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Abstract

Photon scanning probe microscopy (photon-SPM) provides a promising route to study a light-

matter interaction at the nanometer scale and even down to the single-molecule level, which is

an interesting topic not only for fundamental science, but also for a new evolution of

nanotechnology. This thesis describes the development of a home-designed low-temperature

(LT-) photon-SPM, which combines a parabolic mirror and a lens on the cold STM stage. We

demonstrate that this instrument offers a precise beam alignment capability to attain highly

reproducible experiments.

Using the LT-photon-SPM, we first show a novel plasmon-assisted resonant electron

transfer in an scanning tunneling microscope (STM) junction, where resonant electron transfer

from a plasmonic tip to field emission resonances (FERs) over a Ag(111) surface is induced by

visivble continuous-wave excitation. This process can serve as a simple and intriguing model

to examine the interplay between localized surface plasmon excitation and resonant electron

transfer in a plasmonic nanocavity. The resonant electron transfer is observed in FER

spectroscopy and  the plasmon-assisted process is manifested as a downshift of the FER peaks

in the spectra.

We also examined tip-enhanced Raman spectroscopy (TERS) for ultrathin ZnO layers

epitaxially grown on a Ag(111) surface. The local geometric and electronic structure of

ZnO/Ag(111) is investigated by combined experiments of STM, STS, and atomic force

microscopy. With increasing thickness of the ZnO layers, the conduction band minimum was

found to downshift as well as the work function was reduced. Strong TERS signals for 2-ML

and 3-ML ZnO were obtained under the conditions where both chemical and physical

enhancement mechanisms were satisfied. It is also revealed that the TERS intensity is sensitive

to the local electronic structure leading to a high spatial resolution of TERS is below 1 nm.
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Kurzfassung

Die Photon-Scanning-Probe-Mikroskopie (Photon-SPM) bietet eine vielversprechende

Möglichkeit, die Wechselwirkung zwischen Licht und Materie im Nanometerbereich oder

sogar bis auf die Ebene einzelner Moleküle zu untersuchen. Dies ist sowohl für die

Grundlagenforschung als auch für neue technologische Anwendungen interessant. In dieser

Arbeit wurde ein selbstgebautes Tieftemperatur (LT-) Photon-SPM entwickelt und dessen

neuartigen Fähigkeiten demonstriert. In das LT-Photon-SPM wurde ein Parabolspiegel mit

präziser Bewegungssteuerung integriert, der durch Piezoelemente auf dem kalten SPM-Tisch

gesteuert werden und dadurch eine hochwertige und bequeme Ausrichtungsmöglichkeit für die

Durchführung reproduzierbare Experimente bietet.

Mit dem LT-Photon-STM wurde ein neuartiger resonanter

Elektronentransfermechanismus in einer plasmonischen Nanokavität entdeckt, bei dem

plasmonisch unterstütztes Elektronentunneln von einer plasmonischen Spitze zu

Feldemissionsresonanzen über der Ag(111)-Oberfläche durch CW-Laseranregung im

sichtbaren Bereich induziert wird. Korrelationen zwischen der laserinduzierten Änderung der

FER-Spektren und den plasmonischen Eigenschaften des Übergangs wurden untersucht. Als

Kennzeichen eines plasmonunterstützten resonanten Tunnelprozesses wurde ein Herabschieben

des ersten Peaks in den FER-Spektren beobachtet, die der einfallenden Photonenenergie

entspricht.

Ebenfalls wurde die spitzenverstärkte Raman-Spektroskopie für ultradünne ZnO-

Schichten untersucht, die epitaktisch auf einer Ag(111)-Oberfläche gewachsen wurden. Die

lokale geometrische und elektronische Struktur von ZnO/Ag(111) wurde durch kombinierte

Experimente mit STM, STS und Rasterkraftmikroskopie untersucht. Mit zunehmender Dicke

der ZnO-Schichten wurde festgestellt, dass sich die Position des Leitungsbandminimum

energetisch verringerte, genauso wie die Austrittsarbeit. Starke TERS-Signale für 2-ML- und

3-ML-ZnO blieben unter Bedingungen erhalten, bei denen sowohl chemische als auch

physikalische Verstärkungsmechanismen erfüllt sind. Es hat sich auch gezeigt, dass die TERS-

Intensität empfindlich gegenüber der lokalen elektronischen Struktur ist, was dazu führt, dass

die hohe räumliche Auflösung von TERS unter 1 nm liegt.
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Abbreviations

AFM atomic force microscopy

CPD contact potential difference

FER field emission resonance

IRAS infrared reflection absorption spectroscopy

LT-photon-SPM low temperature photon scanning probe microscopy

LDOS local density of states

ML mono-layer

NA numerical aperture

NPc naphthalocyanine

STM scanning tunneling microscopy

STHM scanning tunneling hydrogen microscopy

STS scanning tunneling spectroscopy

SPM scanning probe microscopy

STML scanning tunneling microscope induced luminesecence

SPP surface plasmon polariton

SERS surface enhanced Raman spectroscopy

SXRD surface x-ray diffraction

TERS tip enhanced Raman spectroscopy

UHV ultra-high vacuum
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1 Introduction

Interaction between light and matter is a ubiquitous phenomena in daily life and of fundamental

importance in many areas of science and technology. A prominent example in nature is

photosynthesis in plants to convert solar energy into chemical energy where photon absorption

and charge separation are the elementary processes. The reversed process, i.e., charge

recombination and light emission, is also the basis of optoelectronic devices such as light

emitting diodes (LEDs). Understanding of such elementary processes at the atomistic level has

become more and more important in modern physical chemistry, surface science, and

biophysics, whereby microscopy can explore heterogeneity hidden in the ensemble [ 1 ].

Studying light–matter coupling at the nanoscale is scientifically important and may also lead to

various applications, such as metal nanoparticle arrays that can enhance light emission in LEDs

[2] or the photovoltaic energy conversion efficiency [3].

Figure 1.1. (a) SEM images of various types of nanoparticles or nanostructures for

a SERS measurement. (1)-(3) Colloidal structures: Spherical gold nanoparticles,

gold nano-rods, and silver nano-bar. (4)-(6) Solid structure: silver plasmonic

nanodome array, gold nanocluster and gold nano-holes. (7)-(9) Flexible structures:

silver nano-voids, silver nano-columnar film, and silver nano-pillars

[Nanophotonics 6(5), 831–852 (2017)]. (b) Schematic of SERS process. The gray

circle represents a metallic nanoparticle and the dark red circles adsorbed
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molecules. (c) SERS spectra obtained for a single rhodamine 6G molecule adsorbed

on an ellipsoidal shape Ag [Science 275, 1102–1106 (1997)]. The field

enhancement occurs with an incident beam polarized parallel to the long axis of

ellipsoid, leading to much stronger Raman signal with the beam polarized

perpendicular to it.

One of the most important applications of light‒matter interactions is materials

characterization, i.e., spectroscopy including fluorescence, infrared absorption, Raman

scattering, X-ray diffraction, to name a few. They are commonly used in modern science to

reveal structures and dynamics of various materials. Optical microspectroscopy is a powerful

tool to investigate microscopic structures and properties of materials. However, the spatial

resolution is typically limited by the diffraction limit to roughly a half of wavelength (hundreds

of nanometers in the visible range), which hinders direct observation of nanoscale materials and

single molecules. Near field is an electromagnetic field localized in tens of nanometers region

from a surface or interface. It can overcome the diffraction limitation for the microspectroscopy

and surface plasmon of metallic nanostructures play a crucial role in that.

Surface plasmon plays a central role in the field of plasmonics. The control of surface

plasmons has been rapidly developed with the advances of nanoscale fabrication techniques

and has provided many applications in a wide range of research areas including biosensing [4],

photovoltaics [5], photochemistry [6], and optical engineering at nanoscale (nano-optics) [7].

Surface enhanced Raman spectroscopy (SERS) is one of the important applications of

plasmonics, which allows ultrasensitive vibrational spectroscopy even down to the single-

molecule level [8]. The discovery of surface enhanced Raman scattering dates back to 1970s,

and was discovered for pyridine molecules adsorbed on roughened silver surfaces [9]. The

enhancement mechanism has been attributed to surface plasmon excitation [10, 11, 12]. SERS

has also been benefited from the development of nanoscience and nanotechnology in the last

few decades as plasmonically active nanoparticles or surfaces can be synthesized as shown in

Figure 1.1a. Figure 1.1b illustrates the SERS process on a metallic nanoparticle. The incident

laser excites a localized surface plasmon of the nanoparticle, which results in a strongly

enhanced near field. The interaction of this near-field and adsorbed molecules leads to an

enhancement of the Raman scattering process. Figure 1.1c shows the SERS spectrum of single

rhodamine 6G molecule. Although SERS has a very high chemical sensitivity, it does not offer
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imaging capability, which hampers to examine the correlation between nanostructure and near-

field properties as well as details of the enhancement mechanisms of the Raman scattering

process. Tip-enhanced Raman spectroscopy (TERS) has emerged as a promising approach to

endow imaging capability for SERS—a combination of SERS with a scanning probe

microscope (SPM) which offers atomic resolution imaging [13, 14, 15, 16].

SPM was invented in 1980s when scanning tunneling microscopy (STM) was first

reported in the early 1982 [17] and atomic force microscopy (AFM) was developed later [18].

SPM is a powerful tool to investigate nanoworlds and has become one of the central analytical

methods in nanoscience and nanotechnology. In addition to the imaging capability with atomic

resolution, SPM can also perform various local spectroscopies at the atomic scale. For example,

scanning tunneling spectroscopy (STS) can study the local electronic states [19, 20], the

vibrational energy can be measured by inelastic electron tunneling spectroscopy (IETS) [21]

and by STM action spectroscopy in which the vibrational excitation induced reactions of single

molecules are directly observed [22], and the local work function can be measured by field

emission resonnce (FER) and contact potential difference (CPD) measurement [ 23 ].

Manipulation of single atoms and molecules is another very unique ability of SPM, which

allows to make artificial structures and examine fundamental physics at nanoscale. For

example, a first demonstration of SPM manipulation is “atomic letters” made by positioning

individual Xenon atoms [24], followed by quantum corrals constructed with tens of atoms on a

metal surface which lead to confinement of the surface electrons [25]. Combing SPM with

optics can further extend the capability of SPM [26, 27]. Photon-SPM—a combination of SPM

with optical excitation and detection as schematically shown in Figure 1.2a—has emerged as

a promising approach to investigating light–matter interactions at the nanoscale, even down to

the atomic and molecular level. For example, STM-induced luminescence (STML) is a typical

measurement by photon-SPM as exampled in Figure 1.2b. In photon-STM, radiation of the

localized surface plasmon in the junction is detected, which is excited through inelastic electron

tunneling. Vibrational features have also been observed in the STML of single porphyrin

molecules [28, 29, 30]. Recently, coherent intermolecular dipole-dipole coupling between zinc-

phthalocyanines molecules [31], resonance energy transfer from a magnesium phthalocyanine

molecule to a free-base phthalocyanine molecule [32] have been demonstrated with photon-

SPM.

Metallic nanocavities play an important role in plasmonics as they can confine light to

nanometric volumes and generate strong field enhancement [33]. Experimentally, the size and
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geometry of a nanocavity are challenged to be determined precisely (with Ångström accuracy),

and near-field properties in such nanocavities imperfectly understood. Because SPM can

control the gap distance with the sub-Ångström precision and can also determine morphology

of the sample surface, the photon-SPM has the advantage to study the near-field properties of

controlled sub-nanometer gaps. The interplay between surface plasmon excitation and electron

transfer in nanocavities are intimately related to applications in photovoltaics, photo-catalysis

and so on [34]. To reveal the underlying physical mechanisms, it is essential to investigate the

plasmonic property and plasmon-induced processes for well-define nanocavities. As a test case,

we study plasmon-assisted resonant electron tunneling from tip to field emission resonances

(FERs) in an STM junction. This process can serve as a simple and intriguing model to examine

the interplay between localized surface plasmon excitation and resonant electron transfer in a

plasmonic nanocavity.

Tip enhanced Raman spectroscopy (TERS) is another prominent experimental technique

in photon-SPM which combines scanning probe microscopy (SPM) with surface enhancend

Raman spectroscopy [35, 36, 37,15]. Vibrational features of various single molecules have

been observed by TERS [38]. In TERS experiments, an Au or Ag tip and substrate are typically

used because they are plasmonic materials active for visible light. An electromagnetic field in

the STM junction is strongly enhanced through surface plasmon excitation. TERS has evolved

as a promising technique for nanoscale vibrational microspectroscopy and demonstrated the

ability to resolve surface morphology along with chemical sensitivity even at sub-nanometer

scale as shown in Figure 1.2c. However, there are still some technical challenges (such as

instrumental design, laser beam alignment) and scientific questions (such as spatial resolution,

selection rule) remain to be explored [39, 40, 41].

The achievable spatial resolution of TERS is still under discussion. Previously, it was

shown that the spatial resolution of TERS is typically limited to be 3 to 15 nm [42, 43, 44, 45,

46, 47]. However, Dong and coworker in China reported the first sub-nanometer resolution

TERS experiment in 2013 (Figure 1.2b) [48]. They observed a non-linear Raman scattering

process similar as third order stimulated Raman scattering and the extremely-high spatial

resolution was attributed to this non-linearity. In this thesis, we demonstrate that spontaneous

Raman scattering can also offer sub-nanometer resolution. Optical response of the nanocavity

is usually simulated using classical electrodynamics by solving Maxwell’s equations. However,

in TERS measurements, the gap distance could approach to the sub-nanometer regime where

the quantum mechanical effects become important. Thereby, non-local effects and quantum
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tunneling of electrons in the nanocavity have to be taken into account, which leads to shift of

the plamon resonance and reduce the field enhancement compare to a pure classical description

[49]. Recently, it has been proposed that an atomic-scale protrusion in plasmonic cavity can

confine the field at the sub-nanometer scale [50] and a quantum theory description is necessary

for a comprehensive understanding of the plasmonic response at the sub-nanometer scale [51].

Figure 1.2. (a) Schematic of photon-SPM. Structure of these systems is a junction

consisting of a tip and a sample that is an atomically flat surface with adsorbates

(atom, molecule, cluster, ultra-thin films). The working distance between the tip

and the sample (z direction) is a few Å to nanometers, also include the relative

lateral positions (x and y directions), which are controlled by a feedback circuit. The

tunneling current and force can be detected by STM and AFM, respectively. A laser
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beam can be focused on the junction and the optical signal can be detected with

optical setup. (b) (c) Typical measurements by phonon-SPM. (b) is the STML

measured with tip over Ag clusters [Phys. Rev. Lett. 84, 3994 (2000)]. The STML

spectra show different intensity and the resonance wavelength represents plasmon

properties of the different size clusters. (c) is the TERS mapping for single meso-

tetrakis (3,5-di-tertiarybutylphenyl)-porphyrin molecule [Nature 498, 82–86

(2013)]. The TERS shows a sub-nanometer spatial resolution that can do single

molecule chemical mapping.

Selection rules are of fundamental importance in vibrational spectroscopy. Molecular

vibrations that causes a change in polarizability are Raman active and symmetric vibrations

usually have a large cross section in normal Raman scattering. However, when the size of the

confined field becomes comparable with the scale of molecules, the field gradient is not uniform

any more. Therefore, the selection rules applied in the normal Raman scattering may not be

maintained for TERS [39, 52, 53]. Due to the specific field distribution in TERS, also silent

modes could be excited [39] and vibrations perpendicular to the surface would be enhanced

[48, 54, 55, 56].

Single-molecule detection has been achieved with TERS by several groups for different

dye molecules [57, 44, 58]. To obtain a sufficient enhancement factor, both the physical and

chemical resonance conditions need to be satisfied in TERS measurements. The physical

resonance requires spectral matching of plasmonic resonance with the frequency of incident

and scattering light. It can be satisfied generally because plasmonic resonance of the junction

can be tuned by changing the tip apex conditions  by tip-forming procedure i.e., applying a short

voltage pulse between tip and substrate or by poking the tip into substrate in a controlled manner

[59]. The chemical resonance requires the excited photon energy matches with optical gap of

measured sample. To meet chemical resonance conditions, a proper laser wavelength should be

chosen. We clearly demonstrate that the two resonance conditions contribute to the TERS

signal.

