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Abstract
This article attempts to place the emergence of probabilistic numerics as a mathematical–statistical research field within its
historical context and to explore how its gradual development can be related both to applications and to a modern formal
treatment. We highlight in particular the parallel contributions of Sul′din and Larkin in the 1960s and how their pioneering
early ideas have reached a degree of maturity in the intervening period, mediated by paradigms such as average-case analysis
and information-based complexity. We provide a subjective assessment of the state of research in probabilistic numerics and
highlight some difficulties to be addressed by future works.
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1 Introduction

The field of probabilistic numerics (PN), loosely speaking,
attempts to provide a statistical treatment of the errors and/or
approximations that are made en route to the output of a
deterministic numerical method, e.g. the approximation of
an integral by quadrature, or the discretised solution of an
ordinary or partial differential equation. This decade has
seen a surge of activity in this field. In comparison with
historical developments that can be traced back over more
than a hundred years, the most recent developments are par-
ticularly interesting because they have been characterised
by simultaneous input from multiple scientific disciplines:
mathematics, statistics, machine learning, and computer sci-
ence. The field has, therefore, advanced on a broad front,
with contributions ranging from the building of over-arching
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general theory to practical implementations in specific prob-
lems of interest. Over the same period of time, and because
of increased interaction among researchers coming from
different communities, the extent to which these develop-
ments were—or were not—presaged by twentieth-century
researchers has also come to be better appreciated.

Thus, the time appears to be ripe for an update of the 2014
Tübingen Manifesto on probabilistic numerics (Hennig 2014;
Osborne 2014a, b, c, d) and the position paper of Hennig et al.
(2015) to take account of the developments between 2014 and
2019, an improved awareness of the history of this field, and
a clearer sense of its future directions and potential.

In this article, we aim to summarise some of the history
of probabilistic perspectives on numerics (Sect. 2), to place
more recent developments into context (Sect. 3), and to artic-
ulate a vision for future research in, and use of, probabilistic
numerics (Sect. 4).

The authors are grateful to the participants of Prob
Num 2018, 11–13 April 2018, at the Alan Turing Insti-
tute, UK—and in particular the panel discussants Oksana
Chkrebtii, PhilippHennig, YoussefMarzouk,MikeOsborne,
and Houman Owhadi—for many stimulating discussions on
these topics. However, except where otherwise indicated, the
views that we present here are our own, and if we have mis-
quoted or misrepresented the views of others, then the fault
is entirely ours.
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2 Historical developments

The first aim of this article is to reflect on the gradual emer-
gence of probabilistic numerics as a research field. The
account in this section is not intended to be comprehen-
sive in terms of the literature that is cited. Rather, our aim
is to provide an account of how the philosophical status of
probabilistic approaches to numerical tasks has evolved, and
in particular to highlight the parallel, pioneering, but often-
overlooked contributions of Sul′din in the USSR and Larkin
in the UK and Canada.

2.1 Prehistory (–1959)

The origins of PN can be traced to a discussion of probabilis-
tic approaches to polynomial interpolation by Poincaré in
his Calcul des Probabilités (Poincaré 1896, Ch. 21;Poincaré
1912, Ch. 25). Poincaré considered what, in modern terms,
would be a particular case of aGaussian infinite productmea-
sure prior on a function f , expressing it as a power series

f (x) =
∞∑

k=0

Ak xk

with independent normally-distributed coefficients Ak ; one
is then given n pointwise observations of the values of f
and seeks the probable values of f (x) for another (not yet
observed) value of x .

“Je suppose que l’on sache a priori que la fonction f(x)
est développable, dans une certain domaine, suivant les
puissances croissantes des x ,

f (x) = A0 + A1x + . . . .

Nous ne savons rien sur les A, sauf que la probabilité
pour que l’un d’eux, Ai , soit compris entre certaines
limites, y et y + dy, est

√
hi

π
e−hi y2 dy.

Nous connaissons par n observations

f (a1) = B1,

f (a2) = B2,

· · · · · · · · · · · ·
f (an) = Bn .

Nous cherchons la valeur probable de f (x) pour une
autre valeur de x .” (Poincaré 1912, p. 292)

Note that, in using a Gaussian prior, Poincaré was depart-
ing from the Laplacian principle of indifference (Laplace
1812), which would have mandated a uniform prior.1

Poincaré’s analytical treatment predates the first digital
multipurpose computers by decades, yet it clearly illustrates
a non-trivial probabilistic perspective on a classic numeri-
cal task, namely function approximation by interpolation, a
hybrid approach that is entirely in keeping with Poincaré’s
reputation as one of the last universalist mathematicians
(Ginoux and Gerini 2013).

However, our focus here is on the development of proba-
bilistic numericalmethods for use on a computer. The limited
nature of the earliest computers led authors to focus ini-
tially on the phenomenon of round-off error (Henrici 1962;
Hull and Swenson 1966; von Neumann and Goldstine 1947),
whether of fixed-point or floating-point type, without any
particular statistical inferential motivation; more recent con-
tributions to the statistical study of round-off error include
those of Barlow and Bareiss (1985), Chatelin and Brunet
(1990), and Tienari (1970). According to von Neumann and
Goldstine, writing in 1947,

“[round-off errors] are strictly very complicated but
uniquely defined number theoretical functions [of the
inputs], yet our ignorance of their true nature is such
that we best treat them as random variables.” (vonNeu-
mann and Goldstine 1947, p. 1027).

Thus, von Neumann and Goldstine seem to have held a util-
itarian view that probabilistic models in computation are
useful shortcuts, simply easier toworkwith than the unwieldy
deterministic truth.2

Concerning the numerical solution of ordinary differen-
tial equations (ODEs),Henrici (1962, 1963) studied classical
finite difference methods and derived expected values and
covariance matrices for accumulated round-off error, under
an assumption that individual round-off errors can be mod-
elled as independent random variables. In particular, given
posited means and covariance matrices of the individual
errors, Henrici demonstrated how these moments can be
propagated through the computation of a finite difference
method. In contrast with more modern treatments, Henrici
was concerned with the analysis of an established numeri-

1 Indeed, while an improper uniform prior distribution on R makes
sense for each Ak individually, no such countably additive uniform
measure (an “infinite-dimensional Lebesgue measure”) can exist on
R

∞ for (Ak)
∞
k=0 (Sudakov 1959). That said, Poincaré does not impose

any summability constraints on the hi either, so the covariance operator
associated to his Gaussian prior may fail to be trace class.
2 Decades later, the discovery of chaotic dynamical systemswould yield
a similar conundrum: after long enough time, one may as well assume
that the system’s state is randomly distributed according to its invariant
measure, if it possesses one.
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cal method and did not attempt to statistically motivate the
numerical method itself.

2.2 The parallel contributions of Larkin and Sul′din
(1959–1980)

Oneof the earliest attempts tomotivate a numerical algorithm
from a statistical perspectivewas due toAl′bertValentinovich
Sul′din (1924–1996) (Fig. 1), working at Kazan State Uni-
versity in the USSR (now Kazan Federal University in the
Russian Federation) (Norden et al. 1978; Zabotin et al. 1996).
After first making contributions to the study of Lie algebras,
towards the end of the 1950s Sul′din turned his attention to
computational and applied mathematics, and in particular to
probabilistic and statistical methodology. His work in this
direction led to the establishment of the Faculty of Com-
putational Mathematics and Cybernetics (now Institute of
Computational Mathematics and Information Technologies)
in Kazan, of which he was the founding Dean.

