Electronic Supplementary

Information

A mononuclear cobalt complex for water oxidation:

New controversies and puzzles

Rasoul Safdari,^a Mohammad Reza Mohammadi,^{b,c} Małgorzata Hołyńska,^d Petko Chernev,^{b,e} Holger Dau^b and Mohammad Mahdi Najafpour^{*a,f,g}

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^bFreie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany ^cUniversity of Sistan and Baluchestan, Department of Physics, Zahedan, Iran, 98167-45845

^dFachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany

^eUppsala University, Department of Chemistry - Ångströmlaboratoriet, Lägerhyddsvägen 1, 75120 Uppsala, Sweden

^fCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^gResearch Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

*Corresponding author;

Phone: (+98) 24 3315 3201; E-mail: mmnajafpour@iasbs.ac.ir

Experimental

Materials

All reagents and solvents were purchased from commercial sources and were used without further purification. Di(2-pyridyl)ketone, cobalt(II) perchlorate hexahydrate and fluorine-doped tin oxide coated glass (FTO) were purchased from the Sigma-Aldrich Company. Sodium carbonate was purchased from Merck Company.

Synthesis of 1

1 was synthesized by the previously reported method ^[1].

Solution 1: $Co(ClO_4)_2 \cdot 6H_2O$ (0.5 mmol) was dissolved in 4 mL of acetonitrile.

Solution 2: Na_2CO_3 (0.5 mmol) and di(2-pyridyl)ketone (1.0 mmol) (1:2) were dissolved in a mixture of distilled water and acetonitrile (V_{water} : $V_{acetonitrile}$ = 1:1, 8mL) and the mixture was stirred until a clear solution was formed.

Subsequently, the **solution 1** was slowly added dropwise to the **solution 2** under strong stirring. The solution was strongly stirred for 3 hours and then filtered. The filtrate was kept in a 20 mL flask to allow slow evaporation at room temperature and the dark-red crystals of **1** were obtained after 5 days.

Characterization

Electrochemical experiments were performed using an EmStat³⁺ device from PalmSens (Netherlands). Cyclic voltammetry studies were carried out with a conventional threeelectrode setup in which FTO, Ag|AgCl|KCl_{sat} and a platinum rod served as the working, reference and auxiliary electrodes, respectively. The distance between the two opposite sides of the FTO electrode was measured with a digital caliper MarCal 16ER model (Mahr, Germany). The temperature was measured with the Laserliner 082 device (Germany).

XAS experiments

After the bulk electrolysis of **1** for one hour at 1.20 V (vs. Ag|AgCl|KCl_{sat}) using an FTO electrode we investigated this FTO electrode (**FTO-A**) in XAS experiments. The electrode was frozen by immersion in liquid nitrogen.

XAS measurements at the cobalt K-edge were performed at the KMC-3 beamline at the BESSY II synchrotron facility (Helmholtz-Zentrum Berlin, Germany) at 20 K in a liquidhelium cooled cryostat (Oxford-Danfysik). The angle between the film surface and the incident beam was approximately 45°. Fluorescence-detected X-ray absorption spectra at the cobalt K-edge were collected using a 13-element Ge detector (Ultra-LEGe, Canberra) installed perpendicular to the X-ray beam.

X-ray diffraction studies

Single crystal in form of an orange block was mounted on a Bruker Quest D8 diffractometer with CMOS detector. A multi-scan absorption correction was applied. Basic crystallographic data are collected in Table S1.

4

Refinement

The crystal structure was solved by direct methods in SHELXS and refined with a fullmatrix technique in SHELXL-2014. O-bonded H atoms were found on difference Fourier map and subsequently, the cation hydroxyl H atoms were constrained with AFIX 147 constraints.

Additional maxima appearing in the vicinity of perchlorate O atoms were interpreted as a disorder of this anion. In this disorder the Cl1-O8 moiety position does not change, whereas the remaining three O atoms adopt two positions related by a rotation along the Cl1-O8 axis. The refined occupancies are 0.89(1) and 0.11(1), respectively. The minor-occupancy component was refined isotropically. SADI restraints were applied to keep the Cl-O bond lengths similar. On the final difference Fourier map the highest maximum of 0.48 e/Å³ is located in the middle of C12-C13 bond.

Fig. S1 ESI-Mass spectrum for 1.

Fig. S2 Cation columns formed along the a direction. The disordered anion minor component and H atoms are omitted for clarity.

