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Abstract

To explore new approaches for wave function based correlation methods in chemistry,
the electron correlation effects of different model systems are analyzed by means of
Quantum Information Theory (QIT) and the Method of Increments (MoI). Data for
the QIT is obtained based on calculations employing the Density Matrix Renormal-
ization Group (DMRG) and Full Configuration Interaction Quantum Monte Carlo
(FCIQMC) methods. The investigation covers standard model systems for strong
correlation, such as the dissociation of N2 and N +

2 , as well as polyacetylene, Be6
rings and the cobalt fluorides CoF2, CoF3 and CoF4. The latter represent challeng-
ing open-shell, transition metal containing compounds that may be systematically
extended to linear chains. The observations stimulate a novel approach to select
the configuration space in multi-reference calculations, promising reduced computa-
tional scaling for strongly correlated systems with large active spaces. Furthermore,
a correspondence between entropies (QIT) and increments (MoI) is demonstrated,
which suggests the related methods may be combined to exploit their different ad-
vantages. Finally, the correlation analysis of the cobalt fluorides yields valuable
insights to extent the study to longer, linear chains.
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Zusammenfassung

Auf der Suche nach neuen Ansätzen für Elektronen-Korrelationsmethoden in der
Chemie werden die Korrelationseffekte verschiedener Modelle mit Hilfe von Quan-
teninformationstheorie (QIT) und der Inkrementenmethode (MoI) untersucht. Die
QIT Daten basieren dabei auf Ergebnissen der Dichtematrix Renormierungsgruppe
(DMRG) und der Full Configuration Interaction Quanten Monte Carlo (FCIQMC)
Methoden. Die untersuchten Systeme umfassen ein Standardmodell für starke Kor-
relation, die Dissoziation von N2 und N +

2 , sowie Polyacetylen, Be6 Ringe und die Co-
baltfluoride CoF2, CoF3 und CoF4. Letztere stellen herausfordernde, offen-schalige
Übergangsmetallverbindungen dar, welche sich systematisch zu linearen Ketten er-
weitern lassen. Die Beobachtungen regen einen neuen Ansatz zur Auswahl von Elek-
tronen Konfigurationen in Multireferenz-Methoden an, und versprechen besonders
für stark korrelierte Systeme eine Reduzierung des Rechenaufwandes. Darüber hin-
aus wird die Vergleichbarkeit von Entropien (QIT) mit den Inkrementen (MoI) de-
monstriert. Dies ermöglicht eine Übertragbarkeit der Ergebnisse und erlaubt da-
durch die Stärken beider Ansätze auszunutzen. Die Analyse der Korrelationseffekte
in den Cobaltfluoriden liefert außerdem wertvolle Informationen um die Untersu-
chungen auf längere, lineare Ketten auszuweiten.
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1 Introduction

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore be-
comes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the
main features of complex atomic systems without too much computation.

Paul Dirac, 1929 [1]

With the Schrödinger Equation [2] the theoretical foundation to describe and predict
all of chemistry is, in principle, complete. A more general version of it including
special relativity was later introduced by Dirac [3] and is also capable of correctly
describing heavy elements like gold, mercury or lead. However, the added complexity
in the Dirac Equation is huge and a lot of chemistry is appropriately describe by
the Schrödinger Equation.

Although knowing the required equations for over 90 years by now, we still strug-
gle solving them. The difficulty lies in having to solve high-dimensional differential
equations in connection with the pairwise interaction (Coulomb force) of all involved
particles. A numerical exact method is known as Full Configuration Interaction
(FCI) method [4]. Its exponential scaling however makes practical application im-
possible, even with the drastic improvements of computational resources over the
last couple of decades in mind. Only the smallest molecular systems with only a
handful of electrons can be treated by this approach. Thus, the desire to developed
approximate methods, as Dirac stated already in 1929, is today just as valid as in
the past.

1



1 Introduction

Today a large amount of methods is available for treating chemical problems on a
theoretical basis. The probably most popular family of methods is called Density
Functional Theory (DFT) [5] and is capable of dealing with most systems of interest
at reasonable computational cost. Although being able to achieve high precision
(i.e. a small statistical error), DFT methods tend to lack accuracy (i.e. a large
systematic error), which makes it difficult to judge on the quality of the results. If
available, data from experiments or higher levels of theory may be used evaluate
different DFT methods and chose the most appropriate one. But the predictive
capabilities of DFT alone are limited. Additionally, there are issues with a class of
systems called strongly correlated, where multiple dominant contributions need to
be described appropriately. This is typically encountered if partially occupied, close-
degenerate orbital levels are present, for example in transition metals or dissociation
processes.

Another approach are the highly systematic correlations methods, which usually rely
on the Hartree-Fock (HF) method [6, 7, 8] as a starting point. In HF a systematic
approximation is made to coupe with the problematic electron-electron interaction.
It asserts a structure on the electronic wave function which only applies to a non-
interacting system (no Coulomb repulsion between electrons), but keeps the inter-
action in the equations that need to be solved: Each electron is described by its own
one-electron wave function, called orbital, and the anti-symmetrized product of all
orbitals corresponds to the many-electron wave function. In its physical interpreta-
tion this leads to each electron perceiving the others only in an averaged way, hence
this theory is also known as mean field theory.

In the real system however, the probability densities of two electrons would try to
avoid spatial overlap, i.e. the correlated pair-density of two electrons being close to
each other is small. The HF method however, does only account for the average
interaction between electrons and therefore cannot describe the correlated probabil-
ities of two or more electrons. This error is known as electron correlation and the
above mentioned FCI method provides an exact solution, by expanding the many-
electron wave function in a basis of electron configurations. Those are obtained
by constructing all possible permutations of the available electrons in the space of
occupied and virtual orbitals as obtained from HF. The number of permutations
(configurations) is given by

(
M
N

)
= M !

N !(M−N)! , where N and M are the number of
electrons and spin orbitals respectively, and is responsible for the steep exponential
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computational scaling. Different systematic truncations to that expansion are possi-
ble and lead to different subsets of correlation methods where the trade-off between
accuracy and computational cost can be easily controlled. This results in both, high
accuracy and high precision, however at the cost of higher computational scaling
compared to DFT.

The power of wave function based correlation methods thus lies in obtaining accurate
results where DFT fails. In order to reduce the high computational scaling, and
apply this methods to larger systems, one may systematically study the correlation
effects and their origin in terms of the orbitals. A better understanding of the
structure of the electronic wave function may lead to new approaches for accurate
treatment of strongly correlated systems large in size.

One of the most prominent standard approaches in the field of wave function based
correlation methods is coupled cluster theory. Inclusion of so called Single and
Double amplitudes as well as a perturbative correction for the Triple amplitudes is
typically abbreviated as CCSD(T) [9] and often referred to as the “gold standard
of quantum chemistry”. In most cases it yields chemical accuracy (< 1 kJ

mol) while
its computational scaling with O(N7) allows application to small to medium sized
molecules. Its major drawback, besides the still quite large computational scaling,
is its dependence on a reasonable HF starting point, i.e. a single reference con-
figuration. This is typically referred to by the term single-reference approach, and
systems that are adequately treated by such approaches are called weakly correlated.
This means, if the HF wave function is a qualitatively reasonable description, then
CCSD(T) will typically yield a quantitatively sensible correction.

The remaining cases, that are not qualitatively well described by HF, are the already
mentioned strongly correlated systems. Instead of the single electron configuration
considered by HF, multiple configurations with similar weights in the FCI wave
function are required for a qualitative description. This is typically achieved by
selecting an active space of orbitals. Within these active space orbitals all possible
configurations are considered, similar to FCI. However, the occupation for orbitals
outside of the active space is kept fixed, reducing the number of possible permu-
tations to generate configurations. The weights of the considered configurations
are then simultaneously optimized together with the orbitals in a Complete Active
Space Self-Consistent Field (CASSCF) calculation, thus avoiding the bias of the
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1 Introduction

HF method towards only a single configuration. In a second step, the resulting set
of orbitals and list of configurations forms the starting point for a multi-reference
calculation.

The focus of this work is to consider the step regarding the active space, which
aims to describe the strong correlation contribution. Its computational scaling is
in principle similar to the FCI method, just with a smaller number of electrons
and orbitals. Considering larger systems, for example transition metal complexes,
requiring large active spaces thus makes this approach unfeasible. A systematic
analysis of strong correlation effects may lead to new insights allowing for new
(systematic) approximations regarding the active space. The ultimate aim is to
reduce the number of configurations required to treat strong correlation.

In principle, this may be achieved by two approaches. First, one may reduce the
number of configurations by imposing certain conditions on them. Reducing the
active space would be a special case as it corresponds to fixing the occupation
of specific orbitals in all configurations. Typically one starts by considering core
orbitals, which are energetically below the valence orbitals, as closed, i.e. doubly
occupied in all configurations. Similar, virtual orbitals high in energy are excluded
from the active space by fixing their occupation to be empty. Assigning the remain-
ing orbitals however remains a delicate process as not all valence orbitals are always
necessary in the active space. The actual choice may critically influence the quality
of the calculation. Besides defining an active space, the number of configurations
can be reduced by the Restricted Active Space Configuration Interaction (RASCI)
approach, where excitations are selected based on the number of excited electrons
[10]. A special case of RASCI within the full space of orbitals is Configuration In-
teraction with Single and Double (CISD) excitations, where the number of electrons
in the set of all virtual orbitals may not exceed two.

The second approach is to use a different set of orbitals which will lead to a dif-
ferent set of configurations. Examples include localized orbitals [11, 12] or natural
orbitals. The new set of configurations may be more efficient in the sense, that a
smaller number of configurations may yield similar accuracy. In fact, it has been
demonstrated that it is possible to optimize orbitals to minimize the number of
configurations required [13].
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Many further strategies to solve the CI problem are currently pursuit in quantum
chemistry and related fields. The Density Matrix Renormalization Group (DMRG)
[14, 15] introduces a memory efficient representation of the CI vector and iteratively
optimizes it by considering different subsets of orbitals. This effectively avoids diago-
nalizing a very large Hamiltonian by diagonalizing many small effective Hamiltonians
instead. The accuracy of the CI vector is easily controlled by a numerical param-
eter called number of blockstates. While it excels for strong correlation effects, it
becomes inefficient for weak correlation which would require a very large number of
blockstates. As an extension to DMRG, the obtained coefficients for single and dou-
ble excitations may be fed into a so called Tailored Coupled Cluster (TCC) ansatz
[16]. The Method of Increments (MoI) [17, 18] expands the FCI energy in terms
of n-body contributions. Here the overall system is split into different centers and
the contribution of each individual center is calculated independently. Correlation
effects due to the combination of two or more centers are then accounted for by
incremental corrections, but typically decay quite fast with the number of centers
combined. Quantum Monte Carlo (QMC) [19] combines a family of methods which
stochastically sample the wave function instead of explicitly considering all possible
contributions. This approach has recently been combined with the CI formalism in
the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method [20].
Here, the configuration space is stochastically sampled by random walkers. This
allows treatment of larger configuration spaces than the established deterministic
methods are capable of and accounts for both, weak and strong, correlation.

Two further methods for strong correlation are Dynamical Mean Field Theory
(DMFT) [21] and Density Matrix Embedding Theory (DMET) [22]. In DMFT
a many-body lattice problem (e.g. a solid single crystal) is mapped to a single-site
problem with effective parameters to describe the interaction with an environment
(or bath). DMET can be considered an intermediate between DMRG and DMFT.
It partitions a large system into a local fragment and its environment using density
matrices in a similar way as DMRG does. While a computationally cheap low-level
method can be used to treat the environment, the local fragment can be described
by a more accurate high-level method. DMFT and DMET will not be further con-
sidered here.

Furthermore, different combinations of the above approaches are possible. For ex-
ample in CASSCF the CI problem may be solved by DMRG [23, 24, 25, 26] or
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FCIQMC [27] where conventional CI solvers exceed their capabilities. Or a large
active space can be screened by an approximate DMRG calculation, based on which
a smaller active space may be selected and then treated with a standard CASSCF
approach.

To improve the selection of orbitals and configurations one may systematically inves-
tigate the correlation effects and relate the results to “chemical intuition”. A useful
tool here is Quantum Information Theory (QIT) [28] which can be used to quantify
the importance of either individual or groups of orbitals and their occupation pat-
terns within the CI vector. The analysis may only be performed after a successful CI
calculation, but insights may be translated to larger systems. A central advantage
of QIT however is, that the results do not require a highly accurate description of
the CI vector. For example in connection with DMRG, the QIT measures quickly
converge for quite small numbers of blockstates. This has already been exploited in
order to estimate the correlation contributions of individual orbitals, as measured
by the von Neumann entropy. This data can then be used to set up an iterative
scheme for automated active space selection [29].

These ongoing developments and advances of improved methods to deal with larger
active spaces allow for testing of more complex chemical systems. The focus of this
work is therefore to consider larger chemical systems and investigate their correlation
effects. Insights about how orbitals are correlated with each other may then provide
new approaches for the accurate treatment of large, strongly correlated systems.
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2 Theoretical Background

This chapter will cover the theoretical concepts used in this thesis. Starting from the
Schrödinger equation the emergence of the orbital picture in Hartree-Fock theory will
be discussed. Next, different approaches on how to recover the electron correlation
energy will be presented. Finally, it is discussed how electron correlation may be
systematically analyzed in terms of orbital contributions. Most of the concepts are
taken from, if not stated otherwise, the (standard) text books by Tannor [30], Szabo
and Ostlund [31] and Helgaker, Jorgensen, and Olsen [32].

2.1 The Schrödinger Equation

The fundamental equation for non-relativistic quantum mechanics is the time-de-
pendent Schrödinger equation [2]

i~
∂

∂t
Ψ(~R, t) = ĤΨ(~R, t). (2.1)

Here i =
√
−1 is the imaginary unit, ~ = h

2π is the reduced Planck constant. The
physical or chemical system of interest is generally defined by the Hamilton operator,
or Hamiltonian, Ĥ which covers all energy contributions and interactions of the
different particles of the system. In its most general form it depends on time t
and the spatial coordinates ~R. The wave function Ψ(~R, t) describing the state of
the system is obtained as a solution of the above differential equation for a given
Hamiltonian. All quantum mechanically accessible information, i.e. physical and
chemical properties of the system, are encoded in the wave function and can be
calculated as expectation values with their corresponding operator. For example
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2 Theoretical Background

the total energy of the system is given by

Etotal(t) =
∫

Ψ∗(~R, t)ĤΨ(~R, t)dV (2.2)

= 〈Ψ(~R, t)|Ĥ|Ψ(~R, t)〉 (2.3)

where the integral
∫

dV covers the whole universe. In practice however, only the close
environment on the microscopical scale of molecules and (sub)atomic particles needs
to be considered, as the wave function quickly converges to zero for distances larger
than that. The second line denotes the abbreviated Dirac notation for these kind of
integrals. It implies the integral and introduces the ket vector |Ψ(~R, t)〉 representing
the wave function in the Hilbert space as well as the bra vector 〈Ψ(~R, t)| representing
the dual vector of |Ψ(~R, t)〉.

For time-independent Hamiltonians, i.e. closed system with a constant total energy,
the product ansatz can be applied which factorizes the wave function into a spatial
part ψ(~R) and time-dependent part θ(t)

Ψ(~R, t) = ψ(~R)θ(t). (2.4)

This allows reordering of the Schrödinger equation as

i~
∂
∂t
θ(t)
θ(t) = Ĥψ(~R)

ψ(~R)
= const. ≡ E. (2.5)

One can thus formulate a time-independent Schrödinger equation

Ĥψ(~R) = Eψ(~R) (2.6)
Ĥ|ψ(~R)〉 = E|ψ(~R)〉 (2.7)

where multiplication by 〈ψ(~R)| from the left side leads to

〈ψ(~R)|Ĥ|ψ(~R)〉 = E〈ψ(~R)|ψ(~R)〉 = E (2.8)

where the normalization constraint of the wave function

〈ψ(~R)|ψ(~R)〉 ≡ 1 (2.9)
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2.1 The Schrödinger Equation

has been used. If the product ansatz of Eq. (2.4) is applied to the expectation value
in Eq. (2.3), the time-dependent part θ(t) may be separate as the time-independent
Hamiltonian does not act on it. Using normalization of θ(t) one obtains

Etotal(t) = 〈ψ(~R)θ(t)|Ĥ|ψ(~R)θ(t)〉 (2.10)
= 〈ψ(~R)|Ĥ|ψ(~R)〉〈θ(t)|θ(t)〉 (2.11)
= 〈ψ(~R)|Ĥ|ψ(~R)〉 (2.12)

which identifies the constant E in Eq. (2.8) with the total energy Etotal of the
system.

Furthermore, the time-dependent part of Eq. (2.5) can be written as

i~
∂

∂t
θ(t) = Eθ(t) (2.13)

which may be solved by direct integration

θ(t) = exp
(
−iE

~
t
)
. (2.14)

The more general case of a time-dependent Hamiltonian can be treated by separating
the variables in Eq. (2.1) and direct integration on each side

Ψ(~R,t)∫
Ψ(~R,0)

dΨ(~R, t)
Ψ(~R, t)

=
t∫

0

1
i~
Ĥdt′

ln Ψ(~R, t)
Ψ(~R, 0)

= 1
i~
Ĥt

Ψ(~R, t) = exp
(
− i
~
Ĥt
)

Ψ(~R, 0). (2.15)

This result can be used to simulate the time evolution of quantum systems, based
on a starting point Ψ(~R, t = 0). Thus one first needs to solve the time-independent
Schrödinger equation Eq. (2.7), which will be discussed in more detail below.
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2 Theoretical Background

2.1.1 The Molecular Hamiltonian

Chemistry is typically concerned with molecules, their properties and how different
molecules interact with each other or external fields (e.g. electromagnetic fields). As
molecules are build from atomic nuclei and electrons, which are quantum mechanical
objects, an accurate theoretical description of chemistry requires application of the
Schrödinger equation. The main contributions to the molecular Hamiltonian are
given by the kinetic energy (T̂ ) of each particle and the Coulomb interaction (V̂ )
between all combinations of pairs of particles. It is thus given by

Ĥmol
(
~R,~r

)
= T̂n

(
~R
)

+ T̂e (~r) + V̂nn
(
~R
)

+ V̂ne
(
~R,~r

)
+ V̂ee (~r) (2.16)

where ~R and ~r denote the 3-dimensional coordinates for all atomic nuclei and elec-
trons respectively. Using atomic units, the different operators are the nuclear kinetic
energy

T̂n
(
~R
)

= −
M∑
α

1
2mα

~∇2
~Rα
, (2.17)

the electron kinetic energy

T̂e (~r) = −
N∑
i

1
2
~∇2
~ri
, (2.18)

the nuclear-nuclear Coulomb interaction

V̂nn
(
~R
)

= 1
2

M∑
α

M∑
β

ZαZβ
Rαβ

, (2.19)

the nuclear-electron Coulomb interaction

V̂ne
(
~R,~r

)
= −

M∑
α

N∑
i

Zα
rαi

, (2.20)

and finally the electron-electron Coulomb interaction

V̂ee (~r) = 1
2

N∑
i

N∑
j

1
rij
. (2.21)

In the above equations M and N are the total number of atoms and electrons
respectively, which are indexed by Greek and Latin small letters respectively. Their
physical properties of relevance are the electron mass me and atomic mass mα (in
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2.1 The Schrödinger Equation

units of me) as well as electron charge q = −e and nuclear charge Zα (both in units
of the elementary charge e). The distances between two particles are denoted by
Rαβ = |~Rα − ~Rβ|, rαi = |~Rα − ~ri| and rij = |~ri − ~rj|.

2.1.2 The Born-Oppenheimer Approximation

The coupling of nuclear and electronic coordinates due to the different Coulomb
interactions constitutes a major problem for an analytic solution of the differential
equation Eq. (2.7). One of the most central approximations in theoretical chemistry,
the Born-Oppenheimer Approximation (BOA), sidesteps (part of) this problem by
decoupling the nuclear and electronic movement. Its central argument is that the
nuclei are much heavier than the electrons and therefore will react to electronic
movement only on a rather long time scale. On the other hand, the light electrons
will follow the nuclear movement almost instantaneously. One may therefore use
a product ansatz to split the wave function into an electronic part Φ(~r; ~R) and a
nuclear part X(~R)[33]

Ψ(~R,~r) = Φ(~r; ~R)X(~R), (2.22)

where the semicolon indicates parametric dependence. The electronic system is
solved independently for a fixed set of parameters for the nuclear coordinates. Freez-
ing the nuclear coordinates means the nuclear kinetic energy T̂n becomes zero, the
nuclear repulsion term V̂nn will be constant and the electron-nuclear attraction V̂ne
only depends on the electronic coordinates. The only problematic term left is then
the electron-electron interaction V̂ee.

The electronic Schrödinger equation then reads

Ĥel
(
~R,~r

)
Φ
(
~r; ~R

)
= Eel(~R)Φ

(
~r; ~R

)
(2.23)

with
Ĥel

(
~R,~r

)
= T̂e (~r) + V̂nn

(
~R
)

︸ ︷︷ ︸
const.

+V̂ne
(
~r; ~R

)
+ V̂ee (~r) . (2.24)

The electronic eigenenergy Eel(~R) is then used in the nuclear Schrödinger equation
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as a potential depending on the nuclear coordinates

Ĥnuc
(
~R
)
Φ
(
~R
)

= EnucΦ
(
~R
)

(2.25)

where
Ĥnuc = T̂n

(
~R
)

+ Eel(~R). (2.26)

2.1.3 Electronic Structure Theory

The remaining task of electronic structure theory is now to solve the electronic
Schrödinger equation Eq. (2.23) for a specific set of nuclear coordinates ~R. The re-
sulting electronic wave function Φ(~r) then describes how the electrons are arranged
around the atoms, thus represents the electronic structure of the molecular system.
The central challenge here is treating the electron-electron interaction V̂ee which cou-
ples all electrons together. The problem is similar to the nuclear-electronic coupling,
however applying an approximation similar to the BOA is not justified anymore as
same particles are treated here. Applying a product ansatz to separate all electronic
coordinates from each other is thus strictly speaking not allowed. The standard
approach in wave function based correlation methods however is to first ignore that
issue (cf. Section 2.2.2) and to correct for it in a second step (cf. Section 2.2.4).

An alternative, popular method is to avoid dealing with the 3N -dimensional elec-
tronic wave function, where N is the number of electrons. Instead the descrip-
tion works with the 3-dimensional electron density which has a uniquely assigned
eigenenergy as well, as proven by the Hohenberg-Kohn theorems [5]. However the
exact mapping (functional) is unknown and finding improved approximations to it
is a matter of active research. The associated family of methods is called Density
Functional Theory (DFT) and not further covered within this thesis.

2.2 The Orbital Picture

Orbitals are a well known tool for describing chemistry and are used to construct
simplified models. For example in Frontier molecular orbital theory [34], the High-
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est Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Orbital (LUMO)
are used to described reaction mechanisms. Another example are the Woodward-
Hoffmann rules [35], which can be used to explain and predict the chemistry of
pericyclic reactions. It should be pointed out however, that the concept of orbitals
is the result of an approximation which lacks quantitative accuracy, and often even
gives qualitatively wrong results. Correction of this error is therefore crucial for
both, predicting new chemistry and confirming experimental results based on theo-
retical approaches. In the following the origin (cf. Section 2.2.2) and the attempts
for correcting this error (cf. Section 2.2.4) will be described in more detail.

2.2.1 Spin of Electrons

Spin is an intrinsic quantum mechanical property of particles, with no classical
analog. It behaves like spatial angular momentum, but is its own degree of freedom
with its own set of quantum numbers. It is described by the commutator relations

[ŝx, ŝy] = iŝz (2.27)
[ŝy, ŝz] = iŝx (2.28)
[ŝz, ŝx] = iŝy. (2.29)

Additionally, each individual component does commute with ŝ2

ŝ2 = ~̂s · ~̂s = ŝ2
x + ŝ2

y + ŝ2
z. (2.30)

One can thus choose a set of simultaneous eigenfunctions of ŝ2 and one of the
components, usually ŝz.

ŝ2|s,ms〉 = s(s+ 1)|s,ms〉 (2.31)
ŝz|s,ms〉 = ms|s,ms〉 (2.32)

where s is the total spin quantum number and ms the projected spin quantum
number. For single electrons, the total spin quantum number is always s = 1

2 , while
the projected spin quantum number ms = ±1

2 distinguishes α and β spin.

Instead of working with ŝx and ŝy, one may use the more convenient ladder operators
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ŝ+ and ŝ− defined as

ŝ+ = ŝx + iŝy (2.33)
ŝ− = ŝx − iŝy. (2.34)

They have a more intuitive action on the spin eigenfunctions, by increasing or de-
creasing the ms quantum number

ŝ+|α〉 = 0 (2.35)
ŝ−|α〉 = |β〉 (2.36)
ŝ+|β〉 = |α〉 (2.37)
ŝ−|β〉 = 0. (2.38)

Together with the commutator relations of Eqs. (2.27) to (2.29), ŝ2 can be expressed
in terms of the ladder operators as

ŝ2 = ŝ+ŝ− − ŝz + ŝ2
z. (2.39)

For many electron systems, the overall quantum numbers for total spin S and pro-
jected spinM can be obtained from the individual quantum numbers of each electron
by using

Ŝz =
∑
i

ŝz,i (2.40)

Ŝ± =
∑
i

ŝ±,i (2.41)

where the index i labels the electrons, and the sum goes over all all electrons in the
system. The total spin operator can then be evaluated in terms of its components

Ŝ2 = Ŝ+Ŝ− − Ŝz + Ŝ2
z . (2.42)

The two possible spin states of each electron need to be considered in the quantum
mechanical description of molecule, but is not implicitly included in the Schrödinger
equation. Instead it is added as a further property of each electron and the electronic
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coordinates are thus represented as

~xi = (~ri, ζi) (2.43)

where ζi is the spin coordinate of the i-th electron. Accordingly, ~x represents the
combined electronic coordinates ~xi for all N electrons of the system. A common
short hand notation for ~xi is to only write the index i, e.g. ĥ(1) for the one-electron
Hamiltonian depending only on electron i = 1.

2.2.2 The Hartree-Fock Method

The Slater determinant

The derivation of the Hartree-Fock methods starts by first ignoring the electron-
electron interaction V̂ee completely, which allows expressing the many-electron wave
function Φ(~x) as a product of one-electron wave functions χ (~x), called orbitals. This
is known as the Hartree product [6, 7]

Φ(~x) ≈
N∏
i

χi (~xi) . (2.44)

It was later pointed out by Slater [8, 36] that this approach violates the Pauli
principle [37], which requires the many-electron wave function to be anti-symmetric
when swapping two electronic coordinates. A convenient fix for that is to exploit
the anti-symmetric structure of determinants, resulting in the commonly used Slater
determinant

Φ (~x) ≈ Ψ (~x) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (~r1, ζ1) χ2 (~r1, ζ1) . . . χN (~r1, ζ1)
χ1 (~r2, ζ2) χ2 (~r2, ζ2) . . . χN (~r2, ζ2)

... ... ...
χ1 (~rN , ζN) χ2 (~rN , ζN) . . . χN (~rN , ζN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.45)
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The Fock operator

In the Hartree-Fock method, the Slater determinant is used as an ansatz for the
wave function in the electronic Schrödinger equation, including the electron-electron
interaction. The approximation here lies in assuming that the structure of the wave
function for the non-interacting system may be directly translated to the interacting
system. This is the crucial step that on the one hand allows the use of orbitals as a
model, on the other hand introduces a non-negligible error. This error is known as
electron correlation and covered in detail in Section 2.2.4.

The Hartree-Fock equations are thus derived by plugging the Slater determinant
from Eq. (2.45) into the time independent Schrödinger equation (Eq. (2.23)) and
applying the Slater-Condon-Rules [36, 38] to resolve the integrals in terms of spin
orbitals. In the resulting equations each spin-orbital is then expressed as an eigen-
function of the Fock operator f̂

f̂ |χa〉 = εa|χa〉 (2.46)

with
f̂(1) = −1

2∇
2
1 −

∑
α

Zα
r1α︸ ︷︷ ︸

ĥ(1)

+
∑
j

Ĵj(1)− K̂j(1)
︸ ︷︷ ︸

v̂HF(1)

(2.47)

where ĥ(1) is a one-particle Hamiltonian only depending on the electron itself, and
v̂HF(1) is an effective one-electron potential. Ĵ and K̂ are the coulomb and exchange
operators respectively and describe the interactions of any electron with all the other
electrons in the system.

Ĵj(1)χi(1) =
[∫

χ∗j(2) 1
r12

χj(2)d2
]
χi(1) (2.48)

K̂j(1)χi(1) =
[∫

χ∗j(2) 1
r12

χi(2)d2
]
χj(1) (2.49)

In terms of expectation values the coulomb and exchange integrals

Jij = 〈χi(1)χj(2)| 1
r12
|χi(1)χj(2)〉 = 〈ij|ij〉 (2.50)

Kij = 〈χi(1)χj(2)| 1
r12
|χj(1)χi(2)〉 = 〈ij|ji〉 (2.51)
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are obtained. The term on the right hand side is an abbreviation called physicists’
notation. Note that self interaction of electrons is canceled out, since both integrals
become identical for i = j.

The Hartree-Fock ground state energy is then given by

EHF =
∑
i

〈i|ĥ|i〉 − 1
2
∑
ij

(〈ij|ij〉 − 〈ij|ji〉) + V̂nn (2.52)

where the sums go over all occupied spin orbitals χi.

The task to carry out now is to find an appropriate set of spin orbitals χi describing
the molecular system. This is typically done by applying the variational principle
which states that all possible trial wave functions have a higher ground state energy
than the exact solution. Thus minimization of the energy in Eq. (2.52) with respect
to the spin orbitals χi yields a solution, which is optimal with respect to the total
energy.

Spatial orbitals

As electrons are commonly found to form pairs with opposing spins, one may con-
struct restricted orbitals where two molecular spin orbitals χi and χj may share
their spatial part and only differ in their spin contribution (cf. Section 2.2.1).

χ(~r, ζ) =
φ (~r)α(ζ)
φ (~r) β(ζ)

(2.53)

Especially for closed shell systems, i.e. no unpaired electrons, this approach is
commonly used to simplify the equations.The Fock operator of Eq. (2.47) can then
be modified to

f̂ c(1) = ĥ(1) +
N/2∑
j

2Ĵj(1)− K̂j(1) (2.54)

where the sum goes over the N
2 occupied molecular orbitals and each coulomb inte-

gral occurs twice due to double occupation, while exchange integral vanishes between
α and β spin orbitals However for open shell system this restriction yields qualita-
tively wrong results, as unpaired electrons will introduce a spin polarization. Using
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unrestricted orbitals one may account for the spin polarization, which will lower
the ground state energy, at the cost of the HF wave function no longer being an
eigenfunction of the Ŝ2 operator. Two Fock operators, one for α and one for β spin
orbitals, will then need to be considered

fα(1) = h(1) +
Nα∑
j

[
2Ĵαj (1)− K̂α

j (1)
]

+
Nβ∑
i

Jβi (1) (2.55)

fβ(1) = h(1) +
Nβ∑
j

[
2Ĵβj (1)− K̂β

j (1)
]

+
Nα∑
i

Jαi (1). (2.56)

Linear Combination of Atomic Orbitals

The integro-differential equation in Eq. (2.46) can be solved numerically by expand-
ing the orbitals in a basis set [39] of atomic orbitals ϕi (cf. Section 2.2.3).

φj =
K∑
i=1

Cijϕi (2.57)

This is known as Linear Combination of Atomic Orbitals (LCAO). Alternatives, for
example plane waves, are possible as well but not considered here. Substituting the
expansion of Eq. (2.57) into Eq. (2.46) and using the spatial molecular orbitals from
Eq. (2.53) one can derive the Roothaan equations for closed shell systems

FC = SCε (2.58)

with the Fock matrix F
Fij = 〈φi|f c|φj〉, (2.59)

the overlap matrix S
Sij = 〈φi|φj〉 (2.60)

and molecular orbital coefficients matrix C from Eq. (2.57). The diagonal matrix ε
holds the molecular orbital eigenvalues (or orbital energies) εj.

Eq. (2.58) is a generalized eigenvalue problem and can be solved by standard numer-
ical methods. Due to the electron-electron interaction the Fock matrix F depends
on all the molecular orbitals (cf. Eq. (2.47)). Therefore the matrix to diagonalize

18



2.2 The Orbital Picture

directly depends on its own eigenvectors. The problem may thus be solved self-
consistently by starting with an initial guess for C and iteratively constructing and
diagonalizing F (C) until a converged results is obtained.

For the unrestricted case, two separate Fock matrices for α and β spin orbitals need
to be constructed and diagonalized in each iteration.

2.2.3 Atomic Orbital Basis Sets

One of the most popular approaches to parameterize molecular orbitals in HF cal-
culations is to expand them in a basis set of atomic orbitals. Originating from the
analytic solution of the Hydrogen atom, which may be generalized to Hydrogen-like
atoms with an arbitrary, effective nuclear charge, these solutions are adapted for all
elements across the periodic table.

Exploiting spherical symmetry of an atom, orbitals are expressed in spherical coor-
dinates (r, θ, φ) with radius r, polar angle θ and azimuth angle φ. The orbitals may
be factorized into a radial part and an angular part. The latter can be represented
in the basis of the spherical harmonics, independent of the chemical elements. For
the radial part different basis sets are possible and used. One common choice are
Gaussian Type Orbitals (GTO) of the form

ϕGTO
(
α,~r − ~R

)
=
(2α
π

) 3
4
e−α|~r−

~R|2 (2.61)

centered at the coordinates ~R of a given atom and with the Gaussian orbital expo-
nent α. Note that the GTO includes a e−r2 term, while the actual analytic solutions
of the Hydrogen atom decay only with e−r dependence. However, this slight mod-
ifications allows for fast analytic evaluation of integrals over these functions, while
for the e−r functions costly numerical approaches are required. To reduce the er-
ror introduced by this approximation many primitive GTOs are linearly combined
resulting in contracted GTOs

ϕcGTOµ

(
~r − ~R

)
=

L∑
p=1

dpµϕ
GTO
p

(
αpµ, ~r − ~R

)
. (2.62)
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A GTO basis set for a certain calculation is then defined by specifying the expansion
coefficients dpµ and orbital exponents αpµ together with the angular momentum
quantum number l for each orbital shell of each atom.

In a minimal basis set there is one contracted GTO for each orbital shell (1s, 2s,
2p etc.) that is occupied by electrons. More complete basis sets are obtained by
introducing additional basis functions, eventually approaching the complete basis
set limit for which numerical exact results may be obtained. Different types of
additional basis functions can be considered: a split valence basis set uses multiple
basis function for valence orbitals, e.g. a double zeta basis set uses two contracted
GTOs per shell. However, just a single basis function is supplied for core orbitals, as
those do not change much in different molecular arrangements, leading to negligible
errors. Furthermore, augmented basis sets include diffuse basis functions with small
exponent α to describe electron density further apart from the nucleus, e.g. for bond
breaking or anions. And polarized functions with higher angular momentum l allow
to shift electron density due to polarization by bonding partners neighboring the
atom or due to the presence of external electromagnetic fields.

2.2.4 Electron Correlation

The use of orbitals is a systematic approximation and lies at the core of the Hartree-
Fock method. Although this approximation has much less justification than the in
principle similar Born-Oppenheimer Approximation (cf. Section 2.1.2), it does yield
surprisingly well results, and sometimes gives qualitatively correct trends. On a
quantitative level however, chemical accuracy is typically considered to be on the
order of 1 kJ/mol, which is beyond the capabilities of HF.

The physical interpretation of the error in HF is that each electron only feels the
interaction of other electrons on average, i.e. by their probability distribution. They
are unaware of each others instantaneous locations and thus a high pair density
ρ(~r1, ~r2) (the correlated probability density) of being located close to each other
(|~r1−~r2| ≈ 0) is possible. In reality however the pair density of such situations should
be small, due to the electron-electron interaction, which is therefore insufficiently
described at the HF level. Accordingly, the correlation energy Ecorr is defined as the
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difference between the HF solution and the exact non-relativistic solution.

Ecorr = Eexact − EHF (2.63)

2.2.5 Second Quantization

Before considering ways to calculate the electron correlation energy, a brief intro-
duction into creation and annihilation operators will follow. They originate from the
second quantization formalism of quantum field theory and are commonly used for
the mathematical representation of the Fock space, i.e. the set of configurations serv-
ing as a basis set for Configuration Interaction and related methods in the following
sections.

