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1 Introduction 

 

 
Mycobacterial diseases still remain to be a potent problem to mankind and a far-reaching 

challenge for health systems [1]. Their complexity begins even at the level of species and 

subspecies classification as they differ widely in several traits, as of their pathogenic 

capacity in humans and animals, and growth dynamics in culture [2]. Tuberculosis, an 

infection caused by Mycobacterium tuberculosis (MTB) complex has been reported as one 

of the top ten reasons of death worldwide by the World Health Organization (WHO, 2018). 

Globally, it was estimated that around 10 million people developed TB disease in the year 

of 2017 and 1.6 million died from the disease (including 0.3 million among people with 

HIV) [3]. Drug resistance is a major obstacle in the treatment and control of tuberculosis 

[4]. 

Leprosy is another mycobacterial chronic infectious disease caused by Mycobacterium 

leprae, affecting the skin and peripheral nerves with lesions [5]. Its prevalence rate was 

estimated to be 0.3/10 000 population at the end of 2017, based on the occurrence of 193 

118 cases(WHO, 2019).Though the number of cases are getting reduced, new cases are 

being re-emerged due to the active transmission capability of M. leprae which summons 

more effective interventions to prevent further infections [6]. The main drawback is that 

this bacterium is non-cultivable under axenic conditions, thus posing a big challenge to 

basic research and clinical management [7]. 

Apart from these pathogenic species, the nontuberculous mycobacteria (NTM) are a 

heterogeneous group consisting of more than 180 species of environmental mycobacteria 

with distinct human pathogenesis and varied geographic distribution [8]. They have been 

frequently isolated from water sources (household taps and natural water reservoirs), soil 

(potting soil and garden soil), dust and plants [9]. These NTM can cause opportunistic 

infections especially in immunosuppressed individuals (eg. AIDS, cystic fibrosis patients) 

and their clinical presentations include lymphadenitis, skin and soft tissue infections and 

disseminated infections. Immunocompetent patients are typically manifested with isolated 

pulmonary infections and this happens often to patients with a past history of lung disease 

[10]. Since the clinical symptoms of pulmonary infections caused by NTM are similar to 

tuberculosis and other pulmonary diseases, their diagnosis becomes very challenging and 

they are mostly underreported in developing countries [11]. Hence, the information on the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/peripheral-nerve
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prevalence and the epidemiology of NTM cases are still incomplete. Further, as the NTMs 

are typically resistant to antituberculosis drugs [12], they are most often misinterpreted as 

multidrug-resistant (MDR) tuberculosis especially in countries where TB and AIDS are the 

major focal point of the healthcare system. A recent survey also reported that around 12- 

30% of the patients diagnosed with chronic and MDR TB were found to suffer from NTM 

infection in reality [13]. Nevertheless, the incidence of lung disease caused by NTM is 

increasing worldwide, posing it to be an emerging global health threat [14]. From the side 

of developed countries with the specialized healthcare facilities, it was also reported that 

the NTM diseases have risen to be greater disease burden than TB in countries such as US, 

Canada, Japan, Korea, Australia, and United Kingdom [15-19]. For example the annual 

incidence rates were elevated from 5.6/100,000 in England and Ireland during the year of 

2007 to 7.6/100,000 in 2012 [19]. Likewise, the U.S. National Institutes of Health reported 

an increase in the pulmonary NTM diseases from 20 to 47 cases/100,000 persons (or 8.2% 

per year) among adults aged 65 years or older throughout the United States, with 181,037 

national annual cases estimated in 2014 [2] . 

Thus the lack of knowledge on NTM is a burning issue, wherein the imprecise diagnosis 

and ineffective treatment dosages contribute to disease progression and worsening of 

patient’s health [8]. The NTM possess intrinsic bacterial resistance and also has a 

persistent nature making them more invincible [20]. Hence, the need to discover and 

develop new and more effective strategies to NTM treatment is indispensable. In order to 

attain the above goal, an understanding of the host-pathogen interactions and survivability 

of NTM by manipulating the host defense mechanisms is essential. “Todays’ state of NTM 

drug discovery is reminiscent of the TB situation 20 years ago” [20] . In this project we 

have attempted to approach explanations to questions concerning resistance, persistence 

and pathogenicity of NTM which still remain unanswered. These questions without being 

unveiled have resulted in knowledge gaps and scientific obstacles in NTM drug discovery. 

 

 
1.1 Genus Mycobacterium 

 

Mycobacteria belong to the non-sporulating members of the actinomycete family and 

thrive in aerobic-to-microaerophilic environment [21]. They are gram-positive, non-motile 

and strongly differ from other bacteria in their cell wall architecture comprising of 

components with strikingly immuno-stimulatory properties [22]. Their lipid rich cell 
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envelope is the most prominent feature of mycobacteria that is uniformly present and 

distinctive to the genus [23]. This peculiar cell wall lipid composition makes them several- 

fold less permeable to chemotherapeutic agents and thus rendering the mycobacteria less 

susceptible to various antibiotic classes [24] . 

Another distinguishing feature of the pathogenic mycobacterial species is attributed to their 

shifting metabolism in the intracellular environment. Initially, the bacilli access glucose 

and triacylglyerides as primary carbon sources during early replication under aerobic 

condition. As the infection progresses, they shift to more ultilization of lipids as they are 

exposed glucose-deficient macrophage environment [25]. Metabolic reprogramming is a 

vital virulence determinant during the course of acute and chronic mycobacterial infections 

[26, 27]. Several experimental studies have also identified the central carbon metabolism to 

be instrumental in pathogenic strategy [26, 28, 29]. 

Intracellular mycobacterial species possess the unique ability to organize their residence 

inside of the host organism and to proliferate within the host macrophages by overcoming 

the antimicrobial defense mechanisms. The tendency to establish chronic infections that 

produce similar pathologies in different hosts is one of the hallmarks of these pathogenic 

species. In particular, M. tuberculosis, M. leprae, M. marinum, and M. avium, are all 

capable of establishing these long-term infections [30]. Hence, it is necessary to understand 

the factors that contribute to the complex relationship between host and pathogen in order 

to modulate the clinical outcomes of mycobacteriosis [30]. 

In comparison to most other bacteria, they are slow growers requiring at least three days of 

incubation to produce visible colonies, with many showing visible growth only after one or 

more weeks [31]. Thus the Mycobacterium (M.) genus comprises of species with multiple 

behavioural characteristics including strict pathogens, opportunistic pathogens, and the 

nonpathogenic, saprophytic species [32]. Traditionally, the pathogenic mycobacterial 

species are classified based on their growing ability with the slow-growers group 

consisting of the three major human pathogens (MTB, M. leprae and M. ulcerans), while 

the NTMs which are prevalent among the immune-compromised individuals include fast 

growers such as M. abscessus and also slow growers like M. avium, M. marinum, M. 

xenopi, M. gordonae and M. kansasii [33]. 
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1.2 Mycobacterium avium hominissuis (MAH) 

 

M. avium is the most clinically significant NTM species causing infection in humans and 

animals. The M. avium complex comprises of four subspecies that have distinct  

pathogenic and host range characteristics: M. avium hominissuis (MAH) infecting pigs and 

humans in majority, M. avium paratuberculosis (MAP) causing Johne’s disease in 

ruminants and the avian pathogens such as M. avium avium (MAA) , M. avium silvaticum 

[34, 35]. 

In the recent years, the incidence of NTM infections has been significantly increased, in 

which MAH alone accounts up to 72 % out of the mycobacterial infections in total [36-38]. 

Research surveys also report that MAH infection has a high incidence of reoccurrence and 

frequently results in antibiotic resistance over time. These consequences may be supported 

by the capability of MAH to produce biofilms in the lungs, which aid in the establishment 

of infection in the host and are strongly resistant towards antimycobacterial therapies [39, 

40]. 

The MAH encompasses the highest level of genomic heterogeneity among the M. avium 

subspecies[41, 42]. Further, this subspecies is also different at the phylo-geographical 

level, suggesting different infection sources in different regions [43]. In addition, MAH 

strains comprises of highly variable phenotypic traits and this is already evident from their 

different colony morphotype. MAH isolates with different morphotype belonging to same 

strain can even show deviating virulence potentials [44]. 

MAH also produces lipid components that have been associated with immunomodulatory 

properties, such as lipoarabimannan (LAM), glycopeptidolipid (GPL) and a few non- 

characterized ‘glycolipids’. These lipids are located on the outermost layer of the cell wall 

[45]. Amongst these GPL’s are a special class of glycolipids, produced only by NTM’s but 

are absent in other mycobacterial species. GPL’s are associated with a variety of biological 

functions. They are highly antigenic and can be classified as serovar specific GPLs 

(ssGPLs) [46]. It was also demonstrated that the MAH GPL content is correlated with 

strain-to-strain variation in biofilm formation [47]. Further, the biosynthesis of GPL plays 

a role in the colony morphology of M. avium [46]. In addition, the core GPL is a primary 

requisite for adherent accumulation of MAH on some, but by no means all, surfaces. 
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Therefore, the GPLs are essential to colonize new environments and also play a part in the 

ingestion of MAC by humans cells [48]. 

 

 
1.3 Pathogenesis of MAH 

 

The intracellular opportunistic pathogen MAH infects many host-cell types but the 

mononuclear phagocyte is the primary target. The ability of the bacterium to cross the 

mucosal barrier and infect submucosal macrophages is an important key for establishing 

infection in the host organism [49]. Antimicrobial peptides (AMPs) such as β-defensins, 

cathelicidin and Reg IIIβ are secreted by the human intestinal mucosa and they serve as a 

host innate response against a number of bacteria [50]. Recently it was shown that MAP, a 

subspecies closely related to MAH resists the actions of AMPs [51]. 

MAH are also fairly resistant towards reactive oxygen species (ROS) and nitric oxide 

(NO). In contrast to MTB, the survival of MAH is unaffected by the inactivation of 

induced NO in a mouse model. Even though it is known that the macrophage activation by 

the cytokines tumor necrosis factor alpha (TNFα) and interferon gamma (IFN-γ) have 

important roles in M. avium killing [52], the defense mechanisms achieving killing of 

intracellular MAH have not been identified so far. However , M. avium infections were 

shown to mediate NF-κB activation and enhanced gene expression of TNF-α and IL-1β, 

these proinflammatory cytokines influence multiple signal transduction pathways and 

inhibit macrophage apoptosis [53]. 

The immune responses induced by MAH are likely due to the diverse lipids in the outer 

layer of the cell wall (eg. Glycolipids, GPL)[54, 55]. However, previous studies have also 

proved that the NTM species with rough colony morphotypes containing a different pattern 

or lack of GPLs induced more inflammatory response when compared to the smooth 

phenotypes [56-58]. 

Once taken up by the macrophages, the MAH resides in cytoplasmic vacuoles, which does 

not acidify [49]. Thus they also escape from the docking stage of the late phagosome to 

lysosome, interfering with the normal course of maturation during infection. Though the 

MAH are less virulent than MTB, they still manage to survive within host macrophages by 

subverting the function of phagocytic cells [59]. 
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Multinucleated giant cells (MGC) are the histologic hallmark of granuloma in 

mycobacterial infections [60]. Research studies have found that M. avium on exposing to 

human monocyte-derived macrophages, was bound to the adherent macrophages, inducing 

gene expression of chemokines and cytokines like TNF-α and IL-1 and adhesion 

molecules. During the later phase of infection, these adhesion molecules facilitate 

migration through the endothelial barrier to the site of infection, promoting cell-cell 

interactions resulting in the formation of MGCs which appear quite consistent with in in 

vivo events. At the MGC differentiation state, the macrophages are insufficiently 

microbicidal and provide a nonhostile environment to the mycobacteria [53, 61, 62]. 

MAH must encompass an array of virulence factors which enable them to survive amidst 

the defense mechanisms mounted by the host [63, 64]. However, a majority of the 

virulence factors and genes implicated for virulent phenotypes are still unknown. Although 

several studies have determined the MAH gene expression in phagosomes both vitro [65, 

66] and in vivo [64], very few attempts have been made to identify the virulence genes 

necessary for survival in the host [49]. 

 

 
1.4 Cell envelope of MAH 

 

The virulence and intrinsic multidrug resistance of MAH are attributed mainly to its cell 

wall characteristics [67]. The unusual mycobacterial cell wall corresponds to a 

permeability barrier of which mycolic acids constitute up to 60% of the lipid content [68]. 

The outermost layers are composed of different classes of glycolipids, that are species- 

specific [69]. Many of these cell wall glycolipids are considered important in 

mycobacterial pathogenesis. For example, the GPLs play a role in host-pathogen 

interactions, as they affect the initial or long-term response of the host. Since, the MAC 

bacteria are subjected to receptor-mediated phagocytosis by infected macrophages and 

further survive in mycobacterial phagosome, it has been suggested that GPLs can interact 

with host membranes promoting bacterial survival. Additionally, GPLs can also 

accumulate on the surface of MAC during extracellular growth and inside infected cells 

[70] [71]. Thus, GPL plays a major role, as their absence or modification also 

corresponded to an attenuated phenotype [55, 71]. 
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Interestingly, NTM and MTB strains contain different cell wall components and henceforth 

exibhit differential immune reactivity. For example, when compared to the 

lipoarabinomannan of NTM, the mannose-capped lipoarabinomannan of MTB displays 

distinctive structural features and thereby elicits a different host-pathogen interaction [72]. 

In comparison, the cell envelope of NTM is considerable more impermeable than MTB, 

which enables the bacterium to survive in multifarious environments; eg. soil, dust , natural 

and man-made water systems and biofilms that also differ greatly with extremes conditions 

in temperature, humidity and nutrient availability [73]. 

In addition, the genes involved in cell-wall synthesis are also upregulated upon uptake of 

M. avium by macrophages. Studies have demonstrated that the expression of polyketide 

synthase encoding genes was enhanced in-vivo and the polyketides are involved in cell 

wall synthesis and integrity [66]. The mmpL (Mycobacterial membrane protein large) gene 

family which participates in the transport mechanism of polyketides to the bacterial surface 

were also reported to be overexpressed during infection of macrophages [65, 74]. MmpLs 

are essential for maintaining the structure of the cell envelope and directly support 

mycobacteria during infection and persistence inside the host [75]. 

 

 
1.5 The lysX gene 

 

Some of the mycobacterial lipids present on the plasma membrane have no structural roles 

but they play important functional roles. These lipids mostly occur in low quantities and 

often remain unnoticed [76]. Recently, a research study on MTB reported the identification 

of a minor species of positively charged, membrane phospholipid known as 

lysylphosphatidylglycerol (L-PG). The L-PG synthesis mainly contributes to the resistance 

towards cationic antimicrobial peptides (CAMPs), thus protecting MTB from host-induced 

frontline defense. However, it was also demonstrated that the lysX gene which is a lysyl t- 

RNA synthetase, mediates the synthesis of lysinylated PG and a lysX deletion mutant also 

resulted in an alteration in the phospholipid metabolism and cell membrane integrity [77, 

78]. It was also shown that the lysX gene was necessary for acquiring full virulence 

potential of MTB and it was proven to be essential for the survivability of the pathogen 

upon infection [77]. Another study showed that the lysX gene expression differed from 

strain to strain in the MTB species and those with the higher lysX expression exhibited 

increased levels of intracellular survival in vivo and in vitro [79]. Since the lysX 
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expression was represented as an important variable for the modulation of MTB virulence, 

further studies were performed and that uncovered the use of mutations in lysX SNP 

(single-nucleated polymorphism) marker for screening of tuberculosis Beijing and modern 

Beijing strains [80]. 
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2 Aim and justification of the study: 

 

 
MAH is an opportunistic pathogen able to reside as saprophytic organism in the 

environment but also as a pathogen within human phagocytic cells. The disclosure of the 

mechanisms enabling MAH to switch between a saprophytic and a pathogenic life style 

will facilitate the design of countermeasures against infections by this and related 

opportunistic agents. We were therefore interested in identifying genes predisposing MAH 

to survive outside their environmental habitat and instead replicate inside phagocytes of the 

human immune system. To this aim random mutant of MAH strain 104 were previously 

generated and among these a LysX-deficient mutant was identified that was now further 

analyzed. 

The main objective of this thesis is to characterize a mutant of MAH with a deletion in the 

lysX gene, which is annotated as lysyl-tRNA synthestase. The study was targeted towards 

analyzing the functional role of the lysX gene in the growth, host-cell interplay and 

eventually its contribution towards virulence. The impact of this gene on the different 

functional pathways of MAH was to be examined through proteomic analysis and 

BIOLOG phenotype microarray for investigating the role of the gene in metabolism. 

Transmission electron and fluorescence microscopy techniques were to be applied to 

identify the structural features between the wild type, mutant and complemented strains. 

The survivability of the lysX mutant from MAH was tested in human blood-derived 

monocytes. To further decipher the impact of lysX for host-pathogen interaction, the 

resistance to host-inductive stresses, the inflammatory cytokine response and the MGC 

formation by human monocytes were planned to be experimented. Finally the impact of 

lysX for virulence was planned to be tested in the Galleria mellonella in-vivo model 

infection model. 
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3 Materials and Methods 

 

 
3.1 Bacterial strains and growth conditions 

 

 

Strain Origin/Description Reference / 

Source 

M. avium104 HIV Patient NRCM*, Borstel, 

Germany 

lysXmut M. avium104 mutant deterring the function of the 

lysX gene (MAV_3128), 

Hyg
R
 (Hygromycin resistance marker integrated in 

lysX gene) 

RKI
+
, Berlin, 

Germany[81, 82] 

lysXcomp M. avium104 lysXmut strain containing plasmid 

pFKaMAV3128 (Vector pMV306 with wild-type 

gene lysX inserted in restriction sites XbaI and 

HpaI). 

RKI
+
, Berlin, 

Germany[81, 82] 

 

 

* National Reference Center for Mycobacteria, Borstel, Germany 

+ Robert Koch Institute, Berlin, Germany 

 

 

 
The mycobacterial strains were grown in Middlebrook 7H9 broth along with 0.05% Tween 

80 and supplemented either with 10% modified ADC (2% of glucose, 5% of BSA, 0·85% 

of NaCl) or OADC (oleic albumin-dextrose-catalase; BD Biosciences) and Middlebrook 

7H11 media with 0.5% Glycerol was also used for plating purposes. The strains were 

cultured without shaking at 37°C. If required the lysX mutant was grown in media 

supplemented with 50 μg/ml hygromycin B and the lysX complemented strain with 50 

μg/ml hygromycin B and 50 μg/ml kanamycin. 
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3.2 Mass spectrometry - proteomic analysis 

 

A total of six independent cultures of each of the strains were grown up to an OD (600 nm) 

of 1.8 to 2.0 (log phase), in Middlebrook 7H9 broth with 0.05% Tween 80, supplemented 

with 10% modified ADC without any antibiotic. Protein extraction and label free 

quantitative proteomic analysis was conducted using LTQ Orbitrap Velos mass 

Spectrometer (Thermo Fischer Scientific) along with MaxQuant –Andromeda software as 

described elsewhere [83]. The raw MS files were processed using a freely available 

software suit, MaxQuant (version. 1.3.0.5 / Max-Planck-Institute of Biochemistry, 

Martinsried, Germany). The difference in the protein expression levels amongst the three 

strains were computed using the Perseus software. The entire mass spectrometry proteomic 

data can be retrieved from the ProteomeXchange Consortium through PRIDE [84] partner 

repository, using the data set identifier PXD006470. These experiments were performed in 

collaboration with the facility available at Free University Berlin, in the Institute of Animal 

Hygiene and Environmental Health. 

 

3.2.1 Mapping of differentially expressed proteins onto metabolic pathways 

 

The functional characteristics of differentially expressed proteins in MAH were examined 

by performing a homolog search on the COG database (Clusters of Orthologous Groups) 

(https://www.ncbi.nlm.nih.gov/COG/). The online tool DAVID (Database for Annotation 

Visualization and Integrated Discovery) (https://david.ncifcrf.gov/) was utilized to classify 

each of the genes into biological modules. The Functional Annotation Chart was created 

using a threshold p-value < 0.05 and gene count >4 were set as the cut-off point. The genes 

from M. avium paratuberculosis (MAP) were selected as a background for the analysis, as 

it was the most closest relative to MAH available in DAVID. The pathway enrichment was 

also analyzed using the DAVID database by integrating the pathway information obtained 

from the KEGG database (Kyoto Encyclopedia of Genes and Genomes) 

(https://www.genome.jp/kegg/pathway.html). 

 

The STRING-10.5 database (https://stringdb.org/) is an online resource which is useful in 

identifying the protein-protein interactions and constructing functional protein association 

networks. An interactome network was built for the differentially expressed MAH proteins 

with a setting of interaction score >0.9 (highest confidence score) to be defined as 

http://www.ncbi.nlm.nih.gov/COG/)
https://www.google.com/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=1&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwif0YeNp-HjAhVpSxUIHeCVBcoQFjAAegQIABAB&amp;url=https%3A%2F%2Fwww.genome.jp%2Fkegg%2Fpathway.html&amp;usg=AOvVaw2QyaydXTKesFiTDlhfFLeU
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significant. From the above analysis, the pathways which were found to be affected by the 

lysX mutation were combined together to form a network of pathways. 

 

 
3.3 BIOLOG metabolic phenotype microarray 

 

The substrate utilization of the bacterial strains was analyzed using the BIOLOG 

Phenotype Microarray™ (BIOLOG, Hayward, CA, USA) as instructed in the 

manufacturer’s recommendations [85-87]. This technology analyzes the metabolization of 

specific substrates by the measuring of bacterial respiration. When the bacteria uses the 

substrate in a particular PM plate well (96-wells plates with different substrates) it releases 

NADH which thereby reduces the tetrazolium dye generating a purple colour. The change 

of colours is recorded for a time interval of every 15 minutes by a reporter instrument 

OmniLog™ (BIOLOG, Hayward, CA, USA). Different PM plates comprising for carbon 

(PM1 and PM2), nitrogen (PM3), phosphorous (PM4) and sulfur (PM4) substrates were 

used for the study. The bacterial strains were processed for the study as described in [88]. 

Kinetic response curves are generated for reach well and the raw data are exported as csv 

files using Omnilog PM management/kinetic analysis mode. This experiment was 

performed with the BIOLOG instrument present at the Institute of Microbiology and 

Epizootics, Free University Berlin. The significant differences between the substrate usage 

of the bacterial strains were analyzed by the maximum height obtained in the bacterial 

respiratory curves (parameter A) using the R-package opm. The comparison was 

performed using the mean point estimates and their 95% confidence intervals for the 

parameter, by employing the functions extract and ci-plot as illustrated elsewhere [89]. The 

substrates which are differentially metabolized by the strains are visualized using the R- 

package heatmap. The substrates Pyruvic acid and Acetic acid which showed a significant 

difference in metabolization between the strains were further analyzed by linking them to 

their associated metabolic pathway using the KEGG pathway database [90]. 

 

 
3.4 Bacterial pyruvate quantification 

 

Intracellular pyruvate concentrations were determined using the Pyruvate Assay Kit 

(Sigma-Aldrich). Aliquots of bacterial cultures grown upto an OD600 of 1.8 to 2.0 (10 ml) 

were harvested by centrifugation at 4°C for 10 min at 8,000 g. The bacterial pellets were 
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washed twice with 1 ml of PBS and then re-suspended in 0.35 ml of pyruvate assay buffer, 

incubated for 20 min at 80°C, and lysed using lysing matrix B tubes in a FastPrep 

instrument (Precellys24, Peqlab). The lysates were centrifuged at 4°C for 5 min at 13,000 g 

Pyruvate concentrations were determined according to the manufacturer's protocol and 

normalized to the corresponding viable-cell counts at the time of harvest [91]. 

 

 
3.5 Electron microscopy 

 

The wild type, mutant and the complemented strains were cultured in Middlebrook 7H9 

media supplemented with 10% OADC at 37°C up to an optical density (600 nm) of 2. The 

bacteria were processed for Tokuyasu cryo-sectioning as per the protocol from [92]. 

Bacteria were fixed by adding an equal volume of a concentrated fixative (8% 

glutaraldehyde in 4 ×fold PHEM (Pipes, Hepes, EGTA and MgCl2) pH 6.9 (containing 240 

mM Pipes, 100 mM HEPES, 40 mM EGTA (Ethylene glycol-bis (2-aminoethylether)- 

N,N,N,N-tetraacetic acid, 8 mM MgCl2) to the bacterial culture medium. The bacteria after 

incubation of 5 minutes were pelleted and the pellet was resuspended in 2 % 

glutaraldehyde in PHEM, pH 6.9 and incubated for 120 min at room temperature. These 

fixated bacteria were then processed for examination at the transmission electron 

microscope (Tecnail12; FEI). as described in our previous report [82]. For each of the 

strains comprising about 450 fully captured bacteria were examined and the total number 

of intracellular lipid inclusions in the different strains was determined. 

 

 
3.6 Fluorescence microscopy 

 

The log phase bacteria (OD600nm 1.8 to 2) were pelleted by centrifugation (6000 x g for 

10 min) and then washed using 1 ml phosphate-buffered saline (PBS pH 7.4, 6000 g, 10 

min).The fixation was done by adding 1ml of 4% paraformaldehyde and incubating 

overnight. The fixed bacteria were then washed twice with PBS (pH 7.4) and were adhered 

on a slide using cytospin (Beckman coulter). The bacteria were stained with Nile red (25 

mg in 2.5ml DMSO) (incubation at dark for 20 minutes), to visualize the lipids. 

Additionally Ziehl-Neelson staining (TB-color staining kit; Merck) was performed in  

order to visualize the whole mycobacteria. The stained slides were further examined by 

using confocal laser scanning microscopy (LSM 780; Carl Zeiss). As the spectra of the 
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Nile red and Ziehl Neelson dyes were found to overlap with each other, the spectra of the 

individual stains were first recorded separately and then the bacteria stained with both the 

dyes were imaged. Later, the ZEN2011 software (Zeiss) was employed for unmixing the 

overlapping spectra of both the stains. 

 

 
3.7 Antibiotic susceptibility test 

 

The densely grown bacterial cultures from Middlebrook 7H11 agar plates were sweep 

transferred to a centrifuge tube containing 3-4ml of sterile water,by using a cotton swab. 

The bacteria were resuspended well by vortexing. Then the optical density was adjusted for 

the resuspended culture to OD 600 nm of 0.10-0.11. After which 50 µl of the bacterial 

dilution suspension were added to a tube of cation adjusted Muller-Hinton broth 

(ThermoFisher Scientific /Oxoid/Remel) .After thorough mixing, 100 µl of the suspension 

were transferred to each well of the sensititre plate (Sensititre TM SLOMYCOI, plate 

(Thermo Scientific/Oxoid/TREK Diagnostic) comprising of different antibitiotics at 

different concentrations. The plates were incubated at 35°C without additional CO2. The 

growth of the M. avium was evaluated after 7, 10 and 14 days, respectively. The growth 

was read both visually using a mirror as well as by using the Sensititre Vizion System 

(Thermo scientific, TREK Diagnostic,UK) and thus the minimal inhibitory concentration 

(MIC) defined as the lowest concentration showing no growth was computed for each of 

the strains. 

 

 
3.8 Intracellular growth measurement 

 

For the infection studies, buffy coats from anonymous healthy donors were obtained from 

the German Red Cross. The human blood derived monoctyes were isolated by the gradient 

method using Ficoll–Paque and Percoll (GE Healthcare) as per the manufacturer’s 

recommendations and described elsewhere [93]. The isolated monocytes were resuspended 

in IMDM (Iscove's Modified Dulbecco's Media) cell culture medium supplemented with 

10% human serum and distributed in 24 wells cell culture plates (TPP) with one million 

cellsper well and incubated overnight for adherence at 37°C with 5% CO2. .Then the cells 

were activated with IFNγ (100/ml) overnight.After that the cells were infected at an MOI 

of 10 with the MAH strains wild type MAH 104, lysX mutant and lysX complemented 
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strain. Then the cells were washed with fresh media after 4 hours of infection. Following 

that the cells were treated for 2 hours with high concentration of amikacin (200µg/ml) in 

order to terminate the extracellular bacteria. The cells were washed everyday with fresh 

media for the removal of extracellular bacteria. The infection samples were harvested after 

specific time points post infection (4 hours, then every 24 hours during 7 days). The cells 

were lysed in 1 ml of sterile water at 37°C for 20 minutes and the lysates were collected. 

The intracellular bacterial numbers were quantified by diluting the sample lysates and 

plating in triplicates for the CFU counting. 

