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Abstract 24 

Over the last 34 years, Lake Müggelsee has experienced concurrent warming and nutrient 25 

reduction. While the effects of environmental change on single taxonomic or physical-chemical 26 

variables have been relatively well researched in isolation, understanding how environmental 27 

change propagates through the ecological network remains a major challenge. Capitalizing on 28 

the long-term monitoring program of the German Long-Term Ecosystem Research Network site 29 

Lake Müggelsee (1979-ongoing), we identified three time periods (1979-1995; 1996-2005; 30 

2006-2013) which differed significantly in phytoplankton biomass and relative plankton 31 

community composition. Using multivariate first order autoregressive (MAR1) modeling on 13 32 

pelagic plankton groups and four abiotic variables, we quantified interaction networks and 33 

indicators of stability and centrality for each period. Our results suggested that the Müggelsee 34 

network was bottom-up regulated in all periods and that stability increased over time. Moreover, 35 

in all three networks, non-trophic and indirect interactions appeared to be as commonly present 36 

as trophic and direct interactions. Using network centrality measures of betweenness and 37 

closeness, we identified keystone plankton groups and groups particularly responsive to 38 

environmental change based on variation in centrality ranks over time. Given a more 39 

comprehensive understanding of the interaction network at hand, MAR1 model-derived stability 40 

and centrality measures may potentially be used as integrated ecological indicators to monitor 41 

changes in stability of lake ecosystems and to identify particularly vulnerable components of the 42 

network. 43 

Keywords: community stability, interaction networks, long-term research, network centrality 44 

 45 
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1. Introduction 46 

Lake ecosystems are considered important sentinels of environmental change as they integrate 47 

alterations in the catchment and atmosphere (Adrian et al., 2009; Williamson et al., 2009). Key 48 

response variables acting as sentinel variables include a wide range of physical, chemical and 49 

biological indicators that are sensitive to climate and land-use change (Adrian et al., 2009; 50 

Adrian et al., 2006). While the effects of anthropogenic pressure on key response variables are 51 

reasonably well understood in isolation, it remains a challenge to predict how global change 52 

affects the interactions among such variables and, thus, the ecological network of a lake and its 53 

stability. The lack of ground-truthed data on species interactions and community network 54 

response to stress has been identified as major gap in the bio-monitoring sciences (Gray et al., 55 

2014). To better understand and predict how global change will affect community structure and 56 

stability and hence also associated ecosystem processes, it is necessary to assess how ecological 57 

networks change over time and under pressure. 58 

Here, we make use of the long-term research program installed at the German Long-Term 59 

Ecosystem Research Network (LTER-D) site Müggelsee (Germany) to explore how changes in 60 

the phyto- and zooplankton biomass and community composition due to anthropogenic pressure 61 

affect the structure and stability of the pelagic interaction network utilizing multivariate first 62 

order autoregressive modelling (MAR1) and ecological network analysis. MAR1 modeling (Ives 63 

et al., 2003) allows the identification and quantification of network interactions and the 64 

derivation of stability metrics of ecological networks from long-term data (Hampton et al., 2013; 65 

Ives et al., 1999; Scheef et al., 2013). The resulting interaction matrix can also be used to inform 66 

ecological network analysis. MAR1 models have predominantly been used to elucidate trophic 67 

networks in both freshwater and marine systems, likely because short generation times of 68 
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plankton allow capturing hundreds of generations’ worth of dynamics within few years. The 69 

method has been implemented to assess the food-web structure in deep lakes under changing 70 

climate and eutrophication (Hampton et al., 2008; Hampton et al., 2006) and the effect of 71 

predation on phytoplankton and ciliate population variability (Huber and Gaedke, 2006) as well 72 

as on disease transmission (Duffy, 2007), to appraise the response of pelagic networks to 73 

changes in fish predation pressure (Beisner et al., 2003; Ives et al., 1999) and to carbon and 74 

nutrient manipulations (Klug and Cottingham, 2001). As MAR1 models provide quantitative 75 

estimates of interaction strengths they allow the identification of direct and strong links but also 76 

of indirect “long and weak” links (Jordán, 2009).  77 

Network stability indicators derived from MAR1 models are based on measurements of 78 

deviation from an “equilibrium” state, here the stationary distribution of a community under 79 

environmental noise. The stability indicators are expressed as variance of the stationary 80 

distribution in relation to the environmental variance (hereafter “variance”), return rate after 81 

perturbation (“resilience”) and short term response to perturbation (“reactivity”), for a detailed 82 

derivation see Ives et al. (2003), for a short description see Table 1. These stability indicators are 83 

directly comparable across systems as they are not affected by the magnitude of fluctuations in 84 

system variables (Hampton et al., 2013) and hence also allow tracking stability of ecosystems 85 

over time. Most ecological networks in the literature describe networks aggregated over time or 86 

space and thus do not provide information about the variability in stability of networks in 87 

evolving natural systems (but see Francis et al., 2014). The application of MAR1 models and 88 

their derived indicators on sequential time periods can improve our assessment and predictive 89 

power on the response and stability of ecological networks under anthropogenic pressure. 90 

Tracking the variability in interaction strength among keystone groups in a network, or the 91 
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overall stability of the network over time may even serve as a leading indicator for ecosystem 92 

resilience and as advance warning for regime shifts (Francis et al., 2014; Kuiper et al., 2015).  93 

The quantitative interaction matrix resulting from MAR1 models can be passed on to 94 

classic ecological network analysis to assess network properties such as closeness- and 95 

betweenness centrality. The centrality indicators can identify vertices (species, or groups of 96 

species) that are either well connected or connect otherwise disconnected compartments of the 97 

network and therefore take a keystone position in the network (Jordán et al., 2008). Changes in 98 

the position and dynamics of keystone species or groups are likely to cascade through the 99 

network as these groups are linked directly with many other groups in the network (Vasas and 100 

Jordán, 2006). Comparison of successive time period networks also allows tracking changes in 101 

the centrality scores and therefore the identification of groups that are particularly sensitive to 102 

environmental changes over time (Jordán and Osváth, 2009).  103 

The aim of this study is to explore how changes in lake nutrient status and a warming 104 

trend affected the internal trophic (bottom up or top down) and non-trophic (competition, 105 

facilitation or indirect effects) interactions of the pelagic plankton as well as overall network 106 

stability and topology. We identified three periods between 1979 and 2013 which differed in 107 

phytoplankton biomass (period 1 versus periods 2 and 3) and plankton community composition 108 

(periods 2 and 3). These periods were analyzed for their interaction networks properties, 109 

including stability indicators and measures of network centrality. Our study is of exploratory 110 

nature, making use of the Müggelsee long-term dataset to assess interactions among pelagic 111 

plankton groups based on their temporal autocorrelation and is geared towards revealing 112 
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potentially overlooked keystone groups and key interactions in the plankton network as well as 113 

changes in network stability and centrality measures over time. 114 

2. Methods 115 

2.1. Study site 116 

Lake Müggelsee is a shallow (mean depth 4.9 m, max depth 8 m), eutrophic lake situated 117 

southeast of the city of Berlin (Germany, 52° 26’ N, 13° 39’ E). The lake is polymictic and 118 

usually fully mixed due to the wind fetch of its relatively large surface area of ~750 ha 119 

