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Abstract: Various gait parameters can be used to assess the risk of falling in older adults. However,
the state-of-the-art systems used to quantify gait parameters often come with high costs as well as
training and space requirements. Gait analysis systems, which use mobile and commercially available
cameras, can be an easily available, marker-free alternative. In a study with 44 participants (age ≥ 65
years), gait patterns were analyzed with three different systems: a pressure sensitive walkway system
(GAITRite-System, GS) as gold standard, Motognosis Labs Software using a Microsoft Kinect Sensor
(MKS), and a smartphone camera-based application (SCA). Intertrial repeatability showed moderate
to excellent results for MKS (ICC(1,1) 0.574 to 0.962) for almost all measured gait parameters and
moderate reliability in SCA measures for gait speed (ICC(1,1) 0.526 to 0.535). All gait parameters of
MKS showed a high level of agreement with GS (ICC(2,k) 0.811 to 0.981). Gait parameters extracted
with SCA showed poor reliability. The tested gait analysis systems based on different camera systems
are currently only partially able to capture valid gait parameters. If the underlying algorithms are
adapted and camera technology is advancing, it is conceivable that these comparatively simple
methods could be used for gait analysis.
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1. Introduction

Falls are amongst the most serious and costly accidents in older adults. Due to problems in
defining and recording falls, prevalence and incidence data vary widely. According to data from the
World Health Organization, 28% to 35% of adults aged over 65 years fall each year. From the age of
70, this proportion rises up to 42% [1]. A survey among participants aged 65 to 89 years showed an
incidence of 38.7 female and 29.7 male fallers per 100 persons per year [2]. Especially in old age, falls
may have far-reaching consequences, such as fractures and hospital admissions. However, even falls
without injury often have serious consequences. The fear of further falls is a major cause of actual
future falls and it decreases confidence in one’s own mobility, which can lead to a massive reduction in
quality of life [3].
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A comprehensive gait analysis can reveal deviations and impairments in gait behavior and enable
medical health professionals to assess the risk of illness or injury. The measured parameters provide
useful diagnostic and therapeutic information when measured accurately. According to a review by
Springer and Seligmann, the most relevant parameters in gait analysis are gait speed, step length,
step time, cadence (number of steps per minute), and stance time [4]. Age-related changes in step
parameters are associated with a decrease in gait symmetry and step length and an increase in step
time and step width [5]. The risk of falling increases with a reduction in gait speed. Even a gait
speed reduction of only 0.1 m/s is related to a 7% increase in the risk of falling. If the gait speed is
below 0.7 m/s, the risk of falling is 1.5 times higher compared to participants with a normal gait speed
(>1.0 m/s) [6].

One of the most recognized gold standards for gait analysis is the GAITRite system (GS), a portable
gait analysis tool for the automated measurement of gait parameters. Studies could classify the use of
GS as valid and reliable [7]. However, its use is limited due to the need for expensive devices that are
not always available in the clinical environment. Furthermore, only step parameters can be captured,
and thus full-body gait analysis is not possible. Recent findings indicate that Microsoft Kinect offers a
cost-effective method for gait analysis [8,9]. However, studies have shown that Kinect is only a valid
measuring instrument for some gait parameters [4].

In a validation study using the GAITRite system as a reference system, it was found that Kinect
is well suited to determine general parameters such as average stride length or average stride time
(a Spearman correlation coefficient of 0.94 for average stride length and 0.75 for average stride time
per stride). Determining more accurate results for individual strides is more difficult (SCC of 0.74 for
stride length and 0.43 for stride time per stride), which increases the difficulty of determining more
complex gait parameters such as gait symmetry [10]. In a study, Clark et al. also demonstrated limited
validity of the Kinect system for complex gait parameters [11].

Because some of the established systems are expensive, need a large amount of space, lack
validity, or need extensive training, new devices using relatively recent and widespread information
and communication systems such as smartphones were developed. Within the presented study, two
camera-based systems for measuring different gait parameters were validated against a gold standard
for gait analysis.

