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MutationDistiller – User-driven identification of disease
mutations

Inaugural-Dissertation to obtain the academic degree of
Doctor rerum naturalium (Dr. rer. nat)

Daniela Hombach

Abstract

In rare genetic diseases, a single genetic alteration can be enough to cause a severe disor-
der. Recent advances in genetic research have introduced exome or genome sequencing
into clinical care. However, each sequencing run delivers a myriad of candidate variants
that have to be sifted through in the hunt for the causative mutation - a major data
challenge, for which researchers and clinicians have to rely on computer tools.
With MutationDistiller, we have developed a freely available online tool to analyse whole
exome sequencing data in a user-driven fashion. The tool aims at clinicians and re-
searchers without bioinformatic experience who are working with real patient data, and
allows them to distil the most likely causative variants from the sea of candidates. By
uploading the patient’s genetic information and adding information on the symptoms,
they can combine genotype and phenotype to find the culprit. MutationDistiller allows a
wide range of phenotype data, such as HPO, OMIM and Orphanet entries, gene panels,
expression data, Gene Ontology terms, and affected pathways. In the output, the pro-
gram provides an ordered list of candidate alterations matching the user-defined criteria.
In addition, crucial data on the alteration and the affected gene can be reviewed at a
glance.
This thesis describes the program, its background and usage, and compares it to current
state-of-the-art tools. When assessing the tool, we found that it matches or out-competes
similar software and is able to find the causative variant in a majority of cases. Moreover,
its user-friendliness makes it a handy tool for clinicians and researchers, as is reflected
by its usage: MutationDistiller routinely sees over 1,000 cases per month and has been
used in over 14,000 cases at the time of writing. Thus, MutationDistiller has already
found its way into the clinic.
The tool, comprehensive documentation and example cases are freely available at
https://www.mutationdistiller.org/
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MutationDistiller – User-driven identification of disease
mutations

Inaugural-Dissertation to obtain the academic degree of
Doctor rerum naturalium (Dr. rer. nat)

Daniela Hombach

Zusammenfassung

Im Fall von monogenen Krankheiten kann eine einzelne schädliche Mutation krankheits-
auslösend sein. Fortschritte in der genetischen Forschung haben dazu beigetragen, dass
Genom- oder Exomsequenzierungen zur Detektion krankheitsverursachender Mutatio-
nen in der Klinik einen Platz gefunden haben. Bei jeder Sequenzierung fallen jedoch
Abertausende von Varianten an, die gefiltert und eingeordnet werden müssen. Für diese
datentechnische Herausforderung müssen sich Forscher*innen und Kliniker*innen auf
Computerprogramme verlassen.

Diese Arbeit beschreibt MutationDistiller, ein frei verfügbares Web-Programm zur Ana-
lyse von Exomsequenzierungsdaten, das sich an Kliniker*innen und Forscher*innen ohne
bioinformatische Fachkenntnis richtet. Das Programm ermöglicht nutzerorientierte Un-
tersuchungen zur Auffindung der krankheitsverursachenden Mutation(en) aus einer Viel-
zahl von Kandidaten. MutationDistiller kombiniert dabei Genotyp und Phänotyp der
Patient*innen und erlaubt somit einen Fokus auf die Genveränderungen, die im konkret
vorliegenden Fall am wahrscheinlichsten für die weitere Analyse von Interesse sind.
Eine Vielzahl von Phänotypdaten werden akzeptiert, unter anderem HPO, OMIM und
Orphanet-Einträge, Listen von Kandidatengenen, Expressionsdaten, Daten der Gene On-
tology oder auch zu betroffenen Signaltransduktionswegen. Die Ergebnisseite fasst die
Daten in nutzerfreundlichen Tabellen zusammen und zeigt detaillierte Informationen zu
allen Kandidatengenen sowie Hyperlinks zu weiteren Resourcen, um die Einschätzung
der Relevanz der Ergebnisse zu vereinfachen.

Diese Arbeit beschreibt Aufbau, Hintergrund und Nutzung von MutationDistiller sowie
einen Vergleich mit ähnlich gelagerten Programmen. MutationDistiller hat bereits den
Weg in die Klinik gefunden und wurde bisher in über 14.000 Fällen angewendet. Das
Programm, eine umfassende Dokumentation und Beispielfälle sind frei verfügbar unter
https://www.mutationdistiller.org/
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Introduction 1

1 Introduction

1.1 The human genome

1.1.1 The genetic code

The blueprint for human traits – anything that makes us unique and determines large

parts of how we look, think and behave – is stored in the human genome. Determining

the nature of this information has kept scientists and philosophers busy for centuries.

Ancient thinkers and philosophers such as Hippocrates, Epicurus and Aristotle developed

theories on how traits are determined long before the existence of genes or genomes was

even postulated. In more modern times, breeding experiments conducted by Gregor

Mendel in the 19th century laid the groundwork for what would later be called genetic

research. In the 20th century, molecular approaches slowly led to the realisation that

deoxirobonucleic acid, or DNA, was the carrier of those traits.

After decades of experiments by numerous researchers, each adding to the growing moun-

tain of knowledge, the structure of this large molecule was finally determined by James

Watson and Francis Crick [1] with important contributions by Maurice Wilkins, Ray-

mond Gosling and Rosalind Franklin [2]. Thanks to all these advances and following

research, we now know that DNA consists of repetitions and repetitions of nucleotides.

These nucleotides, or bases, exist in the four varieties Adenine (A), Guanine (G), Thymine

(T) and Cytosine (C) and arrange themselves in base pairs: A pairs with T, and G with

C. Together, they form a double helix which twists and turns around itself, becoming

coiled and tightly packed and organised into 2 sets of 23 chromosomes. These sets of

chromosomes play an important role in inheritance, as each individual receives one set

from their mother and one from their father.

The packing mechanism allows the approximately 2m long helix to be squeezed into the

nucleus of cells which are 1,000,000 times smaller. In addition to this nucleic DNA, a

small portion of the genome is present in mitochondria. In total, all chromosomes and

the mitochondrial genome encode about 23,000 protein-coding genes, the molecular units

of heredity, which are stored in about 6 billion base pairs.

The contents of the human genome – the sequence of the nucleic acid base pairs – can be

read, much like a book. This technique of reading the genome or single genes is referred

to as DNA sequencing and has enabled deep insights into the properties, structure and

organisation of the DNA. The first draft of the human genome – the first complete
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sequence – was achieved in a dramatic head-to-head race in 2001 by the Human Genome

Project and Celera, a private venture established by Craig Venter [3, 4].

This step marked the onset of a new era in genetic research: Knowing the contents of the

human genome sparked a whole new approach to the science of genetics and inheritance,

enabling us to assess the mechanisms behind genetic diseases. As the methodologies

for DNA sequencing improved, the costs dropped dramatically, enabling the inception

of large-scale genomic projects. As a consequence, thousands of full or partial human

genomes have been sequenced to date. Nowadays, even though the details of the genome

are not entirely understood, we have a good insight into the variety and variability of

human genomes and what consequences genetic changes can have for an organism.

1.1.2 From genotype to phenotype

The entirety of an individual’s traits, which are largely determined by the genome as

a blueprint, are often referred to as their phenotype. The genetic blueprint has to be

translated into function: In a multi-step process, genes have to be read, or transcribed,

into ribonucleic acid (RNA) and from there translated into proteins. Those genes that

carry traits are usually termed protein-coding genes (as opposed to other types of genes

which do not encode proteins but take on regulatory functions). Due to their importance

for disease and this thesis, I will focus on protein-coding genes in this thesis and use the

term genes for protein-coding genes unless indicated otherwise.

The processes of transcription – often termed gene expression – and translation are the

basis of molecular functions. They are complex and well-regulated procedures which have

been studied intensively and deserve their own theses. In the following, I will therefore

limit myself to a short, simplified introduction to transcription and translation in humans

with a focus on disease relevance.

Transcription

In the first step of gene expression, a gene has to be transcribed to generate a messenger

RNA (mRNA) molecule. RNA is a molecule quite similar to DNA but comes with three

major differences: First, it is single-stranded (and therefore doesn’t take on the shape of

a double helix). Second, instead of a deoxyribose sugar it contains a ribose sugar; and

third, instead of the base thymine (T) it contains a slightly different base called uracil

(U).

Transcription begins in the promoter region of a gene, more precisely at the transcrip-

tion start site (TSS). There, transcription factors, proteins that regulate the process of

transcription, bind to ensure that gene expression takes place exactly when and where
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it is needed. The DNA splits open to generate a single strand that serves as a template.

From this template DNA, the mRNA can be created by pairing complementary bases to

it – A to T, G to C. The resulting premature mRNA then has to be processed further

to form mature RNA. One main processing step is termed splicing :

The premature mRNA is full of sections which are not present in the mature mRNA,

termed introns. They are removed, or spliced out, leading to an mRNA containing only

exons. Splicing happens at specific sites termed splice sites. For each premature mRNA

molecule, there are several ways for it to be spliced, leading to varying gene products or

transcripts. This means that one single gene can actually generate a number of different

mRNAs (and, in consequence, proteins). These different versions are often referred to as

transcripts.

Non-protein-coding genes are transcribed and undergo maturation steps, but the next

step, translation into protein, does not occur for them. Instead, they take on their

important functions, e.g. for tRNAs the transfer of amino acids.

Translation

In the next step, the remaining protein-coding mRNA has to be translated into a protein

sequence. The mRNA is ‘read’ in 3-letter ‘words’ called codons: Each codon consists of

three mRNA bases and encodes for one specific amino acid. In addition, four codons have

the regulatory function to denote the start and end of the translation process. The start

is determined by the start codon AUG – which plays a double role as it also encodes

for the amino acid methionine – whereas three different codons serve as stop codons:

UAA, UAG, and UGA. The span between start and stop codon is referred to as the

open reading frame, ORF. Regions located within the mRNA but before the start site

and after the stop codon do not become translated and are referred to as untranslated

regions, UTRs. Even though they are not part of the final protein, these regions are still

important because they take on regulatory functions.

Disease relevance

Genetic alterations influencing the processes of transcription and translation can be

the cause of genetic disease. For example, variants in the promoter region or the TSS

can lead to too low or high transcriptional rates, which has been found to influence

susceptibility or survival rates in cancers as well as other diseases [5–7]. Moreover, splice

site aberrations can lead to altered proteins which are not able to fulfil their normal

function. It was recognised some time ago that splice site aberrations are relevant to

cancer [8], and since then further examples have appeared at a steady rate (e.g. [9, 10]).

In addition, faulty splicing has been found to be involved in other genetic disorders such

as the hereditary eye condition retinitis pigmentosa [11, 12]. Thus, a lot of evidence is

accumulating which indicates that alterations affecting the processes of translation and

transcription are relevant to the development of genetic disorders.
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1.2 Studying DNA variation

Human individuality and variability are represented in the genomic sequence: Every

individual carries a multitude of genetic variants – smaller or bigger alterations in the

genetic sequence between individuals – which often have no effect, but are also the

underlying cause for hair colour, height, size, or weight. On average, 1 in every 1000

base pairs is a genetic variant, which across the entire genome amount to millions of

differences between any two individuals on the planet (except for identical twins): The

exact number of variants is hard to gauge and varies widely depending on the study,

methods, reference group, and other factors. However, every single sequencing run of an

entire human genome detects on average 3 to 4 million alterations [13]. These genetic

variants are, in most cases, harmless – like a different spelling of a word. However,

sometimes, differences in the human genome can be harmful and cause disease. Detecting

these harmful alterations and their implications on human health are two major goals in

medicine and research, and they can be addressed by genomic sequencing.

Ever since the basic structure of the genome was determined, and possibly even earlier,

scientists dreamed of reading its content to uncover the secrets hidden in it. The first

method to achieve this at a mid-throughput level was developed in 1977 by Fred Sanger

and colleagues [14] and is based on chain-termination during in vitro DNA replication:

In its early days, Sanger sequencing was conducted using a modified DNA polymerase

called Sequenase. For Sequenase sequencing, the DNA strand to be analysed is combined

with essential components for DNA replication: DNA primer, DNA polymerase and

nucleotides. In addition, chain-terminating dideoxynucleotides (ddNTPs) are added to

the mix. As these ddNTPs lack an OH group required for binding two nucleotides

together, they cause DNA polymerase to terminate elongation. In the classical approach,

this reaction is carried out in four different reaction tubes, each of which only contains

one of the four ddNTPs. The fragments from each of the four reaction tubes are then

denatured and size-separated via gel electrophoresis. By reading the order of the DNA

bands on the gel image, starting at the shortest fragment and ending with the longest,

the sequence of the template DNA can be decoded.

The introduction of polymerase chain reactions, PCR, has since simplified and automated

Sanger sequencing. For instance, the use of dye-labelled ddNTPs, in which each of the

four ddNTPs emits a different colour signal, allows researchers to conduct sequencing in

a single reaction. This method has become the main approach in automated sequencing.
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Modern Sanger sequencing can be used for sequences of up to 900 base pairs and has been

playing a big role in genetic research. It has the advantage of being an accurate method

and was the most frequently used DNA sequencing method for about four decades.

However, in more recent years, the advent of so-called Next Generation Sequencing,

NGS techniques has revolutionised the field of genetics. These techniques allow for the

cheap and fast determination of the entire human exome – the protein-coding part of the

genome – or genome.

1.3 Genetic disease and inheritance

Genetic diseases are disorders which are at least in part caused by disease-causing variants

in the DNA sequence. While the large majority of genetic alterations are completely

harmless, some of them can cause disease or increase the likelihood for the development

of disorders. Frequent harmless alterations are termed polymorphisms and are naturally

occurring variants of which every individual harbours many. If an alteration is known

to cause a disease, it can be described by various terms: Well-accepted descriptions are

harmful variant or disease-causing alteration, as well as mutation, or combinations of

these terms. To distinguish between harmless and harmful alterations, I attempt to

make it clear in the context by adding explanations such as harmless, deleterious, or

disease-causing.

Deleterious genetic alterations can lead to or influence the likelihood of developing a

disease in various ways. In some cases, one single harmful variant can be enough to

cause a disease, in others the disease mechanisms are more complex. In the following

sections I will provide an overview of different genetic disease mechanisms, with a focus

on Mendelian disorders due to their relevance for this thesis.

1.3.1 Complex diseases

In so-called complex diseases, a combination of several DNA variants increases the likeli-

hood of an individual to develop a certain disease. Examples are widespread and include

many civilisation disorders such as cancer, diabetes or cardiovascular problems; diseases

which affect a large number of patients at some point in their lifetime. While complex

disorders are not exclusively genetic – environmental factors such as diet and lifestyle

also play a big role – certain variants are known to increase the likelihood of suffering

from a complex disease. For the development of cancer or other complex diseases, one

deleterious variant is usually not enough to trigger the onset of the disease. Instead, a
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number of variants increase the probability for disease development in an incremental

way, with each variant’s effect contributing with differing effect sizes.

In familial cancers, the effect size of a variant is strongest: an individual is more likely to

suffer from a certain type of cancer at some point in their life if close relatives have been

affected by it and have passed on the alteration. As these variants are rare and have a

clearly deleterious effect by destroying the protein function, they are often referred to as

disease mutations even though they do not directly cause disease. Instead, environmental

factors or additional mutations do still play a role in hereditary cancers.

An example of a familial cancer that made headlines in recent years was the case of

Hollywood actress Angelina Jolie, who decided to undergo double mastectomy in 2013

and removal of her ovaries in 2015 after finding out that she carries a mutation in the

BRCA1 gene. The protein produced by this gene plays a crucial role in DNA repair.

Hence, Jolie’s BRCA1 mutation, combined with a strong family history of breast and

ovarian cancer, was estimated to increase her susceptibility to breast cancer by over

80% and to ovarian cancer by 50%. Angelina Jolie’s example has lead to an increase

in BRCA1 testing [15], which in turn caused debate on the risk of unjustified genetic

testing [16, 17].

However, for many cancer patients neither a familial predisposition nor a lifestyle link

can be established. Frequently in those cases, mutagens or even copying errors during cell

replication lead to somatic mutations. These alterations only occur in a subset of cells

rather than the entire body. Most somatic mutations are harmless, but in some cases

they can lead to the development of certain cancers. In fact, this mechanism, which

can best be summed up as ‘bad luck’, has recently been found to be a leading cause of

non-familial cancers [18].

Complex diseases show great heterogeneity in severity, age of onset, influence of genetic

and environmental factors. Hence, it is a real challenge to establish a link between a

genetic variant and the onset of a complex disease – each factor only contributes with

such a small effect size that it is extremely hard to pinpoint where things went wrong

for the patient.

1.3.2 Mendelian disorders

In contrast to complex diseases with their myriad of contributing factors, in some cases a

single damaging variant in a single gene can be enough to cause a severe genetic disorder.

These disorders are termed monogenic, rare, or Mendelian disorders and affect a large

number of individuals worldwide. Even though each single disease is rare, in 2015 over
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7,000 such disorders were known and approximately 300 new diseases were estimated to

be added each year [19]. Hence, the total number of affected patients lies in the millions.

While dedicated statistics on affected individuals are difficult to come by, 6 to 8%, or

25-36 million patients are estimated to suffer from a rare disease in the European Union

at some point in their lives1. It has to be noted that this number includes non-genetic

rare diseases as well. However, it demonstrates strongly that ’rare’ diseases as a whole

are far from rare.

Many Mendelian disorders manifest in early childhood. They often have severe conse-

quences and pose major burdens on affected families. Examples of early-onset Mendelian

disorders include Cystic Fibrosis, Sickle Cell Anemia, or Phenylketonuria; diseases which

do not only drastically impact life-quality but often lead to premature death. As an ex-

ception to this pattern, a number of rare genetic disorders appear later in life, such as

Huntington’s Disease, which usually manifests between 35 and 44 years of age. Another

prominent example of a Mendelian disorder is Autosomal dominant polycystic kidney

disease, ADPKD, a life-threatening disease in which large kidney cysts eventually lead

to kidney failure. With a frequency of approximately 1 in 1000, it is one of the most

common genetic disorders.

Curing the underlying cause of monogenic diseases requires alteration of the genetic

sequence, a procedure termed gene therapy. This technology does currently not exist for

most disorders. The one example which made headlines recently is the drug Zolgensma,

which received approval of the US Food and Drug Administration (FDA) in May 20192.

This drug addresses the genetic cause of spinal muscular atrophy, mutations in the SMA1

gene. Incidentally, it is also the most expensive drug ever admitted, at USD 2.1 million

per treatment.

In all other cases where gene therapy is not (yet) an option, an early diagnosis can help

doctors to treat symptoms and delay or halt some of the debilitating consequences. Many

countries, including Germany, have introduced newborn screenings to test for a range

of monogenic disorders, enabling diagnosis and potential treatment before the baby’s

first teeth appear. The case of Phenylketonuria (PKU) serves as an example of the

importance of early diagnosis.

PKU is a congenital metabolic disease resulting in a decreased metabolism of the amino

acid phenylalanine. It was first discovered by the Norwegian doctor Asbjørn Følling in

1934 [20]. When untreated, this disorder leads to intellectual disability, seizures, mental

disorders and behavioural issues. It can be treated by maintaining a strict diet avoiding
1https://ki.se/sites/default/files/council_recommendation_on_action_in_the_field_of_

rare_diseases_0.pdf, accessed 29.12.2018
2https://www.fda.gov/vaccines-blood-biologics/zolgensma, accessed 17.06.2019

https://ki.se/sites/default/files/council_recommendation_on_action_in_the_field_of_rare_diseases_0.pdf
https://ki.se/sites/default/files/council_recommendation_on_action_in_the_field_of_rare_diseases_0.pdf
https://www.fda.gov/vaccines-blood-biologics/zolgensma
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uptake of phenylalanine, and when treated in this way from an early age, babies born

with PKU can grow up healthy and reach a normal life span. Due to the importance

of an early treatment, in many countries newborns are routinely screened for PKU at

a few days’ age. In Germany, a nation-wide test for PKU was introduced in the late

1960s, identifying affected babies at an extremely young age and allowing for optimal

treatment.

However, disease management is not the only argument for early diagnosis: When a

baby with a congenital disease is born, this has a strong impact on the affected families.

The birth – and sometimes early death – of a baby with a congenital disease poses a

strain on the mental health of the parents, who often struggle with feelings of guilt and

responsibility. A molecular diagnosis is of great importance for parents and patients alike

and helps them to better come to terms with the situation [21, 22]. Moreover, it allows

for the assessment of the disease risk for future children by observing the inheritance

pattern of the disease and by offering prenatal tests to affected families.

1.3.3 Inheritance patterns

As genetic diseases, monogenic disorders can be inherited from generation to generation.

In their voyage through the generations, they follow certain patterns which are governed

by Mendel’s laws. By counting traits in pea plants, the Moravian monk Gregor Mendel

(1822-1884) determined the rules underlying inheritance. Mendel observed an organism’s

phenotype – characteristics visible to the outside, such as traits or behaviours – to draw

conclusions on the underlying genotype – the genetic identity that determines a certain,

observable trait. From his experiments, which were largely ignored by scientists for 30

years and rediscovered in the early 20th century, the various modes of inheritance could

be derived. These rules are determined by the organisation of the human genome and

allow for categorisation of the many different Mendelian disorders.

The human genome is arranged in 46 chromosomes: one maternal and one paternal set of

22 autosomes (non-sex-linked chromosomes) and the two allosomes (sex chromosomes,

XX for females and XY for males). Hence, every human carries two copies of each

autosomal gene, one of which is inherited from the mother, and one from the father.

These two versions of a gene are termed alleles.

For sex chromosomes, the matter is slightly different: Males only have one copy of genes

located on the X-chromosome, which they inherit from their mother. Females, on the

other hand, do not carry a Y-chromosome at all. In addition, large parts of one of the X

chromosome are inactivated at random in each cell in females. This mechanism termed

random X inactivation offsets the higher genetic load in females.
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A genetic trait – and hence a Mendelian disorder – can be inherited in different ways:

If a single alteration is enough to cause it, it is inherited in a dominant fashion and the

presence of one disease allele (heterozygous genotype) as well as two disease alleles (ho-

mozygous genotype) will lead to disease. This is often the case for mutations that increase

the function of the protein, so-called gain of function (GOF) mutations. In this case, if

the trait is fully penetrant, every individual who carries the disease allele will develop

the disease. However, GOF variants with a strong effect are subject to a high selective

pressure. Thus, affected individuals born with a GOF mutation often do not survive,

which usually prevents these mutations from manifesting in family pedigrees. Instead,

GOF variants tend to appear newly in an individual as so-called de novo mutations or

in late-onset diseases such as ADPKD.

A special type of dominant inheritance occurs with dominant-negative mutations, which

lead to a gene product with an antagonistic function to the healthy allele. An example

is Marfan syndrome, which is caused by mutations in the FBN1 gene.

In the opposite case, the case of loss-of-function (LOF) alterations, a protein’s function

is reduced or completely abolished. In this case, two defective alleles are required for the

manifestation of a disease as the remaining healthy allele is often still able to maintain

function – therefore, two disease-causing alterations have to be present. Heterozygous

individuals who carry only one copy of the disease allele are usually healthy and termed

carriers. This mode of inheritance is called recessive and the disease allele has to be

present in a homozygous fashion for the disease to manifest. If the second disease mu-

tation necessary for the manifestation of a recessive disorder is not identical to the first

mutation (but, for instance, present at a different location in the same gene), the geno-

type is termed compound heterozygous. Dominant and recessive inheritance patterns

can be linked with autosomes or allosomes, resulting in four main modes of inheritance:

autosomal recessive, autosomal dominant, allosomal recessive, and allosomal dominant.

Figure 1.1 displays a simplified overview of example phenotypes and resulting genotypes.

Figure 1.1: Overview of genotypes and resulting phenotypes. Displays po-
tential genotypes and resulting phenotypes depending on mode of inheritance (MoI).

Harmful alteration indicated in bold and red.
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In autosomal modes of inheritance, both genders have the same probability of suffering

from a genetic disease. For allosomal inheritance, however, some important differences

exist between the genders: As males carry only one copy of each gene located on the X

chromosome, they will be affected by X-linked recessive disorders when they inherit only

one disease allele. Affected males receive their X chromosome carrying a disease mutation

from their mother, who often is unaffected by the disease. Moreover, carrier females can

express an X-linked recessive disorder in varying degrees due to the aforementioned

random X-chromosome inactivation.

Another mode of inheritance plays a role in a subset of genetic disorders: mitochondrial

inheritance. Mitochondria, the powerhouses of a cell, contain a small circular genome

that encodes 13 protein-coding genes. Diseases linked with mitochondria are termed

mitochondriopathies. Although the majority of mitochondriopathies are due to disease

mutations in the nucleic DNA, mutations in genes located in the mitochondria can lead to

disorders such as Leigh syndrome or mitochondrial myopathies. These disorders show a

distinct inheritance pattern: Mitochondria are inherited almost exclusively in a maternal

fashion, leading to a pattern that mimics autosomal inheritance as both genders can be

affected equally. However, this picture can be warped by heteroplasmy, the presence

of several mtDNAs in a single cell [23]: Human cells contain hundreds of mitochondria

in which the individual mtDNA molecules can be slightly different, with only some of

them being affected by a given alteration. Depending on how many of the inherited

mtDNA molecules do not carry the disease allele, the offspring might or might not be

affected by the disease. These processes are determined by chance during cell division

and development [24, 25].

Monogenic disorders can be transmitted following all modes of inheritance introduced

above. However, recessive autosomal inheritance is the most common mode. This is

due to the fact that the selective pressure towards recessive alterations is not as strong

as for dominant ones: Recessive traits can be passed on through healthy carriers for

generations and only manifest in homozygous individuals. In consanguineous families,

where an individual’s ancestors are related, recessive disorders manifest more frequently

as the disease-causing variant has a higher likelihood of being inherited both paternally

and maternally.

1.4 Finding disease causes in Mendelian disorders

The classical approach to detecting the cause of genetic disorders consists of a complex

procedure of various genetic tests: First, candidate regions are determined via linkage

analysis, a method to find genetic markers which are inherited together with the disease
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phenotype (or co-segregate) in an affected family. Genetic markers are genes or genetic

sequences whose chromosomal location is known and which can thus be used to find out

where a disease gene is located.