Sul′din began by considering the problem of quadrature.
Suppose that we wish to approximate the definite integral∫ b

a u(t) dt of a function u ∈ U := C0([a, b];R), the space of
continuous real-valued functions on [a, b], under a statistical
assumption that (u(t)−u(a))t∈[a,b] follows a standardBrow-
nian motion (Wiener measure,μW). For this task, we receive
pointwise data about the integrand u in the form of the values
of u at J ∈ N arbitrarily located nodes t1, . . . , tJ ∈ [a, b],
although for convenience we assume that

a = t1 < t2 < · · · < tJ = b.

In more statistical language, anticipating the terminology of
Sect. 3.2, our observed data or information concerning the
integrand u is y := (t j , u(t j ))

J
j=1, which takes values in the

space Y := ([a, b] × R)J .
Since μW is a Gaussian measure and both the integral and

pointwise evaluations of u are linear functions of u, Sul′din

Fig. 1 Al′bert Valentinovich Sul′din (1924–1996). (Sul′din 2018, repro-
duced with permission)

(1959, 1960, 1963b) showed by direct calculation that the
quadrature rule B : Y → R that minimises the mean squared
error

∫

U

∣∣∣∣
∫ b

a
u(t) dt − B

(
(t j , u(t j ))

J
j=1

)∣∣∣∣
2

μW(du) (1)

is the classical trapezoidal rule3

Btr
(
(t j , z j )

J
j=1

)

:= 1

2

J−1∑

j=1

(z j+1 + z j )(t j+1 − t j ) (2)

= z1
t2 − t1

2
+

J−1∑

j=2

z j
t j+1 − t j−1

2
+ z J

tJ − tJ−1

2
, (3)

i.e. the definite integral of the piecewise linear interpolant of
the observed data. This result was a precursor to a sub-field
of numerical analysis that became known as average-case
analysis; see Sect. 2.3.

Sul′din was aware of the connection between his meth-
ods and statistical regression (Sul′din 1963a) and conditional
probability (Sul′din 1963c), although it is difficult to know
whether he considered his work to be an expression of statis-
tical inference as such. Indeed, since Sul′din’s methods were
grounded in Hilbert space theory (Sul′din 1968, 1969), the
underlying mathematics (the linear conditioning of Gaussian
measures on Hilbert spaces) is linear algebra which can be
motivated without recourse to a probabilistic framework.

In any case, Sul′din’s contributions were something
entirely novel. Up to this point, the role of statistics in
numerical analysis was limited to providing insight into the
performance of a traditional numerical method. The 1960s
brought forth a new perspective, namely the statistically
motivated design of numerical methods. Indeed,

“A.V. Sul′din’s 1969 habilitation thesis concerned the
development of probabilistic methods for the solution
of problems in computational mathematics. His syn-
thesis of two branches of mathematics turned out to
be quite fruitful, and deep connections were discov-
ered between the robustness of approximation formulae
and their precision. Building on the general concept of
an enveloping Hilbert space, A.V.Sul′din proved a pro-
jection theorem that enabled the solution of a number
of approximation-theoretic problems.” (Zabotin et al.
1996)

3 Note that formulation (2) of Btr emphasises the trapezoidal geom-
etry being used to approximate the integral, whereas formulation (3)
emphasises that the integrand need only be evaluated J and not 2J − 2
times.
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Fig. 2 Frederick Michael Larkin (1936–1982). (Larkin et al. 1967,
reproduced with permission)

However, Sul′din was not alone in arriving at this point of
view. On the other side of the Iron Curtain, between 1957
and 1969, Frederick Michael (“Mike”) Larkin (1936–1982)
(Fig. 2) worked for the UK Atomic Energy Authority in its
laboratories at Harwell and Culham (the latter as part of
the Computing and Applied Mathematics Group), as well
as working for two years at Rolls Royce, England. Follow-
ing a parallel path to that of Sul′din, over the next decade
Larkin would further blend numerical analysis and statisti-
cal thinking (Kuelbs et al. 1972; Larkin 1969, 1972, 1974,
1979a, b, c), arguably laying the foundations on which PN
would be developed. At Culham, Larkin worked on building
some of the first graphical calculators, the GHOST graphical
output system and the accompanying GHOUL graphical out-
put language. It can be speculated that an intimate familiarity
with the computational limitations of GHOST and GHOUL
may have motivated Larkin to seek a richer description of the
numerical error associated to their output.

The perspective developed by Larkin was fundamen-
tally statistical and, in modern terminology, the probabilistic
numerical methods he developed would be described as
Bayesian,4 which we discuss further in Sect. 3.2. Neverthe-
less, the pioneering nature of this research motivated Larkin
to focus on specific numerical tasks, as opposed to estab-
lishing a unified framework. In particular, he considered in
detail the problems of approximating a non-negative function

4 Larkin used the term relative likelihood for what we would recognise
as a Bayesian prior (Larkin 1972, Section 3.3). We may speculate, but
cannot be sure, that such terminological differences are largely acci-
dents of history. Larkin was educated and did his early work exactly
when the frequentist paradigm was starting to lose its dominance and
Bayesian methods were starting to come back into fashion, driven by
Cox’s logical justification of the Bayesian paradigm (Cox 1946, 1961)
and the development of theory, hardware, and software for methods
like Markov chain Monte Carlo. See Dale (1999) for a comprehensive
history of this area of statistics.

(Larkin 1969), quadrature (Larkin 1972, 1974), and esti-
mating the zeros of a complex function (Larkin 1979a, b).
In the context of the earlier numerical integration exam-
ple of Sul′din, the alternative proposal of Larkin was to
consider the Wiener measure as a prior, the information
(t j , u(t j ))

J
j=1 as (noiseless) data, and to output the pos-

terior marginal for the integral
∫ b

a u(t) dt . That is, Larkin
took the fundamental step of considering a distribution
over the solution space of the numerical task to be the
output of a computation—this is what we would now recog-
nise as the defining property of a probabilistic numerical
method:

“Among other things, this permits, at least in princi-
ple, the derivation of joint probability density functions
for [both observed and unobserved] functionals on the
space and also allows us to evaluate confidence limits
on the estimate of a required functional (in terms of
given values of other functionals).” (Larkin 1972)5

Thus, in contrast to Sul′din’s description of the trapezoidal
rule Btr from (2) as a frequentist point estimator obtained
fromminimising (1), which just happens to produce an unbi-

ased estimatorwith variance 1
12

∑J−1
j=1 (t j+1−t j )

3, theLarkin

viewpoint is to see the normal distribution

N
⎛

⎝Btr
(
(t j , z j )

J
j=1

)
,
1

12

J−1∑

j=1

(t j+1 − t j )
3

⎞

⎠ (4)

onR as the measure-valued output of a probabilistic quadra-
ture rule, of which Btr

(
(t j , z j )

J
j=1 is a convenient point

summary. Note also that the technical development in this
pioneeringworkmade fundamental contributions to the study
of Gaussian measures on Hilbert spaces (Kuelbs et al. 1972;
Larkin 1972).