2. Materials and Methods

2.1. Apparatus

The gait analysis was conducted with three different systems: a pressure sensitive walkway
system (GAITRite-System, GS), Motognosis Labs Software using a Microsoft Kinect Sensor for Xbox
One (Microsoft Kinect system, MKS), and a smartphone camera-based application (smartphone camera
application, SCA).

(1) GS: GAITRite is a 5.2 m long (active length 4.27 m) and 90 cm wide (active wide 61 cm) carpet
with 16,128 embedded sensors in a grid. The sensors are placed at a distance of 1.27 cm and
are activated by mechanical pressure. GS allows the measurement of different temporal (e.g.,
step time, velocity, single/double support) and spatial (e.g., step length, stride length, distance)
parameters. The carpet is connected to a computer via an interface cable. Prior to the gait analysis,
the participant’s age, weight, height, and leg length (right and left) had to be entered manually.
The validity of GS was previously investigated in several studies [7,12,13] and used as gold
standard in the presented study.

(2) MKS: Motognosis Labs is software developed for the motor assessment of patients with
neurodegenerative diseases [14] using a consumer 3D camera (Microsoft Kinect V2) to collect
depth silhouettes of individuals (visual perceptive computing). The Software Development Kit of
Microsoft (SDK V14.09) uses artificial intelligence to locate 25 different anatomical landmarks [15],
which are then used by the software to calculate movement kinematics similar to GS. The system
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was placed at the end of GS with 1.7 m distance to the edge of the carpet. The measurement range
of the system is up to 4.5 m, limiting the area covered by GS and MKS to approximately 3 m.

(3) SCA: The smartphone application conducts gait analysis by recording a video of the subject
with a 2D smartphone camera and an underlying algorithm. Within the smartphone application
participants’ age, sex, height, and weight must be entered. SCA applies the recent advances of
artificial intelligence to the problem of human pose estimation. Using a 2D smartphone camera
and a deep convolutional neural net, the application estimates a 3D skeletal model based on a
video of a person walking. The underlying algorithm was developed using the VNect algorithm
(3D joint and skeleton detection). The VNect algorithm is a real-time method, which captures the
full global 3D skeletal pose of human using a single RGB camera [16]. SCA was installed on a
Nexus 5 smartphone (Android).

2.2. Procedure

The inclusion criteria for participants were a minimum age of 65 years and participants’ signed
informed consent. Exclusion criteria were severe cognitive, sensory, or motoric disorders, and a legal
representative. Participants were recruited from former contacts of the Geriatrics Research Group,
Charité–Universitätsmedizin Berlin. In an initial telephone screening, participants were informed
about the study procedure, the inclusion and exclusion criteria were checked, and an appointment for
the gait analysis was arranged (minimum of 24 h after screening).

The gait analysis was conducted in the laboratory of the Geriatrics Research Group in Berlin. Firstly,
participants were once again informed about the study procedure and data protection. After giving
their informed consent, participants had to complete a questionnaire with regard to socio-demographic
data (age, sex, weight, height, leg length; self-deployed questionnaire). Subsequently, each participant
was asked to complete six walks with two speed conditions: preferred gait speed (PGS) and fast gait
speed (FGS). This resulted in 264 walks overall (44 participants × 6 walks). For the first three walks,
participants were instructed to walk over the carpet (GS) beyond the end at a self-selected normal
speed. The following three walks should be completed at an FGS (instruction: a velocity that is faster
than you would walk normally). For each walk, GS was first started at the computer and then MKS
and SCA were initiated, before the participant’s walk, so that all three systems analyzed the subject’s
gait simultaneously (Figure 1). GS measurement was initiated by the first pressure contact to the
carpet. The video recording of MKS and SCA began when the participants entered the recorded area.
After each walk, study personnel verified that the systems were measuring correctly. At the end, the
participants received a short evaluation of their gait pattern on the basis of the GAITRite data. The
study visit took approximately one hour for the participants. Both the ethics committee and the data
protection office of the Charité approved all study procedures.
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2.3. Data Analysis

