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Abstract: In this paper, we compute the affective-aesthetic potential (AAP) of literary texts by using a
simple sentiment analysis tool called SentiArt. In contrast to other established tools, SentiArt is based
on publicly available vector space models (VSMs) and requires no emotional dictionary, thus making
it applicable in any language for which VSMs have been made available (>150 so far) and avoiding
issues of low coverage. In a first study, the AAP values of all words of a widely used lexical databank
for German were computed and the VSM’s ability in representing concrete and more abstract semantic
concepts was demonstrated. In a second study, SentiArt was used to predict ~2800 human word
valence ratings and shown to have a high predictive accuracy (R2 > 0.5, p < 0.0001). A third study
tested the validity of SentiArt in predicting emotional states over (narrative) time using human liking
ratings from reading a story. Again, the predictive accuracy was highly significant: R2

adj = 0.46,
p < 0.0001, establishing the SentiArt tool as a promising candidate for lexical sentiment analyses at
both the micro- and macrolevels, i.e., short and long literary materials. Possibilities and limitations of
lexical VSM-based sentiment analyses of diverse complex literary texts are discussed in the light of
these results.

Keywords: sentiment analysis; SentiArt; computational poetics; affective-aesthetic potential;
machine learning; digital humanities; neuroaesthetics; literary reading

1. Introduction

Emotion recognition is a vital aspect of daily human life, important for survival, social,
or professional reasons. However, only very recently—in evolutionary terms—has it become a
challenge to both human readers and computer algorithms to read out emotional information from
(literary) texts, e.g., when using machine-learning-assisted sentiment analysis/SA tools. Perhaps
more than other objects of culture, written texts can induce emotions, since narratives are inseparable
from the emotional content of the plots [1,2]. These emotions or sentiments can determine the most
ubiquitous and basic affective decision of daily life, namely deciding whether we like or dislike
something/somebody [3,4]. What we read about something or somebody also can determine our
behavior, e.g., choosing a movie, buying a book, or voting for someone.

Sentiment analysis (SA) can be defined as: ‘the process of computationally identifying and
categorizing opinions (According to Liu (2015) an opinion is a quintuple, ei, aij, sijkl, hk, tl, where
ei is a named entity (e.g., Abraham), aij an aspect of ei (e.g., a word or phrase expressing an aspect
such as ‘Abraham’s son is sad’), sijkl is the sentiment on aspect ai, (e.g., a valence value or a discrete
emotion label such as ‘sad’), hk is the opinion holder, and tl is the time of the opinion expressing
event) expressed in a piece of text, especially in order to determine whether the writer’s attitude
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towards a particular topic, product, etc., is positive, negative, or neutral’ (Oxford English dictionary:
https://www.lexico.com/en/definition/sentiment_analysis). Although the majority of SAs today are
applied to book or movie reviews with several gold standards allowing one to evaluate the SA tool’s
performance [5], an increasing number of studies applies SA to literature and poetry [6–22].

The standard and most straightforward SA approach nowadays in natural language
processing/NLP, digital humanities, computational linguistics and stylistics, psychology,
or neurocognitive poetics is the lexical one: It simplifies complex emotional information analysis to
a vocabulary-based computation of the polarity, valence, or some other sentiment variable of single
keywords contained in the sentences of the text. Following Miller’s psycholinguistic doctrine [23],
whoever wants to understand how larger text segments can induce emotional processes must start with
those basic units at which all relevant processes and representations in language use come together:
Single words [24]. Words, as has long been known [25,26] are embodied stimuli with the potential to
elicit overt and covert sensorimotor and affective responses [27]. They even can ‘stink’, suggesting that
the affective processes we experience when reading rely on the reuse of phylogenetically ancient brain
structures that process basic emotions in other domains and species [28].