(Driescher et al., 1993). The River Spree enters the lake from south-east and the outflow is 120 

situated in the north-west of the lake. This results in an average retention time of about 6-8 121 

weeks (Köhler et al., 2005). Due to its location in a transition zone from a maritime to a more 122 

continentally characterized climate, the lake experiences large annual and inter-annual variability 123 

in local weather conditions.  124 

Observed long-term changes: Over the past three decades, the lake has experienced an 125 

increase in seasonal warming by 2.4 and 2.3 K in spring and summer (Adrian et al., 2006; 126 

Wagner and Adrian, 2009) and a reduction in external nutrient loading by 50 % between 1990 127 

and 2005 (Köhler et al., 2005). Driven by the reduction in nutrient load, phytoplankton biomass 128 

declined due to phosphorus limitation in spring and nitrogen limitation in summer (Köhler et al., 129 

2005). This led to an increase in water transparency and a reappearance of macrophytes (Hilt et 130 

al., 2013). However, climate warming-induced increase in summer stratification (Wagner and 131 

Adrian, 2011) has been suggested to drive nutrient remobilization from the sediment (Wilhelm 132 

and Adrian, 2008). Buoyant cyanobacteria genera (Microcystis and Anabaena) benefitted from 133 
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elevated internal phosphorus release during stratified periods and genera capable of nitrogen 134 

fixation (Anabaena and Aphanizomenon) became prominent during nitrogen-limited prolonged 135 

stratification periods in summer (Wagner and Adrian, 2011). Thus, extensive algal summer 136 

blooms have remained common in the lake and blooming period extends into fall. Climate-137 

change induced shifts in phenology (Adrian et al., 2006) affected the timing of diatom spring-138 

bloom onset (earlier ice break-up promoted earlier bloom onset) and Daphnia population peaks 139 

(higher spring water temperature promoted earlier population peaks). Responses to warming in 140 

summer depended on species-specific thermal requirements and timing of warming with specific 141 

developmental stages, such as emergence from diapause (copepods), or spawning (Dreissena). 142 

Zooplankton species with high thermal tolerances (i.e. Thermocyclops oithonoides, 143 

Thermocyclops crassus) and/or taxa known to grow faster at high temperatures (e.g. rotifers) 144 

have become more abundant (Wagner and Adrian, 2011).  145 

2.1.1. Sampling and sample processing 146 

Since 1979, an intensive monitoring program of physical-chemical and biological variables has 147 

been installed at Müggelsee. Samples for pelagic phyto- and zooplankton and concentrations of 148 

dissolved reactive phosphorus (SRP), total phosphorus (TP), dissolved inorganic nitrogen (DIN 149 

= nitrate + ammonium) and dissolved reactive silicate (RSi) have been taken at fortnightly 150 

(winter) and weekly intervals (summer). Secchi depth was measured with a Secchi disk on each 151 

sampling occasion. Water temperatures were measured weekly between 8:00 and 9:00 AM at 0.5 152 

m depth at a landing jetty (January 1979 - September 2002) and later at an in-lake station 153 

(September 2002-ongoing) first with a handheld mercury thermometer (January 1979 - April 154 

1994) and later with an automated probe (April 1994 - ongoing, AD590 temperature transducer 155 

(Analog Devices, Norwood, US)). Due to systematic differences between probes and locations, 156 
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temperature measurements were corrected by +0.258 K for the handheld probe and +0.112 K for 157 

the automated probe (Schmidt et al., unpublished data.). Missing values (92 out of 1818, longest 158 

gap=10 weeks) were imputed by linear interpolation as they occurred mainly during winter 159 

months. A detailed description of sampling and sample processing is given in Driescher et al. 160 

(1993) and Gerten and Adrian (2000). 161 

2.1.2. Phytoplankton counting and identification 162 

Phytoplankton samples were fixed with Lugol’s solution and counted according to the Utermöhl 163 

method (Utermöhl, 1958). From 1979 until 1994 samples were counted mainly at phylum level, 164 

with the exception of a few conspicuous diatom and cyanobacteria species. Since 1995, 165 

phytoplankton has been counted to species level where feasible; otherwise to higher taxonomic 166 

levels, in some cases with additional separation into size classes (centric diatoms, Cryptomonas 167 

spp, Aulacoseira spp, Peridinium spp, Gymnodinium spp), resulting in a total number of 182 taxa 168 

(Table A.1). Biovolume and fresh weight were calculated from cell or filament measurements 169 

using the approach described in Padisák and Adrian (1999) and Mischke and Behrend (2007).  170 

2.1.3. Zooplankton counting and identification 171 

Zooplankton samples were concentrated over a 30 µm plankton net (from 20 L to 100 mL) and 172 

fixed with Formaldehyde (4 % final concentration). Zooplankton were identified and counted to 173 

species-level where feasible, otherwise to higher taxonomic levels, resulting in a total of 105 taxa 174 

(Table A.2). Zooplankton abundance data were converted into dry-weight biomass (mg L-1) to 175 

properly assess its interactions with phytoplankton biomasses. Because zooplankton body size 176 

values required for abundance-biomass conversions were not measured in our study system, we 177 

used information from a recently compiled zooplankton trait database (crustacean and copepod 178 

data: Hébert et al., in review) and searched Web of Science and Google Scholar databases for 179 
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taxa-specific size estimates and dry mass conversion factors for the remaining species (i.e. rotifer 180 

species; Table A.3). Several dry mass values were based on taxon-specific length-mass 181 

allometric equations, (see Bottrell et al., 1976; Culver et al., 1985; Dumont et al., 1975; 182 

McCauley, 1984). For some rotifer species, dry mass estimates were derived from literature 183 

biovolume values, assuming a gravity value of 1.025 for biovolume-biomass conversion (Hall et 184 

al., 1970; Wetzel and Likens, 2000). For Leptodora meta nauplii, the dry mass value was based 185 

on stage IV nauplius data (Cummins et al., 1969). For the taxa for which specific information 186 

could not be found, body size values were generalized to the genus level. For taxa that reflected 187 

general groups (e.g. rotifers spp.), we made assumptions based on generalized information of 188 

similar taxonomic resolution (Hall et al., 1970; Hall et al., 1976; Lynch, 1980; Wetzel and 189 

Likens, 2000). For non-mature copepods, dry mass estimates were based on all stages of 190 

nauplius and copepodite (I-IV and I-V, respectively) of copepod taxa present in our dataset. Due 191 

to constraints of the taxonomic identification of daphniid juveniles over the observed period, 192 

juveniles were proportionally allocated to the species identified for adult daphniids. We also 193 

gathered information about the typical diet of species (i.e. trophic level) from the same data 194 

sources, again generalizing genus values when species-specific information was lacking.  195 