 

 
3.9 Stress resistance tests 

 

The resistance of the mycobacterial strains against stress by H2O2 (reactive oxygen 

species), NO stress and the effect of Human beta defensin-1 (HBD-1) was determined by 

96-well microplate (nunclon) assays. Log phase bacterial cultures (OD of 1.8) grown in 

Middlebrook 7H9 broth were added to the wells of the microplate. The bacterial 

suspensions were then exposed to different concentrations (20 mM and 100 mM) of H2O2 

and were incubated at 37°C. To measure the sensitivity towards H2O2, the ATP content 

was quantified after 4 hours and 7 hours post exposure to H2O2 stress. A luminescence 

based kit was employed for this purpose (BacTiter-Glo Microbial Cell Viability Assay, 

Promega) according to the manufacturer’s protocol. The plates were read using a 

luminometer (Tristar LB 941 Multimode microplate reader, Berthold technologies) and the 

luminescence were recorded as relative light units (RLU). The bacterial viability was 

determined with stress treatment as well as without stress treatment so as to measure the 

percentage survival for each strain. 

The bacterial strains were also exposed to a NO donor, DETA/NO 

(diethylenetriamine/nitric oxide adduct), of 25 mM concentration for 4 hours incubation. 

As in the case of H2O2 susceptibility test which is described above, the difference in 

survival percent between the MAH strains was determined in the same manner. 

The phenotypic susceptibility of the MAH strains towards host inductive defensins was 

tested by exposing the bacterial cultures to 0.5 µg/ml and 1µg/ml of HBD-1 . Since the 

defensin was soluble only in 0.01% acetic acid, the acetic acid was also added to the 
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controls. The growth inhibitory activity of the defensin was also evaluated using ATP 

measurement as explained in the above stress resistance tests. 

 

 
3.10 Cytokine measurement in infected human PBMC 

 

Peripheral blood monocytes (PBMCs) were isolated from human buffy coats from healthy 

donors using Ficoll-Paque (GE Healthcare) differential gradient centrifugation method, 

according the protocol recommended by the manufacturer and described  previously in 

[93]. 24-well cell culture plates (TTP) were used for the infection experiment, where one 

million cells were seeded in each well. The cells were maintained at 37°C with 5% CO2 for 

24 hours before infection. The PBMCs were stimulated with the MAH strains (wild type, 

lysX mutant and lysX complemented) at a MOI of 10. Negative controls (uninfected cells) 

were also included in the study. The infection experiment was monitored for a course of 

seven days post infection and culture supernatants were harvested after particular time 

points (24 hours and 120 hours post infection). The cytokine released in response to the 

infection was measured by conducting ELISA assay with the infection supernatants (in 

appropriate dilutions, eg. 1:10 for TNFα) , as per the instructions of the manufacturer 

(Human IL-1β, IL-10, TNFα and IL-12 (P40) ELISA Ready – SET-Go! Kit, Thermo 

Fischer Scientific). 

 

 
3.11 Evaluation of macrophage fusion during MAH infection 

 

The fusion rate of macrophages upon infection was determined by employing human blood 

derived monocytes extracted from human buffy coats (from healthy individuals) as 

described previously in [94]. The isolated monocytes were pre-activated with IFNγ (100 

units/ml)overnight and then were infected with the MAH strains at a MOI of 10. Special 

microscopic ibidi cell culture dishes (ibidi GmbH ) were used for these infection 

experiments. These dishes were embedded with labelled grids and this was helpful for an 

accurate quantification of the multinucleated giant cells (MGCs). Additionally the cell 

culture dishes also facilitated an improvised optical quality for a high resolution 

microscopy. 

The infection course was investigated for 7 days to spot the fusion events and the infection 

samples were fixed with 4% paraformaldehyde at the 5
th

 day post infection (desirable 
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Number of nuclei in multinucleated cells 

FI% = X 100 

Total number of nuclei 

timepoint). Uninfected cells were used as negative control. The samples were double 

stained with the lipophilic stain Nile red (25 mg/ml) and the nucleic acid specific DAPI 

stain (5 mg/ml (stock), 1:100 diluted in dimethyl sulfoxide). After staining for 20 minutes 

in the dark, the samples were washed with sterile water and then were examined using a 

confocal laser scanning microscope (LSM 780; Carl Zeiss). Specific grids were selected at 

different areas of the cell culture dish and the total number nuclei as well as the nuclei in 

the MGCs were counted for each sample. At least 500 nuclei were counted for every 

preparation and the fusion index (FI) was computed with the formula mentioned below: 

(ref:[94]) 

 

 

 

 

3.12 In vivo study using Galleria mellonella 

 

An invertebrate infection model, Galleria mellonella (Greater wax moth) was used for 

survival experiments to check the virulence of the MAH strains. The larvae were received 

in boxes (140-200 numbers from the in-house animal breeding facility (MF3 division) at 

the Robert Koch Institute. Only the healthy looking larvae with a pale colour without any 

dark shade and those which weighed around 250 mg were selected for the experimental 

purpose. The larvae chosen for the study were placed overnight in a 37°C incubator before 

infection The bacterial inoculum was prepared by washing and diluting in sterile PBS 

supplemented with Tween 80 to give the appropriate infection dosage of 10
6
 bacteria per 

larvae. The larvae were injected into one of the last set of prolegs with 20 µl of the 

prepared inoculum (n= 30 larvae per group) using a 30G insulin syringe needle (Omnican, 

Braun). Safe handling of the syringe was accomplished by handling the worms using 

forceps. The infected worms were placed individually in 12-well cell culture plates (TPP) 

in an alternative manner to prevent any transfer of material between the neighboring 

infected larvae. Woodchips were also added to the wells. The plates were tightly taped and 

then placed in a sealed plastic box for incubation at 37°C. Throughout the course of 
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infection (about 20 days), the wax worms were inspected daily for phenotypic changes. 

The events of death and pupation were recorded accordingly. Graph pad prism was used to 

perform the survival analysis. 

To measure the growth of the bacteria in vivo, the infected larvae (3-5 per strain), which 

were still alive, were freeze-killed by incubating at -20°C overnight. A set of larvae were 

sacrificed immediately after infection, in order to check for contamination if any and to 

confirm equal infection doses. Then an equal number of larvae were sacrificed at different 

infection time points (5
th

 and 10
th

 day post infection). The surfaces of freeze-killed larvae 

were disinfected with 70% ethanol and then the larvae were homogenized with glass beads 

(0.11 mm diameter, Sartorius) in PBS-Tween 80, using the Precelly-24 tissue homogenizer 

(Peqlab). The survival of the MAH strains was determined by plating the serially diluted 

homogenized larvae material on to Middlebrook 7H11 agar plates supplemented with 

cycloheximide (25 µg/ml) and vancomycin (2 µg/ml) (Sigma). These antibiotics were 

added to the agar plates in order to inhibit the growth of the intrinsic bacterial and fungal 

flora found in G. melonella. Finally, the mean CFU for each of the strain was calculated  

for the enumeration of intracellular bacteria. 

 

 
3.13 Extraction of glycopeptidolipids (GPL) 

 

The MAH strains were grown to log phase (OD600 of 1.8-2-0) in Middlebrook 7H9 broth 

(Becton Dickinson) with 0.05% of Tween 80 and supplemented with modified ADC at 

37°C. The harvested bacteria were washed three times, heat killed and frozen at -80°C  

until use. The extraction of total lipids and GPL purification were performed as previously 

explained in [95, 96]. For total lipids, the dried bacterial pellets (from 50 ml culture) were 

treated with 10 ml of choloroform-methanol mixture ( 2:1; vol/vol) and were ultra- 

sonicated ( Branson sonifier-450 D, G. Heinemann) with 100% power for a minute. After 

centrifugation (8000 g for 10 minutes), the liquid phase obtained was transferred to a 

separate tube and then was hydrolyzed by adding 0.2 N NaOH in methanol (3 ml each). To 

remove the alkali–labile lipids, the reaction mixture was incubated at 40° C in a water bath 

for 2 hours with vortexing from time to time. Then the GPL was purified by neutralizing 

the lipid extract to pH 7 with 6 N HCl and 1 M NaOH. Then chloroform (6 ml) and water 

(5 ml) were added one after the other with intensive shaking. The phase-separation was 

achieved by centrifugation (8000 g for 10 minutes) and the bottom phase containing the 



19 
 

GPL was collected and evaporated. The GPL extracted was dissolved in 1ml of 

chloroform–methanol mixture (2:1 ; vol/vol) and then the GPL preparations were loaded 

on to silica coated TLC plates (Analtech). The GPL expression pattern was scrutinized by 

performing thin layer chromatography (TLC) in a chloroform-methanol (90:10; vol/vol) 

solvent system. The plates were sprayed with 10% H2S04 in ethanol and then exposed to 

hot-air to visualize the GPL bands. 

 

 
3.14 Measurement of GPL-Antigenic reactivity using ELISA assay 

 

The MAH GPL extracts diluted in PBS (1:1000) were deposited (100 µl/well) in a 

polystyrene microplate well (Nunc-Maxisorp, Thermo fischer scientific). Then the plates 

were sealed and incubated overnight at 4°C. For the ELISA, blocking was done by adding 

3% BSA in PBS (200 µl/well) and incubating overnight at 4° C. After that the wells were 

flipped and washed twice using PBS followed by the addition of serum from MAH 

infected patients as well as healthy individuals (approval from the ethics committee of the 

Charite – Universitätsmedizin Berlin (EA2/093/12). The sera were diluted (1:1000) in 1% 

BSA (dissolved in PBS) and were added (100 µl/well) to the appropriate wells. GPLs in 

the absence of serum were employed as negative controls. After an hour of incubation at 

room temperature, PBS-Tween 20 was used to wash the plate (five times) and then the 

secondary antibody, Horseradish peroxidase (HRP)-goat anti-human IgG (Jackson 

Antibodies)(diluted (1:5000) in 1%BSA dissolved in PBS) was added to each of the wells 

(100 µl/well). Post incubation (1 hour at room temperature), the plates were washed again 

for five times with PBS-Tween 20 and then with PBS twice. Finally, the TMB ELISA 

substrate (Sera care) was added (90 µl/well) to the wells and after ten minutes, the reaction 

was stopped using 0.16 M H2SO4 (90 µl/well). The absorbance value was measured in a 

microplate reader (Infinite M200 PRO, Tecan) at a wavelength of 450nm. 
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4 Results 

 

 
The target gene lysX was phenotypically characterized under extracellular conditions in the 

first part of the study. Initially, we analyzed the influence of the gene with respect to the 

protein expression, metabolism, antibiotic resistance and its impact on the capacity to 

multiply in human monocyte-derived macrophages [82]. 

The second part of the study was focused on the role of the lysX gene in MAH 

pathogenesis. Here, we examined the effect of the mutation during MAH infection of the 

host by measuring the reactivity against host defense mechanisms (ROS, RNI, defensins), 

inflammatory responses and survival in vivo. 

 

 
4.1 Proteomic analysis of the MAH strains 

 

In order to analyze the impact of the gene lysX on the protein expression pattern, we 

applied a proteomic approach and quantified the protein expression changes between the 

wild type, the mutant lysXmut and the complemented strain lysXcomp containing an intact 

copy of lysX [81]. Orbitrap analysis was performed on six biological replicates 

(independent broth cultures) of each of the three strains. Label-free proteomic analyses 

involved trypsin digestion and the separation of peptides was done by liquid 

chromatography (LC) coupled to electrospray ionization. Peptide analysis applying mass 

spectrometry unfolded certain interesting expression patterns showing proteome level 

differences between the three strains of MAH (Supplementary Table S1). 

In total, 1347 mycobacterial proteins were identified out of which 282 proteins were 

differentially expressed in the lysX mutant when compared to the wild type strain. Of these 

282 proteins, 169 were upregulated in the mutant and 113 were downregulated. The results 

of the statistical analysis for all identified proteins are listed in Table S1 in the 

supplementary material. The differentially expressed proteins in the lysX mutant were 

analyzed and segregated based on their functional categories using a database of Clusters 

of Orthologous Groups of proteins (COGs). This database helps in phylogenetic 

classification of the proteins from completely sequenced genomes on the basis of the 

orthology concept [97]. The proteins were distributed in 15 different COG categories but 

nevertheless there were still many which were poorly characterized or uncharacterized 
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(Fig. 1). Amongst the groups, a majority of the genes (57%) were found to be involved in 

metabolism, in particular in the lipid transport and metabolism. This already indicates the 

influence of the lysX gene on the metabolic activity of MAH. 

 

 
Figure 1: COG classification of differentially expressed proteins in lysX mutant 

compared to wild type (MAH 104). The proteins identified from the proteomic analysis 

were classified based on their functional orthologues and the COG categories are 

indicated in specific colors. The darker shade of the bars indicates upregulated proteins 

and the lighter shade indicate downregulated proteins. 

DAVID enrichment analysis [98] was performed with the set of genes upregulated in the 

mutant and with the set of genes downregulated in the mutant to classify the pathways 

affected by the mutation. DAVID offers an individual gene pathway analysis and our data 

resulted in seven pathways from the list of upregulated proteins and three pathways were 

related to downregulated proteins. Tricarboxylic acid cycle, Biosynthesis of secondary 

metabolites, Fatty acid metabolism, Proponoate metabolism and Butanoate metabolism 

were the ones which contained the highest percentage of genes involved, having the 

highest enrichment scores (Supplementary Table S2a). Particularly, three of these 

pathways (Fatty acid metabolism, Proponoate metabolism and Butanoate metabolism) 

were accounted to be related with 60% of the differentially regulated genes in the mutant 
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strain. In order to generate energy and for the sake of lipid synthesis, the mycobacteria 

degrade the fatty acid and cholesterol into short chain fatty acids (eg. Acetate and 

propionate)[99]. The assimilation of short chain fatty acids involving the proponoate 

metabolism is considered to be crucial for the survival and virulence of MTB[100] . A 

recent study on the metabolic phenotyping of MAH isolates from different sources also 

revealed the butyric acid and propionic acid to be the most preferred carbon source[88]. 

The STRING database was also used for analysis of the same data sets as used for DAVID 

to have an overview of the proteome-scale interaction network .The STRING analysis 

provided us an interactome network which predicted the protein-protein interactions and 

their functional associations [101]. We found that the proteins upregulated in the lysXmut 

were involved in 18 pathways and the downregulated proteins were linked to three 

pathways. The output from STRING analysis was coincidental with that of the results from 

DAVID .Totally, seven pathways from the upregulated genes and two pathways from the 

downregulated genes were identical for both DAVID and STRING analysis while the rest 

of the pathways were also found in both of the analysis but the level of significance was 

varied (Supplementary Table S2b).The differentially expressed proteins were mapped 

using KEGG pathway database, specifically in functional pathways of M. avium . On 

pooling all the affected pathways we identified many enzymes being involved in the 

central metabolism, also in the adaptive pathways which are essential for the growth and 

survival of MAH during infection of the host (for eg. β-oxidation of fatty acids and 

glyoxylate cycle) (Fig. 2). 
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Figure 2: Pathway network of the central metabolism of MAH with differentially 

regulated genes. Proteomic analysis was conducted for MAH 104, lysX mutant and lysX 

complemented strains. This figure is a schematic diagram showing changes in the 

expression of enzymes in the biosynthetic pathways that are affected by the lysX mutation. 

The enriched pathways in the lysX mutant are marked with brown arrows (according to 

DAVID and STRING analysis). The metabolites which are predicted to be overproduced 

(eg. Pyruvate) are shown by filled-in brown boxes. The mutated lysX gene is indicated in 

red. The intracellular lipid droplets (LD) are marked in yellow. The bacterial plasma 

membrane (PM) is represented as the surrounding gray area. G-6-P, glyceraldehyde 6- 

phosphate; PPP, pentose phosphate pathway; PEP, phosphenolpyruvate; FAS-1, fatty acid 

synthase-1; TAG, triacylglycerol; AGPAT, 1-acylglycerol-3-phosphate O-acytransferase; 

CDP-DAG, cytidine diphosphate diacylglycerol; PA, phosphatidic acid; PG, 

phosphatidylglycerol; CL, cardiolipin. 

We also compared the differentially regulated genes in the lysX mutant with a list of 

mycobacterial genes which are differentially expressed during infection of human 

macrophages from other research studies [65, 102-104]. This analysis revealed that out of 

the 282 differentially regulated proteins, 65 proteins were identified to be related with the 

intracellular survival in the host (Supplementary Table 3). Among those listed, some of the 

virulence factors of MTB were also identified: isocitrate lyase icl (glyoxylate cycle) [105], 

choD and fadE29 (cholesterol catabolism), lpqH and pstS1(lipoproteins), rmlB2 and murC 

(cell wall modifier), ahpC, katG and ndk (resistance towards reactive oxygen and reactive 

nitrogen species), nuoG and pknD (inhibition of apoptosis), sigA (sigma factor) and phoP 

(2-component system) [106]. 

 

 
4.2 Metabolic phenotype characterization 

 

Since the lysX mutation was found to have an effect on the bacterial metabolism, we 

analyzed the capacity of metabolizing different substrates in the wild-type and lysX 

mutant. A high throughput phenotypic microarray analysis (BIOLOG) was applied for this 

purpose. The BIOLOG sytem measures the respiration of bacteria in the presence of 

different substrates. The usage of 379 substrates was tested, which contained 190 carbon, 

95 nitrogen, 59 phosphorus and 35 sulphur substrates. In total 335 out of these 379 

substrates were not metabolized by both the strains and only 6 of them were utilized by 
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both the wild type and the mutant strains (Supplementary Table S4). In comparison, 15 

substrates were differentially metabolized by the strains. The differential utilization of 

these substrates by the two strains is displayed in the heat map in Fig.3. Significant 

differences were observed between the strains lysXmut and the wild type for the usage of 

Acetic acid and Pyruvic acid. Analysis using the "Kegg pathway database" revealed that 

Acetic acid was involved in Glycolysis, Pyruvate metabolism, Proponoate metabolism and 

others, while the Pyruvic acid was involved in Tricarboxylic acid cycle, Glycolysis, 

Pentose phosphate pathway, Benzoate degradation, Pyruvate metabolism, D-alanine 

metabolism and others. The pathways identified by the Kegg pathway analysis correlated 

with the pathways enriched according to DAVID and STRING using the data from the 

proteomic data analysis (Supplementary Tables 5). 

 

 
Figure 3: Heatmap showing the 15 substrates that were differently metabolized by the 

wild type (104-WT) and lysX mutant (21m-lysXmut) strain. The color key scale for the 

substrate is based on the dye reduction quantified by Omnilog units. The yellow color 

denotes strongly positive substrate metabolization, green color denotes moderate 
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metabolization and blue color refers to no substrate metabolization. Substrates which 

showed a statistically significant metabolization are marked with red stars. 

Pyruvate is a key metabolite and plays a major role in carbon metabolism and since the 

BIOLOG assays had shown that the mutant cannot use Pyruvate, the intracellular pyruvate 

concentrations in the wild type, lysXmut and lysXcomp strains was measured using the 

Pyruvate Assay Kit (Sigma-Aldrich) (Fig.2b). As anticipated, the lysX mutation led to the 

accumulation of pyruvate in the mutant; and the mutant showed a double fold increase in 

pyruvate concentration when compared to the wild type and complemented strains. 

 
 

 

Figure 4: Intracellular pyruvate quantification. Pyruvate assay kit (Sigma-Aldrich ) was 

used to determine the concentration of pyruvate in the bacterial strains cultured in 

Middlebrook 7H9 broth with 0.05% Tween 80 and supplemented with 10% modified ADC. 

CFU,colony forming units. Data are means ± standard deviation of the results from three 

independent experiments. 
*
P <0.05, by two-tailed, paired Student T-test. 

 

4.3 Structural examination of MAH strains 

 

Our proteome analysis had shown an upregulation of metabolic steps required for TAG 

synthesis in the mutant. TAG is stored in lipid bodies of mycobacteria and we therefore 

intended to visualize lipid bodies in the analysed strains. We wanted to see if there were 

any consequences that would be visible as a result of this deviation in metabolism. Hence, 

the densely grown cultures were processed for transmission electron microscopy for 

studying the structural features of the strains. Interestingly, the lysXmut strain displayed a 
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higher number of lipid-like vacuoles in the cytoplasm in comparison to wild type and the 

complemented strains (Fig. 5a, 5b, 5c). The lipid inclusions were quantified by counting 

450 bacteria per strain at the microscope. The quantification confirmed that the mutant 

strain with 31.7% comprised of the highest percentage of bacterial cells containing lipid 

inclusions, while in the case of wild type and the complemented strain only 15% and 

24.3% of the cells contained lipid inclusion. (Fig. 5g) 

In order to confirm whether these inclusions were truly lipids, fluorescence staining with a 

neutral lipid stain (Nile red) was performed. In the staining, the lysX mutant was found to 

show a more intensive staining pattern as when compared to the wild type and the lysX 

complemented strains (Fig. 5d, 5e, 5f). 
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Figure 5: Representative images of the bacterial strains showing lipid accumulation. 

Transmission electron microscopy (TEM) pictures of M.avium strains cultured at 37°C ( 

wild type (a); lysX complement (b); lysX mutant (c)), The white arrowheads point towards 

the lipid bodies. lysX mutant (c) exhibited an accumulation of lipid inclusions; 

Fluorescence microscopic images of Nile red staining of the strains -wild type (d), lysX 

complement (e), and lysX mutant (f) for visualization of the lipid content. The violet 

fluorescence shows Nile red staining of intracellular bacterial lipids and the green 
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fluorescence indicate the stained mycobacteria. The lysX mutant (f) was found to be 

stained brighter than the wild type (d) and lysXcomp (e) strains. The images were taken 

with a confocal laser scanning microscope at 100× magnification with scale bars 

representing 5 μm. Fig.5g: The lipid inclusions were quantified by counting 450cells per 

strain at the microscope and the percentage of cells with lipid inclusions were determined. 

It was found that the mutant strain comprised of the highest percentage of lipid-like 

vacuoles (Fig.5g). Data are means ± standard deviation of the results from three 

independent experiments. 
*
P<0.05 and **P<0.01 by two tailed Student T-test. 

 

4.4 Antibiotic susceptibility testing of the MAH strains: 

 

The LysX is involved in the neutralization of the negative charge of the bacterial cell 

membrane, which decreases the membrane permeability and susceptibility towards cationic 

antimicrobial peptides and antibiotics. Hence, we tested the impact of LysX mutation on 

the antibiotic susceptibility of our strains by measuring the MIC values for 14 clinically 

relevant antibiotics. The lysX mutant displayed a significant difference in the susceptibility 

towards clarithromycin, ethambutol and streptomycin in comparison to the other strains. 

The mutant strain exhibited hypersensitivity to the above mentioned cationic antibiotics 

which is an evidence of the lysX mutation affecting the membrane properties (Table 1). 
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Table 1: Antibiotic susceptibility of the M. avium strains wild type104, lysX mutant 

(lysXmut) and lysX complement (lysXcomp) 
 

  MIC (µg/mL)  

Antimicrobial agents WT lysXmut lysXComp 

Aminoglyoside    

Amikacin 30 5.5 30 

Streptomycin** 36 16 32 

    

Tetracycline    

Doxycycline >16 >16 >16 

Macrolide    

Clarithromycin** 2.5 1.06 1 

Oxazolidinone    

Linezolid 44 24 16 

Quinolone    

Ciprofloxacin 9 4 7 

Moxifloxacin 2.25 1 2 

Sulfonamide    

Sulfamethoxazole/ 90.25/4.75 90.25/4.75 52.25/2.75 

Trimethoprim    

Anti-mycobacterial    

Ethambutol* 9 1.37 5.5 

Ethionamide 2.46 2.17 1.85 

Isoniazid 5.5 5.5 2 

Rifabutin <=0.25 <=0.25 <=0.25 

The values are the means of four independent experiments. 

a
MIC – Minimal Inhibitory Concentration 

Statistical analysis was done by Student’s t test. P < 0.05 was considered as significant (*) and 

P<0.01 was considered as very significant (**). 
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4.5 Intracellular survival of MAH strains in human blood monocytes 

 

We examined whether our lysX mutant was also sensitive to the positively charged 

CAMPs such as polymyxinB (PMB) and to lysozyme. Similar to the results seen with the 

cationic antibiotics, PMB and lysozyme significantly reduced the viability of lysX mutant 

compared to the wild type and lysX complemented strain (data not shown).Since 

antimicrobial peptides synthesized by macrophages play an important role in fighting 

mycobacterial infections, we were interested in exploring the capacity of the lysX mutant 

to replicate within human monocyte-derived cells. IFN-γ activated human blood derived 

monocytes were infected with the wild type, lysX mutant and the lysX complemented 

strains. The growth of the intracellular mycobacteria were quantified by lysing the infected 

macrophages and by plating colonies at a particular time course of incubation post 

infection. The three strains initially showed a uniform decrease in numbers but later they 

continued to grow constantly. At 96 hours post infection, a sudden elevation of bacterial 

numbers was found in the lysX mutant (Fig. 4). These results suggest that the lysX mutant 

strain has a similar capacity to grow in culture (data not shown) as well as a similar rate of 

infectivity like the wild type strain, but that it has a greater capacity to proliferate within 

host cells. 

 

 

Figure 6: Growth of the M. avium strains in monocyte derived macrophages . Human 

blood monocytes (1.0x10
6
) from healthy volunteers were infected (MOI 10) with the wild- 

type, lysXmut and the lysXcomp strains. Intracellular bacteria were quantified at the 

indicated times following infection by lysis of the macrophages and the viability of the 
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mycobacteria was determined by CFU counting. The mutant exhibited a significant growth 

after 96 hours from infection. Data are representative of three independent experiments 

(three buffy coats). 
*
P<0.05, **P<0.01, 

##
P<0.01 (* lysX mut vs wild type; # lysX mut vs 

lysX comp) by two tailed Student T-test. 

 

 
4.6 Effect of H2O2, NO and defensins on the growth and viability of MAH strains 

 

As we had witnessed the enhanced intracellular growth of the lysX mutant, it was 

suggested to identify the underlying mechanisms which enabled the mutant bacteria to 

exhibit a virulent phenotype. The production of reactive oxygen and nitrogen intermediates 

by activated macrophages is a critical part of the human innate immune response during 

the infection process. Our MAH strains grown up to a mid-logarithmic phase were treated 

with hydrogen peroxide of 20 mM and 100 mM concentrations. After 4 hours and 7 hours 

of incubation, the ATP content was quantified using the BacTiter-Glo™ Microbial Cell 

Viability Assay with relative light units (RLU). Amongst the three strains, the lysX mutant 

was found to show a substantial decrease in cell viability (Fig 5a). Considering the 

untreated to have a 100% RLU, on the exposure to 20mM H2O2 the wild type reduced to 

36% but the mutant reduced to 17% showing a significant difference in sensitivity. The 

sensitivity of the strains was also tested with a NO donor (25 mM DETA/NO) treatment. 

The ATP quantification only showed a minor difference between the strains, with the wild 

type exihibiting a decrease to 51% and 42% by the lysX mutant strain. However, the lysX 

mutant proved to be the most sensitive to NO exposure (Fig 5b). 

Since the lysX gene is involved in the modification of cell surface charge, which in turn is 

associated with the CAMP resistance, we intended to investigate the effect of defensin, an 

antimicrobial peptide,a on the strains. The Human Beta Defensin–I (HBD-I) which belongs 

to the cationic antimicrobial peptide family was used for this purpose. When the bacterial 

strains were treated with HBD-1 with a concentration of 0.5 µg/ml, all the strains displayed 

a strong reduction in cell viability after 120 hours of post incubation. However by 

comparing the ATP content with the untreated (100% RLU) control, the wild type reduced 

to a value of 17%, lysX mutant to 10% and the lysX complemented strain to 21% (Fig 5c). 

Thus we could see an effect of the lysX mutation on resistance towards defensins in MAH. 
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Figure 7: Effect of H2O2, NO and defensin (Human Beta Defensin-1) stress on survival 

of the MAH strains. The three strains (wild type (MAH 104) (black bar), lysX mutant 

(open bar) and lysX complemented strain (striped bar)) were incubated with a) 20 mM and 

100 mM H2O2 for 4 hours and 7 hours or (b) 25 mM DETA/NO for 4 hours or (c) 0.5 

µg/ml Human Beta Defensin-1 for 5 days and the sensitivity towards the stresses was 

determined through survival percent calculation by measuring ATP production using 

luminescence assay kit (BacTiter-Glo Microbial Cell Viability Assay, Promega). Data are 

means ± standard deviation of the results from three independent experiments, (performed 

in triplicates with three individual cultures per strain). *P < 0.05; **P < 0.01; *** P < 

0.0001; two-tailed, unpaired Student’s t test. 

