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Abstract

Occurring on various scales vortices are the most prominent feature determining con-

siderably the appearance of the atmospheric flow field. Although, it seems to be sub-

jectively trivial to identify a vortex by the observation of swirling motions, an accepted

unified mathematical definition of vortex size and intensity is still missing. In this the-

sis, the kinematic properties and the dynamic equations of the flow field will be used in

order to reveal appropriate size and intensity measures of theoretical models as well as

atmospheric vortices.

Well-known methods of vortex identification in atmospheric flows are based on pressure

or vorticity fields. We will show that these methods can give inconsistent results in

certain flow situations, especially in the vicinity of shear. Therefore, we will introduce

a kinematic method called the kinematic vorticity number method (Wk-method) that

locally compares the rates of rotation and deformation. A vortex is then defined in

regions where the rotation rate prevails over the strain rate. Due to the dimensionless

definition as a ratio, the main advantage of the novel method is that it is applicable

in different flow situations, different height levels and different grid resolutions giving

consistent results. In the thesis, we will show a broad range of successful applications

of the Wk-method in multiple different data sets.

Kinematics give considerable insight into the behavior and properties of the flow at one

moment in time. However, kinematics do not consider the forces that cause this behavior

and how the flow or the vortices will evolve over time. For the complete study of vortex

behavior and vortex interactions, we also need to study the dynamic equations. These

equations of motion can be used in order to derive theoretical vortex models under ide-

alized conditions. Theoretical vortex models such as the Rankine vortex model reveal

that radius and circulation are the most important vortex properties that determine

the wind field around a vortex. The Wk-method is able to extract these two proper-

ties from the complex flow fields. However, atmospheric vortices differ from theoretical

models mainly in the prevailing balance of forces. While theoretical vortex models are

derived in an inertial, non-rotating reference frame, we need to investigate atmospheric

vortices in a noninertial, rotating reference frame since the effect of Earth’s rotation

rate becomes non-negligible for larger-scale atmospheric vortices on the mesoscale, syn-

optic and planetary scale. Therefore, we will introduce two intensity measures on basis

of the horizontal equations of motion. The explicit expressions of intensity measures,

called energy of displacement and atmospheric moment, depend on the set of forces that

balance the pressure gradient force in the radial component of the horizontal equations

of motion. We will show that the energy of displacement expressions can be written in

terms of different combinations of circulation and vortex size for different atmospheric



vortex types due to the influence of the Coriolis force on larger-scale vortices. While

the energy of displacement can be interpreted as the mass-specific work that was nec-

essary to generate the vortex, the atmospheric moment is its mass-related counterpart.

Likewise to the seismic moment of earthquakes, the atmospheric moment can be seen

as a measure of vortex magnitudes proportional to the total energy released during the

vortex life time.

Finally, we will apply our assembled knowledge, measures and methods in the statisti-

cal analysis of vortex structures in data of different resolution from reanalysis, models

as well as observations. For all data sets and parameters the main findings are the

following: The smaller scales usually behave rather power-law (scale-free) distributed

while the larger scales of the parameters are rather determined by scales (exponential

behavior). With respect to the atmospheric moments, we could identify a power-law

distribution that seems to be composed of different vortex types ranging from the con-

vective scale up to the synoptic scale. We found that the power-law exponent is similar

to that of earthquakes (Gutenberg-Richter law).

In conclusion, this thesis investigates the relation of vortices on different scales as seen

from theory, model and observations. We could introduce and implement a unifying

method — the Wk-method — that is able to identify vortices and their properties from

differently-resolved flow fields in a consistent manner. To our knowledge, it is probably

the first time that such an attempt of interlinking the atmospheric vortices on different

scales with help of one single method has been made. The Wk-method not only allows

us to compare the different data sets, it furthermore can be applied in various ways as is

shown in the present work. Last but not least, the Wk-method allows the presentation of

atmospheric vortices in a three-dimensional manner that helps to improve the subjective

view we have on vortices.



Zusammenfassung

Wirbel sind wohl die bekanntesten und auffälligsten Phänomene, die das Erscheinungs-

bild der Atmosphäre maßgeblich prägen. Trotz ihrer auffälligen Rotationsbewegung

ist es nicht trivial, einen Wirbel hinsichtlich seiner Stärke und Ausdehnung klar vom

dreidimensionalen Strömungsfeld abzugrenzen, da eine einheitlich akzeptierte, mathe-

matische Definition fehlt. In dieser Arbeit werden wir das Problem der Wirbelerkennung

einerseits mit Hilfe der Kinematik und andererseits mit Hilfe der Dynamik betrachten.

Während die Kinematik bei der Beschreibung der Wirbelgröße hilft, können wir mit

Hilfe der dynamischen Gleichungen und daraus abgeleiteten theoretischen Wirbelmo-

dellen Intensitätsmaße finden.

Bekannte Methoden zur Wirbelidentifizierung in atmosphärischen Feldern basieren häu-

fig auf den Parametern Druck bzw. Vorticity. Wir werden im Rahmen dieser Arbeit

zeigen, dass diese Methoden in bestimmten Strömungssituationen inkonsistente Ergeb-

nisse liefern; z.B. wenn die Wirbel mit großer Scherung überlagert sind. Kinematische

Methoden hingegen erlauben es, Wirbel und insbesondere ihre Größe in vielen Situatio-

nen konsistenter zu bestimmen. Ein Beispiel ist die kinematische Vorticity-Zahl, die als

Quotient der lokalen Rotationsrate und der Deformationsrate definiert ist. Die kinema-

tische Vorticity-Zahl dient as Grundlage, der in dieser Arbeit eingeführten Wk-Methode.

Dabei definieren wir eine Wirbelfläche als ein zusammenhängendes Gebiet, in dem die

Rotationsrate gegenüber der Deformationsrate überwiegt. Berücksichtigt man zusätz-

lich das Vorzeichen der Vorticity, so ist es möglich sowohl Tief- als auch Hochdruck-

gebiete bzw. zyklonal und antizyklonal rotierende Wirbel zu untersuchen. Aufgrund

ihrer dimensionslosen Definition als Quotient hat die Wk-Methode den Vorteil, dass

sie in verschiedenen Strömungssituationen, in unterschiedlichen Höhenschichten und in

unterschiedlich gut aufgelösten Feldern eingesetzt werden kann, ohne dass subjektive

Grenzwerte definiert werden müssen. Wir werden in dieser Arbeit eine breite Palette

von Anwendungen der Wk-Methode in verschiedenen Datensätzen präsentieren.

Die Kinematik ermöglicht es zwar den aktuellen Zustand einer Strömung und der in ihr

enthaltenen Wirbel zu analysieren, dabei bleiben jedoch die Ursachen sowie die zeitliche

Entwicklung der Strömung unberücksichtigt. Möchte man hingegen die zeitliche En-

twicklung und die Interaktion von Wirbeln verstehen, so müssen die dynamischen Glei-

chungen betrachtet werden. Unter stark idealisierten Bedingungen können mit Hilfe

der dynamischen Gleichungen theoretische Wirbelmodelle wie das Punktwirbel- oder

das Rankinewirbelmodell abgeleitet werden. Diese Modelle zeigen uns, dass das Wind-

feld, das um einen Wirbel herum induziert wird, durch die Wirbelzirkulation und den

Wirbelradius beschrieben werden kann. Mit Hilfe der Wk-Methode können wir diese

beiden Parameter für jeden Wirbel bestimmen. Reale atmosphärische Wirbel unter-



scheiden sich von den idealisierten Wirbelmodellen jedoch hinsichtlich der vorherrschen-

den Kräftegleichgewichte. Während theoretische Wirbelmodelle in einem Inertialsystem

hergleitet werden, müssen die atmosphärischen Wirbel in einem rotierenden Nichtin-

ertialsystem betrachtet werden, da der Einfluss der Erddrehung für mesoskalige, sy-

noptischskalige und planetare Wirbel nicht mehr vernachlässigbar ist. Dies führte

zur Einführung zweier Intensitätsmaße auf Grundlage der horizontalen Bewegungsglei-

chungen im rotierenden Bezugssystem. Die expliziten Ausdrücke dieser Intensitätsmaße,

genannt Verschiebungsenergie (energy of displacement) und atmosphärisches Moment

(atmospheric moment), hängen vom vorherrschenden Kräftegleichgewicht der radialen

Komponente der horizontalen Bewegungsgleichungen ab. Das Kräftegleichgewicht hängt

wiederum von der horizontalen Skala der Wirbel ab. Die Verschiebungsenergie lässt sich

mit Hilfe der Parameter Wirbelzirkulation und Wirbelradius ausdrücken. Interpretieren

ließ sich die Verschiebungsenergie als die massenspezifische Arbeit, die benötigt wurde,

um den Wirbel zu erzeugen. Das atmosphärische Moment stellt das massenabhängige

Pendant zur Verschiebungsenergie dar, da es zusätzlich das gesamte Volumen berück-

sichtigt, dass während der Lebenszeit des Wirbels beeinflusst wurde. Analog zum seis-

mischen Moment der Erdbeben, kann das atmosphärische Moment als Magnitude bzw.

gesamte freigesetzte Energie der Wirbel interpretiert werden.

Die auf den vorgestellten Überlegungen basierten Maße und Methoden werden an-

schließend in der statistischen Analyse von Wirbelstrukturen in Datensätzen unter-

schiedlicher Auflösung angewandt. Dabei beobachten wir, dass sich Wirbel der kleinen

Skalen eher potenzverteilt (skaleninvariant) verhalten während die Wirbel der großen

Skalen eher exponentialverteilt (skalenbehaftet) sind. Für die atmosphärischen Mo-

menten konnten wir Hinweise auf ein Potenzgesetz finden, dass sich aus den Wirbel

der unterschiedlichen Skalen zusammenzusetzen scheint. Der Exponent dieses Poten-

zgesetze entspricht dem des Gutenberg-Richter Gesetzes der Erdbeben.

Zusammengefasst untersuchen wir in dieser Arbeit Wirbel unterschiedlicher Skalen mit

Hilfe theoretischer Überlegungen und Modelle, numerischer Simulationen sowie mit

Beobachtungsdaten. Die neu eingeführte Wk-Methode erlaubt es Wirbel und ihre Eigen-

schaften in unterschiedlich aufgelösten Daten in konsistenter Weise zu bestimmen. Un-

seres Wissens nach ist das möglicherweise der erste Versuch atmosphärische Wirbel

unterschiedlicher Skalen anhand einer einzigen, einheitlichen Methode zu untersuchen.

Die Wk-Methode kann darüber hinaus auf unterschiedliche Weise eingesetzt werden, so

dass diese Arbeit einen Beitrag leistet, das Wissen um Wirbel und ihre Eigenschaften

zu verbessern. Nicht zuletzt erlaubt die Wk-Methode, atmosphärische Wirbel im drei-

dimensionalen Raum darzustellen und damit das subjektive Bild, das wir von Wirbel

haben, zu verbessern.
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1 Introduction and Motivation Lisa Schielicke

1 Introduction and Motivation

Vortices are one of the most common features of the atmospheric flow field. They occur

on various scales ranging from turbulence-scale whirlwinds in the order of centimeters

or meters up to the stratospheric polar vortex which spans nearly half of the winter

hemisphere with a horizontal scale in the order of about 107 m. An overview over

different atmospheric vortex types and their characteristic properties is given in Table

1. Lifetime and horizontal scale of vortices seem to be connected via a remarkably simple

scaling law introduced by Kolmogorov (1941)1 (see Figure 1 adopted from Smagorinsky,

1974). This scale-invariant nature of turbulence was captured nicely by Lewis Fry

Richardson in his famous poem2

”Big whirls have little whirls that feed on their velocity,

And little whirls have lesser whirls and so on to viscosity.”

1Kolmogorov’s law is also called 5/3-scaling law because the energy spectrum scales as E(k) ∼ k−5/3

where k is the wave number. In spatial space, the energy depending on length l scales as E(l) ∼ l2/3

2Lewis Fry Richardson (1881-1953) was a scientist active in various scientific fields such as compu-
tational mathematics, meteorology, fluid mechanics and complex systems (A review of his life and his
contributions to the fields of numerics, meteorology and numerical weather prediction is given in Hunt,
1998).

Table 1: Typical atmospheric vortex types and their characteristic properties (U, W: hori-
zontal/vertical wind speed, L: horizontal scale, H: height, H/L: height-to-length ratio (aspect
ratio), T : lifetime, Γ = 2πLU: circulation) Furthermore, the prevailing balance of forces is
given where ”geostrophic” denotes the balance of the pressure gradient force and the Coriolis
force; ”gradient wind” denotes the balance of the pressure gradient force and the sum of the
Coriolis and centrifugal forces; and ”cyclostrophic” denotes the balance of the pressure gradient
force and the centrifugal force. Typical values of charateristic properties are taken from classical
textbooks (Markowski and Richardson, 2011; Holton, 2004), typical lifetime of tropical cyclones
is taken from Camargo and Sobel (2005), who analysed tropical cyclones in the western Pacific.
The characteristic lifetime might be slightly different for other basins.

vortex type: synoptic low tropical cyclone supercell tornado

U 10 m/s 25 m/s 15 m/s 50 m/s

W 1 cm/s 1 m/s 10 m/s 50 m/s

L 1000 km 300 km 10 km 100 m

H 10 km 10 km 10 km 2 km

H/L 10−2 10−1 100 2 · 101

T 1-3 days 5-10 days 1-4 hours 10 min

Γ 6 · 107m2/s 2 · 107m2/s 2 · 106m2/s 3 · 104m2/s

Hor. balance geostrophic gradient wind cyclostrophic cyclostrophic

1
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Vortices have a considerable share in reducing imbalances in the climate system. In gen-

eral, large-scale vortices transport heat and moisture pole- and upwards and therefore

reduce the imbalance induced by the global difference in solar influx. Hence, vortices

have a large impact on the regional and global climate while large-scale climate condi-

tions on the other hand influence the development of cyclones. Furthermore, vortices

have a considerable impact on society. On the one hand, vortices determine the local

weather and climate (precipitation amount, temperature, wind). On the other hand,

a small number of extreme vortices are able to produce damaging severe weather of

different types (gale force winds, extreme precipitation, large hail, tornadoes). There-

fore, it is of great importance to understand vortex behavior including their structure,

frequency of occurrence, intensity distributions and, in particular, their behavior under

different climate conditions.
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√
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Surprisingly, despite their importance and impact on daily life, there is neither a clear

definition nor a consensus on the intensity or size definition of a vortex (e.g. Neu et al.,

2013, who make this statement explicitely for extratropical cyclones). Interestingly, the

same is true for other vortices of turbulent flow. Especially in fluid mechanics, the topic

of vortex definition and identification is debated since the beginning of hydrodynamics

(Jeong and Hussain, 1995) and research in this field is still ongoing (e.g. Chakraborty

et al., 2005). Moreover, Jeong and Hussain (1995) state that ”an accepted definition

of a vortex is still lacking”. Since the 1990s, numerous fluid dynamical publications

addressed this topic. In the following, loads of different (sophisticated) methods were

introduced. These methods are often based on the analysis of the kinematics of the

flow field. However, only rare applications to the atmospheric flow are found and these

applications only dealt with a certain type of vortex (a few studies on tropical cyclones

use successfully the so called Okubo-Weiss parameter, that compares kinematic prop-

erties in order to identify a vortex, see e.g. Dunkerton et al., 2009; Tory et al., 2013).

However, for the study of vortex properties and vortex interactions on different scales

likewise to Richardson’s poem it is necessary to define a unified method that identifies

vortex structures on different scales in a consistent manner. Such a method is still miss-

ing, but kinematic methods seem to be the key towards a multiscale identification of

vortices.

The main motivations and objectives of this thesis can be summarized as follows

• Vortices can be seen from two perspectives: dynamic (intensity) and kinematic

(geometric properties such as size, height, path lengths) perspectives and both

sides are important in describing the vortex in its entirety.

• Both topics can be tackled with different approaches: On the one hand, kinematic

properties of the flow can be used in order to determine the geometric aspects of

the vortex. On the other hand, dynamic equations serve as basis to determine

consistent intensity measures.

• Both approaches - kinematic as well as dynamic –will be used in this thesis in

order to study vortex structures on different scales with respect to their intensity

and their size on basis of a single unified method.

In order to verify the applicability of the method to differently-scaled data sets, we will

conduct multiple tests, applications and a statistical analysis of different data sets: sim-

ulation, reanalysis and observational data. The statistical analysis of vortex properties

of the different vortex types is essential for further and future studies of the behavior

of the vortex properties under different climate conditions (e.g. summer vs. winter).

Furthermore, it seems that vortices on different scales are in a way connected to each

other (cf. Figure 1). If we could proof this connection between different vortex types, we

would be able to analyze vortices only on a specific scale and still gain information on

3
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all other scales. For example, in coarse data sets only large-scale extratropical cyclones

(and anticyclones) are resolved while vortices on smaller scales are missing. In this case,

we might still be able to estimate the behavior for the smaller scales. The last part of

this work deals with this topic.

This work is organized as follows: we will refresh the knowledge on the kinematics of

the flow field in chapter 2 and will see that the kinematics can serve as a toolbox of

vortex identification methods and especially helps in the definition of vortex sizes. The

general dynamics as well as vortex dynamics are introduced in chapter 3. These equa-

tions allow us to understand vortex interactions and helps in the definition of vortex

intensity measures. Theoretical vortex models in chapter 4 reveal under cyclostrophic

balance the importance of the vortex properties circulation and radius on the flow field

around a vortex. For atmospheric vortices a revision of these properties is necessary

since larger-scale atmospheric vortices deviate from a cyclostrophic balance due to the

non-negligible influence of Earth’s rotation rate on the vortices and new measures of

vortex intensity will be derived in chapter 5. Finally, we are able to introduce a unified

method of vortex identification: the kinematic vorticity method (Wk-method) in chapter

6. This method allows us to identify all relevant properties of a vortex and will be ap-

plied in the statistical analysis of vortices on different scales in chapter 7. We complete

the thesis with a conclusion and outlook chapter 8.
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2 Kinematics: A toolbox of vortex identification

methods

Kinematics is a diagnostic tool. It deals with the motion and deformation of a flow

field without considering the forces that cause these motions (Wu et al., 2007). In

comparison, dynamics takes into account the causal forces by analysing the prognostic

equations of motion. This section only deals with the kinematics and it will be shown

how the kinematics can be used to diagnose and visualize the flow field. Moreover, the

analysis of the kinematic properties of the flow will be the main tool used in this thesis

in order to identify vortex structures and their properties like size and strength in the

complex atmospheric flow fields. Since vortices are a typical feature of fluids which do

not occur in solids, we will start with an overview over the different properties of fluids

and solids.

2.1 On solids, fluids and the occurrence of vortices

We neither observe vortices in solids nor in viscous fluids like honey. Hence, there must

be an important difference between solids and fluids in general and between different

types of fluids in particular. Thereby, the term fluid designates gases as well as liquids.

The main difference between solids and fluids is the way the materials react on forces,

more specific on shear forces. Batchelor (2000) distinguishes between simple solids and

simple fluids as follows: Assume to apply the same small change in shear forces to either

a simple solid and a simple fluid. The simple solid will react with only a small amount

of change in its shape and in the relative positions of the material elements, while the

simple fluid reacts with a considerable change of shape and of the relative positions of

its elements (see also Shaughnessy et al., 2005). Most common fluids like air and water

behave like simple fluids. The term ”simple” should distinguish simple solids and fluids

from more complex materials that behave like fluids in some respects and like solids in

other respects such as thixotropic3 substances (Batchelor, 2000).

The main difference between liquids and gases is their different compressibility. Gases

can be compressed easily while liquids can be compressed, however only slightly and with

a huge effort: for example the bulk modulus4 of water is 2·109 Pa while that of air near

the surface is in the order of 105 Pa=1000 hPa (Tipler, 2000). Since the compressibility

of liquids is small they are often assumed to be incompressible5.

The occurrence of vortices – or eddies – in a fluid is closely connected to turbulence

in the flow. The distinction between laminar and turbulent flow regimes is measured

3Examples of thixotropic substances are paint, jelly or ketchup which behave like elastic solids when
being in rest for a time, but behave like liquids when being severely distorted by shaking or stirring.

4The bulk modulus describes the resistance of a substance to uniform compression. Its reciprocal
value is called compressibility.

5Incompressible stands for zero compressibility or a bulk modulus of ∞

5



2.2 Eulerian vs. Lagrangian perspective Lisa Schielicke

in terms of the dimensionless Reynolds number Re which is defined as the ratio of the

inertial and viscous forces:

Re =
inertial forces
viscous forces

=
ρU2L2

µUL
=

UL
ν

(1)

where U and L are the characteristic velocity and length scale in the fluid; µ and ν

are the bulk viscosity and kinematic viscosity, respectively with ν = µ/ρ; and ρ is the

density of the fluid. The term ρU2/L describes the characteristic magnitude of the

inertial forces and µU/L2 describes the characteristic order of the viscous forces. It can

be interpreted also as the relative importance of advection in comparison to diffusion.

For low Reynolds numbers the flow is laminar, for high Reynolds numbers it is turbulent

and vortices occur. In general, the Reynolds number of geophysical flows are very large

(see Cushman-Roisin and Beckers, 2011) which is in accordance with the observation

of vortices over a wide range of scales as a typical feature of geophysical flows. In this

work, we concentrate on the analysis of atmospheric vortex structures which can be

investigated from different perspectives.

2.2 Eulerian vs. Lagrangian perspective

A fluid can be seen as the sum of a multitude of particles forming a 3-dimensional con-

tinuum (Fortak, 1967) where a particle is defined as a group of sufficiently many atoms

or molecules such that macroscopic properties (volume, pressure, density and tempera-

ture) can be assigned to the particle (American Meteorological Society, 2012).

There are two main perspectives in describing a fluid. One way is to follow the mo-

tion of fluid particles over time (e.g. Wu et al., 2007). This description is called

Lagrangian or material description. However, the atmosphere is composed of about

1.1 · 1044 molecules6. Even when following particels with initial volumes of 1 cm3, we

would need to solve the equations of motion for an inconceivable high number of par-

ticles on the order of about 1024 without knowing exactly the boundary conditions7.

Therefore, the Lagrangian description is often inconvenient (Wu et al., 2007, p. 15).

On the other hand, a fluid can be described as a spatial field. The physical properties of

the fluid and its temporal behavior can then be evaluated at every point in the field. This

is called Eulerian or field description. Since it is not necessary to know which particle

6The number of molecules in the atmosphere can be estimated by the following assumptions: Pressure
is defined as force per area and the average atmospheric surface pressure is given by Ps = 1013 hPa.
Assuming that on average the only force acting on the Earth’s surfaces is the gravitational force, this
gives Ps = mg0/As where g0 = 9.81 m/s2 is the gravitational acceleration and As denotes the surface
area of the spherical, flat Earth As = 4πR2

0 with radius R0 = 6370 km. The total mass of air m is

then m ≈ 5.27 · 1018 kg. With help of the Avogadro constant given the number of molecules per mol
(NA = 6.022 · 1023/mol) and with the molar mass of dry air (Mair = 28.9644 g/mol), we can estimate
the total number of molecules in the atmosphere as N = NAm/M ≈ 1.096 · 1044.

7Under the assumption of contant density and a scaling height of 10 km, a volume of 1 cm3 would
contain about 2 · 1019 molecules. This leads to a particle number of 5.48 · 1024.
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passes a location in the field at a specific time, the Eulerian description contains less

information on the fluid than the Lagrangian description.

Both perspectives - Lagrangian and Eulerian - are connected by the material derivative:

For an arbitrary field quantity φ = φ(r, t) depending on space r and time t, the material

time derivative D/Dt following the particle (Lagrangian view) is given by the sum of

the local time derivative ∂/∂t of the quantity at a fixed location of the Eulerian field

and its advection u · ∇ with velocity u

Dφ

Dt
=

∂φ

∂t
+ u · ∇φ . (2)

The question arises what the appropriate description of a vortex might be: On the one

hand, we can follow the path of a vortex in a fluid likewise to the Lagrangian description

of single particles. This Lagrangian-like property of a vortex is for example applied in

the study of extratropical cyclone tracks (see e.g. Blender et al., 1997) where the vortex

center is followed in time as if it was a Lagrangian particle. However, the vortex is

composed of a large number of material particles. Furthermore, the vortex is also part

of the spatial field interacting with the physical properties of the surrounding field.

There is no clear boundary such that material can flow in and out of a vortex under

certain circumstances, e.g. during intensification or weakening. Before we proceed to

investigate the large number of particles that a vortex is composed of, we need to find

out how we can visualize rotating or swirling motions of single particles.

2.3 Pathlines, streamlines and streaklines

Pathlines, streamlines and streaklines are useful tools for the visualization of flow fields.

One way to visualize the flow field is the observation of streaklines. At a time t0,

streaklines visualize the spatial position of all particles that have passed a fixed location

x0 prior to that time t0. An example of a streakline is the trail of smoke of a chimney

or the ash plume of a volcano as visualized by satellite images (see Fig. 2 left) or the

inserting of dye into a liquid fluid flow. Although, streaklines are not relevant to this

work, they are important e.g. in the study of the transport of chemical tracers and their

dependence on the large-scale weather pattern.

Another possibility to visualize the flow field is the analysis of pathlines. Pathlines -

also called trajectories - describe the chronological motion of individual particles (an

example is given in Fig. 2 right). They are therefore closely connected to the Lagrangian

description of fluid motion. A pathline of a particle located at X = (X1, X2, X3) at initial

time t = 0 is described by the ordinary differential equations (Wu et al., 2007, p.16)

dxi

dt
= ui(x, t) (3)

with the initial condition x(t = 0) = X and ui denotes the i-th velocity component

7
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North
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Figure 2: Examples of streaklines and pathlines in fluid flows: (a) satellite image shows the
streakline of Iceland’s volcano Eyjafjallajökull emitting ash and steam on 7 May 2010 (NASA
image courtesy Jeff Schmaltz, MODIS Rapid Response Team at NASA GSFC; (b) pathlines
visualize the laminar and turbulent motions of glut particles from a campfire (image courtesy:
Christoph Gatzen).

(i ∈ (1, 2, 3)). Note, that the pathline is always parallel to the wind field. Single

particle trajectories (or pathlines) are a useful tool , in order to identify the origin of

particles with the help of backward calculations. With a similar approach Dahl et al.

(2014) found that near-ground rotation (vertical vorticity) in a supercell is generated

by particles that originate from the outflow of the cell.

On the other hand, streamlines give an instantaneous snapshot of the spatial distribution

of the flow field (Eulerian description). For fixed time t, a streamline is tangent to the

velocity field u(x, t) described by (Wu et al., 2007, p.16)

dx1

u1(x, t)
=

dx2

u2(x, t)
=

dx3

u3(x, t)
(4)

Since both lines are tangential to the velocity, the directions of streamlines and trajec-

tories coincide at every location and every time. However, since the streamline pattern

(i.e. the wind field) can change in time, trajectories and streamlines diverge in unsteady

flows while they coincide in steady flows where u is independent of t.
An example of the difference between streamlines and pathlines and their behavior in

steady and unsteady flows is given in Figures 3 and 4: Figure 3 shows the geopotential

height and horizontal wind fields at the 500 hPa level over Europe and Russia for

some time steps between the 9 and 11 July 2010. The summer months of 2010 were
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characterized by a stationary blocking weather pattern over Europe and Russia. We

picked a quasi-stationary low pressure system located at about 55◦N and 80◦ E in order

to visualize the difference between stream- and pathlines. While the flow around the low

pressure system is quasi-steady in the beginning (especially at the western bound of the

blue box from 9 July 2010 – 00 UTC to 12 UTC), the patterns diverge a fortiori with

time (10 July 2010 – 00 UTC to 11 July 2010 00 UTC). This is also mirrored by the

corresponding stream- and pathlines in Fig. 4: For the first hours (up to 18 hours for

the green trajectory starting in 60◦ N, 65◦ E) the stream- and pathlines approximately

coincide as long as the wind field stays quasi-stationary in the vicinity of the curves;

while the pattern changes, stream- and pathlines diverge (for times along the trajectories

larger than 20 hours).

The observation of single particles is helpful in the order to visualize the flow field and

detect instantaneous swirling motions with the help of streamlines or identify rotating

particles over some timesteps with pathlines. However, since a vortex is composed of

many particles that can form material lines, areas or volumes it is necessary to study

the change of these shapes over time.

2.4 Change of material lines, areas and volumes over time

We first need to clarify the term material line, area and volume: material means that

the line, area or volume is composed of the same material particles from one time step

to another. The rate of change of a straight material line dx = x1− x0 is determined by

the velocity vectors u1, u0 at the ends of the line as can be seen from

D
Dt

(dx) =
Dx1

Dt
− Dx0

Dt
= u1 − u0 = du . (5)

For the rate of change of a material line dx of arbitrary shape we can further express

eq. (5) as

D
Dt

(dx) = du = dx · ∂u
∂x

= dx · ∇u , (6)

which illustrates that the rate of change of an arbitrary material line is determined by

the distribution of the velocity gradient tensor ∇u along that line.

The rate of change of a volume element dυ = dxdydz follows from the rate of change of

9
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Figure 3: Geopotential height fields (black contours) and horizontal wind fields (light gray
arrows) at the 500 hPa level for some timesteps in the period 9 to 11 July 2010. Data basis is
NCEP 2 Reanalysis data. The bold blue box indicates the region that is enlargened in Fig. 4

  

Figure 4: Wind field (light gray arrows) and corresponding streamlines (thin, blue lines) are
calculated from the field on 9 July 2010 – 00 UTC (NCEP 2 Reanalysis data). Three different
trajectories are displayed by bold green, red and blue curves. The numbers denote the timesteps
in hours of the trajectories.
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line elements (eq. (6)) by applying the product rule

D
Dt

(dυ) =
D
Dt

(dxdydz)

= dydz
D
Dt

(dx) + dxdz
D
Dt

(dy) + dxdy
D
Dt

(dz)

= dydzdx
∂u
∂x

+ dxdzdy
∂v
∂y

+ dxdydz
∂w
∂z

= dxdydz
(

∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
where u, v, w are the components of the velocity vector with u = (u, v, w) in cartesian

coordinates. Finally, we can write for the rate of change of a material volume

element dυ

D
Dt

(dυ) = dυ∇ · u . (7)

The rate of change of a volume element is determined by the divergence (dilatation) in-

side the volume. Positive divergence is connected to an expansion of the volume, while

convergence (negative divergence) leads to a shrinking of the volume element. Note,

that a volume element might be deformed or rotated as well; however deformation and

rotation preserve its size.

To determine the rate of change of a directional material area element dA = ndA with

vector n being normal to the surface and n · n = 1, we can use our knowledge of volume

and line elements: Assume a volume element dυ = dx · dA formed by the directional

area element dA and a directional line element dx which is not tangent on the area. The

the rate of change of the volume element can be written as

D
Dt

(dυ) =

(
D
Dt

dx
)
· dA + dx ·

(
D
Dt

dA
)

. (8)

Using equations (6) and (7) gives

dx · dA (∇ · u) = dx · ∇u · dA + dx ·
(

D
Dt

dA
)

. (9)

Since dx was chosen arbitrarily, we obtain the rate of change of an material area

element dA as
D
Dt

(dA) = [(∇ · u) I−∇u] · dA (10)

where I is the unit tensor. We will see later in chapter 2.6 that ∇u can be decomposed

into the sum of the symmetric strain-rate tensor and the vorticity tensor and that

the rate of change of an areal element is determined by three fundamental processes -

deformation, dilatation and rotation - that characterize completely the kinematics of a

11
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flow field. As a further step we might be interested how integral material shapes change

over time. For example if we are interested how a certain property that is contained in

a vortex volume such as humidity is transported over time or how a frontal boundary

changes over time.

2.5 Time-dependent rate of change of material integrals

For calculations of the time-dependent rate of change of a physical quantity F bounded

by a material line, area or volume element, we need to take into account both: the rate

of change of the material element as well as the rate of change of the physical quantity.

Following Wu et al. (2007), we denote F as a physical quantity given by a tensor of

arbitrary rank and ◦ as a meaningful tensor product. Then the rate of change of a

material integral along a line element C using equation (6) is given by (Wu et al., 2007)

d
dt

ˆ
C

dx ◦ F =

ˆ
C

(
Ddx
Dt
◦ F + dx ◦ DF

Dt

)
(11a)

=

ˆ
C

(
dx · ∇u ◦ F + dx ◦ DF

Dt

)
. (11b)

The rate of change of a material integral over a surface A follows similarly with help of

equation (10)

d
dt

ˆ
A

dA ◦ F =

ˆ
A

(
DdA
Dt
◦ F + dA ◦ DF

Dt

)
(12)

=

ˆ
A

(
dA ·

[
(∇ · u) I− (∇u)T

]
◦ F + dA ◦ DF

Dt

)
. (13)

Finally, the rate of change of an integral over a material volume using equation (7) can

be expressed as

d
dt

ˆ
V

dυF =

ˆ
V

(
Ddυ

Dt
F + dυ

DF
Dt

)
(14)

=

ˆ
V

(
dυF∇ · u + dυ

DF
Dt

)
(15)

This last integral is the basis for the derivation of the fundamental equations that

determine the atmospheric flows. These fundamental laws stem from the conservation

of mass (continuity equation), from the conservation of momentum (equation of motion)

and from the conservation of energy (first law of thermodynamics). The laws are derived

from equation (15) for different parameters F: for example, the continuity equation is

derived by setting F = ρ.

For the temporal changes of material line and area integrals we have seen that the
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velocity gradient tensor ∇u plays an important role and in case of the temporal changes

of a volume integral the divergence of the wind field — which is an invariant of the

velocity gradient tensor — is involved. This tensor can be used in order to describe the

fluid motion around a point as will be shown in the next section.

2.6 Velocity gradient tensor ∇u and its decomposition8

Knowledge of the velocity u and the corresponding velocity gradient tensor∇u at a point

gives information about the structure of the flow field surrounding that point. This can

be seen by applying a Taylor series expansion to the velocity in the environment of that

point: Let u(r0, t) be the velocity at position r0 and time t. The velocity u(r0 + r, t)
in the environment located at r0 + r can then be approximated by a first-order Taylor

series expansion (e.g. Fortak, 1967; Batchelor, 2000):

u(r0 + r, t) = u(r0, t) + r · ∇u(r0, t) . (16)

that results in the sum of a uniform translation (u(r0, t)) and a second term that depends

on the velocity gradient tensor∇u. This velocity gradient tensor∇u can be decomposed

into the sum of a symmetric tensor S and an antisymmetric tensor Ω

∇u = S + Ω , (17)

with

S = 1/2(∇u + (∇u)T) : rate-of-strain tensor (18)

Ω = 1/2(∇u− (∇u)T) : vorticity tensor (19)

Here, the superscript T stands for transpose. While the symmetric rate-of-strain tensor

S describes the deformations in the flow field, the antisymmetric vorticity tensor Ω is

connected to the volume-preserving rotation of the fluid. Both tensors can be used to

calculate invariants of the velocity gradient tensor. These invariants have the advan-

tage that they do not change under coordinate transformations such as rotations or

translations of the coordinate system.

We know from (6) that the velocity gradient tensor determines the changes of a material

line element over time. In order to study the different contributions of the rotation and

the strain-rate tensor, equation (6) will be applied to the small line element r that was

introduced to study the velocity in the vicinity of position r0. Using (17), it becomes

8This section 2.6 as well as sections 2.7 and 6.3 are based on/taken from a chapter of a re-
cent publication (Schielicke et al., 2016, chapter 2) which is published as an Open Access article
distributed under the terms of the Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/. Note, the chapter in this thesis is much more detailed
than in the publication even though some text passages are identical.
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obvious that the line element can either be deformed or rotated

D
Dt

(r) = r · ∇u(r0, t) = r · S︸︷︷︸
De f ormation

+ r ·Ω︸︷︷︸
Rotation

(20)

Note that this describes the second term on the right-hand side of (16). The contribu-

tions and physical interpretations of the rotation tensor and the strain-rate tensor are

discussed in more detail in the following two sections.

2.6.1 The vorticity tensor Ω in 3d

In 3d, any antisymmetric tensor has only three independent components. These inde-

pendent components form a vector. In case of the vorticity tensor Ω, its components

are given by the vector components of the vorticity vector ω = ∇× u. The vorticity

tensor can be expressed as9 (Fortak, 1967)

Ω = −1
2

I ×ω (21)

where I is the unit tensor. The vorticity vector can be interpreted as one half of the

angular velocity vector. This can be clarified by some considerations10: The velocity of

a rotating rigid body is equal to

u = w× r (22)

where w is the angular velocity which is constant for a rigid body (w = const.) and r
denotes the distance from the rotational axis. Taking the curl of u leads to11

∇× u = ∇× (w× r) = 2w . (23)

On the other hand, the vorticity vector is defined as the curl of the velocity (ω = ∇×u).

Therefore, the angular velocity w of a rigid body is equal to one half of the vorticity ω

w =
1
2

ω . (24)

In the case of non-rigid motion, the curl is not constant anymore. However, at every

single point, the local vorticity can be interpreted as twice the angular momentum of a

small element of the continuum surrounding the point (Truesdell, 1954). The element

behaves like a rigid body – at least instantaneous and locally – when it is observed

from a reference frame with respect to the principal axes of the strain-rate tensor (Wu

et al., 2007). More specific, the relative locations of the principal axes of the strain-rate

9This can easily be derived by explicitely calculating expression (19) and comparing it to the com-
ponents of ω.

10These considerations follow the way it is presented in Truesdell (1954), who dedicated this inter-
pretation of vorticity to Stokes (cf. Truesdell, 1954, §32).

11Explicitely: ∇× u = ∇× (w× r) = ∇ · (rw−wr) = (∇ · r)︸ ︷︷ ︸
=3

w + r · ∇w︸︷︷︸
=0

− (∇ ·w)︸ ︷︷ ︸
=0

r−w · ∇r︸ ︷︷ ︸
w·I=w

= 2w
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tensor are instantaneously fixed to each other, i.e. they do not rotate with respect to

one another and therefore the motion along these axes is rigid (Truesdell, 1954); we will

clarify this in the next section 2.6.2. Therefore, Wu et al. (2007) (cf. chapter 3.1) states

that ”it is more precise to interpret the vorticity ω(x) as twice the angular velocity of

the instantaneous principal axes of the strain-rate tensor of an fluid element centered at

x”. More interpretations of vorticity can be found in Truesdell (1954, §29-§34).

It is now possible to interpret the role of the rotation tensor for the rate of change of a

material line element: Plugging expression (21) into (20) gives

D
Dt

(r) = r · S +
1
2

ω× r . (25)

Thus, the second term on the right-hand side only changes the direction of the line

element with angular velocity ω/2, but not its length. The rotational share in flow

motion does not change the relative locations of particles in the vicinity of point x.

These can only be change by the strain-rate tensor S.

2.6.2 The strain-rate tensor S in 3d

Calculation of (25) · r shows that the magnitude of the change of a material line element

is determined by the strain-rate tensor alone (Wu et al., 2007):(
D
Dt

r
)
· r =

1
2

D
Dt

dl2 = r · S · r +
1
2

(ω× r) · r︸ ︷︷ ︸
=0

(26)

where l = ‖r‖ is the length of the line element. The second term is equal to zero because

the scalar triple product of two identical (or parallel) vectors vanishes. For a rigid body,

the relative locations of elements along the line does not change and therefore the strain-

rate tensor must be zero (S = 0 for rigid bodies). In general, the strain-rate tensor can

be decomposed into an isotropic part and a nonisotropic part called the deviator S′ of

the strain-rate tensor S where (Wu et al., 2007)

S′ = S− 1
3

(∇ · u)I︸ ︷︷ ︸
isotropic

with tr(S′) = 0 (27)

where I is the unit tensor and the trace of the deviator is zero (tr(S′) = 0). The

strain-rate tensor is a symmetric tensor. Every symmetric tensor can be brought into

a diagonal form, i.e. a form in which all minor elements are zero with exception of

the principal diagonal. In order to calculate the eigenvalues (λ1, λ2, λ3), the eigenvalue

equation Sij − λδij = 0 needs to be solved. This leads to the characteristic third-order

equation of the eigenvalues (see e.g. Wu et al., 2007, chapter 2.1.2)

λ3 − Iλ2 + I Iλ− I I I = 0 . (28)
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where I, I I, I I I denote the three basic invariants of the strain-rate tensor (Wu et al.,

2007). The eigenvalues are real because S is symmetric. Furthermore, the eigenvalues

are associated with three principal directions (p1, p2, p3) that build an orthogonal local

Cartesian coordinate system (called principle-axis system by Wu et al., 2007).

Furthermore, for a spherical element of the continuum with radius r and |r| � 1,

the term r · S · r in equation (26) represents a quadratic form of variable r since S is

symmetric. The quadratic form is a way to transform a symmetric tensor to its principle

axis. Following Wu et al. (2007), we write

2ϕ = r · S · r (29)

where ϕ represents a whole set of quadratic surfaces called the deformation ellipsoids

(see Wu et al., 2007, chapter 2.1.2). The gradient of ϕ is equal to the part of the relative

motion around a point that is contributed by the deformation in the flow12

∇ϕ = r · S . (30)

Finally, we can rewrite the local motion at a point r0 + r (see 16) with help of (21) and

(30) as

u(r0 + r, t) = u(r0, t)︸ ︷︷ ︸
Ttranslation

+ ∇ϕ︸︷︷︸
De f ormation

+
1
2

ω× r︸ ︷︷ ︸
Rotation

. (31)

This is a fundamental decomposition of the flow field around a point which is equal

to the superposition of a uniform translational motion, a nonrotational contribution of

deformation (which can be written as a potential) and a contribution due to rotation.

E.g. Wu et al. (2007, chapter 2.1.2) states: ”The instantaneous state of the fluid motion

at every point is the superposition of a uniform translation, an irrotational stretching

and shrinking along three orthogonal principal axes, and a rigid rotation around an axis”.

Another famous decomposition of the fluid flow is the Helmholtz-Hodge decomposition

that is given as the sum of an irrotational part and an divergence-free part (for more

details see chapter 3.4.4). In the next section, we will explicitly study this decomposition

for two-dimensional flows.

2.7 Kinematics of a 2D flow field13

Let u, v be the horizontal components of the horizontal velocity v. In a 2D flow, the

velocity gradient tensor in cartesian coordinates is given by :

12This can be seen by calculating explicitly (e.g. in components) equation (29) and calculating the
gradient of (29) as ∇ϕ = ∂ϕ/∂r under the assumption of constant S at the location of interest.

13This section 2.7 as well as sections 2.6 and 6.3 are based on/taken from a chapter of a recent
publication (Schielicke et al., 2016, chapter 2). Note, the chapter in this thesis is much more detailed
than in the publication even though some text passages are identical.
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∇v =

 ux vx

uy vy

 . (32)

where the subscripts stand for partial differentiation with respect to x, y. The rate-of-

strain tensor S in two dimensions is given by

S =
1
2

 2ux uy + vx

uy + vx 2vy

 , (33)

which can be further decomposed into

S =
1
2

 Dh 0

0 Dh

+
1
2

 Def Def′

Def′ −Def

 . (34)

with

Dh = ux + vy : horizontal divergence

Def = ux − vy : stretching deformation

Def′ = uy + vx : shearing deformation

(35)

The first tensor on the right-hand-side of equation (34) describes an isotropic expan-

sion14 (which is zero in case of an incompressible fluid) while the second tensor describes

a straining motion without changing the size (area, volume) of a fluid particle although

its shape can change (Batchelor, 2000). This second tensor of equation (34) is composed

of the shearing and stretching deformation (Fortak, 1967). Local motions due to defor-

mation are summarized in Figure 5. The local strain rate is calculated by the Euclidean

tensor norm15 of the rate-of-strain tensor

‖S‖ =
√

S · ·ST =
√

SijSji =
1√
2

√
D2

h + Def2 + Def′2 . (36)

Here, the operation ·· represents the double inner product of tensors. Note, while the

divergence is an invariant of ∇v, only the sum of the squares of shearing and stretching

deformation is invariant. The local strain rate is a measure for the local absolute value of

the strain contributed by all deformations including divergence, shearing and stretching

deformation.

14The isotropic expansion in a 2D flow equals a change of the area in the coordinate directions with
a rate of one half of the total divergence.

15The Euclidean norm of a tensor A is also written as ‖A‖ =
√

Tr(AAT) (e.g. Kunnen et al., 2010)
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The vorticity tensor Ω in 2D is given by

Ω =
1
2

 0 −ζ

ζ 0

 with ζ = vx − uy . (37)

ζ = k · ∇ × v is the vertical component of the vorticity vector. Ω describes a pure

rotation (rigid-body rotation) of a fluid particle around a given point without a change

of its area (see Figure 5). The Euclidean tensor norm of the vorticity tensor describes

the local rate of rigid-body rotation and is given by

‖Ω‖ =
√

Ω · ·ΩT =
√
−ΩijΩji =

1√
2

√
ζ2 . (38)

In conclusion, the local motion around a point can be decomposed into symmetric

straining and antisymmetric rotational motions as shown in Figure 5. Together with

the translational motion v(r0, t) in (16), this gives a complete description of the local

flow field, at least up to the first order of the Taylor series expansion in (16).

Isotropic 
expansion

Stretching
deformation

Shearing
deformation

Deformation (symmetric part of     v)

Area (volume)-preserving motions

∇ Antisymmetric part of     v∇

Rigid-body
Rotation

Figure 5: Decomposition of the local motion in two dimensional flow. Vectors show the direction
of the flow field. This decomposition is complete to the linear order of the Taylor series expansion
in equation (16). Figure is originally published in Schielicke et al. (2016) (their Figure 1).

2.8 Final remarks on kinematics

Kinematics give considerable insight into the behavior and characteristics of the flow.

A lot of tools that were introduced in this section will serve in the following chapters in

order to study the vortex properties. We will see, that methods based on kinematics will

be very useful in this respect. However, in order to understand physical mechanisms of

the vortex behaviur (e.g. the interactions of vortices or the genesis and lysis of vortices)

and the difference between vortices on different scales, we additionally need to take a

look at the dynamics of vortices in order to get a complete view on vortices.

18
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3 Dynamics: Scale-dependency, vortex intensity and

interactions

A main aim of this thesis is the scale-dependent investigation of vortices. Therefore, it

is necessary to study the dynamic equations in order to find similarities and differences

over the scales. Moreover, vortex dynamics allows us to study the interactions between

vortices and the influence of vortices on their surroundings. Hence, it is an essential

topic in the study of vortices.

3.1 Governing equations

Fluid flow can be describe by a set of equations called the primitive equations. They

follow from mass conservation (continuity equation), momentum balance (equations

of motion or Navier-Stokes equations) and from the conservation of internal energy

(first law of thermodynamics). In fact, these equations are derived from calculating

the temporal derivatives of the integrals of material volumes introduced in chapter 2.4.

Explicitly, the set of primitive equations in a rotating reference frame read

Dρ

Dt
= −ρ∇ · u Continuity equation (39a)

Du
Dt

= −2ΩE × u− 1
ρ
∇p + g−∇Φz + FR Navier− Stokes equation (39b)

De
Dt

= −p
Dα

Dt
+ J First law of thermodynamics (39c)

where the variables are:

ρ: Density

u: Velocity vector (u = (u, v, w))

ΩE: Rotation rate of the Earth

p: Pressure

Φz: Centrifugal potential

g: Acceleration of gravity

FR: Frictional acceleration term

e: Internal energy

α: Specific volume (α = ρ−1)

J: Specific heating rate
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The mass-specific internal energy e can be described by the caloric equation of state:

e = e(T) = cvT where T is the temperature and cv is the specific heat at constant

volume with cv = 717 J/(kgK) for dry air. This equation states that the internal energy

depends only on temperature T.

Furthermore, the equation of state reads

p = ρRT (40)

where R is the gas constant (R = 287 J/(kgK) for dry air). In a dry, adiabatic and

inviscid atmosphere, the primitive equations (39) together with the equation of state

(40) constitute a complete closed set of equations. Some comments on the equations will

be given in the next sections starting with the continuity equation and the first law of

thermodynamics. Furthermore, the equations of motion (Navier-Stokes equations) will

be presented and compared for two reference frames – a non-rotating, absolute reference

frame and a rotating, noninertial reference frame which is a useful reference frame for

studying the motion of the atmosphere on a rotating planet.

3.1.1 Continuity equation

The continuity equation follows from mass conservation (e.g. in Batchelor, 2000, chapter

2.2). For a given mass of fluid, the continuity equation is given by

∂ρ

∂t
+∇ · (ρu) = 0 . (41)

This can also be written as

1
ρ

Dρ

Dt
= −∇ · u (42)

which can be interpreted as follows: the individual change of density of a fluid particle

over time requires non-zero divergence or convergence. For an incompressible fluid, the

density is constant. Hence, the continuity equation simplifies to

∇ · u = 0 for incompressible flow . (43)

A scale analysis for horizontal large scale motions in the atmosphere shows, that the

individual density changes are one order in magnitude smaller than the three divergence

terms (∇ · u = ∂xux + ∂yuy + ∂zuz). Therefore, purely horizontal synoptic-scale flow

behaves like an incompressible fluid. However, for vertical motions, compressibility due

to density changes with height needs to be taken into account (Holton, 2004, chapter

2.5.3).
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3.1.2 First law of thermodynamics

The first law of thermodynamics states that the internal energy e changes as the sum of

heat added to and the work done by the system. The (mass-specific) internal energy e is

related to temperature T as e = cvT with specific heat at constant volume cv (cv = 717
J/(kgK) for dry air). The first law of thermodynamics can be written as (e.g. Holton,

2004)

cv
DT
Dt

= −p
Dα

Dt
+ J (44)

where α = ρ−1 denotes the mass-specific volume and pDα/Dt describes the work done

to/by the volume. J is the rate of heating that is given by diabatic sources like e.g. radi-

ation, conduction and latent heat release. Equation (44) represents the thermodynamic

energy equation. It can also be expressed with help of enthalpy h

h = e + pα with h = cpT . (45)

as

cp
DT
Dt

= α
Dp
Dt

+ J . (46)

Here, cp denotes the specific heat at constant pressure (cp = R + cv = 1004 J/(kgK)

with ideal gas constant R = 287 J/(kgK) for dry air). Additionally, this equation can

be brought into a form with respect to entropy s where entropy changes and specific

heating rate are related as Ds/Dt := J/T. Then we have (Holton, 2004, chapter 2.7)16

Ds
Dt

:=
J
T

= cp
D ln T

Dt
− R

D ln p
Dt

(47)

where we used the thermodynamic equation of state (40) in order to substitute the

specific volume α = ρ−1. This equation can further be expressed in terms of potential

temperature. The potential temperature θ is defined as

θ = T
(

ps

p

)R/cp

. (48)

where θ is the temperature a parcel of dry air (characterized by pressure p and tem-

perature T) takes when it is brought adiabatically to a standard pressure ps (usually

ps =1000 hPa). Thereby, an adiabatic process is a process that occurs without an ex-

change of heat with the surroundings. Calculating the logarithm of (48) and multiplying

cp leads to

cp ln θ − R ln ps = cp ln T − R ln p , (49)

16Note, D ln T/Dt = T−1DT/Dt and D ln p/Dt = p−1Dp/Dt
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and its temporal derivative is

cp
D ln θ

Dt
= cp

D ln T
Dt

− R
D ln p

Dt
. (50)

Note, ps = const. and therefore Dps/Dt = 0. Comparing (50) with equation (47) gives

the first law of thermodynamics with respect to θ:

Ds
Dt

=
J
T

= cp
D ln θ

Dt
. (51)

If no heat is exchanged with the environment (J = 0), i.e. in case of an adiabatic process,

the first law of thermodynamics simplifies to

Dθ

Dt
= 0 . (52)

and θ becomes a conserved quantity. Holton (2004, chapter 2.7.1) states that the adia-

batic assumption is a reasonable assumption for synoptic-scale motions in dry regions

and θ is a ”quasi-conserved quantity for such motions”.

3.1.3 Equations of motion in a non-rotating reference frame

The equations of motion describe the relation between the acceleration of a fluid particle

and the sum of all forces that act on that fluid particle (Newton’s second law of motion).

The equations of motion follow from the momentum balance. It is given by (slightly

modified after Batchelor, 2000, chapter 3.2)

ρ
Daua

Dt
= ρf +∇ · T (53)

with

T = −pI + FN.S. . (54)

The index a indicates that the acceleration is observed in an inertial (absolute) reference

frame fixed in space. The term ρf represents all volume forces (e.g. often f is only

the gravitational acceleration g); T is the stress tensor, I is the unit tensor and FN.S.

denotes the Navier-Stokes tensor with FR = ρ−1∇ · FN.S.. The diagonal elements of T
are normal stresses (equal to the pressure), the non-diagonal elements are the shearing

stresses. Explicitly, the equation can be written in a more familiar way as

Daua

Dt
= g− 1

ρ
∇p + FR (55)

where we have set f = g.
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3.1.4 Equations of motion in a rotating reference frame

3.1.4.1 Inertial and noninertial reference frames

In atmospheric dynamics usually a geocentric reference frame is used (Holton, 2004).

Such a geocentric reference frame is at rest with respect to the rotating earth. After

Newton’s first law of motion, an object in uniform motion (or at rest) with respect to

a fixed coordinate system stays in uniform motion when no forces act on the object.

Therefore, this motion is called inertial motion and the fixed reference frame is called

inertial or absolute reference frame (Holton, 2004). However for an observer on the

rotating earth, an object of uniform motion (or at rest) relative to the rotating reference

frame is not in uniform motion with respect to an inertial reference frame. In fact,

this motion is accelerated and therefore a geocentric reference frame is referred to as

noninertial reference frame. The effects of acceleration are included by the introduction

of apparent forces. For a reference frame in uniform rotation (Ω = const.) two apparent

forces enter the equations: the Coriolis force and the centrifugal force (Holton, 2004).