Second, the physician compiles a list of candidate genes located within those regions

that are most likely to be linked with the disorder based on what is known about their

function. In a third step, the coding sequence of these candidates is then sequenced in

the patients, and, provided the discovery of potential disease mutations, in their relatives

and controls from the same population. Finally, this array is then usually concluded by

functional investigations, or – the gold standard – an animal model to determine the

molecular relevance of a putative pathological alteration.

While this approach has been the standard for decades now, it is both time-consuming

and expensive due to the multi-step set-up. In addition, it is only an option in large fam-

ilies or in cases where many families are afflicted as a number of affected and unaffected

members are needed for linkage analysis.

In recent years however, thanks to the advent of so-called Next Generation Sequencing,

NGS techniques, new analysis methods have taken over. While the availability of affected

or unaffected relatives helps in elucidating disease causes, it is not a prerequisite for NGS.

Falling sequencing costs and recent advances in NGS methods not only sparked large-

scale research projects such as GenomicsEngland’s 100,000 Genomes project [26], but

also the identification of connections between genes or mutations and disease. This has

led to a wealth of knowledge – but also to a large amount of data which has to be sifted

and analysed; a task in which we depend largely on computers.

1.4.1 Next Generation Sequencing and bioinformatics

1.4.1.1 Sequencing

DNA sequencing allows us to read the contents of the genome in order to find ’spelling

errors’, i.e. mutations relevant to genetic diseases. Depending on the disease in question,

the availability of candidate genes, and healthy or affected relatives to be sequenced in

parallel, several NGS sequencing strategies are possible:

Panel Sequencing refers to the assessment of a number of candidate genes known to be

involved in certain diseases. These target genes are enriched in the sequencing process by

capturing and isolating them, a step which requires heavy optimisation. Panel sequencing

is used if a patient’s symptoms point towards a specific disease or a group of diseases,
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and it has been widely used in the past (also in combination with Sanger sequencing).

While well-established panels are still widely used, due to dropping sequencing costs,

improvements in data analyses and the complicated optimisation of the enrichment step,

more comprehensive sequencing methods are now taking over [27, 28].

Target-enriched sequencing allows the sequencing of large genomic target areas. Thus,

researchers can decide to target a subsection of the genome or a subset of genes. Selected

regions are hybridised to target-specific probes, which can then be isolated, amplified and

sequenced. One form of target-enriched sequencing is Whole Exome Sequencing, WES, in

which the entire exome, the protein-coding part of the human genome, is analysed. The

exome consists of only a small percentage of the genome – roughly 1% – but is considered

to contain most of the known disease mutations [29]. In exome sequencing, the target

regions have to be captured and enriched. Because it is currently not possible to evenly

capture all target regions, WES has an inherent level of uncertainty. Depending on

which exome version is used – for each reference genome as described in section 1.4.1.2,

various exome versions exist – sequencing results may differ. Nevertheless, its advantages

outweigh the costs. The first diagnosis of a Mendelian disorder using WES was achieved

in 2010 [30] (also see section 1.2) and nowadays, WES is frequently used and currently

considered the most cost-effective method of genetic analysis in clinical and research

settings [27].

However,Whole Genome Sequencing (WGS), the analysis of the entire genome, is steadily

gaining ground as it is the most comprehensive sequencing approach, does not require

any enrichment step and is hence considered to be more powerful than WES in variant

detection [28, 31]. While WGS costs have been prohibitive in the past, falling costs and

technological advances have led to an increased usage of WGS [32]. The first human

genome ever sequenced – the Human Genome Project – was billed at USD 500 million

to USD 1 billion. Nowadays, in a range of recent studies, WGS costs were found to lie

between USD 1,906 and USD 24,810 per test, in comparison to USD 555 and USD 5,169

for WES studies [33] in different countries. As data analysis methods improve, increased

demand is expected to drop the costs even further, leading to the growing importance of

WGS.

Nowadays, most large-scale projects are conducted using NGS methods. Despite these

advances and changes, the ’old-school-method’, Sanger sequencing, still remains used for

smaller projects and the validation of NGS results.

In NGS, it is no longer the sequencing step that is the main limiting factor, but the data

processing: As each sequencing run generates millions of reads and tens of thousands

(WES) or millions (WGS) of variants, it is a major struggle to make sense of this moun-

tain of data. Determining the disease-causing variant in rare diseases is often described
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with the metaphor of finding a needle in a haystack. Bioinformatic methods are indis-

pensable in this task. In the following sections, I will give an insight into the various

steps necessary to reach a meaningful understanding of the genetic variation found in

humans .

1.4.1.2 Data processing

Alignment

For Mendelian disorders, the goal of sequencing is to find the causal mutation(s). In order

to achieve this, the raw fragment reads determined by NGS have to be aligned to a human

reference genome. These reference genomes are compiled from the sequences of different

humans and maintained by the Genome Reference Consortium (GRC). Until genome

version GRCh37, the version before the latest, there has been an attempt to list the more

common variant as the reference allele in cases of polymorphism. The current version,

GRCh38, was published in 2013 and offers alternate sequences for genomic regions known

to be highly variable.

Many secondary sources and applications still use the GRCh37. The human reference

genome can be accessed at different sites, such as Ensembl [34] or the UCSC Genome

Browser [35].

Various algorithms exist for alignment of NGS fragments to a reference genome, with

new alternatives being developed constantly. The choice of algorithm depends on factors

such as run-time, accuracy, and – last but not least – the researchers’ familiarity with a

certain tool. Frequently used algorithms in clinical research settings are BWA [36], one

of the oldest – but still most common – options, and Bowtie [37].

Variant Calling

After mapping, the resulting data has to be scanned for variations, i.e. deviations from

the reference sequence. This step allows researchers to identify various types of genetic

alterations: Single Nucleotide Variants, SNVs, are changes of a single base pair – at

a certain position in the reference genome, the base A might be present, whereas the

patient’s sequenced genome shows a G. They are also the most common type of genetic

variation. Other, more complex types, are insertions or deletions, InDels, where one or

more bases are inserted additionally to or deleted from the genomic sequence. Structural

variants are larger alterations which span 1000 bases or more and can hardly be detected

using WES. They include inversions, the flipping of a genomic sequence, translocations,

its shifting to a different location, and copy number variants, CNVs, which are defined as

DNA segments of one kilobase or larger that are present at a variable copy number when

compared against a reference genome [38]. Technically, CNVs are large InDels, but due
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to their size are treated separately from those smaller scale alterations. The detection of

large structural alterations is where WGS excels, as it is capable of detecting even large

structural aberrations spanning many genes, independent of whether the break point is

located in an exon or not.

Various algorithms tailored to the analysis of different variant types exist. As SNVs and

small InDels are the most common variants and the easiest to detect, these are usually

the first ones to be investigated and thus the most relevant for my thesis; I will hence

examine and elucidate them in more detail in the following sections.

During the variant calling step, it can also be determined whether an individual’s geno-

type is homo- or heterozygous at a given location, a process termed genotyping. When

attempting to determine the disease-causing mutation(s), the genotype provides valuable

information that helps to reduce the number of candidates.

Short variants (single nucleotide variants, insertions and deletions) are usually exchanged

in variant call format (VCF) files. A VCF file lists the genomic location – the chromosome

and base position – for each variant found in an individual, combined with additional

information3 such as allele counts, reading depths, quality scores or, if available, the

genotype. Subsequent analyses – the search for the disease causing mutation – are then

carried out on the VCF files.

1.4.1.3 Variant annotation

Variability leads to a large number of variants detected in a patient: WES analyses

usually yield tens of thousands of variants, whereas for WGS, this number lies in the

millions – on average 3 to 4 million variants are found in a single WGS run [13]. Most of

these variants are completely harmless, and to distinguish the harmful from the harmless

is not a trivial task. Therefore, in a first step, these variants have to be annotated with

information on their disease potential. As manual curation of these vast amounts of data

is not an option, computer tools have to be employed for this task. These programs assess

the disease-causing potential of a candidate variant by linking it with known biological

data: Depending on where exactly an alteration is located and how it might alter the

gene product, its effect can vary widely from being completely harmless to having a

devastating impact on a patient’s life.

The protein-coding part of the genome has been studied quite extensively in the last

decades, so the scientific community has a lot of information about the potential impact

of a genetic alteration within a coding sequence. For instance, it is easily conceivable
3https://samtools.github.io/hts-specs/vcfv4.2.pdf, accessed 28.12.2018

https://samtools.github.io/hts-specs/vcfv4.2.pdf
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that mutations leading to a premature stop codon (see section 1.1.2), thus truncating the

protein, are extremely harmful. Other variants can lead to the exchange of an amino acid,

which can be harmful or harmless, depending on what this change means for the function

of the protein. In other cases, even though there is an alteration in the genetic code,

there is no amino acid exchange. These synonymous alterations are mostly considered

harmless.

Even variants located outside of the coding sequence can have a severe impact on gene

function: alterations near splice sites, for example, can lead to heavily altered proteins

which might not be functional. Moreover, alterations in untranslated regions can be of

disease relevance by having a regulatory impact. Thus, the exact location, and the effect

of a mutation on the protein, serve as indicators for the likelihood of a variant in question

to cause disease.

A wide range of information on proteins, their function and structure can be found in

databases such as Swiss-Prot [39], a manually annotated and reviewed knowledge base

of curated protein information, such as protein function and classification.

Other important databases store information on known variants: For example, a large

number of variants are already known to be harmless or, in the opposite case, have been

found previously to be involved in genetic disease. dbSNP [40] is the most comprehensive

example of a repository of known SNVs and InDels in humans which contains harmless

alterations as well as known disease-causing mutations. The 1000 Genomes (1000G)

project [41] and ExAC [42] collect data from healthy individuals. ExAC, for instance,

contains data from over 60,000 individuals who do not suffer from a rare early-onset

disorder but who might be carriers of disease alleles.

In general, variants found in ExAC or 1000G are not likely to be involved in the de-

velopment of severe, early-onset genetic diseases and can be excluded in many cases.

For instance, a variant with a frequency of 1% in ExAC can usually be excluded when

assessing a disease which appears in 1 in every 3 million cases. In addition, a genome-

wide version of ExAC, gnomAD [43], is now available. In contrast to variant databases

with a focus on harmless variants, disease mutation sources such as ClinVar [44] or the

commercial platform HGMD [45] store data on known disease-causing variants.

However, all variant databases have to be treated with care as they might not be suitable

to answer every specific question. For instance, while frequent polymorphisms found in

ExAC can be excluded from further analysis, the data also includes not-so-rare recessive

disease-implicated alterations (e.g. cystic fibrosis mutations): As healthy individuals

might be heterozygous carriers of a recessive disease mutation, one would expect to

find these variants in the database, even though they are of clear disease relevance in
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homozygous patients. In addition, a patient’s ’private’ variants – alterations which are

harmless but not (yet) listed in any of the databases – cause problems. This is especially

problematic for populations that are not covered in the databases (until recently most

non-caucasian populations). Thus, it is necessary to not only rely on variant databases

but to take additional information into account. For example, the location of a variant

within the gene and its effect on the protein product play a role, together with information

on evolutionary conservation. More insight into the data sources described above can be

found in chapter 2.2.

Sophisticated computer programs are able to pull the information provided in a range of

databases together and deliver an estimate for each variant in a VCF file. One of these

programs, MutationTaster4, was developed in our research group [46, 47] and will be

explained in further detail below (see section 2.2).

Some examples of other tools capable of annotating candidate variants or of predicting

their disease-causing potential are Poly-Phen2 [48] and SIFT (Sorting Intolerant from

Tolerant, [49]), which analyse variants based on sequence homology and the physical

properties of amino acids, and can both only annotate coding non-synonymous SNVs.

VAAST2 [50], on the other hand, combines the predictions of a number of programs.

It offers a greater range of capabilities and can score coding and non-coding variants.

Another combination tool is CADD, which integrates a range of annotations into one

metric by contrasting variants that survived natural selection with simulated mutations

[51].

Different tools draw their conclusions by different means and hence may come to contra-

dicting results. It is known that the capabilities of various tools and their concordance

vary widely [52, 53]. To account for this and to allow users to compare results between

different software, in recent years a number of tools combining the output of several tools

have been developed such as CADD [54], the Variant Effect Predictor (VEP, [55]), and

the aforementioned VAAST2 [50].

1.4.1.4 Variant prioritisation: patient information

As NGS projects deliver large numbers of variants, even a list of previously filtered

potentially harmful annotated variants is daunting and has to be committed to further

scrutiny. In order to find the causal mutation, the variants have to be prioritised based

on additional information: A clinician can determine variants located in disease-relevant

genes for a specific case by including patient- or case-specific data such as symptoms,

the expected gene function, or candidate genes from gene panels. In combination with
4http://www.mutationtaster.org

http://www.mutationtaster.org
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a variant’s effect on the gene product, this information enables powerful filtering or

prioritisation of candidate alterations. The more accurate – hence the more personalised

– the descriptions are, the more likely it is to detect the real culprit.

This combination of genotype and phenotype allows alterations labelled as ‘harmful’

that do not fit with the disease in question to be excluded. At the same time, alterations

considered less severe by the computer program but which perfectly match the patient’s

phenotype could become more relevant. In this way, the rather broad categorisations

into ‘harmful’ and ‘harmless’ become more tailored, allowing a step towards personalised

medicine.

Phenotype

A patient suffering from a genetic disease exhibits specific symptoms, which can be

identified and classified by their clinician. In the clinic, the entirety of all symptoms

observed in a patient is often referred to as their phenotype. Taking the phenotype into

account can greatly facilitate diagnosis by establishing a link to known disorders, similar

diseases, and by suggesting candidate genes.

Phenotyping – the identification of a patient’s symptoms and their systematic and thor-

ough documentation and communication – is not a trivial process, especially in diseases

or syndromes which can show a high degree of heterogeneity [56, 57] and exhibit multiple

symptoms resulting from just one mutation. Therefore, correct phenotyping is crucial for

successful diagnostics. Major efforts have been made to categorise symptoms by using

controlled vocabulary, ensuring that every expert uses the same terms to describe a given

symptom. In a second step, these descriptions have been put into context by organising

them in systematic collections, so-called ontologies (see section 1.4.1.5 for details).

The Human Phenotype Ontology (HPO) [58], for example, is a systematic collection

of disease symptoms observed in patients suffering from (mostly monogenic) genetic

diseases, and their connections. The information stored in ontologies such as the HPO not

only helps to streamline the complex process of determining the patient’s phenotype but

also enables computational applications: HPO data can be used by computer programs

to calculate and quantify the relationship between symptoms and their relevance.

The phenotypes organised in the HPO have been connected to OMIM (Online Mendelian

Inheritance in Man, [59]) and Orphanet [60], large-scale collections of known genetic dis-

orders, their symptoms, known disease genes, and related research. This allows for a

systematic, computational assessment of genetic variants, symptoms and their pheno-

typic relevance.

Gene panels

In many cases, lists of candidate genes, so-called gene panels, are already known for
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a certain group of disorders. One well-studied example is the Kingsmore panel [61],

a collection of genes known to be involved in rare recessive genetic disorders which

manifest in early childhood. It has been revised and curated many times and is used

for routine diagnostics worldwide. This is a major aid when assessing the relevance

of candidate variants for a particular case. These panels can either be used for for

enrichment in targeted sequencing (see section 1.2) or as virtual panels to reduce the

number of candidates in WES or WGS sequencing projects. Many clinics use in-house

panels for various diseases and disease groups. In an attempt to generate a reliable

knowledge-base from this wild growth of gene panels, Genomics England’s PanelApp5 is

an initiative to generate expert curated gene panels for the scientific community. It stores

expert reviewed virtual gene panels for over 200 human disease groups. Fore example,

the PanelApp Familial dysautonomia panel currently contains 22 expert-reviewed genes

of relevance for the disease, 14 of which are quoted with a high confidence (’green’ genes).

Virtual panels such as the ones provided by PanelApp connect the benefits of panel

sequencing – lower number of candidates, easier analyses – with the advantages of exome

sequencing. Therefore, the restriction to virtual panels in cases with a clear phenotype

is a convenient way of improving data analysis. However, this approach cannot detect

new disease genes as it only works for genes that are already known to be involved in a

certain disease or set of symptoms.

Gene function

In cases where no mutation in any known disease gene can be found, clinicians have to

take other traits into account: Knowledge about function, expression and interactions of

a gene or gene product can help to close in on the disease cause. In contrast to relying

on known disease-gene links, this approach has the advantage of opening the door to

discovering hitherto unknown disease genes. There are a number of data sources that offer

varied insights into the functions of and connections between genes and gene products.

The Gene Ontology (GO) [62] stores machine readable knowledge on the function of genes

and gene products in an ontology. GO data is often compiled from many organisms such

as mice or zebra fish and humans. The GO addresses the functionality of genes and

their products in a computer readable manner and stores the relations between them.

By including this knowledge into the investigation of the disease gene, the search can be

restricted to relevant genes, such as the relevant protein class (e.g. ion channel) for a

given case.

Another approach is to look at the involvement of genes in molecular or signalling path-

ways: Resources such as Kyoto Encyclopedia of Genes and Genomes (KEGG [63]),

Reactome [64] and WikiPathways [65] store this information. Particularly in cases where
5https://panelapp.genomicsengland.co.uk/

https://panelapp.genomicsengland.co.uk/
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laboratory data indicate a defect in a metabolic pathway, incorporating this information

into the search for the disease cause can help to identify candidate genes and variants.

A similar approach is feasible in patients who are suffering from a disease limited to

certain organs or organ groups. For instance, if a patient is plagued by a genetic disease

which manifests itself in the skin, the disease gene might be expected to be expressed in

the skin. To collect a list of candidate genes, the inclusion of gene expression data might

be a valid option in this case. A large number of experiments determining the expression

patterns of genes are conducted in laboratories around the world. Findings from various

groups or projects are stored in ExpressionAtlas [66], a manually curated open science

resource offering access to data on gene and protein expression.

1.4.1.5 Ontologies

Ontologies are a powerful way of defining the basic concepts of a research domain, as

well as the relationships between those concepts [67]. They serve as a valuable reference

for researchers and clinicians to search and exchange (biological) data, and they allow

information from heterogeneous methods and sources to be merged. In the case of rare

diseases and human genetics, two major ontologies shed light on genes and their functions:

The aforementioned Gene Ontology (GO) and the Human Phenotype Ontology (HPO)

are valuable resources for variant prioritisation as they allow the evaluation of a candidate

gene’s relevance for a given disease or group of symptoms.

Originally, the term ontology was (and is still being) used in the field of philosophy. It

comes from ancient Greek and describes the study of existence and being. In information

technology, it has been given a slightly different meaning:

Probably the best known definition of modern-day ontologies was coined in 1995 by

Thomas Gruber [68], who identifies an ontology as an explicit, formal specification of

a shared conceptualisation. This short phrase sums up the core concepts of ontologies:

First, the descriptions have to be precise and clear (explicit). Second, they store specifi-

cations in a machine-readable way (formal), and third, there is a shared understanding

of an abstract concept which is represented by the ontology’s conceptualisation. This

conceptualisation is described in classes, attributes and relationships capturing the rel-

evant distinctions in an abstract way while still being as clear as possible about the

meaning of the terms. Together, they form a level of data model abstraction and dis-

play knowledge about individual terms, their properties, and their relationships between

each other. To allow for computational usage, ontologies are specified in standardised

languages enabling abstraction from the structures.
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Ontologies can be depicted as a graph: Each term (or class) is a node and the relationships

between them are edges of the graph. There is usually a loose hierarchy with descendant

terms being a more specialised description of their ancestors. However, a term can

have more than one ancestor, organising the ontology in a structure termed directed

acyclic graph (DAG). Most frequently, terms are equipped with a unique identifier which

allows them to be stored and managed independently from a lexical, human-readable

description, thus reducing errors. Moreover, this step allows the content stored in a term

to be changed or updated later on without altering the ID.

As an example for a DAG, figure 1.2 shows the HPO term Aplasia/Hypoplasia of the

brainstem (HP:0007362) and its first ancestors and descendants.

The relationships between the terms can be described in different ways, such as is_a,

part_of, or is_opposite_of. In biological ontologies, they are often reduced to is_a, sim-

ple class-subclass or ancestor-descendant relationships: In figure 1.2, Hypoplasia is_a

subclass of Aplasia/Hypoplasia of the brainstem, which in turn is_a subclass of Ab-

normality of brainstem morphology. The further we traverse down the graph, the more

specific a description becomes. As more and more types of relationships are being added,

for instance in the GO (e.g. negatively_regulates) and the HPO (e.g. is_opposite_of ),

the graph may contain circles and is hence not a clear DAG anymore. However, for com-

putational methods, is_a and part_of are still the most commonly used relationships.

The structure of ontologies is particularly useful for determining the importance or speci-

ficity of a given term:

Based on information theory, Philip Resnik introduced an information-based measure

for semantic similarity in the 1990s [69], which is nowadays an accepted method to

compare semantic similarities in ontologies and taxonomies. In information theory, the

information content of a concept is higher the less abstract it is. This can be expressed

mathematically. The information content IC of a concept c (e.g. a node in the ontology)

is measured as:

IC(c) = −logp(c)

where p(c) is the probability of finding c in a given domain. In an ontology, this prob-

ability is usually expressed by the fraction of annotated terms for a concept – which in

turn can be expressed as a term’s specificity.

The graph structure of an ontology allows us to determine the descendants and ancestors

that are directly connected to a term. These appear below or above the term in the graph,
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Figure 1.2: Excerpt of the graphical representation of the HPO. This figure
shows the HPO term Aplasia/Hypoplasia of the brainstem (HP:0007362) and its rela-
tionships to its first ancestors and descendants. HP:0007362 has two different direct
ancestors, HP:0002363 and HP:0002977, which it is connected to via an is_a relation-

ship.

and indicate a higher or lower degree of specificity. This concept will be elaborated further

in section 4.1.2.1.

1.4.2 Current variant prioritisation tools

As computational data analysis is absolutely indispensable to make sense of the masses

of results obtained by NGS methods, it comes as no surprise that a large number of

computer tools aimed at different user groups have been developed over the last years. I

will limit myself to phenotype-driven software for variant prioritisation in WES projects,

as these are the most relevant for this work. In this section, I will give an overview of

recent programs, compare their capabilities and describe advantages and shortcomings

of the various approaches.

As described above (see sections 1.4.1.3 and 1.4.1.4), variant prioritisation generally con-

sists of two steps: The candidate variants are annotated and filtered by severity, and

the list of remaining candidates has to be prioritised based on additional information

such as the patient’s phenotype. Current tools usually combine these steps and offer a
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comprehensive analysis of WES data. However, the various software options differ in

many ways and cater to different needs. A lot of early solutions were aimed at bioin-

formaticians and provided their output in scores without any interpretation. Nowadays,

however, more and more clinicians prefer to analyse their own data [70], for which they

are the main experts, and this calls for software that they can use easily and readily. As

extensive computational training is not compatible with a busy working life in the clinic,

these users require different software: Their focus is on easy and intuitive tools which

allow them to work with their patient’s data in a convenient way.

Another distinction between the available tools is the types of data they accept. Earlier

tools such as eXtasy [71], Phen-Gen [72], or the Exomiser [73] are largely based on

the HPO to characterise the patient’s phenotype. In a range of other recent computer

programs, there are often more data entry options. Phevor [74] and PhenIX [75] for

instance, allow multiple ontologies, whereas ANNOVAR [76] can take various disease-

related terms as input. Other software, such as OVA [77], BiERapp [78] or QueryOR [79]

are web-based frameworks which allow retroactively refined analyses but are not available

without registration (QueryOR, BiERapp). Figure 1.3 displays an overview of recent and

widely used web-based tools for the phenotype-based prioritisation of candidate variants.

State-of-the-art variant prioritisation tools are capable of analysing a wide range of data

and cover many different cases. However, many of them have still not found their way

into routine clinical applications as they are often too complex for clinical use or do

not provide enough information for users to draw meaningful conclusions from their

predictions. In addition, most of them can only accept non-synonymous SNVs and are

limited to nuclear DNA. Another major hurdle for clinical use is file size restrictions, as

many tools cannot handle complete VCF files.

A recent paper by Shyr et al. [70] stated the importance of usability and easy access

for the success of sequencing projects. However, NGS analysis software is still often

developed by bioinformaticians without taking clinicians and geneticists on board. Thus,

a number of tools are only available as command-line scripts or source code which has

to be compiled and installed locally, which is of little use for many clinical applications.

A recent example is TAPER [80], a variant prioritisation tool which was published as

source code in 2016. Even the installation of software itself can cause an obstacle for

clinicians who work on different computers and usually do not have the administrative

rights to install software.

The output of many tools can pose another difficulty for daily clinical use: In order to

make sense of the results and to be able to draw further conclusions – which might have

implications on the treatment of the patient – clinicians and geneticists need compre-

hensive information. However, most tools – even recent ones – deliver their results in
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Figure 1.3: Current variant prioritisation tools. Depicted is an overview of the
features of current web-based variant prioritisation tools. Published in Hombach D et
al. MutationDistiller – user-driven identification of pathogenic DNA variants. NAR

Web Server Issue. 2019. doi:10.1093/nar/gkz330

flat tables or files containing a number of scores rather than offering further data on the

biological context and the disease relevance of a specific data point, thus limiting their

use for clinical applications [70].

Moreover, many tools do not provide hyperlinks to external resources, thus forcing the

user to manually search the Internet for further information on their data. While this

might seem trivial, it is time-consuming and can prevent users from adopting a given

software.
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1.5 MutationDistiller

To close the gap between the clinic and bioinformatics, and to provide the means for

personalised NGS analysis, in the course of my PhD project, my colleagues and I have

developed MutationDistiller (https://www.mutationdistiller.org), a variant prioriti-

sation tool for use in clinical cases. It was developed in close collaboration with clinicians

and human geneticists, taking their needs and requirements on board. As a consequence,

the program is freely usable online and does not require any software installation. We

aim to make usage as convenient as possible by offering a set of default user modes aimed

to fulfil the needs of different user groups. Thus, we aim to provide software which can

be used by clinicians, researchers and geneticists without extensive knowledge of bioin-

formatics. MutationDistiller has already found its way into the clinic and has seen over

14,000 analyses to date.

