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Abstract

This thesis has two main aspects: (i) the investigation of the deep geo-electrical
structures of the Dead Sea basin (DSB) and (ii) the development of 3D inversion of
magnetotelluric (MT) data using massive parallel computers.

In total, 150 magnetotelluric stations were deployed along a main profile that extends
in E-W direction for ~ 110 km, crossing the southern part of the Dead Sea basin.
Some areal coverage was obtained with another set of stations which were recorded
along a shorter profile (~ 20 km), extending in N-S direction. The estimated transfer
functions are of high to acceptable data quality. Dimensionality and directionality
analyses of the measured data show that the MT stations can be subdivided in three
distinct segments. MT data from eastern and western segments are consistent with
2D assumptions and indicate a stable geo-electric strike direction of ~ N10°E. Data
from the central segment appear to be more affected by underlying 3D structures.

A series of 2D conductivity models were computed for the main profile, using differ-
ent combinations of data components and constrained inversion tests to analyse the
stability of the various conductivity structures. The preferred 2D model consists of
structures which can in general be well correlated with geological, tectonic and strati-
graphical information. In particular, the transition from sedimentary formations into
the crystalline basement is imaged clearly to the east and west of the Dead Sea basin.
The surface traces of the eastern and western boundary faults appear in the 2D con-
ductivity models as lateral conductivity contrasts from conductive structures in the
central part to resistive structures in the eastern and western segments of the profile.
The Al-Lisan salt intrusion appears as a resistive feature in the DSB. A very pro-
nounced and robust feature in the 2D models is a sub-vertical conductor beneath the
DSB which extends to depths of at least 70 km.

For a 3D interpretation of the MT data, a new parallel inversion scheme was de-
veloped in the framework of this thesis. Three-dimensional modelling of MT data
requires enormous computational resources because of the huge number of data and
model parameters. To overcome these difficulties the solution of the underlying dif-
ferential equation systems was parallelized for different periods and electrical current
system orientations (modes).

The computationally most expensive step is the linearized inversion scheme for 3D
inversion, because it makes explicit use of the sensitivity matrix J and cross products
in form of JJ?. The dimension of this matrix depends on the number of data points
and model parameters and can exceed billions of elements. Analysing the structure of
this matrix revealed that it can be decomposed into blocks containing the sensitivity
values corresponding to one period and one station. Distributing the computation
of the blocks among several processors reduces the computation time and also the
memory needed to save the sensitivity matrix. However, it is necessary to find a
best compromise between communication to exchange blocks between processors and
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computational performance when carrying out the cross products JJ7.
Three-dimensional inversion tests showed that the total run time can be reduced from
5 days using four processors to less than one day using 250 processors for a certain
data and model parameters. At the same time, the memory requirements were re-
duced from 6 GB to less than 20 MB per processor for a certain data and model
parameters.

The MT data collected in the Dead Sea area were inverted using the developed par-
allel 3D inversion scheme. The obtained 3D models show similarities and differences
when compared with the 2D inversion results. There is general agreement with the
conductivity structures obtained for the upper crust, i.e. the sedimentary sequences
at the rift shoulders and their transition to the basement. However, the N-S extension
of the Dead Sea brines, which is an obvious 3D feature, and underlying sedimentary
basin are reflected in the 3D model as very conductive structures. The image of the
Al-Lisan salt diapir appears more realistic in the 3D model as a confined resistive
structure embedded in the high conductivity signature of the Dead Sea basin.



Zusammenfassung

Die vorliegende Dissertation betrachtet zwei Themen: (i) die Untersuchung der tiefen
geoelektrischen Strukturen des Toten-Meer-Beckens (DSB) und (ii) die Parallelisie-
rung der 3D-Inversion magnetotellurischer (MT) Daten.

Insgesamt wurden 150 Magnetotellurik-Stationen entlang eines ~ 110km langen Haupt-
profils installiert, das in Ost-West-Richtung den stidlichen Teil des Toten-Meer-Beckens
iiberquert. Im Bereich des Beckens wurde eine raumliche Abdeckung durch zusatzliche
Stationen erlangt, die auf einem kiirzeren (~ 20 km) Nord-Siid-Profil vermessen wur-
den. Die berechneten Ubertragungsfunktionen besitzen eine annehmbare bis sehr gute
Qualitat. Dimensionalitats- und Streichrichtungsanalysen der Messdaten ermoglichen
eine Unterteilung der MT-Stationen in drei Bereiche: MT-Daten von den 6stlichen
und westlichen Hauptprofilabschnitten zeigen ein 2D-Verhalten und weisen eine sta-
bile geoelektrische Streichrichtung von ~ N10°E auf. Im mittleren Abschnitt scheinen
die Daten starker von darunter liegenden 3D Strukturen beeinflusst zu sein.

Fir das Hauptprofil wurde eine Vielzahl von 2D-Leitfahigkeitsmodellen berechnet.
Dabei wurden unterschiedliche Kombinationen von Datenkomponenten verwendet
und Inversionstests durchgefiihrt, um die Stabilitat der verschiedenen Leitfahigkeitss-
trukturen zu untersuchen. Das bevorzugte 2D-Modell besteht aus Strukturen, die
insgesamt gut mit geologischen, tektonischen und stratigraphischen Informationen
korreliert werden kionnen. Insbesondere der Ubergang von sedimentiren Formationen
zum kristallinen Basement kann ostlich und westlich des Toten-Meer-Beckens klar
abgebildet werden. Unterhalb ihrer Ausbisslinien erscheinen die Eastern und Wes-
tern Boundary Faults im 2D-Modell als laterale Leitfahigkeitskontraste zwischen ho-
hen Leitfahigkeiten im zentralen Bereich und deutlich geringeren Leitfahigkeiten im
ostlichen bzw. westlichen Abschnitt des Profils. Die Al-Lisan Salzintrusion zeigt sich
als schlecht leitfahige Struktur innerhalb des Toten-Meer-Beckens. Ein ausgepragtes
Merkmal der 2D-Modelle ist ein vertikaler Leiter unter dem Toten-Meer-Becken, der
sich bis in Tiefen von mindestens 70 km erstreckt.

Zur 3D-Interpretation magnetotellurischer Daten wurde im Rahmen dieser Arbeit
ein parallelisiertes Inversionsschema entwickelt. Dreidimensionale Modellierungen von
MT-Daten erfordern aufgrund der grofien Anzahl von Daten- und Modellparametern
betrachtliche Rechnerkapazitaten. Um diese zu reduzieren, wurde die Losung des zu-
grundeliegenden Systems von Differentialgleichungen tiber die einzelnen Perioden so-
wie die Richtungen (Moden) des elektrischen Stromsystems parallelisiert.

Der rechenaufwéndigste Abschnitt ist das linearisierte Inversionsschema der 3D - In-
version, da es expliziten Gebrauch der Sensitivitatsmatrix J und des Kreuzprodukts
der Form JJT macht. Die Dimensionalitit der Matrix hingt von der Anzahl von
Datenpunkten und Modellparametern ab und kann eine Milliarde Elemente “berstei-
gen. Eine Analyse der Matrixstruktur zeigte, dass sie in Blocke zerlegt werden kann,
die die Sensitivitdtswerte jeweils einer Periode einer Station enthalten. Eine Vertei-
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lung der Berechnung der einzelnen Blocke auf mehrere Prozessoren reduziert sowohl
die Rechenzeit als auch den Speicherbedarf zur Speicherung der Sensitivitatsmatrix.
Es ist jedoch erforderlich, einen guten Kompromiss zwischen dem Kommunikations-
aufwand beim Austausch der einzelnen Blocke zwischen den Prozessoren und der
Geschwindigkeit bei der Berechnung des Kreuzproduktes JJ? zu finden. Dreidimen-
sionale Inversionstests zeigten, dass die Gesamtlaufzeit von 5 Tagen bei Verwendung
von 4 Prozessoren auf weniger als einen Tag bei Verwendung von 250 Prozessoren
fiir eine bestimmte Daten und Modelparameters verringert werden kann. Gleichzeitig
konnte der Speicherbedarf von 6 GB auf 20 MB pro Prozessor reduziert werden.

Die MT-Daten aus dem Gebiet um das Tote Meer wurden mittels des parallelisierten
3D-Inversionsschemas invertiert. Im Vergleich mit den 2D-Inversionsergebnissen weist
das erhaltene 3D-Modell sowohl gute Ubereinstimmungen als auch deutliche Unter-
schiede auf. Eine allgemein gute Ubereinstimmung zeigt sich fiir die Leitfahigkeitss-
trukturen der oberen Kruste, d. h. die sedimentaren Abfolgen an den Riftschultern und
den Ubergang zum Basement. Die Nord-Siid-Ausdehnung der Toten-Meer-Solen - eine
offensichtliche 3D-Struktur - und das darunter liegende sedimentére Becken erschei-
nen im 3D-Modell als auflerst leitfahige Strukturen. Der Al-Lisan Salzdiapir scheint
im 3D-Modell durch eine raumlich begrenzte Struktur mit hohen Widerstéinden in-
nerhalb der leitfahigen Signatur des Toten-Meer-Beckens realistischer abgebildet zu
sein.
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Chapter 1

Introduction

The Dead Sea basin is one of the most peculiar places on the earth, as it is (i) the
deepest part on the earth (ii) it accommodates a lake with the saltiest brines. These
and other curiosities do not only attract people for touristic reason, but also many
geoscientists who want to understand the origin and evolution of the Dead Sea basin.
The Dead Sea basin (DSB) is located along the Dead Sea transform (DST), one of
the largest strike-slip faults on the earth. The DST separates the Arabian plate in
the east from the African and the Sinai plates to the west. Along its ~ 1000 km
length from the Red Sea extension in the south to the Taurus-Zagros continental col-
lision zone in the north, the DST formed during its 65 million years history several
compression and depression zones in form of pressure ridges and rhomb-grabens (pull
apart basins), respectively. Representative for the latter is the Dead Sea basin (DSB)
which is the largest along the DST and probably on the earth.

The approximately 150 km long Dead Sea basin, extends from the Wadi-Araba and
Jericho strike-slip faults that delimit the southeast and northwest borders of the basin,
respectively. The tectonic setting of the DSB is controlled by longitudinal strike-slip
and normal faults which are the most prominent tectonic elements controlling the
basin structure. Sedimentation in the DSB started in the early Miocene when up-
lifting which is associated with the DST and subsidence of the DSB occurred. The
successive anharmonic phases of subsidence and sedimentation cause the deep topo-
graphic trough of the DSB. This makes the floor of the Dead Sea brines the deepest
point on the earth. Magnetic, gravity and seismic measurements supported by ge-
ological studies inferred the thickness of the sedimentary basin fill to be ~ 10 km.
Moreover, these studies inferred the presence of several salt intrusions in the DSB in
form of diapirs.

Understanding the internal structure of the DSB and its tectonic history is a ma-
jor step towards understanding the geodynamic process that occur at plate tectonic
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boundaries. Therefore, several geophysical measurements and geological studies were
carried out over the years in the Dead Sea area. However, most of these studies were
confined to the western or eastern sides of the DSB due to the difficult political situ-
ation across the borders between Jordan to the east and Palestine and Israel to the
west. Recently, a series of multi-disciplinary multi-national projects started in the
middle east, in particular along the DST, gathering geo-scientists from the region and
outside to derive an integrated picture of the structures and evolution of the DST.
Most recently, the German Research Foundation (DFG) and German Research Cen-
tre for Geosciences (GFZ) founded DESIRE-project (Dead Sea Integrated Research)
focuses on the southern part of the DSB. Along a ~ 300 km E-W traverse crossing the
southern part of the DSB, several geophysical, geological and geo-dynamical studies
were carried out. The geophysical methods applied involve seismic and magnetotel-
luric, both of which are capable to image on a lithospheric scale, however, two different
physical properties are resolved: The elastic properties and the electric conductivity.
The magnetotelluric method uses the natural variations of the electric and magnetic
fields (EM) over a wide range of periods to map the distribution of the sub-surface
resistivity. These natural EM fields are generated in the Earth’s atmosphere mainly
by lightning and interaction between the solar wind and the ionosphere. For the
MT method, the horizontal components of the electric field and all three orthogonal
components of the magnetic field are measured at the earth’s surface. From these
measurements, the ratios of electric to magnetic field components (transfer functions)
can be determined to calculate the so-called impedance tensor which contains the in-
formation of the three-dimensional electrical resistivity distribution of the sub-surface.
The electrical resistivity of rocks varies from highly conductive (107> Qm for ore de-
posits) to highly resistive (10® Qm for crystallised igneous rocks).

The diffusion nature of the electromagnetic fields implies that long period fields prop-
agate deeper in the earth; this is the so-called skin effect. The dependency on period
means that transfer functions yield an apparent resistivity (p,) and phase (¢) but not
directly the “true” resistivity of the sub-surface. Like in any geophysical method,
however, we are interested to obtain the spatial distribution of the “true” physical
quantities of the sub-surface. Mapping from measured data to a “true” conductiv-
ity model requires an inversion. The opposite way to convert a “true” conductivity
model to data is called forward modelling or simulation. The forward modelling pro-
cess takes into account the physical properties of the conductivity model (resistivity
distribution, periods, etc) to simulate the spatial variations of the electromagnetic
field in and on the "model” earth. Whereas, the inversion process is a mathematical
formulation which aims to minimise the differences between the forward modelling
process (synthetic data) and the measured data to compute a conductivity model.
The inversion contains the forward modelling and both processes interact in an iter-
ative manner to obtain a conductivity model which can explain the measured data



within certain error bounds.

The conductivities model can be one dimensional (1D) in which the conductivity of
the earth varies only in the vertical direction (o(z)) or two dimensional (2D) in which
the conductivity varies only in the vertical direction and one horizontal direction (i.e
o(y,z)). In a three dimensional model (3D) which resembles the real word best,
the conductivity of the earth is allowed to vary in all three dimensions (o(z,y, 2)).
For 1D models there exist analytic solutions for the forward modelling problem and
even for solving the inverse problem. However, due to the geological complexity of
the sub-surface, analytic solutions to solve the forward modelling problem in 2D and
3D do not exist. Instead, numerical solutions are sought to approximate the spatial
variation of the electromagnetic fields. For numerical solutions, the sub-surface is
commonly subdivided into small cells (model parameters) and each cell is assigned to
a constant conductivity. Then, the spatial variations of the electromagnetic fields are
approximated by solving Maxwell’s equations which describe precisely the diffusion
and the attenuation of the electromagnetic field in the earth.

Solving the forward modelling problem numerically in 2D means models with several
thousands of parameters. However, the number of model parameters in a 3D model
may easily exceed several millions of cells and solving Maxwell’s equations for each of
these model parameters is impracticable on todays processors.

To overcome the difficulty in solving huge numerical problems that arise in modern
natural sciences, the concept of parallel computing was introduced in the 1960ies.
As the name suggests, parallel computing is based on distributing the computational
tasks on several computers, ensuring that each computer solves only one task. In this
case the run time required to solve a problem on only one computer could ideally
be reduced by a factor equal to the number of available computers. When using the
concept of parallel computing, both run-time and the memory needed to save various
parameters are reduced. The latter is very important, since solving the 3D forward
modeling and inverse problems require a huge amount of computer memory.

The geological complexity and the tectonic setting of the DSB and therefore the com-
plex DESIRE-MT data represent a big challenge for forward modelling and inversion.
This means a considerable effort and extreme care is necessary to interpret DESIRE-
MT data in 2D which is still the most common way as it is considerably faster than 3D
and can be run on a personal computer. However, a 2D interpretation of the MT data
which are influenced by a 3D effect can lead to a misinterpretation. Because of that,
the first challenge is to find a proper 2D conductivity model which can explain the 2D
nature of the data set. This is, however, not a straightforward task and requires first
data analysis to explain the 2D and 3D nature of the data set. Moreover, resolution
studies must be applied for the obtained 2D conductivity models to verify that the
data can be explained satisfactory. Comparing the obtained 2D conductivity model
with geological cross-sections, lithological columns and another geophysical models
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available along the DESIRE-MT profile, provides more confidence to the obtained 2D
conductivity model and can better explain the structures of the DSB.

The main challenge is to model the DESIRE-MT data in 3D. This is because the
available computer programs to solve the forward modelling and inverse problems in
3D are, to some extent, limited in their capability to deal with the huge number of
model parameters. The need of a huge number of model parameters to model the
DESIRE-MT data in 3D is based on facts that, i) the 3D features present in the
DSB have relative small scales (salt diapirs), which requires small cells sizes for exact
localisation, ii) the Dead Sea with its underlying basin (~ 150 km length, ~ 20 km
width and ~ 10 km depth) must be modelled, iii) regional conductivities structures
that are located in the vicinity of the study area (i.e. the Mediterranean Sea), must be
considered in the 3D model and iv) MT data with six complex transfer functions (four
impedance tensor and two vertical magnetic transfer functions) and 150 sites have to
be explained. Combining all these features in one model results in huge number of
model parameters. Even if the required memory is available to deal with such a huge
model, run time of several weeks are required to solve the 3D modelling problem.
These difficulties having to model the DESIRE-MT data in 3D guide me to adopt the
parallel computing concept. The parallel schemes I have developed in the framework
of my PhD-thesis show their efficiency in modelling MT data in 3D. Beside the run
time reduction that can be reached when applying the developed parallel schemes,
memory-efficient concepts are also considered in the 3D modelling. The application
of these two concepts to 3D modelling allows us to construct huge models for regional
and crustal studies in MT.



Chapter 2

Electromagnetic induction in the
earth

All electrical and electromagnetic (EM) methods aim to map the electric properties of
the subsurface from surface measurements. In contrast to the other EM methods, in
which an active source is used, the MT method uses the propagation and attenuation
of natural electromagnetic fields.

Understanding the processing and the interpretation techniques used later, requires
first a knowledge of the physical theories standing behind them. In general, the elec-
tromagnetic theory satisfies the description of the EM methods. This theory based on
Maxwell equations to depict the propagation and diffusion of electromagnetic waves
in free space as well in materials.

In the following sections, the basic concept of the MT method and the main formula-
tions of the induction problem will be discussed from physical point of view to end up
with equations used later in solving the forward modelling problem in two and three
dimensions (2D and 3D).

2.1 Basic equations of electromagnetic induction in
the earth

The propagation and attenuation of the electromagnetic (EM) fields is described el-
egantly and concisely by Maxwell’s equations. These equations describe the relation
between the time varying electric and magnetic fields. The first two Maxwell equations

5
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in their differential form are:

0B
oD

Here, E is the electric field (V/m), B is the magnetic flux density (Wb/m?), H is the
magnetic field (A/m), D is the electric displacement current (C/m?), and J is the
current density (A/m?).

Equation 2.1 represents Faraday’s law which indicates that the induced electric field
is equal to the time rate of change of the magnetic flux. The modified (after Maxwell)
Ampere’s law in eq. 2.2 relates the magnetic field with the electric current density
and the electric displacement current.

Two more Maxwell’s equations can be derived from eqs. 2.1 and 2.2 by taking the
divergence (V) of eq. 2.1) and using the vector identity (V -V x A = 0):

0B 0
—V-B=0 (2.3)

Equation 2.3 states that magnetic monopoles do not exist (Gauss’s law for mag-
netism). Similarly, by taking the divergence of eq. 2.2 we obtain:

V-VXH:%(V~D)+V~J:O
)

— V-J=-(V-D) (2.4)

Using the continuity equation, which states that the divergence of the current density
is equivalent to the rate of accumulation of charge density ¢, in eq. 2.4 follows that:

dq 0
J=—-—=——(V-D 2.
v-J 5 at(V ) (2.5)
thus,
V-D=g (2.6)

Equation 2.6 shows that the electric field is the result of the distribution of electric
charge (Gauss’s law for electricity).

Equations 2.1, 2.2, 2.3 and 2.6 represent the fundamental equations in electromag-
netism (Ward & Hohmann Gerald W., 1987). For linear, isotropic media of electric
conductivity o, magnetic permeability 4 and electric permittivity €, three further
relationships have been shown to hold:

B = uH
D = ¢E
J = oE
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Since the variations of the dielectric permittivity € and the magnetic permeability p for
most rocks are very small in comparison to the variations of the electric conductivity
o, we can use the free-space values for both p and € and set = g = 1.25566 x 1076
H/m, € = ¢ = 8.85 x 1072 F/m. Using eqs. 2.7, 2.8 and 2.9, Maxwell’s equations
can be rewritten as:

0B
VxE = ——= (2.10)
VxB = MoEaa—]?—l-,uOO'E (2.11)
V-E = ¢/e (2.12)
V-B = 0 (2.13)

To derive the induction equation in the Earth, the following assumptions must be
considered when applying the magnetotelluric technique:

1. The natural electromagnetic source field used in MT is generated by large-scale
ionospheric current systems. The origin of these current system is far away
from the Earth’s surface so that the electromagnetic field can be treated as
uniform, plane-polarized wave impinging on the Earth at near-vertical incidence
(Cagniard, 1953). For plane electromagnetic waves, the electric E and magnetic
B fields with amplitude Ey and Bg at origin and angular frequency w have the
mathematical form:

E = Ej " (2.14a)

H = H, “! (2.14Db)

2. The electric displacement field within the conductive Earth is quasi-static in MT.
Therefore, time-varying displacement currents are negligible compared with the
time-varying conduction currents. This means that eq. 2.11 takes the form:

V x B = pooE (2.15)

3. There is no charge accumulation within a layered earth. However, within a multi
dimensional earth, charges can only accumulate at conductivity gradients. This
phenomena is known as the galvanic effect (Weaver, 1994; Jiracek, 1990). The
physical meaning of this phenomena can be explained as follows: Taking the
divergence of eq. 2.9,

V- J=V-(6E)=0V-E+ (Vo)-E=0 (2.16)
combined with eq. 2.12 gives the expression:

q=—e(Vo)-E/o (2.17)
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Equation 2.17 states that a conductivity contrast between two adjacent media
with o9 and o7 causes accumulation of charges at the interface between them
to guarantee continuity of currents (Current conservation law). The galvanic
effect is visualized in Fig. 2.1.

Elotal Elo\al
Go Go
o ™
E, re S :
— " Gi1< O _ . O4 >GO

2 || ©&

Figure 2.1: Galvanic effect. Boundary charge accumulation of the surface of (a) a
resistive body embedded within conductive background (b) conductive body within
resistive background. In both cases, the charges produce secondary electric field E;.
Primary fields (E,) and secondary field (Eg) are superimposed and amplify (a) or
reduce (b) the total electric field (E;q;) (Jiracek, 1990).

Equations 2.10, 2.12 and 2.15 represent the basic equations of electromagnetic in-
duction in a source-free medium. The fields that satisfy them are time-dependent,
but they change sufficiently slowly that their spatial distribution behaves like a static
field. Therefore, these fields are called quasi-static fields.