Larkin moved to Canada in 1969 to start work as a Con-
sultant in Numerical Methods and Applied Mathematics
within the Computing Centre and, subsequently in 1974,
as Associate Professor in the Department of Computing
and Information Science (now the School of Computing) at
Queen’s University in Kingston, Ontario. He received tenure
in 1977 and was promoted to full professor in 1980.

“He worked in isolation at Queen’s in that few grad-
uate students and fewer faculty members were aware
of the nature of his research contributions to the field.

5 In this passage “the estimate” refers to the posterior mean in a linear-
Gaussian setup and “confidence limit” refers to what wewould now call
a highest-posterior-density credible interval.We suspect that the cultural
dominance of frequentist statistics, in which estimators are reported
alongside confidence intervals, ledLarkin to adopt a similar presentation
of the posterior—though we emphasise that Larkin was fundamentally
providing a Bayesian treatment.
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[…] Michael pioneered the idea of using a probabilis-
tic approach to give an alternative local approximation
technique. In some cases this leads to the classical
methods, but in many others leads to new algorithms
that appear to have practical advantages overmore clas-
sical methods. This work has finally begun to attract
attention and I expect that the importance of his con-
tribution will grow in time.” (Queen’s University at
Kingston, 11 Feb. 1982)

Fromour perspective,writing in 2019, it seems that Sul′din
and Larkin were working in parallel but were ahead of their
time. Their probabilistic perspectives on approximation the-
ory were similar, but limited to a Gaussian measure context.
Naturally, given the linguistic barriers and nearly disjoint
publication cultures of their time, it would not have been
easy for Larkin and Sul′din to be conversant with each other’s
work, though these barriers were not always as great as is
sometimes thought (Hollings 2016). At least by 1972 (Larkin
1972), Larkin was aware of and cited Sul′din’s work on min-
imal variance estimators for the values of linear functionals
on Wiener space (Sul′din 1959, 1960), but apparently did
not know of Sul′din’s 1969 habilitation thesis, which laid
out a broader agenda for the role of probability in numer-
ics. Conversely, Soviet authors writing in 1978 were aware
of Sul′din’s influence on, e.g. Ulf Grenander and Walter
Freiberger at Brown University, but make no mention of
Larkin (Norden et al. 1978). Sul′din, for his part, at least
as judged by his publication record, seems to have turned his
attention to topics such as industrial mathematics [perhaps
an “easier sell” in the production-oriented USSR (Hollings
2016)],mathematical biology, andof course the pressing con-
cerns of faculty administration.

Finally, concerning the practicality of Sul′din and Larkin’s
ideas, one has to bear in mind the limited computational
resources available at even cutting-edge facilities in the
1960s:6 probabilistic numerics was an idea ahead of its time,
and the computational power needed to make it a reality sim-
ply did not exist.

2.3 Optimal numerical methods are Bayes rules
(1980–1990)

In the main, research contributions until 1990 continued to
focus on deriving insight into traditional numerical methods
through probabilistic analyses. In particular, the average-
case analysis (ACA) of numerical methods received interest
and built on thework ofKolmogorov (1936) and Sard (1963).
In ACA, the performance of a numerical method is assessed

6 To first approximation, a singlemodern laptop has a hundred times the
computing power of all five then-cutting-edge IBM System/360 Model
75J mainframe computers used for the ground support of the Apollo
missions (Manber and Norvig 2012).

in terms of its average error over an ensemble of numer-
ical problems, with the ensemble being represented by a
probability measure over the problem set; a prime exam-
ple is univariate quadrature with the average quadratic loss
(1) given earlier. Root-finding, optimisation, etc. can all be
considered similarly, and we defer to, e.g. Ritter (2000) and
Traub et al. (1983) for comprehensive treatments of this broad
topic.

A traditional (deterministic) numerical method can also
be regarded as a decision rule and the probability measure
used inACAcan be used to instantiate theBayesian decision-
theoretic framework (Berger 1985). The average error is then
recognised as the expected loss, also called the risk. The fact
that ACA is mathematically equivalent to Bayesian decision
theory (albeit limited to the case of an experiment that pro-
duces a deterministic dataset) was noted by Kimeldorf and
Wahba (1970a, b), and Parzen (1970)—and also by Larkin
(1970).

Armed with an optimality criterion for a numerical
method, it is natural to ask about the existence and per-
formance of method(s) that minimise it. Such methods are
called average-case optimal in ACA and are recognised as
Bayes rules or Bayes acts in the decision-theoretic con-
text. A key result in this area is the insight of Kadane and
Wasilkowski (1985) that ACA-optimal methods coincide
with (non-randomised) Bayes rules when the measure used
to define the average error is the Bayesian prior; for a further
discussion of the relationships among these optimality crite-
ria, including the Bayesian probabilistic numerical methods
of Sect. 3.2, see Cockayne et al. (2019a) and Oates et al.
(2019b).

Many numerical methods come in parametric families,
being parametrised by, e.g. the number of quadrature nodes,
a mesh size, or a convergence tolerance. For any “sensible”
method, the error can be driven to zero by sending the param-
eter to infinity or zero as appropriate. If one is prepared to pay
an infinite computational cost, then essentially any method
can be optimal! Thus, when asking about the optimality of a
numerical method, it is natural to consider the optimality of
methods of a given computational cost or complexity.

With such concerns in mind, the field of information-
based complexity (IBC) (Novak 1988; Traub et al. 1983;
Traub and Woźniakowsi 1980) developed simultaneously
with ACA, with the aim of relating the computational
complexity and optimality properties of algorithms to the
available information on the unknowns, e.g. the partial nature
of the information and any associated observational costs and
errors. For example, Smale (1985, Theorem D) compared
the accuracies (with respect to mean absolute error) for a
given cost of the Riemann sum, trapezoidal, and Simpson
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quadrature rules;7 in the same paper, Smale also considered
root-finding, optimisation via linear programming, and the
solution of systems of linear equations.

The example of Bayesian quadrature was again discussed
in detail by Diaconis (1988), who repeated Sul′din’s observa-
tion that the posterior mean for

∫ b
a u(t) dt under the Wiener

measure prior is the trapezoidal method (2), which is an
ACA-optimal numerical method. However, Diaconis posed
a further question: can other classical numerical integration
methods, or numerical methods for other tasks, be similarly
recovered as Bayes rules in a decision-theoretic framework?
For linear cubature methods, a positive and constructive
answer was recently provided by Karvonen et al. (2018),
but the question remains open in general.

2.4 Probabilistic numerical methods (1991–2009)

After a period inwhich probabilistic numericalmethodswere
all but forgotten, research interest was again triggered by
various contributions on numerical integration (Minka 2000;
O’Hagan 1991; Rasmussen and Ghahramani 2003), each to
a greater or lesser extent a rediscovery of earlier work due to
Larkin (1972). In each case, the output of computation was
considered to be a probability distribution over the quantity
of interest.