2.2. Data analysis 196 

2.2.1. General strategy of the analysis 197 

Our analysis was organized in five consecutive steps. We first assessed changes in phyto- and 198 

zooplankton community composition across 34 years by chronological clustering based on 199 

yearly averages on genus level, identifying three significantly distinct periods. Second, we 200 

grouped phyto- and zooplankton based on taxonomic and trophic information into 13 groups 201 
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(representing three trophic levels) for MAR1 modeling. Third, we assessed means and standard 202 

errors for biotic and abiotic variables per time period to describe chemical-physical and biotic 203 

changes in the lake and differences between periods. Fourth, we used multivariate autoregressive 204 

modeling to assess trophic and non-trophic interaction network strengths and stability measures 205 

in each period. And fifth, the resulting interaction matrices were passed on to network analysis to 206 

assess changes in closeness- and betweenness centrality ranks across periods. 207 

2.2.2. Chronological clustering 208 

To assess community composition changes with chronologically-constrained clustering, we 209 

aggregated the phyto- and zooplankton data on genus level, resulting in 61 phytoplankton and 40 210 

zooplankton genera. Clustering was performed on the Euclidian distance matrix of the yearly 211 

averages of phytoplankton and zooplankton genus-level datasets separately, using constrained 212 

incremental sum of squares (CONISS) clustering (Grimm, 1987; function chclust in R package 213 

“rioja”), an agglomerative method that combines adjacent samples (here chronological order of 214 

years) while minimizing the increase in total within-cluster sum of squares. To determine the 215 

minimum number of clusters, we used a Broken Stick approach as stopping rule (Jackson, 1993; 216 

function bstick in R package “vegan”). To assess whether these clusters were significantly 217 

different we used ANOSIM on the Euclidian distance matrix with 999 permutations (Oksanen et 218 

al., 2007; function anosim in R package “vegan”). The temporal change of all genus time series 219 

was visualized by the “traffic-light plot” (Möllmann et al., 2009): Each genus-level time series 220 

was transformed into quintiles and then sorted in descending order by the average of the first five 221 

years. Note that we used full years of the high taxonomic resolution dataset of phytoplankton 222 

(January 1995 – December 2012) and zooplankton (January 1979- December 2012) for the 223 

clustering analysis. 224 
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2.2.3. Taxonomic and trophic grouping 225 

To adequately populate the MAR1 models for the network analysis of the three time periods, we 226 

followed the data preparation steps suggested by Scheef (2013). We aggregated the phyto- and 227 

zooplankton taxa into 13 groups to reduce the number of potential parameters estimated in the 228 

models. Capitalizing on the full length of the Müggelsee time series (January 1979 – September 229 

2013), phytoplankton taxa were aggregated into 6 groups based on phylum (Table A.1): 230 

Bacillariophyceae (N taxa = 34), Cyanophyceae (N taxa = 31), Cryptophyceae (N taxa = 14), 231 

Chrysophyceae (N taxa = 13), Dinophyceae (N taxa = 17) and Chlorophyceae (including 232 

Euglenophyceae and Charophyceae; N taxa = 73). Zooplankton taxa were aggregated into seven 233 

groups based on taxonomic and trophic categories: omnivore–herbivore Cladocera (N taxa = 25), 234 

Copepoda (N taxa = 12), Rotifera (N taxa = 52) and Dreissena polymorpha larvae (N taxa = 1) 235 

as grazer groups; and omnivore-carnivore Cladocera (N taxa = 4), Copepoda (N taxa = 9), and 236 

Rotifera (N taxa = 2) as predator groups. The omnivore-herbivore groups included species 237 

described as herbivores in the literature but also omnivore species feeding on seston (e.g. most 238 

rotifers) and the juvenile stages (nauplii and copepodites) of all copepods including those of the 239 

carnivorous species (for an overview see supplementary material Table A.2 and for references 240 

see Hébert et al., in review and Table A.3). The omnivore-carnivore groups included both, 241 

primarily and exclusively carnivore species. We assigned trophic levels to general or genus-242 

based taxa (e.g. Daphnia spp.) based on the mean trophic level of species included in this taxon. 243 

2.2.4. Differences between periods 244 

We calculated means and standard errors for abiotic variables, overall phyto- and zooplankton 245 

biomass and all 13 phyto- and zooplankton MAR1 groups per period. Differences in means 246 

between periods were tested for with a Welch two-sample t-test (Welch, 1947).  247 
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2.2.5. Network analysis 248 

We used 13 phyto- and zooplankton groups as variates in the MAR1 models and added water 249 

surface temperature, SRP and DIN as exogenous covariates to assess the effects of long-term 250 

changes in warming and eutrophication. Additionally, “month” was added as an exogenous 251 

covariate to account for seasonality in our models (sensu Ives et al., 1999). All data were 252 

aggregated to monthly intervals as this has been shown to efficiently capture time-lagged 253 

responses of biotic interactions in other lake networks (Hampton and Schindler, 2006). Missing 254 

values were filled with the long-term means for the respective month (phytoplankton 1 out of 255 

417 months; zooplankton 18 of 417; SRP 7 of 417, DIN 25 of 417, and temperature 31 of 417). 256 

Zeroes were replaced with random values between zero and the lowest observed non-zero value 257 

for the respective group. Each time series was log-transformed and then z-scored by subtracting 258 

the mean of the group and dividing by the standard deviation of the group (Scheef, 2013; 259 

function prepare.data in R package “MAR1”). Log-transformation was applied to linearize 260 

trophic interactions among groups (Ives et al., 1999) and z-scoring allowed direct comparison of 261 

the interaction coefficients among groups. 262 

In MAR1 models, the biomass of each group is predicted by multiple regressions using 263 

the values of all other groups and exogenous variables from the previous time step as predictors 264 

(Ives et al., 2003; Ives et al., 1999). The matrix formulation of the model is 265 

Xt = A + BXt-1 + CUt-1 + E   (1) 266 

for p interacting groups (variates) and q exogenous groups (covariates) Xt is a p x 1 vector of the 267 

z-scored and log-transformed biomasses of each group at time t; A is a p x 1 vector of the 268 

intrinsic productivity (here equal to 0 as all time series are z-scored); BXt-1 is a p x p matrix of 269 
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interaction coefficients bij that describe how the biomass of group j at time t-1 affects the per unit 270 

growth rate of group i at time t; Ut-1 is a q x 1 vector of covariate values at time t-1, and C is the 271 

p x q matrix of coefficients cij that describe the effect of covariate j on group i; E is a p x 1 vector 272 

of process errors assumed to be drawn from a multivariate normal distribution with a mean of 0 273 

and covariance matrix S. Following Ives et al. (1999) and Scheef et al. (2013), 100 models were 274 

constructed for each MAR1 group by randomly including or excluding endogenous (B) and 275 

exogenous (C) coefficients with equal probability (Scheef, 2013; function run.mar in R package 276 

“MAR1”). The best-of-100 model with the lowest Akaike’s Information Criterion (AIC) was 277 

retained. The process was then repeated 100 times so that finally a single best-fit model out of 10 278 

000 random models was generated. All coefficients that were retained in less than 15% of the 279 

best-of-100 models were excluded, and the model selection process was repeated with the 280 

remaining coefficients until no further coefficients fell under the 15% exclusion cut-off in the 281 

refined best-fit model. Bootstrapping (n=500) provided 95% confidence intervals for the 282 

coefficients in the best-fit model. Coefficients which had confidence intervals including zero 283 

were eliminated (Hampton and Schindler, 2006). The calculation of stability measures, network 284 

visualization and analysis (see below) was based on this final, bootstrapped model. 285 

