der Nähe des

Protonen-akzeptierenden Stickstoffs zeigen hiernach besonders geeignete Eigenschaften

für den Elektronentransfer. Weiterhin wird die Rate für den gesamten PCET Prozess

maßgeblich vom Absorptionsprozess sowie dem anschließenden Austausch der Beset-

zung der elektronischen Zustände durch thermische Dissipation beeinflusst.
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1 | Introduction

Computer simulation techniques have become an irreplaceable tool in material

design since they enable studying material properties before conducting costly

synthesis and experiments. Especially in the fields of drug and catalyst design,

many materials can be optimized in silico for a desired application with the

assistance of theoretical calculations. However, depending on the system size

and timescale of the processes under consideration, highly advanced calculation

techniques need to be applied and large amounts of data need to be collected. In

this thesis I therefore present three theoretical case studies and discuss how these

can be used to broaden our understanding of the structure-property relationships

of processes on different timescales and system sizes in energy material research.

1.1 | Motivation

Ever since realizing our role as the earth’s caretakers, it has become a central goal

of society to ensure a symbiotic co-existence with the ecosystem that we depend

on. This way, future generations will be able to enjoy a similar level of comfort

as we live in today without facing the repercussions of drastic environmental

changes. However, as ecologist G. Hardin pointed out in the late 1960s, this

task is tied to challenges that reflect typical examples for the “tragedy of the

commons” and thus have no final technological solution.[1] His reasoning is based

on the limited resources of our planet that will always remain limited, even if the

efficiency with which they are used or harvested was maximized technologically

and that only a redefinition of what society should maximize can lead to

the desired long-term stability. He continues that such a redefinition could,

however, only be carried out on a political and sociological level by implementing

world-wide regulations and agreeing on a new system of values. Eventually,

after many similar realizations in the following years, the environmental debates

culminated in several politically binding agreements like the Montreal protocol

(1987)[2] or the United Nations Framework Convention on Climate Change

(UNFCCC, 1992)[3] that defined goals for reducing damage to the environment

with respect to climate change, protection of resources and biological species

across national borders. While it still remains to be seen whether all of these

political agreements will have the desired effect of propagating a symbiotic
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lifestyle with our planet, it has become clear that we will only be able to afford

a similar quality of life in the future by developing more efficient technologies in

parallel to the political measures so that we can drastically reduce and eventually

end our dependence on non-regenerative resources by energy research.

For this scientific contribution, there are two major routes from which to approach

energy-related research. The first route focuses on finding new ways to efficiently

harvest sustainable energy sources. For this task, especially solar energy has been

identified as one of the most attractive sources due to the practically infinite

amount of available energy. With a mean solar power input of 120 PW[4] hitting

earth’s atmosphere for 365 × 24 = 8760 hours a year, the corresponding energy

amounts to 1051200 PWh. Comparing this number to humankind’s global energy

consumption of 160 PWh per year (2019)[5] one realizes that only 0.015 % of this

amount would need to be harvested (i.e. solar power collection of 18.3 TW).

Assuming further a somewhat realistic mean device collection efficiency of 10 %

(which is roughly half of reported peak performances[6]) and that the mean solar

power input is directly proportional to half the surface area of our planet being hit

with light (i.e. 255.05 million square kilometers[7]), this translates to a required

solar cell coverage of

160 PWh

( 120 PW
255.05 106 km2 ) · 8760 h · 10%

=
0.00015

0.1
· 255.05 106 km2 = 388203 km2 ,

which is roughly eight times the area of Lake Michigan,[8] the total area of Japan[9]

or 0.76 permille of the overall planet’s surface. Although such a basic estimate

ignores many factors like device lifetimes, transport losses, weather and such,

it can give a general idea on the orders of magnitude for the challenges that

solar energy research is facing. However, it also shows the great potential of

the technology, since each additional percent in device efficiency translates to

enormous reductions in the area that theoretically would need to be covered.

The two prominent routes for harvesting solar energy are photovoltaics and

photochemistry. In photovoltaics, the sunlight is converted into electrical power

by creating photocurrents in efficient charge-separation devices that use one or

several different highly developed materials in conjunction.[10] This electricity

can then either be injected directly into the electrical power grid or be stored

in chemical batteries, capacitors, water-pumping reservoirs etc.[11] While the di-

rect usage of photovoltaic electricity results in a highly efficient one-time energy

conversion before consumption, the storage of photovoltaics-generated energy is

comparably inefficient, since it requires at least three conversion steps with their

own respective energy-losses.

Photochemistry on the other hand encompasses all processes where the charge

separation caused by the initial photon absorption is used for chemical reac-
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tions.[12] This way, photochemistry is used to directly store solar energy by

converting a basic chemical into a fuel that can be burned for the generation

of electricity or heat in a CO2-neutral manner. Although this means that at least

two conversion steps (i.e. storing and burning) are needed until the energy can

be used, photochemistry also offers the possibility to fixate carbon dioxide like

in an artificial photosynthesis - which would in principle enable a CO2-neutral

fuel generation route, not counting the initial device production.[13] Furthermore,

since most engine architectures and power production plants have been optimized

for over a century for the combustion of hydrocarbon fuels, a CO2-neutral process

to generate them would not necessitate the implementation of new power plants.

Both of these promising research fields, however, still suffer from relatively low

efficiencies, short device lifetimes and requiring rare chemical elements or any

combination thereof. To find solutions, top-down as well as bottom-up research

routes are pursued, where one either starts from a long-lived and highly capable

material and tries to replace the rare components[14] or from a rather inefficient,

short-lived but inexpensive material whose efficiency is then optimized,[15] respec-

tively.

The second route, besides finding more efficient routes for energy generation,

is by improving how we use the energy. This means especially to discover and

study new processes or mechanisms that can potentially replace less efficient

ones. One of the arguably most significant paradigm shifts in the last decades

to this effect can be found in the replacement of incandescent light bulbs with

advanced lighting technologies like light-emitting diodes (LED). In incandescent

light bulbs, the underlying process is based on using electric energy to heat up a

wire until it emits blackbody radiation[16] in the visible regime. For the longest

time this was the most economic and convenient process for generating artificial

light and thus research was focused to better understand the energy-transfer and

conversion processes to improve device efficiency. However, with the invention

of light-emitting diodes a more efficient process of generating light from electric

currents was found and was ever since improved again with respect to its own

unique mechanism. Since lighting accounts for almost 19 % of the total electricity

consumption worldwide,[17] a lowering of the energy consumption by about 40 %

after switching to LED technology[18] shows how much impact a change in the

underlying energy usage mechanism can have.

One research field from which many new and interesting mechanisms with poten-

tial use in energy research have emerged lately is nanoelectronics. In this field, one

categorizes three different types of materials with respect to their spatial dimen-

sions which expand for less than 100 nanometers: 2-dimensional quantum sheets,

1-dimensional quantum wires and 0-dimensional quantum dots.[19] The reason for

the special properties of such materials is often rooted in the so-called quantum

size effects,[19] which roughly translates to scenarios where the device becomes
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smaller than the space in which the electrons can occupy their excited states.

Especially in quantum dots, where all three spatial dimensions are restricted, the

excited states become fully discrete like in atoms[20] and their energetic position-

ing can be tailored by controlling the size of the device. This high control over

the electronic structure gives quantum dots a very high versatility and opens

up the possibility for several applications[21] that may be more efficient than the

previously applied ones.

Finally, at the core of both efficient energy generation and consumption lies re-

searching the structure-property relations for the underlying energy-transfer pro-

cesses. Generally speaking, energy transfer occurs whenever it is transported from

one medium to another - including the possibility of being converted to a different

form of energy in the process. A “medium” in this sense can be of macroscopic

size, as well as atomic size. For example, a macroscopic medium may be given by

photon energy being converted into separated charges in an extended solid, such

as a photovoltaic solar cell.[10] An atomic medium on the other side could for

example be given by a local exciton on one part of a molecule being transferred

in a so-called Förster resonance energy transfer (FRET) to a different part of

the molecule.[22] By adapting a calculation method with respect to the system

under consideration, theoretical calculations allow to gain an understanding of

such energy-transfer processes and to propose optimizations for the current state

of the art.

Following a short introduction on the processes, the underlying calculation meth-

ods will be introduced in chapter 2. The results of my doctoral research are

presented in a cumulative collection of articles in chapter A. Finally, I conclude

the findings of this research project and give an outlook for future studies in

chapter 3.

1.2 | Interatomic Coulombic Decay in

Charged Quantum Dots

The first process that was selected for investigation is the Interatomic Coulombic

Decay (ICD). In its initial formulation,[23] ICD occurs in clusters of molecules

or atoms, where one of the monomers is being ionized by removing an inner-

valence shell electron. Since the resulting electron configuration belongs to an

excited state of the singly ionized monomer, the system strives to relax towards its

energetic ground state by transferring one of the outer-valence shell electrons into

the inner-valence shell vacancy. If the excited ion is alone in a vacuum, the surplus

relaxation energy can only be released by a radiative emission mechanism, because

the released energy is insufficient to eject an outer-shell electron into the vacuum

(compare figure 1.1a)). This is different, for example, in the Auger decay[24] where

the vacancy is situated in the core shell instead and relaxation energies lie far
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above the second ionization potential. However, when the ionized monomer is

part of a cluster, the relaxation energy may be sufficient to overcome the first

ionization potential in a neighboring charge-neutral monomer (see figure 1.1 b)).

If so, the energy can be transferred via so-called virtual photon exchange[22] to the

neutral counterpart and an electron may be ejected from there. This ultimately

results in two singly charged ions and an electron ejected at relatively low kinetic

energy in contrast to highly energetic Auger electrons.

Figure 1.1: Comparison of inner-valence excitation in the monomeric Ne+ cation (a)
and the Ne+-Ne dimer (b). Because the relaxation energy (yellow arrow) is insufficient
to excite an electron from 2p∗ into the unbound vacuum levels, the only allowed decay
mechanism in the monomer is de-excitation via photoradiation (purple arrow). In the
dimer (b), the relaxation (yellow arrow) is followed by an energy transfer from Ne+ to
Ne via a virtual photon (dashed purple arrow) that is capable of initiating the ejection
of an electron into the continuum (green arrow) with a kinetic energy depending on the
remaining energy after the transfer.

Shortly after being predicted on a theoretical level,[23] the ICD process was verified

experimentally in studies on weakly bound homogeneous noble gas dimers[25]–[27]

by detecting the kinetic energy of two Ne+ fragments in coincidence with the

released slow electron. Since then, many more occurrences of ICD following

inner-shell ionization have been found in other weakly bound systems, like hy-

droxide ions in water[28], [29] and hydrogen-bonded water dimers.[23], [30] Especially

the latter study shows that ICD is in fact an ubiquitous and ultrafast process

that could be closely connected to the cytotoxicity of ionizing radiation through

the generation of slow electrons in the cell plasma.[30] Besides the homogeneous

noble gas dimers, also asymmetric dimers and clusters have been studied to bet-

ter understand the energy dependence and mechanism for ICD.[31]–[34] There, it

was found that competing decay channels called electron-transfer-mediated decay

(ETMD) can lower the ICD efficiency, if the energetics of the initial vacancy and

the emitted electron differ too drastically, or if the atoms of the dimer get too

close to each other. In this process, the vacancy in the ionized atom A+ is filled

by an electron from the neighboring atom B, while also ejecting an electron from

the same atom B leading to one doubly positively charged atom and one neutral

one.
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The ICD rate is closely related to the distance between the ionized monomer

A+ and the emitter B. Therefore, at larger distances the process becomes less

efficient. However, under specific conditions it is possible to increase the range

of ICD, by inserting another atom C in-between A+ and B that itself may not

decay via ICD with A+. If the energy levels in C are then suitable, an effect

called superexchange ICD[35], [36] can be observed where the ICD proceeds via a

lower-lying virtual state A+-C−-B+. This opens the possibility of triggering

ICD in even more far apart moieties and effectively increase the number of overall

possible neighbors.

Since it was found that the ICD efficiency drastically increases with the number

of neighbors (i.e. number of possible decay channels),[37], [38] this finding presents

yet another possibility of enhancing the likelihood and overall rate of the ICD

process.

Finally, since the quantum confinement in quantum dots leads to a discretization

of the energetic levels of excited states similar to atoms,[19] ICD was recently

predicted to occur between charged quantum dots[39] in a similar way as for

the aforementioned atomic dimers. However, due to the additional possibility

to freely tune the electronic structure by changing the quantum dot sizes and

their arrangement. This opens up the possibility to design an ICD-based de-

vice that generates an electric current, which means releasing an electron into

a conduction band, analogous to the vacuum level of fig. 1.1.[39] Since this is

a promising new route for ultrafast excitation-to-signal conversion I study the

underlying structure-property relationships for the efficiency of such theoretical

devices (section A.1 of this dissertation). In the related research project, I discuss

the interdependence of the ICD rate with respect to changes in the geometry of

a paired quantum dot system. The simulation model and calculation methods

used in this study are described in detail in sections 2.2.3 and 2.3.1.

1.3 | Water-Splitting in Nitrogen-doped

Graphene Oxides

The second research topic addressed in this dissertation is aimed at studying

the water-splitting reaction driven by nitrogen-doped graphene oxides (NGO)

and finding a method to characterize the responsible active sites in an example

study on its parent material graphene oxide (GO). Graphene oxide is an oxi-

dized derivative of graphene and similarly forms single layered sheets of nearly

atomic thickness. Different from graphene, which is a perfect zero band gap 2-

dimensional crystal,[40] GO is a proper semi-conducting material with a band-gap

that is dependent on its defect concentration, degree of oxidation and particle

size.[41], [42] All of these can be controlled by changing the reaction conditions

during production and work-up, which is typically derived from the original Hum-
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mers’ method.[43] In this method, bulk graphite is first treated with sulfuric acid

that intercalates between single layers of graphite.[44] In a second step, a strong

oxidant is used to oxidize the graphite layers which ultimately results in the exfo-

liation of graphene oxide sheets (see schematic figure 1.2). However, due to harsh

reaction conditions graphene oxides are a non-stoichiometric compound whose

sheets typically show a large number of defects especially in places where oxida-

tion leads to CO2 generation.[45] These holes in the carbon network are also the

still-standing obstacle for the large-scale preparation of pristine graphene from

reduced graphene oxides.[46]

Figure 1.2: Schematic Scheme for preparation of NGO quantum dots.

Besides being a promising precursor material for the production of graphene,

the band gap in highly oxidized GO can be tailored such that it may act as a

photocatalyst for water splitting under irradiation with a mercury lamp emitting

a mixture of UV and visible light.[41] Since the material consists of only earth-

abundant materials such as carbon, oxygen and hydrogen, this in general presents

a route for an environmentally friendly photocatalysis. Unfortunately, the ma-

terial is sensitive to photocorrosion in which the functional groups on graphene

oxides are steadily reduced to yield graphitic defect sites that are ultimately ox-

idized again until they eventually escape in the form of CO2.[47] Therefore, over

long irradiation times the material can be expected to completely lose its ca-

pability for driving the photocatalysis when no additional sacrificial reagent is

used.

One chemical modification that increases both the photoreactivity as well as

lifetime of GO is by doping the material with nitrogen.[42] In this process, the

graphene oxide is treated with ammonia (NH3, see figure 1.2) to incorporate the

nitrogen atoms into the structure. Without being less environmentally friendly,

the resulting NGO can produce considerable amounts of hydrogen and oxygen in

an approximate 2:1 ratio,[42] which indirectly proves its photostability, since no

side reactions or products seem to occur. The reason for the superior material

capabilities are assumed to lie within the coupling of n- and p-type domains

in the same molecule, like in a redox electrochemical cell. The domains are
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junctioned by conducting, unfunctionalized areas of pristine graphene.[42] The

n-type reaction domain carries more nitrogen atoms and is thus more likely to

oxidize the water oxygen (electron accepting), while the p-type domain contains

more oxygen functional groups, is more electron rich and therefore readily reduces

protons (hole accepting). Since the parent material graphene oxide indeed shows

recurrent islands of unfunctionalized carbon atoms in high-resolution transmission

electron microscopy (TEM) images,[48] these could serve as such local active sites

and explain the mechanism of the water-splitting reaction on NGOs.

To therefore characterize local active sites in a generally randomized structure,

the first study of this project is dedicated to establishing a method that can find

recurrent structural patterns from spectroscopic measurements. This method is

based on comparing experimental spectra with a database of locally sensitive

theoretical spectra to predict the most likely configurations that would give rise

to the observed data. The suitable type of spectroscopy with such a sensitivity

to atomic configurations is X-ray absorption spectroscopy. Here, the core-shell

electrons of a specific chemical element may be excited into empty bound orbitals

that can in principle extend over the whole material. Since the excited electron

is, however, spatially localized at one single atom in the initial state, each atom

gives a unique fingerprint that directly carries the information of the complete

surrounding of the respective atom. In an experimental spectrum, all of these

fingerprints are collected at the same time, and the resulting sum of fingerprints

usually does not allow for reconstructing detailed structural information. In

theoretical calculations, however, it is possible to simulate the fingerprint of

each atom individually and thus deconstruct the experimental spectrum in

terms of local patterns. Therefore, in section A.2 of this dissertation I present

the capabilities of such a theoretical database deconstruction method and

discuss its limitations and possible applications. The details of the underlying

calculation techniques can be found in section 2.2.1 of this work and the database

reconstruction of total X-ray absorption spectra is explained in section 2.3.2.

Figure 1.3: Proposed proton-coupled electron transfer (PCET) at the edge of nitrogen-
doped graphene oxides (NGO). Following the photoexcitation (yellow arrow) an electron
from water is transferred from the local pz orbital (schematic orbital in red and blue)
to the catalyst, while simultaneously a proton is transferred towards the nitrogen atom.
The resulting product is a hydroxyl radical and an NGO+H radical complex.
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Parallel to establishing a characterization method for local active sites in ex-

perimental samples, the second study focuses on identifying the key features of

an optimized active site for the first part reaction of the photocatalytic water-

splitting reaction in NGO model systems. This so-called proton-coupled electron

transfer (PCET)[49] in which both an electron as well as a proton are transferred

from water onto the catalyst (see figure 1.3), typically requires a coupled de-

scription of both the electron-transfer dynamics as well as the structural changes

during proton transfer. In section A.4, I first conduct a general optimization of

the electron-transfer properties of NGO model catalysts by altering the structure

of a local active site. This optimization is followed by electron dynamics calcu-

lations in an explicitly coupled framework with the proton transfer to estimate

the overall PCET rates. The model optimization follows the calculation methods

described in section 2.2.1 and the electron dynamics are simulated as explained

in section 2.2.2.
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2 | Theoretical Background

In the following sections, the underlying theoretical background of the applied

calculation methods will be explained. The chapter is divided in three major

sections: Firstly, the general characteristics of quantum mechanics based on solv-

ing the time-independent Schrödinger equation are introduced in section 2.1.

From a different point of view, the second section 2.2 then explains the time-

dependent quantum dynamics and highlights similarities and challenges in dif-

ferent approaches for solving the time-dependent Schrödinger equation. Finally,

section 2.3 gives a detailed description of the model systems applied throughout

this work.

If not stated otherwise, atomic units were used in all equations to shorten the

notation and improve readability. This means that the electron mass me, the

elementary charge e, the reduced Planck constant h̄ and the Coulomb constant

4πε0 are set to unity. Further, wavefunctions, matrix elements and integrals

shall be abbreviated using the Dirac bra-ket notation.[50] Notethat if a specific

function representation of the wavefunction is used outside an integral, the bra

or ket is dropped according to

Ψ(r) =
〈
r
∣∣Ψ
〉

=

∫
r Ψ dr . (2.1)

2.1 | Foundations of Quantum Mechanics

The concept of quantum mechanics was introduced in the early 20th century,

following several peculiar experimental observations like the spectral density of

black body radiation[51] or the wave-particle-dualism in the photoelectric effect[52]

that were not explicable within the picture of physics of that time. Generally,

quantum mechanics focuses on describing the behaviour of matter and its re-

sponse under external stimuli on an atomic scale. Although the descriptions

usually rely on probabilities and expectation values that strongly disagree with

a deterministic picture of physics, many of the concepts can be identified as di-

rect generalizations of macroscopic analogues. To highlight this rigorous (and

in the early stages highly disputed) paradigm shift between the mostly deter-

ministic picture of physics that had evolved for almost 300 years since Newton’s

“Principia”,[53] a clear distinction between classical Newtonian mechanics and

11
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non-classical quantum mechanics is made today.

Since most of the chemical properties relevant for this dissertation are a direct

result of the behaviour of electrons, this first section shall cover the theoretical

background necessary for their calculation. Later sections of the theory chapter

then build up on these basic principles to smoothly introduce the more advanced

concepts.

