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Abstract: In this work, we study the d-HITTING SET and FEEDBACK VERTEX SET problems through
the paradigm of finding diverse collections of r solutions of size at most k each, which has recently
been introduced to the field of parameterized complexity. This paradigm is aimed at addressing the
loss of important side information which typically occurs during the abstraction process that models
real-world problems as computational problems. We use two measures for the diversity of such
a collection: the sum of all pairwise Hamming distances, and the minimum pairwise Hamming
distance. We show that both problems are fixed-parameter tractable in k + r for both diversity
measures. A key ingredient in our algorithms is a (problem independent) network flow formulation
that, given a set of ‘base’ solutions, computes a maximally diverse collection of solutions. We believe
that this could be of independent interest.

Keywords: solution diversity; fixed-parameter tractability; hitting sets; vertex cover; feedback vertex
set; Hamming distance

1. Introduction

The typical approach in modeling a real-world problem as a computational problem has, broadly
speaking, two steps: (i) abstracting the problem into a mathematical formulation that captures the crux
of the real-world problem, and (ii) asking for a best solution to the mathematical problem.

Consider the following scenario: Dr. O organizes a panel discussion and has a shortlist of
candidates to invite. From that shortlist, Dr.O wants to invite as many candidates as possible, such that
each of them will bring an individual contribution to the panel. Given two candidates, A and B, it may
not be beneficial to invite both A and B, for various reasons: their areas of expertise or opinions may
be too similar for both to make a distinguishable contribution, or it may be preferable not to invite
more than one person from each institution. It may even be the case that A and B do not see eye-to-eye
on some issues which could come up at the discussion, and Dr. O wishes to avoid a confrontation.

A natural mathematical model to resolve Dr. O’s dilemma is as an instance of the VERTEX COVER

problem: each candidate on the shortlist corresponds to a vertex, and for each pair of candidates A and
B, we add the edge between A and B if it is not beneficial to invite both of them. Removing a smallest
vertex cover in the resulting graph results in a largest possible set of candidates such that each of them
may be expected to individually contribute to the appeal of the event.

Algorithms 2019, 12, 254; doi:10.3390/a12120254 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-7869-0959
https://orcid.org/0000-0001-8524-4036
https://orcid.org/0000-0003-0717-7303
https://orcid.org/0000-0002-0351-5945
http://dx.doi.org/10.3390/a12120254
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/12/254?type=check_update&version=2


Algorithms 2019, 12, 254 2 of 18

Formally, a vertex cover of an undirected graph G is any subset S ⊆ V(G) of the vertex set of G
such that every edge in G has at least one end-point in G. The VERTEX COVER problem asks for a
vertex cover of the smallest size:

VERTEX COVER

Input: Graph G.
Solution: A vertex cover S of G of the smallest size.

While the above model does provide Dr. O with a set of candidates to invite that is valid in the
sense that each invited candidate can be expected to make a unique contribution to the panel, a vast
amount of side information about the candidates is lost in the modeling process. This side information
could have helped Dr. O to get more out of the panel discussion. For instance, Dr. O may have
preferred to invite more well-known or established people over ‘newcomers’, if they wanted the panel
to be highly visible and prestigious; or they may have preferred to have more ‘newcomers’ in the
panel, if they wanted the panel to have more outreach. Other preferences that Dr. O may have had
include: to have people from many different cultural backgrounds, to have equal representation of
genders, or preferential representation for affirmative action; to have a variety in the levels of seniority
among the attendants, possibly skewed in one way or the other. Other factors, such as the total carbon
footprint caused by the participants’ travels, may also be of interest to Dr. O. This list could go on
and on.

Now, it is possible to plug in some of these factors into the mathematical model, for instance by
including weights or labels. Thus, a vertex weight could indicate ‘how well-established’ a candidate
is. However, the complexity of the model grows fast with each additional criterion. The classic field
of multicriteria optimization [1] addresses the issue of bundling multiple factors into the objective
function, but it is seldom possible to arrive at a balance in the various criteria in a way which captures
more than a small fraction of all the relevant side information. Moreover, several side criteria may be
conflicting or incomparable (or both); consider in Dr. O’s case ‘maximizing the number of different
cultural backgrounds’ vs. ‘minimizing total carbon footprint’.

While Dr. O’s story is admittedly a made-up one, the VERTEX COVER problem is in fact used to
model conflict resolution in far more realistic settings. In each case, there is a conflict graph G whose
vertices correspond to entities between which one wishes to avoid a conflict of some kind. There is
an edge between two vertices in G if and only if they could be in conflict, and finding and deleting a
smallest vertex cover of G yields a largest conflict-free subset of entities. We describe three examples to
illustrate the versatility of this model. In each case, it is intuitively clear, just like in Dr. O’s problem,
that formulating the problem as VERTEX COVER results in a lot of significant side information being
thrown away, and that while finding a smallest vertex cover in the conflict graph will give a valid
solution, it may not really help in finding a best solution, or even a reasonably good solution. We list some
side information that is lost in the modeling process; the reader should find it easy to come up with
any amount of other side information that would be of interest, in each case.

• Air traffic control. Conflict graphs are used in the design of decision support tools for aiding Air
Traffic Controllers (ATCs) in preventing untoward incidents involving aircraft [2,3]. Each node
in the graph G in this instance is an aircraft, and there is an edge between two nodes if the
corresponding aircraft are at risk of interfering with each other. A vertex cover of G corresponds to
a set of aircraft that can be issued resolution commands which ask them to change course, such that
afterwards there is no risk of interference.

In a situation involving a large number of aircraft, it is unlikely that every choice of ten aircraft to
redirect is equally desirable. For instance, in general, it is likely that (i) it is better to ask smaller
aircraft to change course in preference to larger craft, and (ii) it is better to ask aircraft which are
cruising to change course, in preference to those which are taking off or landing.



Algorithms 2019, 12, 254 3 of 18

• Wireless spectrum allocation. Conflict graphs are a standard tool in figuring out how to distribute
wireless frequency spectrum among a large set of wireless devices so that no two devices whose
usage could potentially interfere with each other are allotted the same frequencies [4,5]. Each node
in G is a user, and there is an edge between two nodes if (i) the users request the same frequency,
and (ii) their usage of the same frequency has the potential to cause interference. A vertex cover
of G corresponds to a set of users whose requests can be denied, such that afterwards there is no
risk of interference.