For a reference frame of general motion (translational acceleration as well as nonuniform

rotation), additional apparent forces appear (for details see Batchelor, 2000, chapter

3.2).

3.1.4.2 Transformation from a non-rotating, inertial to a rotating, noninertial ref-

erence frame

In a rotating17 reference frame an arbitrary vector X can be written as

X = X1i + X2j + X3k = Xiei (56)

where i, j, k denote orthogonal unit vectors fixed to the rotating reference frame (Batch-

elor, 2000). On the right hand side Einstein’s summation convention was used and ei

stands for the unit vectors. The total time derivative of X when observed from an iner-

tial, absolute reference frame denoted by index a is then equal to the sum of the total

time derivative of X relative to the rotating reference frame denoted by index r and the

rotation of the coordinate axes (see Batchelor, 2000, chapter 3.2)

DaX
Dt

= ei
DXi

Dt
+ Xi

Dei

Dt
(57a)

=
DrX
Dt

+ ΩE × X (57b)

where ΩE is the angular velocity of the rotating reference frame. In short, the operator

to transform a vector from the inertial to the rotating reference frame reads

Da

Dt
=

Dr

Dt
+ ΩE× (58)

17or any type of general moving
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Applying this operator (58) to the position vector r of an air parcel gives

Dar
Dt

=
Drr
Dt

+ ΩE × r . (59)

Denoting Dar/Dt = ua the velocity of the air parcel with respect to the inertial reference

frame and Drr/Dt = ur the velocity in the noninertial reference frame, respectively, the

equation can be expressed as

ua = ur + ΩE × r . (60)

The acceleration is obtained by applying operator (58) to (60):

Daua

Dt
=

Drua

Dt
+ ΩE × ua . (61)

After substituting (60) on the right hand side, we derive

Daua

Dt
=

Drur

Dt
+

DrΩE

Dt
× r + 2ΩE × ur + ΩE × (ΩE × r)︸ ︷︷ ︸

−∇Φz

. (62)

The term on the left-hand side is the acceleration in the inertial, absolute reference frame

and the first term on the right-hand side is the acceleration in the noninertial, relative

reference frame. Under the assumption of a constant angular velocity18 ΩE = const,
the second term on the right in (62) vanishes (DrΩE/dt = 0). The third term is the

Coriolis acceleration due to relative motion in the nonintertial reference frame and the

fourth term is the centrifugal acceleration due to rotation of the coordinates. In the

following we will drop the indices ”r” and ”a”.

3.1.4.3 Transforming the equations of motion

Returning to the equation of motion in form of (53), the sum of forces acting on a fluid

can be divided in volume and surface forces. In the atmosphere, the volume forces are

represented by the pressure gradient force and by Earth’s gravitation and the surface

forces are caused by friction. Using (62), the equations of motion in the noninertial,

rotating reference frame can be written as (following Holton, 2004, chapter 2.2)

Du
Dt

= −2ΩE × u− 1
ρ
∇p + g−∇Φz + FR , noninertial, rotating (63)

These equations are also referred to as Navier-Stokes equations and this is the form given

as (39b) in the beginning of this chapter 3.1. Here, the index r that previously indicated

the relative reference frame has been dropped. Usually, the centrifugal acceleration

18The angular velocity of earth indeed changes over time for example due to gravitational interactions
with the moon and sun, due to mass redistributions affecting the moment of inertia (see e.g. Schuh et al.,
2003, chapter 2.3). However, these changes are quite small: e.g. the length of day varies in the order of
10−8 (see e.g. Lambeck, 2005, chapter 5.1.1). For convenience, the angular velocity of earth is assumed
to be constant in this thesis.
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ΩE × (ΩE × r) = −∇Φz and gravitational acceleration g = −∇Φg are combined to

a total geopotential Φ = Φg + Φz (see Holton, 2004, chapter 1.5.2). FR = ν∇2u is

the frictional force with kinematic viscosity ν. The Navier-Stokes equations can be

written in a slightly different way when the material derivative is split into the local

time derivative plus the advection according to (2): Du/Dt = ∂u/∂t + u · ∇u. The

advection can be expressed as

u× (∇× u) =
1
2
∇u2 − u · ∇u (64)

where ω = ∇× u is the three-dimensional vorticity vector. It can be combined with

earth’s angular velocity to the absolute vorticity vector: ωa = ω + 2ΩE. The Navier-

Stokes equation (63) then reads

∂u
∂t

= − (ω + 2ΩE)× u− 1
2
∇u2 − 1

ρ
∇p + g + FR (65)

Finally, the Bernoulli-streamfunction B = 1
2 u2 + Φ + h is introduced into the equations.

B is composed of the sum of kinetic energy (u2/2), potential energy (geopotential Φ =

Φg + Φz) and thermodynamical energy in form of the enthalpy h = e + pα. Since the

first law of thermodynamics can be written as ∇h = T∇s + α∇p19, the Navier-Stokes

equations considering the first law of thermodynamics in a noninertial reference frame

and – for comparison – in an inertial reference frame, respectively, are given as

∂u
∂t

= −(ω + 2ΩE)× u−∇B + T∇s + FR noninertial (66a)

∂u
∂t

= −ω× u−∇B∗ + T∇s + FR inertial, absolute (66b)

The Bernoulli-streamfunction in the inertial, absolute reference frame is given as B∗ =
1
2 u2 + Φg + h. Note, that the Coriolis force (in form of −2ΩE × u) as well as the cen-

trifugal force (−∇Φz that is included in −∇B) do not appear in the inertial equations.

Otherwise, the equations are of similar structure. The inertial equations will be used

later when deriving exact vortex solutions of the Navier-Stokes equations.

3.1.5 Horizontal and vertical equations of motion

The equations of motion can be split into a part describing the horizontal motions and

another part that describes the vertical acceleration. We will use the Navier-Stokes

equations in the form of (63) neglecting friction (these equations are also called Euler

equations). Let u = vh + wk with u = (u, v, w) be the horizontal and vertical velocity

19This can be derived by the following steps: We know that e = cvT and from equation (44) it follows
that cv∇T = −p∇α + J. We defined the entropy changes as Ds/Dt = J/T and hence it follows that
J = T∇s. Calculating the gradient of enthalpy (h = e + pα) leads to ∇h = cv∇T + p∇α + α∇p. Now
we can use the expressions for cv∇T and J and we will obtain: ∇h = T∇s + α∇p.
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components and i, j, k the cartesian unit vectors, then the horizontal and vertical Euler

equations read:

Dvh

Dt
= −2ΩE × u · (ii + jj)− 1

ρ
∇h p (67)

Dw
Dt

= −2ΩE × u · k− 1
ρ

∂p
∂z

+ g (68)

where g = ‖g‖ is the magnitude of the gravitational acceleration. The Earth’s angular

momentum 2ΩE has two components:

2ΩE = lj + f k , with f = 2 ‖ΩE‖ sin ϕ , l = 2 ‖ΩE‖ cos ϕ (69)

where ϕ is the latitude and ‖ΩE‖ = 2π/day ≈ 7.27 · 10−5s−1. There is no component

in the west-east direction (pointing in i-direction) because the unit vector i is at every

point perpendicular to the rotation axis of the Earth (2ΩE). Explicitly, the Coriolis

force components are calculated as

2ΩE × u = f k× vh + lwi− luk . (70)

Finally, an explicit form of the horizontal and vertical Euler equations is derived

Dvh

Dt
= − f k× vh − lwi− 1

ρ
∇h p (71a)

Dw
Dt

= lu− 1
ρ

∂p
∂z
− g (71b)

3.1.6 Horizontal equations of motion in natural coordinates

Before proceeding with the scale analysis, we will transform the horizontal equations of

motion (71a) to another coordinate system called natural coordinates (see e.g. Holton,

2004, chapter 3.2.1). Natural coordinates split the flow components into a part tangen-

tial to the flow motion (or trajectories) and another part normal to the flow motion.

These coordinates are orthonormal, but time- and space-dependent since they follow

the trajectories. Their unit vectors are denoted as t (for the tangential component) and

n (for the component normal to the motion). Note, that a vertical unit vector is derived

by k = t× n. For horizontal motions, the vertical unit vector k is parallel to the vertical

unit vector in Cartesian coordinates. The relationship between the horizontal natural

coordinates (t, n) and the horizontal, Cartesian coordinates (i, j) is given by

t = i cos α + j sin α , n = −i sin α + j cos α (72)

and

i = t cos α− n sin α , j = t sin α + n cos α (73)
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Figure 6: Relation between natural coordinates following a pathline and cartesian coordinates.
The unit vectors t, n in natural coordinates have length 1.

Figure 7: Relation between the change of angle dα and the travelled pathlength ds between
two locations at the pathlines. u(t = t1), u∗(t = t2) denote the velocities at times t1, t2 with
t1 < t2. Furthermore, the radius of curvature R can be understood as the radius of the circle
that approximates the travelled pathlength.

where α is the angle between the unit vectors t and i (see Figure 6). The angle is

time-dependent, it changes as dα = ds/R where R is the radius of curvature and ds is

the length of the circle with radius R that was travelled in the observed time (see Figure

7)20. The temporal evolution Dα/Dt is then given as

Dα

Dt
=

vh

R
(74)

where vh denotes the magnitude of the horizontal velocity vector vh and is given by

vh =
Ds
Dt

=
√

vh · vh . (75)

The radius of curvature R is positive in cyclonicly curved trajectories and negative in

anticyclonicly curved flows. The curvature κ is defined as the reciprocal of the radius of

20Note, α is given in radians. Then for a complete revolution of the circle we have dα = 2π; hence,
ds = 2πR is the circumference of the circle (see also Bronstein et al., 2005, chapter 3.1.6.2).
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curvature: κ = 1/R. In case of a straight trajectory, the radius becomes infinitely large

and the curvature becomes zero.

The horizontal velocity vector vh can change its direction (t = t(t)) as well as its

magnitude (‖vh‖ := vh = vh(t)) over time. Therefore, the acceleration is given as

Dvh

Dt
= vh

Dt
Dt

+ t
Dvh

Dt
. (76)

The temporal evolution of the tangential unit vector (as given by (72)) is calculated as

Dt
Dt

= (−i sin α + j cos α)
Dα

Dt
. (77)

Using expression (74) and (72) then gives

Dvh

Dt
= n

v2
h

R
+ t

Dvh

Dt
. (78)

The nabla-operator in natural coordinates is given as

∇h = t
∂

∂s
+ n

∂

∂n
(79)

where s denotes the streamwise direction and n is normal to s. Finally, the horizontal

equations of motion (71a) transformed to natural coordinates read

n
v2

h
R

+ t
Dvh

Dt
= − f vhn + lwt cos α− lwn sin α− 1

ρ

(
t
∂p
∂s

+ n
∂p
∂n

)
(80)

This splits into a streamwise component parallel to the velocity vector describing the

temporal change in wind speed Dvh/Dt (or acceleration) as the sum of a Coriolis force

term (denoted as C′′ and the streamwise directed pressure gradient (denoted as Ps):

Dvh

Dt
= lw cos α︸ ︷︷ ︸

C′′
− 1

ρ

∂p
∂s︸︷︷︸

Ps

parallel to vh (81)

and into a component normal to the velocity vector

v2
h

R︸︷︷︸
Z

+ f vh︸︷︷︸
C

+ lw sin α︸ ︷︷ ︸
C′

= − 1
ρ

∂p
∂n︸︷︷︸
P

normal to vh . (82)

This component displays the balance between the centrifugal force (Z), the Coriolis

force terms (C and C′) and the pressure gradient force in normal direction (P)21 The

vertical component is the same as in the cartesian coordinate system (see 71b).

21More precisely, this equation shows the balance between the accelerations.
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3.2 Scale analysis of the equations of motion for different vor-

tex types

It is a common method in meteorology to apply a scale analysis to the equations of

motion in order to find the dominating balance of forces for different set-ups. There-

fore, typical characteristic values of the system of interest (e.g. extratropical cyclones,

tornadoes) are used in order to non-dimensionalize the set of equations and in order to

identify the terms of dominating order. This method is quite successful even though

mathematically it would be better (or mathematically more correct) to derive the pre-

vailing balances by asymptotic limits as is done e.g. in Klein (2008)22.

For the scale analysis, we need to non-dimensionalize the equations of motion. Therefore,

the magnitudes of parameters in the equations needs to be estimated for the different

vortex types, we are interested in. In Table 1 in chapter 1 some typical values were

already listed. We will add the missing parameters in Table 2.

Characteristic Earth parameters are

f = l = 10−4s−1

g = 10 m/s2

ρ = 1 kg/m3

Under the assumption that the vortex systems are observed at the moment of their

maximum intensity, the tangential component of the equations of motion (equation 81)

vanishes because the acceleration is zero at that moment. Therefore, we only need

to consider the normal component (82) and the vertical component (71b). Using the

characteristic magnitudes23 in Table 2 and the Earth parameters lead to the following

estimate of the magnitudes of the different forces for the different vortex types in case

of the normal component (82) of the equation of motion:

22Compared to the common scale-analysis method, the asymptotic ansatz has the advantage that for
the non-dimensionalization of the equations only typical parameters of the Earth-Atmosphere system
are used. Some examples are the Earth’s radius, the scale height of the atmosphere, the sound speed in
air, the gas constant of (dry) air, etc. These parameters do not depend on the single system (e.g. extrat-
ropical cyclones, tropical cyclones, tornadoes, etc.) one is interested in. The explicit values determining
a system are introduced by scaling the variables of space (horizontal, vertical spatial coordinates) and
time accordingly and separately depending on a single (small) parameter. This can be done for single
scale systems separately. The matching of single-scale equations is done by an asymptotic matching
procedure in order to derive a multiple-scale system (an example is the study of a tropical cyclone
of gradient wind balance embedded in a large-scale quasi-geostrophic environment which was done by
Mikusky (2007) (PhD thesis, further work published in Päschke et al., 2012)). This additionally allows
to study the interactions of the single-scales with each other. An overview over the method is given in
Klein (2008).

23The characteristic magnitudes mainly follow from the common literature (e.g. Holton, 2004;
Markowski and Richardson, 2011). In some cases the ”typical” values show a large variability. In
these cases, we decided for typical values within that range such that the magnitudes of the balancing
terms are approximately equal – not only in terms of the magnitude, but also in terms of the (exact)
calculated numbers.
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Equation of motion

(normal component)

v2
h

R + f vh + lw sin α = − 1
ρ

∂p
∂n

Abbreviation of forces Z + C + C′ = Py y y y
Characteristic scales U2/L f U lW ρ−1∆hP/Ly y y y
Extratropical lows 1.0 · 10−4 1.0 · 10−3 1.0 · 10−6 1.0 · 10−3

Tropical cyclones 2.1 · 10−3 2.5 · 10−3 1.0 · 10−4 5.0 · 10−3

Supercells 2.3 · 10−2 1.5 · 10−3 1.0 · 10−3 2.5 · 10−2

Tornadoes 2.5 · 10+1 5.0 · 10−3 5.0 · 10−3 2.5 · 10+1

Keeping the dominating terms gives typical horizontal balances of forces that determine

the different vortex types. Summarized these balances are given in the following:

Extratropical lows: C = P geostrophic balance

Tropical cyclones: Z + C = P gradient wind balance

Supercells: Z = P cyclostrophic balance

Tornadoes: Z = P cyclostrophic balance

It should be noted that these balances are only rough approximations since the typical

values of the parameters vary within certain limits. For example, extratropical lows

can also be approximated by the gradient wind balance since the centrifugal force is

only one order in magnitude smaller than the pressure gradient and the Coriolis force.

Especially smaller or more intense systems better fit the gradient wind balance than the

geostrophic balance. In fact, extratropical cyclone radii are observed to be subsynoptic

i.e. considerably smaller than 1000 km (e.g. Schneidereit et al., 2010). Hence, the

gradient wind balance is an appropriate choice for synoptic lows, too.

On the other hand, supercells are also influenced by the Coriolis force (especially the

larger or less intense the system is). The Coriolis terms are one order in magnitude

smaller than the centrifugal and pressure gradient force. Recent work by Bryan (2015)

and Markowski and Richardson (2015) points out that – besides the importance of

surface drag – Coriolis force may play an important role in numerical simulations in

order to reproduce the observed curved hodographs24.

Furthermore, it should be noted that these balances of forces have been successfully

used as an intensity measure describing the different vortex types (Schielicke and Névir,

2009). More details will be given later in chapters 5.2 and 5.3.

24A curved hodograph represents rotational wind shear with height.
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Table 2: Typical atmospheric vortex types and their characteristic properties (U, W: hori-
zontal/vertical wind speed, L: horizontal scale, H: height, H/L: height-to-length ratio (aspect
ratio), ∆T = Cd · L2/3 m3/2s : dissipative time scale with Cd = 10 is a factor that gives reasonable
results for the time scale, ∆hP: horizontal pressure anomaly, ∆zP: vertical pressure anomaly).

vortex type: synoptic low tropical cyclone supercell tornado

U 10 m/s 25 m/s 15 m/s 50 m/s

W 1 cm/s 1 m/s 10 m/s 50 m/s

L 1000 km 300 km 10 km 100 m

H 10 km 10 km 10 km 2 km

∆T 105s 104s 103s 102s

∆hP 10 hPa 15 hPa 2.5 hPa 25 hPa

∆zP 1000 hPa 1000 hPa 1000 hPa 200 hPa

W/U � 1 � 1 ≈ 1 ≈ 1

H/L � 1 � 1 ≈ 1 � 1

3.2.1 Balanced, horizontal flows of different vortex types

There are some interesting differences between different vortex types that can be at-

tributed to the different balances of forces. Especially, there are differences between

high and low pressure systems for vortices on different scales.

3.2.1.1 Geostrophic flow

The geostrophic approximation of the horizontal equation of motion (71a) reads

f k× vh = −ρ−1∇h p (83)

With help of equation (83) we can define the geostrophic wind as

vh,g := − 1
f ρ

k×∇h p (84)

where the index ”g” indicates that the velocity is geostrophic and index ”h” indicates

that the motion is horizontal. Furthermore in natural coordinates following equation

(82), this is expressed as

vh,g = − 1
f ρ

∂p
∂n

. (85)

The geostrophic balance does not hold near the equator since the Coriolisparameter

f = 2ΩE sin φ becomes zero at the equator (where latitude φ = 0). The difference

between the real, accelerated wind and the geostrophic wind can be expressed by the
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Rossby number Ro. The Rossby number is defined as the ratio of the magnitude of

acceleration Du/Dt ∼ U/T with T = L/U and the Coriolis force −2ΩE × u ∼ f U.

Thereby the Rossby number is given as (cf. e.g. Holton, 2004, chapter 2.4):

Ro :=
U
f L

(86)

Using the typical values for large-scale, synoptic flow from Table 2, the Rossby number

is approximately Ro ≈ 0.1 which means that the deviations between the real and the

geostrophic wind is about 10%.

Geostrophic balance describes the balance of the pressure gradient force P and the

Coriolis force C. On the northern hemisphere, the low pressure points always to the

left of the flow (otherwise vh,g would be negative. This is impossible in case of a purely

geostrophic flow – i.e. in absence of other forces – since the real wind coincides with the

geostrophic wind) . There is no difference between high and low pressure systems. Both

cases are equal. Additionally, this means that highs and lows have the same properties:

the same size and the same pressure gradients. However, observations show that there

is a difference between extratropical highs and lows concerning their sizes as well as

their intensities. This suggests that the gradient wind balance might be a better model

for the large-scale synoptic vortices since it better fits the observations.

3.2.1.2 Gradient wind flow

The horizontal equations of motion in natural coordinates (82) under the assumption

of gradient wind balance are given as

v2
h

R
+ f vh = −1

ρ

∂p
∂n

. (87)

From this equation, we can derive an expression for the gradient wind speed

vh = −R f
2
±

√
R2 f 2

4
− R

ρ

∂p
∂n︸ ︷︷ ︸

=:
√

D

. (88)

In natural coordinates vh is nonnegative. For all possible cases, we need to discuss

equation (88) concerning the signs of the two determining terms: the pressure gradient

in normal direction ∂p/∂n and the radius of curvature R. The first term inside the

square root (first term of D) is always positive. The second term of D can be positive

or negative. If both terms are either positive or both are negative, we require for physical

(nonimaginary) roots:

R2 f 2

4
≥ R

ρ

∂p
∂n

for the same signs of R,
∂p
∂n

(89)
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Table 3: Possible cases for the root in the gradient wind equation (88) for the northern hemi-
sphere (after Holton, 2004, chapter 3.2.5).

R > 0 R < 0

∂p/∂n > 0 vh = − f |R|/2−
√

D < 0 vh = f |R|/2−
√

D < 0

unphysical unphysical (cf. (91))

vh = − f |R|/2 +
√

D < 0 vh = f |R|/2 +
√

D > 0

unphysical (cf. (90)) antibaric flow, anomalous low

∂p/∂n < 0 vh = − f |R|/2−
√

D < 0 vh = f |R|/2−
√

D > 0

unphysical anticyclonic flow, regular high

(cf. (90), vh < f |R|/2)

vh = − f |R|/2 +
√

D > 0 vh = f |R|/2 +
√

D > 0

cyclonic flow, regular low anticyclonic flow, anomalous high

(cf. (91)) (cf. (90), vh > f |R|/2)

In this case, the result of
√

D is always less than |R| f /2:

|R| f
2

>
√

D for the same signs of R,
∂p
∂n

(90)

In the case of different signs of the pressure gradient and the radius of curvature, A is

always nonnegative (D ≥ 0) and the square root is always larger (or equal in the trivial

case) than |R| f /2 (because we always add a positive number to the first term in D):

√
D >

|R| f
2

for different signs of R,
∂p
∂n

(91)

All possible cases are summarized in Table 3. Thereby, the term ”regular” is chosen since

it adds the centrifugal force term of small magnitude to the geostrophic balanced vortex

which represents the typical balance on the synoptic scale. Note, that the difference

between the regular and the anomalous high is only the strength of the centrifugal force

compared to the Coriolis force. In a regular high, the influence of the centrifugal force

Z on the balance is less than half of the Coriolis force C and in an anomalous high it is

larger than C/2. This can be seen by the following considerations: From vh ≷ f |R|/2

33



3.2 Scale analysis of the equations of motion Lisa Schielicke

follows:

v2
h

R
<

f vh

2
or Z < C/2 for a regular high

v2
h

R
>

f vh

2
or Z > C/2 for an anomalous high

It is possible in the anomalous case that the pressure gradient force approaches zero

or vanishes completely. Then the Coriolis force is balanced by the centrifugal force

alone which is called inertial flow (cf. Holton, 2004, chapter 3.2.3 for more details).

Furthermore, in both high pressure types the pressure gradient normal to the flow and

the radius of curvature have the same sign (R < 0, ∂p/∂n < 0). Following from (89)

this gives a limit for the strength of the pressure gradient (or for the size) of a high

pressure system. Rewriting (89) gives

|R| ≥ 4
f 2ρ

∣∣∣∣∂p
∂n

∣∣∣∣ or
∣∣∣∣∂p
∂n

∣∣∣∣ ≤ ρ f 2|R|
4

(92)

Hence, for a typical horizontal pressure gradient of 10 hPa/1000 km; f = 10−4s−1; ρ =

1 kg/m3 the radius of curvature requires to be at least |R| ≥ 400 km. On the other hand,

when the radius of curvature approaches zero |R| → 0, the pressure gradient decreases

likewise to zero. Therefore, near the core of a high pressure system the pressure field

is weak and flat with low winds (Holton, 2004). Such a limitation is not observed in

low pressure systems. We will refer later to this different dynamic behavior in lows and

highs when we will introduce the numerical vortex identification procedure in chapter

6.4.

In Figure 8, all four possible cases are summarized. The only cyclonic flow is possible

in the regular low. All other possible solutions are characterized by anticyclonic flow.

Except of the anomalous low, in all cases the flow is baric, i.e. the Coriolis force vector

C points in the opposite direction of the pressure gradient force P. The flow of the

anomalous low is called antibaric since P and C point in the same direction (inwards)

and their sum is balanced by the centrifugal force (Holton, 2004). Furthermore, this

flow is anticyclonic.

Examples of anomalous lows are e.g. anticyclonic rotating mesocyclones in supercells.

However, the Coriolis force influences the dynamics only when their size is relatively

large. For smaller-scale, more intense systems like tornadoes the influence of the Coriolis

force further decreases (nearly vanishes) and the cyclostrophic balance becomes the

appropriate model for that vortex type.
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Figure 8: Force balances for the four possible solutions of the gradient wind equation for the
northern hemisphere (see also Table 3). P denotes the pressure gradient force, C the Coriolis
force, and Z the centrifugal force. Adopted from Holton (2004), his Fig. 3.5.

3.2.1.3 Cyclostrophic flow

The cyclostrophic balance describes the balance of centrifugal and pressure gradient

force in the horizontal equations of motion (82). In natural coordinates it is given by

v2
h

R
= −1

ρ

∂p
∂n

(93)

The cyclostrophic wind magnitude vh is calculated as

vh =

√
−R

ρ

∂p
∂n

(94)

This only holds in two cases25:

R > 0, −1
ρ

∂p
∂n

< 0 cyclonic

R < 0, −1
ρ

∂p
∂n

> 0 anticyclonic

25In the other non-trivial cases, the square root becomes imaginary and therefore no physical solutions
exists.
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These cases describe the cyclonic and anticyclonic flow around a low pressure system

(see Figure 9). It is not possible to derive cyclonic flow around a high pressure distur-

bance (imaginary solutions). Since the cyclostrophic balance only holds for small-scale

flows where the Coriolis force can be neglected, eddies on these scales are always char-

acterized by low core pressures. Examples of atmospheric vortices of cyclostrophic flow

are tornadoes and dust devils. Even though, the majority of the tornadoes (and meso-

cyclones) rotates cyclonicly. Anticyclonicly rotating small-scale systems are observed,

too, even though they occur less frequently.

Figure 9: (a) Cyclonic and (b) anticyclonic flow in cyclostrophic balance. P denotes the pressure
gradient force and Z the centrifugal force. The unit vector in normal direction is denoted as ~n.
Adopted from Holton (2004), his Fig. 3.4.

3.2.2 Vertical balance

The vertical equation of motion was given by (cf. equation 71b):

Dw
Dt

=
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= lu− 1
ρ

∂p
∂z
− g (95)

Scaling these equations with the characteristic parameters given in Table 2 will lead in

first order to the hydrostatic balance (because the vertical acceleration and the advective

terms are relatively small compared to these two terms):

∂p
∂z

= −ρg . (96)

The hydrostatic balance describes the balance between the vertical pressure gradient

and the gravitational acceleration. The hydrostatic balance can be seen as a base state

expressed with base state variables p̄, ρ̄. In order to derive nonhydrostatic equations,

perturbations of the base state need to be considered. Assuming that the total pressure
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and total density are given by

p = p̄(z) + p′(x, y, z, t) (97)

ρ = ρ̄(z) + ρ′(x, y, z, t) (98)

Here, p′ and ρ′ denote the deviations from the base states of pressure p̄ and density ρ̄,

respectively. The hydrostatic base state is expressed as

∂ p̄
∂z

= −ρ̄g (99)

and the perturbations are given by (after Markowski and Richardson, 2011, chapter

1.2.2)

Dw
Dt

= −1
ρ

∂p′

∂z
− ρ′g

ρ
(100)

where the Coriolis term lu in equation (95) has been neglected since it is of the order

of 10−3 and therefore much smaller than the other terms. The first term on the right

hand side is the vertical perturbation pressure gradient force and the second term is the

buoyancy. It turns out that the influence of this vertical perturbation equation can be

estimated by the aspect ratio H/L, i.e. the ratio between the depth H and the hori-

zontal length scale L of the system (cf. Markowski and Richardson, 2011, chapter 1.2.2

for details of the derivation). The vertical acceleration becomes relatively important

compared to the vertical perturbation pressure gradient force and buoyancy in case of

an aspect ratio of about 1 and larger. This is true for systems with horizontal scales and

heights in the same order. In Table 2, we calculated the aspect ratios for the different

vortex types and we can see that it is about 1 in the supercell case and much larger

than 1 for tornadoes. These vortex types need to be considered nonhydrostatic, while

the large scale vortices (extratropical and tropical cyclones) have aspect ratios smaller

than one and can be considered hydrostatic.

3.3 Vorticity and Circulation Dynamics

In a fluid, rotation is usually measured by two quantities: vorticity and circulation.

While the vorticity vector can be calculated at every point in the field and measures the

microscopic rotation at any point, the circulation is an integral, scalar quantity taking

into account a finite area. Circulation therefore is a macroscopic description of the

rotation involved in this area (Holton, 2004, chapter 4). Both descriptions of rotation

are obviously connected to the definition of a vortex. In particular, some authors define

a vortex in general as a region of concentrated vorticity (e.g. Wu et al., 2007). Even

though this definition is at first not very specific, it shows the importance of these

parameters in the study of vortices. Therefore, we will take a closer look on vorticity
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and circulation in the following.

3.3.1 Vorticity: Definition and properties

The vorticity vector is defined as the curl of the velocity field. On the rotating earth, the

vorticity vector can either be calculated as the curl of the relative velocity ur denoted as

relative vorticity vector ωr or as the curl of the absolute velocity ua denoted as absolute

vorticity vector ωa. The latter additionally considers the angular velocity of the earth

(cf. eq. 60)

ωa = ∇× ua , ωr = ∇× ur . (101)

In atmospheric sciences, the vertical component of the vorticity vector is of special

interest. The vertical components of the absolute and relative vorticity vectors are

defined as

ζa := k · ∇ × ua , ζ := k · ∇ × ur . (102)

where ζa = ζ + f is the sum of relative vorticity ζ and planetary vorticity f =

2‖ΩE‖ sin φ; f depends on latitude φ and is called Coriolis parameter. It is convenient

to denote ζ as vorticity instead of vertical component of the relative vorticity vector.

In natural coordinates, the vorticity can be decomposed into shear and curvature vor-

ticity. We have already introduced the natural coordinate system in the context of the

derivation of the equations of motion in natural coordinates in chapter 3.1.6. with unit

vectors t, n, k following the flow. Summarized for horizontal motion, unit vector t is

always parallel to the velocity vector uh and therefore parallel to the trajectory and

unit vector n is normal to the horizontal velocity such that it points to the left of the

flow direction; k is the vertical unit vector. To any point at a trajectory, a circle with

a certain radius can be fitted to the trajectory. This radius is called the radius of cur-

vature R and its reciprocal is called curvature κ = 1/R26. In case of a cyclonic motion

along the trajectory, R is positive and in case of an anticyclonic trajectory R is negative.

In natural coordinates, the vorticity is given as (Holton, 2004, chapter 4.2)

ζ =
vh

R︸︷︷︸
curvature vorticity

− ∂vh

∂n︸︷︷︸
shear vorticity

(103)

where vh denotes the magnitude of the horizontal velocity vector. The first term on the

right is the curvature vorticity that describes the turning of the wind along the trajectory

(Figure 10a). The second term on the right is the shear vorticity which describes the

change of the wind speed normal to the flow direction (Figure 10b). Note, that the

vorticity can be nonzero even for straight trajectories when the speed changes normal

to the wind direction as for example in a jet stream depicted in Figure 10b. Furthermore,

26Remember, for a straight trajectory the fitted circle and therefore the radius of curvature become
infinitely large and the curvature becomes zero.
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the vorticity can be zero, even in curved flow as along as shear and curvature vorticity

are of the same magnitude but of different sign.

Figure 10: Vorticity in natural coordinates splits into (a) curvature vorticity and (b) shear
vorticity. Note, that both cases are pure, i.e. in (a) the shear vorticity is zero since the velocity
does not change normal to the flow and in (b) the curvature vorticity is zero because the trajec-
tories are straight, parallel lines. Black arrows indicate the velocity vectors, thick gray (curved)
arrows in (b) indicate the rotation a wooden stick would experience when added to the locations
of these arrows in flow (b).

3.3.2 Vorticity equation

The vorticity equation is derived by taking the curl of the Navier-Stokes equation. We

take the curl of the Navier-Stokes equation in the form of equation (65) to derive the

three-dimensional vorticity equation:

∂ωa

∂t
= −∇× (ωa × u)−∇

(
1
ρ

)
×∇p +∇× FR (104)

where ∂ΩE/∂t = 0 was used and ωa = ω + ΩE. Note, that the rotation of a gradient

is always zero. Explicit calculation of ∇× (ωa × u) = (∇ · u)ωa + u · ∇ωa −ωa · ∇u
leads to the following expression of the 3D vorticity equation

Dωa

Dt
= − (∇ · u)ωa︸ ︷︷ ︸

(I)

+ ωa · ∇u︸ ︷︷ ︸
(I I)

−∇α×∇p︸ ︷︷ ︸
(I I I)

+∇× FR︸ ︷︷ ︸
(IV)

(105)

where we used the definition of the material derivative (2). This equation summarizes

that the vorticity can be redistributed by either the divergence term (I) or the tilting

term (II). Sources of the vorticity are either the solenoidal term (III) or viscous effects

(IV).

In the absence of any sources under inviscid, barotropic conditions, i.e. terms (III)

and (IV) are zero, vorticity can only be redistributed. The tilting term describes the

generation of vorticity by tilting of preexisting vorticity in the direction of interest. An

example is the generation of vertical vorticity in the updraft of a thunderstorm where

horizontal vorticity is tilted upwards. In this case, the preexisting horizontal vorticity
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is caused by low-level shearing winds. With the tilting term (II), the velocity gradient

tensor explicitly enters the equation. This means that the vorticity tendency depends

on the deformation of the fluid. This can be seen by applying the decomposition of the

velocity gradient tensor in the sum of the strain-rate tensor S and the rotation tensor

Ω (equation 17) to the relative vorticity part of term (II)

ω · ∇u = ω · S + ω ·Ω︸ ︷︷ ︸
=0

(106)

The second term vanishes because the relative vorticity vector is perpendicular to the

rotation tensor Ω = −I×ω/2. Therefore, deformation plays an important role in the

redistribution of vorticity. Vorticity is a field variable that can be calculated at every

point in the flow field. It is therefore a local variable. A more global, integral view on

the rotation of the flow gives the circulation which is closely related to the vorticity.

3.3.3 Circulation: Definition and tendency equation

The circulation is defined as a closed, material line integral of fluid velocity along that

material line C (e.g. Batchelor, 2000, chapter 2.6)

Γ =

˛
C

u · ds (107)

where ds denotes the line element tangent to the circuit C. Note, that we follow a ma-

terial line C here. This statement is important since it allows us to apply the equations

derived in the first fundamentals chapter 2 on the change of material line elements as well

as areas and volumes in section 2.4 and the time-dependent rate of change of integrals

in section 2.5, respectively. By applying Stokes’ theorem (
¸

C u · ds =
´

A′ ∇× u · dA),

the circulation can be related to vorticity as

Γ =

ˆ
A′

ω · dA (108)

where A′ is the area bounded by the closed curve C in (107). The circulation tendency

equation is derived by calculating the material derivative of (107). Thereby, we need to

take into account that the material line ds changes in time, too. Therefore, we make

use of (11) introduced in section 2.5:

DΓ
Dt

=

˛
C

Du
Dt
· ds +

˛
C

ds · ∇u · u =

˛
C

Du
Dt
· ds +

˛
C

ds · ∇1
2

u2︸ ︷︷ ︸
=0

(109)

The second term vanishes because it can be written as the line integral over kinetic

energy which is zero for a closed path. In the first term on the right-hand side, Du/Dt
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can be replaced by the Navier-Stokes equation (39b):

DΓ
Dt

= −
˛

C
2(ΩE × u) · ds︸ ︷︷ ︸

Coriolis term

−
˛

C

1
ρ
∇p · ds︸ ︷︷ ︸

solenoidal term

−
˛

C
∇Φ · ds︸ ︷︷ ︸

=0

+

˛
C

FR · ds︸ ︷︷ ︸
f rictional term

(110)

On the right-hand side, the first term comes from the rotation of the system (Coriolis

term), the second and the fourth integral describes the solenoidal (or baroclinic) and

frictional effects, respectively. Note, gravitational acceleration g = −∇Φg and centrifu-

gal acceleration ΩE × (ΩE × u) = −∇Φz have been combined to the total geopotential

Φ = Φg + Φz (see also the discussion concerning the equation (63)). This integral

vanishes, because the closed path integral of the gradient of some arbitrary function is

always equal to zero.

The contribution from the Earth’s rotation, i.e. the Coriolis term, can be combined

with the (relative) circulation Γ on the left to an absolute circulation Γa where

Γa = Γ +

ˆ
A′

2ΩE · dA (111)

where A′ denotes the area enclosed in the circuit C27. Therefore, we can write the

tendency equation of the absolute circulation as

DΓa

Dt
= −

˛
C

1
ρ
∇p · ds +

˛
C

FR · ds (112)

Since the frictional force is opposed to the velocity vector (FR ∼ −u), the second term

on the right-hand side is always negative and therefore reduces the absolute circula-

tion. The solenoidal term (first term on the right-hand side) can contribute positively

(produce) and negatively (destroy) to the absolute circulation in case of baroclinic con-

ditions, but is zero in case of a barotropic fluid.

3.4 Vortex motions under barotropic, inviscid and incompress-

ible conditions

3.4.1 Kelvin’s circulation theorem

Kelvin’s circulation theorem states that under barotropic (i.e. density ρ is a function of

pressure p only: ρ = f (p)) and inviscid (FR = 0) conditions the absolute circulation Γa

is conserved
DΓa

Dt
= 0 . (113)

27That d/dt(
´

A′ 2ΩE · dA) = −
¸

C 2(ΩE×u) · ds follows directly from equation (13) using ΩE = const.;
then we have d/dt(

´
A′ 2ΩE · dA) =

´
A′ dA · [2ΩE(∇ · u)− 2ΩE · ∇u] =

´
A′ dA · (∇× (2ΩE × u)). Fi-

nally, we apply Stokes’ theorem that reads:
¸

C F · ds =
´

A∇×F · dA where F is an arbitrary differentiable
vector field and C is the curve that encloses area A. Set F = 2ΩE × u leads to desired equation.
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This follows directly from the circulation tendency equation (112) when FR = 0 (inviscid

conditions) and ρ = f (p)28 (barotropic conditions). Holton (2004, chapter 4.1) states

that this is analogous to the angular momentum conservation of a solid-body29.

3.4.2 Vortex lines, surfaces, tubes and filaments

The study of vortex dynamics is closely connected with names like Helmholtz and Kelvin.

Their work led to several important theorems that aim to describe the nature of vortices

as well as give insight into vortex behavior. First, we need to clarify some concepts

concerning vorticity and vortices: The vorticity field is a vector field. Lines tangential

to the vorticity vectors are denoted as vortex lines and vector surfaces composed of

vorticity vectors are called vortex-surfaces. Furthermore, vorticity vector tubes are

denoted as vortex-tubes. The bulk of vortex lines that can be constructed through all

points of the circumference of an infinitely small area element build a vortex filament.

In other words, a vortex filament is a vortex tube with infinitely small cross-section.

These concepts go back to Helmholtz (1858).

Under inviscid, barotropic and incompressible conditions, the vorticity tendency equa-

tion (105) reduces to
Dωa

Dt
= ωa · ∇u (114)

Since a vortex line is tangential to the vorticity vector this equation can also be seen to

represent vortex lines. Comparing (114) with the expression we derived for the change

of a material line element dx over time (see eq. 6):

D
Dt

(dx) = dx · ∇u ,

we observe that both equations are similar in structure and hence we conclude that vor-

tex lines, surfaces, tubes and filaments are material lines, surfaces, and so on. Therefore,

we are allowed to use the equations describing the change of material lines, etc. in the

derivations of the following Helmholtz’ theorems.

3.4.3 Helmholtz’ vorticity theorems (1858)

Helmholtz (1858) in his publication called ”Über Integrale der hydrodynamischen Glei-

chungen, welche den Wirbelbewegungen entsprechen” (”On the integrals of the hydrody-

namic equations that correspond to vortex motions”) derived three theorems character-

izing the dynamics and properties of vortex lines, vortex-surfaces and vortex-tubes of

28For ρ = f (p) we can assume ρ ∼ p and ρ−1∇p ∼ p−1∇p = ∇ ln p. The closed path integral then
reads

¸
ρ−1∇p · ds ∼

¸
∇ ln p · ds = 0

29Note that the circulation of a real (baroclinic, viscid) fluid patch might include non-trivial distri-
butions of vorticity that usually change in time while the mass distribution and hence the moment of
inertia tensor of a solid might be spatially non-trivial, but usually does not change in time.
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a barotropic, inviscid, incompressible30 fluid. Forces acting on the fluid are assumed

to have a potential. Then the three theorems read (German original from Helmholtz,

1858; translations are given in brackets directly after the quotations): ”Die Unter-

suchung ergiebt nun, daß wenn für alle Kräfte, welche auf die Flüssigkeit wirken, ein

Kräftepotential existirt” (If all forces that act on the fluid have a potential then the

analysis yields that)

(1) ”kein Wassertheilchen in Rotation kommt, welches nicht von Anfang an in Rota-

tion begriffen ist.” (non-rotating water particles do not start to rotate.)

(2) ”Die Wassertheilchen, welche zu irgend einer Zeit derselben Wirbellinie ange-

hören, auch indem sie sich fortbewegen, immer zu derselben Wirbellinie gehörig

bleiben.”(Water particles that belong to a vortex filament at a specific time, always

belong to that same vortex filament even when the particles are moving.)

(3) ”Daß das Product aus dem Querschnitte und der Rotationsgeschwindigkeit eines

unendlich dünnen Wirbelfadens längs der ganzen Länge des Fadens constant ist,

und auch bei der Fortbewegung des Fadens denselben Werth behält. Die Wirbelfä-

den müssen deshalb innerhalb der Flüssigkeit in sich zurücklaufen, oder können

nur an ihren Grenzen endigen.” (The product of the cross-section and the rota-

tional velocity of an infinitely thin vortex filament is along its whole length con-

stant and it stays constant even when the vortex filament is moving. Therefore,

vortex filaments need to be closed inside the fluid or they end at the boundaries

of the fluid.)

For the sake of completeness, we will present the elegant, mathematical proofs of

Helmholtz’s theorems in the following. Furthermore besides the beautiful, plain and

clever way of reasoning, these proofs help to illustrate more explicitly the theoretical

concept of vortex tubes and filaments further establishing the understanding of what a

vortex is.

3.4.3.1 Proof of Helmholtz’s points (1) and (2)

The first point implies that the motion under the assumptions made (inviscid, barotropic,

incompressible) is circulation-preserving. This follows directly from Kelvin’s circulation

theorem (113) under the mentioned conditions. The second theorem can also be for-

mulated as: ”in a circulation-preserving motion the vortex lines are material lines”

(citation is taken from Truesdell, 1954, §46). A proof of the second Helmholtz theorem

is presented e.g. in Truesdell (1954) (§93) and goes back to Kelvin (1869): The sec-

ond theorem is proofed by the following considerations: Assume circulation-preserving

motions and let C be a material circuit lying completely on a vortex surface S at time

30Helmholtz (1858) does not state explicitly that the fluid must be incompressible. However, he always
uses the term ”Wassertheilchen”, i.e. water particle, which implies incompressible conditions.
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t = 0 and C is reducible upon S. Then the circulation along C is zero (this is proofed

under the third point mentioned by Helmholtz, 1858, see later in this chapter) (
¸

C = 0
at t = 0). At time t 6= 0 the particles that initially formed C form another circuit c
on a new surface s. It is not known if s is also a vortex surface. Since the motion is

circulation-preserving the circulation along c is zero, too. Application of Stokes theorem

gives 0 =
¸

c dx · du =
´

A(c) dA ·ω where A(c) is the area enclosed by c lying entirely on

s. Since the original circuit C (at t = 0) was arbitrarily chosen, this implies dA ·ω = 0
on the surface of s. Hence, s is a vortex surface. A vortex surface is a material surface

(see also chapter 3.4.2) and the vortex lines forming that vortex surface are therefore

material lines (cf. Truesdell, 1954, §93).

3.4.3.2 Proof of Helmholtz’s point (3)

In some works the third point is called the first Helmholtz vorticity theorem (in e.g.

Truesdell, 1954). We will follow this notation here. One part of the the first vorticity

theorem says that ”the strength of a vortex tube is the same at all cross-sections”(citation

taken from Truesdell, 1954, §43). This part concerns the spatial component of the vortex

tubes.

We can show that the circulation of a closed line that lies completely upon a vortex

surface and that is reducible on it is zero. This last statement follows from the definition

of the circulation as Γ =
´

ω · dA: All vorticity vectors of a vortex surface are tangential

to that surface (ω = ωt) while dA = dAn (or the normal n of the areal patch) is

everywhere perpendicular to the vortex surface and therefore the scalar product is zero

(ω · dA = 0) everywhere.

Helmholtz’s first vorticity theorem can be proofed by the following considerations: On a

vortex tube, two circuits C1 and C2 can be connected with each other building a closed

path by a line f that is traversed twice (see Figure 11)31. The total closed line integral

is then given by C = C1 + f − C2 − f . The minus sign in front of C2 indicates that the

traversed direction of circuit C2 is taken in the other sense then C1. By defining the

closed path in that way, the total closed circuit C encloses a simply connected (reducible)

area of the vortex surface. We have seen, that this integral is zero and we can write

0 =

ˆ
ω · dA =

˛
C1

+

ˆ
f
−
˛

C2

−
ˆ

f
. (115)

31Gauss’s integral theorem for an arbitrary vector field F states that the volume integral over the
divergence of F is equal to the closed surface integral enclosing the volume V′ over F itself:

˝
V ′ ∇·FdV =‚

S(V ′) F · dS. We further know that the divergence of a solenoidal field like the vorticity is always zero

∇ ·ω = ∇ · (∇× u) = 0. Therefore every arbitrarily chosen, closed surface integral over the vorticity
field is zero. However, we need to be more specific in case of the proof of two loops lying on the same
vortex tube having identical circulation. Note, that we need to take a path as described in the text
that lies completely on the vortex tube. It is insufficient to take some arbitrary surface that does not
lie wholly on a vortex tube since we than might have contributions to the circulation from the mantel
sides forming the tube as well as from both caps.
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Hence, the circulations along the two circuits that lie upon the same vortex tube are

equal (spatial constancy of the circulation along a vortex filament or vortex tube):

˛
C1

=

˛
C2

spatial (116)

Figure 11: On the proof of Helmholtz first vorticity theorem: Shown are two circuits C1, C2 that
lie on a vortex tube. The circuits are connecte by a line f . The total closed path of integration
starts at point 1 and is given by the following steps in the given order: 1→ 2 (clockwise), 2→ 3,
3→ 4 (anticlockwise), 4→ 1.

The second part of Helmholtz’s first vorticity theorem treats the constancy of the cir-

culation of a vortex filament in time (temporal constancy of the circulation of a vortex

filament): the circulation ”stays constant even when the vortex filament is moving”.

The proof of this part follows from Kelvin’s circulation theorem (113).

3.4.4 Biot-Savart formula

The Biot-Savart formula is important in the study of vortices and their interaction with

each other and with their environment. We will see that it connects the circulation of a

vortex with the surrounding velocity distribution. This gives a first hint how important

the circulation is in the description of vortices.

Let u = (u, v, w) be the velocity of an incompressible (∇ · u = 0), inviscid (FR = 0)

fluid. The vorticity is ω = ∇× u and its divergence and curl are given as

∇ ·ω = 0 (117)

∇×ω = −∇2u (118)
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The second equation is a Poisson equation. It is possible to decompose an arbitrary

velocity field u = (u, v, w) in a part that is described by a velocity potential uΦ = ∇Φ
which satisfies ∇× uΦ = ∇×∇Φ = 0 and a part that is determined by a solenoidal

vector potential uω = ∇×ψ:

u = uΦ + uω = ∇Φ +∇×ψ (119)

This decomposition is called Helmholtz-Hodge decomposition and it describes the

decomposition of the flow field in an irrotational and a divergence-free part (e.g. Wu

et al., 2007). While the velocity potential represents the irrotational part, the solenoidal

vector potential gives the divergence-free part. The vorticity, i.e. the curl of the velocity,

leads to a Poisson equation:

∇× u = ω = −∇2ψ (120)

that can be solved with help of Green’s function32 in the flow domain V

ψ = −
ˆ

V
GωdV ′ (121)

where G is given for n = 2, 3 dimensions as (after Wu et al., 2007, chapter 2.3.2)

G(x, x′) =
1

2π
log |x− x′| (n = 2) (122)

G(x, x′) = − 1
4π|x− x′| (n = 3) (123)

Since uω = ∇× ψ the velocity for incompressible flow is given by the Biot-Savart

formula (after Wu et al., 2007, chapter 3.2.2)

uω(x) =
1

2(n− 1)π

ˆ
V

ω× r
rn dV (124)

where r is the vector between the vorticity source and location x. Therefore, the Biot-

Savart formula describes the relation between a given vorticity field (or distribution)

and the velocity induced by that vorticity field.

In case of a vorticity distribution concentrated to a vortex tube C of circulation Γ with a

thin diameter (this is also called a vortex filament), the Biot-Savart equation simplifies

to (Wu et al., 2007)

uω(x) =
Γ

2(n− 1)π

˛
C

t× r
rn ds (125)

where tds is a line element of C (see Figure 12) and we used Stokes’s theorem in order

32The Green’s function is mathematically a distribution. This means that it depends on two position
variables x, x′. Integration over the Green’s function therefore leads to a new function (or field) that
still depends on the position variable. In contrast integrating a function with only one space dependent
variable over a specific volume would only lead to a magnitude (e.g. an absolute value of kinetic energy,
etc.) of that function inside the volume.
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Figure 12: Vortex filament of circulation Γ induces a velocity at point P(x. Adopted from Wu
et al. (2007), their Figure 3.7

to introduce the circulation (ωdV = (‖ω‖dA)tds = Γtds).

3.4.5 Point vortex dynamics

In this section, we will apply the Biot-Savart formula in order to derive a set of N point

vortex equations. A point vortex can be seen as the simplest idealized model of a vortex

whose vorticity distribution is concentrated in a point. Using the Biot-Savart formula

introduced in the previous section leads to a set of dynamic equations describing the

motion of point vortices on a plane.

The equations for a single (N = 1) point vortex are derived by the following steps: If the

diameter of the vortex filament in equation (125) approaches zero – i.e. in a line vortex

– the vorticity becomes singular. For a single straight line vortex the equations further

reduce to the two-dimensional equations of a point vortex. In cylindrical coordinates

(r, θ, z) with the vortex in the center of the coordinate system, the velocity u = (ur, uθ , 0)

is then given as (Wu et al., 2007, cf.)

ur =
dr
dt

= 0 , uθ = r
dθ

dt
=

Γ
2πr

(126)

which falls off as 1/r. Introducing complex variables

z = x + iy , z∗ = x− iy ,
dz
dt

= u + iv ,
dz∗

dt
= u− iv (127)

where the transformation is given as (see Figure 13)

x = r cos θ , y = r sin θ , r =
√

x2 + y2 . (128)
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Figure 13: Relation between complex coordinates and polar coordinates.

Then the velocity components are calculated as

u =
dx
dt

= −‖u‖ sin θ , v =
dy
dt

= ‖u‖ cos θ .

Using (126), the (induced) velocity at location z is given by

dz
dt

=
iΓ

2πr2 z ,
dz∗

dt
=

Γ
2πiz

(129)

Since r2 = zz∗ equation (129) implies that the motion (at location z) is proportional

to one over the distance between the vortex and that point. Hence, having two point

vortices at locations z1 and z2, one acts on the other as one over their distance

dz1

dt
=

iΓ2

2π‖z1 − z2‖2 (z1 − z2) (130)

dz2

dt
=

iΓ1

2π‖z2 − z1‖2 (z2 − z1) (131)

For N point vortices with circulations Γi at locations zi with i = 1, .., N, the motion of

the α-th point vortex is then determined by all the other vortices:

dzα

dt
=

i
2π

N

∑
β=1
α 6=β

Γβ

`2
αβ

(zα − zβ) (132)

α = 1, .., N (133)

where `2
αβ = ‖zα − zβ‖2 = (xα − xβ)2 + (yα − yβ)2 is the square of the distance between

the two vortices α, β. These point vortex equations can be interpreted as follows (after

Aref, 2007): Every vortex α introduces an axisymmetric velocity field around its center

that falls off as Γα/(2πr) with distance r from the vortex center (see also Biot-Savart

formula in the previous section). Hence, every vortex ”feels” the velocity fields of all
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other vortices and its motion is determined by the sum of these fields.

Compared to the field perspective where we describe the atmospheric motion with help

of a spatial field of vorticity (and with help of the vorticity equation), the point vortex

model presents a system with a considerably reduced number of degrees of freedom.

Since the vorticity is concentrated at points, we only need to know the initial locations

and circulations of the vortices. Assume that about 10-20 vortices determine the large-

scale motion of the atmosphere. Then we need to know 30-60 variables (circulations Γi

and xi-, yi-coordinates) to calculate the dynamics. This number is tiny in comparison

to a coarsely-resolved data set with a grid resolution of 2.5◦ × 2.5◦ longitude×latitude

which has about 144×37=5328 data points per hemisphere at a specific height level.

Even though the real atmosphere deviates from the inviscid, barotropic, incompressible

conditions under which we derived the point vortex equations, the point vortex model

might enable the compression of higher-resolved data sets likewise to the compression

of video files to the mpeg format. This is an interesting topic for future studies.