Finally, if not stated otherwise by additional citations, the explanations and con-

cepts introduced in this section are a compilation from the books of Szabo and

Ostlund (“Modern Quantum Chemistry”)[50] and Parr and Yang (“Density Func-

tional Theory of Atoms and Molecules”).[54]

2.1.1 | The Many-Electron Problem

Time-Independent Schrödinger Equation

The main way to calculate the properties of a system of several electrons and

nuclei is to numerically solve the Schrödinger equation

i
∂

∂t

∣∣Ψ
〉

= Ĥ
∣∣Ψ
〉
. (2.2)

In this linear partial differential equation that is better known as the time-

dependent Schrödinger equation (TDSE), ∂
∂t

refers to a differentiation with

respect to time t, Ĥ is the Hamilton operator (Hamiltonian) and |Ψ〉 the system

wavefunction comprising all information about the electrons and nuclei at each

time and point in space. The Hamiltonian

Ĥ = −
N∑

i=1

∇2
i

2
−

M∑

A=1

∇2
A

2MA

−
N∑

i=1

M∑

A=1

ZA
riA

+
N∑

i=1

N∑

j>i

1

rij
+

M∑

A=1

M∑

B>A

ZAZB
RAB

(2.3)

includes the kinetic energies of all N electrons with coordinates ~ri in the first term

and all M nuclei with respect to their specific masses MA and coordinates ~RA in

the second term. In these terms, ∇2
i = ∂2

∂r2xi
+ ∂2

∂r2yi
+ ∂2

∂r2yi
is the Laplacian operator

with respect to either the ith electronic coordinate vector ~ri or likewise the Ath

nuclear coordinate vector ~RA, respectively. The attractive Coulomb potential

between electrons and nuclei depending on their respective inter-particle distance

riA = |~ri − ~RA| and the nuclear charge ZA are found in the third term. The

terms four and five introduce the repulsive Coulomb potentials between pairs of

electrons and nuclei, respectively.

In cases where the Hamiltonian does not contain a time-dependent external

potential V (t), one may re-formulate the TDSE (2.2) to obtain the time-
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independent Schrödinger equation (TISE). This can be achieved by separating

Ψ(r,R, t) into a product of a time-dependent function Θ(t) = e−iEt and a

time-independent, spatial function Ψ(r,R). Note that bold-font mathematical

symbols indicate the use of a matrix:

r =




rx1 ry1 rz1

rx2 ry2 rz2
...

...
...

rxN ryN rzN




, (2.4)

where the numbered indices count the N electrons, and row reflects the coor-

dinates of this electron. Inserting the functions Θ(t) = e−iEt and Ψ(r,R) into

(2.2) and resolving the derivative then yields:

i
∂

∂t
Θ(t) Ψ(r,R) = Ĥ(r,R) Θ(t) Ψ(r,R)

⇔ i
∂

∂t
e−iEt Ψ(r,R) = e−iEt Ĥ(r,R) Ψ(r,R)

⇔ e−iEt E Ψ(r,R) = e−iEt Ĥ(r,R) Ψ(r,R) . (2.5)

From the resulting equation (2.5), one finds that the left and right hand side are

practically independent of e−iEt and a new eigenvalue equation Ĥ|Ψ〉 = E|Ψ〉 can

be written that features Ψ(r,R) as eigenvector and E as eigenvalue with respect

to the Hamilton operator acting on Ψ(r,R). Since the eigenvalue E is the direct

result of calculating the different energy terms from the Hamiltonian (2.3), E is

also referred to as the (total) system energy of state |Ψ〉.

Electronic Wavefunction

To further reduce the problem of calculating the total system of all nuclei and

electrons, the Born-Oppenheimer approximation is introduced. Since the nuclei

are much heavier than the electrons, they can be approximately treated as

stationary with respect to the electrons’ movement. In other words, the approx-

imation assumes that the electrons are fully (adiabatically) dependent on the

nuclear motion and not dynamically coupled, since the electrons instantaneously

adapt to any nuclear displacement. Consequently, the wavefunction is assumed

to be separable, yielding:

Ĥ(r,R) Ψnu(R) Ψel(r; R) = (Enu + Eel + Eel,nu) Ψnu(R) Ψel(r; R) , (2.6)

where the indices nu and el refer to the nuclear and electronic parts, respectively.

The electronic wavefunction |Ψel〉 is then only parametrically dependent on the
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nuclear coordinate matrix R, as indicated by the semicolon. As a result of this

separation, the total energy and Hamiltonian may also be rewritten into separate

parts. These contain the terms that either carry only the coordinates of the

nuclei and electrons (i.e. kinetic energies, electron-electron and nucleus-nucleus

repulsions) or act on both coordinates (i.e. electron-nucleus attraction). When

studying the behaviour of electrons in any system, the kinetic energies of the

nuclei may therefore be neglected and the repulsion term needs to be calculated

only once for a given atomic configuration. The remaining electronic TISE then

reads:

(
−

N∑

i=1

∇2
i

2
−

N∑

i=1

M∑

A=1

ZA
riA

+
N∑

i=1

N∑

j>i

1

rij

)
Ψel(r; R) = Eel Ψel(r; R) , (2.7)

where the electronic Hamiltonian is contained in parentheses and Eel includes the

energy for the repulsion between nuclei. For all further occurrences, the indices

nu and el, as well as the parameter R will be dropped and only the electronic

Hamiltonian and wavefunction are used, if not stated otherwise.

Finally, since electrons are fermions there are requirements that the wavefunction

needs to fulfil. First of all, the antisymmetry condition has to be met, such that

the sign of the wavefunction changes when switching the position of two electrons.

Ψ(~ri, ~rj, . . . , ~rN) = −Ψ(~rj, ~ri, . . . , ~rN) (2.8)

Secondly, the wavefunction needs to follow the Pauli exclusion principle, which

states that two electrons may never be equal in all four quantum numbers: the

principal quantum number n, the angular quantum number l, the magnetic quan-

tum number m and the spin quantum number s. The first three have a direct

influence on the shape of the space that a single electron is likely to occupy and

can thus be incorporated in the form of different spatial one-electron wavefunc-

tions ψi(~r) that are required to be orthogonal to each other such that

〈
ψi(~r1)

∣∣ψj(~r1)
〉

= δij =





1 , if i = j

0 , else
, (2.9)

where δij is the so-called Kronecker Delta function. The spin quantum number

is then introduced in the form of two spin wavefunctions α(ω) or β(ω) that are

multiplied to a spatial wavefunctions to yield the so-called spin-orbitals |χi〉
and |χi〉, respectively. These depend on a combined spin and coordinate vector

~x1 = (r1x, r1y, r1z, ω1). Note that a convenient shorthand notation was applied

here that uses a bar to distinguish two spin-orbitals which make use of the same

spatial orbital but different spin wavefunctions according to:



15

χi(~x) = ψi(~r)α(ω) and χi(~x) = ψi(~r) β(ω) . (2.10)

In all further occurrences, the different spins will be implicitly contained inside

the indices i of the spin-orbitals, if not stated otherwise - thus allowing to replace

all occurrences of ~x with ~r. Further, the spin wavefunctions are required to be

orthogonal to each other.
A functional form of the N -electron wavefunction Ψ(r) that follows both the

Pauli exclusion principle and antisymmetry condition can then be formulated as

a so-called Slater determinant, that itself consists of one-electron spin-orbitals

χi(~r1) with a:

Ψ(~r1, ~r2, . . . , ~rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

χi(~r1) χj(~r1) . . . χk(~r1)

χi(~r2) χj(~r2) . . . χk(~r2)
...

...
...

χi( ~rN) χj( ~rN) . . . χk( ~rN)

∣∣∣∣∣∣∣∣∣∣

. (2.11)

Note that each row contains the coordinate ~r of one of the N electrons, while

each column marks one of the M spin-orbitals. The antisymmetry condition is

met by the determinant structure, since switching of two electrons’ coordinates

would mean exchanging two rows of the determinant, leading to a sign change.

Further, if two columns of a determinant would become the same, the value of

the determinant becomes zero, thus also fulfilling the Pauli exclusion principle.

The prefactor 1√
N !

ensures normalization, such that 〈Ψ|Ψ〉 = 1.

Hartree-Fock Equations

Given a normalized wavefunction Ψ, one can proceed to calculate the expectation

values for the system’s Hamiltonian by multiplication of the bra 〈Ψ| from the

left to equation (2.7) according to

〈
Ψ
∣∣ Ĥ
∣∣Ψ
〉

=
〈
Ψ
∣∣E
∣∣Ψ
〉

= E
〈
Ψ
∣∣Ψ
〉

= E . (2.12)

Practically, while the form of the electronic Hamiltonian is in principle set for a

specific arrangement of atoms, the best possible arrangement of electrons is not.

However, through the variation principle it can be shown[50] that a numerical

solution of the TISE with a trial wavefunction |Φ̃〉 always yields an upper bound

energy Ẽ with respect to the exact electronic ground-state wavefunction |Φ0〉
and its energy E0 (i.e. the energy of the system in its most relaxed state):

Ẽ =
〈
Φ̃
∣∣ Ĥ
∣∣ Φ̃
〉
≥ E0 =

〈
Φ0

∣∣ Ĥ
∣∣Φ0

〉
. (2.13)
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This way, the ground-state energy Ẽ of a trial wavefunction is also a measure

for the quality of the wavefunction itself. Using this finding in conjunction with

the constraint of orthonormal spin-orbitals 〈χi|χj〉 = δij, the problem of finding

the ground-state N -electron wavefunction |Φ0〉 can be reformulated such, that

instead one has to find the set of N orthonormal one-electron spin-orbitals |χi〉
with minimum orbital energies εi. These energies can be obtained using the

Hartree-Fock (HF) equations

(
ĥ(~r1) +

∑

j 6=i
Ĵj(~r1) −

∑

j 6=i
K̂j(~r1)

)
χi(~r1) = εi χi(~r1) (2.14)

F̂ χi(~r1) = εi χi(~r1) . (2.15)

The so-called effective one-electron Fock operator F̂ on the left hand side consists

of a purely one-electron part ĥ called the core Hamiltonian, whereas the Coulomb

term Ĵj and exchange term K̂j contain mean-field electron-electron interactions,

ĥ(~r1) = −∇
2
1

2
−

M∑

A=1

ZA
r1A

, (2.16)

Ĵj(~x1)χi(~x1) =

∫
d~x2 χj(~x2)∗

1

r12

χj(~x2) χi(~x1) , (2.17)

K̂j(~x1)χi(~x1) =

∫
d~x2 χj(~x2)∗

1

r12

χi(~x2) χj(~x1) . (2.18)

From the two latter expressions, the exchange term K̂j is a purely quantum

mechanical contribution with no classical analogue. Furthermore, both Ĵj and

K̂j explicitly contain the jth spin-orbital themselves. Hence, the one-electronic

spin-orbitals |χi〉 that are to be optimized during a calculation simultaneously

form a median, self-consistent field (SCF) that acts on the system’s electrons.

Evaluation of the expectation values of all one-electron operators with respect

to the spin-orbitals results in matrix elements of the form

Fmn =
〈
χm(~x1)

∣∣ F̂ (~x1)
∣∣χn(~x1)

〉
. (2.19)

Roothaan-Hall Equations

Based on this effective one-electron treatment, a numerical procedure can be for-

mulated that minimizes the energy of the N -electron wavefunction |Ψ〉 by conve-

nient matrix diagonalisation procedures. For restricted closed-shell systems this

leads to the Roothaan-Hall equations or restricted Hartree-Fock (RHF) method.

The restricted closed-shell case assumes that all spin-orbitals are doubly occu-
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pied in the ground state and that the spin-orbitals χi(~x1) and χi(~x1) make use of

the same spatial wavefunctions ψi(~ri) according to eq. (2.10). This means, that

the occupied N spin-orbitals can be replaced by N/2 one-electron spatial-orbitals

ψi(~r1) that can be expanded into a basis of arbitrarily large, but finite size via

linear combination of atom-centered orbitals (LCAO) φµ(~r1) according to

ψi(~r1) =
K∑

µ

Ciµφµ(~r1) . (2.20)

Note, that greek letter indices refer to the µth basis function, while the latin

letter indices refer to the ith spatial wavefunction. Also, the basis functions are

not necessarily orthogonal but instead form a symmetric, quadratic K×K overlap

matrix S with matrix elements Sµν = 〈φµ|φν〉.
In the case of N/2 restricted closed-shell spin-orbitals, the Fock operator may be

rewritten to yield

F̂ (~r1) = ĥ(~r1) +

N/2∑

j

2Ĵj(~r1)− K̂j(~r1) , (2.21)

where the factor 2 in front of Ĵj is needed since the terms of Ĵj and Ĵj constructed

from the same and opposite spin (i.e. χj(~r2) and χj(~r2), see equation (2.17)) would

result in the same contribution regardless of the spin of electron 1. This is not

the case for the exchange operator K̂j that would become zero for anti-parallel

spins of electron 1 and 2 (i.e. only one of the two K̂j or K̂j would be non-zero).

Inserting the set of fixed basis functions with variable coefficients into the

Hartree-Fock equation (2.14) then yields

K∑

µ

CiµF̂ (~r1) φµ(~r1) = εi

K∑

µ

Ciµ φµ(~r1) . (2.22)

Multiplication of this expression from the left by 〈φν(~r1)| leads to the respective

expectation value

K∑

µ

Ciµ
〈
φν(~r1)

∣∣ F̂ (~r1)
∣∣φµ(~r1)

〉
= εi

K∑

µ

CiµSνµ . (2.23)

Finally, this can be conveniently expressed in the convenient matrix representa-

tion

FC = SCεεε. (2.24)

The energies of the one-electron wavefunctions |ψi〉 are then minimized by nu-
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merical diagonalization of the energy matrix εεε for a trial wavefunction with an

initial coefficient matrix C. Note, that due to the size of the expansion, the di-

agonalisation of this expression yields the K energetically lowest spatial orbitals

ψi(~r1) and thus returns both occupied as well as non-occupied spatial orbitals.

The latter are also referred to as virtual orbitals.

2.1.2 | Electron Correlation and Excited States

Although HF theory is a systematic approach to calculate the properties of an N -

electron wavefunction, the mean-field treatment of electron-electron interactions

does not capture the electrons’ interdependent swarm-like nature, where a change

in the behaviour of one of them has an instantaneous effect on the behaviour

of all other electrons as well. This generalization leads to a missing energy

with respect to the Hartree-Fock solution which is known as correlation energy Ec

Eexact
0 = EHF

0 + Ec. (2.25)

Therefore, using the terminologies introduced in the previous section, two con-

cepts of how to recover the correlation energy are briefly presented in this section.

Since these concepts make direct use of the Hartree-Fock ground-state wavefunc-

tion as a reference, they are oftentimes referred to as Post-Hartree-Fock methods.

The first of these concepts is referred to as configuration interaction (CI) theory.

It is based on the idea, to systematically construct additional Slater determinants,

so-called configurations, where electrons were promoted from the Hartree-Fock

ground-state one-electron spin-orbitals into virtual spin-orbitals. This way, the

N -electron wavefunction |ΨCI〉 is expanded into a basis configurations according

to

∣∣ΨCI
〉

= c0

∣∣ΨHF
0

〉
+
∑

a,r

cra
∣∣Ψr

a

〉
+
∑

a,r

∑

b>a,s>r

crsab
∣∣Ψrs

ab

〉
+ . . . . (2.26)

This so-called CI expansion contains the ground-state reference Hartree-Fock

wavefunction |ΨHF
0 〉 and excited configuration Slater determinants of the type

|Ψr
a〉. Using the jargon of second quantization,[50] these configurations are con-

structed from the reference wavefunction by annihilating one electron in an oc-

cupied spin-orbital |χa〉 while creating one electron in a virtual spin-orbital |χr〉
instead. Similar to the basis set expansion of spin-orbitals introduced earlier, the

basis of configurations is then kept fixed, while the coefficients c are optimized in

a similar diagonalization procedure with respect to the N -electron wavefunction

energies E as introduced in the Roothaan-Hall equations. While the configu-

rations constructed from the reference wavefunction are not physically realistic

“excited states”, the eigenvectors belonging to higher energy eigenvalues of the
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diagonalized matrix E are canonical N -electron excited-state wavefunctions |Ψi〉.
The additional flexibility from mixing the Hartree-Fock ground state with higher

excited configurations is able to recover the exact correlation energy in the limit

of including all possible excitations (Full-CI limit) within the chosen basis set

size (Hartree-Fock limit). Although the method thus returns an exact solution,

the Full-CI limit is impracticably large for most systems of interest, because

the space of possible excitations grows in faculties by the number of electrons

and orbital space. In practice the CI-expansion is therefore truncated after a

certain expansion length, giving rise to the CI-singles (CIS), -doubles method

(CISD) and so forth. Take note that the CIS method does not improve on the

ground-state energy because matrix elements of the form 〈Ψ0|Ĥ|Ψr
a〉 = 0 when

the effective one-electron Hamiltonian is constructed from the one-electron basis

of |Ψ0〉 (Brilloun’s theorem).

The second relevant method for this dissertation is based on the multi-

configuration self-consistent field method (MCSCF). In this also multi-

determinantal method, only a specific and much smaller subset of excited

determinants is constructed from the initial reference such that the wavefunction

reads

∣∣Ψ
〉

= c0

∣∣ΨHF
0

〉
+
∑

I

cI
∣∣ΨI

〉
(2.27)

However, instead of choosing the basis set of determinants to be fixed, both the

coefficients cI for the Slater determinants as well as their respective spin-orbitals

|χ(I)
i 〉 =

∑
µ c

(I)
iµ |φµ〉 are optimized simultaneously. This way, the number of

necessary determinants can be greatly reduced, by adding more flexibility within

a smaller set of determinants - with the cost of having a generally computationally

more demanding task of optimizing both the basis set coefficients, as well as the

configurations’ coefficients.

Besides these two methods there are several more Post-Hartree-Fock methods

that make use of the Hartree-Fock ground state as a reference. For example,

the Møller-Plesset perturbation theory[55] is based on adding perturbation terms

to the Hamiltonian and construct expressions for correlation-corrected wavefunc-

tions and energies. Another method that shall briefly be mentioned in this regard

is Coupled-Cluster theory.[56] It is similar to configuration interaction theory in

that it aims at constructing a multi-determinantal wavefunction from the Hartree-

Fock reference. However, instead of explicitly expanding the wavefunction, the

Coupled Cluster method introduces the so-called cluster operator eT̂ that creates

excited wavefunctions from the reference. Here the expansion length of T̂ gives

rise to CCSD, CCSDT and so forth levels of theory analogous to CI theory. The

exponential operator is then expanded into a Taylor series that ultimately leads

to a different formulation than CI theory.
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2.1.3 | Density Functional Theory

At the end of this section covering the foundations of quantum mechanics, a

brief introduction on density functional theory (DFT) shall be given, which was

used for the purpose of finding the relaxed and partially constrained ground-state

geometries for all molecular systems. Also, it serves as a starting point for the

introduction of time-dependent density functional theory in the next section.

As explained earlier in the context of Hartree-Fock theory, the calculation of

the properties of a wavefunction requires the evaluation of a large number of

one- and two-electron integrals, that each need to account for the three spatial

dimensions, respectively. In density functional theory, the goal is to express the

N -electron wavefunction and all its properties by one object with three spatial

dimensions altogether - the electron density

ρ(~r1) = N

∫
· · ·
∫ ∣∣Ψ(~x1, ~x2, . . . , ~xN)

∣∣2dω1d~x2 . . . d~xN . (2.28)

The general foundation of density functional theory are the two Hohenberg-

Kohn theorems.[57] The first one states, that all ground-state properties (i.e.

wavefunction, potential and kinetic energy) of an N -electron system are uniquely

defined by the ground-state electron density ρ0(~r1). The proof of this theorem

is a reduction to absurdity (reductio ad absurdum), where one assumes that

there exist two wavefunctions |Ψ〉 and |Ψ′〉 that have the same density ρ while,

however, differing slightly in their respective Hamiltonians Ĥ and Ĥ ′. Then, this

would result in ground-state energies of the form

E0 <
〈
Ψ′
∣∣ Ĥ
∣∣Ψ′
〉

=
〈
Ψ′
∣∣ Ĥ ′

∣∣Ψ′
〉

+
〈
Ψ′
∣∣ Ĥ − Ĥ ′

∣∣Ψ′
〉

= E ′0 +

∫
ρ0(~r1)[v(~r1)− v′(~r1)]d~r1 (2.29)

and E ′0 <
〈
Ψ
∣∣ Ĥ ′

∣∣Ψ
〉

=
〈
Ψ
∣∣ Ĥ
∣∣Ψ
〉

+
〈
Ψ
∣∣ Ĥ ′ − Ĥ

∣∣Ψ
〉

= E0 −
∫
ρ0(~r1)[v(~r1)− v′(~r1)]d~r1 , (2.30)

where v(~r1) and v′(~r1) can be any kind of parametrically defined potential, like

the attractive forces due to the nuclei. Ultimately, addition of eqs. (2.29) and

(2.30) leads to the inequality E0 +E ′0 < E ′0 +E0 and thus an indirect proof that

there must exist a direct one-to-one mapping between wavefunctions, densities

and potential terms.