The data of the three systems were synchronized in an excel file. Four gait parameters were
compared between the three systems: gait speed, cadence, step length (right/left), and step time
(right/left). The four relevant gait parameters were calculated from all three systems for all participants
and manually merged by the study personnel into an Excel file. The parameters were output in different
units of measurement (e.g., gait speed in km/h or m/s). Accordingly, the data is partially converted. For
quality assurance purposes, 10% of the data records were randomly checked by an external scientific
employee. All gait parameters were tested for normality using a Kolmogorov-Smirnov (K-S) test under
both conditions (PGS, FGS). The mean values of three walks per condition were used to compare
the systems. To identify the retest reliability for measurement repetitions for each system, intraclass
correlation coefficients (ICC(1,1); one-way random effects) were calculated. Using mean values of three
walks, ICCs(2,k) (two-way random effects, absolute agreement, single rater/measurement) with 95%
confidence intervals and Pearson Correlation were calculated to identify the level of agreement between
two systems. According to Koo et al., values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.90,
and values higher than 0.90 indicate poor, moderate, good, or excellent reliability, respectively [17].

3. Results

3.1. Subjects

Forty-four older adults participated in the study. Participants were on average 73.9 years old
(±6.0 years, range: 65 to 91 years). Half of the participants (n = 22) were female. For gait analysis,
height, weight, and leg length were measured (Table 1). The mean height and weight were 168.8 cm
(±8.9 cm) and 76.2 kg (±15.5 kg), respectively.

Table 1. Socio-demographic data of participants.

Total Female Male

N 44 22 22
Age [Mean ± SD, years] 73.9 ± 6.1 74.1 ± 6.1 73.7 ± 6.2
Height [Mean ± SD, cm] 168.8 ± 8.9 162.4 ± 6.2 175.1 ± 6.2
Weight [Mean ± SD, kg] 76.2 ± 15.5 68.3 ± 14.0 84.1 ± 12.8

Leg length right [Mean ± SD, cm] 90.1 ± 5.4 87.4 ± 4.9 92.8 ± 4.6
Leg length left [Mean ± SD, cm] 89.9 ± 5.5 87.1 ± 5.2 92.7 ± 4.5

Note: SD = standard deviation.

3.2. Concurrent Validity

Table 2 reports the mean values and differences between the systems for all measured gait
parameters for GS, MKS, and SCA under both conditions, the standard deviation for mean values,
and the 95% confidence intervals of average differences between both systems. Recorded mean
values differed in both conditions between GS and MKS for gait speed and step length (right). The
largest differences were recorded for gait speed in FGS (Diff = 5.76 cm/s) and PGS (Diff = 4.01 cm/s).
Furthermore, there were significant differences between GS and MKS considering step time (left)
and step time (right) in PGS. However, GS and MKS showed a strong positive correlation for all gait
parameters and both conditions (0.845 ≤ r ≤ 0.988).
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Table 2. Mean difference, SD of the differences, 95% confidence interval, and t-test values for GS and MKS and GS and SCA at preferred and fast speed.

GS MKS SCA GS-MKS GS-SCA

Mean (SD) Mean (SD) Mean (SD) Diff [95% CI] t-Test
p-Value

Pearson
Corr. ICC(2,k) Diff [95% CI] t-Test

p-Value
Pearson

Corr. ICC(2,k)

Preferred speed Gait speed [cm/s] 120.69 (19.90) 116.69 (19.04) 122.05 (24.81) 4.01 [3.14; 4.88] 0.000 0.988 0.981 −0.44 [−7.89; 7.02] 0.906 0.275 0.434
Cadence [steps/min] 111.90 (8.72) 111.75 (12.23) 155.51 (23.86) −1.16 [−2.81; 0.49] 0.162 0.876 0.925 −42.23 [−48.25; −36.21] 0.000 0.078 0.020
Step length, left [cm] 64.73 (7.78) 62.45 (8.00) 51.94 (25.04) 1.99 [1.16; 2.82] 0.000 0.952 0.958 14.79 [10.15; 19.43] 0.000 0.316 0.233