When there is large collection of devices vying for spectrum, it is unlikely that every choice of
ten devices to deny the spectrum is equally desirable. For instance, it is likely that denying the
spectrum to a remote-controlled toy car on the ground is preferable to denying the spectrum to a
drone in flight.

• Managing inconsistencies in database integration. A database constructed by integrating
data from different data sources may end up being inconsistent (that is, violating specified
integrity constraints) even if the constituent databases are individually consistent. Handling these
inconsistencies is a major challenge in database integration, and conflict graphs are central to
various approaches for restoring consistency [6–9]. Each node in G is a database item, and there is
an edge between two nodes if the two items together form an inconsistency. A vertex cover of G
corresponds to a set of database items in whose absence the database achieves consistency.

In a database of large size, it is unlikely that all data are created equal; some database items are
likely to be of better relevance or usefulness than others, and so it is unlikely that every choice of
ten items to delete is equally desirable.

Getting back to our first example, it seems difficult to help Dr.O with their decision by employing
the ‘traditional’ way of modeling computational problems, where one looks for one best solution. If,
on the other hand, Dr.O was presented with a small set of good solutions that, in some sense, are far apart,
then they might hand-pick the list of candidates that they consider the best choice for the panel and
make a more informed decision. Moreover, several forms of side-information may only become apparent
once Dr. O is presented some concrete alternatives, and are more likely to be retrieved from alternatives
that look very different. That is, a bunch of good quality, dissimilar solutions may end up capturing
a lot of the “lost” side information. In addition, this applies to each of the other three examples as
well. In each case, finding one best solution could be of little utility in solving the original problem,
whereas finding a small set of solutions, each of good quality, which are not too similar to one another may
offer much more help.

To summarize, real-world problems typically have complicated side constraints, and the
optimality criterion may not be clear. Therefore, the abstraction to a mathematical formulation is
almost always a simplification, omitting important side information. There are at least two obstacles
to simply adapting the model by incorporating these secondary criteria into the objective function or
taking into account the side constraints: (i) they make the model complicated and unmanagable, and,
(ii) more importantly, these criteria and constraints are often not precisely formulated, potentially even
unknown a priori. There may even be no sharp distinction between optimality criteria and constraints
(the so-called “soft constraints”).

One way of dealing with this issue is to present a small number r of good solutions and let the
user choose between them, based on all the experience and additional information that the user has
and that is ignored in the mathematical model. Such an approach is useful even when the objective
can be formulated precisely, but is difficult to optimize: After generating r solutions, each of which
is good enough according to some quality criterion, they can be compared and screened in a second
phase, evaluating their exact objective function or checking additional side constraints. In this context,
it makes little sense to generate solutions that are very similar to each other and differ only in a few
features. It is desirable to present a diverse variety of solutions.
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It should be clear that the issue is scarcely specific to VERTEX COVER. Essentially any
computational problem motivated by practical applications likely has the same issue: the modeling
process throws out so much relevant side information that any algorithm that finds just one optimal
solution to an input instance may not be of much use in solving the original problem in practice.
One scenario where the traditional approach to modeling computational problems fails completely is
when computational problems may combined with a human sense of aesthetics or intuition to solve a
task, or even to stimulate inspiration. Some early relevant work is on the problem of designing a tool
which helps an architect in creating a floor plan which satisfies a specified set of constraints. In general,
the number of feasible floor plans—those which satisfy constraints imposed by the plot on which the
building has to be erected, various regulations which the building should adhere to, and so on—would
be too many for the architect to look at each of them one by one. Furthermore, many of these plans
would be very similar to one another, so that it would be pointless for the architect to look at more than
one of these for inspiration. As an alternative to optimization for such problems, Galle proposed a
“Branch & Sample” algorithm for generating a “limited, representative sample of solutions, uniformly
scattered over the entire solution space” [10].

The Diverse X Paradigm. Mike Fellows has proposed the Diverse X Paradigm as a solution for these
issues and others [11]. In this paradigm, “X” is a placeholder for an optimization problem, and we
study the complexity—specifically, the fixed-parameter tractability—of the problem of finding a few
different good quality solutions for X. Contrast this with the traditional approach of looking for just
one good quality solution. Let X denote an optimization problem where one looks for a minimum-size
subset of some set; VERTEX COVER is an example of such a problem. The generic form of X is then:

X
Input: An instance I of X.
Solution: A solution S of I of the smallest size.

Here, the form that a “solution S of I” takes is dictated by the problem X; compare this with the
earlier definition of VERTEX COVER.

The diverse variant of problem X, as proposed by Fellows, has the form:

DIVERSE X
Input: An instance I of X, and positive integers k, r, t.
Parameter: (k, r)
Solution: A set S of r solutions of I, each of size at most k, such that a diversity measure of S is at

least t.

Note that one can construct diverse variants of other kinds of problems as well, following this
model: it doesn’t have to be a minimization problem, nor does the solution have to be a subset of some
kind. Indeed, the example about floor plans described above has neither of these properties. What is
relevant is that one should have (i) some notion of “good quality” solutions (for X, this equates to a
small size) and (ii) some notion of a set of solutions being “diverse”.

Diversity measures. The concept of diversity appears also in other fields, and there are many different
ways to measure the diversity of a collection. For example, in ecology, the diversity of a set of species
(“biodiversity”) is a topic that has become increasingly important in recent times—see, for example,
Solow and Polasky [12].

Another possible viewpoint, in the context of multicriteria optimization, is to require that the
sample of solutions should try to represent the whole solution space. This concept can be quantified
for example by the geometric volume of the represented space [13,14], or by the discrepancy [15].
See ([16], Section 3) for an overview of diversity measures in multicriteria optimization.
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In this paper, we follow the simple possibility of looking for a collection of good solutions that
have large distances from each other, in a sense that will be made precise below, see Equations (1)–(2).
Direction (2), i.e., taking the pairwise sum of all Hamming distances, has been taken by many practical
papers in the area of genetic algorithms—see, e.g., [17,18]. This now classical approach can be traced
as far back as 1992 [19]. In [20], it has been boldly stated that this measure (and its variations) is one of
the most broadly used measures in describing population diversity within genetic algorithms. One of
its advantages is that it can be computed very easily and efficiently unlike many other measures,
e.g., some geometry or discrepancy based measures.

Our Problems and Results

In this work, we focus on diverse versions of two minimization problems, d-HITTING SET and
FEEDBACK VERTEX SET, whose solutions are subsets of a finite set. d-HITTING SET is in fact a class of
such problems which includes VERTEX COVER, as we describe below. We will consider two natural
diversity measures for these problems: the minimum Hamming distance between any two solutions,
and the sum of pairwise Hamming distances of all the solutions.