The second theorem proves the existence of a variational principle in terms

of the density, similar as for wavefunctions. It uses the Lagrange-multiplier
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approach applying the normalization of the density to the number of electrons

as a constraint

∂L
∂ρ

= E[ρ]− µ
(∫

ρ(~r1)d~r1 −N
)

= 0 , (2.31)

where µ is called the chemical potential. To turn these concepts into a practi-

cable computational method, the Kohn-Sham theorem is introduced. Here, one

assumes an N -electron wavefunction |Ψs〉 of N non-interacting electrons given

in the determinantal form

∣∣Ψs

〉
=

1√
N !

det[φKS
i φKS

j . . . φKS
N ] . (2.32)

where the one-electron wavefunctions |φKS
i 〉 are referred to as spatial Kohn-Sham

orbitals. Due to the non-interacting nature of |Ψs〉, they differ from the

Hartree-Fock spin-orbitals introduced in section 2.1.1. It is then invoked that

the ground-state density resulting from the orthonormal restricted Kohn-Sham

orbitals,

ρ(~r) =
N∑

i

∣∣φKS
i (~r)

∣∣2 , (2.33)

exactly reproduces the ground state of an interacting system, when they minimize

the energy of a non-interacting reference system instead. The corresponding

one-electron Kohn-Sham equation of this reference system reads

[
− ∇

2
i

2
−
∑

A

ZA
riA

+

∫
ρ(~r′)

|r − r′|d
~r′ + v̂xc(~ri)

]
φKS
i = εKS

i φKS
i , (2.34)

where the resulting N -electron energy is a density functional of the form:

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +

∫
v(~r1)ρ(~r1)d~r1 . (2.35)

In this functional, Ts[ρ] and J [ρ] are the kinetic energy in the non-interacting pic-

ture and the classical Coulomb interaction between two densities ρ, respectively.

The energy with respect to the electron-nucleus attraction is in included in the

integral with the external potential v(~r1).

To both incorporate the non-classical nature (i.e. exchange, see section 2.1.1)

into J as well as correct for the non-interacting behaviour of Ts, the exchange-

correlation functional Exc is introduced as a correction term. Since no analytical

form for this functional has been found, however, the corresponding potential

vxc(~ri) = ∂Exc[ρ]
∂ρ

needs to be implemented as an approximate expression. De-

pending on the level of intricacy of the approximations for Exc, a hierarchy of

increasing accuracy (and required computational effort) can be defined. In this

work, however, only the most general concepts within this hierarchy (that is
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sometimes referred to as Jacob’s ladder of DFT) shall be introduced briefly.

At the lowest level of this hierarchy stands the local density approximation

(LDA), where the electron density is assumed to behave as an uniform electron

gas (i.e. jellium) in an overall charge-neutral environment. At this level of

theory, the exchange-correlation functional Exc[ρ] is determined only locally in

the general form:

ELDA
xc [ρ] = ELDA

x [ρ] + ELDA
c [ρ] =

∫
εx(ρ)ρ(~r)d~r +

∫
εc(ρ)ρ(~r)d~r , (2.36)

where εx and εc correspond to the individual exchange and correlation contri-

butions per particle and volume, respectively. The general forms of these in-

tegrals can be derived from considerations within the jellium model and their

parametrization was refined by quantum Monte-Carlo calculations.[54] Due to its

origin from assuming an uncharged, extended system density, the LDA is a capa-

ble tool for the calculation of extended solids, but inapplicable to the molecular

studies that were aimed for in this work.

At the second level of theory, the generalized gradient approximation (GGA) is

invoked to treat non-uniform densities like in molecules, by inclusion of the first

spatial derivative of∇ρ within the expressions for εx and εc.
[58] Further expanding

this idea of derivatives then gives rise to the third level, the so-called meta-GGA

functionals in which the functionals also depend on the second derivative of the

density ∇2ρ which is related to the electron’s kinetic energy density.[59]

The fourth and last level discussed in here, especially is aimed at improving the

description for the exchange energy. This is achieved by replacing a fraction α of

the exchange functional Ex[ρ] with the Hartree-Fock exchange energy KKS with

respect to eq. (2.18) using the Kohn-Sham orbitals.

EHybrid
xc = Ec[ρ] + (1− α)Ex[ρ] + αKKS (2.37)

These so-called hybrid functionals may additionally be connected to a range-

dependence, where specific functionals are applied depending on the inter-particle

distance. Moreover, the correlation term Ec may contain also different portions

of LDA, GGA or meta-GGA parts. The reasoning behind the hybrid function-

als is that DFT is highly performant for approximating correlation energies and

short-range exchange terms, while HF theory gives the exact exchange energy

contribution (at the same time lacking any correlation energy, however). Since

the exchange density functional Ex[ρ] becomes zero for zero density regions, es-

pecially non-local long-range interactions between one-electron wavefunctions are

typically not well-described by DFT. Hybrid functionals are therefore essential for

cases of non-overlapping, but interacting orbitals, like molecules in which long-

range excitation channels (i.e. charge-transfer channels) play an important role

for the electronic structure and electronic processes.
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2.2 | Time-Dependent Quantum Dynamics

In the last section, calculation methods were introduced that are capable of cal-

culating both electronic ground states as well as excited states with respect to a

time-independent system Hamiltonian. From such states it is possible to estimate

the rate Γ for a state-to-state transition according to Fermi’s Golden Rule[60], [61] as

Γif =
2π

h̄

∣∣ 〈Ψi

∣∣ ~̂µ
∣∣Ψf〉

∣∣2 ρ(E) , (2.38)

where usual SI units were used. In this expression, Ψi refers to the initial elec-

tronic state and Ψf to the final state. The states are connected via the dipole

moment operator ~̂µ (see equation 2.65) and the expression is additionally depen-

dent on the density of states at the energy E.

To practically drive such a state-to-state transition one would, however, need to

apply for example a laser field ~E(t) that ultimately turns the time-independent

Hamiltonian Ĥ0 into a time-dependent one. Following this change in the Hamil-

tonian, the states used in the above expression are in principle no longer eigen-

states to Ĥ(t) - meaning that predictions with respect to Fermi’s Golden Rule

would no longer provide a good estimate. However, in cases where the changes in

the Hamiltonian proceed on a slow timescale, the time-dependent wavefunction

approximately stays stationary. This approximation is called adiabatic approxi-

mation and presents a useful tool for cases of weak field laser excitations in fully

discrete states.[62]

In two of the research projects provided in this work, however, the changes in the

Hamiltonian happen on very fast timescales or require the accurate description

of time-dependent continuum states. Therefore, this second section of the theory

chapter therefore aims at introducing a selection of time-depdendent quantum

dynamics methods to solve the time-dependent Schrödinger equation (2.2) in an

iterative manner according to a time-dependent variational principle. If not high-

lighted by further citations, the concepts and equations introduced in this section

were compiled from the books of Parr and Yang (“Density Functional Theory of

Atoms and Molecules”)[54] and Breuer and Petruccione (“The Theory of Open

Quantum Systems”)[63] as well as Meyer, Gatti and Worth (“Multidimensional

Quantum Dynamics”).[64]

2.2.1 | Time-Dependent Density Functional Theory

Runge-Gross Theorem

Owing to the high efficiency of density functional theory for calculating a ground

state with approximate correlation correction, a similar approach is introduced

for the solution of the time-dependent Schrödinger equation. For such a
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method, one needs to prove a unique one-to-one mapping of the one-electron

time-dependent density according to

ρ(~r1, t) = N
∑

σ1,σ2,...,σN

∫
· · ·
∫
|Ψ(~x1, ~x2, . . . , ~xN , t)|2d~r2 . . . d~rN , (2.39)

where the spins σi have been summed over to obtain the spinless formulation.

The proof of existence for such a mapping can be given according to the

Runge-Gross theorem of time-dependent density functional theory (TDDFT). It

relies on a starting assumption that any arbitrary external potential vext(~r1, t)

can be written as a Taylor-series expansion of the form:

vext(~r1, t) =
∞∑

k=0

1

k!
vext,k(~r1)tk . (2.40)

Example choices for time-dependent external potentials include excitation fields
~E(t) and the nuclei-electron Coulomb attraction. Given this series expansion,

the theorem proceeds to show that systems with the same initial ground-state

density ρ(~r1, t = 0) always lead to different time evolutions, if the external

potentials differ by more than a purely time-dependent function (i.e. differ by

more than a pure phase difference).[65] In other words, if one starts from the same

density at t = 0, one needs to prove that there are always different outcomes at

time t for different external potentials. The condition for the external potentials

then read

vext(~r1, t) 6= v′ext(~r1, t) + c(t) , (2.41)

where c(t) is the purely time-dependent function. The general proof for the

different time-evolutions with respect to the different external potentials can be

achieved in two steps. Firstly, it is shown that the current densities

j(r, t) =
〈
Ψ(t)

∣∣ ĵ(r)
∣∣Ψ(t)

〉
(2.42)

j′(r, t) =
〈
Ψ′(t)

∣∣ ĵ(r)
∣∣Ψ′(t)

〉
(2.43)

with ĵ(r) =
1

2i

N∑

i=1

[
∇iδ(r− ri) + δ(r− ri)∇i

]
(2.44)

have to differ for the time-dependent evolution with respect to the different ex-

ternal potentials vext and v′ext. Here, the primes to the wavefunction denote that

the underlying Hamiltonian includes the primed external potential. In these ex-

pressions, n̂ = δ(r − ri) is the density operator that picks out the value of the

density at position ri and is zero everywhere else.
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Forming the equations of motion for the expectation values of ĵ(r) then yields

∂

∂t
j(r1, t) = −i

〈
Ψ(t)

∣∣ [ĵ(r), Ĥ(t)
] ∣∣Ψ(t)

〉
(2.45)

and
∂

∂t
j′(r1, t) = −i

〈
Ψ′(t)

∣∣ [ĵ(r), Ĥ ′(t)
] ∣∣Ψ′(t)

〉
, (2.46)

where the expression in squared brackets denotes the commutator

[Â, B̂] = ÂB̂ − B̂Â. Assuming that both systems start from the same ini-

tial state |Ψ(t = 0)〉 and taking the difference between the equations of motion

at time t = 0 yields:

∂

∂t

(
j(r, t)− j′(r, t))

)∣∣∣
t=0

= −i
〈
Ψ(t = 0)

∣∣ [ĵ(r), (Ĥ(t = 0)− Ĥ ′(t = 0)
] ∣∣Ψ(t = 0)

〉

= −ρ0(~r)∇
[
vext(r, 0)− v′ext(r, 0)

]
, (2.47)

which proves the difference in external fields. For the second step of the

proof,[65] it is necessary to inversely show that given a initial density

ρ(~r, t = 0), the time evolution of this density always results in a non-zero

difference for two different current-densities j(r, t) and j′(r, t). To prove this,

one needs to consider the continuity equation:

∂ρ(~r, t)

∂t
= −∇j(r, t) (2.48)

and show that the (k+ 2)th time-derivative with respect to length k of the Taylor

series expansion (2.40) is

(
∂

∂t

)k+2

[ρ(~r, t)− ρ′(~r, t)]
∣∣∣
t=0
6= 0 (2.49)

for any functional form of vext(~r, t), so that the densities according to the different

system Hamiltonians start to differ for any infinitesimal time difference. The proof

to this second requirement shall, however, only be referenced here for the sake of

brevity.[65]

Assuming that there exists a unique mapping between any time-dependent

external potential vext and the time-dependent density this provides a basis for

constructing a similar calculation scheme as for time-independent DFT. The

corresponding time-dependent formulation of the Kohn-Sham equation (2.34)

then reads
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i
∂

∂t
φj(~r, t) =

[
− ∇

2

2
+ vext[ρ,Ψ0](~r, t) +

∫
ρ(~r′, t)

|r − r′| + vxc[ρ,Ψ0,Φ0](~r, t)
]
φj(~r, t)

(2.50)

Note that the potential terms themselves depend on the ground-state wavefunc-

tion at all times both in terms of the interacting wavefunction |Ψ0〉 as well as the

non-interacting auxiliary wavefunction |Φ0〉 in case of the exchange-correlation

functional. Further, they are all assumed to be locally time-dependent, since laser

fields, atom positions as well as the exchange-correlation potential may change

over time. The locality in time fulfils the Markov condition of a memoryless po-

tential, in that it does not depend on earlier times. In practice, however, only

the external potential terms are treated time-dependently, while the exchange-

correlation functional is assumed to stay constant over time. This approximation

is known as the adiabatic approximation of TDDFT.

Linear-Response Time-Dependent Density Functional Theory

There are two main ways to formulate a calculation scheme based on the time-

dependent Kohn-Sham equations, namely the real-time time-dependent density

functional theory (RT-TDDFT) as well as the linear-response time-dependent

density functional theory (LR-TDDFT). For the purposes of this dissertation,

only the linear-response formalism needs to be introduced.

LR-TDDFT considers the determination of the ground-state density’s response

with respect to small external stimuli like excitation fields of low intensity. The

working equations can be derived from perturbation theory,[65] where a small

time-dependent perturbation is added to an otherwise time-independent external

field

vext(~r, t) = vext,0(~r) + δvext(~r, t) (2.51)

and in which δvext(~r, t ≥ 0) = 0. It is then assumed that the time-dependent

density starting from a ground-state density ρ0(~r) can be expressed as

ρ(~r, t) = ρ0(~r) + ρ1(~r, t) + ρ2(~r, t) + . . . , (2.52)

where the indices in ρ are referred to as first, second, ... order of density

response. In LR-TDDFT, this sum is truncated after the first term ρ1(~r, t) which

is calculated from the density-density response function χ(~rt, ~r′t′) and the small

perturbation as
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χ(~rt, ~r′t′) =
δ(ρ(~r, t)

δvext(~r′, t′)
(2.53)

ρ1(~r, t) =

∞∫

0

dt′
∫
d~r′χ(~rt, ~r′t′)δvext(~r′t

′) . (2.54)

The response function may be Fourier transformed with respect to t− t′ to yield

the convenient spectral decomposition with respect to excitation energy ω (also

known as Lehmann representation):

χ(~r, ~r′, ω) =
∑

I

[〈Ψ0

∣∣ n̂(~r)
∣∣ΨI

〉〈
ΨI

∣∣ n̂(~r′)
∣∣Ψ0

〉

ω − ΩI + i0+
−
〈
Ψ0

∣∣ n̂(~r′)
∣∣ΨI

〉〈
ΨI

∣∣ n̂(~r)
∣∣Ψ0

〉

ω + ΩI + i0+

]
,

(2.55)

where the sum runs over I electronically excited-states with respective excitation

energies ΩI = EI − E0. When interpreting the response functional closely, one

notices that it becomes undefined whenever ω is exactly identical to an excitation

energy. This special property of the response function may then be utilised in

the formulation of an efficient search formalism that finds the excitation energies

and states. Also, note that this resulting equation is formally time-independent.

Casida Equations and Tamm-Dancoff Approximation

The efficient calculation scheme behind LR-TDDFT is based on a matrix

diagonalisation formalism that utilizes the so-called Casida equations.[66] Since

the derivation of these equations[67] is interesting rather from a mathematical

than from a quantum chemical point of view, only the working equations shall

be provided in this dissertation. The Casida equations read:

[
A B

B∗ A∗

](
X

Y

)
= ω

[
1 0

0 −1

](
X

Y

)
, (2.56)

with the matrix elements of the submatrices A and B according to

Aia,jb = δijδab(εa − εi) +Kia,jb (2.57)

and Bia,jb = Kia,jb (2.58)
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and the coupling matrix K given as

Kpq,rs = 〈φKS
p (~r1)φKS

s (~r2)
∣∣ 1

r12

+ vxc(~r1, ~r2, ω)
∣∣φKS

q (~r1)φKS
r (~r2)

〉
. (2.59)

The matrices X and Y are reflecting the excitation and de-excitation conditions

following

Xia,σ(ω) =−
(∑

σ′

∑

jk

fjσ − fkσ
ω − (εj − εk)

〈
φKS
iσ (~r)φKS

kσ′(~r
′)
∣∣ 1

r12

+ vxc(~r, ~r
′, ω)

∣∣φKS
aσ (~r)φKS

jσ′(~r
′)
〉)

× 1

ω − (εi − εa)
(2.60)

and Yia,σ(ω) = −Xai,σ(ω) . (2.61)

If the coupling matrix K is assumed to be zero for all matrix elements (Tamm-

Dancoff approximation), the eigenvalue problem may be further reduced to yield

the secular equation

AX = ΩΩΩX (2.62)

where the final goal is now to obtain a diagonal matrix of energies ΩΩΩ. The

eigenvectors X then can practically be turned into the compositions of the excited-

states from Kohn-Sham orbitals |φKS〉 with respect to the ground-state density.

The Tamm-Dancoff approximation was used throughout all TDDFT calculations

of electronically excited states.

2.2.2 | Time-Dependent Configuration Interaction in Reduced

Density Matrix Formulation

Time-Dependent Configuration Interaction

One of the methods that was used to calculate the dynamic time evolution of

the electrons is based on solving the time-dependent Schrödinger equation using

an N -electron wavefunction of the type:

ΨTDCI(r, t) =
∑

i=0

Di(t)Ψ
CI
i (r) . (2.63)

In this time-dependent configuration interaction (TDCI) wavefunction,[68] the

time-dependence of the CI wavefunction is contained in the expansion coefficients

Di(t) of stationary configuration-state functions (CSF) from CI states ΨCI
i (r)

which form the ground- and excited-state wavefunctions obtained from CI calcu-

lations (see section 2.1.2). Depending on the level of the preceding CI calculation

(i.e. CIS, CISD, CISDT, ...) the number of possible CSFs and thus the flexibility
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of the TDCI wavefunction increases, eventually including the correlation effects

up to the Full-CI limit.

The TDCI method is capable of correctly describing the response of molecular

systems and single- as well as multi-photon state-to-state transitions with respect

to weak laser fields.[69], [70] The propagation of such a wavefunciton is carried out

applying a unitary time-evolution propagator as

ΨTDCI(r, t) = Û(t, t0, r) ΨTDCI(r, t0)

= e−i(t−t0)Ĥ(r,t) ΨTDCI(r, t0) . (2.64)

The time-dependent Hamiltonian of this expression in turn is given as the sum

of the time-independent electronic Hamiltonian Ĥ(r) (see equation (2.7)) and an

interaction term of the electrons and nuclei for the external field

Ĥ(r, t) = Ĥel(r) + ~̂µ ~E(t)

= Ĥel(r) +
(
−

N∑

i

~ri +
M∑

A

ZA ~RA

)
~E(t) . (2.65)

Note that the dipole approximation[71] was applied here and that the positions

of the nuclei ~RA are kept fixed during propagation. The external fields used in

this work has the form:

~E(t) = A0~ε cos(ω0at) sin2
(πt
ts

)
Θ(ts) (2.66)

where A0 is the peak amplitude, ~ε the unitvector in the direction of the field and

ω the excitation frequency (also called carrier frequency). Finally, the product of

the Heaviside step function Θ(ts) and sin2(πt
ts

) turn the field shape into a single

pulse of length ts that terminates the influence of the external field beyond the

time ts.

When the frequency of the external field matches the energy difference between

the ground state and the ath excited state, i.e. ω0a = (Ea − E0), a population

inversion occurs between these states. This is achieved when the external field

parameters A0 and ts are chosen in accordance to the so-called π-pulse condition

for sin2-shaped pulses,

A0
ts
2

=
π

|~µ0a|
, (2.67)

which is a result of the rotating wave approximation (RWA)[61] in the limit of

weak external fields. Here, ~µ0a is the transition dipole moment from the ground

state to the excited state with respect to the laser direction ~ε

~µ0a =
〈
ΨCI

0

∣∣ µ̂
∣∣ΨCI

a

〉
. (2.68)
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Finally, it shall be noted that dipole-induced transitions with respect to weak laser

fields are mostly one-electron processes. Therefore, CIS is in principle sufficient

for describing the general time-dependent response of molecules with respect to

weak fields.

Liouville-von Neumann Equation for Closed Quantum Systems

To arrive at the working equations used in the reduced density matrix (RDM)[63]

representation of the TDCI-scheme (referred to as ρ-TDCI),[72] the concept of

density operators and their time evolution is provided in this section. Note that

in the following formulations of the density operator, the notation |Ψ(t)〉〈Ψ(t)|
will be used to highlight its operating principle as a projection operator,

although it technically is a functional representation with respect to expression

(2.1). Density operators are useful constructs to treat scenarios where a single

quantum system is insufficient to describe the behaviour of a system. In the

state-representation the density operator of a mixed state Φ(t) is then written as

ρ̂(t) =
∑

i

pi(t)
∣∣Φi(t)

〉〈
Φi(t)

∣∣ , (2.69)

where pi(t) is the probability for the mixture of states being in the pure state

Φi(t) at time t. Note that the symbol Φ is used instead of Ψ to signify that

the states Φi(t) are not necessarily orthogonal with respect to each other, but

fulfil the closure relation with
∑

i pi = 1. This constitutes a normalization in the

sense that across all possible mixtures of states, the system always is in a certain

combination. By using an orthonormal set of time-independent CSFs |Ψj〉, the

density operator may be brought into a Hermitian matrix form with elements

ρjk(t) =
〈
Ψk

∣∣ ρ̂(t)
∣∣Ψj

〉

=
∑

i

pi(t)
〈
Ψk

∣∣Φi(t)
〉〈

Φi(t)
∣∣Ψj

〉

=
∑

i

pi(t)dk,i(t)d
∗
j,i(t) . (2.70)

The diagonal elements of this density matrix ρkk(t) are then the real-positive

probability for the mixed state |Φ(t)〉 being in the configuration state |Ψk〉. The

complex off-diagonal elements ρjk(t) are the so-called interferences with respect

to |Ψk〉 and 〈Ψj|.
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To formulate the time evolution of the density operator, its equation of motion

needs to be derived. Without choosing a specific representation, the density

operator reads

ρ̂(t) =
∣∣Φ(t)

〉〈
Φ(t)

∣∣ . (2.71)

Taking the time derivative of this expression and minding the product rule leads

to

∂

∂t
ρ̂(t) =

( ∂
∂t

∣∣Φ(t)
〉)〈

Φ(t)
∣∣ +

∣∣Φ(t)
〉 ∂
∂t

〈
Φ(t)

∣∣ . (2.72)

Multiplication of both sides with the imaginary unit i and identifying the

time-dependent Schrödinger equation i ∂
∂t
|Φ(t)〉 = Ĥ|Φ(t)〉 within the expression,

one can derive the Louville-von Neumann equation as:

i
∂

∂t
ρ̂(t) = Ĥ

∣∣Φ(t)
〉〈

Φ(t)
∣∣ +

∣∣Φ(t)
〉
i
∂

∂t

〈
Φ(t)

∣∣

= Ĥ
∣∣Φ(t)

〉〈
Φ(t)

∣∣ −
∣∣Φ(t)

〉〈
Φ(t)

∣∣ Ĥ

=
[
Ĥ, ρ̂(t)

]
. (2.73)

Open-System Lindblad- and Reduced Density Matrix Formulation

One of the goals for studying the water-splitting related proton-coupled electron-

transfer dynamics in the project presented in [A.4] is to investigate the qualita-

tive coupling of electronic and vibrational states. To include such coupling into

an electron dynamics framework, a formulation of the Liouville-von Neumann

equation for open quantum systems is required. The resulting formulation then

is capable to describe the effects of finite-temperature-induced electronic state

transitions.