The 1990s saw an expansion in the PN agenda, first with
early work on an area that was to become Bayesian optimi-
sation (Močkus 1975, 1977, 1989) and then with an entirely
novel contribution on the numerical solution of ODEs by
Skilling (1992). Skilling presented a Bayesian8 perspective
on the numerical solution of initial value problems of the
form

u′(t) ≡ du

dt
= f (t, u(t)) t ∈ [0, T ],

u(0) = u0, (5)

and considered, for example, how regularity assumptions on
f should be reflected in correlation functions and the hypoth-
esis space, how to choose a prior and likelihood, and potential
sampling strategies. Despite this work’s then-new explicit
emphasis on its Bayesian statistical character, Skilling him-
self considered his contributions to be quite natural:

“This paper arose from long exposure to Laplace/
Cox/Jaynes probabilistic reasoning, combined with the
University of Cambridge’s desire that the author teach

7 On page 95 of the same paper, Smale highlighted Larkin (1972) as
an “important earlier paper in this area”.
8 To be pedantic, the method of Skilling (1992) does not satisfy the
definition of aBayesian PNMas given in Sect. 3.2.However, themethod
can be motivated as exact Bayesian inference under an approximate
likelihood; see Wang et al. (2018).

some (traditional) numerical analysis. The rest is com-
mon sense. […]Simply,Bayesian ideas are ‘in the air’.”
(Skilling 1992)

2.5 Modern perspective (2010–)

The last two decades have seen an explosion of interest in
uncertainty quantification (UQ) for complex systems, with
a great deal of research taking place in this area at the meet-
ing point of applied mathematics, statistics, computational
science, and application domains (Le Maître and Knio 2010;
Smith 2014; Sullivan 2015):

“UQ studies all sources of error and uncertainty,
including the following: systematic and stochasticmea-
surement error; ignorance; limitations of theoretical
models; limitations of numerical representations of
thosemodels; limitations of the accuracy and reliability
of computations, approximations, and algorithms; and
human error.Amore precise definition isUQ is the end-
to-end study of the reliability of scientific inferences.”
(U.S. Department of Energy 2009, p. 135)

Since 2010, perhaps stimulated by this activity in the UQ
community, a perspective on PN has emerged that sees PN
part of UQ (broadly understood) and should be performed
with a view to propagating uncertainty in computational
pipelines. This is discussed further in Sects. 3.1 and 3.2.

A notable feature of PN research since 2010 is the way
that it has advanced on a broad front. The topic of quadra-
ture/cubature, in the tradition of Sul′din andLarkin, continues
to be well represented: see, e.g. Briol et al. (2019); Gunter
et al. (2014); Karvonen et al. (2018); Oates et al. (2017);
Osborne et al. (2012a, b); Särkkä et al. (2016), and Xi et al.
(2018), as well as Ehler et al. (2019); Jagadeeswaran and
Hickernell (2019); Karvonen et al. (2019a), and Karvonen
et al. (2019b) in this special issue. The Bayesian approach to
global optimisation continues to be widely used (Chen et al.
2018; Snoek et al. 2012), whilst probabilistic perspectives on
quasi-Newton methods (Hennig and Kiefel 2013) and line
search methods (Mahsereci and Hennig 2015) have been put
forward. In the context of numerical linear algebra, Bartels
and Hennig (2016); Cockayne et al. (2019b), and Hennig
(2015), as well as Bartels et al. (2019) in this special issue,
have approached the solution of a large linear systemof equa-
tions as a statistical learning task and developed probabilistic
alternatives to the classical conjugate gradient method.

Research has been particularly active in the development
and analysis of statistical methods for the solution of ordi-
nary andpartial differential equations (ODEsandPDEs).One
line of research has sought to cast the solution of ODEs in
the context of Bayesian filtering theory by building a Gaus-
sian process (GP) regression model for the solution u of the
initial value problem of the form (5). The observational data
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consist of the evaluations of the vector field f , interpreted as
imperfect observations of the true time derivative u′, since
one evaluates f at the “wrong” points in space. In this con-
text, the key result is the Bayesian optimality of evaluating f
according to the classical Runge–Kutta (RK) scheme, so that
the RK methods can be seen as point estimators of GP filter-
ing schemes (Kersting andHennig 2016; Schober et al. 2014,
2018); see also Tronarp et al. (2019) in this special issue.
Related iterative probabilistic numerical methods for ODEs
include those of Abdulle and Garegnani (2018); Chkrebtii
et al. (2016); Conrad et al. (2017); Kersting et al. (2018);
Teymur et al. (2016, 2018). The increased participation of
mathematicians in the field has led to correspondingly deeper
local and global convergence analysis of these methods in
the sense of conventional numerical analysis, as performed
by Conrad et al. (2017); Kersting et al. (2018); Schober et al.
(2018), andTeymur et al. (2018), aswell as Lie et al. (2019) in
this special issue; statistical principles for time step adaptiv-
ity have also been discussed, e.g. by Chkrebtii and Campbell
(2019) in this special issue.

For PDEs, resent research includes Chkrebtii et al. (2016);
Cockayne et al. (2016, 2017), and Owhadi (2015), with
these contributions making substantial use of reproducing
kernel Hilbert space (RKHS) structure and Gaussian pro-
cesses. Unsurprisingly, given the deep connections between
linear algebra and numerical methods for PDEs, the proba-
bilistically motivated theory of gamblets for PDEs (Owhadi
2017; Owhadi and Scovel 2017a; Owhadi and Zhang 2017)
has gone hand-in-hand with the development of fast solvers
for structured matrix inversion and approximation problems
(Schäfer et al. 2017); see also Yoo and Owhadi (2019) in this
special issue.

Returning to the point made at the beginning of this
section, however, motivation for the development of prob-
abilistic numerical methods has become closely linked to the
traditional motivations of UQ (e.g. accurate and honest esti-
mation of parameters of a so-called forward model), with a
role for PN due to the need to employ numerical methods
to simulate from a forward model. The idea to substitute a
probability distribution in place of the (in general erroneous)
output of a traditional numerical method can be used to pre-
vent undue bias and over-confidence in the UQ task and is
analogous to robust likelihood methods in statistics (Bissiri
et al. 2016; Greco et al. 2008). This motivation is already
present in Conrad et al. (2017) and forms a major theme of
Cockayne et al. (2019a); Oates et al. (2019a). Analysis of
the impact of probabilistic numerical methods in simulation
of the forward model within the context of Bayesian inver-
sion has been provided by Lie et al. (2018) and Stuart and
Teckentrup (2018).

2.6 Related fields and their development

The field of PN did not emerge in isolation and the research
cited above was undoubtedly influenced by parallel devel-
opments in mathematical statistics, some of which are now
discussed.

First, the mathematical theory of optimal approximation
using splines was applied by Schoenberg (1965, 1966) and
Karlin (1969, 1971, 1972, 1976) in the late 1960s and early
1970s to the linear problem of quadrature. Indeed, Larkin
(1974) cites Karlin (1969). However, the works cited above
were not concerned with randomness and equivalent prob-
abilistic interpretations were not discussed; in contrast, the
Bayesian interpretation of spline approximation was high-
lighted by Kimeldorf and Wahba (1970a).