1.5.1 Technical information

MutationDistiller’s programmatic structure follows the classical three-tier-structure6 where

the different functions fulfilled by a software – presentation, application processing, and

data management – are separated in three layers:

Presentation tier or User Interface (UI): This Front End is the interface the user

sees. Access is often provided via a web browser.

Logic tier: This layer is also termed application server tier ormiddle tier. It coordinates

the application and contains mechanisms to run the user commands and to return results,

thus connecting the other two layers.

Data tier: This Back End is where data are stored and retrieved; thus it usually contains

a database. It passes the information to the logic tier, from where it will be returned to

the user.

The advantage of the three-tier architecture is that the user only needs to have a web

browser installed, without the need for additional software on their computer. In addi-

tion, for the developers, the three-tier architecture usually has advantages as it is less

labour-intensive than distributed software: The entire control over software and data

stays with the developers – in case of updates, developers can push these changes to the

web-version in one step, without having to worry about distributed versions. This is one

of the main reasons why MutationDistiller is available as a web-version only.
6https://en.wikipedia.org/wiki/Multitier_architecture, accessed 28.12.2018

https://www.mutationdistiller.org
https://en.wikipedia.org/wiki/Multitier_architecture
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MutationDistiller was written in the programming language Perl 57. Dedicated Perl

modules, which are discrete software components, contain all the functions necessary to

fulfil MutationDistiller’s function. In these modules, functions are sorted and grouped ac-

cording to their purpose. The modules reference and call each other, access the database

and connect with the Front End.

MutationDistiller combines the powers of two tools previously generated in our research

group: MutationTaster (http://www.mutationtaster.org, [46]), a variant effect pre-

dictor, and GeneDistiller (http://www.genedistiller.org, [81]), a gene ranking tool –

hence the name MutationDistiller. In the next two sections, I will briefly introduce those

tools and their capabilities.

1.5.2 MutationTaster

The variant effect predictor MutationTaster started in 2008 [47] and is now freely avail-

able online in its second version [46] at http://www.mutationtaster.org. It is able to

predict whether a variant is most likely harmful or harmless. While users can also man-

ually enter individual alterations, in the NGS age the tool is mainly working on entire

VCF files. MutationTaster conducts in silico tests and employs a Naïve Bayes classifier

to distinguish deleterious mutations from harmless variants: Each variant is sorted into

either ‘harmless’ or ‘harmful’. The tool can handle coding and non-coding alterations,

SNVs as well as short InDels. Moreover, it is not limited to protein-coding regions but

can also annotate alterations located in introns and the untranslated regions.

For each variant, MutationTaster has four different prediction options: Disease causing

indicates that the tool’s Naïve Bayes classifier found enough evidence to consider a given

variant to be harmful. Variants causing frame-shifts and leading to nonsense-mediated

decay, or that are listed as ’pathogenic’ in ClinVar, are labelled disease causing automatic

whereas variants known to be harmless from databases such as 1000G or ExAC are

labelled polymorphism automatic. Finally, the polymorphism label denotes variants that

the classifiers considers harmless.

When users upload their data to MutationDistiller, the program sends the information

to MutationTaster to determine the pathogenicity of the submitted variants. In a second

step, the variants (or the genes those variants are located in) are then ranked and excluded

according to the user’s phenotype entries.
7https://www.perl.org/about.html, accessed 27.12.2018

http://www.mutationtaster.org
http://www.genedistiller.org
http://www.mutationtaster.org
https://www.perl.org/about.html
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1.5.3 GeneDistiller

The gene-ranking part of MutationDistiller is based on GeneDistiller (http://www.

genedistiller.org) which was published by our research group in 2008 [81]. GeneDis-

tiller allows lists of candidate genes to be ranked according to how well they match a

myriad of user-definde criteria. GeneDistiller takes regions from linkage intervals or sim-

ple gene lists as input and is also able to conduct whole genome or mitochondrial genome

analyses. Users can filter for and highlight genes fulfilling a number of criteria such as

cellular localisation, expression levels or phenotypes. Moreover, the tool prioritises the

gene lists according to user-defined criteria and weights. Users can also compare their

target genes to genes that show similar expression patterns or interactions. However, we

found that the multitude of options together with a crowded user interface can overwhelm

users and make analyses with GeneDistiller cumbersome. Hence, in MutationDistiller,

we have not only added new resources but also adapted the tool to the requirements

of NGS projects, and trimmed the user interface as well as the underlying algorithm to

provide a user-friendly tool.

1.5.4 Combining genotype and phenotype

By connecting the powers of MutationTaster and GeneDistiller, MutationDistiller com-

bines a patient’s genotype with their phenotype. For the genotype, variants from panel

sequencing, WES, or even WGS studies can be uploaded in VCF format. The pheno-

type can be entered in a multitude of ways: MutationDistiller accepts common ontology

terms such as HPO symptoms or GO terms, diagnoses as OMIM and Orphanet entries,

identifiers for molecular pathways (WikiPathways, Reactome), and expression data (Ex-

pressionAtlas). Candidate genes can be entered manually or as panels via Genomic

England’s PanelApp.

In the output, MutationDistiller displays information about a variant and the gene it is

located in on one page: In a summary table, the top variants are listed together with

crucial information such as gene symbols, known diseases caused by mutations in this

gene, and genotype occurrences in 1000G and ExAC, as well as coverage and compound

heterozygosity. Further data on each gene is listed below, offering a comprehensive

overview of each candidate gene and variant and their relevance for the specific case.

If the causative variant cannot be determined by an initial search, MutationDistiller

offers the option to refine the query by adding or removing terms which have come up

in the meantime. Thus, the program allows users to customise the hunt for the culprit

in an iterative way.

http://www.genedistiller.org
http://www.genedistiller.org
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In the following chapters, I provide an overview of the integrated data sources and

structure of the database. Moreover, further information on the program is given, such

as technical data, the scoring mechanism and a comprehensive description of the input

and output options. I will explain the development and validation steps and describe

use cases for MutationDistiller. Finally, I will give an outlook of future developments.
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2 MutationDistiller: Data integration

In order to accomplish large data-driven projects, such as the prioritisation of the myriad

of candidate variants generated in WES or WGS projects, huge amounts of data from

various sources have to be brought into context. This process of assembling data from

heterogeneous backgrounds and sources in one framework is termed data integration.

Two main ways of integrating data exist:

Uniform Data Access or Virtual Integration keeps the data in their various source

systems and provides access to them directly during the data query process (usually via

the Internet). As such, in each query, the data are gathered together and the output

is only saved for a short amount of time. A main advantage of this approach is that

no additional hardware needs to be provided for storage of the information. Moreover,

there is no delay in the uptake of data updates from the source system. However, this

comes with a loss of control: No version management is feasible and no control over the

data structure is given. In addition, updates can cause severe problems, especially if

the database structure becomes altered. Bandwidth limitations can also cause issues, in

particular with large data sets. Server failures or, even worse, the potential abandonment

of servers may let data queries run dry.

Physical Integration or Common Data Integration on the other hand refers to the

creation of a new system which stores a copy of the data from the source systems. The

data can be stored and managed independently in a Data Warehouse. One example of

this approach is the Ensembl Genome Browser [34] (see section 2.2). A disadvantage of

this solution is that a system to store and handle the source data has to be provided.

Moreover, updates to the source data will have to be manually kept up with.

However, physical integration comes with a number of advantages: First, it allows for

flexible data management and the combination of data from heterogeneous sources and

in different formats. In addition, the function of the data system is independent from the

source system, generating better stability. Data updates can be planned and organised

while the data can be checked for validity more easily than is the case for externally stored

data. Finally, for the usage of the software, physical integration offers a major advantage

as well: The run-time of the program will be reduced in comparison to virtual integration

as locally stored data can be queried much more quickly. Due to these advantages,

we decided to physically integrate the data sources used by MutationDistiller. In the

following sections, I will give an overview of databases in general, as well as the sources

used by MutationDistiller and their integration into the tool.
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2.1 Databases

In this data-driven day and age, databases are a popular way of storing and managing

data. Databases are persistent repositories stored in a computer system; meaning that

the data is supposed to be available even after the software application using or creating

it is closed. A single database table can be compared to a simple spreadsheet table. The

real strength of modern data repositories is provided by relational database management

systems, RDBMSs. These are software programs specifically designed to hold the data

of related repositories. RDBMSs store relational databases, which contain their data

in collections of relations, or database tables. A relation is defined as set of tuples – or

database entries – belonging to a given data domain. A database’s tables can therefore

be seen as permanently stored relations. In these tables, columns represent properties

(or attributes) while rows hold the values for these properties.

All related tables are held together in one or several database schemas, which contain

not only the tables but also the connections between them.

RDBMSs offer a number of advantages: First of all, they are optimised for large amounts

of data, and therefore handle them with great speed (scalability). Moreover, several users

can access the database simultaneously through standardised interfaces, making queries

secure and convenient. Finally, the information stored in different tables is usually re-

lated, making it quick and easy to cross-reference data. Transaction control ensures that

a database query that accesses different tables but belongs to one logical task will either

be concluded in its entirety or not at all, without allowing simultaneous write-access.

An example of transaction control is the transfer of money from one account to another:

Taking money out from one account without putting it safely into the destination ac-

count would not make sense (and probably have the bank lose their customers within

no time). Thus, the transaction will only be concluded all-together – or not at all. In

addition, transaction control is pivotal for multi-user tables by ensuring that only one

user can modify the same data at a given time.

To facilitate one of the main advantages of databases, fast and convenient access to the

data, database indices exist. An index, like the index of this thesis, is an ordered list

of the values of one or more attributes stored in a relation, and allows each entry to be

found faster without having to search the entire relation. This is particularly important

for large tables as it can speed up the search process considerably. Indices can combine

multiple different attributes and each table can hold many different indices.
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2.2 Data sources

2.2.1 MutationTaster predictions

To assess the pathogenicity of a variant, MutationDistiller relies on the predictions gener-

ated by a functional prediction tool developed in our group, MutationTaster [46, 47] (see

1.5.2 for more information). MutationTaster employs a Naïve Bayes classifier to predict

a variant’s likelihood to be harmful. To do this, it relies on a number of data sources

itself. A list of MutationTaster’s data sources can be found in table 2.1. Some of the

data integrated into MutationTaster are also available from MutationDistiller directly

and will be described in further detail below.

Data source/tool Description
ENCODE project [82] Encyclopedia of DNA Elements; repository

of functional elements of the human genome
(https://www.encodeproject.org/)

Ensembl [34] Central, freely available data warehouse of genome
data for various species, including human and mice
(https://www.ensembl.org/index.html)

1000G [41] 1000 Genomes Project; public catalogue
of human variation and genotype data
(http://www.internationalgenome.org/)

dbSNP [40] Collection of simple genetic polymorphisms
(https://www.ncbi.nlm.nih.gov/projects/SNP/)

ClinVar [44] Aggregated information on human vari-
ation and its connection to disease
(https://www.ncbi.nlm.nih.gov/clinvar/)

Entrez Gene [83] Integrated gene information on a wide range of species
(https://www.ncbi.nlm.nih.gov/gene)

ExAC [42] Exome Aggregation Consortium. We include
ExAC genotype counts and loss-of-function scores
(http://exac.broadinstitute.org/)

Grantham Matrix [84] Formula for differences between amino acids
PhyloP [85], PhastCons [86] Computer programs to predict the evolutionary conser-

vation of a given nucleotide
UniProtKB [39] Database of protein sequences with annotations

(www.uniprot.org/)
HGMD public [45] Human Gene Mutation Database; non-redundant

collection of disease-relevant DNA alterations
(http://www.hgmd.cf.ac.uk/ac/index.php)

* bl2seq [87] Tool for the alignment of DNA sequences
* MaxEntScan [88] Human splice site prediction tool
* Polyadq [89] Tool for the detection of human polyadenylation sites

Table 2.1: MutationTaster data and tools integrated into MutationDistiller.
This table lists the various data sources and tools that are used by both MutationTaster
and MutationDistiller. Tools are marked with an asterisk. Please note that in the origi-
nal MutationTaster version, the splice site tool was nnsplice [90], which was replaced by
MaxEntScan in later versions. Details on MutationTaster data sources and integrated

tools can be found in [46, 47].
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2.2.2 Genetic data

MutationDistiller, similar to its inspiration GeneDistiller, uses a gene-centric approach

to integrate the many different data sources that come together within the software. In

order to combine and connect these sources, we use the gene level as a mediating point

and map or link all information to Entrez gene IDs provided by the US National Center

for Biotechnology Information (NCBI) [83] and/or gene identifiers from Ensembl (ENSG)

[34]. These identifiers define each protein-coding gene individually and hence enable us

to cross-reference data. In MutationDistiller, this allows us to provide prioritised lists of

variants and their connected genes based on a myriad of options.

2.2.2.1 Ensembl

Ensembl [34] is a joint project between the European Bioinformatics Institute (EMBL-

EBI) and the Wellcome Trust Sanger Institute which begun in 1999 to automatically

annotate genome data. In its Genome Browser1, it provides access to genome annota-

tions for multiple vertebrate species. Since its online launch in 2000, it has grown into a

central, open resource for genome information which is used by many researchers from

various fields. Its core component is the Ensembl Genes database which currently pro-

vides genome data and annotations for 135 mainly vertebrate species. The information

content varies between species, with data for humans and model organisms such as mice

and zebrafish being the most extensive. The Genome Browser provides convenient access

to the data and visualises gene information, genetic sequences and annotations on the

web. For data annotation, Ensembl relies on an automated process in which annotations

of transcripts are based on experimental evidence: The automated pipeline uses mRNAs

and protein sequences from public databases such as the European Nucleotide Archive

ENA at EMBL-EBI, UniProtKB, or NCBI RefSeq. Moreover, transcript annotation data

may be derived from other sources such as the Havana/Vega set [91] and the Consensus

Coding Sequence (CCDS project, [92]), a collaborative project providing an overview of

protein-coding regions with identical annotations for humans and mice. The Genome

Browser is particularly suited for single search requests. For large-scale queries, Ensembl

data is available in various ways. Data from the database can be downloaded or queried

dynamically for virtual data integration. In addition, BioMart [93] offers access to En-

sembl data sets. Expression and protein data obtained from Ensembl are described in

sections 2.2.5.2 and 2.2.6, respectively.

Ensembl data used in MutationDistiller is mainly accessed through MutationTaster’s

prediction results. In addition, MutationTaster and MutationDistiller use the protein
1https://www.ensembl.org/index.html

https://www.ensembl.org/index.html
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repository UniProt/Swiss-Prot hosted by Ensembl. Currently, MutationTaster is based

on Ensembl build 37.

2.2.2.2 Entrez Gene

Entrez Gene is a genome database hosted and run by the NCBI. It offers a web interface

and download providing easy access to gene-specific information. Entrez Gene stores a

large array of data and provides information for specific transcripts. For many tran-

scripts, a direct mapping to Ensembl Transcripts is available. Wherever possible, this is

used by both MutationTaster and MutationDistiller. MutationDistiller also uses addi-

tional data available from Entrez to provide further information on a gene, such as Entrez

Synonyms, which accounts for the fact that a number of genes are known under different

names or abbreviations, or Gene Positions, which determines the genomic locations of

a gene. Moreover, Entrez genes are linked to NCBI GeneRIFs, myriads of tweet-like

explanations on the function of a particular gene (max. 255 characters). They are as-

sociated with a specific Entrez Gene database entry and link to a scientific publication

supporting GeneRIFs. We downloaded GeneRIFs and display them in MutationDistiller

to allow users to get a quick insight into a gene’s function and relevance. Moreover, we

use the Entrez gene identifier to link between Ensembl and NCBI data for each gene.

2.2.3 Variant databases

Variant databases allow to assess the relevance of a candidate variant and to put it

into context. Thanks to previous research and their occurrence in healthy individuals,

many variants are already known to be harmless, whereas others have been found to be

involved in genetic disease. Thus, by using the information stored in those databases,

a large number of known harmless variants in a WES project can be excluded from the

candidate list, while known disease alterations will have to be considered with greater

care.

2.2.3.1 1000 Genomes Project

The 1000 Genomes Project (1000G, [41]) ran between 2008 and 2015 with the goal to

find the majority of genetic variants with a frequency of at least 1% in the populations

studied. Data generated by the 1000G project has been made available to research

communities and is now coordinated by the Data Coordination Centre at EMBL-EBI.

Each sample was planned to be sequenced to 4X genome coverage. While sequencing
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at this depth cannot detect every single variant in each sample and is not sufficient

to determine the exact genotype at each location, it can still discover most alterations

even with low frequencies. In the project’s last stage, data from numerous samples was

combined to enable accurate assignment of the genotypes in each sample at all the variant

sites detected in the project. 1000G samples were obtained from healthy individuals with

no known congenital disorder. Thus, variants found in the 1000G database are expected

to be harmless and to not be involved in the development of rare, Mendelian diseases.

However, as described in the introduction, this has to be taken with care as carriers

might have been included in the data collection. Therefore, it has to be noted that

the database might still contain harmful alterations (e.g. ones involved in complex or

late-onset diseases or heterozygous alterations for recessive disorders).

2.2.3.2 Exome Aggregation Consortium Browser (ExAC)

The Exome Aggregation Consortium (ExAC) Browser [42] is a curated repository of

exome sequencing data from various NGS projects worldwide. It provides data from

over 60,000 unrelated individuals who were sequenced as part of population genetic

as well as disease-specific studies. However, data from individuals affected by severe

paediatric disease have been removed. Thus, for rare early-onset Mendelian disorders,

variants found in a homozygous state in the ExAC database can usually be excluded

from further analysis. As with 1000G data, however, individuals included in the samples

might have been heterozygous carriers of disease mutations. A genome-wide version of

ExAC, gnomAD [43] exists, which is currently being integrated into MutationDistiller.

2.2.3.3 dbSNP and ClinVar

dbSNP [40] and ClinVar [44] are public repositories of genetic variation run by the NCBI.

dbSNP, or the NCBI Short Genetic Variations (SNV) database, is a collection of known

short genetic variants in various species. Despite its name, it is not restricted to single

nucleotide variants but also includes other types of variation, such as short insertions

and deletions, short tandem repeats (microsatellites) and polymorphisms consisting of

multiple nucleotides (multinucleotide polymorphisms). It contains harmless polymor-

phisms as well as alterations corresponding to known phenotypes. As such, it provides

an archive of genetic variation across and within a number of species and allows for

comparisons. To distinguish between harmful and harmless alterations, dbSNP variants

are assigned to levels of severity such as pathogenic, probable-pathogenic, probable-non-

pathogenic and non-pathogenic. Variants with clinical information are compiled in the

clinical database ClinVar and can be accessed and downloaded separately. For a subset
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of ClinVar cases, phenotype information is provided as well, which we used for the de-

velopment of our program. MutationDistiller displays and treats data from dbSNP and

ClinVar independently.

2.2.4 Phenotype repositories

MutationDistiller aims at illuminating the molecular cause of Mendelian disorders by

connecting the patient’s genotype with their phenotype. This allows the user to filter

out variants which do not fit the phenotype while having a closer look at alterations in

genes which have previously been found to be linked with a matching phenotype. To

enable this, MutationDistiller includes phenotype data from a range of different sources.

2.2.4.1 Online Mendelian Inheritance in Man

Online Mendelian Inheritance in Man (OMIM, [59]) is a comprehensive collection of hu-

man genes and diseases focusing on the relationship between genotype and phenotype.

It contains data on over 15,000 genes and all known Mendelian disorders. Long before

the online age, it started as Mendelian Inheritance in Man (MIM) in the early 1960s,

generating a manual list of Mendelian phenotypes and disorders. The online version

began in 1985 and was uploaded to the Internet to become freely available to the public

in 1987. Today, it is hosted and authored at the McKusick-Nathans Institute of Genetic

Medicine at the Johns Hopkins University School of Medicine and builds the basis for

many downstream applications on the connections between genetics and human symp-

toms (see section 1.4.1.5). However, the full OMIM data is currently not freely available

anymore.

2.2.4.2 Orphanet

Orphanet [60] is a repository of rare diseases founded in France by the INSERM (French

National Institute for Health and Medical Research) in 1997. Since 2000, it has become

a European undertaking and is now hosted by a Consortium of 40 countries worldwide.

Amongst other services and tools, it provides an inventory of rare diseases2, connected

with various resources such as OMIM to enable the systematic storage and assessment

of known rare disorders in humans. Moreover, with Orphanet Rare Disease Ontology

(ORDO)3, a structured vocabulary for rare disease linking relationships between genes

and disorders is currently being developed to support computational analyses.
2https://www.orpha.net/consor/cgi-bin/Disease_Genes.php?lng=EN, accessed 11.06.2019
3http://www.orphadata.org/cgi-bin/inc/ordo_Orphanet.inc.php/, accessed 11.06.2019

https://www.orpha.net/consor/cgi-bin/Disease_Genes.php?lng=EN
http://www.orphadata.org/cgi-bin/inc/ordo_Orphanet.inc.php/
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2.2.4.3 Mouse Genome Database

The Mouse Genome Database (MGD, [94]) is a community data resource providing a

comprehensive knowledgebase on mouse genes, genetic markers and genomic features. In

addition, their associations to phenotypes and other properties are given as well. Muta-

tionDistiller displays MGD phenotype data to allow users to find genes which are known

to cause a particular phenotype in mice. Adding mouse phenotypes as an additional

layer of information can be particularly useful for genes which have not yet or cannot be

studied extensively in humans. We are using the link between MGD entries and human

diseases4 to provide users an opportunity to search for genes causing a certain mouse

phenotype.

2.2.4.4 Human Phenotype Ontology

The main goal of the Human Phenotype Ontology (HPO, [58]) was to create a standard-

ised, computer-legible vocabulary of human phenotypic abnormalities in order to allow

large-scale computational assessment of human phenotypes. By giving an identifier to

each term and denoting their relationship to other terms, it allows phenotype data to be

structured and helps to describe a patient’s symptoms as accurately as possible. Cur-

rently, the HPO contains over 11,000 terms. It is organised in five subontologies The main

subontology is phenotypic abnormality with its description of disease phenotypes. Addi-

tional subontologies describe different aspects of the phenotypic abnormalities: mode of

inheritance, mortality/aging, frequency and clinical modifier.

To organise the phenotypes and connect them with known disease genes, the HPO draws

on data from OMIM and other sources. Nearly all clinical OMIM descriptions have been

mapped to HPO terms. In addition, all Orphanet entries have been annotated, together

with over 60 recurrent syndromes from DECIPHER [95], a web-based source of plausibly

pathogenic genomic variants from well-phenotyped rare genetic disorder patients. By

organising the data in an ontological structure, the HPO enables computational usage of

the vast knowledge stored in these heterogeneous data sets. Moreover, regularly updated

phenotype to gene mappings are provided. Phenotype-gene annotations are conducted

using OMIM as a mediator platform. As OMIM compiles all symptoms for a given

disease – irrespective of whether this disease can have multiple genetic causes or display

multiple subsets of symptoms – this leads to a degree of uncertainty as not necessarily

all symptoms of a disease are connected with every gene in the OMIM list. In addition,

a layer of insecurity is added as neither there is no distinction between symptoms that

are mandatory and others that might possibly or even only rarely occur in a given
4http://www.informatics.jax.org/diseasePortal, accessed 11.06.2019

http://www.informatics.jax.org/diseasePortal
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disorder. Nevertheless, the HPO and its gene-phenotype annotations are a valuable and

widely used resource in human genetics. We obtained the OMIM-to-gene annotations

via Medgen, the human medical genetics interface from the NCBI5 and incorporated

them into MutationDistiller to allow users to find genes linked with a specific phenotype.

Thus, by describing the patient as accurately as possible, clinicians are able to reduce

the relevant data to the most fitting genes.

2.2.5 Gene and protein function

The function of genes can be described in a number of different ways, such as a gene’s

role within molecular pathways, its disease relevance or its expression patterns. Muta-

tionDistiller combines a range of data sources linked with the various dimensions of gene

functions:

2.2.5.1 Gene Ontology

The Gene Ontology (GO, [62]) is an ontological representation of genes and their func-

tions at the molecular, cellular and tissue system level. It has grown to contain over

40,000 concepts annotating gene functions based on over 100,000 scientific publications.

The GO is organised in three sub-ontologies storing molecular function, cellular compo-

nent, and biological process of genes and gene products. Depending on the main point

of interest taken, genes or gene products can be described via one or more of the sub-

ontologies. For example, the gene product cytochrome c can be seen as part of all three of

the sub-ontologies: Oxidoreductase activity focuses on the molecular function, whereas

oxidative phosphorylation refers to the biological process and mitochondrial matrix to

the cellular component6. Using GO terms and their relationships in MutationDistiller

allows us to find genes fitting a patient’s phenotype via their function without being

restricted to what is known about human genes. For example, for a patient suffering

from an enlarged kidney, their clinician might be able to find candidate genes by filtering

the WES data via GO term GO:35564: regulation of kidney size.

2.2.5.2 Expression data

Expression data can be helpful especially in cases where the disease is limited to certain

tissues or organs. Limiting the search to genes known to be expressed in the tissues of

interest might help to reduce the list of candidate variants, in particular if no disease is
5ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene_medgen, accessed 11.06.2019
6http://www.geneontology.org/page/ontology-documentation, accessed 11.06.2019

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene_medgen
http://www.geneontology.org/page/ontology-documentation
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already known for the patient’s symptoms. ExpressionAtlas [66], hosted by EMBL-EBI,

is an open repository giving access to results from gene expression studies worldwide.

