Electronic Supplementary

Information

A mononuclear cobalt complex for water oxidation:

New controversies and puzzles

Rasoul Safdari, ${ }^{a}$ Mohammad Reza Mohammadi, ${ }^{\text {b,c }}$ Małgorzata Hołyńska, ${ }^{d}$ Petko Chernev, ${ }^{\text {b,e }}$ Holger Dau ${ }^{\text {b }}$ and Mohammad Mahdi Najafpour*a,f,g
${ }^{a}$ Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
${ }^{b}$ Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
cUniversity of Sistan and Baluchestan, Department of Physics, Zahedan, Iran, 9816745845
${ }^{d}$ Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany
${ }^{e}$ Uppsala University, Department of Chemistry - Ångströmlaboratoriet, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
${ }^{f}$ Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
${ }^{g}$ Research Center for Basic Sciences \& Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
*Corresponding author;
Phone: (+98) 243315 3201; E-mail: mmnajafpour@iasbs.ac.ir

Experimental

Materials

All reagents and solvents were purchased from commercial sources and were used without further purification. $\mathrm{Di}(2$-pyridyl)ketone, cobalt(II) perchlorate hexahydrate and fluorine-doped tin oxide coated glass (FTO) were purchased from the Sigma-Aldrich Company. Sodium carbonate was purchased from Merck Company.

Synthesis of 1

1 was synthesized by the previously reported method ${ }^{[1]}$.
Solution 1: $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ was dissolved in 4 mL of acetonitrile.
Solution 2: $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$ and di(2-pyridyl)ketone (1.0 mmol) (1:2) were dissolved in a mixture of distilled water and acetonitrile $\left(\mathrm{V}_{\text {water }}: \mathrm{V}_{\text {acetonitrile }}=1: 1,8 \mathrm{~mL}\right)$ and the mixture was stirred until a clear solution was formed.

Subsequently, the solution 1 was slowly added dropwise to the solution $\mathbf{2}$ under strong stirring. The solution was strongly stirred for 3 hours and then filtered. The filtrate was kept in a 20 mL flask to allow slow evaporation at room temperature and the dark-red crystals of 1 were obtained after 5 days.

Characterization

Electrochemical experiments were performed using an EmStat ${ }^{3+}$ device from PalmSens (Netherlands). Cyclic voltammetry studies were carried out with a conventional threeelectrode setup in which $\mathrm{FTO}, \mathrm{Ag}|\mathrm{AgCl}| \mathrm{KCl}_{\text {sat }}$ and a platinum rod served as the working,
reference and auxiliary electrodes, respectively. The distance between the two opposite sides of the FTO electrode was measured with a digital caliper MarCal 16ER model (Mahr, Germany). The temperature was measured with the Laserliner 082 device (Germany).

XAS experiments

After the bulk electrolysis of $\mathbf{1}$ for one hour at 1.20 V (vs. $\mathrm{Ag}|\mathrm{AgCl}| \mathrm{KCl}_{\text {sat }}$) using an FTO electrode we investigated this FTO electrode (FTO-A) in XAS experiments. The electrode was frozen by immersion in liquid nitrogen.

XAS measurements at the cobalt K-edge were performed at the KMC-3 beamline at the BESSY II synchrotron facility (Helmholtz-Zentrum Berlin, Germany) at 20 K in a liquidhelium cooled cryostat (Oxford-Danfysik). The angle between the film surface and the incident beam was approximately 45°. Fluorescence-detected X-ray absorption spectra at the cobalt K-edge were collected using a 13 -element Ge detector (Ultra-LEGe, Canberra) installed perpendicular to the X-ray beam.

X-ray diffraction studies

Single crystal in form of an orange block was mounted on a Bruker Quest D8 diffractometer with CMOS detector. A multi-scan absorption correction was applied. Basic crystallographic data are collected in Table S1.

Refinement

The crystal structure was solved by direct methods in SHELXS and refined with a fullmatrix technique in SHELXL-2014. O-bonded H atoms were found on difference Fourier map and subsequently, the cation hydroxyl H atoms were constrained with AFIX 147 constraints.

Additional maxima appearing in the vicinity of perchlorate O atoms were interpreted as a disorder of this anion. In this disorder the Cl1-08 moiety position does not change, whereas the remaining three O atoms adopt two positions related by a rotation along the $\mathrm{Cl} 1-\mathrm{O} 8$ axis. The refined occupancies are $0.89(1)$ and $0.11(1)$, respectively. The minor-occupancy component was refined isotropically. SADI restraints were applied to keep the $\mathrm{Cl}-\mathrm{O}$ bond lengths similar. On the final difference Fourier map the highest maximum of $0.48 \mathrm{e} / \AA^{3}$ is located in the middle of C12-C13 bond.

Fig. S1 ESI-Mass spectrum for 1.

Fig. S2 Cation columns formed along the a direction. The disordered anion minor component and H atoms are omitted for clarity.

Fig. S3 SEM images for the fresh FTO.