Second, the experimental design literature of the late
1960s and early 1970s, including a sequence of contributions
from Sacks and Ylvisaker (1966, 1968, 1970a, b), consid-
ered optimal selection of a design 0 ≤ t1 < t2 < · · · < tJ ≤
1 to minimise the covariance of the best linear estimator of
β given discrete observations of stochastic process

Y (t) =
m∑

i=1

βiφi (t) + Z(t),

where Z is a stochastic process with E[Z(t)] = 0 and
E[Z(t)2] < ∞, based on the data {(t j , Y (t j ))}J

j=1. As such,
the mathematical content of these works concerns optimal
approximation in RKHSs, e.g. Sacks and Ylvisaker (1970a,
p. 2064, Theorem 1); we note that Larkin (1970) simul-
taneously considered optimal approximation in RKHSs.
However, the extent to which probability enters these works
is limited to the measurement error process Z that is enter-
tained.

Third, the literature on emulation of black-box functions
that emerged in the late 1970s and 1980s, with contribu-
tions from, e.g. O’Hagan (1978) and Sacks et al. (1989),
provided Bayesian and frequentist statistical perspectives
(respectively) on interpolation of a black-box function based
on a finite number of function evaluations. This literature
did not present interpolation as an exemplar of other more
challenging numerical tasks, such as the solution of differen-
tial equations, which could be similarly addressed but rather
focused on the specific problem of black-box interpolation
in and of itself. Sacks et al. (1989) were aware of the work
of Sul′din but Larkin’s work was not cited. The challenges of
proposing a suitable stochastic processmodel for a determin-
istic function were raised in the accompanying discussion of
Sacks et al. (1989) andwere further discussed by Currin et al.
(1991).
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2.7 Conceptual evolution—a summary

To conclude and summarise this section, we perceive the fol-
lowing evolution of the concepts used in, and interpretation
applied to, probability in numerical analysis:

1. In the traditional setting of numerical analysis, as seen
circa 1950, all objects and operations are seen as being
strictly deterministic. Even at that time, however, it was
accepted by some that these deterministic objects are
sometimes exceedingly complicated, to the extent that
they may be treated as being stochastic, à la von Neu-
mann and Goldstine.

2. Sard and Sul′din considered the questions of optimal per-
formance of a numerical method in, respectively, the
worst-case and the average-case context. Though it is
a fact that some of the average-case performance mea-
sures amount to variances of point estimators, they were
not viewed as such and in the early 1960s these proba-
bilistic aspects were not a motivating factor.

3. Larkin’s innovation, in the late 1960s and early 1970s,
was to formulate numerical tasks in terms of a joint
distribution over latent quantities and quantities of inter-
est, so that the quantity-of-interest output can be seen
as a stochastic object. However, perhaps due to the
then-prevailing statistical culture, Larkin summarised his
posterior distributions using a point estimator accompa-
nied by a credible interval.

4. The fully modern viewpoint, circa 2019, is to explicitly
think of the output as a probabilitymeasure to be realised,
sampled, and possibly summarised.

3 Probabilistic numerical methods come into
focus

In this section, we wish to emphasise how some of the
recent developments mentioned in the previous section
have brought greater clarity to the philosophical status of
probabilistic numerics, clearing up some old points of dis-
agreement or providing some standardised frameworks for
the comparison of tasks and methods.

3.1 Ameans to an end, or an end in themselves?

One aspect that has become clearer over the last few years,
stimulated to some extent by disagreements between statis-
ticians and numerical analysts over the role of probability in
numerics, is that there are (at least) two distinct use cases or
paradigms:

– (P1) a probability-based analysis of the performance of
a (possibly classical) numerical method;

– (P2) a numerical method whose output carries the formal
semantics of some statistical inferential paradigm (e.g.
the Bayesian paradigm; cf. Sect. 3.2).

Representatives of the first class of methods include
Abdulle and Garegnani (2018) and Conrad et al. (2017),
which consider stochastic perturbations to explicit numeri-
cal integrators for ODEs in order to generate an ensemble
of plausible trajectories for the unknown solution of the
ODE. In some sense, this can be viewed as a proba-
bilistic sensitivity/stability analysis of a classical numerical
method. This first paradigm is also, clearly, closely related
to ACA.

The second class of methods is exemplified by the
Bayesian probabilistic numerical methods, discussed in
Cockayne et al. (2019a) and Sect. 3.2.We can further enlarge
the second class to include those methods that only approx-
imately carry the appropriate semantics, e.g. because they
are only approximately Bayesian, or only Bayesian for a
particular quantity of interest or up to a finite time hori-
zon, e.g. the filtering-based solvers for ODEs (Kersting and
Hennig 2016; Kersting et al. 2018; Schober et al. 2014,
2018).

Note that the second class ofmethods can also be pragmat-
icallymotivated, in the sense that formal statistical semantics
enable techniques such as ANOVA to be brought to bear on
the design and optimisation of a computational pipeline (to
target the aspect of the computation that contributes most to
uncertainty in the computational output) (Hennig et al. 2015).
In this respect, statistical techniques can in principle supple-
ment the expertise that is typically provided by a numerical
analyst.

We note that paradigm (P1), with its close relationship
to the longer-established field of ACA, tends to be more
palatable to the classical numerical analysis community. The
typical, rather than worst-case, performance of a numeri-
cal method is of obvious practical interest (Trefethen 2008).
Statisticians, especially practitioners ofBayesian andfiducial
inference, are habitually more comfortable with paradigm
(P2) than numerical analysts are. As we remark in Sect. 4.5,
this difference stems in part from a difference of opinion
in which quantities are / can be regarded as “random” by
the two communities; this difference of opinion affects (P2)
much more strongly than (P1).

3.2 Bayesian probabilistic numerical methods

A recent research direction, which provides formal founda-
tions for the approach pioneered by Larkin, is to interpret
both traditional numerical methods and probabilistic numer-
ical methods as particular solutions to an ill-posed inverse
problem (Cockayne et al. 2019a). Given that the latent quan-
tities involved in numerical tasks are frequently functions,

123



Statistics and Computing (2019) 29:1335–1351 1343

this development is in accordance with recent years’ interest
in non-parametric inversion in infinite-dimensional function
spaces (Stuart 2010; Sullivan 2015).

From the point of view of Cockayne et al. (2019a), which
echoes IBC, the common structure of numerical tasks such
as quadrature, optimisation, and the solution of an ODE or
PDE, is the following:

– two known spaces: U , where the unknown latent variable
lives, and Q, where the quantity of interest lives;

– and a known function Q : U → Q, a quantity-of-interest
function;

and the traditional role of the numerical analyst is to
select/design

– a space Y , where data about the latent variable live;
– and two functions: Y : U → Y , an information operator

that acts on the latent variable to yield information, and
B : Y → Q such that B ◦ Y ≈ Q in some sense to be
determined.

