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Abstract
Low energy excitations (< 1eV) are of utmost importance for understanding the elec-

tronic, magnetic, and thermodynamical properties of any material. The collective excita-
tions of spin in this energy regime are magnons, which are quantized spin-waves. Recent
developments in the field of spin-dynamics have opened up the world of femtomagnetism,
whereby the spin degree-of-freedom is controlled using ultrafast laser pulses. Thus manipu-
lating magnons using femtomagnetism holds great promise for future technological devices
operating on ultrafast timescales. In order to reach this goal, it is vital that we are able to
accurately describe these magnon excitations in order to understand, and ultimately control
them.

The objective of this thesis is to study magnetic excitations using an ab-initio approach,
namely Time Dependent Density Functional Theory (TDDFT). These studies are divided
into two sections. In the first part these excitations are studied in the linear regime where
a new approximation is derived. In the second part these studies are extended into the
real-time, non-equilibrium, regime where the response of magnons to ultrafast laser pulses
is investigated.

TDDFT encapsulates the electron-electron interactions of the many-body system in the
exchange-correlation (XC) functional, which for practical applications must be approxi-
mated. Despite the plethora of approximations for the XC energy functional only a few
have been used for the XC kernel. Out of these, only the Adiabatic Local Density Approx-
imation kernel has been implemented and applied to study the magnetic excitations. The
work presented first focuses on deriving the Generalized Gradient Approximation (GGA)
kernel by climbing up the Jacob’s ladder of functionals. Then the performance of the GGA
kernel is studied by calculating the magnon spectra for ferromagnets and Heuslers. Results
show that the GGA kernel generally worsens the spin-excitation spectra by overestimating
the magnon energies. However, at the Brillouin Zone (BZ) boundary, suppression of the
spin wave intensity is consistent with experimental findings.

In the second part of this thesis the power of real-time TDDFT is demonstrated by
simulating multiple magnon modes in multi-sublattice alloys, where these modes can be vi-
sualized in real space and their response to external pulses can be investigated in real-time.
The results in the case of two magnetic sublattice alloy suggests the existence of element
specific decoupled magnon modes along with the coupled modes. These decoupled modes in-
dicate that the constituent elements in the alloy respond at different timescales. Using these
studies three distinct ways of ultrafast laser pulse control of magnon modes is demonstrated:
(1) element selective destruction of magnon modes, (2) creation of a transient non-collinear
state by destruction of specific magnon modes, (3) renormalization of the optical magnon
frequency, where we found a linear dependence between the laser intensity and the decrease
of the magnon frequency.
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Zusammenfassung
Niederenergetische Anregungen (<1 eV) sind für das Verständnis der elektronischen, mag-

netischen und thermodynamischen Eigenschaften eines Materials von größter Bedeutung.
Die kollektiven Anregungen des Spins in diesem Energieregime sind quantisierte Spinwellen,
die man Magnonen nennt. Jüngste Entwicklungen auf dem Gebiet der Spindynamik er-
möglichen den Zugang zur Kontrolle des Femtomagnetismus, wobei der Spinfreiheitsgrad
mit ultraschnellen Laserpulsen gesteuert wird. Die Manipulation von Magnonen mithilfe des
Femtomagnetismus ist daher vielversprechend für zukünftige technologische Geräte, die in
ultraschnellen Zeitskalen arbeiten. Ein genaueres Verständnis der Magnonenanregungen ist
dafür allerdings erforderlich.

Das Ziel dieser Arbeit ist es daher, magnetische Anregungen mit einem Ab-initio-Ansatz
zu untersuchen, nämlich der zeitabhängigen Dichtefunktionaltheorie (TDDFT). Die Arbeit
ist in zwei Abschnitte unterteilt. Im ersten Abschnitt werden Magnonenanregungen im
linearen Bereich untersucht und eine neue Näherung abgeleitet. Im zweiten Abschnitt werden
diese Untersuchungen auf das Echtzeit-Nichtgleichgewichtsregime ausgedehnt, in dem die
Reaktion von Magnonen auf ultraschnelle Laserpulse untersucht wird.

TDDFT beschreibt die interelektronischen Wechselwirkungen des Vielteilchensystems
mithilfe des Austauschkorrelationsfunktionals (XC), das für praktische Anwendungen an-
genähert werden muss. Trotz einer Fülle von vorhandenen Näherungen für das XC En-
ergiefunktional wurden bisher nur wenige für den XC-Kernel verwendet. Von diesen wurde
bisher nur der Kernel des lokalen Dichtefunktionals in der adiabatischen Näherung imple-
mentiert und angewendet, um die magnetischen Anregungen zu untersuchen. Der erste
Abschnitt dieser Arbeit konzentriert sich daher auf die Ableitung des GGA-Kernels (Gen-
eralized Gradient Approximation). Anschließend wird die Genauigkeit des GGA-Kernels
untersucht, indem die Magnonenspektren für Ferromagnete und Heuslersche Legierungen
berechnet werden. Die Ergebnisse zeigen, dass der GGA-Kernel die Spinanregungsspektren
im Allgemeinen verschlechtert, indem die Magnonenenergien überschätzt werden. An der
Brillouin Zone (BZ)-Grenze hingegen, stimmt die berechnete Verminderung der Spinwellen-
intensität mit den experimentellen Ergebnissen überein.

Im zweiten Abschnitt dieser Arbeit wird die Genauigkeit der Echtzeit-TDDFT-Methode
demonstriert. Mehrere Magnonenmoden in Legierungen mit mehreren Untergittern wer-
den simuliert, wobei die Magnonenmoden im realen Raum graphisch dargestellt und die
Reaktion auf externe Laserpulse in Echtzeit untersucht werden. Die Ergebnisse im Fall von
zwei magnetischen Untergitterlegierungen legen die Existenz sowohl von elementspezifschen
entkoppelten Magnonenmoden als aucg gekoppelter Moden nahe. Sie deuten darauf hin,
dass die laserinduzierte Rückreaktion der Elemente in der Legierung auf unterschiedlichen
Zeitskalen liegt. Unter Verwendung dieser Studien werden drei verschiedene Möglichkeiten
der ultraschnellen Laserpulssteuerung von Magnonenmoden dargelegt: (1) Elementselektive
Zerstörung von Magnonenmoden, (2) Erzeugung eines transienten nichtkollinearen Zustands
durch Zerstörung spezifischer Magnonenmoden, (3) Renormierung der Magnonenfrequenz im
optischen Bereich, wobei wir eine lineare Abhängigkeit zwischen der Laserintensität und der
Abnahme der Magnonenfrequenz feststellten.
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CHAPTER 1
INTRODUCTION AND MOTIVATION

Dream, Dream, Dream
Dreams transform into thoughts
and thoughts result into action.

- Dr. APJ Abdul Kalam

An atom comprises of negatively charged electrons in quantized orbitals along with a
positively charged nucleus (containing both protons and neutrons) held together by the
mutual Coulomb attraction. However it took many years to reach this picture of the atom.
The year 1897 witnessed the discovery of the electron by J.J. Thomson, which was soon
followed by the plum pudding model of the atom. This is now known as the classical model of
the atom, where the electrons are embedded in a uniform sphere of positive charge. However
this model was abandoned due to the Rutherford experiment, which studied alpha particles
scattering from a thin gold foil. This experiment proved that there is a positively charged
core concentrated in the center of the atom and the electrons must orbit around it, just like
our solar system (although the electrons and nuclei are held together by the electrostatic
forces rather than by gravity). However, if this were the situation then the electrons should
radiate and eventually collapse into the nuclei, making all atoms unstable.

The birth of Quantum Mechanics in the early 1900s gave a more meaningful structure of
the atom. According to Neils Bohr, 1913, these electrons reside in well-defined orbitals, in
complete contrast to the classical model, where the electrons are randomly and continuously
distributed around the nuclei. Later Arnold Sommerfeld showed that the orientation of these
orbitals is also well defined. This is an example of one of the most beautiful phenomena in
physics: quantization (in this case spatial quantization or angular momentum quantization).
To prove this space quantization Otto Stern and Walter Gerlach, 1922, set up an experiment
to pass a collimated beam of silver atoms through an inhomogeneous magnetic field. In the
Bohr-Sommerfeld model, the space quantization should cause the splitting of the beam into
discrete lines. This splitting was indeed observed and the success was recorded in a postcard
sent by Gerlach to Bohr, see Fig. 1.1, congratulating him on the success of his theory.

The Stern-Gerlach experiment did show the splitting of the beam but only into two states.
While this confirmed that the classical model should be rejected, the results also did not
agree with the Bohr-Sommerfeld model. It is now known that the splitting of the beam had,
in fact, nothing to do with the orbital angular momentum, as silver has only one electron in
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Figure 1.1: Postcard from Gerlach to Bohr.

l=0 state, i.e. the angular momentum is 0. Following the introduction of electron spin by
Wolfgang Pauli, it was understood that the Stern-Gerlach experiment actually captured the
quantized spin angular momentum (= ±µB). In summary, since 1927 it is known that the
electron has two degrees of freedom associated with it, charge and spin.

The spin of the electron has proved so important to the history of electronics that it
prompted the new research field of spintronics[1, 2, 3], whose goal is to exclusively utilize
the spin degree of freedom. Devices working on this principle need less energy to perform, as
changing spin is often less work than generating charge currents. Similarly spin states can
be set quickly, making data-transfer quicker. This lead to the development of memories like
MRAM which are non-volatile and can operate efficiently in high temperature and radiation
environments, and are already being used in Airbus aircrafts and BMW motorbikes [4].
Additionally, it will lead to devices being smaller in size, faster in speed, and more powerful
than semiconductor based electronic devices. For example, it was realized that the exploiting
the electron spin increased the rate at which information could be read from a hard disk
drive. This was the ground breaking discovery of the Giant-Magnetoresistance (GMR) [5, 6]
effect by Albert Fert and Peter Grünberg in 2007 which led to them being awarded the Nobel
prize.

If spintronics is to overcome the limits of silicon based electronics we must develop meth-
ods to:

• Manipulate spin, either to rotate and/or transfer.

• Transport spin over long distances without losing the encoded information .

• Detect and decode this information.

The control of spin by laser technology on femtosecond timescales (femtomagnetism) has
emerged as a promising tool in the last two decades. It offers the possibility to alter a
magnetic system on a time scale that corresponds to the (equilibrium) exchange interaction
(responsible for the existence of magnetic order), while being much faster than the time scale
of spin-orbit interaction (1–10 ps) or magnetic precession (100–1000 ps) The foundation stone
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of this field was laid down by the observation of ultrafast demagnetization [7] in 1996. Here, it
was shown that when a laser is applied to nickel, it loses its magnetization on a femtosecond
timescale (see Fig. 1.2 (a)). Eventually, the spin is regained by the material but on the
longer picosecond timescale. The dissipation channel of spin observed in this experiment is
still an open question and attracts the attention of both theorists and experimentalists, with
many experiments performed to observe and attempt to explain this intriguing behavior of
spin-light interaction.

(a) (b)

Figure 1.2: (a) The demagnetization of nickel on femtosecond timescale when acted by an optical laser[7].
(b) Switching of magnetization using the circularly polarized light. The left handed light switches from up
state to down and vice versa with the right handed light [8].

Another landmark event was in 2007, when a 40 fs circularly polarized laser was applied
on a ferrimagnet resulting in switching of the spins. They demonstrated that controlled
reversal of magnetization is achievable by femtosecond laser pulses. Further, the direction
of switching is dependent on helicity of the light as can be seen in Fig. 1.2(b). This work
is of particular importance to the magnetic storage industry, due to the speed with which
magnetization reverses.

The control of spin by femtosecond lasers has been achieved to some extent and now the
task is to control transport on femtosecond timescale. One of the means of transport is in
the form of waves known as spin waves, which are formed by small disturbances in magnet-
ically ordered materials. These were first predicted by F. Bloch and can propagate up to
nanometer length scales without significant attenuation. Hence, the next leap in information
processing would be to utilize these magnetic quasi-particles called spin waves or magnons
to transport spin. The magnon spintronics, or magnonics[9, 10, 11], has many advantages
over conventional electronics, e.g. wave-based computing, a wide frequency range from GHz
to THz, contactless wiring, nonlinear-data processing, room temperature transport of spin
without joule heat generation, and many more. Furthermore, spin-wave characteristics can
be engineered by tuning various parameters such as choice of material, shape of sample,
orientation and size of the applied magnetic field. Hence given the vast tunability and rich
physics of spin-waves they are an excellent object of study in order to ultimately be able to
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control them. The control of magnons by terahertz pulse is indeed feasible as was demon-
strated by the experiment done by Kampfrath et al. [12]. Here a single-cycle terahertz pulse
switched on and off the coherent spin waves in antiferromagnetic NiO at a frequency of 1
THz. The terahertz field addresses spin selectively by the Zeeman interaction and provides
a means to control previously inaccessible magnetic excitations.

Owing to the importance of magnons from a technological point of view this thesis
aims at studying them in a wide range of materials: ferromagnets, Heusler compounds, and
multi-magnetic-sublattice alloys, using the fully ab-initio approach of time-dependent density
functional theory. This was first done in the linear response regime where a new adiabatic
kernel has been derived, implemented and applied to study ferromagnets and Heuslers. This
formalism was extended to the real-time domain to study the high energy magnon modes
present in ferromagnetic materials and Fe50Ni50 alloy. Lastly, I unite the fields of magnonics
and femtomagentism and study the dynamics of these magnon modes under the effect of
ultrafast, ultrastrong laser pulses. This can be shown in a nutshell by the following simple
diagram (Fig. 1.3):

Figure 1.3: Simple diagram showing the combination of two fields : magnonics and femtomagnetism.
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CHAPTER 2

TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

Theory is when you understand everything but nothing works.
Practice is when everything works but you don’t understand why.
Combine theory with practice: nothing works and no one knows why.

-Anonymous

Density Functional Theory (DFT), is a computational, quantum mechanical, simula-
tion tool based on functionals of the electronic density. It is widely used by physicists,
chemists, and material scientists to investigate the ground-state electronic structure of atoms,
molecules, and condensed matter. Further its predictions for geometries, vibrational frequen-
cies, and total energies are reliable and have the advantage of being faster and less memory
intensive than conventional wavefunction-based methods. Time-dependent density func-
tional theory (TDDFT) is the extension of this exact theory to the time-domain in order
to capture the linear and non-linear dynamics of the electronic and magnetization densities.
In this thesis TDDFT will be applied to study magnons, but first a review of DFT and
TDDFT is given in this chapter. This includes the necessary theorems required to prove
that the density can indeed be used instead of wavefunction to calculate all observables.
Next, the approximations commonly used for all practical calculations are discussed. This
is followed by equations of linear response TDDFT, including a discussion about the optical
and magnetic excitation spectra and the approximations required for exchange-correlation
(XC) kernel. Finally we show how the non-equilibrium response to applied laser fields may be
calculated using the real-time TDDFT (RT-TDDFT) formalism. This section also discusses
the techniques required to analyze and interpret the simulated dynamics.

2.1 Density Functional Theory

The quantum mechanical description of a system is given by the solutions of the many-body
Hamiltonian:

5



Ĥ = T̂nuclei + T̂electron + V̂nuclei−electron + Ŵelectron−electron + V̂nuclei−nuclei

= −
M∑
α=1

h̄2

2Mα

∇2
α −

N∑
i=1

h̄2

2me

∇2
i −

N∑
i=1

M∑
α=1

1

4πϵ0

Zαe
2

riα

+
N∑
i=1

N∑
j>i

1

4πϵ0

e2

rij
+

M∑
α=1

M∑
α>β

1

4πϵ0

ZαZβ

rαβ

(2.1)

where M is number of nuclei labelled as α, N is number of electrons labelled as i, T̂ is kinetic
energy operator, V̂ is the potential energy operator, Mα is mass of each nuclei, me is electronic
mass, and r gives the separation between the electrons and/or the nuclei. The terms of Eq.
(2.1) correspond to the kinetic energy of nuclei, kinetic energy of electrons, potential energy
of nuclei-electron interaction, potential energy of the electron-electron interaction, and the
potential energy of nuclei-nuclei interaction respectively. Solving the Schrödinger equation
gives the many-body wavefunction (Ψtotal) and eigenvalues (E),

Ĥ|Ψtotal⟩ = E|Ψtotal⟩ (2.2)

Figure 2.1: Elephant and bees
analogy for Born-Oppenheimer
Approximation.[13]

This equation gives us all the information we need
about a particular system but only if we could solve
it exactly. The Coulomb interaction terms are present
in the Hamiltonian make it a difficult problem to
solve, and hence we require approximations. As we
know, the nuclei are heavier than electrons and hence
they generally respond much slower to the changes
in electronic system. This can be understood by the
analogy with bees motion attracted to honey on ele-
phant’s head Fig. 2.1. The bees move faster and
being lighter can instantly adjust to motion of ele-

phant’s head. Similarly, electrons being lighter their motion can be decomposed from that
of the nuclei. Hence, by this approximation, the nuclear degrees of freedom can be treated
classically and the many-body wavefunction factorized. This is the Born-Oppenheimer ap-
proximation in which electrons move in the external scalar potential provided by the nuclei
fixed at positions R.

Ψtotal(r,R) = Ψnuclei(R)Φe(r|R) (2.3)

where R, r are the nuclei and electronic coordinates, respectively and Φe(r|R) shows the
parametric dependence of the electronic wavefunction on the nuclear coordinates. Concep-
tually, this means that the nuclei are fixed at their positions and electrons move with respect
to them. Then the Schrödinger equation for the electronic system reads,
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[
T̂electron + V̂nuclei−electron + Ŵelectron−electron

]
|Φe⟩ = Ee|Φe⟩[

−
N∑
i=1

h̄2

2m2
e

∇2
i −

1

4πϵ0

N∑
i=1

M∑
α=1

Zαe
2

|ri −Rα|
+

1

4πϵ0

N∑
i=1

N∑
j>i

e2

|ri − rj|

]
Φe(r) = EeΦe(r)

(2.4)

which may be written in simpler form using atomic units. Since we focus on the electronic
system, we will drop the ’e’ subscript of the wavefunction.

[
−

N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
α=1

Zα

|ri −Rα|
+

N∑
i=1

N∑
j>i

1

|ri − rj|

]
Φ(r) = EΦ(r) (2.5)

[
T̂electron + V̂ext + Ŵ

]
|Φ⟩ = E|Φ⟩ (2.6)

where the electron-nuclear interaction is often referred to as external potential, V̂ext and
electron-electron interaction by Ŵ .
If we know this electronic wavefunction, we could calculate many observables of the system
such as energy, geometry, magnetization . However, solving for Φ is not practical: for an
Oxygen atom, which has 8 electrons, the wavefunction will depend on 3 degrees of freedom
for each of these 8 electrons i.e. 3×8 spatial coordinates. If for storing one spatial coordinate
we need 10 points, then to store 24 spatial coordinates we need 1024 points. If 1 byte of
memory is used by each point then we need a total of 1024 bytes of memory. Usually a
DVD has 1010 bytes for storage, which means we need 1014 DVD’s. In terms of weight, if
a DVD weighs 10g each, then we would require 1015 g of DVD’s or 1014 kg of DVD. The
mass of earth is 5.972× 1024 kg, so just to store the wavefunction of Oxygen atom we would
need DVD’s equivalent to half the mass of our earth. To overcome this difficulty alternative
methods are required.

2.2 Hohenberg-Kohn theorem:
In 1964, Hohenberg and Kohn [14] proved it is possible to obtain all the desired information of
an interacting system from only the electronic density, i.e. without needing the wavefunction.

The kinetic energy and the potential energy of electron-electron interaction for a fixed number
of electrons, N, can be combined to make a universal operator F̂ = T̂electron+Ŵ . Therefore by
specifying V̂ext (and N), the Schrödinger equation, and hence the ground state wavefunction,
Φ0(r), is completely determined. From this ground state wavefunction, the ground state
density can be determined

ρ0(r) = N

∫
|Φ0(r, r2, r3, ....rN)|2dr2dr3 · · · drN = ⟨Φ0|ρ̂|Φ0⟩ (2.7)
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where ρ̂(r) =
∑N

i=1 δ(r − r̂i) is density operator. Thus the ground state wavefunction and
density are both functionals of the external potential (and the number of electrons). The
HK theorem proves the reverse of this, that the external potential is a unique functional of
the density.

Theorem 1: There is an one-to-one mapping between the external potential, Vext(r),
and the ground state density of an interacting system of electrons. In other words, the ex-
ternal potential is a unique functional of the density up to some additive constant.

Figure 2.2: Pictorial representation of first Hohenberg-Kohn theorem.

In Fig. 2.2, the first set contains all the external potentials which describe a system. After
substituting this in the Schördinger equation we get the second set which comprises of
wavefunctions. As two systems can not have same set of wavefunctions which are practically
indistinguishable, then for every external potential there exists only one solution. This map
from external potential to wavefunctions is also invertible as implied by the Schrödinger
equation. The third set is obtained by calculating the density of the wavefunctions in set 2.
To prove the one-to-one correspondence it is to be shown that the map between set 3 and
set 1 is invertible.

Proof: Consider that there are two different external potentials Vext(r), V ′
ext(r), differing

more than a constant, comprising two different Hamiltonians Ĥ, Ĥ ′ with non-degenerate
ground state solutions Φ0 and Φ′

0 satisfying the following Schrödinger equations

Ĥ|Φ0⟩ = E0|Φ0⟩
Ĥ ′|Φ′

0⟩ = E ′
0|Φ′

0⟩
(2.8)

where E0 and E ′
0 are the ground state energies. However assume that both give the same

density, ρ0(r). In other words,

⟨Φ′
0|ρ̂|Φ′

0⟩ = ρ0(r) = ⟨Φ0|ρ̂|Φ0⟩ (2.9)

Then, we have the following inequality by the Rayleigh-Ritz principle when Ĥ acts on Φ′
0

wavefunction,
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E0 < ⟨Φ′
0|Ĥ|Φ′

0⟩
= ⟨Φ′

0|F̂ + V̂ext + V̂ ′
ext − V̂ ′

ext|Φ′
0⟩

= ⟨Φ′
0|Ĥ ′ + V̂ext − V̂ ′

ext|Φ′
0⟩

= E ′
0 + ⟨Φ′

0|V̂ext − V̂ ′
ext|Φ′

0⟩

(2.10)

Similar inequality holds when Ĥ ′ acts on wavefunction Φ0,

E ′
0 < ⟨Φ0|Ĥ ′|Φ0⟩
= ⟨Φ0|F̂ + V̂ ′

ext + V̂ext − V̂ext|Φ0⟩
= ⟨Φ0|Ĥ + V̂ ′

ext − V̂ext|Φ0⟩
= E0 + ⟨Φ0|V̂ ′

ext − V̂ext|Φ0⟩

(2.11)

Since both Φ0 and Φ′
0 were assumed to have the same density, adding Eq. (2.10) and (2.11)

gives us the contradictory inequality

E0 + E ′
0 < E ′

0 + E0 (2.12)
Thus by reductio ad absurdum we have shown that the external potential is a unique func-
tional of the density and vice versa. In particular, the wavefunction becomes a functional of
density and hence all observables become functionals of the density.

Theorem 2: This theorem establishes the variational principle for the energy functional.
Proof: As the ground-state wavefunction is a functional of the density, Φ0[ρ], the energy

of a system defined by a fixed external potential can be written as,

E[ρ] = ⟨Φ0[ρ]|Ĥ|Φ0[ρ]⟩

= T [ρ] +W [ρ] +

∫
vext(r)ρ(r)dr

= F [ρ] +

∫
vext(r)ρ(r)dr

(2.13)

where F [ρ] is a universal functional given by,

F [ρ] = ⟨Φ0[ρ]|F̂ |Φ0[ρ]⟩ (2.14)
Hence, the value of the energy functional is minimized for the ground state density, ρ0, as
stated by the second theorem,

E[ρ] = ⟨Φ0[ρ]|Ĥ|Φ0[ρ]⟩ ≥ ⟨Φ0[ρ0]|Ĥ|Φ0[ρ0]⟩ = E0

E[ρ] ≥ E0

(2.15)
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These two theorems established DFT on a firm footing however accurate approximations
to the kinetic energy functional were not available. A year later Kohn and Sham derived the
Kohn-Sham (KS) equations which made practical applications of DFT possible.

2.3 Kohn-Sham Equations
Kohn and Sham introduced the idea of obtaining the density of an interacting system by
mapping the problem to a fictitious non-interacting system. The Schrödinger equation for
this non-interacting KS system is,[

− 1

2
∇2 + vS(r)

]
ϕi(r) = ϵiϕi(r) (2.16)

where
∑N

i=1 |ϕi(r)|2 = ρ(r). Applying the Hohenberg-Kohn theorem for non-interacting sys-
tems we find that for every interacting ground state density ρ0(r) (assuming representability)
there is a unique KS potential vS(r). Therefore, solving Eq. 2.16 yields the density of the
interacting system and, hence, all ground state properties are obtained.
The kinetic energy density is:

Ts[ρ] = −
1

2

N∑
i=1

∫
ϕ∗
i (r)∇2ϕi(r)dr (2.17)

where the orbitals are implicit functionals of the density. The energy functional can be
written as

Es[ρ] = Ts[ρ] +

∫
ρ(r)vS(r)dr (2.18)

Using the Euler-Lagrange method to find the ground state density, with the constraint that
density integrates to the correct number of electrons.