Regarding lexical SA, Bestgen’s pioneering study [8] already suggested that lexical valence can
predict the affective tones of sentences and entire texts quite well, and there is also a lot of recent
evidence for the usefulness and empirical validity of the lexical approach to SA using different tools like
VADER [5], HU-LIU [29], or SentiArt [13]. Like most other tools in the field, the former two are both based
on word lists containing human rating data, i.e., what is sometimes called emotional dictionaries or
prior-polarity lexicons [30]: Vader uses ~7.500 entries https://www.kaggle.com/nltkdata/vader-lexicon,
and Hu-Liu ~6.800; (https://www.cs.uic.edu/~{}liub/FBS/sentiment-analysis.html#lexicon). In contrast,
SentiArt uses an unsupervised learning approach introduced by Turney [31], which is based on
vector space models (VSMs) and a label list representing prototypes of positive and negative semantic
orientation or emotional valence, such as the labels GOOD, NICE vs. BAD, NASTY [32]. Optimally, word
list-based methods should cover each (content) word—or at least a maximum—in the test texts to
be ‘sentiment analyzed’ in order to augment both the reliability and validity of the tool. Practically,
however, such tools often run into problems for several reasons. First, when dealing with highly
literary or ancient text materials, the word lists overall coverage or hit rate can sink below 50% making
the sentiment analysis unreliable. An example is given in Study 3 below, in which two word-list-based
methods that are compared with SentiArt yield suboptimal results due to their low coverage when
applied to a classical text in German, E.T.A. Hoffmann’s (1816) The Sandman. Secondly, if there are
no or only limited word lists available in the language of a researcher’s country, simply translating
existing English lists into that language without empirical cross-validation is problematic [33] since
sensitivity to emotional content varies across languages, which differ considerably in their emotion
vocabularies [34–36]. Collecting human rating data to create new word lists in other languages or to
enlarge existing English ones is costly, but most importantly, there are serious methodological and
epistemological issues about the reliability and validity of human sentiment ratings when they are
turned from a dependent variable (i.e., a ‘subjective’ behavioral measure in response to a stimulus)
into an independent variable (i.e., an ‘objective’ predictor of say the positivity of a text [37,38]).

The big advantage of VSM-based methods like SentiArt is that they avoid these problems: (i) They
require no word lists based on human ratings; (ii) thanks to the public availability of VSMs in >150
languages (https://fasttext.cc/docs/en/pretrained-vectors.html) they can be applied to a multitude of
texts from different countries even in special dialects; and (iii) by creating task- or domain-specific
VSMs, they can be flexibly adapted to different research purposes, e.g., predicting human behavior of
participants reading children books or Shakespeare sonnets [39,40]. The next section describes the
workflow and exact procedure of SentiArt.

https://www.lexico.com/en/definition/sentiment_analysis
https://www.kaggle.com/nltkdata/vader-lexicon
https://www.cs.uic.edu/~{}liub/FBS/sentiment-analysis.html#lexicon
https://fasttext.cc/docs/en/pretrained-vectors.html
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2. SentiArt

Computing the valence, arousal, or affective-aesthetic potential (AAP) of a word, sentence,
or larger text segment with SentiArt requires only two things: (i) The standard SentiArt table for
English (available from the first author via email) that provides valence, arousal, and AAP values
for ~1 million English words from the publicly available wiki.en VSM, and (ii) a table providing the
words—and optimally their corresponding part of speech tags—of the test text (provided by users).
Using a simple table update procedure (e.g., via Excel or a python routine), users can read out say the
valence value for each selected word in the test text from the SentiArt table and then compute the sums
and averages per sentence or chapter.

A novelty of SentiArt thus lies in the fact that it can very easily be applied by non-expert users to
use a general 2d emotion potential space (valence X arousal) as a reference for quantifying the emotion
potential of a test text by localizing the position of its words in this standardized space (The words
of a test text can be either all types (i.e., unique words) including function words or a reduced set of
content words, of lemmas, or content word lemmas, depending on the researcher’s interest and choice).
A link to Figure 1 from Jacobs [13] illustrates the 2d space and the basic procedure applied for creating
it (https://www.frontiersin.org/files/Articles/441916/frobt-06-00053-HTML/image_m/frobt-06-00053-
g001.jpg). Typical users only need the SentiArt table, though, and do not follow the workflow described
in Figure 1a in the link above. For many applications using standard English texts, this procedure will
be sufficient to run a sentiment analysis.
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Figure 1. (a–c) t-distributed stochastic neighbor embedding (tsne) semantic neighborhood 
representation for word BOOK (‘Buch’) in three VSMs with the 10 closest semantic neighbors. 
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based label lists empirically validated [13,42]. 

3. Computation of AAP and evaluation of predictive accuracy, i.e. cross-validation with empirical 
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relatedness values, which are crucial for establishing the 2D emotion potential space and thus the 
results of the SA (for an overview of relevant training corpora, see [12]). 

Figure 1. (a–c) t-distributed stochastic neighbor embedding (tsne) semantic neighborhood
representation for word BOOK (‘Buch’) in three VSMs with the 10 closest semantic neighbors.

However, as mentioned above, some users might want to create their own task-specific VSM,
e.g., because they have reasons to think that the wiki.en VSM is not the optimal one for their test texts
at hand. In this case, the workflow for applying SentiArt is as follows:

1. Selection and evaluation of an appropriate VSM, e.g., one can use the procedure described on
the fasttext homepage (https://fasttext.cc/docs/en/pretrained-vectors.html) to directly download
the (German) VSM called ‘wiki.de.vec’ providing 300d sublexical vectors for each of >2 million
words (e.g., in the original uncleaned version [41]).