The Hamming distance between two sets S and S′, or the size of their symmetric difference, is

dH(S, S′) := |(S \ S′) ∪ (S′ \ S)|.

We use
divmin(S1, . . . , Sr) := min

1≤i<j≤r
dH(Si, Sj) (1)

to denote the minimum Hamming distance between any pair of sets in a collection of finite sets, and

divtotal(S1, . . . , Sr) := ∑
1≤i<j≤r

dH(Si, Sj) (2)

to denote the sum of all pairwise Hamming distances. (In Section 5, we will discuss some issues with
the latter formulation.)

A feedback vertex set of a graph G is any subset S ⊆ V(G) of the vertex set of G such that the graph
G− S obtained by deleting the vertices in S is a forest; that is, it contains no cycle.

FEEDBACK VERTEX SET

Input: A graph G.
Solution: A feedback vertex set of G of the smallest size.

More generally, a hitting set of a collection F of subsets of a universe U is any subset S ⊆ U such
that every set in the family F has a non-empty intersection with S. For a fixed positive integer d,
the d-HITTING SET problem asks for a hitting set of the smallest size of a family F of d-sized subsets of
a finite universe U:

d-HITTING SET

Input: A finite universe U and a family F of subsets of U, each of size at most d.
Solution: A hitting set S of F of the smallest size.

Observe that both VERTEX COVER and FEEDBACK VERTEX SET are special cases of finding a
smallest hitting set for a family of subsets. VERTEX COVER is also an instance of d-HITTING SET,
with d = 2: the universe U is the set of vertices of the input graph and the family F consists of all
sets {v, w}, where vw is an edge in G. There is no obvious way to model FEEDBACK VERTEX SET as
a d-HITTING SET instance, however, because the cycles in the input graph are not necessarily of the
same size.
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In this work, we consider the following problems in the DIVERSE X paradigm. Using divtotal as
the diversity measure, we consider DIVERSE d-HITTING SET and DIVERSE FEEDBACK VERTEX SET,
where X is d-HITTING SET and FEEDBACK VERTEX SET, respectively. Using divmin as the diversity
measure, we consider MIN-DIVERSE d-HITTING SET and MIN-DIVERSE FEEDBACK VERTEX SET,
where X is d-HITTING SET and FEEDBACK VERTEX SET, respectively.

In each case, we show that the problem is fixed-parameter tractable (FPT), with the following
running times:

Theorem 1. DIVERSE d-HITTING SET can be solved in time r2dkr · |U|O(1).

Theorem 2. DIVERSE FEEDBACK VERTEX SET can be solved in time 27kr · nO(1).

Theorem 3. MIN-DIVERSE d-HITTING SET can be solved in time

• 2kr2 · (kr)O(1) if |U| < kr and
• dkr · |U|O(1) otherwise.

Theorem 4. MIN-DIVERSE FEEDBACK VERTEX SET can be solved in time 2kr·max(r,7+log2(kr)) · (nr)O(1).

Defining the diverse versions DIVERSE VERTEX COVER and MIN-DIVERSE VERTEX COVER of
VERTEX COVER in a similar manner as above, we get

Corollary 1. DIVERSE VERTEX COVER can be solved in time 2kr · nO(1). MIN-DIVERSE VERTEX COVER

can be solved in time

• 2kr2 · (kr)O(1) if n < kr and
• 2kr · nO(1) otherwise.

Related Work. The parameterized complexity of finding a diverse collection of good-quality solutions
to algorithmic problems seems to be largely unexplored. To the best of our knowledge, the only
existing work in this area consists of: (i) a privately circulated manuscript by Fellows [11] which
introduces the Diverse X Paradigm and makes a forceful case for its relevance, and (ii) a manuscript by
Baste et al. [21] which applies the Diverse X Paradigm to vertex-problems with the treewidth of the input
graph as an extra parameter. In this context, a vertex-problem is any problem in which the input contains
a graph G and the solution is some subset of the vertex set of G that satisfies some problem-specific
properties. Both VERTEX COVER and FEEDBACK VERTEX SET are vertex-problems in this sense, as are
many other graph problems. The treewidth of a graph is, informally put, a measure of how tree-like
the graph is. See, e.g., ([22], Chapter 7) for an introduction of the use of the treewidth of a graph as a
parameter in designing FPT algorithms. The work by Baste et al. [21] shows how to convert essentially
any treewidth-based dynamic programming algorithm, for solving a vertex-problem, into an algorithm
for computing a diverse set of r solutions for the problem, with the diversity measure being the sum
divtotal of Hamming distances of the solutions. This latter algorithm is FPT in the combined parameter
(r, w), where w is the treewidth of the input graph. As a special case, they obtain a running time
of O((2k+2(k + 1))rkr2n) for DIVERSE VERTEX COVER. Furthermore, they show that the r-DIVERSE

versions (i.e., where the diversity measure is divtotal) of a handful of problems have polynomial kernels.
In particular, they show that DIVERSE VERTEX COVER has a kernel with O(k(k + r)) vertices, and that
DIVERSE d-HITTING SET has a kernel with a universe size of O(kd + kr).

Organization of the rest of the paper. In Section 2, we list some definitions which we use in the rest
of the paper. In Section 3, we describe a generic framework which can be used for computing solution
families of maximum diversity for a variety of problems whose solutions form subsets of some finite
set. We prove Theorem 1 in Section 3.3 and Theorem 2 in Section 4. In Section 5, we discuss some
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potential pitfalls in using divtotal as a measure of diversity. In Section 6, we prove Theorems 3 and 4.
We conclude in Section 7.

2. Preliminaries

Given two integers p and q, we denote by [p, q] the set of all integers r such that p ≤ r ≤ q holds.
Given a graph G, we denote by V(G) (resp. E(G)) the set of vertices (resp. edges) of G. For a subset
S ⊂ V(G), we use G[S] to denote the subgraph of G induced by S, and G \ S for the graph G[V(G) \ S].
A set S ⊆ V(G) is a vertex cover (resp. a feedback vertex set) if G \ S has no edge (resp. no cycle).
Given a graph G and a vertex v such that v has exactly two neighbors, say w and w′, contracting v
consists of removing the edges {v, w} and {v, w′}, removing v, and adding the edge {w, w′}. Given a
graph G and a vertex v ∈ V(G), we denote by δG(v) the degree of v in G. For two vertices u, v in a
connected graph G, we use distT(u, v) to denote the distance between u and v in G, which is the length
of a shortest path in G between u and v.

