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Abstract

Artificial Photosynthesis is a promising approach to tackle the increasing challenges of global warming.
However, the direct conversion of CO2 to other chemicals presents major kinetic challenges, evoking
exploration of abundant, cost effective and sustainable photocatalysts.

Diamonds are promising candidates as H-terminated diamond surfaces exhibit excellent electron emis-
sion characteristics in water because of their negative electron affinity. However, due to their wide band
gap of 5.4 eV, the generation of solvated electrons, requires the photoactivation of diamond using deep
UV radiation which is scarcely available in the solar spectrum. In this thesis two strategies are investi-
gated to enable visible light absorption and enhance electron emission from diamonds. Specifically, the
effect of B, N and P doping on the electronic structure of diamonds were investigated using soft X-ray ab-
sorption spectroscopy at C K edge. The results of our study revealed that combining nanostructuration
with B-doping leads to introduction of new electronic states close to both the valence band maximum
and the conduction band minimum in B-doped diamonds. As an alternative strategy, the electronic
structure of nanodiamonds sensitized with Ru(bpy)3 was probed. These studies presented evidence of
electronic coupling between the Ru complex and the nanodiamonds with the HOMO of Ru(bpy)3 lying
above the valence band minimum of the diamonds. As a result of this band alignment, the dye acts as
an electron donor and can potentially refill the photogenerated holes in the valence band of diamonds.

Since photoactivation of diamonds generates solvated electrons in water, it is also important to un-
derstand the diamond-water interface. To this aim, infrared spectroscopy was used to elucidate the
influence of different pH conditions on the surface interactions of ND-OH surfaces at the diamond-
water interface. This study provided insights that could help to determine the optimal environment
that would enhance electron emission from these surfaces. Based on the results, a possible forma-
tion of oxonium ions on an ND-OH surface in acidic conditions could be deduced. These oxonium ions
could potentially form a charge stabilization layer with water molecules, thereby enhancing electron
emission which could be advantageous for photocatalytic reductions. The results further suggested a
possible aging mechanism of ND-H surfaces under long term UV irradiation. For efficient photoelectro-
catalytic CO2 reduction, diamonds were also co-promoted by Cu2O to form a hybrid photocatalyst. The
electronic structure of this hybrid material was probed at the Cu L edge to explain the role of diamond
in this hybrid material. It was found out that diamond indeed acts as a very stable support for Cu2O
thereby decelerating the process of aging and subsequent deactivation of the catalyst.

With this work, we thus, aim to highlight some of the characteristics of diamonds that would enable the
development of diamond based photocatalysts in the future.

xiii





Zusammenfassung

Die künstliche Photosynthese ist ein vielversprechender Ansatz, um den wachsenden Herausforderun-
gen der globalen Erwärmung zu begegnen. Die direkte Umwandlung von CO2 in andere Chemikali-
en stellt jedoch eine große Herausforderung dar, die zur Erforschung zahlreicher, kostengünstiger und
nachhaltiger Photokatalysatoren führt.

Aufgrund ihrer großen Bandlücke von 5,4 eV sind Diamanten vielversprechende Kandidaten. Denn H-
terminierte Diamantoberflächen weisen aufgrund ihrer negativen Elektronenaffinität in Wasser hervor-
ragende Elektronenemissionseigenschaften auf. Die Erzeugung von solvatisierten Elektronen erfordert
jedoch die Photoaktivierung von Diamanten mit tiefer UV-Strahlung, die im Sonnenspektrum kaum ver-
fügbar ist. In der vorliegenden Arbeit wurden zwei Strategien untersucht, um die Absorption des sicht-
baren Lichts zu ermöglichen und die Elektronenemission von Diamanten zu verbessern. Insbesondere
wurden die elektronischen Strukturen von p- und n-Diamanten mit B-, N- bzw. P-Dotierung mittels wei-
cher Röntgenabsorptionsspektroskopie an der C-K-Kante untersucht. Diese Untersuchungen zeigten,
dass die Kombination von Nanostrukturierung mit B-Dotierung neue elektronische Zustände erzeugt,
die sowohl dem Valenzbandmaximum als auch dem Leitungsbandminimum in B-dotierten Diamanten
nahe kommen. Als alternative Strategie wurde die elektronische Struktur von Nanodiamanten unter-
sucht, die mit Ru(bpy)3 sensibilisiert sind. Diese Studien zeigten eine elektronische Kopplung zwischen
dem Ru-Komplex und den Nanodiamanten, wobei das HOMO von Ru(bpy)3 über dem Valenzband Mi-
nimum der Diamanten lag. Durch diese Bandausrichtung wirkt der Farbstoff als Elektronendonor und
kann die photogenerierten Löcher im Valenzband der Diamanten potenziell wieder auffüllen.

Da die Photoaktivierung von Diamanten im Wasser solvatisierte Elektronen erzeugt, ist es auch wichtig,
die Grenzfläche zwischen Diamant und Wasser zu verstehen. Wir untersuchten die Interaktion von OH-
terminierten Diamant-Oberflächen mit Wasser bei unterschiedlichen pH-Werten, um die Elektronen-
emission von diesen Oberflächen zu verbessern. Es stellte sich heraus, dass unter sauren Bedingungen
auf einer ND-OH-Oberfläche möglicherweise Oxoniumionen gebildet werden, die mit Wassermolekülen
eine ladungsstabilisierende Schicht bilden könnten. Diese wiederum könnte die Elektronenemission er-
höhen und die photokatalytische Reduktion von CO2 begünstigen.

Einen hybriden Photokatalysator mit Cu2O Schichten auf der Diamantenoberfläche wurde auch gebil-
det, als alternativen Weg für eine effiziente CO2-Photoreduktion. Die elektronische Struktur dieses Hy-
bridmaterials wurde an der Cu-L-Kante untersucht, um die Rolle des Diamanten in diesem Hybridma-
terial zu erklären. Es wurde herausgefunden, dass Diamant tatsächlich als sehr stabiler Träger für Cu2O
wirkt, wodurch der Alterungsprozess und die daraus folgende Deaktivierung des Katalysators verzögert
werden.

Mit dieser Arbeit wollen wir daher die Eigenschaften von Diamanten beleuchten, um künftig die Ent-
wicklung von einem diamantbasierten Photokatalysator zu ermöglichen.

xv





1
Diamonds for a Carbon Neutral Future

Global warming and climate change have become the harsh reality of today. To be able to deal with the
drastic impact, countries across the globe have pledged to keep the emission of CO2 as low as possible
in order to limit the temperature rise to less than 2∘C. As a result carbon capture and sequestration (CCS)
has gained significant interest and developing new technologies for the same has become imperative.
Within the scientific community a major focus is the development of newmaterials for artificial photo-
synthesis, a process by which CO2 can directly be converted to other hydrocarbons in the presence of
sunlight. To this aim, we discuss our motivation behind investigating diamond based photocatalysts in
this chapter. Having laid the context of this research, this chapter gives an insight into the fundamentals
of artificial photosynthesis followed by a concise discussion of the literature that forms the basis of the
work described in this thesis. Additionally, the primary research questions and an outline of this thesis
are also presented.

1
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1.1. The global energy and environmental concerns

The world today is faced with an economic problem concerning its energy resources namely the fossil

fuels viz. coal, oil and natural gas. Such an economic problem arises because there is a disparity be-

tween the limited availability of these resources and the increasing energy demands of the rising global

population. The world population currently stands at 7.4 billion. This figure is expected to reach 8 bil-

lion by 2024 according to estimates of the United Nations.[1] The existing population already consumes

more than 15TW of power at present and the consumption is anticipated to increase to 30 TW by 2050.

One thing that is certain is that fossil fuels which provide currently about 80% of the energy supply will

be unable to keep up with this demand. This is primarily because of their limited available reserves.

According to the BP Statistical Review of World Energy, the total reserves of fossil fuels are: 1,139 bil-

lion tons of coal, 187 trillion cubic meters of natural gas and 1,707 billion barrels of crude oil.[2] These

numbers seem pretty large but at the current rate of extraction, coal would be exhausted in another 134

years, natural gas by the end of 2068 and crude oil by 2066.[2] However, as extraction and recovery of

the reserves get more and more difficult with passing time, the effect of these dwindling reserves are

likely to be felt much earlier. This is because the peak in production will occur long before the supplies

run out.

Several predictions have been made since 1956 to determine the timing of peak oil. Peak oil is that point

in time when the maximum rate of crude oil extraction is reached after the rate of extraction is expected

to encounter an indefinite decline.[3] Usually this is a combination of both geological and economic

factors. In 1956, M. King Hubbert used models to, for the first time, predict that oil production in the

United States would peak between 1965 and 1971.[4] His repeated predictions about the world peak

oil did not concede to the real scenario back then. In the recent years, the International Energy Agency

claimed that conventional oil has already peaked in 2006. Going by this claim and according to the

definition, the rate of extraction then is on a decline since 2006. This could be a plausible explanation

for the high oil prices because extraction of the resources from their reserves is not only more expensive

but also requires a lot of effort. In fact, price of oil has been on a rise since 2001 and it is highly unlikely

that it will return to its original low levels (pre 2001).

Apart from the rising oil prices and the limited fossil fuel reserves, what seems to be a perhaps bigger

concern is the impact that fossil fuels have on our environment. The central concern in this regard

is the emission of CO2 and consequently their contribution to global warming. Since the beginning

of the industrial revolution, the CO2 level in the atmosphere has increased from 280 ppm to 408 ppm

and is currently increasing at the rate of 2.9 ppm/year.[5] If the atmospheric CO2 concentration rises
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to 450 ppm, there exists a high risk of global warming by more than 2∘C. Effects of global warming are

already being felt through adverse changes on the global ecosystem in the form of temperature and

climate changes, ocean acidification etc. It is possible to adapt to the changes if the temperature can

be restricted to less than 2∘C. This makes it imperative to reduce our dependence on fossil fuels and

curb CO2 exhausts. Therefore, we must gradually transition towards sustainable sources of energy.

1.2. A step towards sustainability with renewables

Our energy choices affect our health, environment and economy. For a more sustainable future, we

must curb the use of fossil fuels such as coal, oil and natural gas as they are substantially more harmful

to the environment. A better way to meet the increasing energy demands is to use renewable sources

of energy such as wind, solar, hydroelectric etc.

Figure 1.1: Global Energy Potential of all renewable energy sources. This picture illustrates the outstanding potential of solar

energy compared to all other sources.[6]

Figure 1.1 shows the annual global potential for power generation of the various renewable energy

sources. It is evident from the figure that, of all the renewable sources available, solar energy is the

only source that has the potential to meet our energy needs. In fact the total solar energy absorbed

by the earth’s atmosphere, oceans and land masses is approximately 3,850,000 EJ/year which is more
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in one hour than the world consumes in a year. Thus, sunlight is a compelling solution to our need for

clean and abundant source of energy in the future. It is not only readily available to us, but is also secure

from geopolitical tension and poses no threat to our environment through pollution or global warming

emissions. In order to harness the energy from the sun to produce about 30 TW of power to meet the

global energy demand, only 0.8% of the earth’s surface must be covered with 10% efficient solar cells.

However, the potential solar energy that we can harness differs from the actual amount of energy present

near the surface due to factors such as geography, time variation, cloud cover and the amount of land

available to us. Geography affects solar energy potential because areas closer to the equator receive

more solar radiation thus making it advantageous to install solar panels in such locations. Then again,

the land available for the installations in such locations may also be limited as only a small portion may

be unowned and suitable for solar panels. Additionally, time variation affects the solar energy poten-

tial as the sun is not available during the night as a result of which the solar panels can hardly absorb

any radiation. Furthermore, clouds block the incoming sunlight and reduce the amount of solar energy

available for solar cells. Due to this intermittent nature of solar energy, the amount of energy that can

be absorbed by solar panels in a day is limited. In order to have access to the energy at all points of

time, electricity network operators will have to cope up with the intermittent nature of solar power. [7]

Although, a possible solution to this could be implementation of grid-based energy storage in the form

of ‘smart grids’, yet, at some point in time, the grid capacity will be exceeded and large scale energy stor-

age solutions would be necessary. Several options for alternative energy storage techniques are listed

in Table 1.1.

In comparison to the mechanical –based energy storage systems or capacitors and batteries, evidently,

fuels are a more effective way of storing energy with almost 2-3 order of magnitude higher energy density.[8]

This is due to the fact that energy is stored in the chemical bonds that compose the fuels. Thus, storing

solar energy in the form of chemical fuels is an attractive option.

Among all the chemical fuels listed in Table 1.1, hydrogen has the highest gravimetric energy density.

However, its volumetric energy density is quite low (only 0.011 MJ/L which is about 3 orders of magni-

tude lower than gasoline), which can be increased by storing H2 in high pressure containers (5.6 MJ/L

at 700 bar) but this comes with the cost of ~10% energy penalty for H2 compression.[8] An alternative

option to store hydrogen would be in metal hydrides such as MgH2, which at present have appreciable

energy capacity of 7 wt.%.[10] Although solar hydrogen is a clean and carbon neutral energy technology

and can be easily produced by water splitting with reported state-of-the-art efficiencies of 14.2%,[11] the

challenges pertaining to its storage need to be addressed in order to make it a viable option. Further-
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Table 1.1: Gravimetric and Volumetric energy densities of various energy storage systems. All values are at 1 bar unless

specified, adapted from [8]

Energy Storage Energy Density

Gravimetric (MJ/kg) Volumetric (MJ/L)

Mechanical

Compressed Air 0.512 0.16 (300 bar)

Pump Water Uphill 0.001 0.001

Capacitors

Supercapacitor 0.306[9] -

Batteries

Pb 0.14-0.17 -

NiCd 0.14-0.22 -

Li-ion 0.54-0.72 -

Fuels

Coal 24 -

Wood 16 -

Gasoline 44 35

Diesel 46 37

Methanol 20 18

Natural Gas 54 0.036

Hydrogen 143 0.011 5.6(700 bar)

more, solar hydrogen generation as a technology alone is not sufficient to address the environmental

concerns related to global warming as a result of increased CO2 concentrations in the atmosphere. Thus,

efforts need to also be directed towards developing carbon capture and sequestration technologies to

capture and utilize the existing and emitted CO2 in the atmosphere.

One possibility is the solar conversion of CO2 to hydrocarbon fuels. Such a carbon capture technology, if

developed, will help to limit global warming to less than 2∘C by recycling the carbon in the atmosphere

in the form of usable fuels. The direct solar conversion of CO2 and water vapor into hydrocarbon using

sunlight would be carbon neutral while providing on a renewable basis an energy dense portable fuel

that is compatible with our current energy infrastructure.
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1.3. Storage of solar energy and CO2 in the form of chemicals–

Artificial Photosynthesis

Artificial Photosynthesis is the use of fundamental science underlying the natural photosynthetic en-

ergy conversion observed in plants to design synthetic systems for converting sunlight into chemical

fuels.[12] Photosynthesis is the best method for large scale solar energy harvesting on the planet which

is not only responsible for the energy stored in the fossil fuels that we are so heavily dependent on but

also powers most of the biological world.[12] In the process of photosynthesis, we know that plants con-

vert CO2 and H2O in the presence of sunlight to carbohydrates and oxygen. A synthetic system which

could in a similar way convert CO2 and H2O to useful chemicals in the presence of sunlight would there-

fore be an ideal solution to our energy problem on the planet. The ideal system would be one, where

water is oxidized at a photoanode and CO2 is simultaneously reduced at the photocathode resulting

in products that would be valuable as fuels and/or chemical feedstocks for the industry as shown in

Figure 1.2. Although, water splitting has been widely researched and is a rather simple electrochemical

reaction, CO2 reduction is far more complex and challenging.

Figure 1.2: Schematic of a photoelectrochemical cell with simultaneous CO2 reduction at the photocathode and H2O

oxidation at the photoanode.[13]

In the past few decades, research in the field of photochemical and photoelectrochemical CO2 reduc-

tion has shown a tremendous increase. The catalytic conversion of CO2 to liquid fuels is a goal that will

positively impact the global carbon balance by recycling CO2 into usable fuels. Despite the great chal-

lenges associated with the reaction, there are enormous potential rewards. CO2 is an extremely stable
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molecule produced by fossil fuel combustion and respiration. Returning CO2 to a useful state by activa-

tion/reduction is a scientifically challenging problem which requires appropriate catalysts and energy

input.[14] One of the main challenges is with respect to thermodynamic considerations.

With respect to CO2 reduction to liquid fuels or fuel precursors such as synthesis gas (CO2/H2), proton

coupled multiple electron transfer steps are generally more favorable than single electron reductions.

This is because thermodynamically more stable molecules are produced. The reactions are summa-

rized below. As is evident from the reactions, in a single electron reduction step the CO •–
2 has a far more

negative redox potential of -1.9V due to a large reorganizational energy between the linear molecule

and the bent radical anion. [15]

CO2+ 2H++ 2e– ⟶ CO+ H2O 𝐸∘ = −0.53𝑉

CO2+ 2H++ 2e– ⟶ HCO2H 𝐸∘ = −0.61𝑉

CO2+ 6H++ 6e– ⟶ CH3OH+ H2O 𝐸∘ = −0.38𝑉

CO2+ 8H++ 8e– ⟶ CH4+ 2H2O 𝐸∘ = −0.24𝑉

CO2+ e– ⟶ CO •–
2 𝐸∘ = −1.9𝑉

Another key problem with conversion of CO2 to liquid fuels is the assembly of the nuclei and formation

of the chemical bonds to convert a simple molecule into complex and more energetic molecules. While

CO2 can be easily converted to CO followed by conversion of H2O to H2 resulting in synthesis gas that

can be used in the Fischer Tropsch process, the actual challenge is associated with the direct electro-

catalytic conversion of CO2 to liquid fuels.[15] Here the challenge is kinetic in the sense that one catalyst

must be identified which would directly complete the sequence of steps all with low energy barriers.[15]

Alternatively, multiple catalysts maybe used where each catalyst is optimal for a single step in the whole

conversion process.[15] This will then allow optimization of the individual catalysts for each step of the

reaction.

Several semiconductor materials have been investigated over the past few decades for photochemical

CO2 reduction. For the photochemical conversion to take place, photogenerated electrons and holes

must take part in the catalyzing the reactions on the surface of the catalysts. For the electron transfer

or hole transfer to be successful, the band edge positions of the semiconductors with respect to the

electrochemical potential of the different CO2 redox reactions are very crucial. For the photogenerated

electrons to be able to reduce CO2 the conduction band edge should be more negative as compared
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to the redox potential of CO2. Figure1.3 below shows a schematic of the conduction and valence band

potentials of semiconductor photocatalysts with respect to the redox potentials of different chemical

species. Thus, from the conduction band potentials relative to those of the redox species the activity

of a particular semiconductor photocatalyst with respect to formation of a particular reduction product

maybe explained.

Figure 1.3: Conduction and valence band potentials of semiconductor photocatalysts relative to the energy levels of the

redox couples related to CO2 reduction in water.[16]

For most of the semiconductors reported for photocatalytic and photoelectrocatalytic CO2 reduction,

the reaction happens on the surface of the catalyst/electrode. Thus, adsorption of the reactant species

and subsequent desorption of the product species plays a major role in the reaction. Consequently

there are several phenomena that could potentially affect the catalytic activity such as competitive ad-

sorption, mass transport limitations and structural deformations and deactivation of the catalyst.[17]

In addition to this, a majority of the catalysts investigated so far for CO2 reduction involve transition

metals,[18] the cost and abundance of which are of major concern.[19, 20] To circumvent these poten-

tial issues, the search for new photocatalytic materials was extended to diamonds, when a few years

ago Zhang et al. demonstrated the possibility of reducing CO2 to CO directly using diamonds in the

presence of UV radiation.[21] In the following section we discuss diamonds as promising materials for
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artificial photosynthesis while highlighting some of the challenges associated with the material.

1.4. Diamonds for Artificial Photosynthesis

Diamonds are an allotrope of carbon containing spኽ carbon atoms unlike other allotropes such as

fullerene, carbon nanotubes and graphene which contain spኼ carbon. Over time it has gained widespread

attention as a wide band-gap semiconductor for a variety of applications due to properties such as high

charge carrier mobility, thermal conductivity, chemical stability and hardness and the ability to pro-

duce it using benign starting materials in the laboratory.[22] Available in diverse morphologies such as

single, poly-, nano- and ultranano- crystalline films as well as powders, diamonds can be artificially syn-

thesized in the labs using primarily high pressure high temperature (HPHT),[23–25] plasma enhanced

and microwave chemical vapour deposition (PE and MW CVD), [26–28] and detonation[29] methods.

The starting material used in most of these preparation methods are benign in nature making the pro-

duction processes highly sustainable. Of particular interest are nanodiamonds due to their large sur-

face area which makes it easy to functionalize their surfaces with a wide range of atoms and functional

groups.[30] This makes the material versatile for a wide range of applications such as biology, medicine,

photocatalysis and environmental science.

Here, we focus on the photocatalytic applications of diamonds and specifically on CO2 reduction. After

the group of Hamers demonstrated the generation of solvated electrons by diamonds for photocatalytic

reduction of N2 to NH3 in 2013,[31] Zhang et al. extended this work to demonstrate that these solvated

electrons generated upon UV irradiation of diamonds are also capable of reducing CO2 to CO as shown

in Figure 1.4 .[21, 32] Specifically, the group of Hamers in both their works gave evidence of the fact that

the negative electron affinity of diamonds[33] can be used to emit highly energetic solvated electrons

in water more efficiently from the material. Himpsel et al. first showed that although diamonds have a

wide band gap of 5.4 eV, in H terminated NDs the conduction band minimum (CBM) lies above the vac-

uum level.[33] This allows highly energetic electrons that have been photoexcited to the conduction

band edge to be released into the solution spontaneously, thus making them available to catalyze re-

actions in solution.[31] This certainly makes diamonds promising materials for artificial photosynthesis

along with the fact that it is also chemically stable in comparison to many other semiconductors that

have been investigated for this application so far.

However, for the generation of solvated electrons, diamonds have to be photoactivated with deep UV

radiation, which is only a very small part of the solar spectrum. For commercial applications this process

must work with solar light, which therefore, presents a major challenge for the use of diamonds, which
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Figure 1.4: Illustration of the band structure of H-diamond showing its negative electron affinity. Highly energetic electrons

called solvated electrons can be emitted directly into the solution which can catalyze CO2 and N2 reduction reactions. Taken

and adapted from [31]

have a wide band gap, for photocatalytic CO2 reduction.

Within the DIACAT project, we proposed to address this challenge following several approaches. Par-

ticularly, we will focus our investigations on three different approaches as shown in Figure 1.5, namely,

doping, sensitization with visible light active complexes, and coupling with co-catalyst nanoparticles

and films, which will be introduced in the following subsections.

1.4.1. Achieving visible light absorption in diamonds

Doping diamonds with B, N and P atoms

One of the most widely investigated approach in the photocatalysis community to enable visible light

absorption in wide band gap semiconductors is to introduce surface states within the band gap of the

material by doping. Doping is typically used in semiconductors to enhance the conductive properties of
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Figure 1.5: Schematic of different approaches to address the challenge of photoexcitation of diamonds. Taken and adapted

from [31]

the material. Introducing a dopant atom in the material increases the number of available charge car-

riers in the material thereby increasing its conductivity. Depending on whether the dopant is a donor

or an acceptor, electronic states are introduced within the band gap close to the conduction band or

valence band. In the photocatalysis community, it is a well-known fact that to carry out the reactions un-

der visible light (𝜆 > 380 nm), the semiconductor material should ideally be optically active in this region

of the solar spectrum and hence possess a band gap less than 3.1 eV.[34] The most widely investigated

wide band gap semiconductor photocatalyst TiO2 has therefore, been doped with elements such as

N, C, P, S[35–37] and F[38] to make it visible light active by introducing localized dopant states within

its band gap. In ultrawide band gap semiconductors such as diamonds, such defect states introduced

by dopant atoms within the band gap could facilitate defect-based transitions in the material.[39–42]

This would open a potential pathway by which photons of low energy could be harnessed to excite

electrons from the conduction to the valence band. To this aim, B doping has been investigated in

addition to n-type doping in diamond with N and P atoms. B doping is known to introduce acceptor

states 0.39 eV above the valence band edge[43] and is therefore a shallow p-type dopant. Boron doping

in diamonds has therefore, gained significant interest in power electronics due to its ability to reduce

the series and contact resistance of the device. Additionally, there has been growing interest in N- and

P doping of diamonds for electronic application, which introduce donor levels at 0.75 eV and 1.09 eV
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below the conduction band edge respectively.[44] However, for most electronic applications, typically

single crystal diamond films are investigated. The question that therefore, remains open is whether

the acceptor and donor levels remain localized within the band gap at the positions reported in liter-

ature even for other morphologies of diamonds such as polycrystalline and nanocrystalline films and

diamond nanoparticles. Furthermore, although X-ray spectroscopy experiments provide a means to di-

rectly observe these states[45] and HR-TEM experiments conducted on B-doped diamonds indicate the

distribution of the dopant atoms in the material,[46, 47] the origin of the states and how they change in

other morphologies of diamonds still remains unclear, which we address in this dissertation.