From the preceding discussion it follows that for quasi-static fields the differential
equation satisfied by E is given by taking the curl (Vx) of eq. 2.10 and substituting
V x B from eq. 2.15, namely:

Vx(VxE) = —%(VXB)

OE

o (2.18)

= THoO -
Introducing the vector Laplacian operator:
V2 :=V(V:) -V x (Vx)

and substituting for V - E from eq. 2.16, we may rewrite eq. 2.18 in the alternative
form:

V’E = ,uoaaa—]f —V[(Vo) - E/0o] (2.19)
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Similarly, the corresponding differential equation satisfied by B can be derived by
taking the curl of eq. 2.15 and substituting from eq. 2.10:

Vx(VxB) = peo(VxE)
0B

Using the vector Laplacian operator and substituting for V - B from eq. 2.13 we

deduce that:

VB = MOU%_]? — (Vo) x (V x B)/0] (2.21)
Equations 2.19 and 2.21 take the form of diffusion equation in terms of time varying
electric and magnetic fields. Thus, the electromagnetic wave propagates diffusively
through the earth and dissipates exponentially (Weaver, 1994).
Considering assumption number 1 and using a plane wave with harmonic time depen-
dency term (e™!) we can evaluate the derivative of E with respect to the time in eq.
2.19 to give:

V?E = iwpgocE — V|[(Vo) - E/o] (2.22)
Similarly, eq. 2.21 gives:
V2B = iwpeoB — [(Vo) x (V x B) /0] (2.23)
Within a uniform conductor where Vo = 0, egs. 2.22 and 2.23 reduced to:

V’E = iwpeoE = k’E (2.24)
V’B = iwugoB = k’B (2.25)

where k = /iwpgo is the complex wave number. In non-conducting regions, i.e. air
layer, where o = 0, we get (Weaver, 1994):

V?E =0, VB =0

Resolving the square root in the definition of the complex wave number yields:

141

k= Viwpoo = Vi = 75 Vere = (1 iVwme /2 (220)

Equation 2.26 shows that the wave number has equal real and imaginary parts (Keller,
1988). The real part of eq. 2.26 is:

Re(k) = - (2.27)

where p = \/2/wpoo and known as a skin depth. The skin depth is usually used as a
criterion for the penetration of the electromagnetic wave. It describes in which depth
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the signal is reduced to 1/e of its original strength. For resistivity in 2m and period
in s, the skin depth is given in m as:

p = 5004/ pT (2.28)
The magnetotelluric impedance tensor (Z) describes the linear relationship between
the orthogonal components of the electric and magnetic fields, computed from the
ratio of the electric to the magnetic field components as:
E(w)
VA = 2.29
©) = 5 (229)
Using all possible horizontal components for both electric and magnetic fields, the
impedance can be written in a tensor from as:

()= 7)) 2

The complex impedance tensor in eq. 2.30 can be converted into apparent resistivity
and a phase, namely:

y E;|* 2
pi = 02T |2t = 0277, (2.31)
B;
oY = t _ 2.32
e Cm(Re(Zz'j)) (232)

where 1,j=x,y and presuming that the electric field is measured in mV/km and the
magnetic field in nT, i.e. (Cagniard, 1953; Keller, 1988; Weaver, 1994). Further prop-
erties of the complex impedance tensor Z are discussed in literature i.e. (Weckmann
et al. , 2003)

Another linear relationship of the electromagnetic fields is the relation between the
vertical magnetic component B, and the horizontal magnetic field components B, B,
which is written as:

B. =T..B, + T.,B, (2.33)

where T, and T, constitute the vertical magnetic transfer functions. They describe
to which extent the horizontal magnetic components are tipped into the vertical com-
ponents. 7., and T, are sometimes called “tipper”(Vozoff, 1972). An important
quantity derived from the vertical magnetic transfer functions is the induction vector:
Using Wiese-Convention (Wiese, 1962) the amplitude and the angle of the real part
of the induction vector are computed as:

amplitude \/Re(Tm)2 + Re(T,,)? (2.34)
angle arctan (%) (2.35)

The imaginary part is computed accordingly. In Wiese-convention the real induction
vectors tend to point away from the elongated conductors. Induction vectors are
usually used to identify lateral contrasts of the conductivity in the subsurface.
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2.2 Induction in a 2D earth

In 2D earth models, we assume that the conductivities of the earth vary in the vertical
and one horizontal directions (Fig. 2.2), and approach 1D distribution as y — 400

ligl o(z,y) = o(z). From now on, we will assume that conductivity varies in yz-
y—+oo

plane, and the x-axis coincides with the geo-electric strike direction, where V o = 0..
To analyse the behavior of a plane electromagnetic wave in a 2D earth, let a linearly
polarised electromagnetic wave, characterized by the wavenumber vector K, be inci-
dent on the model at any angle and azimuth relative to the earth surface (Fig. 2.2a).
The incident angle is left completely arbitrary (Cagniard, 1953).

c) E - polarization d) B - polarization

/1X /1X

z v ZV

Figure 2.2: Decomposition of a plane electromagnetic wave in 2D earth model. a)
incident wavenumber vector K and decomposition in k,, and £, in yz- and xz-plane,
respectively. b) The associated E and B fields and their components. Decomposition
of a polarised wave in two waves of ¢) E-polarisation and d) B-polarisation.

As a first step, we decompose the vector K in two parts in the xz and yz planes
(ky» and k) (Porstendorfer, 1975). Let us consider the wave associated with the
wavenumber vector k,,. To this vector belongs the magnetic field B and the elec-
tric field E. Furthermore, E and B can be decomposed into their components to the
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electric components E,, E; and the magnetic components B,, Bly, 0, where the prime
denotes that the y components of the electric and magnetic fields do not coincide with
the y-axis (Fig. 2.2b). The decomposition of the electromagnetic wave in a 2D Earth
results in a decoupling of Maxwell’s equations into two distinct modes. In the first
mode, the current system which is associated with electrical field components F, is
parallel to the strike direction. This mode is usually called transverse electric (TE)
or E-polarisation. The electric and magnetic field components associated with this
mode are then E,, B, and B, (Fig. 2.2c¢). In the second mode, the electrical cur-
rent associated with electrical field component £, flows perpendicular to the strike
direction. This mode is called transverse magnetic (TM) or B-polarisation and the
electromagnetic components coupled with this mode are B,, E, and E, (Fig. 2.2c).
Considering now the differential form of Maxwell’s equation (2.10, 2.11), remembering
that V,o = 0 and taking into account only the electromagnetic components that are
associated with each mode, Maxwell’s equations can be rewritten into two different
sets of equations:

E-polarization B-polarization
E (E,,0,0), B(0,B,, B,) E(0,E,, E,), B(B,,0,0)

0B 0B OF oF ‘
8yZ + (9_zy = oo E, (2.36a) ayZ + (?_zy = —iwB,

—[(Vy.0) XV, . xB/o] (2.37a)

—aaféx = —iwB, (2.36h) —a@Byx = 1o E. (2.37b)
aa%f = —iwB, (2.36c) aai”f = joo B, (2.37¢)

Taking the first derivatives of eqs. 2.36b and 2.36¢ with respect to y and z, respectively
and substituting in eq. 2.36a, results in the differential equation for F,:

O*E, O°E,
02 + 5.2 = woo By (2.38)

Similarly, taking the first derivatives of eqs. 2.37b and 2.37c with respect to y and z,
and substituting in eq. 2.37a, gives the differential equation for B,:

B,
V-pVB, = 2 0

( 0, 0B,
dy P y

)+£(P B

) = —iwpgo B, (2.39)
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Because of the decoupling of Maxwell’s equations in 2D, the impedance tensor pre-

(sz Zgy) (2.40)

Since B, and B, vanish for the E- and B-polarisations, respectively, the horizontal

sented in eq. 2.30 is reduced to:

impedance tensor transfer functions Z,, and Z,, also vanish.

2.3 Forward modeling of MT data

MT Forward modelling aims to solve Maxwell’s equations to simulate the spatial and
temporal distribution of electric and magnetic fields in the subsurface for a given con-
ductivity distribution and a range of periods/frequencies.

Several methods and approaches have been suggested over the last four decades to
solve Maxwell’s equations. For the one dimensional case (1D), there exist analytic
solutions to calculate the impedances at the boundaries between layers in a 1D lay-
ered earth model and consequently on the surface (Wait recursion formula, (Wait,
1954)). For certain two and three dimensional (2D and 3D) earth models, analytical
solutions have been found (Weaver, 1994; Porstendorfer, 1975). These solutions are
usually used to verify the accuracy of the numerical solutions.

Several numerical methods exist to solve the induction equations in 2D and 3D. The in-
tegral equation method were developed in the 1970ies (i.e. Weidelt, 1975; Wanamaker
et al, 1984, Zhdanov et al, 1997). The main concept of the integral equation approach
is to solve Maxwell’s equations only in sub regions of the model where anomalous (2D
or 3D) conductivities exist. To achieve that, the anomalous conductivity structures
are divided into rectangular cells (2D) or cubes (3D) while the surrounding struc-
tures are considered to be 1D. Considering only regions with anomalous conductivity
is possible by a surface (2D) or volume (3D) integration of Maxwell’s equations in
conjunction with Green’s theorems (Zhdanov et al, 1997). Consequently, the total
solution of the electromagnetic field is the sum of the normal field which relates to
the background conductivity structures and the anomalous fields originating from the
anomalous part. Since the numerical solution can be restricted to the anomalous do-
main, integral equation techniques are computational efficient (i.e. time and storage
capacity). The disadvantage of this approach is that a background structure around
the anomalous structure has to be fixed (usually a 1D structure).

The most popular and widely used methods to solve Maxwell’s equations are the
differential equation methods. In these methods the entire earth model (not only
the anomalous structures) is subdivided (discretized) into rectangular cells (2D) or
cubes (3D) and each cell/cube is assigned a constant conductivty value. For each of
these cells/cubes, Maxwell’s equations are solved. The main advantage of differential
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equation methods is their flexibility in constructing the earth model. A disadvantage
is the huge computational requirements caused by fine discretization of the model
and consequently having to solve an equation system with a huge number of linear
equations to get accurate results.

The solution of the second order partially differential equations (eqs. 2.22 and 2.23)
is done by applying either Finite differences (FD) or Finite element (FE) methods.
The latter is more flexible in terms of model design since the cells/cubes should not
have a rectangular shape which is a requirement for FD method. The FE method is
particularly useful if the earth model includes topography or bathymetry.

2.4 2D forward modelling with finite differences

Let us first define a domain €2 of two dimensional anomalous structures with the
boundaries I'y,I's, I's and I'; coinciding with the top, right, bottom and left sides
of €, respectively (Fig. 2.3). Let us consider also a Cartesian coordinate system
(X,Y and Z) in which Z, Y and X refer to down, east and north, respectively. The
solution of Maxwell’s equations for the domain §2 can be calculated by approximating
the partial differential equations on a staggered grid. In this case, the domain € is
discretized as a network of cells connecting each other. Each of these cells is assigned
a constant conductivity. In the 2D case, the conductivity distribution is defined in the
7Y plane, while the X7 plane coincides with the geoelectric strike direction in which
the conductivities remain constant (92 = 0, g—‘y’ # 0,92 #0). The model is discretized
ast=0,1,..., M lines in Y direction and 7 = 0,1, ..., N lines in Z direction. Thus, the
lines 0 and M in the horizontal direction correspond to the left and right boundaries
(I, I';) and lines 0 and N in the vertical direction correspond to the top and bottom
boundaries (I';, I's), respectively. The conductivity of each cell in the domain € is
denoted as 0.

Recalling the physical formulation of the induction problem in the previous section,
our problem is to find an accurate approximation for

0’E, O°E,

V-VE, = V’E, = R —iwo i By (2.41)

for the E-polarization mode, and for

0,6 0B, 0, 0B,

. = —_— —_— —_— = — ) 4
V- pVB, ay(p o )+ 8z(p o ) iwpoo By (2.42)

for the B-polarization mode with appropriate boundary conditions. The boundary
conditions for the 2D case are discussed in detail by Jones and Price (1969), Weaver
and Brewitt-Taylor (1977), and Weaver (1994). Weaver (1994) gives a comprehensive
description of the boundary conditions and describes their FD form. Here, just a
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b)
n

n z = Y

[e]

I

o
Aif

I
I I

-z I3 z I3

Figure 2.3: a) A simple two dimensional domain 2 consists of the air layer located in
the uppermost part of €2, the lower part represents the solid earth. b) The discretized
form of the domain €2

brief explanation is given. The boundary conditions at the interface between two
conductive media (Fig. 2.4) and also at the surface z = 0, are:

1. All components (normal and tangential) of the magnetic field (H) are continu-
ous,
0 - (peHy — pHy) =0, A x (uoHy — iy Hy) =0

2. The tangential components of the electric field (E) are continuous,
n x (Eg — E1> =0

3. The normal component of current density (j) must be continuous across con-
ductivity discontinuities and zero across z = 0,
n-(jo —ji1) =n-(02E; —01E;) =0

4. The first derivatives of the normal component of E are continuous.

The last condition implies that E, =0 inside the conductive earth at z = 0. There
are also conditions to be satisfied at the boundaries I';,I's, I's and I';. The most
basic condition which can be applied at these boundaries is that the boundaries must
be placed far enough from lateral discontinuities so that the fields can be considered
uniform in the horizontal directions (Jones and Price, 1970; Jones, 1973).

The solutions of eqs. 2.41 and (2.42) for E, and B,, respectively, must be found at
each node in the sub-region €; C 2. At the same time the internal and external
boundary conditions must be satisfied. The explanation below will cover the solution
of eq. 2.41 for E,. The same concept can be applied to solve eq. 2.42 for B,.

Let us consider a typical nodal point 4,7 located in the inner part of a rectangular,
but not necessarily uniform, gird (Fig. 2.5). Its neighboring nodes are i,j+1, i,j-1,
i-1,7 and i+1,7, which are located to the right, left, down and up from i,j, respectively.
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In x| |n x Hy|
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—_ s
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e = 01 W1
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2 c > H, Ol
3 t 7
m
= [nx H,|
In x E,|

Figure 2.4: Boundary conditions of electromagnetic field, at an interface between two
regions.

By integrating eq. 2.41 over the rectangular area A around 4,j we find F, at ,5. By
making use of Gauss’s theorem, we can convert the integral of the divergence (V-)
over an area to an integral of the gradient (V) along a line. Thus, the left hand side
of eq. 2.41 is rewritten as:

/v- VE,dA = /n VE,dL (2.43)
A L

where, 7 is the outward unit normal vector to the edges of the area A (green rectan-
gular in Fig. 2.5) and L is the line surrounding A (Roman numbers in Fig. 2.5).

From the boundary condition number 4 follows that the first derivatives of E, are con-
tinuous everywhere. Consequently, we can accurately approximate derivatives normal
to the line of integration in eq. 2.43 using centered first differences. For instance, let
us consider the right edge of A. This edge consists of two pieces (II and III in Fig.
2.5) of the line L. Thus, the gradient of the outward normal from this edge to the
right is approximated by:

dy 2 Ay
l

(2.44)

where, Eff and EI" are the E, values at the right node and at the node under consid-
eration (4,7), respectively. Adding the contribution from the four sides of A, the line
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Figure 2.5: a) A five points stencil scheme used in approximating b) the electric field
component EF using the right (E%), left (EL), upper (ET) and bottom (EZP) E,
values.
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integral in eq. 2.43 becomes:

/ﬁ VE,dL ~ (AZ’ ! +AZ@) B =By
! Ay,
(AZZ 1 +AZZ) ExL E
_|_
Ay] 1
(Ay] 1 —i—Ay]) EY — EF
+
Azz
Ay;-1 + Ay; — EF
Er : 2.45
+ ( 2 AZi_l ( )
The left hand side of eq. 2.41 is also integrated over the area A, with the result:
- /iwuoEx(y,z)a(y, 2)dA = —iwuoEf/U(y,z)dA (2.46)
A A

The surface integral over o(y, z) in eq. 2.46 is calculated by summing up the product
of conductivity at each cell around the node (i,j) with the cell dimensions. Thus, the
left hand side of eq. 2.46 takes the form:

— iquEf/cr(y, 2)dA = —iwuoEf[ai,jAziij + 01,071 Ay;
A
+ 0,18z Ay 1+ 051 1821 Ay; 1]
= —iwpeR(o, Az, Ay)EF (2.47)

where R(o, Az, Ay) is a function that depends on o and the cell dimension. Equating
eqs. 2.45 with 2.47 yields after rearrangements:

CYEL + CYER CYET + CJEP = CEr (2.48)
where
o - < i— z)
r 2Ay;
p Az + Az
i i— i
= ( 2Ay;4 )
ol ij 1+ Ay,
T 2AZZ 1
o Ay] 1+ Ay;
B 2Az;
C¥Y = —iwugR(o, Az, Ay).

Here, C%,C%,C¥ and C} are the coupling coefficients to the node (4,j) from right,
left, top and bottom nodes, respectively. C7 is the self coupling coefficient. This
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formulation of the FD equations does not include the error term (O(A)) which origi-
nates from the numerical formulation of the problem. This term depends mainly on
the gridding strategy used to discretize the region 2. The effect of the discretization
on the approximated solution is discussed and analysed in Smith (1996a).
Separating the know terms (cells dimensions and conductivities) from the desired un-
known terms (£, on all nodes) in eq. 2.48, the finite differences equations and the
boundary conditions can be formulated in matrix-vector notation as:

Ax=b (2.49)

where A is a complex non-Hermitian matrix containing the coupling coefficients, x is
the desired solution vector and b is a vector describing the boundary values.

Solving eq. 2.49 for x in the TE-mode yields the total electric field Ex on all nodes
located in €2. While in the TM-mode, the solution x corresponds to the total magnetic
field Bx. The auxiliary field components By ,B, in the TE-mode and E,,, E, in the
TM-mode are derived from the total field components in each mode by taking their
first derivatives in horizontal and vertical directions using eqs. 2.36b, 2.36¢, 2.37b
and 2.37c¢ (Weaver, 1994).

The equation system (2.49) is fundamental for solving the forward modelling and
inversion problems of MT, because the solution vector x is used in computing the
model responses and the sensitivity matrix for the inversion. Thus, considerable effort
must be taken into account when solving eq. 2.49. The equation system presented
in eq. 2.49 has many advantageous properties that can be used to accelerate the
numerical solution:

1. The matrix A is a complex non-Hermitian, sparse and banded matrix. The only
complex elements of the matrix are located on the main diagonal. In each row
of A there are 5 non-zero elements in the 2D case. To better understand the
structure of the matrix A, let us consider a simple example. The 2D model in
which we desire to approximate the Maxwell’s equations consists of nine model
parameters numbered from 1 to 9 (oy,- -+ ,09). In total, there are 16 nodes for
which the solution of eq. 2.49 for x must be computed (Fig. 2.6).

In this example the dimension of the matrix A is 16x16. The main diagonal
of A contains the central point coefficients C%,i = 1,--- ,16. The off diagonal
elements in each row correspond to the neighbouring nodes of the central node.
The location of each non-zero element in the matrix must coincide with its cor-
responding node in the model. For example, the right neighbour of the node
number 1 is node number 5, thus, the 5th column in the first row contains the
value of C},, etc.
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1 5 9 13
z

O1 (o 73 O;

2 6 10 14
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3 7 11 15
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2 8 12 16

Figure 2.6: The example 2D model contains 9 model parameters (oy, - - - , 0g) resulting

in 16 nodes for which the solution of equation 2.49 must to be computed. This example
model is used to explain the structure of the coupling coefficients matrix A.

cL ¢y 0o 0 CL 0 0 0 O 0 0 0 00 0 0
Cz Cc2C, 0 0 C2 0 0 0O 00 0 00 0 0
0 C3 ¢y Ccy 0 0 C¥ 0 0 0 0 0 00 0 O
0 0 CLCt 0 0 0 CLb 0 0 0 0 0O0 0 0
0 0 0 0 Ci3C, 0 0 C3 0 0 0 00 0 0
0 C¢ 0 0 CLCEC, 0 0 CLO 0O 0O0 0O O
0 0 0 0 0 0 0 0 0 0 0CK 00 Cl L

2. Since Maxwell’s equations must be approximated for a set of periods, eq. 2.49
must be solved for each period. It is worthwhile to note that only the complex
main diagonal elements (in particular the imaginary part) depends on a partic-
ular period. This means that the off-diagonal elements of A must be computed
only once and the main diagonal can be computed for every period separately.

3. A very important point in solving eq. 2.49 for a set of periods is to note that
the solution vector x for one particular period is independent from the solution
vector x of another period. However, in case of using an iterative solver to
solve eq. 2.49, it is possible to use the solution vector x for one period as a
starting value for the next period. This is due to the fact that the EM field
changes smoothly from one period to another (Egbert, 2006). Furthermore,
the solutions of eq. 2.49 for £, and B, in TE- and TM-mode, receptively, are
independent from each other.
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2.5 Forward modelling in 3D

The solution of the electromagnetic induction problem in three dimensions is not a
straightforward task when compared to the solution of the problem in two dimen-
sions. This is because the conductivity of the earth varies in three spatial directions
(o(x,y,z)). Furthermore, the 3D induction theory allows the source field to have
an arbitrary geometry. The source field geometry has a remarkable effect when the
earth model is very large, so that the assumption that the EM field is horizontal and
uniform is not valid anymore (Weaver, 1994). However, for simplicity, to solve the
3D induction problem we will assume that only the conductivity of the earth varies
in three directions and keep the source field horizontal and uniform.

The solution of Maxwell’s equations in 3D is best done numerically by either solving
the second order equation:

VXV xE=iwuocE —-V|[Vo)- -E/o] (2.50)
for E or solving:
V xV xB=iwuoB —[(Vo) x (V xB)/o] (2.51)

for B. In comparison to the solution of the induction problem in 2D, the solution of
eq. 2.50 or 2.51 is obtained in terms of a three components vector field (E,, E,, E, or
B,, By, B,) rather than one scalar component. Furthermore, eq. 2.50 for the electric
field (E) contains a term involving the conductivity gradient which does not appear
in 2D. Nevertheless, applying the finite differences (FD) technique to approximate eq.
2.50 or 2.51 in a 3D grid follows roughly the same concept as for 2D case. This means
that the earth model is first discretized in cubes (rather than cells as in 2D) and each
cube is assigned to a constant conductivity. Afterwards, an approximation of the EM
field is computed at each edge and face of the cubes rather than at the nodes of the
cells as in 2D.
In general there are two ways to define the numerical grid for the FD approximation.
In the first type of the 3D numerical grid, the three electric field components are
defined at the edges of the cubes while the three magnetic field components are
defined at the faces of cubes (Fig 2.7a). In this case a solution of eq. 2.50 for E
is sought and the secondary magnetic field is then derived from E using the first
Maxwell equation (eq. 2.1, Farady’s law). This specification of the EM field on
staggered grids were used by Yee (1966) for solving the boundary value problems
of Maxwell’s equations. Because of that, this kind of numerical grid is sometimes
called Yee-Grid. This type of the numerical grid was used later by Alumbaugh et al.
(1996), Newman & Alumbaugh (1997) for wideband electromagnetic 3D modelling
and by Siripunvaraporn et al. (2005); Egbert (2006) for 3D MT. In the second type of
the numerical grid, the magnetic field components are defined at the edges of the cubes
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and the secondary electric field components are defined at the faces of the cubes (Fig
2.7b). In this case, eq. 2.51 is solved for B and E is derived from the second Maxwell
equation (eq. 2.2, Ampere’s law). This type of 3D grid has been used by Mackie
et al. (1994) for 3D MT modelling and by Smith (1996b). A comparison between
these two types of numerical grids, concerning their numerical accuracy and speed in
solving the forward modeling problem in 3D MT, was discussed by Siripunvaraporn
et al. (2002).

Independently from the used numerical grid to solve either eq. 2.50 or 2.51 using

X X
Y Y
Ay Ay
z z
Ax E, e Ax By i B
EX I B BX I E
z Z
EV BV :
E, > Az B,
A
[ e o @iy
E, E, B, B, B, E,
/5. ! 3
EX BX

a) b)

Ey By

Figure 2.7: Two different definitions of the numerical grids used in the finite differences
method to sample a) the primary electric field components at the edges of the cube
and the secondary magnetic field components at the faces. b) The convention used
to sample the primary magnetic field components at the edges of the cube and the
secondary electric field components at the faces. Az, Ay and Az are the dimension
of the cube in x,y and z directions, respectively.

FD, we usually obtain a linear equation system:
Ax=Db (2.52)

which is similar to the equations system obtained in 2D. However, the dimension of
A, x and b are different. The complex, non-Hermitian and sparse matrix A contains
the value of the coupling coefficients between a central edge and its 12 neighbouring
edges. For example, the 12 thick-lined edges in fig. 2.8 are required to form the cor-
responding equation for E, at node (i,j,k). This means, the corresponding row in the
coefficients matrix A contains 13 non-zero elements (12 neighbouring edges plus the
central one). A similar procedure is used for other edges in the grid and other electric
field components. This results in a coefficients matrix, and hence an equations system,
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which has the dimension of N, (Ny,+1)(N,+1)+(Ny+1)N,(N,+1)+(Ny+1)(N,+1)N,,
where N,, N, and N, are the numbers of model parameters in x,y and z directions,
respectively. More details on how to represent the operators VxV xEor VxV xB
in a discrete form to compute the corresponding coupling coefficients in 3D and there-

fore constructing the matrix A are given i.e. in Weaver (1994), Alumbaugh et al.
(1996), Smith (1996a) and Mackie (1996).