Fig. S4 SEM images for the film formed on the FTO-A electrode after 5.0 hours of electrolysis of 1 at (1.20 V vs. vs. $\mathrm{Ag} / \mathrm{AgCl}$) in 100.0 mL of sodium borate buffer solution ($\mathrm{pH} 9.0,80 \mathrm{mM}$).

Fig. S5 EDX-SEM results for the film formed on the FTO-A electrode after 5.0 hours of electrolysis of 1 at (1.20 V vs. vs. $\mathrm{Ag} / \mathrm{AgCl}$) in 100.0 mL of sodium borate buffer solution ($\mathrm{pH} 9.0,80 \mathrm{mM}$).

Fig. S6 ${ }^{1} \mathrm{HNMR}$ spectra for 1 before (below) and after 5.0 hours (top) amperometry ($1.20 \mathrm{~V} \mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl}$) of $\mathbf{1}(20.0 \mathrm{mg})$ in 100.0 mL of sodium borate bufferlsolutions ($\mathrm{pH} 9.0,80 \mathrm{mM}$).

Fig. S7 k^{3}-weighted $\chi(\mathrm{k})$ of $\mathbf{1}$ and $\mathbf{1}$ adsorbed on FTO as well as the operated compound on FTO (FTO-A) at 1.20 V for 5.0 hour in 100.0 mL of sodium borate buffer solutions ($\mathrm{pH} 9.0,80 \mathrm{mM}$) and the simulation results (red lines). XANES of adsorbed 1 on FTO and FTO-A at 1.2 V in 100.0 mL of sodium borate buffer solutions ($\mathrm{pH} 9.0,80 \mathrm{mM}$). The fit parameters are given in Table 1.

EXAFS simulations

Simulations were performed using the in-house software package SimX ${ }^{[2]}$ and SimXLite.
An EXAFS spectrum $\chi(k)$ is given by the sum of the contributions of $\mathrm{n}_{\text {shell }}$ 'atomic shells'. A 'shell' is a group of elements with identical atomic number and similar distances from the X -ray absorbing atom (e.g., six oxygen atoms surrounding the absorbing manganese ion). The EXAFS equation is mathematically defined by the following equation ${ }^{[3,4]}$:

$$
\chi(k)=S_{\mathrm{o}}^{2} \sum_{i}^{n_{\text {shell }}} A\left(R_{i}, k\right)_{i} N_{i} \exp \left(-2{\sigma_{i}}^{2} k^{2}\right) \sin \left(2 k R_{i}+\phi_{i}\right)
$$

where $S_{0}{ }^{2}$ is the amplitude reduction factor, $A(\text { Rii, } k)_{i}$ is a factor that includes the scattering amplitude and mean-free-path of the photo-electron, ϕ_{i} the phase correction, N_{i} the number of atoms in the $i^{\text {th }}$ atomic shell, σ_{i} the Debye-Waller parameter of the $i^{\text {th }}$ atomic shell, and R_{i} the (average) distance between the X-ray
absorbing atom and the atoms of the $i^{\text {th }}$ atomic shell. The functions A and ϕ were obtained herein from ab-initio calculations using Feff $9.05{ }^{[5]}$, using coordinates from the molecular structure of 1.

For conversion of the energy axis to a k-vector axis, an E_{0} of 7709 eV was used. Curvefitting of the data was accomplished within a k-range of $2.5 \AA^{-1}$ to $13 \AA^{-1}$. The amplitude reduction factor, $S_{\mathrm{o}}{ }^{2}$, was 0.7 . Parameter error estimation was performed as described in Ref. 6.

As it is well known, distance R is not an independent parameter but strongly coupled with the $\Delta \mathrm{E}_{0}$ value. Similarly, the coordination numbers N and Debye-Waller parameters σ are also coupled and need to be separated from each other. Therefore, we first determined $\Delta \mathrm{E}_{0}$ and σ from a fit to the initial compound 1 in which the coordination numbers were fixed to the values expected from the molecular structure of 1 (sum of N for $\mathrm{Co}-\mathrm{O}_{\text {short }} / \mathrm{N}_{\text {short }}$ shells equal to 6 , and sum of N for Co-C shells equal to 10). We then used these $\Delta \mathrm{E}_{0}$ and σ values for the fit of the sample after operation.

Table S1 Basic crystallographic data.

	1
Formula	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{CoN}_{4} \mathrm{O}_{4} \cdot \mathrm{ClO}_{4} \cdot 2\left(\mathrm{H}_{2} \mathrm{O}\right)$
Formula weight	596.81
Temperature [K]	100(2)
λ [Å]	0.71073
Crystal system	Triclinic
Space group	P1 ${ }^{1}$
a [Å]	8.445 (3)
b [Å]	11.908 (3)
c [Å]	12.414 (4)
$\alpha\left[{ }^{\circ}\right]$	99.74 (3)
$\beta\left[{ }^{\circ}\right]$	103.51 (3)
$Y\left[{ }^{\circ}\right]$	90.24 (3)
V [$\left.{ }^{3}{ }^{3}\right]$	1195.1 (7)
Z, $\rho_{\text {calc }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	2,1.658
$\mu\left[\mathrm{mm}^{-1}\right]$	0.90
F(000)	612
Crystal size [mm]	$0.64 \times 0.24 \times 0.15$
θ range[${ }^{\text {] }}$	$2.2-30.1$
rflns: total /unique	60965/7036
Abs. corr.	multi-scan
Min., max. transmission factors	0.600, 0.876
Data/restraints/params	7036/21/376
GOF on F^{2}	1.02
$\mathrm{R}_{1}[1>2 \sigma(\mathrm{I})$]	0.026
wR R_{2} (all data)	0.076
Max., min. $\Delta \rho_{\text {elect }}\left[\mathrm{e} \AA^{-3}\right]$	0.48, -0.54