Step length, right [cm] 65.04 (7.92) 62.38 (8.94) 60.10 (41.84) 2.59 [1.67; 3.51] 0.000 0.946 0.941 8.35 [2.77; 13.93] 0.004 0.413 0.394
Step time, left [s] 0.54 (0.05) 0.55 (0.08) 0.62 (0.24) −0.01 [−0.02; 0.01] 0.307 0.887 0.921 −0.08 [−0.13; −0.03] 0.004 0.295 0.222

Step time, right [s] 0.54 (0.04) 0.53 (0.06) 0.67 (0.39) 0.01 [0.01; 0.02] 0.003 0.857 0.903 −0.10 [−0.17; −0.03] 0.004 0.158 0.090

Fast speed Gait speed [cm/s] 164.80 (23.40) 158.70 (22.20) 143.60 (37.00) 5.76 [2.59; 8.93] 0.001 0.904 0.922 19.31 [9.86; 28.77] 0.000 0.424 0.494
Cadence [steps/min] 132.70 (10.20) 129.60 (14.80) 177.50 (28.60) −2.16 [−4.77; 0.45] 0.097 0.876 0.904 −46.09 [−52.43; −39.74] 0.000 0.409 0.119
Step length, left [cm] 74.50 (9.30) 72.30 (10.40) 79.60 (52.50) 1.42 [−0.28; 3.12] 0.095 0.910 0.947 −2.72 [−12.10; 6.65] 0.560 0.466 0.389

Step length, right [cm] 74.10 (8.60) 70.00 (10.20) 68.20 (30.30) 1.43 [0.30; 2.56] 0.016 0.958 0.971 2.31 [−3.73; 8.35] 0.442 0.342 0.415
Step time, left [s] 0.45 (0.03) 0.47 (0.05) 0.54 (0.22) 0.01 [0.00; 0.03] 0.101 0.845 0.811 −0.06 [−0.10; −0.01] 0.013 0.267 0.176

Step time, right [s] 0.45 (0.03) 0.46 (0.06) 0.61 (0.45) 0.00 [−0.02; 0.02] 0.873 0.884 0.864 −0.09 [−0.15; −0.03] 0.006 −0.137 −0.077

Note. SD = standard deviation, Diff [95% CI] = Differences in mean values with confidence intervals lower and upper bound, ICC = intraclass correlation coefficient.
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The ICC(2,k) showed a high level of agreement between GS and MKS for all gait parameters
in PGS and FGS, ranging from 0.811 to 0.981. Comparing mean values for GS and SCA, significant
differences were observed in almost all gait parameters, except gait speed in PGS and step length (left
and right) in FGS. Larger differences were observed in the comparison of GS and SCA. In particular,
the cadence was substantially higher when measured with the SCA in PGS (Diff = −42.23 steps/min)
and FGS (Diff = 46.08 steps/min). Only small to medium correlations existed between the mean values
of GS and SCA. With values less than 0.5, the ICC(2,k) indicates poor agreement between GS and SCA
for all gait parameters and both conditions (Table 2).

3.3. Intertrial Repeatability

The repeatability of the recorded gait parameters of the three systems under both conditions
was analyzed using ICC(1,1) (Table 3). All gait parameters measured by GS were found to have
good reliability in PGS (ICC(1,1): 0.786 to 0.860) and moderate reliability in FGS (ICC(1,1): 0.502 to
0.721) except in step time (right) and cadence. All gait parameters measured by MKS showed good to
excellent reliability in FGS (ICC(1,1): 0.809 to 0.962). Gait parameters in PGS showed good to moderate
reliability, except step time (right and left; ICC (1;1): 0.426 and 0.453). SCA was found to have moderate
reliability in gait speed under both conditions (ICC(1,1): 0.526 to 0.535). Other parameters measured
by the SCA showed poor reliability (ICC(1,1): 0.125 to 0.368).

Table 3. ICC(1,1) Intratrial repeatability for GS, MKS, and SCA at preferred and fast speed.