With respect to this final point, Larkin (1970) observed that
there aremany senses in which B◦Y ≈ Q. Onemight ask, as
Gaussian quadrature does, that the residual operator R := B◦
Y − Q vanish on a large enough finite-dimensional subspace
of U ; one might ask, as worst-case analysis does, that R be
small in the supremum norm (Sard 1949); one might ask, as
ACA does, that R be small in some integral norm against
a probability measure on U . In the chosen sense, numerical
methods aim to make the following diagram approximately
commute9:

U Y

Q

Y
B

Q

(6)

A statistician might say that a deterministic numerical
method B : Y → U as described above uses observed data
y := Y (u) to give a point estimator B(y) ∈ Q for a quantity
of interest Q(u) ∈ Q derived from a latent variable u ∈ U .
Example 1 The general structure is exemplified by univariate
quadrature, in which U := C0([a, b];R), the information
operator

Y (u) := (t j , u(t j ))
J
j=1 ∈ Y := ([a, b] × R)J ,

9 Recall that a diagram such as (6) or (9) is called commutative if
all routes that follow the arrows (functions) from any starting point to
any endpoint yield the same result. Thus, commutativity of (6) means
exactly that B(Y (u)) = Q(u) for all u ∈ U .

corresponds to pointwise evaluation of the integrand at J
given nodes a ≤ t1 < · · · < tJ ≤ b, and the quantity of
interest is

Q(u) :=
∫ b

a
u(t) dt ∈ Q := R.

Thus, we are interested in the definite integral of u, and we
estimate it using only the information Y (u), which does not
completely specify u. Notice that some but not all quadra-
ture methods B : Y → Q construct an estimate of u and then
exactly integrate this estimate; Gaussian quadrature does this
by polynomially interpolating the observed data Y (u); by
way of contrast, vanilla Monte Carlo builds no such func-
tional estimate of u, since its estimate for the quantity of
interest,

BMC

(
(t j , z j )

J
j=1

)
= 1

J

J∑

j=1

z j , (7)

forgets the locations t j atwhich the integrand u was evaluated
and uses only the values z j := u(t j ) of u. (Of course, the
accuracy of BMC is based on the assumption that the nodes
t j are uniformly distributed in [a, b].)

This formal framework enables a precise definition of a
probabilistic numerical method (PNM) to be stated (Cock-
ayne et al. 2019a, Section 2). Assume that U , Y , and Q are
measurable spaces, that Y and Q are measurable maps, and
let PU etc. denote the corresponding sets of probability dis-
tributions on these spaces. Let Q� : PU → PQ denote the
push-forward10 of the map Q, and define Y� etc. similarly.

Definition 1 A probabilistic numerical method for the esti-
mation of a quantity of interest Q consists of an information
operator Y : U → Y and a map β : PU ×Y → PQ, the latter
being termed a belief update operator.

That is, given a belief μ about u, β(μ, · ) converts
observed data y ∈ Y about u into a belief β(μ, y) ∈ PQ
about Q(u), as illustrated by the dashed arrow in the follow-
ing (not necessarily commutative) diagram:

PU
Y�

Q�

PY
B�

Y

β(μ, · )
B

PQ Q
δ

(8)

As shown by the dotted arrows in (8), this perspective
is general enough to contain classical numerical methods
B : Y → Q as the special case β(μ, y) = δB(y), where
δq ∈ PQ is the unit Dirac measure at q ∈ Q.

10 I.e. Q�μ(S) = μ(Q−1(S)) for all measurable S ⊆ Q
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One desideratum for a PNM β is that its point estimators
(e.g. mean, median, or mode) should be closely related to
standard deterministic numerical methods B. This aspect is
present in works such as Schober et al. (2014), which con-
siders probabilistic ODE solvers with Runge–Kutta schemes
as their posterior means, and Cockayne et al. (2016, 2017),
which consider PDE solvers with the symmetric collocation
method as the posterior mean. However, this aspect is by no
means universally stressed.

A second, natural, desideratum for a PNM β is that the
spread (e.g. the variance) of the distributional output should
provide a fair reflection of the accuracy to which the quantity
of interest is being approximated. In the statistics literature,
this amounts to a deside for credible intervals to be well
calibrated (Robins and van der Vaart 2006). In particular,
one might desire that the distribution β contract to the true
value of Q(u) at an appropriate rate as the data dimension
(e.g. the number of quadrature nodes) is increased.11

Diagram (6), when it commutes, characterises the “ideal”
classical numerical method B; there is, as yet, no closed loop
in diagram (8) involving β, which we would need in order
to describe an “ideal” PNM β. This missing map in (8) is
intimately related to the notion of aBayesian PNMas defined
by Cockayne et al. (2019a).

The key insight is that, given a prior belief expressed as
a probability distribution μ ∈ PU and the information oper-
ator Y : U → Y , a Bayesian practitioner has a privileged
map from Y into PU to add to diagram (8), namely the con-
ditioning operator that maps any possible value y ∈ Y of
the observed data to the corresponding conditional distribu-
tion μy ∈ PU for u given y. In this situation, in contrast
to the freedom12 enjoyed by the designer of an arbitrary
PNM, a Bayesian has no choice in her/his belief β(μ, y)

about Q(u): it must be nothing other than the image under
Q of μy .

Definition 2 A probabilistic numerical method is said to be
Bayesian for μ ∈ PU if,

β(μ, y) = Q�μ
y for Y�μ-almost all y ∈ Y .

In this situation μ is called a prior (for u) and β(μ, y) a
posterior (for Q(u)).

11 Here we abuse notation slightly: strictly speaking, we should refer
not to one PNM β with input data y of varying dimension but to a one-
parameter family of PNMs βJ parametrised by the data dimension J .
12 The large and rapidly growing canon of PNMs, only some of which
are cited in this article, is strong evidence of just how great this freedom
is!

In other words, being Bayesian means that the following
diagram commutes:

PU

Q�

Y

y �→β(μ,y)

y �→μy

PQ

(9)

Note that Definition 2 does not insist that a Bayesian PNM
actually calculates μy and then computes the push-forward;
only that the output of the PNM is equal to Q�μ

y . Thus,
whether or not a PNM is Bayesian is specific to the quantity
of interest Q. Note also that a PNM β(μ, · ) can be Bayesian
for some priors μ yet be non-Bayesian for other choices of
μ; for details see Cockayne et al. (2019a, Sec. 5.2).

To be more formal for a moment, in Definition 2 the con-
ditioning operation y �→ μy is interpreted in the sense of a
disintegration, as advocated by Chang and Pollard (1997).
This level of technicality is needed in order to make rigorous
sense of the operation of conditioning on the μ-negligible
event that Y (u) = y. Thus,

– for each y ∈ Y , μy ∈ PU is supported only on those
values of u compatible with the observation Y (u) = y,
i.e. μy({u ∈ U | Y (u) �= y}) = 0;

– for any measurable set E ⊆ U , y �→ μy(E) is a
measurable function from Y into [0, 1] satisfying the
reconstruction property, or law of total probability,

μ(E) =
∫

Y
μy(E) (Y�μ)(dy).

Under mild conditions13 such a disintegration always exists,
and is unique up to modification on Y�μ-null sets.

Observe that the fundamental difference between ACA
(i.e. the probabilistic assessment of classical numericalmeth-
ods) and Bayesianity of PNMs is that the former concerns
the commutativity of diagram (6) in the average (i.e. the left-
hand half of diagram (8)), whereas the latter concerns the
commutativity of diagram (9).