We did not restrict the sign of the interaction between groups (positive and negative 286 

interactions allowed) and explicitly allowed all biologically meaningful interactions, both trophic 287 

(interactions of groups of adjacent trophic levels) and non trophic (interactions of groups at the 288 

same trophic level). To reduce the number of coefficients estimated in the models, we excluded 289 

all direct interactions between predatory zooplankton and phytoplankton producers as well as 290 

direct effects of SRP and DIN on all zooplankters. Nevertheless, trophic cascades (bottom up and 291 

top down) should be detected as interactions between adjacent trophic levels in the network.  292 
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We used network analysis to further evaluate the potential importance of taxonomic 293 

groups in the Müggelsee plankton network. Ecological network analysis has been shown to be a 294 

useful tool to better understand the structure and functioning of ecosystems because it allows the 295 

analysis of graph properties (i.e. topology) of networks and thus helps the interpretation of the 296 

importance of cascading effects and non-trophic interactions (Jordán et al., 2008; Vasas and 297 

Jordán, 2006). For the purpose of this study, we used two classical network centrality indices: 298 

betweenness centrality and closeness centrality (see Table 1). A major assumption in this 299 

approach is that well-connected groups in the network based on these two indicators (i.e. higher 300 

values imply higher importance) are major interactors with many (strong) links to other groups 301 

and therefore exert a more important influence on the network than others (Jordán, 2009). As 302 

such, we presume that key groups in the network may be more important than others in 303 

maintaining network stability (Jordán and Osváth, 2009). The interaction matrices derived from 304 

the MAR1 models were used as input for the network analysis. The network structure was 305 

visualized using the ‘qgraph’ command in the R package “qgraph” (Epskamp et al., 2012) with 306 

force-directed layout using the Fruchterman-Reingold algorithm (Fruchterman and Reingold, 307 

1991). Both betweenness and closeness centrality were computed using the R package “sna” 308 

(Butts, 2010). We assessed changes in importance of MAR1 groups between time periods by 309 

ranking centrality indicators in ascending order (rank 1 being the highest scoring group) and then 310 

computed the cumulative sum of rank changes (absolute rank change) between periods. 311 
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3. Results 312 

3.1. Chronologically constrained clustering 313 

Based on the CONISS clustering, Broken Stick suggested a minimum of two clusters in the 314 

phytoplankton dataset: 1995-2005; 2006-2012 and three clusters in the zooplankton dataset: 315 

1979-1995; 1996-2008; 2009-2012. The clusters differed significantly based on one-way 316 

ANOSIM: phytoplankton: R=0.77, p=0.001, zooplankton: R=0.80, p=0.001 (Fig. 1). Based on 317 

the clustering result we divided the data into three periods: P1: 1979-1995; P2: 1996-2005; and 318 

P3: 2006-2013. 319 

3.2. Mean differences between periods 320 

Period 1 was characterized by high TP and DIN concentrations in the lake and low transparency. 321 

Phytoplankton biomass was high, mainly consisting of Bacillariophyceae, Cyanophyceae and 322 

Cryptophyceae (see also Table 2). Cladoceran herbivores and Dreissena larvae contributed most 323 

biomass to the herbivores. In period 2, TP and DIN concentrations were reduced (-19 % and -57 324 

%, respectively). Overall phytoplankton biomass declined (-57 %) as did Cyanophyceae (-66 %), 325 

Bacillariophyceae (-56 %) and Cryptophyceae (-43 %) biomass. Chrysophyceae increased 326 

(1230%), although they did not reach substantial biomass (period 2 mean = 0.24 mg L-1). Overall 327 

water transparency improved by 120 %. While herbivore Cladocera biomass decreased (-38 %), 328 

Dreissena larvae increased in biomass (+330 %) and became the largest contributor to grazer 329 

biomass. Period 3 was characterized by a decrease in water transparency and an increase in 330 

herbivorous (+170 %) and carnivorous (+189 %) Rotifera biomasses. Although yearly average 331 

Cyanophyceae biomass did not change significantly, the dominant species switched from 332 

Aphanizomenon flos aquae to Planktothrix agardhii (Table A.2). In the predatory Cladocera, 333 
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Leptodora kindtii became dominant instead of Bythotrephes spp (Table A.2). For an overview of 334 

the seasonal and long-term dynamics, we present time series and yearly dynamics of 335 

temperature, SRP and DIN as well as MAR1 group biomasses in Fig. 2. 336 

3.3. Network analysis 337 

We fitted MAR1 models to data of three consecutive periods using 13 biotic groups as variates 338 

and four environmental variables as covariates. The AIC best fitting and bootstrapped model 339 

conditional R2 for P1 ranged from 0.32 to 0.54 (median = 0.42), for P2 from 0.19 to 0.67 340 

(median = 0.47) and for P3 from 0.25 to 0.57 (median = 0.41) (see Table A.4). The number of 341 

non-zero interaction coefficients decreased over time (Table 3). 342 

The interaction coefficients of trophic (between trophic levels: e.g. bottom up or top 343 

down) and non-trophic (within trophic levels, e.g. competition or facilitation) processes are 344 

summarized in Fig. 3. The bottom-up processes of phytoplankton-grazer (N per period= 5; 4; 6) 345 

and grazer-predator (N per period= 5; 5; 3) showed mostly positive interactions, generally 346 

indicating that increases in prey preceded increases in consumers at the next time step. 347 

Generally, the strength of positive bottom-up interactions also seemed to increase over time. 348 

However, a consistent negative interaction of herbivorous Cladocera on carnivorous Copepoda 349 

was found in all periods (Fig. 4). Top-down processes of grazer-phytoplankton (N per period= 350 

13; 2; 6) and predator-grazer (N per period= 4; 4; 5) however, also showed mostly positive 351 

coefficients, suggesting that increases in consumers often preceded increases in their prey. 352 

Specifically, all Dreissena-phytoplankton interaction coefficients as well as all carnivorous 353 

Copepoda and Rotifera interactions with grazers were positive (Fig 4). The effects of 354 

herbivorous zooplankton groups on phytoplankton groups were variable, showing both positive 355 
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and negative interactions. Non-trophic interactions were summarized for each trophic level 356 

separately, excluding the interaction coefficients of MAR1 groups with themselves (i.e. density 357 

dependence). Non-trophic interactions for phytoplankton (N per period= 7; 4; 3), zooplankton 358 

grazers (N per period= 5; 5; 5) and zooplankton predators (N per period= 2; 5; 2) showed 359 

positive as well as negative coefficients and were not consistent in signs across periods (Fig 3). 360 

Only carnivorous Cladocera had a consistent and strong negative effect on carnivorous Rotifera 361 

(Fig 4). The effect of each MAR1 group on itself indicated the strength of density dependence (N 362 

per period = 13; 11; 8) and ranged from 0.14 (carnivorous Rotifera, P1) to 0.84 (carnivorous 363 