Open quantum systems are generally the conjunction of an electronic quantum

system S with a respective Hilbert space HS and a bath system B with HB.[63]

The combined picture S + B then forms a closed quantum space by itself, in

which the combined state space is obtained from the tensor product of both

subspaces according to

HS+B = HS ⊗HB , (2.74)

where each of the spaces may be described by respective sets of orthonormal

basis functions |ϕS〉 and |ϕB〉 such that the combined wavefunction takes the form:

|Ψ〉 =
∑

i,j

αij
∣∣ϕSi
〉
⊗
∣∣ϕBj
〉
. (2.75)
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The total Hamiltonian for describing the combined system then takes the form

Ĥ(t) = ĤS ⊗ 1B + 1S ⊗ ĤB + ĤSB(t) (2.76)

where the tensor products with the identities 1 in the first two terms ensure

that the Hamiltonians act only on the respective other Hilbert spaces such that

ĤS works only HS and the other way around. The third term then gives the

interaction between the system and bath quantum systems.

In the following, a formalism will be provided, such that the time evolution of

the electronic quantum system can be approximated without explicit knowledge

about the bath system. The foundation of this is the assumption that the density

operator of the combined system at t0 is separable according to

ρ̂(t0) = ρ̂S(t0)⊗ ρ̂B(t0)

=
∑

ij

pij(t0)
∣∣ϕSi
〉〈
ϕSi
∣∣ ⊗

∣∣ϕBj
〉〈
ϕBj
∣∣ , (2.77)

where the density operator ρ̂S is referred to as the reduced density operator

of the electronic quantum system. The reduced density operator can then be

obtained by taking the partial trace with respect to the bath states which is

defined as

trB
(
ρ̂(t0)

)
=
∑

ij

pij(t0)
∣∣ϕSi
〉〈
ϕSi
∣∣ 〈ϕBj

∣∣ϕBj
〉

= ρ̂S(t0) . (2.78)

Returning to the Liouville-von Neumann equation (2.73) for the evolution of

the density operator ρ̂(t), one can then apply a set of approximations to derive

an analogous formulation that covers the time evolution of the reduced density

operator for the electronic subsystem including an effective coupling to the bath

subsystem (i.e. dissipation)
ˆ̂LDρ̂S(t) according to

i
∂

∂t
ρ̂S(t) =

[
ĤS(t), ρ̂S(t)

]
+ i

ˆ̂LDρ̂S(t) . (2.79)

The dissipative coupling then takes the form

ˆ̂LDρ̂S(t) =
∑

mn

Γmn
2

([
Ĉmn, ρ̂S(t)Ĉ†mn

]
+
[
Ĉmnρ̂S(t), Ĉ†mn

])
, (2.80)

where the so-called Lindblad operators Ĉmn = |ϕSn〉〈ϕSm| mediate population

transfer between electronic states m and n with a rate Γmn.[72] In the following,

the properties of this electron dynamics description shall be briefly concluded.

The full derivation of this so-called Lindblad form of the Liouville-von Neumann

equation (or just Lindblad equation) can be found in the book of Breuer and
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Petruccione.[63]

Firstly, the method uses the Born approximation which assumes that the cou-

pling between the electronic system and bath only works towards the electronic

system, such that the bath density operator becomes time independent. This

assumption is valid in the limit of much faster electronic processes compared to

the bath.[73] Secondly, it is assumed that the reduced density operator follows

Markovian dynamics in that its time evolution is local in time. This means that

the time evolution proceeds memoryless such that its immediate evolution does

not additionally depend on earlier or later times, but only on its current mixed

state.[73] Finally, it is assumed that external fields acting on the coupled sys-

tem only affect the electronic quantum system and cause no additional coupling

between system and bath.

For the purpose of this project, the configuration-state functions that form the

TDCI wavefunction (and density operator ρ̂) were constructed from the ground-

and excited states of linear-response TDDFT calculations. The pseudo-CI CSF

Slater determinants of were constructed using the respective Kohn-Sham orbitals.

By using LR-TDDFT to obtain the excited states, the resulting hybrid DFT/CI

methodology benefits from the favourable scaling of LR-TDDFT for calculat-

ing excited states while providing the multi-determinant flexibility for the time

evolution of the wavepacket. Further by working in the reduced density matrix

formulation, it is possible to include the dissipation dynamics for simulating the

thermalization dynamics in an open quantum system.

2.2.3 | Multiconfiguration Time-Dependent Hartree Method

MCTDH Wavefunction

The multiconfiguration time-dependent Hartree method (MCTDH) uses a

p-particle wavefunction of the form

Ψ(q1, . . . , qf , t) = Ψ( ~Q1, . . . , ~Qp, t)

=

n1∑

j1=1

· · ·
np∑

jp=1

Aj1...jp(t) ϕ
(1)
j1

( ~Q1, t) . . . ϕ
(p)
jp

( ~Qp, t) (2.81)

=
∑

J

AJ
∣∣ϕJ

〉
, (2.82)

where q are arbitrary coordinates in f degrees of freedom (DOF) that may in

principle be collected inside vectors of the form ~Q = (q1, q2, . . . ). Since ~Q may

likewise only depend on one DOF, the vector arrows will be dropped in all further

occurrences of ~Q. The wavefunction can then be written as sums of Hartree

products of so-called single-particle functions (SPF) |ϕ(p)
jκ
〉. The indices jκ then

count the number of nκ basis functions assigned for the κth particle and the
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variable Aj1,...,jp gives the coefficient for a specific Hartree product. The complete

composition of these j1, . . . , jp, as well as the respective Hartree product may be

conveniently collected in a joined index J .

Note that so far a universal “particle” wavefunction may be described - meaning

that these particles are not necessarily fermions or bosons. The antisymmetry

condition for fermions may be recovered by requiring antisymmetrization of

Aj1...jp via

Âκ,λ Aj1,...,jκ,...,jλ,...jp = −Aj1,...,jλ,...,jκ,...jp (2.83)

and further requiring that the sets |ϕ(κ)〉 are the same for all κ to ensure in-

distinguishability of the coordinate systems. Without loss of generality, these

conditions will be assumed to be met in the further course of this section.

The remarkable feature of the MCTDH wavefunction is that both the config-

uration coefficients AJ as well as the single-particle functions |ϕJ〉 are time-

dependent. This way, a highly flexible functional form is obtained that may

describe the behaviour of particles efficiently with only few basis functions, which

is especially important for describing continuum states. This flexibility comes at

the cost of being computationally very expensive in comparison to, for example,

the TDCI method.

Since both the coefficients AJ as well as the basis |ϕJ〉 are flexible, the wavefunc-

tion is not yet unique: One may always construct another wavefunction by scaling

the coefficients and basis functions, respectively. To turn the wavefunction into a

unique form, a constraint operator ĝ(K) is introduced in the following equations

of motion.

Equations of Motion and Uniqueness

The general approach to obtain the equations of motion (i.e. 1st-order time

derivatives) starts from the Dirac-Frenkel variational principle

〈
δΨ
∣∣ Ĥ − i ∂

∂t

∣∣Ψ
〉

= 0 (2.84)

which translates to the minimum condition for the energy that a small change

δΨ in the wavefunction |Ψ〉 does not cause a change in the system energy

with respect to the time-dependent Schrödinger equation (2.2). This way, one

obtains the first order differential equations for the time-dependent coefficients

A according to

i
∂A

∂t
= KKKA (2.85)
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where A represents the antisymmetric configuration coefficient matrix

AJK = −AKJ and KKK is the expectation value matrix

KJL =
〈
ϕJ
∣∣ Ĥ
∣∣ϕK

〉
(2.86)

The equations of motion for the SPF matrix ϕϕϕ(K) then read

i
∂ϕϕϕ(K)

∂t
= (1− P̂ (K))(ρρρ(K))−1HHH(K)ϕϕϕ(K) (2.87)

where three new terms are introduced on the right hand side. The first one is

a projection operator P̂ (K) =
∑
j

|ϕ(K)
j 〉〈ϕ(K)

j | that ensures that all time changes

of the SPFs cover new regions by invoking (1 − P̂ (K)). The other entities are

the mean-field operator matrix HHH(K) and the inverse density matrix ρρρ(K). Both

can be obtained straightforwardly from a closely related auxiliary basis set of

so-called single-hole wavefunctions |Ψ(K)
a 〉

∣∣Ψ
〉

=
∑

a

∣∣ϕ(K)
a

〉〈
ϕ(K)
a

∣∣Ψ
〉

=
∑

a

ϕ(K)
a

∣∣Ψ(K)
a

〉
(2.88)

where each of the single-hole functions is basically the whole N -particle wave-

function when excluding the SPF set of the Kth particle, e.g.

∣∣Ψ(1)
a

〉
=

n1∑

j2=1

· · ·
np∑

jp=1

Aa,j2...jp
∣∣ϕ(2)

j2
. . . ϕ

(p)
jp

〉
(2.89)

Using this auxiliary basis, the matrix elements of the mean-field operator matrix

HHH(K) and the density matrix ρρρ(K) are then expressed by

H(K)
ab =

〈
Ψ(K)
a

∣∣ Ĥ
∣∣Ψ(K)

b

〉
(2.90)

ρ
(K)
ab =

〈
Ψ(K)
a

∣∣Ψ(K)
b

〉
=
∑

JK

A∗JKa AJKb (2.91)

where the hole-index coefficient JKa works analogously to the former configuration

coefficient, leaving out the Kth particle and replacing it with a numerical value a

instead. Since inversion of this density matrix is required for the equation of mo-

tion (2.87), division by zero-valued elements would result in numerical instability.

In practice, the density is thus regularized to always contain positive, non-zero

values.

The uniqueness of the wavefunction is achieved by introducing an arbitrary

constraint operator ĝ(K) for the time evolution of the SPF basis in the form
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i
〈
ϕ

(K)
i

∣∣ ∂ϕ
(K)
j

∂t

〉
=
〈
ϕ

(K)
i

∣∣ ĝ(K)
∣∣ϕ(K)

j

〉
(2.92)

Adding this constraint to the equations of motion finally results in

i
∂A

∂t
=

(
KKK −

∑

K
g(K)

)
A (2.93)

and i
∂ϕϕϕ(K)

∂t
=
[
(g(K))T + (1− P (K))(ρρρ(K))−1HHH(K)

]
ϕϕϕ(K) (2.94)

Typical choices for g(K) are either zero for all K or g(K) = hK which is the analogue

to the one-electron core-Hamiltonian introduced in equation (2.16). Depending

on the choice of the constraint, the obtained SPFs are minimized with respect

to different, additional properties like least motion of the SPFs. However, all of

these representations are unitary transformations with respect to each other and

likewise minimize the energy.

Product Form Hamiltonian

The remarkable efficiency of the MCTDH calculation method stems, however,

not only from the highly flexible wavefunction but also from a large speed-up

if the Hamiltonian (and the mean-field operator matrix HHH(K), likewise) may be

brought into product form of one-particle operators

Ĥ(q1, . . . , qf ) =
ns∑

r=1

crh
(1)
r (Q1) . . . h(p)

r (Qp) (2.95)

where the each of the ns terms hr(Q1) of the product representation are

evaluated on a grid in terms of a discrete variable representation (DVR) of the

SPFs. This representation is achieved by expanding the SPF basis ϕ
(K)
j into a

time-independent basis of so-called primitive basis functions |χ(K)
k 〉

ϕ
(K)
j (QK) =

NK∑

k=1

a
(K)
kj χ

(K)
k (QK) (2.96)

where the basis functions have to be chosen such, that their matrix representation

of the position operator Q̂(K) is diagonal, i.e.

〈
χ

(K)
k

∣∣ Q̂(K)
∣∣χ(K)

j

〉
= Q

(K)
j δij (2.97)

Q
(K)
j refers to the value at grid point j with respect to the coordinate QK of

particle K. This special property then turns all off-diagonal matrix elements of

fully local operators Ô1(Q(K)) that depend only on one coordinate into zeros and
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thus allows the evaluation of such operators in the form of simple sums at the

quadrature points Q
(K)
i .

〈
χ

(1)
i1
. . . χ

(p)
if

∣∣ Ô1

∣∣χ(1)
j1
. . . χ

(p)
jf

〉
=

p∑

K
O1(Q

(K)
j1
, . . . , Q

(K)
jf

)δi1j1 . . . δif jf (2.98)

While the kinetic energy operator is already in the general form of such a locally

acting operator Ô1(Q(K)), non-local potentials such as the electron-electron

repulsion are of the form Ô2(Q(K), Q(L)) and require the coordinates of two

particles. As an approximation, one may however use a fit of sums of products

such that any arbitrary potential can be approximated as

V app(Q(1), . . . , Q(p)) =

m1∑

j1=1

· · ·
mp∑

jp=1

Cj1,...jpv
(1)
j1

(Q(1)) . . . v
(p)
jp

(Q(p)) (2.99)

with single-particle potentials (SPP) v
(K)
jK

(Q(K)). Such a fitting procedure is imple-

mented in the Heidelberg MCTDH program suite[64], [74] that was used throughout

this work.

Excited States and Propagation

The antsymmetrized MCTDH wavefunction of equation (2.81) does not contain

excited electronic states yet. Within this work, however, it was necessary to

simulate the time evolution of an excited state. To include excited states, one

may thus treat the electronic states in the form of an additional degree of freedom

(DOF), i.e. by an additional state function |α〉 that carries the information

about all σ electronic state

∣∣Ψ
〉

=

n1∑

j1=1

· · ·
np−1∑

jp−1=1

σ∑

α=1

Aj1...jp−1,α

∣∣ϕ(1)
j1
〉 . . .

∣∣ϕ(p−1)
jp−1
〉
∣∣α
〉

(2.100)

This so called single-set formulation then uses the same sets of SPFs for

each electronic state α. Similarly, the equations of motion need to include

this additional degree of freedom as well for treating matrix elements between

different electronic states |α〉 and |β〉. For a constraint of g(K) = 0, these turn into

i
∂A

∂t

(α)

=
σ∑

β=1

K(αβ)A(β) (2.101)

and i
∂ϕϕϕ(K,α)

∂t
= (1− P (K,α))(ρρρ(K,α))−1

σ∑

β=1

HHH(K,αβ)ϕϕϕ(K,β) (2.102)
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The matrix elements K(αβ)
JL and H(K,αβ)

ab are then obtained from applying the

Hamiltonian Ĥ(αβ) = 〈α|Ĥ|β〉 according to

K(αβ)
JL =

〈
Φ

(α)
J

∣∣ Ĥ(αβ)
∣∣Φ(β)

L

〉
(2.103)

H(K,αβ)
ab =

〈
Ψ(K,α)
a

∣∣ Ĥ(αβ)
∣∣Ψ(K,β)

b

〉
(2.104)

The energy of the MCTDH wavefunction is then minimized according to the

variational principle by formally performing a relaxation calculation. This means,

that one performs a propagation of the wavefunction in negative imaginary time

and renormalizes the wavefunction afterwards

Ψ(t) =
e−ĤtΨ(t = 0)

||e−ĤtΨ(t = 0)||
(2.105)

Excited states can be obtained by additionally requiring the orthogonality of the

states as 〈α|β〉 = δαβ. In practice, however, a convenient mathematical scheme

called the improved relaxation can be applied, when the matrix elements K(αβ)
JL

are only re-evaluated after several propagation steps. This propagation scheme

is called the constant mean field (CMF) scheme and relies on the fact that the

Hamiltonian matrix elements as well as the products of the mean-field operator

matrix H(K,αβ)
ab and inverse densities (ρρρ(K,α))−1 do not change much over short

time intervals. The full intricacies of these methods, as well as the form of the

numerical propagation and diagonalisation algorithms (Runge-Kutta, short iter-

ative Lanczos (SIL), Davidson) are, however, regarded as technical details that

shall thus only be referenced here.[64] After the relaxation calculation, the prop-

agation of electronic eigenstates only requires the use of a singular-state picture

instead of a multi-state picture. Therefore, for all propagation calculations, the

electronic state DOF may be removed again.

2.3 | Model System Descriptions and

Computational Details

Since each of the investigations pursued in this dissertation has its own unique

challenges with respect to system sizes, continuum contributions and the treat-

ment of finite temperatures, different approximations and concepts were used to

model the behaviour in each of the systems. Thus, after providing the background

of the calculation methods in the last two sections, here, the applied approxima-

tions, model systems and computational details used for the separate projects

shall be introduced.
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2.3.1 | ICD in Charged Paired Quantum Dots

The goal of the first project discussed in this dissertation is investigating the ICD

rate in a system of two charged quantum dots in a quantum wire with respect

to changes in the geometry of the quantum dots. As schematically explained in

the introduction section 1.2, the general prerequisite for the occurrence of ICD

is that in an example system A+-B there exists an excited bound state A+∗-B,

the relaxation energy of which is larger than the work function for emitting an

electron from B. In other words, a minimal working system of one photoexcitable

absorber A+ and one emitter particle B requires at least three one-electron states

obeying the following energy conditions[39]

E(A+∗) > E(B) > E(A+) with E(A+∗)− E(A+) > −E(B) . (2.106)

The surplus energy from the relaxation A+∗ → A+ is then conserved in the

form of the kinetic energies of the ejected electron and the Coulomb exploding

particles A+ and B+. The rate with which the ICD process is driven can then

be approximated by the golden rule expression[23]

Γ ≈
∣∣∣∣
〈
k(r)vi(r

′)
∣∣ 1

|r− r′|
∣∣ vf (r)v′f (r

′)
〉 ∣∣∣∣

2

, (2.107)

where k refers to the ejected electron’s continuum one-electron wavefunction, vi

to the one-electron wavefunction of the initial vacancy in A+∗ and vf and v′f to

the final electronic state vacancies. Assuming further that the initial and final

one-electron wavefunctions do not overlap, this expression can be simplified to

yield the ICD rate ΓICD according to[38]

ΓICD =
3

4π

σ̃E(Evph) · τ−1
A

R6 · E4
vph

with Evph = E(A+∗)− E(A+) , (2.108)

where σ̃E(Evph) refers to the absorption cross section of the emitter at the virtual

photon energy Evph and τ−1
A to the rate of spontaneous emission of the absorber

electron. In other words, in the non-overlapping regime, the ICD process can be

split up into the respective rates and probabilities for independent absorption of

a virtual photon at the emitter and relaxation of the electron from A+∗ → A+ in

the absorber.

To study the ICD process for vertically arranged, negatively charged semiconduc-

tor quantum dots with varying heights and distances, a system of one absorber

quantum dot (AQD) and one emitter quantum dot (EQD) is used. Since charge

carriers in semiconducting materials move like in an effective potential of all other

crystal lattice atoms and electrons, it is possible to assign an effective mass that

depends on the exact material and then model only the behaviour of the free
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charge carriers explicitly (effective mass approximation).[75]

Further, in the size regime of quantum dots, the electrons in semiconductor ma-

terials such as GaAs experience strong quantum confinement due to their large

exciton Bohr radii.[76] This leads to a situation where the excited states become

discrete in both energy as well as spatial extension. In such a scenario, the ex-

tended system may be collectively described by a single binding potential well.

Combining both of these concepts, a system of two, singly negatively charged

quantum dots can be approximately described by two inverse Gaussian potential

wells with two explicit electrons occupying one of the wells, each. Assuming

a vertical arrangement of the QDs (i.e. growing in ~z) with a strong harmonic

oscillator confinement in ~x and ~y, the wavefunction may be effectively separated

into a time-independent function Ψ(x,y) and a time-dependent function Ψ(z, t).