Sensitization of diamond surfaces with Ru complexes

Another approach to address the challenge of UV photoexcitation in diamonds is to graft visible light ac-

tive transition metal complexes on its surface. Since the end goal is to have a photo(electro)catalytically

active surface for CO2 reduction, this approach could be beneficial whereby the molecular complex

when covalently attached to the diamond surface could introduce states within the band gap of dia-

mond which could facilitate charge transfer between the diamond and the complex to enhance pho-

tocatalytic activity of the system. A popular choice of molecular complex for this purpose is a Ruthe-

nium based complex. Ru polypyridine complexes have been employed successfully in dye-sensitized

solar cells [48] due to their small HOMO-LUMO gap which makes them very attractive materials for effi-

cient harnessing of the solar energy. Furthermore, due to the stability of their oxidized and reduced

forms they are especially interesting as mediators of photo-induced electron transfer reactions.[49]

Hamers demonstrated a means to tether such electrochemically active molecular complexes to dia-

mond surfaces to form redox-active surfaces which lie at the heart of photo(electro)catalysis.[50] Since

then Ruthenium complexes have been attached to conductive boron doped diamond surfaces to demon-

strate improved photoelectrochemical performance of the system.[51] The implications to photocatal-

ysis were discussed based on investigations of the electronic structure of the functionalized materials

with soft X-ray absorption spectroscopy techniques.[45] All of these investigations established the role

of diamonds as an electron donor to the Ruthenium complex. However, in these studies the surfaces

under consideration were B-doped polycrystalline diamond films. For enhanced catalytic activity it is

well known that a high surface area of the catalyst is required. As a result, diamond nanoparticles were

more interesting within the scope of this project. Yet, it remains to be clarified, what role is played by

the Ruthenium complex when grafted on the surface of nanodiamonds and what are its implications to

photocatalytic reactions.
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1.4.2. Possible pathways for photocatalytic CO2 reduction

Solvated Electron Emission: Effect of doping and surface chemistry at the diamond-water

interface

In contrast to other photocatalysts for CO2 reduction, with diamonds we hope to be able to catalyse the

reaction directly in water with the help of highly energetic solvated electrons that can be generated from

the material. This would essentially eliminate the need for activation of the CO2 molecule on the catalyst

surface. In order to have an efficient solvated electron generation, understanding of the diamond-water

interface is absolutely imperative. In particular, the effect of surface chemistry, which is very diverse on

diamond is known to have an impact and is shortly reviewed here. The diamond surface has been

shown to be responsible for imparting surface conductivity to diamonds. Despite the large band gap

of 5.4 eV, undoped high quality diamonds when exposed to air or liquid solutions exhibit pronounced

surface conductivity [52]. Chakrapani et al. have shown in their study that electrons from the diamond

transfer into redox electronic states of the liquid electrolyte leaving behind a highly conductive surface

which originates from the holes [52]. Such a mechanism is referred to as ‘transfer doping’. It is believed

that these transfer doped holes in the nanodiamond are confined to a fairly deep yet narrow energy

well where they can propagate contributing to the conductivity of the diamond surface [53]. This sur-

face conductivity can increase or decrease depending on the properties of the surrounding liquid [53].

This makes it imperative to study the electronic structure of the interface via techniques that are non-

electrochemical in nature.

For this purpose, core level spectroscopy at the K edge of oxygen and carbon was used to characterize

the electronic properties of NDs in water. Soft X-ray absorption and emission spectroscopy techniques

were used to study the electronic structure of diamonds deposited on a substrate and nanodiamonds

in water (using a microjet). X-ray absorption spectroscopy (XAS) measurements revealed the presence

of holes in the valence band of nanodiamonds in water. The absence of any signal from holes in the va-

lence band of the nanodiamonds on the substrate confirms that the valence holes observed in the NDs

in water is due to surface transfer doping. This hole doping is induced by an electron transfer between

the diamond and O2/H2O redox couple. It was proposed that such charge transfer mechanism is possi-

ble even if the ND surface is not hydrogen or oxygen terminated. This is due to the fact that on detonated

NDs other surface structures such as fullerene-like reconstructions (FLRs) may exist. A spontaneous po-

larization at the diamond-FLR interface may also induce migration of electrons to the graphene surface

layer making it more sensitive to hole doping. [54]

Core level spectroscopy was further used by Petit et al. to shed light on the molecular and electronic
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structure of the interfacial water on nanodiamond surfaces. It was found that the orientation of water

molecules in the first solvation shell depended on the surface chemistry of the NDs. Particularly, more

presence of C-H groups on the surface of NDs strongly impact the H-bonds between water molecules

around the NDs. This could explain the different behaviour of the solvated electrons generated from

NDs-H. At high concentrations of nanodiamonds there is a stronger contribution of the interfacial wa-

ter layers which makes the electronic structure of water molecules very different from that of the bulk.

Furthermore, it was suggested that the structure of the ordered water layers may resemble that of high

density amorphous ice. [54]

Apart from core level spectroscopy, infrared spectroscopy techniques have also been employed to un-

derstand ND-water interactions as it impacts the chemical and catalytic activity of the nanoparticles.

It is quite challenging to conduct IR measurements in liquid phase due to strong response from the

solvent molecules. Therefore, most of the measurements are reported in vacuum and under a gaseous

atmosphere. The first infrared spectroscopy results in vacuum revealed the presence of hydroxyl groups

on the surface of diamonds as a result of water dissociation on carbon dimers. Such carbon dimers are

known to result from FLRs that are formed due to surface reconstruction of diamonds upon annealing

in vacuum.[55] In a gaseous atmosphere primarily composed of humid air, a strong adsorption of wa-

ter molecules were observed on detonation NDs even at relative humidities < 35%. [56]Such a strong

adsorption was evidenced by an increase in the intensities of the OH stretching and bending modes.

On the other hand, a shift in the OH stretching mode alone indicated OH adsorption at acidic and basic

sites on the ND surfaces.[55] Additionally it was also reported that the ND surfaces act as nucleation sites

for water molecules that are H-bonded to neighbouring water molecules thus forming a multi-layered

water structure.[55]

The study of diamond-water interface continues to be of interest for the development of an optimum

diamond based photocatalyst with desired properties for CO2 reduction. Particularly, H-terminated

surfaces are readily hydroxylated under prolonged exposure to UV irradiation in water. The resulting

OH-terminated surfaces also possess negative electron affinity (NEA). An understanding of their surface

interactions in water could therefore be interesting to gain useful insights into electron emission from

these surfaces in water.

Formation of heterojunctions with transitionmetal oxides

While doping and surface functionalization with molecular complexes are potential means to address

the challenge of photoactivation of diamonds for catalysis, by co-promoting diamonds with a catalyt-

ically active species, a new photocatalyst system could be developed which exhibit enhanced activity
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as well as stability towards CO2 reduction reactions. For this purpose, diamond NPs were coated with

metallic Cu NPs and thin film diamond electrodes were coated with electrodeposited Cu2O to investi-

gate the changes in oxidation state of Cu during the course of the electrochemical reactions. The choice

of Cu based co-catalysts was motivated by the extensive research conducted on the high catalytic ac-

tivity and selectivity towards CO2 reduction. Research has shown that the selectivity of Cu based elec-

trodes towards different reduction products originated in the different adsorption of CO2 on the differ-

ent facets of the catalyst.[57] This combined with the direct band gaps of 1.2 eV and 2.2 eV for CuO and

Cu2O respectively,[58] makes copper oxides an attractive material of choice. However, due to fast re-

combination of electron-hole pairs in the material it is quite unstable.[59] For commercial application

of artificial photosynthesis, therefore, developing a stable photocatalyst is essential. In most cases this

can be achieved by combining Cu based catalysts with wide band gap semiconductors which tend to

be more stable. Traditionally, wide band gap semiconductors such as TiO2[60]and ZnO[61] have been

coupled to CuOx to form stable photocatalysts with enhanced activity, where TiO2 and ZnO served as a

support for the catalyst facilitating charge separation in the material. In addition, organic nanomateri-

als such as graphene and carbon nitrides have also been used to form composite catalysts with CuOx

for enhanced activity.[59] While diamonds have a wide band gap, they are robust and chemically stable.

Therefore, they can serve as an excellent support material for copper based catalysts. In fact, literature

reports have shown boron-doped diamond to be a promising support material in fuel cells.[62, 63] Thus,

a composite catalyst combining diamonds and CuOx could be beneficial in synergistically improving the

stability as well as the catalytic activity of the material towards CO2 reduction reactions.

1.5. Aim and Outline of the thesis

The main focus of this dissertation is the investigation of the electronic structure of diamonds either

modified by doping or by surface functionalization with catalytically active metals and visible light ac-

tive metal complexes. In addition, this thesis aims to lay the foundation of certain proof-of-concept

investigations at the diamond-water interface, that would be essential to understand the potential ap-

plication of diamond as a photocatalyst or as a photoelectrode in reactors and photoelectrochemical

cells respectively. As this research project was a part of the EU Project DIACAT, all materials studied in

the experiments were obtained from partners in the consortium. During the course of these investiga-

tions, the research was primarily focussed on answering two main questions,

• How to enable visible light absorption in diamonds? - This question was addressed using the

following two approaches,
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– Doping of diamonds with B, N and P - [Chapter 3]

– Sensitization with visible light active Ruthenium complexes - [Chapter 4]

• How to make diamonds viable for efficient CO2 photoreduction? - In an effort towards developing

diamond based photocatalysts the following investigations were conducted,

– Direct electron emission from diamonds into water - Investigation of the diamond surface

chemistry in water [Chapter 5]

– Coupling diamonds with Cu based co-catalyst nanoparticles - In-situ X-ray spectroscopy to

monitor changes in Cu oxidation state [Chapter 5]

To this aim, two different types of spectroscopy techniques were used in conducting the investigations,

soft X-ray based spectroscopy and infrared spectroscopy. The first question was answered by perform-

ing XAS and XES measurements in the solid state at the Lixedrom endstation. The experimental results

of the investigations were supported further by theoretical studies conducted by collaborators at Upp-

sala University and in HZB. The electronic structure of diamond at the solid-liquid interface was probed

using XAS on the samples after annealing and after air exposure at the PEAXIS end station. Additionally,

some first ambient pressure PES measurements were also conducted at the Sol3PES end station. XAS

measurements conducted in an electrochemical flow cell at the Lixedrom end station provided further

insights into the electronic properties of the transition metal coated nanodiamonds. In order to un-

derstand the role of pH, diamond nanoparticles with two different surface terminations, H and OH, in

different pH solutions were exposed to humid air and probed with FTIR in the attenuated total reflec-

tion mode. Our investigations revealed some interesting results that will be discussed in the following

chapters.

To begin with, chapter 2 will introduce the theoretical concepts behind the different spectroscopy tech-

niques in order to provide an understanding of the fundamental principles behind the measurements

and the kind of information that can be obtained from them. This will be followed by a brief description

of the experimental setups that were used to conduct the measurements.

In chapter 3 experimental results obtained from soft X-ray absorption spectroscopy on B, N and P-doped

diamonds will be discussed with its potential implications on photocatalysis. Section 3.1 will discuss

published results on both experimental and theoretical studies conducted on B-doped diamonds which

show that sub-band gap states in the material can be altered by combining nanostructuration and boron

doping. A brief discussion on n-type diamonds, namely N- and P-doped diamonds in section 3.2 will

be presented to demonstrate the presence of electron emission states in these materials close to the
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conduction band minimum which could be promising for the generation of solvated electrons to carry

out photocatalysis as described in section 3.3 of this chapter.

Results on Ruthenium complex functionalized nanodiamonds will be presented in chapter 4 of this dis-

sertation. As a first step, XAS investigations will be presented to demonstrate electronic coupling be-

tween the complex and nanodiamonds in section 4.2. This discussion will be extended with the help

of theoretical investigations to focus on Ru(bpy)3 functionalized nanodiamonds with different linkers in

section 4.3 to understand the effect of linkers on sub-band gap states in the diamond. Understanding

the influence of linker on the electronic structure of the material would be an essential step towards

understanding the charge carrier dynamics in these materials at a later stage, which is currently out of

the scope of this thesis. With further investigations of the valence band of the functionalized diamonds,

section 4.4 will present insights into the role of the Ru complex in the hybrid system.

Chapter 5 will present different proof-of-concept investigations conducted at the diamond-water inter-

face using different experimental techniques. With a brief investigation of the electronic structure at

the diamond-water interface XAS techniques, section 5.1 will provide first insights into the influence of

moisture under ambient conditions on the surface electronic properties of the diamonds. The influ-

ence of pH on different diamond surfaces will be discussed in section 5.2 followed by a detailed inves-

tigation of metal coated nanodiamonds that will be presented in 5.3. This section will exclusively focus

on understanding the role of diamonds in this hybrid photocatalyst thereby establishing a fundamental

understanding of enhanced photocatalytic performance demonstrated by this material.

The last chapter of this thesis will summarize the most important results and present an outlook for

future research in this direction.
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2
Experimental and Theoretical Methods

Different experimental techniques have been used in this work to investigate different properties of dia-
mondmaterials. Soft X-ray spectroscopy techniques, which are element-sensitive are powerful tools to
probe the electronic structure of materials. These techniques which encompass XAS, XES and XPS can
provide insights into the unoccupied, occupied and valence states in a material, respectively. In this
dissertation they were used to probe the electronic structure of diamonds at the C K edge. This chap-
ter presents a theoretical background of all the experimental methods used in this work starting with
a description of X-ray interaction with matter and X-ray absorption, emission and photoemission spec-
troscopies. Additionally, chemical interactions at the diamond-water interface were also studied us-
ing infrared spectroscopy on diamonds with different surface terminations. After discussing some fun-
damentals of vibrational spectroscopy, the Fourier Transform IR spectroscopy technique is described.
The subsequent sections of the chapter describe the instrumentation including the synchrotron facil-
ity BESSY II, where the experiments presented in this work were conducted. The chapter is concluded
with description of the theoretical methods used to interpret some of the experimental data that are
presented in the subsequent chapters of this thesis.
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2.1. X-ray spectroscopies

X-ray radiation, discovered by Wilhelm Conrad Röntgen in 1895 while performing high voltage discharge

tube experiments in a dark room,[1] is a type of electromagnetic radiation whose wavelength ranges

from a few Angstroms to a few nanometers. Several experiments conducted shortly after the discovery

of X-rays eventually led to the observation of sharp or diffuse lines and bands on a photographic plate

when X-rays impinged a metal sheet.[2] These lines and bands, referred to as a spectrum, later helped

in the determination of different absorption edges of the elements in the periodic table.[2] Today, this

continues to form a fundamental basis of our X-ray spectroscopy experiments thus enabling us to study

the structure and properties of matter.

The two complementary techniques X-ray Absorption Spectroscopy (XAS) and X-ray Emission Spec-

troscopy (XES) together with Photoemission Spectroscopy (PES), generally referred to as X-ray spec-

troscopy provide an insight into the local partial density of unoccupied and occupied states in a ma-

terial. The method involves production and monitoring of electronic transitions between ground and

excited states. Since the method is based on photoexcitation of a core level electron in an atom to

a higher unoccupied state or its ejection into the continuum, it is quite element-sensitive. In the fol-

lowing subsections, the fundamental absorption and emission processes upon X-ray excitation will be

discussed followed by a description of the XAS, XES and PES techniques.

2.1.1. X-ray interaction with matter

Following the works of Planck, Einstein and de Broglie, the wave-particle duality of electromagnetic

radiation has been an established fact since the 1900’s. Thus, the energy of X-rays can also be given by

the following equation,

𝐸 = ℎ𝜈 = ℎ𝑐
𝜆 (2.1)

where 𝐸 is the energy of the incident photon, ℎ is the Planck’s constant, 𝑐 is the speed of light, 𝜈 and

𝜆 denote the frequency and wavelength of the wave, respectively. Upon interaction with matter, the

intensity of X-rays is attenuated as a result of interaction of individual photons in the beam with atoms

of the material. In this process of interaction, the X-ray photons are either absorbed or scattered. An

X-ray photon is said to be scattered when it is deflected from its original direction upon interacting with

the electron in the atom. A simple schematic of the different events upon X-ray interaction with matter

is shown in Figure 2.1
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Figure 2.1: Schematic of different processes upon interaction of an electromagnetic wave with an atomic target, taken from

[3]. The incident photons can pass through the material without any interaction (A). Upon interaction with an atom, the

photons can get absorbed (B), also known as photoelectric absorption or scattered either elastically (C), known as Thomson

scattering or inelastically (D).

As shown in Figure 2.1, interaction of incident X-ray photons with the electrons could result in elastic

scattering of the photon, also known as Thomson scattering. Here the energy of the outgoing photon

is the same as that of the incoming photon. In case of inelastic scattering the energy of the photon

emitted after the scattering event is typically lower than that of the incident photon and the energy dif-

ference is transferred to the material for excitation of electrons in the material. In addition to scattering,

another process that occurs when an X-ray photon collides with an atom is its absorption. Also known

as photoelectric absorption, in this process an incident photon interacts with the core electron of an

atom and excites it to the valence level or higher. When the energy of the incident photon is higher than

the energy of the core electron but not enough to ionize the atom, the electron is excited to an unoc-

cupied state above the Fermi level in the material. This is the underlying process in X-ray Absorption

Spectroscopy (XAS) to probe the local density of unoccupied states in a material, that will be discussed

in section 2.1.2. In the case where the incident photon energy is higher than the ionization energy of the

material, an electron will be ejected with a kinetic energy that is given by,
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𝐾.𝐸 = ℎ𝜈። − 𝐸ፁ − 𝜙 (2.2)

where𝐾.𝐸 denotes the kinetic energy of the outgoing photoelectron, 𝜈። the frequency of the incident X-

ray,𝐸ፁ the binding energy of the core electron and𝜙 the work function of the material. Together𝐸ፁ+𝜙
denote the ionization energy of the material. This is the process behind photoemission spectroscopy,

as discussed briefly in section 2.1.3 The absorption of an X-ray photon gives rise to two subsequent

processes: X-ray fluorescence and non-radiative Auger electron emission. In the former process, the

excited electron releases its excess energy upon relaxation which is carried away by an X-ray photon that

is detected in a typical X-ray Emission Spectroscopy (XES) measurement. In Auger electron emission, the

excess energy is carried away by an electron, unlike the case of X-ray fluorescence. These processes are

depicted in Figure 2.2 and form the fundamental basis for the XAS, XES and PES techniques which will

be described in the sections below.

Figure 2.2: Schematic of X-ray absorption process (XAS), photoexcitation of an electron into the continuum (PES), emission of

an X-ray photon upon decay of a valence electron into the core hole (XES) and non-radiative relaxation of the core hole via

Auger emission (Auger), taken from [4]

2.1.2. X-ray absorption and emission spectroscopy

As pointed out in the previous section, in X-ray absorption spectroscopy a core electron is excited to an

unoccupied state above the Fermi level. In a homogeneous isotropic material, absorption results in an

attenuation of the transmitted beam intensity 𝐼 upon passing through a sample of thickness 𝐷. This

attenuation can be described by the Beer-Lambert law,
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𝐼 = 𝐼ኺ𝑒ዅ᎙ፃ (2.3)

where 𝐼ኺ is the incident intensity and 𝜇 is the total linear absorption coefficient. In a solid constituting

of 𝑛 different chemical species, this absorption coefficient is related to the absorption cross section 𝜎።
and the atomic volume 𝜌። of the constituent atoms,

𝜇 =
፧

∑
።዆ኻ
𝜇። =

፧

∑
።዆ኻ
𝜌።𝜎። (2.4)

The absorption cross section 𝜎። in this equation is usually expressed in square centimeters or mega

barns (1 Mbarn = 10ዅኻዂ cmኼ). It is an intrinsic property of an element and can be experimentally mea-

sured by measuring the intensity of the transmitted beam as a function of incident photon energy as

suggested by the Beer-Lambert law in Equation 2.3. This measurement forms the basis of X-ray absorp-

tion spectroscopy, which gives insights into the local partial density of the unoccupied states in the ma-

terial. If the absorption coefficient is plotted as a function of energy, three primary features are observed

as shown in Figure 2.3. Firstly, a general decreasing trend of the absorption coefficient is observed

which indicates an overall decrease in X-ray absorption as the incident photon energy increases.[5] Sec-

ondly, sudden rises are observed at specific positions which are called edges and are characteristic to

a material.[5] Finally, a series of oscillatory structures are observed above the edges which correspond

to the extended X-ray absorption fine structure (EXAFS) and mainly reveals structural information of the

material[5] which is out of scope of this thesis.

Here, we specifically focus on the edges observed in Figure 2.3 which appear due to the excitation of

inner shell electrons. When the energy of the incoming photon is greater than or equal to the binding

energy of the core electron, the photon is absorbed and this results in the excitation of the core electron.

Now, electrons in quantum mechanics occupy discrete energy levels which are denoted by a series of

quantum numbers which specify an electronic state. The principal quantum number n can take only

positive integral values 1, 2, 3 and so on and is often denoted by the alphabets K, L, M and so on, cor-

responding to the shells in an atom. The value of n determines the size of the shell. Higher the value

of n, the bigger is the shell and the farther away it is located from the nucleus. Each shell in an atom

comprises of a smaller group of subshells called orbitals, denoted by the secondary quantum number

l which determine the shape of the orbital. For any given shell, the quantum number l can take integral

values from 0 to n-1 and is denoted by the letters s, p, d, f, g and so on. According to the Sommerfeld

notation, when an electron is ejected from the 1s, 2s, 2pኻ/ኼ, 2pኽ/ኼ levels, the edge is denoted as K, Lኻ,
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Figure 2.3: Schematic of the variation of absorption coefficient with incident photon energy, taken from [5]. The absorption

edges are observed at specific positions that are characteristic to an element.

Lኼ, Lኽ respectively. A schematic of the electronic states with their corresponding notations are shown

in Figure 2.4

As pointed out above, X-ray absorption spectroscopy is based on the measurement of the absorption

coefficient as a function of incident photon energy. Therefore, an accurate measurement of the atten-

uation in intensity of the incident photon according to the Beer-Lambert law is necessary. However,

transmission measurements are extremely challenging especially in the soft X-ray regime. This is be-

cause soft X-rays are attenuated very strongly by any material within a few micrometers. In case of di-

amond, which is primarily carbon, the attenuation length is indeed in the sub micron range as shown

in Figure 2.5 This makes the intensity of the transmitted photons too weak to detect, which calls for

extremely thin samples. A caveat around this would be to detect one of the emitted particles as a re-

sult of subsequent relaxation processes such as fluorescence or Auger decay after X-ray absorption as

mentioned in the previous section.[6] As depicted in Figure 2.2, when an inner shell electron is excited

to a higher unoccupied state or to the continuum upon X-ray absorption, the core hole is subsequently

filled by an outer shell electron, thus producing X-ray fluorescence. The energy of this outgoing pho-

ton is equal to the difference in energy between the outer shell from which the electron refills the core
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Figure 2.4: Schematic of the electronic energy levels and corresponding notations for X-ray absorption edges. Redrawn and

adapted from[6]

hole and the core shell. The fluorescence yield is the ratio of X-ray photons emitted to the number

of primary vacancies created.[6] Intensity of the fluorescence yield is dependent on the incident X-ray

intensity, fluorescence yield probability and the absorption coefficient. The probability of fluorescence

yield increases with increase in atomic number Z and is typically higher for K than L and higher edges, as

shown in Figure 2.6.[6] Additionally, electrons emitted as a result of Auger process may also be detected.

The two modes of detection are known as the Fluorescence Yield (FY) and Electron Yield (EY), respec-

tively. In both of these modes, when the emitted particles of all energies are detected and added up to

obtain the X-ray absorption measurement, they are known as Total Fluorescence Yield (TFY) and Total

Electron Yielf (TEY), respectively. When electrons and photons of specific energies are discriminated,

the detection mode is called a partial yield. In case of partial yield measurements, energy dispersion

reduces the strength of the signal but enhances sensitivity by reducing background noise. Furthermore,

any scattered light can also be distinguished from actual fluorescence in this detection mode.

Of primary interest for us is an understanding of the TEY and PFY modes of detection that have been

used in the experiments described in Chapters 3 - 5. As pointed out before, the emission of primary

Auger electrons due to non-radiative decay after X-ray excitation of an electron from the core level to

empty states above the Fermi level makes the method strongly surface sensitive. The TEY intensity is
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Figure 2.5: X-ray attentuation length for carbon as a function of photon energy, taken from [7]

Figure 2.6: Fluorescence and Auger yields as a function of atomic number ፙ, taken from [8]. In general, the Auger yield is

higher for elements with lower atomic numbers while the fluorescence yield increases for elements with higher atomic

numbers.
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however, dominated by secondary electrons created upon scattering as the Auger electrons leave the

sample.[9] The typical depth sensitivity in case of electron yield measurement is given by the escape

depth of electrons which lie within the range of 2-20 nm.[10] In contrast to electron yield, FY is a bulk

sensitive technique with typical depth sensitivities in the order of 100 nm in the soft X-ray region.[10]

In particular PFY uses energy sensitive detectors to select specific fluorescence emissions from a broad

range of emitted photon energies. These specific emissions typically involve resonant de-excitations

within a particular element of interest.

2.1.3. Photoemission spectroscopy

Based on the photoelectric effect first discovered by H.Hertz[11], photoemission spectroscopy is an-

other X-ray based technique to study the electronic structure of a material. This technique was first

developed by Kai Siegbahn and his co-workers at Uppsala University in Sweden where they discovered

a high resolution spectrometer to accurately measure the binding energy of electrons, thus yielding

the electronic structure of the material.[12] An electron is excited either to the continuum or to another

unoccupied electronic state from a core level or valence level, depending on the energy of incident

photons. Excitation of the electron to continuum is referred to as photoionization while the transition

to another unoccupied state is called resonant photoexcitation. As a consequence of photoionization,

electrons with various kinetic energies are ejected from the material which are then detected to yield

the PE spectrum. The binding energy of the electrons can then be deduced from the relation between

KE and BE of electron given by Equation 2.2. A schematic illustration of this process is presented in

Figure 2.2. The PES is a photon-in electron-out technique and is element specific, allowing us to probe

electrons in different orbitals and in different chemical environments. Since the particles detected in

this technique are electrons, it is highly surface sensitive owing to the shorter mean free path of these

electrons. Although soft X-ray penetration depths can be ca. 1 mm, electrons are typically detected only

from a depth of upto ca. 10 nm in the sample. This corresponds to only a few atomic layers at the top

of the sample.

The basic components of the PES instrument involve a light source, an electron analyzer and an elec-

tron detector as shown in Figure 2.7. The electron analyzer must be maintained in ultrahigh vacuum

(UHV) in order to ensure that electrons reach the detector without getting scattered by other atoms and

molecules. In a laboratory based XPS instrument a typical light source is a He gas discharge lamp and

an X-ray tube with usually Al or Mg cathode. However, the development of synchrotron radiation has

made possible to tune the excitation energies thereby changing the probe volume in the sample, in
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addition to a higher photon flux and a smaller spot size.