Consider an electron configuration

|k〉 = |
M∏
I=1

kI〉 = |k1k2 · · · kM〉 (2.64)

which corresponds to a Slater-Determinant constructed from the spin orbitals χI .
The occupation of that orbital is given by kI = {0, 1}. One then defines the creation
operator

â†I |k1k2 · · · 0I · · · kM〉 = δkI ,0
I−1∏
J=1

(−1)kJ |k1k2 · · · 1I · · · kM〉 (2.65)

which will create an electron in the previously unoccupied spin orbital χI , while the
annihilation operator

âI |k1k2 · · · 1I · · · kM〉 = δkI ,1
I−1∏
J=1

(−1)kJ |k1k2 · · · 0I · · · kM〉 (2.66)

will remove an electron from the corresponding occupied orbital. Due to the Kro-
necker δ, creating electrons in occupied orbitals, or annihilating electrons in unoc-
cupied orbitals yields 0. And the term (−1)kJ ensures the wave function is anti-
symmetric with respect to the exchange of two electrons, i.e. the Pauli-Principle is
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satisfied. As a consequence they also fulfill the anti-commutator relations

â†I â
†
J + â†J â

†
I = 0 (2.67)

âI âJ + âJ âI = 0 (2.68)
â†I âJ + âJ â

†
I = δIJ . (2.69)

The expectation value of successive application of the annihilation operator and
the creation operator on the same orbital results in the occupation number of that
orbital. Thus one can define the occupation number operator

n̂I = â†I âI . (2.70)

Using the above operators, one can express the molecular electronic Hamiltonian in
spin orbital basis as

Ĥ =
∑
IJ

hIJ â
†
I âJ + 1

2gIJKLâ
†
I â
†
K âLâJ + V̂nn (2.71)

where hIJ corresponds to the one-particle Hamiltonian of HF transformed into
molecular orbital basis and gIJKL are the electron repulsion integrals in molecu-
lar orbital basis.

hIJ = 〈I| − 1
2∇

2 −
∑
α

Zα
rα
|J〉 (2.72)

gIJKL = 〈IK| 1
r12
|LJ〉 (2.73)

This means, that as input for all correlation methods relying on the HF orbitals,
only the integrals hIJ and gIJKL as well as the nuclear repulsion energy V̂nn are
needed. In practice, those values are commonly stored in so called FCIDUMP files,
which serve as an interface between different quantum chemistry codes.

2.2.6 The Configuration Interaction Method

One way to correct for the HF approximation and recover Ecorr is to use HF as
a starting point. As HF does not only yield occupied molecular orbitals, but a
large number of virtual molecular orbitals as well, electron configurations other than
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the HF configuration can be constructed. Each configuration yields its own Slater
determinant and considering all possible combinations of distributing N electrons
in M spin orbitals, a total of

(
M
N

)
determinants can be obtained. This set of a

determinants forms a many-electron basis set, in which the electronic wave function
may be expanded.

Configuration State Functions

Besides the direct use of Slater determinants as a basis, one may also construct
spin adapted basis states as linear combinations of Slater determinants, called Con-
figuration State Functions (CSFs). Their advantage is, that they are simultaneous
eigenfunctions of the total spin operator Ŝ2 and projected spin operator Ŝz, while
Slater determinants are eigenfunctions of the projected spin only.

As an example, the CSF for a two electron system is considered, where both electrons
occupy different spatial orbitals. As closed shell orbitals do not contribute to the
overall spin quantum numbers, this may be generalized to any system with two
unpaired electrons. A single electron always has the total spin quantum number
s = 1

2 and projected spin quantum number ms = ±1
2 , corresponding to α or β spin.

The spin multiplicity 2S + 1 of a single electron system therefore yields a doublet
(2×1

2+1 = 2). In a two electron system, both electrons may have same projected spin
(α(ζ1)α(ζ2) or β(ζ1)β(ζ2)) or opposite spin (α(ζ1)β(ζ2) or β(ζ1)α(ζ2)). Combining
situations with total spin flip two Slater determinants can be constructed

|Ψ1〉 = |αα〉 (2.74)
|Ψ2〉 = |αβ〉 (2.75)

where explicit writing of the spin coordinates ζi as well as the spatial part of the
orbitals has been omitted. The two Slater determinants are eigenfunctions of the
projected spin operator

Ŝz|αα〉 = 1|αα〉 (2.76)
Ŝz|αβ〉 = 0|αβ〉. (2.77)
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And for the total spin operator one obtains

Ŝ2|αα〉 = 2|αα〉 (2.78)
Ŝ2|αβ〉 = |αβ〉+ |βα〉. (2.79)

This means the first Slater determinant |Ψ1〉 = |αα〉 may directly be considered
a CSF. On the other hand, the second Slater determinant |Ψ2〉 = |αβ〉 is not an
eigenfunction of the Ŝ2 operator. Suitable eigenfunctions of Ŝ2 may be constructed
as linear combinations of Slater determinants, e.g.

|1Ψ〉 = 1√
2

(|αβ〉 − |βα〉) (2.80)

|3Ψ〉 = 1√
2

(|αβ〉+ |βα〉) . (2.81)

Application of the Ŝ2 operator will then yield the eigenvalue S(S + 1) = 0 for |1Ψ〉,
i.e. a pure spin singlet, and S(S + 1) = 2 for |3Ψ〉, i.e. a pure spin triplet.

Full Configuration Interaction

Expanding the electronic wave function |Φ〉 in the basis of all configurations {|i〉}
yields the ansatz for the Full Configuration Interaction (FCI) [4] wave function.

|Φ〉 = |FCI〉 =
∑
i

ci|i〉 (2.82)

The set of all coefficients ci is called the Configuration Interaction (CI) vector and the
basis functions |i〉may either refer to Slater determinants or CSFs. Constructing and
diagonalizing the electronic Hamiltonian Eq. (2.24) in this basis yields a numerically
exact solution, provided the HF basis set is large enough to approach the (one-
electron) basis set limit. However, the exponential scaling due to the large number
of
(
M
N

)
determinants makes this approach unfeasible for any system with more than

just a couple of electrons.

The many-electron basis depends on the choice of the one-electron basis, i.e. the set
of molecular orbitals. The latter can for example be the canonical orbitals as directly
obtained from HF. Alternatively, it is possible to use orbitals optimized for many
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configurations at once (cf. Section 2.2.8) or localized orbitals (cf. Section 2.2.9).

Truncations to the FCI wave function

Various systematic truncations to the ansatz in Eq. (2.82) constitute the field of
wave function based correlation methods and allow for a controlled choice between
accuracy and computational cost. Although being more reliable in accuracy, ap-
plications are still limited to fairly small systems and are no where close to the
computational performance of Density Functional Theory.

The standard approaches to truncate the FCI expansion in Eq. (2.82) start by
classifying all configurations as excitations from the HF ground state configuration.
A Single excitation is a configuration that is obtained by removing one electron from
the occupied orbital space and placing it in one of the virtual orbital. Similar Double,
Triple, Quadruple etc. excitations are define. Although the term “excitation” may
suggest so, this is not a dynamic process, but merely a term used for classification
purposes.

The CI wave function

|FCI〉 =

1 +
∑
A,I

X̂A
I +

∑
A>B
I>J

X̂AB
IJ + · · ·

 |HF〉 (2.83)

can thus be expressed in terms of excitation operators

X̂A
I = CA

I â
†
AâI (2.84)

X̂AB
IJ = CAB

IJ â
†
Aâ
†
BâI âJ (2.85)

...

where â†A and âI are the creation and annihilation operators in the framework of
second quantization (cf. Section 2.2.5).

In most cases HF provides a quite reasonable starting point, thus the HF configu-
ration has the largest weight in the CI vector. Additionally, electron configurations
that are more similar to the HF configuration are then typically more important as
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well, i.e. the weights have a decreasing trend going from single to double to triple
excitations and so on. Thus it is reasonable to truncate the CI expansion after a
certain level of excitations. For example in CISD all triple excitations and beyond
are neglected. One may add further excitation levels if needed, but the gain of
additional accuracy is at the expense of much higher computational effort.

Size consistency

Unfortunately, the above CI truncation is not size-consistent, i.e. the CISD energy
of a non-interacting dimer is not equal to the sum of the two monomers calculated
independently. In the dimer case the CI truncation will neglect quadruple excitations
that can be obtained by combining double excitations of the monomers. A popular
alternative to CI is Coupled Cluster (CC) theory, where an exponential ansatz for
the excitation expansion is used.

|CC〉 = exp

∑
A,I

X̂A
I +

∑
A>B
I>J

X̂AB
IJ + · · ·

 |HF〉 (2.86)

Expanding this ansatz in a Taylor series yields a truncation scheme similar to
Eq. (2.83), but a couple of additional disconnected excitations are included, which
makes CC size-consistent and therefore favorable. The thus resulting excitation op-
erators and associated coefficients in CC are called amplitudes and have a slightly
different meaning compared to CI. In general however, a CC wave function may be
cast as a CI wave function, but it does not fall into a truncation scheme like CISD.
In the exact limit, both methods correspond to FCI.

The gold standard of quantum chemistry is considered to be the truncation after the
double amplitudes and including a perturbative correction for triples: CCSD(T) [9].
It yields chemical accuracy at the complete basis set limit for most systems, but has
a quite costly computational scaling of O(N7).

Alternatively, for truncated CI wave functions (e.g. CISD) the Davidson correction

ED
corr = Ecorr

1− c2
ref

c2
ref

(2.87)
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may be applied to achieve size consistency, where cref is the coefficient of the reference
wave function. It is based on the assumption that the correlation contribution to
the wave function is small and is furthermore justified empirically.

2.2.7 Weak and Strong Correlation

Although being quite successful for a large number of molecular systems, Cou-
pled Cluster does not always yield the required accuracy. Being a single-reference
method, it can only consider excitations that are based on just one reference con-
figuration. In these cases a very large number of configurations with very small
individual weights are covered quite well. This type of correlation is called weak or
dynamical correlation.

However, there is another class of systems where no single major configuration can
be identified. Examples include open-shell systems (e.g. radicals) or transition metal
complexes with many (close) degenerate d orbitals. Here a smaller number of config-
urations with similar weights are encountered. These configurations are responsible
for what is called static or strong correlation and typically differ only in a small
set of orbitals. It is therefore feasible to recover strong correlation by defining a
space of active orbitals for which all possible configurations are formed. All orbitals
lower in energy than the active space orbitals are kept closed, i.e. doubly occupied,
while virtual orbitals higher in energy than the active space orbitals are empty in all
configurations. A CI calculation based on this approach is called Complete Active
Space Configuration Interaction (CASCI) and recovers strong correlation, but no
weak correlation effects.

An actual strict definition to separate strong and weak correlation does not exists,
and a certain configuration may contribute to both types. The classification used
here is closely related to Bartlett and Stanton [40] and Bartlett and Musiał [41] who
considered next to dynamic (weak) and static (strong) correlation also an interme-
diate type called non dynamic correlation. Furthermore the situation depends on
the type of orbitals used as a one-electron basis set. A unitary transformation of
the molecular orbitals, e.g. performing a localization procedure (cf. Section 2.2.9),
may switch a system from a singly-reference to a multi-reference problem, or vice
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versa.

Both situations, weak and strong correlation, are compared in Fig. 2.1. The weakly
correlated system (blue crosses) has a leading configuration with its coefficient close
to 1, while the next largest coefficient is one order of magnitude smaller. On the
other hand, the strongly correlated system (red circles) has a number of coefficients
of similar magnitude at ≈ 0.2. As a side note, the data shown in Fig. 2.1 is obtained
from CASSCF (cf. Section 2.2.8) calculations, thus it does not represent a CI vector
including all dynamic correlations. However, since there is no strict separation
between both and a CAS approach will always cover some dynamic correlation, the
general differences are sufficiently represented.

A CASCI calculation based on HF orbitals suffers from a bias of the orbitals towards
the HF configuration. This is not of relevance for weak correlation, where the
HF configuration is the single most important configuration (cf. Fig. 2.1). For
static correlation where many configurations are of similar importance however,
this bias may not be an optimal solution anymore. Although this bias will vanish
in the FCI limit, it is unfeasible to consider the large number of configurations
needed. Therefore, one typically combines the CASCI approach with the Multi-
Configurational Self-Consistent Field (MCSCF) approach (cf. 2.2.8), where the CI
vector and molecular orbitals are optimized simultaneously. The resulting method
is called Complete Active Space Self-Consistent Field (CASSCF) and will balance
the orbitals to better describe all of the major configurations.

To additionally recover weak correlation one has to generate excitations into all
the virtual orbital, as is done in single-reference methods. However, generating
excitations for each of the configurations responsible for strong correlation will yield
different sets of configurations, which may partially overlap. Therefore a single-
reference approach, which will only yield one of these sets of configurations, will
miss a number of potentially important configurations for dynamical correlation.
To recover dynamical correlation, it is therefore crucial to generate excitations for
many configurations. This is known as the multi-reference approach.

Accurate calculations on strongly correlated systems are one of the hardest chal-
lenges in theoretical chemistry. The standard approach is to perform a state-
averaged CASSCF calculation to qualitatively describe the static correlation con-
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Figure 2.1: CI vector for a weakly (blue crosses) and strongly (red circles) corre-
lated system. Data represents the CI vectors for the N2 ground state at
equilibrium distance (Req = 1.1Å) and dissociation limit (Rdis = 5.0Å),
both calculated at the CASSCF(10,8)/aug-cc-pV5Z level.

tributions. Additional dynamic correlation is then recovered in a second step by
a multi-reference approach which may be based on different schemes. Based on
the simple CI truncation scheme Single and Double excitations may be generated
for each reference configuration leading to the Multi-Reference Configuration In-
teraction method (MRCI-SD). Similar Coupled Cluster theory can be extend to
Multi-Reference Coupled Cluster (MRCC) theory [42]. In CASPT2 [43, 44] and
NEVPT [45, 46, 47] a perturbation theory based correction is added to a CASSCF
or CASCI reference.

2.2.8 Multi-Configurational Self-Consistent Field

Multi-Configurational Self-Consistent Field (MCSCF) [48] describes a method where
the molecular orbital coefficients Cij from Eq. (2.57) are optimized simultaneously
with the CI coefficients ci from Eq. (2.82). This leads to a complex mathematical
optimization problem, as the CI coefficients for the many-electron basis (config-
urations), depend on the molecular orbital coefficients for the one-electron basis
(orbitals). Furthermore the energy of the targeted electronic state, which is min-
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imized, depends on both sets of coefficients. Therefore when changing one set of
coefficients the other set of coefficients will no longer be optimal, making the method
numerically challenging.

Thus only a relative small set of configurations may be considered and a suitable
CI truncation scheme has to be chosen. The most common variant is the Complete
Active Space Self-Consistent Field (CASSCF) where an active space of orbitals is
chosen within which all possible configurations are considered (cf. 2.2.7). It also
possible to restrict the excitation degree within the active space, which is called
Restricted Active Space (RAS).

2.2.9 Unitary Transformation of Orbitals

The expectation value of any operator Ô in its basis |ϕ〉

〈Ô〉 = 〈ϕ|Ô|ϕ〉 (2.88)

may be expanded by inserting any unitary operator κ̂ with κ̂†κ̂ = 1

〈Ô〉 = 〈ϕ|κ̂†κ̂Ôκ̂†κ̂|ϕ〉. (2.89)

By defining the transformed basis and operator

κ̂|ϕ〉 = |ϕ̃〉 (2.90)
κ̂Ôκ̂† = Ôκ (2.91)

respectively, the transformed expectation value remains identical to the original
one.

〈Ô〉 = 〈ϕ̃|Ôκ|ϕ̃〉 (2.92)
= 〈Ôκ〉 (2.93)

Thus, if |ϕ〉 represents a set of molecular orbitals, one may introduce any unitary
transformation κ resulting in a different set of orbitals, without changing the value
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of any observable 〈Ô〉, provided the operator is transformed accordingly.

The geometrical interpretation is easy to see in the 2- or 3-dimensional Cartesian
space, R2 and R3 respectively. Here a unitary transformation corresponds to a
rotation of the basis vectors along a certain axis. Any object represented in this
basis changes its representation in the new, rotated basis. But the object itself
remains unchanged. Due to this analogy, unitary transformations of orbitals are
often called orbital rotations.

This degree of freedom may be exploited in quantum chemical calculations by defin-
ing additional criterions for the molecular orbitals as needed. For example, the
orbitals typically obtained from a Hartree-Fock calculations are the eigenfunction
of the Fock operator (cf. Eq. (2.46)) and thus diagonalize the Fock matrix F . They
are called canonical orbitals. After a CI or MCSCF calculation the orbitals may be
transformed to natural orbitals, for which the one-particle reduced density matrix
(cf. Section 2.3)) is diagonal.

Another important application is orbital localization. Here the otherwise delocalized,
i.e. over the whole system distributed, orbitals are spatially contracted to cover only
part of the system, e.g. an atom or molecular bond. Examples for such localization
schemes are the method by Foster-Boys [11], where the spatial extend of orbitals is
minimized or the approach by Pipek and Mezey [12] who maximize the amount of
partial charges due to each orbital on the nuclei.

A further approach related to DMRG and QIT (cf. Sections 2.4.1 and 2.5.2 respec-
tively) is the minimization of all orbital entropies [13] to allow for a compact, and
thus easy to truncate, CI vector.

2.3 Density Matrices

Density matrices are an alternative representation of a wave function Ψ and thus
represent a quantum state. The density matrix in its general form relates to the
probability density ρ

ρ = |Ψ〉〈Ψ|. (2.94)
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Considering |Ψ〉 as a vector, the above equation defines an outer product, thus yield-
ing a matrix for ρ. In this form ρ explicitly depends on all (electronic) coordinates
Ψ does depend on.

The wave function may be recovered from the density matrix, by applying it to
any arbitrary, normalized wave function |Ψ̃〉. Representing that wave function as a
linear combination of an orthonormal basis set

|Ψ̃〉 =
∑
i

ci|ψi〉 (2.95)

one can write

ρ|Ψ̃〉 = |Ψ〉〈Ψ|
∑
i

ci|ψi〉 (2.96)

= |Ψ〉
∑
i

ci〈Ψ|ψi〉 (2.97)

where 〈Ψ|ψi〉 is the complex conjugate version of projecting |Ψ〉 onto the basis
functions 〈ψi|, thus yielding the coefficients c∗i . Together with the normalization
constraint ∑

i
c∗i ci = 1 this yields

ρ|Ψ̃〉 = |Ψ〉
∑
i

cic
∗
i (2.98)

= |Ψ〉. (2.99)

Integration over all the coordinates of Ψ(~x1, ~x2 . . . ~xN) recovers the norm of the wave
function, and can be denoted by the inner product

N =
∫
|Ψ〉〈Ψ| = 〈Ψ|Ψ〉 (2.100)

=
∫

Ψ(~x1, ~x2 . . . ~xN)Ψ∗(~x1, ~x2 . . . ~xN)d~x1d~x2 . . . d~xN . (2.101)
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2.3.1 Pure and Mixed States

A quantum state can be either a pure state

|Ψ〉 = |ψi〉 (2.102)

or a mixed state, i.e. a superposition of pure states

|Ψ〉 =
∑
i

ci|ψi〉. (2.103)

The density matrix is then given by

ρ =
∑
i

c∗i ci|ψi〉〈ψi| (2.104)

where pi = c∗i ci gives the probability of observing |Ψ〉 to be in state |ψi〉 when
measured.

Mixed states can for example arise as a statistical distribution if the system under
study is in a thermal equilibrium above 0 K. There many quantum states are popu-
lated simultaneously. Another example for mixed states is considering subsystems.
Even though the full system may be in a pure state, an artificial split into subsys-
tems can lead to entanglement (cf. Section 2.5.1) between the subsystems. This is
of large relevance in electronic structure theory, where the electronic wave function
is usually split into subsystems of orbitals.

2.3.2 Reduced Density Matrices

Reduced Density Matrices (RDMs) are obtained by partial integration over the full
density matrix in Eq. (2.101), i.e. integration over some of the coordinates is omitted.
This corresponds to averaging over the respective coordinate, and thus RDMs do not
cover all the information of the full density matrix. Therefore a full reconstruction
of |Ψ〉, as shown in Eqs. (2.96) to (2.99), is no longer possible. They contain however
important information at the level of the omitted integrations.

For example for the calculation of the expectation value of the Hamiltonian, only

33



2 Theoretical Background

the 1- and 2-particle RDMs are required. This is because it only involves one- and
two-particle operators (recall that the Coulomb interaction is always just between
two electrons i and j; cf. Eq. (2.21)). Another application for RDMs is the splitting
of a system into different subsystems.

In practice there are two different kinds of RDMs, which differ in the way the
integration is done. Both will be presented in the following.

Particle Reduced Density Matrices

The first kind of RDMs are defined in terms of expectation values with respect to the
wave function in second quantization. They are related to the number of particles
the operator is acting on. A detailed description of this type of RDMs is given in
the book by Helgaker, Jorgensen, and Olsen [32].

In second quantization a Hermitian operator including 1- and 2-electron contribu-
tions is given by

Ô =
∑
IJ

OIJ â
†
I âJ + 1

2
∑
IJKL

OIJKLâ
†
I â
†
J âK âL +O0 (2.105)

The expectation value can then be expressed as

〈Ψ|Ô|Ψ〉 =
∑
IJ

OIJ %̄IJ + 1
2
∑
IJKL

OIJKL%̄IJKL +O0 (2.106)

where the 1-particle RDM
%̄IJ = 〈Ψ|â†I âJ |Ψ〉 (2.107)

and the 2-particle RDM
%̄IJKL = 〈Ψ|â†I â

†
J âK âL|Ψ〉 (2.108)

have been used. The bars over %̄ indicate the use of spin orbitals. The last two
equations can be related to the representation in coordinate space by [32]

γ1(~x1, ~x
′
1) = N

∫
Ψ(~x1, ~x2 . . . ~xN)Ψ∗(~x′1, ~x2 . . . ~xN)d~x2 . . . d~xN (2.109)

=
∑
IJ

%̄IJχ
∗
I(~x′1)χJ(~x1) (2.110)
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for the 1-particle RDM and

γ2(~x1, ~x2, ~x
′
1, ~x
′
2) = N(N − 1)

2

∫
Ψ(~x1, ~x2, ~x3 . . . ~xN)Ψ∗(~x′1, ~x′2, ~x3 . . . ~xN)d~x3 . . . d~xN

(2.111)

= 1
2
∑
IJKL

%̄IJKLχ
∗
I(~x′1)χJ(~x1)χ∗K(~x′2)χL(~x2) (2.112)

for the 2-particle RDM. Thus they are partial integrations of Eq. (2.101), i.e. for the
n-particle RDM, the integration over n coordinates is omitted. Additionally this
directly highlights, how one can obtain the n− 1 particle RDM, by integration over
one of the electronic coordinates of the n-particle RDM.

The above definition for particle RDMs %̄ in spin orbital basis may be extended the
spin-free version %, i.e. in spatial orbital basis. For this an additional summation
over the spin-indices needs to be introduced. For example

%ij =
∑
σ

〈Ψ|â†iσâjσ|Ψ〉 (2.113)

%ijkl =
∑
στ

〈Ψ|â†iσâ
†
jτ âkτ âlσ|Ψ〉 (2.114)

with σ, τ ∈ {α, β}.

Orbital Reduced Density Matrices

The other kind of RDMs considers the split of a combined quantum system into two
subsystems, where one of the two subsystems, the environment, is traced out. This
type of RDM is for example covered in the appendix of the book by Tannor [30].

In the context of quantum chemistry they are called orbital RDM, and the sub-
systems are groups of orbitals. Hence the summation is not over the electronic
coordinates (as for the particle RDMs), but orbitals. For example the 1-orbital
RDMs are obtained as the partial trace over all orbitals but orbital i.

ρi(αi, α′i) = Tr1,..., 6i,...,d|Ψ〉〈Ψ| (2.115)
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Analogous, in the 2-orbital RDMs the trace over 2 orbitals i and j are omitted.

ρij(αi, αj, α′i, α′j) = Tr1,..., 6i,..., 6j,...,d|Ψ〉〈Ψ| (2.116)

Note that, while there is always just one n-particle RDM for a given state |Ψ〉, there
are many orbital RDMs. Each possible combination of n orbitals yields its own
orbital RDM, i.e. for a total of d orbitals, there are

(
d
n

)
possible n-orbital RDMs.

The orbital RDMs can be related to the particle RDMs by recognizing that their
matrix elements may be represented in terms of particle number operators. Consider
a single spatial orbital i with basis states |φαi=0〉 = |−〉 (empty), |φαi=1〉 = | ↓〉 (spin
down), |φαi=2〉 = | ↑〉 (spin up) or |φαi=3〉 = | ↑↓〉 (double occupation). The diagonal
elements of the corresponding 1-orbital RDM then represent the probability of these
occupations, and are given by the expectation values of the following operators:
(1 − n̂αi↑ )(1 − n̂αi↓ ) (empty), (1 − n̂αi↑ )n̂αi↓ (spin-up), (1 − n̂αi↓ )n̂αi↑ (spin-down) and
n̂αi↑ n̂

αi
↓ (double occupation) [49], where the superscript indicates on which orbital

the operator is acting on. The off-diagonal elements are zero due to conservation of
the quantum numbers for spin and particle number.

The single electron particle number operators n̂αi↑ = n̂iα and n̂↓ = n̂αiiβ for spatial
orbital i correspond to the diagonal elements of the 1-particle RDM in spin basis

%̄II = 〈â†I âI〉 = 〈n̂iα〉 (2.117)
%̄JJ = 〈â†J âJ〉 = 〈n̂iβ〉 (2.118)

where I and J denote those two spin orbitals that correspond to spatial orbital i.
The product n̂αi↑ n̂αi↓ can be extracted from the 2-particle RDM

%̄IJJI = 〈â†I â
†
J âJ âI〉 = 〈n̂iαn̂iβ〉 (2.119)

Thus all information required for the spatial 1-orbital RDMs ρi is included in the
spin 2-particle RDM %̄pqrs. Similar the spatial 2-orbital RDMs may be extracted
from the spin 4-particle RDM.

36



2.4 Beyond Standard Quantum Chemistry

2.4 Beyond Standard Quantum Chemistry

This chapter has summarized so far the current standard approaches of wave func-
tion based correlation methods. These are readily implemented in a large number
of (freely) available quantum chemistry packages. Beyond, there exists a number of
alternative, promising ideas which give access to some further hard to treat molec-
ular systems. Three such approaches are briefly introduced in the following. The
Density Matrix Renormalization Group (DMRG) introduces a memory efficient rep-
resentation of the CI vector and is a powerful method to study strongly correlated
systems with large active spaces. Next, the Method of Increments (MoI) allows for
a truncation at different levels of orbital correlations (1, 2, 3, etc. orbital correla-
tions), which is especially useful in connection with localized orbital. And finally the
Full Configuration Interaction Quantum Monte Carlo method, which stochastically
samples the configuration space instead of an expensive deterministic treatment.

DMRG and FCIQMCmay also be used in connection with MCSCF (cf. Section 2.2.8),
where they are used as alternative CI solvers. The related methods are called
DMRG-SCF [23, 24, 25, 26] and FCIQMC-SCF [27].

2.4.1 Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) method was first introduced
in 1992 by White [14, 15]. It is based on the renormalization group approach,
which was first applied by Wilson [50] to solve the Kondo problem in solid state
physics. Its basic idea is to split a physical system into subsystems and increase
their size step by step, until the properties of interest are converged. In the context
of quantum chemistry, DMRG splits the orbital space into small groups, usually of 2
orbitals, and optimizes those groups one after another while keeping the respective
environment fixed. This allows for efficient treatment of large orbital spaces and for
strongly correlated, 1-dimensional systems it usually achieves high accuracy. As a
number of reviews describe the method in detail [49, 51, 52, 53, 54], only a summary
will follow here.

In essence DMRG offers two key features. First, it allows for an efficient represen-
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tation of the CI vector in the form of a Matrix Product State (MPS). Its numerical
accuracy is controlled by a parameter called number of blockstates M , which is also
known as virtual dimensions or bond dimensions. In its numerically exact limit
M →∞ it corresponds to FCI, or CASCI in case of a truncated orbital space. The
other extreme case with M = 1 yields the HF solution. The second feature is a
reduced computational scaling compared to conventional FCI calculations. In FCI
one constructs and diagonalizes the Hamiltonian for the whole configuration space.
In DMRG an effective Hamiltonian for only a few orbitals is constructed and diag-
onalized. The remaining orbitals are kept fixed and represent the environment for
which the current orbitals are optimized. This procedure is iteratively repeated for
the various orbitals until convergence is achieved. Together, both properties allow
to solve the CI problem by constructing and diagonalizing many smaller matrices
instead of a single large matrix, while the numerical accuracy is controlled by the
parameter M .

Singular Value Decomposition

The Singular Value Decomposition (SVD) is the mathematical tool allowing to fac-
torize the CI vector into subsystems and controlling the accuracy when truncating
the matrix dimensions of this split. It is defined as

M = UσV † (2.120)

where M is a rectangular matrix with dimensions (m× n), which is factorized into
the left singular vectors U with dimensions (m×min(m,n)), right singular vectors
V † with dimensions (min(m,n) × n) and the singular values σ with dimensions
(min(m,n)×min(m,n)). 1

The singular values σ may be multiplied into either U or V †, thus a factoriza-
tion of M into only two matrices is possible as well. This is also known as QR
decomposition, which is numerically faster to calculate.

M = QR (2.121)
1The mathematical notation in this subsection follows the standard notation used to introduce
the SVD and does not correspond to the notation in the rest of this thesis.
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The SVD is closely related to the eigenvalue decomposition

M = UλU † (2.122)

for a square matrixM (with shape n×n) with eigenvectors U and eigenvalues λ.

A common approximation for both decompositions is to keep and store only a certain
number M of the eigen- or singular values and its corresponding eigen- or singular
vectors respectively. In case of the SVD the truncated matrices for U , σ, V †

will have dimensions of (m × min(m,n,M)), (min(m,n,M)) × min(m,n,M)) and
(min(m,n,M)×n) respectively. After multiplication of these three matrices,M will
recover its original shape (m × n), but may deviate in its actual values depending
on M . This step is also know as low-rank tensor approximation.

For a sufficiently small cutoff parameter M , the original Matrix M can then be
stored with less memory in the factorized form, while sacrificing accuracy. This is
the core feature exploited in the MPS.

Matrix Product State

To achieve efficient storage of the CI wave function in computer memory, it is fac-
torized into the Matrix Product State (MPS) by multiple application of the SVD.

To demonstrate the relationship between both, the procedure of factorizing the
conventional CI wave function to the MPS is illustrated in Fig. 2.2. Starting from
the CI wave function in its vector form, i.e. a tensor of order 1, it can easily be
reshaped into a tensor U(α1, . . . , αd) whose order corresponds to the number of
orbitals d. The CI wave function then becomes

|Ψ〉 =
∑

α1,...,αd

U(α1, . . . , αd)|φα1〉 ⊗ · · · ⊗ |φαd〉 (2.123)

where αi labels the basis states of a single orbital, i.e. empty (|φαi=0〉 = |−〉), down-
spin (|φαi=1〉 = | ↓〉), up-spin (|φαi=2〉 = | ↑〉) or double occupation (|φαi=3〉 = | ↑↓〉).

Next, the tensor U(α1, . . . , αd) is factorized by successive application of the SVD.
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Formally all indices, except the currently selected orbital i to be factorized of from
the tensor, are grouped and combined into a single index, then the SVD is applied
to the resulting rectangular matrix. One of the decomposed matrices (Ai(αi)) is
kept as part of the final MPS, representing the selected orbital. The other matrix
describing the remaining orbitals is used for the next SVD. The process is repeated
until each orbital is represented by its own matrix. A detailed description of this
procedure can be found in the review by Schollwöck [52].

The original tensor U(α1, . . . , αd) can then be recovered as the product of all indi-
vidual matrices without loss of any information.

U(α1, . . . , αd) = A1(α1)⊗ · · · ⊗Ad(αd) (2.124)

Note that the size of the dimensions of the Ai matrices of the MPS grows in powers
of 4 towards the center of the orbital chain (cf. lower right part of Fig. 2.2). Thus
in terms of memory, the resulting MPS is just as large the original tensor. Only the
truncation by the number of blockstates M makes the MPS memory efficient. At
its lower limit (M = 1) the MPS becomes very small in memory and the contrac-
tion back to the full tensors recovers the HF configuration only. Thus there is no
entanglement between the orbitals (cf. Section 2.5.1). At its upper limit (M →∞)
the FCI solution is recovered within numerical accuracy.

Historically, DMRG was formulated based on RDMs (cf. Section 2.3.2) which allow
to separate a system into two subsystems. Details on this perspective are given in
the review by Szalay et al. [49] and are briefly summarized here. The subsystem of
current interest (A) is a set of selected orbitals, while the remaining orbitals form
the environment (B). The wave function can then be expressed as

|Ψ〉 =
∑
α(A)

∑
α(B)

U (α(A), α(b))|φ(A)
α(A)
〉 ⊗ |φ(B)

α(B)
〉 (2.125)

where |φ(A)
α(A)
〉 and |φ(B)

α(B)
〉 are the bases states for subsystems (A) and (B) respectively.

It is possible to bring the last equation into the Schmidt form [55]

|Ψ〉 =
rSch∑
m=1

√
ωm|ξ(A)

m 〉 ⊗ |ξ(B)
m 〉 (2.126)
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Figure 2.2: Construction of the MPS by successive application of the SVD. Each
rectangle represents a tensor whose order corresponds to the number of
lines connected to it. The connection of two tensors via their indices
represents a matrix product. The number on an index line indicates the
dimension along this index. The example factorizes a CI vector for 6
orbitals into 6 matrices in the MPS and then applies a truncation to
M = 10 blockstates.

with |ξ(A)
m 〉 and ξ(B)

m 〉 being the orthonormal Schmidt bases and √ωm the Schmidt
coefficients which satisfy 0 ≤ √ωm ≤ 1 and ∑

m

√
ωm = 1. The Schmidt rank rSch

corresponds to the dimension of Hilbert space of the smaller subsystem ((A) or
(B)). In essence, the Schmidt decomposition corresponds to the SVD from above,
where the singular values correspond to √ωm and the Schmidt rank rSch becomes
the number of blockstates M .

The RDM for a subsystem of orbitals (A) is obtained by tracing the full density
matrix over (B)

ρ(A) = TrB|Ψ〉〈Ψ| (2.127)

which corresponds to the definition of the orbital RDMs in Eqs. (2.115) and (2.116).
Together with the Schmidt form of Eq. (2.126) this leads to

ρ(A) =
∑
m=1

√
ωm|ξ(A)

m 〉〈ξ(A)
m |. (2.128)

This type of RDM is used to quantify entanglement (cf. Section 2.5.1) and it is
easily obtained from the MPS by tracing |Ψ〉〈Ψ| over all orbital indices which are
part of the environment (B) while skipping contraction over indices belonging to the
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H

Figure 2.3: Contraction to the effective Hamiltonian by omitting 2 orbitals of the
MPS in the bra- and ket-vector.

subsystem (A).

DMRG Algorithm

While the MPS itself is only a different representation of the CI vector, the term
DMRG refers to an algorithm to optimize that MPS. Starting from some initial
guess, the MPS is optimized iteratively for only a small subset of the orbitals.
Usually 2 orbitals are optimized at once. The energy expectation value 〈Ψ|Ĥel|Ψ〉
can be calculated by contracting the current MPS with the Hamiltonian. An effective
Hamiltonian is constructed according to the usual expression for energy expectation
value

Heff = U †HU (2.129)

but the summation over indices αi and matrices Ai of the orbitals to be optimized
are omitted. A graphical representation of the effective Hamiltonian for orbitals 2
and 3 is presented in Fig. 2.3. In the 2-orbital case, the effective Hamiltonian then
has maximum dimensions ((4M)2 × (4M)2), which is usually much smaller than
the Hamiltonian in the full CI space. Thus its diagonalization requires much less
computational resources. The resulting eigenvector can then be factorized into the
individual orbital matrices by the procedure described above, and the corresponding
Ai matrices in the MPS are replaced by the new ones.

The whole MPS is then optimized iteratively. Usually one starts at one end of the
chain and works its way to the other end, until each orbital has been optimized at
least once. As all orbitals are correlated with each other, the direction is then re-
versed and the algorithm sweeps back and forth through the chain until convergence
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is reached.