Considering only the relevant direction ~z, a quasi one-dimensional model Hamil-

tonian for a paired QD (PQD) in a quantum wire can be given as

ĤPQD(z1, z2) =
2∑

i=1

(
− 1

2

( ∂

∂zi

)2

+ VPQD(zi)

)
+ V (|z1 − z2|)(ω⊥)

1D (2.109)

where VPQD(zi) is the binding potential with respect to the two QDs and

V (|z1 − z2|)(ω⊥)
1D is an effective quasi-1D Coulomb repulsion term, in which the

constant contributions of Ψ(x,y) have been incorporated analytically with

respect to the harmonic confinement strength ω⊥.[77] The PQD potential reads

VPQD(zi) = −DA e−bA(zi+
R
2

)2

︸ ︷︷ ︸
VA

−DE e−bE(zi−R2 )2

︸ ︷︷ ︸
VE

(2.110)

where the absorber QD’s potential VA is chosen such that it contains two bound

one-electron levels, while the emitter QD’s potential VE contains only one bound

one-electron level. Further, the energetic positioning of these one-electron levels

is tailored such that they fulfil the energetic criterion for ICD (eq. (2.106)). Fig-

ure 2.1 schematically summarizes the relevant parameters of the charged paired

quantum dot system.

To calculate the ICD rate of this system, the MCTDH formulation of the wave-

function is utilized (see section 2.2.3). In a first step, the ground and excited

states of the system are calculated by improved relaxation.[64] The ground state

of the system is referred to as A0E0, since it resembles a combination of the

one-electronic ground states called A0 and E0, respectively. The ICD-relevant

metastable resonance-state A1E0 is used for time propagation. Here, the electron

in the absorber QD is in the first excited state, such that the dynamic relaxation

A1 → A0 allows the ejection of the emitter electron from E0 into the continuum

via ICD.
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Figure 2.1: Schematic ICD processes in the charged paired quantum dot system with
complex absorbing potentials (green dashed lines). The left and right potential wells
refer to the absorber and emitter quantum dots with parameters D and h, respectively.
Note that heights h were calculated in terms of the full width at half maximum of
the inverse Gaussians in all occurrences. The centers of the QDs are apart by the
interparticle distance R. Processes 1 to 3 depict the relaxation, virtual photon exchange
and emission of the ICD electron, respectively.

For the time propagation, the Hamiltonian

Ĥprop(z1, z2) =
2∑

i=1

(
VPQD(zi)−

1

2

( ∂

∂zi

)2

− iŴL(zi)− iŴR(zi)

)
+V (|z1− z2|)(ω⊥)

1D

(2.111)

is used, that includes complex absorbing potentials (CAP) close to the simulation

box edge. This way, the ejected electron is captured by the CAP instead of

being reflected back at the infinitely high potential walls of the simulation box

(green dashed lines in figure 2.1). Note that despite Ĥprop(z1, z2) being practically

time-independent, the sudden placement of the electronically excited, metastable

eigenstate A1E0 of Hamiltonian (2.109) onto the potential energy surface dictated

by the Hamiltonian (2.111) initiates the dynamic relaxation process leading to

ICD.

The interaction of the wavefunction with the CAP leads to a decrease in norm

over time, according to

∂

∂t

∣∣∣∣Ψ
∣∣∣∣2 = −2η

〈
Ψ
∣∣ Ŵ

∣∣Ψ
〉

(2.112)

where η is the strength parameter of the potential Ŵ .[78] If the CAP is placed

sufficiently far away of the initial state, then the norm loss can be used as a

measure for determining the ICD rate. Another measure for the ICD rate, is

the autocorrelation function |a(t)|2 = 〈ΦA1E0(z, t = 0) |Ψ(z, t)〉, that reflects

how similar the wavefunction |Ψ〉 at time t is compared to the initial-state

function |ΦA1E0〉. Note that the wavefunction symbols were chosen to differ,
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since |ΦA1E0〉 is not an eigenstate to the propagation Hamiltonian of eq. (2.109).

The interparticle Coulombic decay behaves as an exponential decay with respect

to the ICD rate ΓICD, such that

|a(t)|2 ∝ e−ΓICDt (2.113)

may be readily used to extract ΓICD from the autocorrelation function. Artifacts

that occur in the first few propagation steps from |ΦA1E0〉 to |Ψ(t)〉 typically

stem from the above mentioned mismatch of Hamiltonians. Therefore, in praxis

the first few time steps are typically discarded for fitting with respect to the

exponential behaviour.

All calculations within the ICD project were conducted using the Heidelberg

MCTDH program suite.[64], [74] Due to the high flexibility of its wavefunction

form, MCTDH is suitable for describing the transition into continuum states.

Additionally, the time-dependent treatment naturally incorporates the effects of

dynamic electron correlation. The non-local potentials were brought into the

appropriate product form with the Potfit algorithm[64] that is also included within

the program suite. Further details on the calculation grid and such may be taken

directly from the publication of section A.1.

2.3.2 | Database Reconstruction of Total X-Ray Absorption Spec-

tra

The aim of the second research project was to establish a theoretical method

that is able to extract local structural features from the generally randomized

structure of graphene oxides. As a starting point for this study, the element-

specific and surrounding-sensitive nature of X-ray absorption spectra is used.

As shown in the work of DeBeer et al.,[79] the X-ray absorption (XA) spectra of

small molecules with respect to a specific atom K-edge can be calculated as the

sum of all possible single electron excitations from the respective localized 1s

orbitals. Especially in cases where the 1s orbitals would be chemically equivalent

like the chlorine 1s orbitals in their example TiCl4,[79] this leads to a situation

where one may instead calculate the excitation spectrum of one of the localized

Cl 1s electron once and simply multiply the absorption spectra by four to recover

the total absorption intensity. Consequently this shows that the total absorption

spectrum of a molecule, can be calculated as the sum of all individual 1s-localized

excitations with the specific oscillator strengths

f ed
0n(ω0n) =

2

3
ω0n

∣∣∣
〈

0
∣∣∑

i

~ri
∣∣n
〉∣∣∣

2

(2.114)

fmd
0n (ω0n) =

2

3
α2 ω0n

∣∣∣
〈

0
∣∣∑

i

1

2
(~li + 2ŝi)

∣∣n
〉∣∣∣

2

(2.115)
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f eq
0n(ω0n) =

1

20
αω3

0n

∑

a,b

∣∣∣
〈

0
∣∣∑

i

(
ri,ari,a −

r2
i

3
δab
) ∣∣n

〉∣∣∣
2

(2.116)

where f ed corresponds to the electric dipole moment, fmd to the magnetic dipole

moment and f eq to the electronic quadrupole moment. The N -electron wavefunc-

tions used in these expressions are the ground state |0〉 and the excited state |n〉,
which can be obtained from LR-TDDFT calculations. For the construction of

the core-excited states |n〉, one electron was excited from one of the localized 1s

orbitals into the space of all possible virtual orbitals. The excited states’ oscilla-

tor strengths therefore implicitly depend on the overlap of the spatially localized

1s core-hole with the virtual space occupied after the respective excitation. Due

to the spherical form of the 1s orbitals, there practically exists a radial sensitivity

for the oscillator strengths with respect to the immediate chemical surrounding

of the excited site. In case the virtual space populated during an excitation is

strongly localized at a far away site, the associated oscillator are thus likely to

be small. The energetic positioning for the transitions, however, still depend on

the energy difference associated with the addressed target virtual space and may

still change with respect to even far away chemical groups.

In the case of the studied graphitic π-conjugated systems of graphene oxides,

the virtual orbital space is likely to be strongly delocalized. Therefore, it is

expected that the individual excitation spectra are strongly influenced by said

non-local effects. In the database reconstruction method developed in this work,

an approximation is used where instead of the full surrounding, the individual

atoms’ XA spectra are distinguished only up to a specific number of chemically

bonded neighbors with the aim to recover just as much of the non-local nature

of the excitations as necessary. The concept of the database method can be

explained with the following example:

Consider a conjugated, linear organic molecule with four carbon atoms labelled

ABCD that are distinguishable by carrying different functional groups. Then

the exact theoretical carbon K-edge X-ray spectrum S(ABCD) can be calculated

by individually exciting each 1s electron localized at each of the carbon atoms

while considering the virtual orbitals of the full molecule and taking the sum of

these single excitations

S(ABCD) = S(Abcd) + S(aBcd) + S(abCd) + S(abcD) (2.117)

where S(Abcd) refers to an excitation of the 1s electron localized at A, while

considering excitations into the virtual space spanned across all included atoms

b, c and d. Note that the capitalized, bold font atom denotes which atomic site

was excited. A zeroth-order approximation to the spectrum S(ABCD) is then

given by considering mean spectra S̃ from carbon atoms A, B, C, D in any

possible environment.
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S(ABCD) ≈ S̃(A) + S̃(B) + S̃(C) + S̃(D) (2.118)

Here, the mean spectra S̃(A) are obtained as a mean spectrum over all possible

surroundings for atom A

S̃(A) =
1

N
·
(
S(Abef) + S(Agi) + S(Allk) + . . .

)
, (2.119)

where N is the number of spectra that are included in the mean spectrum of

this specific functionalized atom. Note that the individual entries in the sum in

parentheses are insensitive to the length of its entries and functionalizations, such

that also entries with a different numbers of atoms than “ABCD” or atoms with

other functional groups e, f , g,... occur. Also note that reducing this scheme to

only one entry with a chain-length of one carbon atom results in the original idea

of Hitchcock et al. for recovering the total spectrum by its most primitive and

local components.

Now, consider the first-order approximation

S(ABCD) ≈ S̃(Ab) + S̃(aBc) + S̃(bCd) + S̃(cD) (2.120)

where the mean group spectra are required to at least match in their first rescpec-

tive neighbor atoms. By invoking the presence of the adjacent functional groups

next to the excited center to be the same as in the actual molecule, the entries

in the mean group spectra of the type S̃(Ab)s will recover part of the non-local

effects with respect to the virtual orbital space of their neighbors. Note, that also

a termination “left from A” counts as a neighbor in the sense of being a termina-

tion. Therefore, taking this scheme to its extreme of collecting all neighbors (and

terminations) into the mean group spectra one ultimately recovers the exact the

spectrum.

One quickly realizes, however, that the extreme case is not a reduction of the

problem for efficiently approximating the spectrum ABCD, since in this case

the exact spectra would be contained in the database anyway. Therefore, the

database method of mean group spectra becomes a powerful approximation only

when the non-local effects extend over a low chain-length of neighbors. In other

words, this means that one needs to verify the existence of a cut-off with re-

spect to the number of neighbors beyond which the individual spectra become

approximately indistinguishable.

Finally, these functionalization dependent mean group spectra may be used to

attempt reconstructing experimentally obtained XA spectra and predict the pos-

sible functionalizations in even amorphous samples. As further verification tools,
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the prediction may be cross-checked with experimentally obtained elemental com-

positions. Further, also other K-edge spectra like the oxygen K-edge may be used

to simultaneously fit both experimental K-edges to increase the predictive power

of the method.

Calculations of the molecular systems were performed with the ORCA pro-

gram.[80] Further details on the choice of DFT and TDDFT functionals, basis

sets and such may be taken from the publication presented in section A.2.

2.3.3 | PCET Performance Rating and Dissipative TD-CI Electron

Dynamics

To research the structure-property relationship between the oxygen functional-

isation and the water-splitting capabilities of N-doped graphene oxide (NGO)

quantum dots, a dynamic process needs to be investigated that includes several

competing reaction channels. These channels correspond electronic state-to-state

transitions due external laser fields, thermally induced vibronic transitions at fi-

nite temperatures as well as the dynamic transfer of a hydrogen atom (see figure

2.2).

Figure 2.2: Schematic of the considered processes during proton-coupled electron trans-
fer between electronic states |i〉. The initial excitation (green, hν) is followed by a
vibronic thermalization between several electronically excited states (Γtherm, red and
blue). Eventually, upon reaching a more or less pure charge-transfer state with respect
to the metric DCT

n (eq. 2.122) , the wavepacket population may leave the system with
respect to the combined PCET rate ΓPCET (yellow). Reprinted from manuscript in
review at J. Phys. Chem. C .[93]

Only when all of these rates are known, one can formulate a time-dependent

electron dynamics scheme to simulate the efficiency of the proton-coupled

electron-transfer process. To this effect, it is possible to calculate the necessary

rates from a candidate NGO catalyst model molecule that has structurally been

optimized with respect to the initial electron-transfer step (green wavy line in

figure 2.2). The structural optimization proceeds by establishing a metric to

rate potential candidate model molecules with respect to their electron-transfer
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capabilities. By searching for the optimal candidate molecule structure with

respect to this rating function, we avoid that the electron-transfer step is the

rate-determining step in the overall proton-coupled electron transfer (PCET).[81]

The form of this rating function is

F = DCT
n µ0n Bλ(λn, T ) , (2.121)

where DCT
n is the charge-transfer purity for charge-transfer state n and µ0n the

transition dipole moment for driving the excitation of this state. The factor DCT
n

(2.122) itself is a measure for how much electron density is transferred from a

neighboring water molecule onto the NGO model molecule during excitation of

state n according to:

DCT
n =

〈
Ψh
n

∣∣ P̂H2O

∣∣Ψh
n

〉〈
Ψp
n

∣∣ P̂NGO

∣∣Ψp
n

〉
. (2.122)

It is obtained as the Mulliken projection P̂ of the hole |Ψh
n〉 and particle

|Ψp
n〉 wavefunctions onto the respective atomic basis wavefunctions that be-

long to the water (H2O) or NGO molecule. Finally, since the desired goal is

to initiate the charge transfer with sunlight, these two factors are multiplied

with the blackbody radiation intensity of an emitter with a temperature T 5800 K

Bλ(λ, T ) =
2hc2

λ5

1

ehc/λkBT − 1
(2.123)

to weight the expression with the intensity of the sun spectrum at the excitation

wavelength for the charge-transfer state. This way, the rating function F takes on

high values for pure charge-transfer states with a high transition dipole moment

and high sunlight input intensity to drive the excitation. The transition dipole

moments and excited-state properties are obtained from TDDFT calculations as

described in section 2.2.1.

The transformation into the basis of natural transition orbitals (NTO) is achieved

by singular value decomposition (SVD) of the transition density matrices T n

T nia =
∑

σ

〈
Ψn

∣∣ c†iσcaσ
∣∣Ψ0

〉
(2.124)

which gives the overlap between the excited-state wavefunction |Ψn〉 and

single-electron excitations of the ground-state wavefunction |Ψ0〉 induced by the

creation and annihilation operators c†iσ and caσ. The SVD of T n then yields the

three elements T n = UΛV †, where Λ is a diagonal matrix of coefficients reflecting

the occupation Λjj of the respective jth pair of single-hole and single-particle

wavefunctions |ψhj 〉 and |ψpj 〉 derived from U and V † according to
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∣∣ψhj 〉 =
∑

i

Uij
∣∣φoi
〉 ∣∣ψpj

〉
=
∑

i

Vij
∣∣φvi
〉

(2.125)

∣∣Ψh
n

〉
=
∑

j

Λjj

∣∣ψhj
〉 ∣∣Ψp

n

〉
=
∑

j

Λjj

∣∣ψpn
〉

(2.126)

After optimization of the candidate molecule through employing this rating

scheme to a large set of molecules, the relaxed reaction pathway (RRP) for ab-

stracting a hydrogen from water towards the NGO nitrogen is calculated for the

highest rated model molecule. For this, the distance between the water oxygen

and the hydrogen atom is gradually increased to fixed values, while all other

atomic coordinates are optimized through a DFT geometry optimization rou-

tine (section 2.1.3). By curve fitting the energetically lowest-lying, pure charge-

transfer states to a parabola function with respect to the O-H distance, one may

obtain a harmonic oscillator-like potential. From this potential, the classical os-

cillation time τHT
n of a particle with hydrogen-mass is calculated, assuming that

the electronic state is conserved during the movement of the hydrogen atom. This

oscillation time is assumed to be in the same order of magnitude as the actual

time required to transfer a hydrogen atom from water to the NGO model.

Based on the electronic structure and the hydrogen-transfer time, the electron

dynamics of the proton-coupled electron transfer is simulated by applying a

modified Liouville-von Neumann equation (see section 2.2.2). In this modified

version, the time evolution of the reduced density matrix ρ̂1(t) reads

∂ρ̂1(t)

∂t
= − i

h̄

[
Ĥel, ρ̂1(t)

]
−1

h̄

[
Ŵ , ρ̂1(t)

]
+

+
i

h̄

[
~̂µ · ~F (t), ρ̂1(t)

]
+

ˆ̂LDρ̂∞(t) (2.127)

where an additional anti-commutator term − 1
h̄

[
Ŵ , ρ̂1(t)

]
+

leads to a norm loss

with respect to the hydrogen transfer, in a similar way as the complex absorbing

potential introduced in section 2.3.1. The potential operator Ŵ in this model

reads

Ŵ =
∑

n

ΓPCET
n

∣∣Ψn

〉〈
Ψn

∣∣ =
∑

n

DCT
n

τHT
n

∣∣Ψn

〉〈
Ψn

∣∣ (2.128)

Within this expression, every state n is associated with a decay channel ΓPCET
n

that reduces the overall norm with a positive, non-zero rate that becomes exactly

the inverse hydrogen-transfer time (τHT
n )−1 in case of pure charge transfer (where

DCT
n becomes 1). For all other channels, the rate is modulated by DCT

n . Due

to the projection operator |Ψn〉〈Ψn|, the decay rate is also proportional to the

momentary population of the respective state, so that charge transfer may
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only occur from previously occupied states. Finally, the thermal dissipation

introduced in the Louvillian super-operator
ˆ̂LDρ̂(t) in equation (2.127) couples

all states |Ψn〉 and |Ψm〉 to each other, via a Lindblad formalism of the form

L̂Dρ̂(t) =
∑

mn

Γtherm
mn

2

([
Ĉmn, ρ̂(t)Ĉ†mn

]
+
[
Ĉmnρ̂(t), Ĉ†mn

])
(2.129)

where the Lindblad operators Ĉmn = |Ψm〉〈Ψn| steer the population transfer

modulated by the individual channels-transfer rates Γtherm
mn . These rates in turn

are determined as a sum of values along a Lorentzian

Γtherm
mn = γ

∑

q

∣∣∣∣
(γ/2)2

(∆Emn − h̄ωq)2 + (γ/2)2

∣∣∣∣ , with Em > En (2.130)

for the different vibration frequencies ωq of the q normal modes of the molecular

model system, with a width at half maximum of and scaled by the vibronic

coupling strength parameter γ. This coupling strength parameter is therefore

a handle to simulate more extended systems than the small model molecules,

while keeping the general character of transitions between them in the picture

of molecular vibrations ωq. The effects of finite temperature are then modelled

from invoking the detailed balance condition between the backwards and forward

reaction rates in SI units Γmn = Γnm · exp(−h̄∆Emn/kBT ).[83] In this expression

kB is the Bolltzmann constant and T is the temperature.

Initial computation of molecular properties and electronically excited states were

performed with the ORCA program.[80] The ORCA output was then imported

into the detCI ORBKIT program[82]–[84] to perform the time-propagation in the

ρ-TDCI framework. Due to the capability of including the effects of thermal

excitations and deexcitations in the reduced density formulation the method offers

to study the impact of vibronic coupling in an approximate framework while also

including the possibility to incorporate the hydrogen-transfer rate in the form of

a complex absorbing term.



3 | Results and Conclusions

The overall goal of this PhD project was to critically investigate how model cal-

culation techniques can be applied to predict the structure-property relationship

of energy-related materials for different processes. This chapter therefore sum-

marizes the most important methodologies that were established throughout this

research and highlights findings of the individual subprojects in separate sections.

At the end of each section, a conclusion is drawn with respect to the importance

of the work and perspectives are outlined for future studies.

3.1 | ICD Rate Interdependence with Respect

to Paired Quantum Dot Geometry

In the course of this work an established method[39], [85] for calculating the ICD

rate of a paired quantum dot model system was used to study the interdependence

of the ICD rate ΓICD with respect to several geometry parameters at once.

Earlier studies successfully probed connections between ΓICD and individual ge-

ometric parameter variations like the interparticle distance R,[39] absorber QD

height hA
[85] and quantum dot width r⊥[85] (i.e. thickness of the quantum wire)

in both the explicit 3-dimensional system as well as the pseudo 1-dimensional sys-

tem. It was found that shorter distances R as well as larger hA lead to increased

ICD rates, while a maximum was found with respect to a specific thickness r⊥
of the wire. Since there exists no analogous term for the latter parameter in the

asymptotic equation (2.108)[38] for predicting the ICD rate of atoms and small

molecules, this equation is not necessarily fully transferable to quantum dots.

To further elucidate how the ICD rate changes under geometric control of

the charged paired quantum dot system, in this work the remaining unprobed

emitter height parameter hE was investigated. Further, a scan for changing

several geometrical parameters at the same time was performed to investigate

whether there is an interdependence of the ICD rate with respect to R, hA and

hE. For this purpose three different inter-particle distances R (88.62 to 108.36

nm) with five different absorber QD heights hA (30.50 to 46.59 nm) and 64

emitter QD heights hE (11.41 to 23.29 nm) were investigated (converted to real

units of a GaAs system). Figure 3.1 shows the result of one two-dimensional

scan for the parameters hE and hA for a fixed interparticle distance R.