It provides expression data from various species and under varying biological conditions

(e.g. different tissues, cell types, and diseases). Different experimental methods are

included, such as RNAseq or microarray data. All experiments can be accessed and

visualised online as well as downloaded. Currently, data from over 3,000 experiments

are available, which have been curated and re-analysed with standardised methods to

enable continuity. For MutationDistiller, we have downloaded the Tab Separated Values

(TSV) files for a number of data sets that we consider to be interesting for clinicians

and human geneticists: These are baseline experiments, i.e. samples that had not been

submitted to any experimental treatment, came from healthy tissues and organs, and

were obtained by different experimental means and at various developmental stages. A

list of the experiments included in MutationDistiller can be found in table 2.2.

data source experiment development accession number
ENCODE [82] RNAseq adult E-MTAB-4344
FANTOM5 [96] RNA-CAGE adult, fetal E-MTAB-3358
GTEX [97] RNAseq adult E-MTAB-5214
HPA [98] Protein Expression adult E-PROT-3
HPA [98] RNAseq adult E-MTAB-2836
PRIDE [99] Protein Expression adult, fetal E-PROT-1

Table 2.2: MutationDistiller expression data sources. Overview of expression
data included into MutationDistiller. Expression data was obtained from Expression-

Atlas [66]. Accession number: ExpressionAtlas identifier.

Saving and displaying gene expression data is a complex task: Different data sources

cannot be combined or compared directly as expression levels are highly specific from

experiment to experiment and from tissue to tissue. Moreover, there is a big difference

between a gene not being expressed in a given tissue and a lack of expression data (zero

value vs. NA).

We thus had to design ways to store a wide range of individual expression data sources

while enabling users to easily access them. To achieve this, we decided to regard expres-

sion levels relative to median gene expression: For each tissue, we calculated its median

gene expression across all genes and for a given data source, denoting all genes expressed

below this median as not-expressed in the tissue. In addition, we calculated whether a

gene’s expression in a given tissue is high (i.e. lies within the 75th percentile) or very

high (i.e. within the 90th percentile). We saved this information in our database for each

gene and experiment separately. We define genes as not expressed in a certain tissue if

their expression levels lie below the median for all genes across this tissue – if a user

selects to display only expressed genes, any genes expressed below the tissue median are

removed from the results list.
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In addition, we decided to collect tissues together in biological groups as each of the

various data sources offers a wide range of different tissue types. The ENCODE data

(E-MTAB-4344), for instance, has relatively broad tissue categories (brain, liver, heart,

etc.), whereas the FANTOM5 data (E-MTAB-3358) contains sub-tissues (e.g. brain:

amygdala, brain meninx, occipital lobe, etc.). In order to make search and selection more

user friendly, we gathered each data source’s sub-tissues together to generate groups,

which can then be selected in the MutationDistiller interface. All the FANTOM5 brain

sub-tissues, for example, are now collected within the category ’brain’. We stored these

groups and sub-groups in our database, separately for each data source.

In the user interface, we grouped these categories again into organs (brain, heart, liver,

etc.), tissues (muscle, placenta, throat, etc.) and systems (reproductive, nervous, im-

mune, etc.). In addition, we identify the different data sources by the experimental

means with which they were generated (RNA-CAGE, RNA-Seq and protein expression)

as well as the developmental stage of the tissue (adult or fetal). As mentioned above,

MutationDistiller considers a gene to be not expressed in a certain tissue group (e.g.

brain) if its expression is lower than the median of all sub-groups (e.g. amygdala, brain

stem, medulla...) that contain data for that particular gene. For all groups that a gene

is expressed in, the sub-groups are listed in the results as well. A compilation of the

expression groups can be found in table B.1 in the appendix.

2.2.5.3 Metabolic and signalling pathways

In cases where a phenotypic characterisation of the patient does not lead to success, i.e.

for hitherto unknown disease genes, the inclusion of information on gene function can

be helpful. One intuitive way of describing the function of a gene is to refer to their

role in molecular pathways: Within a single pathway, numerous events (such as DNA-

binding), protein complexes, reactions (e.g. adenylation), translocations and regulatory

events can be represented in a simplified graphical view, enabling enhanced understand-

ing of complex concepts and networks. We have included molecular pathway data into

MutationDistiller to allow users to tackle rare, unknown cases not obviously linked with

known disease genes.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) [63]) is a database platform

covering various aspects of biological and cellular functions linked with genes and gene

products. In its KEGG Pathway collection, manually drawn pathway maps are provided.

An identifier is allocated to each map, denoting meta-information about the pathway.

While the web-services are accessible freely to the public at http://www.kegg.jp/kegg/

pathway.html, data download is only available with a paid academic subscription. As

http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
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MutationDistiller can only include open data, we have incorporated the last free data

download of the KEGG Pathway collection. This data is from 2011 and does hence not

entail up-to-date information. We thus decided to display the data but to not provide

KEGG as a searchable resource or include it into the score.

Reactome [64] is an open access, open source database of molecular pathways providing

access to curated and peer-reviewed date. It provides visualisation of pathways and

tools for their analysis, enabling, amongst others, research and genome analyses. In its

database, it combines molecules and nucleic acids interacting in reactions into biological

pathways. Reactome was founded in 2001 and is now headed by a group of researchers

from institutes around the globe.

WikiPathways [65] is a similar, open and collaborative project providing access to curated

biological pathways. It is based on the MediaWiki software7 employed by Wikipedia com-

bined with a graphical pathway editing tool. For each pathway, a wiki page displays the

current diagram and offers references, descriptions, download options, and supporting

information. Pathways can be edited and updated by the community and changes be

monitored to ensure quality of the entries. We have downloaded the Gene Matrix Trans-

posed (GMT) files available for download on WikiPathways. These are lists of gene sets

containing the pathways and the genes within these pathways.

As an example of the visual representation of pathways, figure 2.1 shows the Bone Mor-

phogenic Protein (BMP) Signalling and Regulation pathway, a pathway of importance

in embryogenesis and development.

2.2.5.4 Gene panels

Especially for patients with well-characterised diseases or symptoms, gene panels are

known to be a great tool in the hunt for disease alterations [100, 101]. Targeted gene

panels contain lists of genes known to be linked with a certain disease or group of diseases.

They can either be used to sequence the panel genes only or as virtual gene panels to filter

the results of a WES or WGS for panel genes, bringing down the number of remaining

candidates substantially to variants located in genes matching the case. MutationDistiller

incorporates virtual gene panels from various sources:

The Kingsmore panel [61] is a collection of genes which have been found to be involved

in rare recessive genetic disorders manifesting in early childhood. After having been

reviewed and assessed in multiple ways, various versions of the panel exist which differ

in small aspects. We have decided to include the Kingsmore panel version included
7https://www.mediawiki.org/wiki/MediaWiki, accessed 11.06.2019

https://www.mediawiki.org/wiki/MediaWiki
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Figure 2.1: WikiPathways Bone Morphogenic Protein (BMP) Signalling
and Regulation pathway (WP1425). Displays the graphical representation of the
BP pathway stored in WikiPathways. Provided by Waagmeester A, Pico A, Hanspers

K, Osman BM et al. Accessed 17.09.2018.

in the heterozygote screening conducted by Pränatal-Medizin München as provided by

Orphanet8. This version of the panel contains 550 genes for 258 different diseases.

Another prominent virtual gene panel which we integrated into MutationDistiller is the

HPO panel. This panel contains all the genes which have been connected with any HPO

term, thus any gene which has ever been found to be linked with a disease symptom. We

obtained version 2 of this panel with 3061 genes from the Institute of Medical Genetics,

Charité Berlin.

MutationDistiller also contains the ACMG actionable genes panel, which is a list of genes

published by the American College of Medical Genetics and Genomics (ACMG). It com-

piles genes of medical interest: These are genes for which the knowledge of a mutation

within it might be beneficial to the patient as action (prevention) can be taken. An ex-

ample is the APOB gene, which is known to be involved in familial hypercholesterolemia.

Knowledge of a mutation in this gene allows medical action to be taken, which could be
8https://www.orpha.net/data/dgs/DE/DgsID109383.pdf, accessed 23.12.2018

https://www.orpha.net/data/dgs/DE/DgsID109383.pdf
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life-saving. The most recent version of the ACMG actionable genes panel, ACMG SF

v2.0 [102], is incorporated into MutationDistiller.

In addition to published panels, many clinics or sequencing services have generated their

own gene panels from scientific literature. These can simply be used in MutationDistiller

by copying a gene list into the respective entry field. To generate a reliable knowledge

base for virtual gene panels commonly used in human genetics, Genomics England’s

PanelApp9 offers expert curated gene panels from and for the scientific community. Cur-

rently, gene panels of varying size for over 2000 human conditions are available from

their services, which we have downloaded and integrated into MutationDistiller. Pan-

elApp is a community-driven approach that calls experts into action: Each virtual panel

is reviewed and curated by clinicians or geneticists who are experts for a certain disease,

gene or disease group. The panel genes are sorted into three categories depending on the

confidence with which they have been added to the list. ’Green’ genes are intended to

be diagnostic-grade and according to their criteria require evidence from three or more

unrelated families or from 2-3 unrelated families where there is strong additional func-

tional data. All other genes which do not match these guidelines are rated as ’amber’ or

’red’ and should not be used in diagnostic settings, according to PanelApp’s creators.

2.2.6 Protein families

To provide a user-friendly interface allowing clinicians and human geneticists to draw

their own conclusions about a variant’s relevance, MutationDistiller provides as much

information as necessary and possible in one place. The inclusion of protein information

might help users decide for themselves which variants to assess with further scrutiny and

which ones to dismiss. MutationDistiller hence displays protein-related data from three

major resources to assist users.

PFAM [103, 104], hosted by EMBL-EBI, is a database collecting protein families. It

represents them by multiple sequence alignments and hidden Markov models (HMMs) to

display similarities between proteins and to allow insights into protein functions. PFAM

draws on data from the UniProt Reference Proteomes10. The information stored in

PFAM is accessible online and can be downloaded as well.

InterPro [105] is another protein platform providing functional analyses of protein se-

quences. It offers an insight into the functions of a protein by storing predicted protein

domains. Predictive models (signatures) provided by various member databases such as
9https://panelapp.genomicsengland.co.uk/, accessed 11.06.2019

10https://www.uniprot.org/help/reference_proteome, accessed 11.06.2019

https://panelapp.genomicsengland.co.uk/
https://www.uniprot.org/help/reference_proteome
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PFAM, PANTHER [106] or SMART [107] are used to classify proteins. It is run by a

consortium of protein databases from around the globe and hosted at EMBL-EBI.

2.2.7 Protein-protein interactions

2.2.7.1 STRING

STRING [108] is a database of protein-protein interactions developed by a consortium

of European institutions. It contains experimental data as well as computational pre-

dictions. Currently, data on almost 10 million proteins from over 2000 organisms is

included, which is available both online and can be downloaded. We have integrated

human STRING data into MutationDistiller to display STRING interactions and to

provide hyperlinks to relevant entries.

2.2.8 Mitochondrial data

While the mitochondrial genome with its 37 genes (including 13 protein-coding genes)

only makes up a tiny fraction of the human genome, mitochondriopathies place a burden

on a large number of patients [109]. Mitochondriopathies include diseases linked with

proteins generated in the mitochondria directly and those that are shuttled into the

organelle - the latter being the vast majority: Most of the more than 1,000 different

mitochondrial proteins are encoded by nuclear DNA and have to be shuttled into the

mitochondria to fulfil their function. MutationDistiller provides access to three different

resources on mitochondrial data.

The Maestro score [110] is a broadly used scoring system to predict mitochondrial pro-

teins encoded by nuclear DNA. It uses eight genomic data sets on targeting sequence

prediction, protein domain enrichment, presence of cis-regulatory motifs, yeast homol-

ogy, ancestry, tandem-mass spectrometry, co-expression, and transcriptional induction

during mitochondrial biogenesis to determine the likelihood for a protein to be functional

in mitochondria.

MitoCarta [111] is an inventory of mitochondrial proteins hosted by the Broad Institute11.

It was generated by experimental means using mass spectrometry of mitochondria from

fourteen different tissues. In addition, protein localization was assessed in large-scale

GFP tagging/microscopy. The results were then integrated with other data sets, gener-

ating an inventory of 1158 human and mouse genes. Data are available online and can
11https://www.broadinstitute.org/scientific-community/science/programs/

metabolic-disease-program/publications/mitocarta/mitocarta-in-0, accessed 11.06.2018

https://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-program/publications/mitocarta/mitocarta-in-0
https://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-program/publications/mitocarta/mitocarta-in-0
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be downloaded. We have incorporated MitoCarta data into MutationDistiller to allow

users working in the field of mitochondriopathies to assess at a glance whether a certain

gene is relevant in their case.

Mitopred [112] was a web server for the prediction of mitochondrial proteins encoded

by nuclear DNA in eukaryotes. It based its predictions mainly on Pfam domain data

comparing mitochondrial and non-mitochondrial locations. Data was available online

and downloadable. While the service has since been discontinued, MutationDistiller still

displays Mitopred data from the latest update (08/2016).

2.3 MutationDistiller’s database

2.3.1 Database structure

All of MutationDistiller’s data are stored in one database but organised in different

schemas of related tables. These schemas – which are often distinct data entities but

reference each other – mirror logical categories that the data can be sorted into. The

data used by MutationDistiller can be divided into two main categories: Project-related

data and general data, with general data falling into five schemas. In the following, I

will describe the database structure and relationships between the different tables.

2.3.1.1 Query Engine schema

The Query Engine (QE) was first developed for MutationTaster and has since been

adapted for MutationDistiller. It reads the submitted VCF file line by line and saves

the information in our database. During this process, it generates a number of project-

specific tables and adds information to our variant tables. The QE database schema is

visualised in figure 2.2 and the QE potocol is described in 3.

The submitted variants are saved in our variants table (all_vars), which compiles all

variants that have ever been uploaded to MutationDistiller and information related to

them. Double entries, variants in the wrong format or with a coverage below a user-

defined minimum threshold are discarded. Upon upload, the variants are checked for the

correct version of the reference genome (currently GRCh37). In a next step, variants

that are found in the variant databases 1000G or ExAC with a genotype count exceeding

custom-set thresholds are filtered out as well. By default, variants that appear at least 10

times in a homozygous state in ExAC and 4 times in 1000G are discarded; however these

settings can be changed by the user. In addition, the Query Engine upload page allows
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users to restrict analysis to certain genomic regions and to only analyse homozygous

alterations – if this is the case, all variants not matching these criteria will be filtered

out. Only the variant itself is committed to the all_vars table. There, it is assigned

a variant number (var_number), which serves as a primary key and at the same time

allows other QE schema tables to access the information.

Some of the QE tables store and summarise data for all projects that have been up-

loaded to MutationDistiller thus far: all_projects provides meta-data on all MutationDis-

tiller projects such as email address (if provided), project name, or number of variants.

all_results, on the other hand, contains all MutationTaster results and background in-

formation (such as the results of the underlying tests conducted by MutationTaster) for

all variants in the database. This helps to speed up run times and saves database re-

sources as each variant has to be saved to the database and analysed only once – after

committing it to the database it can be easily accessed later on.

In addition to the variant-related tables, separate tables are generated for each new

project, allowing MutationDistiller to quickly and simply access the projects if a user

enters the relevant ID: Input information, i.e. a project’s variants, their coverage, and

homozygosity state are saved in an input_ProjectID table. In addition, the QE schema

contains tables for each project that identifies areas that could be present in a compound

heterozygous state. These compound heterozygosity tables (comphet_ID_VARSEL) are

generated depending on the selected MutationTaster variant severity predictions: Each

variant combination that a user analyses (e.g. severe variant settings for both variants

versus severe first variant and benign second variant settings) generates a new compound

heterozygosity table during the prioritisation (see sections 4.1.1 and 5.1.4 for details).

Therefore, this table is technically also part of the prioritisation protocol. Nevertheless,

in our database set up we decided to include it in the QE schema because - as a project-

specific table with long-term storage - it belongs to the QE logically.

For further information on the QE, its processes and features, please refer to chapter 3,

for the QE’s user interface to 5.

2.3.1.2 MutationDistiller database schemas

Public

Some of the data are accessed by several of our applications and are stored in the schema

type public. This schema was first established for the gene-ranking tool GeneDistiller

[81] and has since grown to accommodate a range of tools developed in our research

group. This schema contains all gene-related data, such as gene names and numbers and

their position. In addition, external data sources referring to those genes are stored in
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Figure 2.2: Overview of MutationDistiller’s Query Engine Schema. Displays
the database tables stored in the QE schema and their references, important attributes
and primary keys (PK). Please note that for reasons of legibility, some attributes have

been omitted in this depiction.

this schema as well, including OMIM and OrphaNet data, GO and MGD entries and

pathway data.

Ensembl

The Ensembl data used by MutationDistiller is stored in the schema type ensembl37_85.

This schema includes gene and transcript tables obtained from Ensembl, exon and tran-

script data, and links to Entrez gene ids, which enables us to connect Ensembl data to a

multitude of other resources stored in the public schema. In addition, the expression-gene

links are stored in this schema as well. It currently contains version 85 of GRCh 37 data

stored in Ensembl, but other versions can be added and run in parallel.

HPO

HPO data is stored in a separate schema, hpo. It contains HPO terms, their ancestors

and descendants together with synonym and opposite terms. In addition, the relevant

genes linked to each HPO entry are stored in this schema.
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Expression

The expression schema contains expression data obtained from ExpressionAtlas and con-

nects to the ensembl37_85 schema.

Build37

The build37 schema of our database stores all genome version-specific data, such as

the variant databases as well as the genotype counts for the Query Engine and user

interface. This schema is therefore crucial for the variant effect predictions conducted

by MutationTaster, which form the basis of MutationDistiller’s sorting and filtering

mechanism.

2.3.1.3 MutationDistiller entity-relationship diagram

The tables, schemas and relations of a database can be represented in an entity-relationship

diagram (ERD), which allows the database’s structure to be visualised. Figure 2.3 dis-

plays such an ERD in a simplified version for the tables and schemas used by Muta-

tionDistiller. In this depiction, I have decided to omit a number of tables for reasons

of legibility. A comprehensive ERD displaying all the tables and schemas employed by

MutationDistiller can be found in the Appendix.

Figure 2.3: MutationDistiller database ERD. A simplified view of the database
tables used by MutationDistiller and their connections, references and keys. The colours
indicate different database schemas. Specific sub-schemas (HPO, GO, expression and
protein/gene tables) were removed from this ERD to provide a legible diagram. Symbols
denote data types: 123 - numeric; ABC - text. Please note that only selected columns

are shown, as a comprehensive ERD is located in the Appendix.
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3 MutationDistiller: Query Engine

When a user submits variants stored in a VCF file to MutationDistiller, the tool com-

mits the data to its database, sends the variants to MutationTaster for pathogenicity

predictions, and records the received predictions in the database. All these steps are

conducted by MutationDistiller’s Query Engine (QE) and take place independently from

the prioritisation process. In this chapter, I will explain the various steps undertaken by

the QE. In the following chapter 4, I will then describe the prioritisation process which

gets started when a user calls a project from the database, and in chapter 5 the interface

of QE and main program.

3.1 File upload

When starting a new MutationDistiller project, the user submits their VCF file to our

QE system. The QE was first developed for MutationTaster and has since been adapted

for MutationDistiller. It consists of a number of Perl scripts, which are called via shell

scripts to manage all projects. The submitted projects are scheduled using the freely

available resource manager TORQUE1. The Perl scripts that make up the QE send jobs

to TORQUE, which organises them according to file size: Smaller projects get processed

faster than larger ones, and large projects may be split up and worked on in paral-

lel. In addition, two customised Perl modules contain query-engine related functions:

QueryEngine.pm governs general query engine tasks, and SendMail.pm sends notifica-

tion emails from the query engine. These Perl modules are collections of Perl functions

that were not written especially for MutationDistiller but are shared by all our programs.

From MutationDistiller’s start page2, the QE can be accessed via a hyperlink which

leads to a HTML page for file upload3. The QE interface is described in further detail

in section 5.1.2.

3.2 Query Engine workflow

In order to store all the relevant data in MutationDistiller’s database, the program goes

through a dedicated routine which I describe in the following and which is depicted in

figure 3.1 at the end of this chapter in a simplified flow chart.
1http://www.adaptivecomputing.com/products/open-%20source/torque/, accessed 11.06.2019
2https://www.mutationdistiller.org/
3https://www.mutationdistiller.org/MutationTaster/StartQueryEngine.html

http://www.adaptivecomputing.com/products/open-%20source/torque/
https://www.mutationdistiller.org/
https://www.mutationdistiller.org/MutationTaster/StartQueryEngine.html
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As a first step, the MDQE_start script checks all submitted data for coherence and

usability. For example, it ensures that a VCF file has been submitted, that the minimum

coverage was entered as a valid number, or that the given candidate genes exist. If

something is wrong, the program returns an error message, alerting the user to the

problem and pointing them in the right direction. If all the submitted data are correct,

MutationDistiller generates a running project number and a unique, random, six-digit

access code. These two components are combined to form the case ID enabling users

to access their project. The project number allows us to keep track of the cases seen

by MutationDistiller thus far. The case ID ensures that only the user holding the ID

can access the case. In addition, it allows the unique identification of a project: While

several users might give their projects the same title, each ID is only allocated once. A

typical case ID would be 123_456789, where the digits in front of the underscore are the

project number and the six digits after are the access code.

The start script then saves the user settings and proceeds to the next script. This

script, VCF2DB, reads the VCF file line by line and extracts the data for each variant:

chromosomal position, reference and alternative allele, coverage and genotype. It checks

whether the variant’s coverage is greater than the entered minimum coverage and discards

variants that do not fulfil this criteria. In addition, it checks that the same variant is

not yet located in the database (in table all_vars) and only commits new variants to

this table to ensure low run-times and to save data storage space. Furthermore, the

first 40 SNVs are checked for correct annotation (i.e. reference allele matching genome

version 37). If this check fails, the whole process will be aborted and an error message

will be sent to the user via the errors script. Please note that for reasons of clarity, this

step has been omitted in the graphical representation. Finally, all project-related variant

information passing all the filters will be saved to table input_ID.

In the next script, Map2Transcripts, the QE maps the submitted variants to transcripts

to be able to send it to MutationTaster for variant effect predictions. This is achieved for

each variant and for each possible transcript consecutively. To speed up the process and

to decrease the amount of data that are returned from the database, only variants for

which no MutationTaster result is stored in all_results are queried. Variants are mapped

to all protein-coding transcripts with which they overlap (same chromosome and variant

start before/equal to transcript end and variant end after/equal to transcript start).

In the end, a temporary database table transcript_ID containing variant-transcript pairs

is created for the project. This list is then handed over to the CreateTasterPackages

script, which splits it into a number of packages to be run in parallel in the next step –

the MutationTaster analyses. The number and size of the packages depends on the size of

the project: Large project will be sent in a great number of different packages. Splitting
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up large projects in this way allows the upload to be sped up tremendously and ensures

that under normal circumstances, a conventional WES run will be handled within a few

minutes at most, and significantly faster if it contains a large amount of variants that have

already been seen by MutationDistiller. The packages are then sent to MutationTaster

by the Query_MT script, which in turn saves all the results in the all_results table.

This script goes through each entry in transcript_ID, runs the MutationTaster analysis

and saves the results. It then deletes the variant-transcript pair from transcript_ID.

The following script CallMissingTests, ensures that all sets and tests have been completed

and saved by checking whether there are any remaining entries in transcript_ID. If this is

the case, it calls CreateTasterPackages again. Finally, MDQE_finish compiles statistics,

saves the total number of variants included in the project to the database and notifies the

user of the completion of the project. In addition, it calls the script CleanUp to remove

all temporary tables. The errors script mentioned above might be called at any point

where a problem is encountered, such as incorrect variant formats or missing entries.

After the project has been successfully processed by the QE, the user will be redirected

to an overview page with data on the analysed file. From there, they can directly access

MutationDistiller’s main page with the project identification number (ID) pre-filled. In

addition, if an email address was entered, the user will receive one email notifying them

of the submission and one after upload and analysis have been completed, together with

a link to their project and the project ID.
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Figure 3.1: Simplified view of MutationDistiller’s Query Engine workflow,
part 1. chr: chromosome, pos: position, ref/alt: reference/alternative allele, MT:

MutationTaster, DB: database, MDQE: MutationDistiller Query Engine.
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Figure 3.1: Simplified view of MutationDistiller’s Query Engine workflow,
part 2. chr: chromosome, pos: position, ref/alt: reference/alternative allele, MT:

MutationTaster, DB: database, MDQE: MutationDistiller Query Engine.
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Figure 3.1: Simplified view of MutationDistiller’s Query Engine workflow,
part 3. chr: chromosome, pos: position, ref/alt: reference/alternative allele, MT:

MutationTaster, DB: database, MDQE: MutationDistiller Query Engine.
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4 MutationDistiller: Prioritisation

4.1 Filtering, scoring and providing information

Once a user has uploaded a project to our QE and it has been committed to our database,

the data can be accessed via the project’s ID and security code. Users can call their

projects and enter case-specific information, which MutationDistiller will use to deter-

mine the most likely candidates in a given case.

Upon data submission, a Perl CGI script MDresults.cgi is called which governs and runs

the Perl functions necessary for MutationDistiller to run its course. The various functions

called by this script are organised in a number of customised Perl modules: Input reads

the input and passes it on to subsequent functionalities. DBqueries contains functions

that retrieve data from the database, Scoring governs the scoring and weighting process,

and Output.pm generates the output page. In addition, Errors generates error messages,

Settings.pm governs MutationDistiller’s settings, and Debugging.pm holds functions for

internal debugging.

Other customised Perl modules are used by all of our programs and are also employed

by MutationDistiller: common.pm holds general functions used by all our programs,

database.pm governs database handling, and HTML.pm deals with HTML-related tasks.

Figure 4.1 at the end of this chapter provides a simplified overview of the data analysis

steps undertaken by MutationDistiller in this sorting and prioritisation process, which

I will explain in further detail below. Please note that I decided to split this figure

across sections of varying size to avoid interrupting logical sub-queries or loops within

the program.

