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PREFACE

The integrals associated to Feynman graphs must have been a source of
frustration for particle physicists ever since. Indeed there is a delicate dif-
ference between being able to draw a Feynman graph and being able to
compute the associated Feynman integral. Although perturbation theory
has brought enormous breakthroughs, many physicists turned to more ab-
stract developments in quantum field theory, looked for other ways to pro-
duce perturbational results, or left the field entirely. Nonetheless there is a
significant number of physicists, computational and theoretical, who pur-
sue the quest for concepts and algorithms to compute and understand those
integrals to higher and higher orders. Their motivation is to help test the
validity of the underlying physical theory.

For a mathematician, Feynman graphs and their integrals provide a rich
subject in their own right, independent of their computability. It was only
recently though that the work of Bloch, Esnault and Kreimer has brought a
growing interest of mathematicians from various disciplines to the subject.
In fact it opened up a completely new direction of research: a motivic inter-
pretation of Feynman graphs that unites their combinatorial, geometric and
arithmetic aspects. This idea had been in the air for a while, based on com-
putational results of Broadhurst and Kreimer, and on a theorem of Belkale
and Brosnan related to a conjecture of Kontsevich about the generality of
the underlying motives.

A prerequisite for the motivic approach is a profound understanding of
renormalization that was established less recently in a modern language
by Connes and Kreimer. This dissertation studies the renormalization of
Feynman graphs in position space using an adapted resolution of singular-
ities, and makes two other contributions of mostly combinatorial nature to
the subject. I hope this may serve as a reference for somebody who feels
comfortable with the traditional position space literature and looks for a
transition to the research of Bloch and Kreimer.

I want to thank D. Kreimer for sharing his wealth of experience and ideas
with me and E. Vogt for helping me make things more precise; and both
for dedicating a great deal of time and effort to advising this research. I am
grateful to R. Brunetti for pointing me to a reference that was crucial for
my understanding, and for his collaboration. I also thank R. Schader for his
support over many years. While carrying out this research, I benefitted from
discussions with R. Brunetti, K. Fredenhagen, F. Brown, S. Bloch, H. Es-
nault, S. Rosenberg, F. Vignes-Tourneret, T. Gracey, H. Hauser, A. Rej,
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M. Marcolli, H. Gangl, and S. Müller-Stach. My research was funded
by the DFG. During the past three years I was able to visit several times
the Institut des Hautes Études Scientifiques in Bures-sur-Yvette, the Erwin-
Schrödinger Institut in Vienna, the Boston University Center for Mathemat-
ical Physics, the Max-Planck-Institut für Mathematik in Bonn, the Fields
Institute in Toronto, the University of Mainz, the University of Trento, and
the DESY in Hamburg. I am grateful to the people who invited me.
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1. INTRODUCTION

1.1. Introduction for mathematicians. A Feynman graph Γ is a finite
graph1 with set of vertices V (Γ) and set of edges E(Γ). Associated to a
Feynman graph Γ there are several types of ”Feynman integrals” which do
not necessarily converge right away. It is therefore better at this stage to
think of an ”integral”

∫
A

u(x)dx as a pair (A, u) consisting of a subset A
of some Rn, and a distribution u on A minus certain subsets of positive
codimension. This helps us postpone the question of convergence of the
integrals for a while.

Three important examples of Feynman integrals associated to Γ are

(1) Ipos(Γ) =

∫

R4|V (Γ)|

∏
i<j

1

(xi − xj)2nij
dx

where for each i ∈ V (Γ) the xi is a vector in R4, and nij is the number of
edges between i and j;

(2) Imom(Γ) =

∫

R4|E(Γ)|

∏

v∈V (Γ)

δ0

(∑

v∈∂e

±ke

) ∏

e∈E(Γ)

dke

k2
e

,

where the ke are again vectors in R4, the sign ± depends on an orientation
of the edges, and δ0 is the Dirac measure; and

(3) Iparam(Γ) =

∫

R
|E(Γ)|
≥0

da

Ψ2
Γ(a)

where ΨΓ is the (Kirchhoff) graph polynomial associated to Γ. All of these
notions will be properly defined later.

Such pairs and the question of their integrability are at the origin of our
studies. The maps Γ → Ipos(Γ), Imom(Γ), Iparam(Γ) may be called position
space, momentum space, and parametric Feynman rules, respectively. The
three Feynman integrals introduced above are related. For example the first
one is in a way the Fourier transform of the second one, and the third gotten
from the second using the trick 1

k2 =
∫∞
0

e−ak2
da. Depending on what one

is after, each of the three integral representations will have advantages and
disadvantages.

A map transforming pairs (A, u) into convergent integrals
∫

A
uR(x)dx is

1where multiple (parallel) edges between the same pair of vertices are allowed. Some
call this a multigraph.
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called a renormalization, if it satisfies certain consistency conditions in-
spired from physics.

Indeed, the Feynman integrals arise in the quantum field theoretic descrip-
tion of elementary particle physics as single terms of the perturbative expan-
sion of an interacting field theory in a neighborhood of a free field theory.
The interacting theory determines a special class of Feynman graphs, for
example graphs with vertices of fixed degree k. Intuitively, the edges of
a graph describe particles, and vertices describe interactions between par-
ticles. Very roughly, the infinite sum of all such renormalized Feynman
integrals, once made convergent in a way to be defined, is related to the
outcome of scattering experiments in high energy physics.

1.2. Introduction for mathematical physicists. The subject of perturba-
tive renormalization in four-dimensional interacting quantum field theories
looks back to a successful history. Thanks to the achievements of Bogoli-
ubov, Hepp, Zimmermann, Epstein, Glaser, ’t Hooft, Veltman, Polchinski,
Wilson – to mention just some of the most prominent contributors –, the
concept seems in principle well-understood; and the predictions made us-
ing the renormalized perturbative expansion match the physics observed
in the accelerators with tremendous accuracy. However, several decades
later, our understanding of realistic interacting quantum field theories is
still everything but satisfying. Not only is it extremely difficult to perform
computations beyond the very lowest orders, but also the transition to a
non-perturbative framework and the incorporation of gravity pose enormous
conceptual challenges.

Over the past fifteen years, progress has been made, among others, in the
following three directions. In the algebraic approach to quantum field the-
ory, perturbation theory was generalized to generic (curved) space-times by
Brunetti and Fredenhagen [23], see also [47]. On the other hand, Connes
and Kreimer introduced infinite-dimensional Hopf- and Lie algebras [28,
58] providing a deeper conceptual understanding of the combinatorial and
algebraic aspects of renormalization, also beyond perturbation theory. More
recently, a conjecture concerning the appearance of a very special class of
periods [4, 19, 20] in all Feynman integrals computed so far, has initiated a
new area of research [14, 15, 17] which studies the perturbative expansion
from a motivic point of view. The main purpose of this dissertation is to
contribute to the three approaches mentioned, by giving a new description
of perturbative renormalization of short-distance divergences using a res-
olution of singularities. For future applications to curved spacetimes it is
most appropriate to do this in the position space framework of Epstein and
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Glaser [23, 35]. However the combinatorial features of the resolution allow
for a convenient transition to the momentum space picture of the Connes-
Kreimer Hopf algebras, and to the residues of [14, 15] in the parametric
representation. Both notions are not immediately obvious in the original
Epstein-Glaser literature.

1.3. Basic ideas. Let us present some of the basic ideas in a nutshell. Con-
sider, in euclidean space-time M = R4, the following Feynman graph

Γ = .

The Feynman rules, in position space, associate to Γ a distribution

uΓ(x1, x2) = u2
0(x1 − x2).

where u0(x) is the Feynman propagator, in the massless case u0(x) = 1/x2,
the x are 4-vectors with coordinates x0, . . . , x3, and x2 the euclidean square
x2 = (x0)2 + . . .+(x3)2. Note that since uΓ depends only on the difference
vector x1−x2, we may equally well consider uΓ(x) = uΓ(x, 0). Because of
the singular nature of u0 at x = 0, the distribution uΓ is only well-defined
outside of the diagonal D12 = {x1 = x2} ⊂ M2. In order to extend uΓ

from being a distribution on M2 − D12 onto all of M2, one can introduce
an analytic regularization, say

us
Γ(x) = u2s

0 (x).

Viewing this as a Laurent series in s, we find, in this simple case,

us
Γ(x) =

1

x4s
=

cδ0(x)

s− 1
+ Rs(x)

with c ∈ R, δ0 the Dirac measure at 0, and s 7→ Rs a distribution-valued
function holomorphic in a complex neighborhood of s = 1, the important
point being that the distribution Rs is defined everywhere on M2. The usual
way of renormalizing uΓ is to subtract from it a distribution which is equally
singular at x = 0 and cancels the pole, for example

uΓ,R = (us
Γ − us

Γ[w0]δ0)|s=1 .

Here w0 is any test function which satisfies w0(0) = 1 for then δ0
s−1

[w0] =
1

s−1
. Consequently

uΓ,R = R1 −R1[w0]δ0

which is well-defined also at 0. The distribution uΓ,R is considered the solu-
tion to the renormalization problem for Γ, and different choices of w0 give
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rise to the renormalization group. Once the graph Γ is renormalized, there
is a canonical way to renormalize the graph

Γ′ =

which is simply a disjoint union of two copies of Γ. Indeed,

uΓ′(x1, x2, x3, x4) = u2
0(x1−x2)u

2
0(x3−x4) = uΓ⊗uΓ)(x1−x2, x3−x4).

In other words, uΓ′ is a cartesian product, and one simply renormalizes each
factor of it separately: (uΓ′,R)(x1, . . . , x4) = u⊗2

Γ,R(x1 − x2, x3 − x4). This
works not only for disconnected graphs but for instance also for

Γ′′ =

which is connected but (one-vertex-) reducible, to be defined later. Indeed,

uΓ′′(x1, x2, x3, x4) = u2
0(x1 − x2)u

2
0(x2 − x4)u

2
0(x3 − x4)

= u⊗3
Γ (x1 − x2, x2 − x4, x3 − x4)

Again, one simply renormalizes every factor of uΓ′′ on its respective diago-
nal. This is possible because the diagonals D12, D24 and D34 are pairwise
perpendicular in M4. Consider now a graph which is not of this kind:

Γ′′′ =

uΓ′′′(x1, . . . , x4) = u0(x1−x2)u0(x1−x3)u0(x2−x3)u0(x2−x4)u
2
0(x3−x4).

By the usual power counting we see that uΓ′′′ has non-integrable singular-
ities at D34 = {x3 = x4}, at D234 = {x2 = x3 = x4} and at D1234 =
{x1 = x2 = x3 = x4}. These three linear subspaces of M4 are nested
(D1234 ⊂ D234 ⊂ D34) instead of pairwise perpendicular. In the geometry
of M4 it does not seem possible to perform the three necessary subtrac-
tions separately and independently one of another. For if a test function
has support on some of say D1234, its support intersects also D234 − D1234

and D34 − D234. This is one of the reasons why much literature on renor-
malization is based on recursive or step-by-step methods. If one instead
transforms M4 to another smooth manifold β : Y → M4 such that the
preimages under β of the three linear spaces D34, D234, D1234 look locally
like cartesian coordinate hyperplanes y1y2y3 = 0, one can again perform
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the three renormalizations separately, and project the result back down to
M4. For this procedure there is no recursive recipe needed – the geometry
of Y encodes all the combinatorial information. The result is the same as
from the Epstein-Glaser, BPHZ or Hopf algebra methods, and much of our
approach just a careful geometric rediscovery of existing ideas.

1.4. Main results and a short outline. The material presented in this dis-
sertation corresponds to a subset of the contents of the three papers [6,9,10]
(the first of which is about to be finished , the second is published, and
the third is unfinished) where sections written by the coauthors are omit-
ted. The material presented in this dissertation is my own research and
worked out by myself, ideas contributed by others than the advisors are ac-
knowledged as such in the text. The dissertation is divided into the first
sections (2-6), which study renormalization and resolution of singularities,
and two further sections (7 and 8) containing related research about non-
perturbative Dyson-Schwinger equations and graph polynomials, in the mo-
mentum space and parametric representation.

(1) In the first sections (2-6), which correspond to the paper [6], I de-
fine two subspace arrangements associated to a Feynman graph. I
describe a variety of adapted resolutions of singularities for those
arrangements, using a more general construction of De Concini and
Procesi. On these smooth models, I study the pullback of the Feyn-
man integrand and show how to renormalize the Feynman integral,
according to the physical principle of locality. The proofs use an
analytic regularization, which was kindly proposed by R. Brunetti
who also showed me the reference [2].

(2) In section 7, see also [9], I show the correspondence between so-
lutions of certain combinatorial Dyson-Schwinger equations and
Hopf subalgebras of the Connes-Kreimer Hopf algebra of rooted
trees, generalizing an earlier result of Kreimer. The proof uses only
the Hochschild cocycles of that Hopf algebra.

(3) I give an expression for the Kirchhoff graph polynomial as graphs
are inserted one into another (section 8). This is a more abstract
version of a result that I contributed, among other things, to a joint
project with A. Rej [10], answering a question of M. Marcolli.

It follows a more detailed outline of 2-6. In section 2 the two subspace ar-
rangements associated to a Feynman graph are defined, describing the locus
of singularities, and the locus of non-integrable singularities, respectively.
In section 3 an analytic regularization for the propagator is introduced.
Some necessary technical prerequisites for dealing with distributions and
birational transformations are made, and the important notion of residue
density for a primitive graph is defined. The rest of the paper is devoted to a
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more systematic development. Section 4 describes the De Concini-Procesi
”wonderful” models for the subspace arrangements and provides an explicit
atlas and stratification for them in terms of nested sets. Different models are
obtained by varying the so-called building set, and we are especially inter-
ested in the minimal and maximal building set/model in this class. Section
5 examines the pullback of the regularized Feynman distribution onto the
smooth model and studies relations between its Laurent coefficients wrt. the
regulator. In section 6 it is shown that the proposed renormalization on the
smooth model satisfies the physical constraint of locality: the subtractions
made can be packaged as local counterterms into the Lagrangian. For the
model constructed from the minimal building set, this is satisfied by con-
struction. From the geometric features of the smooth models one arrives
quickly at an analogy with the Hopf algebras of Feynman graphs, and a
section relating the two approaches concludes the exposition. As a techni-
cal simplication in the main part of the paper only massless scalar euclidean
theories are considered, and only Feynman graphs with at most logarithmic
singularities. The general case is briefly discussed in section 6.4.

This research is motivated by a careful analysis of Atiyah’s paper [2] –
see also [13]; and [5] for a first application to Feynman integrals in the
parametric representation – the similarity of the Fulton-MacPherson strat-
ification with the Hopf algebras of perturbative renormalization observed
in [11, 61], and recent results on residues of primitive graphs and periods
of mixed Hodge structures [14, 17]. Kontsevich has pointed out the rele-
vance of the Fulton-MacPherson compactification for renormalization long
ago [52], and a real (spherical) version had been independently developed
by him (and again independently by Axelrod and Singer [3]) in the context
of Chern-Simons theory, see for example [54]. In the parametric represen-
tation, many related results have been obtained independently in the recent
paper [15], which provides also a description of renormalization in terms of
limiting mixed Hodge structures. That is beyond our scope.

2. SUBSPACE ARRANGEMENTS ASSOCIATED TO FEYNMAN GRAPHS

Let U ⊆ Rk be an open set. By D(U) we denote the space of test func-
tions with compact support in U, with the usual topology. D′(U) is the space
of distributions in U. See [49] for a general reference on distributions. We
work in Euclidean spacetime M = Rd where d ∈ 2 + 2N = {4, 6, 8, . . .}
and use the (massless) propagator distribution

(4) u0(x) =
1

xd−2
=

1

((x0)2 + . . . + (xd−1)2)
d−2
2
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which has the properties

(5) u0(λx) = λ2−du0(x), λ ∈ R \ {0}
and

(6) sing supp u0 = {0}.
The singular support of a distribution u is the set of points having no open
neighborhood where u is given by a smooth function.

Let now Γ be a Feynman graph, that is a finite graph, with set of vertices
V (Γ) and set of edges E(Γ). We assume that Γ has no loops (a loop is an
edge that connects to one and the same vertex at both ends). The Feynman
distribution is given by the distribution

(7) uΓ(x1, . . . , xn) =
∏
i<j

u0(xi − xj)
nij

on Mn\∪i<jDij where Dij is the diagonal defined by xi = xj and nij is the
number of edges between the vertices i and j (For this equation we assume
that the vertices are numbered V (Γ) = {1, . . . , n}). A basic observation
is that uΓ may be rewritten as the restriction of the distribution u

⊗|E(Γ)|
0 ∈

D′(M |E(Γ)|) to the complement of a subspace arrangement, contained in
M |E(Γ)|, as follows.

2.1. Configurations and subspace arrangements of singularities. It is
convenient to adopt a more abstract point of view as in [14]. Let k be an
infinite field, E a finite set and kE the k-vector space spanned by E. An in-
clusion of a linear subspace iW : W ↪→ kE is called a configuration. Since
kE comes with a canonical basis, a configuration defines an arrangement of
up to |E| linear hyperplanes in W : namely for each e ∈ E the subspace an-
nihilated by the linear form e∨iW , unless this linear form equals zero. Note
that different basis vectors e ∈ E may give one and the same hyperplane.

Given a connected graph Γ, temporarily impose an orientation of the edges
(all results will be independent of this orientation). This defines for a ver-
tex v ∈ V (Γ) and an edge e ∈ E(Γ) the integer (v : e) = ±1 if v is
the final/initial vertex of e, and (v : e) = 0 otherwise. The (simplicial)
cohomology of Γ is encoded in the sequence

(8) 0 −→ k
c−→ kV (Γ) δ−→ kE(Γ) −→ H1(Γ, k) −→ 0

with c(1) =
∑

v∈V (Γ) v, δ(v) =
∑

e∈E(Γ)(v : e)e. This sequence defines two
configurations: the inclusion of coker c into kE(Γ), and dually the inclusion
of H1(Γ, k) into kE(Γ)∨. We are presently interested in the first one, which
corresponds to the position space picture.
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It will be convenient to fix a basis V0 of coker c. For example, the choice
of a vertex v0 ∈ V (Γ) (write V0 = V (Γ) \ {v0}) provides an isomorphism
φ : kV0 → coker c sending the basis element v ∈ V0 to v + im c. We then
have a configuration

(9) iΓ = δφ : kV0 ↪→ kE(Γ).

Each e ∈ E(Γ) defines a linear form e∨iΓ ∈ (kV0)∨. It is non-zero since
Γ has no loops. Consider instead of (kV0)∨ the vector space (MV0)∨ where
M = Rd. For each e ∈ E(Γ) there is a d-dimensional subspace

(10) Ae = (span e∨iΓ)⊕d

of (MV0)∨. We denote this collection of d-dimensional subspaces of (MV0)∨

by

(11) C(Γ) = {Ae : e ∈ E(Γ)}.
Note that the Ae need not be pairwise distinct nor linearly independent. By
duality C(Γ) defines an arrangement of codimension d subspaces in MV0

(12) (MV0)sing(Γ) =
⋃

e∈E(Γ)

A⊥
e

where A⊥
e is the linear subspace annihilated by Ae. The image of c⊕d in

MV (Γ) is the thin diagonal ∆. It is in the kernel of all the e∨iΓ, and there-
fore it suffices for us to work in the quotient space coker c. By construction
A⊥

e = Djl+∆ where j and l are the boundaries of e. In particular, if Γ = Kn

is the complete graph on n vertices, then it is clear that (MV0)sing(Kn) is the
large diagonal

⋃
j<l Djl + ∆. The composition Φ : MV (Γ) → MV (Γ)/∆ →

MV0 is given by Φ(x1, . . . , xn) = (x1−xn, . . . , xn−1−xn), xi ∈ M, where
a numbering V (Γ) = {1, . . . , n}, v0 = n, of the vertices is assumed.

For a distribution u on MV constant along ∆ we write u = Φ∗u for the
pushforward onto MV0 . We usually write (x1, . . . , xn) for a point in M{1,...,n},
where xi is a d-tuple of coordinates x0

i , . . . , x
d−1
i for M. Similarly, if f ∈

(kV0)∨ then f 0, . . . , fd−1 are the obvious functionals on MV0 such that
f⊕d = (f 0, . . . , fd−1).

2.2. Subspace arrangements of divergences. Now we seek a refinement
of the collection C(Γ) in order to sort out singularities where uΓ is locally
integrable and does not require an extension. In a first step we stabilize the
collection C(Γ) with respect to sums. Write

(13) Csing(Γ) =

{∑

e∈E′
Ae; ∅ ( E ′ ⊆ E(Γ)

}
.
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This is again a collection of non-zero subspaces of (MV0)∨. A subset E ′

of E(Γ) defines a unique subgraph γ of Γ (not necessarily connected) with
E(γ) = E ′ and V (γ) = V (Γ). Each subgraph γ of Γ determines an element

(14) Aγ =
∑

e∈E(γ)

Ae

of Csing(Γ). The map γ 7→ Aγ is in general not one-to-one.

Definition 2.1. A subgraph γ ⊆ Γ is called saturated if Aγ ( Aγ′ for all
subgraphs E(γ′) ⊆ E(Γ) such that E(γ) ( E(γ′).

It is obvious that for any given γ there is always a saturated subgraph,
denoted γs, with Aγ = Aγs . Also, Ae∩Aγs = {0} for all e ∈ E(Γ)\E(γs).

Definition 2.2. A graph Γ is called at most logarithmic if all subgraphs
γ ⊆ Γ satisfy the condition d dim H1(γ)− 2|E(γ)| ≤ 0.

Definition 2.3. A subgraph γ ⊆ Γ is called divergent if d dim H1(γ) =
2|E(γ)|.
Proposition 2.1. Let Γ be at most logarithmic. If γ ⊆ Γ is divergent then it
is saturated.

Proof. Assume that γ satisfies the equality and is not saturated. Then
there is an e ∈ E(γs) \ E(γ). Since γ and γ ∪ {e} have the same num-
ber of components but γ ∪ {e} one more edge, it follows from (8) that
dim H1(γ ∪ {e}) = dim H1(γ) + 1. Consequently, d dim H1(γ ∪ {e}) =
2|E(γ ∪ {e})|+ 2 in contradiction to Γ being at most logarithmic. 2

Let Γ be at most logarithmic. We define

(15) Cdiv(Γ) = {Aγ; ∅ ( γ ⊆ Γ, γ divergent}
as a subcollection of Csing(Γ). It is closed under sum (because dim H1(γ1 ∪
γ2) ≥ dim H1(γ1) + dim H1(γ2)). It does not contain the space {0}. In the
dual, the arrangement

(16) (MV0)div(Γ) =
⋃

∅(γ⊆Γ

d dim H1(γ)=2|E(γ)|

A⊥
γ

in MV0 describes the locus where extension is necessary:

Proposition 2.2. Let Γ be at most logarithmic. Then the largest open
subset of MV0 to which u

⊗|E(Γ)|
0 can be restricted is the complement of

(MV0)div(Γ). The restriction equals uΓ there, and the singular support of
uΓ is the complement of (MV0)div(Γ) in (MV0)sing(Γ).
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Proof. Recall the map iΓ defining the configuration (9). It provides
an inclusion i⊕d

Γ : MV0 ↪→ ME(Γ). Wherever defined, uΓ may be written
uΓ(x1, . . . , xn−1) =

∏
e∈E(Γ) u0 (

∑
v(v : e)xv) with V0 = {1, . . . , n − 1}.