Stability is a practical challenge in TERS measurement. Plasmon excited in the junction

decays non-radiatively and generates “hot electrons” [60]. In plasmonic nanocavities, chemical

reactions can be triggered either by the enhanced field directly or by the hot carriers in the

junction [61, 62]. Therefore, such induced diffusion or desorption processes can occur during



7

TERS measurements, which implies practical problems to obtain stable spectra. On the other

hand, plasmon excitation can be useful to drive chemical reactions intentionally [63]. For

example metallic nanoclusters have attracted increasing attention for the fundamental science

research and possible applications to plasmonic catalysts [64, 65, 66, 67, 68, 69, 70]. As a

sample for TERS measurement should be stable enough to avoid the possible diffusion,

desorption and chemical reaction, we have studied ultrathin ZnO layers as a model system to

apply TERS that is stable during the measurement.

Oxide films have wide-ranging applications in catalysis [71], electronic devices [72], gas

sensors [73]. Ultrathin oxide films grown on a single crystal metal surface exhibit well-defined

structures [74] and often exhibit distinctive properties from the bulk materials resulting from

the interaction with the metal substrate, such as strain due to lattice mismatch [75]. They have

been often used as a support for metal nanoparticles in model catalysis research [76], which are

suitable for various surface science techniques such as STM, low energy diffraction, and

photoelectron spectroscopy. Properties of ultrathin oxide films, with a thickness of a few

monolayers, vary depending on the number of layers [77]. And the nature of such materials

cannot be extrapolated from the bulk crystals. However, growing thicker films on metal surface

will be a protocol to infer the structures and properties of bulk oxide surfaces [78]. Because

local properties play critical role in oxide materials, it is essential to characterize these with

local techniques. For example, the presence of intrinsic and extrinsic defects make the wurtzite

ZnO be n-type semiconductor [79], oxygen vacancy plays central role for chemical reactions

on the TiO2 surface such as water dissociation, CO oxidation and so on [80]. In this thesis,

ultrathin ZnO layers epitaxially grown on a Ag(111) surface are studied in detail with local

techniques SPM, STS and TERS. Molecular hydrogen trapped inside STM junction can

enhance the spatial resolution to resolve submolecular structures of planar organic molecules

[81], which is named as scanning tunneling “hydrogen” microscopy (STHM). The ZnO layer

system is also used as a model system to verify the modified STHM and to study the

fundamental process of TERS.

This thesis is organized as follows:

Chapter 2 describes the physical principle of STM, AFM, and TERS. Our customized

photon-SPM setup is also introduced.

Chapter 3 describes plasmon-assisted resonant tunneling in plasmonic STM junctions

consisting of a Ag or Au tip and a Ag(111) surface. The resonant tunneling process occurs via
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FERs formed over the Ag surface. As a hallmark of the plasmon-assisted resonant tunneling,

we observe a downshift of the first peak in the FER spectra by a fixed amount equal to the

incident photon energy. STM-induced luminescence measurement for the Ag and Au tip reveals

the clear correlation between the laser-induced change in the FER spectra and the plasmonic

properties of the junction. The plasmon-assisted tunneling process is also observed over the

ultrathin ZnO layers, which have different work function from the Ag(111) surface. Our results

clarify a novel resonant electron transfer mechanism in a plasmonic nanocavity.

Chapter 4 describes the local characterization of ultrathin ZnO layers epitaxially grown

on the Ag(111) surface using the reactive deposition method. Local electronic structure and

local work function of different thickness ZnO layers are investigated by STM, STS and CPD.

Atomic resolution imaging of 2- and 3-ML ZnO is also obtained by using scanning tunneling

“hydrogen” microscopy (STHM). Both local work function measuring and atomic resolution

imaging show structure transition between 2- and 3-ML ZnO layers. Conductance and

mechanical properties of the STHM junction were also investigated in detail. We propose a new

STHM imaging mechanism different from the previous studies [82]. It is found that the junction

involves multiple H2 and a simplified model with two H2 inside the STM junction was

suggested and simulated to reproduce the experimental observations.

Chapter 5 describes the TERS measurement of the ultrathin ZnO layers on Ag(111). In

TERS spectra, the characteristic vibrational modes are observed, which are red-shifted as

compared to those of the bulk ZnO. The TERS intensity linearly depends on the laser fluence,

indicating spontaneous Raman scattering. The TERS intensity also strongly depends on the

excitation wavelength and on the localized surface plasmon resonance of the STM junction.

The crucial role of the spectral matching effect (chemical enhancement mechanism) is clearly

demonstrated for 2- and 3-ML ZnO layers which have a different conduction band minimum.

Furthermore, in combination with STS, it is revealed that the local electronic structure

significantly affects the TERS intensity. Finally, we examine the spatial resolution of TERS

using a step edge between the bare Ag surface and the ZnO layer, showing the nanometer-scale

spatial resolution of nanometer-scale resolution which differs inside and outside the tunneling

regime. Our results suggest that TERS will be a very powerful tool to study local structures and

properties of low-dimensional materials at the nanometer scale.

Chapter 6 summarizes the finding and gives an outlook of this thesis.



9

2 Basic principles of Methods: STM, AFM, photon-SPM,

TERS

2.1 Scanning tunneling spectroscope (STM)

2.1.1 Working principle of STM

STM was invented by Binnig and Rohrer in 1982 [83]. Its working principle relies on quantum

tunneling of electrons. As illustrated in Figure 2.1a, a bias voltage (usually from several mV

to several V) is applied between the tip and the sample to generate a small current flow (usually

from several pA to tens of nA) in the STM junction. Thus, a conductive sample is necessary for

STM measurements. The tunneling current exponentially decays as the tip–sample distance

increases, which is used to control the vacuum gap distance at high precision. STM imaging

can be performed with the constant height or constant current mode. In the constant height

mode, the tip–sample distance is fixed during scanning and the variation of the tunneling current

is recorded. In the constant current mode, the tunneling current is fixed to the constant value

and the topographic image of the surface is recorded.

Figure 2.1. (a) Schematic of scanning tunneling microscopy. (b) Energy diagram

of the biased STM junction. Adsorbate forms hybridized states on the surface. (c)

Schematic of the distribution of wave functions.
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The current flows between the tip and  sample as a consequence of electron tunneling,

where the electrons near the Fermi level tunnel through the vacuum barrier as shown in Figure

2.1b. The original equilibrium situation is lifted by the applied bias V. The Fermi level (Ef) of

the tip is higher by eV than that of the sample, then the electrons in the range from Ef to eV can

tunnel from the filled states of the tip to the empty states of the sample.

Electron tunneling in STM junctions can be described by Bardeen’s approach [84], which

is also called the transfer Hamiltonian method and extended later by Tersoff and Hamann

[85,86]. In Bardeen’s approach, the electron tunneling is treated as a one-particle process.

Coupled electronic states through the interaction between tip and sample are also ignored. These

approximations are valid for a low tunneling regime. This is the case for the STM junction with

a typical vacuum barrier width of ~1 nm. The eigenstates of the sample (߮ௌ) and the tip (்߮)

are separated as illustrated in Figure 2.1c. The kth eigenstate satisfies the Schrӧdinger equation

in one dimensional potential:

݅ћ
߲߮௝௞

ݐ߲ = ቆ−
ћଶ

2݉
߲ଶ

ଶݖ߲ + ௝ܷቇ ߮௝௞                   (2.1)

where j is S or T, ௝ܷ the potential function of the tip or the sample, m electron mass, ћ reduced

Planck constant, and ߮௝ = ߮௝௞݁
ି௜ாೖ௧

ћൗ  with eigenenergy ௞ܧ  (k=1, 2, 3...). In the tunneling

regime, the time evolution is governed by Schrӧdinger equation containing the full potential:

݅ћ
߲߮
ݐ߲ = ቆ−

ћଶ

2݉
߲ଶ

ଶݖ߲ + ௌܷ + ்ܷቇ߮                 (2.2)

where ߮ is the wave function of the whole system including the tip and the sample. Considering

electron tunneling from a tip state ்߮
௡ (n=1, 2, 3…) to the sample, ߮ can be expanded in a linear

combination of ߮௝௞:

߮ = ܽ௠(ݐ)்߮
௠݁

ି௜ா೘௧
ћൗ + ෍ܿ௞(ݐ)߮ௌ௞݁

ି௜ாೖ௧
ћൗ

ஶ

௞ୀଵ

               (2.3)

where ܽ௡(ݐ), ܿ௞(ݐ) are coefficients. By inserting equation (2.3) into equation (2.2), the

tunneling probability per unit time is obtained:

௠ܲ௡ =
݀
ݐ݀ |ܿ௡(ݐ)|ଶ =

ߨ2
ћ ௠்ܧ)ߜ − ௠௡|ଶ                 (2.4)ܯ|(ௌ௡ܧ
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where ௠௡ܯ =< ߮ௌ௡| ௌܷ|்߮
௠ > is the tunneling matrix. This single electron tunneling rate from

a state ்߮
௠ to ߮ௌ௡ follows Fermi’s Golden rule, which is a general consequence of the first-order

time-dependent perturbation theory. Using equation (2.4), the total tunneling current is obtained

as the sum of every single electron tunneling rate in the energy range of eV:

ௌ→்ܫ =
݁ߨ2
ћ ෍|ܯ௠௡|ଶ்ܧ)ߜ௠ − ௌ௡ܧ − ܸ݁)

௠௡

                 (2.5)

In Tersoff and Hamann approach, a spherically symmetric function (s-wave) around ଴ isݎ

used for the tip wave function. The total tunneling current is then proportional to the local

density of states of the sample and experientially decays as the barrier width increases:

ܫ ∝ න ܧ݀(ܧ,଴ݎ)ߩ
ாಷା௘௏

ாಷ
                 (2.6)

where (ܧ,଴ݎ)ߩ = ∑ |߮ௌ௞(ݎ଴)|ଶ௞ ௞ܧ)ߜ − is the local density of states of sample. For a small ,(ܧ

bias V, ∝ ݁ି஺௭  , in which ܣ = ଵ
ћඥଶ௠థ

, ߶  is the work function of the tip and the sample

(assumed to be equal). The above approaches describe a general picture of the tunneling process

in which the total tunneling current arises from all relevant orbitals and the tunneling probability

exponentially decays as the barrier width increases.

2.1.2 Scanning tunneling spectroscopy (STS)

STS is a powerful electronic spectroscopy at the nanoscale that can measure the local electronic

states even with the atomic-scale resolution. According to equation (2.6), the conductance

ܫ݀ ܸ݀⁄  of the junction is proportional to the local density of states. This channel is commonly

detected by means of the lock-in technique. In the measurement, the bias voltage is modulated

by a small oscillation voltage ௠ܸ௢ௗ sin߱ݐ. Then the modulated tunneling current is given by

Taylor expansion:

ܸ)ܫ + ௠ܸ௢ௗ sin߱ݐ) = (ܸ)ܫ +
ܫ݀
ܸ݀ ௠ܸ௢ௗ sin߱ݐ + ⋯ .          (2.7)

The current at the frequency ߱ can be selectively extracted by the lock-in amplifier, which is

proportional to the conductance.
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The STS can be measured either with the constant height mode or the constant current

mode. In the former case, the tip–sample distance is fixed during the bias sweep. The measured

conductance spectrum corresponds to the local density of states. In the latter case, the tip–

sample distance is varied during the bias sweep to keep the tunneling current constant, in which

the measured spectrum does not directly represent the local density of states but the electronic

resonance still can be resolved. In this method, saturation of tunneling currents in the trans-

impedance amplifier can be avoided, allowing to measuring a broad voltage range.

2.2 Atomic force microscopy (AFM)

2.2.1 Working principle of AFM

Force between a probe tip and a sample surface is detected in AFM that was invented in 1986

by Binnig, Quate, and Gerber [87]. In contrast to STM, a conductive sample is not required so

that characterization of insulate materials is also possible by AFM. A tip is mounted on a

cantilever as shown in Figure 2.2a, and force acting between the tip and the sample is detected

as a variation of the resonant frequency of the cantilever oscillation. There are static and

dynamic operation modes in AFM. In the static mode, deflection of the cantilever caused by

the force acting on the tip is detected that is widespread to obtain nanometers resolution. We

performed all the measurement with dynamic mode (frequency modulation mode) in this thesis,

which is routinely used to obtain atomic resolution images (non-contact AFM). The cantilever

oscillates at its resonance frequency ଴݂ that is excited by a mechanical actuator in the dynamic

mode. The oscillation amplitude or the frequency shift is detected to measure the force acting

on tip.

In this thesis, qPlus sensor is used to perform AFM measurements, which simplified the

AFM construction significantly, also allows measuring STM simultaneously [88]. The qPlus

sensor has been invented by Franz J. Giessibl in 1996, which is currently used in many ultra-

high vacuum AFM systems [89]. In qPlus sensor (Figure 2.2 b), the cantilever is made of quartz

that is surrounded by gold electrodes as schematically show in Figure 2.2c. Due to the

piezoelectricity of the quartz, the distortion of cantilever generates surface charges that can be

collected by the electrodes, so that the mechanical signal is converted to the electronic version.

Vice versa, the oscillation of cantilever can also be excited by the applied bias through the

electrodes. Oscillation of the cantilever is controlled and monitored by phase locked loop [88].
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Figure 2.2. (a) Schematic of atomic force microscopy. (b) Picture of the qPlus

sensor we used. (c) Schematic of the qPlus sensor. The green and red part are the

gold electrodes.

The resonance frequency of the cantilever without force acting on the tip is given by

଴݂ =
1

ߨ2
ඨ݇
݉  ,                    (2.8)

where k is the spring constant and m is the effective mass of the sensor. In a simple case, the

interaction between the tip and sample is consider as a restoring force with the spring constant

݇௧௦ , which makes the resonance frequency shift. The shifted resonance frequency of the

cantilever is given by

݂ =
1

ߨ2
ඨ݇ + ݇௧௦

݉  .                 (2.9)

if ݇௧௦ ≪ ݇, the resonance frequency shift can be approximated

∆݂ ≈ ଴݂

2
݇௧௦
݇  ,                (2.10)

In practice, the interaction between the tip and the sample is not a simple restoring force

with the spring constant ݇௧௦ . In particular, for the measurement with a large amplitude

oscillation at a small tip–sample distance, the simple consideration deviates significantly. At a

small tip–sample distance, the Pauli repulsion will be predominated. The force acting on tip is
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଻ decay as the distanceିݎ r increases, which is different from the linear dependence of a recover

force. However, Giessibl [90] has derived the formula of the frequency shift for an arbitrary

force F(z) acting on the tip with any vibration amplitude a.

∆݂ = − ଴݂

݇ܽߨ
න ݖ൫ܨ + ܽ(1 + ൯(ݑ

ݑ
√1− ଶݑ

ݑ݀
ଵ

ିଵ
 ,                 (2.12)

where ∆݂ is the frequency shift, ଴݂ is the resonance frequency, k isthe spring constant of the

cantilever, and z is the distance between tip and sample. To determine the force from the

measured frequency shift, Sader and Jarvis derived the formula by inverting equation (2.12)

[91], giving the interaction force:

(ݖ)ܨ = 2݇න ቆ1 +
ܽ଴.ହ

8ඥݐ)ߨ − (ݖ
ቇ
(ݐ)݂∆

଴݂
−

ܽଵ.ହ

ඥ2(ݐ − (ݖ

݀ ቀ∆݂(ݐ)
଴݂

൘ ቁ

ݐ݀

ஶ

௭
. ݐ݀ (2.13)

The interaction energy between tip and sample can be obtained by integrating equation (ݖ)ܷ

(2.13):

(ݖ)ܷ = 2݇න
(ݐ)݂∆

଴݂
ݐ)) − (ݖ +

ܽ଴.ହ

4
ඨ
ݐ − ݖ
ߨ +

ܽଵ.ହ

ඥ2(ݐ − (ݖ
)

ஶ

௭
(2.14)     . ݐ݀

2.2.2 Contact potential difference (CPD)

CPD can be used to measure the local work function by AFM. Work functions of the tip and

the sample are usually different, which result in a contact potential when they are close enough

to the surface. The tip and the sample have the same vacuum level when they are at a large

distance, as schematically shown in Figure 2.3a. Their Fermi levels may be different. When

the tip–sample distance is reduced to the tunneling regime, the charge transfer happens between

them because of the different Fermi levels. This generates an electrostatic field in the junction

(Figure 2.3b) that responds to the potential drop ஼ܸ௉஽ . Amount of the CPD corresponds to the

work function difference between the tip and the sample. The contact potential can be

compensated by an applied bias of ஼ܸ௉஽  as shown in Figure 2.3c.
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Figure 2.3. (a) Energy diagram of tip and sample at a large distance. They share

the same vacuum level. The Fermi levels are different because of their different

work functions. (b) In the tunneling regime, the charge transfer between tip and

sample occurs to makes the Fermi level aligned, which creates the electrostatic field

inside the junction. (c) The electrostatic field can be compensate by the applied bias

(VCPD).