X

Y
i,k

i+1,j,k

Lk ik E i1,

i-1,j,k

i,j,k+]

Figure 2.8: Small part of the staggered grid used to compute the electric field com-
ponents I, B, and E, at the edges of the cubes. This figure is used to emphasise
the dependency of the edges on each other to construct the coefficients matrix A. For
example, to form the equations needed to compute the electric field component E,
which associated with the node (i,j,k), the 12 electric field components locate at the
edges marked with thick lines are needed.

Solving eq. 2.52 for x results in the values of the three electric field components £, £,
and E, at all edges of the grid. Using Faryday’s law (eq. 2.84) the magnetic field
components are derived numerically from the electric field components.

The three components of the electric field are calculated for a current system which
flows in N-S (first mode) or in E-W (second mode) direction. To obtain the same
electric field components, however, for another orientation of the current system, we
can rotate the model by 90°, to construct the equations system (2.52) and solving it
again for x (Weaver, 1994). The need for the three electric field components using
from two orientations of the current system is based on the fact that the model re-
sponses in 3D MT are the full impedance tensor and the magnetic vertical transfer
functions. Thus, to construct the full impedance tensor we need two orientations of
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the current system, so that:

(zm zxy> _ (E; E> <B; B;f;) B (253
Zye Zy) E; E; B; Bi .
where the subscripts 1 and 2 denote the electric or magnetic component arising from
first and second modes, respectively.

The right hand side vector b in eq. 2.52 contains the values of the boundary condi-
tions. For 3D MT forward modelling the boundary values are those which correspond
to the northernmost, southernmost, easternmost, westernmost, surface and bottom
faces of the staggered grid. To satisfy the boundary conditions at these faces of the
3D grid, the conductivity reaches its 2D distribution (o (y, z) or o(z, 2)) at these faces
and its 1D distribution (o(z)) at the edges of these faces. In another words, to solve
the 3D MT forward modelling problem first we have to solve the problem in 1D and
then in 2D and assign the computed values to the corners or faces of the 3D grid,
respectively. For solving the 2D problem at the end faces of the 3D grid we have to
distinguish between solving the TE- or TM-modes problems depending on the cur-
rent system which flows in the 3D grid. For example, if the current system flows in
N-S direction then we have to solve the 2D TE-mode problem at the northernmost
and southernmost faces and TM-mode problem at the easternmost and westernmost
faces.

Apart from the complications that may arise from constructing the matrix A and
the vector b to form the equation system presented in eq. 2.52, we are interested to
observe the properties of eq. 2.52 to use them later for solving the 3D MT forward
modelling problem on massively parallel computers (section 3.3).

The equation system in 3D (eq. 2.52) has similar properties as the equation system in
2D (eq. 2.49), however, the dimensions differ in both equations. Furthermore, solving
eq. 2.49 in 2D for TE- or TM-modes is completely independent of each other. This
means that model responses in 2D are computed from electric and magnetic compo-
nents result from one mode without having to solve the problem in the other mode.
In the 3D case the situation is different: In order to compute the model responses the
electric and magnetic fields components result from two orientations of the current
system are required (eq. 2.53). However, it is important to note that this dependency
of the modes in 3D forward modelling is only required when computing the model
responses and not when computing the electric and magnetic components for each
mode. This means that the computation process to obtain the required electric and
magnetic components from each mode can be done in parallel. Furthermore, as in the
2D case, the solution of the eq. 2.52 is obtained for a set of periods, which can also
can be done in parallel, since the solution vector x for one period dose not depend on
the solution vector from another period, unless we want to use the previous solution
vector x as a starting value to solve for the next period.



2.6. INVERSION OF MAGNETOTELLURIC DATA 25

2.6 Inversion of magnetotelluric data

The ultimate goal of inversion theory is to provide a mathematical framework to
transform measured data from the data space to the model space in order to estimate
model parameters. Solving such inverse problems arises in many branches of the medi-
cal, physical and geophysical sciences. In geophysics, solving the inverse problem aims
to determine the structure of the earth. Depending on the used geophysical method,
the structure of the earth can be explained using the distribution of the electrical
resistivity (geoelectric and electromagnetic methods), acoustic velocity (seismic and
seismology), density (gravimetry), etc. These physical properties of the rocks are a
reflection of the geological formations, which define the structure of the earth.

The most common and widespread inversion approaches can be classified in two main
categories:

e Linearized inversion: A non linear function mapping the model parameters from
model space to data space (the forward modelling operator) is first linearized
before the inverse problem is solved.

e Non linear inversion: The inverse problem is solved directly using the non linear
forward modelling operator.

Each of the above inversion schemes can be solved in model or in data space. The
difference between both methods, as we will see later, is in the size of the inverse
problem, which becomes considerably important when inverting geophysical data in
two and three dimensions.

2.6.1 Linearized inversion in the model space

In the inversion process of electromagnetic data, particularly MT, we have some mea-
sured data in form of horizontal and/or vertical transfer functions or apparent resis-
tivities and phases for which we try to find model parameters (resistivities) that can
explain the measured data. Before describing the mathematical formulations for the
inversion process, let us set a few notations that will be used throughout the text:

e We can treat N measured data as elements of a data vector d,
d - [dl, dg, d3, ceey dN]T

The N-dimensional data vector resides in the data space. Usually, all measured
data are contaminated with an error vector e.

e The model m we are seeking contains M model parameters and can be presented
as:
_ T
m — [ml, mo, ms, ..., mM]
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The model vector resides in the model space.

e The projection from model space to data space is achieved by the forward mod-
elling operator F, which is function of m. The operator F(m) generates the
predicted or synthetic data. The model parameter vector m and the data vector
d are related to each other via:

Fm)=d+e

The inversion process attempts to find a model that reproduces the measured data
within their error. In other words, the inversion process tries to minimise the misfit
or residuum between measured and predicted data. To assess the quality of the fit, a
weighted least squares criterion is used (Jackson, 1972; Constable et al. , 1987),

i=1

where e; is the error of the ¢’th data point. In a least squares sense, the function to
be minimised is known as misfit-function, cost-function, objective function, penalty
function, or energy function, is defined as,

Vy(m) = [[Wd — WF(m)||* = [d — F(m)]" W'W[d — F(m)] (2.55)
where W is the diagonal N x N matrix which contains the inverse of the data errors,
W = diag{1/ei,1/es,....,1/en}

Since W is a diagonal matrix, the term WZW can be eliminated from the definition
of Uy(m) by rescaling the measured and predicted data (Egbert, 2006).

From mathematical point of view, the function W,;(m) can be minimised using a least
square approach. However, this is defined for linear functions. The operator F is
a function of m, however, this functionality is not linear. Hence, a non-linear least
square approach must be applied. This means, that the function F(m) must first be
linearized. The linearization of the forward modelling operator can be achieved by a
first order Taylor-expansion around a starting, or a so-called initial guess model (my).
In this case, the linearized F(m) function can be written as,

OF (my)

F(mg+ Am) = F(m,) + e

Am = F(my) + JAm (2.56)
where J is the sensitivity or Jacobian matrix and Am a small perturbation around
my. As the name suggests, J describes how sensitive the predicted data are towards
a small changes in the model parameters. As shown in eq. 2.56, the elements of this
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matrix correspond to the first derivative of the predicted data with respect to the
model parameters,

oFi(m) oF(@m) . 9Fi(m)
omq Oms a"TLM

O0Fs(m) . . :

OFw(m) . 9Fw(m)
om1 Omyg

Returning to our minimization problem, perturbating my with Am, the penalty func-
tion ¥4(m) in eq. 2.55 takes the form,

Uy(my + Am) = [d — F(my + Am)]"[d — F(mg + Am)] (2.58)
Substituting eq. 2.56 in eq. 2.58 yields,
Uy(my + Am) = [d — F(mg) — JAm]’[d — F(mg) — JAm]

=[d —JAm]"[d — JAm|] (2.59)
where,
d =d - F(my)

describes the misfit between measured and predicted data. An extremal stationary
point (minimum or maximum) of the penalty function ¥,(m) can be found by taking
the derivative of eq. 2.59 with respect to Am, and setting the result equal to zero,

a‘ljd(m() =+ Am) a ’ Tr 4’
= —JA —JA =
A A ([d = JAm]"[d — JAm]) =0
- Mim(d”d’ —d"JAm — Am"3"d + Am"I"IAm) = 0

= 2J7d —2JTJAm =0
JTIAm = J'd
Am = (JT3)~1J7d (2.60)

Equation 2.60 represent the so-called normal equations, which is also known as the
Gauss-Newton or unconstrained least square solution. In this algorithm, eq. 2.60 is
solved for the model update Am and added to the starting model mg. Since the
Taylor-expansion to linearize the forward modelling operator in eq. 2.56 is only an
approximation!, an iterative procedure is sought to improve my. The usual procedure
used in the Gauss-Newton algorithm can be addressed as follows:

1. Solving the forward modelling problem and computing y? using eq. 2.54.

2. If x? is greater than a desired value, then compute the sensitivity matrix and
solve the normal equations (eq. 2.60).

'In the Taylor-expansion, the higher order derivatives have been ignored.
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3. Steps 1 and 2 are repeated until convergence is reached ( i.e. the desired value
of x? or the number of iterations is exceed).

The convergence of the Gauss-Newton algorithm to the stationary point of W,;(m)
(global minimum) is very slow, if it convergences at all. This is due to the fact that:

e The starting model (my) is far away from the “true”model. To overcome this
problem it is necessary that various geological and other geophysical information
exist which would allow constructing a proper starting model.

e If J7J is singular (det(J7J)=0), the inverse of JTJ does not exist, and hence,
there will be no solution for eq. 2.60. Furthermore, if J7J is almost singular
(det(JTJ)<< 1) then, the solution will not converge.

The problem of having to deal with the singularity of J”J is common for almost all
geophysical methods, because we usually need many more model parameters to ex-
plain the N-dimensional data vector (N<<AM ). This means that many columns of J
are zero or almost zero. To circumvent the ill posed problem (det(J7J)<< 1) in the
Gauss-Newton method, constraints are often imposed on the normal equations. Ap-
plying constraints on the normal equations implies that the model must have certain
characteristics. Possible constraints are:

e The model update vector Am must have a small norm,
min. ||Am]||? (2.61)

This condition also ensures that the Taylor-expansion is always valid for small
values of Am.

e The model is constraint so that the difference between two adjacent model
parameters will be at its minimum. This can be achieved by using the roughness
matrix R

min. ||[Rm)||? (2.62)

e The model must consider a priori information in the form of model (m"),
min. ||m — m*"||? (2.63)
This condition ensures that the final model will be close to the a priori model.

Using any of the previous conditions must be considered along with penalty function
Uy(m). In this case, we can write a penalty function which considers the original
minimization problem (eq. 2.55) and one of the previous constraints. For example,

min. ||d —F(m)||* and min. ||Am]|/?
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or,

U =¥,(m)+ \V,,(m) (2.64)

where A is the so called regularization or trade-off parameter. A suitable value of A
ensures that neither ¥,;(m) nor ¥,,(m) will preponderate in the penalty function W:
Both will be evenly minimized. Thus, an optimised value of A must be sought. The
relationship between ¥,(m) and ¥,,(m) for various values of A takes the form of an
L-curve if we plot ¥,;(m) aginst ¥,,(m) in a log-log plot. Mathematically, this can
be described as follows,

lim¥Y;, — min and limV¥,, — max

A—0 A—0
lim¥,; — max and limW¥,, — min
A—00 A—00

This indicates, that our original minimisation problem turns to minimization and
optimization with regard to the regularization parameter.

Marquardt-Levenberg inversion

One possibility to prevent the solution of the normal equations (eq. 2.60) from di-
vergence was introduced by Levenberg (1944). He modified eq. 2.60 to take the
form:

Am = (J7J 4 g1)~137d’ (2.65)

where I is the identity matrix and [ is the so-called damping factor. Eq. 2.65
can be derived if we minimize eq. 2.64 following the same procedure used to derive
eq. 2.60. The additional term (SI) in eq. 2.65 restricts the length of the model
update vector to a certain length depending on the choice of 3. The solution by the
Marquardt-Levenberg method is constructed using mainly eigenvectors of J7J, which
correspond to high eigenvalues (Jupp and Vozoff, 1975). This method is also known as
Damped Gauss-Newton (Madsen et al. , 2004). Similar iterative procedures as in the
Gauss-Newton method must be applied to improve the initial guess (mg). However,
a suitable method to set the initial value and to compute 5 must also be considered.

Occam Inversion

Another widespread inversion algorithm was introduced by Constable et al. (1987) is
the so-called Occam inversion. The idea is to find a model which shows just as much
structure as is needed to explain the data. The Occam (or minimum structures)
inversion imposes a smoothness constraint on the model. In this case the constraint
term, which should be considered in the penalty function, has the form,

|[Rm]|? (2.66)
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The matrix R represents the so-called roughness matrix. In a uniform grid, the
elements of Rm are defined as the Laplacian of the model parameters which describe
the differences between adjacent model parameters (Rodi & Mackie, 2001). In the 1D
case, R takes the form of (Constable et al. , 1987),

1 -1 0 0
e 267)
0 0 1

when considering the first derivative between the adjacent model parameters. The
matrix R in eq. 2.67 implies that the difference between the resistivities of two layers
must be considered when using the constraint (2.66). In 2D, however, R consists of
two roughening matrices in Z and Y directions (deGroot Hedlin & Constable, 1990).
Considering the first derivative, R is written as,

L -1 -0 10 -~ 0 =1 0 ---0
0 1 -1 : o1 0 --- 0 =1 ---0
R=R.+WR,=| . W
0 0 1 0 - 0 0 1
(2.68)

where W has the same structure as R, containing the ratio of cell dimension in z and
y directions (A, / A,). There are N, — 1 zeroes between the entries in the rows of
R,.

Denoting m,, as the model parameter at the nth iteration and J,, as the sensitiv-
ity matrix evaluated at m,,, the penalty function (eq. 2.64) for m, + Am can be
approximated, after linearizing F(m), as,

U= U4
[d, —J,Am|7T[d, — J,Am] + A[m, + Am]"R’R[m,, + Am] (2.69)

Differentiating eq. 2.69 with respect to Am and setting the result equal to zero leads
to the usual M x M system of normal equations for a stationary point,

Am = (J7J, + \RTR)"'J%d, — \AR"Rm,, (2.70)

The penalty function in eq. 2.69 is approximated for the model of the next iteration
(n+1), since m,; = m, + Am. However, by approximating the penalty function for
the current model (m,,), eq. 2.70 can be rewritten as (Constable et al. , 1987; Egbert,
2006),

m,; = (JIJ, + \RTR)1J74, (2.71)

where,
d,=d-— F(m,)+J,m,
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Although, solving eq. 2.70 for the model update Am and adding the result to m,, is
exactly equivalent to solving eq. 2.71 directly for m,, ..

Before proceeding, a few comments on the regularization term in eq. 2.69 (the second
term on the right hand side) are appropriate. The roughness operator R'R. can be
formulated in terms of a smoothing operator C,, by setting C! = RTR (Menke,
1984; Egbert, 2006). Hence, eq. 2.71 can be rewritten using C_! as,

m = (J'J+C;H)1J7d (2.72)

C,, is defined as the smoothing operator which is interpreted as the covariance of the
model parameters. This operator provides a priori constraints on the magnitude and
spatial smoothness of conductivity variations (Egbert, 2006). The roughness operator
is usually used in most model space inversion formulations. As R is sparse (see i.e.
eq. 2.68) the multiplications RTRm and R’R. in egs. 2.70 and 2.71 are trivial and
can be implemented very efficiently. In contrast, formulating the regularized inverse
problem in data space using the smoothing operator C,, (as we will see later) is more
appropriate in terms of multiplications (Egbert, 2006).

2.6.2 Sensitivity matrix computation

All inversion schemes presented so far require an explicit expression of the sensitivity
matrix (J) to formulate the normal equations (Gauss-Newton and Occam Inversion).
The Non-Linear Conjugate Gradients (NLCG) scheme, which will be discussed later,
requires an implicit expression to formulate the matrix-vector products J”d.

The definition of the sensitivity matrix suggests that the computation of each element
of J can be done in straightforward manner: by simply perturbating each model
parameter by dm, solving the forward modelling problem for m + édm and computing
the first derivative, yields one column in J,

OF(my) _ Fi(my) — Ei(my + Am)

l=1,..,N d k=1,...M
amk Am. [ an [

(2.73)
These steps must be repeated for all model parameters. This means, that there are

M forward modelling computations to get all columns of J. For a 1D inversion this
is not a problem because we have only a few model parameters and data to consider.
Furthermore, since analytic solutions exist for the forward modelling problem in 1D,
there exists also an analytic solution to compute all elements of J (Meju, 1994).
However, in 2D and 3D cases with hundred of thousands of model parameters, solving
the forward modelling problem M times is not efficient.

Rodi (1976) and later Rodi & Mackie (2001) suggested an efficient method to compute
all elements of J with only N forward modelling computations. This method is based
on two main concepts:
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e Any perturbation of the model parameters causes a perturbation in the electro-
magnetic field and consequently in the model responses F(m).

e The reciprocal property of the forward modelling operator: The reciprocity
principle states that the model response of a receiver at location j depending on
a transmitter located at the location i is similar to that of a transmitter located
at the location j and a receiver at .

To solve the forward modelling problem in 2D and 3D, the linear equations system:
A(m,w)x(m,w) = b(m,w) (2.74)

is solved for an unknown vector x. Matrix A contains discrete representations of
gradient (V), divergence (V-) and rotation (Vx) of the electromagnetic fields in the
earth model at particular points of the grid. The vector b contains the boundary
conditions and a source term. For the 2D case in MT | the source term is the electric
field arising from a layered earth model (1D). For the 3D case, the source terms
are the electric and magnetic fields arising from 2D structures at the boundaries of
the 3D model. The vector x in eq. 2.74 is what we are interested in. In the 2D
case, this vector contains the unknown scalar electric (E-polarisation) or magnetic
(B-polarisation) field values defined at the nodes of the 2D grid. In the 3D case,
however, the vector x contains the three components of the electric field arising from
electric current system flows in X direction (Ex-Hy polarisation, first mode) and three
components of the electric field arising from electric current system flows in Y direction
(Ey-Hx polarisation, second mode). Each of these components is defined at the edges
of the cubes of a staggered 3D grid. From now on the abbreviation e will be used
instead of x to represent the electromagnetic solution in eq. 2.74.

To derive a generic expression for computing the elements of the sensitivity matrix in
2D and 3D, the forward modelling operator must be rewritten as a function depending
on the solution of eq. 2.74, and possibly but not necessary, on the model parameters
m:

F(m) = ¢(e(m), m) (2.75)

Equation 2.75 states that the model responses are derived from the electromagnetic
solution e. The function ¢ can be considered as a function that extracts (via interpola-
tion and other mathematical basic functions) the corresponding values of electric and
magnetic fields at the observation location to evaluate the model responses. Rewriting
the definition of J using equation 2.75, yields:

_ OF (m) 0Y(e(m), m)
Om Om
_ 9o O (2.76)

e dm ' Im

J
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Writing 2.76 in matrix notation, gives:

J=LF+Q (2.77)
where2. : . 5 ”
e
L=% "~ om 9 om

Matrix L connects perturbations in the electromagnetic solution to perturbations
in the model responses. Q is used only if the function @ depends on the model
parameters. In general, the matrices L and Q represent linearizations of the data
functional. Computations of L and Q are in general very efficient, since both matrices
are sparse and depend only on a few nodes surrounding the corresponding MT station
or the model parameter under consideration, respectively (Egbert, 2006). The only
computational challenge involved is in computing the elements of F.

To derive an expression for calculating the elements of F, we first take the derivative
of 2.74 with respect to the model parameters m. Furthermore, let us assume that b

does not depend on the model parameters, hence, thr’l = 0, we obtain:
0A Oe
— A—=0
om" * Om
Oe 0A
_ — ——e
Om om
AF = P
=F = A'P (2.78)
where,
0A
P=—
8me

Substituting 2.78 in 2.77 results in a new expression of J:
J=LA'P+Q (2.79)

The term A7!'P in eqs. 2.78 and 2.79 is usually called “pseudo forward modelling”,
since solving 2.78 for F is similar to solving eq. 2.74 for e. However, the right
hand side (sources in eq. 2.74 and fictitious sources in eq. 2.78) differ between both
equations. The right hand side in eq. 2.78 contains a matrix with dimension M x M
(the matrix P). This matrix contains in each column the derivative of the coefficients
matrix A with respect to one model parameter (my) multiplied with the values of
the EM field surrounding my. Since g—rﬁ is a sparse matrix and supported only for a
few rows corresponding to one particular model parameter, P is also a sparse matrix.
Therefore, computing P requires minimal computational effort.

One way to compute all entries of J using eq. 2.79 is to solve eq. 2.78 for F (the pseudo

2Please keep in mind that F in eq. 2.77 is unrelated to the forward modelling operator F(m).
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forward modelling) M x NPer times, where NPer is the total number of periods® and
then evaluate eq. 2.79 (Rodi, 1976; Rodi & Mackie, 2001; Egbert, 2006). Furthermore,
if the data vector contains data from more than one polarisation (i.e. TE and TM in
2D case) then the number of the pseudo forward modelling problems to be solved is
M x NPerx NPol, where NPol is the number of polarisations.

Taking into account the reciprocity principle, by simply taking the transpose of eq.
2.79 and noting that A is symmetric, we obtain,

JI=PTA LT + Q7 (2.80)

In this case, the sensitivity matrix can in fact be obtained by solving the pseudo
forward modelling problem N times instead of M x NPer times (Rodi & Mackie,
2001; Egbert, 2006). This is the usual reciprocity application for efficient calculation
of J. This means, instead of setting the sources in each model parameter to solve
2.78 for F, we can set the sources at the observation locations and solve AF = LT
for F (as reciprocity principle holds). An example in appendix A demonstrates the
mathematical meaning of the sensitivity matrix computation in the 2D MT case.

In the 3D MT case, the impedance is a 2x2 tensor, which requires two independent
electric field solutions computed for two different source polarisations (Weaver, 1994;
Egbert, 2006; Siripunvaraporn et al. , 2005):

Z = EB!
Zew Zw)\ _ (E} E2\(B. B2\ (2.81)
Zye Zy) E?} Ezj B; Bg 7 .
The indices 1 and 2 are used to distinguish between solutions for two different source

polarisation. Using Kramer’s rule to compute the inverse of B, the components of
the impedance tensor can be rewritten as (Newman & Alumbaugh, 2000):

, _ BB - BB  E2B! - E!B?
Txr — D ) Ty — D
1nR2 2 1 2 1 1 nR2
, _ BB BB, BBl LB 252
yr — D ’ vy — D :

where,
_ plp2 2 ol
D= B,B, - B;B,
The derivative of Z with respect to m (OmZ) can be found when considering that

perturbations to the computed EM fields (OmE, 0, B) result in first order perturbation
of the impedance tensor (Egbert, 2006):

w0 m
Om  Om'B
OB, 0B,
— SBT -7 B (2.83)

3Because P has M columns and the values in each column are different for each period.
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For 3D forward modelling computations, the equations system A;e; = b;, where
denotes the two source polarisations (i=1,2), is solved for the electric field E. The
magnetic field can then be numerically determined from Faraday’s law:

B =V x E/(—iw) (2.84)

by approximating the curl of the electric field at various corner points of the model
cubes (Alumbaugh et al. , 1996; Weaver, 1994). The calculated electric field and the
approximated magnetic field can then be interpolated to the station location on (or
in) the 3D grid. This means, that for one particular station, we can write:

1 _ 1 2 2 1 __ 1 2 2

B, = Ape1  Bl=Meo By=MAge  Bl=Me (2.85)

As in the 2D case, the basic functions Ag, and Ag, interpolate the calculated electric
fields at the edges of the 3D grid cubes, and then interpolate to the point of interest
(i.e. station location). The functions A\, and Ap, must also approximate V x E to
compute B at all faces of the cubes in the 3D grid.