2. Selection and evaluation of an appropriate label list, e.g., for valence, one could use the model-based
label lists empirically validated [13,42].

3. Computation of AAP and evaluation of predictive accuracy, i.e. cross-validation with empirical
data (e.g., human ratings)

Each of these three steps involves multiple choices, which influence the results of the SA and will
be described in detail below.

2.1. The Present Study

In this paper, we test the accuracy and validity of SentiArt and its underlying computational tools
by applying it to the different test materials and discuss possibilities and limitations of lexical SA of
complex literary texts.

Study 1. Selecting and evaluating the VSMs

Two crucial ingredients of VSM-based SA are the training corpus and VSM. The VSM (M = R v × d,
where v is the size of the vocabulary and d the dimensionality) is always based on a training corpus
and the choice of the latter will affect the quality and utility of the VSM for the SA purposes at
hand. For example, the publicly available VSM called ‘german.model/GM with GM = R610k × 300;
(https://devmount.github.io/GermanWordEmbeddings/) was trained with the ‘word2vec’ algorithm [43]
on the German Wikipedia and news articles of a single day in a specific year (15 May 2015). Thus,
the VSM incorporates choices regarding the size, representativeness, or specificity of the training
corpus, all of which will influence the quality and validity of the VSM used to compute the semantic
relatedness values, which are crucial for establishing the 2D emotion potential space and thus the
results of the SA (for an overview of relevant training corpora, see [12]).

https://fasttext.cc/docs/en/pretrained-vectors.html
https://devmount.github.io/GermanWordEmbeddings/
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For the present purpose, we chose the widely used, publicly available, and ecologically valid
subtlex database for German [44] as a reference lexicon, which allowed us an evaluative comparison
between three VSMs using an identical set of items. The ~120k words of subtlex overlap sufficiently
with those of a large range of both non-literary and literary texts to obtain stable SA results. We further
chose three publicly available German VSMs as a basis for ‘sentiarting’ the ~120k words of subtlex
(i.e., assigning VSM-based valence and AAP values to each word), which was then used to predict the
valence and AAP values of the words of our test texts. Each VSM was evaluated using a face-validity
approach based on the t-distributed stochastic neighbor embedding (tsne) algorithm [45], as well
as a cross-validation procedure using human valence rating data from the Berlin Affective Word List
(BAWL) [46,47]. Table 1 summarizes the data for the three VSMs.

Table 1. VSM specifications for the present study.

VSM Size (Cleaned 1),
DIMENSIONALITY

Overlap with Subtlex (in
Number of Unique Words) Original Training Corpus

German.model/GM
https://devmount.github.io/
GermanWordEmbeddings/

608.130 (384.183)
300d 86.049 German Wikipedia and news

articles (15th May 2015)

Sentence Dewac/SDEWAC
https://www.ims.uni-

stuttgart.de/en/

1.592.753 (1.354.303)
300d 116.497 unspecified German texts

from the web [48]

Wiki.de/WIKI
https://fasttext.cc/docs/en/
pretrained-vectors.html

2.275.233 (2.133.318)
300d 114.198 unspecified German texts

from wikipedia

1 The cleaning procedure simply deleted all words containing non-alphabetic characters.

2.2. VSM Evaluation

When human rating or other empirical data are available, the validity of a VSM and the VSM-based
SA can straightforwardly be cross-validated [13,49–52]. If such data are not available, face validity
tests, e.g., using semantic arithmetic experiments, are a viable option. The model evaluation tests
proposed for the ‘german.model’ are exemplary in this regard, including multiple systematic semantic
arithmetic and syntactic tests.

Figures 1–3 compare the face validity of the three VSMs sketched in Table 1 using the tsne algorithm.
The idea behind this tsne-based evaluation is that if the VSM is any good for the present purposes,
concepts obviously related to each other, such as the emotionally rather neutral CATS and DOGS
(‘Katze’, ‘Hund’; Figure 2), or the more emotionally valenced concepts in Figure 3 (e.g., DISGUST/’Ekel’)
should be separated but relatively close in semantic space, while a concept like ‘house’ should be
clearly apart. This is indeed the case for all three VSMs in German.

https://devmount.github.io/GermanWordEmbeddings/
https://devmount.github.io/GermanWordEmbeddings/
https://www.ims.uni-stuttgart.de/en/
https://www.ims.uni-stuttgart.de/en/
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
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Figure 2. (a–f) tsne semantic neighborhood representation and violin plots of semantic neighborhood 
density (SND, i.e., the average cosine of the target item with its 50 nearest neighbors; the violin plots 
show the distributions together with quantiles) for five test words (WOMAN, MAN, HOUSE, CAT, 
DOG) in three vector space models (VSMs). 