 

 
4.7 Cytokine responses of human PBMCs infected with M. avium strains 

 

Mycobacterial infections induces the host immune cells to produce inflammatory cytokines 

such as tumor necrosis factor-alpha (TNF-α), IL-6 and IL-10. In view of the improved 

survival of the lysX mutant in human monocytes, we aimed to examine the inflammatory 

response produced during the infection of the host cells with our MAH strains. PBMCs 

were infected with the wild type, mutant and the complemented strains (MOI 10) and the 

secretion of selected cytokines was investigated in the course of infection for five days post 

infection. Culture supernatants were collected at particular time points (24 hours and 120 

hours post infection (120 hrs was the time point wherein the lysX mutant showed a sudden 

elevation in the intracellular growth in monocytes [82]). The cytokines (pro-inflammatory: 

IL-1β, IL-12(p40) and TNF-α; anti-inflammatory: IL-10) released were quantified using 

ELISA assay. Overall, the lysX mutant showed the highest inflammatory cytokine 

secretion in every kind, when compared to the wild type and the lysX complemented 
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strains (Fig. 6a, 6b, 6c and 6d). Although the difference in the TNF-α secretion was not as 

significant as the others, still they were overproduced in the lysX mutant. The differences 

in the cytokine release were more evident after 24 hours compared to the 120 hours 

infection time point. 

 

 

 

 

 

 
 

 

 
Figure 8: Induction of cytokine secretion by human blood derived PBMCs after 

infection with the MAH strains Human PBMCs were infected (MOI 10) with wild type 

(Black bar), lysX mutant (Open bar), lysX complemented strain (striped bar). After 

24 hours and 120 hours post infection, cytokines IL-1β (a), IL- 12 (b), TNF-α (c) and IL-10 

(d) from supernatants were measured by ELISA using kits (ELISA Ready-SET-Go! Kit, 
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Thermo Fischer Scientific). Uninfected cells were used as controls (grey). Data are means 

± standard deviation of the results from three independent experiments (using three buffy 

coats). *P < 0.05; **P < 0.01; *** P < 0.0001; two-tailed, unpaired Student’s t test. 

 

 
4.8 Multinucleated giant cell formation on macrophage infection with MAH 

strains 

 
During chronic mycobacterial infections, the infected macrophages fuse to form multi- 

nucleated giant cells which are stated as a hallmark granulomatous inflammatory structure. 

So, we were interested in analyzing the effect of the lysX mutation on the macrophage 

fusion process, as it was already revealed to induce severe inflammatory responses. The 

human blood derived monocytes were infected with the three bacterial strains (MOI 10) 

and the giant cell formation was examined for five days post infection. Infected cells were 

fixed at a particular time point (fifth day after infection), stained with Nile red and DAPI 

and were examined for macrophage fusion events by fluorescence microscopy (Fig. 9a, 9b 

and 9c). The fusion index (FI) was calculated for each of the strains by counting the nuclei 

in fused and not-fused cells (Fig 9d). The lysX mutant showed a higher amount of fusion 

events with an FI of 23%, while wild type and the lysX complemented strains caused an FI 

of 14% and 9%, respectively. The uninfected controls had a FI below 5%. 
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Number of nuclei in multinucleated cells 

FI% = X 100 

Total number of nuclei 

 
 

Figure 9: Microscopic examination and quantification of multinucleated giant cells 

formed by MAH infected macrophages. IFN-γ activated human blood monocytes were 

infected with (a) wild type (WT), (b) lysX mutant (lysXmut) and (c) lysX complemented 

strain (lysXcomp) and the infection samples were fixed at 5
th

 day post infection. The 

samples were stained with Nile red (red fluorescence) and DAPI (blue fluorescence). 

Examplary some MGCs are marked with white arrows.. Scale bars: 50 µM. The total 

number of nuclei and the nuclei per MGC were counted and the fusion indexes were 

calculated with formula mentioned below: 
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Data are means ± standard deviation of the results from five independent experiments 

(using five buffy coats). *P < 0.05; two-tailed, unpaired Student’s t test. 

 

 
4.9 Virulence of MAH in Galleria mellonella larvae 

 

From our previous experiments, we could already hypothesize that the lysX mutation 

influences the virulence of the MAH pathogen. In order to evaluate the phenotype of lysX 

in vivo, the G. mellonella larvae (30 larvae per strain) were infected with wild type, lysX 

mutant and lysX complemented strains. The survival of the infected larvae was monitored 

for over 18 days (Fig. 10a). We observed that more death events occurred to the larvae 

infected with the lysX mutant strain in comparsion to the others. However, the death events 

started to happen only during later stages of infection (12
th

 day post infection). Upon 

inspection, we found that the lysX mutant had the highest virulence potency, as the 

infected larvae exhibited 100% mortality at 18 days after infection. While the wild type 

strain showed only 40% mortality at the 18
th

 day following infection and the 

complemented strain was intermediate displaying 65% mortality. The median survival time 

(time point at 50% survival) was recorded for all the three strains to be undefined in the 

wild type, 13 days in the lysX mutant-and 15days in the lysX complemented strain (Fig. 

10a). The viability of the MAH strains (infection dose -10
6
 CFU per larvae) was measured 

over an infection course of 10 days. Initially, the bacterial numbers decreased 

(approxiamately 50%) relatively uniformly with all the three strains until 120 hours post 

infection. Progressively, the bacterial counts in every strain were found to increase 

between 120 hours and 240 hours after infection. The lysX mutant showed the most 

strongest and a statistically significant elevation in the growth in vivo out of all the strains. 

The bacterial loads increased up to 100 fold in the case of infection with lysX mutant 

whereas the wild-type showed only 10 fold increase (Fig. 10b). Thus the lysX mutant was 

found to have acquired a higher multiplication capacity within G. melonella than the wild 

type 
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Figure 10: Effect of infection of the MAH strains on the survival of G. mellonella and 

growth of MAH in G. melonella. (a) Survival of G. melonella after infection with 10
6
 

CFU of the MAH strains (30 per group) wild type (WT), lysX mutant (lysXmut) or lysX 

complemented strain (lysXcomp) was investigated for 20 days. Untreated larvae and PBS 

injected were taken as controls. Three independent experiments were conducted. Both the 

survival and pupation events of the larvae were analyzed. Pupation events are denoted as 

short dashes. The survival percentages of the three experiments were pooled and displayed 

in the survival curve. (b) The MAH viability in vivo was measured by sacrificing 3 to 5 

larvae per group and plating them on antibiotic treated MB 7H10 plates for CFU 

quantification on specific time points (days 0, 5 and 10) during the infection study. Data 

are means ± standard deviation of the results from three independent experiments. * P < 

0.05; **P < 0.01; ***P < 0.0001; two-tailed, unpaired Student’s t test. 

 

 
4.10 MAH GPL expression and its antigenic reactivity 

 

GPLs are highly antigenic membrane lipids of the MAC complex. They are also 

considered to be potential mediators of virulence due to their immuno-modulatory activity. 

Therefore, we explored the effect of the lysX mutation on GPL expression by extracting the 

purified GPLs using alkali treatment from the total lipids of the MAH strains. Thin layer 

chromatography was used to visualize the different patterns of GPL expression of the 

strains (Fig. 11a). On closer examination, we found that the GPL from the lysX mutant 
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showed a defective pattern with a lack of a lower band which was present in both the wild 

type and complemented strains. 

Research studies have proven that the anti-GPL antibody levels reveal the disease activity 

in MAC lung infection[107]. Hence, the reactivity of the GPL extracts of the MAH strains 

were tested against the sera of cystic fibrosis patients with MAH infections through ELISA 

assay. The reactivity of the serum of the two tested patients against the GPL was lower in 

the lysX mutant when compared to the wild type strain (Fig. 11b). Still, the reactivity of 

the serum from a healthy person was only slightly above the negative control. This 

reactivity from GPL from the lysX mutant may be to due to the fact of the deficienct GPL 

pattern observed (Fig. 11a). 
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Figure 11: Expression profile of total GPLs from MAH strains and their antigenic 

reactivity Thin layer chromatography (TLC) of GPL extracted from MAH strains wild type 

(Lane 1), lysX mutant (Lane 2) and lysX complemented strain (Lane 3). The GPL 

expression pattern of the Wild type strain and lysX complemented strain were similar while 

lysX mutant failed to express a single GPL band at the lowermost-molecular weight 

position (marked using a dashed arrow). 

(b) Graph shows the reactivity of sera from two MAH infected patients against MAH GPL 

extracts from the MAH strains wild type (WT), lysX mutant (lysXmut) and lysX complement 

(lysXcomp)) using ELISA assay. Healthy individual’s sera are included as a control. Data 

are means ± standard deviation of the results from three independent experiments. *P < 

0.05; **P < 0.01; two-tailed, unpaired Student’s t test). 
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5 Discussion 

 

 
The NTM group of environmental pathogens are increasingly recognized as a significant 

cause of morbidity and mortality [108]. Several research studies have also reported a 

continuous inflation in the worldwide incidence and prevalence of non-tuberculous 

mycobacteria (NTM) diseases, especially pulmonary Mycobacterium avium complex 

(MAC) diseases [43]. Despite this being a serious global health concern, methods to 

eradicate the NTM from its infection source and hosts are still under-developed. In general, 

the NTM are tolerant towards chlorine-based disinfectants [109], and MAC is the most 

tolerant one [110]. The treatment for MAC infections require prolonged therapy with the 

use of multiple antibiotics for more than 12 months [12]. Recurrent infections at the end of 

a completed therapy is also not uncommon due to MAC reinfection (32–48% of cases) 

[111, 112].Therefore to prevent the occurrence of these infections, strategies need to be 

developed in order to clear pathogens from infection sources, to vaccinate susceptible 

people in endemic areas and to treat patients effectively [43]. However, little is known 

about the role of mycobacterial genes which are involved in the prolonged survival of M. 

avium in the host [113]. Our study was focused on the lysX gene, which alters the surface 

charge of MTB and thereupon decreases the bacteria’s vulnerability to the antimicrobial 

action of the host immune cells [77, 78]. Furthermore, the gene was proven to be an 

important requisite for MTB adaptation and survival in the host [114]. The experimental 

work from this thesis unravels the unknown functional aspects of the lysX gene in MAH , 

mainly pertaining to the establishment of infection in the host-organism. 

The lysX mutant and the lysX complemented strains from MAH 104 were generated using 

illegitimate recombination mutagenesis in a previous study conducted in our laboratory 

[81]. Proteomic analysis of these mycobacterial strains proved that the mutation on the 

lysX gene interferes with the major metabolic pathways, which revealed a novel role of 

bifunctional protein [82]. Research studies have already illustrated that metabolism 

underpins the physiology and pathogenesis of mycobacteria [115]. Metabolic flexibility, 

autonomy and the capacity to resist nutrient stress are the key characteristics of 

mycobacterial pathogens [116]. In particular, we observed that a majority of the proteins 

enriched in the lysX mutant strain belonged to the category of fatty acid metabolism. Gene 

expression studies and metabolomics profiles have also shown that MTB after being 

phagocytosed by the macrophages, substantially upregulated the genes and their products 
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involved in fatty acid degradation and metabolism and in cholesterol uptake and 

consumption [103, 117]. Intracellular MTB remodels its metabolic networks in order to 

assimilate nutrients from surrounding host tissue and to do so, it switches the carbon 

metabolism towards β-oxidation pathway and gluconeogenesis via glyoxylate shunt [118, 

119]. This metabolic feature enables the bacteria to efficiently utilize the host nutrients 

(fatty acids as sole carbon source) and contributes towards optimal virulence. Intriguingly, 

a number of genes in fatty acid β-oxidation (fadA, fadA3, fadA4, fadA5, fadE12, fadE15, 

echA6, and echA7) and the glyoxylate cycle (icl1, icl2, glcB, sdhA, and sdhB) were 

upregulated in the MAH lysX mutant [82]. Additionally, a list of virulence-related genes 

was also differentially upregulated in the mutant. Our results clearly demonstrate a role of 

LysX in directing the metabolism of MAH to be adapted to different environmental 

conditions including various stress conditions, along with the in vivo conditions within 

macrophages. 

As the results from the proteome study gave us a hint about the implication of the lysX 

gene with central metabolism, the metabolic phenotypic microarray analysis was 

performed to identify differential substrate usage. Data analysis showed that the lysX 

mutant strain lacked the capability to metabolize pyruvic and acetic acid. During infection, 

the host-derived lipid components are the major carbon source at the infection site. In 

principle, β-Oxidation of fatty acids turns the fatty acids into potential source of acetate 

formation, eventually generating acetyl-CoA and to a lesser extent propionyl-CoA [120]. 

The physiological carbon source cholesterol is usually catabolized into acetyl-CoA, 

propionyl-CoA, and pyruvate. Further it has been suggested that accumulation of acetate 

may take place in the course of acetyl-CoA processing by MTB, since acetyl-CoA is a 

main product of fatty acid degradation pathway [121]. Accordingly, we have also observed 

an enrichment of the fatty acid degradation pathway in the MAH lysX mutant. Our protein 

expression analysis also showed that the genes involved in the propionate metabolism and 

catabolism of cholesterol were strongly upregulated in the lysX mutant and all these might 

have also led to the accumulation of metabolic substrates such as pyruvate and acetate. To 

confirm our hypothesis, we quantified the concentration of the pyruvate and as 

hypothesized, pyruvate was found to be accumulated in the lysXmut strain in comparison 

to the wild type and lysXcomp complemented strain (Fig. 3). This result also suggests that 

the lysX mutant strain might have acquired the capability to switch to a metabolism which 

will be beneficial for the strain to survive in the host under in vivo conditions. 
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Research studies have reported that excessive metabolic degradation of fatty acids leads to 

induction of more conversion of fatty acidy into triacylglycerol (TAG). Besides, 

phosphenol pyruvate and pyruvate have been stated to provide the precursors for de novo 

TAG synthesis. Also cytoplasmic TAG is one of the major components of intracellular 

lipid inclusions (ILI) in Mycobacteria [122]. The biosynthetic pathway of TAG diverges 

from the phospholipid synthesis after the synthesis of phosphatidic acid [76]. During 

exponential growth, the intracellular TAG may also become accumulated when there is a 

turnover of phospholipid which thereby enhances the availability of FAS-1 (fatty acid 

synthesis type-1) products for incorporation [123]. A previous study on an MTB lysX 

mutant hypothesized that the mutation contributed towards the changes in membrane 

potential due to the alterations in phospholipid metabolism [78]. In conformance, our  

MAH strains upon structural investigation using electron microscopy revealed the presence 

of intracellular lipid-like vacuoles, which was found in abundance in the lysX mutant 

strains. Studies revealed that this particular phenotype was observed in hypervirulent MTB 

strains of the W-Beijing Lineage [124]. As the lysX mutant already showed a metabolic 

alteration which reflected an intracellular metabolic adaptation, these intracellular lipid 

accumulations would become an added advantage for the bacteria to thrive within the 

stress-filled environment of the host organism. 

Cell wall lipids play a critical role in the development of antibiotic resistance of 

mycobacterial species [125]. The membrane of mycobacteria comprises of different types 

of phospholipids: phosphatidylglycerol (PG), phosphatidylethanolamine (PE), 

phosphatidylinositol (PI), and phosphatidylinositol mannosides (PIMs) [126]. This 

impenetrable bacterial cell envelope however can be breached by antimicrobial peptides 

(AMPs). The AMPs are endogenous, cationic peptides which are in general the first line of 

action by the innate host defense against infection [127]. It has been shown that  the 

enzyme aminoacyl-phosphatidylglcerol synthase catalyzes the amino acylation of the 

phospholipid PG with alanine or lysine which renders resistance towards these 

antimicrobial agents, AMPs [128]. This amino acylation of PG results in the reduction of 

the net negative charge of the bacterial membrane as these aminoacyl-phosphatidylglcerols 

(eg. lysyl-phosphatidylglycerol (L-PG)) carry an overall positive net charge [129, 130]. 

Recently, a research study demonstrated that the lysX gene from MTB, which encodes a 

lysyl-tRNA synthetase was responsible for L-PG production, and a MTB lysX deletion 

mutant was found to be sensitive towards cationic antibiotics and peptides. Also the mutant 
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exhibited an altered membrane potential when compared to the wild type [77]. In the same 

way, the MAH lysX mutant from our study also proved to be hypersensitive towards 

positively charged antibiotics, such as clarithromycin, ethambutol and streptomycin. The 

complex mycobacterial cell wall contains an outer mycolic acid layer which is linked to the 

inner peptidoglycan layer via an additional arabinogalactan polymer. The biosynthetic 

pathways of arabinogalactan and mycolic acids constitute of several efficient drug targets 

for tuberculosis treatment [131]. The linkage between mycolated arabinogalactan to the 

peptidoglycan layer involves a key component named as α-L-rhamnopyranosyl residue 

[132]. Some of the enzymes which participate in the synthesis of rhamnosyl residue 

(RmlD, RfbD and RfbE) [133, 134] were strongly upregulated in the MAH lysX mutant, 

which may in part explain the change observed in ethambutol susceptibility. We realized 

that the complementation did not fully restore the phenotype of the mutant in antibiotic 

susceptibility testing, however this could be partially explained by the integration locus of 

the complementing plasmid which differed from the original location of the native gene in 

the bacterial chromosome [82]. 

Maloney and colleagues investigated on the phenotypic behavior of a lysX deletion mutant 

from MTB and displayed the influence of LysX activity on the survival and proliferation of 

the pathogen upon infection of the host. They hypothesized LysX to be an important 

necessity factor for acquiring full virulence potential in MTB [77]. The above mentioned 

results from our study on the MAH lysX mutant was also found to show similar  

phenotypic traits to those that has been reported in the case of MTB lysX mutant. Both the 

mutants revealed to be hypersensitive towards cationic antimicrobial agents likewise 

exhibiting an alteration in the phospholipid metabolism. Also both mutants were 

hypersensitive towards ROI, RNI and defensing (Ref Mtb). Since the infection studies with 

the MTB lysX mutant showed growth defects in THP-1 macrophages [135], we examined 

the intracellular growth proficiency of the MAH lysX mutant in human blood-derived 

monocytes (from buffy coats). Surprisingly, we discovered that the lysX mutant from 

MAH exhibited a significant increase in intracellular replication. Earlier studies have 

shown that the MTB mutants with defective cholesterol utilization displayed reduced 

survival in macrophages and mice [136, 137]. It was also reported that the MTB possesses 

the capacity to access and metabolize triacylglycerol from the host lipid storage during 

infection [138]. Moreover TAG from lipid bodies is considered to be the main energy 

source under conditions like starvation, oxygen depletion and reactivation in MTB [139]. 
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Our experimental data already confirmed the accumulation of lipid inclusions in the MAH 

lysX mutant under extracellular conditions and also showed an enrichment of the 

cholesterol catabolic pathway. These data put together explains the enhanced intracellular 

survival observed in the lysX mutant of MAH. 

One of the factors responsible for this differential behavior between the lysX mutants from 

MTB and M. avium may be explained by the structural differences between the two 

species. The MAC comprises of unique features such as strain-specific glycopeptidolipids( 

ssGPL), on its cell wall, which are absent in other mycobacterial species. The genes 

involved in the GPL synthesis are also implicated in macrophage penetration and some of 

these these genes were also found to be located in a pathogenicity island of MAH [42, 

140]. Also, M. avium disposes of the presence of multiple copies of various fatty acid 

degradation genes (fadD), indicating greater genetic variability to produce variation in cell 

wall composition which thereby impacts virulence and host specificity [141]. In addition, 

there exists a variability in the lysX gene size between the species - 3531bp (MTB) and 

3228bp (MAH) - and the two lysX genes exhibit only 81% identity at nucleic acid level 

[82]. 

Many investigators assume that these mycobacteria are analogous because they appear to 

inhabit the same intracellular compartment. From the aforementioned earlier studies, the 

survival mechanism of one Mycobacterium may not necessarily apply to other 

mycobacteria. M. avium and M. tuberculosis have been found to differ widely in their 

interaction with macrophages. Research reports also describe M. tuberculosis to be more 

sensitive than M. avium to potential bactericidal molecules, including nitric oxide [142]. 

Eventually, it points out that M. avium adopts distinct strategies to manipulate the host 

immune response and persist intracellularly. In this context, we focused on studying the 

interference of the MAH lysX gene on the host-pathogen interplay and its contribution to 

the differential virulence features. 

After infecting the host, the mycobacteria encounters a hostile macrophage environment 

comprising of several stress elements such as the reactive oxygen and nitrogen species 

(ROS, RNS), acidic pH of phagolysosome compartments and the release of antimicrobial 

peptides. ROS and RNS promote pathogen killing by damaging its DNA, lipids, and 

proteins. However, the mycobacteria have devised many stress resistance pathways which 

enable them to survive and multiply in this hostile environment [143]. In order to go into 



46 
 

detail about the increased intracellular growth of the MAH lysX mutant, we challenged our 

bacterial strains with host-mediated stresses. On comparing the results, the lysX mutant 

proved to be more sensitive in the presence of H2O2 and DETA-NO than the wild type and 

complemented strains in the extracellular state. The observed phenotype corresponded with 

our proteomic data, as the genes which are stated as ROS scavenger genes in MTB were 

differentially regulated in the MAH lysX mutant. The genes included those encoding 

catalase (katG) [144], alkylhydroperoxide reductase (ahpC) and thioesterase family protein 

(MAV_2246) [82]. Habitually, M. avium has the potency to tolerate ROS and RNS stress 

[145].Therefore , this sensitivity effect could be correlated to the impact of the lysX 

mutation on the defense mechanism of the bacterium. In contrast , the MTB lysX mutant 

was reported to show no effect on the exposure to H2O2 and DETA-NO [146].In the case 

of MTB infections, the ROS levels induced by the host immune cellsinfluences the 

survivability of the bacteria inside the host [147, 148], whereas in MAC infections, the 

resistivity to these host effector molecules does not affect their virulence in the host[149]. 

Initially, MTB encounters alveolar macrophages and lung epithelial cells during primary 

infection and studies have shown that these human airway epithelia produce antimicrobial 

peptides as a part of their antibacterial activity [150]. These peptides are small sized (3-5 

kDa) cationic, cytotoxic and oxygen dependent termed as defensins [151]. There exist 

different classes of defensins , which are variant in their structure and in antimicrobial 

activity [152]. The cationic defensins cause permeabilization of the cell membrane and 

leakage of intracellular metabolites through electrostatic binding to the anionic 

phospholipids in the bacterial membrane [153]. Since, our target lysX gene mediates the 

modification of phosphatidylglycerol with L-lysine, which confers resistance to defensins, 

we tested the sensitivity of the strains towards Human beta defensin-1. The MAH lysX 

mutant displayed a substantial decrease in cell viability when compared to the wild type. 

Also, in the absence of the lysX gene, MTB was shown to be susceptible to AMPs in vitro. 

It was fascinating to observe these differential behavioral aspects of the MAH lysX mutant 

that even though they exhibited hypersensitivity towards these stresses, they still showed 

an elevated growth in macrophages. In contrast, the MTB lysX mutant displayed a 

defective growth in macrophages due to their hypersensitiveness towards host –mediated 

stresses In general, the MAH causes infection in humans and other mammals by crossing 

mucosal barriers and they need to resist the action of these antimicrobial peptides (eg. Β- 

defensins, cathelicidin) found in the intestinal and respiratory tract mucosa [50]. 
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Nevertheless, findings also indicate that the components on the surface of the bacteria are 

also responsible for the susceptibility of the mycobacteria to these antimicrobial peptides. 

It is also believed that the mycobacteria must possess mechanisms to shift the expression 

of these membrane molecules depending on their environment [154]. In the same way, our 

proteomics study also showed a strong upregulation of PhoP in the lysX mutant, which had 

been described to be a major regulator of bacterial cell wall that provides resistance to 

antimicrobial peptides as well [155]. 

 
Recent study suggests that the β-defensins serves as a link between innate and adaptive 

immune response as they not only chemoattract macrophages but also play an important 

role in initiating Th1 inflammatory response [156]. It was also reported that the lysX 

mutant from MTB induced an elevated secretion of TNF-α and IL-6 cytokines after 

infecting monocyte-derived macrophages [77]. In our infection studies with PBMC, the 

MAH lysX mutant also reacted in the same manner, inducing higher levels of cytokine 

expression (IL-1β, IL- 12, TNFα and IL-10) than the wild type and the complemented 

strains. The outcome of a mycobacterial infection often depends on the balance between 

immune activation and inflammation [157]. The expression of TNF-alpha is said to be 

associated with the multiplication of the virulent MTB strains and it is reported to restrict 

the intracellular growth of MTB in alveolar macrophages. The intracellular phenotype of 

the MTB lysX mutant was in conformity with the above stated fact. Nevertheless, in our 

case the MAH lysX mutant in spite of displaying higher levels of cytokine expression, they 

still managed to survive and proliferate inside the human monocytes. Although the 

inflammatory responses are pivotal for contrasting mycobacterial infection [158], still 

under certain circumstances an extensive immune activation may lead to self-defeating for 

the host, consequently resulting in the development of the disease and aggravation [157, 

159]. Another logic behind this observed phenotype could be the result of differences 

between the cell wall structure of MTB and MAH. Their distinct cell wall characteristics 

trigger differential immune response and inflammation, thus manifesting variant 

pathogenicities [160]. As in M. avium, the morphotype and virulence also greatly influence 

the amount of the cytokine secreted. 

 

 

Previous studies have proven the capability of MAH cell wall components (e.g., GPL, 

lipoarabinomannan (LAM ) to alter host responses through the disruption of cytokine 
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networks ( especially those associated with Th1-type responses.), which might be either 

bacteria beneficial or bactericidal based on the structural conformations of these lipids[46, 

161]. Proteomic analysis of our strains also revealed a differential regulation of genes in 

the lysX mutant which were involved in GPL synthesis (MAV_4518, rmt4/mftb, fadE5, 

sap) and glycerophospholipid metabolism (MAV_1825, fbpB, fbpC) in comparison to that 

of the wild type. 

 
Normally, the human body reacts to any infectious agents through inflammatory response. 

However, when this inflammatory state becomes persistent, it may result in irreversible 

tissue damage [162]. The macrophages on exposure to severe inflammatory stresses fuse 

with each other forming multinucleated giant cells (MGCs). Beyond this, a chronic 

inflammation leads to the formation of `Granuloma’ which is a focal inflammatory 

structure consisting of an aggregation of transformed macrophages (MGCs) surrounded by 

other cell types like leukocytes, lymphocytes and plasma cells [163]. It has been reported 

that the mycobacterial diseases are granulomatous diseases and the MGCs are a histologic 

hallmark of granuloma that is suggested to limit tuberculosis infection [60]. Studies have 

also observed these granulomatous structures in the spleen and liver of M. avium-infected 

mice [164]. However, the function of these inflammatory structures still remains unclear, 

as it may yield both host-protective and bacteria-beneficial effects; either they can localize 

the infection preventing it from spreading or they may progress to necrosis of the infected 

macrophages, where in the mycobacteria can significantly alter the immune environment 

of the granuloma (eg reduction in efficiency to produce bactericidal products  such as  

nitric oxide, increased IL-10 secretion[165]) to facilitate its persistence [166]and thereby 

enabling the bacteria to disseminate [167, 168]. The MGCs and the mononuclear 

macrophages are said to have distinct morphological and transcriptional properties. The 

MGCsare also found to possess the ability to ingest infected apoptotic macrophages and 

contain high concentrations of nitric oxide [169]. An in vitro infection of macrophages 

with BCG showed an increased bacterial load in MGCs. Therefore it was suggested that 

the MGCs have an increased uptake capacity of infected and apoptotic cells but are 

inefficient in terminating the mycobacteria [170]. In our examination, the infection of IFNγ 

-activated HBDM with M. avium strains resulted in an induction of a higher rate of MGC 

formation in the lysX mutant than the wild type and complemented strain. As a correlation 

we found that the gene DprE1, which influences macrophage fusion was strongly 

overexpressed in the lysX mutant. This gene catalyzes the synthesis of cell-wall arabinans 
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which activate TLR2 response through lipomannan, thereby triggering the fusion process 

[171]. DprE1 is also considered as a validated tuberculosis drug target as it also plays a 

role in the mycobacterial growth and survival [172]. 

Mycobacterial virulence is referred as the ability of the pathogen to reside within host cells 

and evade the microbicidal mechanisms of host immune system [173]. Put together, our 

experimental results already hypothesizes that the mutation of the lysX gene impacts the 

virulence attributes of MAH. Therefore as a confirmation, we performed in vivo infection 

experiments employing an invertebrate infection model, G. mellonella larvae. 

Recently, the G. mellonella larvae are increasingly used to study host-pathogen  

interactions and for the screening of novel drug candidates in a number of microorganisms 

including Gram-positive, Gram-negative bacteria and fungi [174, 175]. Advantageously, 

G. mellonella shares a high degree of structural and functional similarity to that of the 

vertebral innate immune system [176, 177]. They also exhibit humoral immune responses 

by the production of antimicrobial peptides, melanization and through hemolymph clotting. 

In addition, the cellular immune response of the larval model include phagocytosis, 

nodulization (multiple hemocytes bind to clusters of bacteria to eliminate them in the 

hemolymph through activation of prophenoloxidase and melanization [178]), and 

encapsulation [179]. This model has been reported to be used in several mycobacterial 

species such as M. bovis BCG [180], M. abscessus[181],M. fortuitum [182], M. 

marinum[182] and M. aurum[182]. In our study, we have successfully established G. 

melonella as a suitable in vivo infection model for MAH. We assessed the virulence of the 

MAH strains by investigating the survival of mycobacteria and the infected host over a 

period of 10 to 18 days, respectively. From the analysis we found the lysX mutant to be 

more virulent than the wild type and the complemented strain. The larval group infected 

with the lysX mutant showed higher number of deaths and resulted in 100% mortality at 

the end of the experiment though they behaved similar to the wild type at the beginning. 