We turn our attention to solve the pseudo forward modelling problem A~'L”, for
which we must first compute the rows of L. Since perturbation of the EM field solu-
tions causes perturbations to Z, we may write:

07

— =L 2.86
5m (2.86)
Writing eq. 2.83 in its components and using eqs. 2.85, we can write a general form

of L as:
2

OnZig = > { (B N = ZuXy — Zi 3] e (2.87)
k=1

where 2,7 = x,y.
Finally, let us consider the computation of Q. The matrix Q is computed by taking
the derivative of ¢)(e, m) with respect to m. In order to know if Q is needed in eqs.
2.79 and 2.80 or not, we have to investigate the dependency of ¢ on m. As discussed
above, the function v takes the computed electric fields e and the model parameter as
an input to compute the required EM field components. In the 2D E-polarisation case
(TE), we compute the x component of the electric field (E,). In order to compute
the horizontal transfer function Z,,, we need the horizontal orthogonal magnetic field
component B,, since Z,, = g—z’. However, B, can be computed from E, by taking the
curl of E and noting that E, = E, = 0 in the 2D E-polarization case (see eq. 2.36¢).

This means,
ok, , 1
B, = —_— 2.88
v =, (o) (2.88)
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From eq. 2.88 we can deduce that computing B, from E, does not depend on m.
Consequently, v is independent of m, therefore,

X _

om

Q= 0

In the 2D B-polarization case (TM), we compute the y component of the magnetic
field (B,). To compute the horizontal transfer function Z,,, we need the horizontal
electric field component E,, since Z,, = g—i’. As before, E, is computed from B, using

(see eq. 2.37b),
0B, 1

9z oo

E =

Yy

(2.89)
Obviously, computing £, from B, depends on m (o in eq. 2.89), therefore,
o
Q=570
m
In the 3D case, we have a similar situation as in the 2D TE case. We usually solve the

forward modelling problem for the electric field and the magnetic field is determined
from the electric field (see 2.84), in which there is no dependency on m. Thus,

Q="

om

The procedures presented above to compute the sensitivity matrix in both 2D and
3D cases have very useful properties that can be used later in parallelizing their
computations:

e The columns of L and the solutions of the pseudo forward modelling problem
A~'LT can be computed independently for all periods. This means that we can
distribute this computational task among several processors.

e A'LT is solved using only one column in LT. Consequently, one row of J
(corresponding to one station) does not depend on the computation of other
rows in J.

2.6.3 Solution of the normal equations

The normal equations. (i.e. egs. 2.65, 2.71 and 2.72) presented above, can be rewrit-
ten in matrix vector notation as:

Hx =g (2.90)

where,

pI d
H=JJ+{ \R'R }, g=J'{ d-)\R"Rm }, x=<{ Am
AC;! d m
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The real symmetric positive definite equation system presented in eq. 2.90 can be
solved by applying a standard equation system solver. Equation system solvers can
be classified in two main groups, direct and iterative solvers. Examples for the direct
solvers are the Cholesky and LU decompositions. Both methods decompose the matrix
H in a triangular matrix U (Cholesky decomposition), or in two triangular matrices
L and U (LU decomposition). The resulting triangular matrices must satisfy the

condition,
H=U'U H=LU

By forward substitution,

U'y=g o Uy=g
and backward substitution,

Ux=y or Lx=y

a solution for vector x which correspond to Am or m can be found.

An example for an iterative solver for the inversion problem is the conjugate gradient
method (CG). To solve the system of equations (eq. 2.90), CG generates a sequence
of approximated solutions by iterative minimisation of the quadratic form:

d(x) = %XTHX —g'x (2.91)

along a sequence of conjugate search directions p (Press et al., 1986). Starting from
Po = 0 as a first guess, the next search direction is obtained using:

Pr+1 = g1 — 7Ps (2.92)

where hy; is the gradient of eq. 2.91 at the solution x; and given by:

0 1
—xiHx, —g'x;) =Hx;, — g (2.93)

h - —
b an (2

The scalar v, in equation 2.92 ensures that the search direction py is conjugate to all
other previous search directions, which means:

ngpk’ =0 K <k

The scalar ~; is calculated as:
_ hy. 1 Hpy

p; Hpy

The solution x;;; which ensures that ®(x) in its minimum is obtained using the

Vi (2.94)

iteratively line search procedure:

Xk+1 = X — 5k+1pk+1 (2-95)
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where the scalar step size 3 is given by:

T
Pk+1hk+1
Brt1 = 2.96
i pg_HleHl ( )

In the CG scheme the main computation tasks are the matrix vector multiplications
Hp required in egs. 2.96 and 2.94. Rodi & Mackie (2001) showed that this multiplica-
tion can be accomplished at the cost of two pseudo forward modelling computations?.
Moreover, even computing and storing the sensitivity matrix is not required. Let f
denote the matrix vector product,

f=Jp (2.97)

The matrix vector product Hp in connection with one of the normal equations (i.e
Occam inversion eq. 2.71) can be rewritten as:

Hp = (J'J+)AR'R)p
= J'Jp+ ) R"Rp
= J'f+ \R"Rp (2.98)

In scope of egs. 2.79 and 2.80 the matrix vector products Jp and J7f can be calculated
as,

Jp=LA'Pp+Qp (2.99)

and
JTf =PTAT'L'f + Q'f (2.100)

The terms A~!'Pp and A7'LYf are the two additional pseudo forward modelling
solutions required in CG to avoid an implicit computation of the sensitivity matrix.

The CG scheme is usually implemented within an outer iterative loop that minimises
the objective function ¥ in eq. 2.64. The flow chart of the algorithm to solve the
normal equations (i.e. eq. 2.71) with CG could look as in fig.2.9:

2.6.4 Non linear inversion using conjugate gradient (NLCG)

Nonlinear conjugate gradients (NLCG) is closely related to the linear CG method
described above in the context of solving the linearized inverse problem. However,
the NLCG method solves directly minimisation problems that are not quadratic and
avoid the iterative linearized inversion procedure used in Gauss-Newton style inversion
(GN) (Rodi & Mackie, 2001).

NLCG have been used to solve the inverse problem in 2D MT (Rodi & Mackie, 2001)
and in 3D MT (Newman & Alumbaugh, 2000). Numerical tests showed that the
NLCG is more efficient than GN in terms of both computer memory requirements

4Note that a forward modelling requires computation of all periods and modes.
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Flow chart
Set:
® |[nitial start model mj.
® Desired data misfit vy, total number of iterations Ny, desired
error for CG solver € and total number of CG steps K.
For [=0 to Nir
Compute F(m))
Compute data misfit ¥y
if W4 <7y then exit
Set m = m
For k=0 to K
Compute py1and B
M1 = M- Brer Pret
Next
Set my; =myy
Next

Figure 2.9: The flow chart for the conjugate gradient scheme in solving the linearized
normal equation.

and CPU time needed to solve the problem (Rodi & Mackie, 2001). For large scale
problems, as in the 3D case, inversion based on GN algorithms may not be feasible
due to the fact that in these algorithms the sensitivity matrix (J) must exist and
the cross product JTJ must be calculated to solve the normal equation. Because
NLCG avoids explicit use of J and consequently, the cross product J7J, it seems to
be a realistic option to solve the inverse problem in the 3D MT case. However, in
comparison with GN, the NLCG requires more CG steps for convergence. This is
because the GN exhibits quadratic convergence and requires only few iterations (the
outer loop in fig. 2.9) required for convergence (Egbert, 2006).

NLCG utilises essentially the same basic computational steps as required for solving
the linearized problem using a CG approach. With the NLCG approach one must
evaluate the gradient of eq. 2.64 with respect to the model parameters m. However,
one must take into account the non linearized form of W, (eq. 2.55). In this case we
can write:

VU = VU, + AV, (2.101)

Evaluation of the gradient of the model smoothness function W, presented in eq. 2.66
leads to:

V¥, = 2R"Rm (2.102)
The gradient of eq. 2.55 is given by:
VU, = —2J7(d — f(m)) (2.103)
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The main objective with the NLCG approach is to minimise the penalty function W,
however, with respect to 3 (the step size in eq. 2.95).

From eqgs. 2.102 and 2.102 we can deduce that the main computational task is the
matrix vector product J7(d — f(m)). However, as discussed above, J must not exist
to accomplish this multiplication.

2.6.5 Linearized inversion in data space

The solution of the normal equations in model space (i.e. eq. 2.90) requires solving
an equation system which has a dimension equal to M x M, where M is the number
of model parameters. The difficulty in solving such equation systems becomes clear
when solving the 3D inversion problem, since in 3D inversion M can be as large as
hundreds of thousands while the number of data points N is very small (M >> N).
Therefore, it is more appropriate to convert the inverse problem from model space to
data space and solve an equation system which has a dimension equal to N x N.

Let us consider the Occam inversion scheme discussed above, however using the
smoothing C,, rather than the roughness operator R’R. (eq. 2.72). Siripunvara-
porn et al. (2005) show that the solution of eq. 2.72 for the model parameters my
at iteration k41, can be expressed using the sensitivity matrix smoothed by C,,.
Using the properties (J=7)~! = J7 and the matrix notation (AB)™! = B1A™! eq.

2.72 can be rewritten as®:

Mg — 1My = (JZ:CJIJ]C + AC;})‘IJTC;lak (2104)
= C,J B (2.105)

where,
B = (JCn + ACy) ' di (2.106)

is an unknown expansion coefficient vector of the basis function C,,J; (Siripunvara-
porn et al. , 2005; Siripunvaraporn & Egbert, 2000; Egbert, 2006).

With the transformation from model space (eq. 2.104) to data space (eq. 2.105) two
main advantages are achieved:

e The dimension of the problem to be solved for the model parameter vector my_
has been reduced from M x M to N x N. Because computing the my; requires
first solving 2.106 for the vector B, and then substituting in eq. 2.105.

e The inverse of the smoothing matrix C,,, in eq. 2.104 is not required any more
in eq. 2.105.

5The data covariance matrix Cy has been used explicitly here to be consistent with the published
papers on this subject



2.6. INVERSION OF MAGNETOTELLURIC DATA 41

“The solutions obtained from the Occam inversion in the model and the data space,
should in theory be identical if all parameters used are the same”(Siripunvaraporn
et al. , 2005)

Nevertheless, for the Occam inversion in the data space we still need to compute the
sensitivity matrix (J) and the cross product JJT. These two computational efforts
are the most time and memory consuming when running the 3D inversion of MT
data. Furthermore, several computation processes, i.e multiplying J by C,, or by the
solution vector B must be accomplished with J. This means that J must exist as a
whole matrix in computer memory.

Considering the properties of the sensitivity matrix computation discussed in 2.6.2
and decomposing the computing operations involved in eqs. 2.106 and 2.105, very
efficient scheme, using parallelization, can be found to minimise both the time and
memory requirements to solve the inverse problem in 3D MT. These issues will be
discussed in detail in the next chapter.






Chapter 3

A generic, efficient and practical
parallelization method for MT forward
modelling and inversion in 2D and 3D

3.1 Introduction

Modern natural sciences (e.g. geosciences, bioscience, chemistry, and physics) depend,
among others, on computer science and the developments of the computer industry.
Today, it is inconceivable to simulate various four-dimensional (4D) real world prob-
lems (e.g. climate changes or geodynamic processes to explain plate tectonics) or
even to solve a set of complex equations, without using computing resources. How-
ever, solving such kind of problems on a personal computer can easily exceed the limits
of existing hardware (memory space and CPU) due to the large amount of both code
instructions and number of data required to solve the problem. Executing the code
(computer instructions) in a serial manner can take very long time. An apparently
straightforward way to overcome this problem is to connect several powerful computer
machines and let them work together to solve simultaneously (in parallel) a particular
numerical problem.

The concept of parallelization follows simple natural principals: If we are asked to
produce n end products (some results) by using m elements (data) and we have only
one worker (processor), then the time required to achieve this task takes the time t.
But if we employ w workers to achieve the same task, then the time can be reduced
ideally to t/w. Furthermore, if we ask all workers to deliver their end product directly
to the client (any subroutine that needs these results) then we do not need to have a
huge storage (global memory) to keep the end products in it. Instead, small contain-
ers (local memory) near each worker will be enough to keep his end product (local

43
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result). With these considerations in mind we can reduce both the time and space
required to accomplish the task.

Several powerful computer machines in a network configuration create a so called
supercomputer or parallel computer. Parallel computer architectures were already
introduced in the sixties of the last century. At that time, parallel computers were
defined as collections of several processors (and other hardware components) con-
nected, but not necessarily, to each other by a network to realise one computing task
in parallel. Parallel computing has been considered to be the high end of computing,
and has been used to model difficult scientific and engineering problems.

For forward modelling and inversion of M'T data in 3D, we are facing the same prob-
lems with regard to computation time and memory requirements. The approximation
of electromagnetic (EM) differential equations on 3D staggered girds can easily ex-
ceed the limits of the machine’s memory. Furthermore, inverting models of real world
problems can also exceed the limits of memory due to large matrices and vectors
associated with the inversion process. Even if the required memory is available, the
time required to run the inversion process for 3D MT can take several days or months.
Thus, adopting parallel computing is inevitable if we want to solve the forward mod-
elling problem and inversion in 3D MT in reasonable time. This is the ultimate
ambition of this chapter, which demonstrates strategies and methods to achieve these
goals.

The hardware configuration of parallel computers can be classified using Flynn’s tax-
onomy. Flynn (1972) classifies the architectures of parallel computers along two inde-
pendent parameters: Code instructions and data. Each of these parameters can have
only one of two possible states: Single or Multiple. According to this classification, a
parallel computer can fall into one of the following categories (Fig. 3.1):

e Single Instruction, Single Data (SISD): This kind of computer architecture
belongs to a serial (non-parallel) computer. Here, only one single code instruc-
tion is executed on one processor at time ¢ using one single data element. This
is the oldest and even today, the most common type of computers (Fig. 3.1a).

e Single Instruction, Multiple Data (SIMD): A type of parallel computer.
With this type of computer architecture, all processors execute one single code
instruction at the time ¢ but using different data elements. Most modern com-
puters (e.g. dual or quad cores) belong to this category (Fig. 3.1b).

e Multiple Instruction, Single Data (MISD): A single data element fed into
multiple processors. Each processor operates on the data element by executing
different code instructions. There are not many examples of this computer
architecture (Fig. 3.1c).

e Multiple Instruction, Multiple Data (MIMD): Here, every processor may



3.1. INTRODUCTION

©)

45

be executing different code instructions and using different data elements. Most
of modern parallel computers fall into this category (Fig. 3.1d).

a)

Begin Instruction:

Get A and B values

C=A+B

Save C

End Instruction:

s,

b)

d)

Begin Instruction:

Begin Instruction:

Begin Instruction:

Get A(1) and B(1)
values

Get A(2) and B(2)
values

Get A(n) and B(n)
values

C(1)=A(1)+B(1)

C(2)=A(2)+B(2)

C(n)=A(n)+B(n)

Save C(1)

Save C(2)

Save C(n)

[End Instruction:

__-‘

[End Instruction:

[End Instruction:

Begin Instruction:

Begin Instruction:

Begin Instruction:

Begin Instruction:

Begin Instruction:

Begin Instruction:

Get A(1) Get A(1) Get A(1)
C(1)=A(1)+1 C(2)=A(1)+2 C(n)=A(1)+n
Save C(1) Save C(2) Save C(n)

End Instruction:

End Instruction:

End Instruction:

sy,

Get A(1) and B(1)
values

Get beta value

Get PI value

C(1)=A(1)+B(1)

D=2*beta

E=3*PI

Save C(1)

Save D

Save E

End Instruction:

End Instruction:

End Instruction:

Figure 3.1: Classification of parallel computer architectures after Flynn (1972). a)
Single Instruction, Single Data (SISD), b) Single Instruction, Multiple Data (SIMD),
¢) Multiple Instruction, Single Data (MISD) and d) Multiple Instruction, Multiple
Data (MIMD). P;, P, and Pj indicate processors IDs.

Classification of parallel computers in terms of instruction execution and data han-
dling lead us to another important question: Where are the data located? Answering
this question requires defining and classifying memory architectures of parallel com-
puter. The most important and widely used memory architectures are (Fig. 3.2):

e Shared

Memory.

In this kind of memory, all processors share one global

memory and all of them equally have access to it (Fig. 3.2a). This configuration
allows individual processors to work independently. Most of modern personal
computers consist of several processors (dual or quad) and share one memory
(RAM)!. The main advantage of the shared memory is that the processors do
not require a network connection to exchange the data. This is because all data
are located in the same memory and any change in the data is immediately

visible to other processors.

The main disadvantage of this kind of memory

is the limitation of the number of processors that share one memory. Since
increasing the number of processors increases the traffic on the shared memory,

this consequently decreases the computation performance.

'RAM: Random Access Memory

wy,

sy,
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e Distributed Memory. Most bigger parallel computers, which may consist of
several hundreds of processors have such memory. As the name indicates, each
processor contains its own memory space and only the local processor can change
data in the memory (Fig. 3.2b). In this case, data exchange between processors
must be realised via network connections, but we can use as many processors
as we want without affecting the local traffic to the memory. The disadvantage
of this kind of memory is the network connection between the processors. This
becomes a problem if we have to distribute computational tasks or data among
several hundreds of processors. In this case, the overall performance mainly
depends on the speed of the network connection and the amount of data to be
transferred. Optimization strategies must be considered to avoid excessive data
transfer between processors by using an appropriate parallelization scheme.

e Hybrid Distributed-Shared Memory. In this type of computer memory ar-
chitecture, several (usually dual or quad) processors are attached to one shared
memory to create a so called node (or Symmetric Multi Processors, SMP). All
SMP nodes can then be connected to each other via network connections (Fig.
3.2¢). In this case, the nodes are considered to have distributed memory and
within each SMP node they share one memory. Today, the most powerful com-
puters are clusters of this type.

The hardware configurations discussed above will be useless if they are not supported
by appropriate software to:

e allow efficient communication: Avoid memory-to-memory copying, allow overlap
of computation and communication.

e establish cooperative protocol operations to facilitate data exchange between
processors (send and receive),

e synchronise data exchange between processors and run parallel processes.

What is required is a so called communication library. The earliest development in
this context are communication libraries like CHIMP (Common High-level Interface
to Message-Passing) and PUL (Parallel Utilities Library) (Bruce et al. , 1993) de-
veloped at the University of Edinburgh, PVM (Parallel Virtual Machine) developed
mainly at the University of Tennessee and PICL (Portable Instrumented Communi-
cation Library) developed at the Oak Ridge National Laboratory. Most of these tools
were developed to help programmers solving a particular computation problem in
parallel (Kowalik & Grandinetti, 1993).

The first standard of a communication library for parallel computing is called MPI
(Message Passing Interface), which was developed in the nineties at the University
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Network connection

SMP2 SMP3
(Dual) (Single)

Network connection

Figure 3.2: Classification of parallel computer memory architectures. a) Three pro-
cessors (Py, P, and Ps) sharing one global memory (e.g. triple core machine). b) Each
processor owns its own local memory (distributed memory). c) Hybrid distributed
shared memory, where each SMP has one local shared memory.

of Tennessee in cooperation with many researchers from universities, government lab-
oratories, and industry from the USA and Europe. The MPI library is a collection
of subroutines which can be used in several programming languages (i.e. Fortran
77/90/95, C and C++) to establish effective communication between processors and
to ensure data exchange between them. As the name suggests, MPI is based on mes-
sages being exchanged between processors. Messages can consist of any data type
used usually in programming languages (i.e. in Fortran: Integer, Real,.., etc) and
their dimensions can be scalars, vectors or matrices.

In the next few sections, the main concept of MPI along with MPI-subroutines used
intensively for this thesis will be introduced to emphasise their contribution to solve
the forward modelling and inversion problems in MT.

3.2 Introduction to parallel computing using MPI

MPI addresses a major problem of parallel computing, where data must be moved from
the address space of one processor to that of another processor through cooperative
operations on each processor. MPI is not a programming language, but instead, all
MPI operations are expressed as functions, subroutines, or methods, according to the
appropriate language bindings. MPI standard libraries exist for C, C++4-, Fortran-77,
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and Fortran-95. The main goals of MPI, as developers state (Forum, 2008), are:

e Developing a widely used standard for writing message-passing programs. As
such, the interface should establish a practical, portable, efficient, and flexible
standard for message passing.

e Allow convenient C, C++4, Fortran77, and Fortran95 bindings for the interface.

e Allow for implementations that can be used in a heterogeneous environment.
This means that parallel programs written by using MPI may run on distributed-
memory multiprocessor, networks of workstations, and combinations of all of
these. In addition, shared-memory implementations, including those for multi-
core processors and hybrid architectures, are possible.

e Define an interface that can be implemented on many vendors platforms (e.g.
Linux, Unix and Windows), with no significant changes in the underlying com-
munication and system software.

Sending and receiving of messages by processors is the basic MPI communication
mechanism. The communication takes place between processors located in one or
different so called communicators. The so called MPI_COMM_WORLD is the initially de-
fined universe intra-communicator for all processors. To conduct communications,
the MPI library is initialised by calling MPI_INIT. From the MPI_COMM_WORLD commu-
nicator one can create groups of one or more dedicated processors (Fig. 3.3a and b).
By definition, the communicator has the following properties:

e A communicator is an opaque object with a number of attributes together with
simple rules that govern its creation, use, and destruction.

e Each communicator contains a group of valid processors. The source and desti-
nation of a message is identified by processor ID within that group.

e Intra-communication is used for communicating within a single group of pro-
Cessors.

e Inter-communication is used for communicating within two or more groups of
Processors.

e Communicators are dynamic, i.e., they can be created and destroyed during
program execution.

Creating groups of processors from the common world communicator (Fig 3.3b) is
useful in many cases. For example, if we intend to broadcast a message for only few
processors by using the collective communication MPI Bcast (see below for explana-
tion), then it is possible to create a group containing only the required number of
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a) Common World Communicator

b)

Group B Communicator

Group A Communicator

P:

P3

Po Py

Figure 3.3: a) The base group, upon which all other groups are defined, is the group
associated with the initial communicator: The MPI Common World Communicator.
It contains all processors that have been initialised when starting MPI. b) Two groups
(called A and B) created from the base communicator. Each group contains several
processors numbered from 0 to NProc-1. The communicators A and B have the same
properties as the initial common world communicator.

processors. The function MPI Bcast will only affect this group of processors. Further-
more, one can create several groups to distribute various computation tasks among
them.

In the MPI communication library mechanism, we can distinguish between three gen-
eral categories:

e One-sided: MPI defines one-sided communication operations that allow one
local (active, in the context of sending and receiving messages) processor to
directly read from or write to the memory of a remote (passive) processor by
using Remote Memory Access (RMA). In this case, only the local processor
specifies all communication parameters.

e Point-to-Point or two sided: This most basic form of communication in MPI
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allows a program to send and receive messages from one specified processor to
another specified processor located in the same or a different communicator.

e Collective communication: This communication involves all processes in the
scope of a communicator. It is the programmer’s responsibility to ensure that
all processes within a communicator participate in any collective operation by
calling the same operation on all processors.

Point-to-Point and Collective communication are the most widely used types of com-
munication when using the MPI library. The developed parallel concepts in this thesis
use mainly Point-to-Point and collective communication. Thus, all MPI-subroutines
explained later are part of Point-to-Point or collective communication.

Distributing messages between SMP nodes (inter-node connections) is a major issue
in MPI and has enormous impact on the computation performance. We can distin-
guish between several principal types of inter-node connections (Fig. 3.4). Let us
assume that we have 4 SMP nodes (with one processor each) associated with the IDs
Py to P3. Let Py be the root node or master node. Possible ways to distribute one
message to all processors are:

e The master node executes a loop over all processors. In this case, the master
enters the loop: First it starts communication with P;. P, sends the message
to P, and closes the communication. Afterwards, the same procedure is carried
out between P, and the other processors (Fig. 3.4a).

e The master node starts communication with P; then it sends the message to
Py, and closes the communication. P, in its turn, starts communication with
P,, sends the message to P, and finally closes the communication, etc (chain
message) (Fig. 3.4b).

e Tree-Structure: The root node starts communication with P,, sends the message
to P,, and closes the communication. Afterwards, Py starts communicating with
Py to send the message. At the same time, P, starts communicating with P; to
send the message (Fig. 3.4c).