The advantage of DMRG is thus to only diagonalize small matrices. However, one
has to repeatedly construct effective Hamiltonians, diagonalize them and factorize
the eigenvectors. Additionally the DMRG algorithm usually requires many itera-
tions in order to transport the correlation information of orbitals from one end of
the chain to the other. It is therefore desirable to locate orbitals strongly correlated
with each other in close vicinity, while having weakly correlated orbitals sitting at
the ends of the chain.

Another weakness of DMRG is dynamical correlation. This would require a large
number of blockstatesM as many configurations with minor individual contribution
each need to be represented by the MPS. Furthermore the amount of correlation on
each orbital and a larger number of pair correlations become important (cf. Figs. 4.8
and 4.9), which cannot efficiently be represented by the linear structure of the orbital
chain. Static correlation however can be recovered very well and the truncation
scheme is not biased towards any specific excitation class of configurations, as in the
CISD scheme.

Different additional approaches are used to increase performance of the DMRG al-
gorithm, most of them are described in the review by Szalay et al. [49]. For example
the order in which the orbitals are factorized is a degree of freedom that can be
optimized to place highly entangled orbitals close to each other, by calculating the
Fiedler vector based on the mutual information (cf. Section 2.5.2) [49, 56]. Addi-
tionally more complex network topologies than linear chains may be considered and
are subject to ongoing research [49, 57, 58, 59, 60]. Another optimization considers
the construction of the initial guess for the MPS by the CI based Dynamically Ex-
tended Active Space (CI-DEAS) procedure [49, 61]. The number of blockstates M
to keep can be adaptively controlled by the Dynamic Block State Selection (DBSS)
approach [62, 63], where a user-defined truncation error is used. And the CI Hamil-
tonian may be efficiently stored and constructed in the Matrix Product Operator
(MPO) form [49, 52], which is analogous to the MPS. DMRG may also be combined
with coupled cluster in the so called Tailored Coupled Cluster (TCC) ansatz [16]
where the coefficients for single and double excitations are extracted from the MPS
and then used to “tailor” additional external amplitudes in a CC calculation.
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2.4.2 The Method of Increments

The Method of Increments (MoI) was originally invented by Stoll [17, 18] in 1992.
Its core idea is to expand the correlation energy in contributions of centers, where
a center consists of one or more molecular orbitals. Exploiting orbital localization
allows to assign each center to a single site of the system. One then starts by
calculating the 1-center increments

εi = Ei − EHF (2.130)

which correlates only a single center of occupied orbitals with the whole virtual
orbital space. Correlations between two centers i and j are not considered at this
step. Instead, this is recovered in a second step by combining both centers in one
calculation

εij = Eij − EHF (2.131)

and then calculating the 2-center increments by subtracting the already accounted
for 1-center increments

∆εij = εij − εi − εj. (2.132)

A graphical representation for calculating the 1- and 2-center energies is provided
by Fig. 2.4, labeled as Eocc

i and Eocc
ij respectively. The procedure is then continued

with the next level of increments, e.g. the 3-center increments are given by

εijk = Eijk − EHF (2.133)
∆εijk = εijk −∆εij −∆εik −∆εjk − εi − εj − εk. (2.134)

and so on. The exact correlation energy at the FCI level is then recovered when
performing the complete expansion until all centers are included in a single calcula-
tion.

Ecorr =
∑
i

εi +
∑
i

∑
j>i

∆εij +
∑
i

∑
j>i

∑
k>j

∆εijk + . . . (2.135)

In practice however, the truncation is cut once converged to sufficient accuracy. This
exploits the fact that multi-center correlations typically decrease the more centers
are combined.

Using localized orbitals additionally allows for a priory selection of centers which
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Figure 2.4: Molecular orbital scheme for the MoI expansion. Arrows indicate orbital
occupation of the HF configuration, while the colored rectangles indicate
the active space for each calculation, i.e. which orbitals are available for
the construction of Slater determinants. Here it is assumed, that each
center corresponds to a single orbital.

are spatially close to each other. Centers far away from each other typically result
in negligible increments.

Another interesting approach has been recently presented by Eriksen, Lipparini, and
Gauss [64], who did not develop the correlation energy in centers of occupied orbitals,
but in centers of virtual orbitals instead, as indicated by Evirt

i and Evirt
ij in Fig. 2.4.

The basic idea here is that the number of virtual orbitals is usually much larger
than the number of occupied orbital. Thus correlating a small number of virtual
orbitals (centers) with the whole occupied orbital space leads to much smaller active
spaces for each individual increment. Although at the same time this leads to a much
larger number of increments to be calculated, the reduced computational effort of the
individual calculations outweighs their number. Additionally, neglecting a number
of virtual increments can be considered.

2.4.3 Quantum Monte Carlo

Another class of methods, which can be found in various fields, is Monte Carlo
Sampling. Instead of explicitly considering all possible contributions to a problem,
they are randomly sampled and the final result is inferred from that data. For ex-
ample the conventional approach for obtaining numerical integrals, is to split the
argument space into a grid. For each grid point the contribution to the overall
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area is approximated by a simple shape with known area law, e.g. rectangles. The
overall result is then obtained by summing the contributions from each grid point.
Especially for high dimensional functions, the number of grid points grows rapidly
and becomes computationally costly to evaluate. Monte Carlo sampling reduces
this computational cost by not considering every individual contribution, but by
randomly choosing only a subset of them. Provided this subset is statistically rep-
resentative of the whole set, the average contribution from each sampled grid point
corresponds to the full solution.

Another common approach is to sample probability distributions by random walks.
A walker, whose attributes define the state of a physical system, moves in a time
dependent simulation through the space of all states. Depending on the transition
probability between states, and a randomly chosen number, the walker may move
from one state to another at each time step, or not. If a large enough number
of walkers are used, and the system reaches equilibrium, then the overall distribu-
tion of all walkers will not change anymore, and the time-dependent simulation is
converged.

In Diffusion Monte Carlo (DMC) [19] the imaginary-time Schrödinger equation for
such a simulation is given by

∂Ψ
∂τ

= −ĤΨ (2.136)

where τ = it. The wave function Ψ(τ) at time step τ is proportional to the starting
wave function Ψ(τ = 0)

Ψ(τ) ∝ e−τĤΨ(τ = 0) (2.137)

For the initial wave function one may choose for example the Hartree-Fock ground
state Ψ(τ = 0) = ΨHF. In the long-limit the exponential term will project out all
excited states and leave the electronic ground state Φ0

Φ0 = lim
τ→∞

e−τ(Ĥ−E0)ΨHF. (2.138)

The proportionality constant eτE0 is introduced to keep the ground state from de-
caying as well.
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Full Configuration Interaction Quantum Monte Carlo

Similar to DMC, in Full Configuration Interaction QuantumMonte Carlo (FCIQMC)
the Schrödinger equation is propagated in imaginary time. However the wave func-
tion is represented in configuration space. The method will be briefly summarized in
the following. For further details, please refer to the original publication by Booth,
Thom, and Alavi [20].

In FCIQMC configurations are represented by walkers. And the amount of walkers
Ni on each configuration corresponds to the coefficient ci of the FCI method.

ci ∝ Ni (2.139)

The use of determinants ensures the wave function is antisymmetric according to
the Pauli principle. Furthermore, the walker population on each determinant may
have a negative sign. The coupling between two determinants |i〉 and |j〉 via the
Hamiltonian

Kij = 〈i|Ĥ|j〉 − EHFδij (2.140)

gives the transition probability between the configurations (states) i and j, and thus
determines the propagation of the (initial) walker distribution. Together with the
imaginary-time Schrödinger equation Eq. (2.136) and using determinants as a basis
set this yields a set of coupled differential equations

− dci
dτ = (Kii − S)Ci +

∑
j 6=i

Kijcj (2.141)

where S is an energy shift parameter which will control the population growth.

The above equation is solved by an algorithm that evolves a population of walkers
until an equilibrium is reached. The algorithm consists of three steps for each
iteration. First, each walker may spawn new child walkers on a coupled determinant
with a certain probability. The second step considers cloning and death events of
walkers on their current determinant. Those two steps are independent from walker
populations on other determinants and may thus be executed in parallel without
loss of performance due to communication overhead. The final iteration step sums
over all walker contributions (spawned, cloned and old parents) and thus annihilates
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populations with different sign on the same configuration.

The energy shift parameter S controls the total number of walkers. By definition it
represents the correlation energy once a the walker population achieves equilibrium
close to the electronic ground state. Values for S larger than the correlation energy
will lead to an increase of the number of walkers, while a value smaller than the
correlation energy decreases the number of walkers. An algorithm may therefore
control the value of S such that the number of walkers is kept constant at a user
defined target number. A typical FCIQMC calculation thus starts with some fixed
value larger than the correlation energy, e.g. S = 0, and propagates the walker pop-
ulation until the predefined number of walkers is reached. The following iterations
will then try to vary S such that the number of walkers is kept constant. Once an
equilibrium distribution of walkers is reached, the energy shift will correspond to
the correlation energy.

In practice however, exact equilibrium will not be reached. Instead the walker dis-
tribution will fluctuate around the exact solution. Accordingly, the energy shift will
oscillate around the correlation energy, which can then be approximated as the mean
energy shift over many iterations. Since the fluctuation in the walker distribution
is not completely random, but each step directly depends on the previous iteration,
the sampled data points are correlated and direct averaging may be biased. This
can be avoided by performing a reblocking analysis [65] of the correlated data.

Another measure for the correlation energy is obtained by the projection

E(τ) = 〈ΨHF|Ĥe−τĤ |ΨHF〉
〈ΨHF|e−τĤ |ΨHF〉

(2.142)

which may be rearranged to [20]

E(τ) = EHF +
∑

j∈{singles,doubles}
〈j|Ĥ|ΨHF〉

Nj(τ)
NHF(τ) . (2.143)

It is fast to evaluate since it only depends on single and double excitations. The
projected energy may be improved by choosing a different trial wave function than
the HF configuration. Typically a small subspace of configurations is evaluated
deterministically to yield such a trial wave function. Similar to the energy shift, the
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projected energy will oscillate with the walker population and a mean value over
many iterations needs to be considered for the final result.

The advantage of the FCIQMC approach lies in the amount of walkers. Although
a critical amount of walkers which depends on the system under study is required,
this is usually much smaller than the number of configurations that needs to be
considered in the conventional FCI approach. The main reason is, that in FCIQMC
not all determinants with minor contributions are populated by walkers in every time
step. Instantaneously, only a subset of them is populated, however all of them remain
accessible in the next propagation step [66]. An a priori choice of configurations to
include is therefore not necessary. This is a feature common to FCIQMC and DMRG
and an important ingredient for a black box method. In contrast to FCIQMC,
DMRG will however still completely neglect small contributions due to the low-rank
tensor approximation. DMRG is thus not suited for dynamic correlation unless a
very large number of blockstates is kept, while FCIQMC is able to treat it.

An extension to FCIQMC is the initiator-FCIQMC method, which allows to reduce
the number of walkers required [66, 67]. An additional rule is introduced, which
classifies certain configurations as an initiator. Only initiators are allowed to spawn
walker populations on previously unoccupied determinants. This allows to keep the
overall sign of the wave function well-defined and controlled, which would other-
wise result in large amount of noise in the walker population. A related, further
extension introduces so called super-initiators [68], where all populations spawned
by a super-initiator are considered initiators. Finally, the semi-stochastic extension
[69, 70] divides the configuration space in two sets: Here, the stochastic error is re-
duced by exact, deterministic treatment of the first set covering the most important
configurations, while treatment of the other set remains stochastic.

2.5 Quantifying Electron Correlation

While weak correlation can be very well treated using Coupled-Cluster methods,
e.g. CCSD(T), strong correlation can be quite challenging. The necessity to treat
multiple dominant configurations on the same foundation is typically met by the
CASSCF method, i.e. choosing an active space of orbitals to construct the configu-
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rations and then optimize them simultaneously with the orbital coefficients, which
reduces the initial bias of the orbitals towards the HF starting point. Large, more
complex systems however require large active spaces. And the computational scaling
of the active space is in principle equivalent to the FCI method. Therefore each or-
bital that may be removed from the active space yields large computational savings.
Measures to quantitatively determine the importance of each orbital to the (strong)
correlation is therefore desirable.

2.5.1 Quantum Entanglement

In quantum mechanics a physical system is described by a wave function. If the
system is composed of two (or more) particles, and those particles do not interact
with each other, the particles may be considered individually. Each particle then
has its own independent wave function and the total wave function for the combined
system is given by the product of the single-particle wave functions. If the particles
however do interact, e.g. electrons via the Coulomb force, those particles become
entangled, and a simple product ansatz is insufficient for a correct description of the
total system.

Entanglement can be represented by density matrices as already shown in Eq. (2.104).
Each state |φi〉 is then associated with a weight, or probability, pi = c∗i ci, which is
normalized to ∑i pi = 1. If only one state is populated, i.e. there is a single non-zero
pi = 1, the system is unentangled.

A general state may be split into subsystems according to Eq. (2.127), after defining
the corresponding subsystems. Even if the overall state of the combined system is
pure, the resulting RDMs for both subsystems may be in mixed states.

In the context of quantum chemistry, the combined system is the electronic state
which is split into entangled orbitals. In HF theory these orbitals are considered to
be unentangled, or pure, justifying the product ansatz for the wave function. The CI
ansatz then introduces the possibility of the previously unentangled orbitals to be
mixed, and therefore recovers the correlation energy. The term electron correlation
however is defined as an energy (difference) (cf. Eq. (2.63)), while entanglement
measures how pure or mixed a state is. Both concepts will be further elucidated in
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2.5 Quantifying Electron Correlation

the following.

Note that, while the correlation of electrons due to the Coulomb interaction is
physical, orbital entanglement is not. Splitting the electronic wave function into
orbitals is an abstract mathematical tool. And different splits (sets of orbitals) are
possible, e.g. canonical, localized or natural orbitals (cf. Section 2.2.9). Thus the
orbital picture is artificial and therefore entanglement between orbitals is artificial
as well, i.e. it cannot be measured experimentally. As a consequence the analysis of
correlation effects remains a purely theoretical tool.

2.5.2 Quantum Information Theory

The field of information theory was introduced by Shannon in 1948 [71, 72] and is
a mathematical framework to study information in communication and data stor-
age. It serves as a foundation for data compression as well as efficient encoding and
transmission of messages. Information theory is thus crucial for many applications
of modern information technology including mobile phones, money and trade trans-
actions, the Internet in general or even communication with space probes where
bandwidth is often very limited. It has been in applied in various fields, including
molecular information theory [73], linguistics [74] or black holes in astrophysics [75,
76].

The central quantity in information theory is the Shannon entropy

H(X) = −
n∑
i=1

P (xi) logb P (xi) (2.144)

whereX = {xi} is a set of discrete variables and P (xi) a classical probability distri-
bution function. The basis b of the logarithm may be chosen arbitrarily, but typical
choices are the natural (b = e), binary (b = 2) or decimal (b = 10) logarithm.

The Shannon entropy measures how much information with a certain occurrence of
xi is associated. Consider for example a coin toss, i.e. a binary random variable x1

with probability P (x1) being equal to 1, and a second variable x0 with probability
P (x0) = 1−P (x1) being equal to 1. The corresponding Shannon entropy is plotted in
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Figure 2.5: Shannon Entropy of a binary random variable x1 with probability P (x1)
being equal to 1. The maximum value H = ln 2 corresponds to a fair
coin toss, with heads and tail being equally likely (P (x1) = 0.5). The
minimum values H = 0 correspond to a rigged coin with two equal sides
(P (x1) = 0 or P (x1) = 1), where the outcome is predefined.

Fig. 2.5 as a function of P (x1). For a fair coin toss maximum entropy with H = ln 2
is reached, because both results, heads and tails, are equally likely (P (x1) = 0.5)
and impossible to predict. For a rigged coin with two equal side, either heads or
tails, the entropy reaches H = 0 as the outcome is predefined and no information
is obtained from the toss. Values in between would represent a magical coin, where
increasing entropy means a gamble on the result of a toss would be increasingly
harder to win.

The form of the Shannon entropy in Eq. (2.144) is very similar to the thermodynamic
Gibbs entropy

SG = −kB
∑
i

pi ln pi (2.145)

with the Boltzmann’s constant kB and the probability pi of the i-th microstate.
This connection may be interpreted as the amount of information available on the
microstates a given macrostate is constituted of.

The actual functional form for the entropy has some degree of freedom. A more
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2.5 Quantifying Electron Correlation

general version is the Rényi entropy [77]

Hα(X) = 1
1− α log

(
n∑
i=1

P (xi)α
)

(2.146)

where α is a free parameter with α ≥ 0 and α 6= 1. In the limit of α → 1 the
Shannon entropy is obtained.

In quantum mechanics, information theory is used to quantify the entanglement
of quantum states. Instead of a classical distribution function P (xi), a quantum
state is described by a density matrix ρ (cf. Section 2.3). Accordingly, Quantum
Information Theory (QIT) defines the von Neumann entropy [28, 78]

S(ρ) = −Tr(ρ ln ρ) = −
∑
i

ωi lnωi. (2.147)

It measures how much an entangled state is distributed among its pure eigenstates
|φi〉 by considering the amplitudes (eigenvalues) ωi.

In quantum chemistry, QIT can be used to quantify the entanglement of the orbitals
in the molecular system. As mentioned before, this entanglement is related to
the orbital picture (cf. Section 2.2.2), an artificial split of the many-electron wave
function into subsystems. The CI wave function describes how to mix (entangle)
these orbitals back together, to achieve a more physical description of the electronic
state. It therefore depends on the choice of the one-electron basis from which the
configuration space is constructed. Any unitary transformation (cf. Section 2.2.9)
in the orbital space, will therefore result in different entropies.

A QIT analysis is thus based on a CI wave function, and a quantum chemical
calculation is required first. Following the notation from the DMRG section (cf.
Section 2.4.1) the CI vector may be reshaped into a tensor U(α1, . . . , αd) of order d,
which corresponds to the number of (active) orbitals, labeled i and j in the following.
Each index di goes over the four possible occupations a spatial orbital can adopt
for the different electron configurations: |−〉, | ↓〉, | ↑〉 and | ↑↓〉. Working with
spin orbitals is possible as well and would give a tensor of order 2d with only two
occupations each.

Next, the n-orbital RDMs are calculated by tracing over all but n orbitals. With the
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above definition of U(α1, . . . , αd) in Eq. (2.123), the 1-orbital RDMs of Eq. (2.115)
becomes

ρi(αi, α′i) =
∑

α1,..., 6αi,...,αd
U(α1, . . . , αi, . . . , αd)U(α1, . . . , α′i, . . . , αd), (2.148)

while the 2-orbital RDMs of Eq. (2.116) becomes

ρij(αi, αj, α′i, α′j) =
∑

α1,..., 6αi, 6αj ,...,αd
U(α1, . . . , αi, αi, . . . , αd)U(α1, . . . , α′i, α

′
j, . . . , αd),

(2.149)

The entanglement of each orbital-RDM is then obtained by first diagonalizing it.
In quantum chemistry the 1-orbital RDMs are already diagonal due to particle and
spin quantum number conservation. Then the n-orbital von Neumann entropy [61,
79] is calculated from all eigenvalues {ω}. For example the 1-orbital entropy Si and
2-orbital entropy Sij are given by

Si = −Tr (ρi ln ρi) = −
∑
α

ωi,α lnωi,α (2.150)

Sij = −Tr (ρij ln ρij) = −
∑
α

ωij,α lnωij,α (2.151)

where the summation index α enumerates the 4n eigenvalues of each n-orbital
RDM.

For an intuitive understanding consider the two extreme cases of no entanglement
and maximum entanglement. In the first case only one of the four occupations
is relevant, e.g. ωi,0 = 1 and ωi,1 = ωi,2 = ωi,3 = 0. Then Eq. (2.150) becomes
Si = −1 ln 1 − 3 × (0 ln 0) = 0. On the other hand, maximum entanglement is
reached when all possible occupations are of equal relevance, i.e. ωi,α = 0.25 for all
α, which gives Si = −4 × 0.25 × ln 0.25 = ln 4 ≈ 1.39. The von Neumann entropy
thus quantifies the amount of entanglement between the subsystem represented by
the corresponding RDM and the rest of the system (environment). This also means
the amount of entanglement between two orbitals i and j is not covered by the 2-
orbital entropy Sij, while the two 1-orbital entropies Si and Sj account for it. Thus
the mutual information Iij can be defined as [80]

Iij = Si + Sj − Sij. (2.152)
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2.5 Quantifying Electron Correlation

Furthermore one can define the total correlation

Itot =
∑
i

Si (2.153)

of the wave function [63, 81].

To consider any arbitrary number of orbitals and their entanglement, the concept of
the mutual information may be generalized to the ξ-correlation [81]. Here ξ denotes
a chosen subset of orbitals, e.g. for ξ = {i, j} the ξ-correlation corresponds to the
mutual information. The combined subsystem of all ξ is then represented by the
RDM ρL and the individual one-orbital RDMs are ρX for X ∈ ξ. The ξ-correlation
is then given by

Cξ(ρL) =
∑
X∈ξ

S(ρX)− S(ρL) (2.154)

2.5.3 Increments vs. Entropies

As an alternative measure to QIT one can consider the energy increments introduced
by the Methods of Increments (cf. Section 2.4.2). By assigning each orbital to its
own center, the corresponding increments may be directly interpreted as correlation
measures. The 1-orbital increments εi may thus be associated with the 1-orbital
entropy Si, while the 2-orbital increments ∆εij correspond to the mutual information
Iij.

However, both measures have very different definitions and therefore cannot directly
be related. Although the equations to obtain the mutual information and 2-orbital
increments, cf. Eqs. (2.132) and (2.152) respectively, are quite similar and might
suggest a deep relationship, the generalizations of these equations to higher order
orbital correlations, cf. Eqs. (2.134) and (2.154) respectively, deviate from each
other. Furthermore, the increment measures are in units of energy and are obtained
by applying the same Hamiltonian to different truncations of the CI space. On
the other hand, the entropy measures consider the distribution of state occupations
in each subsystem by applying a logarithmic function, and are thus dimensionless.
Finally, the “mixedness” of a state, does not directly relate to its energy expectation
value and thus the occupation number of an orbital does not tell much about its
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contribution to the correlation energy. A systematic connection between increments
and entropies does therefore not exist.

Another important point is the setup of many individual calculations for the incre-
mental approach, making each increment agnostic of the correlation effects of other
increments on its level. For example ∆εi is not correlated with ∆εj, this may only
be recovered by considering 2-orbital increments. The entropies however may be
extracted from a single calculation, correlating all orbitals at once (e.g. CASCI or
DMRG), thus all 1-orbital entropies are correlated with each other. Nevertheless one
may obtain entropies based on an incremental approach as well, again making them
agnostic to each other. The advantage here would be of computational efficiency
only.

A drawback of the original MoI scheme is the restriction to closed shell systems as it
is unclear whether to assign singly occupied orbitals to the set of occupied or virtual
orbitals. Application of the MoI to systems with only one unpaired electron has
been summarized and demonstrated Müller and Paulus [82], where the expansion
Eq. (2.135) has been modified. This however is not possible for more than a single
unpaired electron. Although the individual incremental calculations may be setup
and calculated, they will not yield a meaning full total correlation energy.

The second drawback of MoI is, that it does not provide a correlation measure for
groups of orbitals consisting of occupied and virtual orbital at the same time. The
expansion is either in terms of occupied orbitals, or in terms of virtual orbitals. For
example the structure of the εij matrix is block diagonal, with the off-diagonal block
missing.
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3 Molecular Model Systems

For the purpose of testing and analyzing new approaches for correlation methods,
suitable model systems are required. Common model systems in the physics com-
munity are for example Heisenberg spin chains [83] or the Hubbard Model [84].
Their simplicity allows for systematic and controllable test cases where solutions on
different levels of theory are easily accessible.

The focus of this thesis is to evaluate the application of existing wave function based
correlation methods, as well as systematic approximations to them, to more realistic,
chemical systems. As dynamically correlated systems are usually well describe by
Coupled Cluster methods, the main interest here are strongly correlated systems.
Within the scope of this work, the term model refers to the set of orbitals passed to
the CI method, i.e. the one- and two-electron integrals in MO basis (cf. Eqs. (2.72)
and (2.73) respectively), typically collected in a file called FCIDUMP. This chapter
will therefore present the chosen model systems in their chemical background as well
as which numerical parameter are used to yield the orbitals used for the calculations
presented in Chapter 4.

3.1 Dissociation of N2/N+
2

The dissociation of N2 is a common test case for strong correlation methods. Two
examples that cover the application of new methods to N2 are the FCIQMC method
[20] and the DMRG based tailored coupled cluster approach (DMRG-TCCSD)
[16].

Various studies investigated the electronic structure by means of ab initio calcula-
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tions [85, 86, 87, 88]. A broad range of experimental studies using different spectro-
scopic approaches are available as well [88, 89, 90, 91, 92, 93].

The small number of atoms and the high symmetry of the system results in molecular
orbitals that are easily interpreted. They may be classified as σ or π bonds as well as
bonding or anti-bonding orbitals. A schematic molecular orbital diagram depicting
those orbitals and the HF configuration is shown in Fig. 3.1. It is therefore a suit-
able system to study correlation effects and interpret them with respect to a basic
chemical concept of bonding situations. Being a small system, in number of elec-
trons, also allows for a highly accurate treatment with the standard multi-reference
methods. N2 is indeed a single-reference problem around equilibrium distance, i.e.
the bonding regime, but strong correlation becomes increasingly important towards
the limit of the dissociated fragments. This is evident from Fig. 3.2 (lower panel),
which plots the CI coefficients and their magnitudes (see also Fig. 2.1).

While the N2 is still a relatively simple system, a more complex electronic structure
is found in the open-shell N +

2 species. In its excited B 2Σ+
u one can even find a

change of the leading configuration during bond stretching (cf. Fig. 3.2).

Optimized molecular orbitals are obtained on the CASSCF(10,8)/aug-cc-pV5Z and
CASSCF(9,8)/aug-cc-pV5Z level, for N2 and N +

2 respectively, using Molpro [94,
95, 96]. As a reference covering strong and weak correlation simultaneously, sub-
sequent MRCI-SD calculations have been performed and compared with DMRG
results [97]. As the dissociation energies on the MRCI level agree with literature
values [97], the obtained orbitals represent a data set of a realistic chemical sys-
tems.

The Potential Energy Surfaces (PES) for the three states under investigation, the
N2 ground state (X 1Σ+

g ), N
+
2 ground state (X 2Σ+

g ) and N +
2 excited state (B 2Σ+

u )
as a function of the internuclear distance R are presented in Fig. 3.3. The major
contributions to the CI vectors at the MRCI-SD level are plotted in Fig. 3.2. All
three states show typical single-reference behavior at equilibrium distance and pro-
nounced multi-reference character at the dissociation limit. The excited B 2Σ+

u state
of N +

2 is distinguished by a change of the leading configuration at R ≈ 1.4Å.
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Figure 3.1: Schematic Molecular Orbital diagram showing the Hartree-Fock config-
uration of N2 (X 1Σ+

g ) and its molecular orbitals. Figure adopted from
Ref. [97].
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g ) and
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given for each dissociation limit. Figure adopted from Ref. [97].
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3.2 Polyacetylene

The hexatriene (C6H8) molecule provides a simple model system including C H and
C C σ bonds as well as C C π bonds. Thus different bonding situations may be
compared. A previous MoI study showed it is possible to distinguish between the
different bonds by comparing the increments [98].

The linear structure of conjugated trans-polyacetylene may easily be extended to
yield longer model systems, where similar results are to be expected. Here, the
hexatriene is chosen, as it provides spatially separated double bonds while still being
fairly small in number of orbitals. Localizing the occupied molecular orbitals yields
a set of orbitals corresponding to the above mentioned bonds, thus allowing an
intuitive chemical interpretation of the correlation effects.

For the calculations a geometry with all bond angles fixed at 120° is assumed. The
bond distances are set to 145 pm for C C bonds, 136 pm for C C bonds and 109 pm
for C H bonds.

The model system is based on Hartree-Fock calculations using the cc-pVTZ basis set
[99]. Pipek-Mezey [12] localization was applied for all occupied orbitals, while the
virtual orbitals remain unchanged. Next an active space is selected, by excluding the
6 1s carbon core orbitals and then selecting all orbitals arising from the carbon 2sp
and hydrogen 1s shells. This yields 32 electrons in 32 orbitals, i.e. a CAS(32,32).

3.3 Be6 Rings

Beryllium features a close degeneracy between its doubly occupied 2s shell and
empty 2p shell, a situation with potentially large correlation effects. Furthermore,
the small number of electrons allows to construct molecular system of varying sizes,
suitable for benchmarkg calculations with highly accurate methods.

One of such model systems are Be6 rings in D6h symmetry. Previous studies in-
vestigated its metal-insulator-transition during bond stretch by means of DMRG
[100] and considered different basis sets and correlation methods for the incremental
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Figure 3.4: Weights of the two leading configurations of the ground state of the Be6
ring calculated with a RAS(4,24) calculation employing a minimal basis
set. The valence occupations are given beneath in terms of the molecular
orbitals in D6h symmetry. In the insets, depictions of the 1b2u (left) and
2b1u (right) orbitals are shown. Reprinted from Ref. [101], with the
permission of AIP Publishing.

expansion [101]. The electronic ground state is dominated by 2 different configura-
tions as shown in Fig. 3.4. The first configuration describes the equilibrium distance
(R = 2.2Å) and the other one the dissociation limit (R = 3.5Å) [100].

The molecular orbitals for the model are based on Hartree-Fock calculation using the
cc-pVDZ basis set [99]. Additionally, all occupied and all virtual molecular orbitals
are localized according to the Foster-Boys scheme [11]. Due to the D6h symmetry
of the nuclear geometry, all localized orbitals show up in groups of 6 degenerate
orbitals, which may be transformed into each other by applying C6 rotations around
the z axis perpendicular to the molecular plane. Especially for elongated internuclear
distances R, this yields a strongly correlated system.

The active space is selected by excluding the 1s core orbitals of each Be atom,
thus 6 occupied molecular orbitals with 12 electrons remain in the active space.
Additionally, all localized virtual orbital will be considered.
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Table 3.1: Thermochemistry for different decomposition pathways of CoF4 and CoF3
as calculated on CCSD(T)/aVTZ level of theory [102]. Energies in kJ

mol .

Reaction Energy ZPE corrected
CoF4 CoF2 + F2 280.1 271.7
CoF4 CoF3 + F 141.0 133.5
CoF4 CoF3 + 1

2 F2 64.8 60.0
CoF3 CoF2 + F2 291.6 285.2
CoF3 CoF2 + 1

2 F2 215.3 211.7

3.4 Cobalt Fluorides

As a 3d transition metal cobalt tends to form various compounds with magnetic
properties. Its atomic electron configuration is given as [Ar]3d74s2. Formally, for
molecular CoIVF4 one thus obtains 5 unpaired electrons in the Co 3d shell. Indeed
its electronic ground state is a high-spin sextet multiplet. Similar, CoF3 and CoF2

form high-spin quintet and quartet ground states respectively [102]. Matrix-isolated
IR spectra of all three molecules have been successfully measured [103], while the
cationic species have been detected in mass spectrometric experiments [103, 104].

All three compounds (CoF2, CoF3 and CoF4) have been previously calculated on
the CCSD(T)/aVTZ and B3LYP/aVTZ levels [102] and show high-spin character,
i.e. all electrons in the Co 3d shell are unpaired. The structure of CoF2 has a linear
geometry (D∞h) [102, 105], while CoF3 is trigonal planar (D3h) [102, 106, 107]. The
CoF4 minimum structure is reported to be tetrahedral (Td) [102]. The decomposition
of CoF4 and CoF3 under release of F or F2 is endothermic in all cases [102], as shown
in Table 3.1.

Molecular CoF4 is the highest neutral fluoride [104, 108] and is therefore of potential
interest as oxidation or fluorination reagent. Solid CoF3 has an industrial application
for the synthesis of fluorocarbons, where it is reduced to CoF2, and in a second step
regenerated by F2 [109].

The systems may also be considered as a prototype for 1-dimensional chains. Ei-
ther CoIIO or planar CoIVO2 chains are possible, as shown in Fig. 3.5. Both chains
may be terminated by fluorine. The CoO2 chains have been experimentally pre-
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Figure 3.5: Structures for linear chains of CoIIO and CoIVO2. The chains may be
arbitrarily extended and terminated with fluorine.

Table 3.2: Correlation diagnostics (T1 and D1) for the CoFn systems as obtained
from RCCSD(T)/cc-pVDZ calculations.

T1 D1

CoF2 (4∆g) 0.032 0.076
CoF3 0.042 0.118
CoF4 (D4h) 0.070 0.263
CoF4 (Td) 0.054 0.163

pared and studied on a Ir(100) surface [110, 111], where they showed ferromagnetic
character.

The large number of singly occupied orbitals in these systems presents a challenge
for standard correlation methods. However, the number of electrons in these system
is still manageable and the range from CoF2 to CoF4 allows to pick and compare
benchmark cases of varying size.

The reported Co F bond lengths are in the range of 1.72 to 1.75Å, depending
on the species (CoF2, CoF3, CoF4) and method (B3LYP, CCSD(T), exp.) [102].
For simplicity a fixed bond length of 1.73Å is chosen for all cases studied in the
following.

In Table 3.2 the T1 and D1 diagnostics, based on RCCSD(T) calculations, indicate
the strongly correlated character of all four model systems. Commonly, T1 and D1

diagnostics larger than 0.02 and 0.05 respectively, are considered to be strongly cor-
related. Another threshold specifically intended for 3d transition metal containing
compounds was suggested with 0.05 and 0.15 respectively [112]. The trend is clearly
increasing with the number of F atoms, with the D4h structure being the most
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Figure 3.6: The Co 3d orbitals in the CASSCF(7,5) calculation of CoF2 using the
cc-pVDZ basis set. The energetic order is plotted to the left. The occu-
pation patterns and CI coefficients ci of the four included configurations
and their corresponding electronic states are indicated to the right.

strongly correlated case. According to the thresholds for 3d transition metals, only
CoF4 is strongly correlated, but all systems clearly exceed the more conservative
threshold.

CoF2

The electronic ground state of CoF2 is reported to be an 4∆g state with the first
excited 4Σ−g state about 5 mEh higher in energy [105]. Due to reduction of the full
D∞h symmetry to its the abelian subgroup D2h, the two degenerate 4∆g components
fall into the Ag and B1g IRREPs, while 4Σ−g is B1g. For a qualitatively reasonable set
of orbitals a CASSCF(7,5) calculation with a state average of equal weights for the
three mentioned components and using the cc-pVDZ basis set [99] is performed. The
electronic states and a qualitative description of the Co 3d orbitals are summarized
in Fig. 3.6. Calculations are performed with the Molpro software package [94,
113].

The CASSCF(7,5) yields the 4Σ−g to be 4 mEh lower in energy than the 4∆g, i.e.
energetically their order is reversed. This however can be corrected by MRCI or
DMRG calculations. Furthermore the 4Σ−g state is described by two configurations
with coefficients 0.82 and −0.57 at CASSCF(7,5) level, while the two 4∆g compo-
nents consist of a single configuration each.

The model for the CASCI calculations of CoF2 is constructed by first excluding
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3 Molecular Model Systems

all orbitals with eigenvalues below −3Eh, which yields 11 core orbitals. It is then
necessary to focus only on a single state (component) for the following discussions.
The 4Σg is already described by two leading configurations, which complicates the
definition and correct assignment of further correlation contributions. Selecting only
one of the two 4∆g may break symmetry of the degenerate 3d orbitals, but simplifies
the model. Since in the B1g IRREP the 4Σg state is energetically close to the 4∆g,
it may cause some instabilities in the calculations. Therefore the Ag component is
chosen here.

For an optional localization the remaining orbitals are then split into 3 sets: doubly
occupied (closed) orbitals, singly occupied orbitals and empty (virtual) orbitals. The
set of virtual orbitals corresponds to the CASSCF(7,5) virtual orbital space. For the
singly occupied orbitals a total of three orbitals are required due to the spin quartet.
Thus only three of the five active space orbitals can be selected, and the remaining
two will be assigned to the doubly occupied closed orbital set. The three singly
occupied orbitals are selected according to the Ag component of the 4∆g ground
state (cf. Fig. 3.6). The active space will thus cover 23 electrons in 60 molecular
orbitals. These three groups of orbitals are then localized in separate groups using
the Pipek-Mezey scheme [12].