Figure 2.7: Main components of a PES instrument, taken from [13]

Since every chemical element has a characteristic XPS spectrum, the chemical composition of a mate-

rial can be identified using this technique. Furthermore, the binding energy of a core electron depends

on the chemical environment of the atom which can be identified based on the chemical shifts observed

in the spectrum. Besides the chemical shift, the shape of the core level PES spectrum itself depends on

the nature of the sample. Several components may be present in the peak due to the co-existence of

a variety of chemical states in the sample. Thus, the shape of a peak corresponding to each chemical

component, or in other words, a deconvolution of the core level spectrum is practical to obtain valu-

able information about the sample. For semiconductors, a Gaussian-Lorentzian or a Gaussian profile

alone can be used to describe the shape of the peak. The PES spectrum also has a background which is

primarily due to inelastically scattered electrons that escape the sample surface. This background can

be corrected using a Shirley background correction.

2.2. Infrared Spectroscopy

Infrared was the first non-visible region of the electromagnetic spectrum that was discovered when the

astronomer Sir William Herschley studied vibrational spectra in the form of absorption bands in this

region.[14] The infrared radiations are electromagnetic waves with wavelengths longer than that of vis-

ible red light but shorter than microwaves (between 1 and 100 𝜇). This region of the spectrum is further

divided into three regions, namely, far infrared (wavenumbers between 400-100 cmዅኻ), mid-infrared
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(wavenumbers between 4000-400 cmዅኻ) and near infrared (wavenumbers between 14825-4000 cmዅኻ).

The measurement of a spectrum in the infrared region was made possible with the design of a two-beam

interferometer developed by A.A.Michelson in 1891 which forms an essential part of all FTIR spectrom-

eters even today. Although molecular spectra were observed in the IR region of the electromagnetic

spectrum, a reasonable interpretation of these spectra was achieved only when the quantum theory

was established towards the beginning of the twentieth century. With further development of the quan-

tum theory, the Schrödinger wave equation could be applied to account for the different features in dif-

ferent regions of the IR spectrum. In the investigations presented in this thesis, the mid-IR is the primary

region of interest. Quantum theory attributes the features in the mid-IR region to transitions between

the different vibrational energy levels with the fine structure originating from the more closely spaced

rotational energy levels. These fundamentals are further discussed with a focus on IR spectroscopy in

the following section on vibrational spectroscopy. Following that, more specifically, the Attenuated To-

tal Reflection(ATR) mode of FTIR spectroscopy is discussed, which was used in this thesis, to investigate

the surface interactions at the diamond-water interface.

2.2.1. Fundamentals of vibrational spectroscopy

The chemical bonds in matter can be pictured as a harmonic oscillator implying that molecules held

together by these chemical bonds can vibrate and have a certain natural vibrational frequency. Molec-

ular vibrations range from very simple coupled motion of two atoms in a diatomic molecule to much

complex motion of every individual atom in a polyatomic molecule. Molecules with N atoms have 3N

degrees of freedom, of which there are 3N-6 vibrational modes, 3 rotational and 3 translational modes

of motion.[15] In the vibrational mode, it can be assumed that each atom undergoes a harmonic dis-

placement from its equilibrium position and therefore obeys Hooke’s law. The vibrational energy levels

in this case are given by the following expression,

𝑉።፯ = ℎ𝜈።(𝑣። + 1/2) (2.1)

where ℎ is the Planck’s constant, 𝜈። is the fundamental frequency of the particular mode, and 𝑣። is the

vibrational quantum number of the 𝑖th mode (𝑣። = 0,1,2,...). As is evident from the expression, the vibra-

tional energy levels are quantized as shown in Figure 2.8. It is the transition between these quantized

vibrational energy levels that gives rise to the IR spectrum. The vibrational frequencies are given in units

of wavenumber (cmዅኻ) and the energy of radiation in the MIR region is primarily the difference between

the energies of the ground state (𝑣።=0) and the first excited state (𝑣።=1) of the vibrational mode.
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Figure 2.8: Schematic of the vibrational energy levels. ፕ(፫) denotes the potential energy and ፫ is the internuclear distance.
The equilibrium nuclear distance or the bond length is denoted as ፫ᑖ. The harmonic potential holds true at shorter distances

while at larger distances the anharmonic potential helps to explain potential dissociation of a molecule. Adapted from[16]

For a change in vibrational state as a consequence of absorption or emission of radiation, the selection

rule states that when the atoms are displaced relative to one another the electric dipole moment of

the molecule must change. Such a vibration is said to be infrared active. If vibrations do not affect the

molecule’s dipole moment, it is said to be infrared inactive. Additionally, there are specific selection

rules that allow transitions upon absorption and emission of radiation. Transitions for which Δ𝑣። = +1
are allowed for absorption while Δ𝑣። = −1 are allowed for emission.

The assumption of harmonic displacement results in a parabolic approximation of the potential energy

curve which no longer holds true at higher vibrational excitations. In such a case, the motion becomes

anharmonic where the restoring force is no longer potential to the displacement. This effect allows the

selection rules to become more relaxed and transitions for which Δ𝑣። ≠ ±1 become allowed, resulting

in the weak appearance of overtone (Δ𝑣። = 2, 3, 4, ..) and combination (Δ𝑣። = +1, Δ𝑣፣ = +1, where 𝑗
represents a different mode) bands in the mid-IR region of a spectrum.

Vibrational transitions in a molecule are also accompanied by rotational transitions for gas-phase molecules,

which appear in the spectrum with separations less than 10 cmዅኻ. As the molecule swells or shrinks,
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its moment of inertia changes along with it. As a result its rotational state also changes. This leads to

categorization of the absorption into three different branches of the spectrum, P, Q and R, with Δ𝑣፣ =
-1, 0 and +1 respectively for a fundamental vibrational transition with Δ𝑣። = +1. These transitions are

shown in Figure 2.9

Figure 2.9: Schematic of the vibrational and rotational energy levels in gas phase molecules, taken from[15]. The transitions

give rise to very sharp line like features in the IR spectrum.

In contrast to the gas-phase where molecules are very far apart from each other, in liquids, molecules

are closely packed. They are held together by interactions between nearest neighbour molecules, also

known as intermolecular interactions such as H-bonds and van der Waals forces. Such intermolecular

interactions affect the force constant of the molecule thereby influencing its vibration frequency. The

number of nearest neighbour molecules and the strength of intermolecular interactions vary within a

liquid sample thereby giving rise to different chemical environments. This variation of chemical envi-

ronment gives rise to variations in the vibration frequency and hence the wavenumber at which the

molecules absorb infrared light. Samples which have stronger intermolecular interactions will have

many different chemical environments in comparison to those with weaker interactions. The more

chemical environments a sample would have, the more different wavenumbers of infrared light it will

absorb, thus giving rise to a broad IR band, as is typically observed in water which exhibits strong inter-
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molecular H-bonding due to the polar nature of the O-H bond.[17, 18] At the solid-liquid or solid-vapor

interface, the adsorbed molecules on the surfaces form a few closely packed monolayers and therefore

exhibit a situation similar to that of liquid samples, giving rise to broad IR bands.[19]

2.2.2. Attenuated Total Reflection-Fourier Transform

Infrared Spectroscopy

Fourier Transform Infrared (FTIR) Spectroscopy is a very reliable and well-established fingerprinting

technique, especially in the mid-IR region. Previously used to characterize organic molecules, FTIR

spectroscopy has been used for over 20 years to characterize NDs due to its high sensitivity to func-

tional groups on the diamond surface, non-destructive nature and easy sample preparation methods.

In a typical FTIR spectrum, the absorption of IR radiation is plotted as a function of wavelength, de-

scribed in units of wavenumbers or cmዅኻ. To record this spectrum, an FTIR spectrometer is used at the

heart of which is a Michelson interferometer as pointed out previously. The Michelson interferometer is

a two-beam interferometer comprising of two mirrors, one of which is fixed while the other is movable

and a beam splitter. An infrared beam created by a source such as the synchrotron or a metal wire is split

by the beam splitter into two portions which are reflected by the mirrors and finally recombine back at

the beamsplitter with a phase difference due to their different path lengths. This beam then travels to

the sample compartment where it is focussed on the sample and subsequently reaches the detector.

The signal that is detected is an interferogram which is then subsequently Fourier transformed to yield a

spectrum. The intensity of the detected signal depends on the absorption of IR radiation by the sample

which is once again given by the Beer-Lambert law mentioned at the beginning of this chapter.

There are several methods of measuring the IR spectrum, an overview of which has been presented

by Petit et al.[21] Here we briefly describe the principle governing the attenuated total reflection (ATR)

mode of FTIR spectroscopy. The ATR mode is based on the total internal reflection of the IR beam at

the interface of two materials with different refractive indices. Typically such an interface is formed by

the ATR crystal and the sample of interest. The ATR crystal must have a higher refractive index (𝑛ኻ) as

compared to the sample (𝑛ኼ) and total internal reflection can occur only if the angle of incidence is

higher than the critical angle which is given by,

𝜃critical = 𝑠𝑖𝑛ዅኻ(𝑛ኼ/𝑛ኻ) (2.2)

At the Ge-water interface, as in our measurements described in Chapter 5 of this dissertation, 𝜃critical is

ca. 18∘. At a 45∘ angle of incidence the IR beam is totally internally reflected generating an evanescent
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Figure 2.10: Schematic of the Michelson interferometer. Taken from[20]

wave perpendicular to the surface of the crystal at every point of reflection. The electric field of this

wave interacts with the sample on the ATR crystal and a part of this field is absorbed, thus attenuating

the intensity of the reflected beam. The amplitude of the electric field undergoes an exponential decline

with the distance 𝑧 from the surface of the ATR crystal which is expressed as,

𝐸 = 𝐸ኺ exp(−𝑧/𝑑፩) (2.3)

where 𝐸 and 𝐸ኺ are the electric field after and before the exponential decline and 𝑑፩ is the penetration

depth of the electric field of the evanescent wave, indicating how far the wave can reach from the surface.

The penetration depth 𝑑፩ is generally given by,

𝑑፩ =
𝜆

2𝜋𝑛ኻ√(𝑠𝑖𝑛ኼ𝜃 − (𝑛ኼ/𝑛ኻ)ኼ)
(2.4)

where 𝜆 is the wavelength of the incident beam, 𝜃 is the angle of incidence and 𝑛ኻ and 𝑛ኼ are the

refractive indices of the ATR crystal and the sample respectively. From this, it could be estimated that

the penetration depth of the IR beam at the Ge-water interface at ca. 1650 cmዅኻ is ca. 0.38 𝜇m. Hence,

clearly, the ATR-IR is interface sensitive but not as much as X-ray spectroscopy. Furthermore, it is quite
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clear that for ATR measurements the absorption is independent of the sample thickness, which makes

this technique particularly interesting for investigating the interactions at the diamond-liquid interface.

Different ATR crystals can be used depending on the spectral region of interest and sample environment.

2.3. Experimental Setup

2.3.1. Synchrotron Facility-BESSY II

A synchrotron is a cyclic particle accelerator in which a sub atomic particle is accelerated in a fixed closed

loop path. It is the fundamental component in a synchrotron radiation source, a schematic of which is

shown in Figure 2.11. Typically, electrons are produced in an electron gun which is a device similar to

cathode ray tubes. These electrons are packed in bunches and accelerated in the linear accelerator

or a microtron before being injected into the booster synchrotron where it is accelerated to relativistic

speeds and finally injected into the storage ring. The storage ring comprises of several insertion devices

such as bending magnets, undulators and wigglers which help to keep the electron bunches in a con-

finded trajectory along which they circle at speeds close to that of light. In the process they produce

X-rays that are then directed to beamlines where the beam is then focussed through various optical

mirrors and lenses and the energy is tuned with the help of gratings and monochromators for use in a

specific experiment.

The magnetic field in a storage ring can be generated by three different magnetic structures or insertion

devices, namely, bending magnets, undulators and wigglers. Bending magnets produce a fan of radi-

ation around the bend due to a single curved trajectory of the charged particle. Undulators comprise

of periodic magnetic structures with weak magnetic fields that result in a harmonic osciallation of the

charged particle. The weak magnetic field causes small angular excursions called undulations which

produce a narrow cone of radiation due to its small amplitude. A tightly confined electron beam passing

through undulators result in radiation with small angular divergence and narrow spectral width. Wig-

glers are similar to undulators but with stronger magnetic fields giving rise to a radiation cone that is

both broad in space and angle. The radiation has a much higher photon flux. Further details on char-

acteristics of the radiation produced by each of these magnetic structures can be found in Ref [8].

All experiments presented in thesis were performed in BESSY II which is a synchrotron facility located in

Berlin, Germany. A 70 kV electron beam is produced from a hot cathode which is subsequently accel-

erated in a microtron before being injected into the booster synchrotron before reaching a final energy

of 1.7 GeV. It takes 50 ms to accelerate the electrons and inject them into the storage ring. The electron
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Figure 2.11: Schematic of the synchrotron showing the electron gun, microtron, booster synchrotron, storage ring and

beamlines, taken from [22]

bunches are injected every 2-3 minutes in the top-up mode which ensures that a constant current be-

tween 250 - 300 mA is maintained in the ring. The storage ring has a circumference of 240 m and about

50 beamlines. Most of the X-ray spectrosopy experiments presented in this thesis, including those for

liquids, were performed at the U49-2 PGM I beamline. Some solid state measurements on single crystal

doped diamonds were also performed at the U41-PEAXIS beamline.

U49-2 PGM I Beamline

The U49-2 PGM I beamline at BESSY II is an undulator beamline with plane grating monochromator that

delivers linearly polarized soft X-ray radiation with a high photon flux combined with a high stability and

a small spot size. A schematic of this beamline is presented in Figure A.2 in Appendix A. In particular, a

spot size of 100𝜇m× 22𝜇m with a photon flux of ca. 10ኻኽ photons/s can be achieved at the experiment

from this beamline. It can deliver soft X-rays with energies in the range of 84 - 1600 eV which makes it a

suitable choice for probing the C and O K edges and Cu L edges as presented in this thesis. The exit slit

size of this beamline is also variable, which allows for tuning of the photon flux at the experiment. For
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TEY and PFY measurements, slit sizes of 50 and 100 𝜇m were used, respectively. The beamline has no

fixed station. For X-ray spectroscopy measurements in this thesis, LiXedrom[23] and Sol3PES[24] end

stations were attached to this beamline.

U41-PEAXIS Beamline

For detecting strong electron and photon emissions from materials, high brilliance photon sources are

necessary. Additionally, to obtain high energy resolution, a highly focussed beam becomes imperative.

These characteristics are fulfilled by the new U41-PEAXIS beamline at BESSY II, a schematic of which is

shown in Figure A.1 in Appendix A. Similar to the U49-2 PGM I beamline, the beam from the storage ring

is monochromatized and focussed on the exit slit and subsequently at the experiment in the fixed end

station PEAXIS. A spot size of 3.8𝜇m× 12.4𝜇m with a photon flux of ca. 10ኻኽ photons/s can be achieved

at the experiment from this beamline. This beamline can deliver photons of energy within 180-1600 eV

and is therefore suitable for the measurement of X-ray spectra at the C, O and N K edges.

2.3.2. Experimental End Stations

2.3.2.1. LiXedrom end station - XAS and XES in solids and liquids

In order to conduct X-ray absorption and emission spectroscopy measurements under vacuum condi-

tions for both solid state samples as well as in liquids, the LiXedrom end station was used at the U49-2

PGM I Beamline at BESSY II, a picture of which can be seen in Figure A.3 in Appendix A. Although this

setup was developed for liquid jet and emission measurements, it can also be used for solid state mea-

surements as well as liquid measurements in a flow cell. It consists of primarily two chambers, a main

chamber, where the sample of interest can be studied either in solid state or in a liquid, typically in a

flow cell or in a liquid microjet, and a grating chamber with a detector structure in a Rowland circle ge-

ometry. The Rowland circle geometry is a spherical grating that can be employed to achieve the desired

decomposition of the emitted radiation for X-ray emission studies. The spherical grating in this geom-

etry has a radius of 2𝑅. When the photon source lies on the Rowland circle which has a radius 𝑅, the

emitted photons are energetically resolved and focussed along this specific circle as shown in Figure

2.12. More detailed discussions on the Rowland Circle geometry as well as a detailed description of the

LiXedrom setup can be found in the literature.[23] (See Figure A.3 in Appendix A)

In the main chamber of LiXedrom, solid samples are introduced from the top, typically placed on a solid

sample holder made out of copper with electrical connections to the metallic holder that would enable

recording of the photocurrent for electron yield measurements, as shown in Figure 2.13. For electro-
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Figure 2.12: Illustration of the Rowland circle geometry, adapted from [6]. A light source on the circle of radius R is dispersed

by the spherical grating of radius 2R into components of different wavelength spatially on the circle.

chemical investigations involving the solid-liquid interface, an electrochemical flow cell,[25] developed

by Schwanke et al. was introduced into the main chamber (see Figure A.7 in Appendix A). The sample

was deposited on a Si3N4 membrane, which is transparent to X-rays and separates the liquid in the flow

cell, which was flown with the help of a syringe pump, from the vacuum conditions in the main chamber.

The membrane was coated with Au and served as the working electrode for the in-situ electrochemical

measurements. A Pt wire was used as the counter electrode and Ag/AgCl was the reference electrode.

To ensure a stable vacuum of ca. 10ዅዀ mbar in the main chamber several pumps are attached to the

LiXedrom setup. A vacuum of 10ዅዃ mbar is maintained in the grating chamber for the photon detector

which consists of a microchannel plate/phosphorescent screen/CCD camera stack. Photons emitted

from the sample upon X-ray excitation are collected at this photon detector for the PFY measurements.

2.3.2.2. PEAXIS end station - XAS in solids

The soft X-ray end station PEAXIS, a picture of which is shown in Figure A.4 in Appendix A, enables Res-

onant Inelastic X-ray Scattering (RIXS) as well Photoemission Spectroscopic (PES) studies on materials

within the same experimental setup. With a rotating arm, it essentially allows for angle dependent RIXS
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Figure 2.13: Illustration of the sample geometry for TEY and PFY measurements.

Figure 2.14: Illustration of the electrochemical flow cell. X-rays pass through the Au coated Si3N4 membrane into the liquid

chamber where the interaction takes place at the ND-liquid interface. Samples may either be deposited as a solid film on the

membrane itself with the electrolyte flown in the liquid chamber through the liquid inlet and outlet or directly studied in

solution. A Pt wire is used as the counter electrode while Ag/AgCl is the reference electrode.

and PES measurements, which were however, not used for the experiments presented in this thesis.

The PEAXIS end station has a sample chamber which is connected to the interaction chamber with a

load lock which is used to transport the samples (see Figure A.4 in Appendix A). The sample chamber,

load lock as well as the interaction chamber are kept under ultra high vacuum of 10ዅዂ - 10ዅዃ mbar. A

commercial hemispherical electron analyzer from SPECS is used for electron detection during the PES

measurements. The RIXS spectrometer comprises of a grating chamber, a 5 m long moveable arm for

angle dependent RIXS and a CCD detector. For measurements presented in this thesis a solid sample

manipulator was introduced into the sample chamber with heating capabilities enabling annealing of

the samples in vacuum prior to the measurements. All samples were annealed to 300∘C for 3 hours prior

to measurements. X-ray absorption spectra were recorded primarily in the TEY mode.
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2.3.2.3. IRIS end station - FTIR Spectroscopy

The FTIR spectra for nanodiamonds were measured in the ATR mode in a Bruker Vertex 66/v spectrom-

eter equipped with a KBr beamsplitter, a liquid nitrogen (LNኼ) cooled detector. A spectral resolution of

4 cmዅኻ was set and the spectra were recorded with ZnSe and Ge ATR crystals. An environmental cell

was built in-house to facilitate in-situ surface chemistry investigations. It consists of a small chamber

above the ATR crystal with an inlet and outlet that allows the sample under consideration to be exposed

to gas or liquid. During the measurements the sample chamber and infrared path was maintained in

vacuum while the environmental cell was subjected to ambient conditions by flowing dry air, humid air

and liquid water through it. While liquid water was directly injected through the inlet using a syringe,

humid air was prepared by bubbling dry air through deionized water. For all samples, a reference spec-

trum (1024 scans) was measured on the clean ATR crystal following which the spectra (128 scans) were

first collected for the dry sample and then subsequently for the sample exposed to humid air and liquid

water. After each sample, the crystal was cleaned with ethanol, acetone and water and a new reference

spectrum was measured each time before drop casting in order to ensure the removal of the previous

ND sample.

2.3.2.4. Sol3 end station - Near Ambient Pressure Photoemission Spectroscopy

The electronic structure at the diamond-water interface of differently terminated diamond surfaces

were studied with ambient pressure photoemission spectroscopy (AP-PES) in the Solኽ end station (see

Figure A.6 in Appendix A) at U49-2 PGM I beamline at BESSY II.[24] The setup comprises of three primary

components, namely, the interaction chamber, electron analyzer and a differential pumping unit. In

order to probe the solid-liquid interface, a liquid nitrogen (LNኼ) cooled sample holder was introduced

into the interaction chamber to which a heating element as well as a PT-100 temperature sensor was

attached in order to first anneal the sample in vacuum at 250∘C. The thin film diamond samples were

clamped on to the metallic copper sample holder. This sample holder is typically mounted on an x-y-z

manipulator as it is introduced in the interaction chamber. A thin layer of liquid water was deposited on

the sample by introducing water into the interaction chamber via a leak valve. Before introducing water

into the chamber, it was outgassed using a freeze-pump-thaw cycle. Pressures between 1-5 mbar was

maintained in the chamber to increase relative humidity and the sample temperature was constantly re-

duced in order to enable condensation of the water vapor on the sample surface.[26, 27] Photoelectrons

were detected in a direction perpendicular to the X-ray beam with a Scienta Omicron R4000 HiPP-2 high-

resolution hemispherical electron energy analyzer. The spectrometer consists of electrostatic lenses for
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imaging of the electrons that are then guided into a section containing two electrostatic hemispheres.

Here the electrons with a given pass energy are detected on a 2D detector comprised of two MCPs, a 40

mm diameter phosphor screen and a CCD camera that records the image. Multi-stage pumping of the

analyzer ensures its operation at ambient pressures during the experiment. The interaction chamber of

the end station is connected to the refocussing chamber of the beamline through a differential pumping

unit. This unit ensures that the pressure in the refocussing chamber is always maintained below 10ዅዃ

mbar for any operating pressure in the interaction chamber.

2.4. Theoretical Modelling

In order to interpret the experimental data obtained using some of the aforementioned techniques and

generate useful insights about the properties of diamonds, additional theoretical investigations were

needed. These theoretical studies were performed by Prof. Karin Larsson in the Uppsala University and

Dr. Kaan Atak in HZB. The results obtained from the investigations were used in this dissertation to gain

a better understanding of the electronic structure of B-doped diamonds and Ru(bpy)3-ND together with

the XAS data as explained in Chapters 3 and 4, respectively. Here we will briefly present the two different

theoretical modelling packages used by the colleagues, both of which are based on Density Functional

Theory (DFT).

2.4.1. B doped diamonds - DFT using CASTEP and Dmol

The calculations performed on B-doped diamonds in this work were performed using the CASTEP and

Dmol programs from BIOVIA, Inc. The CASTEP program was used for the geometry optimization of

the model structures, in addition to calculations of the partial Density of State (pDOS) spectra. The

Dmol program was used for the calculation of the valence band edge energies of the various surfaces.

The optimized structures were used for these latter calculations. An ultrasoft pseudopotential density

functional theory (DFT) method was used in all calculations, and performed under periodic boundary

conditions.[28] More specifically, the spin-polarized general gradient approximation (GGSA) was used,

which is based on the PBE functional (Perdew-Burke-Ernzerhof[28]) for electron exchange correlations.

Moreover, a plane wave approach,[29] with a cutoff energy of 326.5 eV, was used in the CASTEP calcula-

tions. The Monkhorst-Pack scheme[30] was used for the k-point sampling of the Brillouin zone, which

generated a uniform mesh of k points in reciprocal space. Moreover, the Dmol calculations included all

electrons in the models and were furthermore based on the double numeric bases set with polarization

functions (dnp). Three different super cells, modelling the H-terminated, non-terminated and Pandey
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Chain-reconstructed diamond (111) surface planes, respectively, have been constructed in the present

investigation. The corresponding models for the H-terminated and Pandey Chain-reconstructed sur-

faces are shown in Figure 3.2, together with the different ways B is incorporated in the surface region.

The model for the non-terminated surface is presented in the Appendix. Boron atoms in the first dia-

mond atomic layers are relevant to reflect surface effects on nanostructured diamond as well as at grain

boundaries in polycrystalline diamond that are observed experimentally as explained later in Chapter 3.