The tree-structure is the most efficient way to distribute a message, because it reduces
the number of nodes waiting for a message. However, unless we know the underlying
topology of the used cluster, we cannot easily decide which scheme to adopt. Ideally,
we would like to use a simple function customised to a particular machine, ensuring
that we do not have to worry about tedious details, and that we do not have to modify
our code every time we change machines.

Fortunately, MPI includes several subroutines to accomplish the distribution of mes-
sages in an efficient way and they are independent of the machine’s topology. Proba-
bly, the most important and constructive MPI-subroutines in this context are:
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a) b)

[P [P e

c) P,

P() P2

Py Py P, P;

Figure 3.4: Various ways of distributing a message on 4 nodes. a) Classic way of
distributing, where the master node F, sends the message to all processors in the
communicator. b) chain scheme, in which each processor sends the message to its
right neighbouring processor. ¢) Tree-Structured, the most effective way to distribute
a message among several processors. In this example, F, sends the message only to
P, and P;. P, in its turn sends the message to Pj.

e MPI Bcast. This function broadcasts a message from one processor to all other
processors located in the same communicator (i.e. common world communica-
tor), including itself.

e MPI Gather. When calling the MPI-Gather, each processor sends the contents of
its send buffer to a single processor (i.e. the root processor). The root processor
receives these messages and stores them in its receive buffer according to the ID
order of the senders.

e MPI Scatter. The MPI-Scatter performs the reverse operation of the MPI-
Gather function described above. The root processor divides its send buffer
into n equal segments and sends segment 1 to processor of ID 1, segment 2 to
processor of ID 2 and segment n to processor of 1D n.

e MPI_Alltoall. Each processor in the communicator performs a scatter opera-
tion, sending a separate message to all processors in the group ordered by the
processor’s 1D.

These MPI-subroutines are part of the collective communication routines. In Point-
to-Point communication we can distinguish between two main categories: Blocking
and non-blocking message passing. The latter is used if overlapping between com-
munication and computation is needed. This means that the processor that sends a
message will not wait until the send operation is completed, it can enter the com-
putation phase and check later if the send operation is completed. Figure 3.5 shows
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the difference between these two categories. For the parallel schemes developed in
this thesis, blocking message passing routines are intensively used. The term block-
ing refers to the computation process, because between send or receive messages, the
computation is blocked on both processors.

The most commonly used MPI blocking message passing routines are:

Processor A Processor B
Send message to B Blocking sen(.:i/recewe Receive message from A
operation
Wait until the message Wait until the message is
is sent and the received and the
communication is closed communication is closed
Continue.... Continue....
Processor A ) ) Processor B
Non-Blocking send/receive )
Send message to B operation Receive message from A
Do something ... Do something ...
Check if the message Check if the message is
had been sent received
Continue.... Continue....

Figure 3.5: Differences between blocking and non-blocking send and receive opera-
tions via MPI Point-to-Point. In blocking send/receive operations, processor A will
wait until processor B has completely received the message. Afterwards, both pro-
cessors can enter the computation stage. In non-blocking send/receive operation,
both processors will not wait until the send/receive operations are completed, they
enter the computation stage and check later if the send /receive operations have been
completed.

e MPI _Send. Basic blocking send operation. This routine returns only after the
buffer of the sending processor is free for reuse.

e MPI Recv. Receive a message and block until the requested data is available in
the buffer of the receiving processor.

e MPI Bsend. Buffered blocking send. This routine allocates the required amount
of buffer space for the data of the sending processor. This routine insulates
against problems associated with insufficient system buffer space. Before using
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MPI Bsend the memory must be allocated using MPI Buffer_attach. After ac-
complishing the MPT Bsend operation, the memory is released using MPI Buffer detach
and then can be used by other operations.

Other important MPI routines that are part of many MPI programs are the so called
MPI environment management routines. These routines are responsible for initializ-
ing the common world communicator (MPI_Buffer_Init), to determine the number of
processors associated with it (MPI_Buffer_size), and to determine the IDs of the call-
ing processors (MPI_Buffer rank). Initially, each processor will be assigned a unique
integer ID between 0 and number of processors-1.

In the following exemplary FORTRAN program, a matrix-matrix multiplication is
computed in parallel to demonstrate the functionality of MPI routines. The main
task is to compute the cross product A * AT = C, where A and C are two real ma-
trices with the dimension (n x n) and T denotes the transpose of A. Explaining and
verifying the computation speed of the parallelized cross product using this example
is very important, since the cross product (J * J7 or J x J7) consumes most of the
time in MT inversion.

To simplify the explanation of this code, we will assume that n processors are avail-
able, processor with ID 0 will be the master and the rest will be considered as workers
(Fig. 3.6 and Fig. 3.7).

To test the efficiency of the cross product MPI-Fortran code, its total run time
(communication and computation) is measured and compared with the total run
time of the serial version of the code (using only one processor). To evaluate the
speed of both versions of the code, we introduce the relative speed-up factor (Se-
rial_Time/Parallel_time) using different numbers of matrix elements (nxn) with a
fixed number of processors (100 processors) for the parallelized version. The red
curve in Fig 3.8 shows the results. As can be expected, for matrices with less than
10% elements (n < 1000) the serial version is faster than the parallel code due to the
time wasted by the communications. However, the speed-up factor increases dramat-
ically for matrices with more than 10° elements (n > 1000). Obviously, for large
matrices, the determining factor is the computation time and not the communication
time.

The previous code was written using collective communication routines (MPI_Bcast,
MPI Gather and MPI _Scatter) to distribute data from the master processor to other
processors in the communicator (MPI_COMM_WORLD), and to collect results from workers
on the master. The alternative option to establish communication between processors
is the Point-to-Point communication routines. To compare the efficiency of these two
types of communication routines, the previous code was rewritten by replacing all
collective communication routines with Point-to-Point communication routines:

e MPI Bcast(A(1,1) ,matrix_size,---) routines in the master task and in the
worker task were replaced by MPI_SEND(A(1,1) ,matrix_size,---) and
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program MatMulAAT
implicit none
include 'mpif.h'
| Variables used by Fortran
Integer :: x,y,7,n,matrix_size,counter, number_of_col_on_each_Proc
parameter (n = 2000)
:: A(n,n),AT(n,n),C(n,n),B(n,n),C_local (n*n), sum
d by MPI

:: taskid, num_of_Proc,num_of_workers, ierr
DOUBLE PRECISION :: starttime,endtime, time_used

! Body of MatMulAAT
call MPI_INIT( ierr ) MPI environment management routines:
call MPI_COMM_RANK( MPI_COMM WORLD, processorID, ierr ) Initializing the cluster, get processors ID and number of
call MPI_COMM_SIZE( MPI_COMM_WORLD, num_of_Proc, ierr ) processors
num_of_workers = num_of_Proc -1
matrix_size=n*n
number_of_col_on_each_Proc=n/num_of_Proc
starttime = MPI_Wtime ()
! Start MASTER JOB, MASTER has the ID 0 MPI collective communication routine: MPT_BCAST
if (processorID == 0 ) then ly Broadcast A to all processors, so that each one has a copy.
call MPTI_BCAST(A(1,1),matrix_size,MPI_REAL,0, MPI_COMM_WORLD,ierr )}/
call MPI_SCATTER (AT(1,1), n*number_of_col_on_each_task, MPI_REAL; MPI collective communication routine: MPI_ SCATTER
B(1,1), n*number_of_col_on_each_task,MPI_REAL, 0, MPI_COMM_WORLD, ierr) > Distribute A" to all processors, so that each one has few Z
columns of A”. The distributed columns are saved in B.
do z=1, number_of_col_on_each_Proc &
do x=1,n 2
sum=0.0 [¢]
do y=1,n Ci ion part: :-!
sum=sum+ (a(x,y) *B(y,2z)) Compute A" * B and save the result in C_Local. =
end do =)
C_local (x+((z-1)*n))=sum =g
end do
end do o o .
call MPI_Gather (C_local(l), n* number_of_col_on_each_Proc, MPI collective communication routines: MPT_Gather
MPI_REAL, C(1,1),n* number_of_col_on_each_Proc, r—» Collect C_Local from all processors, and save them in C.
MPI_REAL, 0,MPI_COMM_WORLD, ierr)
. 0 ) then
! Start WORKER JOB
call MPI_BCAST(A(L,1),matrix_size,MPI_REAL,O, }
MPI_COMM_WORLD, ierr) \ N MPI collective communication routine: MPT_BCAST
Get the broadcast A from root processors 0.
call MPI_SCATTER (AT(1,1), n* number_of_col_on_each_Proc,
MPI_REAL, B(1,1), n* number,of,coL,on,eacn,Proc}
MPI_REAL, 0, MPI_COMM_WORLD, ierr) \ s
| MPI collective communication routine: MPI_ SCATTER
do z=1, number_of_col_on_each_Proc Get ‘number_of_col_on_each_task’ columns of A" a
do x=1,n from root processors 0 and save them in B. =~
sum=0.0 (o)
do y=1,n ]
sum=sum+ (a (x,y) *B(y,z)) Computation part: «
end do L 5| Compute A" * B and save the result in C_Local. —
C_local (x+((z-1)*n))=sum =)
end do (=n
end do
MPI collective communication routines: MPT_ Gather
call MPI_Gather (C_local(l), n* number_of_col_on_each_Proc, MPI_REAL, ¥ Send C_Local to processors 0.
C(1,1),n* number_of_col_on_each_Proc,
MPI_REAL, 0,MPI_COMM_WORLD, ierr)

end if

CaLL MPIFINALIZE (Gerr)  » MPI environment management routines:
end program MatMulAAT End MPI

Figure 3.6: Parallelized FORTRAN code to calculate the cross product A * AT

MPI_RECV(A(1,1) ,matrix_size,---), respectively.

e Similarly,
MPI_SCATTER(AT(1,1) ,n*number_of_col_on_each_task,---) and
MPI_Gather(C_local(1l) ,n*number_of_col_on_each_task,---) routines in the
master task and in the worker task were replaced by:
MPI_RECV(C(1,which_col) ,nxnumber_of_col_on_each_task,---) and
MPI_SEND(C_local (1) ,n*number_of_col_on_each_task,---), respectively.

The modified version of the code using Point-to-Point communication routines was
executed using the same parameters (fixed number of processors and varying matrix
dimension from 100x100 to 12800x12800). Figure 3.8 (blue curve) shows the results
of this test. Point-to-Point communication behaves similar to the collective commu-
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Figure 3.7: The communication and computation tasks used to carry out the multi-
plication A * AT, In the first communication phase the master processor P, fills the
corresponding locations of A and AT on the memory of all workers after each call
to one of the collective communication routines. Afterwards, each processor carries
out the multiplication of A with the distributed columns of A”. Once the computa-
tion is finished, each processor sends its local result to the master processor Fy: Last
communication phase.

nication when compared to the serial version of the code. For small matrices, most
of the total time is consumed by communication, consequently, the serial version is
faster than the parallel code. On the contrary, when using large matrices the com-
munication time is short in comparison to the computation time, and therefore the
parallelized version is faster than the serial code.

A comparison between collective and Point-to-Point communication routines (red and
blue curves in Fig. 3.8) indicates another interesting result: For large matrices, Point-
to-Point communication routines are faster in sending the data and receiving the re-
sults than collective operations.

The previous code example was written using the classical way to calculate the cross
product multiplication (row by column). To optimise both computation and commu-
nication aspects of the code, certain properties of the cross product multiplication can
be used. For example, multiplying A with its transpose AT is the same as multiplying
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Figure 3.8: Comparison between serial and parallel cross product computation. A
speed up factor of 1 means that serial computation is as fast as parallel execution. Red
curve shows the result using collective communication, blue curve is for point_to_point
communication. For large matrices (n>100) the parallel computation is significantly
faster than serial computation. Furthermore, a comparison between the collective and
point_to_point communication reveals that the latter is faster in transferring the data
between the processors especially for large matrices.

each row of A with all rows of A. It is therefore not necessary to broadcast A7, since
A was already broadcasted to all processors. Thereby, the time for communication
is reduced as one MPI Bcast (or one pair of MPI_SEND and MPI_RECV) routine can be
removed from the code. Another optimization step can be achieved by taking into
account that the cross product multiplication results in a symmetric matrix C. There-
fore, only the lower or upper triangular matrix is needed to construct the full matrix.
This consideration is also valid for the serial algorithm. But for the parallel code,
a suitable distribution of tasks among processors must be found. Otherwise, some
processors do most of computations, while others spend most of the time waiting.
This becomes obvious if we examine the following scheme to compute, e.g., the lower
triangular matrix of C (Table 3.1 and Fig. 3.9)

Table 3.1 and Fig. 3.9a indicate that P; will be busy the whole time to accomplish
n row by row multiplications. At the same time, P, does only one row by row multi-
plication. This simple example demonstrates very clearly that parallelization requires
more numerical concepts. To make the algorithm efficient, all participating processors
must have the same number of rowxrow multiplications.
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Processor ID task rang # of rows multiplication
P row; * TOW; 1=1,....n n
B TOWsy * TOW; 1=2,...,.n n—1
P2 TOWy gk TOW; 1 =1/2,..,n n/2
P, TOW,, * TOW; 1=n,..,Nn 1

Table 3.1: Distribution of row multiplication tasks among n processors to achieve the
computation AAT. P, multiplies the first row with all rows having indices greater
than or equal to 1. Thus, P, must achieve n rowxrow multiplications. On the other
hand, processor P, has only one rowxrow multiplication.

Figure 3.9b shows the distribution of rowxrow tasks among n processors after modi-
fication. This modification is based on the symmetrical properties of the final result
(the matrix C). In the modified task distribution scheme, each processor must carry
out n/2 rowxrow multiplications, where n is the number of rows in A. To simplify
the description of the modified version, let us assume that n row by row multiplica-
tions must be achieved by n processors to compute the lower triangular matrix of C.
Processors with IDs from 1 to n/2 (P; to P,/») compute n/2 rowxrow computations
to produce n/2 columns and n/2 rows (starting from the main diagonal) of C. The
missing elements in the lower triangular matrix of C (to the left of n/2 column) are
computed by processors F;/2)+1 to P, because their original computation load is less
than n/2. For example, the missing (n/2)+1 element in C (dark green colour box in
fig. 3.9b) is computed by processor P, /211, after the processor has accomplished its
original task to achieve (n/2)-1 rowXxrow computations.

3.3 Solving the MT forward modeling in parallel

The knowledge gathered on parallel computing using MPI will now be applied to solve
the MT forward modelling problem in 2D and 3D.

The reason why parallel computing schemes must be applied for MT forward mod-
elling, especially in 3D, is the large number of model parameters for which the elec-
tromagnetic (EM) solution must be approximated numerically using finite differences
(FD) or finite elements (FE). The EM solution in 3D consists of the three components
of the primary electric field E (E,, £, and E,) and three components of the secondary
magnetic field B (B,, B, and B,). Thus, the number of elements of the approximated
EM solution can easily exceed the limits of the computer memory. Even if the re-
quired memory is available, the time required to solve the problem in a serial manner
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Figure 3.9: a) The lower triangular matrix of C computed with n processors. The
multiplication tasks are not evenly shared between the processors. b) The lower trian-
gular matrix of C, after modifying the distribution of the multiplication tasks. In this
case, each processor has an equal number (n/2) of rowxrow multiplications. For ex-
ample, P; that has originally n rowxrow multiplications to construct the first column
of C, must compute only (n/2) rowxrow. The missing elements in the first column
are computed by another processors. For example, the element in the dark green box
in the first column will be computed by processor P, /2)4+1 instead of processor P;.

is usually too long. Therefore, a parallel computation of the MT forward solution
must address both the time and memory problems.

The application of parallel computing in electromagnetic methods to approximate nu-
merically Maxwell’s equations (2.1 to 2.6) in time or in frequency domain is relatively
new. However, solving sets of linear equations (similar to 2.49) is a typical problem
for FD applications and one of the main motivations for developing new strategies
and methods by the parallel computing community:.

Earlier contributions in the context of solving the EM forward modelling problem in
parallel, include the work of Alumbaugh et al. (1996). In this work, the authors
present a method for modelling the wideband, frequency domain electromagnetic re-
sponses of a 3D earth model using a dipole source operating in frequency range from
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100Hz to 30MHz. The main issue in that paper is the application of “Multiple In-
struction Multiple Data (MIMD)”computers to approximate the modified form of the
vector Helmholtz equation on a staggered grid using the FD method. The forward
modelling parallel computing scheme is based on distributing the model parameters
to all processors, so that each one works on a small portion of the model to construct
the coefficients matrix A in eq. 2.49 and to solve the equation system for the scattered
electric field. However, a massive amount of communication is required in this scheme
to exchange information between processors.

An efficient way to parallelize the MT forward modelling problem (and any other com-
putation process) is to decompose the problem into its fundamental computational
steps and then examine the dependencies between these steps. The MT forward
modelling problem can be decomposed into:

1. Setting the input parameters, including model parameters, station locations and
sets of periods for which the EM solutions must be approximated.

2. Formulating a discrete representation of the gradient (V), divergence (V-) and
curl (Vx) operators on a staggered grid using finite differences.

3. Constructing the coefficients matrix A from the previous differential operators,

including the time dependency term (e~*') on the main diagonal of A and the

model parameter distribution (see section 2.5 for more details).

4. Creating the right hand side (b) of equation 2.49 which comprises the boundary
conditions and sources. Since MT uses natural EM fields, the source term is
the normal fields generated by 1D layered earth modes (2D case) or 2D earth
models (3D case).

5. Solving the equation system 2.49 for x and a given set of periods. In the 2D
case, x represents E, or Hy for the TE and TM modes, respectively. In the
3D case, the equation system must be solved for two different polarizations or
modes (Ex-Hy and Ey-Hx) (see sections 2.4 and 2.5).

6. Interpolating the computed EM solution to the station locations to calculate
the model responses at the given locations.

In general, any forward modelling scheme contains these steps. The main difference
between the 2D and 3D cases is in the construction of the coefficients matrix A (step
3), which has different dimensions and structures in both cases.

To parallelize the steps above, one has to examine their dependency on each other and
to define the required tasks which can be computed on each processor independently.
Steps 1 to 4 do not require much memory and computation time. Therefore, they
can easily be accomplished on a single processor, say the master processor. The main
computational effort takes place in step 5, in which the equation system is solved for
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a number of periods and modes. Since the solution of 2.49 for one period does not
depend on the solution of the other periods, eq. 2.49 can be solved independently for
one particular period. Furthermore, the solution of different modes can also be done
independently, since the solution of each mode does not depend on the other mode.
In summary, the parallelization scheme to solve the forward modeling problem in the
2D and 3D cases can be addressed as follows: The master processor reads the input
parameters and creates A and b, sends A, b and the index of one period and one
mode to individual worker processors. Each worker processor receives the required
parameters to solve the equation system 2.49. Once the workers finish their compu-
tation task, they send a ready signal to the master. Afterwards, the master starts
receiving the model responses from each worker.

In the 3D case, computing the model responses at a given location for one partic-
ular period requires the solution from both modes. Consequently, a communication
between the processors takes place to exchange solutions from different modes. Let
us consider the following example: Suppose that we want to solve the 3D MT for-
ward modelling problem using the model parameters m, two periods (Pery, Pers)
and ten stations (Stn;,i = 1,---,10) for which the model responses must be calcu-
lated. Assume that there are five processors available (F, ..., P, in Fig. 3.10). The
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Broadcast A and b (send to all workers)—
For each period
For each mode
Send 1Per, 1mode to each worker

Worker (Py): V Worker ((P,): Worker (P3): v Worker (P,): 1
Broadcast A and b (receive from Broadcalst A and b (receive from Broadcast A and b (receive from Broadcast A and b (receiye from
master) master)v master) master) 3
Receive Per(1), mode(1) from master Receive Per(1), mode(2) from master Receive Per(2), mode(1) from master Receive Per(2), mode(2)from master
| | | |
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Figure 3.10: Parallelization scheme to solve the 3D MT forward modelling problem.
The example demonstrates the communication as well as the computation steps to
compute the model responses using five processors (P, -+ , Py).
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presented scheme to solve the forward modelling problem in parallel has the following
advantages:

e The time required to solve the forward problem is reduced to t/Num Proc, where
t is the time required to solve the problem with one processor (serial code) and
NumProc is the number of processors. Ideally, NumProc is equal to N Per %2,
where N Per is number of periods and 2 stands for number of modes.

e The memory space required for the EM solution (the result after step 5) is
reduced by the factor N Per, because the EM solution is distributed between
all processors, and only the solutions of the two modes need to be stored on the
memory of each processor?.

e The communication between processors is kept at a minimum. Only one pair of
processors communicates with each other to send and receive data. Additionally,
only half of the workers will communicate with the master to send the model
responses as messages, which is small in comparison to the entire EM solution
message that consists of the electric field components (E,, E,, E,) at the edges
of each model parameter and for all periods.

3.4 An efficient scheme to invert MT data in 2D /3D
in parallel

Inverting MT data in 3D in parallel is a relatively new issue in the electromagnetic
community. FEarlier work in this context is published by Newman & Alumbaugh
(1997), where they used massively parallel (MP) computers to solve the 3D inverse
problem for controlled source electromagnetic (CSEM) method. The applied parallel
scheme for the 3D inversion of CSEM data based on the same principle used to solve
the 3D forward modelling problem published by Alumbaugh et al. (1996). However,
Newman & Alumbaugh (1997) used the conjugate gradients method (CG) to solve
iteratively the normal equation results from the inverse problem. Later, Newman &
Alumbaugh (2000) used the same concept to invert 3D MT data in parallel.

A recent study published by Siripunvaraporn & Egbert (2009) extents the serial ver-
sion of the 3D MT inversion code (WSINV3DMT) to run in parallel. The used
inversion scheme in WSINV3DMT is the occam inversion, however in data space (see
sec. 2.6.5; Siripunvaraporn et al. (2005)). The parallel scheme proposed by Siripun-
varaporn & Egbert (2009) is more appropriate for clusters with few processors. This
parallel scheme is based on distributing the forward modelling as well the sensitiv-
ity matrix computations on several processors. However, each processor solves the

2 Assuming that the number of processors is equal to N Per * 2.
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forward modelling problem and computes the sensitivity matrix for a sub set of pe-
riods. This implies that constructing the cross product matrix requires a massive
communication between processors to exchange the subsets of the sensitivity matrix
(Siripunvaraporn & Egbert, 2009). The constructed normal equation system is then
solved for a model update using Cholesky decomposition if the number of data is
small. Otherwise, a parallel iterative solver (i.e. PCG) is used to solve the normal
equation for a model update (Siripunvaraporn & Egbert, 2009).

Most recently, Commer & Newman (2009) applied the method of nonlinear conju-
gate gradient (NLCG) to solve the joint 3D inverse problem for CSEM and MT in
parallel. The proposed parallel scheme based on the work published by Alumbaugh
et al. (1996). However, several strategies on different levels of parallelization are
combined to optimise the solution of the 3D joint inversion. For the forward problem
of CSEM and MT data, a fast iterative QMR solver was adopted by Commer & New-
man (2009). Furthermore, Commer & Newman (2009) applied a grid-optimization
strategy to limit the FD mesh.

The parallelization schemes presented in this section are based on the mathematical
formulation of the inversion process discussed in section 2.6.

Following the same strategy as in solving the forward modelling problem in parallel by
decomposing the problem in several steps, the inversion process can be decomposed
as follows:

1. Setting the inversion parameters (e.g. number of iterations, desired R.M.S.,
starting value of the regularization parameter,..., etc).

2. Solving the forward modelling problem to compute the residuum between the
measured and predicted data (eq. 2.55).

3. Compute the sensitivity matrix J if it is required or compute the multiplications
J7d and Jm (see section 2.6 for more details).

4. Solving the normal equation in the model space (i.e. eq. 2.71) or in the data
space (eq. 2.105).

5. Repeat steps 2 to 4 until a stopping criterion is reached (e.g. maximum number
of iterations or the residuum is less than the given value).