The electrostatic field in the junction causes extra electric force on the tip that is

.௘௟.௦௧ܨ =
1
2
ܥ߲
ݖ߲ ( ஼ܸ௉஽ − ܸ)ଶ                (2.15)

where ,is the capacity of  the junction (the tip–sample junction can be regard as a capacitor) ܥ

and ݖ ܸ are the distance and the applied bias voltage between tip and sample, respectively.

From equation (2.12), it is clear that the observed frequency shift is proportional to the force

acting on the tip. The applied bias ܸ  swept with tip–sample distance fixed in CPD

measurements. From equation (2.15) a frequency shift curve is expected to be a parabolic shape

as shown in Figure 4.5 of chapter 4. The contact potential difference ஼ܸ௉஽  corresponds to the

bias of the maximum of the parabolic response in the frequency shift curve. Since the

electrostatic field is mainly located under the tip apex, a spatial resolution ~1 nm can be

obtained in the CPD measurement.

2.3 Tip enhanced Raman spectroscopy (TERS)

2.3.1 Classical description of Raman scattering
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Raman scattering is an inelastic process upon the interaction of light with matter. A photon with

the energy ௜ exchanges a energy quantum (vibration or other excitation) with the matter, whichܧ

results in the photon energy becomes to be ௙ܧ . This energy exchange can create a quantum of

vibrational energy in the matter that is named Stokes Raman process. In that case ௜ܧ > ௙ܧ , it

can also annihilate a quantum of vibrational energy in the matter that is named Anti-Stokes

Raman process.

The spontaneous Raman scattering can be described in classical theory [92]. The most

significant multipole source is the electric dipole oscillator. For a simple consideration, an

incident light induces an oscillating electric dipole of the matter, leading to light emission to

almost every direction (emission along the dipole direction is zero and maximum at the

perpendicular direction). Namely, the original incident light is scattered to almost every

direction. The strength of an oscillating electric field is given by

ܧ = ଴ܧ cos ߱ߨ2 (2.16)             ݐ

where ଴ is the vibrational amplitude andܧ ߱ the frequency of the light. Considering the simplest

case that the light scattered by a diatomic molecule. The molecule is polarized by the electric

field of light.

ܲ = ܧߙ = ଴ܧߙ cos ߱ߨ2 (2.17)            ݐ

where ܲ  is the induced dipole moment, ߙ  is the polarizability. Considering the molecule

vibrates with the frequency it leads to the nuclear displacement ,ߥ

ݍ = ଴ݍ cos ߨ2 (2.18)            ݐߥ

where ଴ is the vibrational amplitude. For a smallݍ ଴, the polarizability changed with nuclearݍ

displacement can be written as Taylor expansion:

ߙ = ଴ߙ + ൬
ߙ߲
൰଴ݍ߲

ݍ + ⋯ .            (2.19)

where ଴ߙ , ቀడఈ
డ௤
ቁ
଴
are the polarizability and the derivate as displacement at the equilibrium

position, respectively. From equation (2.17)–(2.19) the induced dipole moment

ܲ = ଴ܧ଴ߙ cos ݐ߱ߨ2 +
1
2 ൬
ߙ߲
൰଴ݍ߲

଴[cosܧ଴ݍ ߨ2 (߱ + ݐ(ߥ + cos ߨ2 (߱ − (2.20)    . [ݐ(ߥ
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The first term of equation (2.20) represents an oscillating dipole at frequency ߱ that contributes

to the Rayleigh scattering. The second and third terms represent oscillating dipoles at frequency

߱ + and ߥ ߱ − .which represent the anti-Stokes and Stokes Raman scattering, respectively ߥ

For an oscillating dipole moment with amplitude µ଴ (dipole moment ܲ = ଴ܲ cos ,ݐ߱ߨ2

where ଴ܲ, ߱ are oscillation amplitude and frequency, respectively), the radiation power of per

solid angle is given by

ܹ݀
ߗ݀ = ଴ܲ

ଶ߱ସ

ଶє଴ߨ32
sinߠଶ  ,            (2.21)

where є଴  is the permittivity of vacuum, ߠ  the radiation angle with respect to the dipole

direction. By inserting the third term of equation (2.20) into equation (2.21), one obtains the

radiation power of Stokes Raman process

ܹ݀
ߗ݀ ௌ௧௢௞௘௦

∝ ൬
ߙ߲
൰଴ݍ߲

ଶ

߱)଴ଶܧ − ସ .            (2.22)(ߥ

Equation (2.22) tells the main feature of Raman scattering. Intensity of Raman scattering is

proportional to the incident light intensity. In practice, a visible laser is usually used for Raman

spectroscopy that the frequency ߱ ≫ so that the intensity is also proportional to frequency ,ߥ

of incident laser ߱.

2.3.2 Quantum description of Raman scattering

In a semi-classical quantum theory, light is treated as a classic electromagnetic field, while

matter is considered in a quantum picture. The ݊ th eigenstate (with wave function ߮௡଴(ݐ))

satisfies the time-dependent Schrӧdinger equation

݅ћ
߲߮௡଴(ݐ)
ݐ߲ = ଴ܪ ߮௡଴(ݐ) ,                       (2.23)

where ћ is reduced Planck constant, ,଴ is Hamitonian of the matterܪ ߮௡଴(ݐ) = ߮௡଴݁ି௜ா೙௧ is the

wave function with eigenenergy of ௡. Interaction energy between the electromagnetic fieldܧ

and the matter is where ,ࡱࡼ− ࡼ = ∑ ݁௡௡ ࢘௡ is the electric dipole operator, ݁௡ and ࢘௡ are the

charge and the position of the ݊th charge, respectively, is the electric field of light. The ࡱ

interaction energy is a time-dependent perturbation that makes the Schrӧdinger equation change

to
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݅ћ
߲߮௡(ݐ)
ݐ߲ = ଴ܪ) (2.24)                . (ݐ)௡߮(ࡱࡼ−

The perturbed time-dependent wave function

߮௡(ݐ) = ෍߮௡௞(ݐ)
ஶ

௞ୀ଴

 ,                (2.25)

߮௡௞(ݐ) is the ݇th order perturbed wave function.

The scattering of light is still assumed to originate from an oscillating dipole, but the dipole

becomes to the transition dipole associated with state transition. In Raman scattering, the matter

is scattered from the initial ݅th state to the final ݂th state, and the electric dipole moment is

given by

௜ܲ௙ = න߮௙(ݐ)∗߮ࡼ௜(ݐ)݀࢘ .                       (2.26)

Classical radiation associated with the dipole moment is ௜௙ܫ ∝ | ௜ܲ௙|ଶ . In a first-order

approximation and considering the electromagnetic field as uniform, the total intensity of the

scattering light averaged over all orientations is given by

௜௙ܫ =
2ଷߨ
3ଶܿସ ݓ)଴ܫ − ௜௙ห(ఘఙߙ)ସ෍ห(ݒ

ଶ

ఘ ,ఙ

,             (2.27)

with the polarizability tensor

௜௙(ఘఙߙ) = ෍ቈ
௜௥(ఙܯ)௥௙(ఘܯ)
௥ܧ − ௜ܧ − ћݓ +

௥௙(ఙܯ)௜௥(ఘܯ)
௥ܧ − ௙ܧ + ћݓ

቉
௥

 .          (2.28)

where ܿ is the velocity of light, ଴ andܫ are the intensity and the frequency of the incident ݓ

light, respectively, ,௜ܧ ௥, andܧ ௙ܧ  are the energy of initial, intermediate and final states of the

matter, respectively, ݒ = ா೑ିா೔
ћ

 is the frequency shift of scattered light, ߩ = ,ݔ ,ݕ ݖ  and ߪ =

,ݔ ,ݕ ,are the coordinate system of matter ݖ ,௥௙(ఘܯ) ,௜௥(ఙܯ) ,௜௥(ఘܯ) ௥௙ are the transition(ఙܯ)

dipoles along a specific directions given out by ௠௡(௞ܯ) = ∫߮௠଴ ࢘݀(ݐ)௞߮௡଴ݎࢋ∗(ݐ) . In Raman

scattering by molecules, the sum in equation (2.28) goes over all vibronic states of the

molecules.

In the discussion of a semi-classical treatment above, the relation between the transition

dipole and scattering is hypothesized. An exact comprehension of Raman scattering should be



19

considered in a pure quantum theory. Both the radiation and matter are quantized. The problem

can still be solved with the perturbation theory and the same result was obtained as equation

(2.27) and (2.28) [93].

Figure 2.4. energy diagram of Raman scattering.

In the perturbation theory, Raman scattering is a second-order process, in which an

incident photon is annihilated and a new photon with different energy is created. Figure 2.4

illustrates the energy diagram of Raman scattering. The dashed lines are virtual levels and the

solid lines are quantum states of the matter (or molecule). In the Stokes Raman scattering, the

molecule is originally in ground and an incident photon is absorbed, yielding a photon with a

smaller energy, while the molecule is vibrationally excited. On the other hand, the molecule is

originally in vibrational excited state in the anti-Stokes Raman scattering, an incident photon is

absorbed and a photon with a larger energy is reemitted, while that the molecule returns to the

ground state. In non-resonance Raman scattering, the photon absorption and reemission take

place through the virtual states, while in resonance Raman scattering a real excited electronic

state is involved. Under the resonance condition ௥ܧ − ௜ܧ = ћݓ, the intensity has maximum

from equation (2.27) and (2.28).

2.3.3 Enhanced Raman spectroscopy

Since Raman cross section of molecules is extremely small (10-31 ~10-28 cm2), enhancement of

Raman scattering is necessary in order to measure small amount molecules. One possible

enhancement mechanism is the chemical enhancement. As shown above, the Raman cross



20

section becomes extremely large under the resonance condition. In the resonance Raman

measurement, a laser should be chosen to match its photon energy close to the electronic

transition of the target molecule, then the cross section can be enhanced as much as five orders

[94]. There is another mechanism named physical enhancement in SERS, which occurs through

enhancement of a local electric field by surface plasmon excitation. This has been considered

as the mainly enhancement mechanism in SERS.

Matter is polarized under an extra electric field. Considering a simple case of metallic

spheres that can be polarized by a uniform external field ௘௫௧ܧ , the polarization leads to an

induced electric field ௜௡ௗܧ  originating from the induced charge redistribution. The resulting

total electric field is ௙௜௡ܧ = ௜௡ௗܧ+௘௫௧ܧ . For a metallic sphere as show in Figure 2.5a, the ௙௜௡ܧ

is much larger than ௘௫௧ܧ  at pole positions (marked with a red ellipse) due to the denser induced

charge. In the gap between two spheres, the electric field becomes even larger because the

induced charge of both spheres contributes to the ௜௡ௗܧ  (Figure 2.5b). The collective oscillation

of electrons has a resonant frequency and quantum of this oscillation is named plasmon. When

a metallic nanoparticle or nanostructure is illuminated, the conduction electrons are oscillated

by the optical field and surface plasmon can be excited. It enhances the localized electric field

and the enhancement factor is defined as

݃ =
หܧ௙௜௡ห
|௘௫௧ܧ|  .             (2.29)

Common plasmonic materials used in plasmonics are Au and Ag nanoparticles, which have

plasmon resonances in the visible range. Ag nanoparticles have advantage of a large field

enhancement due to its smaller dephasing time of SPP. For a metal sphere much smaller than

the wavelength of light, the collective oscillation of the electrons in the nanoparticle can be

regarded as an oscillating dipole.
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Figure 2.5. (a) Schematic of induced electric field of a metal sphere. (b) Schematic

of induced electric field of metal sphere dimer. Positions where electric field

strongly enhanced are marked by red shapes.

Molecules in the vicinity of a nanoparticle surface feel the enhanced electric field by ݃ଶ.

The oscillating dipoles of Raman scattering (the second and third terms in equation (2.20)) also

interact with the nanoparticle, amplifying the emission. Therefore, the total enhancement of

Raman intensity is proportional to ݃ସ  [ 95 ]. There are numerical simulations for Raman

enhancement of single and dimer Ag nanospheres (60 nm) under resonance conditions [95]

with a gap size of 2 nm in the dimer. The Raman enhancement at the hot spots (nanoscale

regions with a strongly enhanced local electromagnetic field, which are indicated by red- parts

in Figure 2.5 ) are ~10ଷ and ~10ଽ for single and dimer sphere, respectively. Owing to the large

field enhancement, nanocavity plays a crucial role in enhanced Raman spectroscopy and many

other plasmon-driven processes.

The spatial resolution of conventional optical microscopy is limited to be hundreds of

nanometers for visible light due to the diffraction limit. TERS is invented in 2000 [15, 96, 97,

98], which can overcome the conventional diffraction limit. It has a similar enhancement

mechanism as SERS and a critical structure in TERS is also a plasmonic nanocavity that

consists of the plasmonic SPM tip and the surface, namely the SPM junction. The SPM junction

is illuminated by a focused laser during TERS measurement to yield the enhanced local field

inside the junction. Enhanced Raman signal from the junction is collected at each point as the

tip scans over the surface. The spatial resolution is mainly determined by the tip size that can
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be even sub-nanometer as mentioned in the introduction. We performed the TERS measurement

using our home-designed LT-photon-SPM setup that is introduced in the section 2.4.

2.3.4 Selection rule of TERS

The classical description of Raman scattering in equation (2.22) derives a strict selection rule

for Raman scattering: ቀడఈ
డ௤
ቁ
଴
≠ 0. According to this condition, Raman active modes of simple

molecules can be easily determined. For example, a stretching mode of diatomic molecules is

Raman active, bending mode of a linear ABA style molecule is Raman inactive [99].

As show in equation (2.24) the light-matter interaction term is In the conventional .ࡱࡼ–

Raman scattering, the light wavelength is much larger than the size of a scattering object like a

molecule, thus ࡱ is simplified as a uniform field in space. The optical transition matrix is

࢘݀(ݐ)௜߮ࡼ∗(ݐ)௙߮∫ࡱ . The polarizability tensor in equation (2.28) is obtained by this

simplification. Considering a locally confined field within the junction in TERS, the size of the

field becomes comparable to a molecule. In this situation, cannot be treated as a uniform field ࡱ

anymore and a field gradient will play a role. Then the should be included in the integration ࡱ

of optical transition matrix ∫߮௙(ݐ)∗߮ࡱࡼ௜(ݐ)݀࢘, this results in differently perturbed time-

dependent wave function in equation (2.25) and final polarizability tensor. Due to the field

confinement, the silent modes in conventional Raman scattering may become active in TERS

[100, 101, 102, 103]. Field perpendicular to the surface direction is strongly enhanced in the

junction, so that the TERS signals of vibrations perpendicular to the surface can be selectively

enhanced [48, 104], which is also the case in our observation as discussed in Chapter 5.

2.4 Photon SPM

2.4.1 Introduction

Photon-SPM is a promising approach to investigate light–matter interactions at nanoscale and

many impressive experiments have been demonstrated as discussed in the introduction.

Because there was no standard commercial photon-SPM setup at the time I started my PhD

project, we have designed and built a customized LT-photon-SPM in cooperation with
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UNISOKU, Japan. In this chapter, technical challenges and several strategies combine SPM

with optics are discussed.

2.4.2 Technical challenges of photon-SPM

Since optical signal from the SPM junction is in general very weak, a high numerical aperture

(NA) optics for photon collection is required. But, at the same time, a convenient alignment

procedure of the optics should also be considered while keeping the performance of low-

temperature SPM. A couple of instrumental designs that fulfill these requirements have been

conceived. Several construction strategies of photon-SPM are explored and introduced in next

section, configuration details of our setup is also described latter.