4.1.1 Initialising

Before going through its program routine, MutationDistiller reads the user entries and

checks for problems and correct authentication: For instance, the script checks whether

the entered case ID is correct and whether there are any misspelled entries that cannot

be identified. At this stage, manual user entries such as HPO or WikiPathway identifiers

get trimmed to remove superfluous spaces or other symbols. If the program cannot find

any critical errors, it reads the selected variant classes (see also sections 5.1.4 and 3.2).

For each variant selection combination, a new comphet_ID_VARSEL table is generated,

if it does not exist already from a previous analysis with the exact same settings for
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both variants (in cases of compound heterozygosity). This table contains all genes with

at least two heterozygous variants fulfilling the variant-class criteria. For example, if

a user chose a strict setting for the first variant (only ClinVar or nonsense-mutations)

and a lenient setting for the second variant (all variants), the comphet_ID_VARSEL

table for this analysis will include all genes that contain at least two variants fulfilling

these criteria. At this step of the algorithm, MutationDistiller assesses whether the table

exists for the current settings already. If not, it is generated now and committed to the

database.

In the next step MutationDistiller queries its database for all project-specific variants (via

the unique project ID) and pathogenicity predictions obtained by MutationTaster. As

displayed in figure 4.1, this is achieved by combining information from various database

tables:

The comphet_ID_VARSEL table will be linked – i.e. form a relation – with other

project-specific (Input_ID) and global tables (all_vars and all_results) to allow Muta-

tionDistiller to receive all variants and MT results relevant for this specific analysis. In

this process, all variants that do not pass a region or candidate gene filter will not be

called from the database. For example, if candidate genes are provided, MutationDistiller

will only call variants located in those genes.

MutationDistiller’s variant selection filter (see 5.1.4 for details) allows users to focus their

attention on a subgroup of variants depending on the predicted effect they have on the

resulting protein. This filter is applied in the next step of MutationDistiller’s algorithm

and removes all variants from further processing that do not fulfil the given criteria. For

instance, if a user decided to only include variants listed as ’pathogenic’ in the ClinVar

database and/or that cause a nonsense mutation, all other alterations will be removed

at this stage.

If the user selected to filter for recessive mode of inheritance, all alterations with a het-

erozygous genotype are removed unless their harbouring genes are found in the respective

table for compound heterozgous variants. In this way, MutationDistiller trims the candi-

date list to only those variants that the user considered to be of interest for their specific

case.

4.1.2 Gene information

MutationDistiller then initialises its scoring and prioritisation protocol: First, the pro-

gram assesses each gene containing a variant that has not been excluded in the filtering

steps, and queries gene-specific information for scoring and prioritising the candidates.



MutationDistiller: Prioritisation 55

For all retrieved genes, the respective data is gathered from the database via gene iden-

tifiers provided by NCBI and Ensembl to access the data for every gene of interest. The

sources for this data are described in section 2.3.

Next, MutationDistiller reads the user’s additional phenotype entries (such as HPO terms

or GO identifiers) to retrieve additional gene information from the database and to select

relevant data for scoring and display: On the input page, users can select specific areas

or search domains to be excluded from display (e.g. OMIM reports). If any domain

is neither needed for prioritisation nor set to be displayed, it is removed at this stage.

For all other search domains, MutationDistiller checks whether a match score is to be

allocated (e.g. HPO match) and adds these scores up to receive a final MutationDistiller

score for each gene. MutationDistiller’s scoring system is explained in further detail

in the following section 4.1.2.1. The different types of gene information included in

MutationDistiller are listed in table 4.1.

In a second step, the program filters genes out that the user decided to exclude in addition

to the region filters mentioned above. This can also be the case for genes that are not

expressed in a tissue of interest, or for genes linked with a given HPO term that the user

excluded from their search. For each gene not passing the filter, a flag (dont_show) is

set to remove it from the output – thus, although these genes will be called from the

database, they will not be displayed to the user in the end.

type description
gene type describes the type of gene (e.g. protein coding)
reported mutations known mutations located in the gene
pathways KEGG pathways, WikiPathways, Reactome pathways
phenotype HPO, OMIM, OrphaNet, MGD entries for the gene
generifs short summary statements
gene function Gene Ontology entries
transcripts known Ensembl transcripts
interactions STRING protein interactions
mitochondria MitoCarta, Maestro, MitoPred entries
protein information InterPro domains, NCBI paralogs, PFAM protein families
expression ExpressionAtlas data

Table 4.1: MutationDistiller gene information. Lists information provided for
each gene.

MutationDistiller uses all gene information to generate a score, which forms the base for

its prioritisation. I describe the scoring system for the different search domains below,

with a focus on the HPO score.
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4.1.2.1 MutationDistiller score

MutationDistiller’s score embodies how well a gene and its contained variants match the

user-defined criteria. Depending on what sort of data was entered, it can be comprised

of a number of sub-scores linked with various domains of interest such as ’HPO’, ’OMIM’

and ’Reactome’. These search domains are allocated different weights based on biological

and functional considerations and mirror the quality of a match.

Some domains are given a much greater weight than others, mirroring their biological

or functional relevance. For instance, OMIM entries receive a high weight as we assume

the existence of a secured diagnosis to be a strong indicator for a gene’s relevance.

For pathway data, if a user entered information that scores several matches within one

pathway, the weight gets adjusted to avoid weighing it too heavily. For example, the

initial weight for matching a Reactome term is 5, but for subsequent matches this is

lowered to 3. In addition, to ensure that known harmful variants are ranked highly,

a ClinVar score is added to the final score if a variant is known to be disease causing

(independent of user entries). A list of the various domains and their current weights

can be found in table 4.2. However, please note that this information can change with

any MutationDistiller update.

weight category weight
HPO direct 5
HPO descendant 2
HPO ancestor 0.05
ClinVar 0.5
OMIM-ID 20
OMIM-title 1
OrphaNet 5
mode of inheritance (MoI) 5
homozygous genotype in recessive MoI 2
generifs 1
MGD phenotype 1
GO 1
* WikiPathways 5
* Reactome 5

Table 4.2: Weight categories overview. Displays weights assigned to the different
categories used for scoring. Please note that for Reactome and WikiPathways, marked

with an asterisk, consecutive matches are allocated a lower weight of 3.

4.1.2.2 Scoring HPO matches

Due to their systematic nature, ontologies allow us to express and quantify the impor-

tance of a term in comparison to other terms (see section 1.4.1.5 for details). Therefore,

we were able to develop a dynamic scoring system for HPO matches: Direct matches

get scored depending on their information content, i.e. their relevance for the user. The
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more precise a HPO term is, the fewer genes will be annotated with it. An example is

the HPO-term HP:0004940, Generalized arterial calcification, which is linked with the

specific OMIM entry OMIM:208000 and only one gene (ENPP1 ). Thus, it is a very

precise term which carries a high amount of information. If such a specific term is en-

tered by a user and finds a match for a gene found in the submitted variants file, it is

quite likely that a deleterious variant is relevant in the given case. MutationDistiller will

honour this with a high HPO score:

As described in 1.4.1.5, information theory allows us to express a node’s specificity as

the fraction of annotated terms for it. In the HPO, this can be seen as the number of

genes annotated with a given term. Its information content can thus be determined as

follows:

IC(t) = −log(g(t)/g),

where IC(t) is the information content of a specific HPO term, g(t) is the number of

genes annotated with it and g is the total number of genes annotated with any HPO

term (currently 3526). For performance reasons, we have encoded this as

IC(t) = log(g/g(t)),

which is the same mathematically speaking. The result of this expression is higher, the

lower g(t) is and thus accounts for term specificity.

As phenotyping is a highly subjective process, there is always a degree of uncertainty

involved. Therefore, scoring not only direct matches but also related terms enables us to

minimise losses due to this phenotyping uncertainty. We thus decided to score ancestors

and descendants as well, but with a weight accounting for phenotyping gaps and errors:

HPOscore = IC(t) ∗ weight.

The weight for scoring HPO terms was set and optimised on clinical data as described in

section 7.1. If a HPO term is matched both directly and via an ancestor, only the direct

match is counted, and if several descendant or ancestor terms match, only the highest

score is counted.

It has to be noted that the HPO’s coverage is not uniform across the entire ontology.

Different areas within the HPO are covered with various degrees of depth due to the na-

ture of its generation – parts that are better annotated and thus have better phenotyping
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accuracy and depth are more reliable and detailed than others. Therefore, the different

branches of the HPO cannot be compared easily with each other, rendering the distance

between two terms meaningless when assessing the quality of a match. We therefore

decided not to take the distance between two terms into account when determining its

importance for scoring but instead focused on term specificity as described above.

4.1.3 Output generation

After scoring all relevant genes, the program sorts the results according to the score and

prepares the output page, limited to the number of display genes specified by the user

(default 10). We chose this default because in our test we found that MutationDistiller

was capable of ranking the vast majority of disease-relevant genes (82.2%) within the

first 10 ranks (see section 7.2.3 for details).

For each gene, MutationDistiller generates an entry in the summary table at the top

of the page. This table contains all the variants located in the gene (after filtering for

severity, position, and genotype), their MutationDistiller score, and basic gene or variant

information. Below this, detailed information is listed for each gene: To allow clinicians

and researchers to see background information on their patient’s variants at a glance,

MutationDistiller provides comprehensive information for each gene. This information is

displayed even if it is not used for scoring or prioritising or in cases where the user only

provides the variant data without any further selections or restrictions. MutationDistiller

uses NCBI and Ensembl gene identifiers to access the gene-specific data. The layout and

setup of the user interface including the output page is described in detail in the following

chapter.
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Figure 4.1: Simplified view of MutationDistiller’s prioritisation workflow,
part 1. chr: chromosome, pos: position, ref/alt: reference/alternative allele, cov:

coverage, DB: database, MT: MutationTaster.
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Figure 4.1: Simplified view of MutationDistiller’s prioritisation workflow,
part 2. chr: chromosome, pos: position, ref/alt: reference/alternative allele, cov:

coverage, DB: database, MT: MutationTaster.
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Figure 4.1: Simplified view of MutationDistiller’s prioritisation workflow,
part 3. chr: chromosome, pos: position, ref/alt: reference/alternative allele, cov:

coverage, DB: database, MT: MutationTaster.
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Figure 4.1: Simplified view of MutationDistiller’s prioritisation workflow,
part 4. chr: chromosome, pos: position, ref/alt: reference/alternative allele, cov:

coverage, DB: database, MT: MutationTaster.
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5 MutationDistiller: User interface

5.1 Input and output pages

5.1.1 Landing page

The first screen users are presented with when opening MutationDistiller at

https://www.mutationdistiller.org is our landing page that allows them to select

whether they wish to a) upload a new VCF file or b) access a previous project through

one of our user modes. We organised the landing page in a simple design consisting of

clickable bricks to allow easy access to MutationDistiller. Figure 5.1 shows a screenshot

of the landing page.

Figure 5.1: Screenshot of MutationDistiller’s landing page. This page is the
first page users see when calling MutationDistiller and prompts users to either upload

a file or to access a previous project.

5.1.2 Query Engine user interface

When clicking on the file upload hyperlink, the user will be redirected to MutationDis-

tiller’s QE (described in chapter 3). On the QE page, users can upload their project’s

https://www.mutationdistiller.org
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VCF file, enter additional information and pre-filter their variants to speed up the upload

process:

Project name: A project name can be allocated to make the management of several

projects easier.

Email address: As upload and analysis might take a short amount of time, we recom-

mend entering an email address. We will send a notification with a project ID for the

convenient retrieval of the submitted project at a later time. However, this information

is not mandatory as we wish to provide the option for users to remain anonymous.

Filtering: The user can decide which types of variants they wish to analyse. Heterozy-

gous variants can be excluded, which might be useful in recessive disorders, especially

in consanguineous families. In addition, low-coverage variants may be discarded and

polymorphisms stored in the 1000G or ExAC database may be excluded depending on

their genotype: By default, variants appearing 4 times in 1000G or 10 times in ExAC in

a homozygous state are removed.

Analysis settings: The analysis can include the entire VCF file or be restricted to a

certain chromosome, region, or to only exons and flanking regions. This feature is aimed

at users who have already determined a candidate region via homozygosity mapping, for

instance. In addition, users can exclude given areas from analysis to speed up the pro-

cess. However, as file upload and initial analysis only need a few minutes, we encourage

users to upload their entire file and apply region or candidate gene filters at later stages.

Figure 5.2 shows a screenshot of MutationDistiller’s upload page.

Figure 5.2: Screenshot of MutationDistiller’s Query Engine upload page.



MutationDistiller: User interface 65

5.1.3 User modes

The user modes cater for clinicians, human geneticists and researchers coming from

different backgrounds, and determine which parts of MutationDistiller’s query interface

will be displayed. With each user mode selected from the landing page (figure 5.1),

different parts of the the query interface will be shown or hidden:

The query interface page is built from HTML elements called divs. By clicking on a link

within the page, the visibility setting for a div is changed from hidden to visible, and the

content of the div is displayed to the user. Similarly, when selecting a specific user mode

by clicking on one of the clickable bricks from the landing page, the visibility settings for

the different interface sections are set to display the relevant areas of the website while

hiding others. In addition, MutationDistiller creates hyperlinks to a user’s project and

their settings, allowing them to re-load their analysis with all their entries and settings.

For clinicians with a clear idea of their patient’s phenotype, the Phenotype mode dis-

plays the project section together with the phenotype section. Gene Panels displays

the project section and the candidate genes, regions, or panels section and is aimed at

human geneticists or clinicians with an idea of promising candidate genes. The Func-

tional mode shows the gene function section containing GO data as well as pathways,

whereas Expression opens the gene expression panel.

The user modes are meant to support first-time users who might be overwhelmed by the

many options offered by MutationDistiller. However, users do not restrict themselves

by selecting one of the modes - all hidden options can easily be displayed, added and

selected with one click as described above.

5.1.4 Query interface

The query interface is where the user can add their project-specific information and

criteria in order to best rank the submitted variants according to the patient’s disease

phenotype. Depending on the selected user mode, different parts of the website will be

displayed, hidden or pre-selected as described above. Figure 5.3 displays a screenshot

of MutationDistiller’s main page in the Phenotype mode (see section 5.1.3). This page

is generated by a Perl CGI script, which employs the module HTML::Template to dy-

namically fill a HTML template with values from our database (such as expression data

sources), add user entries, and check or uncheck HTML checkboxes depending on user

settings.
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Figure 5.3: Screenshot of MutationDistiller’s query interface. MutationDis-
tiller’s query interface in phenotype mode, displaying the project and phenotype sec-

tions.

The only mandatory information for the program is a MutationDistiller ID plus access

code, which was allocated by the Query Engine. This is sufficient to display the most

harmful variants in the file. However, a wide range of options are available to sort the

data. We organised these options in a number of sections:

Project

In this section, the project ID is entered. As described before, we decided to allow project

access only via the ID plus security code (rather than the name) to ensure unique access

– while several users might allocate the same name to their projects, the ID is unique

for each case. In addition, the access code ensures privacy and data protection.

The project section also provides the option to select a mode of inheritance and a maxi-

mum number of genes to be displayed in the output. Depending on their case, users can

filter genes out which do not match the indicated mode of inheritance (strict setting) or

decide to simply rank matching genes higher.

Variant Selection

For further refinement, users can select which variants they wish to have considered

in their analysis. By default, we include variants labelled ‘pathogenic’ in the ClinVar
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database, together with frame-shift mutations or nonsense variants leading to a pre-

mature stop-codon, and variants inducing amino acid changes that were designated as

disease mutations by MutationTaster. In this selection, we also include variants located

within a splice site. In addition, users can decide to include alterations considered dis-

ease causing by MutationTaster that are located near a splice site (+/- 10 base pairs),

or display all variants predicted to be disease causing. Users can also view all variants

in the VCF file, but for performance reasons we only permit this option if the analysis

is restricted to a gene region or candidate genes.

By checking a HTML checkbox, simple and complex amino acid variants considered to

be harmless by MutationTaster can be included (while excluding known polymorphisms

from databases). This setting might be especially useful when recessive inheritance

is suspected but only one strong heterozygous candidate mutation is found. In the

case of compound heterozygosity, all variant settings can be made separately for the

second variant, thus allowing a strict filter for one variant and a more lenient one for

the second. Figure 5.4 shows the query interface’s variant selection. The choices a

user makes here determine whether a new table for compound heterozygosity (table

comphet_ID_VARSEL) needs to be generated in the prioritisation protocol as described

in section 4.1.1

Figure 5.4: Screenshot of MutationDistiller’s variant selection. This figure
shows MutationDistiller’s variant selection section with the selection option for com-

pound heterozygous variants displayed.

Candidate Genes, Regions, or Panels

This section allows users to restrict the analysis to promising candidate genes. These

can be entered manually as a gene list or by region. Moreover, we offer a number of gene

panels to be selected here. Several panels can be selected at once to increase the search

radius across multiple panels. More information on the included gene panels can be

found in the introduction in section 1.4.1.4. The panel resources are loaded dynamically

from our database before the page is displayed.
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Phenotype and Gene Function

In these two sections, users can enter identifiers that link to various data sources con-

cerning phenotype information (HPO, OMIM and OrphaNet) or gene function (GO,

WikiPathways and Reactome) in auto-completion fields viaAJAX (Asynchronous JavaScript

and XML). After typing the first four letters of a symptom or disorder, the auto-

completion list is loaded and allows users to select the relevant term. The search becomes

more precise by entering more letters. Several terms might be clicked at once from the list.

In addition, specific non-relevant HPO terms can also be entered via auto-completion in

a separate field. Genes linked with these terms are then excluded from analysis. More-

over, highlighting options allow users to decide which MGD disease groups should be

stressed in the output.

Expression

Expression data sets obtained from ExpressionAtlas can be picked in this section. These

sets can be selected by developmental status (adult or fetal) or experiment (RNAseq,

protein expression or RNA-CAGE). Like the virtual gene panels, the expression resources

are loaded dynamically before the page is displayed.

Users can decide if they wish to use the data for filtering, and whether they wish to see

expression levels displayed. Data on expression levels are, however, only shown on request

to keep the output as lean as possible. If a user decides to display the expression levels,

it is denoted whether the expression of a given gene in a tissue of interest is high (within

the 75th percentile) or very high (within the 90th percentile). Please refer to section

2.2.5.2 for further details on how we integrated expression data into MutationDistiller.

If the filtering option is selected, genes that are expressed below median in a tissue of

interest are not displayed. In this case, candidate genes will only be included in the

result list if there is clear data in one of the selected data sources indicating that it is

indeed expressed in the given tissue: For example, consider a case where the clinician

expects the candidate gene to be expressed in the kidney and decides to only have a look

at genes which are clearly expressed in this tissue. MutationDistiller will now remove all

genes that are expressed below the median, but also those genes for which no expression

data for the kidney is available.

We decided on this restrictive approach to enable convenient filtering, as more lenient

filters might possibly still flood the user with too many candidate genes. In our docu-

mentation, we explain this feature and recommend to remove the filter (and instead use

expression data for display) if a user finds it too restrictive.
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5.1.5 Output page

MutationDistiller uses all submitted data entered in the sections described above to

distil the most fitting variants from the sea of candidates. The steps it undertakes to do

this are described in chapter 4. After these steps of filtering, scoring, and sorting have

been concluded, MutationDistiller generates a comprehensive output page. This page is

divided into three main sections: At the top of the page, a short list reminds the user

of their submitted entries. Directly below, a summary table lists crucial data for the

resulting variant and gene data. Further down the page, detailed information is listed

for each candidate gene. Figure 5.5 shows the user entry list and the summary table,

while figure 5.6 displays the gene details.

If only a VCF file was submitted without any further user-defined information, the

variants appear in random order, with known disease mutations on top. In all other cases,

MutationDistiller displays its data following user instructions: Variants not located in a

candidate gene or not scored will be excluded, while the order of all other variants and

their genes is determined by MutationDistiller’s score.

In the summary table, basic gene information (gene symbol and title) is listed together

with reported diseases and mutations. In addition, the overall MutationDistiller score

and its percentage of the maximum score reached in the analysis are shown as well as

some basic information on variants found in the gene. For each variant, its genomic

location and coverage in the submitted VCF file, its genotype, its predicted effect(s)

on the amino acid sequence and whether it is a known disease mutation are indicated.

Moreover, frequencies in 1000G, dbSNP, and ExAC are listed. Details about the variants’

effects can be studied with a hyperlink to MutationTaster’s results page for each variant.

Basic information from the result table can be exported for external storage and further

downstream applications. Figure 5.5 provides a screenshot of an example result table.

Below the result table, MutationDistiller lists more in-depth information on each candi-

date gene. This information can be accessed by scrolling down or by clicking on the gene

symbol in the result table. Here, the user is not only presented with the MutationDis-

tiller score and its composition, but also with detailed up-to-date data on the gene of

interest. Moreover, hyperlinks provide access to external sources, allowing users to assess

the relevance of a gene with ease.

The data sources used for providing detailed gene information are explained in chapter

2. In the output page, we group these sources in logical sections: First, general data

such as ClinVar, Modes of Inheritance, and relevant links are listed. Here, we indicate

the overall MutationDistiller score together with this sub-scores. In the next section,
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Figure 5.5: Screenshot of MutationDistiller’s result table. This figure shows
the result table for a HPO-based example project.

pathway data and protein information are listed. If a pathway receives a match, this

term will be scored and highlighted in bold. The following section provides information

on symptoms and diseases: For HPO, all terms linked with the gene are listed. Direct,

ancestor or descendant matches are highlighted and their score is indicated. For OMIM,

GO and Orphanet, we list all entries for the gene highlight matches. Finally, we list

Ensembl transcripts with hyperlinks to the relevant Ensembl webpage. If a user selected

to display additional information (such as expression data), we list these data below.

Figure 5.6 provides a screenshot of the detailed gene view.

Figure 5.6: Screenshot of MutationDistiller’s detailed view. The detailed view
provides an insight into MutationDistiller’s scoring system together with in-depth data

for every candidate gene.

To enable flexible analyses, the program also allows for interactive refinement of the
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search: A hyperlink takes the user back to the entry page but keeps the previously

entered terms and selections. This hyperlink can be bookmarked to resume the analysis

later and to exchange prioritisation settings with colleagues. Moreover, HPO terms can

be added or excluded flexibly without having to re-load the entry page. Both features are

achieved using CGI scripts that hand the selected values and properties to the relevant

scripts for the generation of the interface.

5.2 Manual and tutorial pages

In order to make it as easy as possible for users to start working with MutationDistiller,

the tool comes with extensive documentation and tutorial pages. On these pages, we

explain how to get started with MutationDistiller and provide information on updates

and changes. The tutorial is a step-by-step analysis of an example case, which is intended

to get users acquainted with MutationDistiller’s many options. The tutorial can be found

at https://mutationdistiller.org/info/tutorial.html, the manual is located at

https://mutationdistiller.org/info/documentation.html. Both can be accessed

easily at any stage through hyperlinks.

https://mutationdistiller.org/info/tutorial.html
https://mutationdistiller.org/info/documentation.html
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6 Implementation and Tools

6.1 Software development

We developed MutationDistiller in an iterative fashion: Instead of following a detailed

plan, we took user input and newly emerged data sources into account during each step

of software development. In this way, we ensured that the resulting program would be

up-to-date and easily accessible for the intended users.

6.1.1 MutationDistiller

The program and functions of MutationDistiller were written in the programming lan-

guage Perl. Central modules – collections of functions – contain all the relevant sub-

routines, grouped by their purpose for the program. A number of freely available Perl

modules were incorporated into the program, which we obtained via the operating sys-

tem’s package management system or the central Perl repository CPAN (Comprehensive

Perl Archive Network)1:

• Apache2::Reload

• CGI

• CGI::Carp

• DBD::Pg

• DBI

• Email::Valid

• Encode

• HTML::Entities

• HTML::Template

• JSON

• Mail::Sendmail

• Net::SMTP::SSL

• PBS::Client

• Sort::Naturally

• Statistics::Basic::Correlation

• Time::HiRes
1www.cpan.org

www.cpan.org
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6.1.2 Query Engine

The MutationDistiller QueryEngine (QE) was written in Perl as well. Job scheduling

is handled by the TORQUE Resource Manager2. The single Perl scripts that make

up MutationDistiller’s QE are called via shell scripts. The user submissions entered in

the start page are being read out using the Perl module CGI, the communication with

TORQUE is handled by the Perl module PBS::Client.

6.2 Manuscript

The Entity Relationship Diagrams (figure 2.3 and Appendix C) displayed in this the-

sis were generated with the great, freely available database tool DBeaver (https://

dbeaver.io/, accessed 28.12.2018). I conducted statistical analyses, designed plots and

printed appendix tables using the programming language R (version 3.4.3) [113] and

its packages plyr [114], dplyr [115], xtable [116], ggplot2 [117] and reshape [118]. The

flowcharts describing the workflow of MutationDistiller’s prioritisation algorithm and

its Query Engine (figures 4.1 and 3.1) were generated with the freely available online

diagram software draw.io (https://www.draw.io/, accessed 12.06.2019).

6.3 Hardware

All MutationDistiller applications run on a 48-CPU system with 512 GB RAM under

Linux (CentOS 6). All program scripts are written in Perl (5.10) and run in an Apache

2.2 web server with modperl2. User interfaces are written in HTML with JavaScript

functions. The database is run on PostgreSQL 9.5.

2http://www.adaptivecomputing.com/products/open-%20source/torque/, accessed 20.12.2018

https://dbeaver.io/
https://dbeaver.io/
https://www.draw.io/
http://www.adaptivecomputing.com/products/open-%20source/torque/
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7 MutationDistiller: Optimisation and valida-

tion

7.1 Determination of HPO weights

7.1.1 Training Data

We built MutationDistiller to find the most likely disease causing candidate(s) from a

sea of potentially harmful alterations. In this endeavour, the tool will be faced with

a large variety of genetic variants, which may be linked with many different diseases

or phenotypes. To get MutationDistiller up and ready for the task, we trained and

optimised its HPO score and weights using information that represents and resembles

the data it will encounter in real-life cases.