49
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Figure 3.1: ICD rates in different charged PQD geometries with respect to the emitter
height hE and absorber height hA at the fixed interparticle distance R = 86.62 nm.
The dashed line connects the maxima of individual sets of parameter scans for better
readability. SI units are obtained by applying the effective mass approximation with the
material parameters for gallium arsenide (see A.1 for details). Reprint with permission
from John Wiley and Sons c©, 2017, for F. Weber et al.,[86] [A.1].

From this figure, one can confirm the previous finding that larger hA typically

result in larger ICD rates. Further, it can be seen that for a fixed hA, a maximum

ICD rate ΓICD can be found for a specific hE. Although it is not possible to derive

a formula for the maximum condition for hE from a numerical parameter scan, one

notices that the maxima of ΓICD with respect to the corresponding hmax
E results

in a rather smooth behaviour (see dashed line in figure 3.1). In fact, it could be

shown that performing spline fits with respect to the maxima for different hA is

a valid tool to predict the maxima within small windows. This was confirmed by

performing shorter scans around the spline-fit predicted values of hmax
E (see short

curves in figure 3.1).

Hence, it can be assumed that there exists a general, albeit non-trivial physical

meaning to these maximum conditions. Indeed, by monitoring the behaviour of

the systems’ polarization and Coulomb repulsion between the two electrons with

respect to hE, two opposing effects are found that are likely responsible for the

occurrence of the maxima. On the one hand, the Coulomb repulsion which is a

measure for the effective distance between the electrons gets smaller for higher

emitter QDs. These lower repulsions result in larger effective distances between

the electrons Reff , which in turn is expected to lower the ICD rate according to the

asymptotic approximation that predicts a R−6 dependency. On the other hand,

for higher emitter QDs a higher polarization of the system is found, which can

be interpreted as sign for pre-ionization of the emitter electron. In other words,
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when the emitter QD becomes more spacious, the electron within the emitter

may move further away from the absorber QD’s electron to minimize Coulomb

repulsion, which reduces the likelihood for ICD due to a lower driving force. At

the same time, this displacement of the emitter electron’s wavefunction closer to

the QD edge, facilitates ejection into the continuum.

Finally, by defining a joint metric called the rate-maximizing height-ratio

χ(hA;R) = hA
hmax
E

one can study the interdependence of the process in a direct

way. In figure 3.2 the obtained rate maxima ΓICD are plotted against the rate-

maximizing height-ratios for different interparticle distances R.

Figure 3.2: ICD rates with respect to rate-maximizing ratios. Note that while χ is
independent of any units, it still depicts a specific set-up, such that not any pair of QD
that follows a specific ratio will result in a maximum. Dashed lines and hollow markers
were used in cases where the potential wells of the absorber and emitter QD started to
overlap - thus marking a boundary region to an intra-molecular energy transfer instead
of a purely inter-particle one, which is how ICD is defined. Reprint with permission
from John Wiley and Sons c©, 2017, for F. Weber et al.,[86] [A.1].

From this figure, one can reconfirm the trend that lower interparticle distances

R generally tend to result in larger ICD rates due to a shorter effective distance

between electrons. Further, the maximally achievable rates ΓICD seem to branch

off from a shared (potentially) ideal behaviour curve for increasing height ratios.

Therefore, one may consider these curves as an indicator for the existence of a

physical limitation of the ICD process with respect to a true maximum ICD rate.

Since recently, calculations for treating the continuum in more than one di-

mension[87] as well as more than three QD potentials and electrons became

tractable,[88] it would be interesting to see in future work if the indicated physical

limitations of a maximum ICD rate per emitter can be overcome in systems of
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several emitter QDs and whether the general rate-maximizing height-ratios still

maximize the overall rate.

3.2 | X-Ray Absorption Response Database

for Graphene Oxides

The second project of this dissertation revolves around probing the surrounding-

specific carbon K-edge X-ray absorption response of graphene oxides. In the

seminal experimental work of Hitchcock et al.[89], [90] it was found that for small,

saturated organic molecules the experimental carbon K-edge absorption of a

larger compound can be qualitatively reproduced by summing up the contri-

butions of individual constituent parts. This way the experimental spectrum of

monochloroethane C2H5Cl can be approximately obtained by a weighted sum-

mation of the experimental spectra of methane CH4 and monochloromethane

CH3Cl. The reasoning behind this phenomenon was that X-ray response of

the 1s electron of the methyl carbon CH3 behaves approximately as the one

in methane, and the monochloromethyl CH2Cl group would match the behaviour

of the monochloromethane, respectively.

Consequently, the X-ray response of carbon 1s electrons can be assumed to be

strongly locally dependent on the adjacent functional groups in such kinds of

molecules. In their work, Hitchcock et al. assumed that the small differences in

the summed spectra of saturated organic molecules do mostly occur from differ-

ences in the symmetry for the constituents and target molecule. For unsaturated

organic molecules, however, the qualitative description was found to break down

since energetic shifts of signals occur due to non-local effects of the strongly de-

localized virtual space.

In the research projects covered in sections A.2 and A.3 a theoretical calculation

method was established that can in principle recover these non-local effects by

calculation of a database of surrounding-specific fingerprint spectra. Ultimately,

the database can then be used to interpret experimental spectra. However, as

outlined in section 2.3.2, the database approach only presents an efficient approx-

imation if the surrounding-sensitivity of the X-ray absorption response is much

smaller than the investigated system. By considering a simple model molecule

(figure 3.3a)) it could be shown that graphitic model molecules the surrounding-

sensitivity for the carbon K-edge reaches only up to two chemical bonds (2-3 Å)

even in conjugated π systems.

In the model molecule shown in figure 3.3a), the circle- and diamond-marked

atoms correspond to chemically identical atoms that result in fully identical X-

ray absorption spectra (see 3.3b)). The triangle-marked atoms, however, are at

different distances with respect to the epoxide oxygen while being in a similar

surrounding up to two chemical bonds. However, despite being chemically differ-
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O

a) b)

Figure 3.3: Comparison of local XA spectra (b) with respect to a model molecule
(a). The spectra shown in (b) correspond to the local single-electron excita-
tions of the 1s electrons at the marked atoms, respective of color and symbol.
Reprint with permission of the PCCP Owner Societies c© in accordance with the
creative commons attribution 3.0 unported licence for F. Weber et al.,[91] [A.2], 2019.

ent groups and being embedded in an otherwise fully conjugated π-system, their

corresponding X-ray absorption spectra only differ by about 0.1 eV in energetic

position, while retaining almost identical intensity.

Following this proof of principle, a database was established using 28 different

model molecules with varying functionalization patterns. The database that was

obtained this way can cover all possible scenarios within the first-order approxi-

mation (also referred to as next nearest-neighbor (NNN) indexing) introduced in

equation (2.120). Since this way, 28 exact theoretical spectra S were available,

the composition S̃ of these spectra with respect to the first-order approximation

was used as a sanity-check of the database.

In figure 3.4 two such comparisons are shown. The black solid lines in both

spectra 3.4a) and c) present the exact theoretical result S, whereas the cumulative

spectrum is the composition spectrum S̃ in first-order approximation for the two

model molecules depicted in 3.4b) and d), respectively. The color-code for the

summed-up components of the cumulative sum is a direct result of the atom count

for the occurrence of specific groups S̃(Ab).

From the cross-check it became apparent that this first-order compositions are

already capable of reproducing most of the features from the respective exact

spectra. Since the first-order database mean group spectra contain the charac-

teristic features of the chemical environment of the excited atom, it is possible

to assign peaks in a composed spectrum with respect to specific transition types

(e.g. σ∗(C-O)) in the same way as in the analysis of experimental spectra. How-

ever, the method additionally provides a quantitative one-to-one mapping of how

much a specific group of carbon atoms contributes to a signal.

This one-to-one mapping of intensity to individual group contributions may ulti-

mately be used for fitting also experimental spectra with respect to the database

mean group spectra to predict potential chemical compositions and functionaliza-
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Figure 3.4: Comparison of exact theoretical spectra (black solid lines in (a) and
(c)) with database compositions (cumulative sums of different groups, color-coded
with respect to the respective carbon atoms) of two model molecules (b) and (d).
Reprint with permission of the PCCP Owner Societies c© in accordance with the
creative commons attribution 3.0 unported licence for F. Weber et al.,[91] [A.2], 2019.

tion patterns up to the radius specified by the order of approximation. One such

fit is shown in figure 3.5, where the cumulative sum of individual components

was collected into four main contributions. The existence of the chemical groups

that were identified with the database fit were confirmed by the experimental-

ists through additional measurements like infra-red spectroscopy (see A.3). The

predicted elemental composition from the fitted composition was confirmed to lie

within the typical range for graphene oxides.[43]

Finally, especially the one-to-one mapping of intensity to chemical groups allows

to in principle identify extended structural regions in experimental spectra of

amorphous substances, what makes the method appealing specifically for the

study of graphene oxides. However, the methodology is not limited to the carbon

K-edge and a simultaneous fit to the oxygen K-edge spectra is likely to improve

the quality of the predictions, because the occurrence of any oxidized carbon

group in the carbon K-edge fit dictates the occurrence of the same group in the

oxygen K-edge fit.
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Figure 3.5: X-ray absorption database fit (colored sum spectrum) of an exper-
imental total fluorescence yield measurement of a graphene oxide sample (black
solid line). The composition of functional groups may be taken from [A.2].
Reprint with permission of the PCCP Owner Societies c© in accordance with the
creative commons attribution 3.0 unported licence for F. Weber et al.,[91] [A.2], 2019.

3.3 | Proton-Coupled Electron-Transfer

Dynamics of water splitting at N-doped

Graphene Oxides

The third project of this dissertation had the goal to optimize a model QD system

with respect to a dynamic process that requires describing an electronic as well

atomic movement. The process under investigation is the proton-coupled electron

transfer (PCET) in the water-splitting reaction on nitrogen-doped graphene oxide

quantum dots (NGO-QD). Here, a water molecule that is close to a reaction site

of an NGO-QD can be excited with light in the visible range to transfer both an

electron and a proton onto the catalyst in a concerted way. Since this presents the

first step in the overall water-splitting reaction it is of large interest to optimize

its performance.

In this project, the overall optimization procedure was carried out in two sepa-

rate steps. In the first step, the general molecular design principles that result

in high electron-transfer capabilities from a water molecule onto a model molec-

ular NGO-QD are investigated. The second step is concerned with finding the

optimal non-adiabatic coupling strength in a model quantum dot at fixed finite

temperature. This coupling strength is connected to the probability of vibronic
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state-to-state transitions in the quantum dot which in turn can be controlled

through the quantum dot size.

For the first step, a molecular design optimization scheme is applied, where every

model molecule is assigned with a rating metric to discover the optimal design

principles. The rating metric takes into account the transition dipole moment, the

sunlight intensity at the respective excitation energy and charge-transfer purity

(see equation (2.122)) for transitions that result in an electron transfer from water

onto the model catalyst. This way, the molecular structure-property relations can

be optimized with respect to the most efficient electron transfer under sunlight

irradiation in a systematic way.

Figure 3.6: Comparison of NGO electron-transfer catalyst designs and performances.
For each of the numbers, the respective group was added to the base scaffold shown
in (b). The spectra in (a) are obtained from the UV/Vis absorption intensities of the
respective molecules. The intensities of each signal in the theoretical line spectrum
were weighted by their respective charge-transfer purity DCT

n of eq. (2.122) and each
line spectrum was Gauss-broadened with a full-width at half maximum of 5 nm. The
dashed black line in the background represents the blackbody radiation spectrum at
5800 K. Reprinted from manuscript in review at J. Phys. Chem. C .[93]

The best candidate structure discovered during this molecular design optimiza-

tion is shown in figure 3.6 along with the CT-purity-weighted absorption inten-

sities in relative scale for each generation of the lead structure until the final

candidate. CT-purity-weighting means that the absorption intensity of every ex-

cited state n was multiplied with its respective charge-transfer purity DTC
n (see

equation 2.122). From the comparison with the blackbody radiation spectrum at

5800 K (i.e. sunlight, dashed line), one can see that the CT-related absorp-

tion improves for each consecutive generation of adding a functional group to the

scaffold. The highest impact on red-shifting the absorption energy from the ultra-

violet regime towards the approximate sunlight radiation maximum was achieved
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by addition of the carboxyl group (generation 3), since together with the ke-

tone oxygen (generation 2) the oxygen atoms may form hydrogen bonds towards

the water molecule that favours a co-planar arrangement of the water molecule.

Addition of the epoxide group (generation 4) and of the phenol hydroxy-group

(generation 5) finally red-shift the absorption signal to 341.2 nm and introduce a

second charge-transfer channel at about 276.7 nm, while also strongly improving

the absorption intensities.

After the candidate model molecule for the second optimization step had been

decided upon, the potential energy surface for the dissociation of one hydrogen

atom from the water molecule was investigated by calculation of the relaxed

reaction pathway (RRP). To do this, constrained geometry optimizations were

performed in which one of the O-H distances inside the water molecule was fixed

at gradually increasing values while all other atoms were optimized freely. For

each of the optimized structures along this reaction coordinate, the excited states

were then determined with TDDFT and all excited states were analyzed with

respect to their charge-transfer purity DCT
n .

Figure 3.7: Relaxed Reaction Path and excited states for the water-splitting reaction
at the NGO interface (below) and snapshots of the active center at highlighted O-
H distances (above). The electronic ground state at each geometry is marked with
blue circles, the energetically lowest-lying pure charge-transfer state is highlighted with
yellow diamonds and partial charge-transfer states are given with green squares and
purple triangles. Red triangles at the top indicate the ionization limit. Filled col-
ored dots highlight further pure charge-transfer states (red, DCT

n > 0.7), intermediate
charge-transfer states (green, 0.7 > DCT

n > 0.5) and partial charge-transfer states (blue,
0.5 > DCT

n > 0.1). Reprinted from manuscript in review at J. Phys. Chem. C .[93]

As can be seen in figure 3.7, the energetically lowest-lying pure charge-transfer

state (yellow diamonds) shows a purely dissociative behaviour, since its total

energy decreases for higher O-H distances. This implies that if the water-NGO
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complex is brought into this pure charge-transfer state, the water-proton dissoci-

ates barrierless and thus leads to the desired product after proton-coupled electron

transfer. From this dissociation curve, the time necessary to get from the start-

ing geometry to the final point of the dissociation curve was calculated to be 7

fs using a simple classical molecular dynamics simulation indicating an ultrafast

proton-transfer channel. Further, it was found that other relevant charge-transfer

channels (green squares and purple triangles) basically followed the same disso-

ciation dynamics. Therefore, it was assumed that each charge-transfer channel

would approximately lead to the water-splitting within the same amount of time.

Using this information, the second optimization step for a model quantum dot

was carried out. To this effect, an electron dynamics calculation method based

on ρ-TDCI (see 2.2.2) was set up to simulate the PCET process in an NGO quan-

tum dot at room temperature (300 K). In this simulation framework the hydrogen

transfer is included as an negative imaginary coupling term in the Hamiltonian

that affects all charge-transfer states. This means that whenever electron den-

sity is excited into one of the charge-transfer channels, the norm of the overall

wavepacket decays with respect to the inverse hydrogen-transfer time modulated

by the charge-transfer purity of this excited state. This way, the efficiency of the

proton-coupled electron transfer can be directly related to the overall norm loss of

the wavepacket. The thermally driven transitions between electronic states (i.e.

dephasing) are modelled by Lindblad operators according to equation (2.129),

where a parameter is introduced that scales the dephasing rates between states

to simulate weak, intermediate and strong non-adiabatic coupling.

Using a moderately intense excitation field of 3.51 × 1013 W/cm2 with a single

pulse of 50 fs length and a carrier frequency that matches the excitation energy

for the lowest-lying pure charge-transfer state, the electron dynamics shown in

figure 3.8 are obtained.

In the initial excitation dynamics (left panel of 3.8) the norm only decreases

by a small amount, indicating that despite using a matching excitation energy

the charge-transfer states are almost not populated. Indeed, when looking at the

populations of the partial and pure charge-transfer states almost no population is

transferred to these states (note that the curves were scaled for better readability).

The reason for this is that the imaginary potential that drives the hydrogen- and

thermal population-transfer channels practically hinders the excitation into the

charge-transfer states by causing an ultrafast dephasing between the ground and

all other states. In other words the pure ground state in the density matrix to

which the resonance condition applies to, is almost never occupied but instead

is in constant exchange with other mixed states that are slightly off from the

resonance condition. This way, rather than exciting the pure ground state into

the desired pure charge-transfer states, a mixed state is excited into a multitude

of excited mixed states that mostly consist of non-charge-transfer states.
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Figure 3.8: Electron dynamics of the proton-coupled electron-transfer process in NGO
QDs at 300 K during initial excitation dynamics over 50 fs (left) and after laser-
shutdown until 1 ps (right). Shown are the norm (black) the laser field (thin light
grey), and populations of the ground state (blue), all pure charge-transfer states (or-
ange, scaled by factor 50), all partial charge-transfer states (green, scaled by factor 20)
and the sum of all remaining non-charge-transfer states (dark grey dashed). Reprinted
from manuscript in review at J. Phys. Chem. C .[93]

In the subsequent field-free propagation (right panel of 3.8), these non-charge-

transfer states then slowly cause a norm loss due to secondary PCET by trans-

ferring population to partial charge-transfer states via thermalization (i.e. non-

adiabatic, vibronic coupling). By probing three different oders of magnitude for

the non-adiabatic coupling strengths, the above case was identified to yield the

highest overall norm loss. Here, the vibronic state-to-state rates translate to an

NGO-QD system with phonon lifetimes of approximately 1 ps. Both higher, as

well as lower coupling strengths result in less norm loss due to secondary PCET.

The reason for this is, that the secondary PCET route is the most efficient when

the thermalization rates towards the charge-transfer states are on a similar order

of magnitude as the PCET rate from these charge-transfer states. If the thermal-

ization between states proceeds faster than the PCET, the population-transfer

channels back and forth between non-CT channels dominate over decaying via

the PCET channels. On the other hand, if the thermalization towards the charge-

transfer states is much slower, then the thermalization limits the overall possible

PCET rate.

Consequently, it is to be expected that thre phonon lifetime within real quan-

tum dot catalysts (which is closely related to the thermalization times and thus

the non-adiabatic coupling) will play an important role for the efficiency of the

PCET process. Further, comparing the very fast hydrogen-transfer time with the

excitation dynamics it is apparent that the rate-determining factor for PCET is
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initiating the electron transfer rather than the hydrogen transfer. Therefore, to

maximize the PCET rate it is desirable to find even better active centres than the

one proposed here. If the current model system was used as a colloidal catalyst

with N active sites that is excited according to the above simulation, the calcu-

lated norm loss suggests that it is capable of initiating PCET in about N · 37%

of water molecules in one picosecond. Note, that this mapping of a norm loss to

a number of occurrences is valid in the sense that the density matrix formalism,

by design, allows to describe probabilities in ensembles of arbitrary size.

To confirm the general predictive power of the proposed model calculation method

it is highly desirable to have experimental data on such water-splitting experi-

ments with a known molecular catalysts of tractable system size. Further, a

confirmation for the method could also be achieved by studying other molecular

systems where experimental data has been collected already, like for the molecules

of the graphitic carbon-nitride family.
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[12] Cambié, D., Noël, T., Top. Curr. Chem. 376, 2018, 45.

[13] Chang, X. , Wanga, T., Gong, J., Energy Environ. Sci. 9, 2016, 2177.

[14] Zhang, Q., Hao, F., Li, J., Zhou, Y., Wei, Y., Lin, H., Sci. Technol. Adv.

Mater. 19, 2019, 426.
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N., Phys. Rev. A 100, 2019, 022706.
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Abstract

In this contribution, the proton-coupled electron-transfer process in optimized nitrogen-

doped graphene oxide (NGO) model catalysts is studied by means of atomistic sim-

ulations. The NGO optimization reveals that especially stabilization of a co-planar

water-catalyst complex, as well as electron-withdrawing ketone groups are key features

for promoting the initial charge-transfer at excitation wavelengths as low as 341.2 nm.

A new model to simulate the dynamics of the overall proton-coupled electron-transfer

process in an electron dynamics framework including non-adiabatic decay channels is

introduced. Numerical dynamical simulations reveal that an intricate balance between

the lifetime associated to vibrational dissipation (i.e. electron-phonon coupling) in the

NGO model and the proton-coupled electron-transfer rate determines the overall water-

splitting efficiency. December 19, 2019

keywords: molecular modelling, electron dynamics, nitrogen-doped graphene oxide, proton-

coupled electron-transfer, water splitting
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Introduction

In light of the ever-growing demand for energy generation it has become a central challenge to

find more resource-friendly and sustainable ways to generate power. Abstractly speaking, this

translates to the goal of finding new processes and materials that generate power using only

abundant, non-toxic materials and available sources of energy, while causing only minimal

amounts of waste. Although several working prototype methods have been found in the

fields of both photovoltaics1,2 and photochemisty,3,4,11 none of them can so far compete

with current non-sustainable energy generation techniques in terms of power output and

production cost. If we therefore additionally desire a comparable efficiency, this adds to

the problem the (arguably much harder to fulfil) economic requirements of minimising the

costs and time per generated unit of energy while ensuring reliability and accessibility of

distribution grids all around the clock.