CoF3 and CoF4

In the trigonal planar arrangement (D3h) of CoF3 the Co 3d orbitals split into two
doubly degenerate pairs and a non-degenerate dz2 orbitals. This is similar to the
linear CoF2. However, due to the additional F–, the cobalt center is oxidized to
Co +

3 and one less electron needs to be distributed among the 3d orbitals. Thus
ony the dz2 orbital is occupied and the electronic ground state (A1 in C2v) is not
degenerate.

For CoF4 two structures are considered. The planar (D4h) and tetrahedral (Td)
geometries are close in energy, with the latter being the ground state structure. The
Co 3d orbitals split according to crystal field theory, i.e. in case of Td there is a
doubly degenerate pair (dz2 , dx2−y2) and a three-fold degenerate set (dxy, dxz, dyz)
higher in energy. In D4h only two orbitals are degenerate (dxz and dyz). Since the
number of 3d orbitals matches the number of unpaired electrons, all five of them
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3.4 Cobalt Fluorides

are singly occupied in the HF configurations of both structures.

The orbital space for the used models (FCIDUMP files) is constructed similar to CoF2.
Based on ROHF calculations, for CoF3 12 core orbitals are excluded from the (30,73)
active space. It includes 13 orbitals doubly occupied and 4 orbitals singly occupied
in the HF configuration. CoF4 has 13 core orbitals being excluded and the (37,86)
active space includes the 16 doubly and 5 singly occupied HF orbitals.
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4 Results

4.1 QIT Analysis exemplified on the Dissociation of
N2/N+

2

To help getting an intuitive understanding of the information available from a QIT
analyses, the discussion starts with the fairly simple N2 and its dissociation. In
combination with the ground state and one excited state of N +

2 , different chemi-
cal situations can be compared. The model system is described in more detail in
Section 3.1. A detailed discussion of the results presented here has already been
published previously [97], therefore only a summary will follow.

All information relevant for the electron correlation is encoded in the CI vector,
as partially shown in Fig. 3.2. The drawback of visualizing the CI vector is, that
it covers a large amount of configurations and is therefore difficult to grasp. The
QIT analyses can be viewed as a tool to condense the information, making it easier
to visualize and understand. Furthermore the perspective is shifted away from
individual configurations, towards individual orbitals, i.e. the split into subsystem
being responsible for electron correlation.

The QIT analyses is based on DMRG calculations using an active space of 16 or-
bitals, as indicated in Fig. 3.1, thus treating strong correlation only. Note that the
energy levels are not to scale, or may even cross in their values, depending on the
internuclear distance R. The overall qualitative picture including degeneracies, sym-
metries and approximate orbital shape however is depicted in sufficient accuracy. A
more detailed characterization of the orbitals is covered by the original publication
[97]. Although the large active space of 16 orbitals provides data for the QIT of
higher lying orbitals, the discussion will be restricted to the orbitals related to the
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Figure 4.1: Orbital occupations ωi,α as a function of internuclear distance R. The
line shapes indicate the eigenfunctions, while colors encode the molecular
orbitals. For clarity, only three eigenvectors as included. The fourth
eigenvector for the empty occupation |−〉 has been omitted and may be
inferred based on the normalization constrained ∑

α ωi,α = 1. Figure
adopted from Ref. [97].

2sp shell, as those are the most important contributions. The 1-orbital entropies
and mutual information of the 3sp shell orbitals are much smaller.

Calculations are performed using the DMRG Budapest code [114] and M = 4096
blockstates, which is close to the numerical exact limit. As a reference to the DMRG
energies, CASCI calculations using Molpro [94, 115, 116] have been performed as
well and are in good agreement [97].

The first step of a QIT analysis is constructing the 1-orbital density matrices ρi and
obtaining their eigenvalues ωi,α (cf. Eqs. (2.115) and (2.150)). In quantum chemistry
these density matrices are already diagonal due to conservation of the spin and
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Figure 4.2: 1-orbital entropy Si and mutual information Iij. Smaller contributions to
the mutual information which are not covered in the legend are indicated
by thin black lines. Figure adopted from Ref. [97].
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particle quantum numbers. Explicit diagonalization is therefore not necessary. The
eigenvalues and eigenvectors are plotted in Fig. 4.1 as a function of internuclear
distance R. They tell which occupation of each orbital yields the largest combined
weight in the CI vector. The 1-orbital entropies further condenses this information
by summing over the four eigenvalues of each orbital according to Eq. (2.150). Based
on the eigenvalues ωi,α the 1-orbital entropies Si in Fig. 4.2 (left panels) is easily
understood. Thus they will be discussed together below. The discussion of 2-orbital
correlations by means of the mutual information (cf. Eq. (2.152)) will follow after
that.

First, note the degenerate values of ωi,α due to spin and spatial symmetries. In case
of the singlet ground state of N2 (lower panel) spin symmetry dictates identical spin-
up and spin-down occupation for each orbital, they are thus depicted by a single
line. This restriction is lifted for the doublet N +

2 system. However, the degeneracy
due to the spatial orbital symmetry of the π′g/u and π′′g/u orbitals, as a result of
lowering the full point group D∞h to its largest abelian sub group D2h, holds for all
the states. Thus, in the plots, those orbitals share colors.

The plot for the N2 ground state X 1Σ+
g is rather well structured and straight forward

to understand. The 2σg and 2σu are almost exclusively doubly occupied, accordingly
their 1-orbital entropy is very small. The latter does however show a small maximum
around 1.5Å. They do thus play a minor role in the bond breaking process. The
story for the 3σ and 1π orbitals are very similar: While they exhibit at equilibrium
distance mainly double and empty occupations for the bonding and anti-bonding
MOs respectively, the two eigenvalues converge together at 1/3 at dissociation limit.
Additionally, the single electron occupations (spin-up and spin-down) evolve from
negligible level to 1/6. The distribution of the eigenvalues for each of these orbitals
thus evolves from a very ordered one with low entropy to an almost uniform one
with high entropy. The transition (maximum slope) for the 3σ orbitals is however
slightly shifted towards larger internuclear distances R. This indicates that the π
bonds break before the σ and relates to the larger overlap of atomic two pz orbitals,
oriented along the bond axis, compared to the px and py orbitals perpendicular to
it. This observation has also previously been reported by Boguslawski et al. [117].

Note that orbital pairs of the corresponding bonding and anti-bonding orbital, i.e.
3σg and 3σu as well as the 1πu and 1πg pairs, have almost identical entropies (”close
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Table 4.1: Assignment of the labels used in Figs. 4.3 and 4.4 to characteristic eigen-
vectors φij,α of the two-orbital density matrix ρij. Further possible eigen-
vectors are the basis vectors itself, which are indicated by their corre-
sponding label directly. Table adopted from Ref. [97].

φij,α 〈S2〉 label
1√
2(|−, ↑↓〉+ | ↑↓,−〉) 0 | ↑↓,−〉+

1√
2(|−, ↑↓〉 − | ↑↓ −〉) 0 | ↑↓,−〉−
1√
2(| ↑, ↓〉 − | ↓, ↑〉) 0 singlet

1√
2(| ↑, ↓〉+ | ↓, ↑〉) 2  triplet| ↑, ↑〉 2

| ↓, ↓〉 2

degenerate“). This relates to the eigenvalues ωi,α being very similar. The double
occupation in the bonding orbital (almost) equals the empty occupation in the
corresponding anti-bonding orbital, while spin-up and spin-down occupation are
(almost) the same for both. The very small deviations are related to the higher
lying virtual orbitals of the 3sp shell. The correlations to those orbitals are different
for bonding and anti-bonding orbitals, but very small in magnitude.

The mutual information (right panels in Fig. 4.2) indicates which orbital pairs are
entangled most with each other. Largest values are observed for pairs of corre-
sponding bonding and anti-bonding orbitals in the 2p shell. Smaller contributions
are related to other combinations of the same orbitals, while the 2σg/u of the 2s shell
are negligible for the N2 ground state.

For the N +
2 states similar trends can be observed. But there are also obvious dif-

ferences, related to the spin doublet. The degeneracy of the spin-up/spin-down
occupations is lifted and the electron hole in the 3σg orbital is easily identified (cf.
Fig. 4.1). This results in a drastically decreased overall entropy and mutual infor-
mation for the 3σg/u orbitals (cf. Fig. 4.2), but at the same time allows for more
entanglement with the 2σg/u orbitals. The N +

2 (B 2Σ+
u ) additionally shows charac-

teristics related to the change of the leading configuration.

Since the mutual information is constructed from the 2-orbital RDMs ρij, according
to Eqs. (2.151) and (2.152), more detailed information about 2-orbital entanglement
is provided by investigating the eigenvalues ωij,α and eigenvectors φij,α of the 2-
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Figure 4.3: Eigenvalues ωij,α of selected orbital pairs of the N2 X 1Σ+
g . The corre-

sponding eigenvectors φij,α are indicated in the legend either in terms
of the basis states, or the labels of the characteristic eigenvectors sum-
marized in Table 4.1, where possible. The letter s in the label indicates
either spin-up or spin-down and implies both options have identical val-
ues. If the eigenvectors changes with respect to the internuclear distance
R, their coefficients cij,α are added as a plot below the corresponding
eigenvalues. Figure adopted from Ref. [97].
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−1.0
−0.5

0.0
0.5
1.0

c i
j,
α | ↑↓,−〉

|−, ↑↓〉
| ↓, ↑〉
| ↑, ↓〉

0.0
0.2
0.4
0.6
0.8
1.0

ω
ij
,α

3σg + 3σu
see plot

| ↓,−〉
| ↑,−〉
|−, ↑〉

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/Å
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Figure 4.4: Largest eigenvalues ωij,α and their corresponding eigenvectors φij,α =∑
α cij,α|φαi〉|φαj〉 of the two-orbital reduced density matrices, plotted

over the internuclear distance R. Selected orbital pairs are 1π′u + 1π′g
and 3σg + 3σu, left and right columns respectively. The electronic states
from top to bottom are N +

2 B 1Σ+
u , N

+
2 X 1Σ+

g and N2 X 1Σ+
g . Labels for

eigenvectors which do not change with respect to R are assigned accord-
ing to Table 4.1, s indicates ↑ and ↓ yield same results. For eigenvectors
depending on R their nonzero coefficients are plotted. Figure adopted
from Ref. [97].

75



4 Results

orbital RMD directly. Graphical representation of this data however is difficult, due
to the large amount of data points. However, studying the eigenfunctions φij,α a set
of characteristic eigenfunctions which appear frequently is noticeable. Many of the
eigenvectors directly correspond to the 16 basis states, formed by combining the four
1-orbital basis states (|−〉, | ↓〉, | ↑〉 and | ↑↓〉) from the 2 orbitals. The remaining
eigenfunctions are mostly linear combinations of two basis states, most of them with
fixed coefficients over R. All of these characteristic eigenvectors may thus be labeled
by the corresponding basis states directly, or as summarized in Table 4.1. Only a
few occurring eigenvectors are not covered by this set of characteristic eigenfunctions
and have varying coefficients with respect to R. In these cases the main coefficients
are plotted over R, in addition to their eigenvalues ωij,α. The data for selected pairs
of orbitals in the N2 X 1Σ+

g state is plotted in Fig. 4.3.

The 2-orbital RDM eigenvalues ωij,α show an interesting pattern. In the single-
reference regime close to the equilibrium distance, all of the orbital pairs have a
single major eigenvalue close to 1, while all other eigenvalues are close to zero.
The corresponding eigenvectors resemble the occupations of the orbital pair in the
Hartree-Fock configuration. At dissociation limit however, most orbital pairs show
multiple degenerate eigenvalues between 0.1 and 0.2. The exception here are the
bonding/anti-bonding orbital pairs in the 2p shell (top panels in Fig. 4.3), which
already had come to attention with their large mutual information. For large R they
show one eigenvalue with ωij,α ≈ 0.7 with its eigenvector being a linear combination
of two basis states ( 1√

2(|−, ↑↓〉−| ↑↓,−〉) = | ↑↓,−〉−). A second, smaller eigenvalue
with three-fold degeneracy at ωij,α ≈ 0.1 shows up as well, and is similar to the
pattern of many degenerate eigenvalues for the other orbital pairs.

Thus, three different cases may be classified: First, a large eigenvalue ωij,α with an
eigenvector φij,α resembling a single occupation and in connection with a small to
medium mutual information Iij. This is observed for all orbital pairs at small R,
and therefore connected to a single-reference problem with small total correlation.
The other two cases are related to the multi-reference region at large R, where
the total correlation is larger. Small to medium mutual information in connection
with many similar eigenvalues ωij,α is observed for most of the orbital pairs. These
many eigenvalues represent many different occupations with similar weight in the
CI vector, as is typically the case for dynamic correlation. The final cases is only
found in the orbitals pairs with highest mutual information and has a single major
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eigenvalue ωij,α related to an eigenvector of few orbital pair occupations. This means
certain occupation patterns are of very high relevance, i.e. a smaller number of
configurations with large coefficient. This resembles strong correlation. This would
identify the bonding/anti-bonding orbitals to be responsible for strong correlation.

The 2-orbital RDMs yield similar results for the two N +
2 states. The orbital pairs

related to strong correlation in the N2 ground state are compared for all three con-
sidered states in Fig. 4.4. The remaining pairs are not shown here, but the complete
data set is available in the supplementary information of the original work [97]. The
1π orbital pairs are very similar across the three states, however the degenerate
triplet in N2 splits into non-degenerate eigenvalues due to the spin doublet symme-
try in N +

2 . The 3σg + 3σu orbital pair look similar in their eigenvalue spectrum,
but are very different in their related eigenvectors. In both N +

2 states, the leading
eigenvalues are connected to eigenvectors describing only a single orbital occupa-
tion, not a mixture like observed for the N2 ground state. However, the next smaller
two eigenvalues describe single electron excitations from the bonding orbital to the
anti-bonding orbital. This suggest that the 3σg + 3σu orbital pair does contribute
less to the strong correlation character in N +

2 than for N2.

The above discussion suggest that it may be possible to identify strong correlation
contributions by selecting orbital pairs with high mutual information and analyzing
their 2-RDMs. If there is only a small number of eigenvalues with eigenvectors of
few, but more than one, orbital occupation patterns, the corresponding orbital pair
may be attributed to strong correlation. One may furthermore search for certain
occupations related to strong correlation. For example in the 1π orbital pairs dou-
ble (| ↑↓〉) and empty (|−〉) occupations are more important than single electron
occupations, while there are at most 2 electrons at a time in that orbital pair.

4.2 Entropy Based Configuration Selection in
MCSCF and MRCI

The standard approach for treating strong correlation is to perform a CASSCF
calculation. The scaling with the number of active space orbitals however is expo-
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nential and only small systems may be considered. Selection of an appropriately
active space is therefore crucial, however not an easy task. Recently Stein and Rei-
her [29] suggested and demonstrated an automated active space selection based on
the 1-orbital entropies S1 for MnO –

4 . They also discussed a mutual information Iij
based selection, but did not focus on it.

An alternative suggested here is to reducing the scaling of this method by not only
selecting the active space orbitals, but further selecting specific configurations of
that active space. This raises the question of which configuration to choose. One
possible approach is to combine a DMRG calculation, which in essence tries to find
the largest configurations of the active space without a biased preselection (e.g.
based on the excitation degree) with the SCF step in MCSCF. In DMRG-SCF
the DMRG method is used as a solver for the CI step in an CASSCF calculation.
The drawback of this approach however, is that convergence in DMRG is slow and
sometimes unstable as DMRG may get trapped in a local minimum. Furthermore
there are many MCSCF iterations including a DMRG step.

Another approach might be to use DMRG to screen the configuration space. The
most important configurations could be extracted from the MPS and used in a MC-
SCF calculation with a conventional CI solver. The problem however is, extracting
the largest coefficients of the MPS is not that easy. Due to the SVD the coefficients
are not stored explicitly, thus the MPS needs to be contracted to the full tensor from
which the required information can then be obtained. Performing the full contrac-
tion in a single step would require large amounts of memory. In essence, this is the
same problem the MPS was designed to avoid in the first place. Alternatively, each
configuration may be sampled individually, but this approach deals with the same
scaling problem the original CASCI/FCI approach suffers from and is therefore not
feasible as well.

Motivated by the results of the previous section however, one may try to construct
a list of configurations based on the QIT results. The idea is to find enough con-
figurations to describe all strong correlation, but omit all configurations related to
dynamical correlation. This list of configurations is then used to optimize the or-
bitals by a MCSCF approach. Naturally, the MCSCF energy will be worse than the
CASSCF energy, as all dynamical correlation will be missing. A successive MRCI
calculation may therefore be necessary.
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4.2.1 Construction of Configurations based on 2-RDMs

All 1- and 2-orbital RDMs and related quantities (Si, Iij, ωij,α, etc.) are readily
available from the Budapest DMRG code [114] and encode all information on the
level of pair-correlations. Higher level correlations are not accessible as they require
the corresponding higher order orbital RDMs. Implementation of those is in princi-
ple possible, but they would require increased computational resources. On the other
hand, restricting to 2-orbital RDMs keeps their evaluation computationally feasible.
Therefore the idea is to approximately reconstruct the most important configura-
tions by selecting and appropriately combining the most important pair-correlations
to yield a list of configurations.

This list of configurations represents a truncation of the CASCI vector, and their
coefficients ci may be obtained from the MPS. Using these coefficients, the quality of
that truncation may be judged by its norm. Additionally, the configurations may be
further restricted by choosing a threshold parameter cthresh and keeping only those
where |ci| ≥ cthresh. Obtaining these coefficients from the MPS is usually feasible
since only a small set of configurations is considered, and sampling of the full CASCI
vector is avoided.

The basic idea is to identify orbitals and their occupations with major contributions,
and then construct those configurations, which fulfill the occupation requirements
based on this selection. How to identify these orbital pairs and their occupation
patterns is a central question and two possible approaches will be presented below.
The complete selection scheme is summarized in Fig. 4.5 and will be explained in
detail below.

Once the pair correlations are identified, the corresponding orbital pair occupations
will need to be combined to higher level correlations, until all orbitals are included.
For example, assume the following two orbital pairs and occupations have been ob-
tained: ij with occupations 20 and ab (where 2, a, b and 0 represent double, α-spin,
β-spin and empty occupation respectively) as well as ik with occupations 20 and 02.
Then in the orbital triple ijk all possible configurations including these pair occupa-
tions need to be considered. As summarized in Table 4.2, this leads to seven triple
occupations: 200, 202, 002, ab0, 2b0, ab2, 0b2. The occupation patterns are
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HF/MCSCF orbitals

CI (e.g. DMRG)
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Selection of Pair Occupations
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χthresh
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Pair Occupations
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MRCI MCSCF

ρij based φij based

Figure 4.5: Construction of configurations based on the 2-RDMs. After obtaining
the molecular orbitals an approximate CI calculation of qualitative ac-
curacy is performed and the acquired CI vector is analyzed by QIT. The
most important orbital pairs are selected by their mutual information
and the relevant occupations of each pair are then identified by either
the ρij based selection (left path) or the φij based selection (right path).
After combining all identified relevant pair occupations (cf. Table 4.2) the
list of obtained configurations may be screened by the CI vector, keeping
only those with largest amplitude. The final list of configurations is then
used in MCSCF and/or as the reference space for MRCI. The dashed
arrow indicates a possible iterative optimization of the orbitals.
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Table 4.2: Combination of selected occupation patterns of two orbital pairs ij and ik
to occupation patterns of the resulting orbital triplet ijk. The characters
2, a, b and 0 represent double, α-spin, β-spin and empty occupation
respectively.

ij ik ijk

20 20 → 200
20 02 → 202, 002

ab 20 → ab0, 2b0
ab 02 → ab2, 0b2

then normalized such that the first unpaired orbital always has α spin and dupli-
cates are removed. For the above example, the list is now 200, 202, 002, ab0,
2a0, ab2, 0a2. This process is then repeated until all orbital pairs are combined
into a single list of “configurations”. At this point, the configurations are possibly
not complete yet. Single orbitals that do not appear in any selected orbital pair
have not been considered so far. Those uncorrelated orbitals will always adopt their
occupation from the HF configuration, yielding a list of complete configurations.
Finally, configurations not matching in number of electrons or IRREP of the state
of interest can be discarded.

To select the orbital pairs a user-defined threshold for the mutual information Ithresh

is proposed. To further select the occupation patterns of those orbital pairs, two
different approaches are proposed and tested in the following. The first one is based
on the 2-orbital RDMs (ρij based) directly and aims to construct all major configu-
rations, while the second one considers the eigenvalues ωij,α and their corresponding
eigenfunctions φij,α (φij based) to classify and select only configurations related to
static correlation.

Approach 1: ρij based selection

Each matrix element ρij(αi, αj, α′i, α′j) relates to two occupations the orbital pair ij
can adopt: αi, αj and α′i, α′j. It may be interpreted as the correlated appearance of
those two occupations in the CI vector. Thus, the two occupations of each matrix
element with amplitude above a value ρthresh are included. If only a single occupation
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is obtained, i.e. the only matrix element above the threshold ρthresh is of the form
ρij(αi, αj, αi, αj), it will correspond to the HF occupation of this orbital pair. It will
therefore not be considered as a correlation and not included.

The construction of the configuration space is thus controlled by the parameters
Ithresh and ρthresh, and optionally cthresh.

Approach 2: φij based selection

In the previous section, different patterns for the eigenvalues ωij,α and -functions
|φij,α〉 of the 2-RDM for orbitals pairs attributed to strong and weak correlation have
been observed. The essential difference is, how many states of the 16 occupation
basis states |ξβ〉 = {|−,−〉, | ↓,−〉, . . . } contribute to the 2-RDMs. The second
approach will therefore try to capture those contributions.

First, all eigenvectors with eigenvalue ωij,α ≥ ωthresh are selected. The amount of
contributing basis states |ξβ〉 is then determined by calculating an entropy. For this,
the absolute square of the eigenvector’s coefficients cijαβ

χijαβ = |cijαβ|2 (4.1)

is used, as this ensures all χijαβ ≥ 0 and ∑β χ
ij
αβ = 1. The entropy is then defined

by
Sχα =

∑
β

χijαβ lnχijαβ. (4.2)

Note that, Sχα is different from the 2-orbital entropy Sij, which is obtained from the
eigenvalues ωij,α. All eigenstates |φij,α〉 with Sχα ≥ χthresh are then selected, which
will exclude all eigenvectors being mainly constituted of just a single basis state |ξβ〉,
i.e. unentangled occupations. All non-zero basis states |ξβ〉 of the selected eigenvec-
tors are then included as orbital occupations to construct the list of configurations.
For some orbital pairs ij, the HF occupation of those two orbitals may turn out
to be less important than other occupations. Depending on the selected thresholds
ωthresh and χthresh this may exclude important configurations (such as the HF con-
figuration) from the list of generated configurations. To avoid this, it is checked
whether the HF occupation for each considered orbital pair ij is included and added
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if not.

In summary, this approach thus uses the three main parameters Ithresh, ωthresh and
χthresh as well as the optional cthresh threshold to select the configuration space.
Additionally, different values for the selection of the non-zero basis states |ξβ〉 can
be considered. Here however, a fixed value of 10−8 is used.

4.2.2 Used Models and Computational Details

The two proposed approaches are tested on two different model systems. The CoF2

model is constructed as described in Section 3.4. The FCIDUMP is generated from
the natural CASSCF(7,5) orbitals, where the state average includes both 4∆g com-
ponents as well as the 4Σ−g state. The second model considers the more strongly
correlated CoF4 in D4h symmetry and uses the canonical orbitals of the ROHF
ground state. The QIT analysis for both systems is based on a DMRG calculation
using the Budapest Code [114] with the DBSS approach and density matrix cut-
off of 1× 10−5 and a maximum of 1024 block states. Convergence to the correct
states proves difficult for DMRG. However the 1-orbital entropies may also be ob-
tained from a FCIQMC calculation and thus be compared to the DMRG results for
validation.

To obtain the 1-orbital entropies the 1-orbital RDMs in spatial orbital basis are re-
quired. Those in turn can be obtained from the 2-particle RDM in spin orbital basis
as described in Section 2.3.2. The latter can be sampled without bias by propagat-
ing two independent walker populations [118]. Using 1× 106 walkers in FCIQMC is
sufficient for qualitative agreement of the 1-orbital entropies, however the energy is
not converged at this point. This is similar to the entropies being insensitive to the
number of blockstates in DMRG. Increasing the number of walkers will increase the
overall correlation and therefore yield larger entropies, but qualitatively the results
are very similar (cf. Fig. 4.6).

FCIQMC furthermore provides an estimate for the FCI energy, which here serves
as a reference. All FCIQMC calculations are performed with the NECI code [70,
119, 120] in multiple steps: First a walker population of 1× 106 was equilibrated
and then stepwise increased over 1× 107 to 1× 108 walkers. Next the superinitiator
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Figure 4.6: The 1-orbital entropies for the CoF2 system as obtained by FCIQMC, us-
ing 1× 106 (blue crosses) and 1× 107 (orange circles) walkers in NECI’s
double run mode.

method [68] is applied, where the number of superinitiators is increased stepwise
until no further improvement in the FCIQMC energy can be observed.

The QIT analysis for the CoF2 model is only performed for the Ag component of
the 4∆g state. The other component as well as the excited 4Σ−g state would yield
their own CI vectors and therefore different QIT results. Targeting more than one
state therefore introduces additional complexity and is thus not considered here.
Instead focusing on the Ag component only facilitates convergence of the DMRG,
as it cannot get trapped in the close lying excited 4Σ−g state present in the B1g

IRREP. As a consequence the following CASSCF calculation are optimized for only
a single state, i.e. have a different state average than the orbitals used in the DMRG
calculation. For CoF4 (D4h) only a single state is considered from the beginning, so
this issue does not show up.

Since both systems are calculated using their abelian subgroup D2h instead of ex-
ploiting their full molecular symmetry, degeneracies in the MCSCF orbitals may be
broken and thus result in qualitative differences. A subsequent MRCI calculation
may in principle correct this issue, but only if it is close enough to the FCI solution
which is invariant under orbital rotations. One may try to avoid such issues, for
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Table 4.3: Energies (in Eh) for the CoF2 model system obtained by different
methods.

Total Energy Ecorr Std. Deviation
HF −1580.389262
FCIQMC −1581.022206 −0.632861 3.2× 10−5

DMRG −1580.807867 −0.418606
RCCSD −1581.007664 −0.618403
UCCSD −1581.008446 −0.619185
RCCSD(T) −1581.021331 −0.632070
UCCSD(T) −1581.022103 −0.632841
CISD −1580.939596 −0.550335
CISD + David. −1581.000822 −0.611560

example by trying different state averages until the orbital symmetry is conserved.
But this requires to add more configurations if the additional states are of different
symmetry. Furthermore energies between different state averages are not directly
comparable anymore. For simplicity this is avoided here, instead all data presented
below has been checked for broken orbital symmetry and marked accordingly.

All HF, MCSCF and MRCI calculations are performed using the Molpro soft-
ware package [94, 113]. The main contributions of the QIT data are presented and
discussed in Section 4.4.2, together with CoF3 and CoF4 (Td).

4.2.3 Reference Calculations

As a reference, the total energy of both models has been calculated by different
methods and are shown in Tables 4.3 and 4.4 for CoF2 and CoF4 (D4h) respectively.
FCIQMC results are obtained using 1× 108 walkers as well as 11 and 12 superini-
tiators for CoF2 and CoF4 respectively. The standard deviation after the reblocking
analysis of the sampled correlation energy is given in the tables as well. Lowest
energies are obtained by CCSD(T) and FCIQMC, which agree within 1 mEh and
10 mEh for CoF2 and CoF4 respectively. The differences may be related to the strong
correlation character, which is more pronounced for CoF4 (cf. Table 3.2). This also
agrees with the CCSD(T) energies being much lower than FCIQMC for CoF4, which
therefore should be considered unreliable. For both models DMRG yields consid-
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Table 4.4: Energies (in Eh) for the CoF4 D4h model system obtained by different
methods.

Total Energy Ecorr Std. Deviation
HF −1779.019872
FCIQMC −1780.124419 −1.104546 4.9× 10−4

DMRG −1779.719044 −0.699172
RCCSD −1780.087041 −1.067169
UCCSD −1780.092296 −1.072424
RCCSD(T) −1780.132355 −1.112482
UCCSD(T) −1780.137332 −1.117460
CISD −1779.896442 −0.876570
CISD + David. −1780.048175 −1.028303

erably higher energies as it struggles with the dynamic correlation contributions.
The difference between the CISD and FCIQMC results are supposed to give some
rough idea about the missing contribution due to strong correlation. However this
does not provide any exact measure since a strict definition of strong correlation is
difficult. Overall the FCIQMC energy should provide the most reliable estimate to
the true FCI energy of the models and will therefore serve as the reference for the
following tests.

Next to the FCI energy, the active spaces and configurations selected based on the
QIT data will be compared to the active spaces that may be obtained by choosing the
highest correlated orbitals, based on the 1-orbital entropy Si. The corresponding
data is presented in Tables 4.5 and 4.6 up to the limit where the active space
becomes too large for feasible calculations. The data includes CASSCF energies
as well as MRCI-SD calculations based on the ROHF and CASSCF orbitals. Note
that in case of CoF2 the “ROHF” orbitals actually refer to CASSCF(7,5) orbitals
as described in Section 3.4. Due to symmetry restrictions however, there is only a
single configuration included in that active space to represent the targeted state.
The difference to the actual ROHF orbitals is therefore only in the mentioned state
averaging.

The active spaces are constructed by choosing those orbitals with largest 1-orbital
entropy S1, according to a QIT analysis of the DMRG calculation. The number of
orbitals is indicated by the first row. The actual active space may be slightly larger,
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Table 4.5: Correlation Energies (in Eh) and CPU times for CASSCF and MRCI-
SD calculations based on different active spaces selected based on the
1-orbital entropy Si. Data is shown for the CoF2 model system. Results
being based on orbitals that do not reflect the expected degeneracies due
to the molecular point group are indicated by a gray font color, while
numbers printed in bold represent preserved symmetry.

# correlated active CASSCF MRCI@ROHF MRCI@CASSCF
orbitals space energy time energy Davidson time energy Davidson time

2 (5,5) −0.0158 <1 s −0.5522−0.6129 2 s −0.5571−0.6161 3 s
3 (7,6) −0.0170 <1 s −0.5524−0.6132 6 s −0.5582 −0.6169 7 s
7 (11,9) −0.0210 <1 s −0.5545−0.6158 5 min −0.5610−0.6192 6 min
10 (15,11)−0.0310 3 s −0.5562−0.6167 11 min−0.5647−0.6209 13 min
11 (17,12) −0.0318 7 s −0.5564−0.6169 22 min −0.5654 −0.6213 25 min
12 (19,13)−0.0371 10 s −0.5565−0.6172 40 min−0.4992−0.5369 46 min
13 (19,14)−0.0720 40 s −0.5583−0.6186 21 h −0.4828−0.5109 25 h
14 (19,15) −0.0833 2 min
16 (19,17) −0.1562 4 h

Table 4.6: Correlation Energies (in Eh) and CPU times for CASSCF and MRCI-
SD calculations based on different active spaces selected based on the
1-orbital entropy Si. Data is shown for the CoF4 D4h model system. Re-
sults being based on orbitals that do not reflect the expected degeneracies
due to the molecular point group are indicated by a gray font color, while
numbers printed in bold represent preserved symmetry.

# correlated active CASSCF MRCI@ROHF MRCI@CASSCF
orbitals space energy time energy Davidson time energy Davidson time

4, 6 (9,7) −0.0098 3 s −0.8817−1.0348 59 s −0.8952−1.0483 68 s
7 (11,8) −0.0372 5 s −0.8872−1.0391 2 min −0.9116−1.0576 3 min
8 (13,9) −0.0492 4 s −0.8879−1.0399 4 min −0.9207−1.0637 4 min
9 (15,10)−0.0583 3 s −0.9006−1.0482 8 min −0.9270−1.0675 7 min
10 (17,11)−0.0583 3 s −0.9006−1.0482 7 min −0.9270−1.0675 8 min
11 (19,12)−0.0583 4 s −0.9007−1.0485 10 min−0.8921−1.0199 10 min
13 (21,13)−0.0598 2 s −0.9078−1.0521 18 min−0.8981−1.0268 18 min
15 (25,15) −0.0682 5 s −0.9090−1.0534 31 min −0.8823 −1.0031 35 min
16 (27,16) −0.0796 5 s −0.9103−1.0548 36 min −0.8923 −1.0109 41 min
17 (29,17) −0.0817 12 s −0.9104−1.0548 42 min −0.8945 −1.0121 47 min
18 (29,18) −0.1037 2 min
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as all singly occupied orbitals belonging to the three unpaired electrons are always
included as well.

The data shows that the correlation energy for CASSCF decreases with the size
of the active space, as expected. Likewise the MRCI energy based on the ROHF
orbitals decreases systematically. The MRCI calculations based on CASSCF or-
bitals only decreases up to the (17,12) and (21,13) active space for CoF2 and CoF4

respectively and then suddenly increases when adding another orbital to the ac-
tive space. The reason for the higher energies must be related to the CASSCF
orbitals, since the MRCI@ROHF energies do not show this inconsistency. Although
the CASSCF(17,11) and CASSCF(19,12) for CoF4 yield almost identical energies,
closer inspection of the orbitals reveals some significant difference in some orbitals:
Two orbitals from the smaller active space with orbital energies of −3.4Eh and
−0.67Eh are replaced in the larger active space by two orbitals with energies of
−2.1Eh and −1.97Eh. Thus there is one less core orbital available (considering a
threshold of −3Eh to classify core orbitals). Adding the former core orbital to the
active space will lower the MRCI energy significantly. Alternatively the core orbital
may be frozen in the CASSCF. However, both approaches are inconsistent with the
other calculations and will therefore not yield comparable energies.

In case of CASSCF(7,6) for CoF2 the Si based selection did not lead to a suitable
active space. For one pair of degenerate orbitals only one of the two orbitals is
included, leading to an overall symmetry breaking of the orbitals. Although the
corresponding results follow the expected trends, they should not be considered
being reliable.

The best energy estimates for CoF2 with respect to the FCIQMC energy are ob-
tained on the MRCI@CASSCF level using the (17,12) active space with −0.5654Eh

(= 89.3 %) without Davidson correction and −0.6213Eh (= 98.2 %) including the
Davidson correction. For CoF4 the (17,11) active space yields −0.9270Eh (= 83.9 %)
and−1.0675Eh (= 96.6 %) without and with Davidson correction respectively. How-
ever, even lower energies for the larger active spaces would have been expected.
They suffer however from symmetry breaking in the CASSCF orbitals in case of
CASSCF(27,16), CASSCF(29,17), CASSCF(29,18) and from core-valence orbital
rotations in case of CASSCF(19,12) and CASSCF(21,13) and thus the resulting
energies are based on qualitatively different orbitals.
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4.2.4 Results for ρij based selection

The tests for the ρij and φij based selection follow in principle the same procedure:
First the DMRG based QIT data is analyzed, as described in Section 4.2.1, to
identify orbital pair occupations which are then used to create a list of configurations
that can be used as a reduced reference space for MRCI calculations. This list of
configurations is used for orbital optimization (MCSCF) and compared to CASSCF
using the same orbitals. MRCI calculations using only the reconstructed (selected)
reference configurations as well as the full active space as reference space are then
performed on all three sets of orbitals: the original ROHF orbitals (that were also
used for the DMRG and QIT analysis), the MCSCF orbitals (optimized using the
selected configurations only) as well as the CASSCF orbitals.

Different choices for the threshold parameters (Ithresh, ρthresh and cthresh) are made
such that the reconstruction of configurations as well as the MCSCF and MRCI
calculations remain computationally feasible. If different tested values for the same
threshold parameters yields the same results, only the tighter threshold value is
presented in the following. The final choice of parameters is shown in Tables 4.7
and 4.10, together with the number of identified correlated orbitals, the number of
resulting configurations that have been reconstructed, their norm in the DMRG wave
function as well as the resulting active space. The label in the first column indicates
corresponding results in the following tables. Note that the active space may deviate
in its size from the number of correlated orbitals. On the one hand, the singly
occupied orbitals are always added. On the other hand, removing configurations
based on symmetry and number of electrons may only occasionally leave only one
possible occupation for a certain orbital. Note furthermore that the number of
configurations actually refers to the number of CON cards in the Molpro input,
which only distinguishes between empty, single or double occupation for each orbital.
The actual number of configurations, where α and β spin are distinguished, is thus
somewhat larger. Empty fields always indicate a certain calculation did either not
converge, or was not carried out due to high computational cost.