Since iΓ(v) =
∑

e(v : e)e, in coordinates iΓ(ξ1, . . . , ξn−1) = (
∑

v(v : e)ξv)e∈E(Γ)
,

it is clear that uΓ = (i⊕d
Γ )∗u⊗|E(Γ)|

0 wherever it is defined. As by (6),
sing supp u0 = {0}, the singular support of u

⊗|E(Γ)|
0 is the locus where

at least one d-tuple of coordinates vanishes: x0
e = . . . = xd−1

e = 0 for some
e ∈ E(Γ). Its preimage under i⊕d

Γ is the locus annihilated by one of the Ae,
whence the last statement. For the first statement, we have to show that for a
compact subset K ⊂ MV0 the integral uΓ|K [1] =

∫
K

uΓ(x)dx converges if
and only if K is disjoint from all the A⊥

γ , for γ ⊆ Γ such that d dim H1(γ) =

2|E(γ)|. Assume that K ∩
(
A⊥

γ \
⋃

γs(γ′ A
⊥
γ′

)
6= ∅ for some γ. Write uΓ =∏

e∈E(γs)
u0(

∑
v(v : e)xv)f where f =

∏
e∈E(Γ)\E(γs)

u0(
∑

v(v : e)xv).

The distribution f is smooth on A⊥
γs
\⋃γs(γ′ A

⊥
γ′ since Ae∩Aγs = {0} for all

e ∈ E(Γ) \E(γs). The integral
∫

K
uΓ(x)dx is over a d(n− 1)-dimensional

space. The subspace A⊥
γs

is given by dim Aγs equations. Each single u0(x)

is of order o(x2−d) as x → 0, and there are |E(γs)| of them in the first factor
of uΓ. Hence the integral is convergent only if dim Aγs > (d − 2)|E(γs)|,
which is the same as 2|E(γs)| > d dim H1(γs). Conversely if this is the case
for all γ′s ⊆ γs then the integral is convergent. Our restriction to saturated
subgraphs γs is justified by Proposition 2.1. 2

From now on we will assume that Γ is at most logarithmic. The general
case where linear, quadratic, etc. divergences occur is discussed in section
6.4.

2.3. Subspaces and polydiagonals. Let again γ ⊆ Γ, that is E(γ) ⊆
E(Γ) and V (γ) = V (Γ). Recall from the end of section 2.1 that

(17) Φ−1(A⊥
γ ) =

⋂

e∈E(γ)

De

with the diagonals De = Djl for j and l boundaries of e. An intersection⋂
e∈E(γ) De of diagonals is called a polydiagonal.

Just as in (8) we have an exact sequence

(18) 0 −→ H0(γ, k)
cγ−→ kV (Γ) δγ−→ kE(γ) −→ H1(γ, k) −→ 0

with cγ sending each generator of H0(γ, k) (i. e. , a connected component
of γ) to the sum of vertices in this component, 1C 7→

∑
v∈C v and δγ(v) =∑

e∈E(γ)(v : e)e. It is then a matter of notation to verify
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Proposition 2.3.
(19) Φ−1(A⊥

γ ) = ker δ⊕d
γ .

2

A polydiagonal Φ−1(A⊥
γ ) corresponds therefore to a partition cc(γ) on

the vertex set V (Γ) as follows: cc(γ) = {Q1, . . . , Qk} with pairwise dis-
joint cells Q1, . . . , Qk ⊆ V (Γ) such that the vectors

(20)
∑
v∈Qi

v, i = 1, . . . , k,

generate ker δγ.

In other words, cc(γ) is the equivalence relation/partition ”connected by
γ” on the set V (Γ). If Γ = Kn is the complete graph on n vertices, this
correspondence is clearly a bijection

(21) {A⊥
γ : γ ⊆ Kn}

∼=→ { Partitions of V (Kn)}.
The next proposition refines this statement. Recall our index notation from
the end of section 2.1.

Proposition 2.4. Let γ, t ⊆ Γ. Then the set

(22) B =
{
(e∨iΓ)j : e ∈ E(t), j = 0, . . . , d− 1

}

is a basis of Aγ if and only if t is a spanning forest for cc(γ),

where a spanning forest is defined as follows.

Definition 2.4. Let γ, t ⊆ Γ. Then t is a spanning forest for cc(γ) if the map
δt : kV (Γ) → kE(t) as in (18) is surjective and ker δt = ker δγ.

Definition 2.5. Let γ, t ⊆ Γ and t be a spanning forest for cc(γ). If t ⊆ γ
then t is a spanning forest of γ. If γ is connected (then so is t) then t is
called a spanning tree of γ.

In other words, a spanning forest of γ is a subgraph of γ without cycles
that has the same connected components. A spanning forest for cc(γ) has
the same property but needs not be a subgraph of γ.

Proof of Proposition 2.4. By Proposition 2.3, Aγ = At if and only if
ker δγ = ker δt. It remains to show that the set (22) is linearly independent
if and only if δt is surjective. Since ker δΓ ⊆ ker δt the map δt is surjective
if and only if it = δtφ : kV0 → kE(t) (see (9)) is surjective, which in turn is
equivalent to (22) having full rank. 2

We also note two simple consequences for future use.
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Proposition 2.5. Let γ1, γ2 ⊆ Γ. Then

(23) Aγ1 ∩ Aγ2 = Aγ

where γ is any subgraph of Γ with

(24) cc(γ1) ∩ cc(γ2) = cc(γ).

The intersection P1 ∩ P2 of partitions P1, P2 on the same set V (Γ) is
defined by P1 ∩ P2 = {Q1 ∩ Q2 : Q1 ∈ P1, Q2 ∈ P2}. It is easily seen
that this is a partition on V (Γ) again. We write 0 for the full partition
{{v} : v ∈ V (Γ)}.

Proof. It is clear from Proposition 2.3 that

Φ−1((Aγ1 ∩ Aγ2)
⊥) = ker δ⊕d

γ1
+ ker δ⊕d

γ2
,

and one needs a partition cc(γ) whose cells provide a system of generators
as in (20) but now for the space ker δγ1+ker δγ2 . Let cc(γi) = {Qi

1, . . . , Q
i
li
}.

Since ∑

v∈Q1
k

v ∈ span(
∑

v∈Q1
k∩Q2

1

v, . . . ,
∑

v∈Q1
k∩Q2

l2

v),

and similarly for 1 and 2 interchanged, the vectors
∑

v∈Q1
k∩Q2

m
v generate

ker δγ1 + ker δγ2 . 2

Apart from the intersection of partitions as defined above, it is useful to
have the notion of a union of partitions. Let cc(γ1), cc(γ2) be partitions on
V (Γ). One defines most conveniently

(25) cc(γ1) ∪ cc(γ2) = cc(γ1 ∪ γ2).

From the description before (21) it is clear that this definition depends only
on cc(γ1) and cc(γ2) but not on γ1 and γ2 themselves. We immediately have

Proposition 2.6. Let γ1, γ2, γ ⊆ Γ. Then

(26) Aγ1 + Aγ2 = Aγ

if and only if

(27) cc(γ1) ∪ cc(γ2) = cc(γ).

2

It will be convenient later to have an explicit description of the dual basis
B∨, for B as in Proposition 2.4, that is the corresponding basis of MV0 . Re-
call our choice (above equation (9)) of a vertex v0 in order to work modulo
the thin diagonal. Recall also that the edges are oriented. Given a spanning
tree t of Γ, we say e ∈ E(t) points to v0 if the final vertex of e is closer
to v0 in t than the initial vertex of e. Otherwise we say that e points away
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from v0. Furthermore, erasing the edge e from t separates t into two con-
nected components. The one not containing v0 is denoted t1, and we write
V1 = Veff(t1) for the set of its vertices.

Proposition 2.7. Let B∨ = {bj
e : e ∈ E(t), j = 0, . . . , d − 1} be the

basis of MV0 dual to a basis B of (MV0)∨ as in Proposition 2.4 , that is
(e∨iΓ)j(bk

e′) = δe,e′δj,k. Then

be = (−1)Qe
∑
v∈V1

v.

(V1, being a subset of the basis V0 of kV0 , is also contained in kV0). We
define Qe = ±1 if e points to/away from v0.

Proof. Write be′ =
∑

v∈V0
βe′

v v. We require

δe,e′ = (e∨iΓ)(be′) = (e∨δφ)(be′) =
∑
v∈V0

βe′
v (v : e).

Now fix an e. Write vin(e), vout(e) for the initial and final vertex of e, re-
spectively. We have βe

vin(e) − βe
vout(e)

= 1 and βe
vin(e′) = βe

vout(e′) for the
other edges e′ except the one e′0 leading to v0, for which βe

vin(e′0) = 0 or
βe

vout(e′0) = 0, depending on the direction of e′0. Thus starting from v0 and
working one’s way along the tree t in order to determine the βe

v, all the
βe

v = 0 until one reaches the edge e, where βe
v jumps up or down to 1 or−1,

depending on the orientation of e, and stays constant then all beyond e. 2

Let us now describe the map i⊕d
Γ : MV0 → ME(Γ) in such a dual basis

B∨. Let x ∈ kV0 , write x =
∑

e∈E(t) xebe with be = (−1)Qe
∑

v∈V1
v as in

Proposition 2.7. Write [vi, vj] ⊆ E(t) for the unique path in t connecting
the vertices vi and vj. It follows that

iΓ(x) =
∑

e∈E(Γ)

∑
v∈V0

∑

e′∈[v0,v]

(−1)Qe′xe′(v : e)e.

For a given e, only two vertices v contribute to the sum, namely the bound-
aries vin(e) and vout(e) of e. All the terms (−1)Qe′xe′ for e′ on the path
from v0 to vin(e) cancel since they appear twice, once with a negative
sign (vin(e) : e), once with a positive sign (vout(e) : e). What remains
are the terms on the path in t from vin(e) to vout(e). We write e′ ; e if
e′ ∈ [vin(e), vout(e)] ⊂ E(t). Then

(28) iΓ(x) =
∑

e∈E(Γ)

∑

e′;e

xe′e =
∑

e∈E(t)

xee +
∑

e∈E(Γ)\E(t)

∑

e′;e

xe′e.

Note that in the second sum there may be terms with only one xe′ contribut-
ing, namely when Ae = Ae′ .
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3. REGULARIZATION, BLOWING UP, AND RESIDUES OF PRIMITIVE
GRAPHS

The purpose of this section is first to review a few standard facts about
distributions and simple birational transformations. See [49] for a gen-
eral reference on distributions. In the second part, the important notion
of residue of a primitive Feynman graph is introduced by raising uΓ to a
complex power s in the neighborhood of s = 1 and considering the residue
at s = 1 as a distribution supported on the exceptional divisor of a blowup.

3.1. Distributions and densities on manifolds. We recall basic notions
that can be looked up, for example, in [49, Section 6.3]. When one wants
to define the notion of distributions on a manifold one has two choices: The
first is to model a distribution locally according to the idea that distributions
are supposed to generalize smooth functions, so they should transform like
ui = (ψjψ

−1
i )∗uj where ψi, ψj are two charts. On the other hand, distribu-

tions are supposed to be measures, that is one wants them to transform like
ũi = | det Jac ψjψ

−1
i |(ψjψ

−1
i )∗ũj. The latter concept is called a distribution

density.

By a manifold we mean a paracompact connected smooth manifold through-
out the paper. Let M be a manifold of dimension n with an atlas (ψi, Ui)
of local charts ψi : Mi → Ui ⊂ Rn.

Definition 3.1. A distribution u on M is a collection u = {ui} of distribu-
tions ui ∈ D′(Ui) satisfying

ui = (ψjψ
−1
i )∗uj

in ψj(Ui ∩ Uj). The set of distributions on M is denoted D′(M).

Definition 3.2. A distribution density ũ on M is a collection ũ = {ũi} of
distributions ũi ∈ D′(Ui) satisfying

ũi = | det Jac ψjψ
−1
i |(ψjψ

−1
i )∗ũj

in ψj(Ui ∩ Uj). The set of distribution densities on M is denoted D̃′(M).
A density is called smooth if all ũi are smooth. The set of smooth densities
with compact support is denoted C̃∞

0 .

Proposition 3.1.
(i) C∞

0
′(M) = D̃′(M).

(ii) C̃∞
0

′
(M) = D′(M).

(iii) Any strictly positive or strictly negative smooth density α (i. e. an
orientation) provides isomorphisms u 7→ uα between D′(M) and
D̃′(M), and C∞

0 (M) and C̃∞
0 (M), respectively.
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2

Smooth densities are also called pseudo n-forms. If the manifold is ori-
ented, every pseudo n-form is also a regular n-form. On the other hand,
then an n-form ω gives rise to two pseudo n-forms: ω and −ω. In a nonori-
entable situation we want to work with distribution densities and write them
like pseudo forms u(x)|dx|.

3.2. Distributions and birational transformations. Let M be a smooth
manifold of dimension n and x ∈M a point in it. We work in local coordi-
nates and may assume M = Rn and x = 0. Blowing up 0 means replacing
0 by a real projective space E = Pn−1(R) of codimension 1. The result is
again a smooth manifold as follows.

Let Y = (M \ {0}) t E as a set. Tangent directions at 0 shall be iden-
tified with elements of E . Let therefore Y ′ be the subset of M× E defined
by xiuj = xjui, 1 ≤ i, j ≤ n where x1, . . . , xn are the affine coordinates
of Rn and u1, . . . , un are homogeneous coordinates of Pn−1. The set Y ′ is
a smooth submanifold of M× E . On the other hand, there is an obvious
bijection λ : Y → Y ′ whose restriction onto M \ {0} ⊂ Y is a diffeo-
morphism onto its image. Pulling back along λ the differentiable structure
induced on Y ′ defines a differentiable structure on all of Y. The latter is
called blowup of M at {0}. The submanifold E of Y is called the excep-
tional divisor. There is a smooth proper map β : Y → M which is the
identity onM\{0} and sends E to 0. Viewed as a map from Y ′ ⊂M×E ,
β is simply the projection onto the first factor.

Note that if n is even (which is the case throughout the paper) then Y is
not orientable but E is. If n is odd then Y is orientable but E is not. Indeed
Y can be seen as a bundle τ : Y → E over E with fiber R – the tautological
bundle. For example, for n = 2, Y is the open Möbius strip.

In our case we work with distributions on open subspaces of M. M be-
ing orientable, distributions can be identified with distribution densities, see
Proposition 3.1 (iii). These densities can be pulled back along β, one can
work with them there and push the result forward again along β. The image,
a density on M, can again be identified with a distribution on M.

Let n be even from now on. For Ui = Rn, i = 1, . . . , n, one defines maps
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ρi : Ui →M× E ,

(y1, . . . , yn) 7→ ((x1, . . . , xn), [x1, . . . , xn])

xi = (−1)iyi,(29)
xk = yiyk, k 6= i

where xi are coordinates on M and at the same time homogeneous coor-
dinates for E . Clearly ρi maps into Y and onto the affine chart of E where
xi 6= 0. Let ψi = ρ−1

i on ρi(Ui). Then (ψi, Ui) furnish an atlas for Y. We
note for future reference the transition maps

ψjψ
−1
i : Ui − {yj = 0} → Uj \ {y′i = 0}

(y1, . . . , yn) 7→ (y′1, . . . , y
′
n)

y′i = (−1)i+j/yj,(30)

y′j = (−1)jyiyj,

y′k = (−1)jyk/yj, k 6= i, j

and the determinants of their derivatives

(31) det Jac ψjψ
−1
i = (−1)j+1y1−d

j .

Note that the atlas (ψi, Ui) is therefore not even oriented on the open set Y \
E diffeomorphic to M\ {0}. For the exceptional divisor E = Pn−1, which
is given in Ui by the equation yi = 0, we use induced charts (Vi, φi) with
coordinates y1, . . . , ŷi, . . . , yn (in this very order) where ŷi means omission.
The transition map

φjφ
−1
i : Vi \ {yj = 0} → Vj \ {y′i = 0}

(y1, . . . , ŷi, . . . , yn) 7→ (y′1, . . . , ŷ
′
i, . . . , y

′
n)

y′i = (−1)i+j/yj,(32)

y′k = (−1)jyk/yj, k 6= i, j

has Jacobian determinant

(33) det Jac φjφ
−1
i = y−d

j > 0.

The induced atlas (Vi, φi) is therefore an oriented one. The tautological bun-
dle τ is given in local coordinates by τ : (y1, . . . , yn) 7→ (y1, . . . , ŷi, . . . , yn).

Similarly one defines blowing up along a smooth submanifold: The sub-
manifold is replaced by its projectivized normal bundle. Assume the sub-
manifold is given in local coordinates by x1 = . . . = xk = 0. Then a natural
choice of coordinates for the blowup is given again by (29), applied only to
the subset of coordinates x1, . . . , xk. See for instance [65, Section 3] for
details.
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The map β : Y → M is surjective, proper and smooth everywhere but
open (i. e. has surjective differential) only away from the exceptional di-
visor. It is called the blowdown map. It will be useful to be able to push
distributions forward and to pull them back along this map.

In general, let f : U → V be a surjective proper smooth map between open
sets U of Rn and V of Rm. Let u be a distribution on U. The pushforward of
u by f, denoted f∗u, is the distribution on V defined by (f∗u)[φ] = u[f ∗φ]
where φ is a test function on V and f ∗φ is its pullback along f : f ∗φ = φ◦f.
If u has compact support the requirement that f be proper can be dropped.
Similarly, for f : M → N a surjective proper smooth map between man-
ifolds M and N with atlases (ψi, Ui) and (θi, Vi), let u be a distribution
density on M. Then f∗u defined by

(f∗u)i = (θifψ−1
k )∗uk

on Vi∩(θifψ−1
k )(Uk), is a distribution density onN . Let now f : M→N a

surjective smooth map between manifoldsM andN . It need not be proper.
Let u ∈ D̃(M) and φ ∈ D(M). The density u[φ]f ∈ D̃′(N ) is defined by

(34) u[φ]f = f∗(φu).

Note that φu has compact support so the pushforward is well-defined al-
though f is not necessarily proper. If u is given by a locally integrable
function u(x) on M = Rn and N = {yi+1, . . . , yn = 0} ⊆ Rn, i <
n, this notion corresponds to integrating out the orthogonal complement
{y1, . . . , yi = 0} of N in Rn :

u[φ]f (yi+1, . . . , yn) =

∫
uφ(y1, . . . , yn)dy1, . . . , dyi.

The reverse operation of pulling back distributions along smooth maps is
only possible under certain conditions, see [49, Sections 6.1, 8.2, etc.] for
a general exposition. Here we only need the following: Let U1, U2 ⊆ Rn

open and f : U1 → U2 a smooth and everywhere open map. Then there is a
unique continuous linear map f ∗ : D′(U2) → D′(U1) such that f ∗u = u ◦ f
if u ∈ C0(U2). See [49, Theorem 6.1.2] for a proof of this statement. It can
obviously be generalized to the case of a submersion f : M → N where
M is a manifold of dimension n, by collecting pullbacks in the chart do-
mains: (f ∗u)i = (fψ−1

i )∗u where (ψi, Ui) is an atlas for M.

If β is the blowdown map, by the pullback β∗ũ of a distribution density
ũ ∈ D̃′(M\ {0}) obviously the pullback along the diffeomorphism β|Y \E
is understood. The result is a distribution density on Y \ E .
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3.3. Analytic regularization. As a first step toward understanding us
Γ as a

distribution-valued meromorphic function of s in a neighborhood of s = 1,
we study distributions u on R \ 0 of the form u = |x|−a where a ∈ Z.
Clearly if a < 1 then u ∈ L1

loc(R). The case a ≥ 1 can be handled in a
canonical way using analytic continuation with respect to the exponent. Let
a ∈ N be fixed. We extend us = |x|−as meromorphically to the area<s > 1
as follows. Let n = ba/2c.

us[φ] =

∫ 1

0

x−as(φ(x) + φ(−x))dx +

∫

R\[−1,1]

|x|−asφ(x)dx

=

∫ 1

0

x−as

(
φ(x) + φ(−x)− 2

(
φ(0) + . . . +

x2nφ(2n)(0)

(2n)!

))
dx(35)

+

∫

R\[−1,1]

|x|−asφ(x)dx + 2
n∑

k=0

φ(2k)(0)

(2k)!((2k + 1)− as)
.

This holds for <s < 1+ 1
a
. See [41, Section I.3] for the complete argument.

There will be more poles beyond the half-plane <s < 1+ 1
a

but they are not
relevant for our purposes.

Definition 3.3. The canonical regularization of |x|−a is the distribution-
valued meromorphic function in s ∈ (−∞, 1 + 1

a
) + iR given by

(36) |x|−as
ext = 2

n∑

k=0

δ
(2k)
0

(2k)!((2k + 1)− as)
+ |x|−as

fin

where n = ba/2c and

|x|−as
fin [φ] =

∫ 1

0

x−as

(
φ(x) + φ(−x)− 2

(
φ(0) + . . . +

x2nφ(2n)(0)

(2n)!

))
dx

+

∫

R\[−1,1]

|x|−asφ(x)dx.(37)

The function s 7→ |x|−as
fin is holomorphic in (−∞, 1 + 1

a
) + iR. When the

context allows, we simply write |x|−as for |x|−as
ext again. Let f ∈ C∞(R).

Since s 7→ f s[φ] is holomorphic, it makes sense to define the canonical
regularization for |x|−af also:

(38) (|x|−af)s
ext = |x|−as

ext · f s.

This does not work for f ∈ L1
loc(R). For example, |x|−(a+b)s

ext 6= |x|−as
ext |x|−bs

ext .

Unfortunately, the term ”regularization” is used for two different notions
in the mathematics and physics literature that need to be carefully distin-
guished. While in the mathematics literature, the ”regularized” distribution
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is usually understood to be |x|−a
fin, a physicist calls this the ”renormalized”

distribution, and refers to the mapping s 7→ |x|−as as a regularization (in
fact, one out of many possible regularizations). The latter is also our con-
vention.

We finally note the special case a = 1,

(39) |x|−s
ext = − 2δ0

s− 1
+ |x|−s

fin,

(40) |x|−s
fin[φ] =

∫ 1

−1

|x|−s(φ(x)− φ(0))dx +

∫

R\[−1,1]

|x|−sφ(x)dx.

And, for future reference, in the area <s < 2+(D−1)
D

,

(41) |x|D−Ds−1
ext = − 2

D

δ0

s− 1
+ |x|D−Ds−1

fin

where D ∈ 2N.

3.4. Primitive graphs, their residues and renormalization. We consider
the blowup β : Y → M as in section 3.2 where now M = MV0 for a
Feynman graph Γ (see section 2 for notation). In this section we continue
to use the coordinates x1, . . . , xd(n−1) on MV0 and y1, . . . , yd(n−1) on the
charts Ui for Y. Note that n is now the number of vertices of Γ. Recall that
since Y is not orientable (and the induced atlas on Y \E is not oriented), top
degree forms and densities can not be identified, in particular pulling back
(along a diffeomorphism) a form is different from pulling back a density.
We only use forms on the oriented submanifold E , where the two notions
coincide. We write |dx| for the Lebesgue measure on M.

Definition 3.4. A connected Feynman graph Γ is called primitive if Cdiv(Γ) =
{AΓ}.
Lemma 3.1. Let Γ be primitive. Let t be a spanning tree for Γ and t′ a
subforest of t. Then

d|E(t′)| ≤ (d− 2)(|E(Γ)| \ |E((t− t′)s)|)
and equality holds if and only if t′ = t.