Copepoda, P3); however, in MAR1 models of P2 and 3, not all density dependence coefficients 364 

were retained in the final bootstrapped model (Table A.4), suggesting that density dependent 365 

control in these groups was weak or not consistent during these periods. The effect coefficients 366 

of the environmental covariates surface water temperature (N per period = 0;4;0), SRP (N per 367 

period = 2;0;2), and DIN (N per period = 1;0;0) again varied and were not consistent across 368 

periods. Month accounted for seasonality in our models (N per period = 8; 3; 8) and showed 369 

multiple and strong interactions with all trophic levels (Table A.4). Generally, the P1 interaction 370 

network appeared less stable than the P2 and P3 as measures for resilience (return rate to 371 

stationary distribution after a perturbation) and reactivity (short term response to a perturbation) 372 

decreased from P1 to P2 and 3 (Table 4). 373 

The visualization of the three networks using the Fruchterman-Reingold layout is shown 374 

in Fig. 4. The analysis of these networks revealed that Dreissena generally ranked first for both, 375 

closeness and betweenness centrality, except for closeness centrality in P3 where it ranked 376 

second (Fig. 5). Cladocera herbivores showed also high closeness centrality values across all 377 

periods ranking second in P1 and 2 and first in P3. Most groups were variable in closeness- and 378 
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betweenness centrality and the absolute rank change (i.e. cumulative sum of rank changes) 379 

across all periods ranged from 0 (closeness centrality for Cyanophyceae) to 19 (betweenness 380 

centrality for Bacillariophyceae). Few groups displayed consistent rank changes across periods. 381 

For example, copepod predators increased rank for closeness centrality from 13 (P1) to 3 (P3). 382 

Similarly, Dinophyceae increased in betweenness centrality rank from 13 (P1) to 4 (P3). 383 

Cryptophyceae decreased in closeness centrality ranks from 4 (P1) to 13 in (P3). Analogously, 384 

betweenness centrality ranks for this group also decreased consistently from 6 (P1) to 12 (P3). 385 

4. Discussion 386 

Here we explored changes in the pelagic plankton network structure and stability in the shallow 387 

temperate lake Müggelsee, which has undergone changes in eutrophication status and 388 

experienced a significant increase in surface water temperature over the last 34 years (Köhler et 389 

al., 2005; Wagner and Adrian, 2009). Using multivariate first order autoregressive (MAR1) 390 

modelling and ecological network analysis on 16 biotic and abiotic variables, we were able to 391 

show that the planktonic interaction network is still primarily driven by bottom-up processes. 392 

Furthermore, indirect and non-trophic interactions were at least as important as direct and trophic 393 

interactions in determining the structure and stability of the Müggelsee network. Moreover, the 394 

larvae of the invasive freshwater mussel Dreissena polymorpha were identified as a keystone 395 

group as they occupied the highest ranks in both closeness and betweenness centrality in the 396 

pelagic network during all three periods. Thus, these larvae affect and are affected by most 397 

planktonic groups in the pelagic network, and are therefore likely to play a critical role in 398 

community structure and stability. Based on rank changes in centrality indicators, we could also 399 

identify groups that responded strongly to environmental change such as Bacillariophyceae and 400 
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Chlorophyceae in the phytoplankton, or rotifer and copepod predators in the zooplankton. Given 401 

the observed complexity of direct and indirect interactions, we here emphasize the need for long-402 

term ecological observations combined with a holistic approach in data analysis to assess the 403 

effects of environmental change such as climate change on ecological networks and their 404 

functioning, which cannot be mimicked in short-term experiments.  405 

4.1. Network dynamics 406 

4.1.1. Multivariate first order autoregressive models 407 

The three interaction networks derived from the MAR1 models showed a decreasing number of 408 

interactions over time, although some interactions were retained in all three networks. Broadly, 409 

we observed consistent positive resource-consumer interactions across all three periods, 410 

suggesting that the biomass of consumers was sensitive to the biomass of resources in the 411 

preceding month. However, consumer-resource interactions were both negative (i.e. top-down 412 

control) as well as positive. In particular, all interactions of Dreissena larvae and phytoplankton 413 

groups as well as almost all interactions of predatory zooplankton with herbivorous zooplankton 414 

were positive. Positive effects of consumers on their resources may be brought about by varous 415 

mechanisms such as consumers increasing nutrient cycling (Kitchell et al., 1979), consumer-416 

resource indirect facilitation scenarios (Abrams, 1992), inference competition or intra-guild 417 

predation scenarios including either mutual (i.e. both predators prey on each other) or 418 

hierarchical (one top predator preys on the intermediate predator) intra-guild predation (Vance-419 

Chalcraft et al., 2007). The aggregation of the data to monthly intervals may also have 420 

contributed to the increased detection of indirect effects as these take longer to take effect. 421 

Although the observed positive consumer-resource interactions may also have resulted from a 422 
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shared third variable such as an environmental driver, they nevertheless suggest that consumers 423 

were not able to control resource biomasses efficiently nor consistently. Overall, these results 424 

support a previous study that characterized phytoplankton and zooplankton biomass in 425 

Müggelsee as bottom-up regulated (Köhler et al., 2005). As MAR1-based interaction coefficients 426 

represent sustained (across seasons and years) interactions among large (and in our case 427 

sometimes quite heterogeneous) groups, interactions that are important for a short period per 428 

year, or those that are not consistent among years, tend to be eliminated during the model 429 

searching process. Despite the suggested overall lack of top-down control in our models, we 430 

cannot discount the importance of grazing during shorter periods of time, such as periods 431 

preceding the clear-water phase (Gerten and Adrian, 2000). 432 

The MAR1 model results showed numerous interaction outcomes that are usually less 433 

commonly quantified. Positive effects of consumers on resources (e.g. Dreissena larvae on 434 

phytoplankton groups in all three periods) and negative effects of resources on consumers (e.g. 435 

herbivore Cladocera on predatory Copepoda) occurred in all three periods. The latter may have 436 

been brought about by resource competition between herbivore cladocerans and herbivorous 437 

juvenile stages of predatory copepods. Likewise, the models also suggested a predominance of 438 

positive interactions among groups of the same trophic level (e.g. Dreissena larvae on herbivore 439 

rotifers in periods 1 and 2), which may indicate direct facilitation (Brooker et al., 2008) or reflect 440 

indirect interactions such as competitive mutualism (McCormick and Stevenson, 1991). 441 

However, negative interaction within the same trophic level also occurred (e.g. between 442 

carnivorous cladocerans and carnivorous rotifers) which may have resulted from either 443 

interference competition or from intra-guild predation on the juveniles of the competitor (Arndt 444 

et al., 1993). Such negative interactions between consumers may also explain some of the 445 
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seemingly positive effects of consumers on their prey. Interference competition may lead to 446 

positive effects on prey groups of the inferior competitor as interference in prey searching may 447 

lead to an overall reduction in predation pressure for that prey (Sih et al., 1998). Intra-guild 448 

predation among predators has been found to release prey under either mutual or hierarchical 449 

intra-guild predation constellations (Vance-Chalcraft et al., 2007). Although apparently direct 450 

interactions may have been caused by a range of indirect mechanisms which we can not identify 451 

without laboratory experiments, our model results suggested that trophic and non-trophic 452 

interactions are equally present across time, suggesting that both types of interactions regulate 453 

population dynamics. This calls for a more integrative approach when assessing the effects of 454 

environmental changes on networks or, conversely, extrapolating individual responses of species 455 

to environmental changes to communities and ecosystem levels. 456 

Our choice of 13 pelagic plankton groups in the MAR1 models yielded relatively 457 

complex networks which resulted in uncertain interpretation of some interactions. Despite this, 458 

the overall network complexity was still moderate given that our analysis focused on the pelagic 459 

plankton interaction network and thus omitted other potentially important pelagic, littoral or 460 

benthic organisms such as bacteria, fish, parasites, benthic macrofauna, or macrophytes that may 461 

be crucial for explaining the ecosystem response to environmental change (e.g. Jeppesen et al., 462 