On quantification, the lysX mutated strain displayed a remarkable growth (around 100 

fold) in vivo particularly between the 5
th

 and the 10
th

 day post infection. The rapid death of 

the mutant infected larvae could also be correlated with the increased bacterial load 

observed. Moreover, it was interesting to see that the MAH lysX mutant showed an 

analogousgrowth pattern in the in vivo galleria model as it was in the in vitro model in 

HBDM, especially during the later stages of infection [82]. This phenotypic behavior of 

enhanced growth in HMDM and Galleria is in agreement with our proteomics data, as we 
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have seen that lysX mutation in MAH instigates a shift in the metabolism which pre-equips 

the bacteria to survive under intracellular host conditions. We also identified some 

virulence associated genes (ESX transport systems, EccA3, MAV_4606, MAV_0940; anti- 

apoptotic pathways, CysK [69], KatG [70], NuoG [71]) differentially regulated in the lysX 

mutant when compared to the other strains. 

 

In contrast to our results, the lysX mutant from MTB was reported to show growth defects 

in mice model and was clearly attenuated in guinea pigs [135]. This diversified 

characteristic feature observed between MAH and MTB may be explained by number of 

factors. Though the immune responses against MAH and MTB looks similar, they are 

markedly distinct in the host genetic control of susceptibility and in disease severity [183]. 

A prominent differentiating factor lies in the cell wall architecture, for eg. M. avium does 

not synthesize phtiocerol dimycocerosate (PDIM) which is reorganized by the macrophage 

membrane during MTB engulfment, altering the signaling pathways of phagocytic 

receptors [184]. However, the M. avium are equipped with the specialized 

glycopeptidolipids (GPL) in their cell wall which are absent in MTB and M. leprae. The 

multifunctional GPLs are involved in biofilm development and in turn important for MAH 

survival and proliferation in water supply sytems [48, 185]. It is also suggested to play a 

role in causing infections in immune deficient individuals [186]. Since the GPLs are 

associated with host-pathogen interactions and the lysX gene is also linked with the 

membrane phospholipid composition, we explored the GPL expression pattern in the MAH 

strains. On comparison, we found that the lysX mutant had a defective expression pattern. 

This result was coincidental with our proteomic studies, which showed a differential 

regulation of the GPL synthesis locus (rmt4, fadE5 & sap) in the lysX mutant strain. 

 

Another study on the MAH GPLs documented about the class of strain specific 

GPLs(ssGPL), which were competent to interact the macrophage receptors, thus altering 

the cytokine secretion. It was also illustrated that mutants lacking ssGPL elicited a 

hypersecretion of pro-inflammatory cytokines such as NF‐α, IL‐6, IL‐12 and RANTES 

[187]. The increased inflammatory response observed in our lysX mutant may also be 

explained by the above-stated fact. Research studies state that the GPL core has an 

immunodominant epitope in MAC strains. It was also demonstrated the whole GPLs as 

well as components of GPLs possess antigenicity [107]. We analyzed the antigenic 

reactivity of the GPL extracts from our MAH strains against the sera of MAH infected 
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patients and the lysX mutant was found yield the least signal of all. This is might be linked 

to the defective GPL pattern observed. 

Latest study on MTB mutants with mutations in the two-component regulatory system 

genes, mce operon, dosR regulon etc. have shown hypervirulence traits in mouse models 

[188]. The potential mechanisms of hypervirulence are described as the ability of the 

pathogen to survive and multiply intracellularly, to interfere with the host immune system 

(increased expression of inflammatory cytokines and granuloma formation) and higher 

bacterial burden in vivo [189]. The MAH lysX mutant has also displayed the above 

mentioned phenotypic traits which are defined to display the phenomenon of 

hypervirulence [62]. 

In summary, so far unknown functional aspects of the lysX gene from MAH was exposed 

through this study and the gene was found to play a major role in the modulation of MAH 

virulence. However to gain a better understanding of M. avium pathogenesis, future 

research needs to concentrate on the mechanisms employed by the mycobacteria to 

acclimatize themselves to different nutritional situations and to exploit the host’s immune 

response for the enhancement of the anti-inflammatory responses which aid in establishing 

a persistent infection. . A comparison study between MAH and MTB using lysX gene as a 

tool could be interesting to observe the differences in survival strategies in the 

mycobacterial species. This would definitely aid in generating potent drug targets which 

will act specifically on the different mycobacterial species. 
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6 Summary 

 

 
Non-tuberculous Mycobacteria (NTM) are an important but often overlooked group of 

pathogens, especially important in the immunocompromised and patients with pre-existing 

pulmonary disease. Their condition of environmental bacteria enables them to persist in a 

wide range of habitats. Although multiple virulence factors of M. avium have been 

proposed, the virulence strategies of M. avium are still not fully clear including the 

mechanisms allowing this environmental bacterium to cause chronic infections in humans. 

Lysyl-phosphatidylglycerol, a component of the mycobacterial membrane, contributes to 

the resistance towards cationic antimicrobial peptides. Its production is catalyzed by LysX, 

a bifunctional protein with lysyl transferase and lysyl transfer RNA synthetase activity. 

The main objective of the doctoral project was to characterize the role of the lysX gene for 

growth and host cell interaction of M. avium subsp. hominissuis (MAH). A considerable 

impact of the gene lysX on the different functional pathways of M. avium in particular the 

central carbon metabolism was demonstrated. Proteomics studies revealed that the lysX 

mutation led to a metabolic shift which enhanced the suitability of the bacteria to be 

adaptive towards the living conditions inside host cells. In addition, the mutation also 

caused an upregulation of lipid synthesis genes which resulted in an intracellular lipid 

accumulation. The measure of mycobacterial virulence has been stated to depend on the 

ability of the bacteria to invade, persist and replicate within the hostile macrophage 

environment. In accordance the lysX mutant already displayed a hypervirulent phenotype, 

exhibiting an excessive intracellular growth in in-vitro (human blood monocytes) and in- 

vivo (Galleria mellonella). Additionally, the lysX mutation also resulted in an 

hyperinflammatory behaviour (increased secretion of cytokines and increased MGC 

formation), which also indicates a novel functional role of lysX in regards to virulence in 

M. avium species. 

 
Interestingly, the results with respect to the host-pathogen interaction of an MAH with a 

deficient lysX gene obtained in this study contrasted with the results obtained by other 

authors with a lysX mutant from MTB. This makes it more interesting to further explore on 

the differential survival strategies of mycobacterial species. The lysX gene may also be 

instrumental in identifying factors involved in molecular pathogenesis of different 
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mycobacterial diseases, thus benefitting the health systems for developing strategies to 

combat these hardy pathogens. 
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7 Zusammenfassung 

 

 
Nichttuberkulöse Mykobakterien (NTM) sind eine wichtige, aber oft übersehene Gruppe 

von Krankheitserregern, die besonders wichtig bei immunsupprimierten und Patienten mit 

bereits bestehenden Lungenerkrankungen sind. Ihre Beschaffenheit als Umweltbakterien 

ermöglicht es ihnen, in einer Vielzahl von Lebensräumen zu überleben. Obwohl mehrere 

Virulenzfaktoren von M. avium beschrieben wurden, sind die Virulenzstrategien von M. 

avium noch nicht vollständig geklärt, einschließlich der Mechanismen, die es diesem 

Umweltkeim erlauben, chronische Infektionen beim Menschen zu verursachen. 

Lysyl-Phosphatidylglycerol, ein Bestandteil der Mykobakterienmembran, trägt zur 

Resistenz gegen kationische antimikrobielle Peptide bei. Die Produktion wird durch LysX 

katalysiert, ein bifunktionelles Protein mit Lysyltransferase- und Lysyltransfer-RNA- 

Synthetase-Aktivität. Das Hauptziel des Promotionsprojekts war es, die Rolle des lysX 

Gens für das Wachstum und die Wirtszellinteraktion von M. avium subsp. hominissuis 

(MAH) zu charakterisieren. Ein erheblicher Einfluss des lysX Gens auf verschiedene 

Stoffwechselwege von M. avium, insbesondere auf den zentralen Kohlenstoffstoffwechsel, 

konnte nachgewiesen werden. Proteomstudien zeigten, dass die lysX-Mutation zu einer 

metabolischen Verschiebung führte, die die Anpassung der Bakterien an die 

Lebensbedingungen in den Wirtszellen verbesserte. Darüber hinaus führte die Mutation 

auch zu einer Hochregulation der Lipidsynthesegene, was zu einer intrazellulären 

Lipidakkumulation führte. Das Ausmaß der mykobakteriellen Virulenz hängt von der 

Fähigkeit der Bakterien ab, in die Makrophagen einzudringen, dort zu persistieren und sich 

zu vermehren. Die lysX-Mutante erwies sich als hypervirulent, da sie sowohl ein 

übermäßiges intrazelluläres Wachstum in vitro (humane Monozyten) als auch ein 

verstärktes Wachstum in vivo (Galleria mellonella) aufwies. Darüber hinaus führte die 

lysX-Mutation auch zu einem hyperinflammatorischen Verhalten (erhöhte Sekretion von 

Zytokinen und erhöhte MGC-Bildung), was auf eine neuartige funktionelle Rolle von lysX 

bezüglich der Virulenz von M. avium hinweist. 

Interessanterweise standen die Ergebnisse dieser Studie in Bezug auf die Wirt-Pathogen- 

Interaktion von MAH mit defektem lysX Gen im Gegensatz zu den Ergebnissen anderer 

Autoren bezüglich einer lysX-Mutante von M. tuberculosis. Dies fordert zu weiteren 

Studien zu den unterschiedlichen Überlebensstrategien verschiedener Mykobakterienarten 



55 
 

heraus. Derartige Untersuchungen können dazu beitragen, Faktoren zu identifizieren, die 

an der molekularen Pathogenese verschiedener mykobakterieller Erkrankungen beteiligt 

sind. Dies kann zu neuen Strategien zur Bekämpfung dieser widerstandsfähigen 

Krankheitserreger beitragen und somit dem Gesundheitswesen zugute kommen. 
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9 Supplementary Material 

 

 
9.1 Supplementary Table S1: Complete list of proteins identified in the M. avium 

strains (W: wild-type, M: lysXmut and C: lysXcomp) by Proteome analysis 

and comparative statistical differential analysis 

 

 
Key: 

 

 T-test difference column is log2 fold change, 

 Minus symobol indicates proteins downregulated in group 1 when compared to that 

of the group 2 

 Numbers without symbol are upregulated in group 1 when compared to that of the 

group 2 

 Proteins with significant fold changes have a p-value < 0.05 

 Significant differentially expressed proteins of the lysX mutant compared to the 

wild type which were used for functional enrichment analysis are indicated in 

colours (red: upregulation, green: downregulation) 

 Proteins present in the pathway network (Fig. 2) are highlighted with a star * 

 
 

 

Protein names 

 

Gene 

names 

(ORF ) 

Statitical analysis (Student t-test) 

t-test difference 

 
P1M_P1W 

 
P1C_P1M 

 
 

P1C_P1W 

Chromosomal replication initiator protein DnaA MAH_0001 -0.04 0.35 0.31 

DNA polymerase III subunit beta MAH_0003 -0.05 0.01 -0.05 

DNA gyrase subunit B MAH_0006 0.15 -0.07 0.08 

DNA gyrase subunit A MAH_0007 0.08 -0.02 0.06 

Uncharacterized protein MAH_0008 1.44 -2.76 -1.33 

Cell wall synthesis protein CwsA MAH_0037 0.07 0.39 0.46 

Peptidyl-prolyl cis-trans isomerase MAH_0038 -0.31 0.04 -0.27 

Serine/threonine protein kinase MAH_0043 -0.16 0.25 0.10 

Serine/threonine protein kinase MAH_0044 -0.13 -0.08 -0.21 

Ppp protein MAH_0047 -0.12 0.01 -0.11 

Uncharacterized protein MAH_0049 0.04 -0.14 -0.09 

Acetyltransferase MAH_0061 -0.77 0.23 -0.54 

Uncharacterized protein MAH_0070 -0.62 -3.72 -4.34 

Uncharacterized protein MAH_0072 -0.11 0.07 -0.05 

UPF0301 protein MAH_0074 MAH_0074 0.01 -0.33 -0.32 

Proline-rich 28 kDa antigen MAH_0076 -1.39 0.55 -0.84 

Leucine--tRNA ligase (Leucyl-tRNA synthetase) MAH_0077 0.55 -0.37 0.18 
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Short chain dehydrogenase MAH_0078 0.18 -0.08 0.10 

MarR family transcriptional regulator MAH_0079 -0.42 0.43 0.01 

MmcI protein MAH_0083 0.16 -0.27 -0.11 

Alpha/beta hydrolase MAH_0084 0.01 -0.21 -0.20 

Myo-inositol-1-phosphate synthase MAH_0089 -0.07 0.07 0.00 

PadR family transcriptional regulator MAH_0090 -0.26 0.41 0.15 

30S ribosomal protein S6 MAH_0096 0.08 -0.22 -0.13 

Single-stranded DNA-binding protein (SSB) MAH_0097 0.14 -0.18 -0.04 

30S ribosomal protein S18 MAH_0098 0.10 0.07 0.17 

50S ribosomal protein L9 MAH_0099 -0.04 0.05 0.00 

Oxidoreductase, short chain 
dehydrogenase/reductase 

 

MAH_0109 
0.25 

 

-0.36 

 

-0.12 

FAD binding domain-containing protein MAH_0111 -0.39 0.05 -0.35 

Uncharacterized protein MAH_0137 -0.03 -0.12 -0.15 

Uncharacterized protein MAH_0145 -0.54 0.20 -0.33 

Cyclopropane-fatty-acyl-phospholipid synthase MAH_0146 -0.04 0.08 0.04 

Glyoxalase MAH_0147 -0.65 0.25 -0.40 

Uncharacterized protein MAH_0149 0.23 -0.12 0.11 

Oxidoreductase MAH_0152 0.25 -0.05 0.20 

Uncharacterized protein MAH_0154 -1.03 0.73 -0.30 

Acyl-CoA dehydrogenase domain-containing 
protein 

 

MAH_0161 
0.21 

 

-0.23 
 

-0.02 

Esat-6 like protein esxD MAH_0169 -0.28 0.53 0.24 

Esat-6 like protein esxC MAH_0170 -0.85 0.37 -0.48 

Uncharacterized protein MAH_0172 -0.02 0.08 0.07 

ATPase AAA MAH_0176 0.03 0.22 0.25 

Ferredoxin-dependent glutamate synthase 1 MAH_0181 0.74 -0.41 0.33 

Glutamate synthase subunit beta MAH_0182 0.20 -0.12 0.08 

Luciferase-like monooxygenase MAH_0183 4.07 -0.24 3.83 

Uncharacterized protein MAH_0193 -0.78 0.14 -0.64 

Uncharacterized protein MAH_0194 -0.19 0.14 -0.05 

Superoxide dismutase MAH_0196 0.35 -0.31 0.04 

Prephenate dehydratase (PDT) MAH_0202 5.65 0.36 6.01 

Phosphoglycerate mutase MAH_0203 -0.20 0.43 0.23 

Uncharacterized protein MAH_0206 0.00 5.42 5.42 

Serine--tRNA ligase MAH_0207 0.26 -0.16 0.09 

Uncharacterized protein MAH_0209 -1.12 0.10 -1.02 

Uncharacterized protein MAH_0213 0.20 -6.64 -6.43 

Cof family hydrolase MAH_0219 0.00 0.00 0.00 

UDP-galactopyranose mutase MAH_0223 0.20 0.27 0.47 

Bifunctional udp-galactofuranosyl transferase glft MAH_0224 -0.30 -0.50 -0.79 

Esterase MAH_0228 0.15 -0.15 0.00 

Antigen 85-C protein MAH_0229 -0.69 0.38 -0.31 

Fatty-acid-CoA ligase FadD32 MAH_0231 0.04 -0.10 -0.05 
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Polyketide synthase MAH_0232 0.52 -0.14 0.38 

Propionyl-CoA carboxylase beta chain MAH_0233 0.06 -0.08 -0.02 

Short chain dehydrogenase MAH_0245 5.22 -0.24 4.97 

Nucleoside diphosphate kinase regulator MAH_0248 -0.21 -0.13 -0.34 

O-antigen export system ATP-binding protein 

RfbB 

 

MAH_0252 
6.13 

 

-0.07 
 

6.07 

Uncharacterized protein MAH_0253 -0.09 -0.25 -0.34 

Cysteine desulfurase MAH_0255 -0.31 0.27 -0.04 

Quinone oxidoreductase MAH_0256 0.41 0.13 0.53 

Uncharacterized protein MAH_0257 -0.15 -1.07 -1.22 

Uncharacterized protein MAH_0258 -1.39 0.75 -0.64 

Enoyl-CoA hydratase MAH_0260 -0.14 0.22 0.08 

Uncharacterized protein MAH_0261 0.08 -0.15 -0.07 

Putative phenylalanine aminotransferase MAH_0263 -0.38 0.51 0.13 

Acyl-CoA dehydrogenase MAH_0265 0.00 4.58 4.58 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_0266 
-0.01 

 

-0.14 
 

-0.15 

Lipoprotein LpqH MAH_0271 -6.19 6.12 -0.07 

Phosphotransferase enzyme family protein MAH_0277 0.00 6.64 6.64 

Thiopurine S-methyltransferase superfamily 
protein 

 

MAH_0278 
0.00 

 

0.00 
 

0.00 

Phosphoglycerate mutase MAH_0279 -0.06 -0.09 -0.15 

Phosphotransferase enzyme family protein MAH_0280 0.07 -0.27 -0.20 

Uncharacterized protein MAH_0286 -0.11 -0.21 -0.32 

Uncharacterized protein MAH_0288 -0.22 0.03 -0.19 

Uncharacterized protein MAH_0295 -0.67 0.11 -0.56 

Uncharacterized protein MAH_0296 -0.94 0.44 -0.51 

GntR family transcriptional regulator MAH_0304 -0.45 0.27 -0.18 

Haloalkane dehalogenase MAH_0322 5.91 -5.91 0.00 

Uncharacterized protein MAH_0324 -0.40 0.21 -0.19 

DNA polymerase LigD polymerase subunit MAH_0327 0.01 -0.21 -0.20 

Oxidoreductase MAH_0332 0.00 5.56 5.56 

Uncharacterized protein MAH_0342 0.07 -0.12 -0.05 

Aspartate transaminase MAH_0344 0.17 -0.18 -0.01 

KanY protein MAH_0348 0.43 -0.36 0.07 

N-acetylmuramoyl-L-alanine amidase MAH_0349 0.34 -0.38 -0.03 

Nucleoid-associated protein MAH_0350 -0.29 0.22 -0.07 

Recombination protein RecR MAH_0351 -0.40 0.20 -0.20 

CobB/CobQ-like glutamine amidotransferase MAH_0352 -0.10 -5.10 -5.20 

2-isopropylmalate synthase MAH_0355 0.41 -0.16 0.26 

Aspartokinase MAH_0356 0.24 0.05 0.29 

Aspartate-semialdehyde dehydrogenase (ASA 
dehydrogenase) (ASADH) 

 

MAH_0357 
-0.01 

 

-0.04 
 

-0.04 

Thiopurine S-methyltransferase superfamily 
protein 

 

MAH_0369 
-0.13 

 

-0.02 
 

-0.15 

PadR family transcriptional regulator MAH_0372 0.58 -0.26 0.32 
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ATPase MAH_0377 0.22 -0.01 0.21 

GatB/Yqey domain-containing protein MAH_0381 0.49 -0.20 0.29 

Dehydrogenase MAH_0389 -0.28 -0.17 -0.45 

Intracellular protease, PfpI family MAH_0390 -0.56 0.04 -0.52 

Sigma activity regulator MAH_0397 -0.05 -0.03 -0.08 

Anti-sigma factor antagonist MAH_0398 -0.35 0.07 -0.28 

Uncharacterized protein MAH_0405 0.08 -0.01 0.07 

Secreted protein MAH_0407 0.08 0.46 0.54 

Membrane carboxypeptidase (Penicillin-binding 
protein) 

 

MAH_0408 
-0.10 

 

-0.14 
 

-0.24 

Anion-transporting ATPase MAH_0410 0.37 -0.30 0.07 

Anion-transporting ATPase MAH_0411 0.20 0.01 0.22 

Uncharacterized protein MAH_0412 -0.40 0.24 -0.17 

Translation initiation inhibitor MAH_0413 -0.27 0.17 -0.10 

Metallo-beta-lactamase MAH_0414 0.08 -0.29 -0.22 

Crp/Fnr family transcriptional regulator protein MAH_0415 0.33 0.13 0.46 

Uncharacterized protein MAH_0422 -1.55 0.18 -1.37 

Acetyl-coenzyme A synthetase (AcCoA 
synthetase) 

 

MAH_0424 
0.19 

 

-0.21 
 

-0.03 

Uncharacterized protein MAH_0430 0.40 -0.60 -0.19 

HAD-superfamily protein subfamily protein IB 
hydrolase 

 

MAH_0431 
0.00 

 

0.00 
 

0.00 

Uncharacterized protein MAH_0439 -0.07 0.13 0.06 

Cold shock protein A MAH_0441 -0.70 0.05 -0.65 

DNA topoisomerase 1 (DNA topoisomerase I) MAH_0443 -0.31 0.38 0.08 

RmlB2 protein MAH_0447 5.49 -0.29 5.20 

Inorganic pyrophosphatase MAH_0452 -0.39 0.35 -0.05 

Hypoxanthine-guanine phosphoribosyltransferase MAH_0456 0.20 -0.08 0.12 

Zinc-binding dehydrogenase MAH_0461 0.04 -0.31 -0.28 

Monooxygenase MAH_0462 0.11 0.00 0.11 

Alpha/beta hydrolase MAH_0463 0.07 -0.19 -0.12 

Dioxygenase MAH_0464 -0.66 0.55 -0.11 

GTP cyclohydrolase 1 MAH_0466 0.08 -0.15 -0.07 

2-amino-4-hydroxy-6- 

hydroxymethyldihydropteridine 
pyrophosphokinase 

 

MAH_0469 

 

0.00 
 

0.00 

 

0.00 

Uncharacterized protein MAH_0472 -0.13 0.08 -0.05 

Chalcone/stilbene synthase MAH_0473 -0.22 1.43 1.21 

Aspartate 1-decarboxylase MAH_0475 -0.42 -0.11 -0.53 

Type III pantothenate kinase MAH_0476 -0.71 0.47 -0.25 

Lysine--tRNA ligase MAH_0477 0.12 0.06 0.19 

LSR2 protein MAH_0478 -0.40 0.36 -0.04 

ATP-dependent chaperone ClpB MAH_0479 0.43 -0.16 0.27 

Antibiotic biosynthesis monooxygenase domain- 
containing protein 

 

MAH_0486 
-0.54 

 

0.35 
 

-0.19 

Carbonic anhydrase (Carbonate dehydratase) MAH_0489 -0.69 0.12 -0.57 



70 
 

Uncharacterized protein MAH_0490 -1.04 0.88 -0.16 

DNA integrity scanning protein DisA (Cyclic di- 
AMP synthase) 

 

MAH_0491 
0.07 

 

-0.06 
 

0.01 

Uncharacterized protein MAH_0493 0.07 -0.11 -0.04 

Transcriptional regulator MAH_0494 -0.52 0.30 -0.22 

2-C-methyl-D-erythritol 4-phosphate 
cytidylyltransferase 

 

MAH_0495 
0.12 

 

-0.25 
 

-0.13 

2-C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase (MECDP-synthase) 

 

MAH_0496 
5.44 

 

-0.70 
 

4.74 

Cysteine--tRNA ligase MAH_0497 0.50 0.28 0.79 

Uncharacterized protein MAH_0500 -0.15 1.20 1.05 

TetR family transcriptional regulator MAH_0511 0.24 -0.06 0.18 

Oxidoreductase MAH_0512 -1.43 0.58 -0.85 

Pigment production hydroxylase MAH_0515 -0.47 0.01 -0.46 

2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate 
hydrolase 

 

MAH_0516 
-0.62 

 

0.16 
 

-0.45 

FadE31 protein MAH_0523 -0.13 0.16 0.03 

Short chain dehydrogenase MAH_0526 -0.10 -0.01 -0.11 

Acetyl-CoA acetyltransferase MAH_0528 -0.06 0.18 0.12 

Coenzyme A transferase MAH_0533 -1.67 0.95 -0.72 

Short-chain dehydrogenase/reductase SDR MAH_0536 -0.09 0.06 -0.02 

Acetyl-CoA acetyltransferase MAH_0539 -0.15 0.18 0.03 

Cytochrome P450 MAH_0540 -0.22 -0.08 -0.30 

Acyl-CoA dehydrogenase MAH_0541 0.12 -0.12 0.00 

FadE29 protein MAH_0542 -0.58 0.44 -0.15 

Uncharacterized protein MAH_0543 -0.59 0.11 -0.47 

MaoC-like dehydratase MAH_0544 -0.47 0.20 -0.27 

Lipid-transfer protein MAH_0545 -0.08 -0.05 -0.13 

UfaA2 protein MAH_0547 -0.07 0.09 0.02 

3-ketosteroid 1-dehydrogenase MAH_0548 -0.27 0.41 0.13 

2-hydroxypenta-2,4-dienoate hydratase MAH_0549 0.52 -1.09 -0.57 

Acetaldehyde dehydrogenase MAH_0550 -0.22 0.20 -0.03 

4-hydroxy-2-oxovalerate aldolase (HOA) MAH_0551 -0.42 0.56 0.14 

Uncharacterized protein MAH_0553 0.07 0.11 0.18 

Short chain dehydrogenase MAH_0554 -0.28 -0.75 -1.03 

Uncharacterized protein MAH_0555 -0.47 -0.32 -0.78 

Rieske (2Fe-2S) domain-containing protein MAH_0557 0.18 0.02 0.20 

Acetyl-CoA acetyltransferase MAH_0560 0.02 -0.12 -0.10 

Lipid-transfer protein MAH_0561 -0.05 0.23 0.19 

Uncharacterized protein MAH_0562 0.17 -0.06 0.11 

FMN-dependent monooxygenase MAH_0563 -0.10 -0.40 -0.49 

Uncharacterized protein MAH_0564 -0.58 0.09 -0.49 

Cytochrome P450 MAH_0565 0.00 0.00 0.00 

Enoyl-CoA hydratase MAH_0567 -0.09 0.09 -0.01 

Acyl-CoA synthetase MAH_0568 -0.22 0.14 -0.08 
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Acyl-CoA dehydrogenase fadE27 MAH_0575 -0.01 -0.14 -0.14 

FadE26_1 protein MAH_0576 0.40 -0.21 0.19 

3-ketoacyl-ACP reductase MAH_0578 0.34 -0.18 0.15 

UDP-forming alpha,alpha-trehalose-phosphate 
synthase 

 

MAH_0591 
-0.24 

 

0.15 
 

-0.09 

Uncharacterized protein MAH_0592 -0.83 0.21 -0.61 

Enoyl-CoA hydratase/carnithine racemase MAH_0595 -0.15 0.14 -0.01 

Short chain dehydrogenase MAH_0596 -0.21 0.29 0.09 

Uncharacterized protein MAH_0600 -0.52 0.10 -0.41 

Lipoprotein LpqH MAH_0604 -1.46 -0.06 -1.52 

Uncharacterized protein MAH_0609 0.08 -0.13 -0.05 

DNA-binding response regulator PhoP MAH_0610 5.36 0.06 5.42 

HIT domain-containing protein MAH_0612 0.44 -0.72 -0.28 

Steroid delta-isomerase MAH_0613 -0.23 -0.02 -0.25 

Alcohol dehydrogenase B MAH_0614 0.02 -0.03 -0.01 

Oxidoreductase MAH_0623 -0.94 1.13 0.18 

Phosphoribosylamine--glycine ligase MAH_0625 -0.01 0.13 0.12 

Adenylosuccinate lyase (ASL) MAH_0630 -0.59 0.16 -0.43 

Phosphoribosylaminoimidazole- 
succinocarboxamide synthase 

 

MAH_0633 
0.09 

 

-0.23 
 

-0.14 

PtrBa protein MAH_0634 -0.54 0.16 -0.38 

Fumarate reductase/succinate dehydrogenase 
flavoprotein domain-containing protein 

 

MAH_0640 
4.33 

 

0.26 
 

4.58 

Zn-dependent hydrolase MAH_0641 0.30 -0.46 -0.16 

Phosphoribosylformylglycinamidine synthase 
subunit PurS 

 

MAH_0643 
-0.29 

 