δ

δρ(r)

[
Es[ρ]− µ

(∫
ρ(r)dr−N

)]
= 0

δTs[ρ]

δρ(r) + vs[r]− µ = 0

(2.19)

where µ is the Lagrange multiplier. Comparing it to the energy functional of the interacting
system,

E[ρ] = F [ρ] +

∫
vext(r)ρ(r)dr (2.20)

and defining the XC functional as,

EXC[ρ] = F [ρ]− 1

2

∫
ρ(r)ρ(r′)
|r− r′| drdr′ − Ts[ρ] (2.21)
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The Euler-Lagrange equation for the interacting system is then,

δ

δρ(r)

[
E[ρ]− µ

(∫
ρ(r)dr−N

)]
= 0

δTs[ρ]

δρ(r) + vext(r) +
∫

ρ(r′)
|r− r′|dr′ + δEXC[ρ]

δρ(r) − µ = 0

(2.22)

Defining the XC potential as,

vXC[ρ](r) =
δEXC[ρ]

δρ(r) (2.23)

and the fact that the density of interacting and non-interacting systems are the same we get,

vs(r) = vext(r) + vH[ρ](r) + vXC[ρ](r) (2.24)

where vH[ρ](r) =
∫ ρ(r′)
|r− r′|dr′ is the Hartree potential. We can therefore find the ground

state density by using the following KS equations,[
− 1

2
∇2 + vext(r) + vH[ρ](r) + vXC[ρ](r)

]
ϕi(r) = ϵiϕi(r) (2.25)

N∑
i=1

|ϕi(r)|2 = ρ(r) (2.26)

Note that the kinetic energy density of the interacting system and of the non-interacting
system are not equal. To solve these equation for a real system we need approximations for
the XC functional.

Spin-polarized systems:

The original KS equations can be extended for the spin-polarized systems where the
densities for spin up, ρ↑(r), and spin down, ρ↓(r), channels are defined as

ρ↑(r) =
∑
j

|ϕj↑(r)|2

ρ↓(r) =
∑
j

|ϕj↓(r)|2
(2.27)

where the spin polarized KS orbitals are ϕj↑(r) and ϕj↓(r). Then the total density is given
by the summation of these two densities,

ρ(r) = ρ↑(r) + ρ↓(r) (2.28)
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whereas the magnetization density is given as by the difference between the two densities,

mz(r) = ρ↑(r)− ρ↓(r) (2.29)

The physical quantities under study now become a functional of these two densities and the
Kohn-Sham equations are written for each spin channel separately as

[
− ∇2

2
+ vext(r) + vH(r) + v↑XC(r)

]
ϕj↑(r) = ϵj↑ϕj↑(r)[

− ∇2

2
+ vext(r) + vH(r) + v↓XC(r)

]
ϕj↓(r) = ϵj↓ϕj↓(r)

(2.30)

where v↑XC(r) and v↓XC(r) are the XC potentials for each spin channel and are given by the
functional derivatives of EXC[ρ

↑, ρ↓],

v↑XC(r) =
δEXC[ρ

↑, ρ↓]

δρ↑(r) v↓XC(r) =
δEXC[ρ

↑, ρ↓]

δρ↓(r) (2.31)

These equations describe collinear systems, where the magnetic field and magnetization
are parallel to each other, along a well defined direction (say z-axis). For non-collinear
systems [15], the magnetization is not necessarily parallel to the magnetic field, where the
magnetization density is given by,

m(r) = ⟨Φ|σ̂ρ̂|Φ⟩ (2.32)

where σ̂ are the Pauli matricies. Then the energy becomes a functional of m(r) and ρ(r).
The KS equations for such a system is written in terms of 2-component Pauli spinors, ϕj(r),[

− ∇2

2
+ vS(r) + σ ·BS(r)

]
ϕj(r) = ϵjϕj(r) (2.33)

where vS(r) is given by Eq. 2.24 and BS(r) = Bext(r) + BXC(r) is the summation of the
external magnetic field (if any) and XC magnetic field which is found by functional derivative
of the XC energy functional,

vXC(r) =
δEXC[ρ,m]

δρ(r) BXC(r) =
δEXC[ρ,m]

δm(r) (2.34)

Usually the functionals for collinear systems are extended for the case of non-collinear systems
using the Kübler-Sandratskii method [16] (discussed in Section 3.4.1) resulting in,

vXC(r) =
1

2

(
v↑XC(r) + v↓XC(r)

)
BXC(r) =

1

2

(
v↑XC(r)− v↓XC(r)

)
m̂(r) (2.35)

where m̂(r) = m(r)
|m(r)| is the magnetization unit vector and the XC potentials are found from

collinear functionals for up/down densities ρ↑↓(r) = (ρ(r)± |m(r)|)/2.
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2.4 Exchange-Correlation Functionals
The theory up to now is in principle exact, provided the exact XC functional is known.
However, this functional is not known and an approximation must be made. These approxi-
mations are grouped into different rungs of a ladder known as Jacob’s ladder [17] (Fig. 2.3).
As we climb the ladder the level of accuracy increases along with the computational cost.
The ultimate goal is to reach the topmost rung of accuracy.

Figure 2.3: Jacob’s ladder for XC functional approximations. From [18]

The total XC functional can be decomposed into the exchange and correlation parts
separately and we can approximation for the whole XC energy or individually.

EXC[ρ] = Ex[ρ] + Ec[ρ] (2.36)

2.4.1 Local Density Approximation (LDA)
The simplest approximation is based on the uniform electron gas. In this gas, electrons can
move around freely in a positive background which is there to balance charge neutrality. In
LDA, the XC energy density from each infinitesimal volume in space, dr, is taken to be the
value it would have if the whole of space were filled with a homogeneous electron gas with
the same density as is found in dr.

EXC[ρ] =

∫
eXC(ρ(r))ρ(r)dr (2.37)

where eXC(ρ) is the XC energy density per particle. For the exchange energy functional this
can be calculated analytically and is given as,

ELDA[ρ] = −
3

4

( 3
π

)1/3
∫
(ρ(r))(4/3)dr (2.38)
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The correlation energy of the uniform electron gas on the other hand is known only in the
low and high density limits which corresponds to the infinitely-weak and infinitely-strong
correlation. The high-density limit of the correlation energy density is

ϵc = A ln(rs) +B + rs(C ln rs +D) (2.39)

where A, B, C, and D are constants, rs is the Weigner-Seitz radius, and is related to Fermi
vector kF , which are further related to the density as

4

3
πr3s =

1

ρ
=

k3
F

3π2
(2.40)

The low density limit is

ϵc =
1

2

(g0
rs

+
g1

r
3/2
s

+ · · ·
)

(2.41)

where g0 and g1 are constants. To find the values in between these density limits, Monte-
Carlo simulations have been done, and the data used for interpolation. The functional form
and interpolation adopted in this thesis is of Perdew-Wang [19]. This is written as,

ϵc(rs) = −2A(1 + α1rs) ln
[
1 +

1

2A(β1r
1/2
s + β2rs + β3r

3/2
s + β4r2s)

]
(2.42)

where the values of the constants are given in table 2.1.
As LDA was built on data from homogeneous electron gas, but then used for inhomoge-

neous systems, it was not expected to give good results. However, this approximation did
surprisingly well for real systems like atoms and molecules. Some of it’s successes can be
attributed to:

• it’s XC hole satisfies the exact sum rules [20, 21, 22] and exact cusp condition [23]
whereas the exchange hole also satisfies the exact negativity constraint [24, 25].

• the exchange energy obeys the exact spin scaling [26] (given in next section) and an
exact uniform density scaling [27].Further the correlation energy scales properly in
low-density limit [28].

• it obeys the Lieb-Oxford lower bound [28, 29, 30].

• Error cancellation exists in LDA as the exchange is typically overestimated and corre-
lation is underestimated and the errors tend to compensate.

• Asymptotic exactness in semiclassical limit [31].
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2.4.2 Spin-polarized LDA (LSDA)
The systems we treat have spins present along with the charge and hence we should have XC
functionals for spin polarized systems. The known unpolarized functionals can be extended
to spin polarized systems.

EXC[ρα, ρβ] =

∫
ρ(r)eXC(ρα, ρβ) (2.43)

For exchange an exact relation is known between polarized and unpolarized systems and
applies for any system.

Ex[ρα, ρβ] =
1

2

(
Ex[2ρα] + Ex[2ρβ]

)
(2.44)

No such relation exists for the much more complicated correlation energy. Functionals are
then written in terms of the spin polarization,

ζ(r) = ρα(r)− ρβ(r)
ρα(r) + ρβ(r)

(2.45)

where ζ = 0 corresponds to an unpolarized system and ζ = ±1 corresponds to the purely
ferromagnetic states where only one spin exists. The correlation energy per particle for
spin-polarized system is given as,

ϵc = ϵc(rs, 0) + αc(rs)
f(ζ)

f ′′(0)
(1− ζ4) + [ϵc(rs, 1)− ϵc(rs, 0)]f(ζ)ζ

4 (2.46)

where ϵc(rs, 0), ϵc(rs, 1), and αc(rs) are obtained by substituting the constants from Table

2.1 in Eq. 2.42 and f(ζ) =
[(1 + ζ)4/3 + (1− ζ)4/3 + 2]

24/3 − 2
.

Table 2.1: The parameters for calculating the correlation energy based on the functional form of Eq.2.42.

ϵc(rs, 0) ϵc(rs, 1) −αc(rs)
A 0.031091 0.015545 0.016887
α1 0.21370 0.20548 0.11125
β1 7.5957 14.1189 10.357
β2 3.5876 6.1977 3.6231
β3 1.6382 3.3662 0.88026
β4 0.49294 0.62517 0.49671

Despite LDA’s success there are a number of systems where it performs poorly, e.g.
it overestimates the lattice constants for solids, gave wrong ground state for 3d-transition
metals like for iron, yields reasonable molecular geometries and vibration frequencies, but
can strongly overestimate atomization energies [32]. One way to go beyond the local density
approximation was by including the gradients of density in the XC functional which leads
us to the next rung of the ladder.
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2.4.3 Generalized Gradient Approximation (GGA)
This functional has dependency on both the density and its gradient i.e. EXC = EXC[ρ(r),∇ρ(r)].
There are many GGA functionals developed, to name a few Perdew-Wang 91 [33], Perdew-
Burke-Ernzerhof (PBE) [34], Armiento and Mattsson (AM05) [35], Perdew-Burke-Ernzerhof
revised for solids (PBEsol) [36]. In this thesis the focus is on the PBE functional. The
correlation energy is given as:

EPBE
c [ρα, ρβ] =

∫
drρ(r)[ϵunifc (rs, ζ) +H(rs, ζ, t)] (2.47)

where rs and ζ are defined previously, t = |∇ρ|
2ηksρ

is a dimensionless density gradient. Here

ks =
√

4kF/πa0 is the Thomas-Fermi screening wave number. Three conditions of slowly
varying (t → 0), rapidly varying (t → ∞) and uniform density scaling gives an expression
for H as,

H = γη3 ln
{
1 +

β

γ
t2
[ 1 + At2

1 + At2 + At4

]}
(2.48)

where η(ζ) = [(1+ ζ)2/3+(1− ζ)2/3]/2 is spin-scaling factor, β ≃ 0.066725, γ = (1− ln 2)/π2

and

A =
β

γ

[ 1

exp[−ϵunifc /(γη3)]− 1

]
(2.49)

The exchange energy has the following form,

Ex =

∫
drϵunifx (ρ)FPBE(s) (2.50)

where ϵunifx = −3kF/4π, and s = |∇ρ|/2kFρ = r
1/2
s ηt is another dimensionless density

gradient. The exchange should obey correct uniform gas limit, spin-scaling relationship,
Lieb-oxford bound, local spin density of spin-unpolarized uniform electron gas and hence
the form of FPBE obtained is,

FPBE(s) = 1 + κ− κ

1 + µs2/κ
(2.51)

where κ = 0.804, µ = β(π2/3).

Some of the important outcomes of using GGA functionals are:

• Improves ground state properties of light atoms, molecules, clusters and solids.

• 3d transition metals better described, e.g. gives correct bcc ferromagnetic ground state
of iron unlike the LDA.
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• Structural properties are generally improved with some exceptions like the 5d com-
pounds.

The other rungs of the ladder form meta-GGA functionals, hybrids, double hybrids,
exact-exchange functionals and others. As only LDA and GGA functionals are extensively
used in this thesis they are explained and if the reader wishes to read more about functionals
they are advised to read articles [17, 37, 38, 39].

2.5 Time-Dependent Density Functional Theory
The time-dependent extension of density functional theory to study the dynamics of the
systems under time dependent electric and magnetic fields is TDDFT. These time depen-
dent fields result in electronic excitations which drives the system away from equilibrium.
The exact dynamics are given by the time-dependent Schrödinger equation for an initial
wavefunction Φ(r, 0), which is

i
∂

∂t
Φ(r, t) = H(r, t)Φ(r, t) (2.52)

where the Hamiltonian is time-dependent due to the time varying external potential and is
written as,

H(r, t) = −1

2

N∑
i

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj|
+ Vext(r, t) (2.53)

Similar to the ground state DFT, the idea of extracting all the observables from the one-
body density (HK theorems) was extended to time-dependent regime by Runge and Gross
in 1984 [40]. After the establishment of this theorem TDDFT may be used in many appli-
cations. Firstly in spectroscopy where the response of a material is studied to an external
weak perturbation, for example, Magneto-Optical Kerr effect (MOKE), Faraday rotation,
Electron-energy loss spectroscopy (EELS). Secondly, the real-time dynamics is used in out
of equilibrium regimes where the external fields are strong as compared with the systems
internal fields for example ultrastrong laser driven demagnetization and spin manipulation
on femtosecond timescales.

2.5.1 Runge-Gross theorem
This theorem proves that there is one-to-one correspondence between the time-dependent
external potential, Vext(r, t), and the electronic one-body density, ρ(r, t), for many-body
systems evolving from a fixed initial state. This is a very powerful statement in the sense
that if we have knowledge about the time-dependent density originating from an initial
wavefunction, then from Runge-Gross theorem we know time-dependent external potential.
Substituting this potential in the Schrödinger equation gives all the information about the
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interacting many-body system. Thus making all time-dependent observables functionals of
the density. This is similar to the HK theorem, but with subtle difference that there is
no time-dependence and no initial state dependence. The proof consists of two steps via
the current densities. Additionally, it requires the time-dependent external potential to be
Taylor expandable in t around t=0 for a finite time interval i.e. being time-analytic around
the initial time.

vext(r, t) =
∞∑
k=0

1

k!
vext,k(r)tk

v′ext(r, t) =
∞∑
k=0

1

k!
v′ext,k(r)tk

(2.54)

We are required to show that the two densities ρ(r, t) and ρ′(r, t) under the influence of
external potentials vext(r, t) and v′ext(r, t) and starting from the same initial state are always
different. The potentials should differ by more than a time-dependent function.

vext(r, t) ̸= v′ext(r, t) + c(t) (2.55)

This time-dependent function does not alter the densities as this gives wavefunctions which
differ only by a time-dependent phase factor. In other words,

vext,k(r)− v′ext,k(r) =
∂k

∂tk
[vext(r, t)− v′ext(r, t)]

∣∣∣
t=0
̸= 0 (2.56)

at some order k.
Step 1: In the first step it is to be shown that the current densities which originate from

different potentials are different. The current definition is,

ĵ(r) = 1

2i

N∑
i=1

[∇iδ(r− ri) + δ(r− ri)∇i] (2.57)

To prove this equation of motion for the expectation values of the currents is written as,

∂

∂t
j(r, t) = ∂

∂t

[
⟨Φ|ĵ(r)|Φ⟩

]
= −i⟨Φ|[ĵ(r), Ĥ(t)]|Φ⟩

∂

∂t
j′(r, t) = ∂

∂t

[
⟨Φ′|ĵ(r)|Φ′⟩

]
= −i⟨Φ′|[ĵ(r), Ĥ ′(t)]|Φ′⟩

(2.58)

Both the wave-functions evolve from the same initial state at t=0

Φ(r, 0) = Φ′(r, 0) = Φ0 (2.59)

and the two Hamiltonians differ only in the external potentials. Now, subtracting the two
current densities gives us,
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∂

∂t
[j(r, t)− j′(r, t)]

∣∣∣
t=0

= −i⟨Φ0|[ĵ(r), Ĥ(t)− Ĥ ′(t)]|Φ0⟩

= −ρ(r, 0)∇[vext(r, 0)− v′ext(r, 0)]
(2.60)

here ρ(r, 0) is the initial density. If Eq. (2.56) is satisfied for k = 0, the current densities j
and j′ become different infinitesimally later than t=0 as the right hand side of above equation
can not vanish. But it could happen that at t=0 the potentials are the same and non-zero
only at some later time. Then Eq. (2.56) holds for k > 0 and the equation of motion for
−i[ĵ(r), Ĥ(r, t)] has to be solved k+1 times. For a given k, we have k nested commutators
i.e. (−i)k[[[ĵ(r), Ĥ(r, t)], Ĥ(r, t)]Ĥ(r, t)] · · · , Ĥ(r, t)]k to solve the equation of motion. After
some algebra we obtain,( ∂

∂t

)k

[j(r, t)− j′(r, t)] = −ρ(r, 0)∇wk(r) ̸= 0 (2.61)

where

wk(r) =
( ∂

∂t

)k

[vext(r, t)− v′ext(r, t)]
∣∣∣
t=0

(2.62)

This again proves that at times infinitesimally later than the initial time yields different
current densities.

j(r, t) ̸= j′(r, t) (2.63)

Step 2: In the second step it is to be shown that the densities coming from different
current densities are different, which is achieved using the continuity equation.

∂ρ(r, t)
∂t

= −∇ · j(r, t) (2.64)

doing the (k+2) derivative of the two densities and subtracting them gives,( ∂

∂t

)k+2

[ρ(r, t)− ρ′(r, t)]
∣∣∣
t=0

= ∇ · [ρ(r, 0)∇wk(r)] (2.65)

now to show that the densities get different after small later time than at t=0 it is sufficient
to show that the r.h.s does not vanish. For proving this consider the following expression,

∫
drρ(r, 0)[∇wk(r)]2

= −
∫

drwk(r)∇ · [ρ(r, 0)∇wk(r)] +
∮

dS · [ρ(r, 0)wk(r)∇wk(r)]
(2.66)

where Green’s theorem is used in second part. The surface term vanishes for any physical
potential. The l.h.s is positive if ∇wk(r) ̸= 0, hence integrand of the first term of the r.h.s.
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must also be non-zero. Therefore the r.h.s. of Eq.[2.65] can not be zero and densities must
become different at an infinitesimally later time than t=0 starting from same initial state.

This completes the proof of Runge-Gross theorem and in short it can be written as

Φ0 : vext ←
1-1−→ ρ (2.67)

Just like the ground state theory, we now turn to time-dependent Kohn-Sham system, de-
signed such that it reproduces the density of true interacting system from an non-interacting
system.

2.5.2 Time-dependent Kohn-Sham equations
The time-dependent Kohn-Sham equations act as a bridge connecting the interacting elec-
trons moving in time-dependent potential, vext(r, t), and the non-interacting electrons moving
in time-dependent effective potential, vS(r, t).
The time-dependent Kohn-Sham equation is

i
∂

∂t
ϕj(r, t) =

[
− 1

2
∇2 + vS(r, t)

]
ϕj(r, t) (2.68)

where ϕj(r, t) are the KS eigenvectors producing the time-dependent density as,

ρ(r, t) =
∑

occupied

|ϕj(r, t)|2 (2.69)

and the effective KS potential in which the electrons move is the sum of time-dependent
counterparts of external potential (vext(r, t)), Hartree potential

(
vH(r, t) =

∫
dr′ ρ(r

′, t)

|r− r′|

)
and the XC potential is defined as

vXC[ρ;φ0,Φ0](r, t) = vS[ρ, φ0](r, t)− vext[ρ,Φ0](r, t)− vH[ρ](r, t) (2.70)

As can be seen, the XC potential depends on the entire history of the density, and the
initial wavefuctions of both the interacting, Φ0(r, t), and non-interacting systems, φ0(r, t).
However, if we start from the non-degenerate ground state for both the interacting and
KS system, then the initial state dependence is subsumed into the density due to the HK
theorem. This is generally how the TDDFT is used, i.e. on top of a ground state calculation.
Even after removing this dependence the potential still depends on the density’s past or has
memory i.e. at a particular time, t, and point, r, in space it depends on the density at all
previous times, t’, for any arbitrary point, r′, in space. This past dependence is ignored in
what is known as the adiabatic approximation and only instantaneous density dependence
is allowed. This makes the functional local in time.

vadiaXC [ρ](r, t) = vapproxXC [ρ(t)](r) (2.71)
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This approximation will be valid if the time-dependent potential changes very slowly or
adiabatically and the electrons always stay in their instantaneous ground state. The systems
for which this approximation can be made exact requires,

vadiaXC [ρ](r, t) = vGS
XC [ρGS](r)

∣∣∣
ρGS(r′)=ρ(r′,t)

(2.72)

where vGS
XC [ρGS](r) is the exact ground state XC potential for the ground state density ρGS(r).

Since the form of exact XC energy functional is unknown even in static case the spatial
nonlocality is also approximated. Using this approximation, in principle, any ground state
functional such as a GGA or hybrid or meta-GGA can be automatically used in TDDFT
calculations.