Figure 2. (a–f) tsne semantic neighborhood representation and violin plots of semantic neighborhood
density (SND, i.e., the average cosine of the target item with its 50 nearest neighbors; the violin plots
show the distributions together with quantiles) for five test words (WOMAN, MAN, HOUSE, CAT,
DOG) in three vector space models (VSMs).



AI 2020, 1 17AI 2020, 1, 7 

 
 

(a) (b) 

 

(c) (d) 

 
 

(e) (f) 

Figure 3. (a–f) tsne semantic neighborhood representation and violin plots of semantic neighborhood 
density (SND) for five test words (DISGUST, EMBARRASSMENT, FEAR, SADNESS, SHAME) in 
three VSMs with their 50 closest semantic neighbors. 
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expected, overall each VSM generates distinct semantic neighborhoods as represented by the tsne 
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neighbors of the target word BOOK (‘Buch’), for SDEWAC it is MOVIE (‘Film’) and THEME 
(‘Thema’), while WIKI produces OPUS (‘Werk’) and THEME (‘Thema’). The data for the list of rather 
neutral words in Figure 2 (WOMAN, MAN, HOUSE, CAT, DOG) suggest that with increasing VSM 
size, the concepts corresponding to these words become better separated in the 2D computational 
semantic space. Thus, while in GM (Figure 2a,b) the concepts CAT (‘Katze’, yellow dots) and DOG 
(‘Hund’, red dots) still widely overlap and are close to WOMAN (‘Frau’, magenta dots) and MAN 
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density (SND) for five test words (DISGUST, EMBARRASSMENT, FEAR, SADNESS, SHAME) in three
VSMs with their 50 closest semantic neighbors.

The results in these three Figures can be summarized as follows. First, the data show that,
as expected, overall each VSM generates distinct semantic neighborhoods as represented by the
tsne method. In Figure 1a, GM produces STORY (‘Geschichte’) and MOVIE (‘Film’) as the closest
semantic neighbors of the target word BOOK (‘Buch’), for SDEWAC it is MOVIE (‘Film’) and THEME
(‘Thema’), while WIKI produces OPUS (‘Werk’) and THEME (‘Thema’). The data for the list of rather
neutral words in Figure 2 (WOMAN, MAN, HOUSE, CAT, DOG) suggest that with increasing VSM
size, the concepts corresponding to these words become better separated in the 2D computational
semantic space. Thus, while in GM (Figure 2a,b) the concepts CAT (‘Katze’, yellow dots) and DOG
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(‘Hund’, red dots) still widely overlap and are close to WOMAN (‘Frau’, magenta dots) and MAN
(‘Mann’, cyan dots), in both SDEWAC (Figure 2c,d) and WIKI (Figure 2e,f), they are clearly apart
from each other and from the concept HOUSE (‘Haus’, green dots). The violin plots show semantic
neighborhood density (snd) for each concept as quantified by the average cosine of the target item
with its N nearest neighbors (where N was set to 50 here) [53].

Finally, the emotional word list in Figure 3, which corresponds to the five negative labels from
the ‘Ekman99′ model [42], i.e., DISGUST (‘Ekel’, magenta), EMBARRASMENT (‘Verlegenheit’, cyan),
FEAR (‘Angst’, green), SADNESS (‘Traurigkeit’, orange), and SHAME (‘Scham’, red). The data show
that the conceptual overlap is much larger than for the neutral words in Figure 2, a finding that can be
expected given the relatively abstract nature of emotion terms compared to concrete categories like
DOG. As can also be seen in Figure 3b,d,f, the three VSM produce different snd values with different
distributional shapes, although the concept SADNESS (orange) appears to be the ‘clearest’ (i.e., highest
snd) in all three VSMs. On the basis of these descriptive data in Figures 1–3, one can expect notable
differences between the three VSMs with regard to predictions concerning the valence and AAP of texts.
The next study describes the computation of the AAP together with the evaluation of the label lists.

Study 2. Computation and validation of lexical valence and AAP values.