0.09 
 

-0.20 

Phosphoribosylformylglycinamidine synthase 
subunit PurQ 

 

MAH_0644 
0.24 

 

-0.15 
 

0.09 

Cupin domain-containing protein MAH_0647 -0.53 0.13 -0.40 

29 kDa antigen Cfp29 MAH_0648 -0.05 -0.12 -0.17 

Dyp-type peroxidase MAH_0650 -0.06 0.28 0.22 

Probable M18 family aminopeptidase 2 MAH_0651 -0.74 0.03 -0.71 

Phosphoribosylformylglycinamidine synthase 
subunit PurL 

 

MAH_0654 
0.21 

 

-0.18 
 

0.04 

Phosphoribosylformylglycinamidine cyclo-ligase MAH_0658 -0.58 0.12 -0.46 

Uncharacterized protein MAH_0659 -0.44 0.38 -0.06 

Glycine cleavage T-protein MAH_0660 0.44 -0.37 0.07 

UPF0678 fatty acid-binding protein-like protein MAH_0662 -0.11 -0.04 -0.15 

SseC protein MAH_0663 -0.57 0.13 -0.43 

Sulfurtransferase MAH_0664 0.07 -0.22 -0.15 

Transcriptional regulator MAH_0668 0.07 -0.10 -0.03 

Phosphate-specific transport system accessory 
protein PhoU 

 

MAH_0674 
0.19 

 

0.11 
 

0.30 

Acyl-[acyl-carrier protein] desaturase DesA1 MAH_0677 0.11 -0.15 -0.04 

Cold-shock DNA-binding protein family MAH_0691 -1.38 1.14 -0.24 

Enoyl-CoA hydratase/isomerase MAH_0706 -0.08 0.35 0.27 

Acetyl-CoA acetyltransferase MAH_0709 7.18 0.14 7.31 
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NarL_1 protein MAH_0712 0.37 -0.64 -0.27 

Amidohydrolase MAH_0731 -0.63 0.50 -0.13 

Short chain dehydrogenase MAH_0736 0.08 -0.11 -0.04 

Carveol dehydrogenase MAH_0737 -0.28 0.39 0.11 

Transcriptional regulator MAH_0738 -0.13 0.50 0.37 

Uncharacterized protein MAH_0743 -0.89 -0.85 -1.74 

Amidohydrolase 2 MAH_0748 0.95 -0.65 0.30 

Acetyl-CoA acetyltransferase MAH_0750 -0.87 -0.13 -1.01 

Uncharacterized protein MAH_0755 5.35 -5.35 0.00 

Cytochrome P450 MAH_0788 5.24 -0.29 4.95 

Dehydrogenase MAH_0790 -0.17 -0.09 -0.26 

Aldehyde dehydrogenase MAH_0791 -0.25 0.03 -0.22 

L-carnitine dehydratase/bile acid-inducible 
protein F 

 

MAH_0792 
-0.07 

 

-0.12 
 

-0.19 

Amidohydrolase 2 MAH_0817 -0.09 0.19 0.09 

Pdc protein MAH_0823 0.00 -0.45 -0.45 

Cyclase/dehydrase MAH_0824 -0.89 -0.52 -1.41 

Cyclase/dehydrase MAH_0826 -0.55 0.10 -0.44 

Acetyl-CoA acetyltransferase (fadA)* MAH_0829 0.41 -0.15 0.26 

Acyl-CoA dehydrogenase (fadB)* MAH_0830 0.46 -0.13 0.32 

Methyltransferase type 12 MAH_0831 0.87 -0.40 0.47 

Methyltransferase type 12 MAH_0832 4.83 0.64 5.47 

F420-dependent oxidoreductase MAH_0833 0.04 0.04 0.07 

Luciferase family protein MAH_0836 -0.01 0.01 0.00 

Antibiotic biosynthesis monooxygenase domain- 
containing protein 

 

MAH_0837 
0.23 

 

-0.31 
 

-0.09 

DNA or RNA helicase of superfamily protein II MAH_0840 0.00 0.00 0.00 

Uncharacterized protein MAH_0842 0.86 -0.47 0.40 

Cyclic pyranopterin monophosphate synthase 
accessory protein 

 

MAH_0843 
-0.23 

 

-0.63 
 

-0.86 

Molybdenum cofactor synthesis domain- 
containing protein 

 

MAH_0844 
-0.29 

 

0.35 
 

0.06 

CspB protein MAH_0850 -0.14 0.09 -0.05 

Glutathione S-transferase MAH_0852 0.75 -0.22 0.53 

Cyclase/dehydrase MAH_0858 0.17 0.53 0.70 

MarR family transcriptional regulator MAH_0860 0.16 0.16 0.31 

Phosphoserine aminotransferase MAH_0864 0.18 -0.12 0.06 

NADPH:adrenodoxin oxidoreductase fprB MAH_0866 6.27 -6.27 0.00 

Glyoxalase MAH_0867 -0.12 0.00 -0.12 

Citrate synthase 2 MAH_0868 0.29 -0.19 0.09 

Citrate synthase(gltA1/prpC)* MAH_0870 0.38 -0.24 0.13 

Uncharacterized protein MAH_0872 0.16 -0.18 -0.02 

Two component transcriptional regulator MAH_0874 -0.04 -0.12 -0.16 

Enoyl-CoA hydratase (echA6)* MAH_0880 0.56 -0.23 0.34 

Metallo-beta-lactamase MAH_0881 0.11 -0.57 -0.46 
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Uncharacterized protein MAH_0884 -0.50 0.12 -0.37 

Uncharacterized protein MAH_0885 0.31 -0.47 -0.16 

Uncharacterized protein MAH_0888 -0.31 0.08 -0.23 

Oxidoreductase MAH_0893 -0.02 0.01 -0.02 

Short chain dehydrogenase MAH_0897 -0.11 0.30 0.19 

Phosphate-binding protein PstS MAH_0898 0.69 -0.55 0.14 

Non-homologous end joining protein Ku MAH_0901 -0.32 0.10 -0.23 

Bifunctional 2-hydroxyhepta-2,4-diene-1,7-dioate 
isomerase 

 

MAH_0908 
0.56 

 

-0.60 

 

-0.04 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_0909 
-0.15 

 

-0.18 
 

-0.33 

EchA12_1 protein MAH_0910 0.22 -0.39 -0.18 

Oxidoreductase MAH_0911 0.08 -0.05 0.04 

Stas domain-containing protein MAH_0912 -1.18 0.63 -0.55 

P-aminobenzoate N-oxygenase AurF MAH_0914 3.80 -0.57 3.23 

Glucose-6-phosphate isomerase (GPI) (pgi)* MAH_0918 0.41 -0.18 0.23 

Chorismate mutase MAH_0919 0.02 -0.02 0.00 

Succinyl-CoA ligase [ADP-forming] subunit beta MAH_0923 0.06 -0.05 0.02 

Succinyl-CoA ligase [ADP-forming] subunit 
alpha 

 

MAH_0924 
-0.25 

 

0.15 
 

-0.11 

Luciferase family protein MAH_0926 0.24 -0.08 0.16 

Phosphoribosylglycinamide formyltransferase MAH_0929 -0.05 0.12 0.07 

Bifunctional purine biosynthesis protein PurH MAH_0930 -0.16 0.29 0.13 

Uncharacterized protein MAH_0931 -0.42 0.36 -0.07 

Mg-chelatase subunit ChlI MAH_0932 0.23 -0.21 0.02 

Morphine 6-dehydrogenase MAH_0934 0.27 -0.16 0.11 

Enoyl-CoA hydratase (echA7)* MAH_0936 0.37 -0.44 -0.07 

Acyl-CoA dehydrogenase domain-containing 
protein (fadE12)* 

 

MAH_0937 
0.30 

 

-0.06 
 

0.24 

Carbamoyl-phosphate synthase L subunit 
(accA2)* 

 

MAH_0938 
0.61 

 

-0.37 
 

0.24 

Acetyl-CoA carboxylase carboxyltransferase MAH_0939 0.47 -0.51 -0.04 

Acyl-CoA dehydrogenase domain-containing 
protein 

 

MAH_0940 
0.31 

 

0.05 
 

0.36 

Uncharacterized protein MAH_0941 -0.39 -0.02 -0.41 

Two component response transcriptional 
regulator MprA 

 

MAH_0943 
-0.01 

 

-0.63 
 

-0.64 

Protease MAH_0945 0.25 -0.27 -0.02 

MoaB2 protein MAH_0946 0.06 -0.20 -0.13 

Large-conductance mechanosensitive channel MAH_0947 -1.51 1.26 -0.25 

Regulatory protein, FmdB family protein MAH_0949 0.29 -0.37 -0.09 

UTP-glucose-1-phosphate uridylyltransferase MAH_0951 -0.05 -0.05 -0.09 

Molybdopterin biosynthesis protein moeA MAH_0952 -0.01 0.15 0.14 

ISAfe7, transposase OrfA MAH_0956 -0.48 1.34 0.86 

Uncharacterized protein MAH_0963 -0.38 0.19 -0.19 

Phosphoheptose isomerase MAH_0975 -5.71 4.45 -1.26 

Arginine deiminase (ADI) MAH_0981 -0.01 0.11 0.10 
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Methyltransferase FkbM MAH_0990 0.07 -0.50 -0.43 

Chain length determinant protein MAH_0992 -1.18 0.22 -0.96 

Uncharacterized protein MAH_1010 0.00 5.80 5.80 

Methionine--tRNA ligase MAH_1013 0.38 -0.30 0.08 

Long-chain-fatty-acid--CoA ligase MAH_1018 -0.16 0.02 -0.13 

50S ribosomal protein L25 (General stress protein 
CTC) 

 

MAH_1020 
0.23 

 

-0.38 
 

-0.15 

Retinol dehydrogenase MAH_1021 0.20 -0.01 0.19 

Arsenate reductase MAH_1023 0.09 -0.04 0.06 

Ribose-phosphate pyrophosphokinase (RPPK) MAH_1024 0.05 -0.09 -0.04 

Bifunctional protein GlmU MAH_1025 0.21 -0.09 0.12 

TetR-family transcriptional regulator MAH_1026 -0.21 -0.53 -0.75 

Nucleoside triphosphate pyrophosphohydrolase MAH_1029 0.53 -1.45 -0.92 

Enolase MAH_1031 -0.14 0.03 -0.11 

Winged helix family two component 
transcriptional regulator 

 

MAH_1036 
-2.31 

 

0.92 
 

-1.39 

EsaT-6 like protein EsxN MAH_1044 -0.50 0.22 -0.28 

ESAT-6-like protein MAH_1045 -0.32 0.30 -0.02 

Long-chain-fatty-acid-CoA ligase MAH_1054 -0.01 0.62 0.61 

Enoyl-CoA hydratase MAH_1063 0.10 0.02 0.12 

3-hydroxyisobutyryl-CoA hydrolase MAH_1064 -0.15 0.03 -0.12 

Acetyl-CoA acetyltransferase (fadA3)* MAH_1066 0.21 -0.16 0.05 

CysM2 protein MAH_1069 -0.12 -0.08 -0.20 

Cystathionine gamma-synthase MAH_1071 -0.33 -0.22 -0.55 

Transcription elongation factor GreA (Transcript 
cleavage factor GreA) 

 

MAH_1072 
0.16 

 

-0.13 
 

0.03 

Mycothiol S-conjugate amidase MAH_1074 -0.01 -0.23 -0.23 

Steroid delta-isomerase MAH_1077 -0.35 0.16 -0.19 

Serine hydroxymethyltransferase (SHMT) 
(Serine methylase) 

 

MAH_1083 
0.43 

 

-0.30 

 

0.13 

DesA2 protein MAH_1084 0.11 -0.19 -0.08 

Fumarate hydratase class II (Fumarase C) MAH_1089 0.19 -0.16 0.04 

Fructose-1,6-bisphosphatase MAH_1090 0.07 -0.07 0.00 

Dienelactone hydrolase MAH_1092 0.19 -0.09 0.11 

Cholesterol dehydrogenase MAH_1094 5.06 -0.22 4.84 

Exodeoxyribonuclease 7 small subunit MAH_1095 -0.17 0.08 -0.09 

Uncharacterized protein MAH_1097 0.14 -0.17 -0.02 

4-hydroxy-3-methylbut-2-enyl diphosphate 
reductase 

 

MAH_1098 
0.20 

 

0.48 
 

0.68 

Ribosome-binding ATPase YchF MAH_1100 0.07 -0.06 0.00 

Uncharacterized protein MAH_1103 -0.67 0.52 -0.15 

Glyoxalase MAH_1106 0.31 -0.36 -0.05 

Antibiotic biosynthesis monooxygenase MAH_1110 0.00 0.17 0.17 

Glucose-6-phosphate 1-dehydrogenase (G6PD) MAH_1113 -0.01 -0.29 -0.29 

6-phosphogluconate dehydrogenase MAH_1114 0.10 -0.09 0.00 

BpoB protein MAH_1115 -0.70 0.14 -0.56 
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Oxidoreductase, short chain 
dehydrogenase/reductase 

 

MAH_1125 
0.04 

 

0.23 
 

0.27 

Aldehyde dehydrogenase MAH_1136 -0.82 0.99 0.17 

Acetyl-CoA acetyltransferase MAH_1137 -0.21 0.14 -0.08 

Carnitinyl-CoA dehydratase MAH_1138 -0.54 0.39 -0.14 

Enoyl-CoA hydratase MAH_1144 -0.19 0.04 -0.14 

Alpha-methylacyl-CoA racemase MAH_1145 -0.35 0.11 -0.24 

Uncharacterized protein MAH_1146 -0.12 0.33 0.21 

GntR family transcriptional regulator MAH_1151 0.07 -0.08 -0.01 

Pyridoxamine 5'-phosphate oxidase MAH_1153 0.16 -0.39 -0.23 

Uncharacterized protein MAH_1154 -0.53 0.51 -0.02 

HhH-GPD family protein MAH_1155 -0.28 -0.39 -0.68 

Putative pterin-4-alpha-carbinolamine 
dehydratase (PHS) 

 

MAH_1161 
-0.11 

 

-0.14 
 

-0.25 

Uncharacterized protein MAH_1162 -0.10 -0.11 -0.21 

GTP-binding protein TypA/BipA MAH_1168 0.19 -0.27 -0.08 

TetR family transcriptional regulator MAH_1170 5.38 -5.38 0.00 

Ferredoxin MAH_1176 -0.21 -0.23 -0.44 

N-succinyldiaminopimelate aminotransferase MAH_1177 0.02 0.01 0.03 

PPE family protein MAH_1183 -0.42 0.84 0.41 

Adenylyl-sulfate kinase MAH_1184 -0.42 -0.19 -0.61 

Sulfate adenylyltransferase MAH_1185 0.11 0.18 0.29 

Uncharacterized protein MAH_1186 -0.21 0.15 -0.06 

Hydrolase, alpha/beta hydrolase family protein MAH_1201 0.65 -0.55 0.09 

2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N- 
succinyltransferase 

 

MAH_1204 
0.15 

 

-0.10 
 

0.05 

Long-chain-acyl-CoA synthetase MAH_1212 -0.15 0.38 0.23 

Glucose-1-phosphate adenylyltransferase MAH_1218 0.46 -0.44 0.02 

ABC transporter-like protein MAH_1222 5.15 -5.15 0.00 

O-methyltransferase, family protein 3 MAH_1224 -0.02 -0.19 -0.21 

Trypsin MAH_1227 -0.10 0.20 0.10 

Iron-sulfur cluster carrier protein MAH_1229 0.31 -0.21 0.10 

Mg/Co/Ni transporter MgtE MAH_1232 0.00 6.15 6.15 

SugC protein MAH_1238 -0.32 0.15 -0.17 

Malate dehydrogenase (mdh)* MAH_1241 0.15 -0.07 0.08 

Short chain alcohol dehydrogenase MAH_1245 0.56 -0.30 0.27 

Alpha-ketoglutarate decarboxylase MAH_1246 0.33 -0.15 0.18 

ATP-dependent RNA helicase DeaD MAH_1263 0.04 -0.01 0.03 

Oxidoreductase, FAD-binding MAH_1267 -0.14 0.04 -0.09 

Monooxygenase MAH_1271 -0.22 0.27 0.06 

HIT family protein MAH_1274 5.44 -5.44 0.00 

Amidase (amiB2)* MAH_1275 5.40 -1.21 4.19 

Uncharacterized protein MAH_1278 0.66 -0.14 0.52 

Carbonic anhydrase MAH_1296 -0.18 0.36 0.19 

Uncharacterized protein MAH_1297 0.11 -0.13 -0.02 
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StaS protein MAH_1300 0.19 -0.02 0.17 

Glyoxalase/bleomycin resistance 
protein/dioxygenase 

 

MAH_1301 
-0.28 

 

0.03 
 

-0.25 

Glyoxalase/bleomycin resistance 
protein/dioxygenase 

 

MAH_1302 
-0.20 

 

-0.05 
 

-0.26 

Steroid delta-isomerase MAH_1306 -0.70 0.29 -0.41 

Uncharacterized protein MAH_1310 -4.41 0.00 -4.41 

Arginine--tRNA ligase MAH_1314 5.43 0.03 5.46 

Diaminopimelate decarboxylase (DAP 
decarboxylase) (DAPDC) 

 

MAH_1315 
0.15 

 

-0.41 

 

-0.26 

Homoserine dehydrogenase MAH_1316 0.21 -0.03 0.19 

Threonine synthase MAH_1317 0.04 -0.12 -0.08 

Transcription termination factor Rho MAH_1319 -0.12 0.07 -0.05 

50S ribosomal protein L31 MAH_1320 0.15 0.04 0.19 

Peptide chain release factor 1 (RF-1) MAH_1321 -0.17 0.20 0.04 

Translation factor (SUA5) MAH_1323 0.12 -0.13 0.00 

ATP synthase subunit b (ATP synthase F(0) 
sector subunit b) 

 

MAH_1328 
-0.23 

 

0.55 
 

0.32 

F0F1 ATP synthase subunit delta MAH_1329 -0.15 0.46 0.31 

ATP synthase subunit alpha MAH_1330 0.20 -0.19 0.01 

ATP synthase gamma chain (ATP synthase F1 
sector gamma subunit) 

 

MAH_1331 
0.01 

 

0.08 
 

0.09 

ATP synthase subunit beta MAH_1332 0.07 -0.20 -0.13 

ATP synthase epsilon chain (ATP synthase F1 
sector epsilon subunit) 

 

MAH_1333 
-0.06 

 

-0.02 
 

-0.08 

ATP:cob(I)alamin adenosyltransferase MAH_1335 0.08 -0.29 -0.22 

UDP-N-acetylglucosamine 1- 
carboxyvinyltransferase 

 

MAH_1336 
0.75 

 

-0.22 
 

0.53 

Methylated-DNA--protein-cysteine 
methyltransferase 

 

MAH_1338 
-0.95 

 

-4.41 
 

-5.36 

Methylmalonyl-CoA epimerase MAH_1346 -0.03 0.07 0.04 

Acetyl-CoA acetyltransferase (fadA4)* MAH_1347 0.33 -0.21 0.12 

Thioredoxin MAH_1348 -0.14 -0.15 -0.29 

1,4-alpha-glucan branching enzyme GlgB MAH_1349 -0.09 -0.15 -0.24 

Alpha-1,4 glucan phosphorylase MAH_1351 0.45 -0.38 0.07 

Nicotinate phosphoribosyltransferase MAH_1353 -0.52 -0.68 -1.20 

ATP-dependent Clp protease adapter protein 
ClpS 

 

MAH_1354 
-0.75 

 

-0.11 
 

-0.86 

Transcriptional regulator MAH_1355 0.34 -0.30 0.05 

Metal-dependent hydrolase of the beta-lactamase 
III 

 

MAH_1359 
-0.41 

 

0.35 
 

-0.07 

Ribonuclease PH (RNase PH) MAH_1360 -0.14 -0.01 -0.16 

Uncharacterized protein MAH_1368 -1.88 1.08 -0.80 

Acyl-CoA dehydrogenase MAH_1374 -0.14 -0.62 -0.76 

3-ketoacyl-ACP reductase MAH_1375 0.47 -0.29 0.18 

Acyl-CoA dehydrogenase MAH_1378 0.12 1.07 1.18 

TetR family transcriptional regulator MAH_1393 0.11 -0.25 -0.14 

Uncharacterized protein MAH_1396 4.73 -4.73 0.00 
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AccD4_2 protein ( MAV_1608)* MAH_1415 5.11 0.08 5.19 

Alpha/beta hydrolase MAH_1423 -0.50 0.23 -0.27 

Anti-anti-sigma factor MAH_1426 -0.57 0.28 -0.29 

Amidohydrolase MAH_1431 -0.45 0.49 0.04 

Uncharacterized protein MAH_1446 -0.72 0.40 -0.32 

Fatty acid synthase fas MAH_1454 0.82 -0.14 0.68 

Holo-[acyl-carrier-protein] synthase (Holo-ACP 
synthase) 

 

MAH_1455 
0.19 

 

0.26 
 

0.45 

Uncharacterized protein MAH_1456 0.14 -5.89 -5.75 

Alkyl hydroperoxide reductase/ Thiol specific 
antioxidant/ Mal allergen 

 

MAH_1457 
0.18 

 
-0.22 

 

-0.05 

Oligoribonuclease MAH_1467 0.23 -0.16 0.07 

ATP-binding protein MAH_1468 0.08 -0.56 -0.49 

Short chain dehydrogenase MAH_1469 0.45 -0.36 0.09 

AccD1 protein MAH_1473 0.39 -0.44 -0.05 

Acetyl-/propionyl-coenzyme A carboxylase 
subunit alpha 

 

MAH_1474 
0.24 

 

-0.19 
 

0.05 

FadE19 protein MAH_1475 0.08 -0.14 -0.06 

Acyl dehydratase MAH_1476 0.23 -0.29 -0.06 

CitE protein MAH_1477 -0.01 -0.02 -0.02 

Enoyl-CoA hydratase MAH_1481 -0.03 0.00 -0.04 

Uncharacterized protein MAH_1484 0.78 0.27 1.05 

Acyltransferase MAH_1487 0.00 0.00 0.00 

ABC transporter ATP-binding protein MAH_1491 0.28 -0.11 0.17 

Uncharacterized protein MAH_1494 -0.04 -5.46 -5.50 

Alpha-amylase MAH_1496 0.29 0.00 0.29 

Uncharacterized protein MAH_1500 -0.14 0.08 -0.05 

Aminopeptidase N MAH_1501 0.44 -0.20 0.25 

DsbA oxidoreductase MAH_1502 0.10 -0.09 0.01 

Ribose-5-phosphate isomerase B MAH_1503 0.05 0.00 0.04 

Trigger factor (TF) MAH_1506 -0.18 -0.10 -0.28 

ATP-dependent Clp protease proteolytic subunit MAH_1507 0.42 -0.24 0.18 

ATP-dependent Clp protease proteolytic subunit MAH_1508 0.03 -0.07 -0.04 

ATP-dependent Clp protease ATP-binding 
subunit ClpX 

 

MAH_1510 
0.12 

 

-0.12 
 

0.00 

2-oxoglutarate--ferredoxin oxidoreductase alpha 

subunit 

 

MAH_1511 
-0.03 

 

0.02 
 

-0.01 

2-oxoglutarate ferredoxin oxidoreductase subunit 
beta 

 

MAH_1512 
0.16 

 

-0.10 
 

0.07 

Probable molybdenum cofactor 
guanylyltransferase 

 

MAH_1513 
0.19 

 

-0.24 
 

-0.05 

Valine--tRNA ligase MAH_1517 0.78 -0.38 0.40 

FolC protein MAH_1518 -0.30 0.18 -0.12 

Nucleoside diphosphate kinase (NDK) (NDP 
kinase) 

 

MAH_1520 
0.30 

 

-0.24 
 

0.06 

Rne protein MAH_1521 -0.06 -0.08 -0.14 

50S ribosomal protein L21 MAH_1522 -0.09 0.25 0.16 
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50S ribosomal protein L27 MAH_1523 -0.38 0.22 -0.16 

GTPase Obg MAH_1524 0.04 -0.03 0.01 

Glutamate 5-kinase MAH_1525 0.00 0.00 0.00 

NAD synthetase MAH_1530 -0.65 -0.22 -0.86 

Gamma-glutamyl phosphate reductase (GPR) MAH_1540 -0.17 0.09 -0.08 

Ribosomal silencing factor RsfS MAH_1544 -0.02 -0.46 -0.48 

Phosphoglycerate mutase MAH_1545 0.00 0.01 0.01 

Dihydrodipicolinate reductase N-terminus 
domain-containing protein 

 

MAH_1550 
-0.24 

 

0.15 
 

-0.09 

Pyridoxamine 5'-phosphate oxidase MAH_1558 -0.65 0.39 -0.26 

Pimeloyl-CoA dehydrogenase MAH_1559 -0.10 0.01 -0.09 

Acyl-CoA dehydrogenase MAH_1560 -0.20 0.13 -0.08 

30S ribosomal protein S20 MAH_1564 -0.80 0.88 0.08 

CBS domain-containing protein MAH_1570 -0.59 0.41 -0.18 

Glycoside hydrolase 15-like protein MAH_1574 -0.13 -0.18 -0.31 

Sulfate/thiosulfate import ATP-binding protein 
CysA 

 

MAH_1579 
0.00 

 

4.77 
 

4.77 

Acyl-[acyl-carrier protein] desaturase DesA1 MAH_1585 0.25 -0.06 0.19 

Low molecular weight antigen MTB12 MAH_1635 -0.67 0.13 -0.54 

Low molecular weight antigen MTB12 MAH_1636 -0.63 0.37 -0.26 

Uncharacterized protein MAH_1639 5.18 0.50 5.69 

Chaperone protein DnaJ MAH_1642 0.35 -0.21 0.15 

Uncharacterized protein MAH_1653 0.49 -0.89 -0.39 

ArsR family transcriptional regulator MAH_1655 5.45 -0.66 4.80 

Glycine--tRNA ligase MAH_1656 0.52 -0.31 0.22 

Cysteine synthase MAH_1670 -0.24 -0.03 -0.28 

Major membrane protein 1 MAH_1673 0.24 -0.35 -0.10 

Cysteine desulfurase MAH_1674 0.12 -0.16 -0.04 

Sulfotransferase MAH_1677 -4.40 0.00 -4.40 

Acyl-CoA oxidase MAH_1693 0.41 -0.16 0.25 

Modulator of DNA gyrase MAH_1705 -0.25 -0.14 -0.39 

CalR5 protein MAH_1706 0.29 -0.26 0.03 

Uncharacterized protein MAH_1707 -0.59 1.38 0.79 

Methyltransferase, UbiE/COQ5 family protein MAH_1725 -0.20 0.20 0.00 

Uncharacterized protein MAH_1730 -0.21 0.17 -0.04 

Chaperone protein HtpG (Heat shock protein 
HtpG) (High temperature protein G) 

 

MAH_1731 
-0.07 

 

-0.09 
 

-0.16 

Luciferase family protein MAH_1733 -0.27 -0.01 -0.29 

MgtE intracellular domain protein MAH_1735 -0.19 0.05 -0.14 

Acetyl-CoA C-acyltransferase (fadA5)* MAH_1740 5.62 -0.09 5.53 

CysQ_2 protein MAH_1742 -0.24 0.00 -0.25 

Haloalkane dehalogenase MAH_1743 -0.55 0.72 0.16 

Sulfurtransferase MAH_1753 0.06 0.10 0.16 

Acyl-CoA synthase* MAH_1787 5.03 -5.03 0.00 

NAD dependent epimerase/dehydratase MAH_1789 0.11 -0.01 0.10 
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Cupin domain-containing protein MAH_1813 -0.08 -0.03 -0.12 

Aldo/keto reductase MAH_1816 0.42 -0.30 0.11 

Threonine--tRNA ligase MAH_1820 0.03 -0.06 -0.03 

Diadenosine tetraphosphate MAH_1821 0.05 -0.27 -0.23 

Pyridoxal 5'-phosphate synthase subunit PdxS 
(PLP synthase subunit PdxS) 

 

MAH_1826 
0.21 

 

-0.20 
 

0.01 

TesB2 protein MAH_1827 0.34 0.11 0.45 

Pyridoxal 5'-phosphate synthase subunit PdxT MAH_1828 5.00 -5.00 0.00 

Probable transcriptional regulatory protein 
MAH_1829 

 

MAH_1829 
0.03 

 

-0.13 
 

-0.11 

Holliday junction ATP-dependent DNA helicase 
RuvA 

 

MAH_1836 
-0.33 

 