Tables 4.8, 4.9, 4.11 and 4.12 compare correlation energies, including the David-
son correction for CI calculations, and CPU times. Note that the CPU times are
influenced by external factors, as resources may be shared with other jobs on the
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same node. Furthermore, the number of iterations until each MCSCF calculation
converges may be very different and affects the CPU time. Only the order of mag-
nitude should therefore be considered.

Although only the size of the resulting active spaces is shown, it is obvious that
they are different from the active space selection based on the 1-orbital entropy Si
in Tables 4.5 and 4.6. Here the active spaces have in general less electrons. i.e. the
ρij based selection prefers to include more virtual orbitals than the Si based active
space selection does.

Results for MCSCF and CASSCF calculations are given in Tables 4.8 and 4.11. The
“CI@ROHF” column refers to CI calculations on the ROHF orbitals only consider-
ing the selected configurations. If the reconstruction of configurations is exact, i.e.
corresponds to the MPS, this energy should correspond to the DMRG energy. In
all cases, the correlation energy decreases when going from CI@ROHF over MC-
SCF to CASSCF, since the number of available optimization parameters for the
electronic wave function is stepwise increased. Additionally, the energies in each
column should decrease as the size of the active space and the norm is growing.
This is true for most values, but there are two exceptions: The F2rho5 parame-
ters yield much smaller energies than the F2rho6 do. Note that the latter has two
more orbitals in its active space but a lower number of electrons. The MCSCF and
CASSCF are thus not directly comparable. However the trend is in agreement with
the slightly larger norm of F2rho5. Closer inspection of the MCSCF orbitals for
F2rho5 reveals however that one of the core orbitals is rotated with one of the va-
lence orbitals, resulting in a set of qualitatively very different orbitals. Accordingly,
the corresponding MRCI@MCSCF results presented below yield comparatively bad
energies. A similar issue was found for the F2rho7, F2rho8 and F2rho9 parameters,
again only for the MCSCF orbitals.

The lowest energies are obtained for the largest selected active spaces. For CoF2

those are F2rho7, F2rho8 and F2rho8, which are only different in the cthresh pa-
rameters and thus result in the same active spaces. The resulting CASSCF(15,16)
correlation energy is −0.0705Eh. Compared to the Si selected active spaces (cf. Ta-
ble 4.5) of similar size (in number of orbitals) this is worse and required more CPU
time. However, the F2roh4 CASSCF correlation energy (−0.0522Eh) using a (11,11)
active space is lower than the Si based CASSCF(15,11) and CASSCF(19,13) corre-
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4.2 Entropy Based Configuration Selection in MCSCF and MRCI

lation energies (−0.0310Eh and −0.0371Eh respectively) at similar CPU time.

More promising results are obtained for CoF4. Here the CASSCF(21,17) (F4rho5,
F4rho6, F4rho7) yields −0.1412Eh, which is much lower than the −0.0817Eh ob-
tained by the CASSCF(29,17) or even the −0.1037Eh of the CASSCF(29,18) cal-
culations of the Si based active space selection. It does however require more CPU
time. Comparable CPU times are found for the CASSCF(19,13) (F4rho4) and
CASSCF(21,13) (Si based) calculations. They result in −0.0645Eh and −0.0598Eh

respectively.

The MCSCF calculations are, in most cases, considerably faster than the CASSCF
calculations due to the restricted number of configurations considered. Accordingly
they result in a worse correlation energies. But still, they always recover a large
portion (>50 %) of the corresponding CASSCF correlation energy. The main idea
however, was to investigate how well a MRCI calculation will perform on these
orbitals.

Various MRCI results are collected in Tables 4.9 and 4.12. The upper values only
consider the selected, reconstructed configurations in the reference wave function,
while in the lower part of the tables the whole set of configurations generated from
the CAS as considered for the reference space. Obviously, the smaller reference space
of selected configurations allows to perform MRCI calculations on much larger active
spaces. For example the lowest correlation energy for the selected MRCI@MCSCF
calculations is obtained for the F2rho6 parameters: −0.5660Eh (=89.4 % of the
FCIQMC reference) and −0.6213Eh (=98.2 %) with and without Davidson correc-
tion respectively. The best CAS MRCI@MCSCF results differ by less than 1 mEh

and took more than 10 times as much CPU time. Even the CAS MRCI@CASSCF,
which should be the most reliable estimate, is only able to lower the correlation
energy by ≈1 mEh. However, similar accuracy as for F2rho6 is obtained by the
MRCI@CAS(17,12) (Si based selection) at even less computational cost. Note that
the MRCI@MCSCF results for F2rho5, F2rho7, F2rho8 and F2rho9, which are con-
siderably worse than for F2rho6, are based on a qualitatively different set of orbitals,
as already mentioned above. Furthermore the results demonstrate the greatly re-
duced computational cost due to the selected reference configuration, sacrificing
accuracy in the order of 1 mEh.
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4 Results

Table 4.7: Selected threshold parameters for the ρij based selection of configuration
of the CoF2 model system. Additionally, the number of correlated or-
bitals that have been identified based on these parameters and the number
of reconstructed configurations is given, together the norm of the corre-
sponding CI vector in the MPS and active space of orbitals to allow for
all reconstructed configurations. The labels in the first column indicate
corresponding rows in the following tables.

label Ithresh ρthresh cthresh # correlated active # configurations Norm
orbitals space

F2rho1 0.1 0.01 0 2 (5,5) 3 0.8785
F2rho2 0.01 0.1 0 2 (5,5) 2 0.8780
F2rho3 0.001 0.04 0 7 (9,8) 12 0.8995
F2rho4 0.01 0.03 0 10 (11,11) 36 0.9023
F2rho5 0.01 0.02 0 12 (13,12) 264 0.9053
F2rho6 0.001 0.03 0 23 (11,14) 60 0.9023

0.001 0.02 0 30 880 0.9061
F2rho7 0.001 0.02 0.01 30 (15,16) 23 0.9054
F2rho8 0.001 0.02 0.001 30 (15,16) 58 0.9060
F2rho9 0.001 0.02 0.0001 30 (15,16) 149 0.9061

In general, similar observations are made for CoF4 MRCI calculations. Although
the correlation energy can be improve in the order of 10 mEh, they require much
more CPU time compared to the Si based active space selection. Furthermore the
lower correlation energies are obtained at larger active spaces than the Si based
selection requires. Due to the above described issues in the CASSCF orbitals, direct
comparison based on the available data is thus not possible. However, the ρij based
selection did lead to an active space more stable in the MCSCF/CASSCF calcula-
tions and thus resulting in improved MRCI energies. MRCI calculations with similar
CPU times are on the order of 1 mEh higher than the results of Si based selection.
In one case (F4rho6 MRCI@CASSCF) the selected configurations space leads to
a lower energy at less CPU time, than the lowest CAS reference space (F4rho4
MRCI@CASSCF). For the MCSCF orbitals such a situation is not observed.

Based on the current results the ρij based selection may yield improvement on the
CASSCF results (lower energies, more stable orbitals) with respect to the Si based
active space selection. But this is strongly dependent on the system and choice of
threshold parameters. More strongly correlated system seem to benefit more. On the
MRCI level however, no significant improvement can be observed. Comparing the

92



4.2 Entropy Based Configuration Selection in MCSCF and MRCI

Table 4.8: Resulting energies for applying the reconstructed configurations in a CI
calculation based on the original orbitals (CI@ROHF) as well as optimiz-
ing the orbitals based on the reconstructed configurations only (MCSCF)
and based on all active space configurations (CASSCF). Data is shown
for the ρij based selection of the CoF2 model system. Results being
based on orbitals that do not reflect the expected degeneracies due to the
molecular point group are indicated by a gray font color, while numbers
printed in bold represent preserved symmetry.

label CI@ROHF MCSCF CASSCF
energy time energy time energy time

F2rho1 −0.0014 <1 s −0.0021 <1 s −0.0021 <1 s
F2rho2 −0.0014 <1 s −0.0015 <1 s −0.0021 <1 s
F2rho3 −0.0016 <1 s −0.0016 <1 s −0.0027 <1 s
F2rho4 −0.0026 <1 s −0.0439 14 s −0.0522 3 s
F2rho5 −0.0151 <1 s −0.0540 26 s −0.0580 7 s
F2rho6 −0.0041 <1 s −0.0440 44 s −0.0538 2 min
F2rho7 −0.0053 <1 s −0.0482 7 s −0.0705 44 min
F2rho8 −0.0157 <1 s −0.0536 45 s −0.0705 43 min
F2rho9 −0.0178 <1 s −0.0494 34 s −0.0705 55 min

selected set of configuration versus the full CAS configuration space calculations,
similar MCSCF and MRCI energies may be obtained at much lower cost for the
selected set of configurations. Again, this is strong depends on the chosen threshold
parameters.

4.2.5 Results for φij based selection

The application of the φij based selection follows a similar scheme as the ρij based
selection above. For both test systems, CoF2 and CoF4, the selected threshold
parameters Ithresh, ωthresh, χthresh and cthresh are summarized in Tables 4.13 and 4.16
while Tables 4.14, 4.15, 4.17 and 4.18 present the MCSCF and MRCI results.

Again, the constructed active spaces (cf. Tables 4.13 and 4.16) tend to prefer virtual
orbitals over occupied ones, when compared to the Si based selection (cf. Tables 4.5
and 4.6). Large threshold parameters lead to the same active space as for the ρij
based selection, however different configurations are constructed. Different active
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Table 4.9: MRCI energies based on the ROHF, MCSCF and CASSCF orbitals. The
upper rows consider the reconstructed/selected configurations for the ref-
erence space only. The lower rows consider the full active space as refer-
ence space. Data is shown for the ρij based selection of the CoF2 model
system. Results being based on orbitals that do not reflect the expected
degeneracies due to the molecular point group are indicated by a gray
font color, while numbers printed in bold represent preserved symmetry.

label MRCI@ROHF MRCI@MCSCF MRCI@CASSCF
energy Davidson time energy Davidson time energy Davidson time

selected reference configurations
F2rho1 −0.5516 −0.6124 2 s −0.5519 −0.6126 2 s −0.5519 −0.6126 2 s
F2rho2 −0.5516 −0.6124 2 s −0.5518 −0.6127 2 s −0.5517 −0.6125 2 s
F2rho3 −0.5522 −0.6135 23 s −0.5524 −0.6138 23 s −0.5522 −0.6134 23 s
F2rho4 −0.5535 −0.6157 19 min −0.5652 −0.6200 25 min −0.5563 −0.6184 22 min
F2rho5 −0.5589 −0.6189 4 h −0.5233 −0.5669 5 h −0.5601 −0.6202 4 h
F2rho6 −0.5558 −0.6187 2 h −0.5660 −0.6213 2 h −0.5638 −0.6217 2 h
F2rho7 −0.5560 −0.6182 12 min −0.5139 −0.5563 21 min −0.5455 −0.6039 16 min
F2rho8 −0.5593 −0.6201 2 h −0.5161 −0.5581 3 h −0.5507 −0.6063 2 h
F2rho9 −0.5612 −0.6210 14 h −0.5261 −0.5720 16 h −0.5530 −0.6073 16 h

CAS reference configurations
F2rho1 −0.5516 −0.6124 2 s −0.5519 −0.6126 2 s −0.5519 −0.6126 2 s
F2rho2 −0.5516 −0.6124 2 s −0.5519 −0.6127 2 s −0.5519 −0.6126 2 s
F2rho3 −0.5526 −0.6143 3 min −0.5530 −0.6149 3 min −0.5528 −0.6141 4 min
F2rho4 −0.5594 −0.6189 25 h −0.5669 −0.6210 31 h −0.5681 −0.6218 28 h
F2rho5 −0.5654 −0.6212 76 h −0.5245 −0.5674 81 h −0.5696 −0.6219 92 h

Table 4.10: Selected threshold parameters for the ρij based selection of configuration
of the CoF4 D4h model system. Additionally, the number of correlated
orbitals that have been identified based on these parameters and the
number of reconstructed configurations is given, together the norm of
the corresponding CI vector in the MPS and active space of orbitals to
allow for all reconstructed configurations.

label Ithresh ρthresh cthresh # correlated active # configurations Norm
orbitals space

F4rho1 0.01 0.1 0 4 (9,7) 4 0.7814
F4rho2 0.01 0.05 0 13 (15,10) 16 0.8142
F4rho3 0.001 0.05 0 23 (15,10) 19 0.8142
F4rho4 0.01 0.04 0 15 (19,13) 32 0.8164
F4rho5 0.01 0.03 0 21 (21,17) 716 0.8273
F4rho6 0.01 0.03 0.01 21 (21,17) 29 0.8264
F4rho7 0.01 0.03 0.001 21 (21,17) 87 0.8273
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4.2 Entropy Based Configuration Selection in MCSCF and MRCI

Table 4.11: Resulting energies for applying the reconstructed configurations in a CI
calculation based on the original orbitals (CI@ROHF) as well as optimiz-
ing the orbitals based on the reconstructed configurations only (MCSCF)
and based on all active space configurations (CASSCF). Data is shown
for the ρij based selection of the CoF4 D4h model system. Results be-
ing based on orbitals that do not reflect the expected degeneracies due
to the molecular point group are indicated by a gray font color, while
numbers printed in bold represent preserved symmetry.

label CI@ROHF MCSCF CASSCF
energy time energy time energy time

F4rho1 −0.0021 <1 s −0.0098 <1 s −0.0098 4 s
F4rho2 −0.0353 <1 s −0.0485 3 s −0.0501 2 s
F4rho3 −0.0354 <1 s −0.0486 3 s −0.0501 <1 s
F4rho4 −0.0372 <1 s −0.0608 11 s −0.0645 4 s
F4rho5 −0.0522 <1 s −0.1412 10 min
F4rho6 −0.0427 <1 s −0.0832 13 s −0.1412 12 min
F4rho7 −0.0501 <1 s −0.0970 4 min −0.1412 10 min

Table 4.12: MRCI energies based on the ROHF, MCSCF and CASSCF orbitals.
The upper rows consider the reconstructed/selected configurations for
the reference space only. The lower rows consider the full active space as
reference space. Data is shown for the ρij based selection of the CoF4
D4h model system. Results being based on orbitals that do not reflect
the expected degeneracies due to the molecular point group are indicated
by a gray font color, while numbers printed in bold represent preserved
symmetry.

label MRCI@ROHF MRCI@MCSCF MRCI@CASSCF
energy Davidson time energy Davidson time energy Davidson time

selected reference configurations
F4rho1 −0.8816 −1.0345 29 s −0.8951 −1.0481 34 s −0.8950 −1.0481 44 s
F4rho2 −0.9004 −1.0566 2 min −0.9200 −1.0629 2 min −0.9004 −1.0566 2 min
F4rho3 −0.9061 −1.0505 3 min −0.9200 −1.0630 3 min −0.9005 −1.0568 2 min
F4rho4 −0.9078 −1.0527 23 min −0.9225 −1.0638 26 min −0.9068 −1.0623 23 min
F4rho6 −0.9165 −1.0614 4 h −0.8669 −0.9831 4 h −0.9314 −1.0780 4 h
F4rho7 −0.9182 −1.0624 44 h −0.8594 −0.9720 43 h −0.9355 −1.0804 42 h

CAS reference configurations
F4rho1 −0.8817 −1.0348 44 s −0.8952 −1.0483 49 s −0.8952 −1.0483 69 s
F4rho2 −0.9218 −1.0648 8 min −0.9214 −1.0643 7 min −0.9218 −1.0648 8 min
F4rho3 −0.9071 −1.0516 8 min −0.9214 −1.0643 6 min −0.9218 −1.0648 7 min
F4rho4 −0.9107 −1.0562 17 h −0.9263 −1.0679 20 h −0.9313 −1.0732 20 h
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spaces are obtained from tighter thresholds.

The CASSCF and MCSCF results are similar to the ρij based selection. Again,
for CoF4 better CASSCF energies than for the Si based active space selection can
be obtained if similar numbers of orbitals in the active space are compared. Con-
sidering the CPU time mixed results are obtained. Similar, no clear trend is ob-
served for CoF2. For example F2phi4 and F2phi6, with (9,13) and (11,12) active
spaces respectively, yield significant lower energies (−0.0537Eh and −0.0532Eh re-
spectively) than the Si based (17,12) and (19,13) active spaces (−0.0318Eh and
−0.0371Eh respectively). However the (11,18) active space of the F2phi7 parame-
ters results in a much higher energy (−0.1047Eh) than the Si based (19,17) active
space (−0.1562Eh). CPU time for these calculations is comparable. The MCSCF
results yield higher energies then their corresponding CASSCF calculation, at com-
parable CPU times. Unfortunately, most of the CoF4 MCSCF calculations have
issues with symmetry broken orbitals.

The lowest MRCI energy for CoF2 (cf. Table 4.15) is obtained for the F2phi7 thresh-
old parameters if only the selected reference configurations are used in connection
with the MCSCF based on the selected reference calculations. Corresponding re-
sults using the full CAS reference space are not available due to high computational
cost. However, this example yields lower energies at less CPU time compared to
the full CAS reference space based on the F2phi3 parameters. The corresponding
MRCI results based on the selected configuration reference space are only a couple
of mEh higher in energy, but significantly cheaper. In contrast to the ρij based
selection, using the MCSCF orbital for the selected reference space usually yields
lower energies than using the CASSCF orbitals. However for the full CAS reference
space the CASSCF orbitals tend to yield lower energies. Thus, the MRCI reference
space should agree with the configuration space the orbitals have been optimized
for.

Similar observations are made for CoF4 in Table 4.18. Using the φij selected con-
figurations may yield similar energies at less CPU time and the MRCI reference
space should agree with the configuration space the orbitals are optimized for. This
time one may even observe lower energies at less CPU time for the selected refer-
ence space (F4phi4) compared to the full CAS reference space (F4phi3). This may
either relate to the larger system (more orbitals) or more strongly correlated char-

96
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Table 4.13: Selected threshold parameters for the φij based selection of configura-
tion of the CoF2 model system. Additionally, the number of correlated
orbitals that have been identified based on these parameters and the
number of reconstructed configurations is given, together the norm of
the corresponding CI vector in the MPS and active space of orbitals to
allow for all reconstructed configurations. The labels in the first column
indicate corresponding rows in the following tables.

label Ithresh ωthresh χthresh cthresh # correlated active # configurations Norm
orbitals space

F2phi1 0.1 0.01 0.01 0 2 (5,5) 3 0.8785
F2phi2 0.01 0.01 0.1 0 3 (5,6) 1 0.8673
F2phi3 0.001 0.1 0.01 0 10 (11,11) 100 0.9043
F2phi4 0.001 0.01 0.1 0 12 (9,13) 298 0.8674
F2phi5 0.01 0.02 0.01 0 11 (11,12) 280 0.9052

0.01 0.01 0.01 0 17 (11,18) 14560 0.9058
F2phi6 0.01 0.01 0.01 0.01 17 (11,12) 23 0.9048
F2phi7 0.01 0.01 0.01 0.001 17 (11,18) 83 0.9058

acter of CoF4. For the F4phi11 parameters the MRCI@MCSCF calculation results
in significantly worse energies. The MCSCF orbitals are qualitatively as expected
(no symmetry breaking), however the MCSCF is only 57 % of the corresponding
CASSCF energy, much less than in most other cases. A similar situation is observed
for the F4phi6 case (MCSCF obtains 49 % of the CASSCF energy), here however
the MRCI@MCSCF is able to yield a very low correlation energy considering the
required low CPU time. The exact reasons for the very different behavior of these
two cases are unknown and would require a more detailed investigation.

In summary, the φij based selection of configurations seems beneficial as a systematic
approximation to the CI vector. Although, the effects are more pronounced for the
CoF4 case. The results of the active space selection however are unclear and depend
on the specific case and suitable choice of threshold parameters.
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Table 4.14: Resulting energies for applying the reconstructed configurations in a
CI calculation based on the original orbitals (CI@ROHF) as well as
optimizing the orbitals based on the reconstructed configurations only
(MCSCF) and based on all active space configurations (CASSCF). Data
is shown for the φij based selection of the CoF2 model system. Results
being based on orbitals that do not reflect the expected degeneracies due
to the molecular point group are indicated by a gray font color, while
numbers printed in bold represent preserved symmetry.

label CI@ROHF MCSCF CASSCF
energy time energy time energy time

F2phi1 −0.0014 <1 s −0.0021 <1 s −0.0021 <1 s
F2phi2 −0.0015 <1 s −0.0017 <1 s −0.0021 <1 s
F2phi3 −0.0058 <1 s −0.0480 <1 s −0.0522 2 s
F2phi4 −0.0030 <1 s −0.0228 10 s −0.0537 26 s
F2phi5 −0.0196 <1 s −0.0505 11 s −0.0532 6 s
F2phi6 −0.0050 <1 s −0.0427 14 s −0.0532 6 s
F2phi7 −0.0143 <1 s −0.0557 3 h −0.1047 3 h

Table 4.15: MRCI energies based on the ROHF, MCSCF and CASSCF orbitals.
The upper rows consider the reconstructed/selected configurations for
the reference space only. The lower rows consider the full active space as
reference space. Data is shown for the φij based selection of the CoF2
model system. Results being based on orbitals that do not reflect the
expected degeneracies due to the molecular point group are indicated
by a gray font color, while numbers printed in bold represent preserved
symmetry.

label MRCI@ROHF MRCI@MCSCF MRCI@CASSCF
energy Davidson time energy Davidson time energy Davidson time

selected reference configurations
F2phi1 −0.5516 −0.6124 2 s −0.5519 −0.6126 2 s −0.5519 −0.6126 2 s
F2phi2 −0.5518 −0.6127 10 s −0.5518 −0.6126 10 s −0.5519 −0.6128 11 s
F2phi3 −0.5542 −0.6160 41 min −0.5660 −0.6203 47 min −0.5582 −0.6189 42 h
F2phi4 −0.5543 −0.6166 47 h −0.5576 −0.6156 71 h −0.5105 −0.5613 68 h
F2phi5 −0.5579 −0.6174 2 h −0.5674 −0.6214 3 h −0.5585 −0.6190 3 h
F2phi6 −0.5542 −0.6162 16 min −0.5649 −0.6202 22 min −0.5575 −0.6187 20 min
F2phi7 −0.5579 −0.6202 11 h −0.5703 −0.6254 12 h −0.5602 −0.6226 12 h

CAS reference configurations
F2phi1 −0.5516 −0.6124 2 s −0.5519 −0.6126 2 s −0.5519 −0.6126 2 s
F2phi2 −0.5519 −0.6128 14 s −0.5519 −0.6126 14 s −0.5520 −0.6128 17 s
F2phi3 −0.5594 −0.6189 25 h −0.5677 −0.6212 28 h −0.5681 −0.6218 27 h
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Table 4.16: Selected threshold parameters for the φij based selection of configuration
of the CoF4 D4h model system. Additionally, the number of correlated
orbitals that have been identified based on these parameters and the
number of reconstructed configurations is given, together the norm of
the corresponding CI vector in the MPS and active space of orbitals to
allow for all reconstructed configurations. The labels in the first column
indicate corresponding rows in the following tables.

label Ithresh ωthresh χthresh cthresh # correlated active # configurations Norm
orbitals space

F4phi1 0.1 0.01 0.1 0 6 (9,7) 4 0.7814
F4phi1 0.01 0.1 0.1 0 4 (9,7) 4 0.7814
F4phi2 0.03 0.03 0.03 0 7 (13,11) 16 0.7992
F4phi3 0.1 0.01 0.01 0 8 (15,10) 16 0.8142
F4phi4 0.03 0.02 0.02 0 9 (15,12) 32 0.8146
F4phi5 0.02 0.02 0.03 0 11 (13,15) 144 0.8027
F4phi6 0.02 0.02 0.03 0.01 11 (13,15) 13 0.8024
F4phi7 0.02 0.02 0.03 0.001 11 (13,15) 38 0.8027
F4phi8 0.02 0.02 0.03 0.0001 11 (13,15) 73 0.8027

0.02 0.02 0.02 0 13 3200 0.8236
F4phi9 0.02 0.02 0.02 0.01 13 (15,16) 37 0.8220
F4phi10 0.02 0.02 0.02 0.001 13 (15,16) 146 0.8235

0.01 0.1 0.01 0 16 864 0.8269
F4phi11 0.01 0.1 0.01 0.01 16 (21,18) 27 0.8258
F4phi12 0.01 0.1 0.01 0.001 16 (21,18) 107 0.8269

0.02 0.01 0.01 0 17 56658 0.8328
F4phi13 0.02 0.01 0.01 0.01 17 (21,20) 48 0.8305
F4phi14 0.02 0.01 0.01 0.001 17 (21,20) 228 0.8326
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Table 4.17: Resulting energies for applying the reconstructed configurations in a CI
calculation based on the original orbitals (CI@ROHF) as well as optimiz-
ing the orbitals based on the reconstructed configurations only (MCSCF)
and based on all active space configurations (CASSCF). Data is shown
for the φij based selection of the CoF4 D4h model system. Results be-
ing based on orbitals that do not reflect the expected degeneracies due
to the molecular point group are indicated by a gray font color, while
numbers printed in bold represent preserved symmetry.

label CI@ROHF MCSCF CASSCF
energy time energy time energy time

F4phi1 −0.0021 <1 s −0.0098 <1 s −0.0098 3 s
F4phi2 −0.0104 <1 s −0.0274 9 s −0.0381 2 s
F4phi3 −0.0353 <1 s −0.0485 4 s −0.0501 2 s
F4phi4 −0.0389 <1 s −0.0543 29 s −0.0662 3 s
F4phi5 −0.0231 <1 s −0.0563 60 s −0.0888 3 min
F4phi6 −0.0199 <1 s −0.0437 17 s −0.0888 3 min
F4phi7 −0.0228 <1 s −0.0516 3 min −0.0888 3 min
F4phi8 −0.0231 <1 s −0.0560 70 s −0.0888 2 min
F4phi9 −0.0565 <1 s −0.0808 10 s −0.1156 16 min
F4phi10 −0.0688 <1 s −0.0905 59 s −0.1156 14 min
F4phi11 −0.0511 <1 s −0.0811 14 s −0.1430 2 h
F4phi12 −0.0595 <1 s −0.0991 21 s −0.1430 21 s
F4phi13 −0.0650 <1 s −0.0947 28 s
F4phi14 −0.0800 2 s −0.1205 32 s
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4.2 Entropy Based Configuration Selection in MCSCF and MRCI

Table 4.18: MRCI energies based on the ROHF, MCSCF and CASSCF orbitals.
The upper rows consider the reconstructed/selected configurations for
the reference space only. The lower rows consider the full active space
as reference space. Data is shown for the φij based selection of the
CoF4 D4h model system. Results being based on orbitals that do not
reflect the expected degeneracies due to the molecular point group are
indicated by a gray font color, while numbers printed in bold represent
preserved symmetry.

label MRCI@ROHF MRCI@MCSCF MRCI@CASSCF
energy Davidson time energy Davidson time energy Davidson time

selected reference configurations
F4phi1 −0.8816−1.0345 26 s −0.8951−1.0481 34 s −0.8950−1.0481 34 s
F4phi2 −0.8901−1.0423 28 min −0.9056 −1.0561 35 min −0.8991−1.0571 21 min
F4phi3 −0.9061−1.0504 21 min −0.9200−1.0629 2 min −0.9004−1.0566 2 min
F4phi4 −0.9086−1.0535 55 min −0.9230−1.0656 61 min −0.9017−1.0603 51 min
F4phi6 −0.9003−1.0534 4 h −0.9164 −1.0664 5 h −0.9091−1.0653 5 h
F4phi7 −0.9017−1.0551 70 h −0.9195 −1.0682 72 h −0.9108−1.0672 79 h
F4phi9 −0.9234−1.0658 7 h −0.9345 −1.0741 9 h −0.9164−1.0727 10 h
F4phi11−0.9211−1.0642 6 h −0.8775−0.9965 6 h −0.9313−1.0770 7 h
F4phi12−0.9229−1.0652 74 h −0.9447 −1.0804 76 h −0.9365−1.0794 91 h
F4phi13−0.9289−1.0697 17 h −0.8706 −0.9858 23 h

CAS reference configurations
F4phi1 −0.8817−1.0348 40 s −0.8952−1.0483 52 s −0.8952−1.0483 52 s
F4phi2 −0.8970−1.0498 5 d −0.9107 −1.0609 6 d −0.9145−1.0650 4 d
F4phi3 −0.9071−1.0516 7 min −0.9214−1.0643 7 min −0.9218−1.0648 7 min
F4phi4 −0.9156−1.0589 11 d
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4.2.6 Summary

The selection of configurations based on QIT was tested for two different approaches
and has been applied to two different model systems. Both selection schemes can
lead to active spaces yielding lower CASSCF energies, but this depends strongly on
the test case and choice of threshold parameters. This does imply that active space
selection based on 1-orbital entropies Si only, as recently demonstrated by Stein and
Reiher [29], is not always the best approach.

Overall, the φij based selection seems more promising then the ρij based selection,
especially for the CoF4 system. The reason might be the larger size (more orbitals)
or the more strongly correlated character of this system. Application to more test
systems should elucidate this questions. In general, the here provided data is very
limited and may thus not yield stastically reliable insights. Alternatively, further
selection schemes based on the QIT data can be considered. The two approaches
suggested here are rather arbitrary and better algorithms might be possible. The
present investigation therefore only represents a first proof of principle. Further
tests and more a detailed analysis are required to draw more rigorous conclusions.

It should also be noted, that the tested model systems are still rather abstract.
Although motivated by real, existing molecules, the constructed models have not
been validated against experimental data (e.g. thermodynamic stability). Addition-
ally, using FCI (or FCIQMC) energies as a reference for the reached accuracy has
limited relevance for experimentally available properties. The accuracy in the total
energy does not necessarily correlate with the accuracy in various properties like
dissociation energies, vibrational frequencies or magnetic properties. Extending the
test cases to strongly correlated systems with available data for properties of inter-
est would provide a more reliable foundation to validate the approximations on an
empirical basis.

A drawback is that the QIT analysis requires an approximate CI solution. This
may be obtained by DMRG, for which the QIT data is usually readily available, but
not all systems are suitable for this method. Implementation of a QIT analysis for
different methods is in principle possible, as here exemplary done for the 1-orbital
entropies based on FCIQMC calculation, but not widely available. Additionally, the
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restriction to the 2-RDMs limits accuracy and higher order correlations might pro-
vide a more reliable reconstruction of the CI vector. However, their implementation
would require increased computational resources.

The selection scheme may be extended to higher order correlations. Extending the
reconstruction of the CI vector to e.g. 3- and 4-orbital correlations, would require
larger numerical parameters for the approximate CI calculation as well as the actual
construction of the corresponding RDMs. Additionally, the increased amount of
data needs to be processed in the reconstruction of the configurations. Thus the
restriction to 1- and 2-RDMs may provide a reasonable trade off between accuracy
and computational cost. However, further research to support this statement is
necessary.

The performance of the here proposed approach strongly depends on the initial CI
calculation, on which the QIT analysis is based. The QIT analysis is known to yield
qualitatively stable results with respect to a limited DMRG accuracy (number of
blockstates). A similar argument is possible for FCIQMC, where the number of
walkers may be kept fairly small. Although the resulting total energy estimate may
be useless regarding their accuracy, the here proposed method can still leverage from
the reduced computational cost: Only qualitative results are required for the QIT
analysis, while high accuracy may be obtained by the multi-reference calculation
in the final step. For the overall approach to be computationally more efficient
than the conventional approach (CASSCF+MRCI), the new reference space needs
to be small enough to compensate for additional the cost of the QIT analysis and
preceding approximate CI calculation. However, the large scaling of the number of
configurations that can be constructed based on an active space should be easy to
overcome, especially for large active spaces.

As further extensions, an iterative optimization of the orbitals and QIT analysis of
the wave function may be considered. So far, the QIT analysis was only performed
on the initial ROHF orbitals. Performing a new QIT analysis of the MCSCF orbitals
may further improve the description of the strong correlation. Especially if drastic
changes between the HF and MCSCF orbitals occure, an iterative optimization
may be required. The QIT based selection may also be applied to other multi-
reference approaches, such as MRCC or the recently published tailored Coupled
Cluster method [16]. And finally, different definitions and values for the threshold
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parameters can be considered. In their current form, these values are highly system
dependent and require a manual selection. Modification of these parameters, in a
similar way as Stein and Reiher [121] did for measuring the multi-configurational
character based on orbital entanglement, is possible and may result in a set system
independent parameters.

4.3 Combining DMRG with the Incremental
Approach

Both, DMRG and MoI, are established methods for treatment of electron correlation.
Both are connected to approaches quantifying the electron correlation contributions.
While QIT is strongly related to DMRG, in the MoI the individual increment of
each center may be analyzed directly. In order to relate the increments to QIT,
it is however required to assign each orbital to its own center. Similarities and
differences between both measures have already been discussed in Section 2.5.3. In
the following however, selected model systems will be investigated by applying QIT
and the MoI to demonstrate, on a purely empirical bases, that there is indeed some
correspondence between the two measures.

The selected model systems cover conjugated trans-polyacetylenes, more specifically
hexatriene (C6H8), where different types of bonds (σ and π) can be compared, Be6
rings at small and large separation providing an example of strong correlation, and
the linear CoF2 molecule as an open shell example. Results for the former two
systems have already been published and discussed in Ref. [122]. For the DMRG
calculations and QIT analyses the Budapest DMRG program [114] was used. The
HF calculations, orbital localization and integral files (FCIDUMP) generation was done
using the Molpro software package [94, 113].

4.3.1 Polyacetylene

Hexatriene (C6H8) provides a simple model system, featuring different kind of bonds,
C H and C C σ bonds as well as C C π bonds. All data in this section is taken
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Table 4.19: Total energy and correlation energy for trans-hexatriene obtained with
different methods using a cc-pVTZ basis set. All energies are in Eh.
Table adopted from Ref. [122].

Total Energy Correlation Energy
HF −231.883732

DMRG(32,32) −231.971288 −0.087556
CCSD −232.891987 −1.008255

Table 4.20: Correlation energies obtained with various MoI variants for trans-
hexatriene using a cc-pVTZ basis set. Occupied orbitals have been lo-
calized using the Pipek-Mezey method. All energies are in Eh. Table
adopted from Ref. [122].

Level Correlation Energy Summed Correlation Energy

CAS(32,32)-MoI (occupied) 1 −0.053475 −0.053475 ( 61.1 %)a
2 −0.035636 −0.089111 (101.8 %)a
3 +0.000988 −0.088122 (100.6 %)a
4 +0.000393 −0.087729 (100.2 %)a

CAS(32,32)-MoI (virtual) 1 −0.022884 −0.022884 ( 26.1 %)a
2 −0.063367 −0.086251 ( 98.5 %)a
3 −0.003104 −0.089355 (102.1 %)a
4 +0.001568 −0.087787 (100.3 %)a

CCSD-MoI (occupied) 1 −0.511070 −0.511070 ( 50.7 %)b
2 −0.552483 −1.063553 (105.5 %)b
3 +0.060588 −1.002969 ( 99.5 %)b

a) Correlation energy relative to DMRG(32,32) reference
b) Correlation energy relative to CCSD reference.

from Ref. [122].

The construction of the orbitals is described in Section 3.2 and yields a CAS(32,32),
for which MoI and DMRG calculations have been performed. DMRG calculations
are performed with the DMRG Budapest code [114]. Using DBSS with a density
matrix cutoff of 1× 10−6 and a maximum number of blockstates Mmax = 2048,
highly accurate energies are obtained. For the QIT data however, usingMmax = 128
is sufficient.

Reference energies for HF (no correlation), DMRG(32,32) (static correlation) and
CCSD (dynamic correlation) of the system are given in Table 4.19. Correlation
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#12 #13 #14

#15 #16/HOMO #17/LUMO

Figure 4.7: Isosurface plot (|ψ(~r)| = 0.05 a0
−1.5) for the localized occupied molecular

orbitals #12 to #16 and the canonical virtual molecular orbital #17.
Figure adopted from Ref. [122].
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Figure 4.8: Polyacetylene: Comparison of Increments and Orbital Entropies for
quantifying orbitals correlations. Left and right column show results
based on Methods of Increments (MoI) and Quantum Information The-
ory (QIT) respectively. The upper and middle row show 1-orbital and
2-orbital correlations respectively. The Highest Occupied Molecular Or-
bital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are
separated by black and white lines respectively. In the lower row the
2-orbital correlations among occupied orbitals are shown as a zoom in.
MoI increments are based on CASCI(32,32)/cc-pVTZ calculations. Fig-
ure adopted from Ref. [122].
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energies obtained from different MoI expansions are summarized in Table 4.20. The
conventional CCSD-MoI approach, using CCSD to calculate each increment ex-
panded in terms of occupied orbitals, converges within 1 % of the corresponding
reference energy at the 3-orbital increment level. The CAS(32,32)-MoI expansion
in occupied orbitals converges at this level as well, only the virtual CAS(32,32)-MoI
expansion requires 4-orbital increments to achieve the same level of accuracy.