3.4.5.1 Scale transformations of the point vortex equations

The dynamics of a system of N point vortices (133) is invariant with respect to scale

transformations of the following kind:

z→ λz̃ , t→ λ2 t̃ , Γ→ Γ̃ (134)

for any constant λ (e.g. Newton, 2001). This can be seen by directly inserting the

transformations into (133)33. Note, that the circulations stay invariant. Under these

scaling, we derive that the motion of the point vortices scales as follows

dz
dt
→ 1

λ

dz̃
dt

(135)

In other words, two identical configurations of N point vortices whose distances (or

length scales) differ only by a constant factor λ > 1 move in the same way but the

motion is decelerated by a factor of 1/λ. In case of λ < 1, the motion is accelerated.

This is especially important in the case of self-similar vortex collapses that will be

investigated in section 3.4.5.4.

In the framework of atmospheric motions, we rather observe that the circulations of

33Further (discrete) symmetries are that can be proven by inserting into the equations (133) (after
Newton, 2001)

• t→ −t , Γβ → −Γβ: simultaneous time reversal and change of the signs of circulations

• z→ −z: rotation about an angle of 180◦

• Γβ → −Γβ , z → z∗: simultaneous change of the signs of circulations and reflection at the
horizontal x-axis

• cyclic permutations of the indices of the vortices (all vortices rotated in the same sense of orien-
tation by particular angles)
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vortices on different scales (e.g. synoptic scale, mesoscale, convective scale) depend on

the length scale L on the synoptic range34 or even on L2 on the convective scale35 or on

a combination of both. However, we observe similar vortex arrangements on different

scales.

Assume that we have two different sets of N point vortices that differ in horizontal scale

and in their circulation by a factor of λ. We want to find out, in which case the point

vortex equations remain invariant. Scaling the time by factor of λ

z→ λz̃ , t→ λt̃ , Γ→ λΓ̃ (136a)

leads to the invariance of the point vortex equations. Then the motion of the two

systems occurs at the same speed

dz
dt
→ dz̃

dt
(137)

This might be a hint on the coupling of large- and small-scale motions. More details on

the scaling of the circulations of atmospheric motions are discussed in section 6.8.

3.4.5.2 Conserved quantities and general motion of N point vortices

The dynamics of point vortices is characterized by certain conserved quantities. Here,

we will introduce two of these conserved quantities due to their relevance to this thesis:

the total circulation Γtotal and the center of circulation C.

The total circulation is given as the sum over all N circulations

Γtotal :=
N

∑
α=1

Γα = const. (138)

That the total circulation is conserved can be seen by the following considerations: We

know that under inviscid, barotropic conditions the circulation of each single vortex

filament is conserved (see Kelvin’s circulation theorem in section 3.4.1) and therefore

the total circulation Γtotal of all N point vortices is conserved, too.

Furthermore, Kirchhoff (1876) showed that the center of circulation36 C of the N

point vortices is also a conserved quantity (Kirchhoff, 1876, chapter 20, §2). C can be

derived completely from conserved quantities and is calculated by (see also Müller and

34This will be discussed in chapter 6.8; furthermore see Müller et al. (2015).
35E.g. the Rankine-vortex model with constant vorticity in the vortex core leads to a linear relationship

between circulation and vortex area A ∼ L2, see equation 108 and chapter 4.2.1
36In the mathematical publications on point vortices the center of circulation is usually called the

center of vorticity (cf. e.g. Newton, 2001). However, the term center of circulation seems to be a
more appropriate choice since the circulations, i.e. the areal integrals of vorticity, are involved in the
calculation rather than the vorticity.
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Névir, 2014; Müller et al., 2015, their equation (9))

C =
∑N

α=1 Γαxα

Γtotal
(139)

where xα = (xα, yα) is the location of the point vortex denoted by α in Cartesian

coordinates.

In general, the motion of N point vortices depends on the total circulation. If the sum of

all circulations, i.e. the total circulation, is different from zero Γtotal 6= 0 then the N point

vortices move around the center of circulation C. If the total circulation approaches zero

(Γtotal → 0), the center of circulation C→ ∞. Hence, in the special case of Γtotal = 0 all

vortices translate along parallel paths with the same speed. For systems of N ≤ 3, the

dynamic equations are fully integrable for any values of the circulations (Aref, 2007).

For higher-order systems, only certain configurations are integrable (see e.g. Newton,

2001, who remarks that for Γtotal = 0 the N = 4 vortex-problem is integrable). The

special cases of the motion of N = 1, 2 point vortices will be discussed in detail in

Appendix A.

3.4.5.3 On the motion of N = 3 point vortices in general

The dynamics of N = 3 point vortices was solved in a very elegant way by Müller and

Névir (2014) who used a geometric representation derived in the framework of Nambu

mechanics. The trick is to plot the surfaces of the two conserved quantities37 in the phase

space. The intersection of the two surfaces then yields informations on the motion of

the point vortices. Müller and Névir (2014) identified three types of motion: periodic

motion, relative equilibria and self-similar collapsing/expanding motions. These motions

correspond to an intersection of the surfaces of the two conserved quantities in the phase

space of intervortical distances represented by circles (periodic motions), points (relative

equilibria) or straight lines (collapsing/expanding motions). The case of Γtotal = 0 is a

possible realization of a relative equilibrium state38 that proved useful in the description

of large-scale synoptic motions such as blocking situations (Müller et al., 2015). We will

give more details on the motions of N ≤ 3 point vortices and their application on

atmospheric blockings in Appendix A.

3.4.5.4 Self-similar collapsing/expanding motion of N point vortices

Under certain conditions another interesting type of motion occurs: a self-similar col-

lapsing or expanding motion (see appendix A for further explanations). Thereby, the

vortices move on logarithmic spirals winding into (or out) the center of circulation while

37The two conserved quantities are the Hamiltonian H and a quantity called M that is given as the
sum of momentums. We will introduced these quantities later in the appendix A

38The relative equilibrium is not limited to the case of Γtotal = 0, it can also occur for Γtotal 6= 0.
Then, all vortices move around their center of circulation, but the distances between all vortices remain
unchanged.
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Figure 14: (a) Trajectories of a collapsing N=3 point vortex system with (Γ1, Γ2, Γ3) =
(2, 2,−1) m2/s and initial conditions (x1, y1) = (2.5,−5) m; (x2, y2) = (2.5, 5) m; (x3, y3) =

(2.5− 10/
√

2, 5) m. The center of circulation lies at about C = (4.86,−1.67) m. Dashed tri-
angle corresponds to t = 0 and solid triangle taken at t = 270 s is similar (same shape, dif-
ferent size) to the dashed one. The initial positions of the three vortices were derived by the
method after Aref et al. (1992) shown in Fig. A68. The collapse occurs after about tc ≈ 334 s
(b) Same trajectories as in (a) overlaid on a satellite image showing an extratropical low
pressure system near Iceland (source: NASA, Aqua MODIS instrument, online available at
http: // visibleearth. nasa. gov/ view. php? id= 68992 ) The satellite image was taken on
04.09.2003.

the area spanned by the vortices changes in size but remains constant in shape. In

Fig. 14a we plotted an explicit example of the collapsing trajectories of three point vor-

tices with circulations (Γ1, Γ2, Γ3) = (2, 2,−1) m2/s. Following the example of Kudela

(2014)39, we overlaid the trajectories of the collapsing point vortices with the satellite

image of an extratropical cyclone (see Fig. 14b). The similarity of the theoretical solu-

tion and the cloud pattern of the real vortex is astonishing. Note, that due to the scale

invariance of the point vortex systems, the shape of the collapsing vortex trajectories

remains similar (logarithmic spiral) only the time (or circulation as we have discussed

earlier in section 3.4.5.1) needs to be scaled accordingly if the horizontal length dimen-

sion is scaled by a constant factor (e.g. Newton, 2001; Kudela, 2014). Furthermore,

Novikov and Sedov (1979) showed that the collapse of three vortices lead to a resulting

vortex whose intensity is larger than the intensity of the three single vortices. Thus, we

might interpret the three single vortices as smaller-scale (convective) cells that form a

larger-scale vortex. Then, we can assume that the anticyclonicly rotating vortex is a

39Kudela (2014) used the same satellite image but overlaid it with the trajectories of N=7 collapsing
point vortices.
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vortex of cyclostrophic balance (and therefore has a low pressure core likewise to the

other cyclonicly rotating vortices as we have shown in chapter 3.2.1.3). In our example

given in Fig. 14 the total circulation is equal to Γtotal = Γ1 + Γ2 + Γ3 = 3 m2/s which is

larger than a single positive vortex. Imagine to have ten sets of this tripole. This will

lead to a vortex with a circulation one magnitude larger than the single vortices it is

composed of. Such a N=30 point vortex collapse was analysed in Kudela (2014).

Already Novikov and Sedov (1979) presented briefly the solutions of the N=4, N=5

vortex collapses, but also discussed the relevance of the expanding motion with respect

to the creation of vortices in e.g. geophysical fluid dynamics. Indeed, a common ob-

servation is the split of convective storms. This means that new cells are created from

a single cell. Furthermore, collapsing (and expanding) motions might offer a way to

understand the interaction of two-dimensional and three-dimension dynamics as well

as interactions of the small- and large-scale systems: for example if we interpret the

collapsing point as updraft of the larger-scale system or the single point vortices as up-

or downdrafts of smaller-scale convective cells embedded in a larger vortex. Hence, the

topic of point vortex dynamics is of high relevance to real world fluid dynamics, but

further investigations will be necessary to advance a deeper understanding.

Finally, it is worth noting, that the work on point vortices of Müller and Névir (2014)

and Müller et al. (2015) and the method of vortex identification that will be introduced

in this work later (chapter 6) already inspired several Bachelor’s (Sonntag, 2012; Pültz,

2014), Master’s (Hirt, 2016) and Diploma thesis (Isernhagen, 2015) at the Institute of

Meteorology of the Freie Universität Berlin with emphasis on the application of point

vortices to atmospheric blocking situations.

3.5 Concluding remarks

We have introduced and discussed the equations of motion in different reference frames

(inertial and noninertial). Thereby, the transformation to a natural coordinate system

in a rotating reference frame proved useful in the study of the horizontal flow that occurs

around a vortex. We investigated these equations in more detail with help of a scale

analysis. The scale analysis revealed the different prevailing balances of forces that occur

on different scales. Furthermore, we could show that the properties and the appearance

of cyclonic and anticyclonic vortices depend on the scale, too: While the structure of

high and low pressure systems is qualitatively similar under geostrophic balance except

of the sign of their circulation, the highs are restricted to larger radii and less intense

pressure gradients in case of the gradient wind balance. Under cyclostrophic balance,

however, cyclonicly as well as anticyclonicly rotating vortices are likewise associated

with a low core pressure.

Furthermore, we identified the vorticity as local rotation rate and the circulation as a

global measure of rotation. We showed that the circulation is a conserved quantity under
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incompressible, barotropic and inviscid conditions. Under these conditions, we derived

the important Biot-Savart formula that states that every vorticity distribution induces

a velocity field. Moreover, the Biot-Savart formula can be used to estimate the range of

influence of a vortex on its environment or on other vortices. This led to the derivation

of the point vortex equations which can be seen as a first idealized, simplified model

of large-scale atmospheric vortices. However, it is possible to derive other important

vortex models from the equations of motion making different assumptions as we will see

in the next chapter 4.
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4 Theoretical vortex models: Revealing the proper-

ties of a vortex

This chapter deals with typical vortex models that can be derived as exact solutions

of the Navier-Stokes equations. These models can be useful for improving the physical

understanding of vortices and their determining properties. We will show in this chapter

that at fixed time the velocity and vorticity profiles of the vortex models are determined

completely by two properties: the circulation of the vortex as well as its size (radius).

However, only under very idealized assumptions these exact solutions are derived.

4.1 Governing equations in cylindrical coordinates

Since vortices are observed to have a columnar structure, a cylindrical coordinate system

seems the appropriate choice in order to determine vortex solutions of the equations of

motion. Therefore, some mathematical expressions will be processed explicitly before

analysing the equations.

4.1.1 Cylindrical coordinate system

Assume the cylindrical coordinate system with coordinates (r, θ, z) with corresponding

unit vectors er, eθ , ez. The ∇-operator in cylindrical coordinates is given by

∇ =
∂

∂r
er +

1
r

∂

∂θ
eθ +

∂

∂z
ez . (140)

Then, divergence and rotation of an arbitrary vector A = (Ar, Aθ , Az) are given by

∇ ·A =
1
r

∂

∂r
(rAr) +

1
r

∂Aθ

∂θ
+

∂Az

∂z
(141)

∇×A =

(
1
r

∂Az

∂θ
− ∂Aθ

∂z

)
er +

(
∂Ar

∂z
− ∂Az

∂r

)
eθ +

1
r

(
∂

∂r
(rAθ)− ∂Ar

∂θ

)
ez (142)

and the Laplacian of an arbitrary function f is

∆ f =
1
r

∂

∂r

(
r

∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 . (143)

Further, we will denote the velocity components by u = (ur, uθ , uz) and the vorticity

components by ω = ∇× u = (ωr, ωθ , ζ), respectively. In detail, the vorticity compo-

nents follow from equation (142)

ωr =
1
r

∂uz

∂θ
− ∂uθ

∂z
, ωθ =

∂ur

∂z
− ∂uz

∂r
, ζ =

1
r

(
∂

∂r
(ruθ)− ∂ur

∂θ

)
. (144)
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4.1.2 Governing equations in the cylindrical coordinate system

For incompressible flow, i.e. constant density (ρ = const), the continuity equation

∂ρ/∂t +∇ · (uρ) reduces to ∇ · u = 0. In component form using (141) the continuity

equation is then given by
1
r

∂rur

∂r
+

1
r

∂uθ

∂θ
+

∂uz

∂z
= 0 . (145)

In a non-rotating reference frame considering gravity, the Navier-Stokes equations (55)

read
∂u
∂t

= −u · ∇u− 1
ρ
∇p + g + ν∇2u , (146)

where we have applied the material derivative (2) and made use of FR = ν∇2u where ν

is the viscosity; g is the gravitational acceleration and p is the pressure. The advection

can be rewritten as u · ∇u = 1
2∇u2 − u×ω such that we obtain equation (66b) under

adiabatic conditions (T∇s = 0). Explicitly, the single components of the equations of

motion are written as

∂ur

∂t
= (uθζ − uzωθ)− ∂B∗

∂r
+ ν∇2ur : radial component (147a)

∂uθ

∂t
= (uzωr − urζ)− 1

r
∂B∗

∂θ
+ ν∇2uθ : azimuthal component (147b)

∂uz

∂t
= (urωθ − uθωr)−

∂B∗

∂z
+ ν∇2uz : vertical component (147c)

where B∗ = 1
2 u2 + h + Φg is the Bernoulli stream function in an inertial, absolute

reference frame40.

4.2 Exact vortex solutions under idealized conditions

Exact vortex solutions follow often from linearization of the vorticity equations that

are derived by taking the curl of (147). The vorticity equations become linear when

the velocity vector and the vorticity vector are aligned such as in Beltramian flow

(u×ω = 0). Wu et al. (2007) show that the vorticity equations become linear too for

generalized Beltramian flows where ∇× (u×ω) = 0. In this section, we will start from

highly idealized conditions and work through to more complicated set-ups. In all cases,

we will assume axisymmetry, incompressibility and adiabatic conditions.

4.2.1 Inviscid, stretch-free solutions (Point vortex, Rankine vortex)

For axisymmetric columnar vortices, all dependencies in azimuthal direction vanish in

(147b), i.e. ∂/∂θ = 0. Assume the following conditions

40Under adiabatic conditions (entropy does not change: ds = 0), changes in enthalpy are proportional
to pressure changes only: dh = ρ−1dp + Tds = ρ−1dp. This can be used in order to derive equations
(147) with term B∗ = 1

2 u2 + h + Φg = 1
2 u2 + 1

ρ dp + Φg with
´ 1

ρ dp = 1
ρ p for ρ = const.
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(i) axisymmetry (∂/∂θ = 0);

(ii) incompressibility (∇ · u = 0);

(iii) inviscid conditions (ν = 0)

(iv) velocity vector is zero except of its azimuthal component uθ = uθ(r, t).

Then, the vorticity vector has only a non-zero vertical component ζ. Velocity and

vorticity components are given by

ur = 0 , uθ = uθ(r, t) , uz = 0

ωr = 0 , ωθ = 0 , ζ =
1
r

∂

∂r
(ruθ) .

and the Navier-Stokes equations (147) simplify to

1
ρ

∂p
∂r

=
u2

θ

r
(148a)

∂uθ

∂t
= 0 (148b)

1
ρ

∂p
∂z

= −g (148c)

While the horizontal component of the Navier-Stokes equation (148a) reduces to the

well-known cyclostrophic balance that describes the balance between the radial pres-

sure gradient force and the centrifugal force, the vertical component (148c) yields the

hydrostatic balance (balance between vertical pressure gradient and gravitation). Note

that, even though we call the balance cyclostrophic, the equations are given in an in-

ertial reference frame and the velocity is equal to the absolute velocity. However, the

structure of equation (148a) is equal to the cyclostrophic balance in a noninertial, ro-

tating reference frame (cf. equation (93), chapter 3.2.1.3). Nonetheless, we will stick

to the term cyclostrophic. Wu et al. (2007) call this type of vortex a pure vortex. It is

characterized by streamlines that are closed circles around the z-axis and by vorticity

lines that are aligned to the z-axis.

Further complicating our system by adding a non-zero vertical velocity component to

the velocity vector changes condition (iv) to

(iv∗) u = (0, uθ(r, t), uz(r, t)).
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This gives an additional azimuthal component in the vorticity vector ω = (0, ωθ(r, t), ζ(r, t)).
Then, the components of velocity and vorticity are

ur = 0 , uθ = uθ(r, t) , uz = uz(r, t) (149a)

ωr = 0 , ωθ = −∂uz

∂r
, ζ =

1
r

∂

∂r
(ruθ) . (149b)

It should be noted that according to the continuity equation the vertical velocity is in-

dependent of height. This means that no axial stretching occurs. In the simpler case of

time-independent vertical velocity uz = uz(r) the results from above (cyclostrophic/hy-

drostatic balance) are retained. In the more general case of time-dependent vertical

velocity only the vertical component of the Navier-Stokes equations changes to

∂uz

∂t
= −1

ρ

∂p
∂z
− g (150)

while the horizontal equations (cyclostrophic balance) remain. Such a vortex with ad-

ditional non-zero vertical velocity is called swirling vortex (Wu et al., 2007) since the

flow is helical with non-zero helicity density ω · u 6= 0.

The relevant equation of horizontal motion in both cases (148a) give the cyclostrophic

balance. Wu et al. (2007) therefore states that a vortex under inviscid, stretch-free

conditions can have arbitrary radial dependence. Hence, plenty of inviscid vortex models

are possible solutions of the Navier-Stokes equations. Some examples are listed below

(1) Point vortex:

A point vortex is a vortex of zero dimension. The vorticity is concentrated only in

one point in the vortex center. The determining property of a point vortex is its

circulation Γ. Velocity and vorticity profiles depend only on the radial component

r and can be expressed as (following Newton, 2001)

uθ(r) =
Γ

2πr
ζ(r) = δ(r)

ur = uz = 0

ωr = ωθ = 0

The Dirac delta function is δ(r) = ∞ for r = 0 and δ(r) = 0 for r 6= 0.
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(2) Rankine vortex:

The velocity and vorticity profiles are given by (after Newton, 2001)

uθ(r) =


( Γ

2πR2

)
r , r ≤ R

Γ
2πr , r > R

ζ(r) =


Γ

πR2 , r ≤ R

δ(r) , r > R

ur = uz = 0

ωr = ωθ = 0

Here, Γ denotes the circulation calculated at radius R and δ is the Dirac delta

function, therefore ζ = 0 for r > R. Inside a circle of radius R (inside the vortex

core), the flow equals a solid body rotation with constant vorticity. The velocity

in the center is zero (uθ(r = 0) = 0). It constantly increases up to radius R where

uθ is maximal. Outside of R, the velocity declines as 1/r similar to the point

vortex solution. Velocity and vorticity profiles of the Rankine vortex model and

the point vortex model are compared in Figure 15.

Note, that we can rewrite the velocity inside the core with help of the constant

vorticity ζ = Γ/(πR2) as

uθ(r) =
1
2

ζr , r ≤ R (151)

We can also calculate the radial pressure profile by integrating over the radial

component of the equations of motion (148a) and assuming incompressible condi-

tions:

p(r) ∼
ˆ

1
ρ

dp =

ˆ
u2

θ

r
dr =

1
4

ˆ
ζ2r2

r
dr =

1
8

ζ2r2 + C ∼ r2 , r ≤ R (152)

C denotes a constant of integration. We conclude that in case of the Rankine

vortex model the radial pressure profile follows a parabola inside the vortex core

(see also Figure 15b). Analogously, outside the core we obtain an inverted parabola

p(r) ∼
ˆ

1
ρ

dp =

ˆ
u2

θ

r
dr =

Γ2

4π2

ˆ
1
r3 dr = − Γ2

8π2 r−2 + C2 ∼ −r−2 , r > R

C2 denotes another constant of integration. Since the pressure is a continuous variable,

it is required that both sides of the function p(r) are equal at the radius R. Then it

follows that C2 = Γ2/(4π2R2) + C where C is the constant of integration derived in

(152). The pressure profile of a Rankine vortex is plotted in Figure 15b.
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(a) Azimuthal velocity profile

(b) Vertical vorticity and pressure profile

Figure 15: Comparison of (a) azimuthal velocity and (b) vertical vorticity profiles of a point
vortex and a Rankine vortex. Additionally, we plotted the pressure profile of the Rankine vortex
in (b). The parameters are plotted in dependence on the distance r from the vortex center. We
assumed a circulation of Γ = 2π m2/s for both vortex types and a vortex radius of R = 1 m for
the Rankine vortex. Constant of integration C of (152)was set to C = 999 hPa; ρ = 1 kg/m3.
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4.2.2 Viscous, stretch-free solutions (Lamb-Oseen vortex)

We further take into account viscosity. Then the solutions become time-dependent and

the conditions change to

(i) axisymmetry (∂/∂θ = 0);

(ii) incompressibility (∇ · u = 0);

(iii∗) viscous conditions (ν 6= 0);

(iv∗) u = (0, uθ(r, t), uz(r, t)).

While the components of the velocity and vorticity vectors still equal the set-up in (149),

viscous terms enter the Navier-Stokes equations balancing the accelerations:

1
ρ

∂p
∂r

=
u2

θ

r
(153a)

∂uθ

∂t
= ν∇2uθ (153b)

∂uz

∂t
= −1

ρ

∂p
∂z
− g + ν∇2uz (153c)

The equations of uθ and uz are decoupled. If the hydrostatic balance still is assumed,

the unsteady terms are compensated only by viscous terms. Setting the vertical velocity

to zero (uz = 0), a simple solution of the Navier-Stokes equations is represented by the

(3) Lamb-Oseen vortex:

Velocity and vorticity profiles are time-depending (after Newton, 2001, with slight

modifications)

uθ(r, t) =
Γ

2πr

(
1− exp

(
− r2

R(t)2

))
ζ(r) =

Γ
πR(t)2 exp

(
− r2

R(t)2

)
ur = uz = 0

ωr = ωθ = 0

where the time-dependence lies in a time-depending vortex core radius R(t). The

Lamb-Oseen vortex represents a decaying vortex that started with the profile

uθ(r, t = 0) = Γ/(2πr) of a point vortex at time t = 0. The vortex core radius

R, initially R(t = 0) = 0, increases over time by R(t) =
√

4νt. Note, that the

vorticity profile is Gaussian. For fixed times t, the velocity profile resembles that

of the Rankine vortex for small r → 0 and for large r � R: for small r, inside the
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vortex core the velocity is constantly increasing41; for large r, the profile equals

that of a point vortex:

uθ(r, t)|r→0 ≈
Γ

2πR2 r

uθ(r, t)|r�R ≈
Γ

2πr

Summarizing, the velocity profile for fixed times is determined completely by cir-

culation Γ and radius R. While the solution resembles the Rankine vortex at the

limits of the domain, the profiles of velocity and vorticity are continuously differ-

entiable in contrast to the Rankine vortex. The profiles of the Lamb-Oseen and

the Rankine vortex are compared in Figure 16.

4.2.3 Viscous solutions with axial stretching (Burgers vortex)

We allow now the vortex to stretch along the z-axis by a factor γ (can be constant).

The conditions change to

(i) axisymmetry (∂/∂θ = 0);

(ii) incompressibility (∇ · u = 0);

(iii∗) viscous conditions (ν 6= 0);

(iv∗∗) allow vertical stretching uz = uz(r, z, t).

A simple linear and uniform z-dependence of the vertical velocity is given by uz(z, t) =

γ(t)z where γ(t) > 0. From the continuity equation (145) then follows that there is a

radial inwardly-directed velocity component u. Velocity and vorticity components are

given as (after Wu et al., 2007)

ur(r, t) = −1
2

γ(t)r , uθ = uθ(r, t) , uz(z, t) = γ(t)z (154a)

ωr = 0 , ωθ = 0 , ζ =
1
r

∂

∂r
(ruθ) . (154b)

Since uθ 6= uθ(z) and uz 6= uz(r), only the vertical vorticity component remains. Wu

et al. (2007) point out, that this setting can only be fulfilled locally for r < ∞, and

|z| < ∞. As a further simplification the stretching is assumed to be constant. Instead

41This result follows from an Taylor series expansion of the exponential term in terms of r2:
exp(−r2/R2)|r2→0 ≈ 1− r2/R2
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(a) Azimuthal velocity profile

(b) Vertical vorticity profile

Figure 16: Comparison of azimuthal velocity and vertical vorticity profiles of a Rankine vortex
and a Lamb-Oseen vortex for different time steps t. Velocity and vorticity are plotted in depen-
dence on the distance r from the vortex center. We assumed a circulation of Γ = 2π m2/s for
both vortex types and a vortex radius of R = 1 m for the Rankine vortex; ρ = 1 kg/m3. Note
that for t = 0 the Lamb-Oseen vortex model is equal to the solution of a point vortex.
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of using the Navier-Stokes equations, it is useful to look at the vorticity transport equa-

tions (equation 105 under barotopic conditions for the relative instead of the absolute

vorticity). Only the vertical component of the vorticity equations does not vanish

∂ζ

∂t
= −u · ∇ζ + ω · ∇uz + ν∇2ζ (155)

Explicitly after applying the conditions (i)-(iv** ), the vorticity equation reads

∂ζ

∂t
=

1
2

γr
∂ζ

∂r︸ ︷︷ ︸
Advection

+ γζ︸︷︷︸
Stretching

+
ν

r
∂

∂r

(
r

∂ζ

∂r

)
︸ ︷︷ ︸

viscous

(156)

The advection is in inward radial direction and the stretching is uniform along the z-axis.

Under steady conditions (∂/∂t = 0), a solution is represented by the

(4) Burgers vortex:

In the Burgers vortex, the viscous terms are balanced by advective and stretching

terms (see (156) for ∂ζ/∂t = 0). Velocity and vorticity profiles for γ > 0 are (after

Wu et al., 2007, who additionally give a more detailed derivation)

uθ(r) =
Γ

2πr

(
1− exp

(
− r2

R2
∗

))
ur = −1

2
γr

uz = γz

ζ(r) =
γΓ

4πν
exp

(
− r2

R2
∗

)
ωr = ωθ = 0

Here, the core radius R∗ is determined by stretching γ and viscosity ν as R∗ =

γ/(4ν). At fixed time, the azimuthal component of the velocity resembles that

of the Lamb-Oseen vortex (cf. Newton, 2001). However, the vortex is stretched

along the z-axis and has non-zero ur- and uz-components. The vorticity profile is

Gaussian.

4.3 Concluding remarks on vortex models

Table 4 gives an overview over the discussed vortex models, the assumptions made and

the determining properties. We can conclude, that circulation and radius (together

with time) determine the appearance of a vortex. Therefore, these properties should

be the first choice when analysing vortex statistics. It should be noted though, that

more vortex models of increasing complexity exist (see e.g. Wu et al., 2007). Finally,

we want to point out that the highly idealized, theoretical vortex models were derived

64



4.3 Concluding remarks on vortex models Lisa Schielicke

Table 4: Overview over discussed vortex models: assumptions and determining properties.
Circulation, radius and time are denoted by Γ, R, t, respectively.

Stretching Viscous Time-dependent Properties

Point vortex no no no Γ

Rankine vortex no no no Γ, R

Lamb-Oseen vortex no yes yes Γ, R, t

Burgers vortex yes yes no Γ, R

in an inertial reference frame. In contrast, atmospheric vortices are usually observed in

a noninertial reference frame. We will treat this topic in the following chapter 5.
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5 Atmospheric vortices: Novel intensity measures

based on the horizontal balance of forces42

This chapter deals with possible measures of vortex intensity. In order to find appro-

priate intensity measures, we will use the knowledge summarized in the previous two

chapters that treat the dynamics of the flow field. We have seen that the theoretical

vortex models were derived under highly idealized conditions in an inertial, non-rotating

reference frame. This stands in contrast to the general observation of atmospheric vor-

tices in a noninertial, rotating reference frame considering the rotation of the Earth.

Before going into more details on this topic we will first present some commonly used

intensity measures of vortices.

5.1 On the intensity of vortices on different scales

It is not trivial to define a unified intensity measure that fits different atmospheric vortex

types like tornadoes, tropical and extratropical cyclones. These systems are associated

with a low core pressure. They can produce high wind speeds causing severe damage.

Therefore, their intensity is often measured by the maximum wind speed (averaged or

gust), their minimum core pressure, their maximum vorticity or by classifications based

on these local parameters. Pressure — or alternatively geopotential height — and

vorticity are common intensity parameters used to classify extratropical and tropical

cyclones (e.g. Blender et al., 1997; Hodges et al., 1994). Furthermore, their intensity

is measured by the 10-minutes (for tropical cyclones 1-minute) averaged wind speed or

by classification schemes based on the wind speed such as the Beaufort-intensity scale

for extratropical cyclones (Hanson et al., 2004) or the Saffir-Simpson intensity scale

for tropical cyclones (in the North-Atlantic and North-Eastern Pacific). Since there

are only few measurements of wind speed and pressure in tornadoes, their intensity

is often estimated by the caused damage in terms of the Fujita intensity scale (F-

scale, introduced by Fujita, 1971), the Enhanced Fujita-scale (EF-scale WSCE, 2006)

or the Torro-scale (introduced by Terence Meaden in 1972 as published in Kirk, 2014).

Beaufort-scale (B), Fujita-Scale (F) and Torro-Scale are connected to wind speed via

(after Müller, 1979; Fujita, 1971)

v(B) = 0.835 ms−1B3/2 B = [1, .., 12] (157)

v(F) = 6.300 ms−1(F + 2)3/2 F = [0, .., 5] (158)

v(T) = 2.365 ms−1(T + 4)3/2 T = [0, .., 10] (159)

42This chapter is based on three publications: Schielicke and Névir (2009, 2011, 2013). These pub-
lications deal with the intensity of vortices on different scales: mass-specific energy of displacement
in Schielicke and Névir (2009) and mass-related atmospheric moment in Schielicke and Névir (2011).
Further we comprehensively studied the temporal and intensity behavior of tornadoes in Schielicke and
Névir (2013). The interested reader is referred to these publications for further details.
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Based on these listed local parameters other measures can be deduced such as the

kinetic energy (e.g. Kurgansky, 2000; Dotzek et al., 2005), the mass flux or the energy

flux density (so called E-scales, introduced by Dotzek, 2009).

The large diversity of intensity measures complicates the search for a unified parameter

valid for different vortex types. Which parameter can be used in order to compare

vortices on different scales? We treated this topic in our publications Schielicke and

Névir (2009, 2011) by defining a mass-specific energy of displacement and a mass-related

atmospheric moment based on the horizontal equations of motion. These parameters

will be introduced in the next sections.

5.2 Mass-specific energy of displacement (Schielicke and Névir,

2009)

In Schielicke and Névir (2009), we defined a unifying parameter: the mass-specific

energy of displacement. Theoretical basis are the horizontal equations of motion in

natural coordinates neglecting friction and assuming zero vertical velocity (see chapter

3.1.6, equations (81), (82)). Note, that this approach is similar to the theoretical vortex

models (see chapter 4) with the difference that we will work in a noninertial, rotating

reference frame taking into account centrifugal as well as Coriolis force terms. While

the theoretical vortex model approaches mainly serve the search for an appropriate

radial wind profile, we will integrate over the horizontal equations of motion in order

to derive an intensity measure. Thereby, we will make use of the theoretically derived

wind profiles.

Under the assumption of zero vertical velocity and inviscid conditions we derive two

components of the horizontal equations of motion in natural coordinates that read

Dvh

Dt
= −1

ρ

∂p
∂s

in streamwise direction, parallel to v (160a)

v2
h

R
+ f vh = −1

ρ

∂p
∂n

in crosswise direction, normal to v (160b)

where vh is the magnitude of the horizontal wind vector; p is the pressure; ρ is the

density; f is the Coriolis parameter and R is the radius of curvature. At the moment of

maximum intensity, the equation in streamwise direction (160a) becomes zero since the

motion is not accelerated at this moment. Only the component perpendicular to the

flow (160b) remains. Under the further assumption of axisymmetry, the transformation
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between the natural (t, n, k) and the cylindrical coordinate system (er, eθ , ez) is given by

n = −er , t = eθ , k = ez

vh = uθ , R = r

dn = −dr , ds = rdθ


for cyclonic motion (R > 0)

where uθ = vh is the azimuthal component of the wind vector in cylindrical coordinates

and the radial and vertical components are zero: u = (0, uθ(r), 0). Using these trans-

formations in equation (80) and neglecting the l-Coriolis terms leads to the following

horizontal (azimuthal) equation of motion in cylindrical coordinates

u2
θ

r︸︷︷︸
Centri f ugal term Z

+ f uθ︸︷︷︸
Coriolis term C

=
1
ρ

∂p
∂r︸︷︷︸

Pressure gradient P

(161)

Given in a relative, non-inertial, rotating reference frame, equation (161) represents the

counterpart of the azimuthal component of the equation of motion (147b) in an absolute,

inertial, non-rotating reference frame that we have used in order to derive solutions for

the theoretical vortex models (chapter 4). More details on this transformation can be

found in Schielicke and Névir (2009). We obtain (161) in case of anticyclonic motion

(R < 0), too. However, the transformations are different:

n = er , t = −eθ , k = ez

vh = −uθ , R = −r

dn = dr , ds = −rdθ


for anticyclonic motion (R < 0)

Moreover, we have already shown in chapter 3.2 that the vortices at their moment of

maximum intensity are completely determined by their prevailing horizontal balance of

forces. prevailing balances). The accelerations a(r) that balance the pressure gradient

force in the horizontal equation of motion are defined as:

a(r) :=
u2

θ

r
+ f uθ (162)

Finally, we defined the mass-specific energy of displacement e as the radial integral over

the accelerations a(r) starting from the vortex center (r = 0) to its radius r = R:

e :=
ˆ R

0
a(r)dr =

ˆ P0

P
αdp (163)

where α = V/m = ρ−1 is the mass-specific volume. The relationship between the
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Path of 
integration

Vortex
center
(r=0)

Vortex core radius (r=R)

u

n

Figure 17: Path of integration of the energy of displacement. ~u: velocity vector, ~n: unit vector
in normal direction

natural coordinate system and the path of integration is displayed in Figure 17. At the

moment of maximum intensity, the energy of displacement can be interpreted as the

work done in order to generate the system43. Although the path of integration from

the center to the edge of the system is perpendicular to the motion at the moment of

maximum intensity, it is exactly the way that the particles were forced to take during

the generation and intensification process of the system. These particle paths describe

the unbalanced deviations from the prevailing balance of forces, e.g. in case of the

cyclones the ageostrophic (asemigeostrophic) components or in case of the tornadoes

the acyclostrophic components of the motion.

5.2.1 Tornadoes and cyclostrophic balance

Under cyclostrophic balance, the Coriolis term in (163) vanishes and we approximated

the wind field in a tornado by a Rankine vortex profile (see chapter 4.2.1). Inside the

radius R of the tornado the velocity increases linearly along the radial component as

uθ = ωtr with angular velocity ωt = const.; note, that we have defined the angular

velocity with help of the vortex radius and its circulation as ωt = Γ/2πR2 in chapter

4.2.1. The velocity is maximal at the vortex core radius r = R, hence, umax = ωtR. The

43This can be seen by the following considerations: The first law of thermodynamics is given in terms
of internal energy as cvDT/Dt = −pDα/Dt + J (eq. 44) and in terms of enthalpy as cpDT/Dt =
αDp/Dt + J (eq. 46). Under adiabatic conditions (J = 0) we therefore obtain αdp = −(cv/cp)pdα ∼
−pdα where the latter describes the work done by volume changes.
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energy of displacement expression (equation 163) under these conditions reads

et =

ˆ R

0

u2
θ

r
dr =

ˆ R

0

ω2
t r2

r
dr =

1
2

ω2
t R2 (164)

=
1
2

u2
max (165)

=
1
2

ωtumaxR (166)

Note, that in cylindrical coordinates the vorticity ζ is derived as

ζ = k · ∇ × u =
1
r

∂(ruθ)

∂r
(167)

=
1
r

∂(ωtr2)

∂r
=

1
r

2ωtr (168)

= 2ωt (169)

Therefore, the energy of displacement in relation to the vertical vorticity ζ reads

et =
1
4

ζumaxR (170)

5.2.2 Extratropical cyclones and geostrophic balance

The geostrophic balance is a good approach for extratropical cyclones. In geostrophic

balance the velocity is assumed to be constant (uθ = ug = const.). Furthermore, in eq.

(163) the centrifugal term is neglected. This gives

eec =

ˆ R

0
f uθdr =

ˆ R

0
f ugdr (171)

= f ugR (172)

5.2.3 Tropical cyclones and gradient wind balance

In tropical cyclones both terms in eq. (163) are relevant. In Schielicke and Névir (2009),

we decided to solve the integral by a semigeostrophic approach. This means that the

velocity in the Coriolis term as well as one of the uθ’s in the centrifugal term will be

treated to be geostrophic (uθ = ug = const.), while the second uθ in the centrifugal term

will vary like the velocity in a Rankine vortex (uθ = ωtr). The integral then reveals

etc =

ˆ R

0

u2
θ

r
+ f uθdr =

ˆ R

0

uθvg

r
+ f ugdr (173)

=

ˆ R

0
(ωt + f )ugdr (174)

= (ωt + f )ugR (175)
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Note, if we apply the Rankine vortex approach to all velocities within (163), the integral

will give the same result except of a factor of 1/2 and instead of ug we have umax = ωtR.

5.2.4 Results and Summary of Schielicke and Névir (2009)

The prevailing balances of forces and the expressions of the energy of displacement for

the different atmospheric vortex types are summarized in Table 5. With help of the

mass-specific energy of displacement definition, we were able to analyse the frequency

distributions of different vortex types and found a unified behavior with similar decay

rates for cyclones and tornadoes (see Figure 18).

Table 5: Prevailing balances of forces and explicit expression of the energy of displacement for
atmospheric vortex types of different scales taken at their moment of maximum intensity; uθ:
azimuthal velocity, f : Coriolis parameter, R: respective radius. Adopted and slightly modified
(we adapted the equations to the nomenclature used in this thesis) from Schielicke and Névir
(2011) (their Table 1). Z and C stand for the centrifugal and the Coriolis acceleration terms,
respectively, that balance the pressure gradient acceleration in the horizontal equation of motion
(161).

Phenomenon Expression
of a(r)

Prevailing Balance Energy of displace-
ment expression

Tornadoes, dust devils Z cyclostrophic u2
θ/2

Tropical cyclones Z + C semigeostrophic u2
θ + f uθ R

Extratropical cyclones C geostrophic f uθ R

5.2.5 Improved ansatz for the energy of displacement calculation (modified

Rankine vortex)

We will present here an improved ansatz, the general modified Rankine vortex,

that allows us to perform the integration on all scales with help of a single wind profile.

Especially in case of the gradient wind balance, this is an advantage compared to the

somewhat inconsistent semigeostrophic approach where we fixed one of the wind speeds

but allowed the other to vary over the vortex core. Observations of radial wind profiles

in tornadoes (e.g. Kosiba and Wurman, 2010) and tropical cyclones (e.g. Riehl, 1963;

Mallen et al., 2005) document that the radial dependence of the tangential (azimuthal)

winds differs from the idealized Rankine vortex model. These authors observe a slower

decay of the tangential wind profile than uθ(r) ∼ r−1 for r ≥ R (Rankine vortex model).

Usually for the inner core a linear dependence uθ(r) ∼ r is assumed for the modified

Rankine vortex model, too. However, observations show that the inner core structure

of the radial wind profile deviates from the linear assumption of the Rankine vortex
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Figure 18: Summary of density-intensity (energy of displacement) distributions per year of US
tornado data (1950-1999) and northern hemispheric cyclone data (1958-1997). The cyclone data
is composed of extratropical as well as tropical data. The distributions show the same exponential
behavior with a characterisitc, universal energy of displacement scale of about 1000 m2s−2 over
the whole range. Figure is adopted from Schielicke and Névir (2009) (their Figure 4). More
details on the data and methods as well as discussions and conclusions of the results can be
found there.

model, too (see e.g. Mallen et al., 2005; Kosiba and Wurman, 2010, their Figure 844).

Hence, we will slightly modify this generally practiced ansatz here:

In the following, we will assume that the wind field changes radially with an exponent

α > 0 inside the vortex core radius R, too: e.g. for α = 1/2, the azimuthal velocity

changes proportional to the square root of the radial component r and we have uθ ∼ r1/2.

Outside of R, the velocity should fall off likewise to the Rankine vortex model but with

a modified exponent as 1/rα. We know from chapter 4.2.1 that an inviscid, stretch-free

vortex can have arbitrary radial dependence (see also Wu et al., 2007), hence, we can

freely choose α. We will now apply these conditions to our real vortex model at the

moment of maximum intensity. The improved ansatz for the azimuthal wind uθ is given

44Kosiba and Wurman (2010) found that the Burgers-Rott vortex (see also chapter 4.2.3) is the best
fit to the tornado wind profile. However, the Rankine and the modified Rankine vortex models have the
advantage that the calculations can easily be reproduced. Furthermore, we can interpret the (modified)
Rankine vortex model as a first rough estimate of the true wind profiles and, additionally, the decay
exponents can easily be adopted to true profiles.
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by

uθ(r) =
Γ

2πR1+α
rα , for r ≤ R (176a)

uθ(r) =
Γ

2πR1−α

1
rα

, for r > R (176b)

Then we can calculate the axisymmetric vorticity distribution inside and outside the

vortex core by

ζ(r) =
1
r

∂

∂r
r
(

Γ
2πR1+α

rα

)
= (1 + α)

Γ
2πR1+α

rα−1 , for r ≤ R

ζ(r) =
1
r

∂

∂r
r
(

Γ
2πR1−α

r−α

)
= (1− α)

Γ
2πR1−α

r−α−1 , for r > R

Note, that the vorticity distribution — similar to the original Rankine vortex model —

is not smooth at the vortex core radius. Furthermore, the maximum velocity umax is

achieved at the vortex core radius R in agreement with the circulation formula (107).

Maximum velocity and the vorticity at the vortex radius r = R are given by

umax := uθ(r = R) =
Γ

2πR
(177a)

lim
r→R
r≤R

ζ(r) =
1 + α

2
Γ

πR2 =
1 + α

2
ζmean (177b)

where

ζmean = Γ/A = Γ/(πR2) (178)

is the mean vorticity inside the vortex core. Now, we are able to rederive the expressions

of the energy of displacement for the vortices of different scales with the new ansatz.

5.2.5.1 Tornadoes/Cyclostrophic balance

The integration of the cyclostrophic balance under assumption of the wind profile (176a)

inside the vortex core radius gives:

et =

ˆ R

0

u2
θ

r
dr =

ˆ R

0

(
Γ

2πR1+α

)2 r2α

r
dr =

(
Γ

2πR1+α

)2 ˆ R

0
r2α−1dr

=

[
1

2α

(
Γ

2πR1+α

)2

r2α

]R

0

=
1

2α

Γ2

4π2R2 =
1

4α

Γ
2πR︸ ︷︷ ︸
=umax

Γ
πR2︸︷︷︸

=ζmean

R

et =
1

4α
ζmeanumaxR (integration inside the vortex core) (179)

Thereby, we made use of (177a) and (178) in order to derive the last equation.
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(a) Azimuthal (tangential) velocity profile

(b) Vertical vorticity and pressure profile

Figure 19: Comparison of (a) azimuthal (tangential) velocity and (b) vertical vorticity/ pressure
profiles of the Rankine vortex (α = 1) and of two modified Rankine vortices with α = 1/2, α =
1/3. We assumed a circulation of Γ = 2π m2/s and a vortex radius of R = 1 m; ρ = 1 kg/m3.
The pressure profiles were calculated by applying ansatz (176a,b) in (152)assuming cyclostrophic
balance only. The constants of integration C of was chosen such that all pressure profiles take
p(r = R) = 999 hPa at the vortex core radius.
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Outside the vortex core, we need to take ansatz (176b) for the wind profile. This leads

to

et,outside =

ˆ ∞

R

u2
θ

r
dr =

ˆ ∞

R

(
Γ

2πR1−α

)2

r−2α−1dr =

[(
Γ

2πR1−α

)2 ( 1
−2α

)
r−2α

]r→∞

R

= − 1
2α

(
Γ2

4π2R2−2α

)2

 lim
r→∞

r−2α︸ ︷︷ ︸
→0 for α>0

−R−2α

 =
1

4α

Γ
2πR︸ ︷︷ ︸
=umax

Γ
πR2︸︷︷︸

=ζmean

R

et,outside =
1

4α
ζmeanumaxR (integration outside the vortex core) (180)

Hence, under cyclostrophic balance the part of the energy of displacment calculated

inside the vortex core and the counterpart calculated outside the vortex core are of

equal size:

et = et,outside ! (181)

This means that the total energy of displacement of the vortex is twice the energy of

displacement inside the vortex core. As a conclusion we can estimate the total energy of

a cyclostrophically-balanced vortex by the knowledge of its maximum wind and mean

vorticity. Maximum wind and mean vorticity can furthermore be expressed in terms of

the vortex core radius R and the vortex circulation Γ calculated at the core radius.

5.2.5.2 Extratropical cyclones/Geostrophic balance

With the ansatz (176a) and with help of (177a), we derive the geostrophic balanced

expression inside the vortex core as

eec =

ˆ R

0
f uθdr =

ˆ R

0
f

Γ
2πR1+α

rαdr =

[
1

1 + α
f

Γ
2πR1+α

r1+α

]R

0
=

1
1 + α

f
Γ

2πR︸ ︷︷ ︸
=umax

R

eec =
1

1 + α
f umaxR integration inside the vortex core (182)
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Outside the vortex core, we use ansatz (176b) and calculate for α 6= 1, α > 0:

eec,outside =

ˆ ∞

R
f uθdr =

ˆ ∞

R
f

Γ
2πR1−α

r−αdr = f
Γ

2πR1−α

1
1− α

[
r1−α

]r→∞

R

= f
Γ

2πR1−α

1
1− α

[
lim
r→∞

r1−α − R1−α
]

= f
Γ

2πR︸ ︷︷ ︸
umax

R
1

1− α

[
lim
r→∞

r1−α

R1−α
− 1
]

=
1

1− α
f umaxR

[
lim
β→∞

(βR)1−α

R1−α
− 1
]

with r = βR for β > 1

eec,outside =
1

1− α
f umaxR

[
lim
β→∞

β1−α︸ ︷︷ ︸
(I)

−1
]

(183)

where we have changed the variable r to r = βR with β > 1, β ∈ R; β denotes (fractional)

multiples of the vortex core radius. Term (I) approaches zero only in the case of α > 1,

for all other cases (including α = 1, where we obtain the logarithm in the integration)

term (I) grows with increasing radial component. However, we can still assume, that

the influence of the vortex on its surrounding decreases with increasing distance to the

vortex core. Therefore, we can calculate the energy of displacement magnitudes outside

the vortex core for different distances r = β′R, e.g. for different values of β′, and

compare them with the magnitude inside the core: We can further write

eec,outside =
1 + α

1− α

[
lim
β→β′

β1−α − 1
]

eec (184)

For different values of α and β′, we calculated the integrals explicitly (see Table 6).

Another approach to derive an explicit β′ would be to search for the value when the

maximum velocity falls off to a specific value, for example for which β′ the velocity will

be equal to the half of umax = Γ/(2πR)? We can write the velocity profile outside the

vortex core radius as

uθ(r = β′R) =
Γ

2πR
1

R−α
(β′R)−α = umaxβ′−α (185)

This value falls off to umax/2 for

uθ(r = β′R) = umax/2 for β′ = 21/α (186)

Some values of the energy of displacement for different values of α for this approach are

summarized in Table 6. The latter approach however strongly depends on the exponent:

the lower the α is, the larger is the distance when the velocity falls off to the half of

its maximum due to the shallower decrease of the wind profile. Furthermore, it should

be noted that the influence of the Coriolis term on the total energy of displacement

magnitude increases with increasing distance from the vortex core.
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Table 6: Ratio of the energy of displacement integrals calculated outside and inside of the vortex
core for different values of α and β′. Thereby, α is the exponent of the modified Rankine vortex
model and β′ is the factor by which we multiply the vortex core radius. The ratios of the last
column give the values for the distances when the maximum wind magnitude has fallen off to its
half and were calculated with help of equation (186).

Ratio of eec,outside/eec,inside for different values of α and β′:

β′ = 2 β′ = 3 β′ = 4 for uθ(r = β′R) = umax/2

(r = 2R) (r = 3R) (r = 4R)

α = 1
2 : 1.24 2.20 3.00 3.0 (β′ = 4)

α = 1
3 : 0.52 0.88 1.17 6.0 (β′ = 8)

α = 1
4 : 0.43 0.74 0.98 11.7 (β′ = 16)

5.2.5.3 Tropical cyclones/Gradient wind balance

The energy of displacement expression for the gradient wind balance is given as the sum

of the expressions for the cyclostrophic balance and for the geostrophic balance. Hence,

we can write

etc = et + eec =
1

4α
ζmeanumaxR +

1
1 + α

f umaxR

etc =

(
1

4α
ζmean +

1
1 + α

f
)

umaxR integration inside the vortex core (187)

Note, that the factors in front of the mean vorticity and the Coriolis parameter become

equal in case of α = 1/3. Then, the factor becomes 3/4. With help of the derivation of

equation (180) for β > 1 (set r = βR in equation 180 and let the limes approach β) we

derive an expression outside the vortex core:

etc,outside = et + eec =
1

4α
ζmeanumaxR +

1
1− α

f umaxR(β1−α − 1)

etc,outside =

(
1− β−2α

4α
ζmean +

β1−α − 1
1− α

f
)

umaxR integration outside the vortex core

(188)

The total energy of displacement magnitude of the vortex is given by the sum of the

two contributions: etc,total = etc + etc,outside. Likewise, the total energy of displacement

is calculated as such a sum in case of the other balances.

5.2.5.4 Final remark on the improved ansatz

With our improved model (modified Rankine vortex) we generated a consistent model

for the radial wind profile in atmospheric vortices. For tropical cyclones the observed

average exponent α is equal to 0.5 (e.g. Riehl, 1963; Gray and Shea, 1973, who observed
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α = 0.47± 0.3). Mallen et al. (2005) fitted the modified Rankine vortex model to the

wind profiles of 251 tropical cyclones in the range between the radius of maximum wind

RMW and 3RMW and observed a mean α = 0.3-0.5± 0.1 depending on the intensity

class with small α corresponding to low intensities45. Kosiba et al. (2008) observed

similar decay exponents in mobile Doppler radar data of a tornado with values between

0.26(low intensity)-0.61(higher intensity) depending on the time in the life cycle of the

tornado. Although the range of the observed decay rates α is quite large, we decided to

use a value of α = 0.5 (the average decay rate) in the following. Based on the gradient

wind balance that includes all forces on a rotating planet, we are now able to obtain

the expressions of the energy of displacement by comparing the magnitude of the mean

vorticity ζmean with the Coriolis parameter f :

Cyclostrophic Balance

et = 1
2 ζmeanvmaxR

Gradient wind balance

etc =
( 1

2 ζmean + 2
3 f
)

vmaxR

Modified Rankine vortex ansatz for α = 1/2:

Geostrophic Balance

eec = 2
3 f vmaxR

f � ζmeanζmean � f

where ζmean = Γ/(πR2) is the mean vorticity calculated over the vortex area at the

moment of maximum intensity.

45For prehurricanes (uθ < 30 m/s) and minimal hurricanes (30 m/s≤ uθ < 50 m/s) Mallen et al. (2005)
observed mean α ≈ 0.3-0.35 while α ≈ 0.5 for major hurricanes (uθ > 50 m/s).
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5.3 Mass-related atmospheric moment (Schielicke and Névir,

2011,2013)

So far, we only mentioned mass-specific or local intensity parameters. These parameters

only describe the local aspects of the vortices. Since a vortex is additionally character-

ized by its size, life time and path length, the intensity defined by local parameters alone

seems to be incomplete. To overcome this disadvantage, we introduced a mass-related

parameter based on the combination of the total mass affected during the vortex lifetime

with a local intensity parameter in Schielicke and Névir (2011). As local parameter we

chose the mass-specific energy of displacement. The newly-defined parameter – called

the atmospheric moment – represents the total (mass-related) work done by the vortex.