A deepest leaf in a tree T is a vertex v ∈ V(T) such that there exists a root r ∈ V(T) satisfying
distT(r, v) = maxu∈V(T) distT(r, u). A deepest leaf in a forest F is a deepest leaf in some connected
component of F. A deepest leaf v has the property that there is another leaf in the tree at distance at
most 2 from v unless v is an isolated vertex or v’s neighbor has degree 2.

The objective function divtotal in (2) has an alternative representation in terms of frequencies of
occurrence [21]: If yv is the number of sets of {S1, . . . , Sr} in which v appears, then

divtotal(S1, . . . , Sr) = ∑
v∈U

yv(r− yv). (3)

Auxiliary problems. We define two auxiliary problems that we will use in some of the algorithms
presented in Section 3. In the MAXIMUM COST FLOW problem, we are given a directed graph G, a target
d ∈ R+, a source vertex s ∈ V(G), a sink vertex t ∈ V(G), and for each edge (u, v) ∈ E(G), a capacity
c(u, v) > 0, and a cost a(u, v). A (s, t)-flow, or simply flow in G is a function f : E(G) → R, such that
for each (u, v) ∈ E(G), f (u, v) ≤ c(u, v), and for each vertex v ∈ V(G) \ {s, t}, ∑(u,v)∈E(G) f (u, v) =
∑(v,u)∈E(G) f (v, u). The value of the flow f is ∑(s,u)∈E(G) f (s, u) and the cost of f is ∑(u,v)∈E(G) f (u, v) ·
a(u, v). The objective of the MAXIMUM COST FLOW problem is to find the maximum cost (s, t)-flow of
value d.

The second problem is the MAXIMUM WEIGHT b-MATCHING problem. Here, we are given an
undirected edge-weighted graph G, and for each vertex v ∈ V(G), a supply b(v). The goal is to find a
set of edges M ⊆ E(G) of maximum total weight such that each vertex v ∈ V(G) is incident with at
most b(v) edges in M.

3. A Framework for Maximally Diverse Solutions

In this section, we describe a framework for computing solution families of maximum diversity
for a variety of hitting set problems. This framework requires that the solutions form a family of
subsets of a ground set U that is upward closed: any superset T ⊇ S of a solution S is also a solution.

The approach is as follows: In a first phase, we enumerate the class S of all minimal solutions of
size at most k. (A larger class S is also fine as long as it is guaranteed to contain all minimal solutions of
size at most k). Then, we form all r-tuples (S1, . . . , Sr) ∈ Sk. For each such family (S1, . . . , Sr), we try to
augment it to a family (T1, . . . , Tr) under the constraints Ti ⊇ Si and |Ti| ≤ k, for each i ∈ [1, r], in such
a way that divtotal(T1, . . . , Tr) is maximized.

For this augmentation problem, we propose a network flow model that computes an optimal
augmentation in polynomial time, see Section 3.1. This has to be repeated for each family, O(|S|r)
times. The first step, the generation of S , is problem-specific. Section 3.3 shows how to solve it for
d-HITTING SET. In Section 4, we will adapt our approach to deal with a FEEDBACK VERTEX SET.
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3.1. Optimal Augmentation

Given a universe U and a set S of subsets of U, the problem diverser,k(S) consists of finding an
r-tuple (S1, . . . , Sr) that maximizes divtotal(S1, . . . , Sr), over all r-tuples (S1, . . . , Sr) such that, for each
i ∈ [1, r], |Si| ≤ k, and there exists S ∈ S such that S ⊆ Si ⊆ U.

Theorem 5. Let U be a finite universe, r and k be two integers, and S be a set of s subsets of U. diverser,k(S)
can be solved in time r2sr · |U|O(1).

Proof. The algorithm that proves Theorem 5 starts by enumerating all r-tuples (S1, S2, . . . , Sr) ∈ S r of
elements from S . For each of these sr r-tuples, we try to augment each Si, using elements of U, in such
a way that the diversity d of the resulting tuple (T1, . . . , Tr) is maximized and such that, for each
i ∈ [1, r], Si ⊆ Ti ⊆ U and |Ti| ≤ k. It is clear that this algorithm will find the solution to diverser,k(S).

We show how to model this problem as a maximum-cost network flow problem with piecewise
linear concave costs. This problem can be solved in polynomial time. (See, for example, [23] for basic
notions about network flows).

Without loss of generality, let U = {1, 2, . . . , n}. We use a variable 0 ≤ xij ≤ 1 to decide whether
element j of U should belong to set Ti. In an optimal flow, these values are integral. Some of these
variables are already fixed because Ti must contain Si:

xij = 1 for j ∈ Si. (4)

The size of Ti must not exceed k:

n

∑
j=1

xij ≤ k, for i = 1, . . . , r. (5)

Finally, we can express the number yj of sets Ti in which an element j occurs:

yj =
r

∑
i=1

xij, for j = 1, . . . , n. (6)

These variables yj are the variables in terms of which the objective function (3) is expressed:

maximize
n

∑
j=1

yj(r− yj). (7)

These constraints can be modeled by a network as shown in Figure 1. There are nodes Ti
representing the sets Ti and a node Vj for each element j ∈ U. In addition, there is a source s and a
sink t. The arcs emanating from s have capacity k. Together with the flow conservation equations at
the nodes Ti, this models the constraints (5). Flow conservation at the nodes Vj gives rise to the flow
variables yj in the arcs leading to t according to (6). The arcs with fixed flow (4) could be eliminated
from the network, but, for ease of notation, we leave them in the model. The only arcs that carry a cost
are the arcs leading to t, and the costs are given by the concave function (7).
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...

s t

≤ k

0 ≤ xij ≤ 1

y1

y2

y3

yn

V1

V2

V3

Vn

T1

T2

T3

Tr

...

Figure 1. The network. The middle layer between the vertices Ti and Vj is a complete bipartite graph,
but only a few selected arcs are shown. A potential augmenting path is highlighted.

There is now a one-to-one correspondence between integral flows from s to t in the network and
solutions (T1, . . . , Tr), and the cost of the flow is equal to the diversity (2) or (3). We are thus looking
for a flow of maximum cost. The value of the flow (to total flow out of s) can be arbitrary. (It is equal to
the sum of the sizes of the sets Ti.)