1998). In our study, the number of groups was restricted to aggregated taxonomic groups to 463 

reduce the risk of over-parameterizing the models, and to improve the power of the analysis. As 464 

a result, some of the groups were rather heterogeneous comprising many taxa (see Table A.1 and 465 

A.2). Such constraints also hindered the assessment of the role of intra-group interactions that 466 

may have affected the overall correlation of the group with other groups. Interactions among taxa 467 

within their respective groups may be particularly concealed in the overall interaction 468 
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coefficients of the MAR1 groups, such as the effects of intra-guild predation as observed in the 469 

dominance switch between two omnivore-carnivore copopods Cyclops vicinus and Cyclops 470 

kolensis due to a reduction of shared phytoplankton resources (Scharfenberger et al., 2013). 471 

4.1.2. Network stability indicators  472 

The MAR1 results for stability measures suggested that the period 1 network was less stable than 473 

the period 2 and 3 networks. The period 1 network was more reactive to perturbations (for 474 

example heat waves or storm events) and took longer to return to its ‘equilibrium’ state than 475 

period 2 and 3 networks. The stability measures are derived from eigenvalues of the interaction 476 

matrix (B) (Ives et al., 2003). The variance indicator takes all eigenvalues in the system into 477 

account and is therefore sensitive to small eigenvalues. In contrast, the resilience and reactivity 478 

indicators are both strongly influenced by the dominant eigenvalue in the system with large 479 

dominant eigenvalues corresponding to the ‘slowest’ dimension in the system (Ives et al., 2003). 480 

The maximum eigenvalue in the period 1 network was larger than those of periods 2 and 3, 481 

making return time to the ‘equilibrium’ state slow. Smaller maximum eigenvalues and overall 482 

smaller eigenvalues of the interaction matrices of periods 2 and 3 reduced return times as well as 483 

reactivity. This suggests that the networks of periods 2 and 3 responded less strongly to 484 

perturbations and returned faster to their ‘equilibrium’ state since the interactions in the networks 485 

did not greatly amplify the effect of environmental variability. This may reflect the different 486 

trophic states the lake has gone through, from hyper-eutrophic in the first period (less stable) to 487 

an intermediate trophic state in the 1990ties (highest stability) and a more eutrophic state in the 488 

last period (slightly less stable again). Such an increase in stability with a reduction of nutrient 489 

load has also been reported for the Lake Washington food web by Francis and coauthors (2014). 490 
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4.1.3. Network centrality indicator ranks 491 

Rank changes in centrality indicators can be interpreted as a sign of the responsiveness to 492 

changes in the environment and reflect changes in the relative role of a group within the network 493 

through time (Jordán and Osváth, 2009). Particularly changes in well-connected groups 494 

(closeness centrality), or in groups that are key in connecting otherwise little-connected parts of 495 

the network (betweenness centrality), are likely to have cascading effects through the network 496 

(Solé and Montoya, 2001). Here, high values of closeness centrality were found for many 497 

herbivorous grazers and phytoplankton groups in all periods. Similar results were obtained for 498 

betweenness centrality for which mostly herbivorous grazers and phytoplankton groups showed 499 

high values. The topological importance of herbivores in the Müggelsee network is consistent 500 

with their functional importance in food-chain dynamics (Polis and Strong, 1996). It should be 501 

noted however, that the centrality of herbivores in our MAR1 models may be somewhat 502 

overestimated as we did not allow for direct interactions between carnivorous zooplankton and 503 

phytoplankton producers, and as such, the number of possible interactions was larger for 504 

herbivores than for other trophic levels. 505 

Dreissena polymorpha larvae appeared to be the most influential group in the Müggelsee 506 

network based on closeness and betweenness centrality ranks, with herbivorous cladocerans as 507 

close second. Dreissena larvae ranked persistently high throughout all periods, despite changes 508 

in biomass between periods (i.e. significant increase between periods 1 and 2). This continuous 509 

increase in the abundance of Dreissena larvae in Müggelsee co-occurred with a phenological 510 

shift in the first spawning event advancing by about two weeks, and in turn, an extension of its 511 

pelagic life phase (Adrian et al., 2006; Wilhelm and Adrian, 2007). This phenological shift has 512 

likely given Dreissena larvae a competitive advantage over filter-feeding cladocerans during 513 



24 

 

spring (Adrian et al., 2006). While the individual filtration capacity of Dreissena larvae is lower 514 

than that of cladocerans by a factor 10-30 (MacIsaac et al., 1992), the higher overall biomass of 515 

Dreissena larvae as compared to the herbivorous cladocerans (see Fig. 2) may have resulted in 516 

similar or even higher grazing pressure which in turn would explain their prominent role in the 517 

Müggelsee pelagic network. Their central network position may furthermore be explained by 518 

their susceptibility to predation by calanoid copepods as observed in the Great Lakes (Liebig and 519 

Vanderploeg, 1995) and their ability to feed on a wide variety of potential food (albeit within a 520 

narrow size range) including bacteria, cyanobacteria, chlorophytes, rotifers and detritus (Sprung, 521 

1993). Given the centrality of the Dreissena larvae in the pelagic network of Müggelsee and their 522 

significance in benthic littoral food webs observed in other lakes (Ozersky et al., 2012), the 523 

implementation of long-term monitoring of all life stages is a prerequisite for fully understanding 524 

the effect and success of this invader on ecosystem dynamics. 525 

Groups that are particularly sensitive to changes in the environment were expected to 526 

change centrality ranks quite dynamically. The predatory Rotifera provided one example of a 527 

group shifting from rank 5 to 3 to 10 in closeness centrality and from rank 8 to 3 to 13 in 528 

betweenness centrality. The dynamic position of this group in the Müggelsee network may 529 

partially be explained by a dominance change in the group of its cladoceran predator. The 530 

dominant species in the group of predatory rotifers was Asplanchna sp. which was negatively 531 

affected by predatory cladocerans in all three periods. While the predatory cladoceran Leptodora 532 

kindtii was dominant in periods 1 and 3, Bythotrephes dominated in period 2. As these 533 

cladoceran predators differ in their feeding and phenological traits (Branstrator, 2005) such a 534 

dominance shift may affect the dynamics of the groups they interact with. 535 
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Groups that are apparently less sensitive to environmental change were expected to 536 

maintain a constant rank over time. Despite its high biomass throughout most of spring - and 537 

summer periods, Cyanophyceae provided an example for a group that was neither central nor 538 

shifted ranks over time. Cyanobacteria are well-known for their comparably low edibility and 539 

most species within this group have anti-grazer defenses by colony formation or toxin synthesis 540 

and secretion. These mechanisms may result in a decoupling of Cyanobacteria dynamics from 541 

herbivore dynamics and therefore in a less central position within the network, and may also 542 

explain why Cyanobacteria can develop such high biomasses while neither being a central group 543 

nor changing their network position. While Aphanizomenon flos-aquae was the dominant species 544 

during period 2, Planktothrix agardhii dominated in period 3. Such a species shift without 545 

changes in group biomass or centrality rank may hint at a compensatory effect. 546 