0.23 
 

-0.11 

4-aminobutyrate aminotransferase MAH_1840 0.45 -0.09 0.37 

Peptidyl-prolyl cis-trans isomerase (PPIase) MAH_1848 0.38 -5.68 -5.30 

Histidine--tRNA ligase MAH_1850 0.09 0.26 0.35 

Dihydrodipicolinate synthetase MAH_1859 0.18 -0.15 0.03 

Metallopeptidase, zinc binding MAH_1860 -1.26 0.85 -0.40 

Aspartyl-tRNA synthetase MAH_1863 0.12 0.11 0.23 

Uncharacterized protein MAH_1864 5.94 -5.94 0.00 

Deazaflavin-dependent nitroreductase family 
protein 

 

MAH_1868 
0.03 

 

-0.20 
 

-0.17 

Uncharacterized protein MAH_1870 -0.61 0.63 0.02 

Uncharacterized protein MAH_1876 -0.48 -0.03 -0.51 

Uncharacterized protein MAH_1877 -0.82 0.38 -0.44 

Secondary thiamine-phosphate synthase enzyme MAH_1878 -0.19 -0.19 -0.39 

Alanine--tRNA ligase MAH_1879 0.18 -0.12 0.06 

Chorismate synthase (CS) MAH_1893 0.48 -0.25 0.23 

3-dehydroquinate synthase MAH_1895 0.50 -0.31 0.19 

3-dehydroquinate dehydratase (3- 
dehydroquinase) 

 

MAH_1896 
4.50 

 

0.11 
 

4.61 

PepQ protein MAH_1898 -0.02 -0.11 -0.12 

Elongation factor P MAH_1899 -0.07 -0.03 -0.09 

N utilization substance protein B homolog 
(Protein NusB) 

 

MAH_1900 
0.00 

 

0.00 
 

0.00 

Bifunctional protein PyrR MAH_1916 0.05 -0.25 -0.20 

Aspartate carbamoyltransferase MAH_1917 0.53 -0.35 0.18 

Dihydroorotase (DHOase) MAH_1918 0.33 -0.09 0.24 

Carbamoyl-phosphate synthase small chain MAH_1920 0.29 -0.45 -0.16 

Carbamoyl-phosphate synthase large chain MAH_1921 0.23 0.05 0.28 

TobE protein MAH_1923 -0.28 0.00 -0.27 

Integration host factor MAH_1924 0.04 -0.01 0.03 

Guanylate kinase MAH_1925 -0.77 -0.38 -1.15 

DNA-directed RNA polymerase subunit omega 
(RNAP omega subunit) 

 

MAH_1926 
-0.34 

 

0.05 
 

-0.29 

S-adenosylmethionine synthase (AdoMet 
synthase) 

 

MAH_1928 
0.09 

 

0.00 
 

0.08 

Alpha/beta hydrolase MAH_1930 -0.12 0.15 0.03 
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Ribulose-phosphate 3-epimerase (rpe)* MAH_1937 5.31 0.12 5.43 

Riboflavin biosynthesis protein RibD MAH_1938 0.14 -6.07 -5.93 

LprG protein MAH_1940 0.22 -0.28 -0.06 

Riboflavin synthase subunit alpha MAH_1941 0.41 -5.65 -5.24 

Riboflavin biosynthesis protein RibBA MAH_1942 -0.26 0.21 -0.05 

6,7-dimethyl-8-ribityllumazine synthase (DMRL 
synthase) (LS) (Lumazine synthase) 

 

MAH_1943 
0.07 

 

-0.26 
 

-0.18 

Putative sporulation transcription regulator WhiA MAH_1951 0.00 0.16 0.16 

Phospholipid/glycerol acyltransferase MAH_1961 -0.08 -0.14 -0.23 

Glyceraldehyde-3-phosphate dehydrogenase 
(gap)* 

 

MAH_1965 
0.19 

 
-0.10 

 

0.09 

Phosphoglycerate kinase MAH_1966 0.04 -0.10 -0.06 

Triosephosphate isomerase (TIM) (TPI) MAH_1967 0.19 -0.06 0.13 

General stress protein 69 MAH_1972 0.72 -0.62 0.10 

Uncharacterized protein MAH_1974 0.11 0.13 0.24 

6-phosphogluconolactonase MAH_1975 0.09 -0.19 -0.10 

OpcA protein MAH_1976 0.11 0.00 0.10 

Glucose-6-phosphate 1-dehydrogenase (G6PD) 

(zwf)* 

 

MAH_1977 
5.47 

 

-5.47 
 

0.00 

Transaldolase MAH_1978 0.04 0.00 0.04 

Transketolase MAH_1979 0.13 -0.01 0.12 

NADPH--quinone reductase MAH_1981 0.14 -0.17 -0.03 

ABC transporter ATP-binding subunit MAH_1985 -0.18 -0.19 -0.37 

FeS assembly protein SufB MAH_1988 0.24 -0.38 -0.14 

FeS assembly protein SufD MAH_1989 0.00 -0.16 -0.16 

ABC transporter ATP-binding subunit MAH_1990 0.10 -0.05 0.05 

27 kDa lipoprotein antigen MAH_1996 -0.36 -0.92 -1.27 

Acyl-CoA dehydrogenase (fadE15)* MAH_1998 0.38 -0.25 0.13 

Thioredoxin MAH_1999 -0.13 -0.68 -0.81 

Enoyl-CoA hydratase MAH_2000 -1.30 -0.26 -1.56 

Aconitate hydratase MAH_2004 0.04 0.01 0.06 

Uncharacterized protein MAH_2005 -0.39 0.20 -0.19 

MoxR protein MAH_2008 0.78 -0.51 0.27 

Uncharacterized protein MAH_2009 0.72 -2.73 -2.02 

FabG1 protein MAH_2012 -0.06 0.02 -0.04 

Enoyl-[acyl-carrier-protein] reductase [NADH] MAH_2013 0.14 -0.02 0.12 

Secreted protein MAH_2017 -0.28 0.30 0.03 

Methylmalonyl-CoA mutase, small subunit MAH_2026 -0.12 -0.01 -0.13 

Methylmalonyl-CoA mutase MAH_2027 -0.14 0.32 0.18 

Arginine/ornithine transport system ATPase MAH_2028 -0.51 0.25 -0.26 

NAD dependent epimerase/dehydratase MAH_2033 -0.02 0.11 0.08 

MtfB protein MAH_2035 0.70 -0.43 0.27 

Methyltransferase MtfC MAH_2038 -0.25 0.25 0.00 

Glycosyltransferase 28 MAH_2040 0.47 0.44 0.91 

Daunorubicin resistance ATP-binding protein MAH_2056 -0.10 0.03 -0.07 
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Uncharacterized protein MAH_2058 0.42 0.71 1.13 

Uncharacterized protein MAH_2060 -0.44 -0.11 -0.54 

2-nitropropane dioxygenase, NPD MAH_2065 0.29 -0.30 -0.02 

Oxidoreductase, short chain 
dehydrogenase/reductase 

 

MAH_2075 
0.32 

 

0.01 
 

0.32 

Ketoacyl reductase MAH_2076 0.32 -0.09 0.23 

Fatty-acid-CoA ligase fadD11_1 MAH_2081 -5.22 4.25 -0.98 

Uncharacterized protein MAH_2084 0.12 -0.33 -0.20 

L-threonine dehydratase MAH_2085 0.05 -0.31 -0.26 

NlpC/P60 family protein MAH_2093 0.37 0.09 0.46 

Quinolinate synthase A MAH_2108 -0.96 0.34 -0.62 

Uncharacterized protein MAH_2111 1.33 -0.38 0.95 

Histidinol dehydrogenase (HDH) MAH_2112 -0.12 -0.02 -0.14 

Histidinol-phosphate aminotransferase MAH_2113 0.00 -0.13 -0.14 

Imidazoleglycerol-phosphate dehydratase (IGPD) MAH_2114 -0.08 0.01 -0.07 

Imidazole glycerol phosphate synthase subunit 
HisH 

 

MAH_2115 
0.51 

 

0.14 
 

0.64 

Phosphoribosyl isomerase A MAH_2116 -0.26 0.10 -0.16 

ImpA protein MAH_2117 -0.37 0.68 0.31 

Imidazole glycerol phosphate synthase subunit 
HisF 

 

MAH_2118 
-0.26 

 

0.14 
 

-0.12 

Phosphoribosyl-AMP cyclohydrolase (PRA-CH) MAH_2119 -0.01 -0.45 -0.46 

BcpB protein MAH_2121 0.25 -0.63 -0.39 

Anthranilate synthase component I MAH_2122 -0.44 0.26 -0.18 

Indole-3-glycerol phosphate synthase MAH_2124 -0.22 0.20 -0.02 

Tryptophan synthase beta chain MAH_2125 -0.30 0.04 -0.26 

Tryptophan synthase alpha chain MAH_2126 0.01 -0.05 -0.04 

Pyruvate kinase (pykA)* MAH_2129 0.42 -0.31 0.12 

TesB1 protein MAH_2130 -0.16 -0.50 -0.66 

Response regulator MAH_2139 0.15 -0.08 0.08 

Lipid-transfer protein MAH_2140 -0.75 0.20 -0.55 

Nucleic acid-binding protein MAH_2141 -0.51 0.23 -0.28 

DNA polymerase I MAH_2142 0.44 -0.35 0.09 

30S ribosomal protein S1 MAH_2145 -0.07 -0.10 -0.17 

Dephospho-CoA kinase/protein folding accessory 
domain-containing protein 

 

MAH_2146 
0.02 

 

0.00 
 

0.02 

UvrABC system protein B (Protein UvrB) 
(Excinuclease ABC subunit B) 

 

MAH_2156 
0.01 

 

-0.12 
 

-0.10 

Universal stress protein UspA-like protein MAH_2160 -0.22 0.04 -0.18 

Hydrolase MAH_2161 0.07 -0.13 -0.05 

Uncharacterized protein MAH_2163 0.00 0.00 0.00 

Translation initiation factor IF-3 MAH_2175 -0.21 0.26 0.04 

50S ribosomal protein L35 MAH_2176 -0.64 0.76 0.12 

50S ribosomal protein L20 MAH_2177 -0.42 0.27 -0.15 

Phenylalanine--tRNA ligase alpha subunit MAH_2182 0.02 -0.16 -0.15 

N-acetyl-gamma-glutamyl-phosphate reductase MAH_2184 -0.41 0.41 0.00 
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(AGPR)     

Arginine biosynthesis bifunctional protein ArgJ MAH_2185 -0.12 -0.06 -0.18 

Acetylornithine aminotransferase (ACOAT) MAH_2187 -0.27 0.22 -0.04 

Ornithine carbamoyltransferase (OTCase) MAH_2188 -0.35 0.16 -0.19 

Arginine repressor MAH_2189 -0.57 0.24 -0.33 

Argininosuccinate synthase MAH_2190 -0.08 0.04 -0.04 

Argininosuccinate lyase (ASAL) MAH_2191 -0.40 0.10 -0.30 

Acyl-CoA synthetase MAH_2207 -0.19 -0.43 -0.62 

TPR repeat-containing protein MAH_2216 -1.15 -0.93 -2.08 

NAD kinase MAH_2220 0.05 -0.08 -0.02 

Uncharacterized protein MAH_2223 -0.12 0.08 -0.04 

CTP synthase MAH_2224 0.00 0.11 0.11 

Catechol-O-methyltransferase MAH_2227 -0.06 -0.12 -0.18 

SpoOJ regulator protein MAH_2228 -0.10 -0.07 -0.17 

Segregation and condensation protein B MAH_2230 -0.29 -0.02 -0.31 

Cytidylate kinase (CK) MAH_2232 -0.43 0.22 -0.21 

GTPase Der (GTP-binding protein EngA) MAH_2233 4.29 -0.42 3.87 

AsnB_1 protein MAH_2239 0.42 0.21 0.64 

GNAT family acetyltransferase MAH_2240 0.36 -0.11 0.25 

Fumarate reductase/succinate dehydrogenase MAH_2269 5.21 -5.21 0.00 

2,3-dihydroxybiphenyl 1,2-dioxygenase MAH_2270 -0.48 0.19 -0.30 

Hydroxylase MAH_2271 -0.42 0.27 -0.15 

Alpha/beta hydrolase MAH_2276 0.56 -0.42 0.15 

CsbD-like protein MAH_2279 -0.59 0.18 -0.41 

Oxidoreductase MAH_2303 0.01 0.06 0.07 

Arylsulfatase MAH_2304 -0.10 -0.10 -0.20 

Uncharacterized protein MAH_2324 -0.25 0.04 -0.20 

Uncharacterized protein MAH_2354 0.27 0.05 0.32 

Ftsk/SpoIIIE family protein MAH_2355 0.78 -0.55 0.23 

Uncharacterized protein MAH_2370 -0.22 0.06 -0.16 

Subtilase MAH_2372 -0.15 0.35 0.20 

ATPase AAA MAH_2374 -0.47 -4.50 -4.97 

PPE family protein MAH_2379 0.30 -0.42 -0.12 

PPE family protein MAH_2380 0.88 -0.66 0.22 

Uncharacterized protein MAH_2381 0.18 0.08 0.26 

PPE family protein MAH_2385 -5.31 0.00 -5.31 

Succinate dehydrogenase/fumarate reductase 
flavoprotein subunit 

 

MAH_2393 
-0.49 

 

0.29 
 

-0.20 

Uncharacterized protein MAH_2395 0.31 -0.23 0.08 

Protein translocase subunit SecA MAH_2396 0.20 -0.10 0.09 

Glycine cleavage system H protein MAH_2401 -0.58 0.41 -0.17 

Forkhead-associated protein MAH_2402 -0.15 -0.08 -0.24 

MerR family transcriptional regulator MAH_2403 -0.04 -0.34 -0.39 

Uncharacterized protein MAH_2404 -0.69 0.16 -0.53 
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MerR family transcriptional regulator MAH_2405 0.00 -0.13 -0.13 

Glycine dehydrogenase (decarboxylating) MAH_2406 0.22 -0.72 -0.51 

Uncharacterized protein MAH_2409 -0.16 0.39 0.22 

Malate synthase G (glcB) * MAH_2410 0.36 -0.13 0.23 

Inosine 5-monophosphate dehydrogenase MAH_2417 -0.24 -0.29 -0.52 

6-phosphogluconate dehydrogenase, 
decarboxylating 

 

MAH_2418 
0.24 

 

0.00 
 

0.24 

Uncharacterized protein MAH_2421 0.14 -0.01 0.13 

Oxidoreductase MAH_2424 0.33 -0.33 -0.01 

Short chain dehydrogenase MAH_2425 0.32 -0.35 -0.04 

Alanine and proline rich secreted protein apa MAH_2430 -0.08 -0.08 -0.16 

Probable phosphoketolase MAH_2434 0.89 -0.33 0.55 

Anthranilate dioxygenase reductase MAH_2440 -0.10 0.12 0.03 

Uncharacterized protein MAH_2444 -0.30 0.36 0.06 

Alkyl hydroperoxide reductase AhpD MAH_2449 0.42 -0.42 -0.01 

Alkyl hydroperoxide reductase MAH_2450 1.07 -0.91 0.16 

Uncharacterized protein MAH_2452 -0.19 -0.03 -0.23 

Enoyl-CoA hydratase/isomerase MAH_2454 0.12 -0.13 -0.01 

Ferroxidase MAH_2456 0.12 -0.86 -0.74 

Carboxymuconolactone decarboxylase MAH_2458 -0.33 0.66 0.34 

Glutamine synthetase catalytic domain MAH_2460 -5.02 0.00 -5.02 

Short chain dehydrogenase MAH_2466 -0.17 0.30 0.12 

Cyclase/dehydrase MAH_2467 -0.07 0.29 0.22 

Antigen 85-B MAH_2470 -0.52 0.32 -0.19 

AdhA_2 protein MAH_2473 0.11 -0.22 -0.12 

Uncharacterized protein MAH_2477 -0.37 0.05 -0.32 

Oxidoreductase, 2-nitropropane dioxygenase MAH_2478 -0.02 0.11 0.08 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_2482 
0.00 

 

-0.03 
 

-0.03 

Uncharacterized protein MAH_2484 3.94 1.24 5.18 

Activator of Hsp90 ATPase 1 family protein MAH_2498 0.10 -5.36 -5.26 

Isocitrate lyase (icl2)* MAH_2501 0.37 -0.27 0.09 

Limonene 1,2-monooxygenase MAH_2503 0.02 0.15 0.18 

Uncharacterized protein MAH_2504 -0.03 0.04 0.02 

Uncharacterized protein MAH_2508 -6.02 5.16 -0.87 

Probable thiol peroxidase MAH_2511 -0.12 -0.02 -0.15 

Acyl-CoA dehydrogenase domain-containing 
protein 

 

MAH_2514 
-0.84 

 

0.61 

 

-0.23 

NAD dependent epimerase/dehydratase MAH_2515 -0.04 0.11 0.07 

Glycosyl hydrolases family protein 16 MAH_2520 0.05 0.66 0.71 

Secreted protein MAH_2523 -0.50 0.22 -0.28 

Catalase-peroxidase (CP) MAH_2528 -0.61 0.34 -0.27 

Ferric uptake regulator family protein MAH_2529 -0.23 0.30 0.07 

FAD dependent oxidoreductase MAH_2532 0.00 0.00 0.00 

Uncharacterized protein MAH_2533 -0.43 -0.03 -0.46 
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PPE family protein MAH_2535 -0.54 0.04 -0.50 

Uncharacterized protein MAH_2538 -0.78 0.32 -0.46 

Cutinase MAH_2540 -1.02 -0.12 -1.14 

Uncharacterized protein MAH_2546 -0.31 -0.13 -0.44 

Glucose-6-phosphate 1-dehydrogenase (G6PD) MAH_2548 0.16 -0.13 0.04 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_2549 
0.06 

 

-0.22 
 

-0.16 

Citrate lyase beta chain MAH_2550 -0.44 0.10 -0.34 

Hydrolase, peptidase M42 family protein MAH_2551 0.34 0.04 0.39 

Peptidyl-prolyl cis-trans isomerase MAH_2555 -0.29 0.57 0.28 

TetR family transcriptional regulator MAH_2576 -0.26 0.13 -0.13 

Amidohydrolase MAH_2620 -0.41 0.03 -0.38 

FabG3_1 protein MAH_2627 -0.47 0.08 -0.39 

Universal stress protein family protein MAH_2629 -0.54 0.70 0.16 

Universal stress protein family protein MAH_2630 0.24 0.11 0.36 

Uncharacterized protein MAH_2631 -0.23 0.25 0.02 

Uncharacterized protein MAH_2633 -0.14 0.13 -0.01 

Uncharacterized protein MAH_2634 -0.24 0.35 0.11 

Acyl-CoA thioesterase MAH_2637 -0.82 0.70 -0.12 

Aldo/keto reductase MAH_2640 0.08 -0.12 -0.04 

Uncharacterized protein MAH_2663 -0.50 0.33 -0.17 

RNA polymerase-binding protein RbpA MAH_2686 -0.20 -0.01 -0.21 

Polyprenol-monophosphomannose synthase 
ppm1 

 

MAH_2687 
-0.20 

 

-0.02 
 

-0.22 

Dienelactone hydrolase MAH_2691 0.31 -0.20 0.11 

Pyridoxamine 5'-phosphate oxidase MAH_2692 -0.30 0.13 -0.17 

Nitrilase/cyanide hydratase and apolipoprotein N- 
acyltransferase 

 

MAH_2707 
0.14 

 

-0.45 
 

-0.31 

Proline dipeptidase MAH_2710 4.77 -0.52 4.25 

Uncharacterized protein MAH_2712 0.00 -0.05 -0.05 

DNA-binding protein MAH_2716 -0.35 -0.30 -0.65 

Proteasome accessory factor B MAH_2717 0.32 -0.47 -0.15 

Pup--protein ligase MAH_2718 -0.22 0.23 0.00 

Proteasome subunit alpha MAH_2719 0.02 -0.19 -0.17 

Proteasome subunit beta MAH_2720 0.30 -0.34 -0.04 

Prokaryotic ubiquitin-like protein Pup MAH_2721 -0.35 0.04 -0.32 

Uncharacterized protein MAH_2722 0.11 0.01 0.12 

Uncharacterized protein MAH_2723 -0.83 0.55 -0.28 

AAA ATPase forming ring-shaped complexes 
(Proteasome-associated ATPase)* 

 

MAH_2724 
0.40 

 

-0.24 

 

0.16 

Mercuric reductase MAH_2730 -0.15 0.59 0.43 

ATP phosphoribosyltransferase (ATP-PRT) 
(ATP-PRTase) 

 

MAH_2732 
-0.14 

 

-0.05 
 

-0.19 

Phosphoribosyl-ATP pyrophosphatase (PRA-PH) MAH_2733 -0.45 0.06 -0.39 

B12-dependent methionine synthase MAH_2745 3.78 0.13 3.91 

L-cysteine:1D-myo-inositol 2-amino-2-deoxy- MAH_2760 -0.10 0.24 0.14 
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alpha-D-glucopyranoside ligase     

Inositol monophosphatase MAH_2761 4.66 0.35 5.01 

Uncharacterized protein MAH_2763 0.33 -0.05 0.27 

Uncharacterized protein MAH_2764 0.30 -1.23 -0.93 

Uncharacterized protein MAH_2765 -0.17 -0.24 -0.40 

Uncharacterized protein MAH_2770 -0.29 -0.08 -0.36 

Uncharacterized protein MAH_2771 0.21 -0.15 0.07 

Wag31 protein MAH_2779 -0.21 0.01 -0.20 

Cell division protein SepF MAH_2781 0.53 -0.84 -0.31 

Uncharacterized protein MAH_2782 -0.01 -0.13 -0.14 

Cell division protein FtsZ MAH_2784 0.19 -0.38 -0.19 

UDP-N-acetylmuramate--L-alanine ligase MAH_2786 0.54 -0.45 0.09 

UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D- 
alanine ligase 

 

MAH_2791 
-0.01 

 

-0.02 
 

-0.03 

UDP-N-acetylmuramyl-tripeptide synthetase MAH_2792 -0.08 -0.02 -0.10 

Transcriptional regulator MraZ MAH_2796 0.73 -0.69 0.04 

Uncharacterized protein MAH_2800 0.41 -0.41 -0.01 

Regulatory protein MAH_2803 -0.34 0.08 -0.26 

3-deoxy-D-arabinoheptulosonate-7-phosphate 
synthase 

 

MAH_2806 
0.32 

 

-0.01 
 

0.31 

1-acylglycerol-3-phosphate O- 
acyltransferase(AGPAT)* 

 

MAH_2810 
5.26 

 

-0.96 
 

4.30 

Cyclase/dehydrase MAH_2813 0.30 -0.18 0.12 

Acyl-CoA dehydrogenase MAH_2816 0.02 0.13 0.15 

NLP/P60 family protein MAH_2819 0.56 -0.21 0.35 

QcrC protein MAH_2825 -0.40 0.17 -0.23 

QcrA protein MAH_2826 -0.32 0.82 0.49 

QcrB protein MAH_2827 0.00 5.52 5.52 

Membrane protein MmpS3 MAH_2830 5.14 -5.14 0.00 

CtaC protein MAH_2832 -0.88 0.77 -0.11 

Adenosine kinase MAH_2834 0.29 -0.11 0.18 

HesB/YadR/YfhF family protein MAH_2836 0.42 -0.67 -0.25 

Branched-chain-amino-acid aminotransferase MAH_2842 -0.06 0.00 -0.06 

Aminomethyltransferase MAH_2843 0.50 -0.58 -0.08 

Probable cytosol aminopeptidase (Leucine 
aminopeptidase) (Leucyl aminopeptidase) 

 

MAH_2844 
0.30 

 

-0.18 
 

0.12 

Dihydrolipoamide acetyltransferase MAH_2848 0.03 -0.10 -0.07 

Integral membrane protein MAH_2852 5.79 -5.79 0.00 

Glutamine synthetase MAH_2854 0.04 -0.05 -0.01 

Thioesterase MAH_2856 -5.71 5.15 -0.57 

GlnA2 protein MAH_2858 0.16 0.02 0.19 

Alpha/beta hydrolase MAH_2859 0.11 -0.23 -0.12 

3-methyl-2-oxobutanoate 
hydroxymethyltransferase 

 

MAH_2862 
0.42 

 

-0.15 
 

0.28 

Uncharacterized protein MAH_2864 0.00 0.00 0.00 

Adenylate cyclase MAH_2866 -0.41 0.26 -0.15 
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Bifunctional RNase H/acid phosphatase MAH_2871 0.18 -0.43 -0.25 

Uncharacterized protein MAH_2872 -0.15 0.09 -0.06 

GTP cyclohydrolase 1 type 2 homolog MAH_2873 -0.26 0.04 -0.21 

Alkyl hydroperoxide reductase/ Thiol specific 
antioxidant/ Mal allergen 

 

MAH_2882 
-0.16 

 

0.04 
 

-0.13 

Uncharacterized protein MAH_2883 -0.11 -0.01 -0.13 

Pyruvate dehydrogenase E1 component MAH_2885 0.19 -0.14 0.05 

ACP S-malonyltransferase MAH_2887 -0.27 -0.04 -0.31 

Acyl carrier protein (ACP) MAH_2888 -0.54 0.20 -0.33 

3-oxoacyl-(Acyl carrier protein) synthase II MAH_2889 -0.33 0.17 -0.17 

3-oxoacyl-(Acyl carrier protein) synthase II MAH_2890 0.11 -0.12 -0.01 

Propionyl-CoA carboxylase MAH_2891 -0.16 0.07 -0.09 

Transcriptional regulator MAH_2899 5.54 -5.54 0.00 

AdhE2 protein MAH_2900 0.31 -0.01 0.30 

Metallo-beta-lactamase MAH_2901 -0.28 0.36 0.08 

Dihydrodipicolinate reductase N-terminus 
domain-containing protein 

 

MAH_2905 
0.12 

 

0.54 
 

0.67 

Acyl carrier protein MAH_2911 -1.20 0.78 -0.41 

Serine esterase cutinase MAH_2912 0.37 -0.49 -0.12 

Uncharacterized protein MAH_2941 -0.29 -0.07 -0.36 

Amidohydrolase MAH_2950 -0.24 0.27 0.02 

Uncharacterized protein MAH_2959 4.41 -4.41 0.00 

Methionine-R-sulfoxide reductase MAH_2972 -0.06 0.00 -0.06 

Thiopurine S-methyltransferase superfamily 
protein 

 

MAH_2974 
0.11 

 

-0.17 
 

-0.06 

Chlorite dismutase MAH_2975 0.28 0.03 0.30 

Enoyl-CoA hydratase MAH_2978 -0.56 -0.17 -0.73 

Uncharacterized protein MAH_2979 0.42 -0.82 -0.40 

Ribonuclease D MAH_2980 4.55 -4.55 0.00 

CBS domain-containing protein MAH_2982 0.01 0.75 0.76 

TrkA protein MAH_2986 0.02 0.10 0.12 

TrkB protein MAH_2987 -0.03 0.07 0.04 

OB-fold nucleic acid binding domain-containing 
protein 

 

MAH_2989 
-0.12 

 

-0.31 
 

-0.43 

Uncharacterized protein MAH_2991 -0.13 -0.08 -0.21 

Deoxyuridine 5'-triphosphate nucleotidohydrolase MAH_2992 0.38 -0.21 0.17 

Uncharacterized protein MAH_2994 -0.44 0.03 -0.40 

PpgK protein MAH_2997 -0.09 -0.21 -0.30 

RNA polymerase sigma factor SigA MAH_2998 0.39 -0.31 0.08 

Uncharacterized protein MAH_3004 -0.54 0.21 -0.33 

Iron-dependent repressor IdeR MAH_3007 0.05 -0.09 -0.04 

Conserved alanine and leucine rich protein MAH_3012 -0.48 0.24 -0.24 

Thymidylate synthase MAH_3014 -0.01 -0.22 -0.24 

UPF0678 fatty acid-binding protein-like protein MAH_3015 -0.86 -0.24 -1.11 

Transcriptional repressor NrdR MAH_3016 -0.05 -0.08 -0.13 
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LexA repressor MAH_3018 -0.20 -0.08 -0.28 

Uncharacterized protein MAH_3019 -0.47 0.50 0.02 

Long-chain specific acyl-CoA dehydrogenase MAH_3020 0.15 -0.12 0.03 

GTPase HflX (GTP-binding protein HflX) MAH_3021 -0.44 0.41 -0.03 

Conserved alanine and arginine rich protein MAH_3027 -0.58 0.42 -0.16 

Protein RecA (Recombinase A) MAH_3031 0.12 -0.10 0.02 

Uncharacterized protein MAH_3036 0.00 0.00 0.00 

35kd antigen MAH_3039 0.04 -0.15 -0.11 

Antibiotic biosynthesis monooxygenase domain- 
containing protein 

 

MAH_3045 
-0.24 

 

0.33 
 

0.09 

3-ketoacyl-(Acyl-carrier-protein) reductase MAH_3046 -0.12 0.04 -0.07 

Hydrolase of the metallo-beta-lactamase MAH_3048 -0.58 0.48 -0.11 

4-hydroxy-tetrahydrodipicolinate synthase 
(HTPA synthase) 