To discuss the differences between the increments and QIT results, the 1- and 2-
orbital measures of the CAS(32,32) calculations are presented in Fig. 4.8. A subset
of the active space orbitals is depicted by their isosurfaces in Fig. 4.7. The data on
the whole set of orbitals is available in the supplementary information of Ref. [122].
Note that the 2-orbital increments do not show pair correlations between occupied
and virtual orbitals, as this data is not available by the incremental approach.

The 1-orbital measures (top row in Fig. 4.8) are very similar to each other. Although
there are some qualitative differences, they are quantitatively small. For example
according to the 1-orbital increments MO#14, representing the π bond on the center
of the PAC molecule, is slightly less correlated then the terminal π bonds #15 and
#16 on both ends of the chain. In reality however, one would expect the central π
bond to be more correlated, as it has neighboring orbitals to correlate with. This
is indeed reflected by the 1-orbital entropy, however the relative deviations between
MO #14 and MOs #15 and #16 is rather small for both measures. Another,
very obvious difference is the very large 1-orbital entropy of the LUMO (MO #17).
Measured by the 1-orbital increments it is smaller than the HOMO. However the
latter compares results for different MoI expansion (in terms of occupied and virtual
orbitals) and direct comparison between those two sets of orbitals is not possible.

The 2-orbital measures (middle row in Fig. 4.8) show similar patterns as well. The
major correlations which can be identified by the 2 measures yield the same orbital
pairs, and both indicate same negligible pair-correlation. Although the 2-orbital
increments seem to present more details and a better resolution of the values (colors)
than the mutual information, this is mainly a problem of graphic representation. The
zoom-in of the occupied orbitals in the lower row of Fig. 4.8 partially reconciles this
issue. Overall, the trend of the most correlated orbitals is the same for the increments
and QIT measure and results may therefore be translated from one approach to the
other for this model system.
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Figure 4.9: Polyacetylene: Occupied orbital increments including dynamical corre-
lations based on CCSD/cc-pVTZ calculations. Figure adopted from Ref.
[122].

The above results may also be chemically interpreted, at least for the occupied
molecular orbitals. Most of the static correlation character is related to the (nearly)
degenerated π orbitals of the C C double bonds, while the contributions of all C C
and C H σ bonds are much smaller. Furthermore the 2-orbital correlations show
that neighboring orbitals have much more correlation than orbital being further
apart from each other. For example MOs #13 and #15 are on the same end of the
molecule and show medium values in the 2-orbital increments and mutual informa-
tion, while correlations with MO #12 on the other end of the chain are negligible.
For σ orbitals spatially overlapping with π orbitals, e.g. orbital pairs #1#14, #2#15
and #3#16, correlations of intermediate strength are observed. Those correlations
represent the dynamic σ polarization which allows for more fluctuations in the π
orbitals [123, 124].

The 1- and 2-orbital increments based on the CCSD-MoI in terms of occupied or-
bitals are shown in Fig. 4.9 and allow to compare the dynamical correlation effects
to the static ones. No DMRG calculation has been performed, as this method is not
suited or designed to treat the enormous number of configurations related to dy-
namic correlation. Although a QIT analysis based on other methods than DMRG is
in principle possible, it is not readily implemented in the various codes available.

Compared to the static correlation, the 1- and 2-orbital increments related to dy-
namic correlation are much larger, which is consistent with the increased correlation
energy. The smallest increments are the MOs #1 to #5, which correspond to the
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C C σ bonds, which is also observed in the CAS-MoI calculations. However, MOs
#6 to #13, representing C H bonds, are now on par with the C C π bond orbitals
#14 to #16.

4.3.2 Be6 Rings

To demonstrate the above observations are not unique to weakly correlated systems,
a further, more strongly correlated, example is provided by considering Be6 rings.
Two situations will be investigated in the following, with internuclear distance close
to equilibrium distance (R = 2.2Å) as well as at the dissociation limit (R = 3.5Å).
All data in this section is taken from Ref. [122].

The orbitals are constructed according to Section 3.3, i.e. an active space of 12
electrons in 78 orbitals is considered. Selecting virtual, localized orbitals for the
active space is more difficult, as they have more abstract shapes and their chemical
interpretation is less meaningful than for the occupied orbitals. DMRG calcula-
tions without prior knowledge of an optimized orbital ordering are possible, but
cumbersome in this situation. The space of virtual orbital is therefore screened by
calculating the corresponding 1-orbital increments, which yields a set of 78 individ-
ual calculations with a (12,7) active space each, i.e. only a single empty orbital needs
to be correlated. A user-defined threshold for the 1-orbital increments is then used
to select the virtual orbitals for a DMRG calculation on a smaller active space.

Similar to the polyacetylene calculations the DMRG Budapest code [114] was used.
A density matrix cutoff for the DBSS approach of 1× 10−6 is used and the maximum
number of blockstates is restricted toMmax = 1024 as the larger active space requires
more memory.

All 1-orbital increments of are plotted in Fig. 4.10. For both situations, equilibrium
distance and dissociation limit, a set of 24 orbitals with 1-orbital increments close
to zero and a clear split to the next largest values can be found. Those orbitals are
thus removed from the active space for the DMRG calculations.

Total energies and correlation energies for HF, CCSD(T), CAS(12,78)-MoI and
DMRG(12,54) are summarized in Table 4.21. As a reference the CCSD(T) dissocia-
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Figure 4.10: 1-Orbital increments for the Be6 ring at equilibrium distance (R =
2.2Å) and dissociation limit (R = 3.5Å) to the left and right respec-
tively. The black vertical line separates occupied and virtual orbitals.
Virtual orbitals are in arbitrary order. Figure adopted from Ref. [122].

Table 4.21: Total energy and correlation energy for a Be6 ring obtained with different
methods using a cc-pVDZ basis set. All energies are in Eh. Table
adopted from Ref. [122].

Total Energy Correlation Energy Dissociation
R = 2.2Å R = 3.5Å R = 2.2Å R = 3.5Å Energy

HF −87.573755 −87.421411 0.152344
CCSD(T) (canonical) −87.828746 −87.701393 −0.254991 −0.279981 0.127353

DMRG(12,54) −87.777764 −87.644043 −0.204009 −0.222632 0.133721
CAS(12,78)-MoI (occ.) −87.831646 −87.703778 −0.257890 −0.282367 0.127868

1-orbital −0.189642 −0.257473
2-orbital −0.068249 −0.024894

CAS(12,78)-MoI (virt.) −87.824877 −87.694914 −0.251122 −0.273503 0.129963
1-orbital −0.082232 −0.123687
2-orbital −0.131174 −0.091626
3-orbital −0.037715 −0.058190
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Figure 4.11: Be6 at equilibrium distance (R = 2.2Å). Comparison of Increments and
Orbital Entropies for quantifying orbitals correlations. Left and right
column show results based on Methods of Increments (MoI) and Quan-
tum Information Theory (QIT) respectively. The upper and middle row
show 1-orbital and 2-orbital correlations respectively. The Highest Oc-
cupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular
Orbital (LUMO) are separated by black and white lines respectively.
In the lower row the 2-orbital correlations among virtual orbitals are
shown. All orbitals are ordered by increasing diagonal Fock matrix
element. Figure adopted from Ref. [122].
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Figure 4.12: Be6 at dissociation limit (R = 3.5Å). Comparison of Increments and
Orbital Entropies for quantifying orbitals correlations. Left and right
column show results based on Methods of Increments (MoI) and Quan-
tum Information Theory (QIT) respectively. The upper and middle row
show 1-orbital and 2-orbital correlations respectively. The Highest Oc-
cupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular
Orbital (LUMO) are separated by black and white lines respectively.
In the lower row the 2-orbital correlations among virtual orbitals are
shown. All orbitals are ordered by increasing diagonal Fock matrix
element. Figure adopted from Ref. [122].
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tion energy is considered. The DMRG total energies are higher than for CCSD(T),
as the reduced active space is missing dynamic correlation. However, the DMRG
dissociation limit deviates only by 5 mEh. The MoI result, using the whole orbital
space, are closer to the CCSD(T) reference. Similar to the polyacetylene example,
convergence of the MoI expansion in terms of virtual orbitals is not as good as for the
occupied orbital expansion and increments of higher order are required for similar
accuracy.

The increments and QIT results for the Be6 ring at equilibrium distance (R = 2.2Å)
and dissociation limit (R = 3.5Å) are compared in Figs. 4.11 and 4.12 respectively.
As before with the polyacetylene example, both measures yield roughly similar re-
sults. Similar patterns of the major/vanishing contributions can be identified, but
quantitative deviations occur. Despite the 24 virtual orbitals removed from the
active space, the mutual information is in well agreement with the 2-orbital incre-
ments. At the dissociation limit, the 6-fold degeneracy of all orbitals is cleary visible
in all data (cf. Fig. 4.12). Different groups of 6 orbitals are easily identified. At equi-
librium, the localization did not always yield perfectly degenerate orbitals (cf. SI of
Ref. [122]). All groups of 6 (close)-degenerate orbitals can still be identified based
on the 1-orbital correlation measures (εi and Si), but not always in the 2-orbital
correlation measures (cf. Fig. 4.11).

4.3.3 Open Shell CoF2

As a final example the CoF2 molecule in its open shell quartet ground-state (4∆g) is
considered. Applying the MoI scheme to open shell systems is challenging, since the
original increment approach was formulated for closed shell cases only. The presence
of singly occupied orbitals introduces a third set of orbitals, next to the doubly
occupied (closed) and virtual (empty) orbitals of the HF reference wave function.
In the approach chosen by Müller and Paulus [82] only one unpaired electron is
considered and the singly occupied orbital is correlated with each increment. Thus
a new 1-center increment is defined as

τi = EiF − EHF = ∆εiF + εi (4.3)
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where a one-center increment for the singly occupied orbital εF vanishes. The MoI
expansion Eq. (2.135) is then modified and expressed in terms of the increments τ
to yield the correlation energy

Ecorr =
∑
i

τi +
∑
i

∑
j>i

∆τij +
∑
i

∑
j>i

∑
k>j

∆τijk + . . . (4.4)

However, for multiple unpaired electrons this approach does not work anymore. If
F represents a center with more than one singly occupied orbital, then εF does not
vanish anymore.

However, the correlation energy is not the main interest here. Instead the aim is
to exploit the individual increments as a correlation measure. In analogy to the
above concept, each increment will include all singly occupied orbitals, and the new
increments are defined as

τFi = εiF − εF (4.5)
τFij = εijF − εF (4.6)

where F indicates the set of all singly occupied orbitals. A corresponding expan-
sion of the correlation energy will not be meaningful and is therefore not further
considered here.

The localized orbitals are constructed as described in Section 3.4. Note that the
localization is with respect to the total symmetric (Ag) component of the 4∆g ground
state, while the other component (B1g) is ignored. As a result the degeneracy in
the #5#11 orbital pair, representing the Co 3dxy and 3dx2−y2 orbitals respectively,
is lifted. Isosurface plots of all valence and virtual orbitals are available in Figs. A.1
to A.8.

The 1-orbital correlations are then analyzed based on two approaches. As a ref-
erence, where all orbitals are entangled together, the entropies are first calculated
with an active space of all 60 orbitals. For CoF2 it is still feasible to perform
this step using DMRG, but it becomes increasingly challenging for larger systems
(more virtual orbitals). Additional to DMRG, the same entropies are obtained
from an FCIQMC calculation. Qualitatively correct entropies may be obtained
with only 1× 106 walkers. The dependence on the number of walkers is illustrated
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in Fig. 4.6 for the CoF2 model using canonical orbitals. The energy expectation
value of the 2-particle RDM sampled by FCIQMC (−1581.006506Eh) is between
the DMRG energy (EDMRG = −1580.986560Eh, DBSS DM cutoff 1× 10−4 ) and
the converged FCIQMC energy (EFCIQMC = −1581.022471Eh, 1× 108 walkers, 2
superinitiators).

For the MoI approach all 1-orbital increments are expanded in the virtual orbital
space, i.e. each virtual orbital is correlated with the two sets of doubly and singly
occupied orbitals. The individual increments are then calculated using DMRG. This
is only for technical reasons, as it gives direct access to the 1-orbital entropies Sa

i ,
which are not implemented in Molpro. This however requires the 1- and 2-electron
integrals (”FCIDUMP“ files) which are different for each increment. Using a custom
Python script, these integrals are obtained from the FCIDUMP file of the full active
space of 60 orbitals. Also note, that this results in very cheap CASCI(2,14) calcula-
tions, where DMRG actually becomes inefficient due to the many iterations of the
sweeping procedure. However, it does provide accurate energies. All DMRG calcu-
lations are performed with the DMRG Budapest code [114], while for the FCIQMC
calculations the NECI code [70, 119, 120] was used.

As a result, four values are obtained for each virtual orbital, which are all plotted
in Fig. 4.13. The DMRG-MoI increments τFi and DMRG-MoI entropies Sa

i are ob-
tained from the same calculation for each orbital i and quantify the correlation in
the agnostic case, i.e. the virtual orbitals are unaware of each other. The CASCI
reference values (DMRG and FCIQMC based) show how the entropies Si change if
the virtual orbitals are correlated together. Note, that the CASCI entropies cover
all orbitals, including the occupied ones, while in the incremental approach only the
virtual orbitals are considered. The occupied increments would require much larger
active spaces to calculate. Since their number is usually much smaller than the
virtual orbitals and core orbitals can be efficiently excluded based on the orbital en-
ergies, identifying further occupied orbitals with negligible correlation contributions
is thus unlikely and not of interest here.

The DMRG and FCIQMC entropies are is good agreement regarding the virtual
orbitals. However the FCIQMC entropies are more stable. Entropies for degenerate
orbitals (e.g. #15#16 or #45#46) show less fluctuations than in the DMRG results.
For the occupied orbitals, which are not of main interest here, DMRG yields some
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larger deviations: the degenerate orbital pair #3#4 (F pz) shows a clear split in
the DMRG-CASCI entropies, similar the four degenerate orbitals #7 to #10 (F px
and py) perpendicular to the internuclear axis are not degenerate. For these cases
the FCIQMC entropies are not degenerate as well, but the values are much closer
to each other. In general the FCIQMC entropies are slightly larger than the DMRG
entropies. This agrees with smaller total energy of FCIQMC, which indicates more
overall correlation in the wave function.

Larger deviations are observed when comparing the DMRG-MoI increments with
the CASCI entropies. However, analogous to the results of the first two examples
considering polyacetylene and Be6, similar patterns can be found. Major differences
are observed for orbitals #51 to #60, resembling the two sets of 3d orbitals on each
F atom. Those orbitals have much larger relative contributions according to the in-
crements τFi . The agnostic DMRG-MoI entropies Sa

i however are in agreement with
the CASCI entropies. For all other orbitals, the increments and agnostic entropies
are in rough agreement.

Another deviating orbital is #17, which is overestimated by the increments τFi and
even more by the agnostic DMRG-MoI entropies Sa

i . According to the CASCI en-
tropies it has one of the smallest correlation contributions. Furthermore the degen-
erate pair #15#16 (Co 4p) is underestimated by both agnostic measures, however
the DMRG-MoI entropies show somewhat better agreement with the CASCI en-
tropies. The presence of further virtual orbitals is thus of high importance here.
This however does not necessarily indicate that the two orbitals primarily correlate
with other virtual orbitals. Indeed the mutual information in Fig. 4.14 indicates
most pair correlations connected to #15 and #16 include occupied orbitals. Thus
they indirectly influence other orbitals correlation contribution.

The presented example shows that even for open shell systems an incremental ap-
proach may yield comparable 1-orbital correlation measures in most cases. Some
orbitals are overestimated by the agnostic incremental approach while some further
orbitals are underestimated. However, the DMRG-MoI entropies are a more reliable.
In principle, exploiting the cheap scaling of the 1-orbital increments to screen an ac-
tive space for CASCI calculations should thus be possible. Including overestimated
orbitals may keep the computational scaling high, but will not sacrifice accuracy.
The bigger issue is underestimating the correlation effects of orbital. Thus a rather
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Figure 4.13: Comparison of 1-orbital increments and entropies for CoF2 (localized
orbitals), obtained with different approaches (DMRG-MoI, DMRG-
CASCI, FCIQMC). Upper plots: DMRG-MoI increments and entropies
for virtual orbitals only. Lower plots: CASCI entropies based on DMRG
and FCIQMC calculations. The black vertical line indicates the split
between occupied and virtual orbitals.

small threshold parameter to select the active space is advisable. Since the energy
increments τFi are less reliable than the DMRG-MoI entropies Sa

i , only the latter
should be considered.

4.3.4 Summary

In principle QIT and the MoI yield very similar results for negligible and major
contributions to electron correlation. However, details may deviate. Especially in
the open-shell example where only a generalized definition of the orbital increments
is used, which does not yield a meaningful total energy anymore. As expected, the
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Figure 4.14: Mutual information Iij for CoF2 (localized orbitals) as obtained from
a DMRG-CASCI calculation. The white horizontal and vertical lines
indicate the split between occupied and virtual orbitals.
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results can thus not directly be translated between the two approaches. However,
the computationally extremely cheap 1-orbital increments, may still yield sufficient
information to identify orbitals for an active space selection. An initial screening of
all (virtual) orbitals, as here demonstrated for the Be6 rings, may be used to select
a more appropriate active space for DMRG. This may also be combined with the
protocol for automated active space selection as recently introduced by Stein and
Reiher [29].

As an outlook, the 1-orbital increments may yield useful information for chosing the
orbital order in DMRG, which is typically based on the 1-orbital entropy and mutual
information. This typically requires a preceding DMRG calculation (with smallM),
which in turn may critically depend on the initial orbital ordering. The MoI may
thus present an alternative approach to pre-optimize the ordering for otherwise
challenging systems. Unfortunately the 2-orbital increments, corresponding to the
required mutual information, are more problematic. The 2-orbital increments are
more expensive and greater in number. Furthermore, the off-diagonal block between
occupied and virtual orbitals in not accessible. However, one may obtain the agnostic
mutual information from the individual increment calculations. How to correctly use
this information to reconstruct the (approximate) mutual information of the non-
agnostic CI wave function remains an open question for future investigations.

Another possible approach to exploit the similarity between increments and en-
tropies is to screen relevant higher order increments by a cheap DMRG calculation
with a small number of blockstates. For the MoI only n-orbital increments corre-
sponding to large n-orbital correlation in QIT would need to be calculated. This
would however require implementation and analysis of the n-orbital entropies.

Finally, using the CoF2 system, it was demonstrated that the 1-orbital entropies can
easily be extracted from FCIQMC calculations. Similar to DMRG, a cheap FCIQMC
run, i.e. small number of walkers, already yields qualitative correct energies. As
before, this information may be useful for (automated) active space selection or
screening of required n-orbital increments. In principle, the mutual information
may be obtained from FCIQMC as well, but requires implementation of sampling
the 4-particle reduced density matrix (in spin orbital basis). Once available, a
cheap FCIQMC calculation may be used to construct an optimized orbital order for
DMRG.

120



4.4 Analysis of Cobalt Fluorides

In general, the correspondence of values obtained from different methods (e.g. MoI,
DMRG, FCIQMC) might be useful to exploit one method on a computationally
cheap (yet inaccurate) level and facilitate the other method on a numerically accu-
rate (yet expensive) level. Quantitatively incorrect energies or not fully converged
wave functions at the first step are then not of primary interest, as those are obtained
from the second step as long as qualitative agreement is maintained.

4.4 Analysis of Cobalt Fluorides

As described in Section 3.4, the CoF2 and CoF4 (D4h) model systems can system-
atically be extended to linear chains of Co and O, with F terminating the ends.
Information about the “monomers” CoF2 and CoF4 may potentially be transferred
to the larger systems. In this last section, the correlation contributions of different
cobalt fluorides (CoF2, CoF3, CoF4 (D4h) and CoF4 (Td)) are investigated to learn
about the potentially most important contributions in the larger systems.

As a tool for the analysis QIT is applied, next to a systematic variation of the basis
set, from minimal up to the cc-pVDZ basis set [99]. Accurate correlation energies
for the smaller AO basis sets may be obtained by conventional FCI calculations as
implemented in Molpro [94, 113, 125, 126], while for the larger basis sets FCIQMC
[70, 119, 120] calculations are performed. Core orbitals (with eigenvalue εi ≤ −3Eh)
are not correlated in all cases. The molecular orbitals (FCIDUMP files) are constructed
as described in Section 3.4, where canonical orbitals are used, i.e. no localization is
applied.

4.4.1 Basis Set Dependence and Orbital Entropies

Table 4.22 shows the correlation energies of the isolated Con+ and F– ions at differ-
ent AO basis sets. In Table 4.23 the HF, FCI and correlation energies for all four
model systems at different basis sets are compared. The chosen basis set start with
the minimal number of basis functions required to describe all electrons and then
systematically add more shells on Co. Thus, increasingly more intra-atomic corre-
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Table 4.22: HF, FCI and correlation energies (in Eh) for the different cobalt cations
and F– using different basis set. Systems without correlation energy at
their minimal basis set are omitted.

HF FCI Ecorr

cc-pVDZ [6s,5p,3d,1f]
Co2+ −1380.596424 −1380.749118 −0.152694
Co3+ −1379.432768 −1379.528192 −0.095423
Co4+ −1377.606402 −1377.653136 −0.046734
cc-pVDZ [3s,2p,1d]
F– −99.365984 −99.558917 −0.192934
minimal basis + 4sp [4s,3p,1d]
Co2+ −1380.532708 −1380.533252 −0.000544
Co3+ −1379.112148 −1379.112396 −0.000248
Co4+ −1376.890476 −1376.890552 −0.000076
minimal basis + 4s [4s,2p,1d]
Co2+ −1380.529043 −1380.529126 −0.000083
Co3+ −1379.092596 −1379.092637 −0.000041
Co4+ −1376.846931 −1376.846931 0.000000

lation effects on the Co are included. The largest basis set considers the complete
set of cc-pVDZ functions on Co and F. Results for CoF3 in the minimal basis set
are missing as no reliable HF solution could be obtained. The last two columns in
Table 4.23 represent the difference in the correlation energy between the combined
molecule (CoFn) and the isolated (dissociated) ionic fragments (Con+ + nF–). It is
defined as

∆Ecorr = Ecorr(CoFn)− Ecorr(Con+)− nEcorr(F–) (4.7)

and represents the correlation energy contribution due to inter-atomic Co F corre-
lation. Note that for all basis sets except the largest one (cc-pVDZ on Co and F),
the last term cancels out since there is no correlation energy for F– in a minimal
basis set.

The results are compared to the QIT data obtained from DMRG, using the Budapest
DMRG code [114]. A DBSS DM cutoff of 1× 10−5 has been used for all systems.
The largest 1-orbital entropies Si and mutual information Iij for the studied model
systems are summarized in Tables 4.26 to 4.30. The complete set of data and
isosurface plots of the molecular orbitals are included in the appendix.
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Table 4.23: HF, FCI and correlation energies (in Eh) for the cobalt fluorides using
different basis set.
a FCIQMC correlation energy with standard deviation.

HF FCI Ecorr Std. Dev. ∆Ecorr ∆Ecorr per F

cc-pVDZ (Co [6s,5p,3d,1f], F [3s,2p,1d])
CoF2 −1580.389262 −1581.022206 −0.632944a 3.2× 10−5 −0.094383 −0.047191
CoF3 −1679.813744 −1680.635657 −0.821913a 1.6× 10−4 −0.147833 −0.049278
CoF4 D4h −1779.019872 −1780.124419 −1.104546a 4.9× 10−4 −0.286078 −0.071520
CoF4 Td −1779.104549 −1780.211897 −1.107348a 6.9× 10−4 −0.288879 −0.072220
cc-pVDZ on Co, minimal on F (Co [6s,5p,3d,1f], F [2s,1p])
CoF2 −1580.361724 −1580.678793 −0.317070a 4.4× 10−5 −0.164375 −0.082188
CoF3 −1679.770945 −1680.131453 −0.360508a 1.1× 10−4 −0.265085 −0.088362
CoF4 D4h −1778.963170 −1779.455709 −0.492539a 1.4× 10−4 −0.445805 −0.111451
CoF4 Td −1779.051622 −1779.541594 −0.489973a 1.7× 10−4 −0.443239 −0.110810
minimal basis + Co 4sp (Co [4s,3p,1d], F [2s,1p])
CoF2 −1580.219451 −1580.302693 −0.083241 −0.082697 −0.041349
CoF3 −1679.512361 −1679.699007 −0.186646 −0.186398 −0.062133
CoF4 D4h −1778.753694 −1778.992539 −0.238846 −0.238770 −0.059692
CoF4 Td −1778.806597 −1779.069714 −0.263116 −0.263040 −0.065760
minimal basis + Co 4s (Co [4s,2p,1d], F [2s,1p])
CoF2 −1580.118522 −1580.179205 −0.060683 −0.060600 −0.030300
CoF3
CoF4 D4h −1778.666630 −1778.843568 −0.176939 −0.176939 −0.044235
CoF4 Td −1778.701932 −1778.910543 −0.208612 −0.208612 −0.052153
minimal basis (Co [3s,2p,1d], F [2s,1p])
CoF2 −1579.998988 −1580.010936 −0.011948 −0.011948 −0.005974
CoF3
CoF4 D4h −1778.552226 −1778.788008 −0.235782 −0.235782 −0.058945
CoF4 Td −1778.696523 −1778.845614 −0.149091 −0.149091 −0.037273
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Most correlation energies in Table 4.23 are systematically decreasing with the num-
ber of fluorine atoms and size of the basis set. Only the data based on the minimal
basis set does not follow a systematic trend. Similar, the inter-atomic correlation
energy ∆Ecorr shows a decreasing trend, i.e. shows larger contributions. However,
when employing the cc-pVDZ basis set on all atoms, it suddenly shows less con-
tributions. This means that adding basis functions on F decreases inter-atomic
correlations between Co and F, i.e. F F correlations are preferred. This can be
confirmed by the QIT data: For example in CoF2 (cf. Tables 4.26 and 4.27) the
mutual information between F 2p orbitals and orbitals mainly located on Co de-
creases (e.g. orbital pairs #2#5 and #2#6) when going from the smaller basis set
(Co [6s,5p,3d,1f], F [2s,1p]) to the larger basis (Co [6s,5p,3d,1f], F [3s,2p,1d]). On
the other hand, the mutual information between orbitals mainly located on the F
atoms increases (e.g. #2#37 in the full cc-pVDZ basis, which corresponds to #2#28
in the smaller basis set). However, a direct correspondence of the QIT data to the
AO basis functions is difficult, as the MOs are delocalized.

One can also observe, that the two larger basis sets (cc-pVDZ on Co) have very
similar correlation energies for both CoF4 geometries (difference in the order of
1 mEh), while the two smaller basis sets show a larger difference (in the order of
10 mEh). Thus, at the larger basis set, HF yields a quantitatively reasonable result
for the energy difference between the D4h and Td geometries, even if only a minimal
basis set on the F atoms is used. A larger basis set on the central Co atom is required
however. The geometry is thus mainly influenced by the Co basis functions.

Furthermore, the inter-atomic correlation energy ∆Ecorr per F atom at the larger
two basis sets is very similar for CoF2 and CoF3, while a different value for the two
CoF4 systems is observed. On the other hand, the smaller basis set (Co [4s,3p,1d],
F [2s,1p]) groups CoF3 with the two CoF4 molecules and CoF2 remains singular.
A larger basis set on Co is thus required to yield a correct qualitative trend in
the correlation energy contributions, while additional basis functions on F yield
quantitative improvements.

Inspection of the molecular orbitals (isosurface plots are available in the appendix)
reveals that for CoF4 (Td and D4h) the Co 3d orbitals are part of delocalized MOs
and are linearly combined with one 2p AO on each F. For CoF2 however, the Co 3d
orbitals remain much closer to their AO shape, while CoF3 presents an intermediate
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Table 4.24: Assignment of the Co 3d AO in CoFn. The numbers indicate the index
of the MOs with largest Co 3d AO contributions. Surface plots of all
the MOs are available in the appendix. A single number indicates the
corresponding 3d AO does not mix, while two numbers indicate the Co
3d orbital combines with F 2p orbitals, forming a pair of bonding and
anti-bonding orbitals (i.e. whether there is a nodal plane perpendicular
to the Co F bonding axes). Numbers in parenthesis indicate only a
small Co 3d contribution to the MO.

3dz2 3dx2−y2 3dxy 3dxz 3dyz
CoF2 3, (5) 4 32 48, (50) 54, (56)
CoF3 6 4, 7 31, 34 66, (65) 52, (50)
CoF4 D4h 5, (4) 3, 6 50, 52 70, 71 77, 78
CoF4 Td 5, 7 75, 77 3, 8 34, 37 55, 58

situation. The 3d contributions to the MOs are summarized in Table 4.24. This
trend is similar to the trend of the inter-atomic correlation energy mentioned above,
and may therefore be connected. In case of CoF2 the 3dz2 sticks out of the trend, i.e.
MO #3 shows some minor F 2p AO contributions. This maybe related to the state
average including the 4Σg where the 3dz2 orbital is singly occupied (cf. Fig. 3.6).
Consequently, in the CI vector for the 4∆g state, correlations to MO #5 (virtual
orbital with Co 3dz2 and F 2p contributions) try to counteract this effect.

In general, the orbital pairs of bonding and anti-bonding combinations including Co
3d and F 2p contributions give rise to the largest mutual information for each model
system (cf. Tables 4.26 to 4.30). This is similar to the large πu + πg correlations of
the N2 system in Section 4.1. These orbitals have large contributions in describing
the chemical bonds, and the large correlations thus indicate systematic problems of
HF in describing the bonding correctly. This then needs to be corrected at the CI
level. This also agrees with the more important intra-atomic correlations, observed
above based on the different basis sets. Similar arguments have been made a long
time ago [127, 128, 129]. Furthermore this is supported by the recent study on
the Be6 ring, where the canonical, delocalized HF orbitals have been optimized by
minimizing entropy and localized orbitals are obtained as a result [13].

Localizing the molecular orbitals thus seems beneficial. Unfortunately the tested
localization schemes (Foster-Boys and Pipek-Mezey) had problems with convergence
for the CoFn systems and as a result the obtained orbitals are not always well
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localized. A systematic study of the cobalt fluorides in terms of localized orbitals is
thus not further considered here. Only for the CoF2 system reasonable results are
obtained with the Pipek-Mezey localization, as already presented in Section 4.3.3.
A direct comparison of the QIT data for both sets of orbitals is shown in Fig. 4.15.
One can observe a different, but similar distribution: some entropies and mutual
information increase, others decrease. Similar the total correlation for both sets of
orbitals do not change much (cf. Table 4.25). However, the DMRG total energy is
drastically improved using the localized orbitals, despite using a much tighter DBSS
DM cutoff for the delocalized orbitals (1× 10−5 vs. 1× 10−4 ). Thus the correlation
contributions are redistributed in a way that fewer orbitals with larger individual
contributions exist, which can be described by fewer configurations.

The DMRG energies and total correlation due to QIT for all studied systems are
compared in Table 4.25, while the 1-orbital entropies and mutual information is
plotted in Figs. 4.15 and A.54. The general trend is that the total correlation Itot

is increasing with the number of atoms, but this also relates to more orbitals being
present, that can be correlated. Furthermore the accuracy of DMRG decreases
for larger systems, which is also expected as more orbitals means more dynamical
correlation. The exception here is CoF3, were the error of DMRG is smaller than
for CoF2 using the delocalized basis. However, a direct comparison of the amount
of correlation and the DMRG accuracy is only possible for same number of orbitals:
As already mentioned, the localized orbitals for CoF2 yield large improvements in
the DMRG energy. The total correlation increases as the more compact CI vector
allows to include more overall correlation, as indicated by the much lower correlation
energy. Another direct comparison is possible for CoF4, where the DMRG energy
of the Td structure is closer to its FCIQMC estimate than the D4h structure. The
latter structure is more strongly correlated and thus shows larger total correlation.
One would additionally expect its DMRG energy to be more accurate. However,
numerical parameters like the orbital ordering have a large influence on the DMRG
accuracy as well. Reliable DMRG energies are thus hard to obtain for the here used
model systems. But qualitatively correct QIT data may still be obtained as may be
confirmed by comparison with FCIQMC entropies. This was already demonstrated
for the CoF2 model using localized orbitals in Fig. 4.13.
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Table 4.25: Summary of the DMRG results including the total energies and differ-
ences to FCIQMC ∆E (units in Eh) as well as the total correlation Itot
of the cobalt fluorides.