Proof. Clearly dim At = dim At′ + dim At\t′ and dim At′ = d|E(t′)|.
Since Γ is divergent, (d − 2)|E(Γ)| = dim At. Since Γ has no divergent
subgraphs, (d−2)|E((t\ t′)s)| < dim A(t\t′)s = dim At\t′ for all subforests
t′ of t. 2
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Lemma 3.2. Let δE (resp. 1
|yE |) be collections of distributions2 in the Ui

given by (δE)i = δ0(yi) and (1/|yE |)i = 1
|yi| in Ui. Let ω be a locally inte-

grable volume form ω on E . Then ωδE and ω/|yE |, locally

(ωδE)i = ωi(δE)i = ωi(y1, . . . , ŷi, . . . , yn)δ0(yi),

(ω/|yE |)i = ωi/|yE |i = ωi(y1, . . . , ŷi, . . . , yn)/|yi|
define densities on Y.

Proof. By (31) and (33) | det Jac ψjψ
−1
i | = det Jac φjφ

−1
i · |1/yj| and

both δ0 and 1/|yi| transform with the factor |1/yj| under transition Ui → Uj.
2

Theorem 3.1. Let Γ be primitive. Write dΓ = d|V0|.
(i) By pullback along the diffeomorphism β|Y \E , the distribution den-

sity ũΓ = uΓ|dx| furnishes a strictly positive density w̃Γ on Y \ E ,
given in local coordinates of Ui by

(42) (w̃Γ)i|dy| = 1

|yi|(fΓ)i(y1, . . . , ŷi, . . . , yn)|dy|

where (fΓ)i ∈ L1(Vi). The (fΓ)i dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyn in each
Vi determine an integrable volume form fΓ on E . We may therefore
write w̃Γ = fΓ/|yE |.

(ii) The meromorphic density-valued function s 7→ w̃s
Γ = β∗ũs

Γ,

(w̃s
Γ)i|dy| = (fΓ)s

i |dy|
|yi|dΓs−(dΓ−1)

has a simple pole at s = 1. Its residue is the density

(43) ress=1 w̃s
Γ = − 2

dΓ

δEfΓ,

supported on the exceptional divisor. Pushing forward along β
amounts to integrating a projective integral over the exceptional di-
visor:

(44)

β∗(ress=1 w̃s
Γ) = − 2

dΓ

δ0|dx|
∫

E
fΓ = − 2

dΓ

δ0

∫

Vi

(fΓ)idy1 . . . d̂yi . . . dyn

for any i.
(iii) Let µ ∈ D(Rd) with µ(0) = 1, and ν = β∗µ. Let τ : Y → E be the

tautological bundle. Write ũs
Γ = β∗(w̃s

Γ). Then

(45) w̃s
Γ,R = w̃s

Γ − w̃s
Γ[ν]τδE

2We do not claim that they are distribution or densities on Y themselves as they do not
transform correctly.
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defines a density-valued function on Y holomorphic in a neighbor-
hood of s = 1. Also β∗w̃s

Γ,R = ũs
Γ,R = (ũs

Γ − ũs
Γ[µ])δ0|dx|.

The density (43) is called residue density, the volume form fΓ residue
form, and the complex number

(46) res Γ = − 2

dΓ

∫

E
fΓ

residue of Γ. The distribution uΓ,R is defined on all of MV0 and said to be
the renormalized distribution.

Proof of Theorem 3.1. (i) For (42) observe that in Ui the map β is given by
ρ, see (29). The Lebesgue measure |dx| on MV0 pulls back to |yi|dΓ−1|dy|
on Ui. By (5), (β∗ũΓ)i scales like λ(2−d)|E(Γ)| as yi → λyi. Since Γ is di-
vergent, dΓ = (2− d)|E(Γ)|, which explains the factor 1/|yi| in (42). Fur-
thermore fΓ clearly does not depend on yi. That fΓ ∈ L1

loc(Vi) follows from
Proposition 2.2, where MV0

sing = A⊥
Γ = {0}, and β|Y \E being a diffeomor-

phism. In order to show that fΓ ∈ L1(Vi) one uses Lemma 3.1 as follows:
Choose a spanning tree t for Γ such that the coordinate xi equals (e∨iΓ)0 for
some e ∈ E(t) (see Proposition 2.4). Write xj

e = (e∨iΓ)j for e ∈ E(t), j =
0, . . . , d−1. In this basis uΓ is given by uΓ({xj

e}) =
∏

e∈E(Γ) u0(
∑

e′;e xj
e′)

(see (28)). Therefore, if the coordinates yj
e, e ∈ E(t′) defined by t′ a proper

subforest of t, go to ∞, then there are exactly E(ts) \E((t \ t′)s) factors of
u0 the argument of which goes to ∞. Lemma 3.1 shows that the integration
over that subspace converges. One verifies that all subspaces susceptible
to infrared divergences are of this form. Therefore (fΓ)i ∈ L1(Vi). Finally,
(fΓ)i transform like y−d

i under transition between charts. By (33) this makes
fΓ a density on E . Since E is oriented, a strictly positive density is also a
strictly positive (L1

loc)- volume form.
(ii) The simple pole and (43) follow from (42) by (39), the local expres-
sions matched together using Lemma 3.2. For (44) let φ ∈ D(MV0). Then
β∗(ress=1 w̃Γ)[φ] = ress=1 w̃Γ[β∗φ]. The distribution ress=1 w̃Γ, being sup-
ported on E , depends only on β∗φ|E = φ(0). By the results of (i),

∫
E fΓ is a

projective integral and it suffices to integrate inside one chart, say Ui. There
ress=1 w̃Γ[β∗φ] = −2

d

∫
Ui

δ0(yi)fΓ(y)φ(ρ(y))dy = −2
d
φ(0)

∫
Vi

fΓ(y)dy =

−2
d
φ(0)

∫
E fΓ, where again integration in one chart suffices by the previous

argument.
(iii) There is no pole at s = 1 since ν|E = 1. The (w̃s

Γ,R)i furnish a den-
sity by Lemma 3.2: The Jacobian of δE cancels the one of [. . .]τ . For the
last statement, let again (ψi, Ui)i=1,...,d(n−1) be the chosen atlas for Y and
(φi, Vi)i=1,...,d(n−1) the induced atlas for E . Since E is compact, there ex-
ists a partition of unity (ξiφi)i=1,...,d(n−1) on E subordinate to the Vi such
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that ξi ∈ D(Vi), ξi ≥ 0 and
∑

i(ξiφi)(x) = 1 for all x ∈ E . Let τ :
Y → E . Then (ξiφiτ)i=1,...,d(n−1) is a partition of unity on Y subordinate to
(ψi, Ui)i=1,...,d(n−1) (however not compactly supported). We fix such a parti-
tion of unity (ξi). In Ui we write y for (y1, . . . , yn) and ŷi for (y1, . . . , ŷi, . . . , yn),
for example ξi(y) = ξi(ŷi) since it is constant along yi. We also write
u(yi, yiŷi) = u(yiy1, . . . , yi, . . . , yiyn) for convenience. Let f ∈ D(MV0).

β∗(w̃s
Γ,R)[f ] = β∗(w̃s

Γ − w̃s
Γ[ν]τδE)[f ]

=
∑

i

(w̃s
Γ − w̃s

Γ[ν]τδE)i[ξiβ
∗f ]

=
∑

i

∫

Ui

(w̃s
Γ(y)−

∫

R
w̃s

Γ(zi, ŷi)µ(zi, ziŷi)dziδ0(yi))

×ξi(y)f(yi, yiŷi)dy

=
∑

i

∫

Ui

w̃s
Γ(y)ξi(y)f(yi, yiŷi)

−w̃s
Γ(y)µ(yi, yiŷi)ξi(0, ŷi)f(0)dy

=
∑

i

(β∗w̃s
Γ − β∗w̃s

Γ[ξiν]δ0)[f ].

2

The following corollary concerns infrared divergences of a graph Γ. Those
are divergences which do not occur at the A⊥

γ but as the coordinates xi of
MV0 approach ∞, in other words, if one attempts to integrate uΓ against a
function which is not compactly supported.

Corollary 3.1. Let Γ be at most logarithmic and primitive. Then uΓ is not
(globally) integrable on MV0 \ MV0

div(Γ). However (χuΓ)[1L ⊗ µ] is well-
defined, if µ is a test function on a non-zero subspace of MV0 , 1L the con-
stant function on the orthogonal complement L, and χ the characteristic
function of the complement of an open neighborhood of MV0

div(Γ) in MV0 .

Proof. This follows from part (i) of Theorem 3.1. 2

The renormalized distribution uΓ,R = us
Γ,R|s=1 obtained from the theorem

depends of course on µ. Write uΓ,R for one using µ and u′Γ,R for another
one using µ′, then the difference uΓ,R − u′Γ,R is supported on 0 and of the
form cδ0 with c ∈ R. This one-dimensional space of possible extensions
represents the renormalization ambiguity.
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Here is an example. Let M = R4. For

Γ =

uΓ(x) = u2
0(x) = 1/x4,

the latter a distribution on MV0 \ {0} = M \ {0}. Pulling back along β,

(β∗ũΓ)i|dy| = (ψ−1
i )∗β∗ũΓ|dy| = |dy|

|yi|(1 +
∑

j 6=i y
2
j )

2

in Ui − {yi = 0}, i = 0, . . . , 3. As ũΓ was not defined at 0, (β∗ũΓ)i is not
defined at E , given locally by {yi = 0}. Raising to the power s gives

(β∗ũs
Γ)i|dy| =

|dy|
|yi|4s−3(1 +

∑
j 6=i y

2
j )

2s

=

( −δ0(yi)

2(s− 1)
+ o(s− 1)0

) |dy|
(1 +

∑
j 6=i y

2
j )

2s

Therefore the residue density at s = 1 is given, in this chart, by

ress=1(β
∗ũΓ)s

i |dy| = −1

2
δ0(yi)

1

(1 +
∑

j 6=i y
2
j )

2
|dy|.

The residue is given as a projective integral by

res Γ = −1

2

∫

E

∑
i(−1)iYidY1 ∧ . . . ∧ d̂Yi ∧ . . . ∧ dY4

Y 4

where Y1, . . . , Y4 are homogeneous coordinates. In any of the charts Vi, and
for the integration one chart suffices,

res Γ = −1

2

∫

Vi

dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyn

(1 +
∑

j 6=i y
2
j )

2
.

As mentioned before, there is a 1-dimensional space of possible extensions
uΓ,R due to the choice of µ that needs to be made. There is no canonical µ.
However from practice in momentum space the following choice is useful.
In momentum space, the ill-defined Fourier transform of u2

0 is

(Fu0)
∗2 : p 7→

∫
d4k

k2(k − p)2
.

A regularization or cutoff is now being understood in the integral. This can
be renormalized, for example, by subtracting the value at p2 = m2 where
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m > 0 has the meaning of an energy scale.

(Fu0)
∗2
R : p 7→

∫
d4k

k2(k − p)2
−

∫
d4k

k2(k − p)2

∣∣∣∣
p2=m2

This prescription has the advantage that it is useful for calculations beyond
perturbation theory. The Fourier transform of the distribution δ(p2 − m2)
is a Bessel function µ(x) (with noncompact support), which can be approx-
imated by a sequence µn → µ of test functions µn with compact support.
Since m > 0, µ 6= 1, and infrared divergences do not occur.

In the case of primitive graphs, the renormalization operation described
above can be performed, and the residue be defined, while on MV0 , without
blowing up. For general graphs however blowing up provides an advantage,
as will be shown in section 6: All divergences can be removed at the same
time while observing the physical principle of locality. This concludes our
discussion of primitive divergences, and we start with the general theory for
arbitrary graphs.

4. MODELS FOR THE COMPLEMENTS OF SUBSPACE ARRANGEMENTS

In section 2 a description of the singular support of uΓ and of the locus
where uΓ fails to be locally integrable was given as subspace arrangements
in a vector space. In general both (MV0)sing(Γ) and (MV0)div(Γ) will not
be cartesian products of simpler arrangements. In this section we describe
birational models for MV0 where the two subspace arrangements are trans-
formed into normal crossing divisors. For this purpose it is convenient to
use results of De Concini and Procesi [33] on more general subspace ar-
rangements. See also the recent book [32] for a general introduction to
the subject. Although for the results of the present paper only the smooth
models for the divergent arrangements (MV0)div(Γ) are needed, it is very in-
structive, free of cost, and useful for future application to primitive graphs,
to develop the smooth models for the singular arrangements (MV0)sing(Γ)
at the same time.

4.1. Smooth models and normal crossing divisors. Consider for a finite
dimensional real vector space V a collection C = {A1, . . . , Am} of sub-
spaces Ai of V ∨ and the corresponding arrangement VC =

⋃
A∈C A⊥ in V.

The problem is to find a smooth manifold YC and a smooth proper surjective
morphism β : YC → V such that

(1) β is an isomorphism outside of β−1(VC).
(2) The preimage E of VC is a divisor with normal crossings, i. e. there

are local coordinates z1, . . . , zn for YC such that β−1(VC) is given in
the chart by the equation z1 · . . . · zk = 0.
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(3) β is a composition of blowups along smooth centers.
Such a map β : YC → V is called a smooth model for VC. Since β is a com-
position of blowups, it is a birational equivalence. By the classical result
of Hironaka it is clear that for much more general algebraic sets VC such a
model always exists in characteristic 0. For the special case of subspace ar-
rangements VC a comprehensive and very useful treatment is given in [33].
It will be instructive to not only consider one smooth model, but a family
of smooth models constructed below along the lines of [33]. By abuse of
language, a smooth model may be seen as a ”compactification” of the com-
plement of the arrangement, for if K ⊂ V is compact, then β|β−1(K) is a
compactification of (V \ VC) ∩K since β is proper.

In the following we construct the smooth models of De Concini and Procesi
for the special case of V = MV0 and C = Csing(Γ) or C = Cdiv(Γ).

4.2. The Wonderful Models. For a vector space V write P(V ) for the
projective space of lines in V. For any subspace U of V there is an obvious
map V \ U → V/U → P(V/U). The smooth models of De Concini and
Procesi, called ”wonderful models”, are defined as the closure YP of the
graph of the map

(47) V \ VC →
∏
A∈P

P(V/A⊥)

(the closure taken in V ×∏
A∈P P(V/A⊥)) where P is a subset of C, subject

to certain conditions, to be defined below. The set P controls what the
irreducible components of the divisor E are, and how they intersect. In other
words, one gets different smooth models as one varies the subset P . We
assume that the collection C is closed under sum. The following definition
describes the most basic combinatorial idea for the wonderful models.

Definition 4.1. A subset P of C is a building set if every A ∈ C is the direct
sum A =

⊕
i Bi of the maximal elements Bi of P that are contained in A,

such that, in addition, for every C ∈ C with C ⊆ A also C =
⊕

i(C ∩Bi).
Elements of a building set are called building blocks.

Our definition is a slight specialization of the one in [33, Theorem (2) in
2.3]. In their notation, our building sets P are those for which C = CP (see
[33, 2.3]). Note that a building set is not in general closed under sum again.
Definition 4.1 singles out subsets P of C for which taking the closure of
(47) makes sense. Indeed one has

Theorem 4.1 (De Concini, Procesi). If P is a building set, then the closure
YP of the graph of (47) provides a smooth model for the arrangement VC. Its
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divisor E is the union of smooth irreducible components EA, one for each
A ∈ P . 2

4.3. Irreducibility and building sets. Let us now turn toward the building
sets and the wonderful models for V = MV0 and C = Csing(Γ) or Cdiv(Γ).
We review some basic notions from [33] and apply them to the special case
of graph arrangements.

Definition 4.2. For an A ∈ C a decomposition of A is a family of non-zero
A1, . . . , Ak ∈ C such that A = A1⊕ . . .⊕Ak and, for every B ⊆ A,B ∈ C,
also B ∩ A1, . . . , B ∩ Ak ∈ C and B = (B ∩ A1) ⊕ . . . ⊕ (B ∩ Ak). If
A admits only the trivial decomposition it is called irreducible. The set of
irreducible elements is denoted F(C).

It is easily seen that A is irreducible if and only if there are no A1, A2 ∈ C
such that A = A1⊕A2 and B = (B∩A1)+(B∩A2) for all B ⊆ A,B ∈ C.
For if A = A1⊕A2⊕A′

2 is a decomposition of A, then A = A1⊕(A2⊕A′
2)

is a decomposition of A into two terms since (B ∩ A2) ⊕ (B ∩ A′
2) ⊆

B ∩ (A2 ⊕ A′
2).

We now describe the irreducible elements of Csing(Γ), Cdiv(Γ). Recall our
definition of a subgraph γ of Γ : If Γ is a graph with set of vertices V (Γ)
and set of edges E(Γ), a subgraph γ is given by a subset E(γ) ⊆ E(Γ) of
edges. By definition V (γ) = V (Γ). However, we define Veff(γ) to be the
subset of vertices in V (γ) which are not isolated – a vertex v is not isolated
if it is connected to another vertex through γ. We say γ is connected if it is
connected with respect to Veff(γ) and E(γ). In other words, the connected
components of γ exclude by definition the isolated vertices. For two parti-
tions P1, P2 write P1 ≤ P2 if {i, j} ⊆ Q ∈ P1 implies {i, j} ⊆ Q′ ∈ P2 for
some Q′. Write P1 < P2 if P1 ≤ P2 and P1 6= P2.

Definition 4.3. Let G be a collection of subgraphs of Γ. A subgraph γ of
Γ is called irreducible wrt. G if for all subgraphs γ1, γ2 ∈ G – defining
partitions P1 = cc(γ1), P2 = cc(γ2) on V (γ) – such that P1 ∪ P2 = cc(γ)
and P1 ∩ P2 = 0 there exists a subgraph g ∈ G with cc(g) ≤ cc(γ) which
is not the union of a subgraph in P1 with a subgraph in P2. (A subgraph in
Pi is a subgraph gi of Γ such that cc(gi) ∩ Pi = cc(gi).)

It follows from the definition that all subgraphs with only two vertices
(|Veff(γ)| = 2) are irreducible (because there are no such P1 and P2 at all).
Also, every irreducible graph is connected. Indeed, let γ be irreducible
wrt. G and γ have two components γ = γ1 t γ2. Taking P1 = cc(γ1) and
P2 = cc(γ2) one arrives at a contradiction. Note also that the notion of
irreducibility of γ wrt. G depends only on cc(γ) and G.
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It turns out that the irreducible graphs are exactly those which provide irre-
ducible subspaces:

Proposition 4.1.
(48) F(Csing(Γ)) = {Aγ ∈ Csing(Γ) : γ irred. wrt. all subgraphs of Γ},

F(Cdiv(Γ)) = {Aγ ∈ Cdiv(Γ) : γ divergent and irreducible wrt.(49)
all divergent subgraphs of Γ},

(50) F(Csing(Kn)) = {Aγ ∈ Csing(Kn) : γ connected }.
Proof. (48)-(49): By the remark after the definition, Aγ is reducible in

Csing(Γ) (Cdiv(Γ)) if and only if there are (divergent) subgraphs γ1, γ2 of
Γ such that Aγ = Aγ1 ⊕ Aγ2 and Ag = Ag ∩ Aγ1 + Ag ∩ Aγ2 for all (di-
vergent) subgraphs g of Γ with Ag ⊆ Aγ (which means cc(g) ≤ cc(γ)).
Using Proposition 2.5 and Proposition 2.6, this is equivalent to saying that
cc(γ) = cc(γ1)∪cc(γ2), cc(γ1)∩cc(γ2) = 0 and cc(g) = (cc(g)∩cc(γ1))∪
(cc(g) ∩ cc(γ2)), whence the statement.
(50): Since the connectedness of γ is necessary for Aγ to be irreducible
(see the remark after Definition 4.3), we only need to show sufficiency.
Let therefore γ, γ1, γ2 be connected subgraphs of Kn such that cc(γ) =
cc(γ1) ∪ cc(γ2) and cc(γ1) ∩ cc(γ2) = 0. Pick an edge e ∈ E(Kn) which
joins a vertex in Veff(γ1) with one in Veff(γ2). This gives an Ae ∈ Csing(Kn)
such that Ae ∩ Aγ1 = Ae ∩ Aγ2 = {0}. Consequently Aγ is irreducible. 2

Recall the definition of a building set, Definition 4.1, which we can now
rephrase as follows: All A ∈ C have a decomposition (in the sense of Defi-
nition 4.2) into the maximal building blocks contained in A.

The irreducible elements F(C) of a collection C are the minimal building
set for the compactification of V \⋃

A∈C A⊥.

Proposition 4.2. The irreducible elementsF(C), and C itself, form building
sets in C, and F(C) ⊆ P ⊆ C for every building set P in C.

Proof. (see also [33][Proposition 2.1 and Theorem 2.3 (3)]) It is obvious
that every A ∈ C has a decomposition into irreducible elements Bi. As-
sume one of them is not maximal, say A =

⊕
i Bi with B1 ( B ∈ F(C).

Let C ∈ C, C ⊂ B, then B =
⊕

i(B ∩ Bi) with C =
⊕

i(C ∩ Bi) =⊕
i C∩(B∩Bi) would be a nontrivial decomposition of B. ThereforeF(C)

is a building set. Let now P be an arbitrary building set, and A ∈ F(C).
There is a decomposition of A into maximal building blocks, but since A
is irreducible the decomposition is trivial and A is a building block itself.
Consequently F(C) ⊆ P . The remaining statements are obvious. 2
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We conclude this section with a short remark about reducible divergent
graphs.

Proposition 4.3. Let γ ⊆ Γ be divergent, and let Aγ = Aγ1 ⊕ . . .⊕Aγk
be

a decomposition in Cdiv(Γ). We may assume that the γi are saturated, that
is γi = (γi)s. Then all γi are divergent themselves.

Proof. Using (18), we need to conclude (d − 2)|E(γi)| = dim Aγi
from

(d − 2)|E(γ)| = dim Aγ. Since the γi decompose γ and are saturated,
we have a disjoint union E(γ) = E(γ1) t . . . t E(γk). Also dim Aγ =∑

i dim Aγi
. Consequently, if we had an i such that (d − 2)|E(γi)| �

dim Aγi
, then there would be a j such that (d − 2)|E(γj)| 
 dim Aγj

,
in contradiction to Γ being at most logarithmic (see Definition 2.2). 2

4.4. Nested sets. LetP be a building set in C. We are now ready to describe
the wonderful models YP . Note that VC = VF(C) since (A1 ⊕ A2)

⊥ = A⊥
1 ∩

A⊥
2 . Consequently, using Proposition 4.2, VC = VP . The charts for YP are

assembled from nested sets of subspaces, defined as follows (see also [33,
Section 2.4])

Definition 4.4. A subsetN of P is nested wrt. P if for any A1, . . . , Ak ∈ N
pairwise non-comparable we have

∑k
i=1 Ai 6∈ P (unless k = 1).

Note that in particular the F(C)-nested sets are sets of irreducible sub-
spaces. We now determine the P-nested sets of C = Csing(Γ), Cdiv(Γ),
Csing(Kn) for the minimal and maximal building sets P = F(C) and P =
C, respectively. Let γ be a subgraph of Γ. Recall from section 2.3 that Aγ

depends only on the partition cc(γ) of the vertex set V (Γ).

Proposition 4.4. A subset N = {Aγ1 , . . . , Aγk
} is nested in C = Csing(Γ)

(resp. Cdiv(Γ))

(i) wrt. P = C if and only if the set {cc(γ1), . . . , cc(γk)} is linearly
ordered by the strict order < of partitions,

(ii) wrt. P = F(C) if and only if the γi are irreducible wrt. all (di-
vergent) subgraphs of Γ, and for all I ⊆ {1, . . . , k}, |I| ≥ 2,
the graph

⋃
i∈I γi is reducible wrt. (divergent) subgraphs, unless

cc(γi) < cc(γj) for some i, j ∈ I.