Some of the steps discussed above depend on the used inversion scheme. Many inver-
sion schemes (e.g. Gauss-Newton, Marquard-Levenberg and Occam inversion) require
an explicit expression of the sensitivity matrix J at each iteration to solve the normal
equation for a model (m) or a model update (dm) (see section 2.6). Furthermore,
inversion schemes based on an explicit use of J also require the cross product multi-
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plications JJ7 or J'J 3. Computing the sensitivity matrix and computation of the
cross product are the most time and memory space consuming steps in the inver-
sion schemes that require an explicit expression of the sensitivity matrix J. Other
widespread inversion schemes, especially in 3D, are the conjugate gradient method
(CG) to solve the linearized normal equation and the non linear conjugate gradient
method (NLCG) to solve directly the non linear inverse problem. In both meth-
ods the explicit use of J is avoided by forming the matrix-vector products (J¥d and
Jm) which help to reduce the required memory space (see section 2.6). However,
computing these two particular matrix-vector products is very time consuming, when
calculated on a single processor.

To keep the developed MPI-Module in this thesis as generic and multipurpose as pos-
sible, the next two subsections describe solutions for parallelizing the computation of
the sensitivity matrix and the cross product.

3.4.1 Computing the sensitivity matrix in parallel

The calculation of the sensitivity matrix in parallel is complicated, as both computa-
tion time and memory space must be optimized. Furthermore, various mathematical
operations must be carried out using the entries of the distributed sensitivity matrix
making the procedure of dealing with this matrix more complicated.

To clarify the concept of parallelizing the computation of the sensitivity matrix, let
us have a look on the structure of this matrix: By definition, the sensitivity matrix
describes how sensitive predicted data points® are with respect to small changes of
the model parameters (see section 2.6.2). Therefore, the number of columns of J is
equal to the total number of model parameters, say M, and the number of rows is
equal to the total number of predicted data points, say N (Fig 3.11).

Figure 3.11 demonstrates the structure of the sensitivity matrix by using two peri-
ods (Per; and Persy), three stations (Stng, Stng and Stng) and eight model responses
representing the real and imaginary parts of the impedance tensor at each station®.
Hence, each block of eight rows in J relates to one station and one period. This struc-
ture of J allows dealing with the matrix block-wise. Each block contains a number
of rows equal to the number of model responses to be inverted, multiplied by two to
allow for real and imaginary parts (or apparent resistivity and phase).

Section 2.6.2 addresses the mathematical formulation to compute the entries of the
sensitivity and describes several characteristics of J. Similar to solving the forward
modelling problem in parallel, the computation of J for a particular period, will not

3Depending if the inversion problem is solved in model or data space, respectively

4The predicted or measured data can be presented as real and imaginary parts of the impedance
tensor or as apparent resistivity and phase.

®Other model responses could be also included, e.g. the vertical and horizontal magnetic transfer
functions. In this case the number of rows in each block expands according to the number of required
model responses
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: : : < : Block;
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v (| due 481 - 48.M

Figure 3.11: The structure of the sensitivity matrix (J) when using M model param-
eters and 48 data points: 2 periods x 3 stations x 8 real and imaginary parts of
the impedance tensor. The matrix can be presented block-wise. Each block contains
the model responses associated with one period and one station. In this example, J
contains 6 blocks (2 periods x 3 stations).

depend on the computation of other periods. Therefore, one can parallelize over pe-
riods. Furthermore, the computation of several rows (blocks in fig. 3.11) of J, which
correspond to one station is independent from the computation of other rows (corre-
sponding to other stations). Hence, one can also parallelize over stations. This means
that each processor will be responsible for the computation of one block of J (Fig.
3.12).

The computation of J requires the existence of the forward solution, in particular
the electric and magnetic fields (two modes in 3D) on all nodes or edges of the model
resulting from the forward modelling step (see section 2.6.2). That is, if the complete
EM solution for one period is kept in the memory of each worker, then each worker
can compute the corresponding block of J for one particular period and any station.
Consequently, if we implement the forward modelling steps before computing J, which
is normally the case, then we can implement the parallelization scheme as follows: The
master sends the indices of one period and one mode to each worker. Each worker
computes the EM solution for one period and one mode. Communication between
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Figure 3.12: Task distribution among six processors to compute the blocks of the
sensitivity matrix J presented in Fig. 3.11. The master processor (Fp), as well as the
worker processors (P;-FP;), have the task to compute J. P, establishes a communication
with each worker to send the indices of one period and one station. Each processor is
responsible for the computation of one block of J. Once the computation is finished,
each worker sends a finish signal to the master.

two workers working on the same period takes place to exchange the EM solutions for
the two different modes, so that each worker keeps a copy of the EM forward solution
in its memory. The next task is to compute J. Since the master knows which worker
has the EM solution for a particular period, it sends that period index to the worker
who is hosting the respective EM solution. Additionally, the master sends one station
index to each of the workers; it can be any station index (Fig. 3.13).

Figure 3.13 illustrates the communication between the master and the workers for
solving the forward modelling problem and subsequently computing the sensitivity
matrix (J).

3.4.2 Cross product JJ” and J7J in parallel

Inversion schemes that make explicit use of Jacobi matrix (J) require performing
several mathematical operations with that matrix. The most important and time
consuming mathematical operation is the cross product multiplication.

If the inverse problem is solved in the data space, the cross product JJ7 is computed,
whereas in model space the cross product J7J is calculated. Carrying out any of these
cross product multiplications in parallel is not a trivial task, since J is distributed
block- wise among all processors (Figs. 3.12 and 3.13). In both cases of cross product
multiplications we can make use of the sample code for general matrix multiplication
presented in Fig. 3.9.

Before addressing the cross product in detail, it is worthwhile to notice that in the
computation stage of J, each processor saves the index of the received period and sta-
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Figure 3.13: Task distribution among six processors to solve the forward modelling
problem and subsequently compute the corresponding blocks of the sensitivity matrix
(J). The first task in this parallel scheme is to solve the forward modelling problem,
which is now a part of the task “Compute_J”. After solving the forward modelling
problem, each processor keeps the EM solution for one particular period in its memory.
This can be done by exchanging the EM solutions for the two different modes between
two processors (e.g. between P; and P,) or by receiving the solutions for the two
different modes from two different processors (e.g. P3). J is computed in parallel on
all six processors: The master sends the index of one particular period to the worker
who is hosting the respective EM solution and any station index. For example, the
blocks corresponding to the first period are computed by processors P;-Ps.
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tion, as these indices are required later to compute the block index. Once the parallel
computation of J is accomplished, each processor sends the block index to the master.
The master receives these indices and saves them together with the processor ID. The
master broadcasts this information to all workers, so that each worker is informed
about the location of the blocks.

Several strategies can be adopted to achieve the cross product multiplication in paral-
lel. However, which one to apply is a question of performance in terms of computation
and communication. Therefore, several strategies will be discussed and their perfor-
mance is examined in terms of computation and communication requirements.

Let us consider the following example: Suppose that we have two periods, seven sta-
tions, M model parameters and eight processors. Computing the sensitivity matrix
(J) in parallel requires distributing the computation of the matrix block-wise between
all processors. Since we have 14 blocks (2 periodsx 7 stations) but only 7 processors
as workers, each processor must compute and save two blocks of J (i.e. P; computes
and saves block; and blockg). Dealing with J block-wise means that the multiplica-
tions occur between the blocks rather than between rows. To keep track which rows
have been multiplied with each other on which processor, each processor saves the
index of the multiplied rows in two vectors and the multiplication values in a third
vector. The master receives these vectors from each processor to sort and save the
final result of the cross product multiplication JJ7.

Let us now consider how the cross product JJ7 is computed in parallel. The simplest
method to compute JJ? on one processor requires two loops. The first loop runs
over all blocks (B;,i = 1,..., Nblocks) and the second loop is also over all blocks but
starting from ® (B;,j = i,..., Nblocks). In the first loop the master requests from
the processor who owns block; to return the block. In the second loop, the master asks
for block; to compute the multiplications block; x block;. Obviously, this scheme is
very inefficient, because only the communication is parallelized while the computation
is in serial.

To move one step further in the direction of parallelizing the cross product multipli-
cation of the distributed J, each processor contributes to the multiplication. Each
processor multiplies its blocks with all other blocks having indices equal to or smaller
than its own blocks. This, however, requires communication between the processors
to exchange their blocks. For instance, processor P; which owns the blocks (B; and
Bg) must first send Bj to all other processor. Afterwards, it can carry out its mul-
tiplications (B; X By and Bg x Bj). The next step is to multiply By with all other
blocks. Therefore, P, which owns B, starts sending By to all other processors, start-
ing with P;. Once P has finished sending B,, it can start with the computation of
By x By and Bg X Bs, ete. (see fig. 3.14). Many computations can be skipped (the
yellow coloured multiplications in fig. 3.14) as they have been carried out already

6Since each block will be multiplied with all blocks having indices greater or equal its index.
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by another processor (i.e. By X By is skipped on Py, since P, has already calculated
B; x Bj). By examining the communication and computation performance of this
method we can deduce that the computation part is efficient, as it is carried out on
several processors in parallel. However, the communication part is not optimal, since
one processor must send its block to all other processors starting from the first pro-
cessor P;. As a consequence, many processors are idle, waiting for communications
to finish before they can enter the computation stage (3.14). All processors must
enter an idle state until the busy processor has accomplished its communication and
subsequently its computation tasks. For example, P, tries to send By to P; (the first
processor in the communicator), while P; is still busy distributing By and it cannot
enter the computation stage. For that reason all other processors must wait until P;
is ready with its computational tasks before they can receive By from P (Fig. 3.14).
Obviously, the communication aspects of this scheme require more attention.

As a first step, we can remove the restriction that the send loop on each processor

P;owns Blocks: By, | P,owns Blocks: B, | Psowns Blocks: Bs, P4 owns Blocks: Bg, Ps owns Blocks: Bs, Pg owns Blocks: Bg, P; owns Blocks: By,
Bg By Bio By By B3 Bis
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Send B; to P3 Compute B,*B; Recv. B, from P, Idle Idle t,
Send B, to P, Bs*B; Compute By*B; Recv B, from P, Idle Idle ty
Send B; to Ps B1*By Compute B,*B,; Recv. B from P, te |
Send B, to Pg By1*B; Compute Bs*B, Recv. B, from P, ts
Send B, to P, Idle B1,*B, Compute Bg*B, Recv. B, from P ts
Compute B,*B, Idle By3*B; Compute B;*B, b |
B*B, Idle B1*By ts
Recv. B, from P, Send B, to P, Idle to
Compute B;*B, skipped | Send B, to P, Recv. B, from P, Idle tio
Bg*B, Send B, to Py Compute B;*B, Recv. B, from P, Idle thy
Idle Send B, to Ps B1o*B, Compute B4*B, Recv. B, from P, ty,
Recv. B; from P; Send B, to Py Send B; to Py B11*B, Compute Bs*B, Recv. B, from P, tys k4
Compute B,*B; skipped | Send B, to P, B1,*B, Compute B¢*B, Recv. B, from P, tia 5
Bg*B3 Compute B,*B, Idle B13*B, Compute B;*B, s =
¥ Idle M o
By*B; Y te | |3
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Idle Compute B,*B; skipped | Send Bs to P, Recv. Bs from P5 Idle di |t |
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Recv. B, from P, Send B to P, Send B, to Py By,*B; Compute Bg*B; Recv. B; from Py t
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: Compute B;*B,skipped | Send B, to Ps Recv. B, from P, Idle s
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Figure 3.14: A straight forward procedure to compute the multiplication JJ? in par-
allel. In this example, each processor owns some blocks of J that must be multiplied
with all other blocks. Starting with B; to By4, each processor must confirm that it
owns the required block. If a processor owns the block, it enters in a loop, starting
from P; over all processors excluding itself and sends the required block to all other
processors. All other processors are in idle state until they have received the required
block. Due to the symmetrical properties of the cross multiplication, the computa-
tions coloured with yellow can been skipped, since they have been computed already
by other processors.

starts from the first processor. Instead, each processor who has to send a block sends
the block to all processors ahead and then returns to address the processors behind.
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For example, P, will not send By to P, as in the previous example, but sends Bj
to Ps,...P; before sending By to P; (Fig. 3.15). In this case, the processors waste
less time waiting for new blocks before entering the computation phase. This simple
consideration can minimise the idle time of the processors considerably.

In the previous two examples we still have the problem that one processor must send
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Figure 3.15: A modified version of the scheme presented in figure 3.14. Now, each
processor who has to send a required block, distributes its block to all other processors.
First, the processor sends its block to all other processors ahead and then returns to
serve the processors behind. Comparison with Fig. 3.14 shows that the idle states of
the individual processors are significantly reduced.

its block to all other processors. The time needed to perform the communication is
considerably perceptible, particularly, if we have several hundreds of processors. How-
ever, the use of as many processors as possible is essential to optimise the computation
of the sensitivity matrix. Therefore, an appropriate strategy must be considered to
optimise the computation of J and to minimise the communication in computing JJ7.
Considering the method presented in Fig. 3.4c, we can modify the send phase for the
cross product as follows (see also Figs. 3.16 and 3.17):

1. All processors enter two main loops: The first loop runs over all blocks (from 1
to 14 in the example). The second loop runs only over the saved blocks on each
processor (2 blocks in this example).
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2. While executing the first loop, each processor verifies that it owns the required
block. Afterwards, the processor sends this block to two other processors only
and enters the computation stage.

3. The two processors which have received the message keep a copy of the block
before distributing the block to another four processors. However, each processor
sends the block only to two other processors.

4. This scheme can be continued to form a tree of receiving and sending procedures.
In the next step, four processors own the block. Similar to the previous step,
each processor in this level keeps a copy of the block and then forwards it to
another two processors. In total, the four processors in this level forward the
block to eight processors (3.17).

The steps above must be continued until all processors have obtained a copy of the
block so that they can enter the computation phase, to carry out the multiplication
of their own blocks with the received one. Figure 3.17 demonstrates the concept of
the send hierarchy used to establish the communication in the method presented in
Fig. 3.16. Obviously, none of the processors sends its block to all other processors.
Consequently, the required time for the send phase is considerably reduced for each
processor, and we can use as many processors as we wish.

In the previous examples, computation tasks marked with yellow boxes in Figs.
3.14, 3.15 and 3.16 can be skipped because of the symmetrical properties of the final
result. When considering the computation task of each processor, it becomes evident
that some processors accomplish more computational tasks than others. However,
considering the presented concept of the modified version of the cross product sample
code in Fig. 3.9b, one can further optimise the distribution of the computation tasks.
Figure 3.18 demonstrates the scheme in which each processor accomplishes an equal
number of block multiplications.

It is interesting to note that the cross product multiplication in the model space
(JTJ) can be computed more efficiently than JJ? because fewer communications are
required between processors. Each processor keeps one or more blocks in its memory
and can compute all column by column multiplications using its own blocks, thereby
creating partial sums (sum-local in Fig. 3.19a). After the workers have computed
their partial sums, the master collects all local sums to compute the global sum and
save it as a vector containing one half of JTJ (Fig. 3.19¢). Fortunately, this kind
of operations is supported by MPI with the subroutine MPI_REDUCE(local_value,
global value, 1,...,MPI_SUM, WHERE,...) which is part of the collective commu-
nication library. The subroutine MPI_REDUCE performs a global reduce operation (such
as SUM, MAX, LOGICAL, etc.) across all processors located in the same communica-
tor using distributed values. In our examples, the reduce operation is the summation
applied to the distributed values of sum_local to compute sum_global on the master
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Send B, to P, Recv. B, from P, Recv. B, from P, Send B, to P, Idle Idle te | |3
Send B, to Ps Send B, to Pg Compute B;*B, skipped | Compute B,*B, Recv. B, from Py Recv. B, from P, Idle ? °
Compute B;*B, skipped | Send B, to P, B1o*Bs By;*B, Compute Bs*B, Compute Bg*B, Recv. B, from P, tao
Bg*B, Compute B,*B, skipped By,*B, B13*By Compute B,*B, tyy
Recv. Bs from Ps By*B, Idle Idle Send Bs to Py B14*B, th
Send Bs to P Recv. Bs from Ps Recv. Bs from P, Send Bs to P, Idle tys
Send Bs to Py Send Bs to Py Compute B3*Bs skipped Recv. Bs from P, Compute Bs*Bs Recv. Bs from P, ldle ths
Compute B;*Bs skipped | Send Bs to P, B1o*Bs Compute B,*Bs skipped B1,*Bs Compute Bg*Bs Recv. Bs from P, tas
Bs*Bs Compute B,*Bs skipped B11*Bs B13*Bs Compute B,*Bs the
Recv. By from Pg Bs*Bs Send Bg to P, Bis*Bs [t |
Send Bg to P Recv. Bg from Py Recv. B from Py Send Bg to P, tas
Send Bg to Py Send Bg to Ps Compute B3*Bg skipped Recv. Bgfrom P, Recv. Bgfrom P, Compute Bg*Bg Idle tho
Compute B;*Bgskipped | Send Bg to P, B1o*Bs Compute B,*Bjg skipped Compute Bs*Bg skipped By3*Bs Recv. B from P, tao
Bg*Bs Compute B,*Bj skipped By *Bs B,*Bs Compute B,*Bg 3
Idle Bs*Bs Idle B1a*Bs ta
Recv. B, from P, Idle Idle Idle Idle Send Bg to Py s
Send B; to P Recv. B; from P; Recv. B; from P; Send Bg to P, 3
Send B; to P, Send B, to Ps Compute B;*B; skipped Recv. B; from P, Recv. B; from P, Compute B;*B; 35
Compute B;*B; skipped | Send B; to Pg B1o*B; Compute B,*B; skipped Compute Bs*B; skipped Recv. Bs from P, B1,*B; [t |
Bg*B; Compute B,*B; skipped B.1*B; B1,*B; Compute Bg*B; skipped tay
By*B; B1s*B; tsg

Figure 3.16: An optimal scheme in terms of communication and computation time to
compute the cross product JJ” on many processors. In this scheme, each processor
has to perform one receive task and two send tasks. None of the processors enters in
a loop to send its block to all other processors. Even if the idle state of the processors
is similar when compare it to the previous methods (Figs. 3.14 and 3.15), the number
of send tasks for each processor is considerably smaller. This becomes very important
when distributing the computational problem on a big cluster with several hundreds
of processors.

processor (Fig. 3.19¢).
To describe the scheme to compute J7J in parallel, we make use of the example to
demonstrate the multiplication JJ7. On each processor, three loops (i,j,k) must be
implemented (Fig. 3.19b): The first loop (i) runs over all model parameters M while
the first column is kept fixed”. The second loop (j) also runs over M but starts from
i, because of the symmetrical properties of the final result. The third loop (k) runs
over all data responses (NResp) multiplied by the number of blocks on each processor
(NResp x NBlocks). In this example we have NResp=8, corresponding to the eight
real and imaginary parts of the impedance tensor Z and two blocks (Fig. 3.19).
Obviously, computing the cross product J7J in parallel requires less communication

"In column by column multiplication, one column remains fixed and one moves over all other
columns.
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Sends Block3 Sends Block, Sends Block3 Sends Block3
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Receives Block, Receives Block, Receives Block, Receives Block, Receives Block, Receives Block, Receives Block, Receives Block,

Figure 3.17: The send hierarchy used in figure 3.16. Each processor performs a
maximum of one receive task and two send tasks. In the upper most level, processor
Py has only two send tasks. In the lower most level (Ps through Pi5), the processors
have only one receive task each.

P, has: Ps has: P has: P; has:
Processors:
B, and Bg Bs and By, |Bgand B3 (B;and B,
# of ion tasks: 15 15 15 15 15 15 15
BB, B;B, BeB, B,B, BB, X X
X BsB, BB, B,B, BgB, X X
X X BsB; BgBs B;B; BgB; X X
X X X BsB, BBy BB, B4B, X X
X X X X BsBs BgBs B,Bs BgBs X X
X X X X X BeB; BB, BBs B,3B, X
X X X X X X B,B; BgB, By3B; BB,
X X X X X X X BgBg By3Bg BB
B,B, X X X X X X X By3By B14Bs
B,Byy X X X X X X X By3Byo B14Bio
BBy, X X X X X X X Bi13Byy B1sB1
BBy, X X X X X X X By,By, By3By, ByBy,
BBy BsBy3 X X X X X X X By3By3 By4By3
B,By, BsBy, BeBys X X X X X X X By4B1g

Figure 3.18: The distribution of the computation tasks among all processors. The
matrix shows the final result of the JJ”. Each processor is coded with a colour, to
distinguish which computation has been carried out on a particular processor. Now,
each processor performs the same number of rowxrow computation tasks (15).

than JJ7. However, the end result (half of J7J) with the dimension M+[(M-1)*M/2],
where M is the model dimension, requires more memory than storing the half of JJ7,
which has the dimension N+[(N-1)*N/2|, where N is the number of the data points.
Consequently, solving the normal equation in the model space on one processor in a
serial manner can take a long time. This difficulty of having to solve the normal equa-
tion with huge dimensions can be avoided by parallelizing the corresponding solver of
linear equations. As pointed out in the introduction of this chapter, solving a linear
set of equations in parallel is a great challenge for mathematicians. Several techniques,
strategies and methods have been already developed and implemented in ready to use
libraries. In libraries such as ScaLAPACK and PLAPACK, which are the parallelized
version of the original serial LAPACK library, one can find methods (i.e. Cholesky
and LU decomposition) to solve the normal equation in data and in the model space
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a)
Workerl (Py):
sum_localy X X
sum_local, sum_local, X X
12]113).. |1LM sum_local; sum_local; sum_locals
22123 .. |2M :
32133 .. |3M|—
M8 M8 M8 | .. | M8 81(82(83| .. |8M : : :
T sum_localy sum_localy, sum_localy oo
Block', Block,
b)
Worker1 (P,): Worker6 (Pg):
Fori=1,M Fori=1,M
For j=i,M For j=i,M
counterl=i, counter2=j, sum_local(j)=0.0 counterl=i, counter2=j, sum_local(j)=0.0
For k=1,NResp*NBlock For k=1,NResp*NBlock
sum_local(j)=sum_local(j) +Block,(counterl)*Block;(counter2) sum_local(j)=sum_local(j)+Blocks(counterl)*Blocks(counter2)
counterl=counterl+M counterl=counterl+M
counter2=counter2+M counter2=counter2+M
Next Next
ij=i+[(-1)*j/2] ij=i+[(j-1)*j/2]
MPI_REDUCE(sum_local(j), sum_global(ij), 1, .., MPI_SUM,on_Master, ...) MPI_REDUCE(sum_local(j), sum_global(ij), 1, .., MPI_SUM,on_Master, ...)
Next Next
Next Next
c)
P, P, P P, Ps Ps
sum_local(1) sum_local(1) sum_local(1) sum_local(1) sum_local(1) sum_local(1)

Master (Po)

sum_global(1)= sum_local(1) + sum_local(1) + sum_local(1) + sum_local(1) + sum_local(1) + sum_local(1)

Figure 3.19: The procedure to compute the cross product JTJ. a) In this case each
processor can compute the partial sums “sum_loc” by multiplying each column of a
block with all other columns. b) The implementation of the loops i,j and k is identical
for each processor. ¢) The MPI subroutine MPI_REDUCE(. ..) collects on the master
Py all local sums “sum_loc* from all worker processors and saves them in the global
sum “sum_global “.

in parallel. However, all of these libraries require that the equation system is stored
on one processor. The distribution of the problem to parallel processors is done in-
ternally by the library. This is usually no problem for data space inversion, since the
normal equation has the dimension of N+[(N-1)*N/2]. However, in the model space,
the dimension of the problem may easily exceed the memory available on one proces-
sor. But, it is feasible to modify the existing parallelized solvers to solve distributed
equation systems without having to store it on one processor. This however is beyond
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the scope of this thesis.