The bottom of the diamond slabs was terminated by H to saturate the dangling bonds and to mimic a

bulk continuation. All atoms, with an exception for the bottom hydrogen and carbon layer, were al-

lowed to freely relax during the optimization procedure. This geometry optimization procedure was

based on the BFGS algorithm.[31]

2.4.2. Ru(bpy)ኽ-ND - DFT using CASTEP and ORCA

The most stable geometrical structure of the Ru-containing complexes were calculated by using Den-

sity Functional Theory (DFT). More specifically, an ultrasoft pseudopotential plane-wave approach was

used, based on the PBE generalized gradient approximation (GGA) of the exchange-correlation functional.[32]

The GGA takes into account the gradient of the electron density, which gives a high-quality energy eval-

uation. Moreover, the value of the energy cutoff for the plane wave basis sets was set to 420.00 eV. In

addition, the Monkhorst-Pack scheme was used for the k-point sampling of the Brillouin zone, which

generated a uniform mesh of k points in reciprocal space.[33] All atoms in the Ru-containing complexes

were allowed to move freely in the calculations by using a BFGS approach (Broyden-FletcherGoldfarb-

Sharmo).[34] The calculations in the present work were carried out using the Cambridge Sequential

Total Energy Package(CASTEP) program from BIOVIA, Inc. [35]

The calculations for XA spectra were carried out with the ORCA program package.[36] Molecular geom-

etry optimizations were performed with the B3LYP[37, 38] density functional with the def2-TZVP basis

set.[39] Transition energies and moments for the carbon K edge were calculated with time-dependent

density functional theory (TDDFT) using the same basis set and B3LYP functional.[40–46] During the

calculations, the resolution of identity (RI) approximation was used utilizing the ”Autoaux” basis-set

generation procedure.[47] Numerical integrations during the DFT calculations were performed on a

dense grid (ORCA grid 4). K-edge absorption spectra were obtained by applying a 0.4 eV Lorentzian-

type broadening on each transition moment respectively. The geometry calculations had no symmetry

constraint. In all calculations, the relativistic effects were taken into account using effective core poten-

tials (ECPs).[48] Visualizations of molecules and orbitals were created using Avogadro software.[49]
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Having discussed the fundamentals of the experimental techniques used in this thesis along with the

theoretical methods, the next chapters will discuss the results obtained on different diamond materials

studied in the course of this project.
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3
Tuning Band Structure by Doping of

Diamonds

The wide band gap of diamond necessitates the use of deep UV radiation for photoexcitation of elec-
trons from the valence to the conduction band in order to trigger a photochemical reaction. To enable
practical applications, new electronic states in the band gap should be introduced in order to facilitate
visible-light absorption. Doping has been awidely exploredmeans to tune band gapof semiconductors
in order to facilitate strong light absorption in thematerial that could result in enhanced photocatalytic
activity. In particular, for diamond, boron, nitrogen and phosphorus dopings have been explored as a
possible means to introduce electronic states in the band gap. Their electronic structures have been
investigated in this chapter using soft X-ray spectroscopy techniques to probe the sub-bandgap states.
Specifically, an extensive study has been conducted to understand the synergistic effect of nanostruc-
turation and boron doping on the sub-bandgap states of p-type diamond and its potential implications
on photocatalysis.

Parts of this chapter have been included in [1].
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3.1. p-type Diamonds

In order to introduce new states within the large band gap of diamond, boron-doping has been inves-

tigated as boron is a trivalent atom with a smaller atomic radius which enables its easy incorporation

in the diamond lattice.[2, 3] XAS studies conducted on boron doped diamonds previously showed the

technique to be sensitive to boron acceptor states that are formed due to electronic interactions be-

tween B and C atoms.[4–8] These acceptor states, which appear in the pre-edge region of the C K edge

XAS spectra of diamond materials, directly evidence the possibility of introducing electronic states in

the band gap of the material by doping at or very close to the surface although the origin of these states

remain unclear. As a material, diamond is known to be chemically inert and stable and can be pre-

pared in various morphologies.[9–14] From a catalysis point of view, however, it would be essential

to select a morphology that combines a large surface area with the desired electronic structure prop-

erties needed for photocatalytic reduction of CO2. Therefore, different morphologies of boron-doped

diamonds such as polycrystalline (B:PCD), single crystal (B:SCD), diamond foams (B:Dfoam) and nan-

odiamonds (B:ND) as shown in Figure 3.1 were investigated using soft X-ray spectroscopy technique,

described in Chapter 2. The experimental results were further supported by theoretical calculations on

the lattice models shown in Figure 3.2 performed by collaborators at Uppsala University.

(a) B:SCD (b) B:PCD (c) B:Dfoam

(d) B:ND

Figure 3.1: Illustrations of the different morphologies of B-doped diamonds investigated in this work.

The different morphologies of boron-doped diamond were obtained from collaborators in the DIACAT

consortium. Particularly, B:ND, which was prepared by milling a CVD boron-doped diamond electrode

from Element Six, was obtained from Universität Würzburg. The starting material had a boron concen-

tration of 1250 ppm which after milling resulted in a boron concentration of 1020 ppm in the nanodia-
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Figure 3.2: Supercells showing the H-terminated and Pandey-Chain reconstructed diamond (111) surfaces, with B positioned

as adsorbed (B-ads) or in atomic layer 1 (B1), 2 (B2) or 3 (B3), respectively. C, H and B are shown in grey, white and pink,

respectively. Taken from [1]

monds. The doped nanodiamonds were subsequently hydrogenated in a H2 plasma at CEA in France

and later drop casted on a Si wafer for the XAS studies. Undoped and boron-doped polycrystalline dia-

mond as well as the diamond foam were prepared and subsequently hydrogenated at Fraunhofer IAF,

Freiburg. The PCD and B:PCD film with boron concentration of 5670 ppm were prepared using a mi-

crowave plasma CVD reactor with CH4, H2 and B(CH3)3 in the gas mixture while B:Dfoam was prepared

according to a method reported previously and contained 2835 ppm boron as determined by Raman

scattering.[13] B:SCD was purchased from TISNCM (Moscow, Russia) with a boron content of 300 ppm

and a <111> crystal orientation and subsequent H-termination was conducted using a H2-plasma. All

samples were measured in vacuum without prior annealing during the soft X-ray spectroscopic inves-

tigation. In the following sections the experimental results are presented which are supported by DFT

calculations that were used to interpret the experimental observations.
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Figure 3.3: C K edge XA (right) and XE (left) spectra of undoped and boron-doped H-terminated PCD. XA spectra on the right

recorded in TEY (green and brown solid lines) and PFY (green and brown shaded regions) modes probe the unoccupied

states. XE spectra on the left (red and blue shaded regions) represent the occupied states probed by non-resonant excitation

at 320 eV. Taken from [1]

3.1.1. Electronic structure of boron-doped diamonds

3.1.1.1. Soft X-ray spectroscopies

The density of unoccupied and occupied states in diamond are evidenced by XA and XE spectra respec-

tively that are presented in Figure 3.3. The XA spectra were recorded in surface sensitive TEY mode which

records the photocurrent resulting from X-ray absorption and bulk sensitive PFY mode which detects the

emitted X-rays. In Figure 3.3, the XA and XE spectra of boron-doped and un-doped H terminated poly-

crystalline diamond (B:PCD-H and PCD-H) are presented. The XE spectra probes the occupied states

corresponding to the carbon contribution to the valence band of diamonds. The XA spectra at the C K

edge probe the unoccupied states corresponding to the carbon contribution to the conduction band in

diamond, shown on the right of Figure 3.3. Both the TEY (solid lines) and PFY (shaded) XA spectra are

presented.

No significant difference is observed between the TEY XA spectra of B:PCD-H and PCD-H. In the PFY

spectra, three electronic states can be observed for both the undoped and doped polycrystalline dia-
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monds as reported previously.[15] These are the characteristic features in diamond that appear at 285.4

eV (C), 289.3 eV (E) and 293.1 eV (F) and can be attributed to 1s to 𝜋∗ transition, bulk excitons and 1s to

𝜎∗ transition in diamonds respectively.[15] An additional feature also appears at 287.5 eV (D) which is

attributed to C-H bonds on the surface.[15] Two new unoccupied states at 282.5 eV (A) and 284.1 eV (B)

close to the valence band edge of the diamonds are visible. These states do not appear in case of the

un-doped diamond indicating that they result from the interaction of C with the dopant atoms.[4, 8]

Furthermore, the absence of these two states in the TEY spectra of the B-doped diamond as seen in Fig-

ure 3.3 can be explained by the capture of electrons by the boron atom to form bound excitons which

cannot be emitted, resulting in the absence of any signature in the TEY spectrum. [6]

Figure 3.4: C K edge XA spectra for different morphologies of boron-doped diamond. All spectra are recorded in the PFY

mode. The figure highlights the difference in the pre-edge features of nanostructured diamondmaterials such as B:Dfoam

and B:ND. Taken from [1]

Analyzing the XA spectra of the different morphologies of diamonds as shown in Figure 3.4 resulted

in a few interesting observations. The characteristic bulk excitonic peak E is observed for all diamond

morphologies at ca. 289.3 eV. However, notable differences exist in the pre-edge region of the XA spectra

of the different diamond samples. It can be noted that, in case of B:SCD-H, the resonance A almost

vanishes andB is very weak. A similar trend is also observed for the resonancesA andB in case ofB:ND-

H. The peaks A and B have a much higher intensity in B:PCD-H and B:Dfoam-O indicating a higher
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probability of surface excitonic transitions in these two samples as compared toB:SCD-H andB:ND-H.

A high relative intensity of peaks A and B with respect to the bulk excitonic peak E, in case of B:Dfoam-

O and B:PCD-H, further suggests the possibility of a higher concentration of boron induced defects at

the surface of the foam and at surfaces close to the grain boundaries in the PCD samples as compared

to the other samples. Interestingly, these surface states vanish completely when the foam surface is

hydrogenated (B:Dfoam-H) as shown in Figure 3.4 which is an indication of a possible saturation of the

dangling bonds upon H termination and hydrogenation of 𝜋 bonds. This is however, not the case for

B:PCD-H.

On B:ND-H and B:Dfoam-O, an increased intensity of peak C is also observed (Figure 3.4), which is

related to𝜋∗ transition due to amorphous carbon (a-C) present at the surface and at grain boundaries of

the samples respectively and also those present around sites of lattice defects induced by boron doping.

Additionally, in both the samples a very broad shoulder with a threshold at 286.5 eV (D) appears very

close to the conduction band minimum (CBM) just below the bulk excitonic peak E.

This shoulder is further clarified by studying the H-terminated NDs of smaller particle sizes 30 nm and

50 nm as shown in Figure 3.5. Consequently, B:ND-H of smaller particle sizes 30 nm and 50 nm, both

obtained by milling of commercially obtained B:PCD and subsequent centrifugation were investigated

after a plasma hydrogenation treatment to remove any oxidized groups and impurities present on the

surface.

The two peaksA andB induced by boron doping, as seen previously in other doped samples are absent

in these smaller NDs. The lower concentration of boron in these nanoparticles or surface state passiva-

tion after hydrogenation could possibly explain this observation.[14] As can be seen in Figure 3.5, the

pre-edge region exhibits only a single peak (C) at 285.2 eV, related to 𝜋∗ transition from spኼ carbon,

which is a direct result of high concentration of a-C at the surface and at defect sites within the NDs. The

broad shoulder D is observed with a high intensity only in case of the nanostructured diamonds, such

as B:Dfoam-O (Figure 3.4) and B:ND-H(Figure 3.4 and Figure 3.5). In case of B:Dfoam-H this shoulder

has a relatively lower intensity. C-H bonds that result from H-terminated surface of the diamonds are

expected to exhibit a 𝜋∗ resonance at 287.5 eV. An additional contribution from C-B bonds present on

the surface could appear at 286.8 eV, as previously reported by Katamune et al.[16] We consider that

both these 𝜋∗ resonances due to C-B and C-H bonds at 286.8 eV and 287.5 eV, respectively, superpose

to contribute to such a broad shoulder.
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Figure 3.5: C K edge XA spectra of boron-doped hydrogenated NDs with sizes 30 nm and 50 nm. The spectra are recorded in

PFY mode and compared to that of the milled NDs with average particle size below 650 nm.[1]

3.1.1.2. Density Functional Theory calculations

Theoretical calculations have been performed by Prof. Karin Larsson at Uppsala University to study the

effect of substitutional boron doping on the formation of empty states above the valence-band edge of

a diamond (111) surface. More specifically, pDOS spectra were calculated. To evaluate the accuracy of

these calculations, the calculated band gap for bulk diamond was compared with the experimental one

which resulted in very similar values; 5.40 eV vs. 5.47 eV.

Three different diamond surface models were used in the study; H-terminated (111), non-terminated

(111), and Pandey-Chain reconstructed non-terminated (111). Figure 3.2 shows the super-cells of these

specific surfaces. As a p-dopant species, the element B was, with one exception, substitutionally posi-

tioned at various levels in the diamond surface models. It was either adsorbed on the surface (B-ads)

or positioned in the 1st (B1), 2nd (B2) or 3rd (B3) atomic C level (see Figure 3.2).

pDOS spectra of C atoms have been calculated with the purpose to investigate the boron-induced band

gap-states just above the valence band edge of diamond. For comparison purposes, the density of

states of the non-doped surfaces have also been calculated (see Figure 3.6). Since the Pandey-Chain
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(a) (b)

Figure 3.6: pDOS spectra of carbon at (a) Pandey-chain reconstructed and (b) H-terminated surfaces. Both surfaces with

boron atoms at different positions namely adsorbed B (in purple), boron in first atomic layer-B1 (in cyan), boron in second

atomic layer-B2 (in green) and boron in third atomic layer-B3 (in yellow) have been compared with that of the undoped

lattice (in blue). The Fermi level Eᐽ is indicated as a dotted red line at 0 eV.[1]

reconstructed surface is the most stable (111) surface at elevated temperatures, it is also the result for

this specific surface that is interesting to compare with the experimental activities. As can be seen in

Figure 3.6a and 3.6b, there are surface-induced band gap-states for diamond (111) surfaces, which are

much lower positioned for the non-terminated Pandey-Chain reconstructed surface in comparison to

the H-terminated one. The region I is induced by boron doping since it is not observed on the undoped

diamond. The region II is related to 𝜋∗ transitions due to surface reconstruction, but are also affected

by the boron doping. The lowest positioned sub band gap state for the H-terminated surface is located

in region III and is not observed on the undoped sample. The states in region IV are observed for all

cases and are most likely related to C-H 𝜋∗ transitions. The energy of this contribution varies slightly

with boron doping.
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Table 3.1: Numerical values of the B-induced band gap peaks for

various B and C positions in the diamond surface lattice as

determined from DFT calculations. (All values provided are in eV with

respect to the Fermi level)

C1¹ C2¹ C3¹ C4¹

H-terminated

B-ads 2.1 2.1 2.1 2.1

B1 - - - -

B2 - - - -

B3 - - - -

Non-terminated

B-ads 0.9 0.9 0.9 0.8

B1 - - - -

B2 0.8 0.8 0.8 0.8

B3 0.9 1.0 1.0 1.0

Pandey-Chain

B-ads 0.3,0.9 0.2,0.9 0.2,0.9 0.2,0.9

B1 0.4 0.5 0.4 0.4

B2 0.6 0.6 0.5 0.6

B3 0.2 0.7 0.6 0.6

¹ C1, C2, C3 and C4 means that the choice of C for the pDOS calcula-

tions are within C layer 1, 2, 3 and 4, respectively. All of these spe-

cific C positions are as close as possible to the respective boron

position.

An adsorbed boron did induce a surface state peak for the H-terminated surface at lower energy than

the C-H bonds. The situation was completely different for the non-terminated and Pandey-Chain recon-

structed diamond surfaces. All positions of boron (i.e., adsorbed, 1st, 2nd or 3rd atomic C layer) were

found to induce a surface state peak for the Pandey-Chain reconstructed surface. It was only boron in

layer 1 that did not render any surface peak for the non-reconstructed counterpart.

All numerical values of the boron induced mid-gap states in pDOS can be found in Table 3.1. More gen-

erally, it can be seen in Table 3.1 that boron incorporation affects the carbon atoms in the first four layers

for the H-terminated and Pandey chain reconstructed diamond (111) surfaces. All C atoms sufficiently

close to the B dopant will induce a surface state above the VBE for diamond 2.1 eV above the Fermi level
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for H-terminated surface as opposed to 0.9 eV for other surfaces. The situation is very similar for the

Pandey-Chain reconstructed diamond (111) surface. All C atoms sufficiently close to the B dopant will

induce a surface state above the VBE for diamond. The numerical values as presented in Table 3.1 have

been compared to experimental results in the discussion. Based on estimates from the experimental

spectra, the Fermi level is placed at 283.8 eV in which case the relative positions of the sub-bandgap

states in the boron-doped diamonds show good agreement with the theoretical estimates.

3.1.2. Discussions

Several studies have been conducted to determine the distribution of boron atoms within the diamond

in order to establish a better correlation between the local environment of the boron atoms and its

resulting electrical properties.[17–21] While these studies clarified the distribution of boron atoms in

a polycrystalline or nanocrystalline diamond film, the impact of the local interaction of boron with C

atoms at or close to the diamond surface and their impact on sub-bandgap defect states of carbon

in nanostructured diamond materials remain unclear. Our experimental observations show that the

local environment of boron induced defects may be different within the diamond lattice for different

morphologies of the doped diamonds which could modify the energy of acceptor states within the band

gap of diamond materials. The possible origin of the acceptor states close to the VBM and CBM will be

discussed in the following sections.

3.1.2.1. Boron induced levels close to the valence band

We experimentally observe two new localized states A and B near the VBM of B-doped diamonds, be-

low the Fermi level of the un-doped material. These states represent excitonic transitions from the C 1s

core level to an empty surface state. In case of B:PCD-H andB:Dfoam-OH, the empty 2p orbitals of the

boron atom hybridized with a C 2p orbital could contribute to a surface state to which a core electron

from the C atom may be photoexcited. This conclusion has been supported by the theoretical calcula-

tions in the present study. All of the localized band gap states in region I of Figure 3.6a coincided with

pDOS peaks for boron doped diamond. Previous microstructural investigations using HRTEM and EELS

techniques on the local B environment in HPHT polycrystalline diamond films proposed that boron is

present at the grain boundaries and in triangular shaped pockets at the grain junctions.[17, 20] How-

ever, using the same EELS technique, in case of CVD deposited boron doped polycrystalline diamond

films, Huang et al. observed no signals from B at the grain boundaries and reported that the boron

atoms are uniformly distributed inside each diamond grain.[18] FY intensity may vary depending on the
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boron concentration as previously shown by Muramatsu et al.[7] In our case, the diamond materials

have various boron concentrations between 300 and 6000ppm, which could explain partly the differ-

ent FY intensities between the samples. Nevertheless, surface defects are also playing a role, especially

on nanostructured diamonds, as seen by the disappearance of peaks A and B after H-termination of

Dfoam.

All the diamond materials studied in the course of this investigation were hydrogenated at the surface.

However, in case ofB:PCD-H film andB:Dfoam-O, the surfaces at the grain boundaries may either con-

tain carbon atoms with dangling bonds or C-C 𝜋 bonded dimers which may be completely or partially

H-terminated thus resulting in H atoms bonded to both spኼ as well as spኽ type C atoms.[22] Appearance

of surface states due to dangling bonds on partially hydrogenated surfaces has already been reported

by XAS investigations previously.[23] Incorporation of boron in the diamond lattice occurs predomi-

nantly by substitution of a tetrahedral coordinated C atom as it results in the least amount of distortion

of the diamond lattice.[24] When the B atoms substitute C at the topmost layer of the lattice close to

the grain boundaries, they could have two different environments. At the surfaces close to the grain

boundaries, a substitutional B atom may result in C-C𝜋 bonded dimers, resulting in surface reconstruc-

tion of diamonds, thus reducing the number of dangling bonds. Glans et al. proposed that an excitonic

transition to an empty state in this case should result in a resonance similar in character to the spኼ peak

C.[8] However, due to extensive hybridization between the B 2p and C 2p orbitals, the core level of car-

bon experiences a chemical shift to lower energy resulting in the surface excitonic state to appear at a

lower incident photon energy of 284.1 eV (+0.3 eV vs. Eፅ as estimated from experiment). Theoretically,

this hybridization is exhibited as a modification in the C-C 𝜋∗ peak in the pDOS diagram as seen in re-

gion II of Figure 3.6a which is explained by an overlap between B and C orbitals. This implies that the

feature B is due to surface states formed due to the spኼ C-C bonds that are in close proximity to the B

atoms at reconstructed surfaces. However some carbon atoms close to the B atoms do not undergo

reconstruction. Such carbon atoms have dangling bonds and are predominantly found at partially or

non hydrogenated surfaces typical to grain boundaries leading to unoccupied states within the valence

band.[23] Glans et al. further proposed that localized states on these C atoms result in feature A.[8] This

furthermore validates the observation of surface excitonic states in case of the B:Dfoam-O.

The experimental observations are complemented by DFT calculations which were presented in the

previous section. According to the pDOS calculations, it is quite clear that the boron atoms at the

Pandey-chain reconstructed surfaces contribute to the surface states closer to the valence band edge.

As B:PCD-H and B:Dfoam-O contain numerous grain boundaries,[13] based on the theoretical calcu-

lations it is therefore reasonable to assert that presence of B atoms near the grain boundaries induce
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defects at these non-terminated surfaces resulting in the high intensity peaks attributed to surface ex-

citonic states. However, in case of B:Dfoam-H the defect states that are predominantly present at the

surface of the crystallites are completely saturated upon hydrogenation[25–27] resulting in the absence

of states A and B at the H-terminated surfaces as validated by theory calculations. Similar observation

was reported by Barjon et al. based on cathodoluminescence measurements.[26, 27]

Such surface excitons were also observed by Graupner et al. on clean and hydrogen terminated (111)

and (100) diamond surfaces at 284.6 eV and 284.15 eV respectively.[28] In case of B:SCD-H which has a

(111) surface, the surface exciton peak appears very weakly at 284.1 eV. Such a red shift of 0.5 eV relative

to the value reported in literature could be explained by the photoexcitation of C 1s electron from a C-C

𝜋 bonded dimer into a boron 2p empty orbital, where the core level of C is also chemically shifted due to

the presence of boron atoms. We can speculate that due to the absence of grain boundaries in the single

crystal diamond, majority of the B atoms are present in the bulk of the crystal and hence do not induce

a high concentration of defects near the surface. Since the possibility to dope a diamond (111) surface

with boron is significantly higher than that of the (100) surface,[29] a higher concentration of boron can

be achieved in case of (111) single crystal diamonds. However, in our studyB:SCD has the least dopant

concentration of all the materials investigated. The substitutional boron at the surface which is lesser in

concentration than that in the bulk could result in defects such as dangling bonds which are completely

passivated upon H termination.[26] Consequently, peak A which is attributed to dangling bond states

vanishes. Reconstructions at the surface however are only weakly passivated resulting in a significantly

reduced intensity of B as compared to B:PCD-H and B:Dfoam-O, in addition to the low concentration

of boron in the sample.

In case of B:ND-H that is prepared by milling PC diamonds, bigger diamond crystallites are cleaved

along the (111) planes.[14] During ball milling, crushing of the bigger crystallites along highly defective

regions is preferred. In CVD PC diamonds, which is the starting material for preparation of the boron-

doped NDs, defect rich regions have a high concentration of a-C.[14] Near these defect regions, boron

is usually present as substitutional tetrahedral impurities in the diamond lattice. With defects diffus-

ing away during the crushing process,[14] a significant amount of B would also be lost resulting in a

lower concentration of B in the bulk of the resulting nanoparticles as was previously reported by Heyer

et al.[14] The remaining boron centers at the surface of the produced nanoparticles contribute to the

weakly observed surface excitonic state B at 284.1 eV as seen in Figure 3.4 which is attributed then to

the surface states formed as a result of interaction between the residual spኼ C atoms and tetrahedrally

substituted boron atom. The appearance of peakBwith an extremely weak intensity only suggests that

the defect states are partially saturated upon hydrogenation. The 𝜋∗ state due to the presence of spኼ C
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atoms on the nanoparticles further contribute towards the 𝜋∗ resonance C at 285.2 eV. As proposed by

Turner et al., such an amorphous shell of C also surrounds the nanocrystals[19] that compose diamond

foams. Therefore a similar 𝜋∗ resonance is also observed for B-Dfoam:O.

3.1.2.2. Boron induced levels close to the conduction band

What seems to differentiate the nanostructured morphologies of boron doped diamond from the other

samples studied in this investigation is the additional broad shoulder near the conduction band edge

extending from ca. 286.5 eV-288.7 eV. This additional feature is observed with a higher intensity for

B:Dfoam-O as well as B:ND-H with sizes up to 10 nm. The presence of this peak is indicative of pres-

ence of C-B bonds at the surface of the nanostructured diamonds. [16] Our hypothesis here is that,

in addition to the substitutional boron at the topmost layer of the diamond lattice, some of the car-

bon atoms at the surface with single dangling bonds bind to the B atoms which could originate from

amorphous B4C type inclusions[21] in nanocrystalline diamonds in order to reduce the surface energy

during the doping process. Such inclusions were previously reported to be trapped in PC diamonds

during their growth process.[20, 21] With a bond dissociation energy of ca. 448 kJ molዅኻ, the C-B bond

once formed is much stronger than a C-H bond. Hence hydrogenation treatment of the boron doped

nanostructured diamonds cannot eliminate C-B bonds that are formed at the surface. The possibility

of boron coordinated to the C atoms when not embedded in the diamond lattice is further confirmed

by DFT calculations. The pDOS calculations for the adsorbed boron (B-ads) configuration in case of H

terminated (111) diamond surface as shown in region III of Figure 3.6b evidences the appearance of a

surface state closer to the conduction band, 2.1 eV above Eፅ which is in relative agreement with the

experimentally estimated value of 3.0 eV vs Eፅ . The presence of such a bond results in a 𝜋∗ resonance

at 286.8 eV as was observed by Katamune et al. [16] For NDs smaller than 50 nm, the absence of surface

excitonic peaks in the XA spectra indicates that most of the boron is present in the form of C-B bonds

at the surface of the nanoparticles and that the defects induced upon surface reconstruction are milled

away leaving the nanoparticle surfaces with surface defects that may have been completely saturated

during the hydrogenation treatment. The concentration of substitutional boron at the surface is too low

to be detected with our instrument. In case ofB:Dfoam-O, besides the𝜋∗ resonance due to B adsorbed

on the surface, additional contribution from C=O groups[15] at the oxidized surface leads to a higher

intensity of the shoulder as observed in Figure 3.4.
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3.2. n-type Diamonds

Surface states can also be introduced close to the CBM by doping diamond with donor atoms. This re-

sults in n-type doping of the material. Although boron doping in diamonds can be easily achieved by

direct substitution of the carbon atom by boron atom, n-type doping in diamond is said to be extremely

difficult.[30] Investigation of potential candidates for n-type dopants suggests nitrogen and phosphorus

among others as potential substitutional donors in diamond. Nitrogen which is also present in natural

types Ib and Ia diamonds have a negative formation energy of -3.4 eV, as shown by ab initio calculations

and hence can be easily incorporated in the diamond lattice.[31] However, nitrogen substitution in the

diamond lattice results in distortion of the diamond lattice due to antibonding interaction between the

N lone pair orbitals and C dangling bond.[31]. Furthermore, the incorporation of nitrogen leads to the

formation of deep donor levels, 1.7 eV below CBM, which makes it insulating at room temperature and

therefore not useful for electronic applications. On the other hand, phosphorus, which is the next candi-

date in group V, although suitable as a donor atom due to its shallow donor level 0.6 eV below CBM, has

a very high formation energy of 10.4 eV, leading to its small solubility, thus making it difficult to incor-

porate in the diamond lattice.[31] Despite these challenges, phosphorus has been incorporated in the

diamond (111) layers at high concentrations.[32, 33] The suitability of these materials in electronic ap-

plications has been investigated using various experimental techniques such as cathodoluminescence,

mobility measurements using Hall experiments etc.[34–36] Furthermore, it has also been suggested

that n-type doping of H-terminated diamonds results in enhanced electron emission due to lowering

of the effective work function.[37, 38] Sun et al. even evidenced sub band gap photo-induced electron

emission which could be advantageous for a solar energy conversion device.[39] These reports suggest

that n-type diamonds could be especially interesting for photocatalytic reactions in solution enabled

via solvated electron generation. Investigation of their electronic structure is therefore, of great impor-

tance.