Proof. Straightforward from the definitions. 2

Proposition 4.5. A subset N = {Aγ1 , . . . , Aγk
} is nested in Csing(Kn)

wrt. the minimal building set if and only if the γi are connected and for i 6= j
if either Veff(γi) ⊂ Veff(γj), Veff(γj) ⊂ Veff(γi), or Veff(γi) ∩ Veff(γj) = ∅.
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Proof. Straightforward from (50). 2

We recall further notions from [33, Section 2]. Let P be a building set
and N a P-nested set for C. For every x ∈ V ∨ \ {0} the set of subspaces
in N ′ = N ∪ {V ∨} containing x is linearly ordered and non-empty. Write
p(x) for the minimal element inN ′. This defines a map p : V ∨ \{0} → N ′.

Definition 4.5. A basis B of V ∨ is adapted to N if, for all A ∈ N the set
B ∩ A generates A. A marking of B is, for all A ∈ N , the choice of an
element xA ∈ B with p(xA) = A.

In the case of arrangements coming from graphs, C = Csing(Γ), Cdiv(Γ),
particular bases are obtained from spanning forests, cf. Proposition 2.4.

Proposition 4.6. Let t be a spanning tree3 of Γ. Then the basisB = {(e∨iΓ)j :
e ∈ E(t), j = 0, . . . , d− 1} of (MV0)∨ is adapted to N = {Aγ1 , . . . , Aγk

}
if and only if the graph with edges {e ∈ E(t) : e ≤ cc(γi)} is a spanning
forest for cc(γi) for all i = 1, . . . , k.

Proof. Straightforward from Proposition 2.4. 2

We call such a spanning forest an adapted spanning forest. Also, a marking
of the basis corresponds to a certain subforest E(tM) ⊆ E(t) with k + 1
edges, and a choice of one out of d copies for each edge.

Proposition 4.7. LetN be a P-nested set for C = Csing(Γ) or Cdiv(Γ). Then
there exists an adapted spanning tree.

Proof. By induction on the dimension: Let Aγ1 , . . . , Aγh
be the maximal

elements inN contained in a given Aγ. Assume an adapted spanning forest
(see Proposition 4.6) for each of the Aγi

is chosen. The union of these bases
is then a basis B′ for

⊕
i Aγi

(the sum is direct because N is nested and the
Aγi

maximal). The set {(e∨iΓ)j : e ∈ E(γ)} is a generating set for Aγ.
Extending the basis B′ to a basis for Aγ using this generating set provides,
by Proposition 2.4, an adapted spanning forest for γ. 2

Let us now return to marked bases in general. A marking of an adapted
basis B provides a partial order on B : y1 ¹ y2 if p(y1) ⊆ p(y2) and y2 is
marked. This partial order determines a map ρ : V → V as follows. Con-
sider the elements of B = {y1, . . . , yk} as (linear) coordinates on the source
V. The (nonlinear) coordinates (x1, . . . , xk) of the image ρ(y1, . . . , yk) are

3Recall that Γ is connected.
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given by

(51) xi =
∏

yi¹yj

yj =

{
yi

∏
p(yi)⊂A yA if yi is not marked,∏

p(yi)⊂A yA if yi is marked.

The map ρ, and already the partial order¹, determine implicitly a sequence
of blowups. Indeed

Proposition 4.8. (see [33, Lemma 3.1])
(i) ρ is a birational morphism,

(ii) ρ({yA = 0}) = A⊥ and
(iii) ρ restricts to an isomorphism V \⋃

A∈N{xA = 0} ∼= V \⋃
A∈N A⊥.

(iv) Let x ∈ V ∨ \ {0} and p(x) = A ∈ N . Then x = xAPx(yi), where
xA =

∏
yA¹yi

yi and Px is a polynomial depending on the variables
yi < xA, and linear in each variable, that is ∂2Px/∂y2

i = 0.

2

4.5. Properties of the Wonderful Models. Recall the definition (47) of
the wondeful models: YP is the closure of V \ VP embedded into V ×∏

A∈P P(V/A⊥). The birational map β : YP → V is simply the projection
onto the first factor V. Let N be a P-nested set in C, and B an adapted,
marked basis of V ∨. Both determine a birational map ρ : V → V as defined
in (51). For a given building block B ∈ P set ZB = {Px = 0, x ∈ B} ⊂ V.
The composition of ρ with the rational map V → V/A⊥ → P(V/A⊥) is
then defined as a regular morphism outside of ZB. Doing this for every
factor in

∏
A∈P P(V/A⊥), one gets an open embedding jBN : UB

N = V \⋃
B∈P ZB ↪→ YP [33, Theorem 3.1]. Write Y B

N = jBN (UB
N ). As N and

the marking of B vary, one obtains an atlas (Y B
N , (jBN )−1) for YP . It is also

shown in [33, Theorem 3.1] that the divisor E = β−1(VP) is given locally
by

(52) (jBN )−1(E ∩ Y B
N ) =

{ ∏
A∈N

yA = 0

}
.

Remarks. In the case of the full graph Kn, the minimal wonderful model
YF(Csing(Kn)) is known as the Fulton-MacPherson compactification [40], while
the maximal wonderful model YCsing(Kn) has been described in detail by
Ulyanov [73]. For any graph, the benefit of the minimal model is that the
divisor is small in the sense that it has only a minimal number of irreducible
components, whereas the actual construction by a sequence of blowups is
less canonical. On the other hand, for the maximal model, which has a
larger number of irreducible components, one can proceed in the obvious
way blowing up strict transforms by increasing dimension. See figures 1, 2,
3 for an example. Also the resolution of projective arrangements described
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FIGURE 1. A picture of RV0
sing(K4).

in [36] and referred to in [14, Lemma 5.1] proceeds by increasing dimen-
sion and corresponds to the maximal wonderful model.

4.6. Examples. For the fixed vertex set V = {1, 2, 3, 4} we consider a
series of graphs on V with increasing complexity. Only some of them are
relevant for renormalization.

Γ1 = Γ4 =

Γ2 = Γ5 =

Γ3 = Γ6 =
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FIGURE 2. (Spherical) blowup of the origin in RV0
sing(K4),

where projective spaces are replaced by spheres. The maxi-
mal wonderful model would proceed by blowing up all strict
transforms of lines incident to the exceptional divisor, and
finally the strict transforms of the planes.

For these graphs, we examine the arrangements MV0
sing and MV0

div, the irre-
ducible subspaces and nested sets for the minimal and maximal building
set, respectively. Write Aij for Ae with e an edge connecting the vertices i
and j.

Csing(Γ1) = {A12, A23, A34, and their sums}
Csing(Γ2)
Csing(Γ3)
Csing(Γ4)



 = {A12, A23, A24, A34, and their sums}

Csing(Γ5) = {A12, A13, A23, A24, A34, and their sums}
Csing(Γ6) = {A12, A13, A14, A23, A24, A34, and their sums}
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FIGURE 3. Minimal (spherical) model of RV0
sing(K4), cor-

responding to the Fulton-MacPherson compactification of
the configuration space of 4 points in R. After the central
blowup, only those strict transforms of lines are blown up
which are not a normal crossing intersection in the first
place.

The divergent arrangements are determined by the collections of dual spaces:

Cdiv(Γ1) = ∅
Cdiv(Γ2) = {A12}
Cdiv(Γ3) = {A34, A23 + A34}
Cdiv(Γ4) = {A12, A34, A23 + A34, A12 + A34, A12 + A23 + A34}
Cdiv(Γ5) = {A34, A23 + A34, A12 + A23 + A34}
Cdiv(Γ6) = {A12 + A23 + A34}
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The irreducible singular subspace collections are

F(Csing(Γ1)) = {A12, A23, A34}
F(Csing(Γ2))
F(Csing(Γ3))
F(Csing(Γ4))



 = {A12, A23, A24, A34, A23 + A34}

F(Csing(Γ5)) = {A12, A13, A23, A24, A34,

A12 + A13, A23 + A24, A12 + A23 + A34}
F(Csing(Γ6)) = {A12, A13, A14, A23, A24, A34,

A12 + A13, A12 + A14, A13 + A14, A23 + A34,

A12 + A23 + A34}

The irreducible divergent subspace collections are

F(Cdiv(Γ1)) = ∅
F(Cdiv(Γ2)) = {A12}
F(Cdiv(Γ3)) = {A34, A23 + A34}
F(Cdiv(Γ4)) = {A12, A34, A23 + A34}
F(Cdiv(Γ5)) = {A34, A23 + A34, A12 + A23 + A34}
F(Cdiv(Γ6)) = {A12 + A23 + A34}

The maximal nested sets of the divergent collection wrt. the minimal build-
ing set:

for Γ1 : ∅
for Γ2 : {A12}
for Γ3 : {A234, A34}
for Γ4 : {A12, A234, A34}
for Γ5 : {A1234, A234, A34}
for Γ6 : {A1234}
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The maximal nested sets of the divergent collection wrt. the maximal build-
ing set:

for Γ1 : ∅
for Γ2 : {A12}
for Γ3 : {A234, A34}
for Γ4 : {A1234, A12 ⊕ A34, A12},

{A1234, A12 ⊕ A34, A34},
{A1234, A234, A34}

for Γ5 : {A1234, A234, A34}
for Γ6 : {A1234}

5. LAURENT COEFFICIENTS OF THE MEROMORPHIC EXTENSION

5.1. The Feynman distribution pulled back onto the wonderful model.
Recall the definition (7) of the Feynman distribution uΓ =

∏
i<j u0(xi −

xj)
nij . We write uΓ = Φ∗uΓ where Φ is the projection along the thin diago-

nal defined at the end of section 2.1. It is clear from the discussion in section
2 that uΓ = (i⊕d

Γ )∗u⊗|E(Γ)|
0 . Let β : YP → MV0 be a wonderful model for

the arrangement (MV0)div(Γ) or (MV0)sing(Γ). The purpose of this section
is to study the regularized pullback β∗ũs

Γ (as a density-valued meromorphic
function of s) of ũs

Γ onto YP \ E .

Theorem 5.1. Let N be a P-nested set in Cdiv(Γ) (Csing(Γ)), and B =
{yi

e : e ∈ E(t), i = 0, . . . , d − 1} an adapted basis with marked elements
yiA

A , A ∈ N . Then, in the chart UB
N ,

(53) β∗uΓ({yi
e}) = fΓ({yi

e})
∏
A∈N

(yiA
A )nA

where fΓ ∈ L1
loc(U

B
N ) (C∞(UB

N )), and nA ∈ −2N ∪ {0}. More precisely

(54) nAγ = (2− d)|E(γs)|.
In addition, fΓ is smooth in the variables yiA

A , A ∈ N .

Note: γs is the subgraph defined in Definition 2.1. Divergent subgraphs
are saturated (Proposition 2.1).

Proof. Recall from the last paragraph of section 4.5 that the map β is
given in the chart UB

N by ρ (see (51)):

ρ :
d−1∑
j=0

∑

e∈E(t)

yj
eb

j
e 7→

d−1∑
j=0

∑

e∈E(t)

∏

yj
e¹yk

e′

yk
e′b

j
e
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where ¹ is the partial order on the basis B = {yj
e} of (MV0)∨ adapted to

N . Consequently, using (28),

β∗uΓ({yj
e}) = u

⊗E(Γ)
0 i⊕d

Γ ρ({yj
e})

=
∏

e∈E(Γ)

u0

({
Σe′;eΠyj

e′¹yk
e′′

yk
e′′

}d−1

j=0

)
.(55)

By Proposition 4.8 (iv), each ξj
e =

∑
e′;e xj

e′ is a product xiA
A Pξj

e
({yi

j})
where A = p(ξj

e) ∈ N . As u0 is homogeneous (5), the factor xiA
A =∏

A⊆B∈N yB
iB , can be pulled out, supplied with an exponent 2 − d. Since

xiA
A =

∏
A⊆B yB

iB , the factor (yiA
Aγ

)2−d appears once for each e ∈ E(Γ)

such that Ae ⊆ Aγ, in other words for each e ≤ cc(γ). Hence (54). We
finally show that the remaining factor

(56) fΓ({yj
i }) =

∏

e∈E(Γ)

u0({Pξj
e
({yk

i })}d−1
j=0)

of β∗uΓ satisfies fΓ ∈ L1
loc(U

B
N ) if the divergent arrangement was resolved

or fΓ ∈ C∞(UB
N ) if the singular arrangement was resolved, respectively.

The set UB
N contains by definition no point with coordinates yj

i such that for
any building block B ∈ P all Px({yj

i }) = 0, x ∈ B. In the case of Csing(Γ),
all Ae ∈ P , (e ∈ E(Γ)), since they are irreducible, see Proposition 4.2.
On the other hand, Ae is spanned by the ξj

e , j = 0, . . . , d − 1. Therefore
none of the Pξj

e
in (56) vanishes on UB

N . Hence, using (6), fΓ ∈ C∞(UB
N ).

In the case of Cdiv(Γ), let γ be divergent. By Proposition 4.3 we may as-
sume without loss that Aγ is irreducible. Therefore Aγ ∈ P as in the first
case. By the same argument as above, not all the Pξj

e
in the arguments of∏

e∈E(γ) u0 can vanish at the same time on UB
N , whence this product is now

locally integrable. In order to see that fΓ is smooth in the yiA
A , it suffices

to show that not all d of the Pξj
e
({yk

i }) → 0 (for j = 0, . . . , d − 1) as the
yiA

A → 0 while the other coordinates are fixed. From Proposition 4.8 (iv)
we know that every Px is linear in the yiA

A , if therefore all Pξj
e

vanished at
some yiA

A = 0 they would have yiA
A as a common factor. This contradicts

Proposition 4.8 as then p(ξe) ⊆ A. 2

In the preceding theorem, uΓ was pulled back along β as a distribution. The
next corollary clarifies the situation for the density β∗ũΓ = β∗(uΓ|dx|). We
write |dy| for |dy0

e1
∧ . . . ∧ dyd−1

ek
|.

Corollary 5.1. Under the assumptions of Theorem 5.1,

(57) β∗ũΓ({yi
e})|dy| = fΓ({yi

e})
∏
A∈N

|yiA
A |mA|dy|
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where

(58) mAγ = 2|E(γs)| − d dim H1(γs)− 1 ≥ −1.

In the case of the divergent arrangement Cdiv(Γ), all mAγ = −1, and more-
over

(59) β∗ũs
Γ({yi

e})|dy| = f s
Γ({yi

e})
∏
A∈N

|yiA
A |−dAs+dA−1|dy|

where dA = dim A.

We also write dγ = dAγ .

Proof. Formally,

|dx| = |
∧

e∈E(t),j=0...,d−1

dxj
e| = |

∧
d

∏

yj
e¹yk

e′

yk
e′|

=
∏
A∈N

|yiA
A |qA|

∧
dyj

e|

where the qA are determined as follows. Since the xj
e, (j = 0, . . . , d − 1)

span Ae, the factor y
iAγ

Aγ
appears from all dxj

e such that e ≤ cc(γ), except

one, namely dx
iAγ

Aγ
itself which corresponds to the marking. Since t is an

adapted spanning tree, the set {e ∈ E(t) : e ≤ cc(γ)} defines a spanning
forest of γ, and one concludes using Proposition 2.4 that qAγ = dγ − 1.
Finally note that dim H1(γs) = |E(γs)|−dγ/d and Γ is at most logarithmic.
2

5.2. Combinatorial description of the Laurent coefficients. Let V =
V (Γ), E = E(Γ) and p : V → V ′ a map of sets which is not injective. In the
dual this defines a map p∨ : kV ′ → kV sending

∑
v∈V ′ αv′v

′ to
∑

v∈V αp(v)v.
Let E(γ) ⊆ E(Γ). Then the graph γp with vertex set V (γp) = V ′ and set of
edges E(γp) = E(γ) such that δγp = δγ ◦ p∨ : kV (γp) → kE(γp) (see (18)) is
called the graph γ contracted along p.

Note: The graph contracted along p may have loops. It is not necessar-
ily a subgraph of Γ anymore.

We assume, as in (9), a distinguished vertex v0 ∈ V (Γ) such that V0 =
V (Γ) \ {v0}. Let now t be a spanning tree of Γ and s ⊆ t a subforest of t.
This defines a map pt,s : V (Γ) → V (Γ) as follows: Let v ∈ V (Γ) be given.
Since t is a spanning tree of Γ, there is a unique path tv in t from v0 to v.
Let pt,s(v) be the unique vertex which is connected to v by edges of s only
and is nearest to v0 on the path tv. See figure 4 for an example. This gives
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FIGURE 4. The edges of s are broken lines, the edges of
t \ s full lines. pt,s({v0, v1, v2, v3}) = v0, pt,s(v4) = v4,
pt,s({v5, v6, v7}) = v5, pt,s(v8) = v8, pt,s(v9) = v9.

us a graph Γpt,s . It is obvious from the construction that t \ s is a spanning
forest of Γpt,s whereas all edges of s are transformed into loops.

Let N = {Aγ1 , . . . , Aγk
} be a P-nested set in Csing(Γ) or Cdiv(Γ). Let t be

an adapted spanning tree. All γi are assumed saturated. We define the graph
γi//N as follows. Let Aγj1

, . . . , Aγjl
be the maximal elements ⊆ Aγi

. Let
s be the forest defined by E(s) = E(t) ∩ (E(γj1) ∪ . . . ∪ E(γjl

)). Then
γi//N is the graph with edges E(γi) \

⋃l
m=1 E(γjm) contracted along the

map pt,s.

The graph γi//N obviously depends on t, although only up to a permu-
tation of the vertices, as is easily verified.

Lemma 5.1. Under the assumptions above:
(i) The graph γi//N has no loops.

(ii) If γi is connected, so is γi//N (wrt. Veff(γi//N )).
(iii) In the case of the divergent collection Cdiv(Γ), let N be a maximal

nested set. If γi is connected, γi//N is at most logarithmic and
primitive. Therefore res(γi//N ) is defined (see (46)).

(iv) In this case res(γi//N ) does not depend upon the choice of an
adapted spanning tree t.

Note that for P = F(C) every γi is connected (as it is irreducible). For
non-connected γi, the statements hold for each component.

Proof. (i) Suppose e were a loop in γi//N at the vertex v. Since γi has
no loops, |p−1

t,s (v)| > 1. However, pt,s moves only the vertices adjacent to
edges of s. We conclude e ∈ E(γjm) as the γj are saturated, and have a
contradiction.
(ii) By construction p∨(

∑
v′∈Veff(γi//N ) v′) = p∨(

∑
v′∈V (γi//N ) v′) =

∑
v∈V (γi)

v
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since the sum is over all vertices of Veff(γi) (the vertices not in Veff map to 0).
On the other hand, p∨(x) of a sum x =

∑
v′∈U v′ where U ( Veff(γi//N ),

is not contained in span
∑

v∈V (γi)
v. Write δ = δγi

and δp = δ(γi)p .

0 - H0(γi) - kV (γi) δ - kE(γi)

0 - H0(γi//N ) - kVeff(γi//N )

p∨

6

δp- kE(γi)\∪l
m=1E(γjm )

6

Note that δp as a map into kE((γi)p) is the same as as a map into kE(γi//N )

since the missing edges are all loops. Consequently, if x ∈ ker δp, then
p∨(x) ∈ ker δ, by definition of (γi)p. However, because γi is connected,
ker δ = span

∑
v∈V (γi)

v. Therefore dim ker δp = 1, if δp is restricted to
Veff(γi//N ), and hence γi//N connected.
(iii) By definition, a graph γ on V (Γ) is divergent if and only if dim Aγ =
(d− 2)|E(γ)|. It is convergent if dim Aγ > (d− 2)|E(γ)|. We may restrict
ourselves to saturated subgraphs because the number of edges increases the
susceptibility to divergences, and every divergent graph is saturated. Let
γp ⊆ γi//N be saturated as a subgraph of γi//N . Therefore E(γp) ⊆
E(γi)\

⋃l
m=1 E(γjm). Let now γs be the saturated graph for γp as a subgraph

of γi. Since p maps each component of γjm to a single vertex, γi//N has∑l
m=1 dim Aγjm

components more than γi. More generally,

dim Aγp = dim Aγs − dim As∩γs .

On the other hand,

|E(γp)| = |E(γs)| − |E((s ∩ γs)s)|.
Therefore (d − 2)|E(γp)| ≤ dim Aγp , and equality only if γs = γi (equiv-
alently γp = γi//N ) by the maximality of N . It follows that γi//N is
divergent, and proper subgraphs γp of γi//N are convergent, divergent,
worse than logarithmically divergent if and only if they are as subgraphs of
γi; whence γi//N is also at most logarithmic and primitive.
(iv) Let t, t′ be two choices of an adapted spanning tree. Then t \ s and
t′ \ s′ are spanning trees of γi//N , and by the argument in the proof of
Theorem 3.1 (ii) res γi//N is independent of the basis chosen. 2

We will shortly use this lemma in connection with the following theorem,
which helps understand the geometry of the divisor E in YP .

Theorem 5.2. (see [33, Theorem 3.2]) Let β : YP → M be a wonderful
model.
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(i) The divisor is E =
⋃

P∈P EP with EP smooth irreducible and β(EP ) =
P⊥.

(ii) The components EP1 , . . . , EPk
have nonempty intersection if and only

if {P1, . . . , Pk} is P-nested. In this case the intersection is transver-
sal.

2

We consider only the divergent case Cdiv(Γ) with arbitrary building set P
and conclude for the Laurent expansion at s = 1 :

Theorem 5.3. Let w̃s
Γ = β∗ũs

Γ as a density.
(i) The density w̃s

Γ has a pole of order Nmax at s = 1, where Nmax is
the cardinality of the largest nested set4.

(ii) Let

(60) w̃s
Γ =

∞∑

k=−Nmax

ãΓ,k(s− 1)k.

Then, for k ≤ −1,

supp ãΓ,k =
⋃

|N |=−k

⋂
Aγ∈N

Eγ,

which is a subset of codimension −k. The union is over P-nested
sets N .

(iii) Let P = F(Cdiv(Γ)). Let N be a nested set such that |N | = Nmax.
Then

(61) ãΓ,−Nmax [1] =
∑

|N |=Nmax

∏
Aγ∈N

res(γ//N ).

where all γ are assumed saturated.

Recall from Theorem 5.1 that fΓ is smooth in the yiA
A . Therefore the

canonical regularization can be used consistently (see (38)). The identity
(61) is known as a consequence of the scattering formula in [29] in a mo-
mentum space context. More general identities for the higher coefficients
can be obtained but are not necessary for the purpose of this paper.