Each word of the subtlex database was ‘sentiarted’ as follows. Using the vectors from the three
models summarized in Table 1, we computed the valence values based on the semantic relatedness
(estimated via the cosine similarity between two vectors) between each word in subtlex and the
theoretically motivated and empirically validated ‘Ekman99 emotion labels’ [42]. The model-based
valence of a test word, v(w), is computed according to Equation (1), i.e., as the difference between two
average similarity values: First, the average similarity (s) between the test word (w), and the seven
(m) positive emotion labels (lpos_1−7, = CONTENTMENT, HAPPINESS, PLEASURE, PRIDE, RELIEF,
SATISFACTION, SURPRISE), and, second, the average similarity between the test word and the five
(n) negative emotion labels (lneg_1−5, = DISGUST, EMBARRASMENT, FEAR, SADNESS, SHAME).

v(w) =
m∑

i = 1

s
(
w, lposi

)
/m −

n∑
i = 1

s
(
w, lnegi

)
/n (1)

The similarity between a word and a label, s(w, l), is computed by the cosine between the 300d

vectors for word and label, as given by the VSM, shown in Equation (2). x = −b±
√

b2−4ac
2a .

s(a, b) =

∑ 300
i = 1 Ai Bi√∑ 300

i = 1 Ai2
√∑ 300

i = 1 Bi2
(2)

where Ai and Bi are the vectors for word and label, respectively.
As an example, using the SDEWAC VSM, the computational valence, v(w), for the theoretically

most positive test word ‘reizvoll’ (APPEALING) in the subtlex database yielded an average similarity
with the seven positive labels of 0.23 and an average similarity with the five negative labels of 0.19,
resulting in a theoretical valence of 0.04.

The same procedure is applied for the computation of arousal and AAP values for each
test word. For the latter ones, we used the extended 120 label list [12,48], which is given in the
Appendices of both papers. All these values are summarized in an ‘.xlsx’ table available via email
(ajacobs@zedat.fu-berlin.de). The SDEWAC sheet, for example, gives the valence, arousal, and AAP
values for each of ~120k words from the subtlex database that overlap with the SDEWAC words (the
original German subtlex database has ~200k words, but here we only used those for which a spelling
check had been made (~125k). ~115k of these words overlap with those in the wiki.de VSM, ~90k with
the german.model, and ~120k with sdewac).
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2.3. Label List Evaluation Predicting Human Valence Rating Data

Among the 12 models based on psychological emotion theories that Westbury [42] tested
as candidate label lists, the ‘Ekman99’ [54] model with the above outlined 12 labels was the
winner accounting for about 34% variance in the validation set of >10.000 human valence ratings
database [42,55]. Here, we used publicly available German valence rating data from the BAWL [46,47],
a very successful tool, which has been applied in >100 studies in different fields of research [10], to test
the validity of the translated 12 ‘Ekman99’ labels when used with the three VSM. It is worth noting
that the same validation procedure should, in principle, be applied when using alternative word list
based SA tools, i.e., before using them, one should test how well they predict human ratings from an
independent data base, such as the BAWL or the one by Warriner [55]. As far as we can tell, such a
cross-validation procedure is not yet standard practice, though.

The data in Figure 4 establish an interesting novel finding: The best predictor of human valence
rating data, at least for the German BAWL, is not computational valence based on the ‘Ekman99’ label
list, but AAP based on the AAP list [48], the latter accounting for more than twice the variance than
the former. In a way, this is not astonishing, since the former uses only 12 labels and the latter uses
120 (60 positive and 60 negative items including almost all ‘Ekman99’ labels) thus making it much
less context sensitive and more accurate. This is true for all three VSMs. The VSM yielding the best
performance (R2 > 0.5) is SDEWAC (middle panel), followed by WIKI and GM. Model performance can
be increased to > 0.6 when reducing the rating data to those items which have the highest inter-rater
agreement, e.g., for items with a standard deviation of ≤ 0.9. However, compared to the results of
Westbury [42], an R2 > 0.5 appears pretty good. Human valence ratings very likely are based, in a yet
unknown part, on information retrieved from semantic memory which is of experiential/embodied
origin, as opposed to distributional semantics [2,56]. The perhaps simplest assumption would be to
consider this ‘embodied part’ to account for ~50% of the variance. If this would hold, accounting for
~50% of the variance by means of distributional semantic models seems very promising to us. Given
these cross-validation results, we used this best-fitting VSM for all following SAs.
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rating data, at least for the German BAWL, is not computational valence based on the ‘Ekman99’ label 
list, but AAP based on the AAP list [48], the latter accounting for more than twice the variance than 
the former. In a way, this is not astonishing, since the former uses only 12 labels and the latter uses 
120 (60 positive and 60 negative items including almost all ‘Ekman99’ labels) thus making it much 
less context sensitive and more accurate. This is true for all three VSMs. The VSM yielding the best 
performance (R2 > 0.5) is SDEWAC (middle panel), followed by WIKI and GM. Model performance 
can be increased to > 0.6 when reducing the rating data to those items which have the highest inter-
rater agreement, e.g., for items with a standard deviation of ≤ 0.9. However, compared to the results 
of Westbury [42], an R2 > 0.5 appears pretty good. Human valence ratings very likely are based, in a 
yet unknown part, on information retrieved from semantic memory which is of 
experiential/embodied origin, as opposed to distributional semantics [2,56]. The perhaps simplest 
assumption would be to consider this ‘embodied part’ to account for ~50% of the variance. If this 
would hold, accounting for ~50% of the variance by means of distributional semantic models seems 
very promising to us. Given these cross-validation results, we used this best-fitting VSM for all 
following SAs. 