Beam alignment is the most crucial procedure in photon-SPM and the beam needs to be

accurately focused on the SPM junction. The spot size of a focused beam is a few micrometers

and the SPM junction is at the size of nanometers, which makes the focusing be difficult. In

addition, it becomes an even more difficult task to perform the alignment in an UHV chamber,

especially for the photon-SPM which is equipped with a parabolic or ellipsoidal mirror

compared to lens systems. Nevertheless, we have chosen a parabolic mirror in our setup to

obtain better optical performance and optimized our alignment procedure that worked properly.

We also found that the plasmon assisted tunneling process can be nicely used to check the final

alignment quality (Chapter 3).

Even the UHV chamber would aggravate the difficulty of beam alignment, but UHV

condition is necessary for many measurements. One important application of the photon-SPM

is TERS. To perform TERS measurements at the single-molecule level, a well-defined

environment is necessary and contamination of the tip would also make a problem. A tip apex

should be reactive due to the high reactivity of metal cluster, which makes it easily

contaminated in ambient. An UHV environment provides atomically clean systems to avoid the

contaminations. The first attempt of UHV-TERS was published in 2007 by Pettinger group in

the Fritz-Haber Institute [105]. They obtained TERS signal for single dye molecule with spatial

resolution of 15 nm and also simultaneously recorded the STM image [105]. Up to now, only

several groups have reported UHV-TERS measurements [106, 107, 48, 108] and it is still a

technical challenge to construct the proper setup for TERS experiments under UHV conditions.
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Stability is also a crucial problem for TERS measurements particularly at room

temperature. Highly stable condition is also required in SPM measurements in which atomic

scale change in the junction would induce a huge disturbance. Stability of the junction becomes

even worse under illumination of focused laser beam in TERS measurements. The signal shows

fluctuations as reported in many TERS experiments at room temperature [109, 110, 111].

Therefore, low temperature is required to guarantee good measurement condition, our setup can

be cooled by liquid N2 (~80 K) or He (~5 K).

Moreover, laser source is challenged for some optic measurements. The chemical

resonance situation is needed to be satisfied in TERS measurements, which requires the laser

photon energy matches with the optic transitions of measured sample. This requirement is

somewhat challenged that a broad range wavelength tunable laser source is expected to

measuring different samples.

2.4.3 Strategy of SPM combined with optics

Strategies of a photon-SPM design can be mainly classified into three types according to the

cofiguration of optics as schematically shown in Figure 2.6. Figure 2.6a is the combination of

optical fiber or fiber bundle [112, 113], in which an optical fiber is placed close to the SPM

junction. A reasonable NA can be obtained with this approach. However, a drawback is

difficulties in optical alignment and one should also take care a lot the transfer of sample in

UHV not to collide with the fiber. In practice, only a low photon collection efficiency was

obtained due to the inaccuracies in the alignment of the fiber [113]. A lens system (Figure 2.6b)

can attain a suitable NA (~0.5 [108, 48]) that is enough to collect relatively strong optical signal

from the junction. It is also much easier to align the optics than the fiber or parabolic/ellipsoidal

mirror system. This setup has been examined in several different groups [26, 27, 114, 115,39]

and is currently the most common strategy. Figure 2.6c shows a combination with a parabolic

or ellipsoidal mirror. A large NA can be obtained with the parabolic/ellipsoidal mirror setup

[116, 105], which can also avoid spherical and chromatic aberration. Therefore, combination

with the mirror setup is the ideal strategy in theory. But it is a challenging task to do alignment

that the photon collection efficiency is very sensitive to the deviation from the perfect aligning.

In our test measurements, the Raman signal totally disappeared even the parabolic mirror axis

only tilted ~0.05° from the incident laser beam.
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Figure 2.6. Schematic for three different strategies of SPM combined with optical

setup: (a) optical fiber or fiber bundle, (b) lens, (c) parabolic or ellipsoidal mirror.

To attain a better optical performance, we adopted the strategy combined with a parabolic

mirror as schematically show in Figure 2.7. We mount a parabolic mirror on the SPM stage

that can be cooled down. The STM tip is fixed in a hole on the tip holder by a clamping

mechanism. To ensure that the focus spot is always on the junction during the measurement,

the tip is fixed and scanning is performed by moving the sample. A collimated beam goes

through the hole of the tip holder (marked in Figure 2.7) and incidents to the parabolic mirror

to focus on the SPM junction. Photon emitted from the junction is also collected by the parabolic

mirror as a collimated beam. The position of the parabolic mirror is controlled precisely by

piezo motors. It has five-axis movement (three linear and two rotational motions) as marked by

arrows in Figure 2.7. All the in-situ optical components are built on the SPM stage which can

be cooled down by the cryostat.
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Figure 2.7. Schematic of our optical SPM. Degree of freedom of the sample and

parabolic mirror is marked by arrows.

2.4.4 Customized optical SPM system

All sample preparation and characterization are performed under UHV conditions. The UHV

system consists of the preparation and measurement chambers as shown in Figure 2.8. Two

chambers are separated by a gate valve to avoid the contamination of measurement chamber

from sample preparation. A small load-lock is connected with the preparation chamber, which

allows the transfer in and out samples and tips to the ambient without braking the vacuum of

the preparation and measurement chambers. All samples and tips are transfer with transfer rods

and can be stored in both preparation and measurement chambers. A mechanical pumps (turbo

pump and membrane pump) are connected with the load-lock. An isolated chamber for the ZnO

preparation can be connected with the preparation chamber. Samples can be annealed on the

manipulator stage in the preparation chamber. It has two heating modes, direct current and

electron emission. All the heating are performed with the electron emission mode in this thesis.

The sample temperature is measured by a pyrometer outside the chamber. A cryostat is located

at the bottom of measurement chamber that can keep the SPM stage at ~80 K for about 5 days

after filling (liquid nitrogen). A small reservoir of the cryogen is located under the SPM stage.

The SPM stage is protected by three shields as shown in the right enlarged image of Figure

2.8. Liquid nitrogen (or liquid helium) in the cryostat is pumped up into the small reservoir. Ion

pumps (black cuboids in Figure 2.8) are connected under the measurement and preparation

chamber, which keep a base pressure ~10-10 mbar for both chambers.
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Figure 2.8. Low-temperature SPM system (USM-1400, UNISOKU). Left figure is

the drawing of cross sectional view of the SPM unit in the measurement chamber.

Figure 2.9 is a picture of the SPM stage from the top. The main components are labeled,

which are the piezo motors with the SPM scan piezo tube (label 1), the piezo motors for

parabolic mirror (label 3), the piezo motors for lens movement (label 7). To collect the refection

beam, a lens (label 6) is also added except the parabolic mirror. It is fixed on the combined

piezo motor system has three dimensional linear movement, which allows to focus the lens on

the SPM junction. A collimated laser beam can be focused either through the parabolic mirror

and collected by lens after reflected by the sample, or vice versa, as schematically shown by

the red dashed line. Many copper wires that are thermal conductive are added to improving the

cooling efficiency. The SPM stage is vibrational isolated from the chamber by spring

suspending (label 8). Focus length of the parabolic mirror is 8.85 mm and the NA for the

collection is 0.61. Focus length of the lens is 3 cm and the NA is ~ 0.2.
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Figure 2.9. Top view of the SPM stage. The main parts are labeled 1: scan piezo,

2: sample, 3: piezo motor for parabolic mirror, 4: parabolic mirror, 5: tip holder, 6:

lens, 7: piezo motor for lens, 8: suspension spring. The red dashed line is the laser

beam path.

Figure 2.10 displays a side view of the SPM stage from the perspective of the

incoming/outgoing beam direction to the parabolic mirror (projection along x-axis). As

mentioned above the tip holder has a track-shaped hole in order to pass through the incoming

beam. A beam waist diameter up to ~2.5 mm is available to focus with the parabolic mirror.

The smallest focused spot is estimated to be diameter of ~3 μm at a laser wavelength of ~600

nm according to the formula

ܦ =
݂ߣ4
݀ߨ  ,                 (2.30)

where ,is the wavelength ߣ ݂ the focus length of the parabolic mirror, ݀  the incident beam

diameter. Since the outcome collection beam would partially blocked by the tip holder, the net

NA is smaller than 0.61. The reflection and diffraction image from a sample surface and the

SPM junction can be observed through the lens, which can be used for the beam alignment. It

is also possible to focus or collect the light with the lens.
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Figure 2.10. Drawing of the side view of the SPM stage.

2.4.5 Optical alignment

Accurate alignment is essential for any optical measurement. A major challenge is how to align

the incoming collimated beam to the parabolic in a reproducible manner and in a reasonable

timescale. The axis of the incoming beam has to be exactly parallel to the axis of the parabolic

mirror. The plane area (indicated in Figure 2.10) of the parabolic mirror is made perpendicular

to the axis of parabolic mirror with very high accuracy. During alignment the incoming beam

is first extended on the plane area and the backward reflection is used for the tilt correction of

the parabolic mirror. The beam is translated to the parabolic area by linear moving stage outside.

As mentioned before, it is not a trivial task to focus a several μm focus spot on the SPM

junction in a highly-accurate and reproducible manner. For optical alignment, it is important to

have a good reference and indicator to guide or judge the focus quality. In our setup, reflection

(shadow) pattern observed through the lens and visualization of the SPM junction can be used

to guide the movement of the parabolic mirror. STM-induced luminescence on a clean metal

surface was used to judge the quality of alignment [117]. Surface plasmon in the STM junction

can be excited by inelastic electron tunneling at a bias voltage larger than 2 V. Figure 2.10 is

an image of the STM junction with luminescence. A bright spot from the junction can be

observed with a CCD camera outside the UHV chamber when a good alignment is achieved. In

addition, the plasmon-assisted tunneling process (discussed in chapter 4) can also be used to
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verify the alignment quality. This phenomenon can occur only when the incident beam is

precisely focused on the junction.

Figure 2.10. Image on a CCD camera of the STM junction with electron

luminescence (the bright point). The junction is Au tip-Au(111) surface. Bias V =

2.5 V, current I = 50 nA. The right side triangle shape shadow (emphasized by the

solid orange lines) is the Au tip and the left one (emphasized by the dashed orange

lines) is image of the tip reflected from the Au surface.

2.5 Preparation of ultra-thin ZnO layers on Ag(111)

We grew ZnO layers epitaxially on a Ag(111) surface. The Ag(111) surface was cleaned by

repeated cycles of argon ion sputtering and annealing up to 670 K. The ZnO layers were

prepared in a separated chamber (Figure 2.11) with the reactive deposition method [118]. The

base pressure of the chamber was below 5 × 10-10 mbar. Zn was deposited onto a room

temperature Ag(111) surface in the presence of O2 ambient and ZnO layers was obtained by

post-annealing at 670 K under UHV condition. A Zn rod (99.9997% purity, from Alfa Aesar)

was heated in a Knudsen cell at ~490 K and pressure of O2 was keep at 1×10-5 mbar during the

deposition. This relatively high O2 partial pressure was used to avoid the possible alloying

between Zn and Ag. The heating temperature of Zn was measured by a thermocouple at the
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bottom of the Knudsen cell. The distance between the Zn source and Ag(111) surface was ~15

cm.

Figure 2.11. Schematic of ZnO preparation chamber.
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3 Plasmon assisted electron tunneling

3.1 Introduction

Plasmon-driven processes offer diverse applications in nanoscience and nanotechnology and

have attracted increasing attention [ 119 ]. Plasmonic nanocavities can confine light into

nanometric volumes and enhance the electric field strongly. However, it is still challenging to

understand the near-field properties and near-field-driven processes in such nanocavities. When

the size of the nanocavity is at several nanometers order or even smaller, quantum mechanical

effects such as quantum tunneling, nonlocal screening play important roles to determine the

plasmonic properties [120]. The size and morphology of a nanocavity have to be accurately

determined that sophisticated experiments under well-define conditions are necessary to

elucidate the underlying physics. A theoretical framework exceed the classic description that

includes quantum effects is necessary [121].

 It is also of fundamental importance to realize the ultrasensitive spectroscopy at the

nanoscale down to the single-molecule level [122, 48, 123, 124], and even with ultrahigh

temporal resolution [125, 126, 127, 128, 129, 130, 131, 132]. As discussed in the introduction,

photon-SPM can observe nanoscale structures and their plasmon response simultaneously. It

also has the advantage to well define the nanocavity. It allows to control the nanoscale gap

distance in the junction with accuracy of sub-angstrom and can also provide the morphology

information of the sample. The photon-SPM provides a unique opportunity to examine

plasmon-induced processes in nanocavities [133]. Resonant electron transfer in plasmonic

nanocavities, which relates to interplay between plasmon response and electron transfer, is

important in various applications such as photovoltaics, photocatalysis, and fast electronics

[134]. There are previous reports about light-assisted electron tunneling into a molecular

resonance in an STM junction [135, 136], and this process could be enhanced by the plasmon

excitation.

In this chapter, plasmon-assisted resonant tunneling in the STM junction is described.

Electron tunneling from the tip to FERs over a Ag(111) surface is induced by CW laser

excitation. The process results in peak shifts in the FER spectrum. The experiments with

different tip materials, different tip geometries, and different laser polarizations clearly indicate

that the plasmon excitation play a crucial role.
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3.2 FER spectra under illumination

Figure 3.1 shows the FER spectra measured over the Ag(111) surface with and without

illumination of 633 nm (hν=1.96 eV). The peaks correspond to the FERs that have been studied

previously without illumination [137,138]. The measured FER peaks are largely shifted to

lower energies under illumination. The shift of the first FER peak is nearly equal to the incident

photon energy. We use n and n’ (=1, 2, 3…) to indicate the FER peaks measured without and

with illumination, respectively. The spectra were measured in the constant current mode, which

allows a wide voltage range measuring but results in the continuous tip–surface displacement

(dash curves in Figure 4.1a). Figure 4.1b shows the FER spectra measured under different

power illumination. The illuminated power density varies from 0 to 0.528 mW/µm2. The n’=1

peak at 2.2 V grows up as the incident power increases, while the n=1 peak at 4.2 V diminished.

Figure 3.1. (a) FER spectra measured over the Ag(111) surface with and without

illumination. The solid black curve is the spectrum without illumination and the
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solid red curve is under illumination of 633 nm (hν = 1.96 eV). The power density

of illumination is 0.528 mW/µm2. The spectra were measured in the constant

current mode at 0.1nA and the tip-surface displacement (dashed curves, right axis)

was also recorded simultaneously. (b) FER spectra measured under different power

illumination. The spectra are offset vertically for clarity.

Figures 3.2a and b are the FER spectra measured with and without illumination of 446

nm (hν=2.8 eV) and 532 nm (hν=2.3 eV), respectively. As shown in Figure 3.2a, the n=1 peak

downshifts by ~2.8 V under the 446 nm illumination.

Figure 3.2. FER spectra measured over Ag(111) surface with and without

illumination. (a) The black curve is without illumination and the blue one is under

illumination of 446 nm (hν = 2.8 eV). (b) The black one is without illumination and

the green one is under illumination of 532 nm (hν = 2.3 eV).
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Figure 3.3. (a) STML spectra measured under two different tip conditions. The red

vertical line marks the wavelength of 633 nm. (b) FER spectra measured over

Ag(111) surface with and without illumination under the two tip conditions in (a).

The spectra were measured under 633 nm illumination and the power density of

illumination is 0.188 mW/μm2. (c) FER spectra measured over Ag(111) under 633

nm illumination of s- and p-polarized beam. The power density is 0.089 mW/μm2.