The concave arc costs (7) on the arcs leading to t can be modeled in a standard way by multiple arcs.
Denote the concave cost function by fy := y(r− y), for y = 0, 1, . . . , r. Then, each arc (Vi, t) in the last
layer is replaced by r parallel arcs of capacity 1 with costs f1− f0, f2− f1, . . . , fr− fr−1. This sequence of
values fy − fy−1 = r− 2y + 1 is decreasing, starting out with positive values and ending with negative
values. If the total flow along such a bundle is y, the maximum-cost way to distribute this flow is to
fill the first y arcs to capacity, for a total cost of ( f1 − f0) + ( f2 − f1) + · · ·+ ( fy − fy−1) = fy − f0 = fy,
as desired.

An easy way to compute a maximum-cost flow is the longest augmenting path method.
(Commonly, it is presented as the shortest augmenting path method for the minimum-cost flow).
This holds for the classical flow model where the cost on each arc is a linear function of the flow.
An augmenting path is a path in the residual network with respect to the current flow, and the cost
coefficient of an arc in such a path must be taken with opposite sign if it is traversed in the direction
opposite to the original graph.

Proposition 1 (The shortest augmenting path algorithm, cf. [23] (Theorem 8.12)). Suppose a
maximum-cost flow among all flows of value v from s to t is given. Let P be a maximum-cost augmenting path
from s to t. If we augment the flow along this path, this results in a new flow, of some value v′. Then, the new
flow is a maximum-cost flow among all flows of value v′ from s to t.

Let us apply this algorithm to our network. We initialize the constrained flow variables xij
according to Equation (4) to 1 and all other variables xij to 0. This corresponds to the original solution
(S1, S2, . . . , Sr), and it is clearly the optimal flow of value ∑r

i=1 |Si| because it is the only feasible flow
of this value.

We can now start to find augmenting paths. Our graph is bipartite, and augmenting paths have a
very simple structure: They start in s, alternate back and forth between the T-nodes and the V-nodes,
and finally make a step to t. Moreover, in our network, all costs are zero except in the last layer, and an
augmenting path contains precisely one arc from this layer. Therefore, the cost of an augmenting path is
simply the cost of the final arc.

The flow variables in the final layer are never decreased. The resulting algorithm has therefore
a simple greedy-like structure. Starting from the initial flow, we first try to saturate as many of the
arcs of cost f1 − f0 as possible. Next, we try to saturate as many of the arcs of cost f2 − f1 as possible,
and so on. Once the incremental cost fy+1 − fy becomes negative, we stop.



Algorithms 2019, 12, 254 10 of 18

Trying to find an augmenting path whose last arc is one of the arcs of cost fy+1 − fy, for fixed y,
is a reachability problem in the residual graph, and it can be solved by graph search in O(nr) time
because the network has O(nr) vertices. Every augmentation increases the flow value by 1 unit. Thus,
there are at most kr augmentations, for a total runtime of O(kr2n).

3.2. Faster Augmentation

We can obtain faster algorithms by using more advanced network algorithms from the literature.
We will derive one such algorithm here. The best choice depends on the relation between n, k, and r.
We will apply the following result about b-matchings, which are generalizations of matchings: Each node
v has a given supply b(v), specifying that v should be incident to at most v edges.

Proposition 2 ([24]). A maximum-weight b-matching in a bipartite graph with N1 + N2 nodes on the two sides
of the bipartition and M edges that have integer weights between 0 and W can be found in time O(N1M log(2 +
N1

2

M log(N1W))).

We will describe below how the network flow problem from above can be converted into a
b-matching problem with N1 = r + 1 plus N2 = n nodes and M = 2rn edges of weight at most
W = 2r. Plugging these values into Proposition 2 gives a running time of O(r2n log(2 + r

n log(r2))) =

O(r2n max{1, log r log r
n }) for finding an optimal augmentation. This improves over the run time

O(r2nk) from the previous section unless r is extremely large (at least 2k).
From the network of Figure 1, we keep the two layers of nodes Ti and Vj. Each vertex Ti gets a

supply of b(Ti) := k, and each vertex Vj gets a supply of b(Vj) := r. To mimic the piecewise linear
costs on the arcs (Vj, t) in the original network, we introduce r parallel slack edges from a new source
vertex s′ to each vertex Vi. The costs are as follows. Let g1 > g2 > · · · > gr with gy = fy − fy−1 denote
the costs in the last layer of the original network, and let ĝ := r. Since g1 = r− 1, this is larger than all
costs. Then, every edge (Ti, Vj) from the original network gets a weight of ĝ, and the r new slack edges
entering each Vj get positive weights ĝ− g1, ĝ− g2, . . . , ĝ− gr. We set the supply of the extra source
node to b(s′) := rn, which imposes no constraint on the number of incident edges.

Now, suppose that we have a solution for the original network in which the total flow into vertex
Vj is y. In the corresponding b-matching, we can then use b(Vj)− y = r− y of the slack edges incident
to Vj. The r− y maximum-weight slack edges have weights ĝ− gr, ĝ− gr−1, . . . ĝ− gy+1. The total
weight of the edges incident to Vj is therefore

rĝ− gr − gr−1 − · · · − gy+1 = rĝ + (g1 + g2 + · · ·+ gy),

using the equation g1 + g2 + · · · + gr = fr − f0 = 0. Thus, up to an addition of the constant nrĝ,
the maximum weight of a b-matching agrees with the maximum cost of a flow in the original network.

3.3. Diverse Hitting Set

In this section, we show how to use the optimal augmentation technique developed in Section 3
to solve the DIVERSE d-HITTING SET. For this, we use the following folklore lemma about minimal
hitting sets.

Lemma 1. Let (U,F ) be an instance of d-HITTING SET, and let k be an integer. There are at most dk

inclusion-minimal hitting sets of F of size at most k, and they can all be enumerated in time dk|U|2.

Combining Lemma 1 and Theorem 5, we obtain the following result.

Theorem 1. DIVERSE d-HITTING SET can be solved in time r2dkr · |U|O(1).
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Proof. Using Lemma 1, we can construct the set S of all inclusion-minimal hitting sets of F , each of
size at most k. Note that the size of S is bounded by dk. As every superset of an element of S is also a
hitting set, the theorem follows directly from Theorem 5.