Literature suggests that theoretical models for N-doped UNCD have already predicted an increase in

spኼ carbon due to the presence of nitrogen in diamond.[40] Furthermore, it was reported that doping

grain boundaries of diamond with nitrogen results in new electronic states within the band gap of di-

amond which are associated with carbon and nitrogen.[40] At the same time, however, the effect of

phosphorus doping on the electronic structure of diamonds has remained largely unexplored till date.

XAS as a technique can therefore, be employed to investigate the general effect of n-type doping on

the electronic structure of diamond as it is an element-sensitive local probe for the partial density of

unoccupied states in a material. In particular, it is sensitive to the 𝜋* state of spኼ carbon as also evi-
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denced in the case of B-doped diamonds and other surface states which appear in the pre-edge of the

C K edge XA spectrum. In this section, therefore, we present a short X-ray absorption study of the elec-

tronic structure of n-type diamonds doped with nitrogen and phosphorus. The studies were primarily

conducted on H-terminated doped single crystal diamond (111) surfaces (N:SCD and P:SCD) obtained

from collaborators at CEA in France and Fraunhofer IAF in Freiburg.

3.2.1. Electronic structure of Nitrogen- and Phosphorus-doped Diamonds

Figure 3.7: C K edge PFY spectra for N- and P-doped single crystal diamonds (in green and red). The spectra have been

compared with those of undoped (in blue) and B-doped (in black) single crystal diamond samples.

Figures 3.7 and 3.8 present the density of unoccupied states in N- and P-doped SC diamonds (N:SCD

and P:SCD) as evidenced by the PFY and TEY spectra, respectively. The TEY spectra exhibit four promi-

nent features. On the undoped singe crystal diamond, a very sharp peak can be observed at 289.3 eV,

corresponding to the core-exciton near the diamond surface.[15] This characteristic feature of diamond

materials is also evident in the doped diamonds. However, the excitonic peak becomes very broad and

shallow for the N doped and P doped diamond samples. The difference in the excitonic peak is not so

clear in the PFY spectra. This is because in PFY, photons emitted from the bulk of the sample are de-

tected while TEY detects the current resulting from emission of electrons from the surface of the sample.
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Figure 3.8: C K edge TEY spectra for N- and P-doped single crystal diamonds (in green and blue). The TEY spectra have been

compared with those of undoped (in red) and B-doped (in black) single crystal diamond samples.

In addition to the excitonic peak, the 𝜎* transition is also observed in the undoped-SCD and B:SCD at

293.2 eV.[15] Once again, this transition becomes less pronounced in case of the N and P doped diamond

samples. The feature due to C-H groups around 287.5 eV is very strong in case of the N and P doped sam-

ples as is evident from Figure 3.8. This shoulder is not evident in the bulk sensitive PFY spectrum which

indicates that N and P dopant atoms induce an n-type doping in the diamond samples resulting in more

available electrons that can be emitted, as will be explained in the following section. Also, the𝜋* transi-

tion at 285.3 eV becomes quite pronounced for the N doped diamond in the TEY spectrum. This is due

to the presence of a significant amount of spኼ carbon atoms on the surface. A comparison of the PFY

spectra also shows a pronounced 𝜋* feature at 285.3 eV and C-H shoulder at 287.3 eV for P:SCD alone.

3.2.2. Discussions

Unlike boron-doped diamonds, there have not been too many studies reported in literature elucidating

the electronic structure of n-type diamonds doped with nitrogen and phosphorus atoms. In this sec-

tion, therefore, we will briefly discuss our experimental observations, explaining the origin of the main

features in the spectra.
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The characteristic peak of diamonds at 289.3 eV as observed in the TEY spectrum corresponds to the

core exciton formed close to the surface and is therefore said to be susceptible to changes due to surface

groups.[41] This peak which is typically very sharp in the undoped and B-doped SC diamonds are broad

and shallow for the N- and P- doped diamonds as seen in Figure 3.8. A study by Birrell et al. reported

the disappearance of the diamond exciton in N-doped ultrananocrystalline diamond.[42] The authors

of this study proposed that the excitonic peak in diamond is quite prominent for short range order of

C atoms and incorporation of nitrogen leads to increase in the crystallite size resulting in more long-

range order.[42] In CVD grown single crystal diamonds long range order has been evidenced by the

appearance of a single peak in the X-ray diffractogram.[43] This could explain the shallow nature of the

excitonic peak in the N- and P-doped SC diamonds as a result of the disappearance of the core exciton.

That the excitons disappear in SCD is further in agreement with the fact that NEXAFS is a technique sensi-

tive to only short-range order[44] and hence not sensitive to the bulk excitons in SCD. In fact the diamond

core excitonic peak is said to be the most sensitive feature in NEXAFS whereby the intensity of this peak

reduces drastically upon formation of point defects in the diamond that affects the short-range crys-

talline order in the material.[44] In N-doped SCD N-V centers are the most commonly observed point

defects formed during the CVD growth of the diamond.[45] Similar impurity-vacancy complex forma-

tion was theoretically investigated in P-doped SCD.[46] A CVD grown P-doped SCD film is also reported

to contain point defects in the form of carbon dangling bonds as evidenced by ESR spectroscopy.[47]

The presence of these point defects in our N:SCD and P:SCD films could further explain the broad-

ened excitonic peak observed in our experimental spectra. Furthermore, this core-excitonic feature is

highly susceptible to surface groups on diamond as pointed out by Stacey et al.[41] In particular, Koeck

et al. reported that N- and P-doping reduces the effective work function of H-terminated diamonds

thus allowing sub-band gap electron emission with a lower emission barrier.[37, 38]. Since the sam-

ples were H-terminated and not annealed before measurements, the electron emission to an adsorbed

water layer on the surface of H-terminated N:SCD and P:SCD[48] could potentially explain the disap-

pearance of the core-exciton. This role of surface adsorbates becomes further clear when the samples

are measured in annealed and unannealed state at the PEAXIS end station, presented in section 5.1 of

this dissertation.

Such an electron emission is possibly also evidenced in the TEY spectrum by the intense shoulder at

287 eV close to the conduction band minimum. This shoulder could be attributed to a transition from

the core to a 𝜋* orbital of a C-H bond, which is enhanced by the presence of donor levels of N and P

located 1.7 eV [42] and 0.56 eV [49] below the CBM respectively. In addition to the broad and shallow

excitonic peak, N-doped SC diamond exhibits a very intense peak at 285.4 eV compared to the other
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single crystal samples. This high intensity may be attributed to possible reconstructions of the (111)

surface at structural defects and dislocations formed during N incorporation in the films.

3.3. Implications to photocatalysis

Figure 3.9: Schematic illustration depicting the two ways of introducing surface states in the band gap of undoped diamond

(A). One way is nanostructuration which introduces states close to the CBM due to surface groups on nanostructured

diamond surfaces (B). Another means to introduces in-gap states is boron-doping which introduces surface states close to

both the CBM and VBM (C). A synergistic effect results in a broad band of surface states close to the CBM and acceptor states

close to the VBM in nanostructured B-doped diamond (D).

In view of our discussions, nanostructuration along with boron doping can be proposed as a syner-

getic strategy that could potentially introduce defect states that are close to both the VBM and CBM of

diamonds, as exhibited in Figure 3.4.

As shown in Figure 3.9, boron doping of diamonds result in acceptor states close to both the VBM and

CBM of diamonds which is a surface dominated effect as these states are not so strongly observed for

the single crystal B-doped diamond. These states are therefore further enhanced upon nanostructura-

tion. Furthermore, H-termination introduces additional states below the CBM while saturating the ac-

ceptor states close to the VBM. A combination of these two steps produces boron doped nanostruc-
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tured diamonds with enhanced surface areas which is an essential characteristic of an efficient cata-

lyst. Furthermore, the introduction of defect states within the band gap of nanostructured diamonds,

close to both the valence and conduction bands could potentially facilitate a pathway for defect-based

transitions.[50–54] Energy upconversion based on related principle has been demonstrated in other

materials.[54] In addition, the negative electron affinity of the diamond surface should also be preserved

in order to generate solvated electrons. It has to be noted that other surface treatments such as ozone

treatment and amination of the surface could also lead to complementary surface states close to the

conduction band of diamonds.[55]

Our results show that a synergistic effect of nanostructuration and boron doping, coupled with a high

surface area offered by the nanostructured diamond materials such as foam and NDs could potentially

make them promising materials for application as membranes in photoelectrocatalytic cells or catalyst

nanoparticles in slurry based photocatalaytic reactors respectively. However, boron-doping alone may

not be sufficient to ensure visible light induced sub-band gap electron emission from the diamonds for

a direct photocatalysis in solution. For the purpose of electron emission, n-type diamonds have been

indeed shown to be more promising as they reduce the emission barrier in H-terminated diamonds.[37]

Furthermore, in nanostructured diamonds, N-doping has been particularly predicted to introduce spኼ

carbon along the grain boundaries which impart conductivity to the diamond. Therefore, one might say

that an acceptor and donor co-doped nanostructured diamond material could be a possible consider-

ation for a potential catalyst, which may potentially open a new avenue of research on diamond-based

photocatalytic materials. Such a doping scheme in diamonds would not only introduce more conduc-

tive surface states within the band gap of the material for defect-assisted transition, but also enable

visible light sub-band gap electron emission in order to generate solvated electrons for photocatalytic

reactions.

3.4. Conclusions

The electronic structure of p- and n-type diamonds have been investigated using soft X-ray absorption

spectroscopy. In particular, boron doped diamond materials were investigated in detail to engineer

solutions enabling eventual defect-based visible-light absorption. Different morphologies of diamonds

ranging from polycrystalline to single crystals, foams and nanodiamonds were studied using soft X-ray

absorption supported by density functional theory to understand the influence of morphology of the

doped diamond materials on the electronic structure. Our observations show that B-dopants close to

the surface of diamond crystallites introduces electronic states in the band gap of diamond which can
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be altered by tuning the morphology of the diamond. Surface states localized close to the VBM were

deduced to originate from boron doping induced surface reconstructions and dangling bonds which are

likely to be found at surfaces of the crystallites. Additionally, boron doping in nanostructured diamonds

such as foams and nanodiamonds was also found to introduce 𝜋* states close to the conduction band

of diamonds related to the C-B bond.

The most interesting results were obtained from the electronic structure investigation of the N and P

doped diamonds. Our studies show that n-type doping in diamond with N and P atoms results in a

broad and shallow excitonic peak which could originate from point defects in the samples along with

long-range crystalline order in single crystal diamonds in the bulk of the material. Furthermore, an en-

hanced sub-band gap electron emission is observed from a continuous band below the conduction

band minimum in the H-terminated diamond samples, which is well in agreement with literature re-

ports on reduction in electron emission barrier upon n-type doping of H-terminated diamonds. This

electron emission further helps to explain the disappearance of the core-exciton at the surface which

is attributed to a transfer of the electron to an adsorbed water layer on the surface of the H-terminated

material. Additionally, nitrogen doping enhances the intensity of the sub band gap spኼ carbon state

which is known to impart conductivity to nanostructured N-doped diamonds.

As diamonds have previously been demonstrated as promising photocatalysts due to their electron

emission capabilities, it may be suggested that nanostructured diamonds co-doped with boron and

an electron donor could be a promising solution for sustainable photocatalysts for direct visible light

induced CO2 reduction in solution.
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4
Surface Functionalization of Diamonds with

Transition Metals

Surface functionalization with transition metals could be another means to introduce states within the band gap
of diamonds. When metal atoms are electronically coupled to the diamond surface through organic moieties,
newsurface states are createdwhich are coupled to the electronic structure of diamond. Dependingon their band
alignment, the metallic surface functional groups can either serve as an electron or hole donor. Ru polypyridine
complexes have long been explored as preferred sensitizers for wide band-gap semiconductors. For diamond,
which is known to be a promising photocatalyst owing to its ability to generate solvated electrons, Ru complex
functionalization is studied in order to understand the possibility of refilling the photogenerated holes in thema-
terial. In this chapter we present the electronic structure of Ru-ND investigated using soft X-ray absorption spec-
troscopy at the C K edge which is explained with the help of additional DFT calculations. After a brief overview of
thematerials investigated, a detailed X-ray spectroscopic analysis is presented exhibiting the electronic coupling
between the dye and diamond. In addition, the effect of linker on the sub-band gap dye states in the Ru-NDs has
also been discussed with the help of theoretical calculations performed on the dye molecules. Furthermore, the
band alignment in Ru-ND has also been presented which demonstrates the role of the Ru complex as a potential
electron donor, thus paving way for a brief discussion on the potential implications of such a band alignment on
photocatalytic applications.

69



4

70 4. Surface Functionalization of Diamonds with Transition Metals

4.1. Ruthenium complex functionalized nanodiamonds

Ru complex functionalized nanodiamonds (Ru-ND) were obtained in the form of colloidal solutions

from our collaborators at the Universität Würzburg. The polypyridyl complexes of Ruthenium were of

particular interest in the project because of two reasons. Ruthenium polypyridyl complexes are well

established photosensitizers for wide-band gap semiconductors used in dye-sensitized solar cells with

reported efficiencies of more than 10%.[1] In addition to that, these complexes are also widely investi-

gated as catalysts for water oxidation reaction.[2] In view of these two characteristic properties of the

Ru complexes, we hypothesized that the Ru complexes could potentially provide an electron to fill the

photogenerated hole in the VB of the diamond. Therefore, we present here a spectroscopic study on

the dye-functionalized NDs to investigate their electronic structures in order to confirm our hypothesis

and get insights into their potential photocatalytic applications.

Three different dye systems were initially studied namely, tris-bipyridine (Ru(bpy)3), terpyridine chlo-

ride(Ru(tpy)Cl3) and bis-terpyridine(Ru(tpy)2), to demonstrate the versatility of the synthesis method.

All of these dyes were attached to the nanodiamonds with a non-conjugated linker, the structures for

which are shown in Figures 4.1a, 4.1c and 4.1d, respectively. While the bis-terpyridine dye had potential

applications in other photoorganocatalytic reactions investigated at Universität Würzburg, it was found

out that the Cl ligand in the terpyridine chloride is unstable and undergoes exchange with water under

UV radiation. Therefore, within the scope of the DIACAT Project, it was decided to focus further studies

on the Ru(bpy)3 system. In particular, Ruthenium trisbipyridine(Ru(bpy)3) complex was attached to the

nanodiamond surfaces with two different linker systems using click chemistry with a surface loading of

0.21 mmol gዅኻ, as shown in Figures 4.1a and 4.1b.

The NDs were subsequently dispersed in water to obtain a colloidal solution which was then dropcasted

on a Si (100) wafer. The electronic structure was studied using XAS, primarily recorded in the TEY mode,

at the C K edge at the diamond-vacuum interface in the LiXedrom endstation previously mentioned in

Chapter 2. The experimental spectra were explained using theoretical calculations performed using the

ORCA package described in Chapter 2.

For the Ru complex functionalized nanodiamonds, additional ultraviolet photoemission spectroscopy

measurements were performed by dropcasting the samples on an FTO substrate. The pure trisbipyri-

dine dye (Ru(bpy)3) was also studied using X-ray absorption and photoemission spectroscopies as a

reference.
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(a) Ru(bpy)3 with

non-conjugated linker

(b) Ru(bpy)3 with

conjugated linker

(c) Ru(tpy)Cl3

(d) Ru(tpy)2

Figure 4.1: Structures of Ru complexes.

4.2. Electronic coupling between Ru complexes and nanodia-

monds

For the Ru dye to function as a sensitizer that can facilitate charge transfer to or from the diamond, a

good electronic coupling between the dye and diamond is essential. This electronic coupling can be

evidenced by investigating the electronic structure of diamond using XAS at the C K edge, presented in

Figure 4.2.

In Figure 4.2, the XA spectra of the functionalized nanodiamonds are compared to the pure Ru dye which

is used as a reference. The XA spectrum of the Ru dye shows two peaks located 0.8 eV photon energies

apart at 285 eV and 285.8 eV respectively.[3] These peaks result from C 1s to 𝜋∗ transitions in the ligand

molecule after X-ray absorption. In particular, the peak at 285 eV is attributed to a transition to the

LUMO.[3] The second 𝜋∗ transition is to the LUMO+1 state and is well in agreement with the literature

report.[3]

Comparing the reference spectrum of the pure dye to the XA spectra of the functionalized nanodia-
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Figure 4.2: C K edge XA spectra of Ru(bpy)3 dye (in green), Ru(bpy)3-ND (in blue), Ru(tpy)2-ND (in yellow) and

Ru(tpy)Cl3-ND (in pink) samples. The XA spectrum of non-functionalized diamond (in cyan) (ND-H) has been presented for

reference. The pre-edge exhibits two strong peaks attributed to transitions to the LUMO and LUMOዄ1 of the dye respectively.

mond, a clear difference is observed at the rising edge beyond 287 eV. The NDs exhibit a broad excitonic

peak at 289.3 eV[4] which is absent in the pure dye reference. The pre-edge of the Ru functionalized NDs,

however, show a double peak feature at around 285 eV similar to the pure dye. In particular the peaks

appear 0.5 eV apart at 285.2 eV and 285.7 eV photon energies for the functionalized molecules. Inter-

estingly, the characteristic feature of the spኼ C atoms at 285.4 eV is not very evident in the spectra of

the functionalized NDs. As a first interpretation based on existing literature, the first peak at the lower

energy is attributed to a 𝜋∗ transition to the LUMO orbital of the dye.[3, 5, 6] Yeap et al previously in-

vestigated polycrystalline boron doped diamond functionalized with N3 dye with XAS and a separation

of 1 eV was observed between the LUMO and LUMO+1 levels for N3.[6] Based on literature reports, the

second peak above the LUMO may therefore, be attributed to a 𝜋∗ state resulting from transition from

the C 1s core orbital to the LUMO+1 orbital of the dye. Furthermore, the LUMO is blue shifted by 0.2 eV

and the LUMO+1 is red shifted in comparison to the pure dye, which is well in agreement with existing

literature.[5, 6] The appearance of the LUMO and LUMO+1 orbitals of the dye in the pre-edge of the dia-

mond electronic structure at different positions compared to the pure dye indicates an influence of the

NDs on the functionalized dye.[6] More specifically, it may be said that the electronic states of the dye

are coupled to the states of the NDs. Thus, XA spectroscopy provides a reliable means to characterize
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the attachment of the dye on the ND surface.

Although the XA spectra presented in this section give evidence for electronic coupling between the dye

and NDs, the literature provides only a naive interpretation of the pre-edge features. Therefore, in the

following section we dive deeper into understanding the origin of the split peak pre-edge feature in the

dye with the help of a combined experimental and theoretical study of linker effects on Ru(bpy)3-ND.

4.3. Effect of linker on sub-band gap states in Ru-NDs

The overlap of p orbitals facilitates delocalization of electrons in conjugated molecules which results

in lowering the energy of the system thereby increasing its stability. Due to the good charge transfer

characteristics of conjugated systems, Ru(bpy)3-ND was synthesized using both non-conjugated and

conjugated linkers, as shown in Figures 4.1a and 4.1b. To better understand the possible origin of an en-

hanced charge transfer process in the conjugated system, the electronic structures of the molecules with

different linker systems are compared in this section. Combined with DFT calculations, we investigate

the difference in their pre-edge features and their respective origins in this section. The experimental

XA spectra are presented in Figure 4.2.

Figure 4.3: C K edge XA spectra of Ru(bpy)3 dye (in green) and the Ru(bpy)3-NDwith non-conjugated and conjugated linkers

compared to ND-H. Conjugation in the linker contributes to additional shoulder above the second peak in the pre-edge.

As can be seen in the figure, the experimental spectra for the Ru-ND are compared to that of the non-
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functionalized NDs (ND-H) and the pure Ru dye for reference. The nanodiamonds (in pink) as well as

the Ru(bpy)3-ND (in grey) exhibit a rising edge after 287 eV. The excitonic peak [4] at 289.5 eV is also

present for the ND-H and Ru(bpy)3-ND samples. This clearly evidences the fact that the presence of

Ru complex on the surface of the nanodiamonds does not completely suppress the spectral features

related to ND. The pre-edge of the ND-H exhibits only a single feature at 285.3 eV which is attributed

to a transition from the core C 1s orbital to a 𝜋∗ state of an spኼ hybridized carbon.[4] In comparison to

the NDs, the pre-edge of Ru(bpy)3-ND exhibits a double peak feature for both the cases of conjugated

and non-conjugated linker systems. For nanodiamond with conjugated linker, a split of 0.4 eV is ob-

served with peak positions at 285.3 eV and 285.7 eV while that with the non-conjugated linker exhibits a

split of 0.5 eV with the maxima appearing at 285.2 eV and 285.7 eV. These values are slightly lower than

the energy difference of 0.8 eV reported for the pure dye in the previous section, which is also in close

agreement with literature.[3] In addition to the positions of the maxima of the double peak pre-edge

feature, it is also interesting to note that in the pure dye reference, the second peak is higher in intensity

as compared to the first one which equalizes when the dye molecule is attached to the ND.

These experimental observations can be further explained with the help of theoretical XA spectra which

were calculated using TD-DFT method explained in Chapter 2. Theoretical computations were per-

formed only for the Ru complex molecule with the linker systems. Since the molecules contain carbon

atoms with two different chemical environments, TD-DFT computations were performed to first obtain

the core level spectra for each of the two different types of carbon atoms. The resultant XA spectrum

which was then obtained by adding the two contributions is shown in Figure 4.4a for the non-conjugated

and Figure 4.4b for the conjugated system.

The resultant theoretical spectra exhibit a double peak feature as is evident from the Figure 4.4, which

is in agreement with our experimental observations. These calculations further suggest that the dou-

ble peak feature originates from two different chemical environments of the C atoms in the complex

molecules with linker systems. One type of C has another C atom as its nearest neighbour, referred to

as C1 while the second type of C atoms has a N atom as the nearest neighbour, referred to as C2. The

atomic orbitals of C1 and C2 are shown in Figures 4.5a, 4.5b, 4.5c and 4.5d. Analysis of the theoretical

XA spectra shows that the first peak that appears at 285.2 eV and 285.15 eV for the non-conjugated and

conjugated linker systems respectively is due to transitions originating from a 1s orbital on a C1 type C

atom. The second peak located at 285.6 eV and 285.55 eV for the non-conjugated and conjugated linker

systems respectively originates from transitions from the core of a C2 type C atom.

The energy levels for the core 1s orbitals of C1 and C2 type carbon are different, in the sense that the
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(a)

(b)

Figure 4.4: Theoretical XA spectra of C computed for Ru(bpy)2-NDwith (a) non-conjugated and (b) conjugated linkers. The

XA spectra for contributions from C atoms with C neighbours(C1) (in red) and from C atoms with N neighbours(C2) (in dark

green) were computed and the resultant spectra (in dark blue) were obtained by summing the two contributions multiplied

by the respective number of C atoms of each type. The dark brown and purple vertical lines show the transition probabilities.
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(a) C1 core (b) C2 core

(c) C1 core (d) C2 core

Figure 4.5: C 1s core orbitals of C1 and C2 carbon atoms in Ru complex with (a,b) non-conjugated and (c,d) conjugated linker.

The grey spheres in the figure indicate C atoms while the white spheres represent H atoms. Ru atom is represented in teal

while the small blue spheres represent N atoms. The core level 1s orbitals for C atom is represented in red for both the cores

of the non-conjugated system and C1 core of the conjugated system. The C2 core of the conjugated system (d) is

represented as a blue sphere bonded to a C and a N atom in the pyridine ring of the linker

core level of C1 type C is located at a higher energy level as compared to the core level of C2 type C.

This is due to a higher electronegativity of the N atom as compared to the C atom which is responsible

for shifting the core level to more negative values and consequently higher binding energies. Since the

ground states are different for both these transitions, although the electrons are eventually excited to the

same molecular orbitals, they would require photons of different energy for these transitions to occur

which essentially results in two different electronic states. Having said this, for the non-conjugated linker

system the first peak at a lower photon energy is a result of a transition from 1s core level of C1 carbon

to the LUMO while the second peak results from a transition from the core level of C2 carbon to the

LUMO+1 level. A similar analysis of the transitions for the conjugated system shows that the first peak

is a result of a simultaneous transition to the LUMO and LUMO+1 from 1s orbital of C1 carbon while

the second peak is attributed to a similar transition from the 1s orbital of C2 carbon. It is interesting
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to observe that the highest probability of transition is either to the LUMO or LUMO+1 orbitals in the

non-conjugated system and there is a mixed probability observed for the conjugated system as can be

gauged from the values presented in Table 4.1

(a) LUMO (b) LUMO+1

(c) LUMO (d) LUMO+1

Figure 4.6: Illustrations of LUMO and LUMOዄ1molecular orbitals that have the highest contributions to the final excited state

of the core electron in Ru(bpy)Ꮅ-ND with non-conjugated (a,b) and conjugated (c,d) linker systems.