It was found that the plasmonic properties of the STM junction correlate with the FER

changes under illumination. Figure 3.3a shows STML spectra of the Ag tip–Ag(111) junction

under two different tip conditions. The Ag tip was poked into the clean Ag(111) surface to

modify the tip condition. The FER spectra measured under the two tip conditions are shown in

Figure 3.3b, which includes the illuminated by 633 nm and non-illuminated case. The

plasmonic property of STM junction is sensitive to the tip condition [139]. At the illumination

wavelength of 633 nm, the STML intensity of tip A is stronger than tip B. The FER spectrum

also shows larger changes under illumination measured with tip A, as shown in Figure 3.3b
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that the intensity of n’=1 peak is larger. It was also found that polarization of the incident beam

strongly affects the FER spectra. The illumination-induced effect is much stronger for p-

polarized beam. As shown in Figure 3.3c, the intensity of n’=1 peak of illuminated with p-

polarized beam is much larger than the s-polarized one. In contrary to the Ag tip, the plasmon-

induced process is absent in the FER spectrum measured with an Au tip under 532 nm

illumination as shown in Figure 3.4. This can be explained by a weak plasmon coupling of the

Au tip at 532 nm excitation. The above results clearly indicate that the plasmon excitation in

the junction governs the observed change of the FER spectra under illumination.

Size of the focus spot is estimated to be a few μm that is much larger than the very tip

apex. Therefore, the excitation of the surface plasmon is not localized only in the junction and

SPP launched on the tip shaft may also contribute to the field enhancement. The SPP can focus

to the tip apex to generate a giant local field [140, 141]. The threshold power density at which

the plasmon-assisted tunneling occurs is higher for the higher-order FERs as can be seen in

Figure 3.1b. This could be explained by the fact that the tip–surface distance is continuously

increased during the FER measurement, which becomes larger that the voltage of the higher-

order peaks. This results in a wider barrier for the electron transfer and also reduced field

enhancement.

Figure 3.4. FER spectra measured over an Au tip-Ag(111) junction with 532 nm

illumination (solid curves). The top spectrum is recorded at an incident power

density of 0.892 mW/μm2 and the bottom one is 0.1 mW/μm2. The dashed curve is

FER spectrum measured with Ag tip under illumination power density of 0.1

mW/μm2.
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It is straightforward to assign the n’=1 peak to the downshift of n=1 peak because the

energy difference is equal to the incident photon energy. We assigned the higher-order peaks

by measuring the conductance map in which the FER intensity is recorded at a specific bias

voltage with and without illumination. The measurement was performed with an Au tip under

illumination at 633 nm. Figure 3.5a is the single-point FER spectra measured over clean

Ag(111). Local structure of defects of the surface modulate the local potential that would

modify the FER [142, 143, 144, 145]. Figure 3.5b shows the measurement area that includes a

small island (defect). The conductance maps at the bias voltage of the n=2, 3, 4 FER peaks

without illumination are displayed in Figures 3.5c, d, e. The corresponding peaks are marked

with c, d, e in Figure 3.5a. The unique features in the conductance map are observed for each

peak. Although the geometry of the nano-structure determines the interference pattern [145,

146], a quantitative analysis is not possible due to the ill-defined structure of the island.

Conductance maps of n= 2, 3, 4 FER peaks measured under illumination are shown in Figure

3.5f, g, h. The corresponding peaks are also marked with f, g, h in Figure 3.5a, respectively.

The observed interference patterns of f, g, h are very similar to that of c, d, e. Therefore, it can

be concluded that the peaks in the FER spectra with illumination are shifted from the original

one without illumination.

Figure 3.5. (a) FER spectra measured over the Ag(111) surface at 78 K with and

without illumination. The laser wavelength is 633 nm and the power density is

0.237 mW/µm2. The spectrum without illumination is vertically offset for clarity.

(b) STM image of the measurement area with a small island (defect) and a single
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atomic step on the surface. (c)-(e) FER mapping at the peak c, d, e indicated in (a).

(f)-(h) FER mapping at the peak f, g, h indicated in (a).

3.3 Plasmon assisted tunneling

The schematic energy diagram of the STM junction is shown in Figure 3.6, which also depicts

the junction potential and the electron wave functions. Here we consider a single particle picture

using a simple one-dimensional model [147]. The junction potential is determined by the image

potential and the applied bias between the tip and the surface. FERs are the standing wave states

of electrons in front of the surface. During the measurement without illumination, electrons

tunnel from the tip to the FER directly when the bias voltage matches the resonance levels,

resulting in the peaks in the FER spectra. The plasmon-assisted transfer process becomes

possible under illumination that electrons at the Fermi level of the tip can be excited. The

electrons transfer from the tip to FER when the bias is Vn’=1,2,3… under illumination.

Figure 3.6. (a) and (b) Schematic energy diagram of the FER measurement without

and with illumination, respectively. The blue shaded area is the potential in the

vacuum gap. Ef is Fermi level, Evac is vacuum level, Φs(t) is work function of the

surface (tip), Vs is sample bias, d is gap distance. n is index of the FERs, red curves

are the schematic wave functions, hν is incident photon energy.

The coexistent of direct tunneling and plasmon-assisted tunneling process was also

observed at intermediate incident power densities (e.g. 0.006 mW/μm2) in Figure 3.1b, in
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which both n=1 and n’=1 peaks appear in the FER spectrum. However, the direct tunneling

process becomes negligible under high fluence because the plasmon-assisted process makes the

tip–surface distance larger, which suppresses the normal STM tunneling from the Fermi level

of the tip. For example, the distance difference reaches ~1.5 nm in the measurement in Figure

3.1b. The relative contribution from the direct tunneling and plasmon-assisted process can be

tuned by varying the tip–surface distance. Figure 3.7 shows the FER spectra measured under

532 nm illumination with an Ag tip at different tip-surface distance. The distance is controlled

by the set current which is indicated in the figure. The peaks of n’ > 2 show a blue-shift as the

tip-surface distance decreases. The n=1 peak is discernible at small tip–surface distance with a

set current above 20 nA.

Figure 3.7. FER spectra measured over Ag(111) under illumination for different

tip–sample distance, which is defined by the set current indicated in the figure. The

laser wavelength is 532 nm and power density is 0.828 mWµm-2. The black bars

indicate the second peak positions of plasmon-assisted tunneling process. The red

bars indicate the first peak positions of direct tunneling process. The spectra are

offset vertically for clarity. The top panel is the FER spectrum measured at the set

current of 80 nA without illumination.
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Recently it has been demonstrated that near-field properties in sub-nanometric cavities are

significantly affected by quantum mechanical effects [148, 149, 150, 151, 152]. Electron

tunneling in a sub-nanometer cavity will quench the field enhancement, and the theoretical

studies have predicted that it happens at a gap distance of a few Å. Since the tip did not crash

after approach 5 Å from tip surface distance with a set point of Vs = 1 V and It = 80 nA (closed

tip surface distance in Figure 3.7), the tip-sample distance should be larger than the threshold

gap distance of the field enhancement quenching. However, a substantial field enhancement

still occurs even at the significant tunneling regime, which is implied by the results of Figure

3.7.

Figure 3.8. Fitting analysis of FER spectra in Figure 3.7.

As discussed in section 3.2, the n=1 peak includes two components, one is the first order

FER and the other is from the edge of the bulk state of Ag [138] and this is also involved in the

n’=1 peak. The n(n’)=1 peak becomes broader and more skewed at smaller tip sample distance

(Figure 3.7). Figure 3.8 displays the fitting results of the n’=1 peak for three spectra in Figure

3.7. The component resulting from the bulk band edge remains almost the same position but

the FER shows a slight blue-shift. This behavior of the two peaks is explained by a larger Stark

effect for the FER than that for the bulk state because it is more localized above the surface,

thus would be influenced stronger by the electric field in the junction. Additionally,
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hybridization between the FER and the bulk states of surface or tip would also make it broader

at smaller tip-surface distances [153].

3.4 Plasmon-assisted tunneling over 2-ML ZnO/Ag(111)

As discussed in next chapter, the work function of the ZnO layers is different from the Ag(111)

surface. The plasmon-assisted tunneling was also examined over the ZnO layers. Figure 3.9 is

the FER spectra measured over 2-ML ZnO with and without illumination. In common with the

case over Ag(111), the FER peaks also downshift. The first FER peak shifted ~2.3 eV that is

again almost identical with the incident photon energy. The interface state (second peak in the

spectrum) also appears in the FER spectrum measured under illumination. But the shifted

energy is larger than 2.3 eV, which should due to the Stark effect.

Figure 3.9. FER spectra measured over 2-ML ZnO surface with 532 nm

illumination (green curve, hν = 2.3 eV) and without illumination (black curve).

3.5 Conclusion

A novel electron transfer process in the plasmonic gap was revealed: the plasmon-assisted

resonant tunneling from the STM tip to FERs over Ag(111) surface. The process is induced by

CW laser excitation and is manifested as a drastic peak shift in FER spectrum. Three different

wavelength lasers were used and the shift of the first FER peak is always equal the incident
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photon energy. The STS maps identified the shifted peaks of higher order FERs. The incident

laser power dependence and tip height dependence measurement show the tunable of preferred

tunneling processes of direct tunneling or plasmon assisted tunneling. The plasmon excitation

was influenced by the tip material, tip geometry and laser polarization. The similar plasmon-

assisted tunneling process also observed over 2-ML ZnO films. STM can control the gap with

sub-angstrom accuracy, combining STM with local optical excitation and detection has the

advantage to study the near field property of sub-nanometer gaps, in which quantum effects

play a crucial role and pure classical electrodynamics theory failed [154]. Resonant electron

tunneling occurs via the FERs in the junction which serves as a simple model to examine near-

field electron transfer in the plasmonic gap.
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4 Local characterization of ultrathin ZnO layers on

Ag(111) by SPM

4.1 Local geometric and electronic structure of the ultrathin ZnO layers on

Ag(111)

4.1.1 Introduction

ZnO is a prominent material for a variety of applications such as photovoltaics, light emitting

devices with the help of semiconducting and optical properties [155]. ZnO based system is also

of an important catalyst used in methanol synthesis [156]. The bulk ZnO has three types of

crystal structure, namely wurtzite, zinc blende, and rocksalt. In the (0001)-oriented wurtzite

structure, the O and Zn planes are alternately stacked, resulting in a polar (0001) surface [157].

This is a classical polar oxide surface that leads to instability due to divergence of the surface

dipole [158]. This type of surface is stabilized through several mechanisms including surface

reconstruction, formation of ion vacancy, and hydroxylation [159], whereas it has been found

that the ultra-thin (0001)-oriented ZnO films adapt a different mechanism. Tusche et al. found

that the ultrathin ZnO films on Ag(111) are relaxed to form a flat structure like hexagonal-boron

nitride (h-BN), but transferred to a bulk wurtzite structure from ~4 ML thickness [160]. In this

respect, the (0001)-surface of ZnO attracted research interest from a basic science and potential

application views.

In the reactive deposition method, the ZnO(0001) layers on Ag(111) initially grows as 2-

ML island [118], which is also consistent with the DFT calculations that 1-ML ZnO is less

stable[161]. The termination of the ZnO layers was examined by infrared reflection absorption

spectroscopy (IRAS) which is one of the most sensitive methods to identify the surface

hydroxyl species. In the ZnO(0001)/Ag(111) prepared by the reactive deposition method, the

IRAS shows no hydroxyl formation on the surface [162]. This observation is consistent with

the dipole compensation mechanism of the ZnO layer, in which the 2-ML ZnO layer relaxed to

the h-BN-like flat structure.

In this chapter, the characterization of the ultrathin ZnO layers epitaxially grown on

Ag(111) by STM/AFM is described. The local geometric and electronic structure of 2-, 3- and

4-ML ZnO layers is investigated by a combination of STM, AFM, and STS measurements. It



44

is found that the geometric and electronic structure depends on the layer thickness and the

conduction band minimum downshifts with increasing the layer thickness. The local work

functions are also investigated by FERs and CPD measurements. The work function

dramatically drops by 1.2 eV from 2- to 3-ML ZnO due to the structural change from the flat

geometry to the wurtzite-like buckled structure. The STS mapping reveals the spatial variations

of the conduction band minimum and the change in the local work function at nanometer scale.

4.1.2 STM imaging and band structures

Figure 4.1a is an overview STM image of the ZnO layer on the Ag(111) surface with coverage

of ~60%, obtained at 5 K, which involves the clean Ag(111) surface, 2- and 3-ML ZnO layers.

The 4-ML ZnO islands were also rarely formed. Figures 4.1b and c are the enlarged STM

image of 2- and 3-ML ZnO scanned with high (Vs=1 V) and low (Vs=0.1 V) bias voltages,

respectively. The ZnO layers exhibit a Moiré pattern resulting from the ZnO(0001)-

(7×7)/Ag(111)-(8×8) coincidence structure [118]. The Moiré pattern appears very uniform in

2-ML ZnO but is less ordered in 3-ML ZnO. The disordered feature of 3-ML ZnO is also

discernible in the low bias STM image (Figure 4.1c). This difference is attributed to the

dislocation defects as will discuss in section 4.2.4.

The periodicity of the Moiré pattern along the high symmetry axes of the Ag(111) surface

is ~23 Å as show in Figures 4.2a and c. The apparent heights of the ZnO layers relative to the

Ag(111) surface is measured in the STM images to be 3.8(±0.3), 5.8(±0.3), and 8.2(±0.3) Å for

2-, 3-, and 4-ML ZnO, respectively, as show in Figure 4.2c and d. The apparent height

difference of ~2.0 Å is close to the interlayer distance of ZnO, which is 2.3(±0.1) Å for the 2-

ML ZnO measured by surface x-ray diffraction [160]. Similar heights are also observed in the

ZnO layers on Au(111) surface [163]. However, it should be noted that the apparent heights of

the STM image depend largely on the scanning bias. The height of the ZnO layers relative to

the Ag surface becomes ~6 Å for 2-ML ZnO at scanning bias of 1.8V and ~9 Å for 3-ML ZnO

at scanning bias of 1.4 V [118]. The Moiré pattern in 4-ML ZnO is even less ordered, suggesting

a disordered structure. The similar appearance is also observed for 4-ML ZnO on Au(111)

[163].
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Figure 4.1. (a) Overview STM image of ultra-thin ZnO layers expitaxially grown

on Ag(111) (5 K, Vs=1 V, It=0.1 nA, 1.2×1.2 um2). (b) Enlarged STM image of

ZnO layers scanned with higher bias voltage (5 K, Vs=1 V, It=0.1 nA, 20×20 nm2).

(c) Enlarged STM image of ZnO layer scanned with lower bias voltage (5 K, Vs=0.1

V, It=50 pA, 20×20 nm2). The 3-ML ZnO layer is formed at a lower Ag terrace as

show in the inset schematic.

The local electronic structure of the ZnO layers was measured by STS in the constant

height mode. The conductance (dI/dV) spectra recorded over Ag(111), 2-, 3-, and 4-ML ZnO

layers are displayed in Figure 4.3. The surface state of Ag(111) is observed as a step at about -

70mV as shown in the inset of Figure 4.3 [164, 165], indicating that the surface is atomically

clean. The conduction band minimum appears as a step-like increase in the STS spectra, which

downshifts with increasing the layer thickness and found to be ~1.9 V, ~1.6 V, and ~1.5 V for

2-, 3-, and 4-ML ZnO, respectively. The band gap of a free standing 2-ML ZnO layer is

calculated to be ~5.1 eV by theoretical calculations using GW approach [166]. Considering the

measured conduction band minimum is 1.5~2 V in the STS spectra, the valence band maximum
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is expected to appear around -4 V. However, there is no obvious resonance from 0 to -4 V in

the STS spectra. But it is also difficult to identify the ZnO state unambiguously because it may

be strongly hybridized with the d-band of the Ag substrate.

Figure 4.2. (a) STM images of 2- and 3-ML ZnO layers on Ag(111) (5 K, Vs=1 V,

It=0.1 nA, 30×30 nm2). The three arrows mark the high-symmetry orientations of

the Ag(111) surface. The black rhomboids indicate the unit cell of the ZnO(0001)-

(7×7)/Ag(111)-(8×8) coincidence structure. (b) STM image of 2-, 3-, and 4ML-

ZnO layers on Ag(111) (5 K, Vs=1 V, It=0.1 nA, 40×40 nm2). (c) Line profiles of

the ZnO layers. The red and blue lines are for 2- and 3ML-ZnO, respectively. The

measured lines are indicated in (a). (e) Line profile across the 2-, 3-, and 4-ML ZnO

layers in (d).
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Figure 4.3. STS spectra of the ZnO layers on Ag(111) measured in the constant

height mode at 5 K. The black, red, blue and green curves are measured over

Ag(1 1 1), 2-, 3-, and 4ML-ZnO, respectively. The tip-surface distance was fixed at

a set point of Vs=1 V and It=0.3 nA. The solid black curve shows the surface state

of Ag(111), which measured at a set point of Vs=0.5 V, It=10 nA.