4. Diverse Feedback Vertex Set

A feedback vertex set (FVS) (also called a cycle cutset) of a graph G is any subset S ⊆ V(G) of vertices
of G such that every cycle in G contains at least one vertex from S. The graph G − S obtained by
deleting S from G is thus an acyclic graph. Finding an FVS of small size is an NP-hard problem [25]
with a number of applications in Artificial Intelligence, many of which stem from the fact that many
hard problems become easy to solve in acyclic graphs. An example for this is the Propositional
Model Counting (or #SAT) problem that asks for the number of satisfying assignments for a given
CNF formula, and has a number of applications, for instance in planning [26,27] and in probabilistic
inference problems such as Bayesian reasoning [28–31]. A popular approach to solving #SAT consists
of first finding a small FVS S of the CNF formula. Assigning values to all the variables in S results
in an acyclic instance of CNF. The algorithm assigns all possible sets of values to the variables in S,
computes the number of satisfying assignments of the resulting acyclic instances, and returns the sum
of these counts [32].

In this section, we focus on the DIVERSE FEEDBACK VERTEX SET problem and prove the
following theorem.

Theorem 2. DIVERSE FEEDBACK VERTEX SET can be solved in time 27kr · nO(1).

In order to solve r-DIVERSE k-FEEDBACK VERTEX SET, one natural way would be to generate every
feedback vertex set of size at most k and then check which set of k solutions provide the required sum
of Hamming distances. Unfortunately, the number of feedback vertex sets is not FPT parameterized
by k. Indeed, one can consider a graph containing k cycle of size n

k , leading to
( n

k
)k different feedback

vertex sets of size k.
We avoid this problem by generating all such small feedback vertex sets up to some equivalence

of degree two vertices. We obtain an exact and efficient description of all feedback vertex sets of size at
most k, which is formally captured by Lemma 2. A class of solutions of a graph G, is a pair (S, `) such
that S ⊆ V(G) and ` : S→ 2V(G) is a function such that for each u ∈ S, u ∈ `(u), and for each u, v ∈ S,
u 6= v, `(u) ∩ `(v) = ∅. Given a class of solutions (S, `), we define sol(S, `) = {S′ ⊆ V(G) : |S′| =
|S| and ∀v ∈ S, |S′ ∩ `(v)| = 1}. A class of FVS solutions is a class of solutions (S, `) such that each
S′ ∈ sol(S, `) is a feedback vertex set of G. Moreover, if S′ ∈ sol(S, `) and S′ ⊆ S′′ ⊆ V(G), we say
that S′′ is described by (S, `). Note that S′′ is also a feedback vertex set. In a class of FVS solutions (S, `),
the meaning of the function ` is that, for each cycle C in G, there exists v ∈ S such that each element of
`(v) hits C. This allows us to group related solutions into only one set sol(S, `).

Lemma 2. Let G be a n-vertex graph. There exists a set S of classes of FVS solutions of G of size at most
27k such that each feedback vertex set of size at most k is described by an element of S . Moreover, S can be
constructed in time 27k · nO(1).

Proof. Let G be a n-vertex graph. We start by generating a feedback vertex set F ⊆ V of size at most k.
The current best deterministic algorithm for this by Kociumaka and Pilipczuk [33] finds such a set in
time 3.62k · nO(1). In the following, we use the ideas used for the iterative compression approach [34].

For each subset F′ ⊆ F, we initiate a branching process by setting A := F′, B := F− F′, and G′ :=
G. Observe that, initially, as B ⊆ F and |F| ≤ k, the graph G[B] has at most k components. In the
branching process, we will add more vertices to A and B, and we will remove vertices and edges from
G′, but we will maintain the property that A ⊆ V(G′) and B ⊆ V(G′). The set C will always denote
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the vertex set V(G′) \ (A ∪ B). Note that G′[C] is initially a forest; we ensure that it always remains
a forest.

We also initialize a function ` : V(G) → 2V(G) by setting `(v) = {v} for each v ∈ V(G).
This function will keep information about vertices that are deleted from G. While searching for
a feedback vertex set, we consider only feedback vertex sets that contain all vertices of A but no
vertex of B. Vertices in C are still undecided. The function ` will maintain the invariant that, for each
v ∈ V(G′), `(v) ∩V(G′) = {v}, and, for each v ∈ C, all vertices of `(v) intersect at exactly the same
cycles in G \ A. Moreover, for each v ∈ A, the value `(v) is fixed and will not be modified anymore in
the branching process. During the branching process, we will progressively increase the size of A, B,
and the sets `(v), v ∈ V(G).

By reducing (G′, A, B, `), we mean that we apply the following rules exhaustively.

• If there is a v ∈ C such that δG′ [B∪C](v) ≤ 1, we delete v from G′.
• If there is an edge {u, v} ∈ E(G′[C]) such that δG′ [B∪C](u) = δG′ [B∪C](v) = 2, we contract u in G′

and set `(v) := `(v) ∪ `(u).

These are classical preprocessing rules for the FEEDBACK VERTEX SET problem; see,
for instance, ([22], Section 9.1). Indeed, vertices of degree one cannot appear in a cycle, and consecutive
vertices of degree 2 hit exactly the same cycles. After this preprocessing, there are no adjacent
degree-two vertices and no degree-one vertices in C. (Degrees are measured in G′[B ∪ C]).

We start to describe the branching procedure. We work on the tuple (G′, A, B, `). After each
step, the value |A| − cc(B) will increase, where cc(B) denotes the number of connected components
of G′[B].

At each step of the branching, we do the following. If |A| > k or if G′[B] contains a cycle,
we immediately stop this branch as there is no solution to be found in it. If A is a feedback vertex set
of size at most k, then (A, `|A) is a class of FVS solutions, we add it to S and stop working on this
branch. Otherwise, we reduce (G′, A, B, `). We pick a deepest leaf v in G′[C] and apply one of the two
following cases, depending on the vertex v:

• Case 1: The vertex v has at least two neighbors in B (in the graph G′).

If there is a path in B between two neighbors of v, then we have to put v in A, as otherwise this
path together with v will induce a cycle. If there is no such path, we branch on both possibilities,
inserting v either into A or into B.

• Case 2: The vertex v has at most one neighbor in B.

Since v is a leaf in G′[C], it has at most one neighbor also in C. On the other hand, we know that v
has degree at least 2 in G′[B ∪ C]. Thus, v has exactly one neighbor in B and one neighbor in C,
for a degree of 2 in G′[B ∪ C]. Let p be the neighbor in C. Again, as we have reduced (G′, A, B, `),
the degree of p in G′[B ∪ C] is at least 3. Thus, either it has a neighbor in B, or, as v is a deepest
leaf, it has another child, say w that is also a leaf in G′[C], and w has therefore a neighbor in B.
We branch on the at most 23 = 8 possibilities to allocate v, p, and w if considered, between A and
B, taking care not to produce a cycle in B.