As can be seen from Figure 4.6 the LUMO and LUMO+1 orbitals for the non-conjugated system look sig-

nificantly different from those of the conjugated system. Evidently, from Figures 4.6a and 4.6b it may

be observed that the LUMO and LUMO+1 orbitals are predominantly distributed over two of the tris-

bipyridine rings. While the LUMO orbital has a smaller distribution over the third trisbipyridine ring that

is out-of-plane with the other two, such a possibility is not observed for the LUMO+1 orbital in the non-

conjugated system. In comparison, from Figures 4.6c and 4.6d, it is evident that although the LUMO

orbital is predominantly distributed over just two trisbipyridine rings, that are located in planes perpen-

dicular to each other, LUMO+1 exhibits almost equal distribution over all the three ligands. Such a dis-

tribution of molecular orbitals may be attributed to extensive conjugation in the entire molecule when

the Ru complex is attached to a conjugated linker which is absent when the linker is non-conjugated.
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Table 4.1: Probability of transitions to the LUMO and LUMOዄ1 levels in Ru(bpy)3 functionalized ND. For a transition from the

C1 core the transitions to LUMO and LUMOዄ1 orbitals gives rise to three states whereas transitions from the C2 core can give

rise to only two distinct states. The energy differences for each of the two consecutive electronic states are indicated in

parantheses. The highlighted values indicate the most relevant transition probabilities for the experiments.

Cores States
Ru(bpy)3-conj Ru(bpy)3-nonconj

LUMO LUMO+1 Higher Orbitals LUMO LUMO+1 Higher Orbitals

C1(C-C)

1 0.54 0.32 0.14 0.83 0.035 0.135

2 (+1 eV) 0.12 - 0.88 0.11 - 0.89

3 (+0.3eV) 0.30 0.66 0.04 0.029 0.96 0.011

C2(C-N)
1 0.80 0.16 0.04 0.084 0.895 0.021

2 (+1 eV) 0.16 0.82 0.02 0.913 0.083 0.004

Due to extensive conjugation and a higher electronegativity of the spኼ carbon atoms there is a higher de-

gree of polarization of the molecular orbitals over the ligands in the complex when the system contains

a conjugated linker. This would in turn help to reduce the gap between the LUMO and LUMO+1 orbitals.

The possibility of simultaneous transitions to LUMO and LUMO+1 that was previously mentioned may

therefore be explained by this reduced gap between the LUMO and LUMO+1 for the conjugated linker

system.

In addition to the double peak feature, an additional shoulder appears at 286.4 eV in the XA spectrum

of the Ru-ND system with a conjugated linker. This is however, not evident in the system with the non-

conjugated linker. This particular feature appears at a photon energy 0.7 eV higher than the double peak

feature. One may hypothesize the presence of a possible charge transfer state arising due to conjugation

in the functionalized nanodiamond. Theoretical calculations suggest the possibility of transitions to

the LUMO+2 orbital from both C-C and C-N cores in the conjugated molecule, the probability for which

is very low in the non-conjugated system. In addition to the two linkers presented here, an extended

tolane linker system was also investigated, the data for which can be found in Figure A.9 in Appendix A.

4.4. Implications of band alignment of Ruthenium complex and

nanodiamonds

Ultraviolet Photoemission Spectroscopy or UPS is a valuable tool to probe the electronic structure of

the valence band of a material. This method measures the kinetic energy of the photoelectrons emit-

ted upon absorption of UV photons by molecules, in order to determine the energies of their molecular
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orbitals in the valence region. The binding energy of the molecular orbitals can be consequently de-

termined using Einstein’s photoelectric law, which helps us determine the energy of the valence band

states. Here the alignment of the HOMO level of Ru(bpy)3 dye with respect to the valence band max-

imum (VBM) of the nanodiamonds was investigated by UPS. Such a band alignment study would help

to illustrate the process of charge transfer between the dye and the ND with potential implications on

photocatalytic applications of the system. Figure 4.7 presents the PE spectra of the bare FTO substrate

(in grey), ND (in black), Ru dye (in green) and Ru(bpy)3-ND (in blue) deposited on FTO substrate.

Figure 4.7: Steady state photoemission spectrum of Ru(bpy)3-ND is compared to that of the bare dye, bare ND and the bare

FTO substrate. The HOMO of the dye is visible also upon functionalization of the ND and is blue shifted compared to the VBM

of the ND.

As is evident from the figure, the HOMO of the dye (in green) is clearly visible and appears at a binding

energy of -2.16 eV. The position of the VBM of nanodiamonds is estimated by fitting a straight line at the

absorption edge of the PE spectrum of the NDs. This places the VBM at a binding energy almost 0.9 eV

higher than the HOMO of the dye. Comparing the functionalized NDs with the bare NDs and Ru dye

reference suggests that the BE of the HOMO of the dye is lowered by 0.3 eV when the dye is attached to

the diamond surface. Therefore it becomes quite evident that the VBM of the NDs lies lower than the

HOMO of the dye. Such a band alignment has implications on the direction of charge transfer between

the nanodiamond and the dye.

As shown in Figure 4.8, since the HOMO of the Ru dye lies almost 0.9 eV above the VBM of the diamonds,
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Figure 4.8: Illustration of band alignment in Ru functionalized NDs showing a possible electron transfer from the dye to the

diamonds in order to refill the photogenerated holes in NDs upon solvated electron generation.

the Ru dye can act as an electron donor to the diamonds. Dye sensitized diamonds studied previously

report hole donation from Ruthenium dye to the diamond in case of B-doped diamond films where the

HOMO of the dye is located below the VBM of diamonds resulting in improved photocurrents through

photochemical experiments.[5, 6] Similar improved performances were also reported in other semi-

conductor materials[7–12] functionalized with Ruthenium complexes. One of the widely studied oxide

semiconductors is TiO2 functionalized with Ru complex for enhanced performance in dye-sensitized so-

lar cells [7] or photoelectrochemical reactions[8, 9]. Other transition metal oxide semiconductors such

as BiVO4[11] and Fe2O3[12] have also been functionalized with Ru complexes to catalyze water split-

ting and CO2 reduction to observe improved catalytic performances. However, in all of these cases the

catalytic center for photochemical reactions is the metal center Ru(II) in the complex.

Here, we demonstrate a nanodiamond based functionalized system which exhibits a switched position

of the HOMO with respect to the VBM of diamonds. The use of nanodiamonds instead of bulk diamonds

in this case may help to explain this observation. If the unique property of solvated electron generation

in nanodiamonds is to be exploited for photocatalytic applications, a way to replenish the photogener-

ated holes has to be established. Based on the band alignment, it may therefore be proposed here that

the donation of electrons to the diamond fromRu(bpy)3 dye would help to fill the holes which are cre-
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ated in the valence band of the diamond upon solvated electron emission. Ongoing ultrafast transient

absorption spectroscopy experiments have demonstrated initial signs of a possible charge transfer be-

tween the Ruthenium complex and NDs. This indicates that it may be possible to increase the yield

of solvated electrons emitted upon photoactivation of the nanodiamonds thus, making diamonds a

promising photocatalyst for CO2 reduction.

4.5. Conclusions

The electronic structure of nanodiamonds functionalized with Ruthenium complexes were studied us-

ing XAS at the C K edge which evidences strong electronic coupling between the complex and the nan-

odiamonds. Furthermore, the effect of linker on the pre-edge features of the functionalized nanodia-

monds was investigated by studying Ru(bpy)3-ND with two different linker systems, non-conjugated

and conjugated. A double peak feature, similar to that for the pure dye reference was observed in case

of the functionalized NDs. This double peak is in agreement with theoretical XA spectra of the dye and

the linker system, calculated using TD-DFT. The theoretical calculations suggest that each of the two

features in the double peak originates from one of the two different types of carbon atoms, C1 and C2,

with C and N atoms as nearest neighbours respectively. Furthermore, comparison of the experimental

spectra with the theory indicates a mixed probability of transition to both the LUMO and LUMO+1 in

presence of the conjugated linker which could be explained by the relatively smaller gap between the

two levels. In the presence of a non-conjugated linker distinct transitions from the C1 and C2 cores

to the LUMO and LUMO+1 orbitals respectively was observed. An investigation of the band alignment

showed that the HOMO of the dye lies 0.9 eV above the VBM of the nanodiamonds indicating the pos-

sibility of electron donation from the dye to the NDs. Such a band alignment scheme could potentially

establish a mechanism to refill the photogenerated holes in the VB of NDs in order to increase the yield

of solvated electrons, which needs to be further investigated.
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5
Understanding Diamonds in Water

Negative electron affinity of H-terminated diamond surfaces enables the emission of highly energetic
solvated electrons in water to catalyze CO2 and N2 reduction under UV irradiation. This electron emis-
sion is known to be influenced by doping as well as surface chemistry of diamonds. Therefore, in or-
der to develop photocatalytic applications of diamonds in aqueous electrolytes, understanding the be-
haviour of diamonds in water is important. In particular, this chapter discusses the electronic structure
of different doped diamonds using soft X-ray absorption spectroscopy to shine light on the role of at-
mospheric adsorbates on the diamond surface in sub-band gap electron emission from the material.
Furthermore, since the barrier for electron emission is influenced by surface chemistry and local envi-
ronment of diamonds, an FTIR study of the surface interactions of diamonds in water under different
pH conditions is also presented. Moreover, the need for deep UV illumination to photoactivate the di-
amonds, makes photocatalysis an inefficient process with bare diamonds. Therefore, hybrid photocat-
alysts can be developed by promoting diamonds with a co-catalyst that can absorb visible light and
shows enhanced efficiencies towards CO2 reduction. CuOx is a promising candidate for this purpose
as it has been demonstrated to enhance the photocatalytic performance of H-BND under solar and UV
irradiation. However, the material is also known to suffer from stability issues due to poisoning of its
surface as a result of carbonate adsorption. Using in-situ soft X-ray spectroscopy at the Cu L edge, the
last part of this chapter therefore elucidates the role of diamonds as a supportmaterial by progressively
monitoring the change in Cu oxidation state at different applied potentials.
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5.1. Interaction of Doped Diamonds with Adsorbates in Vacuum

In Chapter 3, X-ray spectroscopic investigations on p- and n-type diamonds conducted at the LiXedrom

end station were presented. According to these investigations, new electronic states were introduced

within the band gap of diamonds. Specifically, p-type doping of diamond with boron introduced two

localized states close to the VBM of diamonds which were found to be dependent on the diamond mor-

phology besides the dopant concentration.[1] The key insight from this study was however, the fact

that nanostructuration of B-doped diamonds introduces not only localized states close to the VBM but

also delocalized states close to the CBM of diamonds which could have special implications with re-

spect to defect-assisted transitions that could possibly enable visible light absorption for photocatalytic

applications.[1] In contrast to the p-type diamonds, nitrogen and phosphorus doping introduced delo-

calized electronic states close to the CBM. These states were found to be strongly electron emitting in

nature as was evidenced by the electron yield spectrum.

Since the samples studied in LiXedrom could not be annealed, it can be said that all the samples had a

few monolayers of adsorbate on its surface. To confirm the effect of adsorbate on the surface of doped

diamonds, this investigation was further extended to compare the pre-edge features of the annealed

diamond surfaces with that of unannealed surfaces, as this region of the spectrum is most sensitive to

electronic states due to changes in adsorbed molecules on the surface. To this aim, soft X-ray absorption

experiments on undoped, B, N and P doped single crystal diamonds were conducted at the PEAXIS

end station. The diamond surfaces were annealed at 250∘C for 3 hours before the measurements to

remove any adsorbates on the surface, especially water and other oxygen containing molecules. After

characterization, the annealed samples were exposed to air under ambient conditions, where the clean

and annealed diamond surfaces now interacted with a thin monolayer of adsorbate molecules. They

were then subsequently placed back in the chamber to record TEY-XA spectra after air exposure. Here

we present the pre-edge region of the TEY-XA spectra for all the samples. These spectra have not been

background corrected for the carbon contamination from the beamline. For details on the procedure

for background correction of the TEY-XA spectra, refer to section A.2 in Appendix A.

As seen in Figure 5.1, the C K edge TEY-XA spectrum of the undoped single crystal diamond shows pri-

marily two features. The characteristic feature at 289.3 eV corresponds to the core-excitonic peak of dia-

monds, in agreement with literature reports.[2] The other feature observed at ca. 282.4 eV corresponds

to a surface state due to single dangling bonds on non-terminated or partially H-terminated surface of

diamond.[3] Upon air exposure, the spectrum remains same with a slight increase in the intensity of

the peak at 282.4 eV and a decrease in the core-excitonic peak at 289.3 eV. This is further evident from
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Figure 5.1: C K edge XAS of undoped SC diamond films measured at the PEAXIS end station measured in TEY mode after

annealing (in red) and after exposure to air (in blue) are shown alongside a difference spectrum (in green). The dotted line

represents a reference that indicates that there is no difference between the two spectra.

the difference spectrum which exhibits a positive peak at 282.4 eV and a negative one at 289.3 eV. The

decrease in intensity of the core-excitonic peak could be attributed to a disappearance of excitons at

the surface. Maier et al. have shown that exposure to air results in the formation of water adsorbate

layer on the surface of H-terminated diamonds which acts as a sink for electrons, thereby imparting

surface conductivity to the diamond.[4] Therefore, an electron transfer to the neighbouring adsorbate

water and other oxygen containing molecules on the surface could serve as a possible explanation for

the decreased intensity of the core-excitonic peak.

In case of B-doped diamond, which is a p-type semiconductor, the spectrum is blue shifted towards

higher photon energies by 0.2 eV, as is evident from Figure 5.2. This shift is more prominent at the core-

excitonic peak position at 289.3 eV. Since, the TEY-XA spectrum is surface sensitive, the core excitonic

peak may be sensitive to surface termination. In particular, it has been reported by Stacey et al. that

reconstructed surfaces and oxygen containing groups on the surface could result in a shift of the exci-

tonic peak to higher energy positions,[5] which is well in agreement with our experimental observations.

Stacey et al. attributed this shift to a possible band bending which is known to occur near the surface
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of diamonds when exposed to air.[4, 5] In addition to this change, the other characteristic features of

diamond are also evident in the spectra which include the surface states due to dangling C bonds on

the surface and the electron emission states due to C-H interaction since the diamond is partially H-

terminated. It may also be noted here than the feature due to the dangling bonds does not completely

vanish upon air exposure. This is probably because the samples were exposed to air for ca. 10 minutes

which may not be enough to saturate all the dangling bonds.

Figure 5.2: C K edge XAS of B-doped single crystal diamond films measured at the PEAXIS end station in TEY mode after

annealing (in red) and after exposure to air (in blue) are shown alongside the difference spectrum (in green). The dotted line

represents a reference that indicates that there is no difference between the two spectra.

Changes are observed upon air exposure in the N-doped SC diamond sample as shown in Figure 5.3.

Besides the characteristic excitonic peak at 289.3 eV[2] and a surface state at 284.2 eV due to single C

dangling bonds,[3] a prominent shoulder appears close to the conduction band edge below the exci-

tonic peak with a threshold at 286 eV in the spectrum recorded on the annealed sample. This feature

is said to originate from electron emission states arising as a result of N doping and C-H interactions

due to H-termination of the diamond surface.[2] Since N is a deep donor, it introduces states ca. 1.7 eV

below the conduction band edge. The electron emission states due to N and C-H interactions are de-

localized in nature which result in the formation of a broad band of states below the conduction band

minimum. Upon air exposure this shoulder increases significantly in intensity as is also evident from
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Figure 5.3: C K edge XAS of N-doped single crystal diamond films measured at the PEAXIS end station in TEY mode after

annealing (in red) and after exposure to air (in blue) are shown alongside a difference spectrum (in green). The dotted line

represents a reference that indicates that there is no difference between the two spectra.

the difference spectrum where a positive broad peak is observed starting at 286 eV and extending all

the way to 289 eV. N-doping of diamonds makes more electrons available in the material and is also

known to reduce the work function of NEA H-terminated diamonds.[6] Due to more electrons available

close to the conduction band, it is expected that the Fermi level of N-doped diamonds would shift more

towards the CBM. Maier et al. proposed that when the Fermi level of H-terminated diamond lies above

the chemical potential of the water adsorbate layer, electron transfer from diamond to the adsorbate

layer is facilitated by a water redox reaction.[4] Our knowledge of semiconductor physics tells us that

the Fermi level of n-type diamond is expected to lie higher in energy than that of an undoped diamond.

Therefore, based on the mechanism proposed by Maier et al. it can be said that the presence of N

donor levels in H-terminated diamonds enhances sub band-gap electron emission to adsorbed water

molecules on the surface upon air exposure. Additionally, it can also be observed from Figure 5.3 that

the single C dangling bonds at 284.2 eV are completely saturated upon air exposure and the excitonic

peak almost vanishes upon air exposure. The vanishing of the excitonic peak could be related to the

enhanced electron emission from the diamond as a result of which excitons will no longer be formed in

the material.
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Figure 5.4: C K edge XAS of P-doped single crystal diamond films measured at the PEAXIS end station. TEY-XA after annealing

(in red) and after exposure to air (in blue) are shown alongside the difference spectrum (in green). The dotted line represents

a reference that indicates that there is no difference between the two spectra.

Again an n-type dopant, phosphorus is also expected to induce similar changes in diamonds as nitro-

gen, namely introduction of new donor states within the band gap of diamonds which could give rise to

electron emission. This is evident in Figure 5.4 from the broad shoulder at ca. 286.5 eV in the red spec-

trum recorded on the annealed sample. In addition, the characteristic excitonic feature at 289.3 eV[2]

as well as a small peak at 282.4 eV due to the single C dangling bonds[3] are also observed. Although

an increased electron emission shoulder is also observed at around 286 eV in P-doped diamonds, the

spectrum is shifted to lower photon energies by 0.2 eV, which could be attributed to an upward band

bending evidenced on H-terminated (111) surface of P-doped diamond.[7]

Since TEY-XA is a surface sensitive detection method due to the shorter mean free path of electrons, it

may be sensitive to surface band bending in materials. This band bending is also reflected as a shift in

the core-excitonic peak which is known to be susceptible to surface termination related shifts.[5] From

the TEY-XA spectra presented here, we can further conclude that in presence of water and other oxygen

containing adsorbates, n-type diamonds exhibit photon-induced sub-band gap electron emission. Our

experiments therefore, confirm the role of n-type dopants and adsorbates as presented in the hypoth-
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esis in Chapter 3.

5.2. Influence of Water on the Surface Chemistry of Diamonds

5.2.1. FTIR Spectroscopy of the Diamond-Water Interface

In order to further develop photocatalytic applications of diamonds, it is equally important to under-

stand the surface interactions of diamond with its environment. Specifically, a study of the diamond-

water interface is essential since solvated electrons from H-terminated diamonds are emitted in water

under UV irradiation for catalysis.[8] However, OH radicals may also be generated in water as a side

product[9] which could potentially hydroxylate the H-terminated diamond surfaces that are known to

be highly reactive under UV illumination.[10] These OH-terminated surfaces are interesting on their own

as they are also known to possess NEA, albeit 0.2-0.3 eV lower than that of H-terminated NDs.[11] De-

pending on protonation of the OH groups under acidic pH conditions, these surfaces may exhibit en-

hanced electron emission characteristics. Such results were already demonstrated on protonated NH2-

terminated NDs by Hamers et al.[12] which motivates the study of pH effects on the surface interaction

of OH-terminated diamonds with water. Fourier transform Infrared Spectroscopy (FTIR) has proven to

be a powerful technique to reliably characterize the surface of diamonds in various environments. As

a vibrational spectroscopy method, it is not only sensitive to the different surface functional groups

on NDs but is also non-destructive in nature, versatile and involves easy sample preparation, as also

previously pointed out in Chapter 2.[13] Therefore, this technique was used to characterize the surface

interactions at the ND-OH-water interface in acidic as well as basic pH conditions.

For this study, H-termination of the detonation NDs was performed using a plasma hydrogenation tech-

nique developed by Girard et al. in CEA.[14] ND surfaces were terminated with OH groups using two

different treatments, a Borane only reduction treatment and a successive Borane[15] and Fenton[16]

treatment by Benjamin Kiendl from the group of Prof. Anke Krueger. The samples for FTIR measure-

ments were prepared by drop casting 150 𝜇L of the pH controlled ND dispersion on a Ge ATR crystal

and drying the drop overnight to obtain a thin film. The pH was adjusted to 3.5 and 10 with HCl and

NaOH, respectively while dispersions in deionized water were used for measurements under neutral pH

conditions. FTIR scans were first recorded under a flow of dry air following which humid air was intro-

duced in the measurement cell. The RH of the humid air was progressively varied from 0 to 80% before

liquid water was introduced using a syringe.

NDs are susceptible to water adsorption upon exposure to ambient air. This could bring about changes
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to their surface chemistry which become evident from the different H2O related bands in the FTIR spec-

trum. In addition, the interactions with water molecules primarily through H-bonding also exhibit IR-

active vibrational frequencies due to their polar nature.[13] These signatures can be observed in a full

range spectrum as shown in Figure 5.5, which represents the FTIR spectrum of ND-OH in basic pH under

varying humidity conditions. While the specific pH effect will be discussed in the next section, here we

present a general discussion of the FTIR spectrum of diamonds upon exposure to humid air.

Figure 5.5: Full range FTIR spectrum of ND-OH in humid air with varied levels of relative humidity as represented by the

colour bar. In considering interaction with water molecules, three different regions are of primary interest as depicted by the

coloured bands.

In Figure 5.5, different peaks represent different vibrational modes of the surface groups on diamond, of

which three are of primary interest to us in the study. These are OH stretching, CH፱ stretching and the

OH bending modes. As pointed out before, NDs are susceptible to water adsorption on the surface. This

could result in a broad band appearing between 3200-3600 cmዅኻ introduced by OH-stretching modes,

as shown in Figure 5.5 which could be attributed to ice-like water, liquid-like water or gas-like water

close to the diamond surface.[13, 17] Such a band could also appear on OH terminated surfaces and is

attributed to OH stretching vibrations from the hydroxyl groups. [13] Measurements conducted in D2O



5.2. Influence of Water on the Surface Chemistry of Diamonds

5

91

(see Figures A.11 and A.12 in Appendix A) showed that most of the bands came from water. Following OH

stretching, the next region of interest is that of the CH፱ stretching, which typically appears between 2830-

2960 cmዅኻ.[13] This region is said to be greatly influenced from the crystallinity difference in differently

sized nanodiamonds and synthesis methods.[13] However, since ND surfaces are highly susceptible to

hydrocarbon contamination, this region of the IR spectrum is complicated to interpret[13], especially

when the ND samples are not annealed in vacuum prior to the measurements. Therefore, this region

will not be discussed further in the course of this study.

The final region of interest, which is also the primary focus of the results presented in this section of

the dissertation, is the OH-bending region between 1540-1900 cmዅኻ. According to literature reports,

different OH bending vibrations have been reported to occur on ND surfaces.[13] The OH bending from

hydroxyl groups or water appear between 1620-1640 cmዅኻ, which is typical for oxidized and OH ter-

minated ND surfaces.[13] Between 1650-1858 cmዅኻ different C=O stretching vibrations are visible due

to presence of carbonyl groups originating from protonated or deprotonated carboxylic groups, alde-

hydes, ketones, esters and anhydrides.[13] In case of the ND-OH surface prepared by Borane+Fenton

treatment, the C=O stretching vibrations are more likely to originate from the carbonyl groups on the

surface which are formed due to the partial oxidation of the OH groups on the borane reduced ND sur-

face. The OH bending due to a water molecule close to an excess electron on the surface appears be-

tween 1545-1589 cmዅኻ which was previously attributed to the formation of a charge stabilization layer

on the hydrophobic H-terminated ND surfaces, upon interaction with water.[18] This region of the IR

spectrum between 1540-1900 cmዅኻ is clearly, highly susceptible to changes due to the environment

of the sample as well as its surface chemistry and therefore, shall be our main focus for further discus-

sions in this study. With this general overview in mind, the following part will discuss the changes that

are observed in the OH bending and C=O stretching modes on ND-OH surfaces with changes in pH of

the surrounding environment.

5.2.2. pH Effects on the Surface Interactions of Nanodiamonds

Due to the formation of highly oxidizing hydroxyl radicals in water under UV illumination, H-terminated

diamond surfaces could transform into OH-terminated surfaces. Since these ND-OH surfaces also pos-

sess NEA, understanding their surface interactions in water under varying pH conditions could be in-

teresting to determine the optimal environment which could facilitate electron emission from these

surfaces for photocatalysis. To this aim, we present here a study of the surface interactions under neu-

tral pH conditions for ND-OH as well as ND-H surfaces. Thereafter, the effect of pH on ND-OH surfaces
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will be discussed.

Surface Interactions under neutral pH conditions

While real-life applications are almost always realized in either acidic or basic pH conditions, a detailed

understanding of the surface interactions of NDs with different surface chemistries in a neutral pH en-

vironment is essential. Hence, as a first step we shall try to establish the difference in their surface in-

teractions when thin films of dispersions of NDs in deionized water (pH 7.0) are exposed to humid air,

as mentioned in the previous section. Figure 5.6 exhibits the FTIR spectra of the dry surfaces as well as

those exposed to humid air and also the corresponding difference spectra for ND-OH surfaces prepared

by Borane (ND-OH B) and Borane+Fenton(ND-OH B+f) surface treatments and ND-H.

As is evident from Figure 5.6a, the dry ND-H and ND-OH samples exhibit a peak at 1715 cmዅኻ which is

attributed to the C=O stretching mode due to aldehydic groups on the surface.[13] Specifically, the C=O

vibration induces a broad peak for ND-OH B+f with a relatively lower intensity of the OH-bending in-

duced shoulder at 1625 cmዅኻ. This indicates the presence of a higher number of carbonyl groups on the

surface and relatively lesser OH coverage. In the case of borane reduced surface ND-OH B, some non-

reduced carbonyl groups are present on the surface which give rise to the shoulder at 1715 cmዅኻ, since

borane selectively reduces carboxylic acid groups to OH.[19] The broad shoulder centered at ca. 1625

cmዅኻ is therefore, attributed to the OH bending mode of the hydroxyl group.[13] Additionally, ND-OH

B exhibits a peak at 1669 cmዅኻ which could be attributed to the C=O stretching vibration of a carbonyl

group such as aldehyde or ketone[13] that is shifted in frequency, due to the H-bond formation with

water molecules adsorbed on the diamond surface. Since OH-terminated surfaces are hydrophilic, it

is possible that some water molecules remain adsorbed on the surface despite drying of the sample.