4.1.3 Local work function measurement

The local work functions of ZnO/Ag(111) were investigated by measuring the FER spectra. In

contrast to the STS measurement in the constant height mode (Figure 4.3), the FER spectra are

measured in the constant current mode. In the latter case, the STM feedback is turned on to

keep the tunneling current constant during the measurement. Therefore, the tip–sample distance

is displaced during the bias sweep as shown in Figure 4.4a (red dash curve). This mode can

avoid the saturation of the tunneling current at a high bias voltage and allows to record the STS

spectrum in a wider voltage range than that of the constant height mode measurement. The FER

spectra measured over Ag(111), 2-, 3-, and 4-ML ZnO are shown in Figure 4.4a. All spectra

show no influence from the Moiré pattern, e.g., spectra are the same for bright or dark area.

This is in contrast to the FER spectra measured over 1-ML NaCl on Ag(100), which exhibits

significantly different spectra depending on the position the  Moiré pattern [167]. The different

behaviors are attributed to the extent of the charge density modulated by a Moiré pattern. The

Moiré contrast in the NaCl is more pronounced and the STM appearance height of that
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corrugation is ~2 Å in NaCl, which is larger than ZnO on Ag(111) (~0.3 Å). Therefore, the

charge density modulation may be rather small for the ZnO layers on Ag(111).

The measured FER spectra are fitted fairly well with a series of Voigt functions with a

linear background. The precise peak positions are extracted from the multiple peak fitting. The

first peak in the FER spectrum of Ag(111) involves two components. The smaller component

at lower energy is assigned to the edge of the bulk state [168]. A similar feature has also been

observed on Cu(111) and Au(111) [169, 170]. The bulk state edge near the first FER state is

observed by inverse photoemission spectroscopy for Au(111) surface [171]. The first peak in

the conductance spectra of the ZnO layers corresponds to the conduction band minimum, which

is observed in the constant height mode measurement as a stepwise feature in Figure 4.3. The

other peaks at higher voltages correspond to the FER states. These are standing wave states

located in the vacuum gap between STM tip and the surface [172]. Besides the conduction band

and the FER states, there is an additional state near the vacuum level of the Ag(111) surface at

~4.5 V for the ZnO layers and  its intensity becomes lower in the thicker layers. This peak is

assigned to the interface state between ZnO and the Ag(111) surface. Because a wider barrier

is expected between the interface state and tip over a thicker ZnO layer, the intensity of the

interface state becomes lower. On the other hand, the FER has a higher tunneling probability

than the interface state (the interface state is buried under ZnO layer, resulting in a wider

tunneling barrier from the tip. A similar interface state has been report in rare gas/metal

interfaces [173,174] and MgO/Ag(100) interface [175].

A simplified 1-D model of a tunneling junction has been used to analyze the measured

FER spectra [176,177]. The model is shown in the inset of Figure 4.4b, in which the potential

in the junction comprises the superposition of the image potential and the electrostatic potential

formed by the applied bias voltage between the tip and the sample. The image potential becomes

negligible at high order FERs, then the junction potential can be approximated by a triangular

potential [178], thus

݁ ௡ܸ = ߶௡ + ቀ ଷగћ௘
ଶ√ଶ௠

ቁ݊ܧ
ଶ
ଷൗ                 (4.1)

where e is the elementary charge, Vn the applied bias of n’s order FER, E the electric field of

the tunneling junction from the applied bias. Since the lower-order FERs are influenced by the

image potential, this approximation is no longer precise. Therefore, we included only the

higher-order FERs (n ≥ 3) into the estimation of the local work function using Eq. (4.1) [170].
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The obtained work functions are 4.2 ( ± 0.2 ) eV for Ag(111), 4.0 ( ± 0.2 ) for 2-ML ZnO, 2.8

( ± 0.2 ) for both 3- and 4-ML ZnO layer. The work function for Ag(111) is lower than the

value from the photoemission spectroscopy measurement (4.74 eV) [179]. This deviation is

most probably ascribed to the oversimplified 1-D model. In this model the sample surface is

represent by an infinite high potential and penetration of the FER waves into the sample surface

is also not considered.

Figure 4.4. (a) FER spectra measured for ZnO/Ag(111) in the constant current

mode over ZnO/Ag(111). The black, red, blue and green curves are measured over

Ag(111), 2-, 3-, and 4-ML ZnO, respectively. The STM feedback loop was kept to

yield It=5 nA during the measurement, which results in the displacement of tip–

surface distance during the measurement. The red dashed curve is the displacement

of tip–surface distance recorded for 2-ML ZnO. The open circles are the

measurement data and solid curves are the best fitted results with multiple Voigt

functions with a linear background. The shaded curves are the individual fitted

peaks. The FER levels (n) are marked with numbers over the peaks. (b) Local work

function analysis. The open circles are the fitted peak positions vs. n2/3 and the lines

are fitting result by equation (4.1) (the solid lines are the fitting with data of n > 2,

the dashed lines are the extrapolation). The potential is schematically show in the

inset. Ef, Evac and Φs(t) are the Fermi level, vacuum level and work function of

sample (tip), respectively.
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Figure 4.5. (a) CPD measurement for ZnO/Ag(111). The black, red, blue curves

are measured over Ag(1 1 1), 2- and 3-ML ZnO respectively. The tip–surface

distance was fixed with set point Vs=2 V, It=1.5 nA. The CPD was measured to

be −0.070, −0.124, and  −0.155 V for Ag(1 1 1), 2-, and 3-ML ZnO, respectively.

(b) Measured frequency shift vs. bias sweep with different tip-surface distance over

2-ML ZnO. The zero-point in the horizontal axis corresponds to the STM set point

of Vs=2 V, It=1.5 nA. The electrostatic force between tip and sample is

schematically shown in the inset. (d) CPD measured with different tip-surface

distance over Ag(111), 2- and 3-ML ZnO.

It is interesting that the work function decreased only by 0.2 eV from Ag(111) to 2-ML

ZnO, but it decreases by 1.2 eV over 3-ML ZnO. This is in contrast to the case of MgO and

NaCl layers on Ag(100) where the local work function changes do not depend on the layer
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thickness [176, 180]. The dramatic change from 2- to 3-ML ZnO layer should relate to the

structure change, which will also be discussed in section 4.2. DFT simulations also proposed a

structure change for the 3-ML island from the h-BN-like structure of 2-ML ZnO [181].

In general, the work function reduction results from three different contributions when the

surface is covered by dielectrics. One is the charge transfer from the adsorbed layer to the

substrate. Second is the “pillow effect” that reduces the electron density spilling out from the

substrate surface [182]. Third is the surface dipole formation due to the structure change. A

relaxation of interface could modify the interface dipole and a polar adsorbate could also change

the surface dipole. The charge transfer is unlikely between ZnO layer and Ag(111) because the

Fermi level of Ag(111) is located in the band gap of ZnO layer (Figure 4.3). The structure

relaxation of the ZnO layer would influence parameters of the latter two mechanisms.

Therefore, the structure change from 2- to 3-ML ZnO will result in a dramatic work function

change. For example, DFT simulations pointed out the important role of structure relaxation on

the work function of 1-ML MgO layer on Ag(100) [182].

The reduction of the work function over the ZnO layers was also examined by the CPD

using AFM. Figure 4.5a shows the frequency shift curves measured over Ag(111), 2-, and 3-

ML ZnO, which were fitted with a parabolic curve to obtain the CPD. The result shows that the

work function is reduced on ZnO layers as compared to Ag(111). The trend is similar as the

results of the FER measurements, but the amount are much smaller. In the CPD measurement,

the electrostatic force results not only from the sample just underneath the tip, but also from the

sample around that [180]. Therefore, in the measurement over ZnO layer, the surrounding

Ag(111) surface also contributes to the electrostatic force, which will make the measured CPD

is smaller than the real one. This effect is also shown in the CPD measurement with different

tip sample distances. Figure 4.5b shows the CPD measurement of different tip sample distance

over 2-ML ZnO. The CPD is larger with the tip sample distance decreased. The CPDs measured

at different tip sample distance for Ag(111), 2- and 3-ML ZnO are show in Figure 4.5c. The

work function reduction is obvious at small tip sample distance measurement.

4.1.4 Conductance maps

Figure 4.6 displays the STS maps at a different bias voltage. Figure 4.6a is the topographic

STM image of the measured area which includes Ag(111), 2-, 3-, and 4-ML ZnO layers.
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Figures 4.6b and c are the conductance maps measured at the bias voltage of the conduction

band minimum for 3- (1.45 V) and 2-ML ZnO (1.95 V), respectively, where the intensity

variation of the STS signal can be observed. Comparing with the extended layers, the intensity

of small islands in the first FER resonance map is significantly weaker. This may be explained

by the confinement effect and the first FER peaks upshifts by ~50 meV in the FER spectra.

Figure 4.6e shows two FER spectra measured over 2-ML ZnO. The red curve was measured

over the intact position, whereas the black one was measured over a defect position. The peaks

of the conduction band and the first FER of the black curve exhibit a downshift. It is interesting

that there is no defect visible in the topographic image, suggesting that the defect may be buried

inside the layer or in the Ag surface. Figure 4.6g is the conductance map of 4.3 V, which shows

the distribution of the first FER of Ag(111) and the second FER of 3-ML ZnO. Figure 4.6h is

the conductance map of the interface state, so that it distributed over the all ZnO layers and the

intensity is weaker at thicker layer area as discussed before.

Figure 4.6. (a) STM image (5 K, Vs=1.45 V, It=1 nA, 35×35 nm2) for the dI/dV

mapping. The boundaries between different regions are indicated with the white

lines. (b), (c) are dI/dV mappings for the conduction band minimum (CBM) of 3-

and 2-ML ZnO, respectively. (d) dI/dV mappings with bias of first FER of 3-ML

ZnO. (e) FER spectra measured over an intact (red) and defect (black) site on 2-ML

ZnO. The measured position is marked with arrows in (f) and the defect site is
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indicated with black dashed circles. (f) (g) dI/dV mapping with bias of the first FER

of 2-ML ZnO and Ag(111) respectively. (h) dI/dV mapping for the interface state

between Ag(111) and ZnO layers. The bias voltages of the dI/dV map are indicated

at the bottom right of the respect images.

4.1.5 Conclusions

We investigated the electronic structure and work function of 2-4 ML ZnO(0001) layers on

Ag(111) by STM and AFM at 5 K. It was found that the conduction band minimum of ZnO

layers monotonically downshifts with increasing the thickness. The work function is slightly

reduced from Ag(111) to 2-ML ZnO layer, but dramatically reduced for 3-ML ZnO, which

implies the structure change between 2- and 3-ML ZnO layer. This structure change will modify

the interaction between ZnO layer and Ag(111), which results in the dramatic work function

reduction. The trend of work function reduction is also proved by the CPD measurement by

AFM. But the estimated work function change from CPD measurement is much smaller than

that form the FER measurement, which is may be ascribed to the spatial averaging effect. The

conductance maps display the distributions of conduction bands and FERs, which visualized

the possible defect buried inside the sample and the local work function variation at nanometer

scales.

4.2 STHM imaging for ZnO layers on Ag(111)

4.2.1 Introduction

As a powerful tool for surface science study, SPM is wildly used for oxide surface

characterization. As demonstrated in section 4.1, we used it to characterize the local geometric

and electronic structure and local work function of the ultrathin ZnO layers. The spatial

resolution of SPM can be enhanced with functionalized SPM tip and a carbon monoxide (CO)

adsorbed on the tip apex is one of the most common way. The spatial resolution of STM [183],

AFM [184, 185, 186] and also molecular orbital imaging [187] can be enhanced with the CO

functionalized tip. It has also been found that molecular hydrogen (H2) trapped inside the STM

junction can enhance the spatial resolution to resolve submolecular structures of planar organic

molecules [81]. It is named as scanning tunneling “hydrogen” microscopy (STHM). The
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enhanced imaging capability is attributed to the Pauli repulsion in the junction with the tip at a

short distance to the surface [188, 82, 189]. However, a similar enhancement effect was also

reported at a larger tip–sample distance where the Pauli repulsion can be ignored [190]. The

nanoscale junction with H2 inside has also been studied as a simple model of molecular

junctions. It was studied by STM [191, 192, 193], AFM [194], and mechanical break junction

[195, 196, 197]. However, the accurate structure of the H2 junction is difficult to characterize

and the resolution enhancing mechanism of STHM is yet imperfectly understood. The STHM

was reported to image planar organic molecule in most cases. Here we apply this technique to

imaging ultrathin ZnO layers. From the enhanced resolution imaging, the defective feature of

3-ML ZnO was resolved. In addition, the conductance and mechanical properties of the H2

junction were investigated. The measured conductance and force curve exhibit kink-like

features at the same tip–sample distances, which are absent in the H2 free junction. We reveal

that the junction contains multiple H2 molecules and a simplified model with two H2 in the

junction can reproduce qualitatively the measured conductance and force curve as well as

enhanced resolution imaging.

4.2.2 STHM imaging of ZnO layers, conductance and mechanical properties

of the junction

Figure 4.7a is an STHM image obtained after dosing 22 Langmiur (L) H2 gas. The morphology

of the ZnO layer is not affected and the Moiré pattern is still visible. However, the lateral

resolution is significantly enhanced with H2. The presence of H2 in the STM junction is

manifested as the dips in the conductance spectra as show in Figure 4.7b. The three spectra

were measured with the same tip conditions after dosing H2. A similar spectral feature has been

reported before and the dips have been attributed to the bi-stable motion of the H2 molecule

inside the tunneling junction induced by vibrational excitation [191, 198 , 199 , 200 ]. At

relatively low exposure of the H2 gas, the molecules prefer to adsorb onto the ZnO layers

(Figure 4.8a). H2 also adsorbs onto the Ag(111) surface at the edge positions as shown in

Figure 4.8b.

Figures 4.9a and b are enlarged STHM images of 2-ML ZnO layer obtained in the

constant current and constant height mode, respectively, for the same area under the identical

tip conditions. The constant height mode imaging is more stable and exhibits a higher resolution

than the constant current mode. The lattice constant determined from the high resolution image
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is ~0.32 nm, which matches well the value from the surface x-ray diffraction (SXRD)

measurement (0.3303(2) nm [160]). The atom positions can be clearly distinguished in the high

resolution image, but the O and Zn atoms cannot be identified.

Figure 4.7. (a) STHM image after dosing 22-L H2 (5 K, Vs = 0.1 V, It = 0.1 nA, 20

× 20 nm2). (b) dI/dV spectra measured with a PtIr tip of the same condition over

Ag(111), 2- and 3-ML ZnO after dosing the H2 gas. The tip height was fixed with

set point 1 V, 1 nA.

Figure 4.8. (a), (b) STM images after dosing 9 and 40.5-L H2 respectively at 13 K

( Vs = 0.1 V, It = 0.1 nA, 0.1 × 0.1 um2 ).
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Figure 4.9. (a), (b) The STHM images of 2-ML ZnO layers scanned with constant

current ( 5 K, Vs = 0.1 V, It = 0.46 nA, 3.5 ×7nm2 ) and constant height ( 5 K, Vs =

0.1 V, 3.5 ×7nm2 ) mode with the same tip condition.

We found that the enhanced resolution image can be obtained only in a narrow range of

the tip-sample distance. Figure 4.10a is the conductance curve (G(z)) as a function of the tip-

sample distance measured over 2-ML ZnO layer with and without H2. In contrast to the curve

without H2, there are three kink-like features in the curve for the H2 junction, which are marked

by black arrows. Figures 4.10b-f are the STHM images scanned with different tunneling

currents. The corresponding tip-sample distances are marked by open circles in Figure 4.10a.