2.6 Linear Response TDDFT
To study a system of interacting charges and spins, we generally perturb it externally with
some stimulus, e.g. electrons (used in Scanning Electron Microscope(SEM), Transmission
Electron Microscope(TEM), optical absorption spectra, etc.), photons (used in X-ray Diffrac-
tion(XRD), Ellipsometry, etc.), electric fields (all systems have charges present in them and
hence the effect of electric field can be used to study electrical conductivity; number and
type of charge carriers through Hall coefficient etc.), and magnetic fields (Nuclear Magnetic
Resonance (NMR), Quantum Oscillators, de Haas-van Alphen (dHvA) effect, etc.) etc. To
calculate such properties, we may use linear-response TDDFT (LR-TDDFT), where we sim-
ilarly perturb the KS system which must, by definition, reproduce the exact response of
the density. We now calculate the linear response of a spin unpolarized system to a small
perturbation to the Hamiltonian of δv(r, t) (following the derivation of Pines and Nozières
[PN66]),

δĤ(t) = eΥt

N∑
i=1

δv(ri, t) 0 < Υ << 1

=

∫
dreΥt

N∑
i=1

δv(r, t)δ(r− ri)

=

∫
eΥtδv(r, t)n̂(r)dr

(2.73)

where eΥt is to insure that the perturbation is slow and stays within the adiabatic regime.
Also as t→ −∞ , eΥt = 0 and 1 for t=0. Writing this perturbation in frequency space,

δĤ(t) =

∫
dr

∫
dω

2π
e−iω̌tδv(r, ω)n̂(r) (2.74)

where ω̌ = ω + iΥ. Hence the time-dependent Hamiltonian can be written as,
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Ĥ(t) = Ĥ0 + δĤ(t) (2.75)

where the first term is the Hamiltonian corresponding to the static case and the second is
the time-dependent perturbation. The wavefunctions, |Φ0⟩, and the eigenvalues, E0, of the
unperturbed system are obtained by solving the Schrödinger equation,

Ĥ0|Φ0⟩ = E0|Φ0⟩ (2.76)

Denoting the ground state and excited states by |Φ0
0⟩ and |Φ0

j⟩ with energies E0
0 and E0

j

respectively. The time evolution of ground state is |Φ0
0(t)⟩ = e−iE0

0 t|Φ0
0⟩. For the time-

dependent perturbation the Schrödinger equation becomes,

i
∂|Φ(t)⟩

∂t
=

(
Ĥ0 + δĤ(t)

)
|Φ(t)⟩ (2.77)

Within first order perturbation theory we can write the wavefunction as,

|Φ(t)⟩ = e−iE0
0 t|Φ0

0⟩+
∑
j ̸=0

aj(t)|Φ0
j⟩e−iE0

j t (2.78)

where the first term is the unperturbed time-dependent solution and the second term is ad-
mixture of components resulting from excited states of the unperturbed Schrödinger equation
excluding the ground state (j ̸= 0). As it is performed on top of ground state calculation,
the response depends on time difference and not on it’s absolute value. The coefficients,
aj(t), can be found as

aj(t) = −i
∫ t

−∞
dt′eiω0jt

′⟨Φ0
j |δĤ(t′)|Φ0

0⟩

= −i
∫

dr
∫

dω

2π

∫ t

−∞
dt′ei(ω0j−ω̌)t′δv(r′, ω)⟨Φ0

j |δn̂(r′)|Φ0
0⟩

= −
∫

dr
∫

dω

2π
δv(r′, ω)⟨Φ0

j |δn̂(r′)|Φ0
0⟩
ei(ω0j−ω̌)t

ω0j − ω̌

(2.79)

ω0j = Ej − E0 is the excitation energy. The change in the density can also be calculated to
lowest order.
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ρind(r, t) = δρ(r, t)
= ⟨Φ(t)|n̂(r)|Φ(t)⟩ − ⟨Φ0(t)|n̂(r)|Φ0(t)⟩

=
{
eiE

0
0 t⟨Φ0

0|+
∑
j ̸=0

a∗j(t)e
iE0

j t⟨Φ0
j |
}
|n̂(r)|

{
e−iE0

0 t|Φ0
0⟩+

∑
j ̸=0

aj(t)e
−iE0

j t|Φ0
j⟩
}

− eiE
0
0 t⟨Φ0

0|n̂(r)|Φ0
0⟩e−iE0

0 t

= ⟨Φ0
0|n̂(r)|Φ0

0⟩+ eiE
0
0 t
∑
j ̸=0

⟨Φ0
0|n̂(r)|Φ0

j⟩aj(t)e−iE0
j t +

∑
j ̸=0

a∗j(t)e
iE0

j t⟨Φ0
j |n̂(r)|Φ0

0⟩e−iE0
j t

+
∑
j ̸=0

a∗j(t)aj(t)e
iE0

j t−iE0
j t⟨Φ0

j |n̂(r)|Φ0
j⟩ − ⟨Φ0

0|n̂(r)|Φ0
0⟩

=
∑
j ̸=0

[
aj(t)⟨Φ0

0|n̂(r)|Φ0
j⟩e−iω0jt + a∗j(t)⟨Φ0

j |n̂(r)|Φ0
0⟩eiω0jt

]
= −

∫
dr′

∫
dω

2π
δv(r′, ω)ei(ω0j−ω̌)t−iω0jt

∑
j ̸=0

[⟨Φ0
j |n̂(r′)|Φ0

0⟩⟨Φ0
0|n̂(r)|Φ0

j⟩
ω0j − ω̌

+
⟨Φ0

0|n̂(r)|Φ0
j⟩⟨Φ0

j |n̂(r)|Φ0
0⟩

ω0j + ω̌

]
(2.80)

The induced density in frequency space becomes

ρind(r, ω) = −
∫

dr′δv(r′, ω)
∑
j ̸=0

[⟨Φ0
j |n̂(r′)|Φ0

0⟩⟨Φ0
0|n̂(r)|Φ0

j⟩
ω0j − ω̌

+
⟨Φ0

0|n̂(r)|Φ0
j⟩⟨Φ0

j |n̂(r)|Φ0
0⟩

ω0j + ω̌

]
(2.81)

Now the linear response function can be calculated, defined as the change induced in the
density by the change in the external potential,

δρ(r, ω)
δvext(r′, ω)

= χ(r, r′, ω)

= −
∑
j ̸=0

[⟨Φ0
j |n̂(r′)|Φ0

0⟩⟨Φ0
0|n̂(r)|Φ0

j⟩
ω0j − ω̌

+
⟨Φ0

0|n̂(r)|Φ0
j⟩⟨Φ0

j |n̂(r)|Φ0
0⟩

ω0j + ω̌

] (2.82)

This is the response of the fully interacting system in frequency space when the system
is acted upon by δv(r, t) and the poles correspond to the excitation energy of interacting
system. In the non-interacting KS system the ground state wavefunction, Φ0

0, can be written
as a product of orthonormal KS one-particle wavefunctions, ϕn
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Φ0
0(r1, r2, · · · , rN/2) =

1√
N

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) · · · ϕn(r1) · · · ϕN/2(r1)
ϕ1(r2) ϕ2(r2) · · · ϕn(r2) · · · ϕN/2(r2)

... ... ... ... ... ...
ϕ1(rN/2) ϕ2(rN/2) · · · ϕn(rN/2) · · · ϕN/2(rN/2)

∣∣∣∣∣∣∣∣∣
When electron moves from an occupied state to an unoccupied state, then we get excited
states of the system represented by the following wavefunction,

Φ0
j(r1, r2, · · · , rN/2) =

1√
N

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) · · · ϕm(r1) · · · ϕN/2(r1)
ϕ1(r2) ϕ2(r2) · · · ϕm(r2) · · · ϕN/2(r2)

... ... ... · · · ... ...
ϕ1(rN/2) ϕ2(rN/2) · · · ϕm(rN/2) · · · ϕN/2(rN/2)

∣∣∣∣∣∣∣∣∣
where m > N/2. Then the expectation value of ⟨Φ0

0|n̂(r)|Φ0
j⟩ is,

∑
k

⟨ϕ1(r1)ϕ2(r2) · · ·ϕn(ri) · · ·ϕN/2(rN/2)|δ(r− rk)|ϕ1(r1)ϕ2(r2) · · ·ϕm(ri) · · ·ϕN/2(rN/2)

= ϕ∗
n(r)ϕ∗

m(r)
(2.83)

Also the one-particle energies are ωnm = ϵm − ϵn. Thus the response of the KS system is,

χKS(r, r′, ω) = −
∑
nocc

∑
munocc

2
(ϕ∗

m(r′)ϕn(r′)ϕ∗
n(r)ϕm(r)

ωnm − ω̌
+

ϕ∗
n(r′)ϕm(r′)ϕ∗

m(r)ϕn(r)
ωnm + ω̌

)
(2.84)

where 2 is to account for the unpolarized system. The transition will take place from an
occupied level to an unoccupied level. Hence writing in terms of Fermi distribution function,
f with values of 1 for occupied and 0 for unoccupied.

χKS(r, r′, ω) = −
∑
nall

∑
mall

2fn(1− fm)
(ϕ∗

m(r′)ϕn(r′)ϕ∗
n(r)ϕm(r)

ϵm − ϵn − ω̌
+

ϕ∗
n(r′)ϕm(r′)ϕ∗

m(r)ϕn(r)
ϵm − ϵn + ω̌

)
(2.85)

The Fourier transform of χ(r, r′, ω) is χ(q,q′, ω) and for periodic systems having translational
invariance, χ(r + R, r′ + R) = χ(r, r′) will be non zero only when q and q′ (within the first
brillouin zone) differ by a reciprocal lattice vector, G. Also by Bloch’s theorem the sum of
states can be relabelled by k-points and states n, m. Then the response in momentum space
is given by,

24



χKS
GG′(q, ω) = −

1

Ω

∑
nk

∑
mk′

2fnk(1− fmk′)
(⟨ϕmk′|ei(q+G)·r|ϕnk⟩⟨ϕnk|e−i(q+G′)·r|ϕmk′⟩

ϵmk′ − ϵnk − ω̌

+
⟨ϕnk|ei(q+G)·r|ϕmk′⟩⟨ϕmk′|e−i(q+G′)·r|ϕnk⟩

ϵmk′ − ϵnk − ω̌

)
(2.86)

where Ω is unit cell volume

⟨ϕmk′|ei(q+G)·r|ϕnk⟩ =
∫

drϕ∗
mk′(r)ei(q+G)·rϕnk(r)

= δ(k′ − q− k)
∫
Ω

dru∗
mk′(r)eiG·runk(r)

(2.87)

where the KS states are Bloch states consisting of lattice periodic part, u(r), and the oscil-
lating part, eik·r. By changing the summation index in second term we can combine both
terms of Eq. (2.86) and get,

χKS
G,G′(q, ω) =

1

Ω

∑
nk

∑
mk′

2(fmk′ − fnk)
⟨ϕmk′ |ei(q+G)·r|ϕnk⟩⟨ϕnk|e−i(q+G′)·r′ |ϕmk′⟩

ϵmk′ − ϵnk − ω̌
(2.88)

Now the aim in TDDFT is to use this information of the KS system and obtain the response
of the fully interacting system. Writing again the responses of the interacting and non-
interacting system in the time domain,

Interacting system:

δρ(r, t) =
∫

dt′
∫

dr′χ(r, r′, t− t′)δvext(r′, t′)

χ(r, r′, t− t′) =
δρ(r, t)

δvext(r′, t′)

(2.89)

Non-interacting system:

δρ(r, t) =
∫

dt′
∫

dr′χKS(r, r′, t− t′)δvS(r′, t′)

χKS(r, r′, t− t′) =
δρ(r, t)
δvS(r′, t′)

(2.90)

To bridge these two systems we use the fact that the density change arising from both is, by
definition, the same. Hence,
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∫
dt′

∫
dr′χ(r, r′, t− t′)δvext(r′, t′) =

∫
dt′

∫
dr′χKS(r, r′, t− t′)δvS(r′, t′)

=

∫
dt′

∫
dr′χKS(r, r′, t− t′)[δvext(r′, t′) + δvH(r′, t′) + δvXC(r′, t′)]

(2.91)

Applying the chain rule we get,

δvH(r′, t′) =
∫

dt1

∫
dt2

∫
dr1

∫
dr2

δvH(r′, t′)
δρ(r1, t1)

δρ(r1, t1)
δvext(r2, t2)

δvext(r2, t2)

=

∫
dt1

∫
dt2

∫
dr1

∫
dr2

1

|r1 − r′|χ(r1, r2, t1 − t2)δvext(r2, t2)

δvXC(r′, t′) =
∫

dt1

∫
dt2

∫
dr1

∫
dr2

δvXC(r′, t′)
δρ(r1, t1)

δρ(r1, t1)
δvext(r2, t2)

δvext(r2, t2)

=

∫
dt1

∫
dt2

∫
dr1

∫
dr2fXC(r′, r1, t′ − t1)χ(r1, r2, t1 − t2)δvext(r2, t2)

(2.92)

where fXC is the XC kernel obtained from the Taylor series expansion of the XC potential
up to first order,

vXC[ρ0 + δρ](r, t) = vXC[ρ0](r) +
∫

dt′
∫

dr′fXC[ρ0](r, r′, t− t′)δρ(r′, t′)

fXC[ρ0](r, r′, t− t′) =
δvXC(r, t)
δρ(r′, t′)

∣∣∣
ρ=ρ0

(2.93)

Substituting Eq. (2.92) in Eq. (2.91), an equation for χ is obtained, in frequency space it
reads:

χ(r, r′, ω) = χKS(r, r′, ω) +
∫

dr1dr2χKS(r, r1, ω)
[ 1

|r1 − r2|
+ fXC(r1, r2, ω)

]
χ(r2, r′, ω)

(2.94)
This is known as the Dyson-like equation and can be used to obtain the fully interacting
response of a system from the non-interacting KS system. Dropping the dependencies it may
be written in the following compact form

χ = χKS + χKS[fH + fXC]χ (2.95)
For non-collinear spin-polarized systems this can be generalized,

χµν(r, r′, ω) = χKS
µν (r, r′, ω) +

∑
δγ

∫
d3r′′

∫
d3r′′′χKS

µδ (r, r′′, ω)
[
f δγ

H (r′′, r′′′)

+ f δγ
XC(r′′, r′′′, ω)

]
χγν(r′′′, r′, ω)

(2.96)
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where µ = [0, 1 · · · 3] and fH =
δ0µδ0ν
|r− r′| is Hartree kernel, the density becomes a 4-vector

given as ρµ = [ρ0,m], also the XC potential becomes vµXC = [vXC,BXC]. The non-interacting
KS linear response functions can easily be calculated in terms of the KS spinors, ϕ(r):

χKS
µν (r, r′, ω) = lim

Υ→0

∑
p

∑
q

σµσν(fp − fq)
ϕ∗
p(r)ϕq(r)ϕp(r′)ϕ∗

q(r′)
ω + (εp − εq) + iΥ

(2.97)

where fp, fq denote the occupation number of the pth, qth band, respectively, and σµ = [I, σ]
are the four-dimensional counterparts of Pauli spin matrices, σ, with the identity matrix, I.

For practical applications approximations are needed for the XC kernel. In principle, we
can have as many kernels as XC potentials, as any approximations may be used within the
adiabatic approximations. However, the level of complexity increases as we climb up the
Jacob’s ladder of approximations. The simplest approximation which is widely adopted for
these linear-response calculations is the Adiabatic LSDA (ALSDA). Before discussing the XC
approximations for the kernel, we should look at the response and it’s encoded information.
The structure of response is a 4× 4 matrix:

Figure 2.4: The structure of the fully interacting and non-interacting response functions

where the different blocks give the different responses. First is the charge-charge response
which is how the charge responds to the scalar potential, second is charge-spin which tells
how charge responds to a magnetic field, third is spin-charge giving information about spin
response to scalar potential, and lastly the spin-spin response gives spin response to an
applied magnetic fields.

Conventionally, the excitations are studied in the decoupled limit where the off-diagonal
terms of Fig. 2.4 are set to zero (i.e. δm/δvext = δρ/δBext=0). This allows us to separate
and study the charge-charge response and spin-spin response independently.
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2.6.1 Charge-Charge response
In the linear regime an electron is excited from an occupied state to an unoccupied state when
it absorbs a photon (see Fig. 2.5). The relation between the absorbed energy as a function
of photon frequency gives the absorption spectra and can be calculated for molecules, atoms
or solids. For periodic systems, it is given by imaginary part of the dielectric constant.
It contains information about both the density of states that take part in the absorptive
processes and the frequency of the excitation. All this information is embedded in the
charge-charge part of the matrix Fig. 2.4, and extensive work [41, 42, 43, 44] has been done
to study these electronic and optical excitations using TDDFT.

Figure 2.5: A cartoon of excitation of electron from valence band to conduction band.

Experimental observables may then be extracted from the response functions, for exam-
ple, the inverse dielectric function is

ϵ−1 = 1 + v
(δρ
δv

)
= 1 + vχ

(2.98)

where v is the bare Coulomb potential. The imaginary part of ϵ−1 gives the EELS whereas
the imaginary part of ϵ gives the absorption spectrum in long wavelength limit.
As stated above to study these optical excitations an approximation for the kernel is needed
and in charge-charge response many kernels have been developed. These kernels were re-
quired to correct the interesting physics of excitons, which are bound electron hole pairs, and
can be seen as a peak below the bandgap in the absorption spectra (see Fig. 2.6). To produce
these peaks it was found that the XC kernel should have the correct long-wavelength limit,
it must go as 1/q2 as q → 0. This behavior of the kernel is missing in the Random Phase
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Figure 2.6: The absorption spectra for Silicon and LiF (taken from [41]) for various kernels and compared
to experiments. The reference for the experimental data can be found in the cited chapter.

Approximation [45, 46] and Adiabatic LDA kernels, hence new kernels were developed, such
as Long Range kernel [47, 48], Bootstrap kernel [49, 50], Nanoquanta kernel[47, 51].

The EELS at finite q-values can be accurately treated by ALDA kernel, in contrast to
the absorption spectra in the long-wavelength limit. This indicates that away from Γ-point
the 1/q2 dependence of kernel is less relevant. Outside the first Brillouin Zone (BZ) the
EELS is suppressed which is captured by all the kernel qualitatively (Fig. 2.7). The BSE
kernel reproduces the experiment quite well whereas the bootstrap data is blue-shifted by
≈ 0.75eV. The ALDA kernel is an improvement over the RPA kernel but not significantly.

Figure 2.7: The EELS for LiF and Diamond (taken from [41]) for various kernel used and compared to
experiments. The reference for the experimental data can be found in the cited chapter.

2.6.2 Spin-Spin response
A magnetic system is formed when spins align in a particular direction breaking the rotational
symmtery. Whenever a symmetry is broken it leads to excitations of zero energy known as
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Goldstone excitations. Finite energy excitations are possible and can be studied as a function
of wavevector q. Thus, this dispersion spectrum must go to zero as q goes to zero, satisfying
the Goldstone theorem. However, in real systems having magnetic anisotropy these zero-
energy excitations do not exist and we get finite energy at q = 0. The spin ordered systems
can be excited in two ways by an external perturbation, which can be understood with the
example of a ferromagnetic system (shown in Fig. 2.8). For this system a ground state of
spins is formed when they spontaneously align with each other in one direction. One of the
ways a spin can be excited is when it completely flips, reducing the angular momentum of
the system by h̄. This spin reversal costs high energy as it has overcome the Heisenberg
interaction of its neighboring spins (see Fig. 2.101). However low energy excitations are
possible, where this spin reversal is spread over many spins like a waveform. The quanta of
this excitation is called a magnon.

Figure 2.8: (a) Ground state of a ferromagnetic material. (b) High energy single particle spin flip. (c)
Low energy spin-waves.

In realistic systems, the magnetic excitation where a single electron of a given spin is
excited from an occupied state below the Fermi level into an empty state with opposite spin,
leaving a hole behind is known as a stoner excitation. These excitations are described by the
Stoner model, but it neglects the interactions between the excited electron and hole. This
leads to high energies of magnetic excitations which then lead to wrong curie temperatures.
To explain the experimentally observed Curie temperatures the itinerant electron model is
needed, which considers the low-energy excitations. These are collective excitations whose
nature can be described by the superposition of single-particle states and the correlated
motion of the spin-reversed electron and hole left behind in the sea of aligned electrons.
This was introduced by Slater [52] for an itinerant electron insulator and was extended by
Herring and Kittel [53, 54]. The general finding was that these collective excitations in the
itinerant model are identical to the well-defined spin waves in the localized model of Fig.
2.8(c), in the limit of low wave vectors and low energies. For a ferromagnet, in this limit
the dispersion relation is quadratic in nature and at high wave-vectors the magnon energies
become comparable to the Stoner excitations. The region in which Stoner excitations are
possible, the collective excitations get damped and they are not well defined. The reason
behind this is that the correlated electron-hole pair decays into uncorrelated states.

To understand this picture a cartoon of exchange-split bands is shown in Fig. 2.9 for
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Figure 2.9: The exchange split bands with majority band (a) completely below the Fermi level representing
strong ferromagnet and (b) for a weak ferromagnet when majority band is half filled. The excitation spectra
for both the cases is shown in (c) and (d) respectively.

two situations: (a) when the majority band is completely filled, i.e. completely below the
Fermi level and (b) when it is half filled. The first case corresponds to a strong ferromagnet
while the second one to a weak ferromagnet. Here, the exchange splitting , U, is taken to
be identical over the whole BZ which is not the case in real material. At low and high wave
vectors the energy required to excite an electron from an occupied band to an unoccupied
band is shown in Fig. 2.9 (c) and (d) as the shaded area. This represents the single particle
stoner excitations. The minimum energy required for stoner excitation is the difference
between the top of majority band and the Fermi level called the Stoner gap ∆. At q = 0
this excitation costs U amount of energy while the minimum energy for such an excitations
lies at some high q vector. The spin wave is also shown in the figure which gets damped
when it interacts with the stoner continuum.

The single-particle stoner excitations are collinear excitations while the spin waves are
non-collinear excitations. Stoner excitations change the magnetization along a preferential
direction hence collinear. Whereas, spin waves excites the moment off this preferential axis,
leading to non-collinear state. The linear-response TDDFT formalism can be applied to
study these collinear and non-collinear excitations. Both these excitations can be seen from
the x, y components of the spin-spin response function. While, the longitudinal response
does not contain spin-flips excitations.
The spin-spin response is a 3× 3 matrix given by,

χij =

χxx χxy χxz

χyx χyy χyz

χzx χzy χzz


For collinear initial states, it takes a simpler form, and incorporating the symmetries due to
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Pauli spin matricies, it becomes:

χij =

 χxx χxy 0
−χxy χyy 0
0 0 χzz


Instead of working in this basis for the transversal excitations it is better to utilize the ladder
operators,

χ−+ = 2χxx + 2iχxy

χ+− = 2χxx − 2iχxy

(2.99)

The magnon spectra of a system can be calculated from the transverse response function
χ−+(q, ω), which is found using the Dyson-like equation, Eq. (2.96). The excitations in
χ−+(q, ω) originate from two sources: (1) renormalized poles of the KS response χ0 cor-
responding to the Stoner continuum of single-particle spin-flips and (2) additional peaks
created by the XC kernel corresponding to spin-wave excitations.

Experimentally, the transverse magnetic response is proportional to the neutron scatter-
ing cross-section [55]

d2σ

dΩdω
∝

{
(1− κ2

z)Im[χzz(q, ω)]

+
1

4
(1− κ2

z)Im[χ−+(q, ω) + χ+−(q, ω)]
} (2.100)

where κz = (kf − ki)z/|kf − ki| is related to the q-vector through q = kf − ki and is folded
back into the first BZ.

Magnons in the Heisenberg model:

Magnons are usually studied using the Heisenberg Hamiltonian which can be written as,

H =
1

2

∑
i,j

JijSi · Sj (2.101)

here the exchange interaction between spins Si and Sj at sites i and j is Jij. Only small
perturbations in the transverse components (S±

j = Sx
j ±Sy

j ) are considered such that ⟨Sz
j ⟩ =

S. Then the equation of motion can be written for the transverse components which contain
magnon excitations.

dSx
i

dt
=

∑
j

Jij

(
Si × Sj

)
x

=
(

Si ×Beff
i

)
x

(2.102)
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Here Beff can be understood as an effective magnetic field felt by a single spin due to
exchange interactions with its neighbors. Making an ansatz for Sx

i = A cos(q ·Ri−ωqt) and
Sy
i = A sin(q ·Ri − ωqt) the frequency/energy of the q magnon mode can be derived:

−Aωqe
i(q·Ri−ωqt) =

∑
ij

Jij

(
Sy
i S

z
j − Sz

i S
y
j

)
=

∑
j

Jij

(
SAei(q·Ri−ωqt) − SAei(q·Rj−ωqt)

)
ωq = S

∑
j

Jij

(
1− ei(q·(Rj−Ri))

) (2.103)

As can be seen, the magnon energy is dependent on the Fourier transform of the exchange
coupling. These exchange parameters are usually extracted from DFT ground state calcula-
tions using the frozen magnon approach [56, 57, 58].

2.7 Real-time TDDFT
In non-collinear systems, Eq. (2.52) must be extended, where the Kohn-Sham orbitals for
a spin system are treated as 2-component Pauli spinors and propagated using the following
equation:

i
∂ϕj(r, t)

∂t
=

[1
2

(
− i∇+

1

c
Aext(t)

)2

+ vS(r, t) +
1

2c
σ ·BS(r, t)

+
1

4c2
σ · (∇vS(r, t)×−i∇)

]
ϕj(r, t)

(2.104)

where the last represents the spin-orbit coupling term. A time-dependent DOS can be used
to see how the states in each spin channel are being occupied above the Fermi level as time
propagates. This becomes a very useful tool when the interaction of the laser with a system
is investigated. It can be obtained from the following formula,

ρ(ω, t) =
∞∑
i=1

∫
BZ

δ(ω − ϵik)gik(t) (2.105)

with

gik(t) =
∑
j

fjk|Ok
ij(t)|2 (2.106)

where fjk is the occupation number of the jth evolving orbital and

Ok
ij(t) =

∫
dr(ϕ0

ik)
∗(r)ϕjk(r, t) (2.107)
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with ϕ0
ik(r) the ground state KS orbitals. In the absence of any time-dependent perturbation,

ϕjk(r, t) = ϕ0
jk(r) and one correctly obtains the ground state density of states.

To study magnons in real-time TDDFT, the oscillations in the magnetization density may be
analyzed. The Fourier transform of these oscillations is done to obtain the power spectrum
(defined below), which is peaked at the magnon frequency.∣∣m̃(ω)

∣∣ = ∣∣∣ ∫ e−iωtm(t)f(t)dt
∣∣∣ (2.108)

However, as the magnetization simulations has a finite time period (T) due to computational
limitations one obtains noise in the Fourier transform. This noise can be smoothed out by
introducing a damping function before the Fourier transform is performed. One choice for
this damping function is the third order polynomial in time [59] given by,

f(t) = 1− 3
( t

T

)2

+ 2
( t

T

)3

(2.109)

The properties of this function makes the Fourier transform of magnetization smooth. How-
ever, the width of any peak in the spectrum can be artificially increased if the simulation
time is not sufficiently long.

All these equations either in the static regime or in time-dependent regime are imple-
mented in the ELK code. Hence a look at the code is done next.

2.8 The ELK code
The ELK code is an all-electron code based on a linearized augmented plane-wave (LAPW)
basis or APW+l.o. basis, where l.o. stands for local orbital. Here the space is divided into
muffin tin (MT), regions around each atom, and the rest known as the interstitial region
(IR), as can be seen in Fig. 2.10.

Figure 2.10: Representation of the LAPW basis set. (From [60])

The KS orbitals within the MT are expanded using spherical harmonics and in the IR
region, where the potential is nearly constant, using plane waves. The wavefunctions, formed
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with suitable basis functions, in the two regions (MT and IR) are matched at the boundary
of the two. Deeper lying electrons (≈100 eV below the Fermi energy) are treated as core
electrons. These are treated by solving the Dirac equation, as the core electrons feel strong
potential and can be regarded as having relativistic speeds.