 

MAH_3049 
-0.22 

 

0.25 
 

0.03 

Thymidylate synthase ThyX (TS) (TSase) MAH_3050 -0.90 1.24 0.34 

Uncharacterized protein MAH_3052 -0.31 0.10 -0.21 

Uncharacterized protein MAH_3053 -0.37 0.01 -0.36 

Uncharacterized protein MAH_3062 0.14 -0.24 -0.10 

Dihydrofolate reductase MAH_3063 -0.20 -0.54 -0.74 

Alanine rich hydrolase MAH_3065 -0.04 0.65 0.61 

3-ketoacyl-(Acyl-carrier-protein) reductase MAH_3067 0.45 -0.06 0.38 

Multimeric flavodoxin WrbA MAH_3072 0.00 0.00 0.00 

4-hydroxy-tetrahydrodipicolinate reductase 
(HTPA reductase) 

 

MAH_3074 
0.12 

 

-0.16 
 

-0.04 

Uncharacterized protein MAH_3083 -0.62 0.57 -0.06 

Dioxygenase MAH_3085 -0.79 0.98 0.19 

Polyribonucleotide nucleotidyltransferase MAH_3087 0.21 -0.16 0.05 

30S ribosomal protein S15 MAH_3088 -0.29 0.46 0.16 

Riboflavin biosynthesis protein MAH_3089 5.08 -0.53 4.55 

Iron repressor protein MAH_3090 -0.37 0.18 -0.19 

Lipid-transfer protein MAH_3092 -0.22 0.17 -0.06 

Enoyl-CoA hydratase MAH_3100 0.27 -0.32 -0.05 

DHH family protein MAH_3102 -0.35 0.54 0.19 

Ribosome-binding factor A MAH_3103 0.01 -0.13 -0.11 

Translation initiation factor IF-2 MAH_3104 0.09 -0.05 0.03 

Transcription termination/antitermination protein 
NusA 

 

MAH_3106 
0.10 

 

-0.06 
 

0.03 

Ribosome maturation factor RimP MAH_3107 -0.29 -0.08 -0.37 

Proline--tRNA ligase (Prolyl-tRNA synthetase) MAH_3110 -0.05 -0.03 -0.08 

Uncharacterized protein MAH_3111 0.00 5.44 5.44 

Chelatase MAH_3116 -0.21 -0.03 -0.24 

Acetyltransferase, gnat family protein MAH_3117 -0.37 -0.15 -0.51 

Methionine aminopeptidase (MAP) (MetAP) MAH_3131 0.15 0.15 0.29 

4-hydroxy-3-methylbut-2-en-1-yl diphosphate 
synthase (flavodoxin) 

 

MAH_3135 
0.00 

 

0.11 
 

0.11 

Ribosome-recycling factor (RRF) (Ribosome- MAH_3142 -0.08 0.00 -0.07 
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releasing factor)     

Uridylate kinase MAH_3143 0.34 -0.43 -0.09 

CsbD-like protein MAH_3144 -1.49 0.84 -0.65 

ChaB family protein MAH_3150 -0.54 -0.09 -0.63 

Elongation factor Ts (EF-Ts) MAH_3153 0.02 -0.10 -0.07 

30S ribosomal protein S2 MAH_3154 -0.38 0.57 0.19 

Lactate 2-monooxygenase MAH_3157 0.42 -0.37 0.05 

Siderophore utilization protein MAH_3158 0.52 -0.34 0.18 

NAD dependent epimerase/dehydratase MAH_3164 5.68 -5.68 0.00 

ANTAR domain-containing protein MAH_3165 -0.33 0.44 0.11 

Uncharacterized protein MAH_3166 0.09 -0.26 -0.17 

50S ribosomal protein L19 MAH_3169 -0.03 -0.05 -0.08 

tRNA (guanine-N(1)-)-methyltransferase MAH_3171 -0.40 0.44 0.05 

UPF0109 protein MAH_3173 -0.07 -0.02 -0.09 

30S ribosomal protein S16 MAH_3174 -0.27 0.20 -0.07 

Amidohydrolase MAH_3179 0.00 4.15 4.15 

Signal recognition particle protein (Fifty-four 
homolog) 

 

MAH_3180 
-0.16 

 

0.10 
 

-0.06 

Nitrogen regulatory protein PII MAH_3184 -0.11 0.17 0.05 

Signal recognition particle receptor FtsY (SRP 
receptor) 

 

MAH_3186 
-0.77 

 

-4.58 
 

-5.35 

Chromosome partition protein Smc MAH_3187 6.08 -0.34 5.74 

Uncharacterized protein MAH_3189 0.44 -0.47 -0.02 

Ribonuclease 3 MAH_3192 -0.20 0.18 -0.02 

Uncharacterized protein MAH_3193 -0.68 -0.18 -0.86 

Uncharacterized protein MAH_3194 0.27 -0.40 -0.13 

Phosphopantetheine adenylyltransferase MAH_3234 0.11 0.00 0.11 

Uncharacterized protein MAH_3237 -0.73 1.16 0.43 

Alpha/beta hydrolase MAH_3238 0.38 -0.41 -0.02 

2,5-diketo-D-gluconic acid reductase A MAH_3239 -0.16 0.05 -0.11 

50S ribosomal protein L28 MAH_3245 -0.03 -0.46 -0.49 

D-alanine--D-alanine ligase MAH_3254 -0.08 0.35 0.27 

Glycerol-3-phosphate dehydrogenase [NAD(P)+] MAH_3255 0.18 -0.72 -0.54 

Polyphosphate kinase MAH_3257 -0.04 0.02 -0.02 

DNA-binding protein HU MAH_3259 -0.42 0.67 0.24 

3-isopropylmalate dehydratase small subunit MAH_3260 -0.45 0.53 0.07 

3-isopropylmalate dehydratase large subunit MAH_3261 -0.44 0.43 -0.01 

Pyridoxamine 5'-phosphate oxidase MAH_3263 0.23 -0.31 -0.08 

Glutamate--tRNA ligase (Glutamyl-tRNA 
synthetase) 

 

MAH_3264 
0.43 

 

-0.28 
 

0.16 

5-carboxymethyl-2-hydroxymuconate delta- 
isomerase 

 

MAH_3265 
0.23 

 

-0.20 
 

0.03 

3-isopropylmalate dehydrogenase MAH_3267 -0.01 -0.06 -0.07 

D-3-phosphoglycerate dehydrogenase MAH_3268 0.19 -0.17 0.01 

NAD(P)H:quinone oxidoreductase, type IV MAH_3270 -0.78 -4.33 -5.11 
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Ketol-acid reductoisomerase MAH_3271 -0.19 0.16 -0.03 

Acetolactate synthase 3 regulatory subunit MAH_3272 0.28 -0.20 0.07 

Acetolactate synthase MAH_3273 -0.03 0.39 0.36 

Aspartyl/glutamyl-tRNA(Asn/Gln) 
amidotransferase subunit B 

 

MAH_3278 
0.25 

 

-0.10 
 

0.15 

6-phosphofructokinase MAH_3280 0.45 -0.46 -0.01 

Glutamyl-tRNA(Gln) amidotransferase subunit A 
(Glu-ADT subunit A) 

 

MAH_3281 
0.25 

 

-0.09 
 

0.16 

Aspartyl/glutamyl-tRNA(Asn/Gln) 
amidotransferase subunit C (Asp/Glu-ADT 

subunit C) 

 
 

MAH_3282 

 

-0.20 
 
 

0.09 

 
 

-0.11 

ACT domain-containing protein MAH_3283 0.46 -0.19 0.27 

DNA ligase (Polydeoxyribonucleotide synthase 
[NAD(+)]) 

 

MAH_3290 
0.00 

 

5.41 
 

5.41 

Electron transfer flavoprotein, alpha subunit MAH_3297 0.04 -0.01 0.03 

Electron transfer protein, beta subunit MAH_3298 -0.21 0.10 -0.11 

Immunogenic protein MPB64/MPT64 MAH_3324 0.00 0.00 0.00 

Enoyl-CoA hydratase MAH_3327 -0.04 0.12 0.08 

Nudix hydrolase MAH_3328 0.05 -0.17 -0.12 

Molybdenum ABC transporter ATPase MAH_3329 -0.22 -0.25 -0.46 

Phosphoserine phosphatase MAH_3330 0.19 0.04 0.23 

Cytochrome c oxidase subunit 1 MAH_3331 -1.16 0.99 -0.17 

NADP-dependent alcohol dehydrogenase c MAH_3334 0.68 -0.15 0.54 

Ribonucleoside-diphosphate reductase subunit 
beta 

 

MAH_3336 
-0.15 

 

0.09 
 

-0.07 

TetR family transcriptional regulator MAH_3340 -0.09 0.04 -0.05 

Ribonucleoside-diphosphate reductase MAH_3341 -0.11 0.14 0.03 

Secreted protein MAH_3344 0.07 -0.31 -0.24 

Acyl-CoA dehydrogenase MAH_3357 0.23 0.14 0.38 

3-hydroxyacyl-CoA dehydrogenase type-2 MAH_3358 -0.05 0.18 0.13 

Phosphoglucomutase MAH_3394 0.65 -0.48 0.18 

Uncharacterized protein MAH_3398 5.16 -0.34 4.82 

Citrate lyase beta subunit, CitE_2 MAH_3400 0.10 -0.22 -0.12 

Hemerythrin HHE cation binding domain- 
containing protein 

 

MAH_3401 
-0.84 

 

-0.08 
 

-0.92 

SsrA-binding protein (Small protein B) MAH_3419 4.76 0.24 5.00 

Cell division ATP-binding protein FtsE MAH_3421 0.26 -0.18 0.08 

Peptide chain release factor 2 (RF-2) MAH_3424 0.09 -0.07 0.02 

NADPH:adrenodoxin oxidoreductase FprA MAH_3425 -0.09 0.03 -0.06 

Flavin-nucleotide-binding protein MAH_3426 0.21 -0.16 0.05 

Universal stress protein MAH_3428 -0.32 0.48 0.16 

Nitric-oxide reductase subunit B MAH_3429 -0.92 1.50 0.58 

SPFH domain-containing protein/band 7 family 
protein 

 

MAH_3431 
-1.03 

 

0.42 
 

-0.61 

FadE24 protein MAH_3436 0.19 0.16 0.35 

Acyl-CoA dehydrogenase MAH_3437 0.17 0.12 0.29 

Zinc-binding dehydrogenase MAH_3438 0.11 -0.30 -0.19 
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Acyl-CoA dehydrogenase* MAH_3443 -5.32 6.09 0.77 

YceI like family protein MAH_3447 0.53 -0.44 0.09 

Two-component system response regulator MAH_3448 0.06 -0.02 0.04 

NADH-quinone oxidoreductase subunit B MAH_3450 0.29 -0.17 0.12 

NADH-quinone oxidoreductase subunit C MAH_3451 -0.11 -0.08 -0.19 

NADH-quinone oxidoreductase subunit D MAH_3452 0.15 0.15 0.30 

NADH dehydrogenase subunit E MAH_3453 -0.36 0.23 -0.13 

NADH-quinone oxidoreductase subunit F MAH_3454 -0.15 0.16 0.02 

NADH-quinone oxidoreductase MAH_3455 0.02 -0.03 0.00 

NADH-quinone oxidoreductase subunit I MAH_3457 -0.22 0.06 -0.16 

NADH dehydrogenase subunit J MAH_3458 -0.63 0.64 0.01 

TetR family transcriptional regulator MAH_3473 -1.45 0.62 -0.83 

Phosphotransferase enzyme family protein MAH_3474 -0.43 0.36 -0.07 

Uncharacterized protein MAH_3475 -0.16 0.09 -0.08 

Chemotaxis response regulator MAH_3485 0.45 -1.27 -0.82 

Catalase MAH_3487 -0.60 0.26 -0.34 

Rho termination factor MAH_3488 -1.51 0.97 -0.54 

CsbD-like protein MAH_3494 -1.19 0.62 -0.58 

Thiamine pyrophosphate protein MAH_3510 -0.65 0.51 -0.15 

Aldo/keto reductase MAH_3515 0.51 -0.14 0.37 

Glycogen operon protein GlgX homolog MAH_3517 -0.45 0.16 -0.29 

S-(Hydroxymethyl)glutathione dehydrogenase MAH_3518 -0.44 1.13 0.70 

Dehydrogenase MAH_3520 5.01 0.93 5.94 

MerR family transcriptional regulator MAH_3522 -0.24 -0.12 -0.36 

Pyridoxamine 5'-phosphate oxidase MAH_3527 0.03 0.11 0.14 

Uncharacterized protein MAH_3528 -0.63 0.62 -0.01 

Response regulator receiver domain-containing 
protein 

 

MAH_3530 
-0.49 

 

0.06 
 

-0.43 

Uncharacterized protein MAH_3540 0.00 0.00 0.00 

Uncharacterized protein MAH_3546 0.09 -0.27 -0.18 

Glutathione peroxidase MAH_3547 -0.31 0.12 -0.19 

Immunogenic protein MPT64 MAH_3548 -0.13 0.17 0.05 

UPF0182 protein MAH_3549 MAH_3549 5.84 0.29 6.13 

Uncharacterized protein MAH_3551 0.44 -0.36 0.09 

ABC transporter ATP-binding protein MAH_3553 0.03 -0.17 -0.14 

NADH pyrophosphatase MAH_3558 0.01 -0.09 -0.08 

Ion channel membrane protein MAH_3559 0.06 -0.72 -0.65 

Uncharacterized protein MAH_3565 0.41 -0.22 0.19 

Uncharacterized protein MAH_3569 0.13 -0.13 0.00 

RhlE protein MAH_3572 -0.47 0.39 -0.08 

Soj/parA-related protein MAH_3574 -0.04 0.13 0.08 

Sensor histidine kinase MAH_3581 -2.02 0.36 -1.66 

Anti-sigma factor MAH_3583 -0.52 0.14 -0.38 

RNA polymerase sigma factor MAH_3584 0.20 -0.21 -0.01 
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Short chain dehydrogenase MAH_3585 0.20 -0.14 0.06 

Oxidoreductase, short chain 
dehydrogenase/reductase 

 

MAH_3588 
-5.42 

 

0.00 
 

-5.42 

Uncharacterized protein MAH_3594 -0.10 0.77 0.67 

3-phosphoshikimate 1-carboxyvinyltransferase MAH_3595 0.53 -6.04 -5.51 

Uncharacterized protein MAH_3607 -0.92 0.41 -0.52 

PvdS protein MAH_3608 0.45 -0.83 -0.38 

Protein translocase subunit SecA MAH_3616 0.05 0.08 0.13 

S30AE family protein MAH_3617 -0.54 0.44 -0.10 

Lipoprotein LpqB MAH_3619 0.27 0.23 0.50 

DNA-binding response regulator MAH_3621 0.04 -0.32 -0.28 

dTMP kinase MAH_3622 -0.62 0.24 -0.38 

Adenosylhomocysteinase MAH_3623 0.12 -0.02 0.10 

Mannose-6-phosphate isomerase, class I MAH_3630 0.38 -0.26 0.12 

Uncharacterized protein MAH_3631 0.15 -0.06 0.09 

Phosphomannomutase/phosphoglucomutase MAH_3632 -0.05 0.15 0.10 

2-phospho-L-lactate transferase MAH_3636 0.00 0.00 0.00 

Mannose-1-phosphate guanylyltransferase MAH_3640 -0.55 0.65 0.10 

RmlD protein MAH_3642 5.16 0.05 5.21 

Uncharacterized protein MAH_3645 -0.29 0.37 0.08 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_3647 
-0.03 

 

-0.12 
 

-0.16 

YfdE protein MAH_3648 0.16 0.05 0.20 

Serine/threonine protein kinase MAH_3649 -0.76 0.69 -0.08 

Two-component system response regulator MAH_3651 -0.29 0.01 -0.28 

Response regulator receiver modulated serine 
phosphatase 

 

MAH_3653 
-0.39 

 

0.05 
 

-0.34 

Acyl-CoA dehydrogenase MAH_3654 0.15 -0.28 -0.13 

N5-carboxyaminoimidazole ribonucleotide 
mutase (N5-CAIR mutase) 

 

MAH_3655 
0.12 

 

-0.28 

 

-0.16 

N5-carboxyaminoimidazole ribonucleotide 
synthase (N5-CAIR synthase) 

 

MAH_3656 
-0.05 

 

0.04 
 

-0.01 

Biotin-[acetyl-CoA-carboxylase] ligase MAH_3659 0.56 -0.35 0.21 

AccD5 protein MAH_3661 0.02 -0.09 -0.06 

Uncharacterized protein MAH_3662 -0.14 -0.14 -0.28 

Sulfurtransferase MAH_3664 0.16 -0.21 -0.06 

Fe-S metabolism associated domain-containing 
protein 

 

MAH_3665 
-0.01 

 

-0.41 
 

-0.42 

AccA3 protein MAH_3666 0.23 -0.21 0.02 

RsbW protein MAH_3669 -0.16 0.18 0.02 

AsnC family transcriptional regulator MAH_3674 -0.58 0.52 -0.06 

TetR family transcriptional regulator MAH_3677 -0.39 0.40 0.01 

PPE family protein MAH_3684 -0.37 0.30 -0.07 

L308_f3_97 MAH_3690 -0.30 0.02 -0.28 

Amidase MAH_3692 0.34 -0.11 0.23 

Cutinase Cut3 MAH_3693 -0.35 0.45 0.10 
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Purine nucleoside phosphorylase MAH_3694 0.68 -0.45 0.23 

Uncharacterized protein MAH_3698 -0.16 0.04 -0.12 

Adenosine deaminase MAH_3703 0.44 -0.32 0.11 

Cytidine deaminase MAH_3705 0.50 -0.92 -0.42 

Succinate dehydrogenase flavoprotein subunit 
(sdhA)* 

 

MAH_3708 
0.70 

 

-0.27 
 

0.43 

Succinate dehydrogenase iron-sulfur subunit 
(sdhB)* 

 

MAH_3709 
0.32 

 

-0.40 
 

-0.09 

Tryptophan--tRNA ligase (Tryptophanyl-tRNA 
synthetase) 

 

MAH_3720 
-0.02 

 

-0.10 
 

-0.13 

Isocitrate dehydrogenase [NADP] MAH_3722 0.28 -0.17 0.11 

Isocitrate dehydrogenase, NADP-dependent MAH_3723 0.14 0.05 0.19 

O-acetylhomoserine 
aminocarboxypropyltransferase 

 

MAH_3724 
0.17 

 

-0.24 
 

-0.07 

Methyltransferase MAH_3726 -0.17 0.26 0.09 

Bifunctional protein FolD MAH_3730 -0.01 -0.10 -0.11 

NADH:flavin oxidoreductase MAH_3731 -0.07 0.14 0.07 

ATP/GTP-binding protein MAH_3735 0.21 -0.75 -0.54 

Roadblock/LC7 family protein MAH_3737 -0.66 0.07 -0.59 

SAM-dependent methyltransferase MAH_3739 0.00 0.18 0.18 

Nitroreductase MAH_3741 0.39 -0.29 0.10 

Trehalose 6-phosphate phosphatase MAH_3744 2.39 -0.84 1.54 

MaoC family protein MAH_3745 0.00 0.18 0.18 

Uncharacterized protein MAH_3746 -1.22 0.90 -0.32 

Inosine-uridine preferring nucleoside hydrolase MAH_3749 0.29 0.99 1.28 

3-oxoacyl-(Acyl carrier protein) synthase II MAH_3750 0.34 -0.04 0.31 

GMP synthase [glutamine-hydrolyzing] MAH_3755 0.28 -0.31 -0.03 

Beta-phosphoglucomutase hydrolase MAH_3757 -0.05 0.12 0.07 

Glycoside hydrolase 65, central catalytic MAH_3758 -0.73 1.44 0.71 

Inosine 5-monophosphate dehydrogenase MAH_3762 -0.01 0.04 0.03 

Inosine-5'-monophosphate dehydrogenase MAH_3763 0.07 -0.14 -0.07 

Uncharacterized protein MAH_3771 0.00 4.45 4.45 

60 kDa chaperonin (GroEL protein) (Protein 
Cpn60) 

 

MAH_3772 
0.15 

 

-0.18 

 

-0.03 

10 kDa chaperonin (GroES protein) (Protein 
Cpn10) 

 

MAH_3773 
-0.15 

 

-0.13 
 

-0.28 

Uncharacterized protein MAH_3778 0.10 -0.59 -0.49 

Alanine racemase (alr)* MAH_3780 4.86 0.11 4.97 

Glutamate decarboxylase MAH_3781 0.13 -0.08 0.05 

Bifunctional NAD(P)H-hydrate repair enzyme 
(Nicotinamide nucleotide repair protein) 

 

MAH_3782 
0.17 

 

-0.24 
 

-0.07 

Glutamine--fructose-6-phosphate 
aminotransferase [isomerizing] 

 

MAH_3785 
0.58 

 

-0.58 
 

0.00 

Oxidoreductase MAH_3789 -0.31 -0.09 -0.40 

Phosphoglucosamine mutase MAH_3792 5.09 -5.09 0.00 

30S ribosomal protein S9 MAH_3793 -0.16 0.28 0.12 

50S ribosomal protein L13 MAH_3794 -0.12 0.26 0.14 
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Cutinase MAH_3802 0.00 0.00 0.00 

50S ribosomal protein L17 MAH_3805 -0.09 0.23 0.13 

DNA-directed RNA polymerase subunit alpha 
(RNAP subunit alpha) 

 

MAH_3806 
0.01 

 

-0.07 
 

-0.06 

30S ribosomal protein S4 MAH_3807 -0.07 0.01 -0.06 

30S ribosomal protein S11 MAH_3808 -0.56 0.50 -0.06 

30S ribosomal protein S13 MAH_3809 -0.07 0.38 0.32 

Translation initiation factor IF-1 MAH_3810 0.04 0.18 0.22 

Uncharacterized protein MAH_3811 0.51 -0.36 0.15 

F420-dependent methylene- 
tetrahydromethanopterin reductase 

 

MAH_3812 
0.80 

 

-0.53 

 

0.27 

dTDP-glucose 4,6-dehydratase MAH_3813 0.09 -0.09 0.00 

dTDP-4-dehydrorhamnose 3,5-epimerase MAH_3814 0.00 0.09 0.08 

Methylmalonate-semialdehyde dehydrogenase MAH_3824 0.16 -0.07 0.09 

Acyl-CoA dehydrogenase MAH_3825 6.60 -0.02 6.57 

3-hydroxyisobutyrate dehydrogenase (HIBADH) MAH_3826 -0.16 0.19 0.03 

MarR family transcriptional regulator MAH_3827 4.55 1.41 5.96 

Methionine aminopeptidase (MAP) (MetAP) MAH_3840 0.00 -0.44 -0.44 

Adenylate kinase MAH_3841 -0.14 -0.02 -0.16 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_3843 
-0.64 

 

0.23 
 

-0.42 

Uncharacterized protein MAH_3844 0.06 -0.10 -0.04 

2-hydroxyacid dehydrogenase MAH_3846 0.04 -0.13 -0.09 

L-fuculose-phosphate aldolase MAH_3847 -0.26 0.05 -0.21 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_3852 
0.33 

 

-0.29 
 

0.04 

Signal peptide peptidase SppA, 67K type MAH_3854 0.75 -0.55 0.20 

50S ribosomal protein L15 MAH_3856 -0.64 0.71 0.07 

50S ribosomal protein L30 MAH_3857 -0.26 0.43 0.16 

30S ribosomal protein S5 MAH_3858 0.20 0.00 0.20 

50S ribosomal protein L18 MAH_3859 -0.21 0.25 0.04 

50S ribosomal protein L6 MAH_3860 -0.25 0.36 0.11 

30S ribosomal protein S8 MAH_3861 -0.14 0.31 0.17 

50S ribosomal protein L5 MAH_3863 0.06 0.01 0.07 

50S ribosomal protein L24 MAH_3864 -0.44 0.42 -0.02 

50S ribosomal protein L14 MAH_3865 -0.08 0.35 0.27 

Arylsulfatase MAH_3871 4.63 -0.03 4.61 

30S ribosomal protein S17 MAH_3872 -0.34 0.26 -0.07 

50S ribosomal protein L29 MAH_3873 0.04 -0.37 -0.33 

50S ribosomal protein L16 MAH_3874 -0.21 0.50 0.29 

30S ribosomal protein S3 MAH_3875 -0.14 0.10 -0.04 

50S ribosomal protein L22 MAH_3876 -0.10 0.23 0.13 

30S ribosomal protein S19 MAH_3877 -0.40 0.46 0.06 

50S ribosomal protein L2 MAH_3878 -0.16 0.23 0.07 

50S ribosomal protein L23 MAH_3879 0.09 -0.12 -0.04 
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50S ribosomal protein L4 MAH_3880 -0.07 0.05 -0.03 

50S ribosomal protein L3 MAH_3881 -0.10 0.34 0.24 

30S ribosomal protein S10 MAH_3882 0.01 -0.03 -0.01 

TetR family transcriptional regulator MAH_3883 -0.91 1.24 0.32 

Heme/flavin dehydrogenase, mycofactocin 
system 

 

MAH_3887 
5.58 

 

-0.59 
 

4.99 

Ferredoxin reductase MAH_3894 -0.14 -0.06 -0.20 

Membrane protein MAH_3896 -4.72 3.41 -1.31 

Elongation factor Tu (EF-Tu) MAH_3898 0.03 -0.16 -0.13 

Elongation factor G (EF-G) MAH_3899 0.07 -0.10 -0.03 

30S ribosomal protein S7 MAH_3900 -0.17 0.56 0.39 

30S ribosomal protein S12 MAH_3901 -0.24 0.39 0.15 

TetR family transcriptional regulator MAH_3902 -0.10 -0.26 -0.37 

Enoyl-CoA hydratase MAH_3905 0.60 -0.03 0.57 

Enoyl-CoA hydratase MAH_3907 0.63 -0.03 0.60 

Acyl-CoA dehydrogenase MAH_3908 3.81 0.12 3.93 

DNA-directed RNA polymerase subunit beta' 
(RNAP subunit beta') 

 

MAH_3910 
-0.04 

 

0.19 
 

0.15 

DNA-directed RNA polymerase subunit beta 
(RNAP subunit beta) 

 

MAH_3911 
0.09 

 

-0.05 
 

0.04 

ABC transporter ATP-binding protein MAH_3912 -0.24 0.18 -0.07 

50S ribosomal protein L7/L12 MAH_3915 0.06 -0.13 -0.07 

50S ribosomal protein L10 MAH_3916 0.16 -0.23 -0.07 

Alpha-mannosidase MAH_3920 0.25 -5.63 -5.37 

Uncharacterized protein MAH_3921 0.15 -0.16 -0.02 

ABC transporter MAH_3922 0.04 -0.57 -0.53 

Methoxy mycolic acid synthase 1 MAH_3924 -0.02 0.18 0.16 

Methoxy mycolic acid synthase MAH_3925 -0.12 0.06 -0.06 

DGPF domain-containing protein MAH_3926 -0.87 0.48 -0.40 

50S ribosomal protein L1 MAH_3928 -0.14 0.19 0.05 

50S ribosomal protein L11 MAH_3929 -0.04 0.00 -0.04 

Transcription termination/antitermination protein 
NusG 

 

MAH_3930 
-0.14 

 

-0.02 
 

-0.17 

Preprotein translocase subunit SecE MAH_3931 -0.50 2.83 2.33 

UPF0336 protein MAH_3932 MAH_3932 0.25 -0.13 0.12 

(3R)-hydroxyacyl-ACP dehydratase subunit 
HadB 

 

MAH_3933 
0.06 

 

-0.21 
 

-0.15 

UPF0336 protein MAH_3934 MAH_3934 -0.09 0.01 -0.08 

50S ribosomal protein L33 MAH_3935 -0.21 0.51 0.30 

Uncharacterized protein MAH_3936 -0.11 -0.16 -0.27 

Metallo-beta-lactamase MAH_3937 -0.48 0.32 -0.16 

Uncharacterized protein MAH_3938 -0.91 0.98 0.06 

Enoyl-CoA hydratase MAH_3939 0.52 -1.35 -0.83 

Cyanate hydratase (Cyanase) MAH_3943 0.40 -0.59 -0.19 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_3962 
0.38 

 

-0.10 
 

0.28 
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S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_3963 
-0.09 

 

-0.17 
 

-0.27 

Uncharacterized protein MAH_3966 -0.97 0.93 -0.05 

ANTAR domain-containing protein MAH_3967 -0.43 -0.14 -0.57 

Uncharacterized protein MAH_3973 -0.11 0.11 0.00 

UPF0234 protein MAH_3987 -0.01 -0.10 -0.11 

Glycerol-3-phosphate dehydrogenase [NAD(P)+] MAH_3989 -0.41 0.18 -0.22 

GrcC1 protein MAH_3993 0.47 -0.05 0.42 

Alpha/beta hydrolase MAH_4001 0.26 -0.43 -0.16 

Acyl-CoA synthetase MAH_4004 0.04 0.25 0.29 

Deazaflavin-dependent nitroreductase family 
protein 

 