Fig. S4 SEM images for the film formed on the **FTO-A** electrode after 5.0 hours of electrolysis of **1** at (1.20 V vs. vs. Ag/AgCl) in 100.0 mL of sodium borate buffer solution (pH 9.0, 80 mM).

Fig. S5 EDX-SEM results for the film formed on the **FTO-A** electrode after 5.0 hours of electrolysis of **1** at (1.20 V vs. vs. Ag/AgCl) in 100.0 mL of sodium borate buffer solution (pH 9.0, 80 mM).

Fig. S6 ¹HNMR spectra for **1** before (below) and after 5.0 hours (top) amperometry (1.20 V vs. Ag/AgCl) of **1** (20.0 mg) in 100.0 mL of sodium borate buffer¹ solutions (pH 9.0, 80 mM).

Fig. S7 k³-weighted $\chi(k)$ of **1** and **1** adsorbed on FTO as well as the operated compound on FTO (**FTO-A**) at 1.20 V for 5.0 hour in 100.0 mL of sodium borate buffer solutions (pH 9.0, 80 mM) and the simulation results (red lines). XANES of adsorbed **1** on FTO and **FTO-A** at 1.2 V in 100.0 mL of sodium borate buffer solutions (pH 9.0, 80 mM). The fit parameters are given in **Table 1**.

EXAFS simulations

Simulations were performed using the in-house software package SimX^[2] and SimXLite. An EXAFS spectrum χ (k) is given by the sum of the contributions of n_{shell} 'atomic shells'. A 'shell' is a group of elements with identical atomic number and similar distances from the X-ray absorbing atom (e.g., six oxygen atoms surrounding the absorbing manganese ion). The EXAFS equation is mathematically defined by the following equation ^[3, 4]:

$$\chi(k) = S_0^2 \sum_{i}^{n_{shell}} A(R_i, k)_i N_i \exp(-2\sigma_i^2 k^2) \sin(2kR_i + \phi_i)$$

where S_o^2 is the amplitude reduction factor, $A(Rii,k)_i$ is a factor that includes the scattering amplitude and mean-free-path of the photo-electron, ϕ_i the phase correction, N_i the number of atoms in the i^{th} atomic shell, σ_i the Debye-Waller parameter of the i^{th} atomic shell, and R_i the (average) distance between the X-ray

absorbing atom and the atoms of the i^{th} atomic shell. The functions A and ϕ were obtained herein from ab-initio calculations using Feff 9.05 ^[5], using coordinates from the molecular structure of **1**.

For conversion of the energy axis to a k-vector axis, an E_0 of 7709 eV was used. Curvefitting of the data was accomplished within a k-range of 2.5 Å⁻¹ to 13 Å⁻¹. The amplitude reduction factor, S_o^2 , was 0.7. Parameter error estimation was performed as described in Ref. 6.

As it is well known, distance *R* is not an independent parameter but strongly coupled with the ΔE_0 value. Similarly, the coordination numbers *N* and Debye-Waller parameters σ are also coupled and need to be separated from each other. Therefore, we first determined ΔE_0 and σ from a fit to the initial compound **1** in which the coordination numbers were fixed to the values expected from the molecular structure of 1 (sum of *N* for Co-O_{short}/N_{short} shells equal to 6, and sum of *N* for Co-C shells equal to 10). We then used these ΔE_0 and σ values for the fit of the sample after operation. **Table S1** Basic crystallographic data.

	1		
Formula	$C_{22}H_{18}CoN_4O_4{\cdot}ClO_4{\cdot}2(H_2O)$		
Formula weight	596.81		
Temperature [K]	100(2)		
λ [Å]	0.71073		
Crystal system	Triclinic		
Space group	рl		
a [Å]	8.445 (3)		
b [Å]	11.908 (3)		
c [Å]	12.414 (4)		
α [°]	99.74 (3)		
β[°]	103.51 (3)		
γ [°]	90.24 (3)		
V [Å ³]	1195.1 (7)		
Z, ρ_{calc} [g cm ⁻³]	2, 1.658		
μ [mm ⁻¹]	0.90		
F(000)	612		
Crystal size [mm]	$0.64 \times 0.24 \times 0.15$		
θ range[⁰]	2.2-30.1		
rflns: total /unique	60965/7036		
Abs. corr.	multi-scan		
Min., max. transmission	0.600, 0.876		
factors			
Data/restraints/params	7036/21/376		
GOF on F ²	1.02		
$R_1 [I > 2\sigma(I)]$	0.026		
wR ₂ (all data)	0.076		
Max., min. Δρ _{elect} [e Å ⁻³]	0.48, -0.54		