As the unit cell gets divided into MT and IR region all the physical quantities are also
divided into MT and IR region. For example the time-dependent magnetic moments in the
MT and IR regions can be obtained from:

m(t)MT/IR =

∫
MT/IR

m(r, t)dr (2.110)

The dynamics of the MT moments has been plotted in all the calculations done in the
following chapters.
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CHAPTER 3

ADIABATIC GGA (AGGA) KERNEL

If you have a derivation with some approximation,
I recommend “Assume a spherical cow · · · · · · ”

-Anonymous

There are many different flavors of XC energy functionals in ground-state DFT as dis-
cussed in Chapter 2. These comprise the so called Jacob’s ladder [17] of approximations,
where the level of accuracy increases as we climb from LDA to hybrids. The performance
of these approximations in static ground-state DFT has been well-studied, however much
less is known about their behavior in TDDFT. This is an active research field, involving
development of functionals, including those within the adiabatic approximation, and those
going beyond the adiabatic approximation [61, 62, 63, 64]. Most of the research concerns
the optical absorption spectra, and, in particular, the failure of simple XC kernels to predict
bound excitons. From these studies, we know the importance of describing the long wave-
length limit of the XC kernel correctly in order to obtain reasonable exciton binding energies,
leading to a number of new approximations [65, 49, 66, 67, 47, 48, 68, 69, 70]. However for
magnetic excitations, only the ALDA XC kernel within the framework of TDDFT has been
properly studied, e.g. for calculations of the magnon spectra [71, 72, 73], where for many
cases it overestimates magnon energies as compared to experiments. Besides TDDFT, many-
body perturbation theory can be used [74, 75] to calculate magnon spectra. Additionally,
time-dependent generalization of all-electron Sternheimer approach [76] or exchange param-
eters [57, 56] extracted from ground state DFT calculations can also be used to calculate the
magnon spectra using DFT/TDDFT.

In this chapter we will derive the XC kernel for GGA functionals within the adiabatic
approximation, which is semi-local in space and local in time. It will be reviewed firstly
for unpolarized systems, and then derived for spin-polarized systems. Extension to non-
collinear systems is done by using Kubler’s method which utilizes the kernel derived for
collinear systems. Lastly, the implementation of the kernel in the all-electron ELK code is
discussed.
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3.1 Unpolarized kernel
For the spin unpolarized case, the XC energy functional, EXC, depends not only on the
density, ρ(r), but also on its gradient, ∇ρ(r), at each point in space. The XC potential and
kernel can be obtained from first and second order functional derivatives, respectively, of
EXC with respect to density i.e.,

vXC[ρ](r) =
δEXC[ρ]

δρ(r) (3.1)

fXC[ρ](r, r′) =
δ2EXC[ρ]

δρ(r)δρ(r′) (3.2)

where EXC[ρ] =
∫
eXC(ρ,∇ρ)(r⃗)d3r and eXC is the XC energy density per particle.

The variation of the XC energy w.r.t. the density is defined by:

δEXC = EXC[ρ+ δρ]− EXC[ρ] =

∫
vXC[ρ](r)δρ(r)d3r

+
1

2

∫ ∫
fXC[ρ](r, r′)δρ(r)δρ(r′)d3rd3r′ + · · ·

(3.3)

Taylor expanding the energy density around the ground state density up to first order gives

eXC(ρ+ δρ,∇ρ+∇δρ)(r) = eXC(ρ,∇ρ)(r) + ∂eXC(ρ,∇ρ)

∂ρ
(r)δρ(r)

+
∂eXC(ρ,∇ρ)

∂∇ρ
(r) ·∇δρ(r)

(3.4)

This expansion then leads to the following expression for the XC energy,

EXC[ρ+ δρ,∇ρ+∇δρ] = EXC[ρ,∇ρ] +

∫
d3r

∂eXC(ρ,∇ρ)

∂ρ
(r)δρ(r)

+

∫
d3r

∂eXC(ρ,∇ρ)

∂∇ρ
(r) ·∇δρ(r)

(3.5)

and

δEXC =

∫
d3r

[∂eXC(ρ,∇ρ)

∂ρ
(r)δρ(r) + ∂eXC(ρ,∇ρ)

∂∇ρ
(r) ·∇δρ(r)

]
(3.6)

Carrying out integration by parts of the second term (the surface term is 0 for physical
systems with finite or periodic boundary conditions) gives us:

δEXC =

∫
d3r

[∂eXC(ρ,∇ρ)

∂ρ
(r)−

{
∇ · ∂eXC(ρ,∇ρ)

∂∇ρ
(r)

}]
δρ(r) (3.7)
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Comparing Eq. (3.7) and Eq. (3.3) leads to the following XC potential

vXC[ρ](r) =
∂eXC(ρ,∇ρ)

∂ρ
(r)−

{
∇ · ∂eXC(ρ,∇ρ)

∂∇ρ
(r)

}
=

∂eXC(ρ,∇ρ)

∂ρ
(r)− 2

{
∇ ·

(∂eXC(ρ,∇ρ)

∂σ
(r)∇ρ

)} (3.8)

where σ = ∇ρ ·∇ρ is often used in practice. Variation of this potential to first order will
give the kernel:

δvXC(r) =
∫

fXC(r, r′)δρ(r′)dr′

= vXC[ρ+ δρ,∇ρ+∇δρ](r)− vXC[ρ,∇ρ](r)

=
∂vXC

∂ρ
(r)δρ(r) + ∂vXC

∂∇jρ
(r)∇jδρ(r)

=
∂

∂ρ

[∂eXC(ρ,∇ρ)

∂ρ
(r)

]
δρ(r)−∇k

[ ∂

∂ρ

{∂eXC(ρ,∇ρ)

∂∇kρ
(r)

}
δρ(r)

]
+

∂

∂∇jρ

[∂eXC(ρ,∇ρ)

∂ρ
(r)

]
∇jδρ(r⃗)−∇k

[ ∂

∂∇jρ

{∂eXC(ρ,∇ρ)

∂∇kρ
(r)

}
∇jδρ(r⃗)

]
(3.9)

where the subscripts j and k denote the dot product summation. Expanding the second and
third terms further gives,

δvXC(r) =
∂2eXC

∂ρ2
(r)δρ(r) + ∂2eXC

∂∇jρ∂ρ
(r)∇jδρ(r)−∇k

[ ∂2eXC

∂ρ∂∇kρ
(r)δρ(r)

+
∂2eXC

∂∇jρ∂∇kρ
(r)∇jδρ(r)

]
=

∂2eXC

∂ρ2
(r)δρ(r) + ∂2eXC

∂∇jρ∂ρ
(r)∇jδρ(r)− [∇k

∂2eXC

∂ρ∂∇kρ
(r)]δρ(r)

− ∂2eXC

∂ρ∂∇kρ
(r)∇kδρ(r)−∇k

[ ∂2eXC

∂∇jρ∂∇kρ
(r)∇jδρ(r)

]
(3.10)

here second and fourth terms cancel. Integrating the other terms individually by introducing
a delta function and performing integration by parts gives,

∂2eXC

∂ρ2
(r)δρ(r) =

∫
drδ(r− r′)∂

2eXC

∂ρ2
(r′)δρ(r′) (3.11)

−
[
∇k

∂2eXC

∂ρ∂∇kρ
(r)

]
δρ(r) = −

∫
dr′δ(r− r′)

[
∇′

k

∂2eXC

∂ρ∂∇kρ
(r′)

]
δρ(r′) (3.12)
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−∇k

[ ∂2eXC

∂∇jρ∂∇kρ
(r)∇jδρ(r)

]
= −

∫
dr′δ(r− r′)∇′

k

[ ∂2eXC

∂∇jρ∂∇kρ
(r′)∇′

jδρ(r′)
]

=

∫
dr′[∇′

kδ(r− r′)]
[ ∂2eXC

∂∇jρ∂∇kρ
(r′)∇′

jδρ(r′)
]

= −
∫

dr′∇′
j

[
[∇′

kδ(r− r′)] ∂2eXC

∂∇jρ∂∇kρ
(r′)

]
δρ(r′)

(3.13)

Collecting all coefficients of δρ(r) together results in the unpolarized kernel for GGA func-
tional [70, 77, 78]

fXC(r, r′) = δ(r− r′)
[∂2eXC

∂ρ∂ρ
(r′)−∇′

j

∂2eXC

∂∇jρ∂ρ
(r′)

]
−∇′

j

[
[∇′

kδ(r− r′)] ∂2eXC

∂∇jρ∂∇kρ
(r′)

] (3.14)

3.2 Implementation of unpolarized kernel
Libxc [79, 80] is a library which is continuously updated with the inclusion of most of the
known XC functionals. The functionals it provides depends locally on the density, gradients
of density and the kinetic energy density. Hence, this library was used in providing the
derivatives of the XC fucntionals with respect to the density and its gradients for the GGA
kernel. The derivatives that libxc returns are in terms of density (ρ) and sigma (σ = ∇ρ·∇ρ).
These derivatives are then used to obtain the kernel by using the following expressions,

∂eXC

∂∇ρ
=

∂eXC

∂σ

∂σ

∂∇ρ
=

∂eXC

∂σ
2∇ρ

∂2eXC

∂ρ∂∇ρ
=

∂2eXC

∂ρ∂σ

∂σ

∂∇ρ
= 2

∂2eXC

∂ρ∂σ
∇ρ

∂

∂∇jρ

( ∂eXC

∂∇kρ

)
= 2

∂

∂∇jρ

(∂eXC

∂σ
∇kρ

)
= 2

∂2eXC

∂∇jρ
∇kρ+ 2

∂eXC

∂σ
δjk

= 4
∂2eXC

∂σ∂σ
∇jρ∇kρ+ 2

∂eXC

∂σ
δjk

(3.15)

3.3 Spin-Polarized kernel
For the spin polarized case we have two spin channels: spin-up denoted by α and spin-down
denoted by β. The XC energy functional, EXC, depends on spin-up, ρα(r), spin-down, ρβ(r),
densities and their gradients, ∇ρα(r),∇ρβ(r). The XC potential, vXC, and the kernel, fXC,
can be obtained by the first and second order functional derivative of EXC with respect to
these densities.
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Now adding variation in the two densities and their gradients, and Taylor expanding, one
gets the XC energy density, eXC, (up to first order).

eXC(ρα(r) + δρα(r),ρβ(r) + δρβ(r),∇ρα(r) +∇δρα(r),∇ρβ(r) +∇δρβ(r))

= eXC(ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)) +
∂eXC

∂ρα
(r)δρα(r) +

∂eXC

∂ρβ
(r)δρβ(r)

+
∂eXC

∂∇ρα
(r)∇δρα(r) +

∂eXC

∂∇ρβ
(r)∇δρβ(r)

(3.16)

integrating this gives,

EXC[ρα(r) + δρα(r), ρβ(r) + δρβ(r),∇ρα(r) +∇δρα(r),∇ρβ(r) +∇δρβ(r)]
= EXC[ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)]

+

∫
d3r

[∂eXC

∂ρα
(r)δρα(r) +

∂eXC

∂ρβ
(r)δρβ(r)

+
∂eXC

∂∇ρα
(r)∇δρα(r) +

∂eXC

∂∇ρβ
(r)∇δρβ(r)

]
the variation of XC energy functional w.r.t. density gives,

δEXC =

∫
d3r

[∂eXC

∂ρα
(r)δρα(r) +

∂eXC

∂ρβ
(r)δρβ(r) +

∂eXC

∂∇ρα
(r)∇δρα(r) +

∂eXC

∂∇ρβ
(r)∇δρβ(r)

]
(3.17)

This will give the spin-polarized potential. To obtain the kernel we could either expand Eq.
(3.16) to 2nd order or do variational of the potential, vα,βXC . The expansion of XC energy
functional leads to,

δEXC =

∫
d3rvαXC(r)δρα(r) +

∫
d3rvβXC(r)δρβ(r) +

1

2

∫ ∫
d3rd3r′fαα

XC (r, r′)δρα(r)δρα(r′)

+
1

2

∫ ∫
d3rd3r′fαβ

XC (r, r′)δρβ(r)δρα(r′) +
1

2

∫ ∫
d3rd3r′fβα

XC (r, r′)δρα(r)δρβ(r′)

+
1

2

∫ ∫
d3rd3r′fββ

XC (r, r′)δρβ(r)δρβ(r′),

(3.18)

and the variation of the potential leads to,

δvαXC[ρα, ρβ,∇ρα,∇ρβ](r) =
∫

fαα
XC (r, r′)δρα(r′)dr′ +

∫
fαβ

XC (r, r′)δρβ(r′)dr′

δvβXC[ρα, ρβ,∇ρα,∇ρβ](r) =
∫

fββ
XC (r, r′)δρβ(r′)dr′ +

∫
fβα

XC (r, r′)δρα(r′)dr′
(3.19)
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where fαα
XC is the change in vαXC when ρα changes while fαβ

XC is change in vαXC when ρβ changes,
and similarly for the other spin channel. Using integration by parts in Eq.(3.17), we obtain
the XC potential for the two spin densities as:

vαXC[ρα, ρβ,∇ρα,∇ρβ](r) =
∂eXC

∂ρα
(r)−∇j

[ ∂eXC

∂∇jρα
(r)

]
(3.20)

and

vβXC[ρα, ρβ,∇ρα,∇ρβ](r) =
∂eXC

∂ρβ
(r)−∇j

[ ∂eXC

∂∇jρβ
(r)

]
(3.21)

Now variation of vαXC w.r.t. ρα gives the kernels fαα
XC (r, r′) and fαβ

XC (r, r′)

δvαXC(r) = vαXC[ρα(r) + δρα(r), ρβ(r) + δρβ(r),∇ρα(r) +∇δρα(r),∇ρβ(r) +∇δρβ(r)]
− vαXC[ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)]

=
[∂vαXC

∂ρα
(r)δρα(r) +

∂vαXC

∂∇ρα
(r)∇δρα(r)

]
+
[∂vαXC

∂ρβ
(r)δρβ(r) +

∂vαXC

∂∇ρβ
(r)∇δρβ(r)

]
=

{ ∂

∂ρα

(∂eXC

∂ρα

)
δρα(r)−∇j

[ ∂

∂ρα

( ∂eXC

∂∇jρα

)
δρα(r)

]
+

∂

∂∇kρα

(∂eXC

∂ρα

)
∇kδρα(r)

−∇j

[ ∂

∂∇kρα

( ∂eXC

∂∇jρα

)
∇kδρα(r)

]}
+
{ ∂

∂ρβ

(∂eXC

∂ρα

)
δρβ(r)−∇j

[ ∂

∂ρβ

( ∂eXC

∂∇jρα

)
δρβ(r)

]
+

∂

∂∇kρβ

(∂eXC

∂ρα

)
∇kδρβ(r)

−∇j

[ ∂

∂∇kρβ

( ∂eXC

∂∇jρα

)
∇kδρβ(r)

]}
=

{∂2eXC

∂ρ2α
(r)δρα(r) +

( ∂2eXC

∂∇kρα∂ρα
(r)

)
∇kδρα(r)−∇j

[( ∂2eXC

∂ρα∂∇jρα
(r)

)
δρα(r)

]
−∇j

[( ∂2eXC

∂∇kρα∂∇jρα
(r)

)
∇kδρα(r)

]}
+
{ ∂2eXC

∂ρβ∂ρα
(r)δρβ(r) +

( ∂2eXC

∂∇kρβ∂ρα
(r)

)
∇kδρβ(r)

−∇j

[( ∂2eXC

∂ρβ∂∇jρα
(r)

)
δρβ(r)

]
−∇j

[( ∂2eXC

∂∇kρβ∂∇jρα
(r)

)
∇kδρβ(r)

]}
= A+B + C +D + F +G+H + I

(3.22)

Solving each term separately by introducing an integration with a delta function, we obtain
the kernels fαα

XC (r, r′) and fαβ
XC (r, r′)

A =

∫
δ(r− r′) ∂2eXC

∂ρα∂ρα
(r′)δρα(r′)dr′ (3.23)
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B =

∫
δ(r− r′)

( ∂2eXC

∂∇kρα∂ρα
(r′)

)
∇′

kδρα(r′)dr′

= −
∫

∇′
k

[
δ(r− r′)

( ∂2eXC

∂∇kρα(r′)∂ρα(r′)

)]
δρα(r′)dr′

= −
∫ {[

∇′
kδ(r− r′)

]( ∂2eXC

∂∇kρα∂ρα
(r′)

)
+ δ(r− r′)

(
∇′

k

∂2eXC

∂∇kρα∂ρα
(r′)

)}
δρα(r′)dr′

(3.24)

C = −
∫

δ(r− r′)∇′
j

[( ∂2eXC

∂ρα∂∇jρα
(r′)

)
δρα(r′)

]
dr′

=

∫ [
∇′

jδ(r− r′)
]( ∂2eXC

∂ρα∂∇jρα
(r′)

)
δρα(r′)dr′

(3.25)

B + C = −
∫

δ(r− r′)
(
∇′

k

∂2eXC

∂∇kρα∂ρα
(r′)

)
δρα(r′)dr′ (3.26)

D = −
∫

δ(r− r′)∇′
j

[( ∂2eXC

∂∇kρα∂∇′
jρα

(r′)
)
∇kδρα(r′)

]
dr′

=

∫ [
∇′

jδ(r− r′)
]( ∂2eXC

∂∇kρα∂∇jρα
(r′)

)
∇′

kδρα(r′)dr′

= −
∫

∇′
k

[
[∇′

jδ(r− r′)]
( ∂2eXC

∂∇kρα∂∇jρα
(r′

)]
δρα(r′)dr′

(3.27)

substituting all the terms in Eq. 3.22 leads to,

fαα
XC (r, r′) = δ(r−r′)

[ ∂2exc
∂ρα∂ρα

(r′)−
(
∇′

k

∂2exc
∂∇′

kρα∂ρα
(r′)

)]
−∇′

k

[
[∇′

jδ(r−r′)]
( ∂2exc
∂∇kρα∂∇jρα

(r′)
)]

(3.28)
Following the similar steps to solve for F, G, H, I one can obtain the expression for fαβ

XC (r, r′),

F =

∫
δ(r− r′) ∂2eXC

∂ρβ∂ρα
(r′)δρβ(r′)dr′ (3.29)

G =

∫
δ(r− r′)

( ∂2eXC

∂∇kρβ∂ρα
(r)

)
∇′

kδρβ(r′)dr′

= −
∫

∇′
k

[
δ(r− r′)

( ∂2eXC

∂∇kρβ∂ρα
(r)

)]
δρβ(r′)dr′

= −
∫ {[

∇′
kδ(r− r′)

]( ∂2eXC

∂∇kρβ∂ρα
(r)

)}
δρβ(r′)dr′

(3.30)
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H = −
∫

δ(r− r′)∇′
j

[( ∂2eXC

∂ρβ∂∇jρα
(r′)

)
δρβ(r′)

]
dr′

=

∫ [
∇′

jδ(r− r′)
]( ∂2eXC

∂ρβ∂∇jρα
(r′)

)
δρβ(r′)dr′

(3.31)

I = −
∫

δ(r− r′)∇′
j

[( ∂2eXC

∂∇kρβ∂∇jρα
(r′)

)
∇′

kδρβ(r′)
]
dr′

=

∫ [
∇′

jδ(r− r′)
]( ∂2eXC

∂∇kρβ∂∇jρα
(r′)

)
∇′

kδρβ(r′)dr′

= −
∫

∇′
k

[
[∇′

jδ(r− r′)]
( ∂2eXC

∂∇kρβ∂∇jρα
(r′)

)]
δρβ(r′)dr′

(3.32)

Collecting the terms together we get,

fαβ
XC (r, r′) = δ(r− r′)

{ ∂2eXC

∂ρβ∂ρα
(r′)

}
−

{
[∇′

jδ(r− r′)]
( ∂2eXC

∂ρα∂∇r
jρβ

(r)
)}

+
{
[∇′

jδ(r− r′)]
( ∂2eXC

∂ρβ∂∇jρα
(r′)

)}
−∇′

k

{
[∇′

jδ(r− r′)]
( ∂2eXC

∂∇kρβ∂∇jρα
(r′)

)}
.

(3.33)

solving the equation in the similar way for vβXC we will get,

fββ
XC (r, r′) = δ(r−r′)

[ ∂2exc
∂ρβ∂ρβ

(r)−
(
∇k

∂2exc
∂∇kρβ∂ρβ

(r)
)]
−∇′

k

[
[∇′

jδ(r−r′)]
( ∂2exc
∂∇kρβ∂∇jρβ

(r′)
)]

(3.34)

fβα
XC (r, r′) = δ(r− r′)

{ ∂2eXC

∂ρα∂ρβ
(r′)

}
−

{
[∇′

jδ(r− r′)]
( ∂2eXC

∂ρβ∂∇r
jρα

(r)
)}

+
{
[∇′

jδ(r− r′)]
( ∂2eXC

∂ρα∂∇jρβ
(r′)

)}
−∇′

k

{
[∇′

jδ(r− r′)]
( ∂2eXC

∂∇kρα∂∇jρβ
(r′)

)}
.

(3.35)

3.4 Non-Collinear kernel
3.4.1 Kubler’s method
For many systems, the spins do not align along one direction, for example the frustrated
anti-ferromagnetism seen in a Cr monolayer [81]. Hence the functionals known for collinear
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systems need to be extended for non-collinear systems in order to be applied to such systems.
One solution to this problem is the Kübler method [16], where the potentials are transformed
from the (ρ↑, ρ↓) to the (ρ,m) basis. We may use the Kübler method to extend our kernel
to treat non-collinear excitations.

Note: In the following method the ρ↑(r) density corresponds to the spin-up density, ρα(r),
and ρ↓(r) to the spin-down density, ρβ(r). Similarly, the spin-up and spin-down potentials
are represented as vαXC(r) = v↑XC(r) and vβXC(r) = v↓XC(r).

The kernel for non-collinear systems can be written as:



Charge− Charge− Spin
Charge

Spin− Spin− Spin
Charge


=⇒



δv0XC

δρ

δv0XC

δmx

δv0XC

δmy

δv0XC

δmz

δBx
XC

δρ

δBx
XC

δmx

δBx
XC

δmy

δBx
XC

δmz

δBy
XC

δρ

δBy
XC

δmx

δBy
XC

δmy

δBy
XC

δmz

δBz
XC

δρ

δBz
XC

δmx

δBz
XC

δmy

δBz
XC

δmz



(3.36)

The Kübler’s method defines effective spin up/spin down densities using

ρ↑(r) = 1

2

(
ρ(r) + |m(r)|

)
, ρ↓(r) = 1

2

(
ρ(r)− |m(r)|

)
(3.37)

leading to scalar, v0XC(r), and vectors potentials, BXC(r),

v0XC(r) =
1

2
(v↑XC(r) + v↓XC(r)), BXC(r) =

1

2
(v↑XC(r)− v↓XC(r))m̂(r) (3.38)

where the chain rule is used to find the potentials from the energy functionals. In the same
manner the kernel terms can be obtained using the above relations.

• Charge-Charge:
δv0XC

δρ

∣∣∣
m

=
(δv0XC

δρ↑

)(δρ↑
δρ

)∣∣∣
m
+
(δv0XC

δρ↓

)(δρ↓
δρ

)∣∣∣
m

(3.39)

δv0XC

δρ

∣∣∣
m

=
1

2

(δv↑XC

δρ↑
+

δv↓XC

δρ↑

)δρ↑
δρ

∣∣∣
m
+

1

2

(δv↑XC

δρ↓
+

δv↓XC

δρ↓

)δρ↓
δρ

∣∣∣
m

=
1

2
(f ↑↑

XC + f ↓↑
XC)

1

2
+ (f ↑↓

XC + f ↓↓
XC)

1

2

=
1

4

(
f ↑↑

XC + f ↑↓
XC + f ↓↑

XC + f ↓↓
XC

) (3.40)

45



• Charge-Spin: The Charge-Spin term of the kernel is a vector with 3 elements for each
direction of moment. It is also equivalent to the spin-charge term of the kernel matrix.
Hence it is sufficient to obtain any one of the terms.