GS MKS SCA

SEM ICC(1,1) SEM ICC(1,1) SEM ICC(1,1)

Preferred speed Gait speed [cm/s] 1.739 0.816 1.664 0.823 2.219 0.535
Cadence [steps/min] 0.768 0.834 1.136 0.574 2.134 0.298
Step length, left [cm] 0.685 0.854 0.749 0.843 2.258 0.125
Step length, right [cm] 0.697 0.860 0.849 0.646 3.758 0.225

Step time, left [s] 0.004 0.826 0.008 0.453 0.022 0.142
Step time, right [s] 0.004 0.786 0.006 0.426 0.036 0.100

Fast speed Gait speed [cm/s] 2.076 0.502 3.285 0.944 1.980 0.526
Cadence [steps/min] 0.909 0.349 2.539 0.901 1.663 0.368
Step length, left [cm] 0.814 0.508 4.692 0.962 1.108 0.136
Step length, right [cm] 0.757 0.721 2.750 0.893 1.103 0.177

Step time, left [s] 0.003 0.508 0.020 0.835 0.007 0.160
Step time, right [s] 0.003 0.488 0.042 0.809 0.008 0.148

Note. ICC = intraclass correlation coefficient, GS = GAITRite system, MKS = Microsoft Kinect system, SCA =
smartphone camera application, SEM = standard error of measurement.

4. Discussion

This study investigated the validity of camera-based technologies for gait analysis in comparison
to a well-established gait analysis system. Accordingly, 264 walks of 44 older adults at two walking
speed conditions (PGS and FGS) were recorded with three systems. As already shown in other
studies, GS measures of gait parameters showed good reliability for PGS, which was confirmed for
gait parameters in the present study, but only moderate in FGS [7,13]. To a large extent, good reliability
was also demonstrated for MKS in the present study. Between the included MKS and GS, a good
level of agreement was found, especially in PGS. In contrast, a comprehensive review by Springer and
Seligman concluded that gait analysis systems based on a Microsoft Kinect for spatiotemporal gait
parameters had limited validity [4].

The mean values of the SCA already differ to a high extent from the mean values of GS and MKS.
This was also found in the ICC results, in which only a poor level of agreement for all gait parameters
at both speed conditions was measured. Furthermore, the intertrial repeatability was only moderate
for one of the six included gait parameters.
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The usage of a smartphone camera for the gait analysis of spatiotemporal parameters has not
yet been extensively investigated. The study of Finkbiner et al. demonstrated significant moderate
agreement in kinematic parameters (knee angles) measured by an application using a smartphone
camera and a 3D motion capturing system [18]. Furthermore, some recent studies have investigated
the use of smartphone motion sensors (e.g., accelerometer) to capture and analyze movements [19,20].
In this context, Manor et al. found significant correlations in stride length between the GAITRite
system and a self-developed iPhone application [19].

To conclude, even if smartphones are comparatively cheap, mobile, and easily available, the
smartphone camera-based application used in the present study was not able to detect relevant gait
parameters in the same manner as an already well-established system. The main reason for this
might be the underlying algorithm, which analyzes the sensor data and the used 2D camera. This
algorithm must be improved, and studies demonstrating the validity and reliability of the system must
be conducted before using SCA for gait analysis in clinical situations. In contrast, the collected data of
the MKS showed already high agreement with the data of the gold standard in the majority of the
measured gait parameters. In further studies, it is important to also include participants with physical
impairments and/or walking aids as the target group for which gait analysis systems are usually made.

5. Perspectives

GS data will be used to help developers to adapt to the requirements for systematic gait analysis,
which is particularly used in medicine and physiotherapy. Based on the presented study, the algorithms
of MKS and SCA will be further developed. In particular, the present study is used as a first basis for
strengthening the necessary data science experience in the further development of SCA analysis. Data
scientists will continue to develop underlying AI based calculation methods to improve the accuracy
of SCA gait analysis. Compared to gait analysis with a Microsoft Kinect camera, which was validated
with different target groups in previous studies, gait analysis with a smartphone camera is a completely
new method, whose underlying artificial intelligence must first be learned before further studies can
be carried out.
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