Proof. (i) From (59), w̃s
Γ|dy| = f s

Γ

∏
A∈N |yiA

A |(dA−1)−dAs|dy| in local co-
ordinates. By the results of section 3.3, in particular (41),

(62) w̃s
Γ|dy| = f s

Γ

∏
A∈N

(
− 2δ0(y

iA
A )

dA(s− 1)
+ |yiA

A |(dA−1)−dAs
fin

)
|dy|,

4We suspect, but this is not needed here, that in the divergent arrangement all maximal
nested sets have (equal) cardinality Nmax.
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whence the first statement.
(ii) This follows from (62), using that Eγ is locally given by y

iAγ

Aγ
= 0. The-

orem 5.2 (ii) shows that the codimension is k.
(iii) Throughout this proof we assume all γ defining the nested set are sat-
urated. By Theorem 5.2 (ii), for |N | = Nmax, the set ∩γ∈NEγ intersects
no other Eγ′ , γ′ 6∈ N . Using (ii), ãΓ,−Nmax is in fact supported on a disjoint
union subsets of codimension k, and we may compute ãΓ,−Nmax [1] on each
of them and sum the results up. It suffices, therefore, to show
(63)

(−2)Nmax

∫
fΓ

∏
Aγ∈N

δ0(y
iAγ

Aγ
)/dγ|dy| =

∏
Aγ∈N

res(γ//N ) (in UB
N )

for all maximal nested sets N . Integration inside one chart suffices since
there is no other nested set N ′ such that j(UN ′) covers ∩Aγ∈NEγ and charts
from another choice of marked basis need not be considered, see the argu-
ment in the proof of Theorem 3.1 (ii). Recall (28) on MV0 and (55)

wΓ({yj
e}) = (β∗uΓ)({yj

e}) =
∏

e∈E(Γ)

u0({
∑

e′;e

∏

yj

e′¹yk
e′′

yk
e′′}d−1

j=0).

in UB
N . In order to study fΓ|

y
iAγ
Aγ

=0
one observes that all products

∏
yj

e′¹yk
e′′

yk
e′′

vanish at y
iAγ

Aγ
= 0, once e′ ∈ E(γ). If all d components x0

e′ , . . . , x
d−1
e′ of

all e′ ; e vanish at the same time, this does not affect fΓ, as it is taken
care of by a power of yiA

A pulled out of uΓ in (53). Consequently, for a fixed
e ∈ E(Γ),

u0({
∑

e′:e′;e

∏

yj

e′¹yk
e′′

yk
e′′}d−1

j=0)
∏

Aγ∈N ,e∈E(γ)

(y
iAγ

Aγ
)d−2

∏
Aγ∈N

δ0(y
iAγ

Aγ
)

= u0({
∑

e′:e′;e and ∀Aγ∈N
e′∈E(γ)⇒e∈E(γ)

∏

yj

e′¹yk
e′′

yk
e′′}d−1

j=0)
∏

Aγ∈N ,e∈E(γ)

(y
iAγ

Aγ
)d−2.

On the other hand, consider the graph γ//N where γ ∈ N . Write p = ptγ ,sγ

where E(tγ) = E(t)∩E(γ), t is the chosen adapted spanning tree for Γ and
sγ the subforest defined by the maximal elements of the nested set contained
in γ. Since γ is connected, tγ is a spanning tree of γ. A vertex v0,γ ∈ Veff(tγ)
is chosen. For each component c of sγ there is a unique element vc ∈ Veff(c)
which is nearest to v0,γ in tγ. By definition,

p∨(v) =





∑
v′∈Veff(c) v′ if v = vc,

0 if v ∈ Veff(sγ) \
⋃{vc},

v if v ∈ V (Γ) \ Veff(sγ).



46

Let x =
∑

e∈E(tγ) xebe with be = (−1)Qe
∑

v∈V1
v as in Proposition 2.7.

One finds p∨(be) = (−1)Qe
∑

v∈V1\V1∩Veff(c) v where c is the component of
sγ which contains e, and c = ∅ if e ∈ E(tγ \ sγ). In particular p∨(be) = be

if e ∈ E(tγ \ sγ). Consequently

iγ//N (x) = δp∨(x)

=
∑

e∈E(γ//N )

∑

e′∈E(tγ)

(−1)Qe′xe′
∑

v∈V1\V1∩Veff(c)

(v : e)e

=
∑

e∈E(γ//N )

∑
e′;e

e′∈E(tγ\sγ )

xe′e

where tγ \ sγ is a spanning tree for γ//N . Therefore

ãγ//N ,−1 =
∏

e∈E(γ//N )

u0({
∑
e′;e

e′∈E(tγ\sγ )

∏

yj

e′¹yk
e′′

yk
e′′})

×
∏

γ⊆γ′∈N
(y

iAγ′
Aγ′

)(d−2)|E(γ//N )||dy|.

In a final step, define for each e ∈ E(Γ) the minimal element Aγe ∈ N
such that e ∈ E(γe). We have E(Γ) =

⊔
Aγ∈N{e ∈ E(Γ) : γe = γ}

=
⊔

Aγ∈N E(γ//N ) as is shown by a simple induction. Similarly E(t) =⊔
Aγ∈N{e ∈ E(t) : γe = γ} =

⊔
Aγ∈N E(tγ) \ E(sγ) is a decomposition

into spanning trees since t is adapted. Write |dy| = |∧ e∈E(t)
j=0,...,d−1

dyj
e| and

|dŷ| = |∧ e∈E(t),j=0,...,d−1

y
j
e 6=y

iA
A

dyj
e|. Then, in UB

N ,

ãΓ,−Nmax = w̃Γ({yj
e})

∏
Aγ∈N

|yiAγ

Aγ
|δ0(y

iAγ

Aγ
)|dy|

=
∏

e∈E(Γ)

u0({
∑

e′:e′;e and ∀Aγ∈N
e′∈E(γ)⇒e∈E(γ)

∏

yj

e′¹yk
e′′

yk
e′′})

∏
Aγ∈N
e∈E(γ)

(y
iAγ

Aγ
)d−2|dŷ|

=
∏

Aγ∈N
(y

iAγ

Aγ
)(d−2)|E(γ)| ∏

e∈E(Γ)
γe=γ

u0({
∑
e′;e

γe′=γe

∏

yj

e′¹yk
e′′

yk
e′′}d−1

j=0)|dŷ|(64)

=
⊗

Aγ∈N
ãγ//N ,−1

Consequently (64) integrates to the product of residues as claimed. 2

Theorem 5.2 and Theorem 5.3 (ii) implicitly describe a stratification of YP .
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In the next section we will show that all the information relevant for renor-
malization is encoded in the geometry of YP .

6. RENORMALIZATION ON THE WONDERFUL MODEL

In this section we describe a map that transforms w̃s
Γ = β∗ũs

Γ into a
renormalized distribution density w̃s

Γ,R, holomorphic at s = 1, such that
ũΓ,R = β∗w̃s

Γ,R|s=1 is defined on all of MV0 and satisfies the following
(equivalent) physical requirements:

(i) The terms subtracted from uΓ in order to get uΓ,R can be rewritten
as counterterms in a renormalized local Lagrangian.

(ii) The uΓ,R satisfy the Epstein-Glaser recursion (renormalized equa-
tions of motion, Dyson-Schwinger equations).

One might be tempted to simply define uΓ,R by discarding the pole part in
the Laurent expansion of us

Γ,R at s = 1. However, unless Γ is primitive,
this would not provide an extension satisfying those requirements, and the
resulting ”counterterms” would violate the locality principle. See [26, Sec-
tion 5.2] for a simple example in momentum space.

The equivalence between (i) and (ii) is adressed in the original work of
Epstein and Glaser [35], see also [18, 23, 68]. We circumvent a number of
technical issues by restricting ourselves to logarithmic divergences of mass-
less graphs on Euclidean space-time throughout the paper.

6.1. Conditions for physical extensions. In this section we suppose as
given the unrenormalized distributions uΓ ∈ D′(MV0 \ (MV0)div(Γ)), and
examine what the physical condition (ii) implies for the renormalized dis-
tribution uΓ,R ∈ D′(MV0) to be constructed.

Let V = {1, . . . , n} be the vertex set of all graphs under consideration.
The degree of a vertex is the number of adjacent edges. In the previous
sections, Γ was always supposed to be connected. Here we need discon-
nected graphs and sums of graphs. Therefore all graphs are supposed to be
subgraphs of the N -fold complete graph KN

n on n vertices with N edges
between each pair of vertices. N can always be chosen large enough as to
accomodate any graph, in a finite collection of graphs Γ on V, as one of its
subgraphs.

We write lV = (l1, . . . , ln) for an N0- multiindex satisfying
∑

li ∈ 2N0.
Also lV−kV = (l1−k1, . . . , ln−kn),

(
lV
kV

)
=

(
l1
k1

)
. . .

(
ln
kn

)
etc. Let V = ItJ.

Let Bip(kI , kJ) be the set of (I, J)-bipartite graphs on V, where the degree
of the vertex i is given by ki. Finally, let (pI,J)∅(I(V be a partition of unity
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subordinate to the open cover
⋃
∅(I(V CI of MV0 \ {0} with

CI = MV0 \ (MV0)sing(KI,V \I)

where KI,J is the complete (I, J)-bipartite graph (i. e. the graph with ex-
actly one edge between each i ∈ I and each j ∈ J). The set (MV0)sing(KI,J)
is therefore the locus where at least one xi − xj = 0 for i ∈ I, j ∈ J.

The Epstein-Glaser recursion for vacuum expectation values of time-ordered
products (see [23, Equation (31)]) is given, in a euclidean version, by the
equality
(65)

tlVV =
∑

V =ItJ

Φ∗pI,J

lV∑
kV =0∑

i∈I li−ki=
∑

j∈J lj−vj

(
lV
kV

)
tkI
I tkJ

J

∑

Γ∈Bip(lI−kI ,lJ−kJ )

uΓ

on MV \ ∆ = Φ−1(MV0 \ {0}). The distributions tlVV therein, vaccuum
expectation values of time-ordered Wick products, relate to the single graph
distributions uΓ and their renormalizations uΓ,R as follows:

tlVV =
∑

Γ∈Gr(lV )

cΓuΓ on Φ−1(MV0 \ (MV0)sing(Kn))

tlVV =
∑

Γ∈Gr(lV )

cΓuΓ,R on MV(66)

Gr(lV ) is the set of all graphs Γ with given vertex set V (Γ) such that the
degree of the vertex i is li. There are no external edges and no loops (edges
connecting to the same vertex at both ends). The combinatorial constants
cΓ =

∏n
i=1 li!∏
i<j lij !

where lij is the number of edges between i and j, are not
needed in the following. See [51, Appendix B] for the complete argument.

Proposition 6.1. On the level of single graphs, a sufficient condition for
equation (65) to hold is, for any Γ,

(67) uΓ,R = uγ1,R·uγ2,R·uΓ\(γ1tγ2) on Φ−1(MV0\(MV0)sing(Γ\(γ1tγ2)))

whenever γ1, γ2 are connected saturated subgraphs of Γ, such that Veff(γ1)∩
Veff(γ2) = ∅.

Note that uγ1,R ·uγ2,R is in fact a tensor product since cc(γ1)∩cc(γ2) = 0.
The locus where the remaining factor uΓ\(γ1tγ2) is not smooth is excluded
by restriction to MV0 \ (MV0)sing(Γ \ (γ1 t γ2)). The product is therefore
well-defined. Note also that (67) trivially holds on MV0 \ (MV0)div(Γ) by
the very definition (7) of uΓ. Proposition 6.1 implies, in particular, that
if Γ is a disjoint union (Γ = γ1 t γ2 and Veff(γ1) ∩ Veff(γ2) = ∅), then
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uΓ,R = uγ1,R ⊗ uγ2,R everywhere.

The system of equations (67) is called the Epstein-Glaser recursion for uΓ,R.
Recursive equations of this kind are also referred to as renormalized Dyson-
Schwinger equations (equations of motion) in a momentum space context
[9, 63].

Proof of Proposition 6.1. Let all uΓ,R satisfy the requirement of (67).
We only need the case where {I, J} with I = Veff(γ1), J = Veff(γ2) is a
partition, i. e. ItJ = V. Since (MV0)sing(Γ\(γ1tγ2)) ⊆ (MV0)sing(KI,J),
(67) is valid in particular on CI ⊇ supp pI,J . Furthermore, since γ1 and γ2

are saturated, Γ \ (γ1 t γ2) is (I, J)-bipartite. Therefore, tlVV as in (66)
with (67) inserted, provides one of the terms on the right hand side of (65).
Conversely, every graph Γ with prescribed vertex degrees can be obtained
by chosing a partition I t J = V, taking the saturated subgraphs γi for I
and γj for J, respectively, and supplying the missing edges from the (I, J)-
bipartite graph. 2

6.2. Renormalization prescriptions. We consider the divergent arrange-
ment C = Cdiv(Γ) only, with building set P minimal or maximal, that is
P = F(C) or C. Let N be a nested set which, together with an adapted
spanning tree t and a marking of the corresponding basis B, provide for a
chart UB

N for YP .

By Theorem 5.3 (ii) the subset of codimension 1 where w̃s
Γ has only a sim-

ple pole at s = 1 is covered by those charts UB
N where N = {Aγ} with γ

any divergent (and irreducible if P = F(C)) graph. From (62) one has

w̃s
Γ|dy| = f s

Γ


− 2δ0(y

iAγ

Aγ
)

dγ(s− 1)
+ |yiAγ

A |(dγ−1)−dγs
fin


 |dy|

In these charts, one performs one of the following subtractions in order to
get a renormalized distribution. In the first case, only the pole is removed

(68) w̃s
Γ|dy| 7→ w̃s

Γ,R0
|dy| = f s

Γ|y
iAγ

Aγ
|dγs−(dγ−1)
fin |dy|

One might call this local minimal subtraction.

For Aγ ∈ N let Aγ1 , . . . , Aγk
∈ N be the maximal elements contained

in Aγ where all graphs are assumed saturated. For each Aγ ∈ N choose a
νAγ ∈ C∞(YP) such that νAγ |yiAγ

Aγ
=0

= 1 and νAγ depends only on the coor-

dinates yj
e, e ∈ E(t)∩ (E(γ)\E(∪k

j=1γj)) in UN
B , and has compact support
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in the associated linear coordinates xj
e, e ∈ E(t) ∩ (E(γ) \ E(∪k

j=1γj)).
The νAγ are called renormalization conditions. In practice, the νAγ will be
chosen as described at the end of section 3.4.

The second renormalization prescription is then

w̃s
Γ|dy| 7→ w̃s

Γ,Rµ
|dy|

= w̃s
Γ − |y

iAγ

Aγ
|dγs−(dγ−1)[νA]pA

δ0(y
iAγ

Aγ
)f s

Γ|dy|,(69)

which is called subtraction at fixed conditions. The notation [νA]pA
means

integration along the fiber of the projection

pA : (y0
e1

, . . . , yd−1
e|E(t)|) 7→ (y0

e1
, . . . , ŷiA

A , . . . , yd−1
e|E(t)|)

defined in (34). Both prescriptions provide us local expressions holomor-
phic at s = 1 in all charts UB

N where N contains a single element.

In the charts UB
N , for a general nested set N , where

w̃s
Γ|dy| = f s

Γ

∏
A∈N

1

|yiA
A |dAs−(dA−1)

|dy|

one applies the subtraction (68) in every factor (local minimal subtraction)

(70) w̃s
Γ,R0

|dy| = f s
Γ

∏
A∈N

|yiA
A |(dA−1)−dAs

fin |dy|.

Similarly, by abuse of notation, in the same chart,

(71) w̃s
Γ,Rµ

|dy| = w̃s
Γ

∏
A∈N

(
1− . . . [νA]pA

δ0(y
iA
A )

) |dy|

generalizing the subtraction at fixed conditions (69). A precise notation for
(71) – which disguises however the multiplicative nature of this operation –
is

w̃s
Γ,Rµ

|dy| =
∑

{A1,...,Ak}⊆N
(−1)k

∏
A∈N

1

|yiA
A |dAs−(dA−1)

[
Πk

j=1νAj

]
pA1,...,Ak

×
k∏

j=1

δ0(y
iAj

Aj
)f s

Γ|dy|(72)

where pA1,...,Ak
is the projection omitting the coordinates y

iAj

Aj
, j = 1, . . . , k.

Corollary 3.1 shows that there are no infrared divergences when pushing
forward along β.

Note that w̃s
Γ,R0

|s=1|dy| defines a density on YP , but this is not true for
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general s. One needs a moment to verify that w̃s
Γ,Rµ

|dy| is a globally well-
defined density for all s in a neighborhood of s = 1.

Proposition 6.2. The local expressions w̃s
Γ,R0

|s=1|dy| given by (70) define a
density on YP . The w̃s

Γ,Rµ
given by (71,72) define a density-valued function

on YP , holomorphic in a neighborhood of s = 1.

Proof. Note that w̃s
Γ is by construction a density for all s. Local minimal

subtraction: The |yiA
A |−1

fin transform like |yiA
A |−1 under transition between

charts. Subtraction at fixed conditions: Each term in the sum (72) differs
from w̃s

Γ by a number of integrations in the y
iAj

Aj
and a product of delta distri-

butions in the same y
iAj

Aj
. Under transition between charts, the contribution

to the Jacobian from the integrations cancels the one from the delta distri-
butions. It remains to show that w̃s

Γ,Rµ
has no pole at s = 1 : Using that

νA|yiA
A

= 1, we have in local coordinates

w̃s
Γ,Rµ

=
∑

{A1,...,Ak}⊆N
(−1)k

k∏
j=1


−2δ0(y

iAj

Aj
)

dΓ(s− 1)
+ |yiAj

Aj
|dγ−1−dγs
fin [νAj

]pAj

· δ0(y
iAj

Aj
)
) ∏

A∈N\{A1,...,Ak}

(−2δ0(y
iA
A )

dΓ(s− 1)
+ |yiA

A |dγ−1−dγs
fin

)
f s

Γ.

Combining this to a binomial power finishes the proof. 2

Theorem 6.1. Let P = F(Cdiv). Then both assignments

Γ 7→ ũΓ,R0 = β∗w̃s
Γ,R0

|s=1,

Γ 7→ ũΓ,Rµ = β∗w̃s
Γ,Rµ

|s=1

(with consistent choice of the µA) satisfy the locality condition (67) for
graphs.

The proof is based on the following lemmata. If Aγ ∈ P then γ is sup-
posed saturated. Recall that an atlas for YP is provided by the UB

N .

Lemma 6.1. Under the assumptions of Proposition 6.1, let Aγ ∈ P and
cc(γ) 6≤ cc(γ1 t γ2). Then

Eγ ⊆ β−1(MV0
sing(Γ \ (γ1 t γ2))).

Proof. If cc(γ) 6≤ cc(γ1∪γ2), then γ contains an edge e ∈ E(Γ\(γ1tγ2)).
Consequently A⊥

γ =
⋂

e∈E(γ) A⊥
e ⊆

⋃
e∈E(Γ\(γ1tγ2)) A⊥

e = MV0
sing(Γ \ (γ1 t

γ2)). Since β−1(A⊥
γ ) ⊇ Eγ, the result follows. 2
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Lemma 6.2. A subset N ⊆ G is nested wrt. the minimal building set if and
only if N = N1 t N2, where Ni is a nested set wrt. the minimal building
set for the connected graph γi with vertex set Veff(γi).

Proof. Let P(G) = F(Cdiv(G)) for a graph G. First, since Veff(γ1) ∩
Veff(γ2) = ∅, every connected subgraph γ of γ1 t γ2 is either contained in
γ1 or in γ2. Let nowN ⊆ G be nested wrt. P(Γ). All irreducible graphs are
connected. We can therefore write N = N1 t N2 where the elements of
Ni are contained in γi. Since γi is saturated, a subgraph of γi is irreducible
as a subgraph of γi if and only if it is as a subgraph of Γ. Consequently the
Ni are P(γi)-nested because P(γi) ⊆ P(Γ). Conversely, suppose N1 and
N2 are given. Let some γi1 , . . . , γil ⊆ γ1 and γj1 , . . . , γjm ⊆ γ2 be pairwise
noncomparable. Then the sum

∑l
k=1 Aγik

+
∑m

n=1 Aγn is in fact a decom-
position into two terms and therefore not contained in P(Γ), unless one of
the two terms is zero. But in this case, the other term is a nontrivial decom-
position itself, for it is not contained in P(γi). Therefore it is not contained
in P(Γ), and N1 tN2 is nested wrt. P(Γ). 2

Proof of Theorem 6.1. Let Γ, γ1, γ2 as in Proposition 6.1. Let φ ∈ D(MV0)
such that supp φ ∩ MV0

sing(Γ \ (γ1 t γ2)) = ∅. In a first step, we study the
compact set X = supp ψ where ψ = β∗φ. We say γ has property (∗) if it
satisfies

(∗) γ ⊆ Γ divergent and cc(γ) 6≤ cc(γ1 t γ2).

Let G = {Aγ ∈ P : γ has not property (∗)} ⊆ P . By Lemma 6.1, X does
not intersect any Eγ where γ has property (*). Therefore

X ∩ jBN (UB
N ) ⊆ jBN∩G(U

B
N∩G)

(where at the right hand side the marking of B is restricted to N ∩ G). In
a second step, consider the map β1,2 : YP(γ1) × YP(γ2) → MV0 which is
the cartesian product of two wonderful models (with two minimal building
sets). If UBi

Ni
is a chart for YP(γi), then UB1

N1
× UB2

N2
is a chart for the product.

As the nested sets N1 and N2 and the marking B1 and B2 of the basis vary,
one obtains an atlas for YP(γ1) × YP(γ2). Similarly, let qB1,B2

N1,N2
= qB1

N1
⊗ qB2

N2

be a subordinate partition of unity with compact support for the compact set
X ′ = supp β∗1,2φ in YP(γ1) × YP(γ2).
In a third step, we use Lemma 6.2 to identify P(Γ)-nested setsN ⊆ G with
N1 t N2, and to show that there is a partition of unity pBN for X ⊂ YP
subordinate to the atlas UB

N , which looks locally like qB1,B2

N1,N2
. Since UB

N =

UB1
N1
× UB2

N2
\ ∪A∈P\GZA, (see section 4.5), with B = B1 t B2 and jBN =

jB1
N1
× jB2

N2
, the qB1,B2

N1,N2
provide indeed such a partition of unity with compact

support, because a small enough neighborhood of X does not intersect the
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strict transforms ZA, A 6∈ G.
Finally in a chart UB

N , identified with UB1
N1
× UB2

N2
, by definition (70,71), the

renormalized distributions satisfy

w̃Γ,R(y)|dy| = w̃γ1,Rw̃γ2,Rw̃Γ\(γ1tγ2)(y)|dy|
where w̃γi,R ⊗ w̃γ2,R = β∗1,2(ũγi,R ⊗ ũγ2,R) and w̃Γ\(γ1tγ2) = β∗1,2ũΓ\(γ1tγ2).
Let ψ1,2 = β∗1,2φ. Since also β = β1,2 in this chart, we have ψ = ψ1,2 in
local coordinates. This finishes the proof. 2

Remarks. Local minimal subtraction is easily defined, but depends on the
choice of regularization in a crucial way. The subtraction at fixed conditions
is independent of the regularization and therefore the method of choice for
the renormalization of amplitudes and non-perturbative computations.
If one extends the requirement (67) to general decompositions AΓ = Aγ1 ⊕
Aγ2 into connected saturated subgraphs, then it is obvious that the minimal
model (P = F(Cdiv(Γ))) provides exactly the right framework for renor-
malization. On the other hand, the maximal model (P = Cdiv(Γ)) requires
unnecessary subtractions if there are disjoint or, more generally, reducible
divergent subgraphs. Locality must then be imposed by additional condi-
tions. It can be shown that local renormalization schemes such as local
minimal subtraction can also be applied on the maximal (and all intermedi-
ate) models, as will be reported elsewhere.

6.3. Hopf algebras of Feynman graphs. In this section we relate our pre-
vious results to the Hopf algebras introduced for renormalization by Connes
and Kreimer [28, 58], and generalized in [15]. This is not entirely straight-
forward, see also the remarks at the end of this section. In summary, as long
as worse than logarithmic divergences are avoided, the Hopf algebras for
renormalization in momentum space [15] and position space are the same.