δv0XC

δm

∣∣∣
ρ
=

(δv0XC

δρ↑

)(δρ↑
δm

)∣∣∣
ρ
+
(δv0XC

δρ↓

)(δρ↓
δm

)∣∣∣
ρ

(3.41)

δρ↑

δm =
δρ↑

δ|m|
δ|m|
δm

∣∣∣
ρ

=
δρ↑

δ|m|m̂
∣∣∣
ρ

=
1

2
m̂
∣∣∣
ρ

(3.42)

Similarly, for the spin down channel we have,

δρ↓

δm =
δρ↓

δ|m|
δ|m|
δm

∣∣∣
ρ

=
δρ↓

δ|m|m̂
∣∣∣
ρ

= −1

2
m̂
∣∣∣
ρ

(3.43)

Substituting in Eq. (3.41) leads to,

δv0XC

δm

∣∣∣
ρ
=

1

2

(δv↑XC

δρ↑
+

δv↓XC

δρ↑

)δρ↑
δm

∣∣∣
ρ
+

1

2

(δv↑XC

δρ↓
+

δv↓XC

δρ↓

)δρ↓
δm

∣∣∣
ρ

=
1

2

(
f ↑↑

XC + f ↓↑
XC

)(1
2

m̂
)
+
(
f ↑↓

XC + f ↓↓
XC

)(
− 1

2
m̂
)

=
1

4

(
f ↑↑

XC + f ↓↑
XC − f ↑↓

XC − f ↓↓
XC

)
m̂

(3.44)

• Spin-Spin: The last 3× 3 matrix comprises the spin-spin term. The XC magnetic field
can be written as BXC = |BXC|m̂. Then,

δBXC

δm

∣∣∣
ρ
=

δ

δm

(
|BXC|m̂

)∣∣∣
ρ

=
δ|BXC|
δm ⊗ m̂ + |BXC|

δm̂
δm

∣∣∣
ρ

(3.45)
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derivative the unit vector, m̂, gives,

δm̂
δm =

(δm
δm

) 1

δ|m| +
(
− 1

|m|2
)

m̂⊗ δ|m|
δm

=
I3
|m| −

1

|m|2m⊗ m̂
(3.46)

Substituting Eq. (3.46) in Eq. (3.45) gives

δBXC

δm

∣∣∣
ρ
=

δ|BXC|
δm ⊗ m̂ + |BXC|

( I3
|m| −

1

|m|m̂⊗ m̂
)

(3.47)

From the knowledge of spin-DFT we have |BXC| = 1
2
(v↑XC − v↓XC), which gives

δ|BXC|
δm

∣∣∣
ρ
=

δ|BXC|
δρ↑

δρ↑

δm

∣∣∣
ρ
+

δ|BXC|
δρ↓

δρ↓

δm

∣∣∣
ρ

=
1

2

(δv↑XC

δρ↑
− δv↓XC

δρ↑

)(1
2

m̂
)
+

1

2

(δv↑XC

δρ↓
− δv↓XC

δρ↓

)(
− 1

2
m̂
)

=
1

4

(
f ↑↑

XC − f ↑↓
XC − f ↓↑

XC + f ↓↓
XC

) (3.48)

Putting all of the terms together we get,

δ|BXC|
δm

∣∣∣
ρ
=

[1
4

(
f ↑↑

XC − f ↑↓
XC − f ↓↑

XC + f ↓↓
XC

)
− |BXC|
|m|

]
m̂⊗ m̂ +

|BXC|
|m| I3 (3.49)

For the LDA functional the terms f ↓↑
XC(r, r′) = f ↑↓

XC(r, r′) and the above expressions are reduced
to a simpler form, but this cancellation may not be true in general.
In conclusion, we may use the kernels derived in Eqs. (3.28), (3.33), and (3.35) in the
following equations to calculate the charge-charge, f 00

XC, charge-spin, f 0i
XC, and spin-spin, f ij

XC,
non-collinear parts of the full kernel:

f 00
XC(r, r′) =

1

4

[
f ↑↑

XC(r, r′) + f ↑↓
XC(r, r′) + f ↓↑

XC(r, r′) + f ↓↓
XC(r, r′)

]
(3.50)

f 0i
XC(r, r′) =

1

4

[
f ↑↑

XC(r, r′)− f ↑↓
XC(r, r′) + f ↓↑

XC(r, r′)− f ↓↓
XC(r, r′)

]
m̂i(r′) (3.51)

f ij
XC(r, r′) =

1

4

[
f ↑↑

XC(r, r′)− f ↑↓
XC(r, r′)− f ↓↑

XC(r, r′) + f ↓↓
XC(r, r′)−

|BXC(r)|
|m(r)|

]
m̂i(r)m̂j(r′)

+
|BXC(r)|
|m(r)| I3

(3.52)

where I3 is the 3 × 3 Identity matrix, m̂ is the unit magnetization vector, |BXC| is the
magnitude of XC magnetic field, and |m| is the magnitude of the magnetization.
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3.5 Implementation of spin-polarized kernel
Again, in libxc the XC functionals are expressed in terms of density (ρ = ρα+ρβ) and sigmas
(σαα, σαβ, σββ), where,

σ = ∇ρ ·∇ρ

= ∇(ρα + ρβ) ·∇(ρα + ρβ)

= ∇ρα ·∇ρα + 2∇ρα ·∇ρβ +∇ρβ ·∇ρβ

= σαα + 2σαβ + σββ

(3.53)

For any GGA functional, g[ρ,∇ρ], libxc returns the energy, potential and their derivatives
up to second order (shown here):

• exc[ρ,∇ρ] → energy per particle

• vrho[ρ,∇ρ] → 2 components for each spin density i.e. [ δg
δρα

,
δg

δρβ
]

• vsigma[ρ,∇ρ] → 3 components i.e. [ δg

δσαα

,
δg

δσαβ

,
δg

δσββ

]

• v2rho2[ρ,∇ρ] → 3 components i.e. [ δ2g

δραδρα
,

δ2g

δραδρβ
,

δ2g

δρβδρβ
]

• v2rhosigma[ρ,∇ρ] → 6 components

i.e. [ δ2g

δραδσαα

,
δ2g

δραδσαβ

,
δ2g

δραδσββ

,
δ2g

δρβδσαα

,
δ2g

δρβδσαβ

,
δ2g

δρβδσββ

]

• v2sigma2[ρ,∇ρ] → 6 components

i.e. [ δ2g

δσααδσαα

,
δ2g

δσααδσαβ

,
δ2g

δσααδσββ

,
δ2g

δσαβδσαβ

,
δ2g

δσββδσαβ

,
δ2g

δσββδσββ

]

For implementation each of the terms in the spin polarized kernels, fαα
XC (r, r′) and fαβ

XC (r, r′),
have to be converted in the above libxc expressions. The first terms of Eqs. (3.28) and (3.33)
need no conversion, as it is one of the terms of v2rho2. But for the other terms in the kernel
a conversion is needed. The first order derivatives of the functional w.r.t. ∇ρα gives,

δg

δ∇ρα
= 2

[ δg

δσαα

∇ρα +
1

2

δg

δσαβ

∇ρβ

]
(3.54)

δ

δρα

( δg

δ∇ρα

)
= 2

[ δ2g

δραδσαα

∇ρα +
1

2

δ2g

δραδσαβ

∇ρβ

]
(3.55)
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δ

δρβ

( δg

δ∇ρα

)
= 2

[ δ2g

δρβδσαα

∇ρα +
1

2

δ2g

δρβδσαβ

∇ρβ

]
(3.56)

The second order derivatives will be,

δ

δ∇jρα

( δg

δ∇kρα

)
= 2

δ

δ∇jρα

[ δg

δσαα

∇kρα +
1

2

δg

δσαβ

∇kρβ

]
= 2

[ δ2g

δσααδσαα

δσαα

δ∇jρα
∇kρα +

δg

δσαα

δjk +
δ2g

δσαβδσαα

δσαβ

δ∇jρα
∇kρα

+
1

2

δ2g

δσααδσαβ

δσαα

δ∇jρα
∇kρβ +

1

2

δ2g

δσαβδσαβ

δσαβ

δ∇jρα
∇kρβ

]
= 4

δ2g

δσααδσαα

∇jρα∇kρα + 2
δ2g

δσαβδσαα

∇jρβ∇kρα + 2
δ2g

δσαβδσαα

∇jρα∇kρβ

+
δ2g

δσαβδσαβ

∇jρβ∇kρβ + 2
δg

δσαα

δjk

(3.57)

δ

δ∇jρβ

( δg

δ∇kρα

)
= 2

δ

δ∇jρβ

[ δg

δσαα

∇kρα +
1

2

δg

δσαβ

∇kρβ

]
= 2

[ δ2g

δσββδσαα

δσββ

δ∇jρβ
∇kρα +

δ2f

δσαβδσαα

δσαβ

δ∇jρβ
∇kρα

+
1

2

δ2g

δσββδσαβ

δσββ

δ∇jρβ
∇kρβ +

1

2

δ2g

δσαβδσαβ

δσαβ

δ∇jρβ
∇kρβ +

1

2

δg

δσαβ

δjk

]
= 4

δ2g

δσββδσαα

∇jρβ∇kρα + 2
δ2g

δσαβδσαα

∇jρβ∇kρα + 2
δ2g

δσββδσαβ

∇jρβ∇kρβ

+
δ2g

δσαβδσαβ

∇jρα∇kρβ +
δg

δσαβ

δjk

(3.58)

Using the above conversion equations from libxc, the GGA kernel was implemented in the
all-electron ELK code [82].

The kernel is transformed in Fourier space for it’s implementation. The third term of the
kernel involves a gradient of a delta function in real space whose Fourier transform is difficult
numerically and hence is carried out explicitly. First the property of delta function ∇rδ(r−
r′) = −∇r′δ(r− r′) is used to simplify the third term:

∇r′
j

[ ∂2eXC

∂∇jρα∇kρβ
(r′)[∇r

kδ(r− r′)]
]

(3.59)
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Assuming,
f jk
3 (r′) = ∂2eXC

∂∇jρα∇kρβ
(r′) (3.60)

Then performing a Fourier transform gives∫ ∫
e−i(q+G)·r

[
∇r′

j

(
f jk
3 (r′)∇r

kδ(r− r′)
)]

ei(q+G′)·r′drdr′ (3.61)

Doing Integration by parts twice we get,

−
∫ ∫

∇r′
j

[
e−i(q+G)·rei(q+G′)·r′

]
f jk
3 (r′)

[
∇r

kδ(r− r′)
]
drdr′

= −
∫ ∫

(i(q + G′)j)e
−i(q+G)·rei(q+G′)·r′f jk

3 (r′)
[
∇r

kδ(r− r′)
]
drdr′

=

∫ ∫
(i(q + G′)j)(−i(q + G)k)e

−i(q+G)·rei(q+G′)·r′f jk
3 (r′)δ(r− r′)drdr′

=

∫
(q + G′)j(q + G)kf

jk
3 (r)e−i(G−G′)·rd3r

= (q + G′)j(q + G)k

∫ [ ∂2eXC

∂∇jρα∇kρβ
(r)

]
e−i(G−G′)·rdr

= (q + G′)j(q + G)kf̃3(G−G′)

(3.62)

where f̃3(G −G′) is Fourier transform of f jk
3 (r). Hence we write

[ ∂2eXC

∂∇jρα∇kρβ

]
in terms

of the libxc terms, do Fourier transform of it and then multiply it with −(q + G′)j(q + G)k
to get the third term of the kernel. The Fourier transform of rest of the terms is quite
straightforward and can be written as,

a) ∫ ∫
e−i(q+G)·r

[
δ(r− r′) ∂2eXC

∂ρβ∂ρα
(r′)

]
ei(q+G′)·r′drdr′

=

∫
e−i(G−G′)·rdr ∂2eXC

∂ρβ∂ρα
(r)

(3.63)

b)

−
∫ ∫

e−i(q+G)·r
[
∇r′

j δ(r− r′) ∂2eXC

∂ρα∂∇r
jρβ

(r)
]
ei(q+G′)·r′drdr′

= i(q + G)j

∫ ∫
e−i(q+G)·rei(q+G′)·r′

[
δ(r− r′) ∂2eXC

∂ρα∂∇r
jρβ

(r)
]
drdr′

= i(q + G)j

∫
e−i(G−G′)·r

[ ∂2eXC

∂ρα∂∇r
jρβ

(r)
]
dr

(3.64)
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c)

∫ ∫
e−i(q+G)·r

[
∇r′

j δ(r− r′) ∂2eXC

∂ρβ∂∇r′
j ρα

(r′)
]
ei(q+G′)·r′drdr′

= −i(q + G)j

∫ ∫
e−i(q+G)·rei(q+G′)·r′

[
δ(r− r′) ∂2eXC

∂ρβ∂∇r′
j ρα

(r)
]
drdr′

= −i(q + G)j

∫
e−i(G−G′)·r

[ ∂2eXC

∂ρβ∂∇r
jρα

(r)
]
dr

(3.65)

For noncollinear systems the implementation of the third term gets even more compli-
cated as one ends up with terms which include gradients of magnetization. The spin-spin
part of the kernel is given by Eq. 3.52 and writing only the first part here, f ↑↑

XC, but it is to
be done with each term of the kernel, f ↓↓

XC, f
↑↓
XC, f

↓↑
XC.

f ij
XC(r, r′) =

1

4

[
f ↑↑

XC(r, r′)−
|BXC(r)|
|m(r)|

]
m̂a(r)m̂b(r′) +

|BXC(r)|
|m(r)| I3

=
1

4

[
δ(r− r′)

[ ∂2exc
∂ρα∂ρα

(r′)−
(
∇′

k

∂2exc
∂∇kρα∂ρα

(r′)
)]

−∇′
k

[
[∇′

jδ(r− r′)]
( ∂2exc
∂∇kρα∂∇jρα

(r′)
)]
− |BXC(r)|
|m(r)|

]
m̂a(r)m̂b(r′) +

|BXC(r)|
|m(r)| I3

(3.66)

The Fourier transform of all the terms is simple except the one which involves gradient of
delta function. Let,

B = ∇′
k

[
[∇jδ(r− r′)]f jk

4 (r′)
]
m̂a(r)m̂b(r′) (3.67)

where

f jk
4 (r′) = 1

4

( ∂2exc
∂∇kρα∂∇jρα

(r′)
)

(3.68)

Then doing the Fourier transform gives∫ ∫
e−i(q+G)·r

[
∇′

k

(
[∇jδ(r− r′)]f4(r′)

)]
m̂a(r)m̂b(r′)ei(q+G′)·r′drdr′ (3.69)

doing integration by parts,
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−
∫ ∫

∇′
k

[
e−i(q+G)·rei(q+G′)·r′m̂a(r)m̂b(r′)

]
[∇jδ(r− r′)]f jk

4 (r′)drdr′

= −
∫ ∫ [

(i(q + G′)k)e
−i(q+G)·rei(q+G′)·r′m̂a(r)m̂b(r′)

+ e−i(q+G)·rei(q+G′)·r′ [∇′
km̂b(r′)]m̂a(r)

]{
∇jδ(r− r′)

}
f jk
4 (r′)drdr′

=

∫ ∫ [
(i(q + G′)k)(−i(q + G)j) + (i(q + G′)k)[∇jm̂a(r)]m̂b(r′)

+ (−i(q + G)j)[∇′
km̂b(r′)]m̂a(r) + [∇′

km̂b(r′)][∇jm̂a(r)]
]

e−i(q+G)·rei(q+G′)·r′f jk
4 (r′)δ(r− r′)drdr′

=

∫ [
(i(q + G′)k)(−i(q + G)j) + (i(q + G′)k)[∇jm̂a(r)]m̂b(r)

+ (−i(q + G)j)[∇km̂b(r)]m̂a(r) + [∇km̂b(r)][∇jm̂a(r)]
]
e−i(G−G′)·rf jk

4 (r)dr
(3.70)

Hence the kernel for non-collinear systems becomes complicated to calculate and implement.
For collinear systems the ∇m terms are zero.
As part of our analysis of the XC kernel a new exact condition of kernel was derived which
may be useful for developing new kernels for non-collinear systems in the future.

3.6 Zero force and Zero torque theorem
We first review the zero-force theorem for the XC kernel. In the ground-state or dynamical
situation the XC potential or XC magnetic field can not exert a net force or torque on the
electrons [27, 83]. In the presence of an external perturbation there can be a net force or
torque on the system, however, the internal forces must still vanish and hence one can write,∫

dr ρ(r, t)∇vXC(r, t) = 0 (3.71)

Considering a small perturbation leads to

ρ(r, t) = ρ0(r) + ρ1(r, t)
vXC(r, t) = v0XC(r) + v1XC(r, t)

(3.72)

substituting Eq. 3.72 in Eq. 3.71 we get,

∫
dr
[{

ρ0(r) + ρ1(r, t)
}{

v0XC(r) + v1XC(r, t)
}]

= 0∫
dr
[
ρ0(r)∇v0XC(r) + ρ0(r)∇v1XC(r, t) + ρ1(r, t)∇v0XC(r) + ρ1(r, t)∇v1XC(r, t)

]
= 0

(3.73)
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here the first term is zero as it is the zero-force theorem itself and considering only the linear
terms i.e. ignoring second order terms in perturbation we get,∫

dr
[
ρ0(r)∇v1XC(r) + ρ1(r, t)∇v0XC(r)

]
= 0 (3.74)

the linearized XC potential gives the fXC term,

v1XC(r, t) =
∫

dt′
∫

dr′ δvXC[ρ](r, t)
δρ(r′, t′)

∣∣∣
ρ0(r)

ρ1(r′, t′)

=

∫
dt′

∫
dr′ fXC(r, t, r′, t′)ρ1(r′, t′)

(3.75)

then,

∫
dr ρ0(r)∇

∫
dt′

∫
dr′ fXC(r, t, r′, t′)ρ1(r′, t′) +

∫
dr ρ1(r, t)∇v0XC(r, t) = 0 (3.76)

as this holds for arbitrary density ρ1(r, t) one gets,

∫
dt′

∫
dr′ ρ1(r′, t′)

{∫
dr ρ0(r)∇fXC(r, t, r′, t′) +∇′v0XC(r′)δ(t− t′)

}
= 0 (3.77)

∫
dr ρ0(r)∇fXC(r, t, r′, t′) = −∇′v0XC(r′)δ(t− t′) (3.78)

performing the Fourier transform,∫
dr ρ0(r)∇fXC(r, r′, ω) = −∇′v0XC(r′) (3.79)

as fXC is symmetric in r and r′,∫
dr′ ρ0(r′)∇′fXC(r, r′, ω) = −∇v0XC(r) (3.80)

multiplying by ρ0(r) and integrating it∫
dr

∫
dr′ ρ0(r)ρ0(r′)∇′fXC(r, r′, ω) = −

∫
drρ0(r)∇v0XC(r) (3.81)

the right hand side is zero because of the zero-force theorem,∫
dr

∫
dr′ ρ0(r)ρ0(r′)∇′fXC(r, r′, ω) = 0 (3.82)

This is the zero-force theorem for the kernel.

53



After reviewing the zero-force theorem for the kernel the zero-torque theorem [84] for the
kernel is now derived for spin polarized systems. It begins with the zero-torque theorem for
the XC magnetic field, i.e. the XC magnetic field cannot exert a net torque on the spin
system in the ground-state: ∫

dr m(r, t)×BXC(r, t) = 0 (3.83)

Proceeding in the similar way, as done in the above review, we consider a small perturbation
and linearize the magnetization and magnetic field.

m(r, t) = m0(r) + m1(r, t)
BXC(r, t) = B0(r) + B1(r, t)

(3.84)

substituting Eq. (3.84) in Eq. (3.83) we get,

∫
dr
{

m0(r) + m1(r, t)
}
×
{

B0(r) + B1(r, t)
}
= 0∫

dr
{

m0(r)×B0(r) + m0(r)×B1(r, t) + m1(r, t)×B0(r) + m1(r, t)×B1(r, t)
}
= 0

(3.85)

the first term is zero by the zero-torque theorem and last term is dropped as it is second
order in perturbation. Then,∫

dr
{

m0(r)×B1(r, t) + m1(r, t)×B0(r)
}
= 0 (3.86)

now the linearized magnetic field term is the magnetic kernel (written as ←→fXC(r, t, r′, t′) ten-
sor),

B1(r, t) =
∫

dt′
∫

dr′ δBXC[ρ,m](r, t)
δm(r′, t′)

∣∣∣
m0(r)

m1(r′, t′)

=

∫
dt′

∫
dr′←→fXC(r, t, r′, t′)m1(r′, t′)

(3.87)

then,

∫
dr
{

m0(r)×
∫

dt′
∫

dr′←→fXC(r, t, r′, t′) ·m1(r′, t′)
}
+

∫
dr′ m1(r′, t′)×B0(r′) = 0∫

dr
{∫

dt′
∫

dr′ m0(r)×
←→
fXC(r, t, r′, t′) ·m1(r′, t′)

}
+

∫
dr′ m1(r′, t′)×B0(r′) = 0∫

dr
{∫

dt′
∫

dr′ m0(r) ·
←→
fXC(r, t, r′, t′)×m1(r′, t′)

}
−

∫
dr′ B0(r′)×m1(r′, t′) = 0

(3.88)
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this should be true for arbitrary magnetization density. Hence,∫
dt′

∫
dr′ m0(r) ·

←→
fXC(r, t, r′, t′) = B0(r′)δ(t− t′) (3.89)

performing Fourier transform,∫
dr m0(r) ·

←→
fXC(r, r′, ω) = B0(r′) (3.90)

again, the kernel is symmetric in r and r′,∫
dr′ m0(r′) ·

←→
fXC(r, r′, ω) = B0(r) (3.91)

take cross product with m0(r) and integrate,∫
dr

∫
dr′ m0(r)×

{
m0(r′) ·

←→
fXC(r, r′, ω)

}
=

∫
m0(r)×B0(r) dr (3.92)

the right hand side is zero due to zero-torque theorem,∫
dr

∫
dr′ m0(r)×

{
m0(r′) ·

←→
fXC(r, r′, ω)

}
= 0 (3.93)

This is zero-torque theorem of the kernel for spin-polarized system. The kernel obtained by
using the Kübler method by extending the collinear kernels trivially satisfies this zero-torque
theorem. However, for functionals derived explicitly for non-collinear systems e.g. Ref. [85]
should satisfy this exact condition. Hence such conditions are useful for developing kernels
applicable to non-collinear systems.
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CHAPTER 4
AGGA KERNEL APPLICATIONS

Success isn’t about end result,
It’s about what you learn along the way.

- Vera Wang

In this chapter the AGGA kernel derived in the previous chapter has been used to cal-
culate response function of materials. First the optical response of LiF and diamond are
studied. For this the unpolarized form of the kernel is utilized and we explore how the q2 de-
pendence ( as seen in Eq. 3.62) of the kernel affects the spectra. Next we study the magnetic
response of ferromagnets Fe, Ni and Co, and two heusler compounds NiMnSb and Co2MnSi.
Results for magnon spectra show that the AGGA kernel doesn’t provide an improvement
over the traditional ALSDA kernel.

4.1 Brillouin Zone and high symmetry points
The real-space and reciprocal-space primitive lattice vectors for the fcc and bcc structures
are given as,

Afcc =
a

2

0 1 1
1 0 1
1 1 0

 Bfcc =
2π

a

−1 1 1
1 −1 1
1 1 −1



Abcc =
a

2

−1 1 1
1 −1 1
1 1 −1

 Bbcc =
2π

a

0 1 1
1 0 1
1 1 0


where a denotes the lattice constant and Afcc is the matrix formed of the real-space lattice
vectors while Bfcc corresponds to the matrix of reciprocal vectors. This lattice constant can
be either taken from experiments or an equilibrium value of this constant can be found for
each functional. The shape of the BZ along with the high-symmetry points is shown in Fig.
4.1.
The q-vectors of some of the high symmetry points in Cartesian coordinates are,
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(a) (b)

Figure 4.1: The shape of the first Brillouin zone of (a) fcc and (b) bcc lattice [86].

fcc: X =
2π

a

(
0, 0, 1

)
K =

π

a

(
0,

3

2
,
3

2

)
L =

π

a

(
1, 1, 1

)
bcc: H =

2π

a

(
0, 0, 1

)
N =

π

a

(
0, 1, 1

)
P =

π

a

(
1, 1, 1

) (4.1)

The point Γ = (0, 0, 0) is the center of the BZ and is same for all the lattices. These vectors
in lattice coordinates, q′, can be obtained from the use of Reciprocal matrix (B)

q = Bq′ (4.2)
Then the obtained vectors are,

fcc: X ′ =
1

2

(
1, 1, 0

)
K ′ =

3

8

(
2, 1, 1

)
L =

1

2

(
1, 1, 1

)
bcc: H ′ =

1

2

(
1, 1,−1

)
N ′ =

1

2

(
1, 0, 0

)
P ′ =

1

4

(
1, 1, 1

) (4.3)

The spectra is plotted along the path formed by joining the Γ point to any one of these high
symmetry points.