Table S2 Selected bond lengths and bond angles [$\mathrm{Å}^{\circ}{ }^{\circ}$].

Co1-O3	1.8859 (11)	Co1-N3	1.9302 (12)
Co1-O1	1.8902 (11)	O1-C6	1.4047 (14)
Co1-N4	1.9133 (12)	O2-C6	1.3759 (14)
Co1-N1	1.9159 (11)	O3-C17	1.4062 (14)
Co1-N2	1.9238 (12)	O4-C17	1.3799 (14)
O3-Co1-O1	178.44 (3)	N4-Co1-N2	178.45 (4)
O3-Co1-N4	83.33 (5)	N1-Co1-N2	87.92 (5)
O1-Co1-N4	95.36 (5)	O3-Co1-N3	82.91 (5)
O3-Co1-N1	95.90 (5)	O1-Co1-N3	97.93 (5)
O1-Co1-N1	83.26 (5)	N4-Co1-N3	88.82 (5)
N4-Co1-N1	90.78 (5)	N1-Co1-N3	178.78 (4)
O3-Co1-N2	97.65 (5)	N2-Co1-N3	92.49 (5)
O1-Co1-N2	83.64 (5)		

Table S3 Hydrogen bonding parameters $\left[{ }^{\circ},^{\circ}{ }^{\circ}\right]$.

$D-H \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	D..A	D-H..A
O1W-H1W1 $\cdots{ }^{\text {O }}$	0.81 (3)	2.15 (3)	2.942 (2)	167 (2)
O2W-H1W2..03 ${ }^{\text {i }}$	0.78 (2)	1.90 (2)	2.6706 (16)	172 (2)
O2W-H2W2 \cdots O8	0.77 (3)	2.12 (3)	2.8938 (18)	179 (3)
O2-H2O $\cdots{ }^{\text {O }}{ }^{\text {ii }}$	0.84	1.78	2.6181 (14)	174
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O} 2 \mathrm{~W}$	0.84	1.76	2.5929 (15)	173
C2-H2 ${ }^{\text {a }}$ O1 ${ }^{\text {W }}$	0.95	2.65	3.344 (2)	130
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2 \mathrm{iii}$	0.95	2.63	3.225 (2)	121
C10-H10‥06 ${ }^{\text {i }}$	0.95	2.62	3.142 (3)	115
C11-H11‥06 ${ }^{\text {i }}$	0.95	2.42	3.048 (2)	124
C12-H12..O7iv	0.95	2.63	3.529 (2)	158
C12-H12..066iv	0.95	2.59	3.110 (14)	115
C12-H12..02 ${ }^{\text {ii }}$	0.95	2.59	3.2171 (17)	124
C15-H15 $\cdots{ }^{\text {O }}$	0.95	2.60	3.498 (2)	159
C19-H19 \cdots O1W	0.95	2.66	3.252 (2)	121
C22-H22 \cdots O7vi	0.95	2.37	3.314 (2)	174
C22-H22 ${ }^{\text {a }}$ O77vi	0.95	2.45	3.356 (13)	158

(i) $-x+1,-y+1,-z+1$
(ii) $-x+1,-y+2,-z+2$
(iii) $-x+2,-y+2,-z+2$
(iv) $x, y, z+1$
(v) $-x,-y+1,-z+1$
(vi) $-x+1,-y+2,-z+1$

Reference

[1] Y. Zhao, J. Lin, Y. Liu, B. Ma, Y. Ding and M. Chen, Chem. Commun., 2015, 51, 17309.
[2] J. Dittmer, Ph.D. Thesis, Christian-Albrechts-Universität (Kiel, Germany), 1999.
[3] J. E. Penner-Hahn, Coord. Chem. Rev., 1999, 1101, 190.
[4] J. J. Rehr and R. C. Albers, Rev. Mod. Phys., 2000, 72, 621.
[5] a) A. L. Ankudinov, B. Ravel, J. J. Rehr and S. D. Conradson, Phys. Rev. B, 1998, 58, 7565; b) J. J. Rehr, J. J. Kas, M. P. Prange, A. P. Sorini, Y. Takimoto and F. Vila, C. R. Physique, 2009, 10, 548.
[6] M. Risch, K. Klingan, J. Heidkamp, D. Ehrenberg, P. Chernev, I. Zaharieva and H. Dau, Chem. Commun., 2011, 47, 11912.