As real patient data and disease-gene connections are hard to come by or not available

due to data protection issues, current variant prioritisation tools have have usually been

trained and optimised using somewhat artificial data sets. For example, PhenIX [75]

was developed and tested by randomly selecting HPO terms from the list of HPO terms

annotated for a gene of interest. eXtasy [71], on the other hand, used gene-phenotype

associations generated by the tool Phenomizer [119], a procedure that guarantees ideal

associations which do not usually occur in clinical day-to-day life.

We have optimised the matching procedure of HPO terms by choosing an approach

that attempts to be as realistic as possible while still accounting for data and patient

protection: The variant database ClinVar [44] contains a range of disease mutations

with HPO identifiers as associated phenotype information. These identifiers have been

submitted by users – mainly clinicians and researchers – and thus can be expected to

resemble a real-life situation more closely than artificial data. Moreover, ClinVar data

covers a relatively wide range of different diseases and gene groups, thus enabling to

represent various medical fields. We obtained all ClinVar entries with at least two HPO

terms that were labelled as pathogenic. In total, we were able to compile a set of 188

cases linked with 142 different genes. We then integrated the ClinVar alterations into a

freely available 1000G exome VCF file (HG00377) and sent the resulting VCF files to

MutationDistiller in order to optimise the HPO scoring system.
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7.1.2 HPO weight parameter selection

As described in section 4.1.2.2, the ontology structure of the HPO allows us to base the

HPO scoring on information content. In addition, we can not only score direct matches,

but also ancestor and descendant terms. This helps to account for phenotyping errors

and gaps: If a user enters a certain term for which a gene is not directly annotated,

it would not be scored at all, even if the first descendant is annotated. Therefore, we

devised a system that scores direct matches, but also ancestors and descendants. In order

to evaluate in which way they should be weighted against each other to reach optimal

results, we used the ClinVar-set described above to iterate through a range of weight

combinations (245 combinations in total) between the three categories (direct matches,

ancestors, descendants). We chose this approach rather than dynamically searching for

the optimal weight distribution to avoid overfitting on this relatively small data set.

Table 7.1 shows the different weights we combined for the three categories. We then

recorded the ranks given to the genes containing the indicative alteration and only re-

garded the first 100 ranks, labelling any cases beyond that as ’not found’. Genes with

the exact same score were given the same rank – this means that for each case, usually

more than 100 genes were included in the analysis.

HPO match type weight
direct 0.2, 0.5, 1, 2, 5
ancestor/descendant 0, 0.05, 0.1, 0.2, 0.5, 1, 2

Table 7.1: HPO optimisation weights. Displays the different weights tested for
direct, ancestor and descendant hits.

For all cases in which the disease mutation was found, we then observed the rank distri-

bution for the disease genes across all weight combinations. We only regarded the first

100 ranks, denoting any cases beyond that as ’not found’. Genes with the exact same

score were given the same rank. For each combination, we evaluated how many indicated

disease genes were ranked on rank 1, ranks 1 to 5, greater than 10, or not found at all.

We also calculated the mean rank for all disease genes across each combination.

We found that, for each of the various weight-combinations, a relatively high number

of of cases (at least 22.3%) could not be solved, indicating that the phenotypes en-

tered into ClinVar are not always identical to the phenotypes associated with the disease

genes. This is consistent with a real-life situation in the clinic with phenotyping errors

and inconsistencies. In addition, it was evident that a high weight for direct hits was

consistently better at ranking the alteration of interest amongst the top positions.

We then assessed the resulting weight-combinations under specific considerations to find

the best suited solution:



MutationDistiller: Optimisation and validation 76

a) Balanced for direct hits, ancestors and descendants: To represent all three

categories in the weighting process, we excluded all candidates with zero-scores in one

of the categories, but included small values (0.05 at the lowest).

b) Able to detect the causative variant: We only included combinations for closer

consideration that were able to find the disease-relevant gene in the majority of cases.

As mentioned above, a high fraction of cases (minimum 22.3%) were not found within

the top 100 in any of the weight combinations.

c) Low mean rank: To ensure that the gene of interest frequently shows up in the

top ranks, we excluded combinations with a high mean rank across all disease-relevant

genes.

d) Causative variants on rank 1: In addition, we ensured that a large proportion of

the genes of interest get ranked on top.

Together, we expect these criteria to ensure that MutationDistiller is capable of ranking

the most likely candidate genes within the top ranks for a majority of the cases the

program encounters. After careful consideration, we decided on a weight of 5 for direct

hits, 0.05 for descendants and 2 for ancestors as this combination showed a comparatively

low loss-rate (22.8%) while ranking the indicative genes on the top rank in 37.2% of the

cases. In addition, it reached a low mean rank for the genes of interest (5.82). We

then incorporated this combination into MutationDistiller and used this version of the

program for further testing and comparison with other tools (see below). We also found

that while the loss rate was relatively high to begin with, in the groups with the lowest

mean rank for the indicative genes it did not change much – it was always around 23%.

This indicates that the loss rate is not linked with the weighting but with the phenotyping

or the HPO annotation process itself.

Table 7.2 shows the parameters of the weight-combinations with the lowest loss rate. A

summary of all tested combinations can be found in table A.1 in the appendix.

weights indicated disease mutation
direct hit ancestor descendant top rank top 3 not found mean rank

1 2 0.5 0.04 0.25 0.223 9.5
0.2 0.5 0.1 0.03 0.21 0.223 10.1
0.2 1 0.1 0.02 0.21 0.223 11.5
0.2 2 0.1 0.02 0.13 0.223 11.9
5 0.05 2 0.37 0.5 0.228 5.8

Table 7.2: HPO weight iterations. Displays the top iterations for direct hits,
ancestor and descendant weights by minimal drop-out rate (not found: disease mutation

not listed within the first 100 ranks) for the ClinVar-HPO set.
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7.2 Testing and validation

7.2.1 Test set

To test how MutationDistiller would fare in a real-life scenario, we compiled a test set of

101 existing patient cases from Charité Berlin. These cases of rare, early onset genetic

disorders were provided by clinicians and researchers working in the Neuropaediatrics

and the Medical Genetics departments. The patient had given consent for research use

The clinicians provided patient VCF files together with the causative variant(s) and the

relevant genes, the HPO terms that were used in the quest to find the disease-relevant

alteration, and information on the expected mode of inheritance (if available). We en-

sured that there was no overlap between the ClinVar cases used for program optimisation

and the validation data set.

We had originally planned to compare MutationDistiller with online versions of other

tools. To account for patient data protection, we hence spiked the known causative vari-

ant for each case into the same 1000G VCF file used for optimisation of MutationDistiller

(HG00377). Due to performance reasons, however, we had to rely on downloaded versions

of the program.

7.2.2 Validation

We sent the resulting VCF files containing the disease mutation(s), the HPO identifiers

and mode of inheritance information submitted by the clinicians to MutationDistiller

to validate its performance on this real-life data set. For the test, we used the weight

settings determined in the optimisation step. For the mode of inheritance, we chose

the same weight as for a direct HPO match (5) to avoid it being underrepresented.

The goal for this test was to determine MutationDistiller’s capabilities for detecting

disease-relevant alterations in a HPO-centric search and to compare them with other

state-of-the-art tools. In MutationDistiller, known pathogenic variants from the ClinVar

database are given a ClinVar match score as described in 4.1.2. However, the tools

included into this comparison do not provide this function. We therefore decided to not

allocate MutationDistiller’s ClinVar score at this stage. However, this means that in real

life, the MutationDistiller results can be expected to be slightly better for known disease

mutations.

We then observed which rank the gene containing the known disease-relevant alteration

was given by the program. As in the optimisation step, we only regarded the first 100
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ranks, labelling cases where the gene of interest could not be located within these ranks

as ’not found’. For genes that obtained the exact same score, we allocated the same rank.

We found that MutationDistiller was capable of finding all but one of the disease-relevant

genes within the first 100 ranks. In total, MutationDistiller reached a mean rank of 6.52

for the indicative gene across the test set. In the vast majority of cases, the disease gene

indicated by the clinicians was ranked within the first 10 ranks (82.2%). Table 7.3 shows

the number of disease genes ranked within ranks 1 to 10 for the set of 101 cases.

rank number of genes cumulative

1 39 39

2 9 48

3 9 57

4 5 62

5 7 69

6 4 73

7 6 79

8 2 81

9 2 83

10 0 83

Table 7.3: Validation set ranks. Shows the first 10 ranks for the validation set as
absolute and cumulative numbers. If several genes reach the same rank, they are all

allocated the best rank. Total number of cases: 101.

As can be seen in this table, over half of the indicated disease genes were ranked within

the first 3 ranks by MutationDistiller, and over two-thirds were ranked within the first

five ranks. The distribution across all ranks from 1 to 100 is depicted in figure 7.1.
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Figure 7.1: MutationDistiller rank distribution for the validation set. Dis-
plays the rank distribution (in percentage) for the indicated disease genes in the val-
idation data set. The cumulative distribution can be found in the following figure,

7.2.

7.2.3 Comparison with state-of-the-art prioritisation tools

To assess MutationDistiller’s performance in comparison to other, frequently used variant

prioritisation tools, we decided to send the validation data set to a number of similar

programs. We included algorithms into our test that are freely available online and do

not require any software installation or user login (to avoid data security issues). In

addition, we only included tools that can work with VCF files and offer HPO-centric

prioritisation. We also excluded candidates such as Phen-Gen [72], which requires trio

VCFs (usually data from unaffected parents and an affected child) as this would have

substantially reduced the potential test cases. Moreover, we had to remove a number of

tools that unfortunately were not functioning at the time of testing.

We were thus able to compare MutationDistiller to three different algorithms, the PhenIX

[75] and HiPhive [120] algorithms incorporated into Exomiser [121] as well as eXtasy [71].

We used Exomiser version exomiser-cli-10.0.1 and the eXtasy version 2013-07-04 (the
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latest version available from their GitHub page1. We stuck to default settings, which is

what an untrained user is expected to do. For each of these algorithms, we had to rely

on locally installed versions as the online tools were not working reliably or fast enough

for our purposes.

The Exomiser generates a number of different scores, the case-relevance of which is not

easily obvious to users from the clinic. Hence, we decided to limit our assessment to the

so-called ’Exomiser gene pheno score’, which we deemed to be most fitting to the task at

hand, namely the matching of genes to phenotype data. As the eXtasy algorithm is not

capable of working with all HPO terms, for this tool we removed the terms not found in

eXtasy’s database from our set. This limited our eXtasy analysis to 88 cases. Moreover,

eXtasy’s entry options are limited to 10 HPO terms per case. We thus randomly removed

all terms exceeding 10 from the 7 cases where this was necessary.

To assess and compare the capabilities of the different algorithms, we sent the validation

set (VCF files, HPO annotations and mode of inheritance information, if available) to

them and recorded, for each case, the rank of the indicated disease gene. For eXtasy, we

had to distinguish between cases in which only one HPO term was used for analysis and

cases with more than one term. In single HPO cases, we ranked the files by ordering

them by the result score; in combined cases we ranked them by the provided statistical

score as the program outputs a result score for each HPO term separately.

We then examined which proportion of cases were ranked at which position and com-

pared the outcomes between the different programs. To ensure that the results from the

various algorithms can be compared, we also capped the search at rank 100, as for the

MutationDistiller test. Cases in which the gene of interest was not located within the

first 100 ranks we hence considered to not have been solved.

When comparing the cumulative ranks allocated to the disease genes, we found that

eXtasy failed in a large majority of the provided cases. To start with, due to the lack of

HPO terms in its database, the analysis was limited to 88 cases of the 101 test cases. Of

these cases, eXtasy found less than 30% of the causative alterations within the first 100

ranks, which might be due to the fact that the underlying gene-phenotype associations

were updated more than 5 years ago.

For HiPhive and PhenIX, we found that those algorithms were capable of detecting the

causative gene within the top 100 positions in the majority of cases. However, Muta-

tionDistiller was capable of solving considerably more cases than the other tools (99% for

MutationDistiller, 81.2 % for PhenIX and HiPhive). This was shown to be the same for

genes of interest that were ranked within the first 10 (82.2% for MutationDistiller, 68.3%
1https://github.com/asifrim/eXtasy/blob/master/README, accessed Aug 2018)

https://github.com/asifrim/eXtasy/blob/master/README
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for PhenIX, 63.3% for HiPhive) or 20 positions (94.1% for MutationDistiller, 73.3% for

HiPhive, 70.3% for PhenIX). Figure 7.2 displays the accuracy of the tested tools as the

cumulative percentage of indicated disease genes ranked within each rank group from top

1 to top 100. To obtain this figure, we calculated the cumulative percentage of correct

disease genes ranked within each group (on the first rank, within the first two, three,

four, and so on) and plotted the distribution up to rank 100 for each of the four tested

tools.

Figure 7.2: Tool Comparison: Cumulative rank frequencies. Cumulative rank
frequencies for the HPO-based detection of disease mutations in a set of 101 patient files
for MutationDistiller (black), PhenIX (orange), HiPhive (blue) and eXtasy (red). For
each tool, the accuracy is depicted as the cumulative percentage of indicated disease
genes sorted within each rank group (top 1 to top 100). Published in Hombach D et al.
MutationDistiller – user-driven identification of pathogenic DNA variants. NAR Web

Server Issue. 2019. doi:10.1093/nar/gkz330
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8 Discussion

8.1 Data selection process

MutationDistiller is a tool to prioritise genetic variants based on genetic, clinical and

biological data. As such, its performance and success stand and fall with the data it bases

its decisions on. These data come in two kinds: On the one hand, the program depends

on the quality of the integrated data sources; on the other hand its scoring and sorting

success relies on the training and optimisation cases used during program development.

In addition, MutationDistiller’s performance also heavily depends on the quality of the

phenotyping, but the responsibility lies with the user and cannot be addressed by us.

In order to span a wide variety of cases and to cater to needs from different user groups,

we decided to include a wide range of data and information sources (see section 2).

We integrated up-to-date data covering a plethora of genetic fields. As some of these

sources are still based on genome version GRCh37 – which has also been used by all

groups which were involved in the development of MutationDistiller – we also decided to

base MutationDistiller on this genome build. Even though the later build GRCh38 has

been available for several years now, it has not yet completely entered the field: some

secondary data sources employed by MutationDistiller and MutationTaster, such as the

ExAC data, are based on the previous build. However, in the future, with more and

more potential users and secondary data sources migrating to the new build, we plan

to also update MutationDistiller and its databases to accommodate scientific advances

made in deciphering the human genome.

8.1.1 Integrated data types

In the following, I will discuss the main data sources and the reasoning behind choosing

them for inclusion into the program.

Phenotype data

We decided to develop MutationDistiller as a phenotype-based prioritisation tool based

on ontologies and disease repositories such as OMIM [59], OrphaNet [60] and especially

the HPO [58], as they are widely used and well-accepted in the field of human genetics.

For the HPO, this wide acceptance is mirrored by the number of HPO-based approaches

and tools that help users in the phenotyping effort, e.g. Phenomizer [119], PhenoTips
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[122], or Phenotero [123], which was developed in our group. In addition, a number of

phenotype-driven platforms such as DECIPHER [95], DDD (Deciphering Developmental

Disorders) [124] or Phenopolis [125] base their analysis on the HPO as well.

However, if a complete diagnosis is available for a patient, translating this into sets of

phenotypes (i.e. HPO terms) adds an unnecessary layer of uncertainty. In those cases,

it makes more sense and is much easier for the clinician in charge to simply choose

the relevant diagnosis for data analysis. Because we did not wish to limit our users

to HPO data, we also integrated OMIM and OrphaNet data. We expect the existence

of a secured clinical diagnosis to be of greater relevance for a case than a collection of

HPO symptoms. Thus, we allocate a much higher weight to Orphanet or OMIM entries.

However, it has to be noted that the weighting system is not set in stone and will be

updated and improved as user feedback comes in.

In addition, we also include a phenotype-genotype resource not linked with human data;

the MGD [126]. This repository stores data on phenotypes observed in mice and their

genetic background. Mice have been used as model organisms in genetic disease for a long

time. As a consequence, a large set of phenotype-genotype connections are known; more

than for humans: While the HPO contains around 12,000 genotype-phenotype relations,

The MGD stores over 300,000 mouse phenotype annotations1. This knowledge can be

particularly helpful in the discovery of unknown disease genes. The limitation to known

disease genes is one of the main drawbacks when relying on repositories such as the HPO,

OMIM or Orphanet, as it limits the number of cases that can be solved by these means.

We therefore incorporated 20 disease classes from the MGD:human disease portal into

MutationDistiller, hoping to enable the detection of new disease genes.

Together, we expect the phenotype data available on MutationDistiller to enable flexible

analyses while limiting options to the most relevant and reliable data sources.

Gene panels

While NGS methods allow the analysis of entire exomes or even genomes, they come at

a high cost: They generate large data sets of variants which all have to be considered

for further testing. One way to get around this is to apply virtual panels, which allow

users to restrict their search to certain candidate genes. This panel-based usage of NGS

data has previously been suggested as a time- and cost-effective method [101]. We thus

decided to include this option in MutationDistiller.

While incorporating commonly used panels, we decided to not allow MutationDistiller

users to deposit their user-specific panels on our servers as this would cause issues of

data privacy and usability: Either, these panels would have to be available and visible
1http://www.informatics.jax.org/, accessed 05.06.2019

http://www.informatics.jax.org/
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to all users, or each user would have to create an account to keep their panels safe and

secret. Therefore, instead we decided to allow users to simply upload or copy their gene

lists whenever they run an analysis.

Gene function data

While most tools with a similar aim to MutationDistiller focus their options on disease

symptoms (i.e. via the HPO), we decided to offer to search via gene function data such

as the Gene Ontology (GO), gene expression or metabolic pathways.

The GO offers comprehensive data on the function and properties of genes. By including

this resource as an option, we allow users to identify genes of disease relevance which

have not yet been identified as such. While symptom- or diagnosis-based searches (HPO,

OMIM, Orphanet) are of great importance in routine clinical cases, they do not allow

the detection of hitherto unknown disease genes (see also section 8.3).

In addition, in a number of rare diseases, only specific tissues or organs are affected.

An example is Cutis Laxa, a group of connective tissue disorders that manifest in the

skin. In those and similar cases, the search for the causative gene can be rendered

easier by limiting the search to genes that are expressed in a tissue of interest (e.g. the

skin for Cutis Laxa). While this is not yet exploited by most tools, we are convinced

that this feature can be of great help in a number of cases. We thus decided to offer

users the option to include expression information for their analysis as an alternative

method, or in addition to other data. We incorporated a number of data sets obtained

from ExpressionAtlas as this source offers curated sets while including a wide range of

experiments (see chapter 2.2.5.2 for more information).

Currently, MutationDistiller allows users to search and filter their data for genes that

are expressed in a tissue of interest. It might be conceivable, however, that users are

interested in genes that are explicitly not expressed in a given tissue, for example in the

case of promoter mutations. In the future, we are planning to include a feature into

MutationDistiller that enables users to find genes that are not expressed (or expressed

below median) in a tissue or tissue group.

Transcriptome data – data on all (m)RNA molecules present in one cell or a population

of cells – depicts the amount of gene expression that is present at a given time. It allows

us to see gene expression changes in tissues as affected by disease, enabling detailed

assessments of affected organs or systems. As disrupted gene expression is known to play

a role in rare disease [127, 128], including transcriptome data into analysis has been found

to increase diagnostic yield in rare disease [129, 130] as well. Currently, the availability

of public transcriptome data – especially linked with monogenic diseases – is limited.

Recently, however, we have observed an increase in the research on transcriptomes of
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rare disease patients [131–133] and we expect this field to grow further in the future.

Thus, with the rise relevant data sources, we are planning to include these options as

well.

Similarly to gene expression, certain pathways are known to be involved in the develop-

ment of specific rare disorders. For instance, the pentose phosphate pathway (PPP) has

recently been found to be affected in rare kidney diseases [134] while the mammalian

target of rapamycin (mTOR) pathway is a frequent target in neurodevelopmental disor-

ders [135–137]. Thus, including pathway data might improve diagnostic yield in certain

cases. We currently include three main data sources: Reactome and WikiPathway can

be used for active analyses while KEGG pathway data is displayed in the results. As

KEGG pathway information is no longer freely available, the data included into Muta-

tionDistiller is somewhat dated. We therefore decided to only display the data rather

than allowing users to actively search for KEGG pathways. In this way, clinicians have

the advantage of being able to include the latest pathways into the ranking of their can-

didate variants while at the same time having the long-standing information of KEGG

at their disposal.

The ability to include expression or pathway data directly within MutationDistiller in-

stead of having to go through the HPO can thus free users from an additional load of

work. While the HPO is currently one of the main used resources, it can be difficult to

use and cause problems due to the complex procedure of phenotyping. We are therefore

convinced that the option to not have to rely on the HPO can help many users – espe-

cially non-geneticists who suspect a genetic cause in a patient’s disease – in their daily

work.

8.1.2 Testing and training data

The second type of data shaping MutationDistiller, the cases used for training, optimis-

ing, and testing, were selected in an attempt to mirror real-life patient cases as closely as

possible. As described in chapter 7, the program’s HPO score was developed using vari-

ants with known phenotype associations obtained from ClinVar and tested using actual

patient data from the Medical Genetics and Neuropaediatrics departments at Charité.

Our rationale for this patient-centred approach was the drive to develop a tool that is

able to model real-life cases as truthfully as possible. Due to the aforementioned lack of

combined genotype and phenotype data, most other similar tools have been developed

using somewhat artificial data. PhenIX [75], for instance, was tested using modified

sets of HPO terms generated from the OMIM gene entries – which is not the same as

clinical sets with their errors and lack of exactness. Exomiser [73], on the other hand,
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was tested with curated, ’optimal’ HPO sets as obtained from HGMD. Both approaches

deviate from the real situation found in the clinic: Here, a clinician examines a patient

and then describes their symptoms in medical terms that can then be translated into

HPO identifiers.

In daily clinical routine, clinicians rarely encounter the model patient who displays all

(and only those) symptoms listed for a specific disease. In reality, the symptoms of

two patients diagnosed with the same disorder can be quite different. In addition, even

the lists of symptoms assigned to the same patient by different physicians might differ

strongly, which is what we found in several cases in our data. These problems found in

phenotyping cannot be reliably mirrored by artificial means but severely influence the

outcome of a WES analysis. We thus decided for a different approach, even though this

restricts our training and testing data to a relatively small number of cases, since, largely

due to data regulation and confidentiality issues, real patient data of disease-relevant

alterations and phenotype links is difficult or impossible to use. For MutationDistiller,

we were able to collect 188 training cases from ClinVar and 101 in-house clinical data

sets from patients who had given consent to scientific use of their data. While under the

given circumstances we considered these data sets to be large enough for our purposes,

the program’s performance could potentially be improved by adding more training or

test cases. We thus hope to be able to increase the data set sizes in the future. However,

we are convinced that the benefits of having realistic data outweigh the comparably low

number of test cases.

8.2 Scoring

8.2.1 HPO score optimisation

MutationDistiller scores and weighs variants and their genes according to user-defined

criteria and sorts them accordingly. The tool covers a wide range of information sources

and weighs the different types of data against each other. We decided on a pre-set

scoring system that cannot be altered by the user as we learned from a previous program

developed in our group, GeneDistiller [81], that allowing users to manually alter weights

can be overwhelming and alarming for new users, even if they never apply any changes.

Thus, MutationDistiller does not support this option. Instead, on the result page, the

program lists in detail which data source contributed to the score in which way. In this

way, the tool enables users to draw their own conclusions on the reliability of their scores.

For most data types, such as pathways, expression data, or MGD entries, the underlying

scores were determined by biological and clinical considerations. For instance, if an
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OMIM entry – a clinical diagnosis – has been entered and a match is found, this is

rewarded with a high score as this type of data is of great clinical relevance and hence

of importance for the user. Matching pathway data, on the other hand, is scored with

a lower score as the clinical significance of pathways cannot usually directly be deduced

from available data.

Thanks to the availability of genotype data in connection with relevant HPO terms (our

ClinVar and in-house data sets), we were able to optimise and test this scoring for HPO

entries (see section 7). For all other data types, this was not yet feasible due to a lack of

suitable data or users. All our cooperation partners thus far have based their analyses on

the HPO as well. However, over time, we hope to receive feedback from users of diverse

backgrounds, which would enable us to update MutationDistiller and to optimise the

weights for other data sources.

8.2.2 Mutation severity

In our scoring system, and in opposition to many other tools such as PhenIX and Ex-

omiser, we do not include the ’gravity’ of a variant’s predicted effect. MutationDistiller

receives its pathogenicity prediction from MutationTaster, which employs a Naïve Bayes

classifier to sort the variants into either ’harmless’ or ’harmful’. While the classifier also

delivers a probability value, this does not mirror how severe an alteration is but only

how certain the classifier is with its decision. Instead, the severity of a mutation can be

seen as its capacity to cause harm to the gene product – thus, a nonsense variant can

be expected to be more harmful than most other variants (which is indicated by Mu-

tationTaster’s disease-causing (automatic) classification). We therefore do not include

MutationTaster’s probability value into the scoring system, but allow users to investigate

a variant in detail by offering a direct hyperlink to MutationTaster’s prediction for it. In

addition, we allow users to filter variants by severity via our variant classes. Moreover,

we plan to improve and increase this functionality as described in section 8.5.6.

8.3 Phenotype data variety

8.3.1 Detection of new disease genes

The notion that diagnosis of rare diseases can be improved or accelerated through the

inclusion of phenotype data is mirrored by the number of phenotype-based analysis tools

that have been developed in recent years (see section 1.4.2). Most of these tools are based
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on the HPO, as this resource is currently the most widely used in human genetics. Thus,

we expect most of our users to be used to and to already rely on HPO-based phenotyping

data, and hence focused the development of MutationDistiller on this resource. Indeed,

most of our users to date have based their search on the HPO. However, it has to be

noted that analyses based on the HPO or resources such as OMIM and Orphanet are

only able to detect genes which are already known to be involved in the development of

genetic disorders.