4.2. Implications and outlook 547 

Aquatic ecosystem networks are undoubtedly and ubiquitously complex. Our results suggest that 548 

both, trophic and non-trophic interactions are commonly present and of similar interaction 549 

strengths, and hence important for structuring the topology as well as determining the stability of 550 

pelagic interaction networks. This integrative view of different types of interactions in 551 

communities is supported by findings from aquatic mesocosm experiments (Hammill et al., 552 

2015) and terrestrial plant food webs (Ohgushi, 2008). However, the network analysis of the 553 

pelagic network of Müggelsee over a 34 year period leaves us with a long standing conclusion of 554 

studying such systems: namely to “realize that everything connects to everything else” - 555 

Leonardo da Vinci (1452-1519). Although we can not identify the mechanisms underlying many 556 

of the observed network interactions, the analysis nonetheless documented intricate relationships 557 

among ecosystem components with regards to the importance of indirect interactions in 558 
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structuring aquatic networks and the central role of an invasive species in the case of the 559 

Müggelsee pelagic plankton network. 560 

These insights into ecosystem-level behavior and dynamics were enabled through the use 561 

of long-term observational data, which have provided ecologists with a valuable tool to 562 

understand ecosystem-level responses to anthropogenic pressures over prolonged time scales. 563 

This is an important point to reiterate (cf. Lindenmayer et al., 2012; Magnuson, 1990), because 564 

often only mechanisms of single system-level dynamics in, for example, climate impact research 565 

are well explored for individual case studies. Nevertheless, understanding major drivers of 566 

networks remains difficult as it is shown in this study. There also appears to be a trade-off with 567 

regards to the level of interpretability of the mechanisms that can indeed be reached in specific 568 

system-level studies compared to the level of understanding that can be obtained through a more 569 

holistic approach. Despite these limitations, our results show that network stability and centrality 570 

rank positions do change over time and may serve as potential “sentinel” variables for climate 571 

impact monitoring (Adrian et al., 2009). Future endeavors may address the current limits to 572 

interpretation by utilizing a combined approach of experimental, modelling and observational 573 

studies to identify the mechanisms underlying some of the less easily explained interactions 574 

identified in the MAR1 models (e.g. positive interactions between zooplankton predator groups) 575 

and to assess the validity of the observed interactions to improve their interpretation and 576 

predictability under climate change scenarios. Moreover, experiments may be used to assess how 577 

network centrality measures are linked to numerical or functional importance of organisms. 578 

Based on the quality of such relationships, centrality measures may serve as indicators of 579 

reconfigurations in networks under pressure.  580 
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Figure captions: 778 

Fig. 1: Quintile plots and CONISS clustering dendrograms of the chronological clustering for  779 

phytoplankton and zooplankton. Quintile plots are based on time series of annual genus level 780 

averages transformed into quintiles and sorted by descending averages of the first five years. 781 

Light greys indicate low value, dark greys indicate higher values. Clustering was based on the 782 

Euclidian distance matrix of genus level yearly averages using constrained incremental sum of 783 

squares (CONISS) clustering. Number of clusters was assessed using Broken Stick. Clusters are 784 

denoted by horizontal dashed lines. 785 

Fig. 2: Time series graphs of MAR1 analysis variates and covariates. Line plots present time 786 

series of monthly mean values of the respective variable and the corresponding box plots present 787 

median values of the monthly data across all years. For the box plots, data were log10 788 

transformed and then scaled between 0 and 1 to emphasize the seasonal dynamics. Horizontal 789 

lines in the box plots denote the medians; boxes denote the 25th and 75th percentile; the 790 

whiskers denote non outlier range, circles are outliers. 791 

Fig. 3: Boxplots of interaction coefficients for each period (P1, P2, P3) categorized by 792 

interaction type: trophic: bottom up or top down; non trophic: competition: among groups of the 793 

same trophic level; abiotic: environment-group effects; season: season-group effects. Horizontal 794 

lines in the box plots denote the medians; boxes denote the 25th and 75th percentile; the 795 

whiskers denote non-outlier range, circles are outliers. 796 

Fig. 4: Interaction networks based on the best-fit MAR1 model for each period using a 797 

Fruchterman-Reingold layout. Line thickness quantifies interaction strength (see table A.4). 798 

Arrows point towards the response group. Dashed lines are negative; solid lines are positive 799 
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effects. Zooplankton groups are represented by illustrations; Dreissena are represented in their 800 

adult form. Phytoplankton groups are represented in gray boxes with abbreviations: 801 

Bacillariophyceae (Dia), Cyanophyceae (Cyn), Cryptophyceae (Cry), Chrysophyceae (Chr), 802 

Dinophyceae (Din) and Chlorophyceae (Chl). Environmental covariates are encircled and the 803 

abbreviations “P”, ”N” and “Tmp” correspond to SRP, DIN and water surface temperature, 804 

respectively. Month was included for the calculation of interaction strengths and network layout 805 

but subsequently removed from the graph for clarity along with environmental covariates not 806 

retained in the best-fit MAR1 models (for values: table A.4). 807 

Fig. 5: Slope graphs of rank lists for closeness centrality and betweenness centrality of all MAR1 808 

groups per time period. Highest values for both indicators have the lowest rank and are 809 

considered important organisms in the interaction network. Grey lines are constant ranks and 810 

positive rank changes and black lines are negative rank changes between periods. Absolute rank 811 

change is the cumulative sum of rank changes over the whole time period. 812 
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 818 
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Tables 820 

Table 1: Ecological indicators used in this study to describe changes in the Müggelsee network stability 821 

and topology 822 

Ecological 

indicator 
Description Ecological significance Key references 

Variance The lower the stationary distribution variance in 
relation to the environmental variance, the more 

stable the system. The determinant of the 

interaction matrix (‘DetB’) shows how much 

group (or species) interactions increase the 

variance of the stationary distribution relative to 

that of the environmental noise (i.e. stability 

increases with decreasing DetB).  

Unstable systems with low resilience 
(slow return to its stationary 

distribution) and low resistance (high 

reactivity) tend to fluctuate more 

strongly as species interactions amplify 

the system response to environmental 

variation. 

(Ives et al., 2003) 

Resilience The dominant eigenvalue of the Kronecker 

product B⊗B (‘maxeigen KrB’) limits the return 

rate of the community to its stationary 

distribution after a perturbation. Resilience 

increases as return rate increases (i.e.‘maxeigen 
KrB’ decreases) 

More stable systems return to their 
‘equilibrium’ state more quickly after a 

perturbation (e.g. heat waves, storms 

etc) than unstable ones.  

(Ives et al., 2003) 

Reactivity The maximum eigenvalue of the interaction 

matrix B (‘maxeigen BxB’) represents the 

potential maximal reaction strength of a system 
to a perturbation. Resistance increases as 

reactivity decreases. 