FCIQMC Std. Dev. DMRG ∆E Itot

CoF2 (cc-pVDZ, delocal) −1581.0222 3.2× 10−5 −1580.8079 −0.2143 3.01
CoF2 (cc-pVDZ, local) −1580.9866 −0.0357 3.24
CoF2 (min. basis on F) −1580.6788 4.4× 10−5 −1580.5841 −0.0947 2.53
CoF3 −1680.6357 1.6× 10−4 −1680.4664 −0.1693 4.11
CoF4 D4h −1780.1244 4.9× 10−4 −1779.7190 −0.4054 5.51
CoF4 Td −1780.2119 6.9× 10−4 −1779.9149 −0.2970 5.23
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Figure 4.15: Comparison of 1-orbital entropy Si and mutual information Iij for the
CoF2 model in cc-pVDZ AO basis, using the delocalized (top) and
localized (bottom) MOs.
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Table 4.26: Largest entropies Si and mutual information Iij of selected orbital pairs
ij for the CoF2 model in the full cc-pVDZ basis. The last column
indicates which (type of) atoms the corresponding molecular orbital is
located on. For occupied orbitals the atomic orbital most closely related
to the molecular orbitals are indicated as well.

i j Si Sj Iij

2 0.1443 F pz
5 0.1473 0.0119 Co + F
6 0.1551 0.0293 Co + F
9 0.0310 0.0115 Co + F
10 0.0514 0.0201 F
37 0.1147 0.0135 F pz

3 0.2375 Co dz2

4 0.1089 0.0139 Co dx2−y2

5 0.1473 0.1471 Co + F
6 0.1551 0.0979 Co + F
12 0.0488 0.0227 Co + F

4 0.1089 Co dx2−y2

3 0.2375 0.0139 Co dz2

7 0.0415 0.0389 Co
11 0.0591 0.0572 Co

5 0.1473 Co + F
2 0.1443 0.0119 F pz
3 0.2375 0.1471 Co dz2

6 0.1551 0.0382 Co + F
6 0.1551 Co + F

2 0.1443 0.0293 F pz
3 0.2375 0.0979 Co dz2

5 0.1473 0.0382 Co + F
37 0.1147 0.0119 F pz

16 0.1167 F py
17 0.0334 0.0164 Co + F
18 0.0334 0.0123 Co + F
20 0.0603 0.0401 F
47 0.1525 0.0134 F px
50 0.0580 0.0131 F

24 0.1075 F px
25 0.0355 0.0185 Co + F
26 0.0343 0.0131 Co + F
28 0.0619 0.0416 F
53 0.1487 0.0168 F py
56 0.0544 0.0112 F

37 0.1147 F pz
2 0.1443 0.0135 F pz
6 0.1551 0.0119 Co + F
10 0.0514 0.0103 F
39 0.0421 0.0121 F

40 0.0393 0.0170 Co + F
41 0.0528 0.0230 F

47 0.1525 F px
16 0.1167 0.0134 F py
20 0.0603 0.0117 F
48 0.1166 0.0941 Co dxz + F
49 0.0516 0.0217 Co + F
50 0.0580 0.0256 F

48 0.1166 Co dxz + F
47 0.1525 0.0941 F px
51 0.0317 0.0218 Co + F

53 0.1487 F py
24 0.1075 0.0168 F px
28 0.0619 0.0134 F
54 0.1090 0.0843 Co dyz + F
55 0.0489 0.0222 Co + F
56 0.0544 0.0281 F

54 0.1090 Co dyz + F
53 0.1487 0.0843 F py
57 0.0313 0.0218 Co + F
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4.4 Analysis of Cobalt Fluorides

Table 4.27: Largest entropies Si and mutual information Iij of selected orbital pairs
ij for the CoF2 model using the cc-pVDZ basis on Co but only a minimal
basis set on F. The last column indicates which (type of) atoms the
corresponding molecular orbital is located on. For occupied orbitals the
atomic orbital most closely related to the molecular orbitals are indicated
as well.

i j Si Sj Iij

2 0.1221 F pz
5 0.1697 0.0145 Co + F
6 0.1783 0.0433 Co + F
28 0.0825 0.0104 F pz

4 0.2566 Co dz2

3 0.0604 0.0117 Co dx2−y2

5 0.1697 0.1623 Co + F
6 0.1783 0.0960 Co + F
11 0.0544 0.0311 Co + F

5 0.1697 Co + F
2 0.1221 0.0145 F pz
4 0.2566 0.1623 Co dz2

6 0.1783 0.0426 Co + F
6 0.1783 Co + F

2 0.1221 0.0433 F pz
4 0.2566 0.0960 Co dz2

5 0.1697 0.0426 Co + F
28 0.0825 0.0208 F pz

24 0.1006 Co dxy
25 0.0455 0.0429 Co
26 0.0607 0.0598 Co

34 0.1405 F px + Co
35 0.1436 0.1199 Co dxz + F
36 0.0651 0.0344 Co + F

35 0.1436 Co dxz + F
34 0.1405 0.1199 F px + Co
37 0.0343 0.0261 Co

38 0.1301 F py
39 0.1314 0.1053 Co dyz + F
40 0.0601 0.0353 Co + F

39 0.1314 Co dyz + F
38 0.1301 0.1053 F py
41 0.0338 0.0259 Co
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4 Results

Table 4.28: Largest entropies Si and mutual information Iij of selected orbital pairs
ij for the CoF3 model in the full cc-pVDZ basis. The last column
indicates which (type of) atoms the corresponding molecular orbital is
located on. For occupied orbitals the atomic orbital most closely related
to the molecular orbitals are indicated as well.

i j Si Sj Iij

3 0.1385 F p + Co
10 0.0842 0.0134 Co + F

4 0.2184 F p + Co d
7 0.1970 0.1297 F p + Co
16 0.0672 0.0137 F

5 0.1345 F p
7 0.1970 0.0132 F p + Co
12 0.0747 0.0159 Co + F
18 0.0505 0.0128 F

7 0.1970 F p + Co
4 0.2184 0.1297 F p + Co d
5 0.1345 0.0132 F p
20 0.0402 0.0159 F + Co

31 0.2144 F p + Co d
34 0.2056 0.1392 F p + Co d
40 0.0658 0.0141 F

32 0.1386 F p
34 0.2056 0.0172 F p + Co d
36 0.0793 0.0160 F + Co
39 0.0766 0.0122 F
41 0.0538 0.0126 F

33 0.1334 F p
39 0.0766 0.0205 F

34 0.2056 F p + Co d
31 0.2144 0.1392 F p + Co d
32 0.1386 0.0172 F p
36 0.0793 0.0104 F + Co
42 0.0399 0.0167 F + Co

50 0.1780 F + Co
51 0.1215 0.0104 F
52 0.1318 0.0941 F + Co
55 0.0480 0.0157 F + Co
57 0.0626 0.0135 F
58 0.0676 0.0231 F

51 0.1215 F
50 0.1780 0.0104 F + Co
53 0.0457 0.0136 F + Co
57 0.0626 0.0179 F
58 0.0676 0.0145 F
65 0.1469 0.0106 F p + Co d

52 0.1318 F + Co

50 0.1780 0.0941 F + Co
55 0.0480 0.0135 F + Co
59 0.0297 0.0207 F + Co

65 0.1469 F p + Co d
51 0.1215 0.0106 F
66 0.1083 0.0783 Co d + F p
67 0.0409 0.0173 F + Co
68 0.0577 0.0320 F

66 0.1083 Co d + F p
65 0.1469 0.0783 F p + Co d
67 0.0409 0.0125 F + Co
69 0.0286 0.0211 Co + F
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4.4 Analysis of Cobalt Fluorides

Table 4.29: Largest entropies Si and mutual information Iij of selected orbital pairs
ij for the CoF4 D4h model in the full cc-pVDZ basis. The last column
indicates which (type of) atoms the corresponding molecular orbital is
located on. For occupied orbitals the atomic orbital most closely related
to the molecular orbitals are indicated as well.

i j Si Sj Iij

3 0.1926 F p
6 0.2173 0.1047 F p + Co d

4 0.1684 F p + Co
5 0.1147 0.0405 Co dz2

8 0.0680 0.0126 Co + F
11 0.0366 0.0111 Co

5 0.1147 Co dz2

4 0.1684 0.0405 F p + Co
7 0.0401 0.0143 Co
8 0.0680 0.0143 Co + F
14 0.0315 0.0155 Co + F

6 0.2173 F p + Co d
3 0.1926 0.1047 F p
15 0.0426 0.0157 Co + F

23 0.1087 F p
24 0.1121 0.0103 F p
27 0.0396 0.0128 Co + F
28 0.0555 0.0103 F
29 0.0483 0.0100 F

24 0.1121 F p
23 0.1087 0.0103 F p
28 0.0555 0.0151 F
29 0.0483 0.0104 F

37 0.1011 F p
41 0.0396 0.0130 Co + F
42 0.0575 0.0105 F
43 0.0490 0.0100 F

38 0.1049 F p
42 0.0575 0.0157 F
43 0.0490 0.0103 F

50 0.1853 F p + Co d
52 0.1967 0.1351 F p + Co d

51 0.1168 F p
52 0.1967 0.0112 F p + Co d
53 0.0660 0.0180 Co + F
55 0.0511 0.0134 F

52 0.1967 F p + Co d
50 0.1853 0.1351 F p + Co d
51 0.1168 0.0112 F p
53 0.0660 0.0101 Co + F
54 0.0558 0.0311 Co + F

59 0.1366 F p
60 0.1471 0.0148 F p
61 0.0870 0.0353 Co + F
62 0.0452 0.0132 Co + F
64 0.0683 0.0136 F
65 0.0623 0.0145 Co + F

60 0.1471 F p
59 0.1366 0.0148 F p
61 0.0870 0.0195 Co + F
64 0.0683 0.0216 F
65 0.0623 0.0144 Co + F

70 0.3614 F p + Co d
71 0.3497 0.3796 F p + Co d
72 0.0658 0.0253 F + Co
73 0.0601 0.0188 F + Co

71 0.3497 F p + Co d
70 0.3614 0.3796 F p + Co d
72 0.0658 0.0238 F + Co
73 0.0601 0.0280 F + Co

77 0.3774 F p + Co d
78 0.3667 0.4066 F p + Co d
79 0.0666 0.0258 Co + F
80 0.0606 0.0194 Co + F
81 0.0372 0.0100 Co + F

78 0.3667 F p + Co d
77 0.3774 0.4066 F p + Co d
79 0.0666 0.0246 Co + F
80 0.0606 0.0286 Co + F
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4 Results

Table 4.30: Largest entropies Si and mutual information Iij of selected orbital pairs
ij for the CoF4 Td model in the full cc-pVDZ basis. The last column
indicates which (type of) atoms the corresponding molecular orbital is
located on. For occupied orbitals the atomic orbital most closely related
to the molecular orbitals are indicated as well.

i j Si Sj Iij

3 0.2220 F p + Co d
8 0.2300 0.1038 Co d + F p

4 0.1479 F p
11 0.0884 0.0182 Co + F
15 0.0347 0.0114 Co + F

5 0.2588 F p + Co d
7 0.2559 0.2096 Co d + F p
13 0.0663 0.0122 Co + F

6 0.1414 F p
8 0.2300 0.0161 Co d + F p
12 0.0761 0.0131 Co + F

7 0.2559 Co d + F p
5 0.2588 0.2096 F p + Co d
13 0.0663 0.0160 Co + F
17 0.0519 0.0315 Co + F

8 0.2300 Co d + F p
3 0.2220 0.1038 F p + Co d
6 0.1414 0.0161 F p
12 0.0761 0.0105 Co + F
22 0.0385 0.0158 Co + F

34 0.2322 Co d + F p
37 0.2388 0.1289 Co + F
43 0.0624 0.0163 Co + F

35 0.1144 F p
39 0.0699 0.0128 Co + F
44 0.0474 0.0107 Co + F

36 0.1342 F p
42 0.0645 0.0178 F

37 0.2388 Co + F
34 0.2322 0.1289 Co d + F p
39 0.0699 0.0114 Co + F
43 0.0624 0.0112 Co + F
45 0.0403 0.0171 Co + F

55 0.2003 F p + Co d
58 0.2061 0.1109 F p + Co d
64 0.0592 0.0180 Co + F

56 0.1068 F p
60 0.0687 0.0134 Co + F
65 0.0487 0.0116 Co + F

57 0.1156 F p
63 0.0626 0.0191 Co + F

58 0.2061 F p + Co d
55 0.2003 0.1109 F p + Co d
60 0.0687 0.0123 Co + F
64 0.0592 0.0108 Co + F
66 0.0384 0.0167 Co + F

75 0.1677 F p + Co d
77 0.1632 0.1093 F p + Co d
78 0.0560 0.0126 Co + F
79 0.0576 0.0102 Co + F

76 0.1051 F p
78 0.0560 0.0112 Co + F
79 0.0576 0.0173 Co + F

77 0.1632 F p + Co d
75 0.1677 0.1093 F p + Co d
78 0.0560 0.0142 Co + F
80 0.0458 0.0301 Co + F
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4.4 Analysis of Cobalt Fluorides

4.4.2 Diagonalized 2-Orbital Reduced Density Matrices φij

In analogy to the QIT analysis of N2 and N +
2 in Section 4.1, the 2-orbital corre-

lations are also investigated in terms of the diagonalized 2-orbitals RDM, i.e. the
eigenvectors φij,α and their eigenvalues ωij,α. The main contributions for the most
entangled orbital pairs are summarized in Tables 4.31 to 4.34.

According to the discussion at the end of Section 4.1, strong correlation effects are
expected to yield large mutual information in connection with large contributions
of multiple basis vectors (|−,−〉, |−, ↓〉, etc.) to the 2-orbital RDM ρij. Recall, that
according to the T1 and D1 diagnostics, the strong correlation character increases
in the order of CoF2, CoF3, CoF4 (Td), CoF4 (D4h) (cf. Table 3.2). Indeed, this can
be observed for the two extreme cases CoF2 and CoF4 (D4h) (Tables 4.31 and 4.33
respectively): The largest mutual information for CoF2 are smaller (0.15 vs. 0.41
for the largest value) and largest eigenvalues ωij,α=1 for each orbital pair ij are
in the range from 0.95 to 0.98 . For CoF4 (D4h) the largest eigenvalues of each
orbital pair are still close to 1, but slightly smaller (0.94 to 0.97 ). Additionally,
almost all the shown eigenvectors for CoF2 are dominated by a single basis vector
(e.g. φi=3,j=15,α=2 = +0.06 × |−, ↑〉 − 1.00 × | ↓, ↑↓〉), while for CoF4 (D4h) more
contributing basis vectors can be identified (e.g. φi=77,j=78,α=2 = −0.51 × | ↑↓, ↓
〉+ 0.86× | ↑↓, ↑〉).

Similar, comparing CoF4 in its D4h and Td geometry one finds, that the latter has
smaller mutual information, similar largest eigenvalues (ωij,α=1) and the contribu-
tions of the eigenvectors are slightly more dominated by one of the basis vectors.
Overall, this agrees with Td being less strongly correlated than D4h. The amount of
correlation in CoF3 is expected to be somewhere between CoF2 and CoF4. Although
the differences in the data shown is subtle, they are in agreement. The correspond-
ing observation for the dissociation of N2/N +

2 can thus be confirmed, although the
effect was much stronger pronounced for the dissociation.
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4 Results

4.4.3 Summary

In summary, the collected data suggests that most correlations are intra-atomic.
Most of the inter-atomic correlation energies are related to the overly delocalized
HF orbitals describing the chemical bond, which needs to be corrected for at the CI
level. This suggests localized orbitals may yield improved results, which is confirmed
by the CoF2 example.

Furthermore, the cc-pVDZ basis functions on the 3d orbitals on Co allow a quantita-
tive distinction between Td and D4h geometry already at HF, while a minimal basis
set on F is sufficient. In general, a reasonable description of the electronic structure
on Co seems more important than for F. When studying the larger CoO systems,
one may thus try to reduce computational cost by using fewer basis functions on
the O and F atoms. However, this observation does not necessarily translate from
F to O and would need verification, for example based on Co2OF2 and Co2O2F4 (cf.
Fig. 3.5).

The trend of the strong correlation character in the CoFn series is reflected by
2-orbital correlation measures (Iij, ωij,α and φij,α), supporting the results of Sec-
tion 4.1.
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4.4 Analysis of Cobalt Fluorides

Table 4.31: Largest eigenvalues ωij,α and corresponding eigenvectors φij,α of the 2-
orbital RDMs of the orbital pairs ij with largest mutual information Iij.
Data is summarized for the CoF2 system.

i j Si Sj Iij ωij,α φij,α

3 5 0.24 0.15 0.15
0.96 +1.00× | ↓,−〉
0.02 +0.06× |−, ↑〉 − 1.00× | ↓, ↑↓〉

3 6 0.24 0.16 0.10
0.95 +1.00× | ↓, ↑〉
0.02 −0.11× |−, ↑〉 − 0.99× | ↑,−〉

47 48 0.15 0.12 0.09
0.97 +1.00× | ↑↓, ↓〉

53 54 0.15 0.11 0.08
0.97 +1.00× | ↑↓, ↓〉

4 11 0.11 0.06 0.06
0.98 +1.00× | ↓,−〉

24 28 0.11 0.06 0.04
0.98 +1.00× | ↓,−〉

16 20 0.12 0.06 0.04
0.98 +1.00× | ↓,−〉

4 7 0.11 0.04 0.04
0.98 +1.00× | ↓,−〉

5 6 0.15 0.16 0.04
0.95 +1.00× |−,−〉
0.03 +0.67× |−, ↓〉 − 0.74× | ↓,−〉
0.01 −0.78× |−, ↑〉 − 0.62× | ↓, ↓〉
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Table 4.32: Largest eigenvalues ωij,α and corresponding eigenvectors φij,α of the 2-
orbital RDMs of the orbital pairs ij with largest mutual information Iij.
Data is summarized for the CoF3 system.

i j Si Sj Iij ωij,α φij,α

31 34 0.21 0.21 0.14
0.95 +1.00× | ↑↓, ↑↓〉
0.01 +0.07× | ↑↓,−〉 − 1.00× | ↑↓, ↓〉
0.01 −0.95× | ↓, ↑〉+ 0.32× | ↑, ↑〉

4 7 0.22 0.20 0.13
0.95 +1.00× | ↑↓, ↑↓〉
0.01 +0.09× | ↑↓,−〉 − 1.00× | ↑↓, ↓〉
0.01 +0.95× | ↓, ↑〉+ 0.32× | ↑, ↑〉

50 52 0.18 0.13 0.09
0.96 +1.00× | ↑↓, ↓〉

65 66 0.15 0.11 0.08
0.97 +1.00× | ↑↓, ↓〉

6 19 0.09 0.05 0.03
0.99 +1.00× | ↓,−〉

65 68 0.15 0.06 0.03
0.97 +1.00× | ↓,−〉
0.01 −1.00× | ↑↓,−〉
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Table 4.33: Largest eigenvalues ωij,α and corresponding eigenvectors φij,α of the 2-
orbital RDMs of the orbital pairs ij with largest mutual information Iij.
Data is summarized for the CoF4 D4h system.

i j Si Sj Iij ωij,α φij,α

77 78 0.38 0.37 0.41
0.94 +1.00× | ↑↓, ↑↓〉
0.03 −0.51× | ↑↓, ↓〉+ 0.86× | ↑↓, ↑〉

70 71 0.36 0.35 0.38
0.94 +1.00× | ↑↓, ↑↓〉
0.03 +0.36× | ↑↓,−〉 − 0.93× | ↑↓, ↑〉

50 52 0.19 0.20 0.14
0.96 +1.00× | ↑↓, ↓〉
0.02 −0.13× | ↑↓,−〉+ 0.99× | ↑↓, ↑〉

3 6 0.19 0.22 0.10
0.95 +1.00× | ↑↓, ↑↓〉
0.02 +0.07× | ↑↓,−〉+ 1.00× | ↑↓, ↓〉
0.01 +0.74× | ↓, ↑↓〉 − 0.67× | ↑, ↓〉

4 5 0.17 0.11 0.04
0.96 +1.00× | ↑↓, ↑〉
0.01 −0.06× | ↑, ↑↓〉 − 1.00× | ↑↓, ↓〉

59 61 0.14 0.09 0.04
0.97 +1.00× | ↓, ↑〉

52 54 0.20 0.06 0.03
0.95 +1.00× |−, ↑↓〉
0.04 −1.00× | ↑, ↓〉
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4 Results

Table 4.34: Largest eigenvalues ωij,α and corresponding eigenvectors φij,α of the 2-
orbital RDMs of the orbital pairs ij with largest mutual information Iij.
Data is summarized for the CoF4 Td system.

i j Si Sj Iij ωij,α φij,α

5 7 0.26 0.26 0.21
0.95 +1.00× | ↑↓, ↓〉
0.02 +0.23× | ↑↓,−〉 − 0.97× | ↑↓, ↑〉

34 37 0.23 0.24 0.13
0.94 +1.00× | ↑↓, ↑↓〉
0.02 −0.07× | ↑↓,−〉+ 1.00× | ↑↓, ↓〉
0.01 +0.87× | ↓, ↑↓〉+ 0.50× | ↑, ↑〉

55 58 0.20 0.21 0.11
0.95 +1.00× | ↑↓, ↑〉
0.02 −0.14× | ↑↓,−〉 − 0.99× | ↑↓, ↓〉

75 77 0.17 0.16 0.11
0.96 +1.00× | ↑↓, ↓〉
0.01 +0.22× | ↑↓,−〉 − 0.98× | ↑↓, ↑〉

3 8 0.22 0.23 0.10
0.94 +1.00× | ↑↓, ↑↓〉
0.02 +0.19× | ↑↓,−〉 − 0.98× | ↑↓, ↓〉
0.01 −0.85× | ↑,−〉 − 0.53× | ↑, ↓〉
0.01 −0.12× | ↓, ↓〉 − 0.10× | ↓, ↑↓〉 − 0.99× | ↑, ↑〉
0.01 +0.98× | ↑↓,−〉+ 0.19× | ↑↓, ↓〉

7 17 0.26 0.05 0.03
0.94 +1.00× |−, ↑〉
0.05 −1.00× | ↑, ↓〉

77 80 0.16 0.05 0.03
0.97 +1.00× |−, ↑↓〉
0.03 +1.00× | ↑, ↓〉
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5 Conclusion and Outlook

This thesis exemplified on different model systems how correlation effects can sys-
tematically be analyzed to obtain insights on the structure of the electronic wave
function. As a first example the dissociation of N2 and N +

2 in different elec-
tronic states was analyzed. The obtained QIT data can be related to and under-
stood by chemical concepts such as bond breaking or different orbital types (σ/π,
bonding/anti-bonding). Furthermore, different patterns in the mutual information
and 2-orbital RDMs for orbital pairs mostly associated with weak and strong corre-
lation are observed. While strong correlation can be associated with large mutual
information and multiple 2-orbital occupation patterns (basis vectors) contributing
to the related 2-orbital RDMs, weak correlation is associated with many such basis
vectors of small weight each. These results are additionally confirmed by the cobalt
fluorides in the last section.

Based on these observations a new approach to select the leading contributions for
MCSCF and MRCI calculations was suggested and tested on the CoF2 and CoF4

(D4h) model systems. Especially for the more strongly correlated CoF4 model the
computational effort can be drastically reduced, with accuracy remaining on the
order of 1 mEh. Although the results are statistically limited, since only two models
have been tested, they suggests large benefits for strongly correlated systems with
large active spaces are possible. Systems previously unavailable due to the expensive
scaling of MCSCF and MRCI may thus become accessible in the future. Further
refinement of the method is possible and application to more systems may lead
to empirical validation of the concept. Additionally, it was demonstrated that,
depending on the system under study, an automated active space selection just
based on the 1-orbital entropy does not always yield best results and the mutual
information should be considered as well.
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5 Conclusion and Outlook

The equivalence of QIT and the MoI as a tool to quantify electron correlation ef-
fects of the different (groups of) orbitals was tested on different systems, including
weakly (polyacetylen) and strongly correlated (Be6 rings) systems as well as an open-
shell (CoF2) model. Although qualitative agreement in most cases can be observed,
both approaches may yield very different quantitative values. Thus, results may in
principle be transferred between both measures, but care should be taken to not
accidentally exclude potentially important contributions, i.e. cutoff parameters to
exclude orbitals should be kept small. The correspondence of both measures thus
allows to exploit the different advantages of the related methods for treating elec-
tron correlation: Since the MoI is extremely cheap at the 1-orbital increment level,
it may be used to screen a large space of virtual orbitals and then select an initial
active space, without prior chemical knowledge or intuition. This will reduce the
problem of large dynamical correlation contributions for a DMRG calculation. In
turn, the fast convergence of the QIT data with respect to the number of blockstates
in DMRG, or number of walkers in FCIQMC, may yield valuable information on
the required and negligible n-orbital increments. In the context of FCIQMC it was
further demonstrated how the 1-orbital entropies may be obtained.

Finally, the study of correlation effects in cobalt fluorides CoFn shows, that the
description of the electronic structure on the Co center critically depends on the AO
basis set quality, while for F a smaller basis set may still yield qualitative trends.
Additionally, orbital localization may significantly improve accuracy. The study of
related extended systems should therefore use localized orbitals and may try to use
a smaller basis set on the F and O than for Co.

Overall, the systematic study of correlation effects yielded insights stimulating a
number of ideas on the improvement and combination of existing electron correlation
methods for improved accuracy and/or reduced computational cost.
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Appendix

#MO 001

εi = −1.2849Eh

τi = n/a
Sa
i = n/a
Si = 0.0777

#MO 002

εi = −1.2849Eh

τi = n/a
Sa
i = n/a
Si = 0.0727

#MO 003

εi = −0.8367Eh

τi = n/a
Sa
i = n/a
Si = 0.1488

#MO 004

εi = −0.8367Eh

τi = n/a
Sa
i = n/a
Si = 0.1345

#MO 005

εi = −0.7066Eh

τi = n/a
Sa
i = n/a
Si = 0.1082

#MO 006

εi = −0.6589Eh

τi = n/a
Sa
i = n/a
Si = 0.1962

#MO 007

εi = −0.5971Eh

τi = n/a
Sa
i = n/a
Si = 0.1322

#MO 008

εi = −0.5971Eh

τi = n/a
Sa
i = n/a
Si = 0.1347

Figure A.1: Pipek-Mezey localized active space molecular orbitals #1 to #8 for
CoF2. Their corresponding diagonal Fock matrix element εi, 1-orbital
increment εi as well as the agnostic and non-agnostic 1-orbital en-
tropies Sa

i and Si are given as well. Isosurfaces are plotted at |ψ(~r)| =
0.05 a−1.5

0 ).
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#MO 009

εi = −0.5971Eh

τi = n/a
Sa
i = n/a
Si = 0.1550

#MO 010

εi = −0.5971Eh

τi = n/a
Sa
i = n/a
Si = 0.1558

#MO 011

εi = −0.2751Eh

τi = n/a
Sa
i = n/a
Si = 0.0544

#MO 012

εi = −0.2450Eh

τi = n/a
Sa
i = n/a
Si = 0.1025

#MO 013

εi = −0.2450Eh

τi = n/a
Sa
i = n/a
Si = 0.1032

#MO 014

εi = 0.2512Eh

τi = −0.0050 Eh

Sa
i = 0.0410
Si = 0.2053

#MO 015

εi = 0.2588Eh

τi = −0.0007 Eh

Sa
i = 0.0051
Si = 0.0484

#MO 016

εi = 0.2588Eh

τi = −0.0007 Eh

Sa
i = 0.0051
Si = 0.0503

Figure A.2: Pipek-Mezey localized active space molecular orbitals #9 to #16 for
CoF2. Their corresponding diagonal Fock matrix element εi, 1-orbital
increment εi as well as the agnostic and non-agnostic 1-orbital en-
tropies Sa

i and Si are given as well. Isosurfaces are plotted at |ψ(~r)| =
0.05 a−1.5

0 ).
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#MO 017

εi = 0.3305Eh

τi = −0.0017 Eh

Sa
i = 0.0186
Si = 0.0160

#MO 018

εi = 0.4371Eh

τi = −0.0004 Eh

Sa
i = 0.0040
Si = 0.0097

#MO 019

εi = 0.4709Eh

τi = −0.0016 Eh

Sa
i = 0.0146
Si = 0.0435

#MO 020

εi = 0.4709Eh

τi = −0.0016 Eh

Sa
i = 0.0146
Si = 0.0440

#MO 021

εi = 1.0704Eh

τi = −0.0005 Eh

Sa
i = 0.0025
Si = 0.0189

#MO 022

εi = 1.1473Eh

τi = −0.0009 Eh

Sa
i = 0.0035
Si = 0.0427

#MO 023

εi = 1.1473Eh

τi = −0.0009 Eh

Sa
i = 0.0035
Si = 0.0400

#MO 024

εi = 1.2176Eh

τi = −0.0003 Eh

Sa
i = 0.0012
Si = 0.0070

Figure A.3: Pipek-Mezey localized active space molecular orbitals #17 to #24
for CoF2. Their corresponding diagonal Fock matrix element εi, 1-
orbital increment εi as well as the agnostic and non-agnostic 1-orbital
entropies Sa

i and Si are given as well. Isosurfaces are plotted at
|ψ(~r)| = 0.05 a−1.5

0 ).
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#MO 025

εi = 1.2970Eh

τi = −0.0010 Eh

Sa
i = 0.0044
Si = 0.0290

#MO 026

εi = 1.2970Eh

τi = −0.0010 Eh

Sa
i = 0.0044
Si = 0.0330

#MO 027

εi = 1.5624Eh

τi = −0.0005 Eh

Sa
i = 0.0015
Si = 0.0093

#MO 028

εi = 1.6469Eh

τi = −0.0025 Eh

Sa
i = 0.0085
Si = 0.0360

#MO 029

εi = 1.6879Eh

τi = −0.0101 Eh

Sa
i = 0.0209
Si = 0.0804

#MO 030

εi = 1.6879Eh

τi = −0.0101 Eh

Sa
i = 0.0209
Si = 0.0806

#MO 031

εi = 1.6879Eh

τi = −0.0101 Eh

Sa
i = 0.0209
Si = 0.0829

#MO 032

εi = 1.6879Eh

τi = −0.0101 Eh

Sa
i = 0.0209
Si = 0.0827

Figure A.4: Pipek-Mezey localized active space molecular orbitals #25 to #32
for CoF2. Their corresponding diagonal Fock matrix element εi, 1-
orbital increment εi as well as the agnostic and non-agnostic 1-orbital
entropies Sa

i and Si are given as well. Isosurfaces are plotted at
|ψ(~r)| = 0.05 a−1.5

0 ).
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#MO 033

εi = 1.7470Eh

τi = −0.0031 Eh

Sa
i = 0.0110
Si = 0.0187

#MO 034

εi = 1.7470Eh

τi = −0.0031 Eh

Sa
i = 0.0110
Si = 0.0192

#MO 035

εi = 1.7472Eh

τi = −0.0031 Eh

Sa
i = 0.0110
Si = 0.0188

#MO 036

εi = 1.7472Eh

τi = −0.0031 Eh

Sa
i = 0.0110
Si = 0.0192

#MO 037

εi = 1.9998Eh

τi = −0.0046 Eh

Sa
i = 0.0124
Si = 0.0511

#MO 038

εi = 2.0259Eh

τi = −0.0100 Eh

Sa
i = 0.0169
Si = 0.0611

#MO 039

εi = 2.0259Eh

τi = −0.0100 Eh

Sa
i = 0.0169
Si = 0.0629

#MO 040

εi = 2.1293Eh

τi = −0.0005 Eh

Sa
i = 0.0014
Si = 0.0152

Figure A.5: Pipek-Mezey localized active space molecular orbitals #33 to #40
for CoF2. Their corresponding diagonal Fock matrix element εi, 1-
orbital increment εi as well as the agnostic and non-agnostic 1-orbital
entropies Sa

i and Si are given as well. Isosurfaces are plotted at
|ψ(~r)| = 0.05 a−1.5

0 ).
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#MO 041

εi = 2.1293Eh

τi = −0.0005 Eh

Sa
i = 0.0014
Si = 0.0147

#MO 042

εi = 2.1821Eh

τi = −0.0009 Eh

Sa
i = 0.0023
Si = 0.0114

#MO 043

εi = 2.4421Eh

τi = −0.0006 Eh

Sa
i = 0.0013
Si = 0.0119

#MO 044

εi = 2.4421Eh

τi = −0.0006 Eh

Sa
i = 0.0013
Si = 0.0119

#MO 045

εi = 2.6116Eh

τi = −0.0052 Eh

Sa
i = 0.0075
Si = 0.0581

#MO 046

εi = 2.6116Eh

τi = −0.0052 Eh

Sa
i = 0.0075
Si = 0.0598

#MO 047

εi = 3.2272Eh

τi = −0.0014 Eh

Sa
i = 0.0021
Si = 0.0132

#MO 048

εi = 3.3307Eh

τi = −0.0017 Eh

Sa
i = 0.0028
Si = 0.0167

Figure A.6: Pipek-Mezey localized active space molecular orbitals #41 to #48
for CoF2. Their corresponding diagonal Fock matrix element εi, 1-
orbital increment εi as well as the agnostic and non-agnostic 1-orbital
entropies Sa

i and Si are given as well. Isosurfaces are plotted at
|ψ(~r)| = 0.05 a−1.5

0 ).
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#MO 049

εi = 3.3868Eh

τi = −0.0017 Eh

Sa
i = 0.0025
Si = 0.0201

#MO 050

εi = 3.4799Eh

τi = −0.0017 Eh

Sa
i = 0.0024
Si = 0.0186

#MO 051

εi = 3.8782Eh

τi = −0.0045 Eh

Sa
i = 0.0048
Si = 0.0252

#MO 052

εi = 3.8782Eh

τi = −0.0045 Eh

Sa
i = 0.0048
Si = 0.0247

#MO 053

εi = 4.0117Eh

τi = −0.0047 Eh

Sa
i = 0.0049
Si = 0.0202

#MO 054

εi = 4.0117Eh

τi = −0.0047 Eh

Sa
i = 0.0049
Si = 0.0203

#MO 055

εi = 4.0117Eh

τi = −0.0047 Eh

Sa
i = 0.0049
Si = 0.0201

#MO 056

εi = 4.0117Eh

τi = −0.0047 Eh

Sa
i = 0.0049
Si = 0.0202

Figure A.7: Pipek-Mezey localized active space molecular orbitals #49 to #56
for CoF2. Their corresponding diagonal Fock matrix element εi, 1-
orbital increment εi as well as the agnostic and non-agnostic 1-orbital
entropies Sa

i and Si are given as well. Isosurfaces are plotted at
|ψ(~r)| = 0.05 a−1.5

0 ).
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#MO 057

εi = 4.0357Eh

τi = −0.0048 Eh

Sa
i = 0.0050
Si = 0.0157

#MO 058

εi = 4.0357Eh

τi = −0.0048 Eh

Sa
i = 0.0050
Si = 0.0196

#MO 059

εi = 4.0357Eh

τi = −0.0048 Eh

Sa
i = 0.0050
Si = 0.0196

#MO 060

εi = 4.0357Eh

τi = −0.0048 Eh

Sa
i = 0.0050
Si = 0.0158

Figure A.8: Pipek-Mezey localized active space molecular orbitals #57 to #60
for CoF2. Their corresponding diagonal Fock matrix element εi, 1-
orbital increment εi as well as the agnostic and non-agnostic 1-orbital
entropies Sa

i and Si are given as well. Isosurfaces are plotted at
|ψ(~r)| = 0.05 a−1.5

0 ).

159



Appendix

#MO 001 Ag

εi = −1.5129Eh

Si = 0.060
|−〉 = 0.001
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.991

#MO 002 Ag

εi = −0.6643Eh

Si = 0.144
|−〉 = 0.002
| ↓〉 = 0.011
| ↑〉 = 0.013
| ↓↑〉 = 0.974

#MO 003 Ag

εi = −0.4801Eh

Si = 0.237
|−〉 = 0.007
| ↓〉 = 0.033
| ↑〉 = 0.009
| ↓↑〉 = 0.951

#MO 004 Ag

εi = −0.4908Eh

Si = 0.109
|−〉 = 0.003
| ↓〉 = 0.009
| ↑〉 = 0.006
| ↓↑〉 = 0.982

#MO 005 Ag

εi = 0.0400Eh

Si = 0.147
|−〉 = 0.972
| ↓〉 = 0.006
| ↑〉 = 0.021
| ↓↑〉 = 0.001

#MO 006 Ag

εi = 0.2245Eh

Si = 0.155
|−〉 = 0.971
| ↓〉 = 0.009
| ↑〉 = 0.017
| ↓↑〉 = 0.002

#MO 007 Ag

εi = 0.3086Eh

Si = 0.041
|−〉 = 0.994
| ↓〉 = 0.002
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 008 Ag

εi = 0.5165Eh

Si = 0.023
|−〉 = 0.997
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.9: Molecular orbitals #1 to #8 for CoF2 with their eigenenergy εi, 1-orbital
entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}. Isosur-
faces are plotted at |ψ(~r)| = 0.05 a−1.5

0 ).
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#MO 009 Ag

εi = 1.0207Eh

Si = 0.031
|−〉 = 0.996
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 010 Ag

εi = 1.7252Eh

Si = 0.051
|−〉 = 0.992
| ↓〉 = 0.003
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 011 Ag

εi = 1.9715Eh

Si = 0.059
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 012 Ag

εi = 2.2245Eh

Si = 0.049
|−〉 = 0.993
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 013 Ag

εi = 3.0296Eh

Si = 0.023
|−〉 = 0.997
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 014 Ag

εi = 4.0416Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 015 Ag

εi = 4.6192Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 016 B3u

εi = −0.5903Eh

Si = 0.117
|−〉 = 0.003
| ↓〉 = 0.009
| ↑〉 = 0.008
| ↓↑〉 = 0.980

Figure A.10: Molecular orbitals #9 to #16 for CoF2 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5

0 ).