However, new ways of analysing rare disease cases are needed, as the diagnostic yield

in NGS projects is usually reported to lie between 25-30% [76, 138, 139]. Reasons for

this are manifold; the disease-causing mutation might not be covered (sufficiently), or

be located outside of the coding sequence. In addition, it might not be recognised as

a disease mutation, or be located in a gene that has not yet been discovered to be

disease-relevant.

However, as described above, the inclusion of functional data, such as GO, expression

or pathway resources, allows us to detect ’new’ disease genes. This approach, which is

feasible using MutationDistiller, can thus help in elucidating currently unsolved cases.

Therefore, we expect our tool to be of assistance in a range of cases where current means

have not been able to identify the causative variant. The benefit of re-analysis of WES or

WGS data which has previously not led to success has recently been demonstrated by the

Deciphering Developmental Disorders (DDD) team in the UK [124]. MutationDistiller’s

flexibility lends itself to attempt re-analyses using new resources or with novel insights

about the disease, and we hence expect the tool to be of use in many currently unsolved

cases.

8.3.2 Symptom annotations

A lack of annotated symptoms can be a problem when relying solely on HPO-based anal-

yses. The HPO obtains symptom annotations via OMIM and Orphanet, and depending

how quickly and reliably these links are established and updated, there might be quite

some lag-time. By offering a wide range of options for entering patient-related data,

MutationDistiller can find mutations in genes that are not yet sufficiently annotated:

As an example, one of our collaborating clinicians provided whole exome data from a

patient diagnosed with congenital myasthenia suffering from areflexia (HP:0001284) and

muscular hypotonia (HP:0001252). The pathogenic variant in this case had previously

been determined to be located in the SLC5A7 gene. However, when trying to assess

this case using the HPO terms described above in MutationDistiller and other software
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tools, the causative variant could not be found within the best ranks. Despite being

listed in OMIM as a molecular cause for congenital preysnaptic myasthenic syndrome 20

(CMS20, OMIM:617143) and distal hereditary motor neuropathy type VIIA (HMN7A,

OMIM: 158580), the SLC5A7 gene was not linked with these symptoms in the HPO,

and hence the programs could establish a connection. In MutationDistiller, users can

chose one of multiple alternative approaches to overcome this obstacle: By restricting

the search to a relevant virtual panel – in this case the congenital myasthenia panel from

PanelApp – the clinician was able to identify the causative alteration. Alternative ways

to come to the same result would have been to enter the clinical diagnosis via OMIM, or

to upload an in-house virtual panel.

8.4 Comparison with state-of-the-art tools

To evaluate MutationDistiller’s ability to prioritise relevant variants, we compared its

performance to similar state-of-the art tools. As described in section 7.2.3, we decided to

limit our comparison to tools that are freely available online without any need to install

or log in. However, it has to be noted that we had to fall back to downloaded versions

of the tools as using them online would have been too slow.

We compared MutationDistiller’s prioritisation capabilities to three other algorithms,

eXtasy, PhenIX and Exomiser. In a recent comparison analysis which did not include

MutationDistiller, PhenIX was found to deliver the best results on 21 exomes [140]. This

study was conducted without the involvement of any authors of PhenIX.

Using our set of 101 variants obtained from the Charité, we found that MutationDistiller

was capable of placing the causative variant within the top 10 in over 80% of the cases,

thus out-competing the other tools included in our comparison.

However, in addition to HPO terms and in contrast to many other software options,

MutationDistiller offers a wide range of input data. Unfortunately, due to a lack of

both testing data and candidate tools, we were not able to compare MutationDistiller

quantitatively in this respect and had to limit our comparison to HPO data.

When designing MutationDistiller, we aimed to generate a comprehensive and user-

friendly software tool for clinicians and researchers. This becomes obvious when com-

paring the output and surrounding information of the four tools: MutationDistiller pro-

vides a wide range of information in the output page rather than a battery of scores. In

addition, the tool displays the final score and its contributing sub-scores to allow users

to make an educated decision about their case. Moreover, our program provides com-

prehensive tutorial and manual pages, aiming at making its its usage as easy as possible.
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We are convinced that these features facilitate MutationDistiller’s use in the clinic, as

suggested by Shyr et al [70].

It has to be noted that comparisons of multi-faceted tools such as MutationDistiller are

difficult to achieve as many different factors have to be taken into account. A realistic

comparison would have to be conducted by researchers who do not have any stakes in

any of the tested tools. In this way, one could study how much time a trained physician

spends to identify a mutation which they truly believe to be causal. Unfortunately, so

far no one volunteered for this time intensive task.

8.5 Outlook

MutationDistiller in its current form supports a wide range of input data to determine

the most likely disease-relevant alterations for a given case. Nevertheless, as in any

project, there is always room for development and improvement. For the future of

MutationDistiller, a number of development opportunities remain, which I will discuss

in the following sections.

8.5.1 Family analyses

In contrast to other means such as linkage analysis, NGS analyses are able to determine

the most likely disease-relevant alterations even if there is only the patient’s genotype

available. However, the hunt can be made much simpler when using family data by

adding data sets obtained from (healthy) relatives. The most common approach is the

analysis of trios consisting of the patient and her or his parents. In previous comparison

studies, this approach has been found to increase diagnostic yield [138, 139, 141]. More-

over, this approach has great advantages when filtering against variant databases such

as ExAC, as only the variants occurring in the family have to be taken into account and

the issue of variant frequency can be neglected.

Adding the parents’ or siblings’ sequencing information to the analysis allows the ex-

clusion of a large number of potential alterations: In recessive disorders with complete

penetrance, all alterations that can be found in a homozygous state in a healthy indi-

vidual can be safely removed from further investigation. In fully penetrant dominant

disorders, even inherited heterozygous alterations can be discarded. Thus, in dominant

modes of inheritance, de novo mutations can be specifically searched for. MutationDis-

tiller already allows the analysis of trio data in an indirect way: A user can create

separate projects and then compare the results to exclude non-relevant data. This ap-

proach, however, is rather cumbersome. Thus, we plan to update MutationDistiller to
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allow analyses of families in addition to the analysis of singletons.

We have thus far not been able to introduce this function due to a lack of training data,

as trio analyses have not yet been introduced in routine care due to the higher cost

compared to singleton sequencing. As sequencing costs drop and the awareness of the

benefits of trio analyses rise, however, a higher rate of trio analyses is to be expected

even in routine settings. This would allow for the development of suitable tools while

simultaneously increasing the demand for such software. We hence plan to add this

feature to MutationDistiller in the near future.

8.5.2 Genome version

Currently, MutationDistiller is based on genome build GRCh37, even though a more

recent version, GRCh38, has been available for a number of years. We made this decision

due to the fact that secondary data used by MutationDistiller and MutationTaster is only

available for GRCh37. While mapping between the two versions (a process called liftover)

is possible, this is a tedious process which we have not yet seen the need for as our users

are currently still relying on GRCh37. Therefore, we decided to stick with GRCh37

for MutationDistiller’s first version. However, we are well aware that in the future, the

demand for tools compatible with GRCh38 might increase. We are thus planning to add

this genome version to MutationDistiller as demand arises.

8.5.3 WGS data

In theory, MutationDistiller would be capable of addressing WGS projects already. How-

ever, MutationTaster can only handle a small part of WGS projects as it is limited to

protein-coding genes (but analyses non-coding variants contained in these). When start-

ing the project, WGS analysis was still prohibitively expensive and therefore not used

in routine clinical research, leading to a lack of data sources. We have thus decided to

limit MutationDistiller to WES projects and to use MutationTaster as the variant effect

predictor. In the course of the project, however, both of these points have changed –

thanks to the efforts of the ENCODE consortium and other projects, data on non-coding

regions and their regulatory relevance are readily available, while lower sequencing costs

have led to an increase in WGS usage [32].

In light of these developments, we are aware that the need for programs like Muta-

tionDistiller to cope with WGS data is rising steadily. In our research group, we have

since developed RegulationSpotter [142], a tool to analyse WGS projects in order to find

alterations located in areas of regulatory relevance. Moreover, RegulationSpotter is able
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to take HPO terms as input to identify variants located in regulatory regions of genes

that are connected with a given phenotype. However, the prediction quality for variants

located outside of transcript regions is currently not sufficient for direct incorporation

into clinical tools: with a mean of 3 million variants per WGS experiment, the tools

simply drown in false positives. With an increased use of WGS, this might change as

more training data becomes available, i.e. experimentally confirmed disease mutations

outside of protein-coding genes. We therefore decided to keep the two tools separate for

now. We are, however, considering to merge MutationDistiller and RegulationSpotter in

the future to develop software that is capable of both analysing WGS data and coping

with the variety of input options currently offered by MutationDistiller.

8.5.4 Mitochondrial DNA

In contrast to many other tools, MutationDistiller can detect mutations located in mi-

tochondrial DNA (mtDNA). However, as the software is based on diploidy, the program

cannot take heteroplasmy into account. As described in section 1.3.3, in many mitochon-

drial disorders, the degree of heteroplasmy plays a role and only individuals carrying a

high amount of mutated mtDNA will be affected by a disease.

To achieve this, we would have to read the degree of heteroplasmy from the VCF and

incorporate mitochondrial databases into MutationDistiller. Moreover, we would have to

alter our database structure accordingly and change the filters for external databases and

trios. While these changes are feasible, they require substantial changes to our database,

the integrated data, and how we call the data within MutationDistiller. We are therefore

planning to achieve this in a second version of the program.

8.5.5 gnomAD

We have currently implemented the variant database ExAC into MutationDistiller. As

described in section 2.2.3.2, this source contains human exome sequencing data from over

60,000 individuals. During the course of the development of MutationDistiller, gnomAD

[43], a genome-wide version, has been established. GnomAD contains over 125,000 exome

sequences and over 15,000 whole-genome sequences. These data were obtained from a

range of studies, both on diseases and on healthy populations. Previously, inclusion crite-

ria into gnomAD were unclear and did not allow to distinguish easily between sequences

from healthy individuals or patients suffering from genetic disorders. This has prevented

us from incorporating gnomAD data into MutationDistiller. However, this issue was

solve recently as gnomAD now separates the data into control and patient populations.

Therefore, we are currently working on adding gnomAD to MutationDistiller.
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8.5.6 Classification bins

MutationDistiller currently outputs an ordered list of genes and variants, sorted by how

well they match the user-defined criteria. However, depending on these criteria, a number

of genes and variants may receive the same score and are hence allocated to the same

rank. This is the case especially when users do not provide a wide range of criteria or

apply only few restrictions. For reasons of simplicity and to keep run-times fast, we

are currently displaying those variants in no particular order. In the future, we wish

to completely overhaul the ranking system and instead sort variants into bins indicating

how relevant they are for the given case. In this system, we would be able to not only take

the phenotypic relevance of a variant into account but to also sort alterations by their

predicted effect on the protein (e.g. missense alteration vs. NMD). Rather than ranking

the candidate variants, we would provide several bins of alterations that are deleterious,

while at the same time matching the phenotype of interest to varying degrees, expressed

by variant flags. Users could then toggle several switches depending on their focus to

show the predicted phenotype, effect, location, or gene function. For instance, one flag

would be whether the gene matches the phenotype description (in three stages, e.g.

green/yellow/red), another flag would denote the predicted effect (ClinVar/NMD/splice

site etc.), and another flag would be reserved for the moe of inheritance. Moreover,

additional flags could be added in later stages of the program, thus allowing for great

flexibility.

We have thus far decided not to implement this system yet for two main reasons. First,

all other variant prioritisation tools use ranked list in one way or another – hence users

are well acquainted with this approach. Rather than pushing users to learn how to use a

new program and a new sorting system at the same time, we decided to take one step at

a time. Moreover, we were still suffering from a lack of training data in order to generate

reliable thresholds for the binning system. However, with the increased usage of NGS

data in routine clinical settings, we are convinced that this problem is just a matter of

time. We are thus optimistic to be able to update MutationDistiller to a binning system

in the near future.

8.5.7 Data management

8.5.7.1 User data sustainability

In the development process of MutationDistiller, we have opted against an automated

process for removing data. Thus, we are currently manually running a script to delete
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user data at regular intervals. Now that the testing and development phase is over, we

are planning to automate this process. In addition to our deletion of user data in regular

intervals, and to provide further data security, users can currently simply delete their

projects by project ID and security code.

8.5.7.2 Data sources

We have not yet implemented an automated way of updating the data sources integrated

into MutationDistiller. Instead, we update data sets manually when we become aware

of relevant changes, which can be cumbersome: With GeneDistiller, MutationDistiller’s

parent tool that has been running for over 10 years now, we have experienced updates to

be complex and time consuming. However, an automated update protocol would make

our lives simpler while at the same time ensuring more up-to-date data. This would

be especially beneficial for data sources that we always want to keep as up-to-date as

possible (such as OMIM or HPO).

However, automated updates are not practical, necessary or feasible for all the different

data types MutationDistiller is using, since data structures can change and services be

discontinued. We are therefore planning to automate updates for selected data sources

that provide easy access to their data and do not alter data structure from one update

to the next. Current candidates for automatic updates are PanelApp, the HPO and

WikiPathways, but this list can be changed and broadened in the future.

8.6 Clinical use

Thanks to technical advances, the field of genomics has been catapulted into the digital

age. NGS methods allow for easy, fast and cheap sequencing, thus enabling work on

projects and cases that could not be handled before. However, the vast amounts of data

generated in NGS projects pose major obstacles and thus prevent clinicians, researchers

and genetic counsellors from attempting such endeavours [70, 143, 144]. With Muta-

tionDistiller, we have attempted to respond to the need for dedicated expert software

that is easy to use, provides a convenient user interface, and allows the analysis of large

data sets without having to obtain a bioinformatics degree first. MutationDistiller has

been designed as a tool to support rare disease research as well as clinical assessments.

However, it is not and cannot be a diagnostic tool or a medical device, since to achieve

this status strict regulations have to be followed, which are beyond the scope of this

research group.

Nevertheless, the tool has already entered the clinic: To date, over 14,000 individual cases
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have been uploaded to our database by clinicians and researchers. In recent months, Mu-

tationDistiller has seen over 1,000 cases every 30 days. The tool has been used in projects

from all around the world, and we expect this to increase still as clinicians more routinely

sequence their patients. We therefore hope that the work presented in this thesis can

bring some contributions to the field of genomics, and be of benefit for the numerous

patients suffering from so-called rare disorders.
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Abbreviations

A adenine

AJAX Asynchronous JavaScript and XML

bp base pair

C cytosine

CGI common gateway interface

ChIP chromatin immunoprecipitation

CNV copy number variant

ddNTP dideoxynucleotide

DNA deoxyribonucleic acid

DBMS database management system

DW data warehouse

CADD Combined Annotation Dependent Depletion

cDNA complementary DNA

ENCODE Encyclopedia of DNA elements

ExAC Exome Aggregation Consortium

G guanine

GMT Gene Matrix Transposed

GOF gain of function

GO Gene Ontology

GRC Genome Reference Consortium

GWAS genome wide association study

HGMD Human Gene Mutation Database

hPDI Human Protein-DNA Interactome

HPO Human Phenotype Ontology

HT high-throughput

HTML HyperText Markup Language

InDel insertion/deletion

KEGG Kyoto Encyclopedia of Genes and Genomes

LOF loss of function

LD linkage disequilibrium

MoI mode of inheritance

mtDNA mitochondrial DNA

mut mutation

RNA ribonucleic acid

mRNA messenger RNA

NGS next generation sequencing
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OMIM Online Mendelian Inheritance in Man

ORF open reading frame

PKU phenylketonuria

QE query engine

rSNP regulatory single nucleotide polymorphism

SQL Structured Query Language

SNP single nucleotide polymorphism

SNV single nucleotide variant

T thymine

TAD transactivating domain

TF transcription factor

TSS transcription start site

TSV tab separated values

U uracil

UCSC University of California, Santa Cruz

UI user interface

var variant

VCF Variant Call Format

WES whole exome sequencing

WGS whole genome sequencing

wt wildtype

XML Extensible Markup Language
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A Appendix – HPO optimisation weights

The following table displays summaries for all weight combinations ordered by lowest
number of unsolved cases. The abbreviation indicate as follows: anc_weight: weight
assigned to ancestor matches. desc_weight: weight assigned to descendant matches. n:
number of cases in total. first: number of indicated genes ranked on rank 1. one_five:
number of indicated genes ranked on ranks 1-5, respectively. gr_ten: number of in-
dicated genes ranked higher than rank 10. mean_rank: mean rank allocated to the
indicated genes for the given combination. not_found: number of cases ranked higher
than 100. Combination 210, marked with an asterisk, is currently implemented into
MutationDistiller.

combination ID direct_weight anc_weight desc_weight first one_five gr_ten mean_rank not_found

145 1.00 2.00 0.50 7 74 37 9.55 42

31 0.20 0.50 0.10 6 65 38 10.10 42

38 0.20 1.00 0.10 3 49 48 11.46 42

45 0.20 2.00 0.10 3 46 52 11.92 42

*210 5.00 0.05 2.00 70 108 26 5.82 43

224 5.00 0.20 2.00 70 109 26 5.86 43

217 5.00 0.10 2.00 70 108 26 5.87 43

160 2.00 0.05 1.00 67 108 26 5.96 43

60 0.50 0.05 0.20 70 107 24 5.99 43

231 5.00 0.50 2.00 70 107 24 5.99 43

110 1.00 0.05 0.50 67 108 26 6.02 43

167 2.00 0.10 1.00 67 108 26 6.02 43

117 1.00 0.10 0.50 67 107 26 6.12 43

174 2.00 0.20 1.00 67 107 26 6.12 43

67 0.50 0.10 0.20 69 106 24 6.17 43

238 5.00 1.00 2.00 69 106 24 6.17 43

124 1.00 0.20 0.50 66 106 25 6.25 43

111 1.00 0.05 1.00 56 104 27 6.28 43

168 2.00 0.10 2.00 56 104 27 6.28 43

10 0.20 0.05 0.10 66 105 25 6.28 43

181 2.00 0.50 1.00 66 105 25 6.28 43

161 2.00 0.05 2.00 56 103 28 6.30 43

61 0.50 0.05 0.50 56 105 27 6.37 43

118 1.00 0.10 1.00 56 105 27 6.37 43

175 2.00 0.20 2.00 56 105 27 6.37 43

11 0.20 0.05 0.20 56 104 27 6.52 43

68 0.50 0.10 0.50 56 103 28 6.52 43

125 1.00 0.20 1.00 56 103 28 6.52 43

182 2.00 0.50 2.00 56 104 27 6.52 43

17 0.20 0.10 0.10 61 99 25 6.64 43

131 1.00 0.50 0.50 61 99 25 6.64 43

188 2.00 1.00 1.00 61 99 25 6.64 43
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combination ID direct_weight anc_weight desc_weight first one_five gr_ten mean_rank not_found

75 0.50 0.20 0.50 55 101 26 6.66 43

112 1.00 0.05 2.00 42 102 27 6.83 43

18 0.20 0.10 0.20 55 98 27 6.84 43

132 1.00 0.50 1.00 55 98 27 6.84 43

189 2.00 1.00 2.00 55 98 27 6.84 43

62 0.50 0.05 1.00 42 100 28 6.87 43

119 1.00 0.10 2.00 42 100 28 6.87 43

24 0.20 0.20 0.10 39 90 27 7.43 43

138 1.00 1.00 0.50 39 90 27 7.43 43

195 2.00 2.00 1.00 39 90 27 7.43 43

25 0.20 0.20 0.20 37 90 28 7.60 43

82 0.50 0.50 0.50 37 90 28 7.60 43

139 1.00 1.00 1.00 37 90 28 7.60 43

196 2.00 2.00 2.00 37 90 28 7.60 43

63 0.50 0.05 2.00 37 88 28 7.63 43

89 0.50 1.00 0.50 8 69 32 8.99 43

146 1.00 2.00 1.00 8 69 32 8.99 43

88 0.50 1.00 0.20 8 75 36 9.12 43

90 0.50 1.00 1.00 11 67 35 9.15 43

147 1.00 2.00 2.00 11 67 35 9.15 43

87 0.50 1.00 0.10 8 75 38 9.22 43

144 1.00 2.00 0.20 8 75 38 9.22 43

142 1.00 2.00 0.05 8 74 37 9.28 43

86 0.50 1.00 0.05 8 74 38 9.28 43

143 1.00 2.00 0.10 8 74 38 9.28 43

32 0.20 0.50 0.20 6 60 34 9.59 43

91 0.50 1.00 2.00 14 62 39 9.60 43

33 0.20 0.50 0.50 9 57 38 9.68 43

30 0.20 0.50 0.05 6 66 39 9.77 43

34 0.20 0.50 1.00 13 53 43 10.10 43

35 0.20 0.50 2.00 15 54 42 10.23 43

93 0.50 2.00 0.05 3 51 45 10.72 43

94 0.50 2.00 0.10 3 51 46 10.73 43

97 0.50 2.00 1.00 3 46 47 10.74 43

95 0.50 2.00 0.20 3 51 44 10.75 43

96 0.50 2.00 0.50 3 47 44 10.77 43

98 0.50 2.00 2.00 8 45 52 10.85 43

37 0.20 1.00 0.05 3 50 47 10.99 43

39 0.20 1.00 0.20 3 45 47 11.05 43

40 0.20 1.00 0.50 3 44 54 11.18 43

41 0.20 1.00 1.00 7 42 55 11.20 43

42 0.20 1.00 2.00 12 42 55 11.21 43

44 0.20 2.00 0.05 3 47 50 11.46 43
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combination ID direct_weight anc_weight desc_weight first one_five gr_ten mean_rank not_found

46 0.20 2.00 0.20 3 42 52 11.50 43

49 0.20 2.00 2.00 6 38 60 11.70 43

47 0.20 2.00 0.50 3 40 57 11.74 43

48 0.20 2.00 1.00 3 41 61 12.06 43

159 2.00 0.05 0.50 69 110 23 5.45 44

209 5.00 0.05 1.00 69 108 23 5.45 44

216 5.00 0.10 1.00 69 108 23 5.46 44

208 5.00 0.05 0.50 65 106 24 5.50 44

223 5.00 0.20 1.00 69 107 23 5.51 44

109 1.00 0.05 0.20 69 107 23 5.51 44

166 2.00 0.10 0.50 69 108 23 5.52 44

207 5.00 0.05 0.20 63 106 24 5.54 44

158 2.00 0.05 0.20 65 106 24 5.55 44

215 5.00 0.10 0.50 65 106 24 5.55 44

222 5.00 0.20 0.50 64 106 25 5.58 44

173 2.00 0.20 0.50 68 108 24 5.58 44

214 5.00 0.10 0.20 62 106 25 5.60 44

157 2.00 0.05 0.10 63 106 25 5.61 44

108 1.00 0.05 0.10 64 106 25 5.61 44

165 2.00 0.10 0.20 64 106 25 5.61 44

107 1.00 0.05 0.05 62 104 24 5.62 44

164 2.00 0.10 0.10 62 104 24 5.62 44

206 5.00 0.05 0.10 62 106 25 5.62 44

221 5.00 0.20 0.20 61 104 24 5.65 44

156 2.00 0.05 0.05 61 104 24 5.65 44

220 5.00 0.20 0.10 61 102 24 5.65 44

59 0.50 0.05 0.10 66 107 25 5.65 44

116 1.00 0.10 0.20 66 107 25 5.65 44

230 5.00 0.50 1.00 66 107 25 5.65 44

213 5.00 0.10 0.10 61 104 24 5.67 44

163 2.00 0.10 0.05 61 102 24 5.68 44

205 5.00 0.05 0.05 61 104 24 5.69 44

58 0.50 0.05 0.05 63 103 25 5.69 44

115 1.00 0.10 0.10 63 103 25 5.69 44

172 2.00 0.20 0.20 63 103 25 5.69 44

229 5.00 0.50 0.50 63 103 25 5.69 44

212 5.00 0.10 0.05 61 103 24 5.70 44

219 5.00 0.20 0.05 61 102 23 5.71 44

114 1.00 0.10 0.05 62 102 25 5.73 44

171 2.00 0.20 0.10 62 102 25 5.73 44

228 5.00 0.50 0.20 62 102 24 5.74 44

227 5.00 0.50 0.10 62 102 24 5.76 44

170 2.00 0.20 0.05 62 102 24 5.77 44
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combination ID direct_weight anc_weight desc_weight first one_five gr_ten mean_rank not_found

65 0.50 0.10 0.05 64 102 24 5.78 44

122 1.00 0.20 0.10 64 102 24 5.78 44

236 5.00 1.00 0.50 64 102 24 5.78 44

235 5.00 1.00 0.20 64 103 24 5.81 44

66 0.50 0.10 0.10 65 103 23 5.81 44

123 1.00 0.20 0.20 65 103 23 5.81 44

178 2.00 0.50 0.10 65 103 22 5.81 44

237 5.00 1.00 1.00 65 103 23 5.81 44

226 5.00 0.50 0.05 61 102 24 5.81 44

121 1.00 0.20 0.05 64 102 24 5.82 44

179 2.00 0.50 0.20 65 103 22 5.82 44

9 0.20 0.05 0.05 66 104 23 5.84 44

180 2.00 0.50 0.50 66 104 23 5.84 44

177 2.00 0.50 0.05 65 103 22 5.85 44

234 5.00 1.00 0.10 64 103 24 5.86 44

233 5.00 1.00 0.05 64 103 25 5.88 44

72 0.50 0.20 0.05 63 99 22 6.03 44

243 5.00 2.00 0.50 63 99 22 6.03 44

74 0.50 0.20 0.20 64 100 23 6.04 44

245 5.00 2.00 2.00 64 100 23 6.04 44

73 0.50 0.20 0.10 63 99 23 6.05 44

244 5.00 2.00 1.00 63 99 23 6.05 44

242 5.00 2.00 0.20 63 99 24 6.10 44

16 0.20 0.10 0.05 61 99 23 6.12 44

187 2.00 1.00 0.50 61 99 23 6.12 44

241 5.00 2.00 0.10 63 99 24 6.15 44

240 5.00 2.00 0.05 63 99 24 6.15 44

130 1.00 0.50 0.20 61 99 23 6.18 44

129 1.00 0.50 0.10 61 100 25 6.23 44

186 2.00 1.00 0.20 61 100 25 6.23 44

128 1.00 0.50 0.05 61 100 25 6.24 44

185 2.00 1.00 0.10 61 100 25 6.24 44

184 2.00 1.00 0.05 61 100 26 6.29 44

69 0.50 0.10 1.00 42 99 27 6.40 44

126 1.00 0.20 2.00 42 99 27 6.40 44

76 0.50 0.20 1.00 41 98 26 6.53 44

133 1.00 0.50 2.00 41 96 25 6.58 44

12 0.20 0.05 0.50 41 96 27 6.63 44

19 0.20 0.10 0.50 41 93 26 6.89 44

81 0.50 0.50 0.20 39 93 27 7.03 44

23 0.20 0.20 0.05 39 94 28 7.06 44

194 2.00 2.00 0.50 39 94 28 7.06 44

80 0.50 0.50 0.10 39 92 28 7.07 44
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combination ID direct_weight anc_weight desc_weight first one_five gr_ten mean_rank not_found