By multiplying (163) with the total mass M∗ := V∗ρ̄ (V∗: total during lifetime affected

volume, ρ̄: averaged density of the volume), we defined the atmospheric moment as

Ma := M∗e = M∗
ˆ R

0
a(r)dr = V∗ρ̄︸︷︷︸

=M∗

ˆ P0

P
αdp (189)

Further, we can approximate the atmospheric moment as (for the complete derivation

see Schielicke and Névir, 2011)

Ma ≈
(

CLE

CHV

)
ALtrack∆P =

(
CLE

CHV

)
ALe. (190)

where e is the expression of the energy of displacement that depends on the scale and

on the prevailing balance of forces (see chapter 5.2), A = πR2 is the area of the vortex

at an instant46, Ltrack is its path length and ∆P is the pressure difference between the

core pressure and the environment (pressure drop or depth) taken at the moment of

maximum intensity47. CLE and CHV are dimensionless factors. CLE = ρ̄/ρc is the ratio

of the averaged density inside the lifetime volume and the local density in the center of

the vortex at the moment of maximum intensity. It therefore is composed of a Eulerian

field variable (ρc) as well as Lagrangian aspects of the vortex (ρ̄). The dimensionless

factor CHV = L/H is the reciprocal of the aspect ratio that relates horizontal (width L)

and vertical (height H) dimensions of the vortex. The proportionality of tornado height

H and width L with H/L = const. was proposed by Kurgansky (2000). Furthermore,

the height and width of extratropical cyclones seem to be qualitatively related, too (Lim

and Simmonds, 2007). However, a detailed study showing this proportionality is missing

so far. It should be noted, that the constant might have a different value for vortex

types on different scales (see also the different values of the estimated aspect ratios of

46As area we can also take the over lifetime averaged area.
47Instead of using the moment of maximum intensity, it is possible to integrate the mass-related work

over the lifetime of a vortex if all informations are available. However, in e.g. the case of tornadoes
the intensity is estimated from the most severe damage caused by the tornado even though its intensity
over most of the lifetime could have been weaker.
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different vortex types presented in Table 2).

The atmospheric moment is defined analogously to the seismic moment of earthquakes.

The latter is a measure of the size (or magnitude) of an earthquake. It is further

proportional to the energy released during the rupture process. The scalar seismic

moment is given by (e.g. Kanamori and Anderson, 1975; Ben-Zion and Ampuero, 2009):

M0 = L̃A∆σ/C̃ (191)

Here, L̃ is the characteristic length of the fault, A is the rupture surface and C̃ is a

dimensionless shape factor (e.g. for circular faults C̃ = 7π/16). ∆σ = σ0 − σ f is the

stress drop, i.e. the difference between the initial stress σ0 before and the final stress

σ f after the earthquake (Ben-Zion, 2003).

The Gutenberg-Richter law is probably the most famous empirical law of geoscience.

It describes the relation between the magnitude of earthquakes and the cumulative

number of earthquakes N(> m) with magnitudes larger than m. When the magnitude

m is expressed in terms of seismic moments M0 as m = 2/3 log10 M0− 6, the Gutenberg-

Richter law (the cumulative distribution function) becomes a power law (e.g. Pisarenko

and Sornette, 2004)

N(> M0) ∝ M−β
0 (192)

and the corresponding probability density function reads

n(> M0) =
dN(M0)

dM0
∝ M−β−1

0 (193)

with power law exponent β = 2/3b and b-values of approximately 1 (e.g. Ben-Zion,

2003). The b-values depend on the region, e.g. in mid-ocean ridges b is higher than in

oceanic subduction zones (Bayrak et al., 2002).

By introducing the atmospheric moment, we were able to compare the famous Gutenberg-

Richter law to the probability density distribution of tornadoes and found a power law

concerning the atmospheric moment of tornadoes with an exponent slightly smaller

(≈ 0.2) than β (see Figure 20). In a follow-up study (Schielicke and Névir, 2013), we

found additional evidence for power law behavior partly coextensive with characterisitc

scales in the temporal properties of tornado occurrences. Thereby, the characteristic

scales reflect the typical diurnal behavior of tornadoes with maximum occurrences in

the late afternoon.

5.4 Other integral intensity measures: Circulation and Depth

Of course it is possible to define other integral intensity measures that consider not

only local properties of a vortex but also take into account its geometric properties. We

already introduced such a measure in chapter 3.3.3: the circulation . The circulation
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Figure 20: Gutenberg-Richter law: Comparison of probability density distributions of tornadoes
(1950-2006, USA, red curve) and earthquakes (1981-2000 Southern California Seismic Network
(SCSN) catalog, blue curve) concerning their moments: atmospheric moment Ma (tornaoes) and
seismic moments M0 (earthquakes) Linear fits have been applied to the double-logarithmic plot
of the data with slopes of -1.19 for tornadoes (black solid line) and -1.80 for earthquakes (black
dashed line). Figure is adopted from Schielicke and Névir (2013) (their Figure 1). More details
on the comparison between earthquake data and tornado data and a discussion of a possible
similar underlying structure explaining the similarities can be found there.

takes into account the vorticity and the area of a vortex and therefore gives a measure

of the influence and importance of a system on the global circulation (Sinclair, 1997). It

was used by e.g. Sinclair (1994) in order to study extratropical cyclones. Furthermore,

we have shown that the circulation plays a crucial role in the wind profile of theoretical

vortex models (see chapter 4).

Another integral measure is the depth D of a vortex. Simmonds and Keay (2000)

determine the depth of an axisymmetric, paraboloidal low pressure system of radius R
as

D =
1
2

∂2 p
∂r2 R2 =

1
4
∇2 pR2 (194)

where D = P− P0 and p(R) = P, p(0) = P0 are the pressure values at the radius R,

and at the center of the depression (r = 0), respectively. Therefore, the depth gives
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the difference between the ”environmental”48 and the core pressure. The result for the

depth (equation 194) can be derived under the following assumptions: The pressure

distribution of a paraboloidal, axisymmetric depression is given by

p(r) =
D
R2 r2 + P0 with D = P− P0

Calculating the second partial derivative of p(r) with respect to the radial component

gives

∂2 p(r)
∂r2 = 2

D
R2

Furthermore the Laplacian of the axisymmetric (no angular dependence) pressure dis-

tribution p = p(r) in cylindrical coordinates is given by

∇2 p =
1
r

∂

∂r

(
r

∂p
∂r

)
=

1
r

∂

∂r

(
2r2 D

R2

)
= 4

D
R2

.

We have already shown that the assumption of a paraboloidal pressure distribution is

identical to the Rankine vortex model with a linearly increasing wind field from the

vortex center to its radius (see chapter 4.2.1 for more details).

For the more common case of nonaxisymmetric systems, Simmonds and Keay (2000)

proposed to retain the concepts of radius and depth. As a first assumption, the area of

a depression can be taken by the area of the positive (negative) Laplacian of pressure

surrounding a local maximum (minimum) of ∇2 p. However, for more than one system

inside the same region of positive Laplacian this first assumption fails. Hence, Sinclair

(1997) and Lim and Simmonds (2007) searched for the nearest saddle point of the

gradients of geostrophic vorticity taken along radial lines that start from the vortex

center in order to define the cyclone area. On the northern hemisphere, the positive

Laplacian of pressure is proportional to the geostrophic vorticity, i.e. it is proportional

to cyclonic motion. The geostrophic vorticity is given by

ζg =
1

ρ f
∇2 p (195)

or by using (194), we can write (cf. also Schneidereit et al., 2010, who used the relation-

ship of D, R and ζg in terms of the geopotential height field in order to study cyclone

intensities and radii):

ζg =
4

ρ f
D
R2 (196)

Hence in the geostrophic case, the depth is proportional to the circulation of a synoptic

48The pressure taken at radius R.

82



5.5 Relation of energy of displacement, atmospheric moment and circulation for different
atmospheric vortices Lisa Schielicke

pressure system

D ∼ ζgR2 ∼ Γ =

ˆ R

0
ζdA : Circulation (197)

However, the proportionality between circulation and depth only holds on the synoptic

scale. On other scales, the relation is different and deviates from this linear relation. In

order to study atmospheric vortex types on different scales, the energy of displacement

and the atmospheric moment seem to be a more appropriate choice since they consider

all forces that influence the vortex behavior.

5.5 Relation of energy of displacement, atmospheric moment

and circulation for different atmospheric vortices

The circulation is defined over a material closed loop C surrounding the vortex center

(see equation (107) in chapter 3.3.3). Assume that we take the loop over the circle

corresponding to the radius R of maximum wind umax of a real vortex and assume this

vortex to be perfectly symmetric

Γ =

˛
C

umax · dS (198)

We assume umax and dS to be parallel over the total loop. In case of an axisymmetric

system, this leads to

Γ = 2πumaxR (199)

where 2πR is the circumference of the vortex. Furthermore, following equation (108)

we can also write

Γ = ζmean A (200)

where A = πR2 is the area of the vortex. This way of integration is different from the

integration way leading to the mass-specific energy of displacement expressions which

was along the radial component. However, the integrals will be proportional when both

carried out along the circle corresponding to R or starting from the center to R where

the vortex velocity is umax in both cases. Recall that the explicit expressions of the mass-

specific energy of displacement of different vortices can be calculated in two different

ways: with different models depending on the scale of the vortex as in Schielicke and

Névir (2009)49 or with help of the modified Rankine vortex ansatz (see section 5.2.5).

In comparison, those expressions of the energy of displacement in terms of the variables

circulation Γ and area A are summarized in Table 7.

49Rankine vortex ansatz for cyclostrophically balanced vortices; semigeostrophic ansatz for vortices
in gradient wind balance; constant wind field for geostrophically balanced flows
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Table 7: Different expressions of the energy of displacement in terms of circulation Γ =
2πumaxR = ζmean A and area A = πR2 in dependence on the vortex type (umax : maximum
wind; R : vortex core radius; ζmean : mean vorticity inside the vortex core). Derivations can be
found in section 5.2. For the modified Rankine ansatz we used a decay exponent of α = 1/2.

Vortex type/balance Schielicke and Névir
(2009)

Modified Rankine ansatz

tornadoes/
cyclostrophic

et =
( 1

2π

)
· 1

4
Γ2

A ẽt =
( 1

2π

)
· 1

2
Γ2

A = 2et

tropical cyclones/
gradient wind

etc =
( 1

2π

)
·
(

1
2

Γ2

A + f Γ
)

ẽtc =
( 1

2π

)
·
(

1
2

Γ2

A + 2
3 f Γ

)
= 2et + eec = 2et + 2

3 eec

extratropical cyclones/
geostrophic

eec =
( 1

2π

)
· f Γ ẽec =

( 1
2π

)
· 2

3 f Γ = 2
3 eec

As we have already mentioned in chapter 5.4, the energy of displacement expression is

only linear in Γ in case of the geostrophic balance but nonlinear in the other cases. How-

ever, we see (Table 7) that all expressions can be written as combinations of circulation

and area (or radius). By comparing linewise the expressions of the energy of displace-

ment for each vortex type seperately, we observe that the main difference between the

expressions derived by different models can be ascribed to different constants. At least

in case of the tornadoes (convective scale) and of the extratropical cyclones (synoptic

scale), the expressions are only different by a simple constant. Since the gradient wind

balance expression of the energy of displacement is composed in a non-trivial manner of

the two components — cyclostrophic and geostrophic — the behavior between the orig-

inal Schielicke and Névir (2009) and the modified Rankine ansatz is more complicated.

It should be mentioned that it is not easy to prove the real behavior of the wind field

inside a real vortex. There are multiple reasons for that: e.g. the wind field of a real

moving vortex is not axisymmetric and often the vortex core is relatively narrow such

that the vortex core (or the inner wind field) is not well covered by measurements (e.g.

in case of tornadoes). There are attempts to find appropriate models and compare them

with measurements for tornadoes (see e.g. Lee et al., 2004) and for tropical cyclones (e.g.

Chavas et al., 2015). E.g. Lee et al. (2004) found that the Rankine vortex model as well

as the Burgers-Rott model were able to reproduce the pressure field that was observed

in one of the rare measurements of the meteorological variables inside a tornado (the

tornado moved over one of their probes that was anchored in the tornado’s path).

In order to derive the corresponding expressions of the atmospheric moment we can use
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the right-hand side of (190):

Ma ≈
(

H
L

)
ALtracke (201)

where we assumed CLE ≈ 1 and CHV = L/H. For the energy of displacement e we

can use the appropriate expression listed in Table 7 depending on the vortex type and

prevailing balance of forces.

In conclusion, we have shown that the intensity of a vortex can be estimated by integral

measures. Integral measures prevail over local ones because they additionally capture

the extent of the vortex. Thereby, integral methods provide a complete view on the

vortex. Nonetheless, integral intensity measures need a clearly defined size in order to

give accurate values of the vortex intensity. We will show in the next section that it is

not trivial to define the size of a vortex. This is a current topic and research in this field

is still ongoing.
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6 Kinematic vorticity number method adopted to

atmospheric flows

Although, the concept of vortices is known since the introduction of hydrodynamics,

”an accepted [objective, mathematical] definition of a vortex is still lacking” (Jeong and

Hussain, 1995). The discussion about what defines a vortex is still ongoing (e.g. Thomp-

son et al., 2009). In the first part of this chapter (section 6.1), we will review methods

used to identify extra-tropical cyclones in meteorology. We will call these methods

traditional methods since they are based on well-known meteorological fields like the

pressure/geopotential height or the (geostrophic) vorticity fields. In the second part

(section 6.2), we will review kinematic methods used in fluid mechanics and engineering

which are mainly based on the kinematic properties of the fluid. Already Truesdell

(1953, 1954) introduced a measure that allows the identification of vortex areas in the

flow field: the kinematic vorticity number Wk. This measure proves useful in the anal-

ysis of atmospheric vortices that occur not only on multiple scales but are rather often

embedded in shear-dominated flow situations, too. We will introduce the kinematic

vorticity number in chapter 6.3 and will finally give details on the numerical implemen-

tation of the kinematic vorticity number Wk (chapter 6.4). This Wk-method will serve

as the basis of vortex size determination in this thesis.

6.1 Traditional methods of extra-tropical cyclone size deter-

mination

Extratropical cyclones play an important role in the general atmospheric circulation.

They determine not only the local weather on shorter time scales ranging from hours

to seasons, but also the long term climate in respect to mean temperatures and mean

precipitation amounts. Therefore cyclone activity has been studied by numerous scien-

tists concerning the distributions of their intensities, their genesis and lysis regions and

other properties like life times, development speeds, sizes and associated precipitation

amounts in Northern and Southern hemispheres (for a recent review on extratropical cy-

clone studies see Ulbrich et al., 2009). First climatological studies were time-consuming

manual analysis limited to selected regions, intensity classes and/or periods: e.g. van

Bebber (1891) who defined typical stormtracks including the in Europe well-known Vb

storm track that is still of relevance concerning heavy precipitation events and flooding

in Mid-Europe; or the study of deep cyclones50 in the Northern Atlantic region and

over Europe from 1930-1991 conducted by Schinke (1993). However, manual analysis is

not only time-consuming, it also involves some sort of subjectivity in defining cyclone

positions and core pressures depending on the experience of the analyst (see e.g. Haak

50Schinke (1993) defined a deep cyclone as a cyclone with a surface core pressure of less or equal to
950 hPa.
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and Ulbrich, 1996). The increase of the computer capacity in the last decades allowed

to develop numerical methods that identify (and track) extratropical cyclones in digi-

tal data (e.g. see Ulbrich et al., 2009; Neu et al., 2013, for an overview over numerical

methods). In this chapter, we will concentrate on only a small part of these publications

that deal with the determination of cyclone sizes.

In general, meteorological identification methods define extratropical cyclones as lo-

cal extrema in well-known fields like the pressure/ geopotential height field or the

(geostrophic) vorticity field. Therefore, the criteria for estimating cyclone sizes are

also based on these fields. Schneidereit et al. (2010) give a detailed review over cyclone

size determination methods mainly based on pressure/ geopotential height fields. They

summarize the methods into three groups depending on the approach used: (i) based

on the derivative of the pressure, (ii) the determination of the enclosed area, or (iii) the

application of functional fits.

Nielsen and Dole (1992) were probably the first who determined the sizes of extratrop-

ical cyclones. They discussed different possible measures of cyclone sizes, namely the

distances between the nearest (1) high, (2) low, or (3) col (saddle point) of sea level

pressure; and (4) the horizontal area enclosed by the outermost closed isobar around a

low pressure center. Nielsen and Dole (1992) argued that definition (1) and (2) fail in

case of cyclone families where the nearest high is missing and in case of lee cyclogenesis,

respectively, where the nearest low might be missing. Therefore, they concentrated on

definition (3) in their (manual) analysis of surface weather maps. Rudeva and Gulev

(2007) and Rudeva (2008) applied definition (3) in a numerical method that searches

along 36 radial lines starting from the cyclone center outwards for the pressure at the

nearest col. A col is found when the radial pressure gradient falls to zero. In some cases,

i.e. in troughs, the radial pressure gradient might not fall to zero within a reasonable

distance, then Rudeva and Gulev (2007) and Rudeva (2008) set the pressure value along

this search line to the pressure at the distance of 1000 km. In a first step, this leads to

a set of 36 pressure values around the cyclone center. Afterwards, the minimum pres-

sure value out of the 36 values was defined as the value of the outermost closed isobar.

Wernli and Schwierz (2006) used a numerical contour searching method to determine

the outermost closed isobar around single low pressure centers in increments of 2 hPa.

The advantage of the method compared to radial search lines is that it allows to detect

cylones with a more complex shape. On the other hand, Wernli and Schwierz (2006)

discussed caveats of their method, e.g. the method is sensitive to the choice of the con-

tour interval: a reduction/ increase of the contour interval from 2 to 1/4 hPa leads to

an increase of 40%/ decrease of 30% of detected cyclones. Furthermore, they observed

strong fluctuations in cyclone sizes when low pressure systems are close to each other.

To overcome these size variations, Hanley and Caballero (2012) introduce a method
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which identifies multicenter cyclones with two or three sea level pressure minima inside

the same outermost-closed contour. Although, in some cases the method of Hanley and

Caballero (2012) provides more consistent size evolutions compared to the single center

method of Wernli and Schwierz (2006) (see Figure 4 of Hanley and Caballero, 2012), in

splitting and merging situations, cyclone sizes still seem to vary strongly (see Figures 5

and 6 of Hanley and Caballero, 2012).

Grotjahn et al. (1999) applied a Mexican hat wavelet transform to the sea level pres-

sure in the longitudinal and latitudinal direction around a sea level pressure minimum.

They defined the size of the low by the two zero crossings of the Mexican hat. Grotjahn

et al. (1999) applied their method to 12 extratropical cyclones, comparing their best

wavelet analysis with the sea level pressure field which in most cases - but not all -

was successful. Furthermore, in the upper-troposphere the method fails because of the

strong ambient flow in which the cyclones are embedded. In order to analyse upper-level

features, Grotjahn and Castello (2000) analysed the circular average of the geostrophic

kinetic energy around a cyclone center. They applied their method to the geopotential

height perturbation field, which was calculated by subtracting a zonal mean from the

300 hPa geopotential height field in a specified sector. The typical geostrophic kinetic

energy distribution of a cyclone is near zero at the center, increases up to a maximum,

and then decreases again. The scale of the cyclone was defined as the distance where

the average geostrophic kinetic energy reached a ”cutoff value” outside of the maximum.

However, the calculation of anomaly fields is not trivial since the background gradients

change in time and space and it is not clear if all systems can be captured by the sub-

traction of a a large-scale gradient: see e.g. Jeong and Hussain (1995) who discussed

the usage of path- and streamlines (see their Fig. 2) or Adrian et al. (2000) who dis-

cussed the Galilean decomposition (see their Fig. 2 and 3). Schneidereit et al. (2010)

fit one-dimensional Gaussian functions to the geopotential height field surrounding cy-

clones exceeding a minimum gradient. Therefore, the two-dimensional geopotential

height field was maped on a one-dimensional function assuming azimuthal symmetry,

that only depends on the distance from the cyclone center. Schneidereit et al. (2010)

show the conjunction of the determined radius of a cyclone with the geostrophic wind

maximum around the cyclone center. However, in asymmetric cases this method might

fail to determine the true extent of the systems as will be shown later in this publication.

The (geostrophic) vorticity field as basis of cyclone size determination was favoured

by e.g. Sinclair (1997), Simmonds and Keay (2000), Simmonds (2000), Lim and Sim-

monds (2007). The advantage of vorticity fields compared to pressure fields is, that it is

possible to detect vortex centers even in a strong background flow (see Sinclair, 1994).

Furthermore, Sinclair (1994) states that cyclone statistics based on pressure are biased

toward the ”graveyards” of cyclones favouring slower-moving and deeper systems, since
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mobile and developing systems often appear without local pressure minima until they

reach a certain intensity. Since the geostrophic vorticity is proportional to the Laplacian

of the pressure and geopotential height field, respectively, it represents the curvature

and therefore has a smaller spatial scale than pressure (see e.g. Fig. 5 of Murray and

Simmonds, 1991; Hodges et al., 2003). This leads to a larger number of systems detected

in the vorticity field depending on the spatial resolution of the data (e.g. Ulbrich et al.,

2009). Therefore, e.g. Sinclair (1997) uses a radial spatial filter that smoothes the raw

data before the analysis. However, by increasing the radius of this filter, smaller systems

might disapear; the remaining systems are larger but on average less intense. In order

to determine the size of the systems, Sinclair (1997) searches along radial lines starting

from the vorticity centers for the distance where either the vorticity falls to zero or the

radial vorticity gradient changes its sign (this is equivalent to the search for the nearest

col or saddle-point). Sinclair (1997) uses the circulation as an alternative measure for

cyclone strength and shows examples, where traditional methods (central pressure and

central vorticity) fail to capture the strength properly. However, it is possible that the

radial lines from two systems overlap before one of the criteria is met. Hence, Simmonds

and Keay (2000) and Simmonds (2000) decided to use a similar definition of cyclone

sizes like Sinclair but with a different approach: they search along a number of paths

starting from the cyclone center that follow the directions of maximum (negative) gra-

dient. Simmonds and Keay (2000) depict the method to be similar to the definition of a

water catchment boundary. Unfortunately, it is not further specified in their work how

elongated vorticity streamers that could lead to narrow, elongated systems are handled

or if that streamers affect the analysis at all. For example, Sinclair (1997) limits the

maximum change in distances between neighboring radial lines to avoid such narrow

elongations. Lim and Simmonds (2007) determine the size of a cyclone in a similar

way to Sinclair (1997) by searching along radial lines starting from the cyclone center

for the distances when the Laplacian of pressure (or geopotential height) falls to zero

which was defined as boundary of the cylone. From the determined set of distances

the mean radius is calculated. Lim and Simmonds (2007) successfully applied their

method to several vertical levels starting from the mean sea level pressure field up to

the 500 hPa geopotential height field and found that upper-level systems are on average

larger with the largest scale found in the 700-hPa level. Furthermore, they found that

well-organized systems on average are larger and more intense than weakly-organized

shallow systems.
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6.2 Kinematic methods estimating vortex sizes

The traditional methods described in the previous chapter 6.1 which are often applied to

atmospheric flows are inadequate in certain flow situations (a detailed discussion on the

inadequacy of traditional (or intuitive) methods is given in Jeong and Hussain, 1995).

For example, the low pressure definition fails in situations where the local pressure min-

imum is balanced by viscous forces instead of centrifugal forces. In this case, the motion

around the pressure minimum can be nonrotational. Furthermore, the appearance of

closed or spiralled streamlines depend on the reference frame. Vortices moving at differ-

ent speeds need different reference frames: When moving with one vortex speed, another

vortex might not appear to have closed or spiralled streamlines. Particle trajectories

might not be closed during the lifetime of a vortex or particles might leave the vortex

and therefore are inadequate. The definition of a vortex in terms of vorticity thresh-

olds can fail in (high) shear flows. For example, the method might falsely indicate the

existence of a vortex in (strong) linear shear flow. The choice of the vorticity threshold

is especially complicated in a flow where the vorticity of a purely sheared flow is of the

same order as the curvature vorticity of the vortices.

Nonetheless, the vorticity is a measure that is closely connected with vortices. It is

associated with the rate of rotation inherit in the flow and, in general, a vortex can

be defined as a region where the vorticity is ”high” (e.g. Thompson et al., 2009). But,

how can ”high” be quantified? In fluid mechanics, vortex identification methods are

often based on the analysis of the kinematics of the flow field. Most of the published

methods study the relative importance of the rotation inside the velocity gradient ten-

sor (Thompson et al., 2009). The methods only differ in the amount of rotation that is

necessary for the identification of a vortex. Thompson et al. (2009) propose the follow-

ing mental exercise: Starting from a fixed symmetric velocity gradient tensor with zero

rotation, the rotation tensor is increased until it reaches a certain threshold that marks

the importance of the vorticity compared to the deformation. The difference between

different kinematic methods lies in the difference of these thresholds.

Basis of the most common kinematic vortex identification methods is the local examina-

tion of the invariants and eigenvalues of the velocity gradient tensor∇u. The eigenvalues

α are determined by the eigenvalue equation

det(∇u− αI) = 0 (202)

where I is the unit tensor. This leads to the characteristic equation

α3 − Pα2 + Qα− R = 0 (203)
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with the invariants P, Q, and R of ∇u that are defined as (see e.g. Jeong and Hussain,

1995)

P = ∇ · u (204)

Q =
1
2

(‖Ω‖2 − ‖S‖2) (205)

R = det(∇u) . (206)

Note, that P = 0 for incompressible flow.

Some examples of kinematic methods based on the eigenvalues and (combinations of)

invariants are the ∆-method, the Q-method (also called Okubo-Weiss parameter), and

the λ2-method (see e.g. Jeong and Hussain, 1995). We will give a short overview over

these methods in the following.

6.2.0.5 Q-method (Hunt et al., 1988)

The Q-method investigates the second invariant Q of ∇u. Q is given by the difference of

the tensor norms of the vorticity tensor and the strain rate tensor: Q = 1
2 (‖Ω‖2−‖S‖2).

It is positive if the vorticity tensor prevails over the strain rate tensor, i.e. if the local

rotation prevails over the local deformation. Hunt et al. (1988) defined a vortex as a

region of Q > 0 with the additional requirement that the pressure must be lower in the

vortex region. This parameter is also called Okubo-Weiss parameter. It has been used

successfully in tropical cyclone studies and in detecting tropical cyclones from gridded

data (e.g. Dunkerton et al., 2009; Tory et al., 2013). It is similar to the kinematic

vorticity number Wk-method that will be introduced below in chapter 6.3.

6.2.0.6 ∆-method (Chong et al., 1990)

The ∆-method, introduced by Chong et al. (1990), uses the eigenvalues of the velocity

gradient tensor ∇u in order to classify the local streamline pattern around a point when

one is moving with the velocity of that point. Chong et al. (1990) define a vortex core as

the region of complex eigenvalues of ∇u which imply spiralling motion (see also Haimes

and Kenwright, 1999). Complex eigenvalues in incompressible flow (P = 0) occur when

the discriminant ∆ is larger than zero (e.g. Jeong and Hussain, 1995)

∆ = (Q/3)3 + (R/2)2 > 0 (207)

where Q, R are the invariants of ∇v introduced above. Since R2 ≥ 0, this method will

give a larger vortex area than the Q-method.
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6.2.0.7 λ2-method (Jeong and Hussain, 1995)

Jeong and Hussain (1995) introduced the λ2-criterion based on the eigenvalues of the

symmetric tensor S2 + Ω2 = S · S + Ω ·Ω. For a symmetric tensor, the eigenvalues are

real and can be sorted as λ1 ≤ λ2 ≤ λ3. Jeong and Hussain (1995) ”define a vortex core

as a connected region of two negative eigenvalues of S2 + Ω2”, i.e. this is equivalent

to the criterion λ2 < 0. The λ2-criterion corresponds to the pressure minimum in a

plane when unsteady irrotational straining is discarded in the inviscid, incompressible

Navier-Stokes equation. This can be deviated from the following considerations: The

incompressible Navier-Stokes equations in an inertial, nonrotating reference frame are

given as (see equation (55), and (146), respectively)

Du
Dt

=
∂u
∂t

+ u · ∇u = g− 1
ρ
∇p + ν∇2u (208)

where ν is the viscosity. The gradient of this Navier-Stokes equations for incompressible

(ρ = const., g = const.) flow read

∂∇u
∂t

+ u · ∇(∇u) +∇u · ∇u = ∇g︸︷︷︸
=0

−1
ρ
∇(∇p) + ν∇2(∇u) (209)

Here, ∇(∇p) is the Hessian of the pressure that contains informations on the local

pressure extrema (Jeong and Hussain, 1995). The Hessian of pressure is a symmetric

tensor. We have seen in chapter 2.6 that the velocity gradient splits into a symmetric

(strain rate tensor) and an antisymmetric (rotation tensor) component (∇u = S + Ω,

see equation 17). Hence,

D∇u
Dt

=
DS
Dt

+ S · S + Ω ·Ω︸ ︷︷ ︸
symmetric

+
DΩ

Dt
+ S ·Ω + Ω · S︸ ︷︷ ︸
antisymmetric

(210)

Then the Navier-Stokes equations can be split into a symmetric and an antisymmetric

part

DS
Dt

+ S · S + Ω ·Ω = −1
ρ
∇(∇p) + ν∇2(S) symmetric (211a)

DΩ

Dt
+ S ·Ω + Ω · S = ν∇2(Ω) antisymmetric (211b)

Assuming steady irrotational straining (DS/Dt = 0) and inviscid (ν = 0), incompress-

ible conditions, we see that (211a) reduces to

S · S + Ω ·Ω = −1
ρ
∇(∇p) . (212)
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A pressure minimum in a plane is characterized by (at least) two positive eigenvalues of

the Hessian51. However, the minus sign in front of the Hessian of pressure leads to the

final requirement of (at least) two negative eigenvalues of the symmetric tensor S2 + Ω2.

Therefore compared to the Wk- and Q-methods, the λ2 method requires the rotation

prevailing over the deformation in only one eigenplane. However for planar flows, the

vortex regions defined by the ∆-, Q-, Wk-, and λ2-methods are equivalent (Jeong and

Hussain, 1995).

6.3 Introduction of the kinematic vorticity number method

(Wk-method) considering the ratio of rotation and defor-

mation rate52

The kinematic vorticity number Wk introduced by Truesdell (1953) is defined as the

ratio of the tensor norms of Ω and S:

Wk =
‖Ω‖
‖S‖ (213)

where both - numerator and denominator - are invariants of ∇v. In two dimensions,

the kinematic vorticity number can be calculated with help of (36) and (38) as

Wk =
‖Ω‖
‖S‖ =

√
ζ2√

D2
h + Def2 + Def′2

. (214)

We can distinguish between three cases:

Wk > 1 : when ‖Ω‖ > ‖S‖ − a vortex

Wk = 1 : when ‖Ω‖ = ‖S‖ − pure shear

Wk < 1 : when ‖Ω‖ < ‖S‖ − no vortex

If the rotation rate prevails over the strain rate Wk is larger than 1 (Wk > 1) up to ∞
for the case of pure rigid body rotation with zero deformation. In a pure shear flow the

local rate of rotation equals the local strain rate (Wk = 1). If the deformation prevails

over the rotation the kinematic vorticity number Wk is smaller than 1 (Wk < 1). The

kinematic vorticity number is a measure for the quality of rotation (Truesdell, 1953):

it is possible for two vortices to have the same Wk-value even so one can have small

51This becomes apparent when looking at a one-dimensional function of pressure p(x) that has at
some location x0 a local minimum. A local minimum is characterized by a pressure gradient of zero
∂p/∂x|x=x0 = 0 and by a second derivative that is positive ∂2 p/∂x2|x=x0 > 0. More general, the Hessian
of pressure describes the second derivatives (also mixed derivatives) of pressure in three dimensions.

52These sections 2.6, 2.7 and 6.3 are based on/taken from a chapter of a recent publication (Schielicke
et al., 2016, chapter 2). Note, the chapter in this thesis is much more detailed than in the publication
even though some text passages are identical.
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vorticity in a region of small deformation and the other can have large vorticity in a

region of large deformation as long as the quality of rotation is the same (e.g. Jeong

and Hussain, 1995). Furthermore, Wk can be seen as a measure of how much a vortex

resembles a rigid body compared to a deformable fluid where larger values of Wk imply

a stronger resemblance to a rotating solid object.

Considering the sign of vorticity will slightly modify the equation with the advantage to

study vortices of positive and negative vorticity (or cyclones and anticyclones) likewise.

This extended kinematic vorticity number W∗k is given by:

W∗k :=
ζ√

D2
h + Def2 + Def′2

. (215)

The extended kinematic vorticity number is especially useful when one is interested in

the study of vortices of a particular circulation, for example the separate analysis of low

and high pressure systems in the midlatitudes.

6.3.1 Shear flow

The velocity field of a shear flow has only one component which changes by a constant

rate in a direction perpendicular to that component. Without loss of generality, we can

assume that the direction of the flow is eastwards (u = (u, 0, 0) = ui) and that the

velocity changes in north-south direction (u = u(y))53. Note, that this flow is non-

divergent, i.e ∇ · u = 0. The velocity gradient tensor is then only determined by one

component

∇u =


0 uy 0

0 0 0

0 0 0

 . (216)

Then, the strain rate S and the rotation tensors Ω are calculated as

S =
1
2


0 uy 0

uy 0 0

0 0 0

 , (217)

and

53Under the given conditions, every flow field can be rotated such that the direction of the flow points
eastwards and the gradient northwards when moving with a point in the fluid.
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Ω =
1
2


0 uy 0

−uy 0 0

0 0 0

 , (218)

respectively. The tensor norms of both tensors are identical:

‖S‖ =
√

SijSji =
1
2

√
u2

y + u2
y = uy/

√
2 (219)

‖Ω‖ =
√
−ΩijΩji =

1
2

√
(−uy)2 + (−uy)2 = uy/

√
2 . (220)

Therefore, the kinematic vorticity number Wk, i.e. the ratio of the tensor norms of

rotation and strain rate tensor is equal to 1 in a shear flow

Wk =
‖Ω‖
‖S‖ = 1 . (221)

6.3.2 On the global balance of deformation and rotation in the flow

There is a global balance between deformations and rotations in an incompressible fluid

(i.e. ∇ · v = 0). This can be seen by examination of the Jacobi-determinant J(u, v) of

the horizontal velocity components, i.e. the determinant of ∇v, in 2d:

J(u, v) = det(∇v) = uxvy − uyvx (222)

Equation (222) can be written as divergence54:

J(u, v) = ∇ · [∇v× uk] (223)

Integrating (223) over the whole 2d domain (area) and application of Stokes’ theorem55

leads to

ˆ
A

J(u, v)dA′ = 0 (224)

On the other hand, the Jacobi determinant is given by56

4J(u, v) = D2
h − (Def2 + Def′2) + ζ2 (225)

54This can be evaluated by explicitly calculating the rhs of (223) which leads to the rhs of (222).
55Stokes theorem - also called Gauss’ theorem - states that the sum of sources and sinks of a property

X inside a region equals the flow of X through the boundary of that region. In two dimensions, Stokes’
theorem can be written as

´
A dA′∇ · X =

¸
S ds · X where ds denotes a vector element normal to the

boundary S surrounding the area A. This integral is zero for periodic boundary conditions or when X
falls off to zero rapidly enough at the boundary.

56This can be evaluated by explicit calculation.
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Combining (224) and (225) leads to

ˆ
A

ζ2dA′ =

ˆ
A

(Def2 + Def′2)dA′ −
ˆ

A
D2

hdA′ (226)

Dividing (226) by the integral over the deformations leads to a dimensionless expression

relating rotation and divergence to the deformations:

´
A ζ2dA′´

A(Def2 + Def′2)dA′
= 1−

´
A D2

hdA′´
A(Def2 + Def′2)dA′︸ ︷︷ ︸

≥0

(227)

The second term on the right-hand side is always larger to zero since it is composed of

positive, quadratic terms only or it is equal to zero in case of zero horizontal divergence

(Dh = 0). In an incompressible fluid (i.e. for Dh = 0), the global integrals of the

deformations and rotations are of the same size

´
A ζ2dA´

A(Def2 + Def′2)dA
= 1 for Dh = 0 (228)

´
A ζ2dA´

A(Def2 + Def′2)dA
< 1 for Dh 6= 0 (229)

Note, that the global integral over vorticity squared is twice the enstrophy ε which is

a conserved quantity in two-dimensional flow. Therefore, the global integral over the

deformations in case of Dh = 0 is also a conserved quantity of the same size as half

the enstrophy. Using the mean value theorem57 leads to the equality between the mean

values of the squares of vorticity and deformations in the whole domain: Def2 + Def′2 =

ζ2 where the line over the variables denotes the areal average. Furthermore, we can

define the ratio of the area-averaged square of vorticity and the sum of the area-averaged

squares of deformation and divergence as:

AW2 :=
ζ2

Dh
2 + Def2 + Def′2

(230)

The structure of AW2 resembles the square of the kinematic vorticity number W2
k (see

equation 214) where the terms ζ2 and (Dh
2 + Def2 + Def′2) have been exchanged with

their area-averages58. Due to the equivalence of the squares of deformation and rotation

in a flow of zero divergence, AW2 becomes equal to 1:

AW2
∣∣∣∣

Dh=0
=

ζ2

Def2 + Def′2
= 1 (231)

57For any field f in A the area averaged mean value is given by f =
´

A f dA′/
´

A dA′
58However, note that AW2 6=

´
W2

k dA.
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In case of non-zero divergence, (226) can be rewritten as

ˆ
A

(Def2 + Def′2 −Dh
2)dA′ =

ˆ
A

(Def2 + Def′2 + Dh
2)dA′ − 2

ˆ
A

Dh
2dA′ =

ˆ
A

ζ2dA′

(232)

Hence, we can write Dh
2 + Def2 + Def′2 − 2Dh

2 = ζ2. This is equivalent to AW2 < 1
on a global scale:

AW2
∣∣∣∣

Dh 6=0
:=

ζ2

Dh
2 + Def2 + Def′2

= 1− 2Dh
2

Dh
2 + Def2 + Def′2︸ ︷︷ ︸

>0

< 1 (233)

Note, that in case of irrotational, curl-free flow AW
∣∣
ζ=0 = 0, because of the balance of

divergence and deformation in (226).

The global balance of deformation and rotation in a two-dimensional flow implies that

the knowledge of one part (e.g. the total rotation in the field) is enough to know the

magnitude of the other part (e.g. the total deformation). By injecting more rotation (or

more vortices) into the fluid, we also add the same amount of deformation to the fluid.

The definition of the Jacobian also holds in three-dimensional flow, hence the balance

between the three-dimensional deformations and rotations remain. However, only in

two-dimensional flow the enstrophy is a conserved quantity while it is not conserved in

three dimensions.

In Appendix B we investigated the vertical distribution and seasonal behavior of AW2

(see Figure B77) in comparison to the area-averaged Wk number (absolute values) in

different levels of the atmosphere. While the area-averaged Wk number can be smaller

as well as larger than 1, we found that AW2 is less than 1 at all levels with the smallest

values at the lower troposphere (AW2 ≈ 0.75 at the 1000 hPa level in the northern

hemisphere). However, in the mid- and upper troposphere between about 700 and

300 hPa AW2 is close to one on both hemispheres independent of the season. This

coincides with the assumption that the divergence-free level is located at about 600-

500 hPa. Interestingly, the vertical mean of the area-averaged Wk number is relatively

stable with values close to 1 although it shows a strong dependence on height and season.

More details are given in Appendix B.

6.3.2.1 Wk-method in comparison to other kinematic methods

The kinematic methods that were introduced in the previous chapters are all based on

the velocity gradient tensor and its invariants. Therefore, the question arises why we

chose the kinematic vorticity number method (Wk-method). Especially since the Wk-

method is similar to the Okubo-Weiss parameter (Q-method). We decided in favor of

the Wk-method over the other methods since it - as a dimensionless number - allows

a comparison of vortex structures relative to the background deformation (or shear).
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This further allows to study the application of different dimensionless thresholds of

the Wk number used in the vortex identification procedure: A lower threshold of Wk

(e.g. Wk slightly smaller than 1) probably detects early circulations that can develop

into stronger vortices. On the other hand, a higher threshold of Wk focuses on already

developed strong vortices.

We think that this nondimensionality of the kinematic vorticity number is its main

advantage in comparison to the other kinematic methods. Furthermore, the Wk number

averaged in the region of a vortex represents a kinematic circulation and its value gives

the resemblance of a vortex with a rotating solid object: The larger this value is the

larger is the equivalence to a solid body.

6.4 Numerical Implementation of the kinematic vorticity num-

ber method (Wk-method) to identify vortex sizes and cir-

culations

The field of the extended kinematic vorticity number W∗k (215) will serve as the basic

field for the identification of vortex patches. The numerical method will construct a

residual vortex patches field by the following two steps:

(i) The field of the kinematic vorticity number W∗k will be set to 1 at every point

where
∥∥W∗k

∥∥ > 1 , i.e. where the rotation rate prevails over the strain rate, and

it will be set to zero wherever
∥∥W∗k

∥∥ ≤ 1;

(ii) The field derived in (i) is multiplied with the relative vorticity field.

This two-step approach leads to a field of distinguishable vortex patches. Figure 21

shows an example how the original relative vorticity and the W∗k -fields are used in order

to derive the field of vortex patches. Note, how nicely the vortices are extracted (see

Figure 21(d)) from the continuous vorticity field displayed in Figure 21(c). More details

on the method will be given in the following chapters.

6.4.1 Identification of vortex centers

As a first approach in defining the vortex centers, we will use the residual vortex patches

field (like that plotted in Figure 21d) and search for relative vorticity extrema. Strictly,

local extrema have larger (or smaller) values then the surrounding field. Numerically in

grid point space, we compared every grid point in the field (except of the polar caps)

to its 8 surrounding grid points. A minimum (maximum) is identified, when the value

at that point is smaller (larger) than the 8 surrounding points. However, in order to

allow for broad maxima, we relaxed the criterion to values smaller or equal (larger

or equal) than the surrounding ones. When an extremum is found, the local position

(latitude/longitude; x-,y-position in grid space; height of level) as well as the value of
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Figure 21: Steps to derive the residual vortex patches field are plotted for the 15 January 1999
12 UTC: (a) Field of W∗k considering the sign of the vorticity; (b) mask of vortex patches with

value 1 (black) for regions of identified vortices (
∥∥W∗k

∥∥ > 1), white areas are dominated by strain
- mask sets these regions to 0; (c) Field of relative vorticity, values close to zero are plotted in
white; (d) residual field of vortex patches derived by multiplying field (b) with field (c). Red
(blue) contours in (a) and (b) correspond to W∗k = 1 (W∗k = −1) contours considering the sign
of vorticity, Crosses and circles correspond to identified vorticity maxima and minima in the
residual field (d).

the relative vorticity extremum is registered in a first step. After identification of all

maxima and minima, the outermost-closed vorticity contour around each local center is

determined. Since it is possible to have more than one maximum (or minimum) inside

the same vortex patch area, the search is done for the outermost-closed vorticity contour

including 1, 2, 3, etc. maxima (or minima). Numerically, this is implemented by first

searching for the zero-vorticity-contour surrounding each vortex patch area completely.

In the process, the number N of relative vorticity extrema inside the zero-vorticity-

contour is determined. This enables the search method to determine the contour (and

its vorticity value) that explicitly include a number from 1 to N vortex centers. Note,

that not all possible configurations are fulfilled. See e.g. Figure 22 where for the vortex
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Figure 22: Sketch of multiple vorticity centers inside the same contour. The method considers
every center separately.

center labeled A only the configurations of one (A) and three maxima (A,B,C) inside a

contour surrounding center A can be determined, while a configuration of two centers

inside the same contour is not fulfilled. However, since this search is done for every

center separately, all possible configurations will be detected.

6.4.2 Definition of single centers and Wk features

In this thesis we will differentiate between two types of vortex features: single centers

and Wk features.

We will define a Wk feature as a simply-connected region of W∗k > 1 (for positive

circulations on the northern hemisphere) or W∗k < 1 (for negative circulations on the

northern hemisphere). Thereby, two points are simply-connected if they are direct

neighbors in one of the four directions: north, south, west or east. Note, that a Wk

feature can include one or multiple vorticity extrema. Hence, a Wk feature rather

represents a large-scale area of likewise circulation such as e.g. a cyclone family.

On the other hand, each single center includes only a single local vorticity extremum

(or a broad extremum, see above in chapter 6.4.1). The size of a single center is de-

termined by finding the outer-most closed contour that surrounds the single vorticity

extremum. Single center and Wk feature coincide if only one single vorticity extremum
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is located in a vortex patch area. Otherwise, the size of the single centers is smaller

than that of the corresponding Wk feature. Hence, single centers rather represent the

smaller-scale structures that form the large-scale circulation areas. An example can be

found in Figure 21(d) located at about 30◦W, 60◦N: Here, the Wk feature includes three

local vorticity maxima (located at about 50◦W, 60◦N; 45◦W, 50◦N) that are arranged

such that the Wk feature even possess a gap in the center of its area. This gap occurs

because of the relatively strong deformation between the vorticity centers while the

vorticity field at this location is still positive (compare with Figure 21c). In this case,

the observation of single centers might be better. Especially, when one is interested in

the behavior and motion of single storms. Although, the identification of single centers

seems to be a more appropriate choice in large-scale data, the computational costs due

to the contour-method are large in comparison to the fast numerical identification of

Wk features. Hence, the analysis of Wk features is the preferred method when dealing

with large data sets in this thesis.

6.4.2.1 Remark on further possible definitions

So far, we have only differentiated between single centers and Wk features. However, it

is possible to use a finer differentiation and split Wk features into smaller single centers

and/or multiple centers. After all, it is not trivial to decide if a vortex patch area belongs

to a single center system or if it should be split up into multiple smaller vortex areas that

include one or more vorticity centers. This decision involves some kind of subjectivity

and some things need to be considered. On the one hand, the resolution of the data

set should be taken into account. On the other hand, for large-scale flows cyclones

and anticyclones should be treated differently. The reason for the last point lies in the

different dynamic constraints for cyclones and anticyclones due to the gradient wind

balance. We have seen, that anticyclones are constrained to weaker pressure gradients

and therefore have in general59 larger radii than cyclones (see chapter 3.2.1.2). The

decision can be implemented in the program with the help of well-considered, well-

founded thresholds of gradients or constraints on the distances of two local extrema.

There are already program versions of the Wk-method that are capable of identifying

multiple vortex centers inside larger Wk features. Still, these versions need to be well

tested which should be a focus of future work.

6.4.3 Determination of vortex sizes

Knowledge of the position of the surrounding contour permits the calculation of the

area as well as the circulation of the vortex. The area can be determined in two ways.

On the one hand, the vortex area can be calculated as the sum of all grid boxes that

lie inside the determined contour. In grid space, every grid point can be associated

59when the same pressure disturbance is assumed
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Figure 23: Appearance of grid boxes (a) as regular squares in grid point space and (b) ap-
proximately as trapezoids (orange) in stereographic projection; (c) Calculation of trapezoid area
around a grid point (and triangle at the poles, respectively). Gray dots represent grid points.

as the center point of a box surrounding the point (see Figure 23a,b). In a standard

lat/lon projection the grid boxes appear regularly. However, this is not an equal-area

projection. While the latitudes are equally-spaced with 1◦ latitude being equal to about

111 km, the distance between two meridians depends on the latitude with zero distance

at the poles and about 111 km at the equator60. The length of a distance ∆x in km is

given by

∆x =
2πR cos θ

360◦ ∆lon (234)

where R = 6370 km is the Earth’s radius, θ the latitude and ∆lon the distance in degree

longitudes to be converted. Due to the difference between the upper and lower length

of a grid box, the shape of the grid box can be approximated as isosceles trapezoid -

except at the poles where the shape is a triangle with base b and height h/2 (cf. Figure

23c). The area of a grid box with the parallel sides a and b (w.l.o.g. a > b), and height

h = ∆lat, i.e. an isosceles trapezoid, is calculated by (see Figure 23c):

ATrapezoid =

(
a− (a− b)

2

)
h for |lat| < 90◦ (235)

ATriangle =
bh
4

for |lat| = 90◦ (236)

An example of the grid box method is given in Figure 24a. Here, the thick blue line

encloses the area determined by the grid box method while the greenish yellow contour

stands for the true vortex area.

60When assuming a radius of the Earth to be 6370 km, the circumference is given by U = 2πR ≈ 40000
km, then 1◦ longitude corresponds to 111 km.
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Figure 24: Calculation of vortex area by (a) grid box method (sum over all grid box areas
inside a closed contour), all boxes inside the thick blue line count to the total area, and (b)
contour method (sum over triangles formed by two neighboring points on the contour and the
vortex center). Vortex center indicated by dot inside the greenish yellow contour; (c) comparison
between both methods. Greenish yellow contour in all sketches represents the true vortex contour

Another way to calculate the size of a vortex can be done by taking into account the

(outermost) closed contour directly. The contour around the vortex center is split in

smaller parts forming triangles considering the vortex centroid and two neighboring

contour points. The total area is then represented by the sum over all triangles. Since

the side lengths are know, the triangle areas A are calculated by Heron’s formula (see

e.g. chapter 3.2.1.2 in Bronstein et al., 2005, pages 145–147):

A =
√

s(s− a)(s− b)(s− c) with s =
a + b + c

2
(237)

where s is half of the circumference of the triangle. Numerically, we sum up over

all areas considering the direction of the contour (clockwise/counterclockwise). If the

direction grows or decreases monotonically, the total area equals the sum of the single

triangles. However, it is possible, that the contour changes the direction as in the

example in Figure 24b between the contour points labeled 9 and 10. The contour points

are monotonously ordered in clockwise direction starting from points 1 to 9. From point

9 to 10, the direction changes (counterclockwise), and is afterwards clockwise again until

the contour is closed from point 11 to 1 (cf. Figure 24b). In Figure 24c, grid box and

contour method are compared. In conclusion, both methods seem to capture well the

true size of the vortex (indicated by the greenish yellow contour) and give comparable

results61.

61A few subjective tests for single dates have been conducted. Those tests conferred that the sizes
determined by both methods are of comparable order.
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6.4.4 Determination of circulations

With help of the methods of size determination described in the previous section the

circulation of a vortex can easily be calculated using equation (108) (see chapter 3.3.3).

With help of the grid box method the circulation is estimated by

Γ =

ˆ
ζdA ≈

N

∑
i=1

ζi Ai (238)

where ζi is the relative vorticity at the ith grid point and Ai the area associated with that

grid point. The summation is done over all N grid boxes that belong to the identified

vortex area.

The circulation of a vortex can also be estimated with help of the contour method:

With the help of equation (107), see chapter 3.3.3, we can write the circulation of

two-dimensional data as

Γ =

˛
u · ds ≈

M

∑
j=1

(
ujdsxj + vjdsyj

)
(239)

where uj, vj are the horizontal wind components in west-east, and north-south direction,

respectively. Index j stands for the jth point on the closed contour with a total of

M points62. dsxj, dsyj are the x, y-components of the jth line element along the closed

contour. A line element between two neighboring points on the contour displays a vector

that connects these two points. This second method needs an interpolation step of the

wind field onto the contour and is therefore computationally more time-consuming.

Anyway, both methods yield circulations of comparable magnitude.

6.4.4.1 Remarks on the size determination method

Both methods are in use throughout the computer program. Although, the grid box

method should be preferred because of reduced computation time, the contour searching

method is especially important in relatively coarse data. In coarsely-resolved data,

often multiple vorticity extrema lie inside the same vortex patch area. Only the contour

method is able to separate these extrema. The knowledge gained by the contour method

can be used in the decision-making whether the vortex patch areas are associated with

single or multiple centers (see chapters 6.4.1 and 6.4.2).

6.4.5 Determination of individual circulation centers

After the decision was met how many vorticity centers should lie inside the same vortex

patch area, we can determine the center of circulation as an alternative location of the

vortex center. We have already introduced the center of circulation in the context of

62On a closed contour, the first and the last point are identical.
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point vortices (see chapter 3.4.5.2, equation 139). However, instead of calculating the

circulation center of a number point vortices, we want to derive the center of circulation

of an extended vortex patch area. Thereby, the contribution of each grid point needs

to be considered. Assume, that the vortex (or the vortex patch area) is composed of N
grid points. We can then calculate the individual center of circulation as the sum

of the circulation in every grid box times its coordinates divided by the total circulation

∑N
i=1 Γi of the vortex patch area:

C =
∑N

i=1 Γixi

∑N
i=1 Γi

(240)

where xi denotes the grid box location and Γi the associated circulation of the i-th
grid point that belongs to the total vortex patch area. Hence, the center of circulation

represents the central point of a vortex weighted by its circulation magnitude.

6.5 Vortex tracking

Tracking denotes the chronological connection of vortex centers of successive time steps

assuming that the individual systems represent the same physical feature (Neu et al.,

2013). There are maybe as many variations of tracking schemes as there are identifi-

cation methods. Tracking methods vary in their degree of sophistication from simpler

nearest-neighbor search methods to more complicated methods that take into account

various parameters in order to find the most appropriate track. Furthermore, the track-

ing methods depend on the basic field that is used for the identification of the cyclones

(pressure (geopotential height)/vorticity), on the spatiotemporal resolution of the data

(via different thresholds), on the preprocessing of the data (filtered/unfiltered) and on

the investigated feature type (fast-moving/slow-moving, small-scale/large-scale). An

overview over 15 identification and tracking methods of extratropical cyclones is given

in Neu et al. (2013, and in their supplementary material which can be found online at

http://dx.doi.org/10.1175/BAMS-D-11-00154.2). In the following, we will present

some approaches of commonly used tracking methods.