3.4.3 Further mathematical operations with the sensitivity matrix
in parallel

In the previous subsection, the developed methods to compute the cross products
JJT and J7J in parallel have been discussed. However, before calculating these cross
products, the sensitivity matrix (J) must first be smoothed with the model covariance
matrix (C,,) in data space inversion or weighted with the data covariance matrix (Cy )
in the model space inversion (see eqs. 2.60, 2.65, and 2.72). In another words, prior
to calculating the cross products JJ7 and J7J, J must be converted into:

J = JCl/2 Data space inversion
J = C;l/zJ Model space inversion

where CL/% and C;l/ ? are one half of the model smoothing and one half of the data
weighting, respectively (Siripunvaraporn & Egbert, 2000; Egbert, 2006). Hence, the
actual cross products JJ7 and J7J for which we discussed their parallelization schemes
in the previous section, take the form:

=T

JJ = JCcl2cl2iT = 3C,,37 (3.1)
33 = JTc; Moy = 3TC (3.2)

Starting with eq. 3.1, the regularization term C,, in data space inversion can be
obtained without having to create and save C,, (Siripunvaraporn et al. , 2005). This
can be explained if we analyse the effect of C,, on J”. In general, C,, causes a
smoothing of the updated model parameters after solving the normal equation (in
data or model space). However, in the formulation of data space inversion, C,, acts
on the sensitivity matrix to generate smoothed rows of J, and consequently smoothed
model parameters. For parallelization schemes of the cross product JC,,J7, it is very
important to know how to overcome the difficulty of having to create the smoothed
rows of J without having to calculate the multiplications J CH? and CY2JT with
an implicit use of Cl. Siripunvaraporn & Egbert (2000) showed that one row of
J (Note that the length of one row of J is equal to M, the total number of model
parameters) can be smoothed by convolution with C,,. The convolution process is
achieved numerically by solving a 2D (3D) diffusion equation in 2D (3D) case (Further
details on this approach can be found in Siripunvaraporn & Egbert (2000)).

For the parallelization scheme of the cross product J C%ZC}#J T it is very important
to notice that the convolution affects on each row of J, however, independently. Since
the "rough” rows of J are calculated independently, we can apply the convolution of
each "rough” row with C,, to yield a smoothed row. This is achieved immediately
after computing one row in the computation stage of J. Consequently, after the
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computation stage of J and prior to the cross product, smoothed blocks of J are
available on each processor (Fig. 3.20).

The multiplication of J¥ with C;* in the model space (eq. ) also can be obtained at
the computation stage of J. Noting that the matrix Cgl, which contains the inverse of
the data error (see eq. 2.55) is diagonal, the multiplication can be done by multiplying
one particular element in each row of J with the corresponding value in C;l.

In both data and model space inversion, the right hand side of the normal equations
(2.72 and 2.106) contains an expression that depends on the multiplication of J with
the model parameters (m):

~

d,=d-F(m,)+J,m, (3.3)

where d represents the data vector, F(m) the model response vector, my, the model
parameters at the n’th iteration. The multiplication J,m, can be done very effi-
ciently when considering that each row of J must be multiplied with m,,. Since m,, is
broadcasted from the master to all processors to compute F(m,,), the multiplication
J,m, can be executed in parallel while computing each element of J,,.

We can extend this approach to compute Eik, because d is stored on all processors and
F(my) for one particular period is also available on the current processor. However,
proper bookkeeping of all indices of received periods and stations is very important
to make sure that equation 3.3 is implemented correctly.

Figure 3.20 demonstrates the computation of J as shown in Fig. 3.12 with emphasis
on the implemented steps to compute d; and to smooth the rows of J.
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Master (Py), task: Compute J
For all Periods

For all Stations
Send one station and one period to each worker

Worker (P)): w Worker (P,): ¢ Worker (P3): ¢ Worker (Py): Worker (Ps): v Worker (Pg): v
Receive Per; and Stn, Receive Per; and Stn, Receive Per; and Stns Receive Per, and Stn; Receive Per, and Stn, Receive Per, and Stn,
from master from master from master from master from master from master
Compute Block, Compute Block, Compute Blocks Compute Block, Compute Blocks Compute Blockg
Send finish signal to Send finish signal to Send finish signal to Send finish signal to Send finish signal to Send finish signal to
master master master master master master
Master (Py):
From all workers:
» Receive finish signal
I
— Compute Block;:
Get the index of the first

. row in the block using Stn;

Period index=Per; and station index= Stn; and Per,.

row_index =[(Per, —1) * NSta * NResponses] +[NResponses * (Stn, —1)] |

For resp=1 to NResponses For each model parameter

sum=0 »| i, compute the difference
row_index= row_index+resp m-m®™"™",
For i=1 to M model parameters s
dRho = m(i) — m™ (i) For each model parameter

i, compute the elements

Compute J(row_index,1) for the (row_index)’th row

— I 7k P
sum = sum+J (row _index, i) * dRho and multiplied with dRho.
next
c?(row_ index) = d(row _index) — F (resp) + sum I
Call smooth_row_in_J (J (row_index, :)) | N Compute dHat for the

Next (row_index)’th row.

. |

Smooth the (row_index)’th
row of the J matrix by call
the corresponding
subroutine.

Figure 3.20: Part of the code inside routine ”Compute Block;” (see figure 3.12) to
highlight the steps required to compute d; and a smoothed sensitivity matrix (J).

3.5 Generality and performance tests of the parallel
scheme using synthetic data

The previously developed parallel schemes were written independently from the codes
that solve the forward modeling and inversion problems. Therefore, these parallel
schemes can be considered as generic schemes that can be linked to any source code
to convert it from serial to parallel with minimal changes in the original code. Fig-
ure 3.21 clarifies this idea in the context of solving the forward modeling problem.
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a)

Serial Code: Main Program All Periods, all Components, all Stations |

Read Data_parameters Input Output

Read Model_parameters e ~ ~
Call SolveForwardModeling (Data_parameters, Model_parameters, EM_Solution, Model_Responses)
Write EM_Solution
Write Model_Responses For all Periods, all Stations |

| For all Periods, all Modes |

b) <)
Parallel Code: Main Program Parallel Module:

Master_tasks:
Send Task to all workers
Read Data_parameters If  Task = ‘Distribute Data_parameters‘ then
Read Model_parameters Send a copy of data parameters to all workers
Elseif Task = ‘Distribute Model_parameters’ then
Send a copy of model parameters to all workers

If (I_am_worker) call worker_tasks

Task = ‘Distribute Data_parameters’

Call Master tasks Elseif Task = ‘SolveForwardModeling * then
Send one period and one mode to each worker

Task = ‘Distribute Model_parameters* Receive EM_Solution for one period and one mode from each worker

Call Master tasks Compute Model_Responses

- End if

Task = “ SolveForwardModeling *

Call Master_tasks Worker_tasks:

Do

Write EM_Solution Receive Task from Master
Write Model_Responses If  Task = ‘Distribute Data_parameters‘ then

Receive a copy of data parameters from Master
Elseif Task = ‘Distribute Model_parameters’ then
Receive a copy of model parameters from Master
Elseif Task = ‘SolveForwardModeling * then
Receive one period and one mode from Mastér
Call SolveForwardModeling (Data_paraméters, Model_parameters,
EM_Solution)
Send EM_Solution for one period and dre mode to Master
Elseif Task = ‘Stop‘then
EXIT loop For one Period

End if and one mode
Loop

One Period

Figure 3.21: Rewriting the main program from serial to parallel. a) The serial code
that must be parallelized which contains the instruction ’Call SolveForwardModeling’.
b) The parallelized version linked to the parallel module which contains the instruc-
tions "Master_tasks’ and "Worker_tasks’. ¢) The parallel module which contains all
necessary instructions to parallelize the instruction 'Call SolveForwardModeling’.

The serial version in Fig. 3.21a contains the instruction ’Call SolveForwardModeling’
which solves the forward modelling problem. Inputs for this instruction are the data
and model parameters. The output is the electromagnetic solution (EM _solution)
and the model responses. The single instruction (’Call SolveForwardModeling’) multi
data (several periods and modes included in data parameters) architecture (SIMD)
presented in Fig. 3.21a can be parallelized if we link it to the developed parallel
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module (Fig. 3.21c). In this case, the serial main program is rewritten as presented
in Fig. 3.21b to establish a link to the parallel module. After initializing the MPI
parameters, the parallel main program starts with sending all workers to a queue
(’Call Worker_tasks’). All workers enter in this queue, which is simply an infinite
loop, to wait for a message from the master indicating the next task ('Receive Task
from Master’). The master reads the instructions in the main program. The first task
for the master is reading the input parameters (data and model). After reading the
input parameters, the master, who is the only processor that owns the input param-
eters, starts distributing the parameters to all workers, so that each worker obtains
a copy of the data and model parameters. Setting the variable 'Task’ to 'Distribute
Data_parameters’ followed by calling the instruction 'Call Master_tasks’ in the main
program, lets the master enter the parallel module. After entering the parallel mod-
ule, in particularly the "Master_Tasks’, the sends the 'Task’ message to all workers,
which is in this case 'Distribute Data_parameters’. The workers who are waiting in
the queue receive the 'Task’ message from the master and go directly to the posi-
tion in the "Worker_tasks’ where they can receive a copy of the data parameters from
the master. Once the master has finished sending a copy of the data parameters, it
returns to the main program to read the next task. After having received the data
from the master, the workers go back to the top of the queue and wait for a new
task. The same steps are performed when executing other tasks, the existing tasks
included in the parallel module are listed in table 3.2. The tasks listed in table 3.2
cover the most important and time consuming steps in solving the forward modeling
and inversion problems. These tasks can be nested in any serial code to convert it to
parallel code. However, minor modifications are necessary in the parallel module to
adjust input/output for each instruction in the serial code.

The generality of the parallel module has been tested by nesting it in two serial codes
that we have access to: WS3DMTINV and the Modular System.

WS3DMTINYV is a serial code developed by Siripunvaraporn (Siripunvaraporn et al.
, 2005) to invert MT data in 3D. The inversion scheme used in this code is Oc-
cam’s inversion solved in data space. The forward modeling problem is solved on a
staggered 3D grid by using the finite difference method (FD). The complex linear
equation system resulting from applying FD (eq. 2.49) is then solved iteratively using
the quasi minimum residual (QMR) method with incomplete LU-decomposition as
preconditioner. On the other hand, the real normal equation resulting from using
occam inversion in data space (eq. 2.106) is solved by Cholesky decomposition.

The Modular System developed by Egbert (Egbert, 2006) is also a serial code, how-
ever, it was written to invert electromagnetic data in multi dimensions (2D and 3D).
Similar approaches as in WS3DMTINV were used in the Modular System to solve the
MT (and any other EM method) forward modelling problem. The inversion module
included in the Modular System is considered as being as generic as possible. Thus, it
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Task

79

Description

Distribute_Data_Parameters

Sending a copy of the data parameters to all workers.

Distribute_Model _Parameters

Sending a copy of the model parameters to all workers.

SolveForwardModeling

Solving the forward modelling problem with the
electromagnetic solution as an optional output.

SolveForwardModeling INV

Solving the forward modelling problem with the
electromagnetic solution kept on each processor. Used
when running the inversion to compute the sensitivity
matrix.

Compute_Sens_Matrix

Computing the sensitivity matrix in parallel.

Computing the cross product JJ7

Cross_product_JJT _one_proces

On one processor.

Cross_product_JJT _method1

Using the method presented in Fig. 3.14.

Cross_product_JJT _method?2

Using the method presented in Fig. 3.15

Cross_product_JJT_method3

Using the method presented in Fig. 3.16.

Cross_product_JTJ

Computing the cross product multiplication J*J

Model_update

Computing C,,J? 3. Used when solving the inverse
problem in data space using Occam inversion scheme.

Compute_JT mult_d

Computing the product J*d. Used when applying the
non-linear conjugate gradient (NLCG) method to solve
the inverse problem.

Compute_J_mult_m

Computing the product Jm. Used when applying the
conjugate gradient method to solve the normal
equation.

Table 3.2: The tasks included in the parallel module together with their description.

does not depend on the type of the electromagnetic data (MT, CSEM, CSMT, etc.)
nor on the dimension of the problem (2D, 3D). At present, the inversion module in
the Modular System contains the non linear conjugate gradient (NLCG) inversion
scheme to invert MT data in 2D and 3D. As explained in section 2.6, the NLCG
inversion scheme does not require an explicit use of the sensitivity matrix J. However,
multiplication like J7d is essential in NLCG. The developed parallel scheme covers
also this multiplication (see table 3.2).

The parallel module was linked to the two serial codes mentioned above to verify the
speed-up factor, first in solving the forward modeling problem and then in solving the
inverse problem in 3D. Furthermore, I evaluated the memory requirements for com-
puting the sensitivity matrix using the memory-efficient concept presented in section
3.4.1).

The first 3D model under consideration consists of a resistive (1000 2m) and a con-
ductive (10 Qm) block, embedded within a 100 Qm half space (Fig. 3.22). The
vertical discontinuity between the blocks is located at the midpoint of the grid (point
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b) Plan view

a) 3D model

Grid Info:
Cells #in X-direction, Nx = 39
Cells # in Y-direction, Ny = 39
Cells #in Z-direction, Nz = 30

_Y]x

c) Side view at X=0
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Figure 3.22: A 3D model used to test the speed of the developed parallel scheme for
solving the MT forward modelling problem. a), b) and c) presenting the 3D model
from different perspectives.

0,0,0). Each block has the dimensions of 13 x 7 x 2 km in the X, Y and Z directions,
respectively. The top of the blocks is located at the earth’s surface (z=0) (Figs. 3.22b
and c). Nine profiles with 24 km length each extending from west to east were cre-
ated. On each profile there are 9 stations with 3 km distance between stations (black
dots in Fig. 3.22b). The distance between two profiles is 3 km. In total there are 81
stations for which the model responses must be calculated. Applying the FD method
to solve the forward modeling problem and therefore computing the model responses
requires (as discussed in section 2.5) discretizing the model into cubes. The 3D model
is discretized into 39 cubes in both X and Y directions and 30 layers in Z direction
plus 7 air layers above the earth surface (Nx=Ny=39, Nz=30+7). Thus, in total there
are 39 x 39 x 37 = 56277 model parameters used to simulate the distribution of the
electromagnetic field in the model and finally computing the model responses at the
desired stations location. The used period range extends from 1000Hz to 1000s over 6
decades with 3 periods per decade, 19 periods in total. Since both WSINV3DMT and
the Modular system use the same approach to solve the forward modeling problem,
either of them can be used to perform a comparison between the serial version and
the parallelized version. To test the speed-up factor, the same model and data param-
eters were used with different numbers of processors. Figure 3.23 demonstrates both
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Figure 3.23: Runtime and speed-up factor as a function of number of processors for
solving the 3D MT forward modelling problem. The result shows that using only 30
processors is enough to reach a maximum speed-up factor of 12 (red curve).

the run time required to compute the model responses (blue curve) and the speed up
factor (red curve).

As expected, the run time decreases with increasing number of processors. However,
the results presented in figure 3.23 show that using only 30 processors is enough to
reach the minimum run time ( 1.4 minutes) and the maximum speed up factor of
12. Even when using 38 processors, so that each processor can solve the problem for
one period and mode, the required run time remains the same (around 1.4 minutes).
This result is not surprising, especially if we examine the time required for solving the
forward modeling problem for each period and mode (Fig. 3.24): The convergence of
the QMR method to the desired accuracy depends on the used period and the model
structures. For periods between 0.1s and 10s, the number of QMR iterations reaches
its maximum (356 iterations) at the period of 1s and the first mode for the model
under consideration (Fig. 3.24, dark blue curve). These 350 iterations require 1.43
minutes of runtime on the computer (Fig. 3.24, light blue curve).

Even if each processor works on one period and one mode, the processor working
with the period of 1s and first mode needs 1.43 minutes to finish its computation.
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Figure 3.24: Number of QMR iterations (dark blue and red curves) and the run time
(light blue and red curves) as a function of periods. At 1s and the first mode, the
QMR requires ~ 350 iteration to reach the desired error in solving eq. 2.52 for the
EM field (dark blue curve). These ~ 350 iterations require 1.43 minutes runtime on
the machine (light blue curve; the light blue and red curves are associated with the
time axis at the right hand side).
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Consequently, the master must wait for at least 1.43 minutes to get a ready signal
from the processor that is working with that particular period to finish the forward
modelling computation. This means that, if we are only interested in solving the
forward modelling problem, 30 processors are enough to optimise this task. However,
if solving the forward modelling is part of the inversion process, we are interested in
using as many processors as we can to achieve the task 'Compute_J’ (see table 3.2).
This task is used when running WSINV3DMT to solve the 3D MT inverse problem.
The following inversion test will clarify this issue.

For the 3D inversion tests, the model responses computed in the previous 3D for-
ward modelling test will be used. However, 2% error are added to the computed
responses to simulate real data. Starting with Occam inversion in data space used
in WSINV3DMT code, this inversion scheme requires explicit use of the sensitivity
matrix J. Thus, directly after solving the forward modelling problem, which is now
part of the inversion process, the entries of J must be computed and saved. Comput-
ing and saving the entries of J is done block wise that distributed over all processors
(see subsection 3.4.1). For the data set under consideration, there are 1539 blocks
(81 stations x 19 periods), since each block contains the entries of J corresponding
to one period and one station. The results presented in Fig. 3.23 suggest that using
only 30 processors is sufficient to accomplish the forward modelling task. However,
using only 30 processors in computing and saving the entries of J causes the following
problems:

e The computation of 1539 blocks will be distributed among 30 processors. This
means that each processor will compute 51 blocks, in average, out of 1539 blocks.
This computation is not efficient in terms of the run time.

e Furthermore, the memory required to save 51 blocks will be huge, if we consider
the number of model parameters and data responses involved in the inversion.
In the example under consideration, there are 56277 model parameters (39 Nx x
39 Ny x 37 Nz) and eight responses at each station and period representing the
real and imaginary parts of the four impedance tensor elements Z,,, Z,,, 2y,

and Z,,. Thus, each block contains 450216 (56277x 8) elements and the 51

blocks on one processor contain 229661016 elements and require 140 MB® of

memory.

The 3D inversion starts with a homogeneous half space (50 m) using the model
presented in Fig. 3.22. The distributed 81 stations and 19 periods at each station
were used for the 3D inversion. Six iterations were required to fit the full impedance
tensor components and reach an RMS value of 0.95.

The 3D model presented in Fig. 3.25 shows that the top and the bottom of the blocks

8Fach element requires 8 byte on the machine, if it is saved as a real number.
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Figure 3.25: The 3D inversion result after 6 iterations with an RMS of 0.95 presented
as a plane view slices. The rectangulars indicate the position of the original conductive
and resistive blocks (see Fig. 3.22) to generate the synthetic data. The result shows
that in contrast to the conductive block, the top and the bottom of the resistive are
not well resolved. Furthermore, four conductive blobs appear in the model at depths
greater than 4 km located at the western and the eastern corners of the conductive

and the resistive blocks, respectively.



3.5. GENERALITY AND PERFORMANCE TESTS OF THE PARALLEL SCHEME
USING SYNTHETIC DATA 85

are not well resolved. Furthermore, the result shows that the bottom of the conduc-
tive block smears to a depth of ~ 3 km. Moreover, four conductive blobs appear in
the model at depths from ~ 4 km to ~ 50 km. The locations of these blobs coincide
with the western and the eastern corners of the conductive and the resistive blocks,
respectively.

Aside from the accuracy of the result obtained from the 3D inversion, we are inter-
ested in this section to measure the speed of the parallelized version of the code. The
3D inversion starts using a minimum number of 4 and a maximum number of 250
processors. Due to the fact that the serial code requires at least 6 GB to save only the
sensitivity matrix, it was impossible to run the serial code for this particular problem
using the available hardware. Moreover, using more than 250 processors was difficult
because of restrictions on the cluster where I solved the problem. However, increasing
the processors number from 4 to 250 gives an idea about the efficiency and the speed
of the parallel code.

Since various mathematical operations are involved in the data space occam inversion
scheme (as discussed above), the speed of each operation as a function of the proces-
sor numbers is analysed. This give us a better idea about the performance of each
operation.

Figure 3.26 shows the run time curves for solving the forward modeling problem (a),
computing the sensitivity matrix (b), achieving the cross product (c) and the total run
time for the 6 iterations (d). Figure 3.26a shows (as discussed above along with Fig.
3.23) that using more than 30 processors in solving the forward modelling problem
does not decrease the run time. However, a run time reduction from 12 minutes when
using 4 processors to 2.5 minutes when using 30 processors and more is achieved.
The need to use many more processors than required to solve the forward modelling
problem for the 3D inversion is obvious when considering the run time required to
compute the entires of the sensitivity matrix. Figure 3.26b shows that using only 4
processors to compute the sensitivity matrix requires ~ 10 hours for each iteration.
A first run time reduction from ~ 10 hours to ~ 50 minutes is reached when using
35 processors to compute the sensitivity matrix. Another run time reduction from ~
50 minutes to ~ 11 minutes can be observed in Fig. 3.26b when using more than 150
processors . Due to the heterogeneity of the used cluster?, Fig. 3.26b shows that the
run times required to compute the sensitivity matrix using 40, 45 and 50 processors
are considerably longer than when using 35 processors. This effect can also be ob-
served when comparing the run times between using 125 and 150 processors.

The next mathematical operation after computing the sensitivity matrix towards the
model update is achieving the cross product JC,,J7. As discussed above, this oper-
ation is time consuming and requires many communications between the processors

9 Different kind of processors.
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Figure 3.26: The run time curves for a) solving the forward modelling problem, b)
computing the sensitivity matrix, ¢) computing the cross product and d) the total run
time to achieve 6 iterations, as function of processors. The red curve in ¢) presents
the run times at certain numbers of processors. It shows the general time reduction
in computing the cross product.

to exchange blocks of the sensitivity matrix. Figure 3.26¢ (black curve) shows that
the run time curve for this operation using different number of processors is unstable
(increases and decreases for various processors number). This behaviour of the run
time curve in Fig. 3.26¢ reflects the heterogeneity of the used cluster and the traffic
loading of the network connection. Nevertheless, a run time reduction from ~ 400
minutes when using 4 processors to ~ 13 minutes when using 35 processors can be ob-
served in the run time curve in Fig. 3.26c. The run time between processor numbers
35 and 200 varies between ~ 25 and ~ 10 minutes per iteration. Using 250 processors
to achieve the multiplication JC,,J” requires only ~ 6 minutes. In general, the run
time curve in Fig. 3.26¢ (black curve) shows a decreasing trend when considering the
run times at particular processor numbers (red curve in Fig. 3.26¢).

Considering now the total run time to achieve the 6 iterations for the 3D inversion
(Fig. 3.26d), a run time decreasing from ~ 5 days when using 4 processors to less
than 1 day when using 250 processors is reached. The first run time reduction in Fig.
3.26d is observed when using 35 processors. From processors number 35 to 150, a
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roughly constant total run time of ~ 1 day can be observed in Fig. 3.26d. The use
of more than 150 processors to achieve the 6 iteration decreases the total run time to
less than 1 day.

The second serial code that has been linked to the parallel module I have developed
in the frame work of my thesis is the Modular system. The main inversion scheme
implemented in this code is the NLCG scheme (Non linear conjugate gradients; Kel-
bert, pers. comm.). As pointed out in subsection 2.6.4, the NLCG scheme does not
require an explicit use of the sensitivity matrix and consequently there is no need
to compute JC,,J7 or JTC1J. The only mathematical operations required for the
NLCG scheme are the solution of the forward modelling problem and computing the
gradient J”d, where d is the data residual (measured - predicted data). The latter
operation is already parallelized and included in the parallel module (see table 3.2).
However, the parallelization scheme that has been linked to the Modular system runs
only over periods when solving the forward modelling problem. A parallelization over
periods and modes was currently not possible because of technical difficulties in keep-
ing the original serial code in its generic form.

The same synthetic data set and the same discretization of the model presented in
Fig. 3.22 are used for the 3D inversion in parallel and serial in the Modular sys-
tem. A 2% error was added to all impedance tensor values (Zyu, Zyy, Zye and Zy,)
to be inverted. A homogeneous model (50 Qm) is used as a starting model. The
same number of stations (81 stations) and periods (19 periods) were used. Since the
parallelization scheme for the Modular system runs only over periods, the maximum
number of processors that can be used for this example is 20. Figure 3.27 shows the
3D inversion result after 50 iterations with an RMS value of 1.02.