Upon interaction with humid air while ND-OHB+f andND-H exhibit a peak with maxima at 1637 cmዅኻ

induced by OH-bending in water, ND-OH B exhibits a rather broad peak with maximum centered at

around 1651 cmዅኻ. Such a broad peak possibly contains contributions from the OH bending of water

molecules itself as well as the OH bending and C=O stretching vibrations of the surface groups on the

ND that form H-bonds with the water molecules that are close to the surface. The difference spectra as

shown in Figure 5.6b further evidence the enhancements in C=O stretching and O-H bending vibrations

upon exposure of the ND surfaces to humid air.

Due to the hydrophobic nature of H-terminated ND surfaces, its interaction with water is unusual in

comparison to the OH-terminated surfaces. In particular, Petit et al. reported the possibility of charge

accumulation in the hydrophobic gap between ND-H and water which results in OH bending vibrations

red shifted to 1545 cmዅኻ upon exposure to humid air.[18] It is surprising that we do not observe this
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(a)

(b)

Figure 5.6: (a) Comparison spectra of dry ND samples and after exposure to humid air under neutral pH conditions. (b)

Difference FTIR spectra between dry ND surfaces with H (green) and OH surface terminations (black and red) and after

exposure to humid air under neutral pH conditions.
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Figure 5.7: Schematic showing surface groups on detonation NDs after Borane reduction and a successive Borane and

Fenton treatment. Primarily a high amount of OH groups are expected as a result of the reduction of carboxylic acid groups

by Borane on the detonation NDs, in addition to the conversion of spᎴ carbon to C-H groups. After a successive Fenton

treatment, OH groups are introduced at sites with H termination, however the already exisiting hydroxyl groups are oxidized

to C=O groups.

feature which could possibly be explained by a high RH during the measurements and prolonged stor-

age of the NDs-H in water. In our case, the vibration feature at 1637 cmዅኻ observed in ND-H could be

attributed to the OH bending in bulk water. The fact that the feature at 1715 cmዅኻ on the dry ND sam-

ples has a significantly lower intensity upon exposure to humid air indicates a dominance of the signal

by weakly H-bonded water molecules in the bulk. Another possible hypothesis to explain the deviation

in our experimental observation from that of the reported value is an incomplete hydrogen termination

of the diamond surface resulting in the presence of oxygen groups which interact with water molecules

forming strong H-bonds. The FTIR spectrum of the dry sample already evidences the presence of C=O

groups on the surface, due to possible oxidation of the surface in water. In a highly humid environment,

these carbonyl groups could interact strongly with the water molecules which would lead to their ad-

sorption on the surface of diamonds forming bulk water like H-bonded layers in close proximity to the

diamond surface. The OH-bending mode in these H-bonded water layers adsorbed on the surface could

then explain the feature at 1637 cmዅኻ.

The situation for the OH terminated surfaces is however, slightly different. For the ND-OH B sample,

presence of C=O stretching bands with a lower intensity than that observed for ND-OH B+f indicates

that a small amount of non-reduced carbonyl groups on the surface such as aldehydic and ketonic

groups may be present in addition to OH and H. This is because borane reduction tends to selectively

reduce carboxylic acid to alcohols. Furthermore, C=C bonds are also converted to spኽ carbon by borane

reduction. A Fenton treatment following a borane reduction is ideally supposed to homogeneously

hydroxylate the diamond surface due to the strong oxidizing power of the OH•. However, the OH radicals
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may only be effective in case of H-terminated carbon present on the surface. The strongly oxidizing OH•

would eventually also slightly oxidize the already present OH groups on the diamond surface to carbonyl

groups such as aldehydes and ketones, which would help to explain the features at 1715 cmዅኻ and 1669

cmዅኻ on the dry ND surface. Upon interaction with humid air, the predominant C=O groups as well as

the smaller number of OH groups interact with water via H-bonding resulting in the broad peak with

increased intensity observed in Figure 5.6a.

Changes in the Surface Interactions under acidic and basic pH

As pointed out previously, long time exposure of ND-H surfaces to UV radiation in water could result in

the formation of OH-terminated surfaces, which exhibit NEA similar to the H-terminated surfaces. Since

ND-OH surfaces are hydrophilic as compared to ND-H, pH conditions are expected to influence their in-

teractions with water molecules more strongly. In particular, it is expected that in an acidic environment

the OH groups would likely be protonated and enhance electron emission characteristics of the ND-OH

surfaces. Therefore, OH terminated NDs will be primarily investigated in this section (see Appendix A for

FTIR spectrum of ND-H in acidic pH). To study the samples under acidic and basic pH conditions, solu-

tions of NDs were prepared in HCl and NaOH with pH values adjusted to 3.5 and 10, respectively. The

FTIR spectra of the dry samples were recorded following which they were exposed to a steady flow of

humid air. Figures 5.8a and 5.9a show the FTIR spectra of the dry samples and after exposure to humid

air in acidic and basic pH conditions, respectively. The corresponding difference spectra are presented

in Figures 5.8b and 5.9b, respectively.

A comparison of Figures 5.8a and 5.9a does not reveal a significant difference in the peak positions. How-

ever, comparing with the spectra in neutral pH makes it clear that the C=O stretching band is shifted to

higher frequencies of 1726 cmዅኻ. Upon exposure to humid air there is a peak at 1643 cmዅኻ which ap-

pears for both the samples under acidic as well as basic pH conditions which is expected from a strongly

H-bonded water solvation shell. The difference becomes more evident, however, upon comparing the

difference spectra for the ND-OH samples shown in Figures 5.8b and 5.9b for the acidic and basic pH,

respectively. Particularly, in acidic pH, a shoulder is visible between 1710-1720 cmዅኻ for the ND-OH

B+f sample. There could be two possible hypotheses to explain this feature. Since the OH groups on

the borane reduced ND surface are likely to get oxidized after Fenton treatment, one possibility could

be that this shoulder is due to the C=O stretching of the aldehydic and ketonic groups present on the

surface. This feature increases in intensity at high RH since H-bonding of the C=O groups with water may

induce stronger IR absorption of the bond. That the C=O stretching does not appear at higher frequen-

cies allows us to rule out the possibility of any carboxylic groups on the surface. A second possibility
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(a)

(b)

Figure 5.8: (a) Comparison spectra of dry ND samples and after exposure to humid air under acidic pH conditions (pH 3.5).

(b) Difference FTIR spectra of ND-OH B (red) and ND-OH B+f samples(black) before and after exposure to humid air under

acidic pH conditions
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(a)

(b)

Figure 5.9: (a) Comparison spectra of dry ND samples and after exposure to humid air under basic pH conditions (pH 10.0).

(b) Difference FTIR spectra of ND-OH B (black) and ND-OH B+f samples(red) before and after exposure to humid air under

basic pH conditions.
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could be the formation of hydronium ions in acidic solution and their subsequent adsorption on the

diamond surface. The H-O-H asymmetric bending mode of the H3Oዄ ion is reported to also appear in

the same region.[20] This H3Oዄ ion is oriented with its H atoms towards the diamond surface forming

H-bonds with the oxygen atom of the carbonyl groups on the diamond surface. This shoulder between

1710-1720 cmዅኻ is however, not as strongly evident in the ND-OH B sample.

Instead, ND-OH B exhibits a strong shoulder at 1550 cmዅኻ. During borane reduction, predominantly

carboxylic acids are reduced to OH groups[19] and C=C spኼ carbon is converted to spኽ carbon termi-

nated by an H atom.[21] In acidic pH conditions, the OH group possibly gets protonated resulting in

the formation of a -C-OH2
ዄ group on the surface. Because of negative electron affinity, OH- as well as

H-terminated diamonds can emit electrons in water. While it is known that H-terminated surfaces form

a hydrophobic gap in water that can accomodate a charge accumulation layer,[22] OH-terminated sur-

faces are known to be hydrophilic. Therefore, our hypothesis here is that, the lack of electron density

on the H atoms in -C-OH2
ዄ, formed upon protonation of the OH group in acidic pH conditions, helps to

potentially stabilize the negatively charged electron cloud, emitted in water from OH-terminated sur-

faces, as shown in Figure 5.10a. This coupled with the charge accumulation layer close to H-terminated

carbon atoms[18] on ND-OH B could give rise to the intense shoulder at 1550 cmዅኻ. Upon successive

Fenton treatment the existing OH groups get oxidized back to carbonyl groups by the OH radicals. At

the same time, C-H groups formed upon borane reduction of C=C spኼ carbon are converted to -C-OH

groups. Thus successive Fenton treatment possibly introduces lesser OH groups on the surface as com-

pared to borane reduction while terminating the diamond surface with electron rich oxygen groups, as

shown in Figure 5.10b. This may explain the absence of the peak at 1550 cmዅኻ in ND-OH B+f.
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(a)

(b)

Figure 5.10: Schematic illustrating surface interactions of (a) ND-OH B and (b) ND-OH B+f in acidic and basic pH.

In a basic environment, however, the carbonyl groups formed on the surface of the ND-OH B+f remain

unaffected and form H-bonds with water molecules upon exposure to humid air. This could explain the

shoulder between 1726 cmዅኻ due to C=O stretching, in addition to the band due to OH-bending at 1643

cmዅኻ. The difference spectra as shown in Figure 5.9b, however, evidences a broader band induced by

OH-bending on ND-OH B which could be due to more number of deprotonated OH groups on the sur-

face interacting with water molecules via H-bonding. Additionally, a small shoulder is also observed

at 1550 cmዅኻ for ND-OH B which is absent in ND-OH B+f and is much weaker in intensity than that
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observed under acidic pH conditions. This shoulder could be due to a rather weak charge accumula-

tion layer[22] due to smaller number of C-H groups on the surface of ND-OH B. A simple schematic to

illustrate the different interactions are shown in Figure 5.10.

Implications on Photocatalysis with Diamonds

Figure 5.11: Schematic showing potential oxidation of diamond surfaces under long exposure to UV irradiation in water. The

H-terminated surfaces undergo photochemical hydroxylation under UV irradiation. Subsequent oxidation of the OH groups

to carbonyl groups could result in an O-terminated surface which has a positive electron affinity thereby inhibiting the

emission of solvated electrons. This oxidation mechanism is in further agreement with the progressive shift of the EA to

positive values as shown in the band diagram taken from [8].

OH-terminated diamond surfaces exhibit NEA and can therefore emit electrons like H-terminated sur-

faces. Our experiments here show the possible formation of oxonium ions due to the protonation of the

OH groups on the surface in acidic pH conditions, which could potentially enhance electron emission

from the material. Although this is advantageous for application of diamonds as a photocatalyst for CO2

reduction, it must be noted that long term exposure to UV radiation in water may result in the oxidation

of the diamond surface, resulting in the formation of carbonyl groups on the surface. The electron rich

oxygen groups could eventually raise the electron emission barrier, thus hindering the generation of

solvated electrons in a basic solution.[8] Interestingly, our experimental observations also point out a

possible mechanism of aging of the ND surface promoted by OH•, as illustrated in Figure 5.11.
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Based on the FTIR observations it may seem that the Fenton treatment potentially accelerates the aging

process of the nanodiamonds. This may be helpful in gaining insights into changes in the surface chem-

istry of the ND surfaces in photo electrochemical applications under UV illumination. More specifically,

Kurzyp et al. have shown that due to NEA of H-terminated ND surfaces, irradiation of ND-H in water with

low energy X-rays results in emission of an electron which produces OH• as a result of radiolysis of water

molecules.[9] Production of OH• may also be induced by deep UV irradiation,[23] which could oxidize

the diamond surface resulting in aging of the material involving a mechanism that is analogous to a suc-

cessive borane and Fenton treatment of detonation nano diamond surface. Under acidic or basic pH

conditions, oxidation of diamonds changes the interactions of the diamond surface with its environ-

ment. This would therefore, make it challenging to use ND-H for photocatalytic applications in basic

conditions. An alternative would be to use ND-OH in acidic pH conditions as the formation of oxonium

ions may potentially enhance electron emission from diamonds as well as stabilize the electron cloud

close to the diamond surface which could be beneficial for catalytic applications. At the same time, it

would be useful to find a means to enable visible light absorption in the material as explained in Chap-

ters 3 and 4. Additionally, for efficient photocatalysis with diamonds, hybrid materials with transition

metals and metal oxides could be explored, as will be discussed in the next section.

5.3. Investigation of transition metal coated diamonds at the

solid-liquid interface

5.3.1. Introduction

The study of surface interactions of diamond materials in water revealed a possibility of eventual oxida-

tion of the diamond surfaces under long exposure to UV radiation in water. This could affect its capa-

bility of solvated electron generation for catalyzing CO2 reduction under long-term irradiation. Further-

more, the energetically uphill process of CO2 reduction calls for more efficient photocatalysts to drive the

reaction. Copper has been demonstrated to be the most promising element to catalyze CO2 reduction

into hydrocarbons by the group of Hori.[24] Since then investigations in the electrocatalytic reduction

of CO2 on Cu based catalysts have followed[25–32]. Moreover, since CuOx based catalysts have a suit-

able band gap in the visible light region,[33] this idea was further extended to the area of photocatalysis

and photoelectrocatalysis which triggered numerous studies on Cu and CuOx nanostructures as cat-

alysts for enhancing the activity and selectivity of several semiconductors including those with wide

band-gap.[34–38] However, the lack of long-term stability of copper containing catalysts has resulted
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in extensive research on hybrid catalyst materials combining CuOx and Cu with stable photocatalysts

which typically tend to have a wider band gap.[39–41] Hybrid structures not only enhance the stabil-

ity of the catalyst but also the ability of the material to use a significantly large part of the available

solar spectrum thus boosting its catalytic performance. Diamonds which are robust and chemically

stable, wide band gap semiconductor materials with demonstrated activity towards CO2 reduction un-

der UV irradiation,[42] were therefore decorated with CuNP on the surface with the goal of studying the

enhancement in their photocatalytic activity. CuNP/ND were synthesized within the framework of the

DIACAT Project by collaborators at Universität Würzburg according to a well-established method pre-

viously reported by Turcheniuk et al.[43] This method involves adsorption of copper (II) acetate on the

surface of the nanodiamonds followed by subsequent reduction yielding metallic Cu nanoparticles.

Experimental[44] and theoretical studies[25, 45] on copper surfaces have helped to propose reaction

mechanisms for the electrocatalytic CO2 reduction. However, the role of copper oxides in this reaction

could only be elucidated using soft X-ray absorption spectroscopy. This is because XAS is an element-

selective technique and is a local probe for the density of unoccupied states in a material that is largely

influenced by the morphology of the material and chemical state of the sample. In particular, operando

XAS at the K edge of Cu was shown to provide essential structural information obtained from EXAFS and

chemical state information obtained from XANES that can be used to determine the oxide content of

the CuOx catalyst and can be correlated to its catalytic activity.[46] However, it is the Cu L edge that has

been shown to be more sensitive to changes in oxidation state of Cu and hence can be used as a direct

unambiguous probe to monitor oxidation changes during an electrochemical process.[47–49] In par-

ticular the shape of the Lኽ edge is shown to be very sensitive to the chemical state of the Cu atom.[47]

Recently, Velasco-Velez et al. probed the nature of electrodeposited of CuOx[48] as well as demon-

strated in-situ XAS at the Cu L edge to be sensitive to the changes in oxidation state at different stages of

the CO2 electroreduction.[49] Therefore by using XAS at the Cu L edge, we firstly intend to determine the

chemical state of the Cu NP on the surface of the NDs in water. Moreover, by monitoring the changes in

the oxidation state of Cu during electrochemistry, we would also like to specifically illuminate the role

of B-doped nanodiamond in the diamond-electrodeposited CuOx hybrid catalyst by performing in-situ

XAS at the Cu L edge under applied potentials.

5.3.2. X-ray absorption spectroscopy of metal-coated nanodiamonds in water

In this section we present a soft X-ray absorption study to characterize the electronic structure of the

nanoparticles in water as a first step towards understanding the properties of the material that could



5.3. Investigation of transition metal coated diamonds at the solid-liquid interface

5

103

potentially shed light on its photocatalytic activity. To this aim, a colloidal solution of CuNP/ND was

dropcasted on a Si (100) substrate as well as on a Si3N4 membrane to investigate the Cu L edge of the

material in vacuum and directly in water, respectively using Partial Fluorescence Yield (PFY) mode, as

mentioned in Chapter 2. The recorded spectra were compared to a reference spectrum for Cu foil, which

is presented in Figure 5.12.

Figure 5.12: Cu L edge PFY-XA spectra of CuNP/NDs. The CuNP/NDswere studied both under vacuum (in red) and in water (in

blue) to observe changes in the electronic structure at the solid-water interface. Pure Cu foil (in yellow) was used as a

reference for metallic copper.

The Cu L edge spectra for CuNP/ND in vacuum and water are compared to that of a Cu foil reference

in Figure 5.12. As is evident from the comparison in the figure, the composite nanoparticles exhibit a

different oxidation state of Cu as compared to the Cu foil reference. The Cu foil reference which is known

to be composed of pure metallic copper exhibits an oxidation state of Cuኺ. The Lኽ edge is observed in

this case at 933.5 eV and the Lኼ at around 953.3 eV, although the intensity of the latter is significantly

reduced and can barely be distinguished from the noise level. The Cu NPs in the composite material

however, exhibit Cuኼዄ oxidation state as is evident from the spectra, where sharp resonances are ob-

served at Lኽ and Lኼ that are shifted to lower energies by about 2.5 eV and now appear at 931 eV and

950.8 eV respectively. The difference of 19.8 eV between the Lኽ and Lኼ resonances in the spectra is in

close agreement with the spin-orbit splitting of 19.9 eV determined by XPS investigations reported pre-
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viously in literature. In addition to Cuኼዄ a small amount of Cuዄ is also present in the CuNP/ND as is

evident from the small Lኽ peak around 933.5 eV and a bump in the Lኼ region at 953.3 eV when the mea-

surements are conducted in vaccuum. This Cuዄ eventually gets oxidized in aqueous environment to

Cuኼዄ when measurements are conducted in water. Figure 5.13 illustrates what happens at the surface

of the CuNP/ND that could explain our experimental observations.

Figure 5.13: Graphical illustration of oxidation of metallic Cu NPs in air. In the presence of moisture, oxygen and carbon

dioxide in air the Cu NPs are covered with an oxide layer which comprises of CuO (blue layer) and Cu2O (red layer).

Subsequent dispersion in water results in adsorption of water molecules as well as other oxygen containing species such as

hydroxyl groups and carbonates

The reduction of copper (II) acetate salts on the surface of the nanodiamonds results in the formation

of metallic Cu nanoparticles on the surface of the as-prepared CuNP/ND sample. Here the copper is

in 0 oxidation state with a 3dኻኺ4sኻ configuration, containing completely filled 3d states. Copper which

is susceptible to oxidation in air even at room temperature forms a duplex type oxide layer with a CuO

layer that is in direct contact with the atmosphere on the outside and a Cu2O layer at the interface to

the Cu metal as depicted in Figure 5.13. The presence of this double layer structure is evidenced in the

X-ray absorption structure shown in Figure 5.12. Subsequent dispersion of theCuNP/ND in water could

result in the adsorption of water as well as other oxygen containing molecules on the surface as shown

in Figure 5.13. For the XAS measurements, a thin film of the sample was drop casted on a Si substrate

from this liquid dispersion. Exposure to vacuum could result in the removal of some loosely adsorbed

molecules from the Cu surface without essentially changing the chemical state of the surface. Therefore,

the sample measured in vacuum exhibits sharp resonances at the Lኽ and Lኼ edges corresponding to

transitions from2p to unoccupied3d levels in CuO and rather weak resonances arising from transition to

empty 4s levels in Cu2O. Such sharp resonances, also known as white lines are typically not observed for

metallic copper due to its filled 3d states. Interestingly, the formation of CuO layer on the nanoparticle

is further responsible for aging of the nanoparticle by modifying the surface properties of the same.
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In presence of CO2 in the atmosphere, hydroxyl groups attached to the surface of the oxide layer facilitate

the formation of bicarbonates on the surface upon CO2 adsorption. In water, the probability of water

molecules interacting with the oxide surface is much higher due to the higher water to CO2 molar ratio.

The co-adsorbed water layer on the oxide surface facilitates formation of surface carbonates along with

protonated hydroxyl groups on the surface. Additionally, in water the Cu2O layer also gets oxidized to

Cuኼዄ due to larger specific surface area and much higher surface energy of the nanoparticles. Moreover,

since the Cu L edge lies above the O K edge, oxidation of the Cu NPs on the diamond surface due to X-

ray induced OH• formation as a result of non-resonant ionization of the water molecules also cannot be

completely excluded. This could essentially explain the higher density of the Cuኼዄ states in water. In the

following section we shall compare these results with the experimental observations on nanodiamonds

electrochemically coated with Cu2O.

5.3.3. In-situ electrochemical investigations on Cu2O coated Nanodiamonds

Cuprous oxide decorated boron doped nanodiamonds (Cu2O-B-ND) were investigated as photoelec-

trodes at the University of Oxford for its performance towards CO2 reduction. The enhanced photo-

electrocatalytic performance in comparison to bare diamond electrodes motivated the in-situ electro-

chemical investigations using soft X-ray absorption spectroscopy. Such a study was aimed at directly

observing the changes in the oxidation states of copper during the electrochemical process under differ-

ent bias conditions. Due to larger surface area of nanostructures, boron-doped nanodiamonds (B-ND)

were chosen as the material for the working electrode on which Cu2O was to be electrodeposited. Ad-

ditionally, the results of the in-situ electrochemical investigations further made possible to understand

the role of nanodiamonds in the promoted catalyst material.

B-ND synthesized by collaborators at Universität Würzburg was used in these in-situ investigations. The

colloidal solution of B-ND was drop casted on a Au coated Si3N4 membrane to form a thin film working

electrode. A Pt wire was used as the counter electrode while Ag/AgCl was the reference electrode. Cu2O

was electrodeposited on the B-ND film from a CuSO4 electrolyte prepared using a procedure identical

to that used in Oxford.[38] The electrodeposition was done at a constant current of 6.6 mA for 60s. Dur-

ing the subsequent electrochemical measurements, a KHCO3 electrolyte solution with pH 12 was used

which was first purged with N2 gas and then subsequently saturated with CO2 gas before introducing

into the flow cell. All measurements presented here were conducted in the CO2 saturated electrolyte.

X-ray absorption spectra were recorded under three different conditions, without bias, with -1.2 V bias

vs Ag/AgCl and +0.5V vs Ag/AgCl. The resultant spectra are presented in Figure 4 which have been com-
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pared to the spectra presented in Figure 5 that was obtained from bare electrodeposited Cu2O elec-

trodes without B-ND.

Figure 5.14: Cu L edge in-situ PFY-XA spectra for Cu2O deposited on a Si3N4 membrane coated with a film of B-ND. The

spectra were recorded without bias, at -0.5 V vs Ag/AgCl and +1.2V vs Ag/AgCl. Upon electrodeposition CuOx is present in a

+1 oxidation state.

In Figure 5.14 the Cu L edge PFY-XA spectra have been presented for Cu2O deposited on B-ND film. The

first series of spectra were recorded without a bias and summed up to result in the spectrum represented

in pink. The Lኽ edge is evident as a sharp rising edge at 933.5 eV with a weaker feature appearing at 936

eV. A smaller rising edge is observed at ca. 951.5 eV which is the Lኼ edge. Subsequent spectra were

recorded first at a reduction potential of -1.2V vs Ag/AgCl where the reduction of CO2 is expected to take

place and thereafter at an oxidation potential of +0.5V vs Ag/AgCl to observe the oxidation of Cu and

consequently its deactivation. At -1.2V bias the spectrum looks identical to that recorded without bias.

Applying positive potential between the working and counter electrode results in the oxidation of Cu(I)

to Cu(II) state which is irreversible. This is evidenced from the two sharp peaks, that are observed at

the Lኽ and Lኼ edges at 930.5 and ca. 948.5 eV respectively. Furthermore, these peaks are also shifted by

3 eV towards lower energies compared to Cu(I) state. Interestingly a complete oxidation does not take

place instantly upon applying +0.5V bias. Instead the first spectrum recorded after the bias, presented in

blue in Figure 5.14, exhibits a co-existence of both Cu(I) and Cu(II) states, with the density of Cu(II) states
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being relatively lower than Cu(I).

According to literature reports on the mechanism of CO2 reduction, it has been proposed that Cu2O is

reduced to metallic copper which is the active species for the catalysis. In such a case one would expect

to see a Cu(0) spectrum with Lኽ and Lኼ edge positions roughly similar to the Cu(I) spectrum but with

different satellite structures.[32] However, in our case such a difference is hard to observe in order to be

able to draw any specific conclusions about the mechanism. This is primarily because of the following

experimental limitations. Firstly, despite saturating the solution with CO2 there could be diffusion limi-

tations to the working electrode since in the flow cell, we are operating in the microfluidic regime, with

a laminar flow of the electrolyte in a micron sized channel.[50] Secondly, the uptake of CO2 in aqueous

electrolytes is much lesser in comparison to ionic liquids as already investigated in Oxford. Since all

measurements presented here have been performed in CO2 saturated electrolyte, this would imply that

despite bubbling CO2 through the electrolyte solution for more than 30 minutes, the concentration in

the solution is very little. Finally, the PFY-XA spectra as shown in Figure 5.14 and also later in Figure 5.15

have a relatively low signal/noise ratio despite long measurements. This makes it difficult to distinguish

and resolve the Cu(I) from that of Cu(0).

To better understand the role of B-ND in the catalytic activity of the Cu2O promoted electrode, the elec-

tronic structure at the Cu L edge was measured without the ND film under similar bias conditions as

with the ND film. The corresponding spectra are shown in Figure. 5.15.