6.5.1 General approaches of extratropical cyclone tracking

Basically, all extratropical cyclone tracking methods involve the search of the nearest

neighbor that best fits. While some authors define ”nearest” literally with respect to the

distance between centers, others additionally include e.g. differences in core pressure or

vorticity magnitudes between identified and predicted values in their interpretation of

the ”nearest” neighbor.

Most methods search for the nearest neighbors in consecutive time steps in certain

predefined search ranges that can be arranged symmetric or asymmetric around the

105

http://dx.doi.org/10.1175/BAMS-D-11-00154.2


6.5 Vortex tracking Lisa Schielicke

cyclone center to account for the general motion of the cyclones63 (e.g. Blender et al.,

1997; Trigo, 2006). The explicit thresholds of the maximum searching ranges depend

on the spatiotemporal resolution of the data. Furthermore, some authors consider the

former motion of the cyclone in order to extend the searching range in the direction of

the former motion (Lionello et al., 2002) or in order to use the predicted position as a

starting point for the search of the nearest neighbor (e.g. Wernli and Schwierz, 2006;

Hanley and Caballero, 2012).

Additionally to the prediction of the cyclone position based on steering winds and prior

motion, Sinclair (1994) estimates core pressure and vorticity from prior trends. Subse-

quently, two matching systems are found by minimizing a cost function of the weighted

sum of the deviations of the three parameters from the predicted values. In a similar

manner, Murray and Simmonds (1991) and Simmonds et al. (1999) calculate the proba-

bilities of each cyclone surrounding the predicted position based on weighted parameters

such as distance and core pressure and match the cyclone with the highest probabil-

ity. While Murray and Simmonds (1991) and Simmonds et al. (1999) developed their

method based on thresholds and weights appropriate for the southern hemisphere that

is characterized by rather long-living, large-scale cyclones, Pinto et al. (2005) adopted

the method, thresholds and weights to the northern hemispheric circulation which is

characterized by a larger spectrum of extratropical cyclones ranging from small-scale,

fast-moving to large-scale, quasi-stationary systems.

We would like to close this section with two interesting approaches which influenced

the tracking method based on the Wk number that will be introduced in the following

section: Hewson and Titley (2010) perform a half-time tracking method. This means

that systems identified at time step t are moved forward about a half time step to

t + 1/2. Thereby, the forward motion is based on the steering wind and on the previous

motion of the cyclone. Systems detected at time step t + 1 are moved backward in time

about a half time step to t + 1/2 by using the steering winds. Together with other

parameters such as consideration of feature type and changes of the layer thickness the

best match is searched. Another interesting approach is used by Kew et al. (2010) who

identified not only the location of the system’s center as an extremum of the investigated

field, but the area around that center. Thereby, the area has a predefined (mesoscale)

size and is identified by searching for the enclosing contour (isolines of the field) that

best fits the predefined size. The shape of the area is not necessarily circular. After

identification of the points that form the system’s area, these points are advected by

the wind field for half a time step and for the second half of that time step with the

temporally interpolated wind field at the new location. Two systems match and a track

is formed, if the systems of consecutive time steps overlap by more than 10% of the

area. Originally introduced for the identification of potential vorticity anomalies at the

lower stratosphere, Kew adopted the method to the 850 hPa level geopotential height

63In general, the extratropical cyclones move faster to the east than to the west.
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fields in order to identify low-level cyclones in the framework of the IMILAST project

(Neu et al., 2013).

In the following section, we will introduce a method based on the Wk-method that uses

similar approaches such as the half-time tracking of Hewson and Titley (2010) and the

advection of the points forming the system of Kew et al. (2010). The reasons why we

will introduce another tracking method are primarily based on the fact that we want to

use the information on vortex size and circulation that we already obtained during the

identification procedure.

6.5.2 Introduction of a tracking method based on the Wk-method

For our needs, two requirements on the tracking method are most important: First,

the method should be based on the knowledge gained by the identification procedure

(Wk method) and should mainly use the information on the vortex size. Second, the

method should be relatively simple in order to enable reproducibility by other scientists.

Simplicity further allows to more easily detect the causes of problems and change the

settings if problems occur. A schematic overview over our tracking method approach is

plotted in Figure 25. The tracking method can be structured into the following steps:

(1) At time step t = t0 and at the consecutive time step t = t0 + ∆t all vortex

structures and their properties are identified. Especially, the outermost-closed

contour is identified (Fig. 25 1a/1b).

(2) The deformation of the outermost-closed contour is calculated with help of equa-

tion (6). At time step t = t0 + ∆t, the backward deformation is derived by

calculating the deformation multiplied with minus one (Fig. 25 2a/2b).

(3) Inside the contours — deformed as well as undeformed — the mean wind is cal-

culated by averaging over the velocities at all points that are enclosed by the

contours.

(4) The deformed/undeformed contours are forward advected in case of time step

t = t0 and backward advected in case of time step t = t0 + ∆t, respectively. Both

advections are calculated to the half time step that lies between both time steps

at t = t0 + ∆t/2. We derive two fields for the forward and backward advected

contours.

(5) In the following, we will denote N the number of systems detected at time step t =

t0 and N2 the number of systems detected at the consecutive time step t = t0 + ∆t.
For each system i with i = [1, .., N] we search for overlapping systems separately.

The overlap is determined by the multiplication of two masks: mask A is set to one

at every point that is enclosed by the deformed/undeformed and forward advected

contour of system i and zero elsewhere. In a second loop over the systems j with
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j = [1, .., N2] that occurred at the consecutive time step, we determine a mask

B that is set to one at every point enclosed by the deformed/undeformed and

backward advected contour of system j and is set to zero elsewhere. A match of

two systems is found if the total sum over all grid points of the product of mask

A and mask B is different from zero (Fig. 25, step 3). Note, that more than two

systems can match.

(6) We need to differentiate five possibilities of matches:

• Genesis: Systems at the consecutive time step that have no match are seen

as the genesis of a new system and are defined as the starting point of a new

track.

  

1a. Identification
of outermost-
closed contour

2a. Deformation
of contour and
determine mean
wind inside the
contour(s) 3. Forward/Backward 

Advection with mean 
wind for a half time 
step to t = t0 + Δt /2
and determine overlap 
of the resulting fields

Starting from time step t = t0 : Starting from time step t = t0 + Δt :

1b. Identification
of outermost-
closed contour

2b. Deformation
of contour and
determine mean
wind inside the
contour(s)

3-1. Overlap of areas 
of deformed contours:

3-2. Overlap of areas of 
undeformed contours:

OR

 t = t0 + Δt /2  t = t0 + Δt  t = t0 

Figure 25: Scheme of tracking method: After identification of the vortices and their outermost-
closed contours for two consecutive time steps t = t0 and t = t0 + ∆t (1a/1b), the deformations
of the contours are determined with help of equation (6) and the mean winds inside the contours
are calculated (2a/2b). In case of the subsequent time step, the deformation is multiplied with
minus 1 to account for the backward transformation. Finally, the deformed/undeformed contours
are forward (in case of time step t = t0)/ backward (in case of time step t = t0 + ∆t) advected
with the mean wind to the half time step (t = t0 + ∆t/2) between the two initial time steps
(3-1/3-2) and the overlap of the resulting fields is determined (3). Solid/dashed lines correspond
to originally identified/modified (deformed and/or advected) contours; orange (black) lines cor-
respond to time step t0 (t0 + ∆t). Hatched area denotes overlap; green thick arrow represents
the mean wind inside the contours.
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• Continuation of track: Systems at the consecutive time step that have

exactly one match are used to form (or continue) a track by connecting the

centers of circulation of the two systems.

• Merge: Two or more systems at time step t = t0 match with a system at

the consecutive time step t = t0 + ∆t. Only one of the systems will continue

the track while the others will end. More details will be given below.

• Split: One system at time step t = t0 matches with two or more systems at

the consecutive time step t = t0 + ∆t. Only one of the systems will continue

the track while the others will be defined as genesis points of new tracks.

More details will be given below.

• Lysis: For a system at time step t = t0 no match is found at the consecutive

time step. The circulation center of the system at time step t = t0 is defined

as the last position of the track.

Note that a system can be short-lived with a track that contains only one point

equal to the genesis and lysis point at the same time.

(7) Steps 1-6 are repeated over all time steps.

The merging/splitting decision is met based on three parameters: (1) the distance

between the centers of circulation; (2) the ratio of the areas of the systems at time

step t = t0 + ∆t compared to the areas of the systems at time step t = t0; (3) the

number of overlapping grid points. Systems with the minimum distance, the ratio

closest to 1 and with the highest number of overlapping points continue the track. If

the three parameters yield no unique result, the decision is met in the following order:

the distance prevails over the ratio, the ratio prevails over the sum of the overlapping

grid points. If the identification number (ID) of the system with the best ratio and the

highest number of overlapping grid points is different from the ID of the system with

the smallest distance, then the first ID prevails over the latter and gives the system that

continues the track.

It should be noted, that the tracking procedure — as it is presented here — is work

in progress and yet still needs to be tested properly. Although both versions of using

either the deformed or the undeformed contours are implemented, we will use the second

version (advection of undeformed contours) throughout this thesis. The main reason for

this decision is that — although the material contours are deformed and advected over

time — the material is not bounded to the pressure levels which will serve as the basic

levels used in our investigations. Moreover, the advection is not bounded to the mean

wind advection on pressure levels as we have assumed so far. However while material

can leave or traverse pressure levels, it is frozen to isentropic levels64 under adiabatic,

64Isentropic levels are levels of constant entropy which are characterized by constant potential tem-
perature θ. This is in a way similar to isobaric levels which are characterized by the same pressure.
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Figure 26: Motion of a material surface (orange) under adiabatic conditions along an isentropic
surface (dashed black lines, denoted as θi) for different time steps (a)-(c). Thick gray line
represents the surface, thick black solid line represents a pressure surface P and thin black lines
correspond to the vortex tube which encloses the material surface (orange). Adopted and slightly
modified from Lackmann (2011, his Fig. 3.1).

inviscid conditions which means that material can only be redistributed, advected or

deformed on these levels. This difference between pressure levels and isentropic levels is

depicted in Figure 26. However, due to the assumption that the vortex structures are

not strictly flat but have a vertical extent, we can still advect the ”material” areas and

approximately still capture a part of the vortex tube (see Fig. 26, the vortex tubes are

indicated by the thin solid black vertically aligned lines).

In conclusion, the tracking procedure can be seen as a first guess approach in order to

identify the new locations of the systems. The procedure probably works best in the case

of large-scale rather two-dimensional flow but might fail in the case of very small systems

embedded in large background gradients and under diabatic conditions. Note that the

genesis and lysis of systems on the pressure levels can also be attributed to the fact that

the material leaves the pressure surface. The tracking scheme could further be improved

by using the three-dimensional dynamic equations in order to follow smaller parcels of

air in time or by dynamical interpolation of the three-dimensional fields. Since these

approaches are computationally time-consuming so far the improvement of the tracking

scheme should be seen as a topic of future work and the presented procedure should be

seen as a first simple approach with development potential.

However, in comparison to pressure levels under adiabatic, inviscid conditions isentropic levels are mate-
rial surfaces. This means that material can only be deformed and redistributed under these conditions.
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6.6 Test of Wk-method in idealized set-ups (Schielicke et al.,

2016)

In this section, we will compare different size determination methods — traditional

as well as kinematic ones — in idealized two-dimensional set-ups. We will specify

the methods used for comparison reasons in the idealized cases in section 6.6.1. The

experimental set-ups are described in section 6.6.2, followed by a presentation of the

results (section 6.6.3) and a discussion (section 6.6.4). Note, that this chapter 6.6 (with

slight modifications) is part of a publication that was recently published (Schielicke

et al., 2016, their chapter 3). Major modifications will be notified explicitly.

6.6.1 Description of the tested size estimation methods

In a first step, local maxima (minima) in the two-dimensional vorticity (pressure) field

are identified. A local maximum (minimum) is found when the 8 surrounding points

have lower (higher) values than the central point. In a second step, the following four

size estimation methods are applied:

(1) p-method : the outermost-closed isobar around a local pressure minimum in 1 hPa

increments;

(2) Gaussfit-method : a Gaussian fit applied to the surrounding pressure distribution

of a low pressure center adopted from Schneidereit et al. (2010);

(3) ζ-method : the outermost-closed (positive) vorticity contour around a local vortic-

ity maximum determined by increments of 10−8 s−1; and

(4) Wk-method : the kinematic vorticity number criterion Wk = 1 around a local

vorticity maximum introduced in section 6.3.

For a synoptic-scale system with typical values of radius R = 1000 km, wind speed

v = 10 m/s and a pressure drop of ∆p = 10 hPa (which is equal to a core pressure

in the order of 1000 hPa at the ground) the vorticity is in the order of 10−5 s−1. The

increments of the p- and ζ-method were chosen such that they represent about 0.1 %

of these typical magnitudes.

For methods (1), (3) and (4), contour lines are calculated by a standard contouring

function. The area A is calculated by the sum over all triangle areas formed by two

neighboring contour points and the vortex center. By assuming that the area A is

circularly distributed around the center, the system’s radius R is calculated as R =√
A/π. In method (2), the 2D pressure field surrounding the low pressure center is

mapped to a 1D radial distribution: In a first step, the surrounding pressure distribution

is interpolated on 36 radial lines (every 10◦) starting from the vortex center up to 1000

km (every 50 km). In a second step, the mean of the 36 pressure values for each distance

r is determined. Finally, a Gaussian fit is applied to the resulting pressure distribution
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with a gnuplot fitting procedure, that fits the following function to the 1D distribution:

pGauss(r) = a · exp(−(r − r0)2/2b2), where a gives the pressure drop and b represents

the radius which is equal to the standard deviation of the Gaussian distribution. The

vortex center is located at r0.

6.6.2 Experimental set-up

The four size estimation methods are tested and compared in different idealized set-

ups. The aim of these tests is to find out, how well the different methods perform in

re-extracting the predefined vortex sizes from various flow fields.

In the idealized test cases, the pressure field p will be predefined. Geostrophic wind vg

and geostrophic vorticity fields ζg are calculated from the pressure field by

vg =
1

ρ f
k×∇p , ζg =

1
ρ f
∇2 p . (241)

For simplification, density ρ and Coriolis parameter f are assumed to be constant (ρ =

1 kg/m3, f = 10−4 s−4); ∇2 p is the Laplacian of the pressure; k is the vertical unit

vector.

6.6.2.1 Reference case - idealized low pressure system

A low pressure disturbance defined by a 2D Gaussian distribution with intensity ∆p =

2.5 hPa65 and radius R = 250 km:

p? = ∆p exp
(
− (x− x0)2 + (y− y0)2

2R2

)
(242)

is superposed to a flat pressure field of 1000 hPa, so that the total pressure field p in

hPa is given by p = 1000− p?; (x0, y0) give the location of the center of the disturbance,

here x0 = y0 = 0.

6.6.2.2 Idealized test case 1 - superposition of two low pressure systems

The superposition of two low pressure systems on a flat pressure field of 1000 hPa is

investigated for varied distances between the two centers. The pressure disturbances

of the lows (p?1, p?2) are given by two 2D Gaussian distributions of different intensities

(∆p1 = 10 hPa, ∆p2 = 2.5 hPa) and different sizes (R1 = 250 km, R2 = 160 km)

calculated by equation (242). The total pressure field is given by p = 1000− p?1 − p?2.

The first low indicated by index 1 is fixed at the location (x0, y0) = (0, 0). Low 2

changes its position stepwise in southwesterly direction starting at the location of low

1 (or a distance of 0 km) up to a distance of about 1400 km in 70.7 km steps (50 km to

65In (Schielicke et al., 2016), we wrote ∆p = 5 hPa. This is wrong. Here, we changed ∆p to its correct
value of 2.5 hPa. Hence, it fits to our results (see Fig. 29).
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Figure 27: Experimental set-up of ideal test case 1: the superposition of two low pressure
disturbances with different intensities and sizes on a flat pressure field. The smaller low 2 is
moved stepwise along the dashed line following the thick black arrow. (a) Sketch of experimental
set-up, (b) pressure field for a distance of 353.6 km, (c) pressure field for a distance of 707.1
km. Red crosses indicate the low centers, red dashed circles correspond to their radii. Adopted
from Schielicke et al. (2016), their figure 2.

the south/50 km to the west; see Fig. 27 for set-up and two examples). The resolution

of the calculated fields is 10 km.

6.6.2.3 Idealized test case 2 - superposition of a low pressure system and a jet

In this test case, a low pressure disturbance p? with ∆p = 5 hPa and R = 250 km

(see eq. 242) is superposed by a jet streak pressure-gradient pjet on a flat pressure field

of 1000 hPa. For changing distances between the low center and the jet axis, the size

of the low pressure disturbance is determined by the different methods and compared

to the original R. The jet streak’s pressure gradient is calculated by a Gaussian error

function (abbreviated by erf). The jet axis is oriented in west-east direction. The (south

to north) pressure profile is given by pjet = ∆pjet · erf((y− yGauss)/(
√

2σ)) where yGauss

is the position of the jet axis and ∆pjet = 7.5 hPa gives the pressure difference between

the edges of the jet and the jet axis. Since the geostrophic wind is proportional to

the pressure gradient, the wind field associated with the jet is Gaussian distributed

with a standard deviation of σ = 350 km. The total pressure field in hPa is given by

p = 1000− p? − pjet. The low is fixed at the location (x0, y0) = (0, 0). The position of

the jet axis moves stepwise (50 km steps) from 1400 km south to 1400 km north of the

low center (see Fig. 28 for set-up and examples).
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Figure 28: Experimental set-up of ideal test case 2: the superposition of a low pressure dis-
turbance and a non-trivial jet streak gradient on a flat pressure field. The jet axis is moved
stepwise from south to north as indicated by the dashed lines. (a) Sketch of experimental set-up,
(b) pressure field for a distance of 0 km between jet axis and vortex center, (c) like in (b) for a
distance of 500 km (jet axis north of vortex). Red cross/red dashed circles indicate the vortex
center/radius. Adopted from Schielicke et al. (2016), their figure 3.

6.6.3 Results

Note, subscripts of the radii R correspond to the method, e.g. G for Gaussfit method,

W for the Wk-method, and so on. Multiple letters are used when radii coincide.

6.6.3.1 Reference case - idealized low pressure system

The vortex core radius identified by the Wk-method and by the Gaussian fit (not shown)

coincide with the wind maximum at a radius of RW,G = 250 km (blue(wind), black(Wk)

curves in Fig. 29) which is equal to the predefined radius. Wk equals 1 when ro-

tation and deformation are of the same size: Vorticity and deformation distributions

cross at RWG = 250 km and converge far away from the vortex center (red(ζ), yel-

low(deformation) curves in Fig. 29). The deformation peaks outside of the vortex area

identified by the Wk- and Gaussfit-method with a lower, broader peak than the vortic-

ity. Vorticity-dominated and deformation-dominated areas are adjacent regions in the

vortex. The p-method identifies the largest radius (about 350 km, green line in Fig.

29)66 when the outermost-closed isobar is determined by increments of 1 hPa. A finer

66In Schielicke et al. (2016), we erroneously wrote 450 km. However, as can be seen from Fig. 29
≈ 350 km is correct.
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Figure 29: Undisturbed, axisymmetric reference case: Vorticity ζ(r) in 10−5 s−1, kinematic
vorticity number Wk(r), deformation (local strain-rate) in 10−5 s−1, wind speed v(r) in m/s (left
axis), and pressure p(r) in hPa (right axis) as function of the distance from the vortex center.
Wk = 1 at a distance of 250 km and ζ = 0 at a distance of 320 km. Adopted from Schielicke
et al. (2016), their figure 4.

increment of 0.1 hPa determines a larger radius of about 700 km.

6.6.3.2 Idealized test case 1 - superposition of two low pressure systems

The splitting of the two systems, i.e. the identification of two single instead of one

system, occurs at a smaller distance in the vorticity field (for ζ-/Wk-method see red/blue

curve in Fig. 30) at around 420 km which coincides approximately with the sum of the

undisturbed radii R1 = 250 km, R2 = 160 km) compared to the pressure field (for

p-/ Gaussfit-method around 770 km; green/yellow curve in Fig. 30). With growing

distances the radii of both systems increase until the values stabilize (around 900 km

for the p-, Gaussfit-method and 700 km for the ζ-, Wk-method). The stepwise increase

of Rp can be attributed to the coarse increment of 1 hPa for the contour lines since this

behavior is not observed for finer increments (not shown). While the p- and ζ-methods

show strong variations in the vicinity of the splitting point, the Wk- and the Gaussfit-

method show only slight variations and otherwise coincide with the predefined radii.
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Figure 30: Identified radii by the four methods in ideal test 1 (superposition of two low pressure
systems 1 and 2). Plotted are the identified radii as a function of the distance between the two
centers. Symbols plotted every 5th data point. Adopted from Schielicke et al. (2016), their figure
5.

6.6.3.3 Idealized test case 2 - superposition of a low pressure system and a jet

When the jet axis is in the vicinity of the low center, the methods based on pressure

(p-method/Gaussian fit: green/yellow curve in Fig. 31) show strong variations and

a lack of identification for distances between 0 and 500 km; while the Wk- and ζ-

method are not strongly affected (blue/red curve in Fig. 31). For the application of the

Gaussfit-method a local pressure minimum is needed67. When the Gaussfit-method is

modified such that the fit is applied to the pressure field surrounding the local vorticity

maximum, radii can be identified over all distances (yellow, dashed line in Fig. 31).

However, the variations are strong when the jet axis is close to the vortex. The Wk-

method reproduces the predefined radius of the low with slight variations. The radius

identified by the ζ-method is proportional to that identified by the Wk-method, although

the outermost-closed vorticity contour is not zero when the jet axis is south and near

the vortex center (not shown).

6.6.4 Discussion of results

We have seen in the previous section that some methods are not capable in identifying

the cyclone radii in particular flow situations. E.g. near the splitting point of two lows,

67That is slightly different from the method of Schneidereit et al. (2010) which only needs the average
gradient of geopotential height to exceed a certain threshold.
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Figure 31: Radius determination by the four methods of the low pressure disturbance which
was superposed by a jet streak (ideal test 2). Plotted are the identified radii as a function of the
distance between the jet axis and the center of the low (for negative/positive distances the jet axis
is south/north of the vortex center). Symbols plotted every 5th data point. Dashed yellow line:
Gaussfit-method applied to the pressure field surrounding the local vorticity maximum instead
of the local pressure minimum (solid yellow line). Adopted from Schielicke et al. (2016), their
figure 6.

the ζ- and the p-method showed strong variations. In some asymmetric fields caused

by the superposition of a low and a jet, the Gaussfit-method is strongly affected and

the p-method partially fails to identify the cyclone. We will now discuss the reasons for

the failure and what part of the vortex is seen by the different methods.

6.6.4.1 p-method

The part of the vortex that is identified by the outermost-closed isobar strongly depends

on the flow situation and on the contour value/increment. This is in accordance with

Wernli and Schwierz (2006) who observed an increase of 40% (decrease of 30%) of

detected cyclones by a reduction (increase) of the contour increment from 2 to 1 hPa (4

hPa). Likewise to streamlines, the p-method only represents a snapshot of the flow at

a certain time step. This can be very different in various flow situations and from one

time step to another. As a result, the area of a cyclone is only poorly represented by

pressure/ geopotential height contours. This is especially important when investigating

mobile and developing systems, respectively (Sinclair, 1994).
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6.6.4.2 Gaussfit-method

In the undisturbed case, the Gaussfit-method coincides with the wind maximum and the

maximum of the radial pressure gradient, respectively (see also Schneidereit et al., 2010).

Even in case of the superposition of two lows, the Gaussfit-method nicely reproduces the

predefined radii. This result was expected since the predefined low pressure disturbances

were already Gaussian distributed and the asymmetry of the pressure field surrounding

a pressure minimum is only minor. On the other hand, the superposition of a jet and

a low involves much more asymmetry (ideal test case 2 in section 6.6.3.3). In this case,

the Gaussfit-method fails in re-extracting the radius when all surrounding points are

considered even though the predefined low pressure disturbance was originally Gaussian

distributed.

6.6.4.3 ζ-method

The vorticity can be split up into shear and curvature vorticity. In the undisturbed

case, cyclonic curvature exist in the whole domain. At the wind maximum the shear

vorticity changes its sign resembling the flow situation at a jet axis (Fig. 32), but

curvature vorticity is still positive. Vorticity becomes zero not until both parts are

balanced. In the disturbed ideal test cases 1 and 2 the observed outermost-closed

vorticity contour is partly different from zero. Hence, a fixed threshold would fail: either

it would only identify strong vortices whose intensity might not be comparably strong

since the background shear is misleading or it would only identify undisturbed systems,

neglecting vortices embedded in shear. If no restriction to a fixed vorticity threshold is

made, Rζ changes approximately proportional to the Wk-method and it seems to be an

alternative to that method. On the other hand, it is not easy to interpret which part

  

Radius of 
maximum 
wind

W
k
= 1 contour

ζshear < 0

ζshear > 0

Figure 32: Scheme of the wind field and shear vorticity of an idealized cyclone on the northern
hemisphere (NH). Wk = 1 contour and radius of maximum wind coincide. Shaded area marks
the area of positive shear vorticity (ζshear > 0). Adopted from Schielicke et al. (2016), their
figure 7.
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Figure 33: Streamlines at the vortex core boundary and inside the vortex core: Superposition
of two lows with a distance of 636 km between the two centers. Black thin lines are the isobars,
black bold lines are the identified Wk = 1 contour line. The blue box displays the area of the two
insets labelled (a) and (b) in the top of the figure. In the insets the streamline patterns (blue
thin lines) around two different points are added: (a) Point 1 is located on the Wk = 1 contour;
(b) Point 2 is located inside the Wk = 1 contour (inside the identified vortex). Gray arrows
indicate the velocity vectors around the points 1 and 2, respectively. Adopted from Schielicke
et al. (2016), their figure 8.

of the vortex is then extracted. Here, an interpretation in terms of shear and curvature

vorticity is difficult. It is even more complicated when the (contour) threshold changes

along certain directions as is done in Sinclair (1997) and Lim and Simmonds (2007)

who determined the boundary of a vortex when either the vorticity is zero or the radial

gradient of vorticity changes its sign along a set of radial lines. That definition can lead

to a zero contour in one direction and a different nonzero value in another direction for

the same system.

6.6.4.4 Wk-method

The kinematic vorticity number is larger than one (Wk > 1) when the rotation prevails

over the deformation at a point and it is exactly one in case of a pure shearing motion.

In case of an idealized cyclone, it can be seen that for a point located at the radius

of maximum wind its neighboring wind field resembles a pure shearing motion and

therefore the Wk = 1 contour coincides with the radius of maximum wind (Fig. 32). In

order to display the meaning of Wk > 1 and Wk = 1 in a more nontrivial case, we plotted
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the local flow field around a point (blue streamlines in Fig 33) at the boundary (defined

by Wk = 1, thick black contours in Fig. 33) of a vortex and inside the vortex (defined

as Wk > 1) in case of the superposition of two lows (see Fig. 33). The local point at

the boundary (point 1, Fig. 33a) is embedded in a shearing environment. Particles that

first are near to that point separate rapidly following the streamlines. In contrast, the

local point inside the contour (point 2, Fig. 33b) is surrounded by particles that stay

in the vicinity of that point moving in spirals or closed circles around that point.

Summarized, particles inside the Wk = 1 contour stay close to each other, i.e. mass

is accumulated inside the vortex. Therefore, the part of the vortex identified by the

Wk-method can be interpreted as a vortex core. This statement is also supported by a

calculation of the positive vorticity concentrated inside the Wk = 1 contour relative to

the total positive vorticity. In the undisturbed reference case about 84 % of the positive

vorticity is concentrated inside the vortex core (inside the Wk = 1 contour). However,

it should be noted that the area influenced by the vortex can be much larger than the

area of its core.

6.7 First applications of the Wk-method to reanalysis data

(Schielicke et al., 2016)

In this chapter, we will apply the Wk-method to reanalysis data in comparison to com-

monly used methods such as vorticity contours. We will apply the method in a real

storm case example and will give first statistics for the midlatitudes of the northern

hemisphere in the second part of this section. This chapter is part of a publication

that was recently published (Schielicke et al., 2016, chapter 4). The text is only slightly

modified to better fit into the context of this thesis.

6.7.1 Reanalysis data

The data used for the analysis are the geopotential height and the horizontal wind fields

of the NCEP/NCAR Reanalysis provided by the Research Data Archive of the National

Centers for Environmental Prediction National Weather Service NOAA US Department

of Commerce (1994). The data is available 4 times per day on a regular 2.5◦ × 2.5◦ grid

(Kalnay et al., 1996). We analyzed the geopotential height data on 12 pressure levels

from 1000 hPa to 100 hPa (100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000

hPa) for the northern hemisphere winter months (December, January, February) of the

years 1999/2000 (abbreviated by DJF 1999/2000).
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6.7.2 Methods

6.7.2.1 Calculation of W∗k -fields

For every 6-hourly time step in the period DJF 1999/2000, geostrophic W∗k -fields were

computed from the derivations of the geostrophic wind fields on each pressure level

with help of (215). The derivations were calculated as central differences omitting the

poles. We further restricted the analysis to the northern hemisphere and a latitudinal

band between 30◦N and 80◦N (including these latitudes). No terrain filtering was used

in the lower levels. The geostrophic wind fields vg were derived from the geopotential

height fields Φ by vg = f−1k×∇Φ with Coriolisparameter f = 2Ω sin φ where Ω =

2π/day = 7.2921 · 10−5 s−1 is the rotation rate of Earth and φ is the latitude. Every

grid point that yield |W∗k | > 1 was set to 1, every point with |W∗k | ≤ 1 was set to zero.

In this way, we derive a vortex patch field which cuts out the vortex structures.

6.7.2.2 Properties of Wk features and single vortex centers

After calculating the W∗k fields as described above, simply connected regions68 of W∗k > 1
(positive circulations/lows) and of W∗k < 1 (negative circulations/highs) were separately

identified in each field. As we have introduced in chapter 6.4.2, we will call a single

simply connected region of Wk > 1 a Wk feature . Note, that a Wk feature can include

multiple vorticity centers and therefore rather represents a large-scale circulation area

(or cyclone family) in such cases. Therefore, we additionally analyzed single vortex

centers including single vorticity extrema. Such single centers were determined by the

outermost-closed vorticity contour enclosing only one vorticity center (see also chapter

6.4.2). Note, that the area/circulations of the single centers are smaller or equal in

total than that calculated for the Wk feature. In order to account for broad extrema we

further restricted the minimum distance between isolated vorticity extrema inside the

same Wk > 1 region: if two systems are closer than 600 km (≈ 5◦latitude = twice the

resolution), they were considered as a single broad center. Then the outermost-closed

vorticity contour around both centers was calculated by a standard contouring method.

Wk features/single centers are composed of a set of grid points. Each grid point is

associated with a grid box area of 2.5◦ × 2.5◦. Note, that this area depends on the

latitude. The sizes of the Wk features/single centers were determined by the sum of

all grid box areas associated with the feature/center and corresponding circulations

Γtotal were calculated by (238). The radius of a system was determined as R =
√

A/π

under the assumption that the area belongs to circular system (likewise to the effective

radius definition in Rudeva and Gulev, 2007). Furthermore, we calculated the center of

circulation of each feature/center by C = ∑i Γixi/Γtotal where the summation is done

over each grid box included in the simply connected region/outermost-closed contour (cf.

68Two points are simply connected if they are neighbors in either N,S,E or W direction.
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Müller et al., 2015, additionally see also equation (240)). Γi is the circulation associated

with the ith grid point and xi is the coordinate vector of this grid point.

6.7.2.3 Temporal and vertical tracking of Anatol storm

Only in the real storm case example (section 6.7.3), we additionally did a temporal

and vertical tracking for the explicit storm Anatol. Anatol was traced over its life

time by manually connecting the appropriate storm centers of successive time steps on

the 1000 hPa level. The vertical tracking of the storm was done following the work

of Lim and Simmonds (2007) by a numerical method that searches for the nearest

vortex center in superposed vertical levels starting from the 1000 hPa level. A vertical

connection between two centers in neighboring pressure levels was confirmed when the

distance between those centers was less than about 340 km. This distance accounts

for a diagonal vertical tilt (north-west/-east, south-west/-east) from about 50◦ latitude

polewards (the diagonal distance between grid points in 50◦ latitude is about 330 km

which further decreases polewards).

6.7.2.4 Cyclone statistics of the winter season DJF 1999/2000

For the statistics, all identified Wk features/single centers of positive circulation per time

step are taken into account irrespective of their temporal evolution. We will analyze the

frequency distributions concerning the radius with a box width of 50 km for systems

with radii larger than 200 km. This allows a comparison to the existing literature

like Golitsyn et al. (2007); Schneidereit et al. (2010). However, the identified absolute

circulations cover several orders in magnitude complicating the definition of linear box

widths. Therefore, we will compute complementary cumulative distributions for the

analysis of the circulations of lows and highs. These distributions are statistically more

stable and were already successfully used in the analysis of cyclone/anticyclone kinetic

energies in Golitsyn et al. (2007).

6.7.3 Application of the Wk-method in real winter storm Anatol: Descrip-

tion and Results

The capability of the Wk-method to identify cyclones even in the upper troposphere

and in high-shearing situations is tested exemplarily in a real winter storm case. The

investigated example storm - known as storm Anatol in Germany - occurred between

2− 4 December 1999 (see Fig. 34 for Anatol’s track). The lowest observed pressure was

953 hPa recorded at 3 December 1999 18 UTC near the north east coast of Denmark

(Jutland, see Ulbrich et al., 2001). Anatol hit Denmark and northern Germany at the

afternoon and evening of 3 December 1999 with gusts up to 50 m/s. It was one of three

extreme storm events affecting Europe in December 1999 (Ulbrich et al., 2001), and it

was among the costliest European winter storms between 1980 and 2013 (NatCatSER-
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Figure 34: Track of Anatol’s circulation center at the 1000 hPa level: starting at 2 December
1999 06 UTC. Every circle and number represents a six hourly step, some selected dates are
additionally plotted below the corresponding circles. Adopted from Schielicke et al. (2016), their
figure 9.

VICE of Munich Re, 2014). It caused a record storm surge at the Danish and German

North Sea coast (Ulbrich et al., 2001). Furthermore, the storm was associated with a

strong jet in the middle and upper troposphere and is therefore a challenging situation

for size estimation methods.

The temporal development of Anatol reveals its rapid intensification from a wave like

structure over the North Atlantic to a mature cyclone in less than 24 hours (Fig. 35).

Note, how the contours of the geopotential in 1000 and 500 hPa show a rather wave-like

pattern and the low-level (850 hPa) vorticity is rather weak in the beginning (2 December

1999 12 UTC, see Fig. 35a). In addition, the vorticity center is embedded in a large-

scale cyclonic (positive) vorticity field. The black arrow and the white cross in Figure 35

indicate the positions of the vortex centers near the surface and in the upper troposphere,

respectively. During the intensification period, the system is strongly baroclinic (see Fig.

35b,c). Lower- and upper-level centers become aligned during maturity (see Fig. 35d at

4 December 1999 00 UTC). In comparison, the extended Wk-field considering the sign

of vorticity isolates nicely the cyclonic and anticyclonic vortices from the continuous

(vorticity) fields (Fig. 36). The storm center can easily be detected (see black arrows).

The intensification of Anatol is also mirrored in the maximum Wk-value inside the

storm which is 2 in the beginning (2 December 1999 12 UTC, Fig. 36a), 12 hours later

Wk ≈ 10 and 24 hours later Wk ≈ 15 implying that the rotation is 15 times larger than
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Figure 35: Development of storm Anatol (2.-4.12.1999, 12 hourly steps) in traditional fields:
Geopotential height (in gpdm at 1000 hPa (white)/ 500 hPa (black) contours) and low-level (850
hPa) relative vorticity (color shaded) fields. Black arrow/white cross indicate the position of the
storm center in 1000 hPa/500 hPa. Contours of the geopotential are given every 4 gpdm in 1000
hPa (white) and every 8 gpdm in 500 hPa (black). Black box corresponds to the section plotted
in Figure 37). Adopted from Schielicke et al. (2016), their figure 10.

the deformation inside the storm. Note however, that the maximum of the Wk-value

does not always coincide with the vorticity maximum or minimum.

The vertical structure and development of storm Anatol as seen from the Wk-method’s

perspective (Fig. 37a-d, top row) supports that the system is only shallow in the

beginning (black arrow, Fig 37a), but rapidly intensifies due to the interaction with an

upper-level vortex (white cross, Fig 37) that leads to strong stretching of the vortex (Fig.

37b,c). The strongest baroclinic tilt is observed at 3 December 1999 00 and 12 UTC

(Fig. 37b,c). In addition, horizontal interactions between vortex centers are observed:

e.g. see the interaction of the icelandic low (center located at about −20◦W, 65◦N)

with storm Anatol at the 1000 hPa level. The area of the icelandic low is deformed over

time, so that it appears to rotate around storm Anatol (Fig. 37 b,c); later it follows

Anatol (Fig. 37d).

The evolution of Anatol’s circulation over its lifetime shows a rapid intensification over

the first 6 timesteps (36 hours) by one order in magnitude from about 107 to 108 (Fig.

38a). Compared to that rapid intensification at the beginning, the circulation dissipated
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Figure 36: Development of storm Anatol (2.-4.12.1999, 12 hourly steps) in kinematic fields:
Low-level (850 hPa) extended kinematic vorticity number (color shaded) field considering the sign
of vorticity. Positive (negative) values of Wk correspond to cyclones (anticyclones). Isolines of
|Wk| = 1, 2, 5, 10, 15 are added (labelled thin gray contours) Other fields/tokens similar to that
in Figure 35. Adopted from Schielicke et al. (2016), their figure 11.

much slower by a nearly constant gradient of about 264 m2/s2 after reaching its maxi-

mum at 3 Dec 1999 18 UTC/4 Dec 1999 00 UTC (Fig. 38a). Simultaneously, the area

on the 1000 hPa level broadens over Anatol’s life time nearly constantly (see Fig. 38b).

After about 13 time steps at 5 Dec 1999 18 UTC (78 hours after initiation), the vertical

connection between lower- and upper-level vortex becomes less organized as can be seen

by the drop of the vertical means relative to the vortex characteristics identified in 1000

hPa. At the end of Anatol’s life time the connection between the vertical levels is less

pronounced.

6.7.3.1 Discussion of Wk-method in comparison with traditional methods

In order to compare the Wk-method’s view on Anatol with the ζ-method’s perspective,

vorticity isosurfaces of 1, 3, 5 · 10−5s−1 of the geostrophic vorticity field are plotted in

Figure 37e-h (bottom row). The main difference between the fields is obvious at upper-

levels: due to the stronger shear in the upper levels, the vorticity centers are rather

embedded in regions of positive vorticity than clearly separated. This complicates a
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Figure 37: Vertical development of storm Anatol (2.-4.12.1999, 12 hourly steps): in Wk (a)-
(d) and ζg (e)-(h) fields. Plotted are isosurfaces of the cyclonic (positive) geostrophic vorticity

[(1, 3, 5) · 10−5s−1]: (a)-(d) Vorticity is plotted in the field of Wk > 1, (e)-(h) Field of positive
geostrophic vorticity. Values of Wk < 1 as well as negative vorticity values are blank. Lighter
colors correspond to lower values of vorticity. Black arrow and white cross indicate the position
of the storm center in 1000 hPa and in the upper levels, respectively. Adopted and modified from
Schielicke et al. (2016), their figure 12. Note, that in Schielicke et al. (2016) subfigures (a) and
(e) are erroneously similar. This misprint is corrected here.

study of upper- and lower-level vortices by means of fixed threshold values of vorticity

alone. By fixing the threshold to a value (e.g. 3 · 10−5s−1), lower-level features - espe-

cially during formation - would not be detected since the vorticity is to small as in Fig.

37a,e. Flaounas et al. (2014) use a fixed threshold of ζ = 3 · 10−5s−1 applied to the

850 hPa level vorticity fields of the ERA-Interim data set which has a higher horizontal

resolution of 1.5◦ × 1.5◦ than NCEP. Flaounas et al. (2014) reasoned, that this value

is adequate even in the initial stage of the cyclone development at this specific level.

However, in the coarsly-resolved NCEP data set used in our analysis, the formation of

Anatol would have been missed especially near the ground. A fixed vorticity threshold

needs to be carefully chosen for each height level because vorticity magnitudes generally

increase with height due to an increase in shear with height. Still, it is not clear if

this mixture of thresholds give a consistent measure of the extent of a cyclone and if

different thresholds in different levels lead to comparable sizes. However, an adjustment
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Figure 38: Properties of storm Anatol over its lifetime: (a) Circulation Γ and (b) Area A in
6-hourly time steps starting from 1999/12/02-06 UTC to 1999/12/06-18 UTC; corresponding
radius (R =

√
A/π) was added to the right axis in (b). Red, dashed lines correspond to the

vertical averaged values of Γ and A (small numbers near the bottom indicate the number of
vertical levels used for the vertical average), blue, solid lines correspond to the value at 1000
hPa. For the calculation of the circulation, geostrophic wind has been used. Adopted from
Schielicke et al. (2016), their figure 13.

of thresholds is not necessary when the Wk-method is used since it relates the rotation

to the background deformation (and shear) and therefore separates the relevant parts

of the vortices (i.e. the vortex cores) from the rest of the flow field.

Campa and Wernli (2012) used a different approach in order to study the vertical distri-

bution (and interaction) of potential vorticity (maxima) in cyclones. They used a fixed

radius of 200 km around a surface cyclone center (SLP field) and analyzed the vertical

column of air limited by this area. They restricted their analysis to surface cyclone

centers at the moment of maximum intensity (lowest core pressure during life time) and

up to 24 hours before that maximum was reached. Campa and Wernli (2012) found the

radius of 200 km to fit best their needs as a compromise between a radius that is too

small and possibly misses upper-level features (100 km) and a radius that leads to too

much averaging (300 km). Especially during the development of a cyclone, the system

is usually (strongly) tilted and a fixed radius might miss the upper-level features (more

on the relationship between tilt, forcing and cyclogenesis as well as a classification of

cyclones concerning those parameters can be found in Gray and Dacre, 2006). An ad-

vantage of the Wk-method in such an analysis is that it allows to account for the vertical

tilt when the area would be limited to the vortex tube surrounding the cyclone axis.

Compared to the method of Campa and Wernli (2012) who use a more Eulerian per-

spective connected to the Lagrangian tracing of surface centers, the Wk-method would

describe a rather Lagrangian perspective following the whole vortex tube. A vortex tube

is defined as a surface composed of vortex lines that has a constant circulation for every

cross section at an instant of time. However, the circulation can change over time due
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to e.g. baroclinic production. That the Wk-method detects approximately a vortex tube

can be seen in Fig. 38a where the circulation at the 1000 hPa level is compared to the

vertical mean circulation over the identified vortex height. The identified circulations

are approximately similar like in a vortex tube.

Furthermore, we have seen that the Wk-method can visualize horizontal vortex inter-

actions (e.g. the interaction of icelandic low and storm Anatol). Although we did not

focus on them in this work, we have studied successfully the horizontal interaction of

low and high pressure systems at the 500 hPa level in Müller et al. (2015) where we

introduced a pattern recognition technique based on the Wk-method in order to deter-

mine the circulations and locations of vortices in Omega-blocking situations using point

vortex equilibria.

6.7.4 Cyclone size and circulation statistics of the winter season DJF 1999/2000

We have seen, that the Wk-method is able to extract vortex structures even in upper

levels of the atmosphere in a real winter storm case in the previous section. In order to

gain even more confidence in the results obtained by the Wk-method, we will compare

the results of the identified cyclones with existing statistics.

6.7.4.1 Results and discussion

On average about 41±6 Wk features occur at the 1000 hPa level and a smaller number

of about 30±5 Wk features at the 600 hPa level (see Fig. 39). The number of single

centers is only a bit larger (≈46±7 in 1000 hPa vs. ≈39±7 in 600 hPa). The number

in lower and upper levels seem to be correlated over long time periods (Fig. 39). That

more systems are detected at the 1000 hPa level might be related to the fact that

near the surface more disturbances of the geopotential height field are initiated due to

topography and friction. Interestingly, the occurrence of Anatol at the beginning of

December is connected with a rather low number of cyclones compared to the rest of

the plotted period (Fig. 39). Likewise a rather low number of Wk features is observed at

the end of December where two intensive storms hit Europe (storms Lothar and Martin,

see Ulbrich et al., 2001, for more details on the storms). With this low number of events

it can not be clarified, if this connection between intense storms and low total numbers

of cyclones is only random. Future work is necessary.

For the relative frequency distributions concerning the radii two general observations can

be given (see Fig. 40): (1) The majority of the systems is subsynoptic with radii smaller

than 1000 km in both levels and (2) systems in the upper level tend to be larger than at

the lowest level. At the 1000 hPa level a broad peak occurs at radii around 300–500 km

for Wk features as well as for single centers (solid lines in Fig. 40). This peak is shifted

and sharpened to larger radii at the upper levels (sharper peak around 400–700 km,

dashed lines in Fig. 40). Especially, the Wk features can be very large at the upper level
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Figure 39: 3-days running mean of the number of identified lows: cyclonic Wk features
(black)/single centers (orange) in 1000 hPa (solid) and 600 hPa (dashed) for DJF 1999/2000 in
30◦−80◦N. Mean numbers/ total numbers over the whole period are in 1000 hPa: 41.1/ 14.339
(Wk features), 45.6/ 15.905 (single centers), and in 600 hPa: 30.4/ 10.607 (Wk features),
38.6/ 13.469 (single centers), respectively. Adopted from Schielicke et al. (2016), their figure
14.

reaching synoptic scale, while only a small number of single centers reach radii larger

than 1000 km at the 600 hPa level. The observation that the majority of the radii are

sub-synoptic is in accordance with the literature, i.e. Schneidereit et al. (2010) observed

the highest frequency between 300–500 km at the 1000 hPa level (Gaussfit-method).

While methods based on pressure usually show higher radii and less systems per time

step (e.g. Rudeva and Gulev, 2007, observe around 14-20 cyclones with an effective

radius of about 600 km). However, it should be noted, that the Wk-method identifies

vortex cores. Therefore, the total area influenced by the vortex can be considerably

larger as was seen in the idealized cases in section 6.6

Wk features that are on general larger than single centers also have higher circulation

magnitudes than single centers (Fig. 41). Furthermore, Wk features in the upper level

are more intense reaching higher values of circulations. However, the circulation distri-

butions of single centers in both levels are nearly equal (yellow lines in Fig. 41). Note

that the curves decrease nearly exponentially indicating the existence of a characteristic
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Figure 40: Relative frequency distributions concerning the radii: cyclonic Wk features
(black)/single centers (orange) in two different pressure levels (1000 hPa solid, 600 hPa dashed).
DJF 1999/2000, 30◦−80◦N. Only systems with radii ≥ 200 km were included. Total number of
systems in 1000 hPa: 12.862 (Wk features), 13.530 (single centers), and in 600 hPa: 9.521 (Wk
features), 11.148 (single centers), respectively. Note the logarithmic scaling of the ordinate axis.
Adopted from Schielicke et al. (2016), their figure 15.
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Figure 41: Complementary cumulative distribution of the circulations: cyclonic Wk features
(black)/single centers (orange) in two different pressure levels (1000 hPa solid, 600 hPa dashed).
DJF 1999/2000, 30◦−80◦N. Note the logarithmic scaling of the ordinate axis. Adopted from
Schielicke et al. (2016), their figure 16. 130
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scale of circulation of the vortices. The majority of the systems has circulations in the

order of 107 m2/s which is in accordance with the results in Sinclair (1997). Only about

1% of the single centers at the 1000 hPa level reach circulations of more than 1 · 108m2/s.

At its maximum intensity, Anatol reached a circulation of about 0.9 · 108m2/s. An es-

timate from synoptic-scale characteristic values of velocity (U = 10 m/s) and radius

(R = 1000 km) leads to a circulation of approximately Γ ≈ 2πRU = 6 · 107m2/s which

is in accordance with our observations, too.

6.7.5 Conclusion and Summary of results

We have tested the Wk-method in real (reanalysis) data. The Wk-method could be

applied successfully to the data. The Wk-method rather identifies vortex cores, hence the

identified systems are smaller than that identified with the help of traditional methods

based on the (surface) pressure fields. The main findings concerning the reanalysis data

are:

• The Wk-method applied to 3d fields visualizes the interactions between vortex

centers: in the real case example of storm Anatol the horizontal interaction of

vortex centers (icelandic low, Anatol) and the vertical interaction of upper- and

lower-level vortex which led to the rapid intensification could be visualized with

help of the Wk-method.

• In general, vortices (single centers as well as Wk features) at the 1000 hPa level are

smaller and less intense than at the 600 hPa level. The majority of the vortices

on both levels have radii smaller than 1000 km which is in agreement with the

published literature (e.g. Schneidereit et al., 2010).

Summarized, the Wk-method seems to be a promising tool for the determination of vor-

tex properties and the study of vortex interactions. So far, we applied successfully the

2d definition of the Wk number in different vertical atmospheric layers which is sufficient

for (quasigeostrophic) synoptic-scale systems.

In the following chapter, we would like to test the sensitivity of the Wk-method with

respect to a reduced or increased Wk threshold. We hope that this allows the study

of either early circulations in the genesis state or very intense ones compared to the

background deformation.

6.8 Systematic testing of the influence of the Wk threshold in

the identification of vortices

In this part, we concentrate on the identification of vortices and their properties with the

Wk-method and its dependence on the specific Wk threshold. So far, we defined vortices

as simply-connected regions of Wk > 1. Here, we will investigate different thresholds.
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6.8.1 Data

Again, we used the NCEP-DOE AMIP II reanalysis data (resolution of 2.5◦, 6 hourly).

We concentrated on one year, 1999, of the data set and on three pressure levels: 1000,

600, and 300 hPa (lower boundary, divergence-free level, and near-tropopause level). We

focused on the northern hemisphere, but also applied the original Wk = 1 threshold to

the southern hemisphere for purpose of comparison. The main reason for this restriction

is the large computing time that is necessary to conduct the results, especially for smaller

thresholds.

6.8.2 Methods

As in chapter 6.4.2 introduced, we differentiate between single centers (SC) and Wk-

features (Wkf). The latter can include one or more vorticity extrema. Wk-features are

defined as simply-connected regions with Wk values larger than a certain threshold. In

order to determine simply-connected regions, only the four direct neighbors around a

point above (or below) the threshold are considered.

Single centers are defined as the region around a single vorticity extremum inside an

area of Wk values larger than a certain threshold. For the identification of the vortic-

ity extrema all 8 neighbors are considered. The outermost-closed (vorticity) contours

around single centers are determined by a standard contouring method. In case of

isolated Wk-features that only include a single vorticity extremum, single centers and

Wk-features coincide.

We will use the extended W∗k -method in order to analyze cyclonic and anticyclonic

circulations. The extended W∗k -method additionally considers the sign of the vorticity

in the identified vortex areas. The identification of the vortex structures is analogous

to the method described in chapter 6.4 with different thresholds for W∗k . We decided to

use the following thresholds for the Wk = ‖W∗k ‖ value on the northern hemisphere:

Wk = 0.8 : below the original 1 value, can be used to detect early circulations

Wk = 1.0 : the original value for the purpose of comparison

Wk = 1.2

Wk = 1.5

Wk = 2.0


above 1, can be used to identify stronger circulations

On the southern hemisphere, we will use the Wk = 1 threshold in order to compare the

results to the northern hemisphere.

Vortex structures (single centers/Wk-features) are analyzed for every timestep and at

each height level separately regarding their numbers, radii and circulations. The result-
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ing time series is smoothed by a 3-days running mean (12 time steps, temporal resolution

of 6 hours) and will be compared with respect to the means/standard deviations (num-

bers, radii), and median/quartiles (absolute values of circulation), respectively.

6.8.3 Results

6.8.3.1 Number

(a) Number of single centers (lows)

(c) Number of Wk features (lows)

(b) Number of single centers (highs)

(d) Number of Wk features (highs)

Figure 42: Mean number of identified systems per time step (3-days running mean) and stan-
dard deviations (red/blue colored areas, thin green lines) as a function of the Wk-thresholds
at different pressure levels (300, 600, 1000 hPa): (a) Single centers (lows), (b) single centers
(highs), (c) Wk-features (lows), (d) Wk-features (highs). For comparison reasons, the means
of SC (lows) are added to (b),(c) and Wkf (lows) to (d) (Abbreviations in legend/text: nh/sh:
northern/southern hemisphere, SC: single centers, Wkf: Wk-features, L: lows, H: highs)

In general, we observe a nearly linear decrease of the single centers (SC) numbers with
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increasing Wk thresholds (see Fig. 42). The numbers of the Wk features (Wkf) first

increase up to a Wk threshold of 1.2-1.5 and then decrease or remain constant with

further increasing the Wk threshold. In the following, we will structure the results in

more detail:

• Dependence on height level: In all cases, the numbers at the 1000 hPa level is

significantly larger than at the upper levels.

• Comparison of SC/Wkf numbers: The SC numbers are higher than that

of the Wkf for low Wk thresholds, but lower or equal for higher Wk thresholds

(Wk ≥ 1.5).

• Comparison of lows/highs: SC highs are more numerous than SC lows while

the number of Wkf highs and lows is approximately equal (except of the Wkf highs

at the 300 hPa level which have smaller numbers).

• Comparison of southern/northern hemisphere: In general, the numbers

at all levels are smaller on the southern hemisphere compared to the northern

hemisphere (about 3-7 less SC, about 5-10 less Wkf).