In comparison to the 3D model obtained from the data space occam inversion (Fig.
3.25), the model obtained from the NLCG inversion seems to be rough even when
using the same computation and parameters of the model covariance matrices (C,,)
in both algorithms. However, the top and bottom of the resistive block are better
resolved in the 3D model of Fig. 3.27. Moreover, the four deep conductive blobs
appearing in the 3D model presented in Fig. 3.25 do not appear in the 3D model
presented in Fig. 3.27. The difference between the number of iterations required for
the data space occam inversion (6 iterations) and the NLCG (50 iterations) reflects
the non-quadratic behaviour of the NLCG to converge to the desired error.

A comparison between the results obtained from both algorithms is out of scope of my
thesis. What we are interested in is the speed of the NLCG inversion algorithm with
respect to convergence to the desired error level. As before, the most time consuming
mathematical operations used in the NLCG algorithm are analysed individually in
terms of the run time.
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Figure 3.27: The 3D inversion result after 50 iterations with an RMS of 1.02 using
the Modular system. The rectangulars indicate the position of the original conductive
and resistive blocks (see Fig. 3.22). The result indicates that the top and bottom
of the resistive block is better resolved. However, the model seems to be rough in

comparison to the model in Fig. 3.25.
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Figure 3.28: The run time curves for a) solving the forward modelling problem, b)
computing the data gradients, c) the total run time to achieve 50 iterations and d)
the speed-up factor as function of the used processors.

Figure 3.28 shows the run times for solving the forward modelling problem (a), com-
puting the data gradients J7d (b), the total run time for the 50 iterations (c) and the
speed-up factor (d). The run time curve for solving the forward modelling problem
decreases rapidly from 3.8 minutes to 0.97 minutes as the number of processors in-
creases from 1 to 5. Afterwards, the run time decreases gradually to reach 0.5 minutes
when using 20 processors. The run time curves for computing the data gradients (Fig.
3.28b) and the total run time (Fig. 3.28c) have the same behavior implying that the
total run time is dominated by the run time to compute J7d. Figure 3.28¢c shows
that the total run time to achieve 50 iterations is reduced from ~ 50 hours on a single
machine to ~ 7 hours when using 20 processors in parallel which is equal to a speed
up factor of 7.5 (Fig. 3.28d).

It is worthwhile to notice that the run times to solve the forward modeling problem
can be further decreased if the parallelization runs over periods and modes. How-
ever, as pointed out above the total run time for the NLCG is dominated by the run
time required to compute the data gradients. Therefore, parallelization over periods
and modes to solve the forward modelling problem as part of the NLCG algorithm
may not increase the overall speed up factor. However, parallelizing over periods and
modes to achieve the computation J7d is worthwhile.



CHAPTER 3. A GENERIC, EFFICIENT AND PRACTICAL PARALLELIZATION
90 METHOD FOR MT FORWARD MODELLING AND INVERSION IN 2D AND 3D

In general, a comparison between the run time curves of the data space occam inver-
sion (Fig. 3.26) and the NLCG (Fig. 3.28) reveals:

e The data space occam inversion requires less iterations due to its quadratic
behaviour to converge to the desired error level. The quadratic behaviour, how-
ever, implies longer total run time because of the time consuming mathematical
operations used in this algorithm.

e On the contrary, the NLCG algorithm requires more iterations to reach the
global minimum, however, less total run time. This is because the total run time
is dominated by the operation J7d which requires less run time in comparison
to computing the sensitivity matrix and achieving the multiplication JC,,J7 .



Chapter 4

Magnetotelluric measurements in the
southern Dead Sea basin

4.1 Introduction

As the largest pull-apart basin in the world, the Dead Sea basin (DSB) was and is an
attractive geological structure for most geologists and geophysicists around the world.
Understanding the geological and tectonic setting of the DSB may provide a better
idea on how this geological structure formed and what the tectonic factors are that
influence and control their formation and development.

Since the 1960ies, several geophysical measurements and geological surveys have been
carried out to investigate the DSB. Among others, seismic, gravimetry and magnetics
were the main geophysical methods that have been applied to study the deep internal
and crustal structures of the DSB. Electrical and electromagnetic methods have been
applied on both sides of the DSB, mainly to study the intrusion of saline water of
the Dead Sea brines into surrounding fresh water aquifers. Up to date, there was no
electrical or electromagnetic measurements along or cross the DSB to study its deep
structures from a geoelectrical point of view.

The seismic data collected in the DSB area give a picture of the internal structure
of the basin, however, along its main axis. This is due to the problematic political
situation across the international boundary that runs parallel to the main axis of the
DSB separating Jordan on the east from West Bank and Israel on the west. This po-
litical situation forced scientists from the three nations to run their own geophysical
measurements in the Dead Sea area separately. A joint interpretation of the collected
geophysical data from both sides of the boundary became possible in the 1990ies when
scientists from the three nations started to exchange data and information. Never-
theless, there was no continuous traverse crossing the entire DSB in E-W direction to
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study the faults pattern that control its western and eastern borders. A collaboration
became only possible in the framework of a multi-national project called DESERT
(Dead Sea Rift Transect). Under the leadership of the GeoForschungsZentrum (GFZ-
Potsdam), scientists from Germany, Jordan, Palestine and Israel studied a segment
of the Dead Sea transform (Wadi Araba) along a 300 km profile that extended from
the Gaza strip in the north west to the Jordan highlands in the south east. Among
others, magnetotellurics and seismics were the main geophysical methods that have
been applied to study the deep structure of the Dead Sea transform at this segment.
In the framework of the multi-disciplinary DESIRE (Dead Sea Integrated Research)
project, several geophysical methods were applied along a profile to investigate the
southern part of the DSB. Besides magnetotellurics, the methods used included ac-
tive reflection and refraction seismic, aero-gravity, passive seismology, and thermo-
mechanical modelling. The main propose of the DESIRE project is the development
of an integrated geo-tectonic picture that can explain the development and the struc-
ture of DSB. Although the DSB is well studied in comparison to another basins along
the DST, essential questions are still open.

With the magnetotelluric measurements across the DSB we intend to study the deep
structures of the basin from a geoelectrical point of view and try to:

e Determine the location and depth extent of the major faults within the DSB.
e Image the thickness of the sediments within DSB.

e Image the internal structure of DSB.

4.2 Geological and tectonic background

The Dead Sea rift is a transform fault which extends from the Red Sea spreading
centre in the south to the Taurus-Zagros continental collision zone in the north (Fig.
4.1a). The Dead Sea transform (DST) separates the Sinai plate in the west from
the Arabian plate in the east with a total length of approximately 1000 km. The
anticlockwise movement of the Arabian and the Sinai plates characterises the left
lateral strike slip behaviour of the DST. The DST formed in the Cenozioc (65 million
years ago) when the African-Arabian continent broke apart. Due to this movement,
the Red Sea and the Gulf of Suez were formed (Garfunkel et al. , 1981). The offset
of older geological formations, in particular of the late Cretaceous period (150 m.y.
ago), reveals a total displacement between 100-110 km (Garfunkel et al. , 1981; Zak
& Freund, 1981). Along the DST, Zak & Freund (1981) divided the shear movement
of the DST into two main stages. An earlier shear movement of 60-65 km took place
between 25 m.y. and 14 m.y. ago, whereas a later movement of about 40-45 km
occurred during the last 4.5 m.y. The direction of shear movement along the Dead
Sea was closer to the general trend of the rift (approximately N5°E) during the earlier
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phase of the movement, and about 10° more to the east (N15°E) during the later
phase movement.

The average slip rate over the last 4-5 m.y. is estimated to be 7-10 mm/y (Garfunkel
et al. , 1981). Based on geomorphological studies carried out recently in the northern
part of Araba valley (a segment of the DST between the Dead Sea and the Gulf of
Aqgaba, Fig. 4.1a), Klinger et al. (2000) suggested an average slip rate of about 4
mm/y. Global Position System (GPS) measurements (Le Beon et al. , 2008) carried
out in Araba valley estimated a slip rate of the DST of 4.9+£1.4 mm/y.

Faults are the dominant structural elements along the DST. Besides the predominate
transform faults, normal faults are frequent along the margins of the rift valleys.
Based on field studies, examination of topographic and geologic maps and study of
aerial photographs, Garfunkel et al. (1981) delineated the active faults along a 500 km
long segment of the DST from the Gulf of Aqaba/Elat to the Lebanon Mountains.
The southern most segment of the DST, the so called Wadi Araba fault links the
Red Sea basin in the south with Dead Sea basin in the north. The southern part
of the Wadi Araba Valley is up to 10 km wide, and largely covered by Pleistocene
and Holocene alluvium, playa deposits and some dunes. It is flanked by mountains in
which the Precambrian basement and its sedimentary cover are exposed (Garfunkel
et al. , 1981). The most prominent tectonic feature in this segment is the active left
lateral strike-slip fault (Wadi Araba fault) which trends 19°-20° to the east. Normal
faults are also present in this area, typically dipping 60°-80° to the east. Evidence for
recent faulting is found on both sides of the Wadi Arabia main fault. Furthermore,
the sharpness of the base of the eastern mountains indicates continuing uplift (Barjous
& Mikbel, 1990; Garfunkel et al. , 1981). The elevation difference on both sides of
the fault indicates that the uplift of the eastern rift shoulder was faster than on the
western shoulder (Garfunkel et al. , 1981).

Going further to the north, the Wadi Araba valley starts to slope northward, draining
into the Dead Sea. A change in the strike direction of the Wadi Araba fault is observed
at the transition zone between the southern and northern parts of the fault. While
the fault strikes between 19°-20° in the southern part, it becomes 15° in the northern
part. This change in the strike direction causes local compression and depression
zones along the fault that can be expressed in terms of pressure ridges and rhomb-
grabens (pull apart basin), respectively. The slip rate of the Araba fault in this area
was estimated to be about 5-10 mm/y, by comparison of lateral displacements of three
large alluvial fans on both sides of the fault (Garfunkel et al. , 1981).

To the north of the Araba valley begins the Dead Sea basin which consists of three
distinct parts (Fig. 4.1b): the northern Araba valley, the southern basin of the Dead
Sea and its northern basin (Garfunkel et al. , 1981; Garfunkel, 1981; Ben-Avraham
et al. , 2008). The northern part of the Araba valley is covered by the Al-Lisan
Formation. The transition to the southern basin of the Dead Sea is indicated by
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Figure 4.1: a) The major fault segments along the DST from the Gulf of Aqaba/Elat to
Taurus-Zagros collision zone. b) Location map of the study area showing the position
of the MT stations (red triangles) along the main and in-basin profiles together with
the main faults in the vicinity of the DSB. The DST splits in the Dead Sea basin into
the eastern (EBF) and the western boundary (WBF) faults, which delimit the DSB
from east and west. Furthermore, the location and the extensions of the northern and
southern sub-basins are shown.
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the Amatsyahu normal fault system (Fig. 4.1b), which is NW-SE oriented (Garfunkel
et al. , 1981; Al-Zoubi & Ten Brink, 2001; Ben-Avraham & Ten Brink, 1989; Hofstetter
et al. , 2007). The Araba fault can be traced along the eastern margin of the valley.
Further to the north of the Amatsyahu fault is the southern basin of the Dead Sea
in which an extension of the Araba fault cannot be recognised at the surface. The
southern basin of the Dead Sea extends from the Amatsyhau fault to the north of
the Al-Lisan peninsula. The northern basin of the Dead Sea, which extends from
the Al-Lisan peninsula to the northern part of the Dead Sea, is a rectangular shaped
depression with a flat floor about -700 m below the sea level. Major faults extend
along the borders of this deep basin. While the faults along the eastern side can
be traced at surface, the western faults are covered by approximately 20-30 m of
sediments (Garfunkel et al. , 1981).

Further to the north begins the Jordan valley which extends to the Sea of Galilee.
Garfunkel et al. (1981) subdivided this segment of the DST into southern, central and
northern parts. The southern and central parts of Jordan valley are covered mainly
by the Al-Lisan formation. The Jordan Valley fault is the dominant fault in the area
from the northwestern corner of the Dead Sea to south of the Sea of Galilee along
the Jordan Valley (Fig. 4.1b). An indication of the left lateral strike slip along the
Jordan Valley fault is the existence of the rhomb-graben, which are associated with
irregularities of the fault in this segment of the DST (Garfunkel et al. , 1981). The
northern part of Jordan Valley extents from the Sea of Galilee to the Mount Hermon
in Lebanon.

4.2.1 The structure of the Dead Sea basin and its vicinity

The Dead Sea basin (DSB), is approximately 150 km long and extends from the
southern Jordan valley near Jericho to the northern segment of the Araba valley (Fig.
4.1b). The area east of the basin formed a plateau (1.0-1.4 km above sea level) which
descends gradually away from the transform. The area to the west formed a broad
arch whose crest reaches only 0.6-0.8, rarely 1.0 km, above the sea level. The northern
part of the basin is largely covered by the Dead Sea which is one of the most saline
lakes in the world. Its waters contain > 30 % of dissolved salts, mainly Mg, Na and Ca
chlorides (Neev & Hall, 1979). North and south of the lake the valley floor is 300-400
m below sea level, whereas about half of the lake floor is a flat rectangular area more
than 700 m below sea level (water depth ~ 300 m). However, the southern sub-basin
is sub-aerial with a maximum water depth of ~ 4 m (Ben-Avraham & Shubert, 2006).
From a tectonic point of view, the DSB represents a large pull-apart basin, that has
been formed along the Dead Sea Transform (DST) which contains a slight compo-
nent of opening (Garfunkel et al. , 1981; Garfunkel, 1981): The DST splits into the
northern segment of Araba fault on the southeast of the Dead Sea and the Jericho
fault on the northwest of the Dead Sea. These two faults are arranged in en-echelon
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(pull-apart) constructing the DSB (Garfunkel et al. , 1981). This means that the
basin is delimited by fault scarps trending in N-S direction. However, the western
fault scarp becomes indistinct along the northern Araba valley, so that the western
border of the basin cannot be recognised.
The DSB is composed of two sub-basins separated by the Al-Lisan peninsula, the
northern and the southern sub-basin (Garfunkel, 1981). Modelling of gravity data
collected in the Dead Sea area has suggested that the southern part of the northern
sub-basin has ~ 9 km of sedimentary fill (Ten Brink et al. , 1993). Furthermore,
the model obtained from the gravity data suggests a similar basin structure for the
southern sub-basin. The gravity data observed also a large negative anomaly over the
Al-Lisan peninsula which has been interpreted that the basin has its maximum sedi-
mentary fill (18 km thick) beneath the Al-Lisan peninsula (Ten Brink et al. , 1993).
A recent study by Ben-Avraham & Shubert (2006) integrated with previous studies
of Ginzburg & Ben-Avraham (1997), Al-Zoubi & Ben Avraham (2002), gravity data
and borehole information suggests a slightly different structure concerning the sedi-
mentary fill in the northern and southern sub-basins: The northern sub-basin seems
to have a sedimentary fill of ~ 6-8 km. South of the Al-Lisan peninsula, a major fault
running in SE-NW direction (the Boqeq fault, Fig. 4.1b) affecting the basement was
detected. It downthrows the basement and the overlying sediments to the south by
~ 4-5 km. Thus, the Boqeq fault is considered to form the northern boundary of the
southern sub-basin. Ben-Avraham & Shubert (2006) “The faulting was followed by
the deposition of over 8 km of Pliocene to Recent sediments resulting in a 14 km thick
sequence in the northern part of the southern sub-basin of the Dead Sea. The sedi-
mentary basin in this area is therefore exceptionally deep with well defined boundary
faults”. Ben-Avraham & Shubert (2006) concluded that the deep southern sub-basin
has the form of a "Drop Down “rather than a pull-apart basin. The integrated struc-
tures of the northern and southern sub-basins of the Dead Sea are plotted in Fig. 4.2.
The fault pattern in the DSB contains mainly of the left lateral strike-slip fault
(Eastern boundary fault, EBF) which borders its eastern margin and the normal
fault system denoted by WBF (Western boundary fault) which borders the western
margin of the DSB (Neev & Hall, 1979; Garfunkel et al. , 1981). As pointed out
above, the general trend of the faults along the DST and within the DSB is in N-S
direction. Limited extension faults that runs in E-W direction can also be observed
within the DSB (Ben-Avraham & Shubert, 2006). To the east of the Dead Sea, a
major fault that runs in E-W directions can also be detected in the study area (the
Swiaqa fault in Fig. 4.1b). The Swiaqa fault is a major wrench fault trending E-
W at the easternmost end of the study area and rotating to the southwest near the
Dead Sea (Khalil, 1992). The fault extends from the Dead Sea in the west to the
Sirhan graben near the Saudi Arabia border (not shown in the map in Fig. 4.3). The
fault is well documented and described by Khalil (1992) and later by Masri (2003).
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Figure 4.2: A north-south integrated geological cross section using seismic, gravity
and boreholes data after Ben-Avraham & Shubert (2006). The cross section highlights
the shape and the structure of the "Drop Down “which is delimited by normal faults:
The Amazyahu fault in the south and the Bogeq fault in the north. The Al-Lisan salt
diapir under the Al-Lisan peninsula is also indicated in the cross section.

The most important characteristic of this fault, with respect to my work, is that the
fault originated as weakness zone in the basement. Moreover, the fault is reactivated
several times during different tectonic phases. An indication for the reactivation was
a basalt intrusion (see Fig. 4.3) that is exposed at the western segment of the MT
profile. This means that the fault must be older in age than the Pliocene. Another
important point concerning the behaviour of the Swiaqa fault is that the fault has a
northern downthrown in the study area with variable vertical displacement (Khalil,
1992).

The geological formations exposed in the study area vary in age from Quaternary to
Precambrian (Fig. 4.3). However, Precambrian igneous rocks are exposed mainly to
the south of the MT DESIRE profile. Along the MT profile, the geological formations
vary in age from Quaternary to Cretaceous. Whereas, the most obvious geological
formation that expose at the eastern segment of the MT profile is the olivine-basalt
intrusion which extends for several kilometers along the MT profile. The Al-Lisan
marl formation (alluvium, Quaternary) which is exposed over the Al-Lisan peninsula
consists mainly of marl, clay-rich and clay-poor aragonitic marls (Powell, 1988; Khalil,
1992) with a maximum thickness of ~ 150 m. Further to the west, the MT profile ex-
tends mostly over the chalk, marl, clay, chert and limestone of the Senonian/Paleocene
and less over the limestone of the Cenomanian/Turonian (upper Cretaceous) and the
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alluvium of the Quaternary.
A recent study by Al-Zoubi & Ten Brink (2001) using seismic data from Jordan and
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Figure 4.3: Map of surface geology showing the formations exposed in the study area.
The MT profile (red triangles) runs mostly over sedimentary formations. Whereas,
the igneous Precambrian rocks are exposed to the south of the MT profile. The basalt
intrusion exposed at the eastern part of the profile is an indication of a recent activity
along the Swiaqa fault.

Israel integrated with magnetic and gravity data focuses on salt diapirs within the
DSB. Examples for those salt diapirs in the DSB are the large Al-Lisan diapir buried
under the Al-Lisan peninsula and the small Sedom diapir which is exposed at the
southwestern corner of the Dead Sea (Fig. 4.1). Based on models obtained from the
collected geophysical data, Al-Zoubi & Ten Brink (2001) suggested that the Al-Lisan



4.3. MAGNETOTELLURIC FIELD WORK AND DATA PROCESSING 99

salt diapir extends further to the south than previously assumed. However, the top of
the salt body which is covered by a thin layer (200m-250m) of the Al-Lisan formation
is deeper in the north than in the south. The authors also inferred that the Al-Lisan
diapir reaches a maximum depth of 7.25 km. On the other hand, the Sedom diapir
in the south seems to have less depth extend (5.5-6 km). The results presented by
Al-Zoubi & Ten Brink (2001) show an interesting shape of the Al-Lisan salt diapir:
The contour map used to plot the depth to the top of the salt diapir (Fig. 4.4) shows
that the depth to the top increases rapidly at the eastern border of the diapir and
gradually at the western border. This gives an impression that the eastern top of the
Al-Lisan diapir is almost vertical and the western surface is more flat. The contour
map in Fig. 4.4 also shows a deep evaporitic layer in form of a syncline between the
Al-Lisan and the Sedom salt diapir. This evaporitic layer is interpreted to be the
source salt layer that was deposed during the Pliocene directly after formation of the
Dead Sea basin in the Miocene with a total thickness of ~ 2.3 km (Al-Zoubi & Ten
Brink, 2001). Accumulation of ~ 4 km sediments in the Dead Sea basin during the
Pleistocene may have cause a static pressure that forced the evaporitic layer to uplift
in form of diapirs.

4.3 Magnetotelluric field work and data processing

The MT profile (Fig. 4.5) follows roughly the seismic profile (Mechie et al. , 2009),
crossing the Dead Sea Transform (DST) at a place where the fault separates into an
eastern and western border fault (EBF and WBF), where the basin fill is supposed to
be at its largest thickness (~ 10 km; Ben-Avraham & Grasso (1991)) and where the
intruded Al-Lisan salt diaper formed a three-dimensional feature.

The MT data were collected in October and November 2006. The measurements were
carried out along two profiles. The main profile is oriented N70°E, approximately per-
pendicular to the surface trace of the DST and has a length of ~ 110 km. A second,
shorter profile (~ 20 km) is oriented N20°E and runs parallel to the west coast of the
Al-Lisan peninsula (Fig. 4.5).

In total, we have deployed 151 MT stations distributed along the two profiles. The
distance between the stations varies between 0.5 and 2 km depending on the location:
In the Dead Sea basin and its vicinity, 0.5 km was the distance between two stations;
away from the DSB and at the eastern segment of the profile, the distances between
the stations increased up to 2 km in the outer parts.

The 151 MT stations were deployed using mainly two data recording systems: Short
Period Automatic Magnetotelluric (S.P.A.M. MKIII) and Earth Data Logger (EDL)
instruments. The S.P.A.M. MKIII is a real-time system. It was used in the field for
two main proposes: To insure that the site-setup is connected correctly (coils, sensor
boxes, cables, etc) and to run the measurements in the short period range (2 kHz to
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Figure 4.4: A map showing the depth to the top of salt in the Dead Sea basin modified
after Al-Zoubi & Ten Brink (2001). The contour interval is 250m. The depth to the
top of the Al-Lisan salt diapir increases rapidly at the eastern border and gradually
at the western border. The same behavior can be observed at the eastern border of
the Sedom salt diapir. The deep evaporitic layer between the Al-Lisan and the Sedom
diapirs was interpreted by Al-Zoubi & Ten Brink (2001) as the source of the salt.
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Figure 4.5: Topographic map with the location of the MT stations along the main
and the in-basin profiles. Black triangles indicate the locations of the M'T broad band
(BB) stations, whereas white triangles represent the locations of combined BB/LMT
stations.

~ 10hz). For the latter, the total run time at each station was 24h. At all stations,
induction coil magnetometers were used for the broad band (BB) stations to record
the time variations of the three orthogonal magnetic components (B,, B, and B,).
The EDL system was used for the BB stations with two sampling rates (50Hz and
500Hz) to cover the period range between 0.004s-1000s. The total recording time for
each BB stations was three days. In addition to the BB stations, 17 Long Periods MT
stations (LMT, white triangles in Fig. 4.5) covering periods longer than 1000s were
also deployed and distributed along the two profiles. However, for the LMT stations,
flux-gate magnetometers were used with a sampling rate of 2s. The total run time for
each LMT station was approximately one month.

Data acquisition was accomplished with two independent teams, working at the same
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time in Jordan and Israel which allowed to operate up to 30 sites recording simulta-
neously. This provides great flexibility to use remote reference processing with many
combinations of sites.

Besides a main remote reference station (number 501; see Fig. 4.5) which recorded
time series for 5 weeks, many normal BB sites with a good data quality could be used
a remote reference stations, presuming an overlapping in the recording time. Figure
4.6 presents a part of the stations run times for the time period from 31 October to 4
November 2006. The blue bars in Fig. 4.6 denote stations located to the east of the
Dead Sea in Jordan. The red bars indicate stations locate