As is evident from the spectrum recorded without an applied bias (in pink) shown in Figure 5.15, the

electrodeposited film contains copper in a +1 oxidation state with characteristic Lኽ and Lኼ edges at ca.

933 eV and 951.5 eV respectively. A weaker Lኽ feature also seems to appear at ca. 936 eV. This helps

to confirm the electrodeposition of Cu2O on the Au coated Si3N4 membrane. In the subsequent cases

when reductive and oxidative potentials are applied, significant changes are observed which are differ-

ent from the case when Cu2O is deposited on a film of B-ND deposited on the membrane. At -1.2V bias

vs Ag/AgCl the Lኽ and Lኼ edges appear at similar positions with the maximum of Lኽ appearing to be

shifted to lower energy by less than 0.5 eV. Additionally, it can be seen from the figure that the weak Lኽ

feature is also not very prominent in the spectrum. This differing satellite structure in the spectra may

suggest the evidence of a possible reduction of Cu(I) to Cu(0) for the CO2 reduction reaction which was

not very apparent in the Cu2O promoted B-ND electrode. However, the noisy character of the signals

still make it difficult to draw further concrete conclusions about the mechanism. Applying +0.5V bias

leads to dramatic changes in the spectrum. As it can be seen from the blue and green spectra in Figure

5.15, Cu(0) decreases in intensity and a sharp Lኽ peak appears at ca. 930 eV alongside a peak at Lኼ at ca.
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Figure 5.15: In-situ XAS at the Cu L edge of Cu2O deposited on a Au coated Si3N4 membrane. The deposited CuOx shows a +1

oxidation state as is evident from the spectrum recorded without bias (pink).

948.5 eV. This appearance of two sharp peaks at Lኽ and Lኼ edges is characteristic of Cu(II). Hence, it may

be concluded that on applying +0.5V bias vs Ag/AgCl the Cu species gets immediately partially oxidized

to Cu(II). Subsequently a complete oxidation is evident from the disappearance of Cu(0).

The notable difference between the bare Cu2O electrode and the Cu2O promoted B-ND electrode appear

both at -1.2V and +0.5V bias. Although in both cases the Cu species get eventually oxidized to Cu(II) at

positive bias potentials which deactivates the catalyst, the first scan already tells us that this oxidation

happens at a somewhat slower rate in the presence of B-ND, considering that one PFY-XAS scan takes

around ca. 60 minutes to record. In order to explain these observations, we use the band structure of

the components of the electrode shown in Figure 5.16 as a guide to understand the possible charge

transport pathways that may influence the subsequent oxidation of Cu and therefore its deactivation as

the catalytic species.

In Figure 5.16 the conduction and valence band edges (CBE and VBE) of H-terminated boron doped

diamonds (H-BDD), Cu2O and CuO have been represented in addition to the Fermi level of the Au layer

on the membrane.[51, 52] The scheme shows that the VBE of Cu2O and CuO lie ca. 1.4 eV and 1.1 eV

below that of the diamond. The CBE of Cu2O and CuO lie well below the CBM of diamond as well as the
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EF of Au. From Figure 5.16, it is further evident that the redox levels for the two CO2 reduction reactions

of interest lie above the CBM of CuO but below that of diamond and Cu2O.

Figure 5.16: Illustration of the band structure of the components of the working electrode. Cu2O is electrodeposited on

H-BDD and undergoes subsequent oxidation to CuO which is deactivated by a carbonate adsorption in the electrolyte. Au

layer forms the electrical connection between the working electrode and Pt counter electrode. The energy scale represents

absolute energy values relative to vacuum level. Redox levels of two likely CO2 reduction reactions are represented in the

illustration.

Starting with an electrode system combining two p-type semiconductors, diamond and Cu2O, it is ex-

pected that the Fermi levels of these two materials would lie below the redox levels of the species in

solution. For simplicity, we consider this to be the redox level of the CO2 reactions that are of inter-

est to us. In order to maintain equilibrium, therefore, electrons would have to be transferred from the

solution to the semiconductor material which would result in an upward band bending at the Cu2O-

electrolyte interface.[53] Application of a negative potential results in further depletion of holes from

the material and accumulation of more electrons at the interface which can participate in catalyzing

the CO2 reduction reaction when the CO2 molecule is adsorbed on to the catalyst surface.[53] When,

however, a positive potential is applied, holes which are the majority charge carriers in the p-type Cu2O

tend to accumulate at the interface[53] thereby oxidizing the Cu(I) to Cu(II) species. In the presence of

BDD or B-ND as a support material,as in our case, the higher position of the VBM relative to that of Cu2O

plays an important role. Electrons from the B-ND VBM can travel to the Cu2O thereby filling the accumu-



5

110 5. Understanding Diamonds in Water

lated holes and facilitating charge separation at the interface. This slows down the oxidation process

and the consequent deactivation of Cu2O by formation of carbonates on the surface as described in

the previous section. Therefore, it could be said that the hybrid electrode material B-ND/Cu2O exhibits

a synergistic effect, whereby B-ND provides a support and stability to the Cu2O and the latter enhances

the catalytic activity of the material due to its high reactivity towards CO2 reduction reactions.

5.4. Conclusions

In conclusion, we have presented three preliminary studies in this chapter to understand the behaviour

of diamonds in water. Specifically, XAS was conducted at the C K edge of B, N and P doped diamonds

to elucidate the role of adsorbates on the electron yield from diamond surfaces. Our experiments have

demonstrated photon-induced sub band gap electron emission in n-type diamonds doped with N and

P due to the introduction of delocalized donor states close to the CBM of diamonds. These results

are also in agreement with our observations presented in Chapter 3, where the XAS measurements

were conducted without prior annealing of the samples. Having clarified the role of adsorbate layer

on the surface of diamonds in vacuum, we were also able to throw light on the surface interaction of

OH-terminated diamonds under different pH conditions in humid air environment.

From the FTIR results, we could hypothesize a possible oxonium ion formation in an acidic environment

on the ND-OH surface prepared by borane reduction. This behaviour changes in the basic environment

where the OH groups are likely to get deprotonated leaving electron rich negatively charged oxygen on

the surface. Our results further hint towards a possible oxidation of ND-H that is likely to occur when

diamonds are exposed to UV radiation in water. This could essentially raise the electron emission barrier

for photocatalysis in solution. It could be therefore, hypothesized that ND-OH surfaces in acidic solution

would be a better solution to enable electron emission for photocatalytic CO2 reduction, in addition to

enabling visible light absorption in the material. However, further investigations would be necessary to

confirm this hypothesis.

In the final study of diamonds in water, we were able to propose the role of B-ND as a potentially good

support material for Cu2O catalyst, which slows down the deactivation of Cu thereby enhancing the sta-

bility of the hybrid catalyst which could result in enhanced photocatalytic performance of the material.

Our results demonstrate only a proof-of-concept measurement to study the diamond-water interface,

calling for further investigations in order to develop a better diamond-based photocatalyst for CO2 re-

duction.
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6
Summary and Future Outlook

6.1. Conclusion

Diamonds are wide band gap semiconductors having a band gap of 5.4 eV. When the surface is H-

terminated, the material has a negative electron affinity, enabling the direct emission of electrons in

water. This unique property of diamonds makes it promising for photocatalysis. However, photoac-

tivation of diamonds require deep UV irradiation making the process extremely challenging and also

inefficient with solar spectrum. The primary objective of this research was therefore to generate physi-

cal insights into efficient photoactivation of synthetic diamonds at the diamond-water interface in order

to develop an abundant, low cost and sustainable photocatalyst for CO2 reduction. To this aim, the re-

search was conducted in two parts to answer two broad research questions, the results of which are

summarized below.

How to enable visible light absorption in diamonds?

To make the photoactivation of diamonds more efficient, the material should be able to absorb the visi-

ble part of the available solar spectrum. Therefore, the first part of this research concerns understanding

the electronic structure of diamonds in order to develop strategies to enable visible light absorption in

the material. Here, we have investigated two different approaches namely, doping and photosensitiza-

tion with visible light active dyes.

In the first approach, we investigated the electronic structure of different diamond materials doped

with B, N and P, developed within the DIACAT consortium, using XAS at the C K edge. Such a study al-

lowed us to directly probe the new electronic states introduced by the dopant atoms within the band

gap of diamonds. Particularly, the study on B-doped diamonds revealed the possibility of tuning the

sub band-gap states in diamond by tuning the morphology. More specifically, our results showed that
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XAS is sensitive to acceptor states introduced close to VBM by B-doping. Furthermore, new acceptor

states were also found to be introduced close to the CBM in nanostructured B-doped diamonds such

as diamond foams and NDs. Based on our results we were able to propose a synergistic effect of nanos-

tructuration and B-doping as a strategy to enable defect-assisted transitions in diamonds. The electron

emission characteristics of diamond became more evident on further investigation of n-type diamonds

formed by N and P doping. Here, the C K edge XA spectrum revealed the possibility of photo-induced

sub-band gap electron emission from donor states close to the CBM. Furthermore, an increase in spኼ

states was also evidenced which is typically said to impart conductivity to the n-type diamonds. From

the study of doped diamonds, we can therefore conclude that while B-doping introduces sub-band gap

acceptor states close to both VBM and CBM, n-type doping with N and P helps to reduce the threshold

for electron emission. Therefore, in order to facilitate visible light photoactivation for solvated electron

generation, besides nanostructuration, co-doping with both p- and n-type dopant atoms may also be

a strategy worth exploring.

The second approach involves sensitizing diamond surfaces with Ru complexes, primarily Ru(bpy)3. The

role of Ru(bpy)3 on diamond NPs was meant to be twofold. On one hand the Ru complex could absorb

visible light and subsequently oxidize water. On the other hand, the photogenerated electrons avail-

able in the dye could potentially fill the photogenerated holes in the VB of diamonds. This would make

more electrons available in the diamonds, thereby increasing the efficiency of solvated electron gener-

ation. In our investigations of the electronic structure of Ru(bpy)3-ND, we were able to evidence elec-

tronic coupling between the dye molecule and diamonds. With the help of theoretical calculations, we

could also identify a difference in the transitions to the LUMO and LUMO+1 levels of the dye which was

linker-dependent. Particularly, in presence of a conjugated linker, the gap between LUMO and LUMO+1

orbitals was found to be lower. Our experimental results also evidenced the possibility of an additional

charge transfer state which was absent in case of the non-conjugated linker. A study of the valence band

showed that the HOMO of the dye lies above the VBM of NDs indicating that the dye can potentially act

as an electron donor to fill the photogenerated holes in the VB of diamond. The charge transfer mech-

anism and dynamics between the Ru dye and ND should be explored in the next step in order to further

corroborate the results obtained from electronic structure investigations.

How tomake diamonds viable for efficient CO2 photoreduction?

Solvated electrons are at the heart of diamond-based photocatalysis, that sets diamonds apart from

other catalysts explored so far for CO2 photoreduction. Apart from doping, electron emission of dia-

monds in water is also influenced by the surface chemistry of diamonds. Therefore, an understanding
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of the diamond-water interface formed the primary focus of the second part of the thesis. To begin with,

we clarified the role of adsorbates on electron emission from diamonds in vacuum. To this aim, XAS ex-

periments were conducted after annealing the different doped diamond samples and subsequently

after exposing them to air. A comparison of the electronic structures before and after air exposure re-

vealed enhanced sub-band gap electron emission from n-type diamonds doped with N and P due to the

presence of water and other oxygen containing adsorbates on the air exposed surfaces. Furthermore,

we also observed shifts of the excitonic peak in opposite directions in the B- and P-doped diamonds,

indicating possible band bending in the presence of water molecules and other oxygen containing ad-

sorbates on the surface of diamonds.

We also studied the influence of surface termination on the interactions at diamond-water interface.

Here, our primary focus was on hydrophilic OH-terminated ND surfaces which are likely to form when

H-terminated NDs are exposed to UV irradiation in water for a long time. With the help of FTIR investi-

gations, we were able to show different behaviour of the OH- groups under acidic and basic conditions,

which could help us understand the optimum conditions for enhanced electron emission from dia-

monds in water. In particular, we found out that borane reduction of detonation NDs could introduce

more OH groups on the surface in comparison to successive borane and Fenton treatments. The Fen-

ton treatment step after a borane reduction especially tends to oxidize the existing OH groups back to

carbonyls leaving a predominantly O-terminated surface that would essentially raise the electron emis-

sion barrier. Based on our results, we therefore hypothesized that, for predominantly OH-terminated

surfaces, as is the case after borane reduction, an oxonium ion is likely to be formed due to protonation

under acidic conditions. This could enhance electron emission from the diamond surface and poten-

tially stabilize this electron cloud at the diamond-water interface, like H-terminated diamonds. In basic

conditions, deprotonation of the OH-group leaves electron-rich negatively charged oxygen groups on

the surface which could potentially inhibit electron emission. Our results also hint towards a possible

mechanism of aging of the diamond surface upon prolonged exposure to UV irradiation in water which

is accelerated by the OH radicals. Thus, we may conclude that in order to enhance the efficiency of

solvated electron emission in water, OH-terminated surfaces in acidic solutions maybe a promising al-

ternative. The viability of this alternative needs to be investigated further in photocatalytic experiments.

Since the ultimate goal would be to develop an efficient diamond-based photocatalyst, formation of

hybrid catalytic materials with transition metals and their oxides are also worth exploring. Especially

CuOx have been proven to be very efficient photocatalysts for CO2 reduction but have demonstrated

very poor stabilities on their own. As a last strategy to make diamonds viable for efficient photocatalytic

CO2 reduction, they were co-promoted with Cu and Cu2O. The study of Cu on diamond NP revealed the
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existence of a duplex type oxide layer comprising of an inner Cu2O layer and an outer CuO layer in direct

contact with atmosphere and/or water. The diamond-Cu2O hybrid electrode was further studied with

in-situ XAS at the Cu L edge, which helped us monitor the change in Cu oxidation states with change in

potential. Since the hybrid material exhibited a more than twofold increase in efficiency, this study was

interesting to better understand the role of diamonds in this hybrid geometry. Our results on the bare

Cu2O electrode revealed that at positive potentials Cu2O gets irreversibly oxidized and subsequently de-

activated due to adsorption of carbonates and bicarbonates on the surface. This could be detrimental

for photocatalysis applications, since Cu2O acts as the catalytic center in the hybrid material. Compar-

ing with the diamond-Cu2O electrode configuration, our studies suggested that presence of a diamond

layer in this hybrid material provides a stable support. This is because diamond facilitates better charge

separation thereby preventing the accumulation of holes at the Cu2O-electrolyte interface and conse-

quently slowing down the oxidation process.

6.2. Future Outlook

The research on diamonds presented in this thesis provide fundamental insights into the properties of

diamonds and how they can be tuned to make the material suitable for efficient photocatalysis with

sunlight. The results summarized above lay the foundation but there is still a long way to go before dia-

monds can be established as efficient photocatalysts, in par with the existing and well known transition

metals and their oxides. For the way forward, some of the hypotheses formed, based on the conclusions

from our results, could motivate further research in this direction.

Study of n-type and co-doped diamonds

For doped diamonds, we were able to show in Chapter 3 that XAS is quite sensitive to the surface states

introduced by dopants and also to the morphology dependent changes in these states. In case of N-

doped diamonds, it is known that formation of nanocrystalline diamonds increases the spኼ content in

the material which makes the diamond highly conductive. We have already evidenced the spኼ induced

surface state in the XA spectrum of both N- and P-doped diamonds. Therefore, a morphology and size

dependent study can also be extended to the n-type diamonds for a deeper investigation of the effect

of nanostructuration on their electronic structures and consequently on electron emission characteris-

tics. In addition, we could also probe the electronic structure of co-doped diamonds with p- and n-type

dopants to understand the synergistic effects, if any. Furthermore, in Chapter 5, we also shed some

light on the role of adsorbates on electronic structure and electron emission characteristics of doped
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diamonds in vacuum. This study can be further deepened by conducting a study on the role of adsor-

bates in electron emission using near-ambient pressure PES. Combining the information on electronic

structure of these materials with laser based time-resolved studies could be helpful in establishing the

photoexcitation mechanism in p-type, n-type and co-doped diamonds.

Electronic structure and charge transfer mechanisms in dye sensitized diamonds

The study on electronic structure of transition-metal complex functionalized NDs in Chapter 4 suggested

the role of the dye as an electron donor to refill the photogenerated holes in the diamond. Time-

resolved laser spectroscopy based experiments could be useful in gaining further insights on this pro-

cess. For this purpose, the diamonds would need to be photoactivated using deep UV laser pulses in

order to generate holes in the VB. Alternatively, one could also consider doping the diamond with boron

which introduces holes in the valence band of diamonds, that could possibly be filled by photogener-

ated electrons upon visible light excitation of the dye. Furthermore, in order to observe the process,

as hypothesized, it may also be worthwhile to design the experiment in aqueous medium with a hole

scavenger that would prevent recombination of the charge carriers in the dye. While we have primarily

explored Ru(bpy)3 in Chapter 4, other visible light active dyes with appropriate band edge positions may

also be explored as potential electron donors to diamond in order to enhance the efficiency of solvated

electron emission in water.

Direct observation of charge transfer processes at the diamond-water interface

In addition to doping, the surface chemistry of diamonds also influence its electron emission character-

istics, as pointed out previously. Particularly Chakrapani et al. demonstrated surface transfer doping in

undoped H-terminated diamonds which impart a surface conductivity to the diamonds. They reported

an increase in conductivity under acidic conditions and a decrease thereof in basic pH. Our FTIR studies

on undoped OH-terminated diamond surfaces also point towards a possible electron emission from

the OH-terminated surfaces which is stabilized in acidic pH, similar to H-terminated surfaces. This hy-

pothesis is however based on an investigation of the surface interactions in water alone. To confirm

the same, further FTIR measurements would be necessary. Furthermore, these measurements can be

complemented by probing the carbon and oxygen core levels at the diamond-water interface using near

ambient pressure-PES. This is because surface transfer doping in diamonds in the presence of adsor-

bates on the surface is likely to cause band bending at the diamond-electrolyte interface which can be

probed by a surface sensitive core level spectroscopy technique such as PES. To be able to conduct near

ambient pressure PES measurements, we have therefore, developed a liquid nitrogen cooled sample
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holder to enable condensation of water vapour on diamond surfaces at near ambient pressures ranging

between 1-5 mbar. The first measurements were conducted on H, OH and F terminated B-doped PC di-

amond and undoped nanodiamond surfaces, the data for which can be found in Appendix A. From the

first data, we were able to evidence deposition of water layers by condensation of water vapour on the

diamond surfaces. By adjusting the experimental conditions to control the thickness of this water layer,

band structure at the diamond-water interface could be probed to directly evidence surface transfer

doping in diamonds.

To conclude, the path forward towards a possible commercial application of diamonds as photo(electro)catalysts

is still too long as there is an essentially big question that remains to be addressed. This concerns the

use of diamonds in a working device and subsequent quantification of the products formed from so-

lar conversion of CO2 to chemical fuels. Additionally, the economics of the process would also have

to be considered for diamonds to be at par with other well-known photo(electro)catalysts for artificial

photosynthesis.
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Appendix

A.1. Instrumentation
A.1.1. Beamlines
The schematics of the undulator beamlines U41-PEAXIS and U49-PGM1 are presented in Figures A.1
and A.2, respectively.

Figure A.1: Schematic of the U-41 beamline with two fixed end stations. The end station PEAXIS enables the study of solid
samples using XAS, RIXS and XPS, taken from [1].
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Figure A.2: Schematic of the U-49 PGM 1 beamline, taken from [2]. This beamline has no fixed end station.

A.1.2. Experimental Setups
The experimental end stations used in this work are shown in Figures A.3, A.4, A.5 and A.6. Figure A.7
also shows the construction of the electrochemical flow cell used for the in-situ electrochemical
measurements.

(a) (b)

Figure A.3: Picture of Lixedrom end station for X-ray absorption and RIXS measurements on solids as well as in liquids, taken
from [3].
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Figure A.4: Schematic of PEAXIS end station comprising of a load lock (in grey) to transfer samples to the measurement
chamber (in green), an electron analyzer for photoemission spectroscopy (in purple) and a RIXS detector with 5 m long

movable arm (in blue) for angle resolved RIXS measurements, taken from [4].

Figure A.5: Schematic of the end stations at IRIS beamline in BESSY II. ATR-FTIR spectroscopy measurements are conducted
using a Bruker 66/v spectrometer (in dark green), taken from [5].
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Figure A.6: Schematic of Sol3PES end station for near ambient pressure photoemission spectroscopy experiments at BESSY
II, taken from [6].

Figure A.7: Picture of the construction of the electrochemical flow cell developed by Schwanke et al., taken from [7]. Au
coated Si3N4 membrane acts as the working electrode and a Pt wire is used at the counter electrode. Ag/AgCl is used as the
reference electrode. The liquid is flown in the liquid chamber using a syringe pump to avoid overpressures at the membrane.

The O-rings ensure that the seal is well-sealed.

A.2. Procedure for background correction
Due to high carbon contamination at the mirrors in the beamline, the raw TEY-XA spectra usually has a
very strong background. This background can be corrected using the TEY-XA spectra at the C K edge
measured from the beamline, shown in Figure A.8. Since the photocurrent measured from the carbon
contamination at the beamline is usually higher than that measured from the sample, all TEY-XA
spectra from the sample are first scaled to the first peak appearing at 280.2 eV. The background
measured from the beamline is subsequently subtracted from the scaled spectrum of the sample in
order to remove any contribution from the carbon contamination of the beamline. This simple
background correction procedure functions well for TEY spectra measured in LiXedrom at U49-PGM1
beamline. However, since this method does not function for TEY measurements in PEAXIS, a different
protocol must be established in the future.
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Figure A.8: TEY-XA spectrum at C K edgemeasured at the U49/2-PGM1 and U41-PEAXIS beamlines for background correction.
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A.3. Experimental Data
A.3.1. Ru-functionalized NDs
Ru complexes were grafted on the ND surfaces using an extended tolane linker, in addition to the two
linker systems presented in Chapter 4. The structure of this surface functionalized ND and a
comparison of its TEY-XA spectrum at the C K edge is presented in Figure A.9.

(a) (b)

Figure A.9: (a)Structure of Ru(bpy)3 attached to ND with an extended tolane linker. (b) TEY-XA spectrum at C K edge of
Ru(bpy)3-ND showing the electronic structure of the extended tolane linker system compared with the short conjugated and

non-conjugated linker systems. The presence of extensive conjugation in the extended linker gives rise to an additional
charge transfer state similar to that observed for the conjugated linker system.
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A.3.2. FTIR Spectroscopy at the diamond-water interface
NDs-H were also measured in acidic pH, the spectra for which are shown in Figure A.10. The difference
spectra shown (in red and orange) show the presence of C=O groups which induce vibrations at ca.
1726 cmዅኻ. A broad shoulder is evidenced at ca. 1550 cmዅኻ which is attributed to a charge
accumulation layer within the hydrophobic gap on ND-H surfaces. Additionally, Figures A.11 and A.12
present the full range FTIR spectra for ND-OH B and ND-OH B+f in acidic and basic pH in presence of
D2O. These measurements were conducted with the aim of observing differences in the spectra
originating from diamond-water interactions. However, no significant changes could be observed
here, besides a shift in the OH-vibrational bands.

Figure A.10: Comparison of FTIR spectra of dry ND-H (dry sample) and after exposure ot humid air with low (in pink) and high
RH (in blue) under acidic pH conditions.
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(a)

(b)

Figure A.11: FTIR spectra of ND-OH Bwith D2O in acidic (a) and basic (b) pH environment.
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(a)

(b)

Figure A.12: FTIR spectra of ND-OH B+fwith D2O in acidic (a) and basic (b) pH environment.

A.3.3. Ambient-pressure PES on diamonds
The data for ambient pressure-PES measurements are presented in Figures A.13, A.14 and A.15 below.
The energy scale has not been calibrated in this data. Therefore some deviation in the binding energy
values for certain features in the spectrum is expected in comparison to those reported in literature.
From the data presented in Figures A.13, A.14 and A.15, a peak from water can already be observed in
the O 1s core level spectrum of the diamonds at ca. 530 eV, thereby confirming the condensation of
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water vapour on the diamond surface. Additional data on undoped ND surfaces with different surface
terminations are also presented in Figures A.16, A.17, and A.18. The shifts observed in the spectra are
not real but originate primarily from change in beamline harmonics and other beamline parameters.

(a)

(b)

Figure A.13: C 1s(a) and O 1s(b) core level PES spectra of OH-terminated B-doped PC diamonds. The spectra have been
recorded before cooling under UHV conditions and subsequently after cooling at near ambient pressures by introducing

water vapour in the interaction chamber.
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(a)

(b)

Figure A.14: C 1s(a) and O 1s(b) core level PES spectra of H-terminated B-doped PC diamonds. The spectra have been
recorded before cooling under UHV conditions and subsequently after cooling at near ambient pressures by introducing

water vapour in the interaction chamber.
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(a)

(b)

Figure A.15: C 1s(a) and O 1s(b) core level PES spectra of F-terminated B-doped PC diamonds. The spectra have been
recorded before cooling under UHV conditions and subsequently after cooling at near ambient pressures by introducing

water vapour in the interaction chamber.
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(a)

(b)

Figure A.16: C 1s(a) and O 1s(b) core level PES spectra of OH-terminated undoped nanodiamonds. The spectra have been
recorded before cooling under UHV conditions and subsequently after cooling at near ambient pressures by introducing

water vapour in the interaction chamber. These spectra have not been calibrated for the energy axis.
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(a)

(b)

Figure A.17: C 1s(a) and O 1s(b) core level PES spectra of H-terminated undoped nanodiamonds. The spectra have been
recorded before cooling under UHV conditions and subsequently after cooling at near ambient pressures by introducing

water vapour in the interaction chamber. These spectra have not been calibrated for the energy axis.
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(a)

(b)

Figure A.18: C 1s(a) and O 1s(b) core level PES spectra of F-terminated undoped nanodiamonds. The spectra have been
recorded before cooling under UHV conditions and subsequently after cooling at near ambient pressures by introducing

water vapour in the interaction chamber. These spectra have not been calibrated for the energy axis.
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