Considering the possible energy sources, solar energy has become the most extensively

studied candidate due to potentially meeting the required output and providing the necessary

longevity as a sustainable resource. Although not available at all times to every part of the

planet, the solar power of approximately 120 PW5 hitting our planet could in principle

easily cover for the current total energy consumption of roughly 160 PWh6 per year. One

particularly appealing route of harvesting solar energy is via the photochemically driven

water splitting reaction, in which sunlight is used for converting water into its components

hydrogen and oxygen. Here, the generated hydrogen can be used for producing energy-rich

hydrocarbon fuels from carbon compounds7 similar to an artifical photosynthesis. Since

most energy distribution grids in use are based on hydrocarbon combustion, photochemical

generation of such fuels therefore offers a most promising way of storing solar energy in

a readily useful form that would not require the simultaneous re-design of current power

distribution systems.

The formal oxidation and reduction part reactions of the overall water splitting require

the transfer of a total of four electrons from water-bound oxygen onto water-bound protons.
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Oxidation : 2 H2O → O2 + 4e− + 4H+

Reduction : 4H+ + 4e− → 2 H2

However, the requirements for steering this process and the exact interactions between

photocatalyst and environment are an ongoing topic of scientific research. The role of the

photocatalyst is clearly to promote both the electron-transfer from the water-bound oxygen,

as well as the transfer of a water-bound proton. This specific part reaction, which is known

as the proton-coupled electron-transfer (PCET)8,9 has been shown to greatly depend on

both a suitable electronic structure for efficient charge separation, as well as the vibration

dynamics when considering the transfer of the proton between water and the catalyst. Also,

it has been established that this initial activation of the water-catalyst complex is the rate

determining step for the overall water splitting, since all following part reactions seem to

proceed much faster and without an activation barrier.

Two closely related material classes that are known to undergo this kind of reaction are

graphitic carbon-nitrides10 and nitrogen-doped graphene oxides (NGO).11 By theoretical

studies of the smaller building blocks of carbon-nitride it was found that the nitrogen atoms

at the edge of the graphitic sheets act as the proton-accepting units, while the π-network

of the carbon-nitride can accept the electron from the water molecule and delocalize it over

the molecule.12,13

While there are several studies on graphitic carbon-nitrides, the closely related material

nitrogen-doped graphene oxide (NGO) has not been studied in a similarly exhaustive way,

yet. Although the exact oxygen functionalization pattern is hard to determine,14,15 there are

studies for improving the PCET activity that highlight the importance of binding the dopant

nitrogen atoms and functional groups at the edges of the graphitic sheets.16 This indicates

that for NGOs, the PCET mechansim may be working in a similar way as in carbon nitrides.
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More interestingly, the effects of the randomized nature of oxygen frunctionalization patterns

on its water splitting capabilities are still unclear. To therefore establish a basic understand-

ing for the structure-property relationships in this material class, time-dependent density

functional theory (TDDFT) calculations17 are applied on a large catalogue of differently

functionalized NGO model structures to determine their electron-transfer properties. After

finding a candidate model that shows a desirable charge transfer state for an absorption

in the visible range, we study the PCET dynamics that comprise the first partial step of

the water splitting mechanism by applying time-dependent configuration-interaction electron

dynamics calculations in the reduced density matrix formulation (ρ-TDCI).18 Here, thermal

vibronic dissipation for the process is included by assuming coupling strengths that reflect

different timescales for the fastest possible thermalization time. Additionally, we include

coupling hydrogen transfer channels, effectively describing PCET dynamics. This way we

can study which order of magnitude for non-adiabatic coupling strengths would be favourable

when trying to maximize the PCET rate in an example NGO model.

The article is structured as follows. In section “Procedure and Computational Methods”,

we give a detailed description of the approaches and theoretical methods used in this work. In

the results section, we then show the optimized candidate molecule and explain the structure-

property relationships that leads to its performance with respect to excitation (sections

“Structural Optimization” and “Relaxed Reaction Path of the Water Dissociation”). Finally,

the PCET dynamics are discussed in section “Quantum Dynamics” for different excitation

fields and vibronic coupling strengths and the effects of non-adiabatic couplings are discussed.

Procedure and Computational Methods

Optimization of the Model System

To study the photocatalytic water splitting capability of NGO model systems under irradia-

tion with visible light, the first task is to find a reasonably small model system with at least
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one charge transfer (CT) state in which an electron is shifted from the water molecule onto

the NGO catalyst. Under optimal conditions, the associated excitation wavelength should

be close to the maximum intensity of the sunlight emission spectrum at roughly 500 nm,19

while also showing a high excitation probability, i.e. a high transition dipole moment.

We find such a candidate model system by systematic optimization of the oxygen func-

tionalization pattern on a singly nitrogen-doped, coronene-sized carbon scaffold with one

adsorbed water molecule facing the dopant nitrogen atom. This means that several possible

locations and types of functionalizations are probed while gradually increasing the oxygen

content in the model system. In all these models, the position of the nitrogen atom is kept at

the edge position of the candidate structures, since this position has been confirmed as a rea-

sonable reaction site for PCET in other nitrogen-doped molecules.12,13 To avoid calculation

of the complete chemical space of all possible functionalization patterns, a strategy based

on rating functions and general chemical intuition was applied when selecting the probed

patterns. Naturally, the results and design principles obtained this way will therefore only

represent a subset of the overall chemical space of possible configurations.

For determining the CT properties of each candidate structure, ab-initio calculations

are performed with the ORCA program package.20,21 In a first step, a density-functional

theory (DFT) structure optimization with one water molecule placed close to the NGO-

nitrogen is carried out with the CAM-B3LYP functional22 and the def2-SVP23 basis set. As

further corrections, we utilize Grimme’s D3 dispersion correction with Becke-Jones damp-

ing24,25 and add an implicit water environment via the conductor-like polarizable continuum

model (CPCM).28 For speeding up the calculations, the RIJCOSX method26 is applied in

combination with the respective def2-SVP/J auxiliary basis sets.27

After geometry optimization, time-dependent density-functional theory (TDDFT) cal-

culations are applied to obtain the properties of the first 100 excited states of the model

molecules. These calculations are performed with the same functional and parameters as

the geometry optimization, but employ the diffuse def2-SVPD basis set.29 As has been found

5



for the graphitic carbon nitrides, the addition of such diffuse basis functions is essential for

the correct description of Rydberg-like excited states and the long-distance charge transfer

states of water and the NGO molecule.12

CT State Characterization and Rating

To choose the best candidate among all probed molecules, a characterization and rating

scheme is applied. For this purpose, we first need to quantify the degree to which an

excited state describes a charge transfer from water onto the NGO catalyst. For each excited

state n, the natural transition orbitals (NTO)30 are therefore calculated from the respective

transition density matrices T n with elements T nia, describing the excitation from the ground

state wavefunction Ψ0 as

T nia =
∑

σ

〈Ψn|c†iσcaσ|Ψ0〉 (1)

The indices i and a are associated with occupied and virtual molecular orbitals, respec-

tively. Performing a singular value decomposition of the single particle transition density

matrices, T n = UΛV †, yields two orthogonal transformation matrices U and V . These can

then be used to construct the excited state in the NTO representation of hole and particle

basis wavefunctions ψh and ψp.

ψhj =
∑

i

Uijφ
o
i ψpj =

∑

i

Vijφ
v
i (2)

Ψh
n =

∑

j

Λjjψ
h
j Ψp

n =
∑

j

Λjjψ
p
n (3)

Here, index j runs over all eigenfunctions in the NTO basis and i runs over all occupied

(o) and virtual (v) molecular orbitals, respectively. The sum of the respective basis functions

with their individual coefficients Λ from the singular value decomposition then yield the total
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hole and particle wavefunctions Ψh
n and Ψp

n for excitation to state n.

To quantify how strongly a CT state transfers one electron from water onto the NGO

catalyst, we introduce a metric based on Mulliken projectors. We calculate the hole local-

ization on the water molecule as the expectation value of the hole wavefunction projected

onto the atomic basis functions that belong to the water molecule, P̂H2O. In turn, the

particle wavefunction is then projected on all remaining atomic orbitals of the NGO using

P̂NGO = 1− P̂H2O, to yield a measure of the particle localization on the NGO. The product

of both expectation values yields a measure of the overall CT purity DCT
n of state n that

may vary between 0 and 1,

DCT
n = 〈Ψh

n|P̂H2O|Ψh
n〉〈Ψp

n|P̂NGO|Ψp
n〉 (4)

This way, a large DCT
n is obtained when the hole is localized on the water molecule and

the particle is localized on the NGO model molecule for state n. After identifying the CT

states with highest DCT
n among the excited states, each model molecule’s water splitting

capabilities are rated based on a combination of the excitation energy ECT closest to the

sun’s emission spectrum, the CT purity DCT
n and the respective transition dipole moments.

The rating function F is of the form

F = DCT
n µ0n Bλ(λn, T ) (5)

Here, DCT
n is the CT purity of the energetically lowest lying CT state that shows a purity

of at least DCT
n > 0.7 and µ0n is the associated absolute transition dipole moment between

ground and excited state. Finally, the function Bλ is the black body radiation intensity at

the excitation wavelength λn at temperature T

Bλ(λ, T ) =
2hc2

λ5

1

ehc/λkBT − 1
(6)

When using a temperature of 5800 K, one qualitatively obtains the spectral intensity
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distribution of sunlight.19 Consequently, the rating function F assumes large values for pure

CT states that have high transition dipole moments and a favourable excitation energy with

respect to the sunlight spectrum.

Dissipative Many-Electron Dynamics

For the most promising model molecule, an analysis of the many-electron dynamics is per-

formed to understand the timescales of electronic excitation and hydrogen transfer processes

in NGO catalysts. The separate reaction channels with their respective rates Γ relevant for

the PCET dynamics simulation are schematically depicted in figure 1.

Figure 1: Schematic depiction of the reaction channels related to the PCET dynamics be-
tween electronic states |n〉. The green wavy line (hν) depicts the external field excitation.
Straight vertical lines are thermal (de)excitation in blue and red, respectively. The proton-
coupled electron-transfer processes (yellow) lead away horizontally from the ground state
geometry. The rate of hydrogen-transfer is modulated by the charge transfer purity DCT

n

(see section “Hydrogen Transfer Rate”), leading to lower rates for partial charge transfer
(dashed yellow) than for pure charge transfer states.

Firstly, the initial vertical excitation is driven by an external field (shown in fig. 1 with a

green wavy arrow) that excites the ground state |0〉 to a mixture of excited states |n〉. These

states in turn may then horizontally leave the system via PCET channels (yellow wavy

arrows) that are a combination of the inverse hydrogen transfer time and the purity DCT
n of
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the respective CT state (see equation 12 below). Finally, all states may exchange population

via thermalization (red and blue arrows). These thermalization channels allow excited states

without an PCET channel to undergo a secondary PCET process via exchanging population

with PCET-active states. The details of how we obtain these rates, as well as how to drive

the quantum dynamics calculation with implicit vibration-induced relaxation and hydrogen-

transfer will be summarized below.

Time-dependent Configuration Interaction Theory

Dissipative electron dynamics is studied here by means of the time-dependent configuration

interaction method31–33 in its reduced density matrix formulation (ρ-TDCI).18 Formally, a

basis of many-electron pseudo-eigenstates is used to represent the reduced density matrix

(RDM) of the N -electron system as

ρ̂(t) =
∑

mn

ρmn(t)|ψm〉〈ψn| (7)

The many-electron pseudo-eigenstates are computed from time-dependent density func-

tional theory (TDDFT) and approximated as linear combinations of singly-excited configu-

ration state functions, |Φr
a〉,

|ψn〉 = A0Φ0 +
∑

ar

Ara|Φr
a〉 (8)

In the present work, the coefficients Ara for the excitation from an occupied orbital a to

a virtual orbital r are obtained by re-orthonormalizing the many-body pseudo-eigenstates

from a TDDFT calculation at the optimal ground state geometry of the system. This

hybrid TDDFT/CI formalism was shown to provide good energetics in similar charge transfer

systems while retaining the computational scaling of the configuration interaction singles

method.34–36

The RDM evolves according to the Liouville von Neumann equation
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∂ρ̂(t)

∂t
= − i

~

[
Ĥel, ρ̂(t)

]
− 1

~

[
Ŵ , ρ̂(t)

]
+

+
i

~

[
~̂µ · ~F (t), ρ̂(t)

]
+

ˆ̂LDρ̂(t) (9)

where Ĥel is the Hamiltonian of the N -electron system, and the third term on the right-

hand-side represents the coupling of the molecular dipole ~̂µ with a time-dependent external

field ~F (t). The second term involves the anti-commutator over an absorbing potential which

mimics the loss-of-norm due to hydrogen transfer, as will be discussed below. Assuming

Markovian interaction with the environment, the dissipative Liouvillian super-operator in

its Linblad form reads

LDρ̂(t) =
∑

mn

Γmn
2

([
Ĉmn, ρ̂(t)Ĉ†mn

]
+
[
Ĉmnρ̂(t), Ĉ†mn

])
(10)

where Ĉmn = |ψn〉〈ψm| are so-called Lindblad operators that mediate the transfer from

state ψm to ψn at a rate Γtherm
mn , introduced in the next subsection. Using ansatz (7) for the

RDM leads to linear equations of motions that can be integrated numerically using a pre-

conditioned adaptive step-size Runge-Kutta algorithm,37 as implemented in GLOCT.18,38

All matrix elements required for propagating the RDM are computed from the pseudo-

eigenstates, Eq. (8), using the open-source post-processing program package ORBKIT.36,39,40

To model the behaviour of isotropic orientation in solution, all results are averaged over ex-

citations using pulses polarized along the three cardinal directions {x, y, z}.

Vibration-induced Energy Relaxation

Non-adiabatic coupling to the system vibrations leads to energy relaxation and thermal-

ization among the many-electron states used to represent the RDM. By using first-order

time-dependent perturbation theory it was shown that energy relaxation induced by electron-

vibration coupling approximately scales as the inverse of the square of the energy difference

between two electronic states.41 Here, the non-adiabatic relaxation rate Γmn between elec-

tronic states m and n is computed as the sum of the individual contributions of each vibra-
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tional mode q, subject to Lorentzian broadening

Γtherm
mn = γ

∑

q

∣∣∣∣
(γ/2)2

(∆Emn − ~ωq)2 + (γ/2)2

∣∣∣∣ , with Em > En (11)

The upward rates are obtained by detailed balance, Γtherm
nm = eEmn/KbTΓmn . These are

required, since we consider the system at finite the temperature T = 300 K. The normal

mode frequencies ωq are obtained from numerical vibrational analysis of the NGO candidate

molecule at the ground state geometry, while the ∆Emn are the associated electronic energy

differences from the excited states at the same geometry. The parameter γ is introduced as

a measure for the maximum possible relaxation rate from state n to m via non-adiabatic

coupling, and its effect on the many-electron dynamics will be discussed below. Additionally,

the parameter is directly related to a relaxation lifetime via the Lorentzian width.

Hydrogen Transfer Rate

Provided the molecule is electronically excited to a CT state, the water molecule is expected

to fragment into a hydroxyl radical and a hydrogen atom that is transferred to the NGO

catalyst. This hydrogen transfer from water to NGO is expected to strongly impact the

laser excitation dynamics and compete with vibronic relaxation induced by non-adiabatic

coupling (i.e. thermalization). To provide a combined picture of electronic excitation and

hydrogen transfer dynamics, we introduce in Eq. (9) a negative imaginary potential of the

form

Ŵ =
∑

n

ΓPCET
n |Ψn〉〈Ψn| =

∑

n

DCT
n

τHT
n

|Ψn〉〈Ψn| (12)

where τHT
n is the duration associated with the hydrogen transfer process. The role of this

imaginary potential is to absorb the outgoing flux of hydrogen, which ultimately reduces

the overall norm of the wavefunction. Assuming that the reaction is completely irreversible,

the loss of norm yields a measure for the rate of combined electron and hydrogen transfer
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dynamics - i.e. the PCET process. Since the desired final product is an uncharged hydroxyl

and NGO+H complex that can only be obtained from an equally strong proton and electron

transfer (i.e. the pure charge transfer case of DCT
n = 1), the rate at which a given state n

is annihilated, 1/τHT
n , is modulated by its CT character DCT

n , obtained from the previous

NTO analysis (see Eq. (4)). This will be discussed in more detail in the results section.

We estimate the decay time τHT from the vibrational period of the atom on the lowest-

lying charge transfer state with the highest DCT
n . A relaxed reaction path (RRP) for the

water splitting reaction of the candidate NGO system is first constructed by performing

constrained structure optimizations of the ground state DFT level (cf. section “Relaxed

Reaction Path of the Water Dissociation”) where the O-H bond of the water molecule facing

the nitrogen is constrained to different lengths. Subsequent TDDFT calculations at each of

these geometries yield potential energy curves of multiple electronically excited states along

the reaction coordinate. The first pure CT state, identified by following the energetically

lowest lying state with the largest DCT
n along the RRP, is then fitted to a harmonic potential

centered at proton transfer geometry. We define the decay time for the hydrogen transfer τHT
n

as the time required for the hydrogen atom (mass M = 1.00797 a.m.u.) to decay towards

the minimum of the pure CT state, starting from the pure CT state in the ground state

geometry. Throughout all subsequent electron dynamics simulations, the hydrogen transfer

time estimate of τHT
n = 7 fs is used.

Results and Discussion

Structural Optimization

The NGO model molecule developed in this study is obtained after five stages of successive

functional group addition to the N-doped coronene base structure (total number of 158 model

structures, see ESI for more information). The excitation properties of the most suitable

candidate at each stage are collected in table 1 and figure 2 shows which structural features

12



were added at each stage. The final candidate NGO model shows an extended π-conjugated

network that contains two ketone groups (stages one and two), as well as one carboxyl group

(stage three). This special arrangement allows the water molecule to be hydrogen-bonded

in co-planar fashion to both one of the carboxyl oxygen atoms as well as the ketone oxygen

added in stage one. Further, the electron withdrawing effects of the oxygen atoms overall

facilitate the transfer of a p-electron from the water molecule to the π-system of the NGO

molecule, effectively red-shifting the excitation wavelength for the pure CT state from 186.3

nm in the unfunctionalized pristine case to 341.2 nm in the proposed candidate NGO model

(compare table 1).

By addition of the epoxy group to the model molecule at stage four, the excitation wave-

length is again red-shifted, while however strongly lowering the transition dipole moment.

Therefore, although the phenol group of stage five slightly blue-shifts the excitation wave-

length and lowers the charge transfer purity DCT
n for the pure CT state, it causes a much

better transition dipole moment again - which is why this last modification still provides

an improvement. It shall also be noted that the introduction of hydroxyl groups saturat-

ing a π-bond with -OH and -H generally leads to a blue-shift of the excitation wavelength

for almost all probed cases. Since a blue-shift of the excitation energy will lead away from

the optimum of 500 nm, this indicates hydroxyl groups are unfavourable for optimising the

electron-transfer properties.

Among the first 100 excited states of the final candidate molecule, only the two states

number 15 and 80 (numbering according to the ORCA20 output) qualify as pure charge

transfer states with DCT
n of at least 0.70. Besides these two, there exist ten additional states

with DCT
n values of at least 0.10, which shall be referred to as partial CT states in the

following.

The hole and particle NTO wavefunctions (cf. equation 2) that describe the pair of

energetically lowest-lying partial and pure CT states are shown in figure 3. From these

NTO wavefunctions one can see that the hole wavefunction of the partial CT state 14 is
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Figure 2: Development of the final candidate molecule. Numbers and colors indicate what
changes were introduced in which stage.

also localized on the NGO catalyst’s carboxyl group, while the pure CT state 15 shows

an almost exlcusive localization on the water molecule. Note that the numbering of states

according to ORCA20 is not necessarily ordered energetically. The particle wavefunctions of

both pure and partial CT states are essentially identical and spread over the π-conjugated

ketone groups and adjacent pristine C atoms. This analysis of the electronic structure in

terms of energies and densities has already several implications for the molecular design

principles of efficient NGO catalysts. Firstly, it shows that the charge transfer to the NGO

can be facilitated by adding electron-withdrawing substituents to the π-system, because it

lowers the energy of the particle wavefunction. However, due to the particle wavefunctions

being so similar for partial and pure CT states, such adjustments result in a red-shift for the

excitation wavelength of both the partial as well as pure CT states in comparable magnitude.

Secondly, since the hole wavefunction is the only substantial difference between the partial

and pure CT state’s NTOs, the only way of favouring a pure CT over partial CT is to

disfavour the partial CT state’s hole wavefunction. In the proposed final candidate structure

(as shown in figures 2 and 3), this is achieved by a push-pull asymmetry introduced with

the carboxyl group, relative to the ketones. While the carboxyl group is electron-rich, it is
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Figure 3: Hole and particle wavefunction of the energetically lowest-lying partial CT state
14 and pure CT state 15 in a contour plot with a cutoff of ±0.05.

Table 1: Charge transfer characteristics of the different generations of NGO model molecules.
Numbers in parentheses reflect states that come closest to the pure/partial state description,
while missing the requirement of DCT

n > 0.70 and DCT
n > 0.10, respectively.