• Variability: The standard deviations are in the order of about ±4 and therefore

are relatively small in all cases.

6.8.3.2 Vortex radii

In general, most of the identified radii of both single centers and Wk-features, highs and

lows are subsynoptic, i.e. they have radii smaller than 1000 km and the mean radii are

in the range of 200-600 km depending on the height level and Wk thresholds (see Fig.

43). Thereby, the mean radii decrease with increasing Wk thresholds.

• Dependence on height level: The smallest mean radii of all systems (SC, Wkf,

lows and highs) are observed at the 1000 hPa level. Systems at the upper levels

tend to be slightly larger (≈100 km larger) than systems identified near the ground.

For high Wk thresholds (Wk ≥ 1.5) all mean radii detected at the particular levels

coincide.

• Comparison of SC/Wkf radii: Up to a threshold of Wk = 1.2, the SC are in

general smaller than the Wkf. However, the means approach each other with a

further increase of the Wk threshold.

• Comparison of lows/highs: The means and standard deviations of the SC/Wkf

highs and SC/Wkf lows are almost equal (although there is a difference between

SC and Wkf). An exception constitutes the SC lows at the 600 hPa level which

are larger than the other SC.
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(a) Radius of single centers (lows)

(c) Radius of Wk features (lows)

(b) Radius of single centers (highs)

(d) Radius of Wk features (highs)

Figure 43: Mean radii and standard deviations (red/blue colored area, thin green curves) of
identified systems as a function of the Wk-thresholds at different pressure levels (300, 600, 1000
hPa): (a) Single centers (lows), (b) single centers (highs), (c) Wk-features (lows), (d) Wk-features
(highs). Note the different ranges (y-axis) for SC and Wkf. For comparison reasons, the means
of SC (lows) are added to (b),(c) and Wkf (lows) to (d). (Abbreviations in legend/text: nh/sh:
northern/southern hemisphere, SC: single centers, Wkf: Wk-features, L: lows, H: highs)

• Comparison of southern/northern hemisphere: At the upper levels, south-

ern hemispheric systems are almost equal only little larger than the northern

hemispheric ones. At the 1000 hPa level, the southern hemispheric systems are

considerably larger than the northern hemispheric systems.

• Variability: The ranges covered by one standard deviation around the means

are relatively broad with values of about 200 to 300 km. Therefore, all means lie

within one standard deviation of the other distributions.
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(a) Circulation of single centers (lows)

(c) Circulation of Wk features (lows)

(b) Circulation of single centers (highs)

(d) Circulation of Wk features (highs)

Figure 44: Log-normal plot of circulations of identified systems as a function of Wk-thresholds:
(a) Single centers (lows), (b) single centers (highs), (c) Wk-features (lows), (d) Wk-features
(highs). Filled symbols are the medians of the distributions. Red, blue colored area, thin green
curves indicate the lower (0.25) and upper (0.75) quartiles. Black open symbols correspond to
the 0.25 and 0.75 quartiles of the southern hemisphere distribution. (Abbreviations: nh/sh:
northern/southern hemisphere, SC: single centers, Wkf: Wk-features, L: lows, H: highs)

6.8.3.3 Circulations

The median circulations of all vortex structures (SC, Wkf, highs, lows) at all levels show

a clear dependence on the chosen Wk threshold with exponentially decreasing means for

increasing thresholds (a linear decrease in the linear-logarithmic plot of Fig. 44).

• Dependence on height level: The lowest median circulations with values be-

tween about 1.5 · 106 m2/s (for Wk = 2) and 6 · 106 m2/s (for Wk = 0.8) occur at

the 1000 hPa level and the highest median circulations are observed at the 300
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hPa level (7 · 106 m2/s for Wk = 2 and 4 · 107 m2/s for Wk = 0.8).

• Comparison of SC/Wkf circulations: While all systems (SC, Wkf, lows,

highs) have almost equal medians at the 1000 hPa level, the SC have smaller

circulations than the Wk features for lower Wk thresholds (Wk ≤ 1.2) at upper

levels.

• Comparison of lows/highs: The main difference between the circulations of

highs (Fig. 44b,d) and lows (Fig. 44a,c) occurs at the 600 hPa level for all Wk

thresholds where the lows (either SC or Wkf) have considerably higher median

circulations than the highs. The same is valid at the 300 hPa level, but the

difference between lows and highs is much smaller and only occurs for smaller Wk

thresholds (Wk ≤ 1.2).

• Comparison of southern/northern hemisphere: On the southern hemi-

sphere, the circulations of the upper levels are of comparable order to the northern

hemisphere. At the 300 hPa level, the southern hemispheric median circulations

are even a bit smaller. However, the circulations at the 1000 hPa level are con-

siderably larger on the southern hemisphere. Although, the smallest circulations

are still observed at the 1000 hPa level and the highest at the 300 hPa level, re-

spectively, the difference between the median circulations of the different levels is

noticeably smaller.

• Variability: The upper and lower quartiles (0.25 and 0.75) occur symmetric

around the median circulations although the axes are scaled in a linear-logarithmic

manner in Fig. 44. This indicates that the circulations are rather lognormally

than normally distributed. Therefore, the variability of the detected circulations

is much larger compared to the variability of normally distributed parameters such

as the numbers or the radii. The interquartile range which includes 50% of the

systems is very broad: e.g. for a Wk threshold of Wk = 1 the range is between

106-108 m2/s.

6.8.4 Summary and Discussion of Results

In summary, we observe a strong dependence of the numbers, radii and circulations

of single centers and Wk features on the Wk thresholds with a decreasing tendency for

increasing Wk thresholds. While the mean radii and median circulations are smallest at

the 1000 hPa level, the numbers are largest at the 1000 hPa level.

The most surprising result concerning the number of identified vortices might be that the

number of the single centers becomes smaller than the number of the Wk features with

increasing Wk threshold. At first, one would expect them to be at least equal. However,

this result originates in the different definitions of single centers and Wk features. While

single centers are defined as local vorticity extrema surrounded by at least 8 grid points
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with vorticity values smaller or equal (or larger or equal for vorticity minima) than the

center point, Wk features are determined as simply connected regions of Wk values larger

than a certain threshold. For the identification of simply connected regions, we only

need to evaluate the 4 direct neighbors around a local point. This can lead in some

cases (e.g. diagonal neighbors fulfilling the threshold criterion) to the detection of two

Wk features and only one single center at the same time. An example is given in Figure

45(b,c) for a Wk threshold of |Wk| = 1.5. Furthermore, we can see in Figure 45(a) how

complex the reduction of vortex sizes with increasing Wk thresholds is. In general, the

areas that include multiple vorticity centers become considerably smaller with increasing

threshold (see for example the area that includes storm Anatol). Meanwhile, for systems

that include only one single vorticity center, the reduction of their sizes is only minor

(see e.g. the system located at 45◦N, 60◦W). Furthermore, it should be noted that

the Wk extrema do not necessarily coincide with the vorticity extrema (see again storm

Anatol, Fig.45a).

It is maybe impossible to decide which approach is ”more correct”, i.e. how many

neighboring points need to be considered. On the one hand, the comparison to the

eight surrounding points is a common method successfully used in the identification

of local extrema (e.g. used by Blender et al., 1997; Schneidereit et al., 2010) and we

can see in Fig.45c that there is no second extremum in the vorticity field. On the

other hand, in the example given in Figure 45b we observe a second local extremum

in the W∗k field. Furthermore, there are values of ‖W∗k ‖ below the threshold along the

diagonal line between the smaller Wk feature (for a threshold of W∗k < −1.5) and its

northwesterly neighbor. This can be supported by a bilinear interpolation between these

points (indicated by the green numbers in Fig. 45c).

The best way to deal with these opposed results is to bear in mind that the definitions

are based on different fields and that therefore it cannot be said which definition is

better. While the vorticity describes the amount of rotation, the Wk number relates the

value of the rotation to the deformation at the same points. On the one hand, we have

a pure value of the rotation, on the other hand we have a relational value that only

tells us how much larger, smaller or equal the rotation is in direct comparison to the

deformation.

Moreover, we have seen that the mean radii and mean circulations of the identified

systems in general decrease with increasing Wk threshold. In Fig. 46 we plotted these

mean values against each other. We observe a nearly linear dependence on this synoptic-

scale data. That means that with increasing Wk threshold the mean circulation seems

to depend linearly on the radius. Further, from the definition of the circulation as closed

path integral (107), we can expect the velocity to be constant inside the vortex:

Γ =

˛
S

u · dr ≈ 2πUR with U ≈ const. on the synoptic scale (243)
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Figure 45: Example of extended Wk contours for an arbitrarily chosen date (here 03-12-1999
12UTC, 6 hours before storm Anatol reached its maximum intensity). (a) Positive (red) and
negative (blue) Wk contours used in the systematic analysis (with |Wk| = (0.8, 1.0, 1.2, 1.5, 2.0);
lighter colors equal smaller absolute values of Wk; black box indcates the example system analysed
in (b,c); crosses/black circles indicate the locations of single centers/Wk features identified at a
Wk threshold of 1.0; (b) Wk contours for example system (high) and Wk-feature definition basd on
the four direct neighbors around each point; green numbers are derived by bilinear interpolation
of the Wk field; (c) Vorticity (in 10−5s−1) in the field of Wk < −1.5 and single centers (SC)
definition taking into account all 8 neighbors around each point. Orange boxes indicate the local
points of interest (local minima), and their corresponding neighbors (orange circles).
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where U is the wind speed and R is the radius of the system. This was also assumed

in Müller et al. (2015) and the result shown here further supports their assumptions.

The linear dependence might not hold at smaller scales. Otherwise, systems that are

smaller than about 160-180 km would be missing. This value is about the value of the

intercept of the linear fits applied to the curves in Fig. 46 for the assumption of zero

circulation69. A better fit that allows for Γ(R = 0) = 0 is a polynomial fit including

Figure 46: Mean circulation (m2/s) vs. mean radius (km) in dependence of the chosen Wk
threshold. The symbols with the highest radius correspond to a threshold value of Wk = 0.8.
Mean radii (and mean circulations) decrease with increasing Wk thresholds. Smallest mean radii
correspond to Wk = 2.0. The explicit thresholds are Wk = (0.8, 1.0, 1.2, 1.5, 2.0).

a quadratic and a linear term. A quadratic term alone would coincide with a constant

vorticity inside the vortex70 while the linear term alone coincides with constant velocity

inside the vortex.

We also compared the computing time for different Wk thresholds. Exemplarily, we

calculated the mean computing times that were necessary for the simultaneous identifi-

cation of Wk-features and single centers in the NCEP data (northern hemisphere, 1000

hPa level, only cyclonic systems) for the 40 timesteps of the first 10 days of December

1999 (see Table 8). In general, we observe that the mean times approximately divide

with respect to the Wk thresholds. However, variations of the computing times can be

69However, this is also the boundary of the size which is determined by the resolution of the data set
that is 2.5 degrees in this case (NCEP data).

70This follows from the definition of the circulation as area integral over the vorticity (see equations
(107) and (108)): Γ =

¸
S u · dr =

´
A0

ζdA where A0 is the area enclosed by the closed path S.
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Table 8: Mean computing time (s) and quartiles (s) needed for the identification of cyclonic
Wk-features and single centers per timestep for different Wk-thresholds (NCEP II Reanalysis,
northern hemisphere, 1000 hPa level, 01/12/1999 00 UTC–10/12/1999 18 UTC). Only the iden-
tification part of the program code is taken into account. Total computing time is for the whole
program is estimated in the last row of the table.

Wk-threshold 0.8 1.0 1.2 1.5 2.0

mean computing time (s) 4.73 2.39 1.33 0.67 0.30

0.25 quantile (s) 2.84 1.37 0.78 0.34 0.04

0.75 quantile (s) 6.57 3.35 1.91 0.94 0.44

approximate total computing time (min) ≈ 90 ≈ 60 ≈ 45 ≈ 30 ≈ 20

per month for the whole program

quite large from one timestep to another (see interquantile ranges in Table 8). Note,

that the explicit computing times futhermore depend on the season and on the height

level (not shown). The most interesting reduction might be the one between Wk = 1.0
and Wk = 1.2 since it is so close to the original vortex definition (Wk = 1.0 threshold).

It should be noted that the total program takes more computing time than the values

given here. For these values we only considered the part of the program that identifies

the Wk-features/single centers and determines their properties (center of circulation,

area). On average, the identification of cyclones in the NCEP data took about 1 hour

for a whole month, i.e. about 30 seconds per timestep, at the 1000 hPa level for a

Wk = 1.0 threshold. This higher computing time is mainly caused by the import and

export of the data, the calculation of the relevant fields, and so forth. Furthermore,

the time of the export (saving procedure) of the identified systems depends on the total

number of the systems and it takes longer the more systems are detected.

The question arises in which cases and if we might benefit from a larger or smaller Wk

threshold. In Schielicke et al. (2016), we proposed that a smaller threshold could be used

in order to detect early circulations and that a larger threshold can be used in order to

find stronger systems. Therefore, we plotted some timesteps during the development of

storm Anatol in Figure 47. On the one hand, we can detect the development of storm

Anatol earlier in case of a smaller threshold of Wk = 0.8 (Fig. 47a,b: two timesteps

earlier than published, see Fig. 34). Anatol seems to develop from a stretched filament

of a quasi-stationary cyclonic circulation that is located over the Atlantic ocean at about

60◦W,42.5◦N. Anatol cuts off from its ”mother circulation” at 02-12-1999 06UTC (Fig.

47c) where it is first detected as a single center system. On the other hand, we seem

to be able to longer follow the decay of cyclones with the threshold of Wk = 0.8 (Fig.

47e,f). However, the large computing time that is needed for the identification of Wk
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02-12-1999 18 UTC 03-12-1999 00 UTC(e) (f)

03-12-1999 06 UTC 03-12-1999 12 UTC(g) (h)

Figure 47: Extended Wk contours during the development of storm Anatol. Positive (red)
and negative (blue) Wk contours (with |Wk| = (0.8, 1.0, 1.2, 1.5, 2.0); lighter colors equal smaller
absolute values of Wk. Crosses/black circles indicate the locations of single centers/Wk features
identified at a Wk threshold of 1.0.
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features for a threshold of Wk = 0.8 is a disadvantage (see Tab. 8). The best application

of this small Wk- threshold might be in the analysis of single (extreme) cases. In these

cases, we might benefit from an earlier detection of the systems that allows a deeper

insight into the generation processes. This might especially be interesting in the early

detection of tropical cyclone circulations. For the analysis of large data sets a higher

Wk-threshold should be chosen.

For higher Wk-thresholds the computing time is considerably reduced (Tab. 8). We

observe that most of the multiple center systems split into smaller cores with respect

to the increasing Wk number (e.g. Fig. 47h). However, the Wk features detected with

a higher Wk-threshold (Wk = 1.5, 2.0) do not always coincide with the local vorticity

extrema or even miss the extrema (Fig. 47h). Thereby, a threshold of Wk = 2.0 means

that inside the detected region all points have a rotation rate that is at least twice as

high as the deformation rate.

In conclusion, it can not be satisfactorily answered which threshold one should choose

because it also depends on the investigated problem. The best option might be to stick

to the original Wk = 1.0 threshold following the definition of Truesdell (1953). Then,

we can interpret the Wk features as a larger scale circulation area that can contain

smaller systems. This is similar to the observation of a cyclone family where multiple

systems are embedded in a large-scale cyclonic circulation. In the following chapter we

will analyze vortex structures in differently resolved data sets ranging from large-scale,

synoptic to small-scale, convective vortices with help of the Wk-method that we have

introduced in this chapter. Thereby, we will use the Wk = 1.0 threshold. We will see

that the Wk-method represents a consistent method of vortex identification across the

scales.
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7 Statistical Analysis of Vortices on different Scales

Finally, we will analyze and compare the properties of vortex structures in differently-

resolved data sets. For the analysis of the data sets we will use the (extended) Wk-

method with the vortex identification criterion ‖W∗k ‖ > 1 and the tracking method

based on the Wk-method that we have introduced in chapter 6. The analysis in this

chapter also serves as a testbed for the new methods.

7.1 Data

We will analyze three different data sets. The main difference between the data sets

is the difference in their spatio-temporal resolutions. The horizontal resolutions range

from synoptic-scale resolving, horizontal resolutions of 2.5◦ (≈ 280 km) of the NCEP

reanalysis data set to meso-scale resolving 0.5◦ (≈ 55 km) of the CFSR (reanalysis)

data set to convective-scale resolving simulated data of different idealized supercell set-

ups carried out with the WRF model with a horizontal resolution of 1 km. It is very

important to bear in mind that differently-resolved data captures processes on different

scales. In finer resolutions small-scale processes might dominate the appearances of

the vortex structures and therefore the vortex type observed. In the following, we will

introduce the data sets in more detail.

7.1.1 NCEP II reanalysis data

The NCEP-DOE AMIP-II71 global reanalysis dataset is an updated version of the

NCEP-NCAR72 reanalysis data (Kanamitsu et al., 2002). It is available for the years

starting from 1979 to the present (satellite-data era) with a horizontal resolution of

2.5◦×2.5◦ on a latitude-longitude grid. This resolution is equal to a horizontal distance

of about 280 km at the equator. While the latitudinal grid spacing remains constant

the longitudinal grid spacing narrows approaching the poles and becomes exactly zero

at the poles. Among other parameters, the horizontal wind fields (u, v) are given on 17

pressure levels (1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20,

10 hPa) every 6 hours (00, 06, 12, 18 UTC). For the analysis we will use the horizontal

wind field data at the 1000, 600 and 300 hPa levels for the complete year 1999.

7.1.2 CFSR reanalysis data

The Climate Forecast System Reanalysis (CFSR) data was also conducted at the Na-

tional Center for Environmental Prediction (NCEP). It was calculated by a global,

coupled atmosphere-ocean-land surface-sea-ice model with a high resolution (T382L64,

71National Center for Environmental Prediction (NCEP)–Department of Energy (DOE) Atmospheric
Model Intercomparison Project (AMIP) II

72National Center for Atmospheric Research (NCAR)
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≈ 38 km, Saha et al., 2010)73. The data is available as gridded, global data set with

a spatial resolution of 0.5◦×0.5◦ (0.5◦ ≈ 55 km at the equator) on a regular latitude-

longitude grid and a temporal resolution of 1 hour. Thereby, an analysis with assim-

ilation of satellite data and conventional data (atmospheric model) and an analysis of

the sea ice and ocean is made at 00, 06, 12 and 18 UTC. From these standard analysis

times a 9 hour coupled guess forecast is started with hourly coupling to the ocean model.

Furthermore, the data is available on 37 pressure levels from 1000 hPa to 1 hPa74. We

restricted the analysis to the 1000, 600 and 300 hPa level. In our analysis, we used the

standard analysis times (00, 06, 12, 18 UTC) as well as the hourly forecast data for

the hours between two analysis steps. Because of the higher computational capacity

required for the analysis of vortices in the higher spatio-temporally resolved data, we

restricted the analysis to the northern hemisphere and to two months: June 1999 as a

summer month and December 1999 representing a winter month. Furthermore, we used

the data of January 1999 for the analysis of the vortex tracks.

The most important point concerning our analysis of vortex structures on different scales

is the higher spatio-temporal resolution compared to the NCEP II reanalysis data. With

the higher resolution, we are able to investigate not only vortices on the synoptic scale,

but also resolve mesoscale vortices. Furthermore, the higher resolution additionally gives

a higher resolved orography (see Figure 48 in comparison to the NCEP orography) that

can induce more, finer scale disturbances and vortices.

7.1.3 WRF simulated data

In order to obtain data on even finer scales, i.e. the convective scale, we needed to simu-

late the data since there is no higher resolved global reanalysis data set freely available so

far. Furthermore, we are specifically interested in data that represents vortex structures.

Therefore, we decided to simulate supercells that consist of rotating updrafts with a

convection-permitting, high resolution model: the Weather Research and Forecasting

model, abbreviated as WRF. WRF solves the fully-compressible, nonhydrostatic Euler

equations. It is a very flexible model that can be run on high-performance computer

clusters as well as on a single laptop.

We did the simulation with WRF model version 3.6.1 installed on a laptop. We initial-

ized the model in three runs with the originally implemented idealized supercell test case

of a predefined quarter-circle sounding after Weisman and Klemp (1982) (called original

run) and two modifications of this original sounding (called linear shear/doubled-speed

runs). Denoting the wind vector as u = (u, v, w), we can summarize the difference

73T382 stands for a spectral model resolution with truncation T382 with a resolution at the equator of
about 38 km or 0.313◦; and L64 stands for 64 vertical (sigma) levels(NCAR/UCAR ClimateDataGuide:
National Center for Atmospheric Research Staff (Eds), 2013).

74The CFSR data is available on the following atmospheric pressure levels (hPa): 1000, 975, 950, 925,
900, 875, 850, 825, 800, 775, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 225, 200, 175, 150,
125, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1.
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Figure 48: Orography fields: (top) NCEP II reanalysis data, (bottom) CFSR data. Labels on
the colorbar correspond to the contours plotted; the lowest level is 50 m.
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Figure 49: Input sounding for WRF simulation of idealized supercell: (Left) Log p-skew T
diagram with vertical profiles of temperature (black) and dew point (red); thin red diagonals are
isotherms, thick red curves are dry adiabats, green thin parallel lines are the isolines of the water
vapor mixing ratios (g/kg), green thick lines are moist adiabats and the isobars are horizontal.
(Right) Vertical wind profiles: (a) Original wind profile implemented in WRF after Weisman
and Klemp (1982); (b) Zero-v-wind profile: u-component (east-west) is equal to that in (a), but
the v-component (north-south) is set to zero; (c) Doubled-speed profile: The magnitudes of the u-
and v-components of the original wind profile (a) are doubled, the direction of the wind vectors
stay the same as in (a). Heights correspond to the pressure axis on the (left).

between the input soundings of the simulations as follows:

• Original: The original sounding and wind profile after Weisman and Klemp

(1982) are taken for the simulation.

• Linear shear: The v-component of the original vertical wind profile is set to zero

at every height level, while the u-component is equal to that of the original wind

profile. The other input parameters (temperature, dew point) are taken from the

original sounding.

• Doubled-speed: The magnitudes of the two wind-components u,v of the original

wind profile are doubled. The directions of the wind vectors remain unchanged.

The other parameters are taken from the original sounding.

We will refer to the different set-ups by these names: original, linear shear, doubled-

speed set-ups (or runs). See Fig. 49 for the initial input sounding and the different

initial wind profiles.

The model domain has a size of 250 km×200 km (x-,y-direction) with a horizontal reso-

lution of 1 km. A warm bubble of air is placed at the center of the domain at a height
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of 1.5 km triggering the convection. The shape of the bubble is a flattened sphere with

a vertical diameter of 3 km and a horizontal diameter of 10 km. At its center point the

potential temperature perturbation has a maximum of 3 K that decreases as the square

of the cosine function to the bubble boundary where it falls to zero.

We used open boundary conditions (to hinder interactions of the vortex structures with

each other from boundary effects).

7.2 Identification of vortex structures with help of Wk-method

The data will be analyzed in two steps. At first, we need to extract the vortices from the

fields. Next, we will analyze the frequency distributions of the vortex properties (starting

with radius and circulation, later energy of displacement and atmospheric moment)

concerning exponential or power law behavior. The Wk-method will be used in order to

identified vortex regions in the data fields. Thereby, a vortex region is identified in a

simply-connected region of ‖W∗k ‖ > 1. We have introduced this definition as Wk feature

earlier in chapter 6.4.2. Since we concentrate on the northern hemisphere, positive

vorticity is associated with cyclonic motion and negative vorticity with anticyclonic

motion. We will analyze Wk features only, because the computational effort, especially

for the higher-resolved data sets, stays manageable75 (see chapter 6.8 and discussion in

chapter 6.8.4). Moreover, we restricted the analysis of the reanalysis data sets to the

northern hemisphere and to the midlatitudes (30◦N–80◦N).

We will first analyze the number, radius (size) and circulation (intensity) of the vortices

with help of probability density distribution and complementary cumulative distribu-

tions as will be described in the following chapter 7.3 for every data set. Thereby,

the temporal evolution of the systems is not taken into account, i.e. the systems are

analyzed for every single time step as if they are independent of each other.

7.3 Probability density functions: Exponential vs. power laws

Many phenomena are observed to cluster around a typical value: the mean value. This

mean value of the distribution characterizes the phenomenon and deviations from that

mean are usually observed to be small(examples are the mean height of adult man

of a country, mean surface pressure or sea level heights Clauset et al., 2009). Those

distributions are called normal or Gaussian distributions and it is sufficient to describe

such a distribution by its mean value and its standard deviation.

75Although the single center definition introduced in chapter 6.4.2 might represent a better description
of large-scale low pressure systems, the Wk features represent the large-scale environment in which single
centers are embedded, e.g. cyclone families. Since the identification of single centers needs the contouring
function, the computational effort is too large: simple tests showed that the computation time for the
identification of single centers in case of the CFSR data was about 40 times larger than needed for the
identification of Wk features. However, a comparison of single center and Wk features in the different
data sets as well as an optimization of the identification via contours is a relevant topic of future work.
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However, there are also many phenomena which do not follow a normal distribution

but show rather large deviations from a calculated mean value. In some cases, the

calculation of the mean value makes no sense since it does not in the slightest describes

the distribution: Clauset et al. (2009) gives as an example the mean number of citizens

in a U.S. city that is only about 8000. This number seems absurdly small compared

to the millions of people living in big cities such as New York or Los Angeles. Hence,

the mean value has no meaning in this case and describes in no way the distribution.

These phenomena are better described by heavy-tailed distributions such as power law,

lognormal or stretched-exponential distributions. Those heavy-tailed distributions allow

for large deviations from the calculated average value of the data set.

In this work, we will focus on analyzing the distributions of the vortex properties re-

garding exponential and power law behavior, respectively. These two models constitute

two extremes: While on the one hand, exponential functions describe distributions that

are determined by characteristic scales, power laws on the other hand describe scale-

invariant behavior. We will first introduce general equations followed by a comparison

of different explicit probability density distributions.

7.3.1 General definitions

The probability of a continuous random variable X of being inside the finite interval

[a, b] is expressed with help of the probability density function p(t) (called PDF )

as (Bronstein et al., 2005, chapter 16.2.2.2)

Pr(a ≤ X ≤ b) =

ˆ b

a
p(t)dt with p(t) = C f (t) (244)

where C is a normalization constant and f (t) is a function. The corresponding cumu-

lative distribution function P(X) of a continuous random variable X (called CDF )

describes the probability of X being smaller than a threshold x. It is defined as

P(X) = Pr(X ≤ x) =

ˆ x

−∞
p(t)dt . (245)

In this thesis, we will rather use the complementary cumulative distribution func-

tion P̄(X) of a continuous random variable X (called CCDF ) that gives the probability

of X being larger than a threshold x and is defined as

P̄(X) = Pr(x > X) =

ˆ +∞

x
p(t)dt . (246)

If the total probability is normalized to one, we can also write

P̄(X) = 1− P(X) . (247)

149



7.3 Probability density functions: Exponential vs. power laws Lisa Schielicke

Many distributions with different numbers of tunable parameters exist. The higher

the number of the parameters is, the better probably is the fit of the function to the

observed data. Nonetheless, a distribution that has only few free parameter such as

the exponential or the power-law distributions has the advantage to be much easier to

be interpreted than those characterized by more parameters. In the following we will

introduce some distributions in more detail.

7.3.2 Exponential distribution

Besides a minimum value xmin ≥ 0, an exponential distribution is determined by only

one parameter λ > 0 that describes the typical decay of the distribution. A random

variable x is exponentially distributed if its probability density function p(x) = C f (x)

behaves as

p(x) ∼ e−λx (PDF) (248)

The normalization constant C depends on the value of xmin and on λ and can be deter-

mined by
´ ∞

xmin
Ce−λx′dx′ = 1. It follows that C = λeλxmin (see Table 9).

The complementary cumulative distribution function P̄(x) = CF̄(x) with F̄(x) =
´

f (x′)dx′

is also an exponential distribution with the same decay rate λ

P̄(x) ∼ e−λx (CCDF) (249)

The specialty about the parameter λ of an exponential distribution is that it has a unit

if x has a unit. More precisely, λ needs to have the reciprocal unit of x and therefore, the

reciprocal 1/λ has a special meaning: it is equal to the expected value of the distribution

or in other words the mean of the distribution. Furthermore, 1/λ describes a typical

scale of the distribution. The mean µ and variance σ2 of an exponential distribution

are given as

µ =
1
λ

, σ2 =
1

λ2 (250)

If we scale x by a constant factor c as x → cx̃, then the exponential distribution behaves

as follows

p(cx̃) ∼ e−λcx̃ = e−λ̃x̃ with λ̃ = λc (251)

We see that in this case the characteristic parameter is scaled by a factor of c, too, but

the exponential behavior remains.

A known example of exponential distributions is the distribution of radioactive decay

where λ is called the radioactive half-life. Another example was already given in section

5.2 as the distribution of atmospheric vortex (extratropical and tropical lows, tornadoes)
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intensities with respect to their energy of displacement.

7.3.3 Power-law distribution

Likewise to the exponential distribution, a power law distribution is described wholly –

besides a minimum value xmin > 0 – by a parameter α called the power law exponent

or scaling parameter. A random variable x is power law distributed if its probability

density function p(x) = C f (x) obeys a law proportional to

p(x) ∼ x−α (PDF) (252)

where f (x) = x−α. It is obvious that this would grow infinitely large for x → 0. Hence,

we need the lower bound xmin to be different from zero. The normalization constant is

then calculated from

1 =

ˆ ∞

xmin

Cx−αdx′ =

[
C

1− α
x−α+1

]∞

xmin

(253)

This is only possible for α > 1 since the term x−α+1 → ∞ for α < 1. Then the

normalization constant C reads (see Table 9)

C = (α− 1)xα−1
min for α > 1 (254)

The complementary cumulative distribution function (CCDF) of the power law distri-

bution is also proportional to a power law but the scaling parameter is different by

one:

P̄(x) ∼ x−α+1 (CCDF) (255)

A calculation of the moments of the power law distributions further shows that the

power law distribution has no finite mean for α < 2 and no finite variance for α < 3
(Newman, 2005). Most power laws of empirical data are observed to have values of α

in the range of 2 ≤ α ≤ 3 (e.g Newman, 2005). However, the Gutenberg-Richter law

which describes the relation of earthquake numbers and magnitudes has an empirically

determined value of α ≈ 1.6-1.8 which is smaller than 2 and therefore the distribution

of earthquake magnitudes has no finite mean. Furthermore, the distribution of tornado

magnitudes (atmospheric moments) also showed power law behavior over a large range

of moments with a value α ≈ 1.2 (see chapter 5.3 , Figure 20; and Schielicke and Névir,

2011, 2013).

A special property of power laws is their scale-invariance. This means that by scaling

the range of the distribution by a constant factor c, we do not change the shape of the
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distribution only the outcome range is multiplied by the constant factor c−α

f (cx) = (cx)−α = c−α f (x) ∼ f (x) . (256)

This property is unique to power laws (e.g. see chapter III.E in Newman, 2005, where

this statement is proved). Therefore, power laws seem to be connected to scale-free or

scale-invariant behavior.

7.3.4 Other distributions with at least two parameters: Normal, lognormal

and stretched-exponential distribution

Among the most common probability density functions p(x) = C f (x) beside the expo-

nential and the power law distributions are the normal, the lognormal and the stretched-

exponential distributions. We listed their functions f (x) and normalization constants

C in Table 9.

7.3.4.1 Normal distribution

The normal or Gaussian distribution is probably the most famous among these distribu-

tions. It is defined over the whole range of −∞ < x < +∞ and it is symmetric around

its mean value µ with a standard deviation σ (or variance σ2). A random variable is

normally distributed if its probability density function is proportional to

p(x) ∼ e−
(

x−µ√
2σ

)2

(PDF, normal distribution) (257)

which has its maximum at µ (also equal to the mean and median of the distribution)

and inflection points at µ ± σ. An important property of the normal distribution is

the following: The sum X = c1X1 + c2X2 with constants c1, c2 ∈ R of two random

variables X1, X2 that are independent and normally distributed with the parameters

µ1, σ1 and µ2, σ2, is also normally distributed with parameters µ = c1µ1 + c2µ2 and

σ =
√

c2
1σ2

1 + c2
2σ2

2 (Bronstein et al., 2005, chapter 16.2.4). This shows the connection

of the normal distribution to additive processes.

7.3.4.2 Stretched-exponential distribution

While data that is normally- or exponentially-distributed shows no large deviations from

their observed mean, we observe for some empirical data rather strong deviations. This

data is better described by heavy-tailed distributions such as the power law, lognormal

or stretched-exponential distributions. Distributions with a heavy tail are usually in-

vestigated in a double-logarithmic plot. In general, the empirical data is often observed

to occur (slightly) curved in that plots and a power law behavior often appears only

over a small range of the whole data set (see Avnir et al., 1998, who point out that

in physical systems the scaling range of the applied power laws covers on average only
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1.3 orders in magnitude.). This observed curvature can come from finite-size effects.

E.g. Laherrere and Sornette (1998) gives the example of earthquake sizes: there cannot

be an earthquake of infinitely large magnitude (on finite-sized Earth) since this would

imply infinitely high energy release.

Laherrere and Sornette (1998) propose alternatively to use the stretched-exponential

in order to describe the whole range of the data with help of one model. A random

variable x obeys a stretched-exponential distribution if its probability density function

p(x) = C f (x) behaves as

p(x) ∼ xβ−1 exp
(
−λ̃xβ

)
(PDF, stretched-exponential distribution) (258)

The smaller the exponent β, the heavier is the tail of the distribution. For β > 1, the

stretched-exponential distribution decays faster than the exponential. If the exponent

β < 1, the stretched-exponential falls off slower than the exponential function, that

is retrieved for β = 1. Moreover, if the exponent approaches zero (β → 0), Sornette

(2009) showed that the stretched-exponential pdf above a certain threshold converges

to a Pareto distribution. We can write λ̃ = 1/(λβ). Laherrere and Sornette (1998)

write the cumulative distribution function (CDF) of the stretched-exponential in the

following form

Pcum(x) ∼ exp
[
− xβ

λβ

]
(CDF : stretched-exponential distribution) (259)

where we have (after Laherrere and Sornette, 1998)

β: exponent that controls the behavior of the tail

λ: a typical multiplicative factor

λβ: a reference scale from which all moments of the distribution can be determined

Note, that the reference scale λβ has the same unit as x but to the power of β. In

general, the term λβ is not the mean of the distribution. Frisch and Sornette (1997)

showed that the stretched-exponential distribution follows from multiplicative processes

and Laherrere and Sornette (1998) interpret the reciprocal of the exponent 1/β as the

number of generations in the multiplicative process.

7.3.4.3 Lognormal distribution

Another heavy-tail distribution is the lognormal distribution. A continuous random

variable X is lognormally distributed if the random variable Y = log X is normally-

distributed with parameters µL, σ2
L. The probability density function of the lognormally
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distributed random variable X obeys

p(x) ∼ 1
x

exp

(
−
(

ln x− µ√
2σ

)2
)

(PDF : lognormal) (260)

for x > 0. The lognormal distribution is skewed and its mean µ and variance σ2 are

µ = exp
(

µL +
σ2

L
2

)
, σ2 =

(
exp(σ2

L)− 1
)

exp
(
2µL + σ2

L
)

(261)

Mitzenmacher (2004) pointed out that the lognormal distribution can appear as a

straight line over several orders of magnitude in a log-log plot. This can be seen by

calculating the logarithm of (260)

ln p(x) ∼ − ln x−
(

ln x− µ√
2σ

)2

= − 1
2σ2 (ln x)2 +

( µ

σ2 − 1
)

ln x− µ2

2σ2

If the variance σ2 is very large then the (ln x)2 (first term on the right) becomes small

compared to the linear term ln x (second term on the right). We have already men-

tioned that the sum of two independent, normally distributed random variables is also

normally distributed. From the relationship of lognormal and normal distribution76

it then follows that the product of two lognormally distributed independent random

variables is also lognormally distributed77. This shows the connection of lognormal

distributions and multiplicative processes which stands in contrast to the connection of

normal distributions and additive processes. Interestingly, Mitzenmacher (2004) showed

that a multiplicative model leads to a lognormal distribution if no lower bound is given

and the lowest classes of an income model can come close to zero. However, the same

model can lead to a power law distribution if there is a lower bound or a lowest class of

minimum income (called the Champernowne, 1953, model). The question of what pro-

cesses generate and which conditions lead to a specific distribution is an interesting, but

unfortunately too extensive topic at this point. The interested reader is referred to the

work of Mitzenmacher (2004) as a detailed introduction to the generative mechanisms

producing power law and lognormal distributions and multiplicative models. Finally,

we give a summary of some probability density functions in Table 9.

76We mentioned earlier that a continuous random variable X is lognormally distributed if the random
variable Y = log X is normally-distributed.

77Two lognormally distributed random variables X1 = 10Y1 and X2 = 10Y2 have the product:X1X2 =
10Y1 10Y2 = 10Y1+Y2 ⇔ Y1 + Y2 = log(X1X2). Since the sum of two normal distributions Y = Y1 + Y2
is also normally distributed, we conclude that the product of the two lognormally distributed random
variables X1X2 is also lognormally distributed.
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7.3.5 How to determine the appropriate probability density of complemen-

tary cumulative distributions?

Alstott et al. (2014) published a python package ”powerlaw” that allows to analyze and

visualize the probability density functions o different data sets (empirical and theore-

tical). They summarize three steps to determine possible power law behavior in a very

concise manner as: visualizing, fitting and comparing. Clauset et al. (2009) elab-

orate on the problems of identifying a power law in empirical data: often the slope is

approximated by a least-squares linear regression fit to the probability density distri-

bution in a double logarithmic plot. However, this can lead to significant systematic

errors as Clauset et al. (2009) point out. They also point out that it is better to use the

complementary cumulative distribution function (CCDF) in order to find the correct

power law exponent since no binning is needed for the CCDF.

Therefore, we will apply fits to the complementary cumulative distribution functions

and proof for either exponential or power law behavior by using a small part of the

distribution and push that small range piecewise through the whole range, calculating

for each part the parameters of the distributions. If the parameters stay constant over a

decent part of the distribution, this will give more evidence that we have found a good

fit to the distribution. The fits will be mainly produced with help of gnuplot. Only

in some cases we will use the python ”powerlaw” package of Alstott et al. (2014) that

offers the possibility to compare a pure power law with other distributions such as the

stretched-exponential or the lognormal distribution.

Table 9: Summary of the probability density functions p(x) = C f (x) of a continuous ran-
dom variable x with normalization constant C; C was derived such that

´ ∞
xmin

C f (x) = 1;

erfc(x) is the complementary Gaussian error function that is defined as erfc(x) = 1− erf(x) =
(2/
√

π)
´ ∞

xmin
exp(−t2)dt. This table is adopted from Clauset et al. (2009) (their Table 2.1) with

slight modifications. Note, that λ̃ = 1/(λβ).

Name of distribution function f (x) Normalization constant C

exponential e−λx λeλxmin

power law x−α (α− 1)xα−1
min

power law with cut-off x−αe−λx λ1−α

Γ(1−α,λxmin)

stretched-exponential xβ−1e−λ̃xβ
βλ̃eλ̃xβ

min

lognormal 1
x exp

(
− (ln x−µ)2

2σ2

) √
2

πσ2

[
erfc

(
ln xmin−µ√

2σ

)]−1

normal exp
(
− (x−µ)2

2σ2

) √
2

πσ2

[
erfc

(
xmin−µ√

2σ

)]−1
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7.4 Synoptic-scale vortices in NCEP reanalysis data (2.5◦ res.)

In this chapter, we will focus on the analysis of the number, the geometric properties

as well as the intensity (circulation) of the large-scale vortex structures (Wk features)

identified in the NCEP II data set.

7.4.1 Number of Wk features (NCEP)

Figure 50 shows the monthly means of the identified numbers of cyclonic and anticyclonic

Wk features per time step for the year 1999. Thereby, the temporal resolution of the data

is 6 hours. The means were calculated from a 3-days running mean (=12 time steps)

over the time series of the identified numbers per time step. The standard deviations of

these smoothed time series are in the order of ±2 systems. The three main observations

are (cf. Figure 50):

(1) The number of cyclonic Wk features compared to anticyclonic Wk features is of

comparable order at every level.

Figure 50: Monthly mean number of identified Wk features per time step for the year 1999
(NCEP II reanalysis, 30◦N–80◦N). The standard deviation of each curve is in the order of ±2.
Lows denote cyclonic, highs denote anticyclonic systems.
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(2) The number of systems at the 1000 hPa level is significantly larger (≈ 44) than

the number at the other two levels (≈ 28 at 300 hPa, Highs and ≈ 32 at the other

levels, see Figure 50).

(3) The curves reveal a seasonal behavior with a maximum number observed in the

summer months June to August and a minimum in the winter seasons from Jan-

uary to March and November to December.

The largest interseasonal variability is observed for the 300 hPa, Highs (∆N = 9.6) and

for the 1000 hPa, Lows (∆N = 7.4). Furthermore, the increase of the curves is relatively

weak up to the maximum in July and August, while the mean numbers fall off faster

afterwards (see especially 1000 hPa, Lows, Figure 50).

7.4.2 Radius of Wk features (NCEP)

We can make some general observations concerning the radii distributions of highs and

lows (see Fig. 51):

• Number: We have already observed that the number of Wk features (Wkf highs

and lows) is larger near the ground than at the upper levels. We can now see,

that this high number is mainly caused by small systems with radii smaller than

300 km.

• Dependence on height: In general, larger systems are more frequent in the

upper levels.

• Dependence on season: In winter (December) the systems can become much

larger than the systems in summer (June).

• Comparison of highs and lows: In the NCEP data, the Wkf highs can reach

radii considerably larger than the lows.

We applied exponential and power law fits piecewise to the data (Fig. 52). Both models

do not fit over the whole data range, but rather in small parts mostly between 500

and 1000 km (Fig. 52). Thereby, the highs better fit the exponential model than the

lows. The same applies for the power law model: only over a small range the power law

exponent is relatively stable especially in case of the winter highs (Fig. 52d). Although

less rapidly between 500 and 1000 km, the power law exponent fitting the lows increase

over the whole range which indicates that the power law model is not the best fit to the

data (Fig. 52c).

The black lines in Fig. 52 indicate the ranges over which the characteristic parameters

of the fits appears to be relatively stable. We observe that the mean radii determined

by the exponential fits are subsynoptic (R < 1000 km) for both highs and lows, but in

general the radii increase with height in most cases (see Fig. 52a,b). The mean radii
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(a) CCD of lows radii, NCEP

(b) CCD of highs radii, NCEP

Figure 51: (a),(b): Complementary cumulative distribution (CCD) of the radii of (a) cyclonic
(”lows”) and (c) anticyclonic (”highs”) Wk features identified in the NCEP II data (2.5◦ reso-
lution): June/December 1999 at the 1000/600/300 hPa levels. The CCDs are not normalized.
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of the lows are considerably smaller than the highs by a factor of about 1.5-2. Since

we extract vortex cores, the radii sizes are expected to be subsynoptic and the small

mean radii of the lows at the 1000 hPa level (about 200-250 km) are in line with the

earlier results (see chapter 6.7.4) as well as with the literature (e.g. Schneidereit et al.,

2010, who observed cyclone radii between 300 and 500 km at the 1000 hPa level). We

furthermore observe, that the characteristic radii of the summer lows at the 300 hPa

level (green solid line in Fig. 52a) are smaller than the radii of the summer lows at

the 600 hPa level (red solid line in Fig. 52a). This implies that the depressions in

summer are shallower than in winter. In contrast, the mean radii of the winter lows at

the 600 and 300 hPa levels (green and red dashed line in Fig. 52a) are approximately

(a) Exponential fit: Characteristic radii of
lows

(c) Power law fit: Exponent of lows

(b) Exponential fit: Characteristic radii of
highs

(d) Power law fit: Exponent of highs

Figure 52: (a),(b): Characteristic parameters (radii) of exponential fits piecewise applied to the
CCDs plotted in Fig. 51; (c),(d): Power law exponent of power law fits piecewise applied to the
data in Fig. 51. The piecewise fits cover a range of 200 km starting every 50 km. Axis of abscissae
gives the maximum radius of the particular fitting ranges. Black lines and corresponding labels
indicate a range over which the characteristic parameters determined by the fit are relatively
stable.
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Table 10: Stretched-exponential fits (radius, NCEP): Characteristic parameters λ, β of

the stretched-exponential fits CCDF ∼ exp(−λ̃xβ) with λ̃ = 1/(λβ) applied to the NCEP radius
data plotted in Fig. 51 with a starting value of 200 km.

June December

System, Ntot N/Ntot β λβ N∗tot N∗/Ntot β∗ λ∗β∗

Level (kmβ) (kmβ∗)

H,1000 5521 0.71 1.39 240 5398 0.67 1.29 250

H, 600 3873 0.83 1.81 290 3733 0.82 1.24 320

H, 300 3780 0.86 1.59 330 2955 0.83 1.27 360

L,1000 5639 0.70 2.46 160 5118 0.71 2.11 180

L, 600 3930 0.86 2.48 200 3750 0.86 2.12 250

L, 300 4011 0.86 2.60 190 3626 0.87 2.00 270

equal which might indicate that the systems are vertically well-organized throughout

the whole troposphere.

In case of the power law fit, the exponent is only relatively stable in case of the highs

and in ranges between 500 and 1000 km. This is less than one order in magnitude. The

exponent is smaller in the upper levels (green and red lines in Fig. 52d) compared to the

1000 hPa level (blue lines). Furthermore, the exponents are slightly smaller in winter

compared to the summer. This is in accordance with the earlier observation that the

systems in the upper levels and in winter show larger radii than near the ground or in

summer. However, both models — exponential as well as power law model — fail in

describing the whole data set. Therefore, we also applied several other models to the

data by applying the python powerlaw package of Alstott et al. (2014). We decided

to compare the results obtained by the stretched-exponential model since it seems to

fit well in most of the data sets and parameters we aim to analyze. Since we want to

compare different data sets and conditions, we decided to use a fixed starting value that

covers the majority of the data and compare the obtained results rather than searching

for the best fit78. The results are summarized in Table 10. In all cases, the exponents

β are larger than 1. Hence, the distributions decay faster than an ordinary exponential

distribution. Except of the highs in June whose β ranges between 1.4 to 1.8, the β are

nearly equal over height with about 1.3 (highs, December); 2.5 (lows, June) and 2.1

(lows, December). The variation of the exponents with respect to the height levels is

about 0.1 and therefore only slight. The interseasonal difference of the exponents is

larger (about 0.3 to 0.4) with faster decay rates in June.

78The powerlaw package by Alstott et al. (2014) offers parameters such as the Kolmogorov-Smirnov
distance to quantify the goodness of fit. The Kolmogorov-Smirnov distance is equal to the largest
vertical distance between to sets of data, e.g. between the applied model and the observational data.
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7.4.3 Circulation of Wk features (NCEP)

Likewise to the radius distributions, the circulation distributions depend on the height

level as well as on the season (see Fig 53a,b). Thereby, the circulation magnitudes

increase with height and can reach higher values in December compared to June. The

characteristic (mean) circulation magnitudes of the highs determined by an exponential

fit to the data are on average twice the magnitudes of the lows at the respective levels

(see Fig. 54a,b). Furthermore, we observe that the exponential fit applies well to the

tail of the distribution. Thereby, the cyclonic systems with magnitudes larger than

107 m2/s cover more than one order in magnitude, while the exponential fit applied to

the circulation magnitudes of the highs fits not so well (Fig. 54a,b). Interestingly, the

power law model seems to fit for lower circulation magnitudes around 106 m2/s especially

for the low pressure systems which can be seen by the relatively stable values for the

exponents in Fig. 54c,d.

The stretched-exponential fits reveal exponents that lie between 0.6 and 0.9 in all cases

with smaller β at the 1000 hPa level (β ≈ 0.6-0.7) and higher values at the upper levels

(β ≈ 0.8-0.9, see Table 11). Only the December highs have smaller β ≈ 0.6 at all levels.

While the exponents are almost equal for the systems at the upper levels, the reference

scales λβ grow by a factor of about 2.5 from the 1000 hPa level to the 600 hPa level and

further almost double from the 600 hPa level to the 300 hPa level where the reference

scales are the largest.

Table 11: Stretched-exponential fits (circulation, NCEP): Characteristic parameters

λ, β of the stretched-exponential fits CCDF ∼ exp(−λ̃xβ) with λ̃ = 1/(λβ) applied to the
circulation magnitudes data plotted in Fig. 53 with a starting value of 5 · 105 m2/s.

June December

System, Ntot N/Ntot β λβ N∗tot N∗/Ntot β∗ λ∗β∗

Level (m2/s)β (m2/s)β∗

H,1000 5521 0.86 0.67 0.98·107 5398 0.87 0.58 1.03·107

H, 600 3873 0.95 0.78 2.67·107 3733 0.95 0.63 2.78·107

H, 300 3780 0.98 0.76 5.46·107 2955 0.97 0.60 6.36·107

L,1000 5639 0.86 0.73 0.96·107 5118 0.87 0.63 1.25·107

L, 600 3930 0.95 0.85 2.60·107 3750 0.95 0.81 3.52·107

L, 300 4011 0.98 0.88 4.22·107 3626 0.98 0.83 5.83·107
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(a) CCD of circulation of lows, NCEP

(b) CCD of circulation magnitudes of highs, NCEP

Figure 53: (a),(b): Complementary cumulative distribution (CCD) of the circulation mag-
nitudes (absolute values) of (a) cyclonic (”lows”) and (c) anticyclonic (”highs”) Wk features
identified in the NCEP II data (2.5◦ resolution): June/December 1999 at the 1000/600/300
hPa levels.
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(a) Characteristic circulation of lows

(c) Power law exponent of lows circulation

(b) Characteristic |circulation| of highs

(d) Power law exponent of highs |circulation|

Figure 54: Circulations of cyclonic (”lows”) and anticyclonic (”highs”) Wk features identified
in the NCEP II data (2.5◦ resolution): June/December 1999 at the 1000/600/300 hPa lev-
els. (a),(b): Characteristic parameters (circulation magnitudes) of exponential fits and (c),(d):
power law exponents of the power law fits applied to the CCDs plotted in 53a,b, respectively. The
(nonlinear) fitting range is given by [105+0.1·t : 105.15+0.1·t] m2/s for t=0,1,2,...; axis of abscissae
gives the maximum circulation magnitudes of the particular fitting ranges. Black lines and cor-
responding labels indicate a range over which the parameters determined by the fit are relatively
stable.
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7.5 Meso-scale vortices in CFSR reanalysis data (0.5◦ res.)

In the following, we will analyze the vortices identified in the CFSR data in the same

manner as the NCEP data concerning their numbers, radii and circulations.

7.5.1 Number of Wk features (CFSR)

The number of the Wk features identified in the CFSR data strongly decreases with

height (Table 12). There is also a seasonal dependence: The number of Wk features

at the 1000 hPa level is higher in December compared to June while the identified Wk

features (highs and lows) are more numerous in June at the 600 and 300 hPa level.

The high number of Wk features near the ground is caused by a high number of small-

scale systems (see chapter 7.5.2). With height the areas of the Wk features increase

significantly (see the example in Fig. 55). Note, that a Wk feature in contrast to the

single center definition can include several vorticity centers and the areas grow together

due to smoother gradients.

7.5.2 Radius of Wk features (CFSR)

We plotted the complementary cumulative distributions functions of the radii of highs

and lows in Fig. 56. Since there are so many small systems, we decided to plot the range

up to 200 km (lows)/300 km(highs) with double-logarithmic axes. The data in this range

definitely not follows an exponential distribution but rather a distribution with a fatter

tail. Note, how the black and gray curves that describe exponential distributions cut

through the data in Figure 56. Similar to the NCEP data, there is a clear dependence

on the height level with more numerous small systems (R < 100 km) at the 1000 hPa

level. The number of large systems with radii R > 200 km increase with height. There

is no seasonal dependence at the 1000 and 600 hPa levels: the distributions are almost

equal (see Fig. 56a,b). Only the systems, highs as well as lows, at the 300 hPa level

show a clear seasonal dependence at the tail of the distributions with larger systems

Table 12: Average number of identified Wk features in the CFSR data per timestep (per hour)
in different height levels for June and December 1999.

Highs Lows

Level June December June December

1000 hPa 920 1000 780 830

600 hPa 590 510 500 430

300 hPa 320 220 230 180
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Figure 55: Wk features identified in different levels in the CFSR data at 3 December 1999
12 UTC (Anatol case): (a) 300 hPa; (b) 600 hPa; (c) 1000 hPa levels. Red/blue lines indicate
the Wk = +1/Wk = −1 contour and Wk features are enclosed by these contours.

occurring in December.

We observe that the radii distributions of highs and lows are well described with the

exponential model over the (sub)synoptic range between about 200 and 600 km (Fig.

57a,b). In particular, the 300 hPa December lows and highs even fit well the exponential

model up to radii of about 1000 km (lows) and 1200 km (highs), respectively. However,

the exponential model seems not to fit so well in the lowest radii ranges and in the upper

tails as can be seen by the strong increase and decrease, respectively, of the characteristic

parameter of the exponential fits (Fig. 57a,b). The power law model does not fit well in
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the upper tails either, however, in the lowest radii ranges the exponents of the piecewise

applied power law fits show a slighter increase and even a constant behavior up to about

400 km for the highs in 1000 hPa in June and December (Fig. 57c,d).