4.2 Optical Response
It is well known that the correct q-dependent behavior of the XC kernel is crucial for pre-
dicting the optical response of materials. For example, the XC kernel must go as 1/q2

[47, 69, 41, 87, 88, 50] in the long-wavelength limit (q → 0). This property is needed for
capturing the excitonic response of the material. However, the first rung on Jacob’s ladder,
the ALDA, does not display any q-dependence, owing to the local approximation for the XC
energy. This explains why ALDA does not yield any excitonic peaks in the optical spectra
(see Chapter 2). The second rung consists of semi-local functionals which include informa-
tion not just about the density but also its gradients. In chapter 3 the AGGA kernel for spin
unpolarized system was derived and it shows weak q2 behavior [89] and here we explore the
effect of this on the optical spectra.
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4.2.1 Computational details:
All calculations are performed using the all-electron full-potential linearized augmented plane
wave electronic structure code ELK [82] with PW91 (LDA) [19] and PBE (GGA) [34] func-
tionals. The materials chosen for study are diamond which is small bandgap semiconductor
and LiF which is large bandgap insulator. A fcc unit cell with experimental lattice spacings
of 3.56 Å and 4.02 Å, respectively, is used. A dense k-point grid is required to obtain the
response functions, hence the BZ is sampled on a k-point grid of 25× 25× 25 for both. The
interstitial density and potential are expanded on a G-point grid of size 36×36×36 and the
response is calculated using G-vectors of length 4 Bohr−1. The number of conduction bands
included in the response calculation are 20 for LiF and 36 for diamond. The method to
obtain response functions is a two-step procedure, firstly a ground-state calculation is done
to obtain the converged density and potentials. These ground state calculations give wrong
band gaps due to the shortcomings of XC functionals and hence have to be corrected. Here,
a scissor operator has been used to shift the band gap to the correct band-gap by 1.306 eV
and 5.06 eV for diamond and LiF, respectively. Then the absorption and EELS spectra of
LiF and diamond are obtained from the LDA and GGA kernels using the scissor corrected
band structure.

4.2.2 Spectra:
Absorption spectroscopy is the technique which measures absorption of radiation as a func-
tion of frequency. Within LR-TDDFT this absorption spectra can be obtained from the
imaginary part of the dielectric tensor. This is shown for diamond and LiF for several values
of q using the ALDA and AGGA kernels respectively and, the results are plotted in Fig.
4.2 (a and b). As can been seen from the figure that the AGGA kernel does not improve
upon the absorption spectra for diamond obtained using ALDA. The situation is different
for LiF, where the AGGA kernel reduces the spectral weight of the first peak seen around
15 eV as compared with the ALDA kernel, but has negligible effect for q’s outside the zone
boundary.

Another technique is the Electron Energy Loss Spectroscopy (EELS), where a beam
of electrons with a known, narrow range of kinetic energies are incident on a material.
These electrons will undergo inelastic scattering processes, implying loss of their energy and
deflection of their path of motion. The amount of energy loss can be measured and the
processes which lead to the energy loss can be studied such as phonon excitations, inter- and
intra- band transitions, plasmon excitations, etc. This energy loss spectrum can be roughly
divided into two regions: the low-loss spectrum which contains the zero-energy peak and the
plasmon peaks and the high-loss spectrum which contains the inner-shell ionization edges.
The presence of bound exciton appears as a peak in the bandgap of the material in the low
loss part of the spectrum. A shift in the spectral weight towards lower energies is observed
for an unbound exciton. The q-resolved EELS can be studied from the dielectric response
obtained by LR-TDDFT formalism.

The EELS for (i) LiF, which is a large bandgap material with a bound exciton, and (ii)
diamond which is a medium bandgap material with excitonic effects appearing as a shift
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Figure 4.2: The absorption spectra given by imaginary part of the dielectric tensor as a function of photon
energy for (a) Diamond and (b) LiF, using the AGGA kernel (red dashed) and the ALDA kernel (black
line). The q-values used in calculations for LiF are 0.24ΓX, 0.48ΓX, and 1.52ΓX while for diamond they are
0.24ΓX, 0.64ΓX and 1.36ΓX as q must be commensurate with k-grid (25× 25× 25).

in the spectral weight towards lower energies is plotted in Fig. 4.3. For LiF, the AGGA
shifts the spectra towards lower energies for q = 0.24�X, 0.48�X and makes the peaks more
pronounced, as compared to ALDA (Fig. 4.3(a)). Although, the shifting of the spectra
is towards the correct experimental values, both ALDA and AGGA fail to capture the
excitonic peak at 13 eV as neither kernel has the correct q-dependence. Outside the first BZ
(q = 1.52�X), ALDA and AGGA exhibit similar behavior; for diamond, neither AGGA nor
ALDA captures the shift in spectral weight as can be seen in Fig. 4.3(b). In fact there is
little difference between the results obtained using the two approximations.

Hence, the q-dependence of the AGGA kernel slightly improves upon the ALDA results,
although neither captures the excitonic effects.

4.3 Magnetic response

4.3.1 Background
In 1960s inelastic neutron scattering was used to study magnetic excitations of ferromagnetic
3d transition metals and their alloys. Nickel was one of the first elements to be studied in the
low-energy region. In the 1980s Mook et. al [55] performed precise experiments with special
emphasis on the high-energy region up to 240 meV energies. They measured the spin-wave
dispersion at several temperatures ranging from 4.2 K till 2Tc where Tc=631 K. It was found
that spin-wave dispersion is isotropic in q upto 100 meV and then the intensities dropped by
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Figure 4.3: Electron energy loss spectra given by imaginary part of the inverse dielectric tensor for different
experimental values of q (indicated in the figure) as a function of photon energy for (a) LiF and (b) Diamond,
using the AGGA kernel (red dashed), the ALDA kernel (black line) and the experimental data [90] (green
dots). The q-values used in calculations for LiF are 0.24ΓX, 0.48ΓX, and 1.52ΓX while for diamond they
are 0.64ΓX and 1.36ΓX as q must be commensurate with k-grid (25× 25× 25).

an order of magnitude. Further along the [111] direction the reduction in spin-wave intensity
was more pronounced when compared to other directions. These high energy excitations were
strongly damped at some wave vector close to the zone boundary of the first BZ. The reason
was attributed to their interaction with the Stoner continuum. Another interesting feature
was detection of an optical branch in nickel inspite of it having a single atom in its unit cell.
It was observed along [100] direction around 125 meV. As the inelastic neutron scattering
does not scan the whole BZ, SPEELS was used in 1989 by Abraham and Hopster [91]. They
did long wave vector studies but could capture only the stoner excitations inspite having
a resolution of 17 meV. Later Hong and Mills [92] explained why the spin-waves were not
observed with SPEELS; they showed that the spin waves can only be observed by SPEELS
when the exchange splitting of 3d bands is large in comparison with the spin-wave energies.
In Fe and Co the spin-waves up to the BZ boundary were indeed observed by SPEELS as
they have substantially larger value of exchange-splittings than nickel.

Theoretically, Lowde and Windsor [93] made the first attempt to study these magnetic
excitations. They examined the magnetic susceptibility using the random phase approxima-
tion for spin-split bands. But, the agreement with the experimental data was poor. Then
in 1973 Cooke [94] used the tight-binding model with two adjustable parameters one for
the electronic energy bands and the other for the on-site Coulombic interaction between the
d electrons. It was not an ab-initio study as the parameters were chosen to produce the
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correct experimentally observed magnetic moment as well as the correct t2g and eg charac-
ter of the bands. As a result, these calculations yielded the correct dispersion relation of
nickel including the optical branch along [100] direction. Further it also correctly described
the damping of the spin-waves in the presence of the stoner modes. A similar approach of
scaling the Coulomb interaction being form-invariant under spin rotations was adopted by
Hong and Mills in 2000 [92]. However, they failed to find the optical-mode in nickel. In
1998, Savrasov [76] used the spin-polarized version of ab-initio DFT for ground state and
TDDFT for transverse spin susceptibility calculations. He attributed the discrepancies in
his observations to the lack of approximations which encapsulate the dynamical exchange
and correlation. In 2000, Karlsson and Aryasetiawan [74] used Many-Body Perturbation
theory (MBPT) to calculate spin-waves in ferromagnetic transition metals. They obtained
two branches in nickel dispersion relation along [100] with an optical branch at higher ener-
gies. Also a good agreement between theory and experiment was found when the exchange
splitting of 3d bands was manually reduced to half. Additionally they observed an optical
branch along [111] direction. In 2010, Şaşıoğlu et. al [95] again used the MBPT formalism
to obtain the excitation energies by approximating the dynamic correlations between the
electrons and holes as a summation over ladder diagrams. They found that LSDA overesti-
mates the exchange-splitting of nickel by a factor of 2 and hence overestimates the magnon
energies. The spin waves also have dimensionality effects as was seen by Buczek et. al [71]
using the Korringa-Kohn-Rostoker Green’s function method which again utilized the ALSDA
kernel within the TDDFT formalism. The dispersion relations obtained in all these TDDFT
calculations used the ALSDA kernel. Here we use the AGGA kernel derived in Chapter 3.

4.3.2 Convergence Parameters:
To speed-up practical calculations of the magnetic excitation energies, various numerical pa-
rameters can be optimized. However, the response function, as given by Eq. (2.88), should
be independent of the choice of these parameters and hence their convergence must be tested.
Moreover the convergence of these parameters depend on the choice of XC functional used
for calculations. As the GGA functional involves gradient of density, which are numerically
delicate, extra care has to be taken while performing convergence tests.

The most important parameters which affect the excitations are the number of unoccu-
pied bands, the number of G-vectors, the length of |G+k|-vectors, and the k-point grid used
for sampling the BZ. Further, these parameters are material dependent and the convergence
tests must be performed for each of them. This process will be illustrated now for nickel:

Unoccupied bands:

The summation over states in Eq. (2.88), may be cut-off for faster convergence and is
controlled by the parameter emaxrf such that |ϵnk − ϵFermi| < emaxrf. In other words,
the value of energy set by this parameter decides the number of conduction bands included
in the calculation. Hence, the spectra was calculated using the ALSDA kernel for various
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values of emaxrf see Fig. 4.4. It was found that for emaxrf ≥ 1.1 a.u., we get converged
(overlapping) response functions and hence 1.2 a.u. was chosen for calculating the magnetic
response function. This resulted in inclusion of all bands 1.2 a.u. above the Fermi energy.

Figure 4.4: The Imaginary part of the response for nickel with different values of the emaxrf parameter.

Number of G-vectors for response function:
LDA:
The matrix size of the response depends on the number of G-vectors as was seen in Eq.
(2.88). This matrix size is controlled by the parameter gmaxrf which determines the max-
imum length of G-vectors used in calculation. Keeping the emaxrf value fixed to 1.2 a.u.,
gmaxrf value was changed from 4 a.u. to 7 a.u. along with the kmesh used for BZ sampling
(Fig. 4.5). It was found that with gmaxrf > 6 a.u. the response remains unchanged. This
corresponds to a matrix size of 283× 283 in G-space.

GGA:
The convergence of gmaxrf was checked with three different values of k-point mesh. As can
be seen from Fig. 4.6 that for values of 6 a.u. and 7 a.u. it gives overlapping results. Hence
the value 6 a.u. was taken for all the GGA functional calculations. Also this variation was
checked with respect to the BZ sampling and the mesh greater than 20 × 20 × 20 gave the
same result. Hence a 20× 20× 20 k-point mesh was used along with emaxrf=1.1 a.u. and
gmaxrf=6 a.u.

The GGA functional involves gradient of density along with density and the presence of gra-
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Figure 4.5: The imaginary part of transverse response for nickel with different values of the gmaxrf
parameter keeping emaxrf fixed to 1.2 a.u. and their convergence with respect to the (a) 20 × 20 × 20
kpoints mesh and (b) 25× 25× 25 kpoints mesh for LDA functional.

dients makes the computations difficult. To obtain smooth variation of the gradients ground
state should be well converged, hence convergence is to be performed regarding the length
of G-vectors required for the expansion of density and potentials in the interstitial region,
product of muffin-tin radius (RMT ) and length of |G + k|-vectors needed to solve the KS
functions. Therefore to obtain a well converged ground state by using the GGA functionals
the following parameters have to be tested for convergence:

Number of G-vectors for ground state:
The parameter used for expanding the density and potentials in the interstitial region is
gmaxvr. Our test showed that 20 G-vectors were needed for convergence (see Fig. 4.7).

RMT × |G + k| vectors:
This product decides the maximum length of |G + k| vectors required for minimum muffin
radius (if more than one species) to expand the KS functions. This product is controlled by
the parameter rgkmax. Hence, it’s value was varied keeping all the above parameters fixed
and the results are shown in Fig. 4.8. The value 8 was chosen as the results overlapped
with 9 and it also gave minimum Goldstone error; the error which arises due to numerical
computations and gives a finite excitation energy for q = 0. This violates the Goldstone
theorem which says w = 0 for q = 0. For the numerical calculations this error is subtracted,
from the entire spectrum to satisfy the Goldstone theorem.

Smearing width:
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Figure 4.6: The imaginary part of transverse response for nickel with different values of the gmaxrf
parameter keeping emaxrf fixed to 1.1 a.u. and their convergence with respect to the (a) 20× 20× 20, (b)
22× 22× 22 and (c) 25× 25× 25 k-point grid for GGA functional.

Figure 4.7: The imaginary part of transverse response for nickel with different values of the gmaxvr
parameter keeping emaxrf(1.1 a.u.) and gmaxrf fixed(6 a.u.) k-point mesh of 20× 20× 20.
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Figure 4.8: The imaginary part of transverse response for nickel with different values of the rgkmax
parameter keeping emaxrf(1.1 a.u.), gmaxrf(6 a.u.), gmaxvr(20 a.u.) and fixed kpoints mesh of 20×20×20.

The response function also depends on the usage of the smearing parameter as seen in Eq.
(2.97). The value of this smearing parameter used in all the calculations is 0.027 eV.

4.3.3 Spectra
To find the magnon spectra, Im{χ−+(q, ω)} for each q value is calculated, then the magnon
peak position was extracted and plotted as a function of q. This is shown in Fig. 4.9 for
nickel, cobalt, and iron (at a0(exp.) from Table 4.1). For Ni, Fig. 4.9(a), both the ALSDA
and the AGGA show quantitatively the same behavior from the BZ center to |q| = 0.4.
As one moves further away from the zone center along ΓX direction, the AGGA kernel
tends to deviate from ALSDA until it becomes ≈ 80 meV higher in energy at the zone
boundary. For Co, Fig. 4.9(b), the experimental results are well captured by both ALDA
and AGGA calculations. For Fe, Fig. 4.9(c), in contrast to ALSDA which reproduces the
experimental values, the AGGA dispersion overestimates the magnon energies. Beyond half
ΓN, the transverse response function obtained using AGGA becomes too broad to assign a
single energy to the excitation peaks although some features are still present, as can be seen
in Fig. 4.12.

The strength and width of the peak in Im{χ−+(q, ω)} is related to the scattering am-
plitude and lifetime of the magnon, respectively. To visualize how these properties change
throughout the BZ, a 2D contour plot of Im{χ−+(q, ω)} is made. These are shown for both
ALSDA and AGGA in Fig. 4.10 for Ni, Co and Fe along with the experimental data. Begin-
ning again with Ni, one can see that the peaks in Im{χ−+(q, ω)} obtained by using ALSDA
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Table 4.1: The experimental lattice (in Å) constants used in magnon spectra calculations. Also the
experimental magnetic moments (in µB) are listed.

a0 (exp.) mexp.

Ni(fcc) 3.524 [96] 0.60 [97]
Co(fcc) 3.539 [98] 1.52 [99]
Fe(bcc) 2.8665 [100] 2.08 [101]

Figure 4.9: Magnon dispersion spectrum for (a) fcc nickel, (b) fcc cobalt along the ΓX direction and (c)
bcc iron along the ΓN direction calculated using the ALSDA kernel (black dots) and AGGA kernel (red
triangles). A comparison is made with the experimental result (green squares) taken from Mook et al.
[55, 102] for nickel, Balashov et al. [103] for cobalt, and Lynn [104] for iron.

(Fig. 4.10(a)) are stronger in intensity and better resolved than AGGA (Fig. 4.10(b)).
There exists a high probability of observing a magnon at the BZ boundary with ALSDA
whereas it is suppressed significantly beyond q = 0.5�X with AGGA. A strong suppression
in the magnon intensity between |q| = 0.1 and 0.2 for both AGGA and ALSDA (see Figs.
4.10(a) and (b)) is also observed. Experimentally, Paul et. al [102] measured a disruption
to the magnon dispersion at |q| = 0.2, which they attributed to a split into optical and
acoustic branches. While neither ALSDA nor AGGA shows two branches, both correctly
predict an abrupt change in the magnon dispersion around this value of q. This is due to
the Stoner spin-flip transitions (Eq. 2.97) having energy comparable to the magnon energy
causing strong interference and intensity suppression [107] at these values of q (see Fig. 4.11
(a) and (b)).

In contrast to Ni, the experimental dispersion for fcc Co, obtained by Balashov et al.
[103], along [100] does not show any optical branches. Both ALSDA and AGGA behave the
same and show good agreement with experiment, with AGGA being slightly lower in energy.
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Figure 4.10: The imaginary part of the interacting response of nickel, cobalt, and iron using the ALSDA
kernel (a,c,e) and the AGGA kernel (b,d,f), and the experimental results [102, 103, 104] (white dots).

Observing the full transverse response function over the whole BZ (Figs. 4.10(c) and (d))
one can see a reduction in the peak strength and suppression of the magnons by AGGA
as compared to ALSDA. Qualitatively, AGGA also reproduces the jump in magnon energy
witnessed in experiments around |q| = 0.6, although at a higher |q| value of 0.8. Also the
Stoner spin-flip transitions for Co are relatively high in energy (see Fig. 4.11 (c) and (d)) as
compared to Ni and hence there is no reduction in intensity.

For Fe, significant broadening in the AGGA transverse response for |q| > 0.5 (Fig. 4.10
(f) and 4.12 (b)) is seen. This broadening is to such an extent that it becomes impossible to
assign a single peak position. We note that in Ref. [74] a jump to a higher branch occurs
in this region. Experimental data reported in Ref. [108] sees magnon excitations in this
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Figure 4.11: Imaginary part of the non-interacting response function for nickel, cobalt and Iron using the
ALSDA kernel (a,c,e) and the AGGA kernel (b,d,f), and also the corresponding theoretical magnon spectra
for comparison (cyan triangles).

region, although with a large full width at half maximum indicating strong suppression. This
suppression can also be seen in these results due to interaction with the Stoner continuum
(Fig. 4.11 (e) and (f)).

A comparison is done of the magnon spectra obtained here with the past ALSDA results
obtained within TDDFT or MBPT approach [71, 95, 75, 57, 74, 75, 76] and the experimen-
tal data. This is shown in Fig. 4.13 and from these two important facts can be inferred;
the ALSDA results are consistent with previously reported data, and most importantly the
AGGA kernel does not offer any improvement over ALSDA spin excitation spectra.
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Figure 4.12: The transverse response at certain q-values for (a) nickel and (b) iron using ALSDA (black
lines) and AGGA (red dashed) kernels.

Figure 4.13: Magnon dispersion spectrum for (a) fcc nickel, (b) fcc cobalt along the ΓX direction and
(c) bcc iron along the ΓN direction calculated using the ALSDA kernel (black dots) and AGGA kernel (red
triangles). A comparison is made with reported theoretical work [71, 72, 95, 74, 105, 106] and also the
experimental result (green squares) taken from Mook et al. [55, 102] for nickel, Balashov et al. [103] for
cobalt, and Lynn [104] for iron. For Ref. [[75]], the ALSDA corrected values have been taken.
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Effect of equilibrium lattice constant:

An ab-initio computational method, given the atomic composition, should be able to
predict the equilibrium geometry. After finding the minimum energy crystal structure from
ground-state calculations, one can then calculate the excited state properties, all without
reference to experimental data. Only those methods which follow this prescription can
be considered fully predictive. Hence, we will study if the magnon dispersion changes if
the equilibrium lattice constant values are used. These are obtained by using the Birch-
Murnaghan 3rd-order equation of state (EOS). The energy vs volume curves for all the three
elements with different volume are plotted in Fig. 4.14. These are then fitted to the EOS
expression to find the lattice constants corresponding to both the LDA and GGA functionals.

Figure 4.14: The equilibrium lattice constant obtained by solving the Birch-Murnaghan 3rd order equation
of state for (a) nickel, (b) cobalt and (c) iron using the LDA and GGA functionals.

The ground-state DFT calculations with experimental and optimized lattice parameters
are summarized in Table 4.2. From this one can conclude that (i) GGA is very good in
reproducing the structures of materials whereas (ii) LDA is better in predicting the magnetic
moments.

Next the predictive power of LDA and GGA is tested by comparing the magnon energies
for Ni, Co, and Fe at the experimental and optimized lattice parameters (see Fig. 4.15).
From the figure it can inferred that the AGGA magnon spectra are more sensitive to the
lattice parameters than the ALSDA. In most cases, the AGGA results at the corresponding
GGA parameter (a0)theo are lower in energy than at (a0)exp, although still overestimated
w.r.t. experiment.
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Table 4.2: Equilibrium lattice parameters, a0 Å(LDA or GGA), calculated using the 3rd order Birch-
Murnaghan equation of state and the experimental lattice constants. The experimental magnetic moments,
mexp. (in µB), compared with the magnetic moments obtained at the equilibrium lattice parameters.

a0 (exp.) a0 (LDA) a0 (GGA) mexp. mLDA mGGA

Ni(fcc) 3.524 [96] 3.436 3.527 0.60 [97] 0.591 0.636
Co(fcc) 3.539 [98] 3.429 3.525 1.52 [99] 1.525 1.641
Fe(bcc) 2.8665 [100] 2.743 2.836 2.08 [101] 1.996 2.174

Figure 4.15: The magnon spectrum with the theoretical and experimental lattice parameters for (a) fcc
nickel, (b) fcc cobalt along the ΓX direction and (c) bcc iron along the ΓN direction calculated using the
ALSDA kernel (dots) and AGGA kernel (triangles). The lattice parameters are given in Table 4.2.

Heuslers:

Next, Heusler and half-Heusler compounds Co2MnSi and NiMnSb are studied which,
due to their geometry of interlocking magnetic fcc lattices, can (in principle) have multiple
magnon branches [109, 111]. The experimental lattice constant used for Co2MnSi is 5.640
[112] Å and for NiMnSb [113] is 5.897 Å. In Fig. 4.16, the AGGA magnon spectra of Co2MnSi
and NiMnSb are plotted along with the experimental and ALSDA results (as reported by
Buczek et. al)

For Co2MnSi (see Fig. 4.16(a)) both, an acoustic branch and an optical branch are
observed. An increase in the energies of acoustic branch is noted when compared with
earlier ALSDA results [109], based on loss function. However, energies of the optical branch
with AGGA are within the same range as reported by Buczek[109] using ALSDA.
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Figure 4.16: (a) The magnon spectra of Co2MnSi using the ALSDA (black dots) and AGGA (red triangles)
kernels and compared with Buczek calculations [109] with the ALSDA kernel (violet triangle left). (b) The
magnon spectra of NiMnSb using ALSDA and AGGA kernel and the experimental results [110] (green
squares).

For NiMnSb (Fig. 4.16(b)), both ALSDA and AGGA predict only an acoustic branch, as
is also the case experimentally. This is likely due to Ni not possessing a strong local moment
as most of the total moment is localized on the Mn atoms. In this case AGGA severely
overestimates the magnon energies.

4.4 Exchange-Splitting
The underlying explanation as to why AGGA tends to overestimate the magnon energies
is explored. The role of the XC kernel is to transform the excitation structure of Im{χ−+

0 }
into the true response. From the Stoner single-particle excitations, contained in Im{χ−+

0 },
it must create the magnon peak.

At q = 0, the gap (U) in Im{χ−+
0 } (see Fig. 2.9) is related to the exchange splitting

between spin-up and spin-down states. This splitting dictates the position of the Stoner
continuum across the BZ. In Figs. 4.11(a) and (b), the Im{χ−+

0 } for LDA and GGA is
plotted, and it can be seen that the this gap increases by approximately 60 meV for nickel.
This increment stems from the fact that GGA increases the exchange splitting in Ni by 59.9
meV compared to LDA as can also be seen in the density of states shown in Fig. 4.17 (a),
leading to the shift in Stoner continuum towards higher energies. At q = 0, the symmetries of
the response equation will enforce Goldstone’s theorem, however the increase in the exchange
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Figure 4.17: The density of states using LDA (black solid line) and GGA (red dashed line) functional for
(a) nickel, (b) cobalt and (c) iron.

splitting will cause the magnon energies also to increase as we move across the zone. This
can be seen in Fig. 4.11 where both ALSDA and AGGA have a similar behavior relative to
the background Stoner excitations. Similar behavior was also observed for other materials,
e.g for Fe there is ≈ 150 meV increase (see Fig. 4.17 (c)), and even a 50% increase of the
LDA Stoner gap in χ−+

0 for the half-metal NiMnSb. The connection between the exchange
splitting and the magnon energies was previously reported in Ref. [74] where the LDA value
was artificially reduced leading to lower magnon energies. Given that LDA is well-known
to overestimate the exchange splitting, a further enhancement on going from LDA to GGA
leads to large overestimation of the magnon energies. To establish this fact the exchange
splitting for nickel was reduced from 680 meV to 355 meV by hand in both LDA and GGA
calculations of the response and the magnon spectra. This is shown in Fig. 4.18. As can be
seen the exchange splitting effects the spectrum at higher q-values, give reasonable values
as compared to experiment and the lower q-values are unaffected. Further changing the
exchange splitting by hand does not lead to good ground-state hence the shape of the curves
is not well defined.