  
(a) (b) 

Figure 4. Cont.
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Figure 4. (a–f) Human valence ratings as predicted by the valence and affective-aesthetic potential 
(AAP) values computed with three different VSMs. Upper panel: German model (GM), Middle panel: 
SDEWAC, lower panel: WIKI. 
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Indices 

Using the look-up table approach the computation of the mean AAP of stories or book chapters 
is straightforward, coming down to simply cross-referencing a list of words representing a book 
chapter (or a sentence or paragraph) with the corresponding words in the ‘sentiarted’ subtlex table, 
as described above. 

2.4. Evaluation of the AAP Construct Predicting Human Liking Ratings 

The superior predictive validity of the present AAP construct (over the valence construct) was 
established using human valence rating data (Figure 4). Here, we tested it a second time against 
human liking ratings from a reading study using E.T.A. Hoffmann’s The Sandman —a prototypically 
uncanny narrative from 1816 representative of the ’black romantic’ that evokes feelings of suspense 
and immersion in readers [14,57]. (In this study, 20 participants first read the story ‚The Sandman’ 
(divided into 65 segments of approximately equal length; M = 105.5 words; SD = 26.1 words) on paper 
in one go. Afterwards, they had to answer five comprehension questions to ensure that they had 
actually read and understood the story. Finally, the novella was returned to them and they rated each 
of the 65 sections separately on a computer on different scales (liking scale = 1–7). All ratings referred 
to subjects’ experience during the first reading, which was explicitly pointed out to them. The entire 
experiment lasted between 90 and 140 min depending on the reader. The data were averaged across 
readers) For comparison, the liking ratings were predicted by three different predictors: (i) 
Empirically measured BAWL valence ratings (Figure 5a: Green), (ii) SentiWS values obtained from 
the German SA tool of Remus [58] (Figure 5b: Blue), and (iii) the present computational AAP values 
(Figure 5c: Red). 

Figure 4. (a–f) Human valence ratings as predicted by the valence and affective-aesthetic potential
(AAP) values computed with three different VSMs. Upper panel: German model (GM), Middle panel:
SDEWAC, lower panel: WIKI.

Study 3. Predicting human liking ratings and emotional states over time with different AAP indices

Using the look-up table approach the computation of the mean AAP of stories or book chapters
is straightforward, coming down to simply cross-referencing a list of words representing a book
chapter (or a sentence or paragraph) with the corresponding words in the ‘sentiarted’ subtlex table,
as described above.

2.4. Evaluation of the AAP Construct Predicting Human Liking Ratings

The superior predictive validity of the present AAP construct (over the valence construct) was
established using human valence rating data (Figure 4). Here, we tested it a second time against
human liking ratings from a reading study using E.T.A. Hoffmann’s The Sandman—a prototypically
uncanny narrative from 1816 representative of the ’black romantic’ that evokes feelings of suspense
and immersion in readers [14,57]. (In this study, 20 participants first read the story ‚The Sandman’
(divided into 65 segments of approximately equal length; M = 105.5 words; SD = 26.1 words) on paper
in one go. Afterwards, they had to answer five comprehension questions to ensure that they had
actually read and understood the story. Finally, the novella was returned to them and they rated each
of the 65 sections separately on a computer on different scales (liking scale = 1–7). All ratings referred
to subjects’ experience during the first reading, which was explicitly pointed out to them. The entire
experiment lasted between 90 and 140 min depending on the reader. The data were averaged across
readers) For comparison, the liking ratings were predicted by three different predictors: (i) Empirically
measured BAWL valence ratings (Figure 5a: Green), (ii) SentiWS values obtained from the German SA
tool of Remus [58] (Figure 5b: Blue), and (iii) the present computational AAP values (Figure 5c: Red).
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Figure 5. (a–c) Human liking ratings as predicted by three different dentiment analysis (SA) methods: 
(a) Empirically measured Berlin affective word list (BAWL) valence ratings, (b) SentiWS lexicon 
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While all R2 values are moderate, the model fits are highly significant and, most importantly, the 
fit for the two empirically derived predictors (BAWL and sentiWS ratings) is not better than the one 
for AAP, on the contrary. Presumably, part of the superior performance of the AAP method lies in 
the fact that the hit rate (content words only) of the other two is low, which makes their estimates 
unreliable (SentiWS ~ 15%, BAWL ~ 30%, AAP ~ 90%). Together with successful previous applications 
of SentiArt in the prediction of word beauty ratings [48], or the classification of text segments from 