137 1.00 1.00 0.20 39 92 28 7.07 44

79 0.50 0.50 0.05 38 92 30 7.08 44

136 1.00 1.00 0.10 38 92 30 7.08 44

193 2.00 2.00 0.20 38 92 30 7.08 44

135 1.00 1.00 0.05 36 92 30 7.15 44

192 2.00 2.00 0.10 36 92 30 7.15 44

70 0.50 0.10 2.00 37 87 27 7.17 44

77 0.50 0.20 2.00 38 87 26 7.22 44

191 2.00 2.00 0.05 35 92 30 7.23 44

83 0.50 0.50 1.00 31 82 28 7.30 44

140 1.00 1.00 2.00 31 82 28 7.30 44

13 0.20 0.05 1.00 35 85 29 7.35 44

20 0.20 0.10 1.00 36 83 26 7.48 44

26 0.20 0.20 0.50 30 76 28 7.53 44

14 0.20 0.05 2.00 34 80 31 7.60 44

21 0.20 0.10 2.00 34 78 29 7.76 44

84 0.50 0.50 2.00 29 72 30 7.94 44

27 0.20 0.20 1.00 28 70 30 8.12 44

28 0.20 0.20 2.00 26 69 32 8.33 44

85 0.50 1.00 0.00 8 74 29 8.15 48

141 1.00 2.00 0.00 8 74 29 8.15 48

29 0.20 0.50 0.00 6 66 31 8.64 48

92 0.50 2.00 0.00 3 52 36 9.47 48

36 0.20 1.00 0.00 3 51 37 9.70 48

43 0.20 2.00 0.00 3 48 40 10.00 48

211 5.00 0.10 0.00 61 104 14 4.49 49

204 5.00 0.05 0.00 61 104 15 4.50 49

218 5.00 0.20 0.00 61 103 14 4.50 49

106 1.00 0.05 0.00 61 103 14 4.50 49

155 2.00 0.05 0.00 61 103 14 4.50 49

162 2.00 0.10 0.00 61 103 14 4.50 49

57 0.50 0.05 0.00 61 103 15 4.58 49

113 1.00 0.10 0.00 61 103 15 4.58 49

169 2.00 0.20 0.00 61 103 15 4.58 49

225 5.00 0.50 0.00 61 103 15 4.58 49

64 0.50 0.10 0.00 64 104 17 4.66 49

120 1.00 0.20 0.00 64 104 17 4.66 49

232 5.00 1.00 0.00 64 104 17 4.66 49

8 0.20 0.05 0.00 65 104 16 4.66 49

176 2.00 0.50 0.00 65 104 16 4.66 49

71 0.50 0.20 0.00 63 99 18 4.93 49

239 5.00 2.00 0.00 63 99 18 4.93 49

15 0.20 0.10 0.00 61 100 20 5.09 49
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combination ID direct_weight anc_weight desc_weight first one_five gr_ten mean_rank not_found

127 1.00 0.50 0.00 61 100 20 5.09 49

183 2.00 1.00 0.00 61 100 20 5.09 49

22 0.20 0.20 0.00 35 92 23 6.04 49

78 0.50 0.50 0.00 35 92 23 6.04 49

134 1.00 1.00 0.00 35 92 23 6.04 49

190 2.00 2.00 0.00 35 92 23 6.04 49

53 0.50 0.00 0.20 74 105 19 4.78 53

203 5.00 0.00 2.00 74 105 19 4.78 53

3 0.20 0.00 0.10 71 106 20 4.93 53

103 1.00 0.00 0.50 71 106 20 4.93 53

153 2.00 0.00 1.00 71 106 20 4.93 53

4 0.20 0.00 0.20 58 103 23 5.36 53

54 0.50 0.00 0.50 58 103 23 5.36 53

104 1.00 0.00 1.00 58 103 23 5.36 53

154 2.00 0.00 2.00 58 103 23 5.36 53

55 0.50 0.00 1.00 43 100 21 5.91 53

105 1.00 0.00 2.00 43 100 21 5.91 53

5 0.20 0.00 0.50 42 96 23 6.17 53

56 0.50 0.00 2.00 38 92 23 6.61 53

6 0.20 0.00 1.00 36 90 24 6.81 53

7 0.20 0.00 2.00 35 86 25 7.03 53

52 0.50 0.00 0.10 73 105 16 4.29 54

102 1.00 0.00 0.20 73 105 16 4.29 54

202 5.00 0.00 1.00 73 105 16 4.29 54

100 1.00 0.00 0.05 68 104 16 4.31 54

150 2.00 0.00 0.10 68 104 16 4.31 54

51 0.50 0.00 0.05 70 104 16 4.31 54

101 1.00 0.00 0.10 70 104 16 4.31 54

151 2.00 0.00 0.20 70 104 16 4.31 54

201 5.00 0.00 0.50 70 104 16 4.31 54

200 5.00 0.00 0.20 67 104 16 4.31 54

2 0.20 0.00 0.05 73 106 16 4.31 54

152 2.00 0.00 0.50 73 106 16 4.31 54

199 5.00 0.00 0.10 67 104 16 4.33 54

149 2.00 0.00 0.05 67 104 16 4.34 54

198 5.00 0.00 0.05 67 103 16 4.35 54

1 0.20 0.00 0.00 65 104 6 3.02 63

50 0.50 0.00 0.00 65 104 6 3.02 63

99 1.00 0.00 0.00 65 104 6 3.02 63

148 2.00 0.00 0.00 65 104 6 3.02 63

197 5.00 0.00 0.00 65 104 6 3.02 63
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B Appendix – Expression tissue groups

This table provides a summary of the the groups and subgroups developed to structure expression data downloaded from Ex-

pressionAtlas.

datasource class group sub-tissues

E-MTAB-4344 organs brain brain

E-MTAB-4344 organs kidney kidney

E-MTAB-4344 organs liver liver

E-MTAB-4344 organs lung lung

E-MTAB-4344 organs heart heart

E-MTAB-4344 organs gastrointestinal tract sigmoid colon

E-MTAB-4344 organs gastrointestinal tract small intestine

E-MTAB-4344 organs reproductive organs ovary

E-MTAB-4344 organs reproductive organs testis

E-MTAB-4344 tissues adipose tissue adipose tissue

E-MTAB-4344 systems nervous system brain

E-MTAB-4344 systems circulatory/respiratory system heart

E-MTAB-4344 systems circulatory/respiratory system lung

E-MTAB-4344 systems immune system spleen

E-MTAB-4344 systems reproductive system ovary

E-MTAB-4344 systems reproductive system testis

E-MTAB-4344 systems food intake/digestion sigmoid colon

E-MTAB-4344 systems food intake/digestion small intestine

E-MTAB-4344 systems urinary system kidney

E-MTAB-4344 systems endocrine system adrenal gland

E-MTAB-4344 systems endocrine system pancreas

E-MTAB-3358 organs brain amygdala

E-MTAB-3358 organs brain brain

E-MTAB-3358 organs brain caudate nucleus

E-MTAB-3358 organs brain cerebellum

E-MTAB-3358 organs brain cerebral meninges

E-MTAB-3358 organs brain diencephalon

E-MTAB-3358 organs brain dura mater

E-MTAB-3358 organs brain globus pallidus

E-MTAB-3358 organs brain hippocampus

E-MTAB-3358 organs brain locus coeruleus

E-MTAB-3358 organs brain medulla oblongata

E-MTAB-3358 organs brain middle frontal gyrus

E-MTAB-3358 organs brain middle temporal gyrus

E-MTAB-3358 organs brain occipital cortex

E-MTAB-3358 organs brain occipital lobe

E-MTAB-3358 organs brain parietal lobe

E-MTAB-3358 organs brain putamen
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datasource class group sub-tissues

E-MTAB-3358 organs brain substantia nigra

E-MTAB-3358 organs brain thalamus

E-MTAB-3358 organs gastrointestinal tract appendix

E-MTAB-3358 organs gastrointestinal tract colon

E-MTAB-3358 organs heart artery

E-MTAB-3358 organs heart heart

E-MTAB-3358 organs heart left atrium

E-MTAB-3358 organs heart left ventricle

E-MTAB-3358 organs heart mitral valve

E-MTAB-3358 organs heart pulmonary valve

E-MTAB-3358 organs heart tricuspid valve

E-MTAB-3358 organs kidney kidney

E-MTAB-3358 organs lung lung

E-MTAB-3358 organs reproductive organs cervix

E-MTAB-3358 organs reproductive organs epididymis

E-MTAB-3358 organs reproductive organs ovary

E-MTAB-3358 organs reproductive organs penis

E-MTAB-3358 organs reproductive organs placenta

E-MTAB-3358 organs reproductive organs prostate

E-MTAB-3358 organs reproductive organs seminal vesicle

E-MTAB-3358 organs reproductive organs testis

E-MTAB-3358 organs reproductive organs uterus

E-MTAB-3358 organs reproductive organs vagina

E-MTAB-3358 organs reproductive organs vas deferens

E-MTAB-3358 organs skin skin

E-MTAB-3358 organs gallbladder gallbladder

E-MTAB-3358 organs olfactory apparatus olfactory apparatus

E-MTAB-3358 systems circulatory/respiratory system artery

E-MTAB-3358 systems circulatory/respiratory system heart

E-MTAB-3358 systems circulatory/respiratory system left atrium

E-MTAB-3358 systems circulatory/respiratory system left ventricle

E-MTAB-3358 systems circulatory/respiratory system lung

E-MTAB-3358 systems circulatory/respiratory system mitral valve

E-MTAB-3358 systems circulatory/respiratory system pulmonary valve

E-MTAB-3358 systems circulatory/respiratory system tricuspid valve

E-MTAB-3358 systems endocrine system pancreas

E-MTAB-3358 systems endocrine system pineal gland

E-MTAB-3358 systems endocrine system pituitary gland

E-MTAB-3358 systems food intake/digestion appendix

E-MTAB-3358 systems food intake/digestion colon

E-MTAB-3358 systems food intake/digestion parotid gland

E-MTAB-3358 systems food intake/digestion submandibular gland

E-MTAB-3358 systems food intake/digestion tongue
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datasource class group sub-tissues

E-MTAB-3358 systems immune system lymph node

E-MTAB-3358 systems immune system spleen

E-MTAB-3358 systems nervous system amygdala

E-MTAB-3358 systems nervous system brain

E-MTAB-3358 systems nervous system caudate nucleus

E-MTAB-3358 systems nervous system cerebellum

E-MTAB-3358 systems nervous system cerebral meninges

E-MTAB-3358 systems nervous system diencephalon

E-MTAB-3358 systems nervous system dura mater

E-MTAB-3358 systems nervous system globus pallidus

E-MTAB-3358 systems nervous system hippocampus

E-MTAB-3358 systems nervous system locus coeruleus

E-MTAB-3358 systems nervous system medulla oblongata

E-MTAB-3358 systems nervous system middle frontal gyrus

E-MTAB-3358 systems nervous system middle temporal gyrus

E-MTAB-3358 systems nervous system occipital cortex

E-MTAB-3358 systems nervous system occipital lobe

E-MTAB-3358 systems nervous system parietal lobe

E-MTAB-3358 systems nervous system putamen

E-MTAB-3358 systems nervous system spinal cord

E-MTAB-3358 systems nervous system substantia nigra

E-MTAB-3358 systems nervous system thalamus

E-MTAB-3358 systems neuromuscular smooth muscle

E-MTAB-3358 systems reproductive system cervix

E-MTAB-3358 systems reproductive system epididymis

E-MTAB-3358 systems reproductive system ovary

E-MTAB-3358 systems reproductive system penis

E-MTAB-3358 systems reproductive system placenta

E-MTAB-3358 systems reproductive system prostate

E-MTAB-3358 systems reproductive system seminal vesicle

E-MTAB-3358 systems reproductive system testis

E-MTAB-3358 systems reproductive system uterus

E-MTAB-3358 systems reproductive system vagina

E-MTAB-3358 systems reproductive system vas deferens

E-MTAB-3358 systems skin skin

E-MTAB-3358 systems urinary system kidney

E-MTAB-3358 tissues bone marrow bone marrow

E-MTAB-3358 tissues mammary tissue breast

E-MTAB-3358 tissues skin skin

E-MTAB-3358 tissues smooth muscle smooth muscle

E-MTAB-5214 organs brain amygdala

E-MTAB-5214 organs brain anterior cingulate cortex (BA24)

E-MTAB-5214 organs brain caudate (basal ganglia)
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datasource class group sub-tissues

E-MTAB-5214 organs brain cerebellar hemisphere

E-MTAB-5214 organs brain cerebellum

E-MTAB-5214 organs brain cerebral cortex

E-MTAB-5214 organs brain frontal cortex

E-MTAB-5214 organs brain hippocampus

E-MTAB-5214 organs brain hypothalamus

E-MTAB-5214 organs brain nucleus accumbens (basal ganglia)

E-MTAB-5214 organs brain putamen (basal ganglia)

E-MTAB-5214 organs brain substantia nigra

E-MTAB-5214 organs gastrointestinal tract esophagus muscularis mucosa

E-MTAB-5214 organs gastrointestinal tract gastroesophageal junction

E-MTAB-5214 organs gastrointestinal tract mucosa of esophagus

E-MTAB-5214 organs gastrointestinal tract sigmoid colon

E-MTAB-5214 organs gastrointestinal tract stomach

E-MTAB-5214 organs gastrointestinal tract terminal ileum of small intestine

E-MTAB-5214 organs gastrointestinal tract transverse colon

E-MTAB-5214 organs heart aorta

E-MTAB-5214 organs heart coronary artery

E-MTAB-5214 organs heart left ventricle

E-MTAB-5214 organs kidney cortex of kidney

E-MTAB-5214 organs liver liver

E-MTAB-5214 organs lung lung

E-MTAB-5214 organs reproductive organs cervix

E-MTAB-5214 organs reproductive organs fallopian tube

E-MTAB-5214 organs reproductive organs ovary

E-MTAB-5214 organs reproductive organs prostate

E-MTAB-5214 organs reproductive organs testis

E-MTAB-5214 organs reproductive organs uterus

E-MTAB-5214 organs reproductive organs vagina

E-MTAB-5214 organs skin skin of lower leg

E-MTAB-5214 organs skin skin of suprapubic region

E-MTAB-5214 systems circulatory/respiratory system aorta

E-MTAB-5214 systems circulatory/respiratory system atrial appendage of heart

E-MTAB-5214 systems circulatory/respiratory system coronary artery

E-MTAB-5214 systems circulatory/respiratory system left ventricle

E-MTAB-5214 systems circulatory/respiratory system lung

E-MTAB-5214 systems circulatory/respiratory system tibial artery

E-MTAB-5214 systems circulatory/respiratory system whole blood

E-MTAB-5214 systems endocrine system adrenal gland

E-MTAB-5214 systems endocrine system pancreas

E-MTAB-5214 systems endocrine system pituitary gland

E-MTAB-5214 systems endocrine system thyroid

E-MTAB-5214 systems food intake/digestion esophagus muscularis mucosa
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datasource class group sub-tissues

E-MTAB-5214 systems food intake/digestion gastroesophageal junction

E-MTAB-5214 systems food intake/digestion minor salivary gland

E-MTAB-5214 systems food intake/digestion mucosa of esophagus

E-MTAB-5214 systems food intake/digestion sigmoid colon

E-MTAB-5214 systems food intake/digestion stomach

E-MTAB-5214 systems food intake/digestion terminal ileum of small intestine

E-MTAB-5214 systems food intake/digestion transverse colon

E-MTAB-5214 systems immune system spleen

E-MTAB-5214 systems nervous system amygdala

E-MTAB-5214 systems nervous system anterior cingulate cortex (BA24)

E-MTAB-5214 systems nervous system caudate (basal ganglia)

E-MTAB-5214 systems nervous system cerebellar hemisphere

E-MTAB-5214 systems nervous system cerebellum

E-MTAB-5214 systems nervous system cerebral cortex

E-MTAB-5214 systems nervous system frontal cortex

E-MTAB-5214 systems nervous system hippocampus

E-MTAB-5214 systems nervous system hypothalamus

E-MTAB-5214 systems nervous system nucleus accumbens (basal ganglia)

E-MTAB-5214 systems nervous system putamen (basal ganglia)

E-MTAB-5214 systems nervous system spinal cord (cervical c-1)

E-MTAB-5214 systems nervous system substantia nigra

E-MTAB-5214 systems nervous system tibial nerve

E-MTAB-5214 systems neuromuscular skeletal muscle

E-MTAB-5214 systems reproductive system cervix

E-MTAB-5214 systems reproductive system fallopian tube

E-MTAB-5214 systems reproductive system ovary

E-MTAB-5214 systems reproductive system prostate

E-MTAB-5214 systems reproductive system testis

E-MTAB-5214 systems reproductive system uterus

E-MTAB-5214 systems reproductive system vagina

E-MTAB-5214 systems skin skin of lower leg

E-MTAB-5214 systems skin skin of suprapubic region

E-MTAB-5214 systems urinary system bladder

E-MTAB-5214 systems urinary system cortex of kidney

E-MTAB-5214 tissues adipose tissue subcutaneous adipose tissue

E-MTAB-5214 tissues adipose tissue visceral adipose tissue

E-MTAB-5214 tissues cellular EBV-transformed lymphocyte

E-MTAB-5214 tissues cellular leukemia cell line

E-MTAB-5214 tissues cellular transformed fibroblast

E-MTAB-5214 tissues cellular whole blood

E-MTAB-5214 tissues mammary tissue breast

E-MTAB-5214 tissues muscle skeletal muscle

E-MTAB-5214 tissues skin skin of lower leg
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datasource class group sub-tissues

E-MTAB-5214 tissues skin skin of suprapubic region

E-PROT-3,E-MTAB-2836 organs brain cerebral cortex

E-PROT-3,E-MTAB-2836 organs gastrointestinal tract appendix

E-PROT-3,E-MTAB-2836 organs gastrointestinal tract colon

E-PROT-3,E-MTAB-2836 organs gastrointestinal tract duodenum

E-PROT-3,E-MTAB-2836 organs gastrointestinal tract esophagus

E-PROT-3,E-MTAB-2836 organs gastrointestinal tract rectum

E-PROT-3,E-MTAB-2836 organs gastrointestinal tract small intestine

E-PROT-3,E-MTAB-2836 organs gastrointestinal tract stomach

E-PROT-3,E-MTAB-2836 organs heart heart

E-PROT-3,E-MTAB-2836 organs kidney kidney

E-PROT-3,E-MTAB-2836 organs liver liver

E-PROT-3,E-MTAB-2836 organs lung lung

E-PROT-3,E-MTAB-2836 organs reproductive organs endometrium

E-PROT-3,E-MTAB-2836 organs reproductive organs fallopian tube

E-PROT-3,E-MTAB-2836 organs reproductive organs ovary

E-PROT-3,E-MTAB-2836 organs reproductive organs placenta

E-PROT-3,E-MTAB-2836 organs reproductive organs prostate

E-PROT-3,E-MTAB-2836 organs reproductive organs testis

E-PROT-3,E-MTAB-2836 organs skin skin

E-PROT-3,E-MTAB-2836 organs gallbladder gallbladder

E-PROT-3,E-MTAB-2836 systems circulatory/respiratory system heart

E-PROT-3,E-MTAB-2836 systems circulatory/respiratory system lung

E-PROT-3,E-MTAB-2836 systems endocrine system adrenal gland

E-PROT-3,E-MTAB-2836 systems endocrine system pancreas

E-PROT-3,E-MTAB-2836 systems endocrine system thyroid

E-PROT-3,E-MTAB-2836 systems food intake/digestion appendix

E-PROT-3,E-MTAB-2836 systems food intake/digestion colon

E-PROT-3,E-MTAB-2836 systems food intake/digestion duodenum

E-PROT-3,E-MTAB-2836 systems food intake/digestion esophagus

E-PROT-3,E-MTAB-2836 systems food intake/digestion rectum

E-PROT-3,E-MTAB-2836 systems food intake/digestion salivary gland

E-PROT-3,E-MTAB-2836 systems food intake/digestion small intestine

E-PROT-3,E-MTAB-2836 systems food intake/digestion stomach

E-PROT-3,E-MTAB-2836 systems immune system lymph node

E-PROT-3,E-MTAB-2836 systems immune system spleen

E-PROT-3,E-MTAB-2836 systems immune system tonsil

E-PROT-3,E-MTAB-2836 systems nervous system cerebral cortex

E-PROT-3,E-MTAB-2836 systems neuromuscular skeletal muscle

E-PROT-3,E-MTAB-2836 systems neuromuscular smooth muscle

E-PROT-3,E-MTAB-2836 systems reproductive system endometrium

E-PROT-3,E-MTAB-2836 systems reproductive system fallopian tube

E-PROT-3,E-MTAB-2836 systems reproductive system ovary
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datasource class group sub-tissues

E-PROT-3,E-MTAB-2836 systems reproductive system placenta

E-PROT-3,E-MTAB-2836 systems reproductive system prostate

E-PROT-3,E-MTAB-2836 systems reproductive system testis

E-PROT-3,E-MTAB-2836 systems skin skin

E-PROT-3,E-MTAB-2836 systems urinary system bladder

E-PROT-3,E-MTAB-2836 systems urinary system kidney

E-PROT-3,E-MTAB-2836 tissues adipose tissue adipose tissue

E-PROT-3,E-MTAB-2836 tissues bone marrow bone marrow

E-PROT-3,E-MTAB-2836 tissues muscle skeletal muscle

E-PROT-3,E-MTAB-2836 tissues muscle smooth muscle

E-PROT-3,E-MTAB-2836 tissues skin skin

E-MTAB-513 organs brain brain

E-MTAB-513 organs gastrointestinal tract colon

E-MTAB-513 organs heart heart

E-MTAB-513 organs kidney kidney

E-MTAB-513 organs liver liver

E-MTAB-513 organs lung lung

E-MTAB-513 organs reproductive organs ovary

E-MTAB-513 organs reproductive organs prostate

E-MTAB-513 organs reproductive organs testis

E-MTAB-513 systems circulatory/respiratory system heart

E-MTAB-513 systems circulatory/respiratory system lung

E-MTAB-513 systems endocrine system adrenal gland

E-MTAB-513 systems endocrine system thyroid

E-MTAB-513 systems food/digestion colon

E-MTAB-513 systems immune system leukocyte

E-MTAB-513 systems immune system lymph node

E-MTAB-513 systems nervous system brain

E-MTAB-513 systems neuromuscular skeletal muscle

E-MTAB-513 systems reproductive system ovary

E-MTAB-513 systems reproductive system prostate

E-MTAB-513 systems reproductive system testis

E-MTAB-513 systems urinary system kidney

E-MTAB-513 tissues adipose tissue adipose tissue

E-MTAB-513 tissues cellular leukocyte

E-MTAB-513 tissues mammary tissue breast

E-MTAB-513 tissues muscle skeletal muscle

E-PROT-1 organs brain frontal cortex

E-PROT-1 organs gastrointestinal tract colon

E-PROT-1 organs gastrointestinal tract esophagus

E-PROT-1 organs gastrointestinal tract rectum

E-PROT-1 organs heart heart

E-PROT-1 organs kidney kidney
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datasource class group sub-tissues

E-PROT-1 organs liver liver

E-PROT-1 organs lung lung

E-PROT-1 organs reproductive organs ovary

E-PROT-1 organs reproductive organs prostate

E-PROT-1 organs reproductive organs testis

E-PROT-1 organs gallbladder gallbladder

E-PROT-1 systems circulatory/respiratory system heart

E-PROT-1 systems circulatory/respiratory system lung

E-PROT-1 systems circulatory/respiratory system platelet

E-PROT-1 systems endocrine system adrenal gland

E-PROT-1 systems endocrine system pancreas

E-PROT-1 systems food intake/digestion colon

E-PROT-1 systems food intake/digestion esophagus

E-PROT-1 systems food intake/digestion rectum

E-PROT-1 systems immune system B cell

E-PROT-1 systems immune system CD4-positive T cell

E-PROT-1 systems immune system CD8-positive T cell

E-PROT-1 systems immune system monocyte

E-PROT-1 systems immune system natural killer cell

E-PROT-1 systems nervous system frontal cortex

E-PROT-1 systems nervous system spinal cord

E-PROT-1 systems reproductive system ovary

E-PROT-1 systems reproductive system prostate

E-PROT-1 systems reproductive system testis

E-PROT-1 systems urinary system kidney

E-PROT-1 systems urinary system bladder

E-PROT-1 tissues cellular B cell

E-PROT-1 tissues cellular CD4-positive T cell

E-PROT-1 tissues cellular CD8-positive T cell

E-PROT-1 tissues cellular monocyte

E-PROT-1 tissues cellular natural killer cell

E-PROT-1 tissues cellular platelet

E-PROT-1 organs eye retina
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C Appendix – MutationDistiller database ERD

In this figure, I provide a comprehensive ERD of the tables and schemas used by MutationDistiller. Please note that this might

change with updates and new versions. Symbols indicate data types: 123 - numeric; ABC - text; tick - boolean; clock - date. A

more legible summarised ERD can be found in 2.3.
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