To summarize this chapter, the AGGA kernel was derived for unpolarized systems was
applied to study the absorption spectra and EELS of diamond and LiF. The results obtained
did not improve upon the results obtained by using ALDA kernel. The situation became
worse when AGGA kernel was applied to study magnon dispersion relation. Here, the
magnon energies predicted by AGGA kernel were worse than the ALSDA kernel. This reason
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Figure 4.18: The magnon spectra of nickel with exchange splitting reduced (LDAreduced and GGAreduced)
along with the LDA, GGA and experimental results.

for these results was due to high exchange splitting value obtained with GGA functional.
Unlike many properties, climbing up the Jacob’s ladder for XC kernel did not lead to better
accuracy in magnon calculations.
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CHAPTER 5

REAL-TIME MAGNON DYNAMICS

Today’s oscillations are for a stable tomorrow.
- Unknown

In chapters 3 and 4, TDDFT was used in the linear response regime to extract excitation
energies and associated properties in frequency space. However, to study the response of a
system to strong external fields, linear response is inappropriate and one requires the explicit
time evolution of occupied KS orbitals, as is done in RT-TDDFT. Note that for small fields,
the density obtained with RT-TDDFT is the same (to first order) as that obtained from LR-
TDDFT. Hence in this limit the spectrum obtained from both these methods must agree.
The RT-TDDFT method yields a full time-resolved, potentially non-linear, solution which
can be used to compute not only spectroscopic properties (e.g. absorption, polarizabilities,
etc.) but also the time and space resolved electronic response to arbitrary stimuli (e.g. laser
excitation of charge dynamics). RT-TDDFT is one of the few ab-initio yet computationally
affordable ways to study electron dynamics and laser-matter interaction.

In this chapter the RT-TDDFT method is employed to study magnons in real-time and
real-space. It is a powerful tool to study magnon dynamics as atoms can be observed
and analyzed individually and element specific dynamics of moments can be discovered.
Furthermore, the behavior of several q-vectors magnon modes can be studied together, as for
practical calculations a supercell is constructed. The dimensions of this supercell determine
the q- vectors under study. However, this does require significant computational resources,
which limits the supercell size, and hence the number of magnon modes that can be studied.
Bound by this restriction we study the high energy, or high q, modes, although it should be
noted that these are often difficult to study experimentally, due to their shorter life times.
After constructing the supercell, the KS orbitals are propagated using Eq. (2.104) and the
transverse moments of each atom are plotted as a function of time.

To demonstrate RT-TDDFT as a tool to study magnon dynamics, we first benchmark
the frequency of various magnon modes against linear response calculations. Then we show
how several modes may be studied simultaneously by preparing initial states in superposi-
tions of many modes. Lastly a system with two magnetic sublatticies is studied, namely
Fe50Ni50 alloy, and test whether there exist coupled and un-coupled dynamics of the Ni and
Fe transverse magnetic moments.
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5.1 Iron
In the previous chapter LR-TDDFT was utilized to obtain the magnon energies along the ΓN
direction for bcc Fe. Here we will study fcc Fe, with the unit cell extended along the c axis
to obtain a supercell consisting of four atoms. We change to a fcc lattice for Fe as it will be
useful for understanding the behavior of iron atomic moments in the Fe50Ni50 alloy studied
later. The number of modes which can be investigated is equivalent to the number of atoms
in the supercell, this is known from normal mode analysis of the Heisenberg Hamiltonian.
Therefore, as there are four atoms one would expect to observe four modes (each mode must
have a q vector commensurate with the supercell size). These are shown in Fig. (5.1).

To obtain these modes by TDDFT simulations a two step procedure is followed. Firstly a
ground state calculation is done to obtain the converged densities and potentials. Then small
perturbations are done via a single additional ground state iteration, now including small
magnetic fields along x and y directions. This initial state is then propagated in time. From
this we obtain the time varying magnetization density and time-varying atomic moments,
defined in Eq. (2.32) and Eq. (2.110) respectively. These applied magnetic fields mimic the
effect of an external perturbation that excites the magnon modes. The Fourier transform of
the oscillations in mx(t) and my(t) will result in a power spectrum (Section 2.7) having a
peaked structure with the peak position corresponding to the magnon frequency.

(a) ↑ ↑ ↑ ↑ (b) ↑ ↓ ↑ ↓

(c) ↑ → ↓ ← (d) ↑ ← ↓ →

Figure 5.1: The four modes (along with their projections in xy plane) which exist in a four atom supercell
of iron. (a) Goldstone mode, (b) Optical mode, (c) +Q = ΓX/2, and (d) −Q = −ΓX/2

.

Computational details: The KS orbitals are time-propagated with a time-step of 1.209
attoseconds unless explicitly stated. A 8×8×8 k-point grid is used and the ALDA functional
is used to approximate the XC potential. The lattice constants used for constructing the
supercell are a= 7.2902 a.u. (3.85Å) and c= 14.57 a.u. (15.423Å). The length of G + k
vectors is set to 2.917 a.u. and the length of G-vectors used for expanding the interstitial
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density and potentials is 12 a.u. A typical 4-atom supercell simulation requires 16000 CPU
hours to obtain magnetization oscillations up to 48.2 femtoseconds.

The arrangement of spin for all the four modes after the initial perturbation can be rep-
resented in the xy plane using ↑, → for +y, +x and ↓, ← for −y, −x directions respectively.
As the time evolves these spins will precess in the counterclockwise direction (note that in
these simulations the z-moment points in the negative z-direction). We will now tailor the
initial state to excite each mode individually:

• Goldstone mode: ↑ ↑ ↑ ↑
The initial state required to excite the Goldstone mode is all spins pointing in same
direction. This is created by perturbing each atom with the same magnetic field.
Propagating in time, we do not see any precession of the spins (Fig. 5.2(a)) as these
are excitations of zero energy. This can also be seen from the Fourier transform of
y-moments in the Fig. 5.2(b). The y moments of all the atoms stay fixed to its
initial value (0.044µB) which is the moment induced by the applied magnetic field.
As discussed in chapter 4, the Goldstone mode is simply a tilting of the ground-state
magnetization along a new direction, this therefore costs no energy when the system
has magnetic isotropy. Note, for systems with magnetic anisotropy, where the spins
align in a preferential direction, this mode will no longer be a zero energy mode, as
tilting of spins off the easy axis will cost a small amount of energy.

Figure 5.2: (a) Oscillations of the transverse moments for 4 atom supercell of iron in the Goldstone mode
and the (b) Fourier transform of y moments.

• Optical mode: ↑ ↓ ↑ ↓
Next an initial state for studying the optical mode is prepared by applying magnetic
fields in alternating y and -y directions on the neighboring atoms. The time propaga-
tion of orbitals is performed and transverse moments as a function of time are obtained,
as shown in Fig. 5.3(a). Here the neighboring atoms oscillate 180◦ out of phase with
each other, but the first and third atoms, and second and fourth atoms behave identi-
cally. The wavevector for this excitation is q-vector = X, where X corresponds to the
zone boundary of the primitive unit cell.
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Figure 5.3: (a) Oscillations of the transverse moments for 4 atom supercell of iron in the optical mode and
it’s (b) Fourier transform.

At any instant of time, as we can see in Fig. 5.3(a) that the x and y moments of each
atom are 90◦ out of phase with each other and they precess counterclockwise. The
frequency of oscillation of this mode is 110 meV, as can be obtained by performing a
Fourier transform of x or y moments, see Fig. 5.3(b).

• +Q = ΓX/2 mode: ↑ → ↓ ←
In the case of +Q mode the neighboring atoms have a 90◦ phase with each other. This
implies that the y moment of first atom and x moment of second atom will be in phase
with each other during the time propagation, which can be seen in Fig. 5.4 (a).

Figure 5.4: (a) Oscillations of the transverse moments for 4 atom iron supercell in the +Q mode and it’s
(b) Fourier transform.

These oscillations correspond to a frequency of 76 meV as seen in Fig. 5.4(b). This
mode has lower frequency when compared with the frequency of the optical mode.

• −Q = −ΓX/2 mode: ↑ ← ↓ →
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The dynamics of −Q mode can be seen in Fig. 5.5 (a). Similar to +Q mode the neighboring
atoms are −90◦ (or 270◦) out of phase with each other. The +Q and −Q modes are
degenerate modes and oscillate with the same frequency of 76 meV (see Fig. 5.5(b)).

Figure 5.5: (a) Oscillations of the transverse moments for 4 atom iron supercell in the −Q mode and it’s
(b) Fourier transform.

Figure 5.6: The magnon spectra of fcc Fe obtained from linear response TDDFT using LDA functional
with particular modes under study highlighted.

After obtaining these normal modes for fcc iron using RT-TDDFT simulations, a linear
response calculation was done to confirm the predictions of RT-TDDFT. The energies ob-
tained with LR-TDDFT of these modes along ΓX direction are in good agreement with the
real-time calculations as shown in Fig. 5.6. Here, the optical mode is the mode at the zone
boundary and the ±Q modes are at half ΓX shown by the two black dots in the Fig. 5.6.
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One note on the lifetimes of these magnons: In linear response, the width of the peaks is
inversely proportional to the lifetime of the magnon. As real-time propagation is computa-
tionally demanding, the total simulation time is not long enough to obtain accurate Fourier
transforms, and hence the peaks are also broadened numerically. Hence, the peak widths
have both the finite lifetimes and numerical errors embedded in them, which makes it diffi-
cult to extract magnon lifetimes accurately. The errors arising due to numerical calculations
can be removed by propagating the modes for longer time.

Hence, by preparing initial states with particular symmetries, we can control the occu-
pation of individual modes and study the dynamics of a individual modes. Such selective
excitation was recently achieved in NiO[12].

We will now demonstrate an advantage of RT-TDDFT over LR-TDDFT, as we can
observe and study several magnon modes together in real-space. As the excitation of modes
is dependent on the initial perturbation given to the atoms, several examples of different
initial states and their decomposition in terms of the normal modes are discussed. Here the
left hand spin arrangement corresponds to the perturbation given to the atoms and the right
hand side gives the decomposition of the state in terms of normal modes.

(a) No Goldstone mode

↑ ↓ · · = ↑ ↓ ↑ ↓
+ ↗ ↘ ↙ ↖
+ ↖ ↙ ↘ ↗

where ↗ ↘ ↙ ↖ and ↖ ↙ ↘ ↗ are the +Q and −Q modes respectively with
a phase factor. The dynamics of this state is shown in Fig. 5.7(a). As this state does
not have overlap with Goldstone mode, no shift along x or y-axis of the moments is
observed, and all moments oscillate about zero axis. The Fourier transform of the
moments should yield two peaks, due to the mixture of the optical mode and the ±Q
modes. However, these two peaks are not well resolved and only a single peak centered
between the two mode frequencies is observed. Recall the numerical error in the width
of the peaks is inversely proportional to the total propagation time, hence a longer
simulation would be required to resolve the two peaks. However, by duplicating the
data before performing the Fourier transform , we can confirm that the dynamics is
dominated by just two frequencies. This is also included in Fig. 5.7(b), where the two
peak structure is clearly visible and the frequencies exactly match the mode energies
found previously, thus demonstrating the superposition of modes.

(b) No optical mode

↑ ↑ · · = ↑ ↑ ↑ ↑
+ ↖ ↗ ↘ ↙
+ ↗ ↖ ↙ ↘

Here, the Goldstone mode and combinations of +Q mode and −Q mode with a phase
factor result in a state where the optical mode is absent. The dynamics of this resultant
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Figure 5.7: (a) Oscillations of the transverse moments for 4 atom supercell of iron. (b) Comparison
between frequencies obtained after the Fourier transform for the optical mode, the +Q mode and the state
excited in (a).

state can be seen in Fig. 5.8 (a). Note that the +Q mode and −Q mode are degenerate
modes. The y moments of the four atoms oscillate about −0.02 instead of 0 signifying
the presence of Goldstone mode. This can also be seen in the Fourier transform of the
y-moments which has a peak at 0 frequency. Further the oscillations correspond to
the state formed by the combination of +Q and −Q mode and hence the frequency
of this state should be near the frequency of +Q mode as can be seen in the Fourier
transform of x- and y-moments (Fig. 5.8 (b)).

Figure 5.8: (a) Oscillations of the transverse moments for 4 atom supercell of iron. (b) Comparison between
frequencies of +Q mode and the state excited in (a).

(c) No optical and no Goldstone modes

↑ · ↓ · = ↑ → ↓ ←
+ ↑ ← ↓ →
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Figure 5.9: (a) Oscillations of the transverse moments for 4 atom supercell of iron. (b) Comparison between
frequencies of +Q mode and the state excited in (a).

In this state both the Goldstone mode and the optical mode are absent as can be seen
from moments oscillations in Fig. 5.9(a). It is formed by the combination of +Q and
−Q mode and hence its frequency should also be equal to these modes as can be seen
in Fig. 5.9 (b). Also the first and third atoms respond opposite to each other while
second and fourth atom do not oscillate. This is because the net moment on these
atoms is zero as can be seen from the decomposition of initial state (shown above) and
will remain zero at all times, as the mode frequencies are degenerate.

Figure 5.10: Oscillations of the transverse moments for 4 atom supercell of iron.

(d) complex mode

↑ · ← · = ↖ ↘ ↖ ↘
+ ↖ ↖ ↖ ↖
+ ↗ ↘ ↙ ↖
+ ↗ ↖ ↙ ↘
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Here all the four modes in iron combine with phases to give rise to a complex state
whose dynamics is shown in Fig. 5.10. The Fourier transform can not be performed
due to limited data points and oscillations of low frequency.

To summarize this section, these simulations showcase the power of RT-TDDFT to study
multiple magnon modes together, in contrast to linear response TDDFT where only a single
q can be studied at a time. It has been shown how the choice of initial state can be
exploited to choose which magnon modes are excited and how this can induce complex spin
dynamics. The phase and amplitude of each mode is uniquely determined by the initial
state. The energies obtained from RT-TDDFT and LR-TDDFT are in good agreement with
each other, confirming the accuracy and validity of the supercell approach.

Next we study the system comprising of two magnetic sublattice, namely the ferromag-
netic state of Fe50Ni50 alloy. As it consists of two magnetic species it is a good candidate
for optical control via tailored laser pulses. However, before this can be tested, one needs to
know how the unperturbed modes behave in such a system.

5.2 Fe50Ni50 alloy
To study the unperturbed magnon modes in Fe50Ni50 alloy, a 4 atom supercell is again
constructed. Thus the allowed magnon wavevectors are Γ, ±1/2ΓX, and X, where X =
(0, 0, 2π/a) in Cartesian coordinates. This supercell is formed by extending the L10 primitive
cell along the c-axis with lattice parameters a = 3.85Å and c = 7.71Å. The Brillouin zone
is sampled on a k-grid of 8× 8× 8 and a time step of 1.209 attoseconds was used for time-
propagating the orbitals. The other computational parameters were the same as in the iron
case.

In the Fe50Ni50 multisublattice ferromagnet one could expect coupled modes between the
iron and nickel atoms. Hence we performed RT-TDDFT calculations to see the behavior
of the Fe and Ni atoms and test the existence of these modes. The results are summarized
in Fig. 5.11, obtained after analyzing the moments of Fig. 5.12. In fact, both coupled
and uncoupled modes are found. As discussed in section 2.6, we can think in terms of the
Heisenberg Hamiltonian to aid our understanding of these modes. The form and frequency
of these modes are dictated by the intersite Heisenberg-exchange interaction between the
Ni-Ni, Fe-Fe, and Fe-Ni atoms.

As was done in Fe, we can study the dynamics of these modes by preparing the spin
system of Fe-Ni-Fe-Ni in the following initial states:

(a) Pure Ni mode
· → · ←

(b) Pure Fe mode
↑ · ↓ ·

85



(a) ↑ ↑ ↑ ↑ (b) ↑ ↓ ↑ ↓

(c) ↑ · ↓ · (d) · → · ←

Figure 5.11: The four modes which exist in the ferromagnetic alloy, Fe50Ni50. (a) Goldstone mode, (b)
Optical mode, (c) Pure iron mode, and (d) Pure nickel mode.

(c) Optical and Goldstone mode

↑ · ↑ · = ↑ ↑ ↑ ↑
+ ↑ ↓ ↑ ↓

(d) All four modes

↑ ← · · = ↖ ↖ ↖ ↖
+ ↗ ↙ ↗ ↙
+ ↑ · ↓ ·
+ · ← · →

Their dynamics were obtained and plotted in Fig. 5.12. First, the coupled Goldstone
and optical modes are discussed, which are shown in Fig. 5.12 (c). In both of these modes,
the Ni atoms behave identically to each other, as do the Fe atoms. In these simulations we
do not include the spin-orbit coupling shown in Eq. (2.104), and thus there is no magnetic
anisotropy as previously discussed. As was the case for iron, the Goldstone mode is a zero
frequency mode where the spins do not precess in time and the moment remains fixed at
the initial value. In a multi sublattice system this mode can be seen as the invariant ratio
of the induced x or y moments, and the z moments in the ground state. In the ground state
the z moments ratio of Ni (0.64µB) and Fe (2.88µB) atoms is 4:1. In Fig. 5.12 (c) we find
the ratio, my

Fe : m
y
Ni = 4:1, of y moments is equal to the ground state moment ratio. This

is just the ground state along new axis and hence the ratio must remain the same. On top
of the Goldstone mode, the optical mode, signified by the Ni and Fe atoms oscillating 180◦

out-of-phase with each other, also is seen in the same figure. The frequency of this mode is
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Figure 5.12: Oscillation of the transverse (x,y) magnetic moments of the individual nickel and iron atoms
in a 4-atom supercell of Fe50Ni50 for different initial states. These magnons correspond to momenta q = Γ,
±1

2
ΓX, and X. Decoupled, element specific magnon modes can be seen for (a) nickel and (b) iron. Coupled

Goldstone and optical modes can be seen in (c) and (d). All 4 modes are excited in (d).
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760 meV, much higher than the q = X mode in either Fe or Ni indicating strong exchange
coupling between neighboring Fe and Ni atoms.

Figure 5.13: Oscillation of the transverse (x,y) magnetic moments of the individual nickel and iron atoms
in a 4-atom supercell of (a) nickel and (b) iron for optical mode.

At wavevector q = ±1/2ΓX, the effective exchange fields acting on each atom from their
nearest neighbors of the other species cancel. This allows decoupled element-specific modes
to form, which are indeed observed, as can be seen in Figs. 5.12 (a) and (b). If coupled
modes existed, one would see the same frequency in both Ni and Fe perturbations, however
very different behavior of the two elements is observed. In Fig. 5.12 (a), only the Ni atoms
show transverse oscillations which are 180◦ out-of-phase with each other, and the x and y
moments on each atom are 90◦ out-of-phase. The frequency of this pure Ni mode obtained
by Fourier transform is 710 meV. To check how this frequency differs from the bulk nickel,
a 4 atom supercell was again build and calculations were done. The dynamics of the same
initial state in bulk Ni as of the pure Ni mode in Fe50Ni50 alloy can be seen in Fig. 5.13(a),
whose Fourier transform gives a frequency of 390 meV. This is much lower in frequency than
the pure Ni mode in Fe50Ni50 implying the present of Fe has increased the beyond-nearest-
neighbor exchange interactions. The same behavior is observed for the Fe atoms in Fig. 5.12
(b) except the frequency of this pure Fe mode is 90 meV, also higher than the corresponding
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mode in bulk Fe 65 meV (as was seen in the previous section - Fig. 5.13(b)). The vast
difference between the frequencies of these two modes may also indicate their reluctance to
form coupled modes in Fe50Ni50.

All four modes can also be excited at once by choosing particular perturbation fields,
such as the case shown in Fig. 5.12(d). Here, the Goldstone mode can be seen as a constant-
shift in iron and nickel oscillations. The optical mode oscillations can be seen on top of iron
oscillations. Similarly, due to the presence of optical mode, the oscillations of nickel atoms
are affected but the difference from Fig. 5.12 (a) is more subtle as the frequencies are very
close.

The decoupled modes obtained in the case of two magnetic sublattice alloy suggests their
response to external fields, such as a laser, would be on different timescales. For example,
the lower energy pure Fe modes will be more strongly occupied in the case of laser-induced
heating, and thus we would expect Fe to demagnetize faster than Ni, as was observed in Ref.
[114]. As we saw in chapter 4, TDDFT is known to overestimate the magnon frequencies,
especially in the case of Ni. However this error is smaller than the difference between the
pure Ni and Fe modes and thus will not change this conclusion.

5.3 Real-time GGA
In chapter 4, we found that the excitation energies obtained using the GGA functional in
LR-TDDFT equation are higher, when compared with LDA, although, they showed better
agreement in capturing the interaction with the Stoner continuum. Here, we confirm these
results using RT-TDDFT. Note in real-time TDDFT no explicit expression for the kernel is
required, only the XC potential is required to time propagate the KS equations. A two atom
supercell of nickel is constructed having a commensurate q vector equal to X. The dynamics
of the transverse moments of nickel are shown in Fig. 5.14 for both LDA (a), and GGA (b)
and their Fourier transform in (c).

By comparing Fig. 5.14(a) and (b) several observations can be made: (1) The frequency
difference at this wavevector obtained by using GGA functional is approximately 80 meV
higher in energy than LDA functional, which agrees well with LR-TDDFT calculations (≈
100 meV) of Chapter 4. (2) The decay in moment oscillation is also stronger with GGA
than with LDA functional, which is consistent with the suppression seen in Fig. 4.10. This
manifests itself as a broader peak in Fourier transform, representing higher decay and also
more interaction the with Stoner continuum. (3) As the GGA functional is sensitive to the
gradients, numerical instability appears in GGA moment oscillations and slowly builds up in
time, (Fig. 5.14(b)). This instability arises due to unphysical core level excitations from 3p
to 3d. More demanding calculations with higher convergence parameters would be required
to prevent this instability.

Hence, the results obtained with RT-TDDFT calculations are mutually verified with the
LR-TDDFT calculations. Although RT-TDDFT is computationally expensive, it helps in
visualizing different magnon-modes and how the coupling between the atoms affect these
modes. Another mechanism by which magnons can be coupled is by spin-orbit coupling,
which is explored in next section.
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Figure 5.14: Oscillations in transverse moments of nickel atoms using (a) LDA and (b) GGA functional.
(c) The Fourier transform of the oscillations obtained using the LDA and GGA functional.

5.4 Spin-orbit Coupling

Figure 5.15: The optical mode of Fe50Ni50 (a) without spin-orbit coupling and (b) with spin-orbit coupling.
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The phenomena of spin-orbit coupling (SOC) is the underlying reason behind many
fascinating physical observations, such as ultrafast demagnetization, magnetic anisotropy
energy (MAE), Dzyaloshinskii Moriya Interaction (DMI), Quantum Spin Hall Effect (QSHE),
and many more. This raises the question of whether the SOC could affect the magnon modes
and if this can be addressed using RT-TDFT simulations. To partially answer this question
the optical mode of Fe50Ni50 is studied. In Fig. 5.15 the dynamics with and without spin-
orbit interaction is shown. As can be seen from the figure, spin-orbit coupling does not affect
the optical magnon mode. Although if the affect of SOC on magnon modes is to change the
frequency by a small amount then longer timescales would be required in order to resolve
this small change.

Although SOC did not affect the magnon modes in this case, we propose an application
of RT-TDDFT including SOC to extract DMI parameters. By time-propagating +Q and
−Q magnon modes, the frequency of these modes could be found, and the energy differ-
ence between them extracted, which is known to depend on the DMI interaction strength.
However, generally these modes can have very small energy differences (µeV-meV), and thus
need to be propagated for a very long time. Further the range of energies is very small which
again limits the studies due to numerical noise. Due to computational limitations they have
not been performed in this thesis, but the method is proposed.

To summarize this chapter, it is shown that TDDFT can be used to study the dynamics of
magnon modes in real-space and real-time. This allowed us to see the TDDFT prediction of
decoupled element-specific magnon modes in FeNi, with vastly different energies, information
not easily accessible in LR-TDDFT. With knowledge of how the unperturbed modes behave,
we can now study if they may be manipulated using laser pulses.
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CHAPTER 6
OPTICAL CONTROL OF MAGNON

The urge to destroy is also a creative urge.
- Pablo Picasso

The emerging field of controlling magnetism with femtosecond laser pulses is both exciting
and challenging from a technological point of view. Uniting this new field of femtomagnetism
with magnonics opens up a new range of possibilites for the next generation of spintronic
devices. In this chapter we investigate how the magnon dynamics respond to ultrafast,
ultra-strong, laser pulses. One of the fastest responses of spins in multi-sublattice magnets
to applied laser pulses is due to Optical Inter site Spin TRansfer (OISTR). Hence, we will
study Fe50Ni50 alloy which consists of two magnetic sublattices making OISTR possible
excitations. Here, we examine how these excitations affect the magnon modes and whether
they can be used to control the magnons.