Development exc. wavelength DCT
n | ~µ0n|2

Stage pure/part. [nm] pure/part. pure/part. [au]

Pristine 186.3 / 170.5 0.75 / 0.18 1.18 / 2.07
Stage 1 (238.7) / (298.9) (0.66) / (0.08) (0.01) / (0.01)
Stage 2 (270.1) / 263.3 (0.38) / 0.22 (0.001) / 0.08
Stage 3 329.0 / (306.6) 0.89 / (0.03) 0.05 / (0.04)
Stage 4 344.4 / (310.0) 0.93 / (0.02) 0.03 / (0.02)
Stage 5 341.2 / 276.6 0.89 / 0.14 0.08 / 0.39

also electrophilic, thus disfavouring the formation of a hole in this region. This is reflected

by the large drop in DCT
n of the lowest partial CT state from stage two to three (see table

1).

Finally, it shall be noted that the arrangement of the water molecule with respect to the

NGO seems to be important for the CT process. While the water molecule is rather randomly

oriented with respect to the O-H-N bond in the first stages of the candidate development, all

of the 16 structures of the last functionalization stage only feature a co-planar arrangement

and two O-H-O hydrogen bonds instead.
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Relaxed Reaction Path of the Water Dissociation

Figure 4: Relative energies of the electronic ground state (blue circles), lowest-energy pure
CT (yellow diamonds) and partial CT states (green squares and violet downwards trian-
gles) and the ionization limit (red upwards triangles) as function of the O-H bond distance.
Additionally, the adiabatic states are shown in the background according to their ener-
getic ordering at each geometry with gray thin lines. Colored dots highlight states of pure
(DCT

n > 0.7, red), intermediate partial ( 0.7 > DCT
n > 0.5, green) and partial CT character

(0.5 > DCT
n > 0.1, blue) The NGO+H active site geometries are displayed in the upper

panels at selected distances.

The RRP was obtained by a constrained geometry optimization of the NGO water com-

plex, where the O-H bond closer to the NGO nitrogen was elongated in sequential steps. The

upper panels of figure 4 show cutouts of the molecular structures featuring the elongation of

the O-H bond that eventually leads to the formation of an N-H bond between the NGO and

the former water-proton. The proton transfer is accompanied by a rotation of the carboxyl

group around the distance of 1.4 Å, such that the repulsion by the free electron pairs of the
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water-oxygen is minimized. In the lower panel of figure 4, the relative energies of the ground

state (blue circles), as well as the energetically lowest lying partial and pure CT states (green

squares and yellow diamonds, respectively) are given along the relaxed reaction path (i.e.

O-H distances). Note that state numbers may change between geometries due to state cross-

ings or changes in CT character. Consequently, only the energetically lowest-lying pure as

well as a pair of partial CT states are highlighted by following the dominant charge transfer

numbers at each of the geometries. Further, the CT states are labelled at each geometries

according to their strength, separated in pure CT (DCT
n > 0.7, red), intermediate partial

CT (0.7> DCT
n > 0.5, green), and weak partial CT (0.5 > DCT

n > 0.1, blue). Finally, the

ionization limit (red triangles) is estimated from the cation energy at the same geometry.

As one can see, the dissociation of the O-H bond is energetically unfavourable in the electronic

ground state (blue circles) since the energy increases along the reaction coordinate. For the

pure and partial CT states (yellow diamonds and green squares/violet triangles, respectively)

the dissociation is favourable, thus confirming the general possibility of driving the PCET

reaction after excitation into such states. The dynamical behaviour in the partial and pure

CT states is nonetheless expected to be different. At a distance approaching 1.3 Å, the

hydrogen atom becomes shared between the nitrogen atom of the NGO and the OH fragment.

This leads to a mixing of the state characters, as seen from the reduction of the CT purity

DCT
n . The partial CT character is also spread over many states, bracketed by the green and

violet lines. This strong character mixing implies that hopping between these states will

occur rapidly, leading to an overall return of the hydrogen towards the original NGO+water

conformation. This can be inferred from the behaviour of the adiabatic potential energy

curves in grey, that all favor this conformation. On the contrary, the pure CT state has

little overlap with all other states in this energy window due to its very different character.

The branching ratio for dynamics in this state will thus be strongly biased towards the

hydrogen transfer, as coupling to the states favoring the original NGO+water conformation

is weak. This branching ratio can be included in the dynamics by modulating the PCET

17



rate according to the degree of charge transfer DCT
n , as described in the theory section.

For distances larger than 1.92 Å, the partial (dashed line) and pure CT states energies

become almost identical. This energy convergence towards the pure CT state is caused by

the partial CT states splitting, with one adopting a pure CT character beyond this distance.

The reason for this can be understood from the changes in the bonding situation: While

the pure CT related electron originates from the p orbital perpendicular to the H-O-H plane

(cf. figure 3), the in-plane p orbitals are used for forming the O-H bonds. For longer O-H

distances, however, one of the in-plane p orbitals is now available for donating an electron to

the NGO catalyst molecule, as well. This behaviour can be confirmed by analyzing the DCT
n

values at the different distances for both the pure and partial CT states (see figure 5a)). Here,

one finds that for larger distances the partial CT states DCT
n values (green squares) approach

the pure CT state beyond a distance of 2.0 Å. Additionally, there is a local minimum in the

pure CT and local maximum in the partial CT states’ DCT
n close to an O-H distance of 1.5

Å, which is indicative of either a local avoided crossing or a conical intersection between the

potential energy surfaces of partial and pure CT states around that distance.

Since the ground and CT states become energetically close for large O-H distances, there

is in principle a possibility for either of the states to return to the ground state potential

energy surface and thus towards the undesired initial reactand geometry. When analyzing

the absolute transition dipole moment |µ0n|2 for the partial and pure CT states in figure 5b),

however, one notes that with increasing distances, it becomes smaller and smaller, making

a return to the ground state potential surface less likely. Finally, we indirectly confirm

the biradical final product at approximately 2.6 Å by analyzing the Mulliken charge of the

fragments of the electronic ground state (figure 5c)). The fragments were chosen such, that

the oxygen and hydrogen of the former water molecule build up one fragment (OH), and the

NGO molecule and the transferred hydrogen build up the other (NGO+H). Since the OH

fragment (red triangles) shows a negative charge and the NGO+H complex (blue circles)

a positive one at the largest separation, the charge transfer states that purely transfer one
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electron from the OH fragment onto the NGO+H complex need to be charge-neutral on each

fragment.

Figure 5: DCT
n values (a) and magnitude of the transition dipole moments |µ0n|2 (b) for

transition from ground state into the pure (yellow diamonds) and partial CT states (green
squares and purple triangles) at different OH bond lengths. Panel (c): Partial Mulliken
charges Ci on the NGO+H fragment (blue circles) and OH fragment (red triangles) are
given for the electronic ground state.

Quantum Dynamics

The quantum dynamics for the PCET step of the water splitting reaction can be treated

in an explicit electron dynamics framework with implicit nuclear dynamics implemented

through the hydrogen transfer rate 1
τHT
n

as introduced in section “Dissipative Many-Electron

Electron Dynamics”. In the following, we shall split the discussion of our findings into one
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section for the dynamics during the initial excitation pulse and one section for the dynamics

after the pulse. In all cases, the state populations shown below are an average for three

individual excitation dynamics with linearly x, y and z polarized external fields. This way,

the behaviour of an isotropic arrangement of NGO-water complexes is obtained.

To test the behaviour of the NGO-water complex for various excitations, different parametriza-

tions for both the external field as well as the non-adiabatic thermalization rate γ are used.

For the external field, the numbers chosen mimic readily available laboratory lasers. We

probe three different pulse lengths ts (25, 50 and 100 fs) and two different amplitudes

(0.001 au and 0.01 au). Since the amplitudes translate to relatively weak peak intensi-

ties of 3.51×1012 and 3.51×1013 W/cm2, respectively, we do not expect that ionization with

respect to multi-photon processes play a role for the dynamics. The frequency of the carrier

pulse is fixed to 0.134 au (341.2 nm), which corresponds to the excitation energy of the

lowest lying pure CT state (see Table 1).

The thermalization rates γ, were chosen such that the minimal thermalization time τγ = 1
γ

of each individual vibration channel corresponds to 10, 1 and 0.1 ps, respectively. These

translate to testing cases of weak, intermediate, and strong non-adiabatic coupling between

the electronic states with respect to molecular vibrations. In all cases, the propagation after

the laser pulse was continued until the respective thermalization time τγ.

Initial Excitation Dynamics

In the following, the simulations for using a pulse length of 50 fs shall be discussed in

detail. The results of other laser set-ups may be taken from table S.II in the electronic

supplementary material. To understand the trends for the dynamics during the external

field excitation for different PCET scenarios, we discuss the left halves of figures 6a-f). Here,

panels a-c) correspond to the external field amplitude with 3.51×1012 W/cm2 peak intensity

(shown in the background in light gray), while panels d-f) reflect scenarios with 3.51×1013

W/cm2 peak intensity. Each panel contains information about the time-dependent norm
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(black), ground state population (blue) as well as the sum over all pure and partial CT state

populations (orange and green, respectively). Additionally, the sum of excited states that

cannot decay via hydrogen transfer (furthermore called “non-CT states” with DCT
n < 0.1) is

given as a dashed gray line. Note that the populations of partial and pure CT states were

scaled for better readability. The panels of each column differ by their thermalization times

that can be found in the lower left corner of each panel.

From panels a-c one can see that in the initial excitation period of 50 fs the norm stays

virtually the same for all values of τγ, while the ground state populations decrease in a

similar fashion in all three cases by about 13%. The lost ground state population is almost

exclusively transferred to non-CT states in all three cases (note the scaling by a factor 1000

for the CT states). This shows that during excitation using a weak pulse, no norm-reducing

PCET occurs, although the excitation frequency is tuned resonant with the lowest lying

pure CT state. The reasons are twofold: First, the imaginary potential term associated with

each partial and pure CT state (cf. equation 12) effectively changes the energetic resonance

condition for the laser excitation, thus leading to a lowered transition probability in general.

Second, due to the ultrafast hydrogen transfer rates ( 1
7fs

= 0.14fs−1), population of these

states would be immediately removed, leading to an immediate decrease in the wavepacket

norm. The ultrafast hydrogen transfer rate also has the nefarious effect of inducing dephasing

between the ground and CT states on the same femtosecond timescale. As the initial and

final states lose their coherence due to this dephasing, population transfer via coherent laser

interaction with light becomes almost impossible. The inefficiency of the excitation process

can be overcome by a stronger perturbation of the system. Therefore, it is only around the

laser field peak intensity, when the excitation probability bebcomes higher than the PCET

rate, that population of pure CT states can be observed.

When focusing on the populations of the partial CT states, one sees that the cases of

weak and intermediate vibronic coupling (panels a) and b), respectively) strongly differ

from the case of strong vibronic coupling (panel c)). While the populations stop increasing
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after the maximum laser amplitude for a) and b), it continues growing over a much longer

time and to a higher overall value for scenario c). The reason for this difference is most

likely connected to the different thermalization rates between states compared to the PCET

rates of the partial CT states: In scenarios a) and b) the fastest thermalization rates are of

the order of Γmn = 0.1ps−1, which is relatively slow compared to the partial PCET rates

DCT
n

τHT = 0.1
7fs

= 0.014fs−1. Therefore, after the population via the laser becomes slower than

the PCET rate, the partial CT populations start to monotonously decrease. In case of strong

vibronic coupling, however, the fastest thermalization rates between states are of the order of

magnitude 0.01fs−1, therefore potentially competing with some of the partial CT channels.

When using lasers with higher peak intensities, d-f), one can see a much more pronounced

depopulation of the ground state to approximately 0.4, associated with an immediate loss

of norm. However, due to fast decoherence between the ground and CT states as discussed

above, most of the excited population is still transferred to non-CT states. As was the case

for weaker intensity pulses, the three regimes of vibronic coupling strengths show no strong

differences in the behaviour of the norm, the ground state, and the non-CT populations.

Although the partial and pure CT state populations are overall much higher compared to

excitations with weak laser fields, the three cases behave similar to each other with respect

to these PCET-active states. Again, one notices that the partial CT state population in

Fig. 6f) is much higher for short thermalization times (note the different scaling factor for

the green and orange curves). However, one also notices that the pure CT states show a

different behaviour for the strong vibronic coupling case, since its peak population is even

less than half of the peak population in the other two coupling regimes. The reason for this

may be that the PCET rates become comparable to that of the thermalization. Since it is

hard to see from the panels a-c), this behaviour cannot be confirmed for the weaker external

field.
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Figure 6: Model PCET dynamics for excitation with different external field amplitudes and
thermalization times τγ. Shown are the norm (black), ground state (blue) as well as the
sums of all pure CT states (orange) and partial CT states (green) as a function of time. The
external field is shown in light grey with respect to the second y-axis. The sums of pure and
partial states were scaled for better readability as indicated above the panels. Note, that
some pictures have been split into an excitation period and post-excitation period.

Thermalization Dynamics

Next, we focus on the dynamics after the laser excitation for the scenarios depicted in

the right halves of figures 6a-f). First, one notices that regardless of the thermalization
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parameter, the ground state population does not change with time in any of the scenarios.

The reason is that the energetic difference between the ground and excited states is too large

to be overcome for any of the probed vibronic coupling strengths. While the transfer rates

between ground and excited states are indeed finite and non-vanishing, they tend to be of the

orders of ≈ 10−12 fs−1 (i.e. 1 s−1) and are therefore not noticeable on the probed timescales.

When focusing on the cases of lasers with low peak intensities a-c), one finds that for

the weak and intermediate vibronic coupling strengths (panels a) and b)), the partial and

pure CT state populations stay virtually constant as well. While the pure CT states start

off the thermalization dynamics with virtually zero population, the partial CT states are

re-populated through thermalization at a similar rate as their PCET decay. Eventually, for

very high thermalization rates, scenario c) even shows an increase of the partial CT states

population close to the end of the propagation. This can be explained by the thermalization

rates that become competitive with the PCET rates.

When turning to the thermalization-induced norm loss, we note that for τγ = 1 ps (panels

b) and e)), the norm loss is the highest. We further notice that it is almost the same as the

decrease in the sum of all non-CT states, indicating that the losses are caused by secondary

processes – i.e. non-PCET states populating partial or pure CT states, that may then decay

through the hydrogen transfer channel (see section “Dissipative Many-Electron Electron

Dynamics”).

The same behaviour for both the state populations as well as the norm loss can be found

for the higher amplitude excitation scenarios d-f), albeit in a much more pronounced fashion.

Especially for the intermediate vibronic coupling scenario shown in panel e), the final norm

is at 0.63 – indicating that almost half of the NGO-water complexes have initiated a PCET

process after the simulation time of 1 ps. Again, a high efficiency of the secondary PCET

for the non-CT states can be observed.

Since neither the partial nor the pure CT state populations change drastically, it is

reasonable to assume that the important thermalization processes leading to the secondary
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PCET are of the same order of magnitude as their connected PCET channels. Also, since

the faster hydrogen transfer time for a pure CT state is 7 fs while the shortest possible

thermalization time is of the order of 1 ps for this case, one would expect that the secondary

decay channels causing the norm loss need to be connected to “non-CT → weak partial

CT → hydrogen transfer” processes rather than to pure CT states when following the same

timescale difference argument as discussed for the excitation dynamics.

To prove this hypothesis, the thermalization rates for the most prominent excited non-CT

states are compared with the rates of their respective target PCET channels. To find which

states are the most prominent, a series of thermalization dynamics with initial population in

each of the individual excited non-CT state is performed. This allows to extract the state-

specific norm losses originating from thermalization processes. Weighting each state-specific

norm loss with the state populations at the end of the laser pulse in the actual dynamics,

the non-CT states can be sorted according to their importance for the secondary PCET.

Fig. 7 depicts the detail of the thermalization dynamics for scenario e). The bold gray

dashed line represents the sum of all non-CT states that decrease at almost identical rate

than the overall norm (black line). When taking the seven non-CT states with the highest

importance for the secondary PCET (thin colored lines), one may decompose the gray line

further into the sum of important (dashed blue line) and unimportant non-CT states (dashed

red line). The blue dashed line again decreases similarly to the gray one while the red dashed

line follows a slower decay. This is indicative that the excited non-CT states with higher

secondary PCET efficiency are responsible for the observed norm loss. Note that the blue line

converges monotonically to the gray dashed line when including more partial contributions.

Analyzing individual thermalization rates Γtherm
mn (cf. equation 11) of the seven dominant

states m towards all other states n, one recognizes that the timescales for thermalization and

hydrogen transfer processes are of similar magnitude in some cases. In particular, states 7,

58, 63, and 64 have PCET rates of a few picoseconds, comparable with the thermalization

regime τγ = 1ps. However, these states have almost no initial population and therefore
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Figure 7: Left panel: Detailed thermalization dynamics for τγ=1 ps and peak intensity 3.51
1013 W/cm2 (as in figure 6e)). The bold black line represents the norm of the wavefunction,
and the gray dashed line represents the sum of all non-CT states. The thin solid lines
represent the seven most important non-CT states that decay via secondary processes. The
thin dashed blue and red lines give the sum of these seven states and all remaining non-
CT states, respectively. Right panel: Secondary hydrogen transfer channels of the seven
most important non-CT states. Circled numbers refer to the n-th electronic state, numbers
above the arrows reflect the individual thermalization/PCET rates. The bold circles are
color-coded as the populations in the left panel.

do not strongly contribute to the decay in a direct PCET process. They are, however,

suitable for indirect PCET decay via secondary thermalization from neighbouring excited

non-CT states. After the pulse of 50 fs duration, direct PCET has contributed to the

depopulation of the short-lived CT states and only partial CT-states remain populated.

The dominant contributions stem from states 9, 66, 67, 71, and 72 in the case presented in

Fig. 7. The equilibrium for these states is strongly biased towards states 7, 58, 63, and 64,

which present a thermal stability comparable to their PCET rates. Consequently, PCET

and further thermalization become competitive, which explains why this specific choice of

pulse duration and thermalization rate leads to the highest light-to-proton transfer efficiency,

as documented by the largest overall loss-of-norm after thermalization. In general, these

considerations explain why both lower or higher thermalization times τγ potentially lead to
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less secondary thermalization norm loss. For τγ = 10 ps, the thermalization rates become

too slow compared to even the lowest hydrogen transfer rates, and the populations remain

trapped in the states or slowly return to the global ground state. On the other hand, for

a lower τγ = 0.1 ps, thermalization becomes too fast and dominates PCET, while reducing

the excitation probability by increasing the dephasing rate.

It can be inferred from these simulations that the efficiency of the PCET process can

be enhanced by optimizing the non-adiabatic couplings of the electron dynamics to the

NGO phonons, such as to maximize the relative importance of the secondary PCET process

induced by thermalization.

Conclusion

In this work we provide a detailed discussion of the proton-coupled electron-transfer (PCET)

dynamics for the water splitting by as nitrogen-doped graphene oxide (NGO) model molecule.

In a first step, we determine important functionalization patterns that facilitate the initial

charge transfer (CT) step from water onto NGO. It is observed that a π-conjugated network

of electron-withdrawing groups is important for stabilising the particle wavefunction on the

NGO catalyst such that the excitation wavelength shifts form the ultraviolet regime towards

the visible light spectrum. Additionally, a co-planar arrangement of the water molecule is

found to be important for lowering the excitation energy further.

Using an optimized model containing all important molecular features for the charge

transfer state, the dissociative nature of the charge transfer states is confirmed by calculating

the reaction pathway for the hydrogen transfer reaction. The dissipative many-electron

dynamics of the proton-coupled electron-transfer is studied by means of the time-dependent

configuration interaction in its reduced density matrix variant (ρ-TDCI). The coupling of

the electron dynamics to the phonons of the NGO model is computed from normal mode

analysis and using a phenomenological scaling constant that determines the thermalization
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timescale in the system. The vibrational lifetime of the pure charge transfer state, which is

found to be ∼ 7 fs, is used to define a hydrogen transfer rate. It enters the dynamics as a

loss-of-norm channel, which quantifies the efficiency of the hydrogen transfer process. The

computational setup allows simulating laser excitations of a water NGO complex at finite

temperatures, as well as the PCET and thermalization dynamics, to determine their relative

timescale and efficiency.

From these simulations, we find that applying a short field at relatively high peak intensity

leads to a important norm loss in the water NGO complex of 0.09 directly after the laser

pulse. It is also observed that thermalization of longer-lived partial charge transfer states

can increase the PCET yield on the picosecond timescale. For the optimal combination

found in this work (50 fs pulse with 3.51 1013 W/cm2 peak intensity and a thermalization

rate τγ = 1 ps), slightly more than a third of an ensemble of NGO-water complexes would

undergo water splitting at room temperature. Comparing these timescales to the ultrafast

hydrogen transfer time in a CT state, we observe that the rate of water splitting is strongly

limited by the efficiency of the initial optical excitation, largely due to the rapid dephasing

in the system. An intricate balance between non-adiabatic thermalization pathways and

the hydrogen transfer indicates the importance of considering temperature and vibronic

coupling in the design of such materials for applications in nanoscopic devices. From the

probed vibronic coupling strengths, we conclude that thermalization lifetimes of the order of

1 ps are desirable for devices that are operating at room temperature. The thermalization

lifetime, which is related to phonon lifetimes, could be controlled by optimizing dopant and

defect concentrations in NGO catalysts, as well as by modifying the size of the active site.
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