161



Appendix

#MO 017 B3u

εi = 0.0700Eh

Si = 0.033
|−〉 = 0.995
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 018 B3u

εi = 0.2558Eh

Si = 0.033
|−〉 = 0.995
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.001

#MO 019 B3u

εi = 1.1765Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 020 B3u

εi = 1.5696Eh

Si = 0.060
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 021 B3u

εi = 3.6869Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 022 B3u

εi = 3.8209Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 023 B3u

εi = 4.2742Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 024 B2u

εi = −0.5903Eh

Si = 0.107
|−〉 = 0.003
| ↓〉 = 0.008
| ↑〉 = 0.007
| ↓↑〉 = 0.982

Figure A.11: Molecular orbitals #17 to #24 for CoF2 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 025 B2u

εi = 0.0700Eh

Si = 0.035
|−〉 = 0.995
| ↓〉 = 0.002
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 026 B2u

εi = 0.2558Eh

Si = 0.034
|−〉 = 0.995
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.001

#MO 027 B2u

εi = 1.1765Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 028 B2u

εi = 1.5696Eh

Si = 0.062
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 029 B2u

εi = 3.6869Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 030 B2u

εi = 3.8209Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 031 B2u

εi = 4.2742Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 032 B1g

εi = −0.4908Eh

Si = 0.044
|−〉 = 0.006
| ↓〉 = 0.993
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.12: Molecular orbitals #25 to #32 for CoF2 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 033 B1g

εi = 0.3086Eh

Si = 0.014
|−〉 = 0.998
| ↓〉 = 0.002
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 034 B1g

εi = 1.9715Eh

Si = 0.031
|−〉 = 0.995
| ↓〉 = 0.005
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 035 B1g

εi = 4.0416Eh

Si = 0.003
|−〉 = 1.000
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 036 B1u

εi = −1.5005Eh

Si = 0.054
|−〉 = 0.001
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.992

#MO 037 B1u

εi = −0.6009Eh

Si = 0.115
|−〉 = 0.004
| ↓〉 = 0.008
| ↑〉 = 0.008
| ↓↑〉 = 0.981

#MO 038 B1u

εi = 0.1389Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 039 B1u

εi = 0.4559Eh

Si = 0.042
|−〉 = 0.994
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 040 B1u

εi = 1.2654Eh

Si = 0.039
|−〉 = 0.994
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

Figure A.13: Molecular orbitals #33 to #40 for CoF2 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 041 B1u

εi = 1.6966Eh

Si = 0.053
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.001

#MO 042 B1u

εi = 2.5510Eh

Si = 0.027
|−〉 = 0.996
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 043 B1u

εi = 3.6992Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 044 B1u

εi = 3.8271Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 045 B1u

εi = 4.0466Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 046 B1u

εi = 4.9427Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 047 B2g

εi = −0.6034Eh

Si = 0.153
|−〉 = 0.002
| ↓〉 = 0.020
| ↑〉 = 0.006
| ↓↑〉 = 0.971

#MO 048 B2g

εi = −0.2812Eh

Si = 0.117
|−〉 = 0.006
| ↓〉 = 0.979
| ↑〉 = 0.000
| ↓↑〉 = 0.015

Figure A.14: Molecular orbitals #41 to #48 for CoF2 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 049 B2g

εi = 0.4084Eh

Si = 0.052
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 050 B2g

εi = 1.7515Eh

Si = 0.058
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 051 B2g

εi = 1.9787Eh

Si = 0.032
|−〉 = 0.995
| ↓〉 = 0.004
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 052 B2g

εi = 4.1221Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 053 B3g

εi = −0.6034Eh

Si = 0.149
|−〉 = 0.003
| ↓〉 = 0.019
| ↑〉 = 0.006
| ↓↑〉 = 0.972

#MO 054 B3g

εi = −0.2812Eh

Si = 0.109
|−〉 = 0.006
| ↓〉 = 0.981
| ↑〉 = 0.000
| ↓↑〉 = 0.013

#MO 055 B3g

εi = 0.4084Eh

Si = 0.049
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 056 B3g

εi = 1.7515Eh

Si = 0.054
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.001

Figure A.15: Molecular orbitals #49 to #56 for CoF2 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 057 B3g

εi = 1.9787Eh

Si = 0.031
|−〉 = 0.995
| ↓〉 = 0.004
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 058 B3g

εi = 4.1221Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 059 Au

εi = 3.8271Eh

Si = 0.003
|−〉 = 1.000
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 060 Au

εi = 4.0466Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.16: Molecular orbitals #57 to #60 for CoF2 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 001 Ag

εi = −1.4968Eh

Si = 0.034
|−〉 = 0.000
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.995

#MO 002 Ag

εi = −0.6464Eh

Si = 0.122
|−〉 = 0.001
| ↓〉 = 0.009
| ↑〉 = 0.011
| ↓↑〉 = 0.979

#MO 003 Ag

εi = −0.4881Eh

Si = 0.060
|−〉 = 0.008
| ↓〉 = 0.990
| ↑〉 = 0.001
| ↓↑〉 = 0.001

#MO 004 Ag

εi = −0.4762Eh

Si = 0.257
|−〉 = 0.007
| ↓〉 = 0.037
| ↑〉 = 0.010
| ↓↑〉 = 0.946

#MO 005 Ag

εi = 0.0411Eh

Si = 0.170
|−〉 = 0.967
| ↓〉 = 0.009
| ↑〉 = 0.023
| ↓↑〉 = 0.001

#MO 006 Ag

εi = 0.2408Eh

Si = 0.178
|−〉 = 0.966
| ↓〉 = 0.013
| ↑〉 = 0.018
| ↓↑〉 = 0.003

#MO 007 Ag

εi = 0.3100Eh

Si = 0.016
|−〉 = 0.998
| ↓〉 = 0.002
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 008 Ag

εi = 0.6417Eh

Si = 0.028
|−〉 = 0.996
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

Figure A.17: Molecular orbitals #1 to #8 for CoF2 (min. basis at F) with their
eigenenergy εi, 1-orbital entropy Si and orbital occupations ωi,α =
{|−〉, | ↓〉, | ↑〉, | ↓↑〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 009 Ag

εi = 1.0567Eh

Si = 0.023
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 010 Ag

εi = 1.9742Eh

Si = 0.031
|−〉 = 0.995
| ↓〉 = 0.005
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 011 Ag

εi = 2.3151Eh

Si = 0.054
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 012 B3u

εi = −0.5742Eh

Si = 0.085
|−〉 = 0.001
| ↓〉 = 0.008
| ↑〉 = 0.005
| ↓↑〉 = 0.986

#MO 013 B3u

εi = 0.0743Eh

Si = 0.047
|−〉 = 0.993
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 014 B3u

εi = 0.2615Eh

Si = 0.047
|−〉 = 0.993
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.001

#MO 015 B3u

εi = 1.1807Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 016 B3u

εi = 3.8239Eh

Si = 0.005
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.18: Molecular orbitals #9 to #16 for CoF2 (min. basis at F) with their
eigenenergy εi, 1-orbital entropy Si and orbital occupations ωi,α =
{|−〉, | ↓〉, | ↑〉, | ↓↑〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 017 B3u

εi = 3.8499Eh

Si = 0.005
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 018 B2u

εi = −0.5742Eh

Si = 0.077
|−〉 = 0.001
| ↓〉 = 0.006
| ↑〉 = 0.004
| ↓↑〉 = 0.988

#MO 019 B2u

εi = 0.0743Eh

Si = 0.047
|−〉 = 0.993
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 020 B2u

εi = 0.2615Eh

Si = 0.046
|−〉 = 0.993
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.001

#MO 021 B2u

εi = 1.1807Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 022 B2u

εi = 3.8239Eh

Si = 0.005
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 023 B2u

εi = 3.8499Eh

Si = 0.005
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 024 B1g

εi = −0.4881Eh

Si = 0.101
|−〉 = 0.003
| ↓〉 = 0.008
| ↑〉 = 0.005
| ↓↑〉 = 0.984

Figure A.19: Molecular orbitals #17 to #24 for CoF2 (min. basis at F) with their
eigenenergy εi, 1-orbital entropy Si and orbital occupations ωi,α =
{|−〉, | ↓〉, | ↑〉, | ↓↑〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 025 B1g

εi = 0.3100Eh

Si = 0.046
|−〉 = 0.993
| ↓〉 = 0.002
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 026 B1g

εi = 1.9742Eh

Si = 0.061
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 027 B1u

εi = −1.4835Eh

Si = 0.029
|−〉 = 0.000
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.996

#MO 028 B1u

εi = −0.5799Eh

Si = 0.083
|−〉 = 0.003
| ↓〉 = 0.005
| ↑〉 = 0.005
| ↓↑〉 = 0.987

#MO 029 B1u

εi = 0.1508Eh

Si = 0.016
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 030 B1u

εi = 0.5423Eh

Si = 0.054
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 031 B1u

εi = 1.2931Eh

Si = 0.034
|−〉 = 0.995
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 032 B1u

εi = 3.8407Eh

Si = 0.004
|−〉 = 1.000
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.20: Molecular orbitals #25 to #32 for CoF2 (min. basis at F) with their
eigenenergy εi, 1-orbital entropy Si and orbital occupations ωi,α =
{|−〉, | ↓〉, | ↑〉, | ↓↑〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 033 B1u

εi = 3.9502Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 034 B2g

εi = −0.5899Eh

Si = 0.140
|−〉 = 0.001
| ↓〉 = 0.022
| ↑〉 = 0.004
| ↓↑〉 = 0.973

#MO 035 B2g

εi = −0.2789Eh

Si = 0.144
|−〉 = 0.006
| ↓〉 = 0.973
| ↑〉 = 0.002
| ↓↑〉 = 0.020

#MO 036 B2g

εi = 0.4376Eh

Si = 0.065
|−〉 = 0.990
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 037 B2g

εi = 1.9823Eh

Si = 0.034
|−〉 = 0.995
| ↓〉 = 0.005
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 038 B3g

εi = −0.5899Eh

Si = 0.130
|−〉 = 0.001
| ↓〉 = 0.020
| ↑〉 = 0.004
| ↓↑〉 = 0.975

#MO 039 B3g

εi = −0.2789Eh

Si = 0.131
|−〉 = 0.006
| ↓〉 = 0.976
| ↑〉 = 0.002
| ↓↑〉 = 0.017

#MO 040 B3g

εi = 0.4376Eh

Si = 0.060
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.001

Figure A.21: Molecular orbitals #33 to #40 for CoF2 (min. basis at F) with their
eigenenergy εi, 1-orbital entropy Si and orbital occupations ωi,α =
{|−〉, | ↓〉, | ↑〉, | ↓↑〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 041 B3g

εi = 1.9823Eh

Si = 0.034
|−〉 = 0.995
| ↓〉 = 0.005
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 042 Au

εi = 3.8407Eh

Si = 0.004
|−〉 = 1.000
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.22: Molecular orbitals #41 to #42 for CoF2 (min. basis at F) with their
eigenenergy εi, 1-orbital entropy Si and orbital occupations ωi,α =
{|−〉, | ↓〉, | ↑〉, | ↓↑〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 001 A1

εi = −1.5773Eh

Si = 0.054
|−〉 = 0.000
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.992

#MO 002 A1

εi = −1.5686Eh

Si = 0.057
|−〉 = 0.001
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.991

#MO 003 A1

εi = −0.7295Eh

Si = 0.114
|−〉 = 0.001
| ↓〉 = 0.010
| ↑〉 = 0.008
| ↓↑〉 = 0.980

#MO 004 A1

εi = −0.7192Eh

Si = 0.169
|−〉 = 0.002
| ↓〉 = 0.023
| ↑〉 = 0.008
| ↓↑〉 = 0.967

#MO 005 A1

εi = −0.6638Eh

Si = 0.109
|−〉 = 0.002
| ↓〉 = 0.010
| ↑〉 = 0.007
| ↓↑〉 = 0.982

#MO 006 A1

εi = −1.2292Eh

Si = 0.069
|−〉 = 0.002
| ↓〉 = 0.006
| ↑〉 = 0.003
| ↓↑〉 = 0.990

#MO 007 A1

εi = −0.4276Eh

Si = 0.140
|−〉 = 0.006
| ↓〉 = 0.974
| ↑〉 = 0.001
| ↓↑〉 = 0.020

#MO 008 A1

εi = 0.0377Eh

Si = 0.035
|−〉 = 0.995
| ↓〉 = 0.002
| ↑〉 = 0.003
| ↓↑〉 = 0.000

Figure A.23: Molecular orbitals #1 to #8 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 009 A1

εi = 0.1195Eh

Si = 0.016
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 010 A1

εi = 0.2048Eh

Si = 0.065
|−〉 = 0.990
| ↓〉 = 0.005
| ↑〉 = 0.005
| ↓↑〉 = 0.000

#MO 011 A1

εi = 0.3480Eh

Si = 0.019
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 012 A1

εi = 0.3597Eh

Si = 0.056
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 013 A1

εi = 0.4885Eh

Si = 0.023
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 014 A1

εi = 0.9143Eh

Si = 0.026
|−〉 = 0.996
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 015 A1

εi = 1.1098Eh

Si = 0.024
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 016 A1

εi = 1.6000Eh

Si = 0.058
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.000

Figure A.24: Molecular orbitals #9 to #16 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 017 A1

εi = 1.6430Eh

Si = 0.049
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 018 A1

εi = 1.8049Eh

Si = 0.044
|−〉 = 0.994
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 019 A1

εi = 1.9087Eh

Si = 0.039
|−〉 = 0.995
| ↓〉 = 0.002
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 020 A1

εi = 1.9789Eh

Si = 0.033
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 021 A1

εi = 2.5456Eh

Si = 0.024
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 022 A1

εi = 2.7335Eh

Si = 0.021
|−〉 = 0.997
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 023 A1

εi = 3.5398Eh

Si = 0.014
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 024 A1

εi = 3.6368Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.25: Molecular orbitals #17 to #24 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 025 A1

εi = 3.9807Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 026 A1

εi = 3.9925Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 027 A1

εi = 4.0686Eh

Si = 0.015
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 028 A1

εi = 4.6553Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 029 A1

εi = 4.7764Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 030 B1

εi = −1.5686Eh

Si = 0.051
|−〉 = 0.001
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.992

#MO 031 B1

εi = −0.7192Eh

Si = 0.183
|−〉 = 0.002
| ↓〉 = 0.028
| ↑〉 = 0.008
| ↓↑〉 = 0.963

#MO 032 B1

εi = −0.6638Eh

Si = 0.116
|−〉 = 0.002
| ↓〉 = 0.011
| ↑〉 = 0.007
| ↓↑〉 = 0.980

Figure A.26: Molecular orbitals #25 to #32 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 033 B1

εi = −0.6306Eh

Si = 0.113
|−〉 = 0.002
| ↓〉 = 0.010
| ↑〉 = 0.008
| ↓↑〉 = 0.981

#MO 034 B1

εi = −0.4276Eh

Si = 0.169
|−〉 = 0.006
| ↓〉 = 0.966
| ↑〉 = 0.001
| ↓↑〉 = 0.027

#MO 035 B1

εi = 0.1195Eh

Si = 0.021
|−〉 = 0.997
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 036 B1

εi = 0.3597Eh

Si = 0.066
|−〉 = 0.990
| ↓〉 = 0.006
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 037 B1

εi = 0.4885Eh

Si = 0.025
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 038 B1

εi = 1.1098Eh

Si = 0.023
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 039 B1

εi = 1.4624Eh

Si = 0.069
|−〉 = 0.989
| ↓〉 = 0.005
| ↑〉 = 0.005
| ↓↑〉 = 0.001

#MO 040 B1

εi = 1.6000Eh

Si = 0.059
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.000

Figure A.27: Molecular orbitals #33 to #40 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 041 B1

εi = 1.8049Eh

Si = 0.048
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 042 B1

εi = 1.9789Eh

Si = 0.035
|−〉 = 0.995
| ↓〉 = 0.004
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 043 B1

εi = 2.7335Eh

Si = 0.020
|−〉 = 0.997
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 044 B1

εi = 3.5078Eh

Si = 0.014
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 045 B1

εi = 3.6368Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 046 B1

εi = 3.9807Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 047 B1

εi = 4.0686Eh

Si = 0.015
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 048 B1

εi = 4.1951Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.28: Molecular orbitals #41 to #48 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 049 B1

εi = 4.6553Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 050 B2

εi = −0.6607Eh

Si = 0.150
|−〉 = 0.002
| ↓〉 = 0.018
| ↑〉 = 0.007
| ↓↑〉 = 0.972

#MO 051 B2

εi = −0.6540Eh

Si = 0.107
|−〉 = 0.002
| ↓〉 = 0.009
| ↑〉 = 0.007
| ↓↑〉 = 0.982

#MO 052 B2

εi = −0.4478Eh

Si = 0.104
|−〉 = 0.005
| ↓〉 = 0.982
| ↑〉 = 0.001
| ↓↑〉 = 0.012

#MO 053 B2

εi = 0.0653Eh

Si = 0.037
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 054 B2

εi = 0.2198Eh

Si = 0.028
|−〉 = 0.996
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 055 B2

εi = 0.3422Eh

Si = 0.040
|−〉 = 0.994
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 056 B2

εi = 1.0682Eh

Si = 0.004
|−〉 = 1.000
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.29: Molecular orbitals #49 to #56 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 057 B2

εi = 1.5750Eh

Si = 0.058
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 058 B2

εi = 1.5957Eh

Si = 0.062
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 059 B2

εi = 1.8154Eh

Si = 0.026
|−〉 = 0.996
| ↓〉 = 0.003
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 060 B2

εi = 3.5705Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 061 B2

εi = 3.6052Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 062 B2

εi = 3.9884Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 063 B2

εi = 4.1049Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 064 B2

εi = 4.1296Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.30: Molecular orbitals #57 to #64 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 065 A2

εi = −0.6607Eh

Si = 0.131
|−〉 = 0.003
| ↓〉 = 0.015
| ↑〉 = 0.006
| ↓↑〉 = 0.977

#MO 066 A2

εi = −0.4478Eh

Si = 0.094
|−〉 = 0.005
| ↓〉 = 0.984
| ↑〉 = 0.001
| ↓↑〉 = 0.010

#MO 067 A2

εi = 0.3422Eh

Si = 0.035
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 068 A2

εi = 1.5957Eh

Si = 0.055
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.001

#MO 069 A2

εi = 1.8154Eh

Si = 0.026
|−〉 = 0.996
| ↓〉 = 0.003
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 070 A2

εi = 3.6052Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 071 A2

εi = 3.9751Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 072 A2

εi = 3.9884Eh

Si = 0.007
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.31: Molecular orbitals #65 to #72 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5

0 ).

182



Appendix

#MO 073 A2

εi = 4.1296Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.32: Molecular orbitals #73 to #73 for CoF3 with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 001 Ag

εi = −1.6243Eh

Si = 0.054
|−〉 = 0.000
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.992

#MO 002 Ag

εi = −1.6006Eh

Si = 0.058
|−〉 = 0.000
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.991

#MO 003 Ag

εi = −0.9024Eh

Si = 0.193
|−〉 = 0.001
| ↓〉 = 0.033
| ↑〉 = 0.006
| ↓↑〉 = 0.959

#MO 004 Ag

εi = −0.7993Eh

Si = 0.168
|−〉 = 0.001
| ↓〉 = 0.022
| ↑〉 = 0.009
| ↓↑〉 = 0.967

#MO 005 Ag

εi = −0.6414Eh

Si = 0.115
|−〉 = 0.008
| ↓〉 = 0.980
| ↑〉 = 0.001
| ↓↑〉 = 0.011

#MO 006 Ag

εi = −0.4589Eh

Si = 0.217
|−〉 = 0.009
| ↓〉 = 0.954
| ↑〉 = 0.002
| ↓↑〉 = 0.035

#MO 007 Ag

εi = 0.0367Eh

Si = 0.040
|−〉 = 0.994
| ↓〉 = 0.004
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 008 Ag

εi = 0.1952Eh

Si = 0.068
|−〉 = 0.989
| ↓〉 = 0.008
| ↑〉 = 0.003
| ↓↑〉 = 0.000

Figure A.33: Molecular orbitals #1 to #8 for CoF4 D4h with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 009 Ag

εi = 0.4236Eh

Si = 0.037
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 010 Ag

εi = 0.5184Eh

Si = 0.021
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 011 Ag

εi = 0.8492Eh

Si = 0.037
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 012 Ag

εi = 1.5958Eh

Si = 0.054
|−〉 = 0.992
| ↓〉 = 0.005
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 013 Ag

εi = 1.6933Eh

Si = 0.056
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 014 Ag

εi = 1.8873Eh

Si = 0.031
|−〉 = 0.995
| ↓〉 = 0.004
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 015 Ag

εi = 2.0880Eh

Si = 0.043
|−〉 = 0.994
| ↓〉 = 0.005
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 016 Ag

εi = 2.8393Eh

Si = 0.020
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.34: Molecular orbitals #9 to #16 for CoF4D4h with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 017 Ag

εi = 2.9902Eh

Si = 0.018
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 018 Ag

εi = 3.9754Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 019 Ag

εi = 3.9771Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 020 Ag

εi = 4.3720Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 021 Ag

εi = 4.6070Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 022 B3u

εi = −1.5953Eh

Si = 0.053
|−〉 = 0.001
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.992

#MO 023 B3u

εi = −0.7134Eh

Si = 0.109
|−〉 = 0.001
| ↓〉 = 0.009
| ↑〉 = 0.008
| ↓↑〉 = 0.982

#MO 024 B3u

εi = −0.6468Eh

Si = 0.112
|−〉 = 0.002
| ↓〉 = 0.009
| ↑〉 = 0.008
| ↓↑〉 = 0.981

Figure A.35: Molecular orbitals #17 to #24 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 025 B3u

εi = 0.1341Eh

Si = 0.018
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 026 B3u

εi = 0.4285Eh

Si = 0.053
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 027 B3u

εi = 1.0575Eh

Si = 0.040
|−〉 = 0.994
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 028 B3u

εi = 1.4864Eh

Si = 0.055
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 029 B3u

εi = 1.7010Eh

Si = 0.048
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 030 B3u

εi = 2.4924Eh

Si = 0.024
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 031 B3u

εi = 3.4302Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 032 B3u

εi = 3.5137Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.36: Molecular orbitals #25 to #32 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 033 B3u

εi = 3.9520Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 034 B3u

εi = 4.1175Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 035 B3u

εi = 4.7415Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 036 B2u

εi = −1.5953Eh

Si = 0.049
|−〉 = 0.001
| ↓〉 = 0.003
| ↑〉 = 0.003
| ↓↑〉 = 0.993

#MO 037 B2u

εi = −0.7134Eh

Si = 0.101
|−〉 = 0.001
| ↓〉 = 0.008
| ↑〉 = 0.008
| ↓↑〉 = 0.983

#MO 038 B2u

εi = −0.6468Eh

Si = 0.105
|−〉 = 0.002
| ↓〉 = 0.008
| ↑〉 = 0.008
| ↓↑〉 = 0.982

#MO 039 B2u

εi = 0.1341Eh

Si = 0.019
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 040 B2u

εi = 0.4285Eh

Si = 0.054
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

Figure A.37: Molecular orbitals #33 to #40 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 041 B2u

εi = 1.0575Eh

Si = 0.040
|−〉 = 0.994
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 042 B2u

εi = 1.4864Eh

Si = 0.058
|−〉 = 0.991
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 043 B2u

εi = 1.7010Eh

Si = 0.049
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 044 B2u

εi = 2.4924Eh

Si = 0.025
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 045 B2u

εi = 3.4302Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 046 B2u

εi = 3.5137Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 047 B2u

εi = 3.9520Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 048 B2u

εi = 4.1175Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.38: Molecular orbitals #41 to #48 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 049 B2u

εi = 4.7415Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 050 B1g

εi = −0.7759Eh

Si = 0.185
|−〉 = 0.001
| ↓〉 = 0.034
| ↑〉 = 0.005
| ↓↑〉 = 0.960

#MO 051 B1g

εi = −0.6296Eh

Si = 0.117
|−〉 = 0.002
| ↓〉 = 0.012
| ↑〉 = 0.007
| ↓↑〉 = 0.980

#MO 052 B1g

εi = −0.5957Eh

Si = 0.197
|−〉 = 0.006
| ↓〉 = 0.958
| ↑〉 = 0.001
| ↓↑〉 = 0.035

#MO 053 B1g

εi = 0.4689Eh

Si = 0.066
|−〉 = 0.990
| ↓〉 = 0.005
| ↑〉 = 0.005
| ↓↑〉 = 0.000

#MO 054 B1g

εi = 1.5915Eh

Si = 0.056
|−〉 = 0.991
| ↓〉 = 0.006
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 055 B1g

εi = 1.6786Eh

Si = 0.051
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 056 B1g

εi = 1.9150Eh

Si = 0.034
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

Figure A.39: Molecular orbitals #49 to #56 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 057 B1g

εi = 3.9237Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 058 B1g

εi = 4.1589Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 059 B1u

εi = −0.6904Eh

Si = 0.137
|−〉 = 0.002
| ↓〉 = 0.015
| ↑〉 = 0.008
| ↓↑〉 = 0.975

#MO 060 B1u

εi = −0.6444Eh

Si = 0.147
|−〉 = 0.003
| ↓〉 = 0.014
| ↑〉 = 0.009
| ↓↑〉 = 0.974

#MO 061 B1u

εi = 0.0588Eh

Si = 0.087
|−〉 = 0.986
| ↓〉 = 0.007
| ↑〉 = 0.007
| ↓↑〉 = 0.000

#MO 062 B1u

εi = 0.1855Eh

Si = 0.045
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 063 B1u

εi = 0.9690Eh

Si = 0.006
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 064 B1u

εi = 1.4651Eh

Si = 0.068
|−〉 = 0.989
| ↓〉 = 0.006
| ↑〉 = 0.004
| ↓↑〉 = 0.001

Figure A.40: Molecular orbitals #57 to #64 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 065 B1u

εi = 1.5321Eh

Si = 0.062
|−〉 = 0.990
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 066 B1u

εi = 3.4083Eh

Si = 0.008
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 067 B1u

εi = 3.4416Eh

Si = 0.006
|−〉 = 0.999
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 068 B1u

εi = 4.0968Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 069 B1u

εi = 4.1101Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 070 B2g

εi = −0.7282Eh

Si = 0.361
|−〉 = 0.003
| ↓〉 = 0.088
| ↑〉 = 0.008
| ↓↑〉 = 0.901

#MO 071 B2g

εi = −0.6255Eh

Si = 0.350
|−〉 = 0.006
| ↓〉 = 0.906
| ↑〉 = 0.004
| ↓↑〉 = 0.084

#MO 072 B2g

εi = 0.3456Eh

Si = 0.066
|−〉 = 0.990
| ↓〉 = 0.006
| ↑〉 = 0.004
| ↓↑〉 = 0.000

Figure A.41: Molecular orbitals #65 to #72 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 073 B2g

εi = 1.6157Eh

Si = 0.060
|−〉 = 0.991
| ↓〉 = 0.006
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 074 B2g

εi = 1.7380Eh

Si = 0.037
|−〉 = 0.995
| ↓〉 = 0.004
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 075 B2g

εi = 3.9536Eh

Si = 0.004
|−〉 = 1.000
| ↓〉 = 0.000
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 076 B2g

εi = 4.0275Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 077 B3g

εi = −0.7282Eh

Si = 0.377
|−〉 = 0.003
| ↓〉 = 0.095
| ↑〉 = 0.008
| ↓↑〉 = 0.894

#MO 078 B3g

εi = −0.6255Eh

Si = 0.367
|−〉 = 0.006
| ↓〉 = 0.899
| ↑〉 = 0.004
| ↓↑〉 = 0.091

#MO 079 B3g

εi = 0.3456Eh

Si = 0.067
|−〉 = 0.990
| ↓〉 = 0.006
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 080 B3g

εi = 1.6157Eh

Si = 0.061
|−〉 = 0.991
| ↓〉 = 0.006
| ↑〉 = 0.003
| ↓↑〉 = 0.000

Figure A.42: Molecular orbitals #73 to #80 for CoF4 D4h with their eigenenergy εi,
1-orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑
〉}. Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 001 A1

εi = −1.6286Eh

Si = 0.055
|−〉 = 0.000
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.992

#MO 002 A1

εi = −1.6187Eh

Si = 0.057
|−〉 = 0.000
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.991

#MO 003 A1

εi = −0.8137Eh

Si = 0.222
|−〉 = 0.001
| ↓〉 = 0.039
| ↑〉 = 0.009
| ↓↑〉 = 0.952

#MO 004 A1

εi = −0.7566Eh

Si = 0.148
|−〉 = 0.001
| ↓〉 = 0.016
| ↑〉 = 0.010
| ↓↑〉 = 0.973

#MO 005 A1

εi = −0.7475Eh

Si = 0.259
|−〉 = 0.001
| ↓〉 = 0.053
| ↑〉 = 0.007
| ↓↑〉 = 0.939

#MO 006 A1

εi = −0.7142Eh

Si = 0.141
|−〉 = 0.001
| ↓〉 = 0.017
| ↑〉 = 0.008
| ↓↑〉 = 0.974

#MO 007 A1

εi = −1.1592Eh

Si = 0.256
|−〉 = 0.008
| ↓〉 = 0.940
| ↑〉 = 0.001
| ↓↑〉 = 0.051

#MO 008 A1

εi = −1.0232Eh

Si = 0.230
|−〉 = 0.008
| ↓〉 = 0.950
| ↑〉 = 0.002
| ↓↑〉 = 0.040

Figure A.43: Molecular orbitals #1 to #8 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 009 A1

εi = 0.0585Eh

Si = 0.028
|−〉 = 0.996
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 010 A1

εi = 0.1124Eh

Si = 0.028
|−〉 = 0.996
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 011 A1

εi = 0.2249Eh

Si = 0.088
|−〉 = 0.985
| ↓〉 = 0.009
| ↑〉 = 0.005
| ↓↑〉 = 0.001

#MO 012 A1

εi = 0.3050Eh

Si = 0.076
|−〉 = 0.988
| ↓〉 = 0.007
| ↑〉 = 0.005
| ↓↑〉 = 0.000

#MO 013 A1

εi = 0.3909Eh

Si = 0.066
|−〉 = 0.990
| ↓〉 = 0.005
| ↑〉 = 0.005
| ↓↑〉 = 0.000

#MO 014 A1

εi = 0.4387Eh

Si = 0.024
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 015 A1

εi = 0.8176Eh

Si = 0.035
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 016 A1

εi = 0.9976Eh

Si = 0.025
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.44: Molecular orbitals #9 to #16 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 017 A1

εi = 1.5512Eh

Si = 0.052
|−〉 = 0.992
| ↓〉 = 0.006
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 018 A1

εi = 1.5761Eh

Si = 0.060
|−〉 = 0.991
| ↓〉 = 0.006
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 019 A1

εi = 1.6083Eh

Si = 0.046
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 020 A1

εi = 1.6282Eh

Si = 0.052
|−〉 = 0.992
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 021 A1

εi = 1.8164Eh

Si = 0.040
|−〉 = 0.994
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 022 A1

εi = 1.8479Eh

Si = 0.038
|−〉 = 0.994
| ↓〉 = 0.004
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 023 A1

εi = 2.5038Eh

Si = 0.025
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 024 A1

εi = 2.6578Eh

Si = 0.021
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.45: Molecular orbitals #17 to #24 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 025 A1

εi = 3.3864Eh

Si = 0.014
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 026 A1

εi = 3.4325Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 027 A1

εi = 3.9287Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 028 A1

εi = 3.9506Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 029 A1

εi = 3.9943Eh

Si = 0.015
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 030 A1

εi = 4.0485Eh

Si = 0.015
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 031 A1

εi = 4.5673Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 032 A1

εi = 4.6196Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.46: Molecular orbitals #25 to #32 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 033 B1

εi = −1.6187Eh

Si = 0.060
|−〉 = 0.001
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.991

#MO 034 B1

εi = −0.8137Eh

Si = 0.232
|−〉 = 0.002
| ↓〉 = 0.041
| ↑〉 = 0.008
| ↓↑〉 = 0.949

#MO 035 B1

εi = −0.7142Eh

Si = 0.114
|−〉 = 0.001
| ↓〉 = 0.011
| ↑〉 = 0.007
| ↓↑〉 = 0.980

#MO 036 B1

εi = −0.6727Eh

Si = 0.134
|−〉 = 0.002
| ↓〉 = 0.014
| ↑〉 = 0.008
| ↓↑〉 = 0.976

#MO 037 B1

εi = −1.0232Eh

Si = 0.239
|−〉 = 0.009
| ↓〉 = 0.947
| ↑〉 = 0.002
| ↓↑〉 = 0.042

#MO 038 B1

εi = 0.1124Eh

Si = 0.025
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 039 B1

εi = 0.3050Eh

Si = 0.070
|−〉 = 0.989
| ↓〉 = 0.007
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 040 B1

εi = 0.4387Eh

Si = 0.023
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.47: Molecular orbitals #33 to #40 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 041 B1

εi = 0.9976Eh

Si = 0.025
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 042 B1

εi = 1.4454Eh

Si = 0.064
|−〉 = 0.990
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 043 B1

εi = 1.5761Eh

Si = 0.062
|−〉 = 0.990
| ↓〉 = 0.006
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 044 B1

εi = 1.6282Eh

Si = 0.047
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 045 B1

εi = 1.8479Eh

Si = 0.040
|−〉 = 0.994
| ↓〉 = 0.004
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 046 B1

εi = 2.6578Eh

Si = 0.021
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 047 B1

εi = 3.3383Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 048 B1

εi = 3.4325Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.48: Molecular orbitals #41 to #48 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 049 B1

εi = 3.9217Eh

Si = 0.013
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 050 B1

εi = 3.9506Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 051 B1

εi = 3.9943Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 052 B1

εi = 4.0444Eh

Si = 0.014
|−〉 = 0.998
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 053 B1

εi = 4.5673Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 054 B2

εi = −1.6187Eh

Si = 0.054
|−〉 = 0.001
| ↓〉 = 0.004
| ↑〉 = 0.004
| ↓↑〉 = 0.992

#MO 055 B2

εi = −0.8137Eh

Si = 0.200
|−〉 = 0.002
| ↓〉 = 0.033
| ↑〉 = 0.007
| ↓↑〉 = 0.958

#MO 056 B2

εi = −0.7142Eh

Si = 0.107
|−〉 = 0.001
| ↓〉 = 0.010
| ↑〉 = 0.007
| ↓↑〉 = 0.982

Figure A.49: Molecular orbitals #49 to #56 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 057 B2

εi = −0.6727Eh

Si = 0.116
|−〉 = 0.002
| ↓〉 = 0.011
| ↑〉 = 0.007
| ↓↑〉 = 0.980

#MO 058 B2

εi = −1.0232Eh

Si = 0.206
|−〉 = 0.008
| ↓〉 = 0.957
| ↑〉 = 0.002
| ↓↑〉 = 0.033

#MO 059 B2

εi = 0.1124Eh

Si = 0.025
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 060 B2

εi = 0.3050Eh

Si = 0.069
|−〉 = 0.989
| ↓〉 = 0.007
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 061 B2

εi = 0.4387Eh

Si = 0.021
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 062 B2

εi = 0.9976Eh

Si = 0.023
|−〉 = 0.997
| ↓〉 = 0.002
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 063 B2

εi = 1.4454Eh

Si = 0.063
|−〉 = 0.990
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 064 B2

εi = 1.5761Eh

Si = 0.059
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.003
| ↓↑〉 = 0.000

Figure A.50: Molecular orbitals #57 to #64 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 065 B2

εi = 1.6282Eh

Si = 0.049
|−〉 = 0.993
| ↓〉 = 0.004
| ↑〉 = 0.003
| ↓↑〉 = 0.000

#MO 066 B2

εi = 1.8479Eh

Si = 0.038
|−〉 = 0.994
| ↓〉 = 0.004
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 067 B2

εi = 2.6578Eh

Si = 0.020
|−〉 = 0.997
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 068 B2

εi = 3.3383Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 069 B2

εi = 3.4325Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 070 B2

εi = 3.9217Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 071 B2

εi = 3.9506Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 072 B2

εi = 3.9943Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.51: Molecular orbitals #65 to #72 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 073 B2

εi = 4.0444Eh

Si = 0.012
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 074 B2

εi = 4.5673Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 075 A2

εi = −0.7475Eh

Si = 0.168
|−〉 = 0.001
| ↓〉 = 0.027
| ↑〉 = 0.006
| ↓↑〉 = 0.966

#MO 076 A2

εi = −0.6727Eh

Si = 0.105
|−〉 = 0.001
| ↓〉 = 0.010
| ↑〉 = 0.007
| ↓↑〉 = 0.982

#MO 077 A2

εi = −1.1592Eh

Si = 0.163
|−〉 = 0.007
| ↓〉 = 0.968
| ↑〉 = 0.001
| ↓↑〉 = 0.024

#MO 078 A2

εi = 0.3909Eh

Si = 0.056
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.000

#MO 079 A2

εi = 1.4454Eh

Si = 0.058
|−〉 = 0.991
| ↓〉 = 0.005
| ↑〉 = 0.004
| ↓↑〉 = 0.001

#MO 080 A2

εi = 1.5512Eh

Si = 0.046
|−〉 = 0.993
| ↓〉 = 0.006
| ↑〉 = 0.001
| ↓↑〉 = 0.000

Figure A.52: Molecular orbitals #73 to #80 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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#MO 081 A2

εi = 1.8164Eh

Si = 0.036
|−〉 = 0.995
| ↓〉 = 0.003
| ↑〉 = 0.002
| ↓↑〉 = 0.000

#MO 082 A2

εi = 3.3383Eh

Si = 0.009
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 083 A2

εi = 3.9217Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 084 A2

εi = 3.9287Eh

Si = 0.011
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.001
| ↓↑〉 = 0.000

#MO 085 A2

εi = 4.0444Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

#MO 086 A2

εi = 4.0485Eh

Si = 0.010
|−〉 = 0.999
| ↓〉 = 0.001
| ↑〉 = 0.000
| ↓↑〉 = 0.000

Figure A.53: Molecular orbitals #81 to #86 for CoF4 Td with their eigenenergy εi, 1-
orbital entropy Si and orbital occupations ωi,α = {|−〉, | ↓〉, | ↑〉, | ↓↑〉}.
Isosurfaces are plotted at |ψ(~r)| = 0.05 a−1.5
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Figure A.54: QIT data (1-orbital entropy Si and mutual information Iij). From top
to bottom: CoF2 (Co [6s,5p,3d,1f], F [2s,1p]), CoF3, CoF4 D4h and
CoF4 Td (cc-pVDZ). 205
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