Only the divergent collection Cdiv(Γ) and the minimal building set P =
F(Cdiv(Γ)) is considered at this stage, and irreducible and nested refer to
this setting.

Definition 6.1. Two Feynman graphs Γ1, Γ2 are isomorphic if there is an
isomorphism between their exact sequences (18) for a suitable orientation
of edges.

Lemma 6.3. Let γ ( Γ be divergent graphs where Γ is connected and
at most logarithmic. Let t be an adapted spanning tree for the nested set
N = {Γ, γ}. Then the isomorphism class of Γ//N is independent of t and
Γ//N connected, divergent and at most logarithmic.
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In this case we write Γ//γ for the isomorphism class of Γ//N .

Proof. Follows from Lemma 5.1 (ii),(iii) and the definition of the quotient
graph using pt,s. 2

Let HFG be the polynomial algebra over Q generated by the empty graph
(which serves as unit) and isomorphism classes of connected, at most loga-
rithmic, divergent graphs. There is no need to restrict to graphs of a specific
interaction, but this can obviously be done by introducing external (half-)
edges and fixing the degree of the vertices. All subgraphs are now un-
derstood to have vertex set Veff . Products of linear generators of HFG are
identified with disjoint unions of graphs. One defines

(73) ∆(Γ) =
∑
γ⊆Γ

γ ⊗ Γ//γ

where in the sum only divergent subgraphs γ are understood, including the
empty graph. The quotient graph Γ//γ is well-defined and a generator of
HFG by Lemma 6.3. One extends ∆ as an algebra homomorphism onto all
of HFG.

By the analysis of [15, Section 2.2], the map ∆ : HFG → HFG ⊗ HFG

is coassociative. Note that divergent and at most logarithmic implies one-
particle-irreducible (core) as in [15]:

Definition 6.2. A graph Γ is called core (one-particle irreducible) if dim
H1(Γ \ e) < dim H1(Γ) for any e ∈ E(Γ).

Proposition 6.3. A divergent, at most logarithmic graph Γ is core.

Proof. If dim H1(Γ \ e) = dim H1(Γ) for some e ∈ E(Γ) then Γ \ e
would be worse than logarithmically divergent. 2

One can divide HFG by the ideal I generated by all polynomials γ −∏
γj

where Aγ = Aγ1⊕. . .⊕Aγj
is an irreducible decomposition, as in [15, Equa-

tion (2.5)]. Indeed, if γ is connected and Aγ = Aγ1 ⊕ Aγ2 a decomposition
then γ is a join: E(γ) = E(γ1) ∪ E(γ2) and Veff(γ1) ∩ Veff(γ2) = {v}.
We refer then to [15, Equation (2.5)] for the complete argument that I is
a coideal. The quotient Hopf algebra is denoted HFG = HFG/I, and we
will use only this Hopf algebra in the following. Its corresponds to the min-
imal building set. The antipode is denoted S and the convolution product
of linear endomorphisms f ? g = m(f ⊗ g)∆. Note that a connected di-
vergent graph Γ is primitive in the sense of Definition 3.4 if and only if
∆(Γ) = ∅ ⊗ Γ + Γ⊗ ∅.
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Theorem 6.2. If Γ is irreducible,

S(Γ) =
∑

AΓ∈N
(−1)|N |

∏
Aγ∈N

γ//N ,

where the sum is over nested sets N wrt. F(Cdiv(Γ)).

Proof. Since the antipode satisfies S(∅) = ∅ and

S(Γ) = −
∑
γ(Γ

S(γ)Γ//γ,

for Γ irreducible, γ divergent, one has S(Γ) = −Γ if Γ is primitive. Let
now Γ be general irreducible. The sum over nested sets N wrt. F(Cdiv(Γ))
containing AΓ can be written as a sum over proper divergent subgraphs γ of
Γ and nested setsN ′ wrt.F(Cdiv(γ)) containing the irreducible components
of Aγ such that N = N ′ ∪ {AΓ}. By Lemma 6.3, Γ//γ = Γ//N , and the
statement follows by induction. 2

By Theorem 5.3 (ii)-(iii), the antipode S describes thus the stratification of
the divisor E of YP . A similar (but weighted) sum is given by S ? Y where
Y is the algebra homomorphism Y : HFG → HFG, Y (Γ) = dim H1(Γ)Γ,
see for example [29]. This provides the link between the scattering formula
of [29] and Theorem 5.3 (iii), and we refer to future work for the details.

In the case of dimensional regularization and minimal subtraction, one con-
siders algebra homomorphisms from HFG into an algebra of Laurent series
in the regulator, and a projector onto the finite part of the series, in order
to describe the renormalization process [28, 29, 58], see also sections 7.1-
7.5. In our framework, the Hopf algebra is encoded in the geometry of
the divisor. The renormalization process is simply to approach the divi-
sor and perform the simple subtraction along the irreducible components,
and to take the product of the subtracted factors where the components in-
tersect. Therefore the renormalization schemes studied here (70)-(72) can
again be described by the antipode twisted with a subtraction operator. The
latter depends however on local information as opposed to global minimal
subtraction. A comprehensive discussion of the difference between local
renormalization schemes as described here and (global) minimal subtrac-
tion is reserved for future work.

Remarks. The role of the Connes-Kreimer Hopf algebras in Epstein-Glaser
renormalization was previously discussed in [43], [67] and [8]. The third
paper, which is about entire amplitudes and uses rooted trees, relies on a
quite symbolic notation which is now justified by the results of the previous
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sections. A general flaw in the first paper [43] is reveiled in the introduction
of [67]. On the other hand the coproduct in the second paper [67] is not
coassociative the way it is defined. As a counterexample consider the cycle
on four vertices plus two additional edges between a pair of vertices. This
can be repaired by introducing irreducible, core or at most logarithmic and
saturated subgraphs as it is done here. See [15, Section 2.2] for a general
discussion for which classes P of graphs the map ∆(Γ) =

∑
γ⊆Γ
γ∈P

γ ⊗Γ//γ

has a chance of being coassociative.

6.4. Amplitudes, non-logarithmic divergences and regulators. In this
section we briefly sketch ideas how to extend our previous results, which
are so far confined to single graphs with at most logarithmic divergences,
to a more general class of graphs. Indeed, if one considers amplitudes, or
vacuum expectation values of time-ordered products in the Epstein-Glaser
framework, one wants to regularize and renormalize sums of Feynman dis-
tributions simultaneously, and some of them will obviously have worse than
logarithmic singularities.

For an introductory discussion of non-logarithmic divergences the reader
is referred to [15, Section 7.4], [26, Section 5]. The general philosophy is
to reduce seemingly non-logarithmic (quadratic etc.) divergences to loga-
rithmic ones by isolating contributions to different terms in the Lagrangian
(such as wave function renormalization, mass renormalization); and by
projecting onto a subspace of distribution-valued meromorphic functions
where local terms with infrared divergences are discarded. This shall only
be sketched at the example of the primitive graph

Γ = , uΓ(x)|d6x| = |d6x|
x8

in d = 6 dimensions, which is quadratically divergent. By (36), us
Γ has

relevant poles5 at s = 3
4

and s = 1. Indeed, by (36),
(74)

w̃s
Γ|dy| = f s

Γ(y)|dy|
|y0|8s−5

= −
(

δ0(y
0)

4s− 3
+

δ′′0(y
0)

8(s− 1)
− |y0|5−8s

fin

)
f s

Γ(y)|dy|.

5Just as in dimensional regularization, the (linear) divergence at s = 7/8 is not detected
by the regulator.
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Note that neither the residue at s = 3
4

nor |y0|5−8s
fin f s

Γ is globally defined
as a distribution density. One would like to work in a space of distribu-
tions where wΓ is equivalent to a linear combination of distribution densi-
ties with at most logarithmic singularities, having only a pole at s = 1. If
one disposes of an infrared regulation such that the so-called adiabatic limit
vanishes

(75) us
Γ[1] = 0

one can subtract us
Γ[1]δ0 from (74) without changing it:

w̃s
Γ|dy| = ws

Γ − δ0(y
0)

∫

E
w̃s

Γ(z)|dz|

= −
(

δ0(y
0)

4s− 3
+

δ′′0(y
0)

8(s− 1)
− |y0|5−8s

fin

)
f s

Γ(y)|dy|

−δ0(y
0)

(
− 1

4s− 3
+ holomorphic terms

)
,

which kills the pole at s = 3
4

and leaves a linear ultraviolet divergence. Us-
ing similar subtractions of zero the linear divergence may then be reduced
to logarithmic ones and convergent terms, again at the expense of introduc-
ing infrared divergent integrals which vanish however in a quotient space
where us

Γ[1] = 0 for all Γ. We have not worked out the general case, but di-
mensional regularization suggests that it can be done consistently. Indeed,
the idea (75) can be traced back to the ”identity”

(76)
∫

ddkk2α = 0, α arbitrary

in momentum space dimensional regularization, see also [26, Sections 4.2,
4.3], [15, Remark 7.6]. Equation (76) is a consequence of the fact that di-
mensional regularization balances ultraviolet and infrared divergences, us-
ing only one regulator d.

A complete treatment of non-logarithmic singularities and entire amplitudes
is reserved for future work, as well as a more general study of regularization
methods, such as dimensional regularization, in position space.

6.5. Final remarks. Pulling back the Feynman distribution onto a smooth
model with normal crossing divisor seems an obvious thing to do for an al-
gebraic geometer. Less obvious is maybe the question which kind of smooth
model is useful. In the recent paper [15], which studies the parametric rep-
resentation though, a toric compactification is used. Back in coordinate
space, there are recent approaches [48],[66] which seem to implicitly use
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the Fulton-MacPherson compactification, a special case of the De Concini-
Procesi models, but in a spherical version.

Apart from the open problems already mentioned and some incomplete
material omitted in this dissertation, there arise two immediate questions.
The first is to find the right analytic framework in order to generalize these
results to arbitrary propagators on manifolds, with a more versatile regu-
larization than the ad-hoc analytic regularization used here. The second
question is how the motivic description in [15] is related to our approach.

7. DYSON-SCHWINGER EQUATIONS AND HOPF ALGEBRAS

In the previous sections, the Connes-Kreimer Hopf algebras were briefly
introduced in the context of the wonderful models. The purpose of this
section is to sketch the algebraic features of solutions of Dyson-Schwinger
equations in this framework. Dyson-Schwinger equations are sometimes
called quantum equation of motion, and their solutions are the Green’s
function of the quantum field theory. See [31, 50] for two (quite differ-
ent) introductions to the subject. Usually, a Dyson-Schwinger equation is
an integral equation, obtained from repeatedly inserting Feynman graphs
one into another. A basic idea in the work of Kreimer is that the algebraic
aspects of these equations can be separated from the analytic ones. One is
therefore lead to define the notion of combinatorial Dyson-Schwinger equa-
tions, equations in formal power series with coefficients in a combinatorial
Hopf algebra. The main result, published in a joint paper with D. Kreimer
[9], is Theorem 7.1 where for a quite general class of combinatorial Dyson-
Schwinger equations it is shown that the coefficients of their solution gen-
erate a Hopf subalgebra. The exposition follows mostly the first sections of
[9].

7.1. Motivation: Renormalization and the Connes-Kreimer Hopf alge-
bras. We briefly review the theory of Connes and Kreimer, with special
emphasize on the Hopf algebra of rooted trees. Throughout this section,
we are now in momentum space. The Feynman graphs are as defined pre-
viously but may have half-edges attached to some vertices, such that the
degree of each vertex (counting both edges and half-edges) is fixed, and
determined by the theory. For example, in the φ3 theory in six dimensions,
there are only three-valent vertices. The Feynman integrals are given by a
generalization of (2) to graphs with half-edges:
(77)

Imom(Γ)(p1, . . . , pn) =

∫

Rd|E(Γ)|

∏

v∈V (Γ)

δ0


 ∑

e∈E(Γ)

(v : e)ke + pv


 ∏

e∈E(Γ)

ddke

k2
e

,
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where for each vertex v there is an external momentum vector pv ∈ Rd. If
there is no half-edge attached to v then pv = 0. A useful regularization is
dimensional regularization where the measure ddk, d ∈ 2 + 2N, is replaced
by dd+2εk, ε ∈ C, see for example [26]. Rooted trees store information
about nested and disjoint subdivergences of Feynman graphs in a natural
way. For instance, the subdivergences of the φ3 diagram in six spacetime
dimensions

Γ =

can be represented by the decorated tree
•γ1

•γ2 •γ3

A
A

¢
¢

where

γ1 = , γ2 = , γ3 = .

Additional labeling is understood in order to keep track of the actual inser-
tion places.

In a moment we will need the trees
•γ1

•γ2

and
•γ1

•γ3

which represent the graph γ1 for which γ2 or γ3, respectively, is suitably
inserted.

According to the Bogoliubov recursion [45,75], the renormalized Feynman
integral for Γ is given by

φR

( •γ1

•γ2 •γ3

A
A

¢
¢

)
= (id−R)

(
φ

( •γ1

•γ2 •γ3

A
A

¢
¢

)
−Rφ(•γ2)φ

(•γ1

•γ3

)

−Rφ(•γ3)φ
(•γ1

•γ2

)
−R (φ(•γ2•γ3)(78)

−φ(•γ2)Rφ(•γ3)− φ(•γ3)Rφ(•γ2)) φ(•γ1)

)

where φ denotes the regularized but unrenormalized contribution of the
graph which a given tree represents. In dimensional regularization with
minimal subtraction, φ is a map into the algebra V = C[ε−1, ε]] of Lau-
rent series with finite pole part. The map R : V → V is the projection
R(εk) = εk if k < 0 and R(εk) = 0 otherwise.
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7.2. Basic definitions and notation. Let k be a field of characteristic zero.
We consider k-bialgebras (A,m, I, ∆, ε) that are graded connected, that is

A =
∞⊕

n=0

An, A0
∼= k, AmAn ⊆ Am+n, ∆(An) ⊆

⊕

l+m=n

Al ⊗ Am.

By abuse of notation, we write I both for the unit and the unit map. Also,
we sometimes consider ε as a map A → A0. We assume that ∆(I) = I⊗ I.
It follows that ε(I) = 1 while ε(An) = 0 for n 6= 0. The kernel of ε is called
the augmentation ideal, and the map P : A → A, P = id − ε, is called
the projection onto the augmentation ideal. The coproduct ∆ gives rise to
another coassociative map: ∆̃, defined by

∆̃(x) = ∆(x)− I⊗ x− x⊗ I.
Recall that elements in the kernel of ∆̃ are called primitive. We will oc-
casionally use Sweedler’s notation ∆(x) =

∑
x′ ⊗ x′′ and also ∆̃(x) =∑̃

x′ ⊗ x′′.

It is a well known fact that connected graded bialgebras are Hopf algebras.
Indeed, the sequence defined by the recursive relation

(79) S(x) = −x−
∑̃

S(x′)x′′ for x 6∈ A0, S(I) = I

converges in Endk(A).

For a coalgebra (A, ∆) and an algebra (B, m), the vector space Homk(A,B)
of linear maps A → B is equipped with a convolution product ? by (f, g) 7→
f ? g = m(f ⊗ g)∆. Thus (f ? g)(x) =

∑
f(x′)g(x′′). Using the modified

product ?P : (f, g) 7→ f ?P g = m(f ⊗ g)(id⊗P )∆, equations (79) can be
rewritten

S(x) = −(S ?P id)(x) for x 6∈ A0, S(I) = I
which will be convenient later on.

7.3. The Hopf algebra of rooted trees and some variants. Now we give
a more detailed construction of the Hopf algebra H of rooted trees [27,
58]. A (non-planar) rooted tree is a connected contractible finite graph with
a distinguished vertex called the root. By convention, we will draw the
root on top. We are only interested in rooted trees up to isomorphism (an
isomorphism of rooted trees being an isomorphism of graphs which maps
the root to the root). As a graded algebra, H is the polynomial algebra
generated by rooted trees (including the empty tree which we consider the
unit I) with the weight grading: the weight of a tree is the number of its
vertices. A product of rooted trees is called a forest, and the weight of
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a forest is the sum of the weights of its trees. On H a coproduct ∆ is
introduced by

(80) ∆(τ) = I⊗ τ + τ ⊗ I+
∑

adm.c

Pc(τ)⊗Rc(τ)

where the sum goes over all admissible cuts of the tree τ. By a cut of τ we
mean a nonempty subset of the edges of τ that are to be removed. The prod-
uct of subtrees which “fall down” upon removal of those edges is called the
pruned part and is denoted Pc(τ), the part which remains connected with
the root is denoted Rc(τ). This makes sense only for certain ”admissible”
cuts: by definition, a cut c(τ) is admissible, if for each leaf l of τ it contains
at most one edge on the unique path from l to the root. For instance,

∆

( •
•
••¢¢ A
A

)
=

•
•
••¢¢ A
A
⊗ I+ I⊗

•
•
••¢¢ A
A

+ 2 • ⊗
•
•
•

+

+ • • ⊗ •• +
•
• •AA¢
¢ ⊗ •.

The coassociativity of ∆ is shown in [58]. H is obviously not cocommu-
tative. Since the coproduct is compatible with the grading, H is a Hopf
algebra. There is an important linear endomorphism of H, the grafting op-
erator B+ defined as follows:

B+(I) = •

B+(τ1 . . . τn) =
•
@
@

¡
¡

A
A

¢
¢

τ1 . . . τn

for trees τi(81)

In words: B+ creates a new root and connects it with each root of its ar-
gument. The special importance of B+ will become evident in section 7.4:
B+ : H → H is a closed but not exact Hochschild 1-cochain.

The Hopf algebra H is the dual of a Hopf algebra considered earlier by
Grossman and Larson [44], see [39].

From the Hopf algebra H, defined in the previous section, several gener-
alizations can be constructed: Hopf algebras of decorated trees, of planar
trees, etc. This can be phrased most elegantly from a general point of view
in terms of tree-like structures, as for example introduced in in [72]: Con-
sider the category of rooted trees and embeddings (an embedding τ ′ → τ
is an isomorphism from τ ′ to a subtree of τ ). A rooted tree-structure is
then defined to be a contravariant functor from this category to the category
of sets. For example, decorated (labelled) trees can be described by the
functor φ which maps a tree onto a certain set its vertices and/or edges are
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decorated with. Being contravariant, φ maps embeddings of trees to the re-
spective restrictions of decorations. Similarly, a planar structure is provided
by a functor φ mapping a tree to the set of its topological embeddings into
the real plane modulo orientation-preserving homeomorphisms of R2 onto
itself. Now let φ be a rooted tree-structure. A rooted φ-tree is a pair (τ, s)
where τ is a tree and s is an element of φ(τ). The notions of isomorphisms
and subtrees of rooted φ-trees are immediate.

Using this framework, there are immediately other Hopf algebras at hand:
Let S be a set. The Hopf algebraH(S) is defined as in the previous section,
replacing the word tree by S-decorated tree (for our purposes, we only deco-
rate vertices, not edges). Similarly,Hpl is the (noncommutative) Hopf alge-
bra of planar rooted trees. In particular, for these Hopf algebras, the proofs
of the coassociativity of ∆ are verbatim the same. The planar Hopf algebra
and its decorated versions Hpl(S) were extensively studied by Foissy [39].
He showed that they are self-dual and constructed isomorphisms to several
other Hopf algebras on trees that have appeared in the literature.

While rooted trees describe nested divergences in an obvious manner, the
resolution of overlapping divergences into trees requires some care. This
problem exists only in momentum space. By basing a Hopf algebra directly
on Feynman graphs instead of trees, these issues can be avoided [28, 59].
As an algebra, let HCK be the free commutative algebra on 1PI Feynman
graphs (of a given theory; the case of a non-scalar theory requires to take
form factors (external structures) into account which we avoid here). The
empty graph serves as a unit I. In the following, a product of graphs is iden-
tified with the disjoint union of these graphs. On a graph, a coproduct is
given [28] by

∆(Γ) = I⊗ Γ + Γ⊗ I+
∑
γ(Γ

γ ⊗ Γ/γ

where the sum is over all 1PI superficially divergent proper subgraphs γ of
Γ.

7.4. Hochschild cohomology of bialgebras. Let A be a bialgebra. We
consider linear maps L : A → A⊗n as n-cochains and define a coboundary
operator b by

(82) bL := (id⊗ L)∆ +
n∑

i=1

(−1)i∆iL + (−1)n+1L⊗ I

where ∆ denotes the coproduct and ∆i the coproduct ∆ applied to the i-th
factor in A⊗n. The map L ⊗ I is given by x 7→ L(x) ⊗ I. It is essentially
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due to the coassociativity of ∆ that b squares to zero, which gives rise to a
cochain complex (C, b). Clearly (C, b) captures only information about the
coalgebra structure of A. The cohomology of (C, b), denoted HH•

ε (A), is
easily seen to be the dual (A considered as a bicomodule rather than a bi-
module over itself) notion of the Hochschild cohomology of algebras. Note
that the right bicomodule action is here (id ⊗ ε)∆ which explains the last
summand in (82) and the subscript in HH•

ε .

For n = 1, the cocycle condition bL = 0 reduces to, for L : A → A,

(83) ∆L = (id⊗ L)∆ + L⊗ I.
Sometimes the following equivalent statement, using the map ∆̃, is more
convenient:

(84) ∆̃L = (id⊗ L)∆̃ + id⊗ L(I).
Let us now try to understand the space HH1

ε (H) of ”outer coderivations on
H.“ We first describe the 0-coboundaries (”inner coderivations“). They are
of the form

L(τ) =
∑

ατ ′′τ
′ − ατ I

in Sweedler’s notation, where ατ is an element of k for each forest τ. For
example, L : τ 7→ ∑

τ ′ − I is a 0-coboundary. Note that I is in the kernel
of any 0-coboundary.

It is a crucial fact that the grafting operator B+, introduced in section 7.3,
is a 1-cocycle [27]:

(85) ∆B+ = (id⊗B+)∆ + B+ ⊗ I.

(86) ∆̃B+ = (id⊗B+)∆̃ + id⊗ •.
The statement follows from (86): Let τ be a forest. The first term at the
right side of (86) refers to cuts of B+(τ) which affect at most all but one
of the edges connecting the new root of B+(τ) to the roots of τ, while the
second summand takes care of the cut which completely separates the root
of B+(τ) from all its children. 2

Since B+ is a homogeneous linear endomorphism of degree 1, it is not a
0-coboundary – note that the coboundaries have no chance to increase the
degree. Thus B+ is a generator (among others) of HH1

ε (H).

When looking for other generators L of HH1
ε (H), the cocycle conditions

(83,84) immediately yield the requirement that L(I) be a primitive element
(and zero if L is exact). While • is up to scalar factors obviously the only
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primitive element in degree 1, there are plenty of primitives in higher de-
grees. For example,

(87) • • −2
•
•

is a primitive element in degree 2. Foissy [39] showed that L 7→ L(I) is a
surjective map HH1

ε (H) →Prim(H) onto the set of primitive elements of
H. In the case of Hopf algebras of decorated rooted trees H(S) obviously
any element s ∈ S yields a homogeneous cocycle of degree 1 denoted Bs

+

which, applied to a forest, connects its roots to a new root decorated by s.

It should be clear that each 1PI Feynman graph which is free of subdi-
vergences is a primitive element of HCK . In general, there are primitive
elements in higher degrees too, for example, cf. (87), the linear combina-
tion

− 2

in φ3 theory in six dimensions.