	U	, , , ,	
Co1-03	1.8859 (11)	Co1—N3	1.9302 (12)
Co1-01	1.8902 (11)	01—C6	1.4047 (14)
Co1—N4	1.9133 (12)	O2—C6	1.3759 (14)
Co1-N1	1.9159 (11)	03—C17	1.4062 (14)
Co1—N2	1.9238 (12)	04—C17	1.3799 (14)
03-Co1-01	178.44 (3)	N4-Co1-N2	178.45 (4)
O3-Co1-N4	83.33 (5)	N1-Co1-N2	87.92 (5)
01-Co1-N4	95.36 (5)	O3-Co1-N3	82.91 (5)
03-Co1-N1	95.90 (5)	01-Co1-N3	97.93 (5)
01-Co1-N1	83.26 (5)	N4-Co1-N3	88.82 (5)
N4-Co1-N1	90.78 (5)	N1-Co1-N3	178.78 (4)
03-Co1-N2	97.65 (5)	N2-Co1-N3	92.49 (5)
01-Co1-N2	83.64 (5)		

Table S2 Selected bond lengths and bond angles [Å, °].

D—H···A	D—H	H…A	D···A	D—H…A		
01 <i>W</i> —H1 <i>W</i> 1…08 ⁱ	0.81 (3)	2.15 (3)	2.942 (2)	167 (2)		
02 <i>W</i> —H1 <i>W</i> 2…O3 ⁱ	0.78 (2)	1.90 (2)	2.6706 (16)	172 (2)		
O2W—H2W2…O8	0.77 (3)	2.12 (3)	2.8938 (18)	179 (3)		
02—H2 <i>O</i> …O1 ⁱⁱ	0.84	1.78	2.6181 (14)	174		
04—H4 <i>O</i> …O2W	0.84	1.76	2.5929 (15)	173		
C2—H2…O1 <i>W</i> ⁱ	0.95	2.65	3.344 (2)	130		
C4—H4···O2 ⁱⁱⁱ	0.95	2.63	3.225 (2)	121		
C10—H10…O6 ⁱ	0.95	2.62	3.142 (3)	115		
C11—H11…O6 ⁱ	0.95	2.42	3.048 (2)	124		
C12—H12…O7 ^{iv}	0.95	2.63	3.529 (2)	158		
C12—H12…O66 ^{iv}	0.95	2.59	3.110 (14)	115		
C12—H12…O2 ⁱⁱ	0.95	2.59	3.2171 (17)	124		
C15—H15…O4 ^v	0.95	2.60	3.498 (2)	159		
C19—H19…O1W ^v	0.95	2.66	3.252 (2)	121		
C22—H22…O7 ^{vi}	0.95	2.37	3.314 (2)	174		
C22—H22····O77 ^{vi}	0.95	2.45	3.356 (13)	158		

 Table S3 Hydrogen bonding parameters [Å, °].

- (i) -x+1, -y+1, -z+1
- (ii) -x+1, -y+2, -z+2
- (iii) -x+2, -y+2, -z+2
- (iv) x, y, z+1
- (v) -x, -y+1, -z+1
- (vi) -x+1, -y+2, -z+1

Reference

[1] Y. Zhao, J. Lin, Y. Liu, B. Ma, Y. Ding and M. Chen, *Chem. Commun.*, 2015, **51**, 17309.

[2] J. Dittmer, Ph.D. Thesis, Christian-Albrechts-Universität (Kiel, Germany), 1999.

[3] J. E. Penner-Hahn, Coord. Chem. Rev., 1999, 1101, 190.

[4] J. J. Rehr and R. C. Albers, *Rev. Mod. Phys.*, 2000, **72**, 621.

[5] a) A. L. Ankudinov, B. Ravel, J. J. Rehr and S. D. Conradson, *Phys. Rev. B*, 1998, **58**, 7565; b) J. J. Rehr, J. J. Kas, M. P. Prange, A. P. Sorini, Y. Takimoto and F. Vila, *C. R. Physique*, 2009, **10**, 548.

[6] M. Risch, K. Klingan, J. Heidkamp, D. Ehrenberg, P. Chernev, I. Zaharieva and H. Dau, *Chem. Commun.*, 2011, **47**, 11912.