The prime example of a Bayesian PNM is the following
example of kernel quadrature, due to Larkin (1972):

Example 2 Recall the setup of Example 1. Take a Gaus-
sian distribution μ on C0([a, b];R), with mean function
m : [a, b] → R and covariance function k : [a, b]2 → R.
Then, given the data

y = (t j , z j )
J
j=1 ≡ (t j , u(t j ))

J
j=1,

13 Sufficient conditions are, e.g. that U be a complete and separable
metric space with its Borel σ -algebra (so that every μ ∈ PU is a Radon
measure) and that the σ -algebra on Y be countably generated and con-
tain all singletons.

123



Statistics and Computing (2019) 29:1335–1351 1345

the disintegration μy is again a Gaussian on C0([a, b];R)

with mean and covariance functions

my(t) = m(t) + kT (t)
k−1
T T (zT − mT ), (10)

ky(t, t ′) = k(t, t ′) − kT (t)
k−1
T T kT (t ′), (11)

where kT : [a, b] → R
J , kT T ∈ R

J×J , zT ∈ R
J , and mT ∈

R
J are given by

[kT (t)] j := k(t, t j ), [kT T ]i, j := k(ti , t j ),

[zT ] j := z j ≡ u(t j ), [mT ] j := m(t j ).

The Bayesian PNM output β(μ, y), i.e. the push-forward
Q�μ

y , is a Gaussian on R with mean my and variance (σ y)2

given by integrating (10) and (11) respectively, i.e.

my =
∫ b

a
m(t) dt +

[∫ b

a
kT (t) dt

]

k−1

T T (zT − mT ),

(σ y)2 =
∫ b

a

∫ b

a
k(t, t ′) dt dt ′

−
[∫ b

a
kT (t) dt

]

k−1

T T

[∫ b

a
kT (t ′) dt ′

]
.

From a practical perspective, k is typically taken to have
a parametric form kθ and the parameters θ are adjusted
in a data-dependent manner, for example to maximise the
marginal likelihood of the information y under the Gaussian
model.

One may also seek point sets that minimise the poste-
rior variance (σ y)2 of the estimate of the integral. For the
Brownian covariance kernel k(t, t ′) = min(t, t ′), the poste-
rior Q�μ = N (my, (σ y)2) for

∫ b
a u(t) dt is given by (4), the

variance of which is clearly minimised by an equally spaced
point set {t j }J

j=1. For more general kernels k, an early refer-

ence for selecting the point set {t j }J
j=1 to minimise (σ y)2 is

O’Hagan (1991).

This perspective, in which the Bayesian update is singled
out fromother possible belief updates, is reminiscent of foun-
dational discussions such as those of Bissiri et al. (2016) and
Zellner (1988). Interestingly, about half of the papers pub-
lished on PN can be viewed as being (at least approximately)
Bayesian; see the survey in the supplement of Cockayne et al.
(2019a). This includes the work of Larkin, though, as previ-
ously mentioned, Larkin himself did not use the terminology
of the Bayesian framework. Quite aside from questions of
computational cost, non-Bayesian methods come into con-
sideration because the requirement to be fully Bayesian can
impose non-trivial constraints on the design of a practical
numerical method, particularly for problems with a causal
aspect or “time’s arrow”; this point was discussed in detail
for the numerical solution of ODEs by Wang et al. (2018).

As well as providing a clear formal benchmark, Cock-
ayne et al. (2019a, Section 5) argue that a key advantage
of Bayesian probabilistic numerical methods is that they are
closed under composition, so that the output of a computa-
tional pipeline composedofBayesianprobabilistic numerical
methods will inherit Bayesian semantics itself. This is analo-
gous to the Markov condition that underpins directed acyclic
graphical models (Lauritzen 1996) and may be an advan-
tageous property in the context of large and/or distributed
computational codes—an area where performing a classical
numerical analysis can often be difficult. For non-Bayesian
PNMs, it is unclear how these can/should be combined,
but we note an analogous discussion of statistical “mod-
els made of modules” in the recent work of Jacob et al.
(2017) [who observe, like Owhadi et al. (2015)], that strictly
Bayesianmodels can be brittle undermodelmisspecification,
whereas non-Bayesianity confers additional robustness) and
also the numerical analysis of probabilistic forward models
in Bayesian inverse problems by Lie et al. (2018).

4 Discussion and outlook

“Det er vanskeligt at spaa, især naar det gælder Fremti-
den.” [Danish proverb]

As it stands in 2019, our view is that there is much to be
excited about. An intermittent stream of ad hoc observations
and proposals, which can be traced back to the pioneering
work of Larkin and Sul′din, has been unified under the ban-
ner of probabilistic numerics (Hennig et al. 2015) and solid
statistical foundations have now been established (Cockayne
et al. 2019a). In this section,we comment on someof themost
important aspects of research that remain to be addressed.

4.1 Killer apps

The most successful area of research to date has been on the
development of Bayesian methods for global optimisation
(Snoek et al. 2012), which have become standard to the point
of being embedded into commercial software (The Math-
Works Inc. 2018) and deployed in realistic (Acerbi 2018;
Paul et al. 2018) and indeed high-profile (Chen et al. 2018)
applications.Other numerical tasks haveyet to experience the
same level of practical interest, though we note applications
of probabilistic methods for cubature in computer graphics
(Marques et al. 2013) and tracking (Prüher et al. 2018), as
well as applications of probabilistic numerical methods in
medical tractography (Hauberg et al. 2015) and nonlinear
state estimation (Oates et al. 2019a) in an industrial context.

It has been suggested that probabilistic numerics is likely
to experience the most success in addressing numerical tasks
that are fundamentally difficult (Owen 2019). One area that
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we highlight, in particular, in this regard is the solution
of high-dimensional PDEs. There is considerable current
interest in the deployment of neural networks as a substi-
tute for more traditional numerical methods in this context,
e.g. Sirignano and Spiliopoulos (2018), and the absence of
interpretable error indicators for neural networks is a strong
motivation for the development of more formal probabilistic
numerical methods for this task. We note also that nonlinear
PDEs in particular are prone to non-uniqueness of solu-
tions. For some problems, physical reasoning may be used
to choose among the various solutions, from the probabilis-
tic or statistical perspective lack of uniqueness presents no
fundamental philosophical issues: the multiple solutions are
simply multiple maxima of a likelihood, and the prior is used
to select among them, as in e.g. the treatment of Painlevé’s
transcendents by Cockayne et al. (2019a).

It has also been noted that the probabilistic approach pro-
vides a promising paradigm for the analysis of rounding error
in mixed-precision calculations, where classical bounds “do
not provide good estimates of the size of the error, and in
particular […] overestimate the error growth, that is, the
asymptotic dependence of the error on the problem size”
(Higham and Mary 2018).