The category of objects (A, L) consisting of a commutative bialgebra A
and a Hochschild 1-cocycle L on A with morphisms bialgebra morphisms
commuting with the cocycles has the initial object (H, B+). This is a result
of [27]. Indeed, let (A, L) be such a pair. The map ρ : H → A is simply
defined by ρ(I) = I and pushing forward along B+ (and L) and the multipli-
cation. The fact that ρ is a morphism of coalgebras is an easy consequence
of (85).

Also it was shown in [8] that, conversely, the coproduct ∆ of H is de-
termined if one requires the map B+ to be a 1-cocycle. This may serve to
find different presentations of H.

For anyH-bicomodule B, the higher Hochschild cohomology HHn(H, B),
n ≥ 2, is trivial [39], thus in particular HHn

ε (H) = 0.

7.5. Convergence and locality from the Hopf algebra. Given a specific
quantum field theory, Hopf algebras H(S) and HCK are determined by the
perturbative expansion into Feynman graphs. We denote this Hopf algebra
generically by H. The next step is to define a target algebra V and regular-
ized Feynman rules φ : H → V, and a renormalization scheme R : V → V.
The map φ is supposed to be a (unital) algebra homomorphism. We stick to
the example (V = C[ε−1, ε]], φ) of dimensional regularization and minimal
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subtraction as in section 7.1. The map R satisfies the Rota-Baxter equation

(88) R(xy) + R(x)R(y) = R(xR(y)) + R(R(x)y)

which is key to the Birkhoff decomposition of [28], see for example [34].
It also guarantees that the renormalized Feynman rules are again an alge-
bra homomorphism [60] as are the unrenormalized rules φ. The twisted
antipode is defined by

(89) Sφ
R(τ) = −R(Sφ

R ?P φ)(τ) for τ 6∈ H0, Sφ
R(I) = 1,

equivalently, in Sweedler’s notation

Sφ
R(τ) = −R

(
φ(τ) +

∑̃
Sφ

R(τ ′)φ(τ ′′)
)

for τ 6∈ H0, Sφ
R(I) = 1

where the term ”twisted antipode“ refers to the recursive expression (79)
for the regular antipode. The map Sφ

R yields the counterterm for φ. The
renormalized Feynman rules are then given by

(90) φR = Sφ
R ? φ.

One can find a non-recursive description of φR [27, 58] which shows the
equivalence with Zimmermann’s forest formula [75].

In order to understand the twisted antipode, we come back to the example
of section 7.1. On the relevant trees, the coproduct acts as follows:

∆
( •γ1

•γ2 •γ3

A
A

¢
¢

)
= I⊗ •γ1

•γ2 •γ3

A
A

¢
¢ +

•γ1

•γ2 •γ3

A
A

¢
¢ ⊗ I+

+ •γ2 ⊗
•γ1

•γ3

+ •γ3 ⊗
•γ1

•γ2

+ •γ2 •γ3 ⊗•γ1 ,(91)

∆(•γi
) = I⊗ •γi

+ •γi
⊗ I,

According to (89) and (90), the algorithm for φR consists of the following
steps:

(F ) Apply the coproduct ∆ to the tree under consideration
(Cn) apply the map (id⊗P )∆⊗id⊗n (for n = 1 . . .) until each summand

is of the form I⊗ . . . .
(M ) apply φ⊗n to go into V ⊗n. As φ(I) = Sφ

R(I) = 1, the first factor I of
each term is mapped to 1.

(C ′
n) (for n = . . . 1) apply the map −Rm⊗ id⊗n until we end up in V ⊗2

(F ′) apply the map m to get into V.

For the tree
•γ1

•γ2 •γ3

A
A

¢
¢ this algorithm is performed in Figures 1–3.
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H •γ1

•γ2 •γ3

A
A

¢
¢

φ⊗2← H⊗2

∆

? •γ1

•γ2 •γ3

A
A

¢
¢ ⊗ I+ I⊗ •γ1

•γ2 •γ3

A
A

¢
¢ + •γ2 ⊗

•γ1

•γ3

+ •γ3 ⊗
•γ1

•γ2

+ •γ2 •γ3 ⊗•γ1

φ⊗3← H⊗3

(id⊗P )∆⊗id

? (
I⊗ •γ1

•γ2 •γ3

A
A

¢
¢ + •γ2 ⊗

•γ1

•γ3

+ •γ3 ⊗
•γ1

•γ2

+ •γ2 •γ3 ⊗•γ1

)
⊗ I

+(I⊗ •γ2 •γ3 + •γ2 ⊗ •γ3 + •γ3 ⊗•γ2)⊗ •γ1

+I⊗ •γ2 ⊗
•γ1

•γ3

+ I⊗ •γ3 ⊗
•γ1

•γ2

+1 summand done (was already of the form I⊗ . . .)

φ⊗4← H⊗4

(id⊗P )∆⊗id⊗2

?

I⊗ •γ2 ⊗
•γ1

•γ3

⊗ I+ I⊗ •γ3 ⊗
•γ1

•γ2

⊗ I+ I⊗ •γ2 •γ3 ⊗ •γ1 ⊗I

+ •γ2 ⊗ •γ3 ⊗ •γ1 ⊗I+ •γ3 ⊗ •γ2 ⊗ •γ1 ⊗ I

+I⊗ •γ2 ⊗ •γ3 ⊗ •γ1 + I⊗ •γ3 ⊗ •γ2 ⊗ •γ1

+5 summands done

φ⊗5← H⊗5

(id⊗P )∆⊗id⊗3

?

I⊗ •γ2 ⊗ •γ3 ⊗ •γ1 ⊗ I+ I⊗ •γ3 ⊗ •γ2 ⊗ •γ1 ⊗ I

+10 summands done

FIGURE 5. First part of the calculation of φR. Apply ∆ and
then (id ⊗ P )∆ ⊗ id⊗n until each summand is of the form
I⊗ . . . .
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φ⊗5→ V ⊗5 . . .

φ⊗4→ V ⊗4

−Rm⊗id3

?

−Rφ(•γ2)⊗ φ(•γ3)⊗ φ(•γ1)⊗ 1−Rφ(•γ3)⊗ φ(•γ2)⊗ φ(•γ1)⊗ 1

+10 summands pending

φ⊗3→ V ⊗3

−Rm⊗id2

?

−Rφ(•γ2)⊗ φ
(•γ1

•γ3

)
⊗ 1−Rφ(•γ3)⊗ φ

(•γ1

•γ2

)
⊗ 1

−Rφ(•γ2•γ3)⊗ φ(•γ1)⊗ 1 + R(Rφ(•γ2)φ(•γ3))⊗ φ(•γ1)⊗ 1

+R(Rφ(•γ3)φ(•γ2))⊗ φ(•γ1)⊗ 1−Rφ(•γ2)⊗ φ(•γ3)⊗ φ(•γ1)

−Rφ(•γ3)⊗ φ(•γ2)⊗ φ(•γ1)

+5 summands pending

φ⊗2→ V ⊗2

−Rm⊗id

?

R
(
Rφ(•γ2)φ

(•γ1

•γ3

))
⊗ 1 + R

(
Rφ(•γ3)φ

(•γ1

•γ2

))
⊗ 1

+R (Rφ(•γ2•γ3)φ(•γ1))⊗ 1−R (R(Rφ(•γ2)φ(•γ3))φ(•γ1))⊗ 1

−R (R(Rφ(•γ3)φ(•γ2))φ(•γ1))⊗ 1 + R (Rφ(•γ2)φ(•γ3))⊗ φ(•γ1)

+R (Rφ(•γ3)φ(•γ2))⊗ φ(•γ1)−Rφ
( •γ1

•γ2 •γ3

A
A

¢
¢

)
⊗ 1

−Rφ(•γ2•γ3)⊗ φ(•γ1)−Rφ(•γ2)⊗ φ
(•γ1

•γ3

)

−Rφ(•γ3)⊗ φ
(•γ1

•γ2

)
+ 1 summand pending

m

?

FIGURE 6. Second part of the calculation of φR. Apply φ⊗n

and then −Rm⊗ id⊗n until arrival in V ⊗2. Then apply m to
get into V.
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V

m

?
−Rφ

( •γ1

•γ2 •γ3

A
A

¢
¢

)
+ R

(
Rφ(•γ2)φ

(•γ1

•γ3

))
+ R

(
Rφ(•γ3)φ

(•γ1

•γ2

))

+R (Rφ(•γ2•γ3)φ(•γ1))−R (R(Rφ(•γ2)φ(•γ3))φ(•γ1))

−R (R(Rφ(•γ3)φ(•γ2))φ(•γ1)) + φ
( •γ1

•γ2 •γ3

A
A

¢
¢

)
−Rφ(•γ2)φ

(•γ1

•γ3

)

−Rφ(•γ3)φ
(•γ1

•γ2

)
−Rφ(•γ2•γ3)φ(•γ1)

+R (Rφ(•γ2)φ(•γ3)) φ(•γ1) + R (Rφ(•γ3)φ(•γ2)) φ(•γ1)

FIGURE 7. Third part of the calculation of φR, to be com-
pared with (78). Using the fact that Sφ

R is an algebra homo-
morphism (if R is a Rota-Baxter map), the last step (C3) in
Figure 1 and the first step (C3’) in Figure 2 could have been
avoided.

7.6. Dyson-Schwinger equations and Hopf subalgebras. Hopf subalge-
bras of the Hopf algebras of (decorated) rooted trees or Feynman graphs are
in close relationship with Dyson-Schwinger equations. Indeed, any Dyson-
Schwinger equation (to be defined below) gives rise to a Hopf subalgebra.
It will turn out in Theorem 7.1 that all Hopf subalgebras coming from a rea-
sonably general class of Dyson-Schwinger equations are in fact isomorphic.

Hopf subalgebras of decorated rooted trees. For simplicity, we start our
considerations in the Hopf algebra H of undecorated rooted trees. A full
classification of their Hopf subalgebras is beyond reach. However, we give a
few examples the last of which will be directly related to Dyson-Schwinger
equations.

Bounded fertility, finite parts, primitive elements. For n ∈ N let Hn be the
subalgebra of H generated by trees whose vertices have fertility bounded
from above by n. A glance at the definition of the coproduct (80) suffices to
see that Hn is a Hopf subalgebra of H. In particular, the Hopf algebra H1

with one generator in each degree is known as the Hopf algebra of ladders.
It is closely related to iterated integrals [25, 60].

Similarly, the polynomial algebra generated by trees of degree ≤ n forms
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a Hopf subalgebra for any n since the coproduct respects the grading. An-
other example where there is nothing to check are subalgebras generated by
an arbitrary collection of primitive elements of H.

The Connes-Moscovici Hopf subalgebra. A less trivial example of a Hopf
subalgebra of H arose in the work of Connes and Moscovici on local index
formulas for transversally hypoelliptic operators on foliations [27, 30]. In
the case of a foliation of codimension 1, the relevant Hopf algebra HT is
defined by the generators X,Y, δn for n ∈ N, the relations

[X, Y ] = −X, [X, δn] = δn+1, [Y, δn] = nδn, [δn, δm] = 0,

and the coproduct

∆(X) = X⊗I+I⊗X+δ1, ∆(Y ) = Y⊗I+I⊗Y, ∆(δ1) = δ1⊗I+I⊗δ1.

Note that the relations above and the requirement that ∆ be an algebra ho-
momorphism determine ∆ on the generators δn for n ≥ 2 as well. Let N
be the linear operator, called natural growth operator, on H, defined on a
tree τ by adding a branch to each vertex of τ and summing up the resulting
trees, extended as a derivation onto all of H. For example,

N(I) = •,
N2(I) =

•
•,

N3(I) =
•
• •AA¢
¢ +

•
•
•
,(92)

N4(I) =
•
• • •AA¢
¢ + 3

•
• •
•

A
A

¢
¢ +

•
•
••¢¢ A
A

+

•
•
•
•
.

Now identifying δ1 with •, and generally δn with Nn(I), the commutative
Hopf subalgebra of HT generated by the δn can be embedded into H [27].
The resulting Hopf subalgebra is denoted HCM . For example,

∆̃(δ1) = 0,

∆̃(δ2) = δ1 ⊗ δ1,

∆̃(δ3) = 3δ1 ⊗ δ2 + (δ2 + δ2
1)⊗ δ1.

The δn can be specified in a non-recursive manner:

δn =
∑
τ∈Tn

cττ.
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Here Tn is the set of trees of weight n. The integers cτ , called Connes-
Moscovici weights, have been computed in [39, 60] using the tree factorial

cτ =
n!

τ ! Sym(τ)

where Sym(τ) is the order of the group of symmetries of τ.

A quadratic Dyson-Schwinger equation. Now we turn to the study of an-
other source of Hopf subalgebras, the combinatorial Dyson-Schwinger equa-
tions. As a first example, we consider the equation

(93) X = I+ αB+(X2)

in H[[α]]. Using the ansatz

X =
∞∑

n=0

αncn

one easily finds c0 = I and

(94) cn+1 =
n∑

k=0

B+(ckcn−k)

which determine X by induction. The first few cn are easily calculated:

c0 = I,
c1 = •,
c2 = 2

•
•

c3 =
•
• •AA¢
¢ + 4

•
•
•

c4 = 4

•
• •
•

A
A

¢
¢ + 2

•
•
••¢¢ A
A

+ 8

•
•
•
•

We observe that cn is a weighted sum of trees with vertex fertility bounded
by 2 – this is due to the square of X in the Dyson-Schwinger equation (93).
The recursive nature of (93) makes one suspect that the cn generate a Hopf
subalgebra of H. Indeed, for each n ≥ 0 and k ≤ n there is a polynomial
P n

k in the cl for l ≤ n such that

(95) ∆cn =
n∑

k=0

P n
k ⊗ ck.
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They are inductively determined by

(96) P n+1
k+1 =

n−k∑

l=0

P l
0P

n−l
k

and P n+1
0 = cn+1. For a proof of this statement, see the more general The-

orem 7.1 in the next section. For the moment, we merely display the first
P n

k in an upper triangular matrix where columns are indexed by n = 0 . . . 5
and rows by k = 0 . . . n.




I c1 c2 c3 c4 c5

I 2c1 2c2 + c2
1 2c3 + 2c1c2 2c4 + 2c1c3 + c2

2

I 3c1 3c2 + 3c2
1 6c1c2 + c3

1 + 3c3

I 4c1 6c2
1 + 4c2

I 5c1

I




The coefficients are basically multinomial coefficients as will become clear
in the next section.

Combinatorial Dyson-Schwinger equations. Let A be any connected graded
Hopf algebra which is free or free commutative as an algebra, and (Bdn

+ )n∈N
a collection of Hochschild 1-cocycles on it (not necessarily pairwise dis-
tinct). The most general Dyson-Schwinger equation we consider here is

(97) X = I+
∞∑

n=1

αnwnB
dn
+ (Xn+1)

in A[[α]]. The parameter α plays the role of a coupling constant. The wn

are scalars in k. Again we decompose the solution

X =
∞∑

n=0

αncn

with cn ∈ A.

Lemma 7.1. The Dyson-Schwinger equation (97) has a unique solution
described by c0 = I and

(98) cn =
n∑

m=1

wmBdm
+


 ∑

k1+...+km+1=n−m, ki≥0

ck1 . . . ckm+1


 .

Proof. Inserting the ansatz into (97) and sorting by powers of α yields
the result. Uniqueness is obvious. 2



72

Theorem 7.1. The elements cn generate a Hopf subalgebra of A :

∆(cn) =
n∑

k=0

P n
k ⊗ ck

where the P n
k are homogeneous polynomials of degree n−k in the cl, l ≤ n :

(99) P n
k =

∑

l1+...+lk+1=n−k

cl1 . . . clk+1
.

In particular, the P n
k are independent of the wn and Bdn

+ .

We emphasize that the main ingredient for the proof of this theorem is the
fact that the Bdn

+ are Hochschild 1-cocycles, the rest being a cumbersome
but straightforward calculation.

Proof. We proceed by proving inductively the following statements:
(αn) The theorem holds up to order n.
(βn) For a given m ∈ {1 . . . n} let l1 + . . . + lm+1 =: p ∈ {0 . . . n−m},

li ≥ 0. Then the right hand sum

(100) P (n−m,m, p) :=
∑

k1+...+km+1=n−m, ki≥li

P k1
l1

. . . P
km+1

lm+1

does not depend on the single li but only on p, n−m and m, justi-
fying the notation P (n−m,m, p).

(γn) In the above notation and for any q ∈ {1 . . . n}, the term P (n −
m,m, q −m) does not depend on m ∈ {1 . . . q}.

To start the induction, we note that (α0) is obvious. (β1) is trivial as m = 1
enforces l1 = l2 = 0. Similarly, for (γ1) only one m is in range and the
statement thus trivially satisfied. We proceed to (αn). By definition, and
using (83) for the Bdn

+ ,

∆(cn) =
n∑

m=1

wm((id⊗Bdm
+ )∆ + Bdm

+ ⊗ I)

 ∑

k1+...+km+1=n−m, ki≥0

ck1 . . . ckm+1




(using the induction hypothesis (αn−1))

= cn ⊗ I+
n∑

m=1

wm(id⊗Bdm
+ )

∑

k1+...+km+1=n−m, ki≥0

k1...km+1∑

l1...lm+1=0

P k1
l1

. . . P
km+1

lm+1
⊗ cl1 . . . clm+1 =
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(by rearranging indices)

= cn ⊗ I+
n∑

m=1

wm

n−m∑
p=0

∑

l1+...+lm+1=p

∑

k1+...+km+1=n−m, ki≥li

P k1
l1

. . . P
km+1

lm+1
⊗Bdm

+ (cl1 . . . clm+1) =

(by the induction hypothesis (βn) and using the notation of (100))

= cn ⊗ I+
n∑

m=1

wm

n−m∑
p=0

P (n−m,m, p)⊗
∑

l1+...+lm+1=p

Bdm
+ (cl1 . . . clm+1) =

(rearranging indices (q replaces m + p) and using (γn))

= cn ⊗ I+
n∑

q=1

q∑
m=1

wmP (n−m,m, q −m)⊗

⊗
∑

l1+...+lm+1=q−m

Bdm
+ (cl1 . . . clm+1) =

= cn ⊗ I+
n∑

q=1

P (n− q, q, 0)⊗
q∑

m=1

wq

∑

l1+...+lm+1=q−m

Bdm
+ (cl1 . . . clm+1).

Since the right hand tensor factor is cq, a glance at (100), using that P k
0 = ck,

verifies (αn).

The items (βn) and (γn) follow from (αn−1) :

P (n−m,m, p) =
∑

k1+...+km+1=n−m, ki≥li

P k1
l1

. . . P
km+1

lm+1
=

=
∑

k1+...+km+1=n−m, ki≥li

∑

r1
1+...+r1

l1+1=k1−l1

. . .

. . .
∑

rm+1
1 +...+rm+1

lm+1+1=km+1−lm+1

cr1
1
. . . crm+1

lm+1+1
=

=
∑

r1+...+rm+p+1=n−m−p

cr1 . . . crm+p+1 ,

which is independent of any li whence (βn). Substituting p = q −m shows
(γn). 2

At first sight the fact that the coproduct on the ci does not depend on the wk

and hence that all Dyson-Schwinger equations of this kind yield isomorphic
Hopf subalgebras (provided there are no relations among the cn) might well



74

come as a surprise. The deeper reason for this is the recursiveness of (97)
as will become more apparent in the next paragraphs.

Description using trees. Now we specialize to the case A = H(S) where
(S = tSn, | · |) is an arbitrary graded set of decorations such that |dn| = n
for all n (one can even allow dn ⊂ Sn and define Bdn

+ :=
∑

δ∈dn
Bδ

+). The
maps Bdn

+ are defined as in (81) where the newly created vertex is decorated
by dn.

Lemma 7.2. The solution of (97) satisfies c0 = I and

(101) cn =
∑

τ∈T (S), |τ |=n

τ

Sym(τ)

∏

v∈τ [0]

γv

where

γv =

{
w|dec(v)|

(|dec(v)|+1)!
(|dec(v)|+1−fert(v))!

if fert(v) ≤ |dec(v)|+ 1

0 else.

Here T (S) denotes the set of S-decorated trees, τ [0] the set of vertices of τ,
dec(v) the decoration (in S) of v, |τ | the decoration weight of τ, i. e. |τ | =∑

v∈τ [0] |dec(v)|, and fert(v) the fertility (number of outgoing edges) of the
vertex v.

Proof. This is an easy induction using the following argument: Let τ be
a given tree in cn and let its root o be decorated by something in degree
m. According to (98), τ = Bdm

+ (Ik0τ1 . . . τm+1−k0) where the τi are trees
different from I. The fertility of the root is thus m + 1 − k0. We assume
τ1 . . . τm+1−k0 = σk1

1 . . . σ
kp
p where the σi are pairwise different trees. In

(98), there are C := (m+1)!
k0!...kp!

choices to make which yield the tree τ. Since
the γv are simply multiplied for all vertices v of a tree, it remains to see that
for the only new vertex o in τ, we have

γo/wm =
(m + 1)!

k0!
= C

Sym(τ)

Sym(τ1) . . . Sym(τm+1−k0)
.

This however follows immediately from the definition of Sym. 2

As emphasized by Kreimer, the coefficients

(102)
∏

v

γv
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can be interpreted as follows: Consider each tree as an ”operadic“ object
with |dec(v)|+ 1− fert(v) inputs at each vertex v. For example,

•4

•1

•3•2

¢
¢

A
A

→

•4

•1

•3•2
¢
¢

A
A

¢
¢
©© A

A
HH

¢
¢
¤
¤
A
A
C
C

¢
¢

C
C

Clearly, the total number of inputs is n+1 for any tree of decoration weight
n. The coefficient (102) is the number of planar embeddings of this operadic
tree (where the trunk, i. e. the original tree is kept fixed). In other words,
(102) counts the number of ways that the input edges can sway around the
trunk. The coefficients (102) arise thus due to the transition from a non-
commutative (planar) to a commutative (non-planar) setting.

In general, the combinatorial Dyson-Schwinger equations relate to the in-
tegral equations in [31, 50] by a simple application of the Feynman rules,
mapping decorated rooted trees or Feynman graphs to integrals. In particu-
lar, the pushforward of Bdn

+ along the Feynman rules is an integral operator
whose kernel is determined by the Feynman rules for dn, where each dn is
a primitive Feynman graph and |dn| = rank H1(dn). See the second part of
[9] for details.

For a special subclass of the combinatorial Dyson-Schwinger equations
(97) a quite similar description of the Hopf subalgebras was later given
by Hoffman [46], who seems to have been unaware of our result. Foissy
showed [38] several related results about Dyson-Schwinger equations and
Hopf subalgebras within the undecorated Hopf algebra, see also [37] for
an isomorphism between the Connes-Moscovici Hopf algebra and Faa-di-
Bruno Hopf algebras. On the physics side, a comprehensive discussion of
Dyson-Schwinger equations and systems thereof is given in Yeats’ thesis
[74], see also [56, 57].

Closely related to Hopf subalgebras are Hopf ideals, studied for the Feyn-
man graph Hopf algebras HCK in [55, 62, 64, 69–71]. They help show that
the renormalized Feynman rules are compatible with additional structures
such as gauge symmetries.

8. A RESULT ABOUT GRAPH POLYNOMIALS

Beyond the pure position space (sections 2-6) and momentum space (sec-
tion 7) representations of the Feynman rules, there exist two so-called para-
metric representations, one of which was already mentioned in the introduc-
tion. It is especially useful for the algebro-geometric approach to Feynman
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integrals [14, 15, 17]. The basic object is a homogeneous polynomial in
the edge variables which captures all the relevant data from the graph. It
is called graph polynomial or Kirchhoff polynomial. Bloch, Esnault and
Kreimer study the mixed Hodge structure on the cohomology of the pro-
jective hypersurface defined by this polynomial [14], called graph hyper-
surface. Of special interest is an understanding of the geometry of graph
hypersurfaces as graphs are inserted one into another. The main result here
is Theorem 8.1 which expresses the graph polynomial of an inserted graph
in terms of graph polynomials of the sub- and cograph, and related graphs.
I contributed a version of this result, among other things, to a joint project
with A. Rej [10], answering a question of M. Marcolli.