For comparison reasons, we applied the stretched-exponential model to the data that is

larger than R ≥ 60 km which is about the range where the distributions in Fig. 56a,b

approximately start to decay. This range covers about 50% of the upper level data

of the highs and lows, but only about 25% at the 1000 hPa level indicating that there

are much more smaller systems than in the upper levels (see Table 13). We observe

that the exponents β as well as the reference scale λβ of the stretched-exponential fits

increase with height from β ≈ 0.25 at the 1000 hPa level to β ≈ 0.6-0.8 at the 300 hPa

level. Only the lows show a slight variation of the exponents depending on the season

while there is no seasonal dependence in case of the highs. The closer the exponents are

to zero the fatter is the tail of the distribution. As we have already noted, this applies

especially to the systems at the 1000 hPa level, in particular to the highs (Fig. 57d).

Otherwise, the closer the exponent is to one, the distribution is rather described by en

exponential distribution which better fits at the 300 hPa level (especially for the lows,

see Table 13 and Fig. 57a).

7.5.3 Circulation of Wk features (CFSR)

The circulations identified in the CFSR data cover several orders in magnitude starting

with about 104 m2/s up to about 108 m2/s (Fig. 58). The observation concerning the

numbers of small circulations (more numerous at the 1000 hPa level), concerning the

height dependence (increasing circulations with height), with respect to the seasonal

dependence (only occurs at the 300 hPa level with larger circulations in December

Table 13: Stretched-exponential fits (radius, CFSR): Characteristic parameters λ, β of

the stretched-exponential fits CCDF ∼ exp(−λ̃xβ) with λ̃ = 1/(λβ) applied to the CFSR radius
data plotted in Fig. 56 with a starting value of 60 km.

June 1999 December 1999

System, Ntot N/Ntot β λβ N∗tot N∗/N∗tot β∗ λ∗β∗

Level [kmβ] [kmβ∗ ]

H,1000 658816 0.26 0.21 0.015 743080 0.23 0.21 0.011

H, 600 424028 0.43 0.49 22 375716 0.41 0.52 31

H, 300 232577 0.54 0.62 74 165884 0.49 0.55 77

L,1000 559808 0.28 0.42 3.4 620005 0.25 0.53 10

L, 600 357286 0.43 0.54 27 322361 0.44 0.66 54

L, 300 167098 0.55 0.79 95 137239 0.52 0.74 127
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(a) CCD of radius of lows, CFSR

(b) CCD of radius of highs, CFSR

Figure 56: (a),(b): Complementary cumulative distribution (CCD) of the radii of (a) cyclonic
(”lows”) and (c) anticyclonic (”highs”) Wk features identified in the CFSR data (0.5◦ resolution):
June/December 1999 at the 1000/600/300 hPa levels.
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(a) Characteristic radius of lows

(c) Power law exponent of lows radius

(b) Characteristic radius of highs

(d) Power law exponent of highs radius

Figure 57: Analysis of radii of cyclonic (”lows”) and anticyclonic (”highs”) Wk features identi-
fied in the CFSR data (0.5◦ resolution): June/December 1999 at the 1000/600/300 hPa levels.
(a),(b): Characteristic parameters (radii) of exponential fits and (c),(d) power law exponents of
power law fits, applied to the CCDs plotted in 56a,b, respectively. The fitting range is given by
[25 · t : 100 + 25 · t] m for t=1,2,...; axis of abscissae gives the maximum radius of the particular
fitting ranges. Black lines and corresponding labels indicate a range over which the characteristic
parameters determined by the fits are relatively stable.

compared to June) and concerning a comparison of highs and lows (highs tend to have

higher circulations in the tail of the distribution than the lows) are similar to the results

observed for the CFSR radii.

The piecewise exponential fits show that the exponential model can only be applied to

the tail of the distributions of highs and lows (Fig. 59 a,b). The exponential model

might fit for the smallest circulations as well, however the identification at this small

range might fail in identifying all systems. The piecewise power law fits of highs and lows

at all heights lead to nearly constant exponents in the range of about 105 − 106 m2/s.

Additionally, except for the 300 hPa lows, the power law exponents are relatively stable

in the range of about 106− 107 m2/s with a different, larger value of the exponents (see
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(a) CCD of circulation of lows, CFSR

(b) CCD of |circulation| of highs, CFSR

Figure 58: (a),(b): Complementary cumulative distribution (CCD) of the circulation magni-
tudes of (a) cyclonic (”lows”) and (c) anticyclonic (”highs”) Wk features identified in the CFSR
data (0.5◦ resolution): June/December 1999 at the 1000/600/300 hPa levels.
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(a) Characteristic circulation of lows

(c) Power law exponent of lows circulation

(b) Characteristic |circulation| of highs

(d) Power law exponent of highs |circulation|

Figure 59: Analysis of circulation magnitudes of cyclonic (”lows”) and anticyclonic (”highs”)
Wk features identified in the CFSR data (0.5◦ resolution): June/December 1999 at the
1000/600/300 hPa levels. (a),(b): Characteristic parameters (circulation magnitudes) of ex-
ponential fits and (c),(d) power law exponents of power law fits, applied to the CCDs plotted
in 58a,b, respectively. The (nonlinear) fitting range is given by [104+0.1·t : 104.1+0.1·t] m for
t=0,1,2,...; axis of abscissae gives the maximum radius of the particular fitting ranges. Black
lines and corresponding labels indicate a range over which the characteristic parameters deter-
mined by the fits are relatively stable.

Figure 59 c,d).

For comparison reasons, we also applied stretched-exponential fits to the data (see Table

14). These fits show for all distributions independent of season, height and vortex

type approximately the same (stretched-exponential) exponent with a value of about

β ≈ 0.3 which is close to zero. Hence, the distributions have rather fat tails. However,

the reference scales λβ that characterize the stretched-exponential distributions show a

clear dependence on height where the largest values occur at the 300 hPa level. These

reference scales of circulation increase with height. The λβ values are in general smaller

in December compared to June while the exponents β are slightly smaller in December

compared to June, too.
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Table 14: Stretched-exponential fits (circulation, CFSR): Characteristic parameters λ, β

of the stretched-exponential fits CCDF ∼ exp(−λ̃xβ) with λ̃ = 1/(λβ) applied to the circulation
magnitudes of the CFSR data plotted in Fig. 58 with a starting value of 5 · 104 m2/s.

June December

System, Ntot N/Ntot β λβ N∗tot N∗/Ntot β∗ λ∗β∗

Level (m2/s)β (m2/s)β∗

H,1000 658816 0.75 0.27 0.05·106 743080 0.75 0.27 0.04·106

H, 600 424028 0.90 0.33 0.49·106 375716 0.90 0.28 0.30·106

H, 300 232577 0.95 0.30 1.57·106 165884 0.91 0.22 0.45·106

L,1000 559808 0.78 0.34 0.21·106 620005 0.76 0.30 0.13·106

L, 600 357286 0.90 0.31 0.50·106 322361 0.90 0.28 0.43·106

L, 300 167098 0.93 0.30 2.30·106 137239 0,90 0.27 1.97·106

The small values of β (close to zero) furthermore imply that the distributions rather

resemble power law distribution than exponential ones. This is in accordance with the

relatively stable exponents that were observed in the piecewise power law fits as we have

already mentioned (see Figure 59c,d). Subsequently, we want to find out what happens

if we further increase the horizontal resolutions. However, since there is no finer-resolved

reanalysis data set available, we will study simulated data in the following section.
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7.6 Convective-scale vortices in WRF’s simulated supercells

(1 km res.)

The case of convective scale vortices is of special interest not only with respect to

the statistical properties of the vortices. It is rather a testbed for the ability of the

Wk-method to identify the vortex structures. So far to our knowledge, no publication

exists that deals with the identification of vortices on different scales with help of a

uniform method. Vorticity for example has a different magnitude on the convective

scale compared to the synoptic scale. Furthermore, pressure perturbations are small

on the convective scale and might be blurred by a larger-scale background gradient.

Therefore, we will first present some results for different time steps and height levels.

In general, convective storms are categorized in three storm types: short-living, isolated

single cells; multicells composed of several single cells; and supercells that are character-

ized by a persisting (>60 min), rotating updraft moving to the right or left of the mean

wind (Weisman and Klemp, 1984). Studies showed that the storm type depends on the

environmental conditions. While supercells prefer environments with moderate to high

buoyancy and high vertical wind shear, multicells rather prefer high buoyancy and low

to moderate shear (see Weisman and Klemp, 1984, and references therein). Vertical

shear influences the storm organization in two ways (Markowski and Richardson, 2011):

(1) On the one hand, the vertical shear controls the interference of the updraft with the

downdraft, outflow and precipitation. In low-shear environments the rain-cooled out-

flow can cut off the relatively warm airflow into the supercell that feeds the convection

while this cut-off process is hindered in high-shearing environments; (2) On the other

hand, the shear has influence on dynamic vertical pressure gradients that control the

lifting of air along the gust front. In weak-shear environments the lifting is weak too,

the initiation of new cells fails. As a result, only isolated, short-lived single cells occur.

From the literature we know what to expect from the simulations: Weisman and Klemp

(1982, 1984) analysed the appearance of deep moist convection in purely linear shear

and in directional shear environments for several shear and buoyancy magnitudes. Their

results for purely linear or unidirectional shear cases showed that weak shear leads to

short-lived single cells, low to moderate shear to multicells and moderate to high shear

leads to splitting storms and supercells (Weisman and Klemp, 1982). Furthermore, the

modelled convection in these purely linear shear cases is symmetric with respect to the

shear axis. In the case of clockwise curved hodographs, i.e. in directional shear environ-

ments, the supercell convection develops on the right flank and multicellular convection

is favoured on the left flank of the developing storm systems (Weisman and Klemp,

1984). The higher the mean shear is, the larger is the deviation of the right-moving

supercell from the mean motion of the storm system. Furthermore, the results found

in Weisman and Klemp (1982) concerning the low to high shear environments are also

confirmed for directionally varying shear environments. However, in directional shear,
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the symmetry observed in the unidirectional shear cases is broken and the supercellular

structures occur on the right flank while multicells preferably occur on the left flank.

This observation is reversed for counterclockwise hodographs.

The motion of a supercell is mainly caused by linear and nonlinear dynamic pressure

perturbations. This can be seen from the calculation of the divergence of the equation

of motion neglecting the Coriolis force terms. Thereby, the velocity gradient tensor en-

ters the equations and the contributions of the stain-rate tensor and the rotation tensor

become important. An explicit derivation can be found in e.g. Markowski and Richard-

son (2011, chapter 8.4.5). Following Markowski and Richardson (2011) we will give a

short explanation in the following. The nonlinear dynamic forcing stems from the fact

that a vertical vorticity extremum is associated with a low pressure perturbation. As a

horizontal vortex line is tilted to the vertical due to the updraft, the vertical vorticity

extrema will be arranged on the flanks of that updraft in a linear shear environment

(characterized by a straight hodograph). Hence, low pressure perturbations occur collo-

cated with the vorticity extrema. This induces a (symmetric) split of the storm system.

Thereby, the cyclonic system moves to the right and the anticyclonic system to the left.

This especially applies to the early stages of the supercell’s life cycle. The linear contri-

bution to the dynamic pressure perturbation stems from the interaction of the supercell

with the environmental shear. It can be shown that in an environment characterized by

a clockwise curved hodograph an upward-directed vertical pressure gradient exists on

the right flank of the updraft and a downward-directed vertical pressure gradient exists

on its left flank. As a result, the right-moving storm is enhanced while the left-moving

system is suppressed. If the hodograph is curved counterclockwise, the opposite is true

and the left-mover becomes stronger. The stronger the curvature of the hodograph is,

the stronger are the enhancement and the suppression, respectively.

The evolution of the convective cells of the doubled-speed simulation is plotted in Fig.

60 for different times (t = 45, 90, 120 min) and height levels (z ≈ 0.5, 3.5, 7.5 km). We

observe that most of the cells move with the background stream (e.g. near the ground,

the cells move predominantly to the southwest as in Fig. 60g-i while they move to

the northeast in the upper levels as in Fig. 60a-f) The cells trigger the initiation of

more cells during their development along an outflow boundary. The convective cells

are connected to vortices of positive and negative circulations probably because the

initially horizontal vorticity is tilted into vertical vorticity along with the uplifting and

descending air in the cells.

The cell with the highest intensity (i.e. the highest circulation) forms as one of the

first cells. It is a right-moving supercell that persist until the end of the simulation

(see black boxes in Fig. 60, the supercell can be observed in the upper levels, but not

near the ground). The thin red and blue lines indicate the tracks of the cells. These

tracks were formed by connecting appropriate cells in successive time steps (see chapter

6.5). In the beginning of the simulation the supercell is not tracked properly. A reason
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Figure 60: Vorticity (in 1/s, color shaded) and vortex structures (black closed contours and the
centers of circulation are indicated by crosses) identified with help of the Wk-method for several
time steps and height levels of the doubled wind speed simulation done with WRF. Thin red and
blue lines indicate the tracks of the cells with small numbers (the track numbers) plotted at the
endpoints of the tracks and crosses indicating the actual positions of the cells in that time step.
Black arrows indicate the background velocity vector and its magnitude that is based on the initial
hodograph.
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might be that in the first time steps the cells especially grow in height before they start

moving (cf. also Fig. 26 in chapter 6.5). However, some time steps after initiation of

the supercell, the cells are tracked correctly and the tracks show nicely the deviation

from the mean direction of all cells (in the upper levels: see Fig. 60b,c,e,f).

We additionally plotted the evolution of the vertical structure of the supercell vortex

whose positive circulation core is accompanied by a negative core (see Fig. 61). We

think, that these two vortex structures in fact belong to the same vortex tube corre-

sponding with the up- and downdraft of the supercell as indicated by the black dashed

lines in Figure 61(d). However, the Wk-method used here is defined such that we can

analyze the vortex structures in a plane, i.e. vortex patches where the vertical vorticity

is larger than the deformation. In order to see the missing part of the vortex tube at the

top of the troposphere, we would need to use the three-dimensional version of the Wk-

method. This is of course possible, however we are highly interested in the information

of the sign of the circulation in a plane which is more easily to obtain with help of the

two-dimensional Wk-method. Although we will see that there is not much difference in

the statistics of convective-scale vortices with positive and negative circulations, there

is a large difference in the synoptic scale between lows (positive circulations) and highs

(negative circulations).

Nonetheless, it is astonishing that the Wk-method seems to work so nicely in the con-

vective scale, too. The advantage of the Wk-method over other vortex identification

methods in meteorology is that we do not need to change any threshold values when

changing the horizontal scale. Therefore, we will be able to compare the statistics of

vortices identified on different scales. First, we will analyze the convective scale vor-

tices in the following and then go on to a synopsis chapter comparing the results of the

vortices identified in all three data sets.

7.6.1 Radius of Wk features (WRF)

The radii distributions of the Wk features identified in the original and in the linear-

shear WRF runs follow over nearly the whole data range the same distribution (see

Fig. 62, blue and red curves). Only the cyclonic vortices of the original run have some

larger systems, which can be attributed to the long-lasting, right-moving supercell that

forms in this run. This is confirmed by the piecewise applied exponential fits that show

a relatively stable behavior over nearly the whole data range revealing approximately

the same characteristic (mean) radii with R1,4 = 1.9 km (original) and R2,5 = 1.7 km

(linear-shear) for these runs (Fig. 63a). Note, that the piecewise fits are only applied up

to radii of about R ≈ 6 km in the original and linear-shear case since we did not want

to apply the fits to less than 4 data points. The doubled-wind speed cases are better

described by power laws than by exponential laws (see Fig. 63b). Thereby, the averaged

power-law exponent of the cyclonic systems is slightly smaller than the exponent of the

anticyclonic systems. The detected anticyclonic Wk features can even have larger sizes
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(a) t=15 min (b) t=30 min (c) t=45 min (d) t=60 min

(e) t=75 min (f) t=90 min (g) t=105 min (h) t=120 min

Figure 61: Vertical development of a supercell: Isosurfaces of (smoothed) vorticity[
(±1,±5) · 10−3 s−1 ] of the right-moving supercell in the field of Wk > 1 (lighter colors are

equal to low vorticity magnitudes) for different time steps of the doubled wind speed WRF simu-
lation. Positive vorticity surfaces are plotted in red and negative in blue. Cells are viewed from
the back (cell motion indicated by the thick black arrow). The sector plotted is cut from the large
field given in Fig. 60 where its approximate position is given by the black box. Black dashed
lines in (d) indicate the possible connection of the vorticity tubes.
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than the cyclonic ones (see the fatter tail of the dashed green line compared to the solid

green line in Fig. 62). Looking at the example figures (Fig. 60f) of the vorticity fields

and identified Wk features reveals that the large anticyclonic systems might not be very

intense (see the low vorticity magnitudes of the large anticyclonic system located at the

top right corner (x ≈ 240; y ≈ 170), in Fig. 60f). We also applied stretched-exponential

fits to the distributions of the WRF runs in order to compare the results with that of the

NCEP and CFSR data (Table 15). However, the parameters — the exponent β and the

reference scaling parameter λβ — strongly depend on the starting value (see Table 15).

Therefore, it is not easy to interpret the results. In the beginning of the distributions, the

radii are discrete coinciding with one, two, three, and so forth grid points of 1× 1 km2

area79. While the application of the stretched-exponential distributions to the majority

of the data set (about 70-80%) with a starting radius of R = 780 m80 shows that the

exponents β increase with increasing curved shear, however a larger starting radius of

R = 1260 m (original and linear-shear case) and R = 1780 m (doubled-wind speed case),

respectively, leads to exponents that are almost equal in the order of β ≈ 0.3-0.4. The

latter cases cover about 30% of the data. The reference scale λβ for the different starting

values also increase with increasing curved shear although the values of the scales are

79Since the grid point areas A of the vortices are multiples of 1 km2, the radii R =
√

A/π have uneven
values.

80A radius of 780 m corresponds to two grid points.

Figure 62: Complementary cumulative distribution (CCD) of the radii of cyclonic and anticy-
clonic Wk features identified in three different WRF supercell simulations (1 km resolution) at a
height of approximately 3.5 km.
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(a) Characteristic radii determined by exponential fits

(b) Exponents determined by power law fit

Figure 63: Results of fits applied to the complementary cumulative distribution plotted in Fig.
62: (a) Characteristic parameters (radii) of exponential fits applied to the CCDs in Fig. 62; (b)
Exponents of power law fits applied to the CCDs in Fig. 62. The fits were applied piecewise to
the data (in 250 m steps starting with 500 m) with a fitting range of 1000 m.

considerably different (Table 15). Interestingly, most of these values are smaller (for the

larger radii starting values even significantly smaller) than the resolution of the WRF

data.
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Table 15: Stretched-exponential fits (radius, WRF): Characteristic parameters λ, β of

the stretched-exponential fits CCDF ∼ exp(−λ̃xβ) with λ̃ = 1/(λβ) applied to the radii of
different WRF set-ups plotted in Fig. 62 with a starting value of 780 m.

Cyclonic systems Anticyclonic systems

System, Rstart Ntot N/Ntot β λβ N∗tot N∗/N∗tot β∗ λ∗β∗

Level (m) (m)β (m)β∗

Linear-shear 780 4969 0.72 0.46 94 4968 0.72 0.42 63

Original 780 4470 0.73 0.56 251 4487 0.72 0.65 347

Doubled-speed 780 5920 0.83 0.84 905 5956 0.85 0.83 1080

Linear-shear 1260 4969 0.34 0.31 4.3 4968 0.34 0.28 1.6

Original 1260 4470 0.39 0.29 3.3 4487 0.37 0.34 11

Doubled-speed 1780 5920 0.33 0.39 48 5956 0.39 0.36 40

Figure 64: Complementary cumulative distribution (CCD) of the circulations of cyclonic and
anticyclonic Wk features identified in three different WRF supercell simulations (1 km resolution)
at a height of approximately 3.5 km.

7.6.2 Circulation of Wk features (WRF)

The complementary cumulative distributions of the positive and negative circulations

of the identified Wk features in the WRF data are shown in Figure 64. We plotted

the lower circulation magnitudes (‖Γ‖ < 5 · 104 m2/s) in a double-logarithmic manner
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(a) Characteristic radii determined by exponential fits

(b) Exponents determined by power law fit

Figure 65: Results of fits applied to the complementary cumulative distribution plotted in
Fig. 64: (a) Characteristic parameters (circulations) of exponential fits applied to the CCDs
in Fig. 64; (b) Exponents of power law fits applied to the CCDs in Fig. 64. The fits were
applied piecewise to the data. Thereby for circulations smaller than 104m2/s, the fitting ranges
increased gradually as [10(2+0.25·t) : 10(2.5+0.25·t)] where t is a natural number between 0 and 10.
For circulations larger than 104m2/s, the fitting range had a constant length of 1.5 · 105m2/s
and the steps were 2 · 104m2/s.

and the higher circulations (‖Γ‖ ≥ 5 · 104 m2/s) in a single-logarithmic plot. While the

lower circulation magnitudes neither follow an exponential distribution nor a power law

distribution, we find evidence for both models in the tails of the distributions. Thereby,

the exponential law fits well in the linear-shear case and the power law fits well in the
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Table 16: Stretched-exponential fits (circulation, WRF): Characteristic parameters λ, β

of the stretched-exponential fits CCDF ∼ exp(−λ̃xβ) with λ̃ = 1/(λβ) applied to the circulations
of different WRF set-ups plotted in Fig. 62 with a starting value of 5 · 102 m2s−1.

Cyclonic systems Anticyclonic systems

System, Ntot N/Ntot β λβ N∗tot N∗/Ntot β∗ λ∗β∗

Level (m2/s)β (m2/s)β∗

Linear-shear 4969 0.73 0.37 0.76·104 4968 0.73 0.36 0.75·104

Original 4470 0.75 0.32 0.66·104 4487 0.76 0.36 0.90·104

Doubled-speed 5920 0.83 0.33 0.75·104 5956 0.85 0.36 1.14·104

doubled-speed run (especially for the cyclonic circulations) as can be seen by the piece-

wise applications of the laws and their relatively stable parameters over a wide range

of the distributions (see Fig. 65a,b). Furthermore, it should be noted that the distri-

butions of positive and negative circulations in the linear-shear case are approximately

equal and the differences between the distributions of positive and negative Wk features

increase with increasing directional and speed shear.

We also applied the stretched-exponential model of the python powerlaw package (Al-

stott et al., 2014) to the data (summarized in Table 16). The stretched-exponentials

fit well in all cases and, interestingly, in all cases the exponent β of the distributions

are similar with values between 0.32 and 0.37. This result is even stable for starting

circulation values covering the majority of the data (covering at least about 50% of the

data, not explicitly shown here). The reference scales (circulation magnitudes) λβof

the distributions are in the order of 103 to 104. While these reference scales are almost

equal (≈ 7 · 103 (m2/s)β) for the cyclonic systems in all runs, the typical scales of the

anticyclonic systems increase slightly with increasing intensity of the initial shear mag-

nitude (directional and speed shear). Note, how similar the values of all parameters

(including the total numbers) are in the case of the linear-shear run. Furthermore, we

observe the highest number of Wk features in the doubled-speed run while the smallest

number of Wk features is detected in the original run. The highest background speed,

i.e. the fastest motion of the convective cells, occurs in the doubled-speed run. Since

the systems can move outside the domain (non-periodic boundary conditions), this also

implies that a higher number of systems is triggered in case of the doubled-speed run

compared to the other two runs.
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7.7 Summary and discussion of results of NCEP, CFSR and

WRF data concerning circulation and radius distributions

In summary, we tested the distributions of circulation and radius of the Wk features in

the NCEP, CFSR and WRF data sets for exponential and power law behavior. The re-

sults are summarized in Table 17 below. In short, we can conclude that the subsynoptic

Wk features are rather power law distributed with respect to radius and circulation while

the synoptic systems are rather exponentially distributed. Since power law and exponen-

tial distributions only have one tunable parameter, the models only fit in small ranges

of the data. Therefore we additionally investigated the distributions with help of other

functions that are characterized by at least two tunable parameters. Thereby, we used

the python powerlaw package of Alstott et al. (2014) which allows to test for multiple

functions. We found, that the best fit in nearly all cases — especially for the circula-

tion magnitudes — is the stretched-exponential distribution (CCDF∼ exp(−λ̃xβ) with

λ̃ = 1/(λβ)). Interestingly, the exponents β of the CCDF concerning the circulation

Table 17: Summary of the results concerning radius and circulation. Here, the synoptic range
is defined for radii larger than 500 km and circulations larger than 107 m2/s.

Data set Subsynoptic range Synoptic range

R
A

D
I

U
S

NCEP · exponentially distributed over

a large range (Dec. lows, highs)

· decays faster than exponential

(June lows)

CFSR · rather power law distributed · rather exponentially distributed

WRF Depends on the simulation:

· exponential (linear shear run)

· power law (doubled-speed run)

C
I

R
C

U
L

A
T

I
O

N

NCEP · rather power-law distributed for · exponentially distributed for

magnitudes of order 106 magnitudes of order 107-108

CFSR · rather power-law distributed for · exponentially distributed for

magnitudes of order 105 and 106, magnitudes of order 107-108

albeit with different exponents

WRF Depends on the simulation:

· exponential (linear shear run)

· power law (doubled-speed run)
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magnitudes are approximately equal for all systems in the CFSR data set (lows/highs

in summer/winter) with values between 0.2 and 0.3. In the WRF data set we observe

slightly larger exponents β of about 0.35 in all runs (cyclonic/anticyclonic systems).

These low β values indicate that the distributions have a heavy tail (heavier than ex-

ponential). In the NCEP data set, the β values are higher and lie between 0.6 and 0.9

indicating that these distributions are closer to an exponential distribution.

Laherrere and Sornette (1998) point out that stretched-exponential distributions are

connected to multiplicative processes and that the inverse of β can be interpreted as the

number of levels (or generations) in the multiplicative process. For β equal to 0.2 or 0.3

(CFSR/WRF data), we derive a number of 1/β = 1/0.2 = 5 or 1/β = 1/0.3 ≈ 3 gener-

ations. In addition, we observed that the reference scales of the stretched-exponentials

are 1-2 orders in magnitude smaller than the expected circulation magnitudes of the

resolved systems in the data set (see Table 1)81. We can hypothesize that 3-5 of the

systems with reference scale λβ generate the observed systems in a multiplicative man-

ner. In contrast to an additive generation process, the multiplicative process implies

that the interaction of the involved systems might be nonlinear which would lead to

a stronger intensification than expected from a linear model. How this multiplicative

model really applies to the atmosphere is not clear, but further future investigations

of this topic would be interesting. Especially since we observe the same exponent, i.e.

the same generation process, across different scales. Speculating, this could mean that

a convective-scale system that was generated by a number of smaller-scale systems is

again involved as one of the systems that generate a larger scale (mesoscale) system,

and so forth. It should be noted that we only studied the behavior of Wk features. This

might influence the distributions, especially in the higher ranges of the distributions.

Hence, the results should be tested and compared in a future study for single centers, too.

Concerning the radius, the stretched-exponential distributions show different results.

The NCEP data shows exponents β much larger than 1 and even larger than 2 in case

of the lows. This means that the distributions fall off much faster than an ordinary

exponential distribution. The stretched-exponential fits applied to the CFSR data in-

dicate a clear dependence on height and a dependence on the season with the smallest

values of β at the lowest level (resembling power law distributions with heavy tails)

and increasing values of β at the upper levels of the troposphere (resembling exponen-

tial distributions with typical scales). These interesting results might be related to the

more small-scale turbulent structures caused by orographic effects and friction in the

lowest levels while the flow is more smooth in the upper levels. The results in case of the

81We observe reference scales of about Γre f ,CFSR = λβ = 105-106 m2/s in the CFSR data set and

Γre f ,WRF = λβ = 103-104 m2/s while we expected typical circulations of 107 m2/s for intense tropical

cyclones (hurricanes) and 106 m2/s for supercells. Probably, the less-intense mesoscale and convective-
scale systems are one order in magnitude smaller.
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WRF data are not consistent over the whole range of the data set. For the systems with

radii larger than about 1.2 km (or > 1.7 km in the doubled-speed run) the β values of

the stretched-exponential distributions are approximately equal for all runs with values

around 0.35. This is similar to the β values of the circulation distributions.

Moreover, we want to compare our results to the existing literature. Usually, the publi-

cations concerning the distributions of cyclone radii or intensity do not discuss the form

of the statistical model. Hence, we will only compare the typical values observed in

other studies. The cyclone radius is a parameter that was studied by some authors and

the result found here that the typical scale of the radii is subsynoptic is also confirmed

in other publications such as in Schneidereit et al. (2010) (see also our discussion in

chapter 6.7.4). It is not easy to compare the circulation results with existing publi-

cation since the circulation is a parameter that is only rarely used in the atmospheric

sciences. An exception is the publication of Sinclair (1997) who found that the circu-

lation magnitudes of cyclones in NCEP data are in the order of 107 m2/s and larger.

This is in accordance with our results. Moreover, a theoretical estimation yields for

typical wind magnitudes of U ≈ 10 m/s and synoptic radii of R ≈ 1000 km circulation

magnitudes of Γ ≈ 2πRU ≈ 6 · 107 m2/s in the synoptic range which is in accordance

with our observations. Furthermore, highs are usually observed to be larger than lows

which fits with our findings in terms of the radii of Wk features. Since the circulation

magnitude depends on the size of the systems, the larger circulations observed in the

high pressure systems can be dedicated to this size effect although the wind speeds

observed in cyclones can be much higher than the speeds occurring in highs.

Finally, we want to point out that we only considered circulation and radius so far. These

properties followed from idealized vortex models which were observed in an inertial, non-

rotating reference frame (chapter 4). However, we have seen that it is possible to derive

vortex intensity measures in a noninertial, rotating reference frame that additionally

considers the rotation rate of the Earth, i.e. the Coriolis force term. The introduced

parameters, energy of displacement and atmospheric moment, could be interpreted as

energy that was necessary to generate the vortex. While the energy of displacement

is mass-specific, the atmospheric moment involves the total volume that was covered

during the life cycle of the vortex. We have studied the three data sets with respect to

these two intensity measures, too (see Appendix C for preliminary results). In short, we

observe that the distributions concerning the energy of displacement behave similar to

the circulation distributions. The distributions of the atmospheric moments (considering

the vortex life time volumes) hint to a power law behavior that envelops all scales (see

Figure C83).
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8 Final summary of this work

The main objective of this thesis was the identification of vortex structures and their

properties in atmospheric flows of different resolutions. Motivated by the lack of a con-

sistent identification procedure across the scales as well as a clear definition of vortex

size and intensity we decided to tackle the problem from two sides. On the one hand

we studied the kinematic properties of the flow in order to determine the geometric

properties of a vortex; on the other hand we investigated the vortices concerning their

dynamic aspects.

Thereby, the kinematics proved to be a treasure chest revealing useful methods in or-

der to define the size of a vortex as well as to determine the deformation of identified

contour lines and areas over time (chapter 2). Moreover, with the help of the kinematic

approaches we can differentiate between the deformation and rotation of the flow field.

This led to the introduction of the kinematic vorticity number method (Wk-method)

that locally compares the rates of rotation and deformation (see chapter 6 and pub-

lished in Schielicke et al., 2016). A vortex core region is then defined in regions where

the rotation rate prevails over the strain rate. Due to the dimensionless definition as a

ratio, the main advantage of the novel method is its successful application in different

flow situations, different height levels and different grid resolutions giving consistent

results. Additionally, we were able to introduce a tracking method based on the Wk-

method. Overall, the Wk-method proved a useful tool in the identification and study

of vortices and it has been applied in various ways (see Table 18 for an overview over

applications of the Wk-method).

On the other hand, the dynamic equations can be used in order to identify typical

balances of forces depending on the scale of the vortex (chapter 3). Furthermore, the

dynamics reveal the importance of the circulation in the study of vortices and their

interactions. Circulation can be interpreted as a measure of the intensity of a vortex

due to its integral definition. Under idealized conditions, vortex models based on the

dynamic equations lead to the recognition of characteristic vortex properties that de-

termine the flow field around the vortex (chapter 4). These important properties are

i.a. the circulation and the radius of the vortex core. However, these vortex models are

highly idealized. They are studied in an inertial, non-rotating coordinate system and the

equations resemble the cyclostophicly-balanced horizontal equations of motion. But we

observe, that larger-scale real atmospheric vortices are influenced by the rotation of the

Earth. Hence, the Coriolis force term in the equations of motion becomes significant.

In order to account for the Coriolis term in larger-scale flow, we introduced two scale-

dependent intensity measures: called the energy of displacement and the atmospheric

moment. While the energy of displacement can be interpreted as the mass-specific en-
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Table 18: Overview over applications of the Wk-method

Topic Applications of Wk-method Reference

3D analysis of vortices Storm system Anatol Schielicke et al. (2016), chapter 6.7

Simulated supercell Schielicke et al. (2015), chapter 7.6

Idealized vortices Test of differen set-ups Schielicke et al. (2016), chapter 6.6

Point vortex dynamics: Analysis of blocking situations Sonntag (2012, bachelor’s thesis)

Isernhagen (2015, diploma thesis)

Hirt (2016, master’s thesis)

Trapezoid method Müller et al. (2015)

Statistics Vortex size and circulation chapter 7

Estimating the vortex energy chapter C

Study vortices on different scales chapter 7

First climatologies chapter 6.7

Vortex tracking Improvement due to additional chapter 6.5

information on size, intensity,

deformation of areas

ergy that was necessary to generate the vortex, the atmospheric moment represents its

mass-related counterpart that takes into account the volume that was affected during

the vortex life time (chapter 5 and published in Schielicke and Névir, 2009, 2011, 2013).

We were able to improve the derivation of the energy of displacement by using a modi-

fied Rankine ansatz. This enables a consistent derivation of the energies for vortices on

different scales. Furthermore, we could express the energy of displacement in terms of

the circulation and the vortex area (see chapter 5.2.5 and 5.5).

Afterward, we studied the properties (circulation and radius) of vortex structures in

three data sets of different resolutions with respect to exponential and power-law be-

havior. The main finding is that we found power law behavior for small-scale, less-

intense vortices concerning their radius and their circulations and exponential behav-

ior in the tails (chapter 7). We obtained a similar result for the mass-specific energy

of displacement. In addition we found that two-parameter distributions such as the

stretched-exponential distribution better fit the complete data set. Especially in case of

the circulation, the exponents that characterize the stretched-exponential distributions

are of comparable order for different data sets. This might be a hint that the vortices on

different scales probably stem from (the same) multiplicative processes. Moreover, we
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were able to reproduce the results of Schielicke and Névir (2009) who found a unified ex-

ponential behavior with an exponential decay rate of about 1000 J/kg for the tails of the

distributions (see Appendix C). With respect to the mass-related atmospheric moments

we found hints to unified power law behavior that envelops all distributions with an ex-

ponent of about 0.6 which is in the same order as the exponent of the Gutenberg-Richter

law of earthquakes (see chapter C.2.2). However, further investigations are necessary.

In conclusion, we want to point out that we were able to define and implement a method

that is able to extract vortex structures from differently resolved data sets. The method

can be and has been applied successfully in various manners. Moreover, we introduced

intensity measures based on the horizontal equations of motion. Although the results

need to be further investigated, these intensity measures seem to hint to a unified

behavior of vortices on different scales.
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Appendix A Application of the Wk-method in the

identification of point vortices in re-

analysis data and their application to

blockings

We have already introduced the concept of point vortices in chapter 3.4.5 and the

reader is referred to this chapter for refreshing the basic concept. It is important to

remember that the equations of motion of N point vortices were derived under inviscid,

barotropic and incompressible conditions. Here, we will first present the equations of

motion in different representations and introduce their invariants followed by explicit

mathematical details on specific motions of N ≤ 3 point vortices.

A.1 Mathematical representations and invariants of the point

vortex equations

Summarized, the dynamics of a set of N point vortices with circulations Γi that are

located at zi with i = 1, .., N is given in complex coordinates as (see eq. 133)

dzα

dt
=

i
2π

N

∑
β=1
α 6=β

Γβ

`2
αβ

(zα − zβ)

α = 1, .., N

where `αβ =
∣∣∣∣zα − zβ

∣∣∣∣ denotes the distance between the two vortices denoted by α, β.

The corresponding two-dimensional equations of motion of N point vortices located

at (xα, yα) in cartesian coordinates are given by the following 2N non-linear ordinary

differential equations (cf. e.g. Aref, 2007):

dxα

dt
= − 1

2π

N

∑
β=1
α 6=β

Γβ(yα − yβ)

`2
αβ

(262a)

dyα

dt
= +

1
2π

N

∑
β=1
α 6=β

Γβ(xα − xβ)

`2
αβ

(262b)

for α = 1, .., N

The point vortex equations can also be expressed in terms of the intervortical distances.
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Then for N ≥ 3 equations (262) read (after Newton, 2001, chapter 2.1, equation (2.1.5))

d`2
αβ

dt
=

2
π

N

∑
γ=1

γ 6=α 6=β

Γγσαβγ Aαβγ

(
1
`2

βγ

− 1
`2

γα

)
(263)

where Aαβγ is the area of the triangle spanned by the three vortices and σαβγ = ±1 is

equal to +1 in case of a counter-clockwise arrangement of the vortices denoted by α,

β, γ and −1 in case of a clockwise arrangement. The area Aαβγ of the triangle can be

expressed in terms of the intervortical distances with help of Heron’s formula as

Aαβγ =
√

s(s− `αβ)(s− `βγ)(s− `αγ) (264)

where s =
1
2

(`αβ + `βγ + `αγ) (265)

It should be remembered that these point vortex equations stem from the inviscid,

incompressible equations of motion. They are a rather good model for large-scale at-

mospheric dynamics as was shown in e.g. Müller et al. (2015).

The study of the dynamics of point vortices go back to Helmholtz (1858). Helmholtz not

only introduced the important concepts of vortex lines and filaments and the relation to

vorticity dynamics already mentioned in chapter 3.4.2, he also introduced the equations

of the motion of straight parallel vortex filaments and discussed the special case of one

and two of such vortices (Helmholtz, 1858, §5). Assume that the vortex filaments are

straight and parallel to the z-axis. A plane perpendicular to that axis intersects all vortex

filaments and the equations simplify to the two-dimensional point vortex equations.

About 20 years later, Kirchhoff (1876) in his lectures on mathematical physics, discussed

the equations for N interacting point vortices and presented the Hamiltonian structure

of the equations (Aref, 2007; Kirchhoff, 1876, chapter 20, §3, equations (14))82:

Γα
dxα

dt
=

∂H
∂yα

, Γα
dyα

dt
= − ∂H

∂xα
(266)

for α = 1, .., N

where

H = − 1
4π

N

∑
α,β=1
α 6=β

ΓαΓβ ln `αβ = const. (267)

is conserved during the motion of the N point vortices. Note, that H depends on the

intervortical distances. Kirchhoff (1876, chapter 20, equations (15),(18)) showed that

82We follow the nomenclature of Aref (2007) here which is different from the one published in Kirchhoff
(1876) original one: e.g. m instead of Γ for the circulations, P instead of H for the Hamiltonian. The
structure of the equations is similar of course.
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there are three further conserved quantities which are called ”the zonal momentum

Px, the meridional momentum Py and the vertical component of the angular mo-

mentum Lz” (cf. Müller et al., 2015, their equations (5)-(7)). These momentums read

Px =
N

∑
α=1

Γαyα = const. (268)

Py = −
N

∑
α=1

Γαxα = const. (269)

Lz = −1
2

N

∑
α=1

Γα(x2
α + y2

α) = const. (270)

With help of these conserved quantities, we can find another quantity that can be written

in terms of the intervortical distances `αβ (Müller and Névir, 2014, their equation (1.10)):

M := −Γtotal Lz −
1
2

(P2
x + P2

y ) =
1
4

N

∑
α.β=1
α 6=β

ΓαΓβ`
2
αβ = const. (271)

where

Γtotal :=
N

∑
α=1

Γα = const.

is the total circulation which is conserved, too (see also eq. 138). Another important

conserved quantity is the quadratic sum of the circulations (e.g. Müller et al., 2015)

V :=
1
2

N

∑
α,β=1
α 6=β

ΓαΓβ = const. (272)

We have furthermore already introduced the center of circulation C (see eq. 139)

C =
∑N

α=1 Γαxα

Γtotal
= const.

and we have seen that it is a conserved quantity, too. In addition, we have mentioned

in section 3.4.5 that the motion of N point vortices depends on the total circulation and

their circulation center. If Γtotal is different from zero (Γtotal 6= 0), the N point vortices

move around their center of circulation C. If the total circulation is zero (Γtotal = 0)

all vortices translate along parallel paths with the same speed. In the following, we will

give a short overview over these types of motion for systems of N ≤ 3 point vortices.
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A.2 On the motion of N ≤ 3 point vortices

At first, we assume that the fluid is initially at rest (before adding the point vortices

to the fluid) and that the motion occurs under inviscid, barotropic conditions. The

equations of motion then reduce to the two-dimensional point vortex equations (133).

A.2.1 Point vortex systems of N = 1 and N = 2

Helmholtz (1858) and Kirchhoff (1876) already discussed the motion of one and two

point vortices. The motion of a single (N = 1) point vortex is trivial. Since the center

of circulation lies inside the point vortex itself and the vortex moves around its center of

circulation, its position remains unchanged. Nevertheless, the vortex induces a velocity

according to the Biot-Savart formula (see chapter 3.4.4).

The equations of motion of N = 2 point vortices with non-zero circulations Γ1 6= 0,

Γ2 6= 0 read (in complex formulation):

dz1

dt
= i

Γ2

2π`2
12

(z1 − z2) (273a)

dz2

dt
= i

Γ1

2π`2
12

(z2 − z1) (273b)

where `12 = |z1 − z2| is the distance between the two vortices. We will first assume

that Γtotal = Γ1 + Γ2 6= 0. Further, we assume w.l.o.g. that the center of circulation C
coincides with the origin (C = 0 = (0, 0))

C =
Γ1z1 + Γ2z2

Γtotal
= 0 (274)

Then it follows (Γtotal 6= 0)

z1 = −Γ2

Γ1
z2 (275)

This means that the two vortices lie on a straight line that connects z1, z2 and C. If the

vortices have circulations of the same sign (i.e. both positive or both negative), we can

conclude from (275) that C lies between the two vortices while C lies outside in case

of different signs. When transforming the system to polar coordinates (x, y) → (ρ, φ)

with

xα = ρα sin φα , yα = ρα cos φα (276)

where α = (1, 2) denotes the index of the vortices and ρ1, ρ2 is the distance between

C and the vortex positions. It follows from (275) that the angles between the vortices

are either identical (θ1 = θ2 for different signs of circulations) or different by one π

(θ1 = θ2 + π for same signs of circulations). We further know that H is a conserved
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quantity (see eq.(267))

H = −Γ1Γ2

2π
ln(`12) = const. (277)

dH
dt

∝
d`12

dt
= 0 (278)

i.e. `12 = const. (279)

This means that the intervortical distance does not change with time. With some basic

calculations, we can show that the distances ρ1, ρ2 remain constant in time83. Therefore,

only the angles φi change in time with the same rate: Since dC/dt = 0 we can conclude

that

ω̃ =
dφ1

dt
=

dφ2

dt
. (280)

The equations of motion (273) decouple when using (275) in either (273a) and (273b),

respectively. We derive for α = (1, 2)

dzα

dt
= i

(Γ1 + Γ2)

2π`2
12

zα (281)

This is a periodic motion. We can solve these equations with the ansatz zα = Aα exp(iω̃t)
where Aα is a constant that is proportional to the distances ρα between the vortices and

the center of circulation and ω̃ is the angular velocity. From dzα/dt = iω̃zα we obtain

ω̃ =
Γ1 + Γ2

2π`2
12

=
Γtotal

2π`2
12

(282)

Hence, it follows that the two vortices rotate at circles around their common center of

circulation with a constant angular velocity ω̃ and a period of T = 2π/ω̃, respectively.

Thereby, the orientation of the rotation (clockwise or anticlockwise around the center of

circulation) depends on the vortex with the largest absolute circulation. Note, that in

case of Γ1 = Γ2, both vortices rotate on the same circle around C. The explicit velocity

of each vortex can be calculated by (273).

A special case occurs when the total circulation vanishes. Assume that Γtotal → 0 and

w.l.o.g. Γ1 > 0. Then the center of circulation approaches infinity C→ ∞ as well as the

distances between the vortex locations zα and C. However, the intervortical distance

83It is easy to see that in the case of vortices with circulations of the same sign (here C lies between
the vortices), the distances between the vortices and C remains constant. Otherwise, we would violate
either dC/dt = 0 or d`12/dt = 0. If both vortices lie on one side of C (circulations of different signs,
both vortices could move away from C with the same rate (or by the same distance c) such that
d`12/dt = 0 is still fulfilled. However from dC/dt = 0 and C = 0, we can conclude for some arbitrary
c: C = (Γ1z1 + Γ2z2)/Γtotal = (Γ1(z1 + c) + Γ2(z2 + c))/Γtotal and therefore ⇔ 0 = (Γ1 + Γ2)c. Since in
general Γ1 + Γ2 6= 0, c must be zero and the distances ρ1, ρ2 remain constant.
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still remains constant (`12 = ||z1 − z2|| = const.). The motion still is periodic, but the

circle diameters increase until approaching a straight line as radius ρ → ∞. We can

differentiate between two cases:

(1) Γ1 → −Γ2 with |Γ1| > |Γ2|
From (275) it follows then that vortex 1 with positive circulation Γ1 and position

z1 is closer to C. Applied to atmospheric sciences this means in other words that

the vortex of positive circulation is south of the vortex of negative circulation.

This situation is also called a ”high-over-low” configuration. From (282) we can

conclude:

ω̃ → 0 with ω̃ > 0

which is identical to a vortex motion to the west.

(2) Γ1 → −Γ2 with |Γ1| < |Γ2|
This case is reverse to case (1) with the vortex with negative circulation being

south of the one with positive circulation (”low-over-high” — the typical configu-

ration of the midlatitudes on the northern hemisphere). From (282) it follows:

ω̃ → 0 with ω̃ < 0

which is identical to a vortex motion to the east (the prevailing westerlies).

In case of Γ1 = −Γ2 both vortices move with the same speed (absolute value) v that is

given by

v =
|Γ1|

2π`12
(283)

The direction of the motion can be determined by the considerations above or directly

by evaluating the equations of motion (273). An overview over the possible motions of

different N=2 point vortex configurations is given in Figure A66.

A.2.2 Point vortex systems of N = 3: Relative equilibria

A special type of motion of a N point vortex system is called relative equilibrium. Rela-

tive equilibria are characterized by constant intervortical distances. Using the equations

of motion with respect to the intervortical distances (equations 263), this leads to the

following conditions for the distances `12, `13, `23 between the vortices indexed 1,2 and
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Figure A66: Overview over the possible motions of a N=2 point vortex system, in general both
vortices move on circles around their center of circulation: (a) Vortices with circulations of the
same sign, here Γ1 > Γ2 > 0 (”satellite storm”); (b) same situation as in (a), but the circulations
have the same magnitude Γ1 = Γ2 and the storms move on the same circle; (c) the vortices have
circulations of different signs and different magnitudes |Γ1| > |Γ2|, Γ1 > 0, (d) same situation as
in (c) but the circulation magnitudes approach each other, then the center of circulation moves
to infinity and the trajectories approach straight lines.

3:

d`2
12

dt
=

2
π

Γ3σA
(

1
`2

23
− 1

`2
31

)
= 0 (284)

d`2
23

dt
=

2
π

Γ1σA
(

1
`2

31
− 1

`2
12

)
= 0 (285)

d`2
31

dt
=

2
π

Γ2σA
(

1
`2

12
− 1

`2
23

)
= 0 (286)

where A is the area of the triangle spanned by the three vortices and σ = ±1 for

counter-clockwise (σ = +1) and clockwise (σ = −1), respectively, arrangement of the

vortices 1, 2, and 3. From this set of equations we can conclude that in the nontrivial

case of Γi 6= 0 either the area A must be zero or the triangle needs to be equilateral to

fulfil the above conditions

A = 0 or (287)

`12 = `23 = `13 (288)

If A = 0, the vortices are collinear. For collinear vortices to form a relative equilibrium,

the temporal change of the area must be zero (dA/dt = 0), too. The explicit condition

can be expressed by Heron’s formula in terms of the intervortical distances. We will not

discuss this case further, but more details can be found in Newton (2001, chapter 2.2).

The properties of the motion of the relative equilibrium of N = 3 point vortices forming

an equilateral triangle of side length ` can be derived in an analogous manner to the

case of N = 2 vortices. The three point vortices move around their common center of
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circulation C with angular velocity ω̃ where (cf. Newton, 2001, chapter 2.2.1)

ω̃ =
Γtotal

2π`2 (289)

For vanishing total circulation Γtotal = 0 the center of circulation lies in infinity and the

vortices translate on parallel lines with the same speed v given by (e.g. Müller et al.,

2015, their equation (13))

v = |v| =

√
2(Γ2

1 + Γ2
2 + Γ2

3)

4π`
(290)

Assume the following arrangement of the vortices: Vortex 1 and 3 have circulations of

the same sign (either positive or negative) and the straight line connecting vortex 1

and 3 lies on the x-axis. The location of vortex 1 coincides with the origin. Then the

translational vector at the origin reads (Müller and Névir, 2014)

v =
1

4π`


√

3Γ2

Γ1 − Γ3

 (291)

If the circulation Γ1 6= Γ3 the velocity vector has a non-zero y-component and the

triangle translates by an angle with respect to the x-axis. This translation angle α

between velocity vector and x-axis is given by (see also Müller and Névir, 2014, their

equation (3.9))

α = arctan
(

Γ1 − Γ3√
3Γ2

)
(292)

The motion of 2 and 3 point vortices in relative equilibrium with vanishing total cir-

culation has a nice application in the atmospheric sciences even though there are sur-

prisingly few publications on this topic (see Kuhlbrodt and Névir, 2000; Müller et al.,

2015, and references therein). The arrangements of certain 2 and 3 point vortex systems

resemble atmospheric large-scale weather patterns that are known as high-over-low or

omega blocking (see Fig. A67). Those blocking events are long-living, quasi-stationary

weather patterns that can have a high impact on society due to caused droughts and

floods. Some examples are the heat wave in western Europe in summer 2003 that si-

multaneously led to heavy precipitation in eastern Europe; the heat wave over eastern

Europe and western Russia in summer 2010 that was accompanied by an anomalously

high number of wildfires causing smoke and smog in the Russian capital Moscow; at

the same time heavy rain events causing floods occurred in Pakistan (e.g. Witte et al.,

2011; Lau and Kim, 2012; Müller et al., 2015).

The idea is that the N=2 or N=3 point vortex system of zero total circulation (Γtotal = 0)

is arranged in the following manner: The vortex of negative circulation lies north of the
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Figure A67: Examples of (a) high-over-low and (c) omega blocking weather patterns and their
(b) dipole and (d) tripole point vortex counterparts. Images of the 500 hPa geopotential height
means in (a),(c) are provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado
from their Web site at http: // www. esrl. noaa. gov/ psd/ based on NCEP/NCAR reanalysis
data (Kalnay et al., 1996). Plots are given in polar stereographic projection for the following
regions in the North Pacific/dates: (a) 20◦-80◦N, 180◦-280◦ longitude for 3-5 October 2012; (b)
30◦-90◦N, 130◦-250◦ longitude for 1-12 March 2011. This figure is adopted and modified from
Müller et al. (2015, their Figure 2 which treats the omega/tripole case). Note, that the triangle
in (d) is equilateral.

vortex with positive circulation in case of N=2, and north-east, north-west in case of

N=3, respectively (see Figure A67). If in the latter case the positive circulations of the

two southern vortices denoted by 1 and 3 are equal (Γ1 = Γ3), such a configuration

translates with tripole velocity (291) to the west while the typical westerly flow of the

midlatitudes points in the opposite direction (i.e. to the east). Likewise, the N=2 point

vortex system translates to the west with the dipole velocity given in (283). Therefore,

the N=2, N=3 point vortex system can become stationary if the dipole/tripole velocity

and the westerly flow are of the same magnitude (see Figure A67). An explicit appli-

cation of a N = 3 point vortex relative equilibrium with respect to Omega blocking

situations will be given in section A.3 (published recently in Müller et al., 2015).
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A.2.3 Self-similar collapsing/expanding motion of N = 3 point vortices

Under certain conditions another interesting solution of a N = 3 point vortex system

occurs: the self-similar collapse. We have already introduced the equations of motion

with respect to the intervortical distances (263). In case of three point vortices, these

equations read

d`2
12

dt
=

2Γ3

π
σA
(

1
`2

23
− 1

`2
13

)
(293a)

d`2
23

dt
=

2Γ1

π
σA
(

1
`2

31
− 1

`2
21

)
(293b)

d`2
31

dt
=

2Γ2

π
σA
(

1
`2

12
− 1

`2
23

)
(293c)

where A is the area of the triangle spanned by the three vortices denoted by 123;

σ = +1 for counterclockwise arrangement of the vortices and σ = −1 for a clockwise

arrangement. A self-similar motion requires that the intervortical distances change in

the same manner, i.e. the distances then satisfy (e.g. Aref, 2010)

`αβ(t) = f (t)`αβ(0) (294)

where f (t) is the same function for all distances `αβ ∈ [`12, `23, `31] and it follows that

(Aref, 2010)84

f (t) =

√
1− t

tc
(295)

where tc is the collapse time if tc > 0.