6.1 OISTR in Fe50Ni50
Ultrashort laser pulses hold the capability to dramatically change the magnetic structures,
including switching from antiferromagnetic to transient ferromagnetic magnetic order by
inducing spin-selective charge flow using a laser pulse [115, 116]. The microscopic mechanism
responsible for the ultrafast switching is governed by transfer of spin from one magnetic sub-
lattice to another, often driven by the minority spin electrons, known as OISTR transitions.
It has been experimentally observed in a wide range of materials and geometries, such as
bulk Heusler compounds [117], Co/Cu interfaces [118], and Ni/Pt multilayers [119]. As
these excitations are induced by direct optical excitation of lasers, they take place on the
timescale of the laser pulse duration. This promises extremely fast manipulation of spin
which is perfect for future technology.

To demonstrate OISTR in Fe50Ni50, a laser with intensity 9.6807 mJ/cm2, frequency 2.19
eV and Full Width at Half Maximum (FWHM) 2.41 fs is used. The frequency of the pulse is
chosen in such a way that it favors maximum optical excitations or in other words maximizes
OISTR. The evolution of z-moment of iron and nickel in FeNi is plotted in Fig. 6.1. As can
be seen the moment of iron reduces while that of nickel increases due to the laser application,
hence moment is transferred between the Fe and Ni sublattices. Also the delocalized states
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Figure 6.1: (a) The electric field of incident laser with intensity 9.6807 mJ/cm2, frequency 2.19 eV and
FWHM 2.41 fs. (b) The evolution of z-moment of iron and nickel atoms in FeNi.

Figure 6.2: The d-orbitals TD-DOS of iron and nickel for the minority and majority spin channels when
acted upon by a laser at (a) 15.06 fs, (b) 16.26 fs, (c) 17.40 fs, and (d) 18.67 fs .

94



(IR region) gains moment.
To study the reason behind this reduction of moment the time-dependent density of

states (TDDOS) (defined in Section 2.7) for iron (red) and nickel (blue) at different times:
(a) 15.06, (b) 16.26, (c) 17.40, and (d) 18.67 fs is plotted in Fig. 6.2. It can be seen that
as the laser reaches its peak intensity, the minority spins from nickel d-bands flow into the
unoccupied states of iron above Fermi level. As the minority spins move out of nickel to
iron, the Ni magnetic moment increases. Similarly for iron, it loses majority to nickel and
gains minority spin from nickel, both of which result in the reduction of the Fe moment.

The intensity of the laser pulse is then varied to see the affect on the moment gained
by nickel or the moment lost by iron (see Fig. 6.3). From the figure, it can be seen that
the amount of moment transferred depends linearly on the laser intensity until it reaches
saturation. Similar linear dependence on laser intensity was also found for the change in
moment of the delocalized states. This implies there is a cut-off value of the laser intensity
above which the transfer of moment is unaffected. Hence, we find that the amount of moment
transferred can be controlled using the laser intensity.

Figure 6.3: The linear dependence of moment transferred due to OISTR to the laser intensity.

6.2 Iron
As a first step towards controlling the magnons in Fe50Ni50 alloy, we look at the case of pure
iron. The four normal modes which exist in a four atom supercell of fcc iron were discussed
in chapter 5. To recap, these modes were the zero frequency Goldstone mode, the optical
mode with energy 110 meV, and two degenerate ±Q modes both with energy 76 meV. As a
prototype to study magnon-light interaction, we excite the +Q magnon mode and calculate
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the response of this mode (as shown in Fig. 5.4(a)) to three laser pulses of different intensities.

Case 1:

Here a laser with fluence 9.6807 mJ/cm2, frequency 2.19 eV and FWHM of 2.41 fs is
used. As can be seen in Fig. 6.4 when this intense laser is applied to the +Q magnon mode
of iron the amplitude of magnon is quickly damped and the mode is destroyed.

Figure 6.4: The oscillations of moments in +Q mode and its response to the laser of fluence 9.6807 mJ/cm2,
frequency 2.19 eV and FWHM 2.41 fs.

Case 2:

A pulse which is 10 times weaker in fluence (= 0.953 mJ/cm2) was applied (the frequency
and FWHM were kept the same). The response of the mode to this pulse was surprising, (
see Fig. 6.5). At time t=0 the spins are in the following arrangement,

↓ ← ↑ →

and then precess counterclockwise. However, at the peak of the laser pulse at t = 16.8 fs
a transient static non-collinear state is formed where the magnon oscillations are destroyed
and the spins are frozen into the following spin spiral state,

↗ ↘ ↙ ↖
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Figure 6.5: The oscillations of moments in +Q mode and its response to the laser of fluence 0.953 mJ/cm2,
frequency 2.19 eV and FWHM 2.41 fs.

Case 3:

Figure 6.6: The oscillations of moments in +Q mode and its response to the laser of fluence 96 µJ/cm2,
frequency 2.19 eV and FWHM 2.41 fs.

Again we reduce the pulse to one 10 times weaker (96 µJ/cm2) than case 2, while keeping
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the other parameters the same. In this case the magnon mode is not destroyed and it
precesses with the same frequency of 76 meV ( see Fig. 6.6). Although some oscillations at
the pump frequency are observed due to a weak oscillating charge current induced by the
laser.

From the above three cases it can be inferred that there is a window of laser pulse intensity
(at this frequency) where the magnons can be manipulated. To find the reason behind these
different responses, the dynamics of the majority and minority spins [117] local to each atom
are plotted in Fig. 6.7. It can be seen that as the intensity of the laser increases, the transfer
of charge from localized to highly delocalized states also increase. As magnetic moment is
the difference between the majority (solid lines) and minority (dashed lines), it will lead to
decrease in magnetic moment of iron. This affects the magnon excitations and destroys the
magnon which by definition are magnetic excitations of localized moments.

Figure 6.7: The charge transfer in the interstitial region and muffin tin per atom when acted upon by laser
of fluence (a) 0.096 mJ/cm2, (b) 0.953 mJ/cm2 and (c) 9.6807 mJ/cm2, frequency 2.19 eV and FWHM 2.41
fs. The solid line is majority charges and dashed is minority charges.

After studying the interaction of laser with the magnon modes in a bulk ferromagnet, the
case of two magnetic sublatticies is undertaken. Here the presence of two magnetic sublattices
and element specific modes (as seen in chapter 5) gives rise to interesting magnon dynamics.

6.3 Fe50Ni50 magnon dynamics
In order to be able to manipulate magnons at ultrafast time scales we now investigate the
behavior of magnon modes under short laser pulses. One of the fastest possible spin response
to lasers is via OISTR. In this section the material, as well as the laser pulses, are chosen
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to maximize OISTR: in the Fe50Ni50 alloy the magnetic moment on the Fe sub-lattice (2.88
µB) is much higher than on the Ni sub-lattice (0.64 µB). As seen in Section 6.1, this causes
laser induced optical excitations to transfer minority spin electrons from Ni to Fe, which in
turn leads to a increase in the moment on the Ni site, while a corresponding decrease on
the Fe site (see Fig. 6.8 (c and d)). The frequency of the laser pulse (2.19 eV) is tuned
to optimize this charge transfer. Here, the question of how OISTR excitation affects the
four magnon modes previously studied (Chapter 5) in Fe50Ni50 is explored. To address this
question, different initial states are created and then the laser parameters such as intensity,
frequency, time delay, and duration are varied to see their affect on the different magnon
modes.

6.3.1 Four modes + laser

Figure 6.8: The electric fields of two laser pulses designed to induce OISTR transitions in FeNi, with
frequency 2.19eV, FWHM 2.41 fs, and fluences (a) 9.6807 mJ/cm2 and (b) 0.9537 mJ/cm2. The change in
magnetic moments of Fe and Ni corresponding to the pulse is shown in (c) and (d). Next, the reaction of all
magnon modes to the laser pulses is shown. In (e) the pure Fe mode is destroyed while the pure Ni persists,
while in (f) only the Goldstone and optical modes survive.

The effect of OISTR on magnon modes can be seen in Fig. 6.8– strong laser pulse
(incident fluences of 9.6807 mJ/cm2 and FWHM of 2.41 fs) effectively destroy both decoupled
modes (see Fig. 6.8 (e)); the amplitude of the pure Fe magnon mode collapses with only
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small oscillations remaining which are also quickly damped. Looking at the Ni moments,
which initially are a superposition of the pure Ni mode and the optical mode, we see that
now only the optical mode exists as the two Ni atoms behave identically (recall that in the
pure Ni mode, the two are 180◦ out-of-phase).

Figure 6.9: The evolution of minority charges (a,c) and majority charges (b,d) for nickel, iron and inter-
stitial region with 9.6807 mJ/cm2 (a,b) and 0.9537 mJ/cm2 laser (c,d).

These magnon modes show a different dynamics when subjected to a weaker laser pulse
of incident fluence 0.9537 mJ/cm2; the pure nickel mode now survives while the Fe mode
is still destroyed (see in Fig. 6.8 (f)). In this case the Fe atoms cant with respect to each
other with a new, but much reduced, pure Fe mode oscillating about this new configuration.
By examining the amount of majority/minority electrons excited on each atom, we find that
the Fe atoms have significantly more local optical excitations than Ni (see Fig. 6.9). This
causes the Fe-Fe exchange coupling to be modified more strongly than the Ni-Ni coupling,
explaining the difference in behavior between the two modes. Thus we have found a method
by which we can selectively destroy either both Fe and Ni modes or just the Fe mode, on a
femtosecond timescale by tuning the fluence of the laser pulse.

In the following section combinations of other normal modes are investigated to gain
insight into their response to optical laser.
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6.3.2 Goldstone mode + Optical mode + laser
In this case a state is chosen which consists of only the Goldstone mode and optical mode.
The dynamics of the moments obtained is shown in Fig. 6.10 under the affect of three dif-
ferent pulses all having the same frequency and FWHM. The strength of pulse in decreasing
order is 9.6807 mJ/cm2, 0.95377 mJ/cm2, and 0.0966 mJ/cm2.

Figure 6.10: Oscillations of transverse moments when (a) no pulse is applied, (b) the strongest pulse
of 9.6807 mJ/cm2, (c) intermediate pulse of strength 0.95377 mJ/cm2, and (d) the weakest pulse 0.0966
mJ/cm2. The vertical lines correspond to the peak of the laser. The weakest pulse does not destroy the
modes, the intermediate pulse changes the amplitude of oscillation while the strongest pulse changes the
frequency of optical mode as well as the Goldstone mode.

As can be seen from the figure the most intense pulse changes both the frequency of the
optical mode as well as the Goldstone mode. The ratio between the iron and nickel moments
of the Goldstone mode changes from 4:1 to 2:1 due to OISTR, as seen in Fig.6.10 (b). Also,
the pulse with fluence 0.95377 mJ/cm2 reduces the amplitude of oscillation of the moments
but has very little affect on the frequency of the optical mode. Additionally, this pulse does
not affect the Goldstone mode and the ratio of iron nickel moments remain unchanged at
4:1. Hence, both the modes remain unaffected by the weakest pulse. From this it can be
inferred that there exists a threshold value of the pulse strength which affects the optical
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magnon mode.

6.3.3 Element specific mode + laser
Next, the idea of exciting the coupled modes following application of the laser while starting
from any one of the uncoupled modes was explored. The laser with fluence 0.9537 mJ/cm2

was applied on the pure iron mode in Fe50Ni50 alloy. Since OISTR will transfer moment
between iron and nickel, we explore the possibility of exciting a coupled Fe-Ni mode or even
a pure Ni mode, starting from a pure Fe mode and vice-versa.

Figure 6.11: Oscillations of transverse moments of Ni and Fe in (a) unperturbed mode and with a laser
of fluence (b) 0.9537 mJ/cm2. (c) A magnified image of the nickel moments in (b) when acted by the laser.
The vertical lines correspond to the peak of the laser.

The unperturbed pure iron mode in Fe50Ni50 is shown in Fig. 6.12(a) and after pumping
with laser in (b). This laser fluence resulted in a non-collinear spin spiral state in pure bulk
iron moments (Section 6.2) and is again observed in iron moments in the alloy. However,
the nickel moments also start to oscillate upon pumping with the laser which is shown in
Fig. 6.10(c). This appears to be arising due to the charge oscillations happening in nickel
at the laser frequency.
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The laser interaction with the pure nickel mode in the alloy was also studied and is shown
in Fig. 6.12. Similar to the results obtained for pure iron mode, the strong laser (fluence =
9.6807 mJ/cm2) also destroys the magnon modes and weak laser pulse (fluence = 96 µJ/cm2)
does not affect the mode. While there is a weak response of the iron moments, this is likely
numerical noise due to intense laser pulse. We conclude that exciting a magnon mode with
different dynamics on the two Fe atoms is forbidden by symmetry

Figure 6.12: Oscillations of transverse moments of Ni and Fe in (a) unperturbed mode and with laser of
fluence (b) 9.6807 mJ/cm2, (c) 0.9537 mJ/cm2 and (d) 0.0966 mJ/cm2. The vertical lines correspond to the
peak of laser.

6.3.4 Frequency dependence
The above calculations were done by keeping the frequency of the laser pulse fixed at 2.19 eV
(which was chosen to maximize the OISTR transitions). In this section, the laser frequency
is modified in order to examine how this affects the magnon dynamics. In the following
calculations the laser frequency was increased to 3.26 eV and two pulses with fluences (a)
1.73 mJ/cm2 and (b) 20.87 mJ/cm2 were used. For efficiency, the initial state comprising of
all four magnon modes was chosen. As can been seen in Fig. 6.13(a), following application
of the weaker pulse, all four modes precess without disruption. This is in contrast to the
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Figure 6.13: Oscillations of transverse moments under the laser with frequency of 3.26 eV and fluence of
(a) 1.73 mJ/cm2 and (b) 20.87 mJ/cm2. The peak of laser denoted by vertical lines.

previous case of Fig. 6.8(f), where the pure iron mode was destroyed by a pulse with similar
fluence. Thus we observe dependence of the response of the magnon modes on the laser
frequency.

This dependence can be understood by considering Fig. 6.9, which showed that the
destruction of the pure Fe mode strongly depends on the number of electrons transferred
between the atoms and the delocalized states. This transfer is proportional to the degree
of optical excitation of the system, which itself is proportional to the number of unoccupied
states available for excitation. In this case, we see in Fig. (6.2) that the unoccupied density
of states available for excitations at a frequency of 3.26 eV is lower than that available at
2.19 eV, hence less excitation, leading to less spin transfer and the survival of the pure iron
mode. When the laser with higher fluence was applied, the amplitude of all four modes were
reduced, as can be seen in Fig. 6.13(b), similar to Fig. 6.8(e) except requiring twice the
fluence.

6.3.5 Time delay dependence
As seen in Figs. 6.8(f) and 6.11(b) a static non-collinear state could be seen following
destruction of the pure Fe mode by the laser. In this section it is shown that the canting
vector, mFe1(t)−mFe2(t) between neighboring atoms, can be controlled using the time delay
of the laser pulse. More precisely, we find that the relative phase between the magnon
mode and the laser determines in which direction the Fe moments eventually point, and
thus determines the direction of the canting vector. Recall that this canting of the spins
was also seen in the case of 4-atom iron (Fig. 6.5) where the amplitude of both the x
and y moments were equal. To keep the total moment in the x or y direction zero while
keeping the amplitudes of x and y moments the same, there are only 4 possible canting
vector configurations:
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Figure 6.14: The canting vector is dependent on the delay time of the laser and is shown relative to the
pure Fe mode oscillations. A laser of fluence 0.9537 mJ/cm2 is applied at (a) 16.8 fs and (b) 8.4 fs on the
pure iron mode.

Canting vector
↗ · ↙ · = ↗
↙ · ↗ · = ↙
↖ · ↘ · = ↖
↘ · ↖ · = ↘

In these canting configurations the first and second configurations are the same along with
third and fourth due to translation invariance. We can vary the relative phase between the
laser pulse and the magnon by changing the position (in time) of the center of the laser
electric field. In the first scenario the center of the pulse is chosen to be located at 16.8 fs
when the Fe1y and Fe2y are at their maximum amplitude (see Fig. 6.14 (a)) and in the
second case the center of the pulse is chosen to be at 8.4 fs which corresponds to the point
in time when the Fe1x and Fe2x moments are at their maximum amplitude (see Fig. 6.14
(b)). These two delays in the laser pulses result in different directions of the canting vector,

Canting vector
↖ · ↘ · = ↖
↙ · ↗ · = ↙

The laser pulse used to obtain this canting is very weak with fluence=0.9537 mJ/cm2, fre-
quency 2.19 eV, and FWHM 2.51 fs. Unlike in the strong laser case of Fig. 6.4, where the
amplitude of the Fe mode is reduced to zero, in Fig. 6.14 the Fe moments remain finite
but freeze into one of the canting configurations seen above. The reason behind this must
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be that the laser excitation disrupts the exchange coupling between the nearest Fe atoms,
causing the magnon mode to freeze into a spin spiral configuration. Extending the delay by
half a period of the magnon oscillation will result in a canting vector pointing in opposite
direction.

Hence the direction of the canting vector is dependent on the time delay of the incident
laser pulse. This indicates that with a careful choice of laser pulse a ferromagnetic metal
can be made to be transiently non-collinear with a certain degree of control over the angle
between inter-site spins.

6.3.6 Magnon frequency change

Figure 6.15: The change in magnon frequency is shown for two laser pulse of fluences (a) 0.9537 mJ/cm2

and (b) 9.680 mJ/cm2. (c) The magnon frequency decreases with the increase in intensity of applied laser
pulse. The vertical lines corresponds to the peak of the laser.

The frequency of the magnon modes can also be manipulated by the pump-laser pulse.
To demonstrate this, the optical mode is excited, and then its dynamics under the influence
of pulses of differing fluences is studied. The results, for two different laser fluences ( 0.9537
mJ/cm2 and 9.680 mJ/cm2) are shown in Figs. 6.15 (a) and (b) where it is clear that the
oscillations are strongly influenced by the laser. Fourier transform of the transverse moment
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during these oscillations gives the new frequency of the magnon mode and this is plotted, as
function of laser intensity, in Fig. 6.15 (c). The main reason behind this change in frequency
is the weakened exchange field between the magnetic sub-lattices[73] due to two processes,
both of which lead to increased screening– (a) excitation of electrons to high lying delocalized
states and (b) transfer of localized charge from one atom to the other. This implies that the
stronger this charge transfer is, the greater the change in the magnon frequency, a fact that is
reflected in the linear dependence of the magnon frequency on the pump-pulse fluence (Fig.
6.15(c)). Recall that the moment transferred is also linearly dependent on the intensity, as
seen in Fig. 6.3. At some higher intensity where the charge excitation process saturates, so
would the change in the magnon frequency. Thus optical excitations offers a direct control
of the frequency of a coupled magnon mode of two sub-lattices via tuning of the fluence of
the laser pulse. Since OISTR effects are very strong on AFM coupled systems, we expect
very large changes in magnon modes when pumped with lasers.

6.3.7 FWHM dependence

Figure 6.16: The oscillations of transverse moments of the optical magnon mode during laser excitation
with pulses of fluence 9.68 mJ/cm2 but with different duration of (a) 2.41 fs peaks at 16.8 fs and (b) 24.1 fs
peaks at 48.2 fs.

In the following the section the affect of the duration of the pulse on the magnon modes
is investigated. Specifically we ask if the frequency modification seen in the previous section
is only a short pulse phenomena, or whether it is more general. We find that the longer laser
pulse does indeed change the frequency of the optical mode. For this study a pump with a
fixed fluence of 9.68 mJ/cm2 and frequency 2.19 eV but having two different FWHMs of (a)
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2.41 fs and (b) 24.1 fs was used. The results obtained by using these two pulses of different
durations is shown in Fig. 6.16.

From the results it can be seen that the longer duration pulse also changes the magnon
frequency which can been seen from the Fourier transform in Fig. 6.17. The short duration
pulse (2.41 fs) changes the magnon frequency from 740 meV (no laser pulse) to 440 meV
(green color in Fig. 6.17) while the longer duration pulse, changes the magnon frequency
to 520 meV (pink color in Fig. 6.17). In the same figure there is another Fourier transform
(black color) corresponding to the new magnon frequency obtained following a laser pulse
with fluence 7.74 mJ/cm2, FWHM 2.41 fs, frequency 2.19 eV. This pulse was chosen as both
it and the longer duration pulse have the same amount of moment transfer. Hence, it can be
inferred that the change in magnon frequency depends on the amount of z-moment change
and not on individual pulse parameters.

Figure 6.17: The Fourier transform of the transverse moments for pulse 9.68 mJ/cm2 with duration of
2.41 fs peaks at 16.8 fs (green) and 24.1 fs peaks at 48.2 fs (pink). These are compared with a pump of
fluence 7.74 mJ/cm2 and width 2.41 fs (black).

To summarize, in this chapter it was shown that fundamental properties of the magnon
can be controlled by applying optical laser pulse. The main results are:

• By tuning the intensity of the laser pulse one can destroy certain magnon modes. These
can also be controlled by changing the frequency of the laser pulse.

• By controlling the time delay of the laser pulse the freezing of the magnon modes into
non-collinear spin spiral state can be controlled.

• The optical mode frequency can be changed by changing the intensity of the laser; the
frequency decreases linearly with increase in intensity.
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CHAPTER 7
CONCLUSION

Stop wishing, Start Spinning · · · · · ·
- Cycling advertisement

In this work optical and magnetic excitations have been studied for extended systems
within the linear and non-linear regimes, using time-dependent density functional theory.
In the linear regime, the AGGA kernel was derived, implemented in the all-electron ELK
code, and then applied to study excitations. Then these studies were extended to real-time
TDDFT for the low lying collective magnetic excitations including their dynamics in highly
out-of-equilibrium regime.

As we climb up the rung of Jacob’s ladder the accuracy of XC functionals should increase.
For example, the GGAs are known to improve over the LDA functional for predicting many
physical properties. This was the motivation to derive the kernel for the GGA functionals and
study excitations within LR-TDDFT. Only by implementing, assessing, and understanding
the behavior of adiabatic functionals can one gain insight into the relevant features necessary
for accurate XC kernels, which can guide us towards improvement or in developing new
approximations in TDDFT. In chapter 3, this was derived both for collinear and non-collinear
systems along with practical considerations concerning its implementation in the ELK code.
An exact condition, the zero torque theorem for the kernel, was also derived.

In chapter 4, the charge and spin excitation spectra using the gradient dependent AGGA
XC kernel within the linear response regime of TDDFT was studied. The calculated EELS for
LiF and diamond show that the AGGA kernel performs slightly better than the ALDA kernel,
although, as would be expected, neither captures excitonic effects. For magnon dispersions,
AGGA, in general, does not systematically improve upon ALSDA. This is due to the fact
that the GGA XC functional overestimates the exchange splitting which in turn leads to
higher magnon energies. Furthermore, the intensity of the peaks is greatly suppressed in
the spectra obtained by the AGGA XC kernel due to interaction of spin-waves with the
Stoner continuum. This suppression is also observed in experiments, suggesting AGGA
might provide better qualitative understanding than ALSDA. Heusler materials consisting
of multiple magnetic sublattices were also studied, where it was found that AGGA is better
at resolving higher-energy optical magnon branches.

In chapter 5, the domain of TDDFT simulations was extended to include magnon dy-
namics in real-time. The magnon modes found in ferromagnetic iron and Fe50Ni50 alloy were
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investigated. It was found that element specific magnon modes exist in Fe50Ni50 alloy consis-
tent with experimental observation of different spin dynamics of the iron and nickel atoms in
this alloy. The real-time TDDFT simulations were mutually verified by comparing to linear
response calculations. In this regard a real-time GGA calculation was performed for nickel
which confirmed the findings in chapter 4, principally the overestimation of energies when
compared with LDA. This shows RT-TDDFT is a powerful tool for visualizing magnons and
study their dynamics.

In the last chapter, TDDFT simulations were done to study interaction of laser pulses
with the magnon modes in real-time. This opens the field of laser-coupled magnonics to
ab-initio theory. There were three major findings by which ultrafast laser pulses can control
magnon dynamics: (1) selective destruction of particular magnon modes where the pure Ni
and pure Fe modes could be destroyed depending on the laser intensity, (2) laser-controlled
canting of Fe moments where the time delay relative to the pure Fe oscillations controlled
which canted state the system evolves to, and (3) OISTR-driven renormalization of the
optical magnon frequency where we found a linear dependence between the laser intensity
(or moment transferred) and the decrease of the magnon frequency. In all cases the outcomes
were achieved on ultrafast timescales thus demonstrating the potential of laser control of
magnonics for future technology.
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