Figure 5. (a–c) Human liking ratings as predicted by three different dentiment analysis (SA) methods:
(a) Empirically measured Berlin affective word list (BAWL) valence ratings, (b) SentiWS lexicon values,
and (c) computational AAP values.

While all R2 values are moderate, the model fits are highly significant and, most importantly,
the fit for the two empirically derived predictors (BAWL and sentiWS ratings) is not better than the
one for AAP, on the contrary. Presumably, part of the superior performance of the AAP method lies
in the fact that the hit rate (content words only) of the other two is low, which makes their estimates
unreliable (SentiWS ~ 15%, BAWL ~ 30%, AAP ~ 90%). Together with successful previous applications
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of SentiArt in the prediction of word beauty ratings [48], or the classification of text segments from the
Harry Potter books [13,59], these data establish the AAP, as computed by SentiArt with the SDEWAC
VSM, as a viable alternative to using human rating data as predictors of other human rating data,
an often costly and, in general, epistemologically questionable method [37,38].

2.5. Predicting Emotional States Over (Narrative) Time

One challenge addressed by the present research topic of this journal is defined by the fact that
‘modeling and predicting the emotional state over time is not a trivial problem, because continuous data
labeling is costly and not always feasible. This is a crucial issue in real-world applications, where the
labeling of the features is sparse and eventually describes only the most prominent emotional events’.
Stories or books are natural candidates for analyzing emotional states over time, since they offer the
possibility to plot the emotion potential across different chapters or other units of narrative time.
It should be noted though that in many cases, narrative time is not linear and thus cannot always be
directly compared to the results provided by the present approach (We are grateful to an anonymous
reviewer for mentioning this). However, for reasons of comparability, here we followed the standard
procedure proposed by successful macroanalytic approaches for analyzing emotional time series of
entire books, such as the ‘hedonometer’ [9] or the ‘Syuzhet’ package [15]. These methods aggregate
lexical SA information across large units of texts (e.g., 10.000 words for the hedonometer in a linear
way [60]).

While not all literary texts are equally well suited to such macroanalyses, the emotion potential
method proposed in an earlier paper [12] can also be reliably applied to small text units, i.e.,
for microanalyses, such as a single Shakespeare sonnet (~115 words) or short text segments of
~100 words like the present ones from The Sandman (overall length ~7000 words). Such smaller
texts are well suited to empirically cross-validate the theoretical predictions derived from SA tools by
collecting (quasi-)continuous rating data. At least two such datasets have been examined in previous
studies [57,61], which were not interested in computational SA though.

Using the above data from The Sandman study, next we tested the prediction of human liking
ratings over time, i.e., the evolution of the story across the 65 segments, by different AAP indices.
When readers judge the emotional content of subsequent coherent pieces of text, which kind of
text features they really use for that complex decision still is a big open question both for NLP and
neurocognitive poetics approaches [3,12]. Thus, focusing on the lexical level, we don’t know yet
whether readers take into account all words of the text or just a few key words, whether they pay
attention to word forms (conjugation, inflection, derivation) and/or recurrent words (integrating word
frequency information) or not. If they do not take into account each and every word, other open
questions are whether content words count most (or exclusively), or whether words with extreme
valence values weigh more. To shed some light on this issue, we tested several models here:

• Model A: All words, i.e., the AAP value for a text segment corresponded to the mean of the AAP
values for all unique words (types) in the segment (which also occur in the Subtlex), including
function words (N = 4723; mean R2

adj = 0.21).
• Model L: All lemmata (N = 4685; mean R2

adj = 0.18).
• Model C: All content words (N = 3080; mean R2

adj = 0.21).
• Model CL: All content lemmata (N = 3044; mean R2

adj = 0.16).