The highest resolution (Figure 4.10c) is obtained at a relative large tip–sample distance of the

second kink-like feature position in G(z) curve. The tips made of different materials (W, PtIr

and Au) exhibit the same behavior. The distance between the kinks Δdkink is always ~0.3 nm,

which is not influenced by tip conditions as also shown later in the AFM measurement.
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Figure 4.10. (a) Conductance vs. tip–surface distance displacement curves

measured over 2-ML ZnO before ( dashed curve, zero displacement set point: Vs =

30 mV, It = 30 nA ) and after ( solid curve, zero displacement set point: Vs = 30

mV, It = 60 nA ) dosing H2. G0 = 2e2/h is the quantum conductance. The kink-like

features are indicated with arrows. (b)-(f) STM images of 2ML-ZnO scanned with

different tip–surface distance after dosing H2 and the tip–surface distances are

determined by the set currents as indicated in the right down corner (5 K, Vs = 30

mV, 3.5 × 3.5 nm2). The measurement are performed with the same condition of a

PtIr tip.
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Figure 4.11. (a) STHM image of 2-ML ZnO and adsorbed NPc molecules scanned

in the constant height mode ( 5 K, Vs=50 mV, 11×11 nm2 ). The h-BN-like structure

model of 2-ML ZnO and NPc molecules in the gas phase is superimposed (red: Zn,

yellow: oxygen). (b) Enlarged structure model of adsorbed NPc. (c) Enlarged

STHM image of the NPc molecule in (a).

Figure 4.11a is the STHM image of naphthalocyanine (NPc) molecules on the ZnO layer.

This enhanced resolution image was obtained in the constant height mode. The adsorption site

of the NPc molecules can be determined by superimposing the model of ZnO layer and NPc

molecules. The obtained adsorption geometry is shown in Figure 4.11b. From the high

resolution image of the ZnO layer, the O and Zn atom cannot be identified directly. But it can

be speculated from the adsorption geometry of NPc. The N atoms in phthalocyanines probably

prefer to interact with cation atoms. For example, in the adsorption of phthalocyanine on NaCl
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layer, the imine N atoms bonded to the Na atoms [201]. With this consideration, we suggest

that the imine N atoms in NPc interact with the underneath Zn atoms. The obtained high

resolution image of NPc is similar as the STHM image of organic molecule reported before. It

appears darker at the atom positions [188]. But it is bright at the atom positions in the ZnO

layers in STHM image as obviously seen in Figure 4.9.

Figure 4.12. Δf(z) (solid lines) and I(z) (dashed lines) recorded simultaneously over

2-ML ZnO (red curves) and the adsorbed NPc molecule (green curves) under the

same tip conditions. The data are obtained by qPlus sensor with a W tip. A small

bias voltage of Vs=10 mV is applied between the tip and the sample during the

measuring. The kink-like features in the I(z) and Δf(z) curve are marked with

arrows. The orange region marks the distances (between the tip and 2ML ZnO) that

the spatial resolution is enhanced for ZnO layer.

We also measured the mechanical property of the STHM junction over NPc molecule and

the ZnO layer by AFM. Figure 4.12 is the frequency curve Δf(z) shows the measured frequency

shift at a different tip sample distance, where the red and green curves are measured over 2-ML

ZnO and NPc, respectively, under the same tip conditions. A small bias voltage of 10 mV was

applied between the tip and the sample during the AFM measurement and the tunneling current

I(z) was recorded simultaneously. The kink-like features appeared in both Δf(z) and I(z) at the

same tip–sample distance as indicated by arrows in Figure 4.12. The kinks result from a

structure change inside the junction which causes a variation in the force and conductance
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simultaneously [188]. The orange color marks the specific tip–sample distance where the high

resolution image can be obtained. The Δf(z) curve of NPc shows a strong repulsion in this

regime and the enhanced resolution image of NPc was also obtained. This is consistent with the

previous studies in which a Pauli repulsion is responsible for the STHM imaging of organic

molecules [188, 82]. However, the orange regime is still attractive for ZnO layer, implying a

different imaging mechanism.

Figure 4.13. Frequency shift curves measured with three different W tips for 2-ML

ZnO. No bias voltage is applied between the tip and sample during the

measurement. The kink-like features are indicated with arrows. The different tip

conditions were obtained by touching of the tip apex and Ag surface or voltage

pulse applied between the tip and sample.

Figure 4.13 shows the Δf(z) curve of the STHM junction measured over 2-ML ZnO under

different tip conditions. The distances between the kinks are always observed to be ~0.3 nm. A

similar STHM image of the ZnO layer was obtained with a bias voltage below and above the

dip voltage in the conductance spectra. The rotational or vibrational mode of H2 in the STHM

junction will be excited with a bias voltage above the dip voltage. Also, provided the adsorption

geometry of H2 on different tip apex will also be different, the H2 orientation of STHM should

play a minor role.
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4.2.3 Simulation of the junction with two H2 inside

We consider a simple model with two H2 trapped inside the STM junction to simulate the

imaging mechanism and the kink-like feature in I(z) and Δf(z) curves over the ZnO layer. The

model is illustrated in Figure 4.14a. One H2 is adsorbed on the tip apex and the second H2 is

adsorbed on ZnO layer underneath the tip. One H2 is expected to be squeezed outside the

junction when the tip-sample distance becomes to smaller as shown in Figure 4.14b, which

results in a kink in I(z) and Δf(z). The second H2 will be squeezed out too with even smaller tip

sample distance ( Figure 4.14c ), resulting in the second kink. The distance difference Δd in

Figure 4.14b and c should be around the equilibrium distance between H2 that is ~0.3 nm [202].

Δd is the Δdkink in conductance curve in Figure 4.10a. A similar kink-like feature is observed

in the STM junction that contains one or two Xe atoms. The observed kink distance Δdkink is

∼0.45 nm due to the larger size of Xe atom [203].

Figure 4.14. (a)-(c) Schematic models of the STM junction with two H2 molecules

at different tip sample distances.

We simulated the conductance curve, force curve and STHM imaging as demonstrated in

Phys. Rev B 90, 085421 (2014), but with two H2 molecules inside the STM junction as described

above. An h-BN-like flat structure of single layer ZnO was used to model the ZnO layer. The

lattice parameter is 3.2 Å determined from the high-resolution STHM image. The tip apex and

H2 both represent by spherical atoms. Interaction of this tip-H2-ZnO junction are described the

pairwise Lennard-Jones (LJ) potentials. The H2 adsorbed on the tip also interacts with the tip

base that is represented by a lateral harmonic force of stiffness k = 0.5 N/m. The total interaction

energy is the sum of all pairwise LJ potentials and the harmonic interaction energy. The two H2
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positions are optimized to minimize the total interaction energy at each simulation step. The

accuracy of energy minimization is 10-6 eV.

Since there is no obvious contrast for O and Zn at most time, the same parameters are used

for O and Zn. The interaction energy between atoms i and j: ௜௝ܧ = ஻೔ೕ
௥భమ

− ஺೔ೕ
௥ల

 , where ௜௝ܤ =

, ௜௝଺ݎ௜௝ߝ2 ௜௝ܣ = , ௜௝ଵଶݎ௜௝ߝ ௜௝ݎ = ௜ݎ + , ௝ݎ ௜௝ߝ = ඥߝ௜ߝ௝ . The interaction parameters are listed in the

table.

εi (meV) ri (Å)

H2 0.680 1.487

O/Zn 3.729 1.908

Tip apex 1000 2

Table of the parameters of the LJ potentials used in the calculations.

A one-dimensional, three-barrier model was used to simulate the conductance of the

junction as illustrated in Figure 4.15. The H2 molecules are regarded as a potential well.

According to the Wentzel-Kramers-Brillouin (WKB) approximation, the conductance is

described by the product of the tunneling probability TµT1T2T3, where T1, T2, and T3 are the

tunneling probability between tip and H2 on the tip, between two H2, between ZnO surface and

H2 on ZnO, respectively. These tunneling probabilities exponentially decay with increasing the

corresponded gap distance, thus Tn µ exp(–βndn), (n = 1, 2, 3), where βn are the decay constants

determined by the barrier shape, d1 is the distance between the tip atom and the H2 on the tip,

d2 is the distance between two H2, d3 is the distance between H2 on ZnO and the ZnO surface.

We use βn = 1 Å-1 in the simulation because the practical barrier shape cannot be determined

and only the relative conductance change is concerned here.
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Figure 4.15. Schematic of the STM junction with two H2 inside. The schematic

potential is also depicted.

Figure 4.16. (a) Simulation of the vertical force for the tip (perpendicular to the

ZnO surface) and the total tunneling probability (T) at different tip-ZnO distances.

During the simulation the tip is located above the central position of Zn-O bond. (e)

Simulated STHM image of T1 map of the ZnO film, which is superposed on the

ZnO model structure. It is simulated with constant tip ZnO distance of 0.93 nm.

The kink-like features of I(z) and Δf(z) are reproduced in the simulation as shown in Figure

4.16, which result from the relaxation of the two H2 around a tip height of 0.9 nm. This height

is the sum of three equilibrium distances of dn at which the interactions in the junction start to

displace the H2. The STHM image is also simulated by scanning the tip laterally over the model

ZnO surface. The simulated map of T1 is superposed on the ZnO structure in Figure 4.16b,

which exhibits the similar contrast as experiment and the atom positions appear as a protrusion.
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Figure 4.17 shows the 3D images of the simulated tunneling maps of T1, T2, T3 and T. T2 and

T maps have an opposite contrast to T1 and T2 in which appears protrusion at hollow sites. This

result suggests that the tunneling probability is dominated by T1 and/or T3 reproduces the similar

contrast with experiment. The total tunneling probability is sensitive to the value of βn and thus

the simulated images, while we used βn = 1 Å-1 in the simulation as mentioned above. A stronger

interaction between the H2 and the metal tip or the ZnO layer is expected, which leads to a

narrower barrier between them than that between two H2. The narrower barrier is more sensitive

to the subtle displacement of the H2. Also, there should be multiple H2 on ZnO underneath the

tip and electron tunneling would happen between H2 on the tip apex and multiple H2 on ZnO,

which smears out the contrast of T2.

Figure 4.17. (a)-(d) Simulated maps of T1, T2, T3, and T, respectively. As discussed

in the main text that the contrast is largely affected by the values of βn, which was

fixed βn = 1 Å in the simulation.
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Figure 4.18. Schematic of the STM junction with two H2 inside of tip located over

the hollow (left image) or atom (right image) positions. The H2 on the tip and ZnO

surface are move closer to the tip apex and ZnO, respectively.

Figure 4.19. Simulated vertical force for the tip (perpendicular to the ZnO surface)

and the total tunneling probability (T) at different tip-ZnO distances and at different

lateral tip positions. The color squares mark the corresponded tip positions in the

inset.

The displacement of the H2 inside the junction results in the contrast of Tn maps. In the

model, the H2 molecule on ZnO prefers to adsorb on the hollow site, which is similar as H2 on

graphene [204, 205]. In this situation, the distance between two H2 is larger when the tip is

located above the atom position of ZnO as illustrated in Figure 4.18. Thus, the attractive force

between them would become weaker, forcing the H2 on tip apex to move closer to the tip, and

eventually leading to the increase of the tunneling probability between them, i.e., the protrusion

appearance of T1 at atom positions. The scanning process at a tip height around the kink
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positions accompanied with the relaxation of two H2, which modifies the tunneling probability,

thus resulting in the enhanced resolution imaging. One H2 will be squeezed outside the junction

when the tip height is smaller than the kink position, then the enhancement effect disappears.

On the other hand, the interaction between two H2 is too weak to induce the relaxation of two

H2 at a tip height larger than the kink position, then the enhancement effect will also disappear.

The simulated force curves reveal the site dependence as shown in Figure 4.19, although it is

not observed in experiment. The experimental images (Figure 4.9) also do not show a sharp

protrusion as simulated. These deviations should be reasonable for this simplified model.

4.2.4 Defective feature of 3-ML ZnO layer

Figure 4.20. (a), (b) STHM images of 2- (5 K, Vs = 0.05 V, It = 0.05 nA, 10 × 10

nm2) and 3-ML ZnO (5 K, Vs = 0.03 V, It = 0.03 nA, 10 × 10 nm2) layer scanned in

the constant current mode. (c) Enlarged STHM image of 3-ML ZnO (white box in

(b)) which is superimposed with the structure model. The disordered atom positions

are marked with arrows and the lattice displacement is emphasized with whited

dash line.
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The atomic resolution images of STHM reveal a quite uniform structure for 2-ML ZnO (Figure

4.20a) but a less ordered structure for 3-ML ZnO (Figure 4.20b). Figure 4.20c is the enlarged

STHM image of 3-ML ZnO that shows dislocation defects with a lattice distortion of ~0.8 Å.

The possible distorted honeycomb structure is marked with arrows. The strain resulting from

the lattice mismatch of the ZnO layers with the substrate could cause the dislocations [206].

However, considering that there is no dislocation defect in 2-ML ZnO, despite the 2- and 3-ML

ZnO have the same lattice parameters, the possibility of the lattice mismatch can be ruled out.

As discussed in section 4.1.3, the work function measurement implies a structure change

between 2- and 3-ML ZnO. The measured dislocation area may be due to the structure change,

for example changed from h-BN-like flat structure to a wurtzite-like structure.

4.2.5 Conclusion

The enhanced resolution image of 2- and 3-ML ZnO layers on Ag(111) was obtained by STHM.

With a combined STM and AFM measurements, the electronic and mechanical properties of

the junction with H2 inside were also characterized in detail. The conductance and force curves

show kink-like features, which are absent in the H2-free junction. The enhanced resolution

imaging was obtained with a relatively large tip sample distance around the specific kink. The

junction with multiple H2 was suggested and a simplified model with two H2 was used to

simulate the experimental observations, which reproduced the kink-like features in conductance

and force curves. The contrast of enhanced resolution image is also reproduced, the enhancing

mechanism is found due to the relaxation of two trapped H2 during the scanning process. The

dislocation defects of 3-ML ZnO layers was resolved. The results demonstrated that the STHM

will be a powerful tool to obtain atomic resolution images for the extended dielectric layers.
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5 TERS measurement of ultrathin ZnO layers on Ag(111)

5.1 Introduction

TERS is a powerful analytical tool in nanoscience and nanotechnology and its spatial resolution

has recently demonstrated down to sub-nanometer [207, 48]. It also provides a new promising

way to deepen our understanding of nanoscale physics and chemistry. We employed TERS to

characterize the ZnO layers on Ag(111) surface with our photon-SPM setup. Moreover, as

discussed in the introduction of this thesis, there are still outstanding questions to be explored

in TERS. Studying a well-defined and a stable system will help to reveal more details of TERS

mechanisms. The ZnO layers on Ag(111) surface characterized well by SPM (chapter 3) serves

as a good model.

Strong TERS signal of 2-ML ZnO layer on Ag(111) surface was obtained with the spatial

resolution of TERS smaller than 1 nm. The enhancement mechanism includes both chemical

and physical enhancement mechanisms, revealed by the combined STS, STML and TERS

measurements. Different domains of 2-ML ZnO layer were also characterized and the bond

strength difference between domains are revealed.

5.2 TERS over ultrathin ZnO layers

Strong TERS signal was obtained for 2-ML ZnO layer measured with He-Ne laser (633 nm) as

shown in Figure 5.1a. The spectra exhibit characteristic vibrational peaks ranging from 300 to

400 cm-1. The power dependence measurement (the inset of Figure 5.1a) shows a linear

dependence, indicating a spontaneous Raman scattering process. The inset of Figure 5.1a

shows the laser fluence (F) dependence of the TERS intensity (IR) at 345 cm-1. The data are

fitted by the power law dependence ܫ ∝ ܲே, and N = 0.99 ± 0.01 is obtained.

The DFT simulations for free 1-ML ZnO show three branches of optic phonon that

correspond to the 2 atoms per unit cell [208]. Two of them are in plane modes that have highest

energy at point and the other is out plane mode. Due to the relative strong interaction between-߁

the ZnO layers, the phonon branches split from the 1-ML ZnO [209]. There are nine branches

optic phonon for 2-ML ZnO layers correspond to the 4 atoms per unit cell. Compare to a free

standing ZnO layer, the symmetry of 2-ML ZnO is reduced after adsorbed on Ag(111), so that
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more than nine branches of phonon would potentially appear. Which would result in additional

peaks in the Raman spectrum. The spectra can be fitted fairly well with Lorentzian functions

with a cubic curve background as shown in Figure 5.1b. The intense peaks at 321 cm-1, 326

cm-1, 373 cm-1 would attributed to the out plane vibrational modes that is perpendicular to the

surface, which have the atoms displace parallel to the enhanced field direction, so that can be

strongly enhanced [48]. There are also weak peaks around ~250 cm-1 and ~550 cm-1 that should

belong to the in plane modes. The observation is consistent with the tendency of simulation

result, that the out plane phonon have relative modest energy compare to other modes [208,

209, 210]. Anyhow, the exact vibrational energy observed experimentally would be different

from the simulated amount for free standing ZnO layers. Theoretical simulation shows that the

Ag(111) substrate influences the structure of ZnO layers compare to free standing ZnO layers

[161], so that influence to the vibrational energy would also be expected that will be discussed

more in section 5.4.