4.2 Adaptive Bayesianmethods

The presentation of a PNM in Sect. 3.2 did not permit adap-
tation. It has been rigorously established that for linear
problems adaptive methods (e.g. in quadrature, sequential
selection of the notes t j ) do not outperform non-adaptive
methods according to certain performance metrics such as
worst-case error (Woźniakowski 1985, Section 3.2). How-
ever, adaptation is known to be advantageous in general for
nonlinear problems (Woźniakowski 1985, Section 3.8). At a
practical level, adaptation is usually an essential component
in the development of stopping rules that enable a numeri-
cal method to terminate after an error indicator falls below
a certain user-specified level. An analysis of adaptive PNMs
would constitute a non-trivial generalisation of the frame-
work of Cockayne et al. (2019a), who limited attention to
static directed acyclic graph representation of conditional
dependence structure. The generalisation to adaptive PNM
necessitates the use of graphical models with a natural fil-
tration, as exemplified by a dynamical Bayesian network
(Murphy 2002).

It has been suggested that numerical analysis is a natu-
ral use case for empirical Bayes methods (Carlin and Louis
2000;Casella 1985), as opposed to related—but usuallymore
computationally intensive—approaches such as hierarchical
modelling and cross-validation. Empirical Bayes methods
can be characterised as a specific instance of adaptation in
which the observed data are used not only for inference but
also to form a point estimator for the prior. For example, in

a quadrature setting, the practitioner is in the fortunate posi-
tion of being able to use evaluations of the integrand u both
to estimate the regularity of u and the value of the integral.
Empirical Bayesian methods are explored by Schober et al.
(2018) and by Jagadeeswaran and Hickernell (2019) in this
special issue.

4.3 Design of probabilistic numerical methods

Paradigmatic questions in the IBC literature are those of (i)
an optimal information operator Y for a given task, and (ii)
the optimal numerical method B for a given task, given infor-
mation of a known type (Traub et al. 1983). In the statistical
literature, there is also a long history of Bayesian optimal
experimental design, in parametric and non-parametric con-
texts (Lindley 1956; Piiroinen 2005). The extent to which
these principles can be used to design optimal numerical
methods automatically (rather than by inspired guesswork
on the mathematician’s part, à la Larkin) remains a major
open question, analogous to the automation of statistical rea-
soning envisioned byWald and subsequent commentators on
his work (Owhadi and Scovel 2017b).

4.4 Probabilistic programming

The theoretical foundations of probabilistic numerics have
now been laid, but at present a library of compatible code has
not been developed. In part, this is due to the amount of work
needed in order to make a numerical implementation reliable
and efficient, and in this respect PN lies far behind classical
numerical analysis at present. Nevertheless, we anticipate
that such efforts will be undertaken in coming years, and
will lead to the wider adoption of probabilistic numerical
methods. In particular, we are excited at the prospect of inte-
grating probabilistic numerical methods into a probabilistic
programming language, e.g. Carpenter et al. (2017), where
tools from functional programming and category theory can
be exploited in order to automatically compile codes built
from probabilistic numerical methods (Ścibior et al. 2015).

4.5 Bridging the numerics–statistics gap

“Numerical analysts and statisticians are both in the
business of estimating parameter values from incom-
plete information. The two disciplines have sepa-
rately developed their own approaches to formalizing
strangely similar problems and their own solution tech-
niques; the author believes they havemuch to offer each
other.” (Larkin 1979c)

A major challenge faced by researchers in this area is
the interdisciplinary gap between numerical analysts on the
one hand and statisticians on the other. Though there are
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some counterexamples, as a first approximation it is true
to say that classically trained numerical analysts lack deep
knowledge of probability or statistics, and classically trained
statisticians are not well versed in numerical topics such as
convergence and stability analysis. Indeed, not only do these
two communities take interest in different questions, they
often fail to even see the point of the other group’s expertise
and approaches to their common problems.

A caricature of this mutual incomprehension is the fol-
lowing: A numerical analyst will quite rightly point out that
almost all problems have numerical errors that are provably
non-Gaussian, not least because s/he can exhibit a rigorous a-
priori or a-posteriori error bound. Therefore, to the numerical
analyst it seems wholly inappropriate to resort to Gaussian
models for any purpose at all; these are often the statistician’s
firstmodels of choice, though they should not be the last. This
non-paradox was explained in detail by Larkin (1974). (As
a side note, it seems to us from our discussions that numer-
ical analysts are happier to discuss the modelling of errors
than the latent quantities which they regard as fixed, whereas
statisticians seems to have the opposite preference; this is
a difference in views that echoes the famous frequentist–
subjectivist split in statistics.) The numerical analyst also
wonders why, in the presence of an under-resolved integral,
the practitioner does not simply apply an adaptive quadrature
scheme and run it until an a posteriori global error indicator
falls below a pre-set tolerance.

We believe that these difficulties are not fundamental and
can be overcome by amore careful statement of the approach
being taken to address the numerical task. In particular, the
meeting ground for the numerical analysts and statisticians,
and the critical arena of application for PN, consists of prob-
lems that cannot be run to convergence more cheaply than
quantifying the uncertainties of the coarse solution—or, at
least, where there is an interesting cost-v.-accuracy tradeoff
to be had, which is a central enabling factor for multilevel
methods (Giles 2015).

More generally, we are encouraged to see that epistemic
uncertainty is being used once again and an analytical device
in numerical analysis in the sense originally described by von
Neumann and Goldstine (1947); see e.g. Higham and Mary
(2018).

4.6 Summary

The first aim of this article was to better understand prob-
abilistic numerics through its historical development. Aside
from the pioneering work of Larkin, it was only in the 1990s
that probabilistic numericalmethods—i.e. algorithms return-
ing a probability distribution as their output—were properly
developed. A unified vision of probabilistic computation was
powerfully presented by Hennig et al. (2015) and subse-
quently formalised by Cockayne et al. (2019a).

The second aim of this article was to draw a distinction
between PN as a means to an end, as a form of probabilistic
sensitivity / stability analysis, and PN as an end in itself. In
particular, we highlighted the Bayesian subclass of PNMs as
being closed under composition, a property that makes these
particularly well suited for use in UQ; we also remarked that
many problems—for reasons of problem structure, compu-
tational cost, or robustness to model misspecification—call
for methods that are not formally Bayesian.

Finally, we highlighted areas for further development,
which we believe will be essential if the full potential of
probabilistic numerics highlighted by Hennig et al. (2015) is
to be realised. From our perspective, the coming to fruition
of this vision will require demonstrable success on problems
thatwere intractablewith the computational resources of pre-
vious decades and awider acceptance ofLarkin’s observation
quoted above, with which we wholeheartedly agree: numeri-
cal analysts and statisticians are indeed in the same business
and do have much to offer one other!
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Kazan. Gos. Univ. Učen. Zap. 123(hn. 6), 3–35 (1963a)

Sul′din, A.V.: On the distribution of the functional
∫ 1
0 x2(t) dt where

x(t) represents a certain Gaussian process. In: Kazan State Univ.
Sci. Survey Conf. 1962 (Russian), pp. 80–82. Izdat. Kazan. Univ.,
Kazan (1963b)

Sul′din, A.V.: The solution of equations by the method of conditional
mean values. In: Kazan State Univ. Sci. Survey Conf. 1962 (Rus-
sian), pp. 85–87. Izdat. Kazan. Univ., Kazan (1963c)

Sul′din, A.V.: Curves and operators in a Hilbert space. Kazan. Gos.
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