For each of the four models, we further computed several AAP indices: (i) Mean AAP (mean
R2

adj = 0.32), (ii) frequency-weighted mean AAP (mean R2
adj = 0.28); (iii) lens mean AAP (mean

R2
adj = 0.05; The ‘lens’ option was proposed by Dodds [9] to obtain a strong signal by only keeping

words residing in the tails of the valence distribution). Here we took all words into account for
which AAP was <25% or >75% of the distribution), (iv) frequency-weighted lens mean AAP (mean
R2

adj = 0.11). The AAP values resulting from all 4 × 4 = 16 computing methods were then used as
predictors of the human liking ratings in 16 linear regression models. The mean R2 values for the
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models and indices indicated above suggest that using lemmata or lens extremes did not help the
present SA. The winning model C was based on the simple mean of the AAP values for all unique
content words without frequency weighting (R2

adj = 0.34), closely followed by the frequency-weighted
variant (R2

adj = 0.33). Interestingly, this suggests that, at least for the present short segments of a
mystery story, readers seem to have focused on content words but not to have relied much on a
cumulative AAP value, largely ignoring how often a given content word occurred. Of course, readers
very likely also use inter- or supralexical information in their liking ratings of literary texts [3] thus
explaining the moderate R2 values, which leave about 70% of variance unaccounted for. Still, the data
in Figure 6 look very promising in showing the potential of a purely lexical micro-SA for predicting
emotional states over narrative time.
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Figure 6. Time series (smoothed average/ smoothed average/SMA, window size = 5) for human liking
ratings (in blue) and the corresponding AAP values computed with the winning model C (in red) for
65 text segments from the story The Sandman.

Figure 6 shows the smoothed average (SMA, window size = 5) curves for the rating data
(in blue) and the corresponding AAP values computed with the winning model C (in red). Actually,
the synchrony between the curves is pretty high (R2

adj = 0.46, p < 0.0001) suggesting that mean AAP
for content words is a useful option for predicting the temporal dynamics of human liking ratings.
The R2

adj of about 50% sets an upper bound for more sophisticated SA tools that take into account e.g.,
aspect-based SA [62] or inter- and supralexical text features [12].

3. Summary, Discussion, Limitations and Outlook

The general face validity of three publicly available German VSMs for representing lexico-semantic
concepts was established using a tsne approach. The VSMs were then used in the SentiArt algorithm to
compute the valence and AAP values of the ~120 k words of a German-language database (subtlex). In a
first cross-validation study, it was shown that the computational AAP values predicted ~2800 human
valence ratings from the BAWL better than the computational valence values, establishing the SDEWAC
VSM as the best-fitting of the three VSMs (R2 > 0.5, r = 0.72, p < 0.0001). A second cross-validation
study showed that the computational AAP values predicted human liking ratings from an empirical
study in which participants read the story The Sandman better than empirically obtained valence ratings



AI 2020, 1 24

from the BAWL. It also showed that the time course of human liking ratings was well predicted by the
AAP values (r = 0.65, p < 0.0001).

In sum, the present studies establish SentiArt’s AAP variable as a useful predictor of human valence
ratings of single words (BAWL) and liking ratings for story segments (The Sandman). The predictive
validity of the former (R2 ~0.52) was higher than for the latter (R2 ~0.23). This could be expected since
other than lexical features influence the complex ratings of entire segments or paragraphs. An example
is interlexical features, which concern the relation between two or more words in a line, sentence,
stanza, or paragraph that may well represent dynamic changes or contrasts in readers’ affective
experience [23,63]. Thus, the interlexical features valence and arousal span (i.e., the range of valence or
arousal values, respectively, of single words across a text segment) are indicative of emotional shifts
in a piece of text that can influence readers’ mood and indicate an update of the mental situation
model [64]. Affective responses to texts can be seen as the dynamic attribution of emotional valence
and arousal to every state of the (text) world that an adaptive agent (reader) might visit [23,65]. Valence
and arousal spans appear to be appropriate interlexical features serving as proxys for such a dynamic.
Indeed, empirical evidence shows that a strong variation in lexical arousal in a piece of text can lead
readers on an emotional rollercoaster as indicated by online measures of heart-rate variability, brain
activity, or liking ratings [57,61,66].

Of course, also supralexical features will affect the emotional experience when reading an entire
text. The supralexical features proposed in examples in Jacobs’ 4 × 4 matrix for QNAs [23] (global
swing at the metric level, global affective meaning at the phonological level, syntactic complexity at
the morpho-syntactic level, and action density at the semantic level all potentially can affect readers’
sentiments and thus be relevant for a future integrative SA tools. However, there is very little research
on how these features can best be quantified and integrated into current SA tools [12]. Another
important aspect for SAs of entire books concerns the emotional and figure personality profiles for main
characters as computed by an extended SentiArt algorithm [13]. These profiles can help in predicting
the empathy for and identification with story characters, which undoubtedly are an important factor
influencing readers’ sentiments and moods during the reading of entire novels [67].
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