Figure 5.1. (a) TERS spectra of 2-ML ZnO obtained with an Au tip at a different

fluence. The tip surface distance was kept with STM feedback loop (Vbias = 1 V and
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It = 1 nA). The laser wavelength was 633 nm. The inset shows the laser fluence (F)

dependence of the TERS intensity (IR) at 345 cm-1. The data are fitted by the power

raw dependence ܫ ∝ ܲே, and N = 0.99 ± 0.01 is obtained. (b) Multiple peak fitting

for TERS spectrum of 2-ML ZnO with Lorentzain peaks. The positions are marked

above the fitted peaks.

TERS signal of 3-ML ZnO layer measured with laser wavelength at 633 nm was very

weak as compare to the signal of 2-ML ZnO (Figure 5.2a). The spectra were recorded under

the same measurement conditions (the same tip and the alignment). This strong excitation

wavelength dependence can be attributed to the chemical resonance effect, as further discussed

in next section. On the other hand, the strong TERS signal of 3-ML ZnO in Figure 5.2a can be

obtained with laser wavelength 780 nm, which shows obviously different from the spectrum of

2-ML ZnO. The difference here is consistent with the observation of the local work function

measurement and atomic resolution imaging as discussed in chapter 4, which all indicate a

phase transition between 2- and 3-ML ZnO layers.

Figure 5.2. (a) TERS spectrum measured over Ag, 2-ML and 3-ML ZnO,

respectively. The solid spectra are measured with laser wavelength 633 nm and the

dashed one is measured with laser wavelength 780 nm. The cut off at ~370 cm-1 in

the dashed spectrum is due to the cut off of bandpass filter in the measurement. The

tip surface distance was kept with the STM feedback with setpoint 1 V, 1 nA. (b)

Energy diagram of the ZnO/Ag(111) system.
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Figure 5.3. (a) (b) STM image and STS map measured simultaneously over 2-ML

ZnO. (Vbias = 1.8 V and It = 1 nA) (c) STS spectrum measured with constant current
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(It = 500 pA) mode over the two different ZnO positions. The red (blue) one was

measured over red (blue) circle position in (a) and (b). (d) TERS spectrum measured

over two different positions of 2-ML ZnO. The red (blue) curve is measured over

red (blue) circle position in (a) and (b). The black curve is measured over Ag(111)

with the same tip. (e) TERS spectrum measured at different positions that are

marked by the numbers in (a) and (b). The tip heights are kept with the same STM

feedback parameters (Vbias = 1V, It = 1nA). (f) Profiles of the topographic height

along the white line in image (a). (g) Profiles of the STS map along the white line

in image (b). (h) Intensity profiles at 325 cm-1 of the TERS spectrum in (e).

Figure 5.2b is schematic energy diagram of the ZnO/Ag(111) system determined from the

STS measurement in section 4.2. The onset of empty states are ~1.8 eV and ~1.4 eV above the

Fermi energy for 2- and 3-ML ZnO layers, respectively. The interface state is ~0.2 eV below

the Fermi level. Optical excitation from the interface state to the conduction band minimum of

2-ML ZnO layer would be expected for 633-nm excitation since the photon energy of 1.96 eV

nicely matches the energy difference. But this resonant condition is not satisfied for 3-ML ZnO

layer due to the lower conduction band minimum. Therefore, the TERS signal is much stronger

for 2-ML ZnO than 3-ML with with 633-nm excitation. While the resonant condition is satisfied

by changing laser wavelength to 780 nm that leads to the strong TERS signal for 3-ML ZnO.

This chemical enhancement mechanism can also explain the absence of TERS signal for both

2- and 3-ML ZnO layers with 532-nm excitation.

5.3 Enhancement mechanism of TERS

Figures 5.3a and 5.3b are the STM image and the STS map recorded simultaneously with ௦ܸ =

1.8 ܸ (corresponding to the conduction band minimum of 2-ML ZnO layer). The clean Ag(111)

surface and the 2-ML ZnO layer with defects are involved in the images. The LDOS of 2-ML

ZnO layer are modulated possibly due to the size effect that the possible surrounded defects

would confine the electrons [211, 212, 213]. The STS map shows an obvious contrast that the

measured LDOS at the lower-half area is larger than the upper-half area, although the STM

image do not show obvious differences in both areas. However, the STS spectra measured over

two points in these areas revealed the slight shift of the conduction band minimum as shown in
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Figure 5.3c. The TERS intensity is much stronger at the region where the LDOS is higher

(Figure 5.3d). The correlation between the local electronic state and TERS intensity further

proves the chemical enhancement mechanism.

Figure 5.3e is TERS spectra measured along the white dashed line in STM (STS) image

of Figure 5.3a (b), where the numbers mark the measured positions. Figures 5.3f and g are the

line profile of the topographic and STS data, respectively. Figure 5.3h is the TERS intensity

profile of the Raman shift at 350 cm-1. The STS and TERS profiles show significant modulation,

albeit the topographic height is relatively featureless. The modulation also shows correlation

that a higher LDOS result in a larger TERS signal. The spatial resolution can be estimated to

be smaller than 1 nm.

Figure 5.4. (a) STML spectra obtained with an Au tip of three different conditions

(see main text). The spectra were recorded on the Ag(111) surface at Vbias = 2.5 V

and It = 1 nA. (b) TERS spectra obtained under the three different tip conditions in

(a). The tip-surface distance was kept with the feedback loop at Vbias = 1 V and It =

1 nA. The excitation wavelength was 633 nm with an incident power density of

0.34 mW/µm2.

The electromagnetic enhancement (physical resonance mechanism) requires spectral

matching of the incident and scattering light with LSPR in the junction. Therefore, TERS

signals are, in general, very sensitive to the tip conditions. The STM-induced luminescence

(STML), resulting from inelastic scattering of tunneling electrons [ 214], can be used to

characterize the plasmon properties in the junction. Figure 5.4 shows the correlation between
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the STML and TERS intensity. Figure 5.4a displays the STML spectra obtained under three

different tip conditions. The tip conditions can be modified by applying a voltage pulse between

the tip and sample or colliding tip to the clean surface in a controlled manner. Although the

STM images obtained with these tips were similar, the STML signals that show LSPR in the

junction are very different. This observation is consistent with the previous studies showing

that the STML spectra are sensitive to the tip shape [215]. Figure 5.4b is the TERS spectra

measured under these three different conditions over 2-ML ZnO layer, otherwise the same

measurement parameters (the same position, power of incident laser, and alignment). Similar

to the previous study [48], the TERS intensity is related to the plasmonic intensity around 630

nm. The tip with higher STML intensity there lead to a higher TERS signal.

5.4 Interaction between ZnO layer and Ag(111)

With the high resolution TERS, the correlation between the geometry, electronic structure, and

the vibrational property of 2-ML ZnO layers can be studied. In Figure 5.5a, three different

domains with different adsorption geometries relative to the underneath Ag(111) surface are

observed and the Moiré patterns exhibit different orientations. Figures 5.5b and c show the

STS and TERS spectra, respectively, for these three domains. The domain of orientation (ii) in

Figure 5.5a is the ZnO(0001)-(7×7)/Ag(111)-(8×8) coincidence structure that is the major

orientation. The orientation (i) and (iii) is rotated 15° and 25° from it.

As discussed in Figure 5.3, the TERS intensity is influenced by the position of the

conduction band minimum. It was found that the intensity is stronger when the conduction band

minimum becomes closer to the Fermi level of the Ag substrate. The shift of the FER peaks

indicates a change in the local work function as discussed in Chapter 4. We also expect that the

shift of the conduction band minimum is associated with the local work function change

because it shifts together with the FER in the STS spectra. As discussed in section 4.1, there

are three reasons that would result in the change of the work function. The work function

reduction here could be explained by the partial charge transfer from 2-ML ZnO layer to the

Ag(111) substrate. Although there is no direct evidence showing the charge transfer and

covalent bond formation between the ZnO layer and the Ag(111) substrate in DFT simulation

[216] the hybridization between their electronic bands could still occur when both momentum

and energy are matched. The partial charge transfer will also reduce the bond strength of ZnO

layer [217].
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Figure 5.5. (a) STM image of 2-ML ZnO contained three different domains. The

white dash lines indicate different orientations of a Moiré pattern. (b) and (c)

Constant current (It = 1 nA) STS spectra and TERS spectra of three different

domains. The measured positions are marked with circles in (a), which have the

same color as the spectra. The excitation wavelength was 633 nm at an incident

power density of 0.39 mW/μm2 .

5.3 Conclusions

TERS was measured for 2- and 3-ML ZnO layers on Ag(111). The position dependent

measurement of TER spectra shows a spatial resolution smaller than 1 nm. The incident laser

power dependence clearly indicates that TER process occurs via a spontaneous Raman process.

In TER spectra, characteristic peaks of the ultrathin ZnO layers and the vibrational energy of
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the TO and LO modes were found to be significantly red-shifted as compared to those in the

bulk. Interactions between 2-ML ZnO layer and Ag(111) substrate are discussed according to

the measured STS and TERS spectra.

The origin of the enhancement mechanism was clearly demonstrated and involve both

chemical and physical enhancement process. It was found that the excitation wavelength needs

to be resonant with both the electronic resonance of the ZnO/Ag(111) complex and LSPR of

the junction. Strong TERS signals were observed for 2- and 3-ML ZnO for excitation

wavelength of 633- and 780-nm, respectively, which match the electronic resonance between

the conduction band minimum of the ZnO layers and the interface state close to the Fermi level.

Furthermore, by combining TERS with STS measurements, it was revealed that the TERS

intensity is strongly influenced by the local changes of electronic structure, being in good

agreement with a chemical enhancement mechanism. The physical enhancement mechanism

was also examined by comparing STML spectra to TERS intensity for different tip conditions.
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6 Summary and outlook

As discussed in the introduction, photon-SPM is a promising approach to study light–matter

interactions at the nanometer scale, which is interesting for fundamental science and may

potentially leads to new technologies. This thesis describes the development and capabilities of

a low-temperature photon-SPM which combines a parabolic mirror and a lens on a cold SPM

stage. The in-situ optics can be precisely aligned by multi-axis motion using piezo motors. Our

setup offers high-quality and convenient aligning procedure to perform highly reliable and

reproducible experiments. As a demonstration of nanoscale microspectroscopy, TERS was

applied to investigate the ultrathin ZnO layers epitaxially grown on Ag(111) surface, which

serves as a well defined model system.

The low-temperature photon-SPM also provides a unique opportunity to study near-field-

driven processes in a nanoscale cavity. We demonstrated plasmon-assisted resonant electron

tunneling from a plasmonic tip to FERs over both Ag(111) and ZnO layers by CW laser

excitation. A pronounced downshift equal to the incident photon energy was found for the first

peak in FER spectra under illumination. Higher order peaks in FER spectra are also downshifted

under illumination, which are proved in combination with the STS mapping. The combined

STML spectra, laser polarization and tip material dependence measurements clearly show that

the process is associated with LSPR excitation in the junction. In the laser power and tip–surface

distance dependent measurements, the preference of  the two tunneling processes (direct and

plasmon assisted) can be tuned. This FERs in a STM junction provide a simple model to

examine resonant electron transfer in a plasmonic nanocavity. The observed plasmon assisted

tunneling process also provide a very useful criteria for the alignment quality of the setup.

Local structural modifications play a critical role for material properties. As the properties

of ultrathin oxide films vary depending on the number of layers, the ZnO layers should be

characterized locally as a function of thickness. The local electronic structure and work function

of 2-4 ML ZnO layers were investigated by a combination of STM and AFM at 5 K. The

conduction band minimums were found monotonically downshift as well as the local work

function monotonically decreased with increasing the thickness. This trend of local work

function reduction is also verified by the CPD measurement. The local work function is largely

reduced from 2- to 3-ML ZnO layers, which suggests a structural change from a h-BN-like flat

geometry to a bulk-like Wurtzite structure. This structure change is expected to modify the
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interaction between ZnO layers and Ag(111) substrate, leading to the dramtic work function

change. The structure change is also implied by atomic resolution STHM imaging in which 3-

ML ZnO layers exhibit dislocation defects. The interaction between ZnO layers and the

Ag(111) substrate also leads to a slightly different orientation of the ZnO layer relative to the

Ag surface. It was shown that such a subtle difference can have a substantial impact in TERS

scattering mediated by a slight shift of the conduction band minimum of the ZnO layer. Spatial

variation at the nanometer scale for the conduction band minimum and the local work function

change were also visualized by the STS mapping for the ZnO layers on the Ag(111) surface. A

possible defect buried inside the sample was also visualized in the STS map. These local

measurements deepen our understanding of the ZnO layers on Ag(111) substrate.

So far, the STHM has been used to imaging planar organic molecules at most case, we

extend it to imaging the two dimensional material ZnO layers in this thesis. Atomic resolution

images of 2- and 3-ML ZnO layers were obtained, which could never been resolved in normal

STM. In previous studies, single H2 was trapped inside the STM junction whereby Pauli

repulsion leads to enhanced spatial resolution. But in our case, the enhanced resolution was

obtained at a large and specific tip surface distance where Pauli repulsion is negligible. The tip–

surface distance dependent conductance curves and frequency shift curves both show kink like

features at the same tip surface distance, which are absent in a junction without H2. The best

resolution was obtained at this specific tip–surface distance of the kink-like feature. For a

junction containing multiple H2 it was proposed that the kink-like feature in the conductance

curves and frequency shift curves arise from sequentially squeezing H2 outside the junction.

Simulations for a simplified model containing two H2 reproduce the experimental observation

qualitatively. In this simulation, the spatial enhancement correlates with the relaxation of the

two H2 around equilibrium distances. This new STHM process demonstrate that STHM will be

a powerful tool to resolve atomic resolution for two dimensional extended structures.

As a powerful analytical tool in nanoscience and nanotechnology, TERS has attracted

increasing attention. Low-temperature photon-SPM is ideal for TERS measurements. We

observe a strong TERS signal for 2-ML ZnO layers with a spatial resolution smaller than 1 nm.

A spontaneous Raman scattering was indicated from the incident laser power dependent

measuring, which suggest that the high resolution results directly from a highly localized field

in the junction. The observation of strong TERS signals for 2- and 3-ML ZnO at 633- and 780-

nm excitation, respectively, is consistent with a chemical enhancement mechanism, whereby

the photon energies match well with the excitation energy from interface state to the conduction
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band minimum. The TERS signal is therefore also sensitive to the position of the conduction

band minimum. Combined measurements of STML and TERS spectra also proved the crucial

role of the physical enhancement mechanism that the incident photon energy needs to match

LSPR in the junction. These observations help extending TERS measurements to other samples,

also providing plasmonic information on nanocavities.

Summary the discussion above, also together with previous studies, this thesis

demonstrates the promising capabilities of photon-SPM to investigate light-matter interaction

at nanoscale. Typical measurements of photon-SPM like STML and TERS would potentially

extended to other samples, which would deepen our understanding of materials, chemical

reactions at molecular scale. As STM is an ideal tool to study the transmission behavior of

atomic sized contacts [218], photon-SPM can be used to characterizing structure of the contacts

by Raman scattering spectroscopy and studying the transmission behavior under illumination.

The photon-SPM allows precise control of the size of a nanocavity (tip surface distance) in the

tunneling regime, where quantum effect play a crucial role for the near field properties [219].

Detailed studies of the quantum plasmonics are in reach with photon-SPM. Moreover,

combining photon-SPM with ultra-short laser pulses make time-resolved local optical

spectroscopy feasible, i.e. ultrafast dynamical could be resolved at the nanometer scale. This is

a long standing dream of physical chemistry.
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