In both cases, either we put at least one vertex in A, and so |A| increases by one, or all considered
vertices are added to B. In the latter case, the considered vertices are connected, at least two of them
have a neighbor in B, and no cycles were created; therefore, the number of components in B drops by
one. Thus, |A| − cc(B) increases by at least one. As −k ≤ |A| − cc(B) ≤ k, there can be at most 2k
branching steps.

Since we branch at most 2k times and at each branch we have at most 23 possibilities, the branching
tree has at most 26k leaves. Thus, for each of the at most 2k subsets F′ of F, we add at most 26k elements
to S .

It is clear that we have obtained all solutions of FVS and they are described by the classes of FVS
solutions in S , which is of size 27k.
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Proof of Theorem 2. We generate all 27kr r-tuples of the classes of solutions given by Lemma 2,
with repetition allowed.

We now consider each r-tuple ((S1, `1), (S2, `2), . . . , (Sr, `r)) ∈ S r and try to pick an appropriate
solution Ti from each class of solutions (Si, `i), i ∈ [1, k], in such a way that the diversity of the resulting
tuple of feedback vertex sets (T1, . . . , Tr) is maximized. The network of Section 3.1 must be adapted
to model the constraints resulting from solution classes. Let (S, `) be a solution class, with |S| = b.
For our construction, we just need to know the family { `(v) | v ∈ S } = {L1, L2, . . . , Lb} of disjoint
nonempty vertex sets. The solutions that are described by this class are all sets that can be obtained
by picking at least one vertex from each set Lq. Figure 2 shows the necessary adaptations for one
solution T = Ti. In addition to a single node T that is either directly of indirectly connected to all nodes
V1, . . . , Vn, like in Figure 1, we have additional nodes representing the sets Lq. For each vertex j that
appears in one of the sets Lq, there is an additional node Uj in an intermediate layer of the network.
The flow from s to Lq is forced to be equal to 1, and this ensures that at least one element of the set Lq

is chosen in the solution. Here, it is important that the sets Lq are disjoint.
A similar structure must be built for each set T1, . . . , Tr, and all these structures share the vertices

s and V1, . . . , Vn. The rightmost layer of the network is the same as in Figure 1.

s

≤ k − b

L1

L2

L3

T

= 1

= 1

= 1

...

V5

V6

V7

Vn

V1

V2

V3

V4

U1

U2

U3

U4

U5

U6

≤ 1

≤ 1

Figure 2. Part of the modified network for a solution T which is specified by b = 3 sets L1 = {1, 2}, L2 =

{3}, and L3 = {4, 5, 6}.

The initial flow is not so straightforward as in Section 3.1 but is still easy to find. We simply
saturate the arc from s to each of the nodes Lq in turn by a shortest augmenting path. Such a path can
be found by a simple reachability search in the residual network, in O(rn) time. The total running time
O(kr2n) from Section 3.1 remains unchanged.

5. Modeling Aspects: Discussion of the Objective Function

In Sections 3 and 4, we have used the sum of the Hamming distances, divtotal, as the measure of
diversity. While this metric is of natural interest, it appears that, in some specific cases, it may not be a
useful choice. We present a simple example where the most diverse solution according to divtotal is not
what one might expect.

Let r be an even number. We consider the path with 2r − 2 vertices, and we are looking for r
vertex covers of size at most r− 1, of maximum diversity.

Figure 3 shows an example with r = 6. The smallest size of a vertex cover is indeed r− 1, and there
are r different solutions. One would hope that the “maximally diverse” selection of r solutions would
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pick all these different solutions. However, no, the selection that maximizes divtotal consists of r/2
copies of just two solutions, the “odd” vertices and the “even” vertices (the first and last solution in
Figure 3).

}
n2

n3


n4


n5

} n1

1 2 3 4 5 6 7 8 9 10

Figure 3. The r = 6 different vertex covers of size r− 1 = 5 in a path with 2(r− 1) = 10 vertices.

This can be seen as follows. If the selected set contains in total ni copies of the first i solutions in
the order of Figure 3, then the objective can be written as

2n1(r− n1) + 2n2(r− n2) + · · ·+ 2nr−1(r− nr−1).

Here, each term 2ni(r − ni) accounts for two consecutive vertices 2i − 1, 2i of the path in the
formulation (3). The unique way of maximizing each term individually is to set ni = r/2 for all i.
This corresponds to the selection of r/2 copies of the first solution and r/2 copies of the last solution,
as claimed.

In a different setting, namely the distribution of r points inside a square, an analogous
phenomenon has been observed ([16], Figure 1): Maximizing the sum of pairwise Euclidean distances
places all points at the corners of the square. In fact, it is easy to see that, in this geometric setting,
any locally optimal solution must place all points on the boundary of the feasible region. By contrast,
for our combinatorial problem, we don’t know whether this pathological behavior is typical or rare in
instances that are not specially constructed. Further research is needed. A notion of diversity which
is more robust in this respect is the smallest difference between two solutions, which we consider in
Section 6.

6. Maximizing the Smallest Hamming Distance

The undesired behavior highlighted in Section 5 is the fact that the collection that maximizes
the sum of the Hamming distances uses several copies of the same set. In this section, we explore
how to handle this unexpected behavior by changing the distance to the minimal Hamming distance
between two sets of the collection. This modification naturally removes the possibility of selecting
the same solution twice. We show how to solve MIN-DIVERSE d-HITTING SET and r-MIN-DIVERSE

k-FEEDBACK VERTEX SET for this metric.

Theorem 3. MIN-DIVERSE d-HITTING SET can be solved in time

• 2kr2 · (kr)O(1) if |U| < kr and
• dkr · |U|O(1) otherwise.