Furthermore, we can conclude:

l23(t)
l31(t)

=
l23(0)

l31(0)
= λ1 = const. (296)

l12(t)
l31(t)

=
l12(0)

l31(0)
= λ2 = const. (297)

This means that the shape of the triangle remains invariant while the area can change

(Aref, 2010). Relative equilibria discussed in the previous section are therefore a special

case of self-similar motions where both the area and the shape of the triangle remain

constant. Here, we are interested in the collapse of vortices. This implies that after a

finite time tc the three vortices meet in their center of circulation C (eq. 139).

84Using ansatz (294) in (293) leads to

d`2
12(t)
dt

=
d f 2(t)

dt
`2

12(0) =
2Γ3
π

σA

(
`2

13(0)− `2
23(0)

`2
13(0)`2

23(0)

)
= const.

which means that f 2 is linear in time. Hence, f (t) =
√

1− t/tc with collapse time tc.
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This further means that at time tc the intervortical distances are zero. Therefore, the

conserved quantity M (eq. 271) that depends on the intervortical distances needs to be

zero:

Collapse condition 1 :

M =
1
4

3

∑
α,β=1
α 6=β

ΓαΓβ`
2
αβ = 0 (298)

We have already mentioned that the other conserved quantity that depends on the

intervortical distances is the Hamiltonian H (eq. 267). Using ansatz (294) in (267)

gives (e.g. Aref, 2010)

H(t) ∝ log [ f (t)]3h with h :=
1
3

(
1
Γ1

+
1
Γ2

+
1
Γ3

)
(299)

Since H(t) = const. is a conserved quantity, this leads to the second condition of col-

lapsing motions (Müller and Névir, 2014):

Collapse condition 2 :

h =
1
3

(
1
Γ1

+
1
Γ2

+
1
Γ3

)
= 0 ⇔ V =

1
2

3

∑
α,β=1
α 6=β

ΓαΓβ = 0 (300)

where h is the harmonic mean of the three vortex circulations and V was already in-

troduced as conserved quantity in (272) as quadratic sum of the circulations. A zero

harmonic mean leads to the conclusion, that the circulations cannot be of the same

sign. Then the total circulation is nonzero (Γtotal = Γ1 + Γ2 + Γ3 6= 0) and the origin

can be moved to the center of circulation C and the motion can be described in polar

coordinates (ρα, φα) for α = 1, 2, 385. Aref (2010) showed that the shape of the vortex

trajectories is given by the equation of a logarithmic spiral in polar coordinates

ρα = ρα(0) exp
(
− φα

2Ωtc

)
(301)

where Ω is a real parameter. Aref et al. (1992) and Aref (2010) give a geometric way

to find the initial positions that lead to the collapsing/expanding motion of three point

vortices (see Fig. A68). An explicit example of a collapsing motion of three point

vortices in comparison to a real large-scale low pressure system was already given in

section 3.4.5 (see Fig. 14).

85A detailed derivation can be found in e.g. Gröbli (1877); Aref (2010).
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1>0 2>0

3<0

C12

P1

P2

P3

P4

Figure A68: Geometric way to find the initial positions of the three point vortices leading to
self-similar motion. The two vortices 1 and 2 with circulations of the same sign Γ1 = 2 m2/s,
Γ2 = 2 m2/s (i.e. here positive) are used to construct an equilateral triangle whose one side is
equal to the connecting line between the two vortices. The equilateral triangle’s tip builds point
P2 (or P4). A circle around the center of circulation C12 of the two vortices 1 and 2 with a radius
that is equal to the distance between the points P2 and C12 is constructed. The motion of the
three point vortices is self-similar if vortex 3 with circulation Γ3 = −1 m2/s (i.e. here negative)
lies on that circle. Relative equilibria occur if vortex 3 is located at the positions denoted as
Pi with i = (1, 2, 3, 4). Collapsing/Expanding motion occurs for a counterclockwise/clockwise
arrangement of the vortices 123. The figure is plotted in the style of Aref et al. (1992) (their
Fig. 3).

A.3 On the problem of point vortex identification in real data

and application on atmospheric blocking situations

The point vortex equations were derived under inviscid, incompressible and barotropic

conditions. These conditions are approximately observed in atmospheric large-scale mo-

tions, too. Therefore, it seems to be reasonable, that the point vortex concept can be

applied to the large-scale motions as well.

However, there is obviously a difference between the mathematical concept of a point

vortex and a real vortex. Mathematically, point vortices are defined as vortices without

spatial extent, i.e. their radius is equal to zero, but their circulation is nonzero and

the location of the vortex is assigned to a point in the field. In contrast, real vortices

are observed to have a certain extent and we have already discussed the problem of

detecting either their size or their intensity in the body of this thesis (see sections 5 and
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6). The question is, how can we turn vortices observed in real data to point vortices in

order to apply the point vortex equations?

We will use here the Wk-method in order to calculate the circulations of the identified

vortices of the reanalysis fields (horizontal wind fields (u, v) and the 500 hPa geopoten-

tial height fields NCEP II reanalysis data with a spatial resolution of 2.5◦ × 2.5◦ and

6-hourly temporal resolution NCEP, 2000; Kanamitsu et al., 2002). The vortex center

will be placed at the center of circulation of each identified vortex, i.e. of a certain area of

either positive or negative vorticity and the strength of the vortex will be defined as the

corresponding circulation. We will apply the Wk-method in an atmospheric blocking

situation. Atmospheric blocking situations are long-lasting, stationary weather peri-

ods that are characterized by an anomalous, more meridionally-organized flow in the

midtroposphere (e.g. Rex, 1950, who defined explicit criteria for the identification of

blockings). Atmospheric blockings are of high relevance to society due to their possible

serious impacts caused by drought periods on the one hand and heavy rainfalls on the

other. A famous example is the blocking event in summer 2010 in eastern Europe and

Russia that caused extremely high temperatures over a period of weeks accompanied

by a high number of wildfires in Russia and that at the same time was accompanied by

floods and heavy rainfalls in Pakistan (e.g. Lau and Kim, 2012; Witte et al., 2011).

In Fig. A69, some time steps (about 7 days) of an omega blocking situation that de-

termined the weather over the eastern part of Europe and West-Russia in the summer

months in 2010 are shown. We denoted the circulation centers of the identified vortices

with numbers and tracked them in time with the tracking method introduced in chapter

6.5. In the beginning of the displayed period, the omega pattern is build by the vortices

of positive circulations numbered 237, 189, 73 and of negative circulation called 186 (see

Fig. A69a). The overall pattern changes in the following days: the vortex numbered

237 intensifies and moves farther south while the vortex numbered 189 weakens while

moving northward (Fig. A69b,c) and finally dissipates (Fig. A69d). At the same time,

the vortex of negative circulation (numbered 186) starts to weaken while a new nega-

tive circulation (number 229) enters the old pattern from the east (Fig. A69d-f). For a

short period, the pattern of a high-over-low arrangement composed of the vortices called

229 and 237 is taken (Fig. A69d-f). While being stationary over such a long period,

the vortex of positive circulation with number 73 is also exchanged by a new positive

circulation (number 319, Fig. A69g). Finally, the old omega pattern is re-established

by new vortices of positive circulation called 302, 301 southeast and 319 southwest and

negative circulation called 229 north of these two lows (Fig. A69g,h). As a result, the

overall large-scale pattern remains stationary, but we have seen that the smaller-scale

vortices that form the pattern undergo a much more variable dynamic.

200



A.3 On the problem of point vortex identification in real data and application on
atmospheric blocking situations Lisa Schielicke

  

(a) 2010-07-07 00UTC (b) 2010-07-08 00UTC

(c) 2010-07-09 00UTC (d) 2010-07-10 00UTC

(e) 2010-07-11 06UTC (f) 2010-07-12 00UTC

(g) 2010-07-13 00UTC (h) 2010-07-14 00UTC
303

186

73

189237

186

73189

237

186

73189

237

186

73229

237

186 73

229

237
73

229

237

319 73

229

237

301
302 319

73
229

237

301

302

Figure A69: Some time steps of an omega blocking situation over East-Europe/West-Russia in
the period from 7−14 July 2010. Colors: Vorticity (10−5s−1) plotted in the field of Wk > 1; black
circles/crosses: center of circulation of the identified vortices of positive/negative circulation;
numbers above the black circles/crosses: track number.
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Figure A70: Trapezoid approximating the region of the omega block. In the green area, the
total cyclonic circulation ΓLow1 is calculated, and in the yellow area, the total cyclonic circulation
ΓLow2 is determined. The total anticyclonic circulation ΓHigh is calculated in the striped area.
Figure adopted from Müller et al. (2015) (their Fig. 3).

Figure A71: Temporal averages [(a) 24 July 2010, 00 UTC to 7 August 2010, 18 UTC and
(b) 1 March 2011, 00 UTC to 11 March 2011, 12 UTC] of geopotential height (black contours)
and relative vorticity (in 10−5 s−1, coloured contours). The vorticity is shown in the field of
kinematic vorticity number Wk > 1. The trapezoids encircle the area of zero total circulation,
and the blue and red circles mark centers of the low- and high-pressure areas, respectively. Note
the different ranges of vorticity in the plots. Figure adopted from Müller et al. (2015) (their Fig.
4).

The stationarity of the larger-scale omega pattern led to the idea to approximate the

general omega pattern as an isosceles trapezoid composed of a northerly high and two

southerly lows that was published in Müller et al. (2015). Instead of using single tracked

vortices, all vortex structures — or more precisely every grid point that fulfills Wk ≥ 1
— inside specified areas of the trapezoid were used to determine the circulations of the

three vortices and their circulation centers (see Fig. A70). We have seen (Figure A67)

that a configuration likewise to that plotted in Fig. A70 of the three point vortices
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with circulations ΓLow1, ΓLow2, ΓHigh on an equilateral triangle of side length ` with total

circulation equal to zero (Γtotal = ΓLow1 + ΓLow2 + ΓHigh = 0) will move to the west with

velocity v∆ =
√

Γ2
Low1 + Γ2

Low2 + Γ2
High/(4π`). Therefore, the tripole configuration will

move in the opposite direction of the typical westerly flow of the midlatitudes. Hence,

if the translational speed of the point vortex triangle is of the same magnitude as the

westerlies the vortex tripole will remain stationary. Therefore, one requirement to the

trapezoid is that the total circulation calculated inside the trapezoid is approximately

zero. We derived this by calculating the total circulation of a number of different

trapezoidal shapes seperately for every time step in order to find the shape with the

minimum absolute value of the total circulation within the shape. We applied this

method of pattern recognition successfully to two example omega blockings and could

confirm that the average motion of the triangle point vortex arrangement v∆ is in the

order of the averaged westerly flow with only minor deviations of less than 1 m/s (see

Fig. A71 for an overview over the mean shapes and fields). Thereby, we could explain

the stationarity of the general pattern (explicit details on the method and the results

can be found in our publication: Müller et al., 2015).

A.4 Discussion and Conclusion

On the one hand, we have seen in the two examples that the Wk-method used here in

order to identify the intensities and locations of vortices seems to give plausible results.

Furthermore, the point vortex concept seems to be a useful concept even for atmospheric

flows and the dynamics of relative equilibria can explain the stationarity of atmospheric

blocks. Müller et al. (2015) and in more detail Hirt (2016) studied the stability of the

tripole with respect to perturbations of the vortex positions as well as deviations of the

total circulation from zero. Especially, the first analysis is interesting since we observe

that the intervortical distance between the two low pressure systems is much larger

than the distance between the lows and the high (these distances to the high are in fact

approximately equal for both lows). Hirt (2016) sowed that the perturbation of one of

the lows position in northern direction has much more dramatic influence on the vortex

dynamics than a perturbation in eastern direction. In both cases after some time, the

three vortices will move to a collinear state and both lows exchange their positions (the

low that was initially southwest of the high will move southeast to it after being in the

collinear state and vice versa). However, while in case of the northward perturbation

one of the lows turns north of the high, in the other rather observed case of an eastward

perturbation both lows stay southward of the high (see Fig. A72 originally published in

Hirt, 2016, her Fig. 41). Indeed, we observe in the real cases that the dynamics of the

low pressure systems is much more variable than the motion of the high. Sometimes

we even observe the transformation of the tripole omega pattern to a dipole structure

or the exchange of the lows by ”new” ones while the ”old” vortices move away with the
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Figure A72: Perturbations of the relative equilibria states (equilateral triangles) of two N=3
point vortex systems. The initial configurations of the vortices are shown on the right of the
figures and the perturbation of the vortex position is indicated by the green arrow (only one
vortex position is perturbed). Trajectories of the point vortices are plotted as colored lines. Vortex
positions are given as red and blue circles. Examples of the triangle vortex configurations for
some time steps are marked by numbers 1 to 6 and in lighter colors. Black arrow on the top right
indicates the general direction of motion to the west. The vortex position of the southwesterly
low is perturbed (a) in the northern direction and (b) in the eastern direction. Adopted with
permission from Hirt (2016) (her Fig. 41). More details can be found in Hirt (2016).

westerly flow.

However, on average the vortex patterns and configurations seem to be persistent and

the point vortex dynamics give realistic results. Hence, the mathematical concept of

point vortices offers additional new insights in the real geophysical vortex dynamics

also with respect to the stability of weather patterns. However, further analysis in this

direction will be necessary but seems to hold promising results.
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Appendix B Climatology of kinematic properties in

reanalysis data

In this section we will study the climatology of the kinematic properties, i.a. the rates

of deformation, divergence and rotation, of the atmospheric flow fields. We will deal

with the whole fields. No distinction is made between vortex areas and strain-dominated

regions. First, kinematic properties — with emphasis on the kinematic vorticity number

— are considered at every point in the field before further analysis.

B.1 Data

For the analysis, we used the global NCEP-DOE AMIP II reanalysis data that has a

regular grid resolution of 2.5◦ × 2.5◦ and a temporal resolution of 6 hours. For the

climatologies we considered geopotential height and wind fields for the period from 1

January 1980 to 31 December 2001 at the following pressure levels (in hPa): 1000, 925,

850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 30, 10.

B.2 Methods: Areal average of Wk and vertical means

For the climatology in section B.3, area-averaged Wk values with Wk =
´

WkdA/
´

dA
were calculated for every time step (6-hourly) at each pressure level from 1000 up to

10 hPa for a period from 1 January 1980 to 31 December 2001. Therefore, Wk was

computed at every grid point with help of equation (214). Area-averages of Wk were

calculated for northern and southern hemisphere separately. An example histogram of

the extended W∗k numbers observed at every grid point of the northern hemisphere for

an arbitrary day shows that the Wk number behaves in general well and clusters axisym-
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Figure B73: Histogram of (a) the Wk number and (b) the relative vorticity for an arbitrary
date (2011-03-01 00 UTC) evaluated at every grid point of the northern hemisphere.
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metric around Wk = 0 just as the relative vorticity (see Fig. B73). However, sometimes

we observe values of Wk = ∞. Such local singularities (Wk → ∞ when deformation

‖S‖ → 0) were excluded prior to averaging. The resulting time series was split into

monthly series for further analysis. The monthly temporal means were calculated as

trimmed means in order to reduce the influence of outliers: the 10% largest and lowest

values were excluded from the calculation of the mean.

The vertical mean of a variable X was calculated by:

< X >:=

´ P0
P Xdp
P0 − P

(302)

where P0 and P are the lower and upper pressure levels. For a vertical mean over the

whole atmosphere P0 = 1000 hPa and P = 0 hPa.

B.3 Results: Vertical monthly distribution of area-averaged Wk

fields

Figures B74 and B75 show the vertical distribution of monthly mean values of Wk

for selected heights for the northern (NH) and the southern hemisphere (SH). While

the levels close to the boundaries of the NCEP data - at the atmospheric boundary

layer close to the surface (<850 hPa) and at the lower to middle stratosphere near

the top of the data (>100 hPa) - have averages smaller than 1 (Wk
∣∣

Bound < 1), the

middle troposphere has values larger than, but close to 1 (Wk
∣∣

MidAtm > 1, here Wk <

1.15). The distributions show a seasonal dependence with a maximum (minimum) in the

hemispheric summer (winter) season at the atmospheric boundary layer and reversed

behavior at the stratospheric levels. The stratospheric extrema preceed the inversed

extrema in the lower levels by about 1 to 2 months: e.g. the minimum in NH occurs in

June/ July at the stratosphere, while the maximum at the atmospheric boundary layer

occurs in August. The seasonal variation is less pronounced in the middle troposphere

and the reversed behavior between lower and upper levels commence above the 500 hPa

level. Furthermore, in the northern hemisphere the monthly Wk-values up to about

200 hPa are smaller than in the southern hemisphere. The vertical mean < Wk > is

relatively stable with

1
12

12

∑
i=1

< Wk >
∣∣
SH = 1.0342± 0.0018

1
12

12

∑
i=1

< Wk >
∣∣

NH = 1.0105± 0.0057

where the standard deviation is added. The standard deviation is larger in the NH

where the seasonal variation of < Wk > is larger compared to the SH.
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Figure B74: Vertical distribution of the monthly trimmed means of area averaged Wk for the
northern hemisphere. Period for calculation of monthly means is 1980-2001. < Wk > denotes
the vertically averages of Wk.
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Figure B75: Vertical distribution of the monthly trimmed means of area averaged Wk for the
southern hemisphere. Same notation, period as in Fig. B74.
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In order to determine if the monthly values are distinctly different, we plotted the

vertical distributions and the corresponding standard deviations of the NH monthly

averaged Wk values of February and August in Figure B76a. The monthly averages are
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Figure B76: Vertical distribution of the monthly trimmed means of area averaged Wk: (a)
means for two months (February/August, solid) on the northern hemisphere with standard de-
viation (dashed); (b) means for two hemispheric summer and winter months (February: NH
winter/SH summer and August: NH summer/SH winter) for the northern (NH, thin lines) and
southern hemisphere (SH, bold lines) for two hemispheric summer and winter months. Period
for calculation of monthly means is 1980-2001.

different by at least one standard deviation for the 1000 up to the 850 hPa level and

above the 100 hPa level. In February, the Wk-value at the ground is lower than in the

stratosphere (≈0.75 compared to ≈0.94). This behavior is reversed in August: ≈0.8

near the surface compared to ≈0.77 above 50 hPa. Although the values in the middle

atmosphere (between about 700 and 150 hPa) are not clearly different, the vertical

tendency is different: while the curve increases up to a broad maximum around 300 to

250 hPa in February (NH winter), the vertical maximum is already reached in 600 hPa

in August (NH summer) slightly decreasing up to 150 hPa before rapidly decreasing

above.

The vertical profiles allow a determination of vortex- or rotation-dominated flow lev-

els compared to deformation- and divergence-dominated layers by dividing the vertical

distributions into levels of Wk > 1 and Wk < 1, respectively. Therefore, the midlevels be-

tween about 850 and 150 hPa are vortex-dominated regions and the two boundary-layers

(lower than 850 hPa and above 100 hPa) are dominated by divergent and deformational

flow. Equation ... showed that the sum of the squares of divergence and vorticity equal

the sum of the squares of shearing and stretching deformation and that the sum of the
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ratios of divergence/vorticity and deformation equals 1. The influence of divergence on

the flow field in the different layers can therefore be seen by the differences of the curves

in Figures B77a,b to 1: Near the surface, the dominance of divergence on the flow is
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Figure B77: Vertical distribution of the ratio of area-averaged vorticity squared and sum of
deformations squared (without divergence) for (a) the northern hemisphere and (b) the southern
hemisphere from 1980 to 2001.

relatively large (e.g. ≈24% in the NH and ≈16% in the SH for all month); in the middle

levels divergence only contributes by about 5% and in the upper levels, the influence of

divergence depends on the season. While it is low in the winter seasons (5−10%), it in-

creases in the summer months up to about 35% in both hemispheres (see Fig. B77a,b).

On the other hand, this statement can be formulated as: in the hemispheric winter

months, the influence of the polar vortex is dominating in the stratosphere compared

to the summer flow.

Furthermore we have calculated how much vorticity is concentrated in the vortices

identified by the Wk-method. In general, about 60 % of the vorticity (positive and

negative) is concentrated in the identified vortex regions on both hemispheres. Thereby,

the lows occupy about 15 % (NH and SH) and the highs about 20.6 % (NH) to 22 % (SH)

of the total area on the hemispheres. This behavior is stable throughout the year and

through all levels except of the 1000 hPa level, which has smaller values compared to the

other levels: 49 %/ 46 % (53 %/ 53 %) of the positive/ negative vorticity is concentrated

in about 12 %/ 14 % (13 %/ 17 %) of the area on the NH (SH).

B.4 Conclusions

The most important findings are:
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• The vertically integrated Wk number is approximately 1 independent of the season.

Thereby, this reveals an approximate global three-dimensional balance between the

deformations (i.e. the symmetric parts of the motion) and the rotations (i.e. the

antisymmetric parts).

• We identified divergence-reduced levels between about 700 and 300 hPa and levels

that are stronger influenced by the divergence (near the ground at in the strato-

sphere during the hemispheric summers).

• Furthermore, we found that about 15% of the total area on each hemisphere

are covered by cyclonicly-rotating vortices and about 21-22% are covered by

anticyclonicly-rotating vortices.
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Appendix C Comparison of the Wk features in NCEP,

CFSR and WRF data on basis of the

energy of displacement and the atmo-

spheric moment

This chapter ties in with the study of the Wk features in the three differently resolved

NCEP, CFSR and WRF data sets which was presented in chapter 7. So far, we have

only analyzed the vortex structures (WK features) identified in differently-scaled data

sets with help of the vortex properties circulation and radius. These properties stem

from theoretical vortex models such as the Rankine vortex model that revealed the sig-

nificance of circulation and size (vortex radius) on the wind field around an axisymmetric

vortex in an inertial, non-rotating reference frame (see chapter 4). These equations are

similar in structure to the horizontal equations of motion that describe a vortex that is

in cyclostrophic balance in a noninertial, rotating reference frame (see chapter 3.2.1.3).

On a rotating planet however, the cyclostrophic balance does not hold for the larger

scales that are also influenced by the planet’s rotation rate. More appropriate param-

eters characterizing such large-scale vortices might be the energy of displacement and

the atmospheric moment, respectively. We introduced these parameters earlier in this

thesis in chapter 5 as the mass-specific/mass-related energy that was necessary to pro-

duce the vortex (see also Schielicke and Névir, 2009, 2011, 2013). We will use the energy

of displacement and the atmospheric moment in the following in order to compare the

data sets.

C.1 Data and Methods

In chapter 5.5 we showed that the energy of displacement e can be expressed in terms

of circulation Γ and vortex area A (see Table 7 for more details). These parameters

were already determined with help of the Wk-method for Wk features in the different

data sets (see previous sections) and this data will be the basis for the calculation of the

energy of displacement e and the atmospheric moment Ma. However, we additionally

require knowledge over the whole life cycle of the Wk features, especially in case of the

atmospheric moment. More precisely, we need to find the moment of maximum inten-

sity as well as the mean size and track length in order to estimate the volume covered

by each vortex over its life time. Therefore, it is necessary to track the Wk features, i.e.

to connect the features in time. We used a simple tracking method based on the calcu-

lation of vortex area overlaps. These overlaps were found by moving the W − k features

identified at time step t a half time step ∆t forward and the Wk features identified at the

following time step t + ∆t a half time step backward. The forward/backward motion is

calculated separately for each vortex by the mean wind inside the area covered by the
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vortex (more details on the tracking method are given in chapter 6.5).

Due to the high computational costs, we only concentrated on cyclonic systems at the

1000 hPa level in the NCEP data (January to December 1999) and in the CFSR data

(only January 1999). Note, that tropical cyclones are not included since we restricted

the analysis to tracks that lie within a latitudinal band between 30◦N and 80◦N. In case

of the simulated WRF data, we used one of the midlevels (level 7 at about 3.5 km height)

to form the tracks of cyclonic Wk features due to the high activity of the convective cells

at these levels.

We only considered systems that lived at least 3 time steps (=12 hours in the NCEP

data) and 5 time steps (=4 hours in the CFSR data), respectively. No such restrictions

on the lifetimes were done for the different WRF runs. In total, we found 6743 tracks

(NCEP) and 26386 tracks (CFSR) that were non-stationary. In the WRF data. the

number of tracks depend on the set-up: 991 (linear-shear run), 845 (original run), and

1217 (doubled-speed run).

For comparison reasons, we will additionally use the USA tornado data set of the Service

Storm Prediction Center (SPC) of the National Oceanic and Atmospheric Administra-

tion (NOAA) (see Storm prediction warning center, 2016) as we have used in Schielicke

and Névir (2011). We analyzed the tornado data in the period from 1950 to 2006

(the Fujita scale era). The data sets consists of the following parameters: i.a. the

tornado location, time of occurrence, the tornado path length, the width of the path

and the Fujita intensity class which follows from an estimate with help of a damage

analysis. Each Fujita intensity class (F-class) is connected to a theoretical wind speed

via: v(F) = 6.30ms−1(F + 2)3/2. Per definition, the velocity range of a F-class starts

with integer values of F (F = [0, 1, .., 5]) and the average value of the velocity class as

< v(F) >= 6.30ms−1(F + 2.5)3/2. We will consider only data with non-zero values of

path length, width and with an assigned Fujita classification. This applies to 46866

cases.

C.1.1 Estimating the energy of displacement on basis of the modified Rank-

ine ansatz

For the reanalysis data (NCEP/CFSR), we will calculate the energy of displacement

based on the modified Rankine ansatz under the assumption of gradient wind balance

as (see Table 7)

ẽtc =

(
1

2π

)
·
(

1
2

Γ2

A
+

2
3

f Γ
)

(gradient wind balance) (303)
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since the radii observed for the Wk features are mostly subsynoptic, the choice of the

gradient wind balance seems to be an appropriate choice — even in case of the coarsely-

scaled NCEP data. Based on the modified Rankine ansatz the energy of displacement

of the WRF data will be calculated with help of the expression derived for convectively-

scaled data as (see Table 7)

ẽt =

(
1

2π

)
· 1

2
Γ2

A
(cyclostrophic balance) (304)

In both cases, we will use the maximum value of the circulation that was detected over

the vortex lifetime. We will take mean values of the Coriolis parameter f = 2Ω sin φ

with mean latitude φ and Earth’s rotation rate Ω = 2π/day ≈ 7.27 · 10−5 s−1. The

vortex area A will be determined at the moment of maximum circulation, too.

Moreover, we would like to estimate the total energy of displacement that additionally

takes into account the ”far-field” influence of the vortex on its surrounding. Thereby,

we need to integrate the horizontal equations of motion not only from the center to the

vortex core radius (which gives the energy of displacement) but also farther outside the

vortex core. We have seen in chapter 5.2.5.1 that this outer-core influence is of equal

size as ẽt in case of the cyclostrophic balance (equation 181). Hence, the total energy of

displacement would be twice ẽt in this case:

econv = 2 · ẽt (305)

where econv denotes the total energy of displacement of a cyclostrophicly-balanced vor-

tex. In case of the geostrophic balance that only considers the Coriolis acceleration

term, the outer-core integral over the horizontal equations of motion increases however

with increasing distance from the vortex core radius (see chapter 5.2.5.2). This increase

further depends on the value of the exponent α in the modified Rankine ansatz (see

Table 6). For the sake of convenience, we will assume that the total energy of displace-

ment is equal to twice the energy of displacement derived for the inner core (ẽtc) in case

of the gradient wind balance, too:

ecycl = 2 · ẽtc (306)

For an exponent of α = 1/2 this would be approximately equal to take into account a

region around the vortex with a radius of approximately twice the vortex core radius.

For an isolated low pressure system as depicted in Figure C78 the doubling of the vortex

core radius would nearly capture the total depression. Hence, this resembles a pressure-

based ansatz of vortex size determination. However, it should be remembered that

common pressure-based method can give inconsistent results especially in th case of
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Figure C78: Illustration of how the doubling of the vortex core radius captures a significant
part of the total depression on the example of the radial pressure profile of a Gaussian vortex as
defined in chapter 6.6 (for details on the set-up see 6.6.2).

strong background flows (see e.g. chapters 6.2 and 6.6). The ansatz here is still based

on the kinematic Wk-method which seems to give more consistent results in such flows

(see e.g. chapter 6.6).

C.1.2 Estimating vortex volumes and atmospheric moments

For the calculation of the atmospheric moments, we need to estimate the whole volume

V of the vortices. The total atmospheric moments are estimated by

Ma,cycl = Vecycl (NCEP/CFSR) (307)

Ma,conv = Veconv (WRF) (308)

where we will use the energy of displacement expressions derived by the modified Rank-

ine ansatz (see section C.1.1). Similar to Schielicke and Névir (2011), we can write

V = L · H · Ltrack where L = 2R is the mean vortex width, H is the height and Ltrack

is the length of the track. According to Kurgansky (2000) the vortex height is propor-

tional to the vortex width for convective vortices (H ∼ L or H/L = const.). We will

consider this assumption also for larger-scale (pancake-like) vortices here although the

constant factor is different from that of the convective (tube-like) vortices86 We then

86Due to the relatively fixed height of the troposphere, the assumption of the proportionality of vortex
height and width might not hold anymore. It is an interesting question at what point this assumption
breaks since it seems to be reasonable that smaller systems are shallower than larger systems (which
is also confirmed by Lim and Simmonds, 2007, who found that the mean radius of shallow cyclones is
smaller than that of vertically well-organized systems). However at this point, this is beyond the scope
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Table C19: Aspect ratios H/L of different vortex types or scales from Table 1 and from the
results derived in the previous chapters 7.4 (NCEP),7.5 (CFSR) and 7.6 (WRF). The height of
the convective cells was estimated from Figure 61 where the supercell reaches up to a height of
30 model levels which is equal to about 15 km.

Vortex type/scale H/L from Table 1 H/L from results in chapters 7.4-7.6

Tornadoes: 2000m/100m = 20 2000m/100m = 20

Convective cells (WRF) 10 km/1 km = 10 15 km/1.8 km = 8.3

Mesoscale (CFSR): 10 km/100 km = 0.1 10 km/160 km = 0.0625

Synoptic scale (NCEP): 10 km/1000 km = 0.01 10 km/240 km = 0.042

can estimate the lifetime volume by

V = H · L · Ltrack =
H
L
· L2 · Ltrack =

4
π

H
L

πR2︸︷︷︸
=A

·Ltrack (309)

where A is the vortex area which is one of the parameters that was already determined

with help of the Wk-method. For the differently-scaled data, we will assume different

aspect ratios H/L (summarized in Table C19, right hand side). We also observe that

the rough estimations made at the beginning (Table 1) fit relatively well with our ob-

servations in Table C19.

Furthermore, we need to consider that the differently-resolved data sets have a lower

boundary under which smaller or less-intense systems are missing. These systems would

add to the total number of detected systems. In general, a complementary cumulative

distribution function starts with a value of 1 since it displays the number larger than

a certain threshold divided by the total number of systems. In order to account for

the different resolutions of the data, we will additionally divide these numbers by an

appropriate factor F. Let us assume that the WRF data has a factor of FWRF = 1 and is

therefore the reference data whose CCDF starts with one. The resolution of the WRF

data is 1 km. Furthermore, we will assume that the tornado data has an approximate

resolution of 100 m and therefore is different from the WRF data by a factor of Ft = 0.1.

Likewise, we will estimate the difference between the WRF data and the CFSR data by

a factor of FCFSR = 50 which is also approximately the difference in the resolutions of

the two data sets. Although the resolutions of the CFSR and the NCEP data differ only

by a factor of 5, we will use another approach in order to estimate the factor FNCEP:

We found 6743 non-stationary tracks in the NCEP data in 12 months and 26386 tracks

in the CFSR data in 1 month in the same region (northern hemisphere between 30◦N

and 80◦N). This means that we detected about 47 times more tracks in the CFSR data.

of this thesis.
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Therefore, we estimate FNCEP = 47 · FCFSR = 2350. This factor is about ten times larger

than the factor of increase in resolution and accounts for the nonlinear dependence of

identified vortices on the grid and temporal resolution. Summarized the factors are

Tornadoes: Ft = 0.1

Convective cells (WRF): FWRF = 1

Mesoscale (CFSR): FCFSR = 50

Synoptic scale (NCEP): FNCEP = 2350

We will divide the cumulative numbers of the CCDF by these factors in order to account

for the underestimation of Wk features in coarser resolved data sets.

C.2 Results and Comparison to Schielicke and Névir (2009,2011)

An overview over the complementary cumulative distributions (CCDF) of all data sets

(WRF, CFSR, NCEP) concerning the energy of displacement (abbreviated as eod in the

following) is given in Figure C79. Besides the energy of displacement expressions based

on the modified Rankine ansatz, we also plotted the US Tornado data (as published in

Schielicke and Névir, 2011).

Applying exponential fits to the synoptic range87 of the data confirms the nearly identity

of the typical decay rates of the tornado and the CFSR data, at least over a certain

range of energy of displacement values (see Figure C80). However, we also observe that

the less-intense systems — especially the CFSR data — do not decay like an exponential

distribution but rather seem to follow a power law decay.

While the reanalysis data and the tornado data are characerized by almost similar decay

rated, the simulated WRF data decays significantly faster for values larger than about

500 J/kg and its range is considerably smaller than that of the other data sets. Possible

reasons for this stronger decay of the WRF simulated data might be the following:

• The simulations mostly produce small-scale convective cells. In the runs charac-

terized by a curved hodograph (orginal, doubled-speed) probably only one of the

cells is long-lived and deviates from the mean wind fitting the general definition

of supercells. Hence, we might have to few data at higher intensity range.

• We investigated the WRF cells at one of the midlevels at about 3.5 km height

while the other data sets are investigated at or near the ground.

87We estimate the synoptic range concerning the energy of displacements e for magnitudes approxi-
mately larger than e > 200 J/kg. This is equal to wind speeds in the order of 10 m/s: for v = 10 m/s,
we estimate eod = v2 + f vR ≈ 200 J/kg where R = 106 km and f = 10−5s−1).
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• Although the simulations produce realistic features, the set-ups are still highly

idealized (e.g. single initial warm bubble that triggers the convection).

We are not able to explain the different behavior of the simulated data in the frame-

work of this thesis. For this purpose further investigations, simulations with various

initial set-ups and a comparison to real observational data are necessary. This would

be an interesting topic for future studies. However, it should be noted that the tail of

the WRF distribution is regardless exponential. As we have seen in chapter 7.3.2 the

characteristic decay rate changes by a constant factor if the variable is multiplied by the

same factor, but the exponential structure is conserved. The same holds for the tails of

the energy of displacement distributions of the other data sets.

Furthermore, we observe a different behavior for the less-intense energy of displacement

ranges, Here, the curves rather show a power law behavior, at least over certain ranges

of the data (see Figure C79). In the following we would like to take a closer look at

the single contributions of the Coriolis and centrifugal force terms in comparison to the

calculated energy of displacement.

Figure C79: Normalized complementary cumulative distributions (CCDF) of the energy of
displacements e for different data sets. US-Tornado data (1950-2006) was added as published in
Schielicke and Névir (2011) for comparison reasons.
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Figure C80: Exponential fits applied to a subset of the synoptic range plotted in Figure C79:
Normalized complementary cumulative distributions (CCDF) of the energy of displacements e
for data sets of different resolutions. Exponential fits were applied to the energy of displacement
calculated with help of the modified Rankine ansatz. Fitting ranges in J/kg are: WRF [100 :
1000]; NCEP [600 : 4000]; CFSR [1000 : 4000]; the tornado data was fitted for all Fujita-scales
(F0-F5, energy of displacement range [10 : 7000]).

C.2.1 Coriolis and centrifugal force contributions

In order to study the influence of the Coriolis and centrifugal terms we plotted the en-

ergy contributions in four different ways (see Figure C81):

(1) Modified Rankine ansatz (chapter 5.2.5) e1 = 2 · 1
2π

(
Γ2

2A + 2
3 f Γ

)
(2) Coriolis term e2 = 2 · 1

2π ·
2
3 f Γ

(2b) Geostrophic balance (Schielicke and Névir, 2009) e2b = 2 · 1
2π f Γ

(3) Centrifugal term e3 = 2 · 1
2π

(
Γ2

2A

)
Note that the geostrophic balance term in (2b) is equal to 3/2·Coriolis term.

In case of the NCEP data, calculations (1) and (2b) give almost identical distributions

(see Figure C81a, blue solid and green dashed line). This means that the centrifugal
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(a) NCEP data

(b) CFSR data

Figure C81: Comparison of the complementary cumulative distributions (CCDF) with respect
to different energy of displacement calculations for (a) NCEP and (b) CFSR data. Indices
indicate the way of calculation: Index 1: e1 = 2 · (Γ2/(2A) + (2/3) f Γ)/(2π) (modified Rankine
ansatz); index 2: e2 = 2 · ((2/3) · ( f Γ))/(2π) (Coriolis term); index 2b: e2b = 2 · ( f Γ)/(2π)
(Coriolis term multiplied by 3/2); index 3: e3 = 2 · (Γ2/(2A))/(2π) (centrifugal term). Fitting
ranges in (b): CFSR1 (modified Rankine) [50 : 1000] J/kg; CFSR2 (Coriolis) [30 : 1000] J/kg;
CFSR3 (Centrifugal) [10 : 1000] J/kg.
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term Γ2/(2A) is only approximately one third of the Coriolis term:

Γ2

2a
≈ 1

3
f Γ

Hence, the centrifugal term has only minor impact on the total magnitude of the energy

of displacement (compare red and blue solid lines in Figure C81a). Only for the tail

the influence of the centrifugal term (3) increases, however, it is still smaller than the

contribution of the Coriolis term (2).

The CFSR data behaves differently (see Figure C81b): The influence of the centrifugal

force is significantly larger for energy of displacement magnitudes of e > 100 J/kg and

increases with increasing e. However, the energy of displacement e calculated by the

modified Rankine ansatz experience a stronger influence by the Coriolis term in the

range of small e. A multiplication of the Coriolis term by a constant factor leads to

a shift of the boundaries of these ranges. In the case presented here, this shift is only

minor. Hence the high magnitudes of e are still dominated by the centrifugal term.

Moreover, we observe a power law decay over a range of about two orders in magnitude

for each of the presented terms.

In case of the different WRF runs we observe that the energy of displacement distri-

butions shows analogously behavior with power law decay for lower values of e and an

exponential decay in the tails (see Figure C82). The parameters are nearly equal for all

runs. Additionally, we calculated the associated Coriolis terms. It is obvious that the

Coriolis term has insignificant influence in comparison to the centrifugal term.

C.2.2 Atmospheric moments

Finally, we plotted the atmospheric moment distributions of all data sets in Figure

C83. The atmospheric moments and the complementary cumulative distributions were

derived as is described in section C.1.2. The atmospheric moments are the mass-related

equivalent to the mass-specific energies of displacement and can be interpreted as vortex

magnitudes. Likewise to the seismic moments of earthquakes, the atmospheric moments

describe the total magnitude of the vortex or the total energy released during the vortex

life time. Atmospheric vortices cover a broad range of atmospheric moments (see Figure

C83).

The CFSR data seems to approximately follow a power law over a range of five orders for

of atmospheric moments between 1017 J and 1022 J. Although the other data sets show no

clear power law behavior, the data sets seem to compound the CFSR power law in other

ranges of the atmospheric moments. Thereby, the smaller the systems the smaller are

the values of the atmospheric moments. The power law exponent has a value of about
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≈ 0.6 which is of comparable order to the published power law exponents of the famous

Gutenberg-Richter law of earthquake magnitudes (seismic moments). The exponents of

the Gutenberg-Richter law are close to 2/3 ≈ 0.67 (Ben-Zion, 2003) depending on the

region with smaller exponents in subduction zones compared to mid-ocean ridges (e.g.

Bayrak et al., 2002). E.g. for the southern California region, we observed an exponent

of about 0.8 (see Figure 20). For comparison reasons, we also added the fit to the low

values of the tornado moments that leads to an exponent of about 0.2 as in Figure 20

and published in Schielicke and Névir (2013). This should show the possible range of

the power law exponents. We will conclude this analysis with two observations:

(1) The atmospheric moments of the Wk features in the CFSR data set are power-law

distributed over a large range of moments with an exponent comparable to that

of the Gutenberg-Richter law of earthquake magnitudes;

(2) All other data sets of vortices on different scales are nicely enveloped by the power

law fitted to the CFSR data.

However, these results need to be further proved carefully. This could be done in

different ways. One possibility would be to resolve the finer scales in the CFSR data set

Figure C82: Complementary cumulative distributions (CCDF) concerning the energy of dis-
placement e and its contributions for different WRF runs. The centrifugal term is calculated as

2 · 1
2π

(
Γ2

2A

)
and the Coriolis term as 2 · 1

2π ·
2
3 f Γ with f = 10−4s−1. The power law exponents

were estimated in the ranges [0.03 : 0.5] J/kg (Original run) and [0.1 : 10] J/kg (Doubled-speed
run).
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Figure C83: Modified complementary cumulative distributions (CCDF) of the atmospheric
moments for different data sets. Atmospheric moments of the US-Tornado data series (1950-
2006) as published in Schielicke and Névir (2011, 2013) were added for comparison reasons. Fit
ranges: CFSR data [1017 : 1022] J; Tornado data [107 : 1012] J.

by dynamical downscaling the data with the help of a convection-resolving model. On

the other hand, a study of Doppler radar measurements of supercells would be helpful

in order to further investigate the convective scale. Finally, it would be interesting to

find a physical explanation for the power law behavior, for the value of the exponent

and to set up an appropriate model of multiplicative generation processes that possibly

causes the observed behavior.
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Schielicke, L. and Névir, P. (2013). Comprehensive analysis of tornado statistics in

comparison to earthquakes: intensity and temporal behaviour. Nonlinear Processes

in Geophysics, 20(1):47–57. https://doi.org/10.5194/npg-20-47-2013.
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Nomenclature

Acronyms

Symbol Description Units

CDF Cumulative distribution function

CCDF Complementary cumulative distribution function

cf. Abbreviation of confer

CFSR Climate Forecast System Reanalysis

coord. Coordinates

distr. Distribution

E East

e.g. Abbreviation of exempli gratia (for example)

eq. Abbreviation of equation

Fig. Abbreviation of figure

i.a. Abbreviation of inter alia

N North

NCEP National Center for Environmental Prediction

NH Northern hemisphere

PDF Probability density function

S South

SC Single centers

SH Southern hemisphere

Tab. Abbreviation of table

W West

Wkf Wk feature

WRF Weather Research and Forecasting (model)
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Greek Symbols

Symbol Description Units

α Angle between unit vectors i and t (◦)

α Angle between translation vector v and x-axis (of

N=3 point vortex system)

(◦)

α Eigenvalues of ∇u

α Exponent in modified Rankine ansatz 1

α Exponent of power law 1

α = ρ−1 Specific volume m3 kg−1

β Exponent of stretched-exponential distr. 1

β Power law exponent 1

γ = γ(t) Time-dependent stretching factor (Burgers vor-

tex)

Γ Circulation Γ =
¸

c(A′) u · ds =
´

A′ 2ω · dA m2 s−1

Γa Absolute circulation Γa = Γ +
´

A′ 2ΩE · dA m2 s−1

Γtotal Total circulation m2 s−1

λ1, λ2, λ3 Eigenvalues of a 3×3 tensor

λ Decay rate in exponential function

λ Multiplicative factor (stretched exponential distr.)

λ Scaling factor

λβ Reference scale (stretched-exponential distr.)

λ̃ = 1/λβ Reciprocal of reference scale (stretched-

exponential distr.)

µ Bulk viscosity kg s m−1

µ Mean

ν = ρ/µ Kinematic viscosity (ν = ρ/µ) m2 s−1

ϕ Latitude (in radians or degree) Rad or (◦)

φ Angular component of polar coordinates Rad
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Φ(r, t) Field depending on space and time

Φz Centrifugal potential m3 s−2

Φg Potential of gravity m3 s−2

Φ Total geopotential m3 s−2

ρ Density kg m−3

ρ, φ Polar coordinates (2d)

ρ Radial component of polar coordinates m

ρc Density at the center of the vortex at the moment

of maximum intensitx

kg m−3

ρ̄ Averaged density inside the life time volume of

the vortex

kg m−3

∆σ = σ0 − σ f Stress drop Pa

σ0 Initial stress before earthquake Pa

σ f Final stress after earthquake Pa

σ2 Variance

θ Potential temperature K

ζ = k · ∇ × u Vertical component of relative vorticity vector s−1

ζ = vx − uy Vertical component of vorticity vector in cartesian

coordinates

s−1

ζmean = Γ
A Mean vorticity in area A s−1

ζg = 1
ρ f∇2 p Geostrophic vorticity s−1

ζa = k · ∇ × ua Vertical component of absolute vorticity vector

ζa = ζ + f
s−1

ζ2 Areal average of squared vorticity s−2

ω̃ Angular velocity (magnitude): ω̃ = dφ
dt Rad s−1

‖Ω‖ Local rotation rate ‖Ω‖ = 1√
2

√
ζ2 s−1

‖ΩE‖ Rotation rate of Earth (magnitude)

‖ΩE‖ = 2π/day = 7.27 · 10−5 s−1

s−1
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Roman Symbols

Symbol Description Units

A Area m2

A Rupture surface m2

a Acceleration m s−2

AW2 Term similar to Wk but components are averaged

over area (2d): AW2 = ζ2

D2
h+De f 2+De f ′2

1

B Beaufort-scale (class) 1

B Bernoulli-streamfunction B = 1
2 u2 + h + Φg m2 s−2

b b-values of earthquakes m2

C = f vh Coriolis acceleration m s−1

C′ = lw sin α Coriolis acceleration II m s−1

C Normalization constant of PDF

CHV = L
H Reciprocal of aspect ratio 1

CLE = ρ̄
ρc

Ratio of averaged density and density at vortex

core

1

C̃ Dimensionless shape factor 1

c Constant factor

cg Group velocity m s−1

cp Specific heat at constant pressure

(cp = R + cv = 1004 J kg−1 K for dry air)

J kg−1 K

cv Specific heat at constant volume

(cv = 717 J kg−1 K for dry air)

J kg−1 K

D Depth Pa

Dh Divergence (2d) (Dh = ux + vy) s−1

D2
h Areal average of squared divergence s−2

De f Stretching deformation (2d) (De f = ux − vy) s−1

De f 2 Areal average of squared stretching deformation s−2
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De f ′ Shearing deformation (2d) (De f ′ = uy + vx) s−1

De f ′2 Areal average of squared shearing deformation s−2

dv = dxdydz Volume element m3

e = cvT Internal energy (mass-specific) m2 s−2

e Energy of displacement m2 s−2

eec, ẽec Energy of displacement under geostrophic balance m2 s−2

et, ẽt Energy of displacement under cyclostrophic bal-

ance

m2 s−2

etc, ẽtc Energy of displacement under gradient wind bal-

ance

m2 s−2

er f (x) Gaussian error function of x

er f c(x) = 1− er f (x) Complementary Gaussian error function of x

exp(x), ex Exponential function of x

F Fujita-scale (class) 1

f Coriolis parameter ( f = k ·ΩE = 2 ‖ΩE‖ sin φ) s−1

f (t) Probability density function (unnormalized)

G Green’s function (distribution)

g Acceleration of gravity (magnitude) g ≈ 10 m s−2 m s−2

H Height scale m

H Hamiltonian (point vortex model)

H/L Aspect ratio 1

h = e + pα Enthalpy (mass-specific) m2 s−2

I, I I, I I I Invariants of a 3×3 tensor

J(u, v) = det(∇v) Jacobi determinant of horizontal velocity compo-

nents (2d)

s−2

L Length scale (horizontal) m

L̃ Characteristic length of fault m

LTrack Path length m
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Lz Angular momentum (point vortex model)

l Coriolis parameter (l = j ·ΩE = 2 ‖ΩE‖ cos φ) s−1

`α,β Intervortical distance between two point vortices

α, β

m

l = ‖r‖ Length of line element m

ln(x) Natural logarithm of x

log(x) Decadic (common) logarithm of x with base 10

M∗ = V∗ρ̄ Total mass kg

Ma = M∗e Atmospheric moment J

Mo Seismic moment (earthquake magnitude) J

N Number

Ntot Total number

n Normal direction in natural coordinates

P, Q, R Invariants of ∇u

P = ∇ · u First invariant of ∇u s−1

P = 1
ρ

∂p
∂n Pressure gradient acceleration m s−1

∆P Pressure difference between vortex core pressure

and environmental pressure

Pa

∆hP Horizontal pressure difference Pa

∆zP Vertical pressure difference Pa

Px Zonal momentum (point vortex model)

Py Meridional momentum (point vortex model)

P(X) Cumulative distribution function (CDF) below

threshold x: P(X) = Pr(X ≤ x)

P̄(X) Complementary cumulative distribution function

(CCDF) above threshold x: P̄(X) = Pr(X > x)

Pr(X) Probability of random variable X

p Pressure Pa

ps Standard pressure (usually ps = 1000 Pa) Pa
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p(t) Probability density function (PDF)

Q = 1
2 (‖Ω‖2 − ‖S‖2) Second invariant of ∇u s−2

R = det(∇u) Third invariant of ∇u (3d) s−3

R Gas constant

(R = 287 J kg−1 K for dry air)

J kg−1 K

R Radius of curvature in natural coord. system m

R Vortex (core) radius m

Re = UL
ν Reynolds number 1

Ro = U
f L Rossby number 1

r, θ, z Coordinates of cylindrical coordinate system

s Entropy (mass-specific) J kg−1 K

s Streamwise direction in natural coordinates

‖S‖ Local strain rate (2d)

‖S‖ = 1√
2

√
D2

h + De f 2 + De f ′2
s−1

T Temperature K

T Torro-scale (class) 1

T Time scale s

∆T Dissipative time scale ∆T = 10 · L2/3 m3/2 s s

t Time s

∆t Time step s

U Magnitude of horizontal wind components m s−1

u Velocity component in x-direction (cartesian) m s−1

umax Maximum velocity at vortex core radius m s−1

ur Velocity component in radial direction (cylindri-

cal)

m s−1

uθ Velocity component in azimuthal direction (cylin-

drical)

m s−1

ux = ∂u
∂x Partial derivative of u with respect to x s−1
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uy = ∂u
∂y Partial derivative of u with respect to y s−1

uz Velocity component in vertical direction (cylindri-

cal)

m s−1

V∗ Total during life time affected volume m3

v Velocity component in y-direction (cartesian) m s−1

v Translational speed (magnitude) of point vortices

vh Magnitude of horizontal velocity m s−1

vx = ∂v
∂x Partial derivative of v with respect to x s−1

vy = ∂v
∂y Partial derivative of v with respect to y s−1

W Magnitude of vertical wind component m s−1

Wk = ‖Ω‖
‖S‖ Kinematic vorticity number 1

Wk =
´

WkdA´
dA Areal-averaged kinematic vorticity number 1

Wk =

√
ζ2√

D2
h+De f 2+De f ′2

Kinematic vorticity number (2d) 1

W∗k = ζ√
D2

h+De f 2+De f ′2
Extended kinematic vorticity number (2d) 1

w Velocity component in z-direction (cartesian) m s−1

X Random variable

x Threshold in CDF and CCDF

xmin Lower bound in e.g. power law distr.

Z =
v2

h
R Centrifugal acceleration m s−1

z = x + iy Complex variable

Tensors

Symbol Description Units

FN.S. Navier-Stokes tensor Pa

I Unit tensor 1
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∇u Velocity gradient tensor s−1

T Stress tensor (T = −pI + FN.S.) Pa

S Strain-rate tensor/deformation tensor

S = 1
2

(
∇u + (∇u)T) s−1

S′ Deviator of strain-rate tensor (3d)

(S′ = S′ − 1
3 (∇ · u)I)

s−1

Ω Vorticity/rotation tensor Ω = 1
2

(
∇u− (∇u)T) s−1

Vectors

Symbol Description Units

C Center of circulation m

dA Material area element m2

dx Material line element m

er, eθ , ez Unit vectors of cylindrical coordinate system in

x, y, z-direction

1

FR Frictional acceleration (FR = 1
ρ∇ · FN.S. = ν∇2u) m2 s−2

g Acceleration of gravity (vector) m s−2

i, j, k Unit vectors of cartesian coordinate system in

x, y, z-direction

1

r = (x, y, z) Space coordinate vector (3d) in cartesian coordi-

nates

m

t, n, k Unit vectors of natural coordinate system in

streamwise,normal,z-direction

1

u = (u, v, w) Velocity vector (3d) in cartesian coordinates m s−1

u = (ur, uθ , uz) Velocity vector (3d) in cylindrical coordinates m s−1

ua Absolute velocity vector m s−1

ur Relative velocity vector m s−1

v = (u, v) Velocity vector (2d) in cartesian coordinates m s−1
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v Translational velocity (vector) of point vortices

vg = 1
ρ f k×∇p Geostrophic velocity (2d) m s−1

w = 1
2 ω Angular velocity of rigid body s−1

ΩE Rotation rate of Earth s−1

ω = ∇× u Relative vorticity vector s−1

ω = (ωr, ωθ , ζ) Vorticity vector in cylindrical coordinates s−1

ωa = ∇× ua Absolute vorticity vector ωa = ω + 2Ωe s−1

ωr = ω Relative vorticity vector s−1

Other Symbols

Symbol Description Units

AT Transpose of n×n tensor A

‖A‖ Euclidean norm of n×n tensor A with ‖A‖ =√
tr(AAT

det(A) Determinant of n×n tensor A

tr(A) Trace of n×n tensor A

D
Dt = ∂

∂t + u · ∇ Material time derivative s−1

∂
∂t Local time derivative s−1

∇h = t ∂
∂s + n ∂

∂n Nabla-operator in natural coordinates (2d) m−1

∇h = i ∂
∂x + j ∂

∂y Nabla-operator in cartesian coordinates (2d) m−1

u · ∇ Advection s−1

< X >=
´ P0

P Xdp
P0−P Vertical average of variable X Unit of X
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