Unstable systems show larger 

deviations form the stationary 

distribution after perturbations. 

(Ives et al., 2003) 

Closeness 

centrality 
This indicator emphasizes the distance from each 

vertex to every other vertex in the network. A 
vertex with the direct connection to every other 

vertex in the network will have a high closeness 

value, whereas a vertex which is connected to 

other vertices through many intermediaries will 
have a low closeness value. 

Closeness centrality focuses on the 

strength of influence over the entire 
network, changes in organisms with 

high closeness centrality values 

influence the network dynamics more 

than changes in organisms with lower 
values. 

(Jordán et al., 2008; 

Vasas and Jordán, 
2006) 

Betweenness 

centrality 
This indicator is derived from the number of 

shortest paths passing through a given vertex 

(intermediary). To calculate betweenness 

centrality, all the shortest paths between any two 

vertices in the network are found and then the 

number of these shortest paths that go through 

each vertex is counted. 

Groups with high betweenness 

centrality are not necessarily connected 

directly to all other vertices. High 

betweenness groups are considered 

important because they provide (the 

only) link between otherwise 

unconnected network vertices. 

(Jordán et al., 2008; 

Vasas and Jordán, 

2006) 

 823 

 824 

 825 

 826 

 827 



39 

 

Table 2: Summary statistics of Müggelsee variables for periods P1: 1979-1995, P2: 1996-2005 and P3: 828 

2006-2012: Mean (Mean) and standard error (SE) are reported for all environmental and biotic variables 829 

per period. Difference in the means between P1 and P2 as well as P2 and P3 were tested with a Welch 830 

two sample t-test (p<0.05) 831 

  832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 

Period 1 

1979-1995 

Period 2 

1996-2005 

Period 3  

2006-2012 Period 1 vs Period 2 Period 2 vs Period 3 

Variable Mean SE Mean SE MEAN SE t-test p-value t-test p-value 

Temperature (°C) 10.88 0.48 10.94 0.67 11.34 0.82 t(24.3) = -0.27 0.79 t(14.6) = -1.95 0.07 

SRP (µg L-1) 66.87 6.00 65.14 5.37 74.54 9.35 t(23.6) = 0.16 0.88 t (9.8) = -0.85 0.41 

TP (µg L-1) 154.78 7.76 125.31 6.94 132.75 11.08 t(24) = 2.08 0.047 t(10.3)= -0.53 0.61 

DIN (mg L-1) 1.24 0.09 0.531 0.04 0.439 0.05 t(20.1) = 3.86 < 0.001 t(14.3) = 0.98 0.34 

RSi (mg L-1) 4.02 0.16 4.27 0.19 4.81 0.28 t(20.3) = -0.91 0.37 t(7.8) = -0.91 0.39 

Secchi (m) 1.85 0.06 2.21 0.08 1.82 0.09 t(24.1) = -4.21 < 0.001 t(7.9)= 3.26 0.01 

Phytoplankton biomass (mg L-1) 10.42 0.76 4.40 0.34 4.84 0.57 t(21.7) = 7.14 < 0.001 t(10.2) = -0.6584 0.52 

Zooplankton biomass (mg L-1) 0.21 0.01 0.22 0.01 0.24 0.02 t(24.9) = -0.47 0.64 t(8.2) = -0.9522 0.36 

Cyanophyceae (mg L-1) 3.50 0.38 1.18 0.24 1.14 0.23 t(23.1) = 3.89 < 0.001 t(14.7) = 0.12 0.91 

Bacillariophyceae (mg L-1) 5.30 0.42 2.33 0.23 2.74 0.38 t(23.1) = 7.31 < 0.001 t(10.4) = -0.75 0.47 

Chrysophyceae (mg L-1) 0.018 0.01 0.240 0.07 0.088 0.01 t(9.3) = -2.45 0.035 t(9.2) = 1.69 0.13 

Dinophyceae (mg L-1) 0.084 0.01 0.091 0.02 0.189 0.06 t(12.4) = -0.2 0.84 t(7.4) = -1.07 0.32 

Cryptophyceae (mg L-1) 0.840 0.05 0.478 0.04 0.430 0.04 t(22.9) = 4.28 < 0.001 t(13.8) = 0.54 0.60 

Chlorophyceae (mg L-1) 0.141 0.01 0.168 0.03 0.214 0.06 t(11.7) = -0.56 0.58 t(11.3) = -0.58 0.57 

Cladocera herbivore (mg L-1) 0.016 0.001 0.010 0.001 0.012 0.002 t(23.3) = 3.08 0.005 t(9.3) = -0.87 0.41 

Copepod herbivore (mg L-1) 0.005 0.0003 0.006 0.0004 0.0051 0.0004 t(16.4) = -2.75 0.01 t(8.6) = 0.95 0.37 

Rotifer herbivore (mg L-1) 0.003 0.0003 0.003 0.0003 0.0051 0.0006 t(23.5) = 1.14 0.27 t(7.8) = -3.01 0.02 

Dreissena larvae (mg L-1) 0.011 0.0019 0.047 0.0099 0.037 0.0093 t(10) = -4.67 < 0.001 t(14.9) = 1.04 0.31 

Cladocera predator (mg L-1)  0.003 0.0005 0.001 0.0002 0.0024 0.0004 t(25) = 0.12 0.91 t(6.7) = -1.67 0.14 

Copepod predator (mg L-1) 0.010 0.0009 0.013 0.0015 0.012 0.0019 t(19.6) = -1.39 0.18 t(11.9) = 0.36 0.73 

Rotifer predator (mg L-1) 0.0009 0.0002 0.0009 0.0002 0.0017 0.0005 t(22.2) = 3.86 < 0.001 t(11.6) = -2.60 0.02 
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Table 3: Summary of total number of possible interactions in the B matrix (i.e. interaction matrix) and C 844 

matrix (i.e. covariate effects matrix) per period: number of interaction coefficients equal zero (no 845 

interaction retained in the bootstrapped model), number of positive interaction coefficients (increases in 846 

the predictor at t-1 are related to increases in the respondent at t), and number of negative interaction 847 

coefficients (increases in the predictor at t-1 are related to decreases in the respondent at t). 848 

 Period 1 (1979-1995) Period 2 (1996-2005) Period 3 (2006-2012) 

 Total B C Total B C Total B C 

Total no. of coefficients 221 169 52 221 169 52 221 169 52 

No. coefficients = 0 156 115 41 174 129 45 173 131 42 

No. coefficients > 0 46 40 6 37 34 3 35 31 4 

No. coefficients < 0 19 14 5 10 6 4 13 7 6 

 849 

 850 
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 861 
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Table 4: Summary of stability measures derived from MAR1 models for each period. Decreasing values 867 

for the variance, resilience and reactivity indicators suggest increasing stability of the network.  868 

Stability measure Indicator Period 1 (1979-1995) Period 2 (1996-2005) Period 3 (2006-2013) 

Variance DetB 0.14 0.13 0.12 

Resilience maxeigen KrB 0.89 0.42 0.52 

Reactivity maxeigen BxB 0.83 0.53 0.58 

 869 
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