8.1. The parametric representation. Let Γ be a connected Feynman graph.
The linear algebra of singularities of the Feynman distribution in position
space studied in section 2 relates to the momentum space picture simply by
dualizing the exact sequence (8):

0 → H1(Γ, k) → kE(Γ) ∂−→ kV (Γ) deg−→ k → 0.

One considers the dual configuration jΓ : H1(Γ, k) ↪→ kE(Γ) [14, Sections
1-2]. For a fixed basis of H1(Γ) let Me be the matrix of the quadratic form
(e∨jΓ)2. Associated to a configuration one defines a polynomial in the set
of variables E(Γ) by

ΨΓ = ΨjΓ = det


 ∑

e∈E(Γ)

Mee


 .

The position space polynomial ΨiΓ with iΓ as defined in (9) can also be
considered. It is known to coincide with the momentum space polynomial
ΨjΓ∨ of a dual graph, if one exists [17], and in general of the dual matroid.

The polynomial ΨΓ is called graph polynomial or Kirchhoff polynomial.
It has been known and used in the physics literature for a long time. We
recall from [14] a few properties of ΨΓ.

Proposition 8.1. [14, Section 2]

(i) ΨΓ is a homogeneous sum of monomials with coefficient +1, and of
degree ≤ 1 in each variable e,

(ii) ΨΓ is given by the spanning trees of Γ :

ΨΓ =
∑

T sp.tree of Γ

∏

e6∈T

e,
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where a spanning tree T of Γ is defined as in section 2.3: a subgraph T
(given by a subset of edges E(T ) ⊆ E(Γ)) such that the composition

β : kE(T ) ↪→ kE(Γ) ∂−→ ker deg

is an isomorphism.

In our context, the interest in the graph polynomial results from the fol-
lowing fact. Let Γ be at most logarithmic and primitive. Recall from sec-
tion (2.2) that a divergent graph has an even number of edges. Then the
projective integral

(103)
∫

Pd|E(Γ)|−1(R)

∏

v∈V (Γ)

δ0


 ∑

e∈E(Γ)

(v : e)ke


 ∏

e∈E(Γ)

ddke

k2
e

,

(cf. (2,77)) converges and is interpreted as the momentum space residue of
the distribution (77), in analogy with section 3.4. Using the ”Schwinger
trick” 1

k2
e

=
∫∞

0
exp(−eke

2)de for each edge e ∈ E(Γ), one shows that
(103) equals the projective integral

(104) c

∫

σ

Ω

Ψ
d/2
Γ

where Ω =
∑2m

i=1(−1)ieide1 ∧ . . . ∧ d̂ei ∧ . . . ∧ de2m in homogeneous
coordinates where the edges are numbered E(Γ) = {e1, . . . , e2m}, σ ⊂
P|E(Γ)|−1(R) is the locus where all homogeneous coordinates can be chosen
≥ 0, and c is a generic constant in Q×/π4m [14, Section 6]. If Γ and all
its subgraphs are convergent, an analogous result holds for the two affine
integrals. In any case, an integral of an inverse product of d-dimensional
quadrics is reduced to an integral of an inverse power of the graph polyno-
mial, where the new domain of integration is now a simplex.

8.2. The work of Bloch, Esnault and Kreimer. The integrals (103,104)
are periods in the sense of [53]: integrals of algebraic forms over semi-
algebraic sets defined over Q. The integrals (103,104) are called (momen-
tum space, parametric) Feynman periods. All Feynman periods computed
so far (see [19, 20] for such results) are, up to the generic factor c, rational
linear combinations of multiple zeta values

ζ(n1, . . . , nk) =
∑

i1>...>ik≥1

1

in1
1 · · · ink

k

, ni ∈ N, n1 ≥ 2

which generalize the Riemann zeta function ζ(n) =
∑

i≥1
1
in

at integer ar-
guments n ≥ 2. It was shown by Goncharov and Manin [42] that every
multiple zeta value is the period of a mixed Tate motive obtained from the
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moduli space M0,n of stable curves of genus 0. A mixed Tate motive is a
particularly simple kind of mixed motive [1].

Kontsevich conjectured that the function q 7→ number of solutions of ΨΓ =
0 in Fq is a polynomial in q for all Feynman graphs Γ, which would be
sensible to assume if all Feynman periods were multiple zeta values. This
conjecture was disproved by Belkale and Brosnan [4], but as of today no
particular example of a Feynman period different from a multiple zeta value
is known.

Let XΓ be the complex projective hypersurface, called graph hypersurface,
defined by the homogeneous polynomial ΨΓ. Let ∆ =

⋃
e∈E(Γ){e = 0}. A

sequence of blowups P → . . . → P2m−1 is performed in order to separate
∆, which contains the boundary of the chain of integration σ, from the sin-
gularities XΓ of the integrand. Let YΓ be the strict transform of XΓ and B
the inverse image of ∆. The Feynman period is then a period of the mixed
Hodge structure [24] on the middle-dimensional cohomology

H2m−1(P \ YΓ, B \B ∩ YΓ).

This is in principle similar to the situation in the moduli space [21,42] where
the periods are well-understood.

In [14] Bloch, Esnault and Kreimer study a special class of primitive graphs
whose periods are known to be rational multiples of Riemann zeta values:
The wheel with n spokes, n ≥ 3,

Γn := ,

which is primitive in d = 4 dimensions, has a (parametric) period contained
in ζ(2n − 3)Q. The main result of the paper [14] is that, by a computation
which is in principle supposed to be valid also for motivic cohomology,
H2n−1

c (P2n−1 \XΓn) ∼= Q(−2) and H2n−1(P2n−1 \XΓn) ∼= Q(−2n+3) for
the wheel graphs Γn. The interest in this result is that ζ(2n+3) is known to
be the period, up to a rational factor, of any non-split extension of Q(0) by
Q(2n + 3) in the category of mixed Hodge structures, see [16],[14, Section
9].

See [15, 17, 22] for the most recent results in this direction. In general,
one is interested in the geometry of the varieties XΓ and in particular in
their intersection with ∆.
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8.3. Insertion of graphs. A possible approach toward understanding XΓ

is obviously by studying the contribution to XΓ of Xγ for subgraphs γ of
Γ. In a first step, one is interested in the graph polynomial as graphs are
inserted one into another. Let Γ be a connected Feynman graph with set of
edges E(Γ) and set of vertices V (Γ), and consider the maps

ZE(Γ) ∂−→ ZV (Γ) deg−→ Z→ 0

By definition, a spanning tree of Γ is a subgraph T (given by a subset of
edges E(T ) ⊆ E(Γ)) such that the composition

β : ZE(T ) ↪→ ZE(Γ) ∂−→ ker deg

is an isomorphism. Let now γ and Γ be connected Feynman graphs. Let
v ∈ V (Γ). Let Ev be the set of edges in E(Γ) ∪ Eext(Γ) adjacent to v.
Fix a one-to-one map s : Ev → Eext(γ). This map is the gluing map. Let
Γ ←v,s γ be the graph obtained by removing v and identifying external
(open) edges via s. When v and s are clear from the context, we simply
write Γ ← γ. The goal is to describe ΨΓ←γ in terms of graph polynomials
of graphs related to Γ and γ. For v ∈ V (Γ) denote by Γ \ v the graph Γ
where v has been removed, and the resulting |Ev| open edges have been
supplied with one new ending vertex each. In other words, Γ \ v is the
graph Γ where v has been split into |Ev| disjoint pieces. The set of edges
is to remain the same. For this it may be useful not to think of Ev as a set
of ordered pairs of vertices but rather to fix a bijection Ev = {1, . . . , |Ev|}
once and for all. Then even when we perform operations on the graph like
merging or splitting vertices, the numbering of the edges is supposed to re-
main the same. Before we turn to the graph polynomials, we need a few
more definitions.

Let S be a set. A partition P of S is a set of subsets of S, called cells
of P, such that every s ∈ S is contained in exactly one element of P. A
partition P ′ of S is said to be subordinate to P, P ′ ≤ P, if for all p′ ∈ P ′

there is a p ∈ P such that p′ ⊆ p. Those p are then unique. The full par-
tition P = {{s}, s ∈ S} is denoted P = 0. Recall that partitions of S are
the same as equivalence relations on S. Indeed, the equivalence classes of
a given equivalence relation form the cells of a partition, and for a given
partition its cells define the classes of an equivalence relation. The empty
equivalence relation corresponds to the full partition. Given a graph Γ and
v ∈ VΓ, consider now on Ev the following equivalence relation: e1 ∼ e2 iff
e1 and e2 are connected in Γ \ v. We write Pv for the resulting partition of
Ev. Note that for e1 ∼ e2 it is necessary (but not sufficient) that there is a
cycle c ∈ H1(Γ) with e1 ∪ e2 ⊂ |c|.
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Let P ≤ Pv. For an external line e ∈ Eext(γ) denote by ∂e the unique
(external) vertex of γ which meets e. Now for all {q1 . . . qn} ∈ P identify
(merge) the vertices ∂s(q1) . . . ∂s(qn) of γ respectively. The resulting graph
is denoted γP . Note that E(γP ) = E(γ) in our conventions.

Recall the complete graph Fn where n = |Ev|. Fix a bijection b : Ev →
Eext(Fn). The partition P of Ev then determines a partition of V (Fn) which
we denote by P ′. Let now t be a spanning tree of Fn such that all restric-
tions of t to the full subgraphs of Fn defined by any Q′ ∈ P ′ are connected.
It is easy to see that such a t always exists. Let D be the subforest of t
that consists of all edges connecting vertices from one and the same cell of
P ′. Let d be the subforest of t that consists of edges connecting different
cells, such that E(t) = E(D) t E(d). Consider the graph Γ ← t (as a
subgraph of Γ ←v,b Fn) and remove all edges of D from it. Then shrink
(collapse) all edges of d, identifying their boundary vertices. The resulting
graph (Γ ← d)/d will depend in general on the choice of t and is denoted
ΓP (t). It is connected since P ≤ Pv. Note that E(ΓP (t)) = E(Γ) in our
convention. In particular, subgraphs of ΓP (t) may be identified with sub-
graphs of Γ. In the following it is convenient to also consider Γ, D, d, Γ ← d
etc. as subgraphs of Γ ← Fn.

Definition 8.1. A subgraph T of ΓP (t) is called a direct spanning tree if

β : ZE(T←d) ↪→ ZE(Γ←Fn) ∂→ ker deg

is an isomorphism and ∂(ZE(D)) ⊆ β(ZE(T )).

In other words, a direct spanning tree is a spanning tree which connects
the vertices of each cell of P directly within Γ \ v, without using the con-
nections through d.

Proposition 8.2. Let t, t′ be two choices of spanning trees for Fn. Then T
is a direct spanning tree of ΓP (t) if and only if it is for ΓP (t′).

As a consequence, the direct graph polynomial

Ψ̃ΓP (t) =
∑

T dir st

∏

e∈E(Γ)\E(T )

e

is independent of t, and we simply write Ψ̃ΓP .

Proof. It is obvious that d and d′ have equal number of edges and that
∂(ZE(D)) = ∂(ZE(D′)). It suffices, therefore, to show β(ZE(T←d)) = β(ZE(T←d′)).
This follows since β(ZE(d)) ⊆ ∂(ZE(t)) = ∂(ZE(t′)) = ∂(ZE(d′∪D′)) ⊆
∂(ZE(d′)) + β(ZE(T )), and similarly for d and d′ interchanged. 2
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Theorem 8.1.

(105) ΨΓ←γ =
∑

06=P≤Pv

ΨγP
Ψ̃ΓP .

Remarks. In [14, Section 3] it is already shown, in a slightly different
notation, that

ΨΓ←γ = ΨγΨΓ + Ψ̃γ,Γ

where the remainder Ψ̃γ,Γ, unless vanishing, is of degree higher (lower) in
the edge variables of γ (of Γ). Since Ψγ0 = Ψγ and Ψ̃Γ0 = ΨΓ, equation
(105) provides now an explicit expression for this remainder term.

Proof. Since E(Γ ← γ) = E(ΓP ) t E(γP ), it suffices to prove that T
is a spanning tree of Γ ← γ if and only if TΓ is a direct spanning tree of
ΓP and Tγ a spanning tree of γP (for some P ) where TΓ is the subgraph of
ΓP such that E(TΓ) = E(T ) ∩ E(Γ) and Tγ the subgraph of γP such that
E(Tγ) = E(T ) ∩ E(γ) (consequently T = TΓ ← Tγ). Note that, since ΓP

has |V (Γ)|+ |P | − 1 vertices and γP has |V (γ)| − |P |+ 1 vertices, a span-
ning tree of ΓP has |V (Γ)|+ |P | − 2 edges and one of γP has |V (Γ)| − |P |
edges. Recall that V (Γ ← γ) has |V (Γ)| + |V (γ)| − 1 vertices, and its
spanning trees |V (Γ)|+ |V (γ)| − 2 edges. The numbers of edges of T, TΓ,
Tγ, fit thus together in the first place. We write

ZE(Γ←γ) ∂−→ ZV (Γ←γ) deg−→ Z, V0(Γ ← γ) = ker deg

ZE(Γ←Fn) ∂−→ ZV (Γ\v) degΓ−→ Z, V0(Γ \ v) = ker degΓ

ZE(γ) ∂−→ ZV (γ) degγ−→ Z, V0(γ) = ker degγ

and may consider all of the V0 as subspaces of V (Γ ← γ) such that

V0(Γ ← γ) = V0(Γ \ v) + V0(γ)

whereas
V0(Γ \ v) ∩ V0(γ) = V0(Fn) = V0(D) + V0(d)

with t = D ∪ d as before a spanning tree of Fn adapted to P. Let now
TΓ be a direct spanning tree and Tγ a spanning tree of ΓP and γP , respec-
tively. By definition, ∂(ZE(TΓ∪d))+∂(ZE(TΓ∪D)) = V0(Γ \ v)+V0(γ). Since
∂(ZE(D)) ⊆ ∂(ZE(TΓ)) and ∂(ZE(d)) ⊆ ∂(ZE(Tγ)), even ∂ : ZE(TΓ∪Tγ) →
V0(Γ \ v) + V0(γ) = V0(Γ ← γ) is surjective. It is then also injective
because domain and range have equal dimension. Consequently T is a
spanning tree of Γ. Suppose now that T is a spanning tree of Γ, and let
TΓ and Tγ be defined as above. We have ∂(ZE(TΓ)) ∩ V0(Kn) = V0(D)
for some subforest D of Kn. The connected components of D determine
a partition P ≤ Pv. We complete D to a spanning tree t = D ∪ d of Kn.
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Obviously ∂(ZE(TΓ)) ⊆ V0(Γ \ v). Since T is a spanning tree for Γ ← γ

and ZE(Tγ)∩V0(Γ \ v) ⊆ V0(Kn), the forest TΓ reaches all vertices of Γ \ v
except possibly some at Kn. Using V0(D) ⊆ ∂(ZE(TΓ)), only the connec-
tions V0(d) are missing for TΓ to be connected, and we have ∂(ZE(TΓ∪d)) =

V0(Γ \ v). Injectivity follows again from matching dimensions. TΓ is there-
fore a spanning tree of ΓP . It is direct since V0(D) ⊆ ∂(ZE(TΓ)) by defini-
tion of D. The same argument shows that Tγ is a spanning tree of γP . 2

Consequences for the geometry of graph hypersurfaces, in particular their
singular loci, will be discussed elsewhere.

Let us not turn to what physicists call propagator corrections. Insertion
of a subgraph γ into an edge of Γ means

(i) Insert a vertex in the middle of this edge.
(ii) Insert γ into this vertex.

Having Theorem 8.1 it remains to study step (i). Let e ∈ E(Γ). Let Γe be
the graph obtained from Γ by inserting a new vertex v in the middle of e.
We call e1 and e2 the two edges of Γe adjacent to v.

Proposition 8.3.
ΨΓe = ΨΓ|e=e1+e2

Proof. Let t be a spanning tree of Γ. Either t includes e or it does not. If
it does, t \ e ∪ e1 ∪ e2 defines a spanning tree of Γe. If t does not include e,
then t \ e ∪ e1 and t \ e ∪ e2 define spanning trees of Γe. Conversely, every
spanning tree of Γe is obtained this way. 2

From Proposition 8.3 one concludes that XΓe ∼= CXΓ where C denotes
the projective cone (projective closure of the affine cone).
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INDEX OF NOTATION

Sections 2 - 6:
1 the constant function x 7→ 1
A linear subspace of V ∨, see section 4.1
Ae see (10)
A⊥ linear subspace annihiliated by A
Aγ see (14)
Bip set of bipartite graphs, see section 6
β birational transformation YC → V, see section 4.1
c see (8)
C collection of linear subspaces, see section 4.1
C(Γ) see (11)
Cdiv(Γ) collection of divergent subspaces, see (15)
Csing(Γ) collection of singular subspaces, see (13)
D′(M) space of distributions onM, see section 3.1
D̃′(M) space of distribution densities onM, see section 3.1
δ see (8)
δ0 Dirac-measure at 0
∆ thin diagonal, see last paragraph of section 2.1
∆(Γ) coproduct, see section 6.3
d dimension of space-time
dA dim A
dΓ dim Aγ

|dx| Lebesgue measure on Rn

Dij diagonal in Mn defined by xi = xj , see beginning of section 2
De diagonal in Mn defined as Djl where (j : e) = 1, (l : e) = −1
EA irreducible component of the exceptional divisor, see section 4.2
e edge in E(Γ), basis element of kE , see beginning of section 2.1
e∨ dual of e
E finite set
E exceptional divisor of the smooth model, see section 4.1
E(Γ) set of edges of a Feynman graph, see beginning of section 2.1
F Fourier transform
f∗u pullback of u along f
fΓ see (46) and Theorem 5.1
γ subgraph of Γ, see beginning of section 2.2
γ//N contracted graph, see section 5.2
γp contracted graph, see section 5.2
γs saturated subgraph, see section 2
Γ Feynman graph, see beginning of section 2
Γ//γ contracted graph, see section 6.3
H1(γ) first homology of γ
H1(Γ, k) see (8)
HFG,HFG see section 6.3
k ground field, here k = R
kE k-vector space spanned by E
iW configuration, see beginning of section 2.1
jBN see section 4.5
K a compact subspace
Kn complete graph on n vertices
L1

loc(Rn) space of locally integrable functions
M space-time, here M = Rd

M manifold, see section 3.1
(MV0 )div(Γ) arrangement of divergent subspaces, see (16)
(MV0 )sing(Γ) arrangement of singular subspaces, see (12)
µ see Theorem 3.1
N nested set, see section 4.4
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Nmax see Theorem 5.3
nij number of edges between i and j
νAγ renormalization condition, see section 6.2
P building set, see section 4.2
P(V ) projective space of lines in V, see section 4.2
p(x) see section 4.4
p∨ see section 5.2
Px see Proposition 4.8 (iii)
pt,s see section 5.2
pI,J see section 6
Φ map MV → MV0 , see last paragraph of section 2.1
Φ∗u pushforward of u along Φ
φ see middle of section 2.1
ρ see (51)
<s real part of s
res Γ residue of Γ, see (46)
S antipode, see section 6.3
s complex regulator, see section 3
supp support
sing supp singular support, see section 2
τ tautological bundle, see section 3.1
ũ distribution density, see section 3.1
UBN see section 4.5
u[φ] distribution u applied to the test function φ
u[φ]f see section 3.1
u(x) distribution u evaluated at x (if u is continuous at x)
u0 Feynman propagator, see (4)
uΓ Feynman graph distribution, see (7)
uΓ Φ∗uΓ

uΓ,R0 see Theorem 6.1
uΓ,Rµ see Theorem 6.1
v vertex in V (Γ), basis element of kV (Γ), see beginning of section 2.1
v0 distinguished vertex, see section 2.1
(v : e) see beginning of section 2.1
V finite-dimensional real vector space, see 4.1
VC arrangement in V , see section 4.1
V (Γ) vertex set of a Feynman graph, see beginning of section 2
Veff see section 4.3
V0 see section 2.1
w̃Γ,R0 see section 6.2
w̃Γ,Rµ see section 6.2
|x|−as

ext see (36)
|x|−as

fin see (37)
xi d-tuple of coordinates x1

i , . . . , xd
i on some Mn, 1 ≤ i ≤ n

xA marking of a basis, see section 4.4
ξi coordinates on some kn, see end of section 2.1
YC smooth model for VC , see section 4.1
YP wonderful model for VC , see section 4.2
y

iA
A marking of a basis, see section 4.4

zi local coordinates
ZB see section 4.5
t disjoint union
≤ (for partitions), see section 4.3
¹ partial order on a basis, see section 4.4
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ZUSAMMENFASSUNG

Die vorliegende Dissertation beschäftigt sich mit Feynman-Graphen und
zugeordneten Feynman-Integralen, die in der störungstheoretischen Quan-
tenfeldtheorie von Bedeutung sind. Im ersten Teil der Arbeit definiere ich
zu einem Feynman-Graphen zwei Arrangements von linearen Teilräumen,
die jeweils den singulären Ort des Feynman-Integranden und den Ort, wo
dieser nicht einmal lokal integrierbar ist, beschreiben. Ich studiere mehrere
geeignete Auflösungen von Singularitäten, die die Arrangements in einen
Divisor mit normalen Überkreuzungen verwandeln, unter Benützung eines
allgemeineren Ergebnisses von De Concini und Procesi. Der Feynman-
Integrand lässt sich nun auf das Komplement des Divisors zurückziehen,
und mittels einer analytischen Regularisierung als meromorphe Distribu-
tionswertige Funktion auf das glatten Modell fortsetzen. Ich beweise physi-
kalisch relevante Relationen zwischen den Laurent-Koeffizienten, und stud-
iere lokalitätserhaltende Renormierungsverfahren auf dem glatten Modell.
Im Gegensatz zu den in der Literatur vorhandenen rekursiven Renormierungs-
verfahren für den Ortsraum sind hier die kombinatorischen Einzelheiten in
der Geometrie des glatten Modells kodiert, und eine einzige Subtraktion
entlang dem Divisor genügt. Hierfür sind auch die von Connes und Kreimer
eingeführten Hopfalgebren hilfreich.
Im zweiten Teil der Arbeit beweise ich den Zusammenhang zwischen kom-
binatorischen Dyson-Schwinger-Gleichungen und Hopf-Teilalgebren der
Connes-Kreimer-Hopfalgebren. Eine gewisse Rolle spielt dabei die erste
Hochschild-Kohomologie dieser Hopfalgebren.
Der dritte Teil der Arbeit leistet einen Beitrag zur parametrischen Darstel-
lung von Feynman-Integralen, die unter anderem von Bloch, Esnault und
Kreimer benutzt wird, um die motivische Kohomologie von Feynmangraph-
Hyperflächen zu verstehen. Das Ergebnis bezieht sich auf das Verhalten von
Graphpolynomen, wenn Graphen ineinander eingesetzt werden.
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ist nicht bereits in einem früheren Promotionsverfahren eingereicht worden.

Berlin, den 14.04.09



90



91

Aus Gründen des Datenschutzes enthält die elektronische Version keinen
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