Proof. Let (U,F , k, r, t) be an instance of MIN-DIVERSE d-HITTING SET where |U| = n. If n < kr,
we solve the problem by complete enumeration: There are trivially at most 2n hitting sets of size at
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most k. We form all r-tuples (T1, . . . , Tr) of them and select the one that maximizes divmin(T1, . . . , Tr).
The running time is at most O((2n)rr2n) = O(2kr2

kr3).
We now assume that n ≥ kr. We use the same strategy as in Section 3: We generate all r-tuples

(S1, . . . , Sr) of minimal solutions and try to augment each one to a r-tuple (T1, . . . , Tr) such that, for each
i ∈ [1, r], |Ti| ≤ k and Si ⊆ Ti ⊆ V(G) hold. The difference is that we try to maximize divmin(T1, . . . , Tr)

instead of divtotal(T1, . . . , Tr) in the augmentation. Given that we have a large supply of n ≥ kr
elements in U, this is easy. To each set Si, we add k − |Si| new elements, taking care that we pick
different elements for each Si that are not in any of the other sets Sj. The Hamming distance between
two resulting sets is then dH(Ti, Tj) = dH(Si, Sj) + (k − |Si|) + (k − |Si|), and it is clear that this is
the largest possibly distance that two sets T′i ⊇ Si and T′j ⊇ Sj with |T′i |, |T′j | ≤ k can achieve. Thus,
since our choice of augmentation individually maximizes each pairwise Hamming distance, it also
maximizes the smallest Hamming distance. This procedure can be carried out in O(kr + n) = O(n)
time. In addition, we need O(kr2) = O(n2) time to compute the smallest distance.

Using Lemma 1, we construct the set S of all minimal solutions of the d-HITTING SET instance
(U,F ), each of size at most k. We then go through every r-tuple (S1, . . . , Sr) ∈ S r and augment it
optimally, as just described. The running time is dkr ·O(n2).

Theorem 4. MIN-DIVERSE FEEDBACK VERTEX SET can be solved in time 2kr·max(r,7+log2(kr)) · (nr)O(1).

Proof. Let G be a n-vertex graph. If n < kr, we again solve the problem by complete enumeration:
There are trivially at most 2n feedback vertex sets of size at most k. We form all r-tuples (T1, . . . , Tr) of
them and select the one that maximizes divmin(T1, . . . , Tr). The running time is at most O((2n)rr2n) =
O(2kr2

r2n).
We assume now that n ≥ kr. As in Section 4, we construct a set S of at most 27k classes

of FVS solutions of G, using Lemma 2. Then, we go through all (27k)r r-tuples of classes S =

((S1, `1), . . . , (Sr, `r)) ∈ S r. For each such r-tuple, we look for the r-tuple (T1, . . . , Tr) of feedback
vertex sets such that each Ti is described by (Si, `i), and the objective value divmin(T1, . . . , Tr) is
maximized. Thus far, the procedure is completely analogous to the algorithm of Theorem 2 in Section 4
for maximizing divtotal(T1, . . . , Tr).

Now, in going from a class (Si, `i) to Ti, we have to select a vertex from every set `i(v), for v ∈ Si,
and we may add an arbitrary number of additional vertices, up to size k. We make this selection as
follows: Whenever |`i(v)| < kr, we simply try all possibilities of choosing an element of `i(v) and
putting it into Ti. If |`i(v)| ≥ kr, we defer the choice for later. In this way, we have created at most
(kr)kr “partial” feedback vertex sets (T0

1 , . . . , T0
r )

For each such (T0
1 , . . . , T0

r ), we now add the remaining elements. In each list `i(v) which has been
deferred, we greedily pick an element that is distinct from all other chosen elements. This is always
possible since the list is large enough. Finally, we fill up the sets to size k, again choosing fresh elements
each time. Each such choice is an optimal choice because it increases the Hamming distance between
the concerned set Ti and every other set Tj by 1, which is the best that one can hope for. As we proceed
to this operation for each S ∈ S r, where |S| ≤ 27k, and that, for each such S, we create at most (kr)kr

r-tuples, and we obtain an algorithm running in time 27kr · (kr)kr · nO(1). The theorem follows.

7. Conclusions and Open Problems

In this work, we have considered the paradigm of finding small diverse collections of reasonably
good solutions to combinatorial problems, which has recently been introduced to the field of
fixed-parameter tractability theory [21].

We have shown that finding diverse collections of d-hitting sets and feedback vertex sets can be
done in FPT time. While these problems can be classified as FPT via the kernels and a treewidth-based
meta-theorem proved in [21], the methods proposed here are of independent interest. We introduced a
method of generating a maximally diverse set of solutions from a set that either contains all minimal
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solutions of bounded size (d-HITTING SET) or from a collection of structures that in some way describes
all solutions of bounded size (FEEDBACK VERTEX SET). In both cases, the maximally diverse collection
of solutions is obtained via a network flow model, which does not rely on any specific properties of the
studied problems. It would be interesting to see if this strategy can be applied to give FPT-algorithms
for diverse problems that are not covered by the meta-theorem or the kernels presented in [21].

While the problems in [21] as well as the ones in Sections 3 and 4 seek to maximize the sum
of all pairwise Hamming distances, we also studied the variant that asks to maximize the minimum
Hamming distance, taken over each pair of solutions. This was motivated by an example where the
former measure does not perform as intended (Section 5). We showed that also, under this objective,
the diverse variants of d-HITTING SET and FEEDBACK VERTEX SET are FPT. It would be interesting to
see whether this objective also allows for a (possibly treewidth-based) meta-theorem.

In [21], the authors ask whether there is a problem that is in FPT parameterized by a solution size
whose r-diverse variant becomes W[1]-hard upon adding r as another component of the parameter.
We restate this question here.

Question 1 (Open Question [21]). Is there a problem Π with solution size k, such that Π is FPT parameterized
by k, while DIVERSE Π, asking for r solutions, is W[1]-hard parameterized by k + r?

To the best of our knowledge, this problem is still wide open. We believe that the divmin measure
is more promising to obtain such a result rather than the divtotal measure. A possible way to tackle
both measures at once might be a parameterized (and strenghtened) analogue of the following
approach that is well-studied in classical complexity. Yato and Seta propose a framework [35] to
prove NP-completeness of finding a second solution to an NP-complete problem. In other words,
there are some problems where given one solution it is still NP-hard to determine whether the problem
has a different solution.

From a different perspective, one might want to identify problems where obtaining one solution is
polynomial-time solvable, but finding a diverse collection of r solutions becomes NP-hard. The targeted
running time should be FPT parameterized by r (and maybe t, the diversity target) only. We conjecture
that this is most probably NP- or W[−] hard in general. However, we believe it is interesting to search
for well-known problems where it is not the case.

Author Contributions: Conceptualization, J.B., L.J., T.M., G.P. and G.R.; Methodology, J.B., L.J., T.M., G.P. and
G.R.; Investigation, J.B., L.J., T.M., G.P. and G.R.; Writing–original draft preparation, J.B., L.J., T.M., G.P. and G.R.;
Writing–review and editing, J.B., L.J., T.M., G.P. and G.R.
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