MAH_4007 
-0.21 

 

0.28 
 

0.07 

1,4-dihydroxy-2-naphthoyl-CoA synthase 
(DHNA-CoA synthase) 

 

MAH_4008 
0.30 

 

-0.18 
 

0.12 

Short chain dehydrogenase MAH_4009 0.27 -0.84 -0.57 

Glyoxalase MAH_4010 0.65 -0.49 0.16 

Uncharacterized protein MAH_4013 -0.37 -0.29 -0.66 

Uncharacterized protein MAH_4018 -1.20 0.84 -0.36 

3-oxoacyl-[acyl-carrier-protein] synthase 3 MAH_4024 0.00 0.00 0.00 

Uncharacterized protein MAH_4027 0.04 0.17 0.21 

Phosphoglycerate mutase MAH_4032 -0.20 0.00 -0.20 

Glutamate-1-semialdehyde 2,1-aminomutase 
(GSA) 

 

MAH_4033 
0.15 

 

-0.29 
 

-0.14 

Uncharacterized protein MAH_4035 -0.33 0.36 0.03 

2-dehydropantoate 2-reductase(Ketopantoate 
reductase) 

 

MAH_4037 
-1.12 

 

-0.20 
 

-1.32 

Uncharacterized protein MAH_4043 0.29 -0.23 0.06 

Uroporphyrinogen-III synthase MAH_4050 -0.83 0.03 -0.79 

Porphobilinogen deaminase (PBG) MAH_4051 0.04 0.09 0.13 

Uncharacterized protein MAH_4056 -0.52 0.08 -0.44 

Uncharacterized protein MAH_4057 -1.00 0.47 -0.52 

HAD-superfamily protein subfamily protein IB 
hydrolase 

 

MAH_4059 
-0.02 

 

-0.08 
 

-0.10 

UPF0336 protein MAH_4060 MAH_4060 0.14 -0.12 0.02 

Cyclopropane-fatty-acyl-phospholipid synthase 2 MAH_4061 0.00 -0.15 -0.15 

Uncharacterized protein MAH_4064 -0.60 0.69 0.08 

Pyrroline-5-carboxylate reductase (P5C 
reductase) (P5CR) 

 

MAH_4065 
0.56 

 

-0.31 
 

0.25 

Ppx/GppA phosphatase MAH_4069 0.44 -0.34 0.10 

Uncharacterized protein MAH_4070 -5.22 4.53 -0.69 

RegX3 protein MAH_4073 -0.27 0.24 -0.04 

2,3-bisphosphoglycerate-dependent 
phosphoglycerate mutase 

 

MAH_4075 
-0.18 

 

-0.12 
 

-0.30 

Uncharacterized protein MAH_4076 -0.58 0.22 -0.35 

Oxidoreductase MAH_4079 0.00 -0.09 -0.09 

Uncharacterized protein MAH_4082 0.29 -0.45 -0.15 

Carbon-nitrogen hydrolase MAH_4083 0.06 0.19 0.25 
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Conserved membrane protein MAH_4084 -0.41 -0.21 -0.62 

Heparin binding hemagglutinin hbha MAH_4088 0.06 0.34 0.40 

XRE family transcriptional regulator MAH_4089 -0.55 0.09 -0.46 

UmaA2 protein MAH_4092 0.02 -0.01 0.01 

3-hydroxybutyryl-CoA dehydrogenase MAH_4094 0.19 0.00 0.20 

Isocitrate lyase (icl1)* MAH_4095 0.56 -0.24 0.32 

Acyl-ACP thioesterase MAH_4096 0.11 -0.14 -0.03 

Dihydrolipoyl dehydrogenase (IpdA)* MAH_4100 0.30 -0.10 0.20 

Eptc-inducible aldehyde dehydrogenase MAH_4104 -0.01 -0.09 -0.10 

Enoyl-CoA hydratase MAH_4107 -0.01 -0.11 -0.12 

Uncharacterized protein MAH_4108 -0.71 0.38 -0.33 

Uncharacterized protein MAH_4114 0.26 -0.33 -0.06 

Glyoxalase MAH_4115 5.81 -0.01 5.79 

Amidohydrolase MAH_4116 0.16 0.08 0.24 

Uncharacterized protein MAH_4118 -0.14 0.10 -0.04 

60 kDa chaperonin (GroEL protein) (Protein 
Cpn60) 

 

MAH_4120 
0.06 

 

-0.11 
 

-0.05 

Cupin domain-containing protein MAH_4122 -0.12 0.36 0.24 

Short chain dehydrogenase MAH_4123 0.75 -0.66 0.09 

Molybdopterin biosynthesis protein MoeA MAH_4124 0.06 -0.11 -0.05 

Phosphatidylserine decarboxylase proenzyme MAH_4126 -0.02 0.02 0.00 

Uncharacterized protein MAH_4137 4.98 -4.98 0.00 

Peptide deformylase (PDF) MAH_4138 -0.16 -0.47 -0.62 

Transmembrane protein MAH_4141 -0.01 0.04 0.03 

Uncharacterized protein MAH_4143 -0.22 -0.64 -0.86 

Phosphomethylpyrimidine synthase MAH_4144 0.05 0.10 0.15 

Uncharacterized protein MAH_4146 0.00 0.00 0.00 

Peptidase, M28 family protein MAH_4151 -0.37 0.90 0.53 

Uncharacterized protein MAH_4155 -0.67 0.46 -0.21 

Thiamine-phosphate synthase (TP synthase) 
(TPS) 

 

MAH_4160 
-0.56 

 

0.84 
 

0.28 

Serine/threonine protein kinase MAH_4164 0.10 -0.09 0.00 

TetR family transcriptional regulator MAH_4166 3.98 0.10 4.07 

F420-dependent glucose-6-phosphate 
dehydrogenase (FGD) (G6PD) 

 

MAH_4174 
0.23 

 

-0.24 

 

-0.01 

Glutaryl-CoA dehydrogenase MAH_4180 0.48 -0.42 0.06 

Long-chain specific acyl-CoA dehydrogenase MAH_4181 0.49 -0.71 -0.22 

O-succinylhomoserine sulfhydrylase MAH_4186 0.18 -0.13 0.05 

Uncharacterized protein MAH_4187 -0.12 -0.09 -0.21 

Phosphoribosylglycinamide formyltransferase 2 MAH_4188 0.59 -0.58 0.02 

Thioesterase MAH_4189 -0.05 -0.06 -0.11 

Adenylosuccinate synthetase (AMPSase) (AdSS) MAH_4190 -0.19 0.09 -0.10 

Uncharacterized protein MAH_4195 -0.89 0.52 -0.36 

Succinyl-CoA:3-ketoacid-coenzyme A 
transferase 1 

 

MAH_4198 
-0.08 

 

0.13 
 

0.04 
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Orotate phosphoribosyltransferase (OPRT) 
(OPRTase) 

 

MAH_4202 
0.27 

 

-0.15 
 

0.12 

Chaperone protein ClpB MAH_4205 0.27 -0.35 -0.08 

FAD dependent oxidoreductase domain- 
containing protein 

 

MAH_4209 
-0.43 

 

0.82 
 

0.38 

Uncharacterized protein MAH_4215 -0.45 0.47 0.01 

Chaperone protein DnaJ MAH_4218 -0.55 0.25 -0.30 

Protein GrpE (HSP-70 cofactor)* MAH_4219 -0.22 -0.02 -0.24 

Chaperone protein DnaK (HSP70) (Heat shock 
70 kDa protein) 

 

MAH_4220 
-0.18 

 

-0.06 
 

-0.24 

Uncharacterized protein MAH_4221 -0.05 0.27 0.22 

Uncharacterized protein MAH_4228 0.14 0.18 0.32 

Ferredoxin, 4Fe-4S MAH_4229 -0.55 0.73 0.18 

Aminotransferase AlaT MAH_4231 -0.35 0.25 -0.10 

Glucose-1-phosphate thymidylyltransferase MAH_4233 0.00 -0.12 -0.12 

Uncharacterized protein MAH_4234 -0.66 0.48 -0.18 

Uncharacterized protein MAH_4235 0.00 0.00 0.00 

Deoxycytidine triphosphate deaminase (dCTP 
deaminase) 

 

MAH_4241 
0.00 

 

-0.15 
 

-0.15 

ErfK/YbiS/YcfS/YnhG family protein MAH_4247 -0.62 0.77 0.15 

Glycosyl hydrolases family protein 16 MAH_4257 -0.42 0.39 -0.04 

Oxidoreductase, zinc-binding MAH_4258 -0.01 -0.27 -0.27 

Uncharacterized protein MAH_4260 -0.10 -4.96 -5.06 

Uncharacterized protein MAH_4265 0.02 -0.08 -0.06 

AtsG protein MAH_4272 -1.21 -4.65 -5.86 

Trans-aconitate 2-methyltransferase MAH_4273 -0.01 0.00 -0.01 

Subtilase MAH_4276 -0.19 0.43 0.24 

ATPase AAA MAH_4285 5.61 -0.20 5.41 

S-adenosyl-L-methionine-dependent 
methyltransferase 

 

MAH_4287 
0.25 

 

-0.42 

 

-0.16 

Glyoxalase/bleomycin resistance 
protein/dioxygenase 

 

MAH_4299 
-0.01 

 

0.09 
 

0.08 

FadE6 protein MAH_4302 0.10 0.02 0.12 

Uncharacterized protein MAH_4303 -0.38 0.33 -0.05 

Acyl-CoA synthetase MAH_4304 -1.34 1.34 0.00 

TetR family transcriptional regulator MAH_4307 -0.23 0.19 -0.04 

Allophanate hydrolase subunit 1 MAH_4309 0.29 -0.39 -0.10 

Uncharacterized protein MAH_4310 0.14 -0.21 -0.07 

Uncharacterized protein MAH_4319 -0.29 0.33 0.04 

Succinate dehydrogenase flavoprotein subunit MAH_4321 -0.02 0.17 0.15 

Fumarate reductase iron-sulfur subunit MAH_4322 -0.31 0.21 -0.09 

NADH-FMN oxidoreductase MAH_4324 0.04 -0.18 -0.14 

Acyl-CoA dehydrogenase MAH_4326 0.32 0.13 0.44 

Acetyl-CoA acetyltransferase MAH_4327 0.34 -0.18 0.16 

3-ketoacyl-(Acyl-carrier-protein) reductase MAH_4328 0.53 -0.27 0.26 

MaoC like domain-containing protein MAH_4329 0.86 -0.05 0.81 
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Acetolactate synthase (ilvB)* MAH_4346 0.57 -0.24 0.33 

Succinic semialdehyde dehydrogenase (gabD1)* MAH_4347 0.37 -0.36 0.01 

Ribonucleotide-diphosphate reductase subunit 
beta 

 

MAH_4348 
-0.57 

 

0.38 
 

-0.19 

Phosphotriesterase-like protein MAH_4352 -0.04 0.13 0.10 

Uncharacterized protein MAH_4354 -0.46 0.45 -0.01 

Aldehyde dehydrogenase MAH_4358 -0.19 0.10 -0.09 

Uncharacterized protein MAH_4361 -0.60 0.23 -0.37 

AMP-dependent synthetase and ligase MAH_4362 -0.34 -5.50 -5.84 

Enoyl-CoA hydratase MAH_4363 -0.05 -0.10 -0.15 

p40 protein MAH_4369 0.48 -0.88 -0.41 

Phosphoenolpyruvate carboxykinase [GTP] (PEP 
carboxykinase) 

 

MAH_4375 
0.09 

 

0.03 
 

0.13 

Uncharacterized protein MAH_4380 0.23 -5.62 -5.40 

Peptidase M13 MAH_4388 0.04 0.30 0.34 

ErfK/YbiS/YcfS/YnhG family protein MAH_4397 -0.47 0.01 -0.46 

Uncharacterized protein MAH_4399 0.82 -1.02 -0.20 

Dihydroxy-acid dehydratase (DAD) MAH_4400 0.33 -0.09 0.24 

O-methyltransferase MAH_4403 0.50 -0.44 0.06 

Lysophospholipase MAH_4408 0.06 -0.03 0.03 

Uncharacterized protein MAH_4410 -0.14 -0.41 -0.55 

YhhW protein MAH_4413 0.00 0.00 0.00 

Uncharacterized protein MAH_4420 -0.50 -3.45 -3.95 

Mce-family protein mce1c MAH_4424 -0.38 -0.66 -1.04 

Long-chain-fatty-acid-CoA ligase MAH_4429 0.09 0.11 0.19 

Cyclase/dehydrase MAH_4431 0.18 -0.19 -0.01 

AdhE protein MAH_4433 5.56 0.71 6.28 

Uncharacterized protein MAH_4446 -0.38 0.34 -0.04 

Uncharacterized protein MAH_4449 0.22 -0.23 -0.01 

FabG3_2 protein MAH_4452 0.07 0.06 0.13 

Homoserine dehydrogenase MAH_4453 0.37 -1.65 -1.28 

TetR family transcriptional regulator MAH_4454 -0.16 0.13 -0.03 

Uncharacterized protein MAH_4455 -1.40 1.07 -0.33 

NAD(P) transhydrogenase subunit beta MAH_4456 0.13 -0.67 -0.55 

PntAA protein MAH_4458 0.38 -0.51 -0.14 

Uncharacterized protein MAH_4459 0.55 0.93 1.48 

Acyl-CoA dehydrogenase fadE2 MAH_4460 0.26 -0.11 0.15 

Peroxisomal multifunctional enzyme type 2 MAH_4462 0.22 -0.12 0.10 

Aldehyde dehydrogenase MAH_4463 -0.10 0.24 0.14 

Peptide methionine sulfoxide reductase MsrA MAH_4476 -0.09 0.05 -0.05 

Uncharacterized protein MAH_4487 4.76 -4.76 0.00 

FadE1_3 protein MAH_4497 -0.17 0.33 0.16 

ZbpA protein MAH_4498 0.25 -0.09 0.16 

Antigen 85-C (fbpC)* MAH_4508 0.56 -0.54 0.02 
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Uncharacterized protein MAH_4510 0.13 -0.52 -0.40 

Elongation factor G MAH_4514 4.04 1.74 5.78 

Acyl-CoA synthetase* MAH_4515 -5.25 5.34 0.09 

Zinc-binding dehydrogenase MAH_4521 0.77 -0.70 0.08 

O-methyltransferase, family protein 3 MAH_4524 0.65 -0.29 0.36 

Aldehyde dehydrogenase MAH_4526 0.00 0.00 0.00 

Uncharacterized protein MAH_4540 -0.70 0.47 -0.23 

DltE protein MAH_4547 0.31 -0.10 0.21 

Methyltransferase type 11 MAH_4551 0.66 -0.49 0.17 

Uncharacterized protein MAH_4552 -0.20 -0.08 -0.28 

Short chain dehydrogenase MAH_4561 -0.75 0.00 -0.75 

Uncharacterized protein MAH_4564 0.01 0.10 0.11 

TetR family transcriptional regulator MAH_4574 -0.21 0.22 0.01 

NAD dependent epimerase/dehydratase MAH_4576 -0.02 0.06 0.04 

Acyl dehydratase MAH_4585 -0.23 0.01 -0.22 

Uncharacterized protein MAH_4589 0.27 -0.22 0.05 

Fructose-1,6-bisphosphate aldolase MAH_4592 -0.03 0.02 -0.01 

Anti-anti-sigma factor MAH_4593 -0.44 0.28 -0.17 

Amidohydrolase MAH_4598 -0.54 0.48 -0.06 

Uncharacterized protein MAH_4606 5.71 -1.04 4.67 

Uncharacterized protein MAH_4609 0.67 -1.49 -0.82 

Uncharacterized protein MAH_4612 -0.94 0.57 -0.37 

PcnA protein MAH_4615 -0.38 -0.12 -0.51 

Virulence factor mvin family protein MAH_4621 -0.09 -0.46 -0.56 

Thioredoxin reductase MAH_4624 0.17 0.00 0.17 

Thioredoxin MAH_4625 -0.14 -0.09 -0.23 

ParB-like partition proteins MAH_4628 0.06 -0.13 -0.07 

Chromosome partitioning protein parA MAH_4629 -0.04 0.19 0.15 

R3H domain-containing protein MAH_4632 -0.40 0.04 -0.36 

50S ribosomal protein L34 MAH_4636 -0.17 -4.65 -4.82 
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9.2 Supplementary Table S2a: Pathway analysis via DAVID of differentially 

regulated genes of M. avium hominissuis lysX mutant in comparison to wild 

type 

 

 
 

 
 

Pathways 

Percentage of 

differentially 

regulated genes 

 
 

p - value 

 

Upregulated genes 

  

Biosynthesis of secondary metabolites 26.5 1.75 x 10
-11

 

Citrate cycle (TCA cycle) 3.8 5.95 x 10
-11

 

Glyoxylate and dicarboxylate metabolism 8.3 2.99 x 10
-11

 

Butanoate metabolism 68.2 3.8 x 10
-3

 

Fatty acid metabolism 68.2 0.01 

Propanoate metabolism 60.6 0.03 

Pyruvate metabolism 5.30 0.05 

Downregulated genes 
  

Amino-acid biosynthesis 8.60 8.3 x 10
-3

 

Valine, leucine and isoleucine biosynthesis 4.90 7.5 x 10
-3

 

2-Oxocarboxylic acid metabolism 4.90 0.03 

 
 

Percentage: involved genes/total of up- or down-regulated genes. 

 
p-value: modified Fisher exact p-value. 
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9.2.1 Supplementary Table S2b: Functional enrichment analysis of differentially 

regulated genes of M. avium hominissuis lysX mutant in comparison to wild 

type strain 104 using STRING 

 

 

 

 
 number of differentially 

regulated genes 

 

FDR 

Upregulated genes   

Biosynthesis of secondary metabolites* 45 1.9 x 10-
11

 

Glyoxylate and dicarboxylate metabolism* 12 9.53 x 10
-7

 

Butanoate metabolism* 12 1.05x 10
-5

 

Pyruvate metabolism* 9 1.27 x 10
-3

 

Fatty acid metabolism* 10 1.73 x 10
-3

 

Citrate cycle (TCA cycle)* 7 1.86 x 10
-3

 

Oxidative phosphorylation 8 2.22 x 10
-3

 

Lysine degradation 8 2.22 x 10
-3

 

Valine, leucine and isoleucine degradation 10 2.32 x 10
-3

 

Fatty acid degradation 9 4.87 x 10
-3

 

Tryptophan metabolism 8 4.87 x 10
-3

 

Propanoate metabolism* 9 5.03 x 10
-3

 

Glycine, serine and threonine metabolism 6 5.83 x 10
-3

 

Glutathione metabolism 4 5.83 x 10
-3

 

Glycolysis / Gluconeogenesis 7 6.5x 10
-3

 

Synthesis and degradation of ketone bodies 4 7.07 x 10
-3

 

Terpenoid backbone biosynthesis 5 0.01 

Benzoate degradation 6 0.04 

 

Downregulated genes 
  

Amino-acid biosynthesis* 10 0.02 

Valine, leucine and isoleucine biosynthesis* 4 0.02 

Oxidative phosphorylation 9 1.29 x 10
-4

 

 
 

*the pathways found by both DAVID and STRING analysis 

FDR – false discovery rate 
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9.3 Supplementary Table S3: Genes differentially regulated in the M.avium lysX 

mutant compared to the wild type, which were reported to be associated with 

infection of macrophages (12-16) classified into COG (cluster of orthologous 

groups) groups 

 
UPREGULATED GENES 

 
 

 

COG Category 
Gene 

Name 

 

Product Description 

 

Possible functions 

Cellular Processes and 

Signalling 

   

Cell 

wall/membrane/envelope 
biogenesis (M) 

   

 

 

MAV_2337 

 

 

murC 

UDP-N- 
acetylmuramate--L- 

alanine ^ 
ligase 

Cell cycle, cell division, 

cell wall organization, 

peptidoglycan biosynthetic 

process 

 

 

 

MAV_5183 

 

 

 

fbpC 

Antigen 85-C 

(diacylglycerol O- 

acyltransferase / 

trehalose O- 
mycolyltransferase) 

 

 

 

Glycerolipid metabolism 

 

MAV_2269 
 Integral membrane 

protein 

Integral component of 

membrane 

Post-translational 

modification, protein 

turnover, and chaperones 

(O) 

   

 
MAV_2400 

 
mpa 

Proteasome- 

associated ATPase 

proteasomal protein 

catabolic process 

 
 

MAV_0013 

  

Peptidyl-prolyl cis- 

trans isomerase 

protein folding,Cationic 

antimicrobial peptide 
(CAMP) resistance 

 
 

MAV_1713 

 
 

clpP1 

ATP-dependent Clp 

protease 
proteolytic subunit 

 

serine-type endopeptidase 

activity 

 

MAV_2023 
 

dnaJ 
Chaperone protein 

DnaJ 

DNA replication, protein 

folding, response to heat 

Defense mechanisms (V)    

 

 

MAV_0940 

  
 

Cytochrome P450 

superfamily protein 

heme binding, iron ion 

binding, monooxygenase 

activity, oxidoreductase 

activity 

 
MAV_2839 

 Alkylhydroperoxide 

reductase 

cell redox homeostasis, 

oxidoreductase activity, 

MAV_2909  PPE family protein Mycobacteria virulence 
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Information Storage 

and processing 

   

Translation, ribosomal 

structure and biogenesis 

(J) 

   

 

MAH_1314 
 

argS 
Arginine--tRNA 

ligase 

arginyl-tRNA 

aminoacylation 

Transcription (K)    

 
 

MAV_3595 

 
 

sigA 

 

RNA polymerase 

sigma factor SigA 

transcription initiation 
from bacterial-type RNA 

polymerase promoter 

 
 

MAV_1309 

 Transcriptional 
regulator, TetR 

family protein 

 

regulation of transcription, 

DNA-templated 

 

 

MAV_0701 

 

 

phoP 

 

DNA-binding 

response regulator 

PhoP 

phosphorelay signal 

transduction system, two- 

component system, OmpR 
family, response regulator 

 
 

MAV_4420 

 Transcriptional 

regulator, MarR 
family protein 

 

transcription, DNA- 

templated 

Replication, 
recombination and repair 

(L) 

   

 

 

 

 

MAV_3155 

  

 

 

 

DNA polymerase I 

Purine and pyrimidine 

metabolism, 

DNAreplication,base 

repair, nucleotide excision 

repair, homologous 

recombination 

Metabolism    

Energy production and 
conversion (C) 

   

 

MAV_0344 

  

Citrate synthase 2 
Tricarboxylic acid cycle, 
glyoxylate cycle 

 

 

 

MAV_4687 

 

 

 

lpdA 

 

 

Dihydrolipoyl 

dehydrogenase 

Cell redox homeostasis , 

tricarboxylic acid cycle, 

glyoxylate cycle, pyruvate 

metabolism, proponoate 

metabolism 

 
MAV_1525 

 
atpA 

ATP synthase F1, 

alpha subunit 

 
Oxidative phosphorylation 

 

 

MAV_2298 

  
 

Cytochrome c family 

protein 

Electron carrier activity, 

Heme binding, iron ion 

binding, oxidative 

phosphorylation 

 

MAV_2781 
 

aceA 
 

Isocitrate lyase 
Carboxylic acid metabolic 
process, glyoxylate cycle 

 

MAV_4682 
 

aceA 
 

Isocitrate lyase 
Carboxylic acid metabolic 
process, glyoxylate cycle 

 
 

MAV_2880 

 
 

glcB 

 
 

Malate synthase G 

Tricarboxylic acid cycle, 

glyoxylate cycle, pyruvate 

metabolism 

 

 

MAV_1380 

 

 

mdh 

 
 

Malate 

dehydrogenase 

Carbohydrate metabolic 

process, tricarboxylic acid 

cycle,glyoxylate clycle, 

pyruvate metabolism 
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MAV_4299 

 

 

sdhA 

 

Succinate 

dehydrogenase 
flavoprotein subunit 

electron transport chain, 

tricarboxylic acid cycle, 

oxidative phosphorylation, 

butanoate metabolism 

 
 

MAV_4300 

 
 

sdhB 

succinate 

dehydrogenase iron- 
sulfur subunit 

tricarboxylic acid cycle, 

oxidative phosphorylation, 
butanoate metabolism 

Amino acid transport and 

metabolism 
(E) 

   

 
 

MAV_4935 

 
 

ilvB 

Thiamine 

pyrophosphate 

enzyme 

Valine, leucine, and 

isoleucine biosynthesis, 

butanoate metabolism 

 

 

 
MAV_3413 

 

 

 
aroQ 

 

 
3-dehydroquinate 

dehydratase 

Aromatic amino acid 

family biosynthetic 

process, chorismate 

biosynthetic process 

 

 

 

MAV_2379 

 

 

 

metH 

 

 

 

Methionine synthase 

Cysteine and methionine 

metabolism, 

Selenocompound 

metabolism, metabolism of 

cofactors and vitamins 

Carbohydrate transport and 

metabolism (G) 

   

 
 

MAV_3329 

 
 

zwf 

 

Glucose-6-phosphate 

1-dehydrogenase 

Pentose phosphate 

pathway, glutathione 

metabolism 

Coenzyme transport and 
metabolism (H) 

   

 
 

MAV_3678 

 
 

ribF 

 

Riboflavin 

biosynthesis protein 

FAD and FMN 

biosynthetic process, 
riboflavin metabolism 

 

MAV_4871 

 ATPase, AAA family 

protein 

 

ATP binding 

 
MAV_1719 

 
mobA 

molybdenum cofactor 

guanylyltransferase 

Folate biosynthesis, GTP 

binding 

 

 

 

MAV_3482 

 

 

 

pdxT 

 
 

Pyridoxal 5'- 

phosphate synthase 

subunit PdxT 

glutamine metabolic 

process, pyridoxal 

phosphate biosynthetic 

process, vitamin B6 

metabolism 

Lipid transport and metabolism 

(I) 

   

 

 

 

 

MAV_4915 

  

 

 

Acetyl-CoA 

acetyltransferase 

Fatty acid degradation, 

ketone body biosynthesis, 

lysine degradation, 

pyruvate metabolism, 

proponoate metabolism, 

two-component system 

 

 

 

 

MAV_1544 

  

 

 

Acetyl-CoA 

acetyltransferase 

Fatty acid degradation, 

ketone body biosynthesis, 

lysine degradation, 

pyruvate metabolism, 

proponoate metabolism, 
two-component system 
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MAV_2127 

  

 

 

Acetyl-CoA 

acetyltransferase 

Fatty acid degradation, 

ketone body biosynthesis, 

lysine degradation, 

pyruvate metabolism, 

proponoate metabolism, 

two-component system 

 

 

 

 

MAV_0980 

  

 

 

Acetyl-CoA 

acetyltransferase 

Fatty acid degradation, 

ketone body biosynthesis, 

lysine degradation, 

pyruvate metabolism, 

proponoate metabolism, 
two-component system 

 
 

MAV_1090 

 Acetyl-CoA 

carboxylase 
carboxyltransferase 

 

Ligase activity, transferase 

activity 

 

 

MAV_4418 

 

 

fadE8 

Acyl-CoA 

dehydrogenase 

family 
protein member 8 

 

Acyl-CoA dehydrogenase 

activity, flavin adenine 

dinucleotide binding 

 
 

MAV_4500 

  

Putative acyl-CoA 

dehydrogenase 

Acyl-CoA dehydrogenase 

activity, flavin adenine 
dinucleotide binding 

 
 

MAV_1088 

 
 

fadE12 

 

Acyl-CoA 

dehydrogenase 

Acyl-CoA dehydrogenase 

activity, flavin adenine 
dinucleotide binding 

 

 

 

 

 
MAV_1087 

  

 

 

 

 
Enoyl-CoA hydratase 

Fatty acid degradation, 

Geraniol degradation, 

lysine degradation, 

benzoate degradation, 

proponoate 

metabolism,butanoate 

metabolism 

 

 

 

 

MAV_0981 

  

 

 

Putative acyl-CoA 
dehydrogenase 

fatty acid beta-oxidation, 

Geraniol degradation, 

lysine degradation, 

benzoate degradation, 

proponoate metabolism, 
butanoate metabolism 

 

 

MAV_1225 

 3-beta hydroxysteroid 

dehydrogenase/ 

isomerase family 

protein 

 

 

Steroid degradation 

 

 

 

MAV_1089 

  

Carbamoyl-phosphate 

synthase 

L chain, ATP 

binding domain 

Valine, leucine and 

isoleucine degradation, 

glyoxylate and 

dicarboxylate metabolism, 

proponoate metabolism 

 
 

MAV_2313 

 1-acylglycerol-3- 
phosphate O- 
acyltransferase 

Glycerolipid metabolism, 
Glycerophospholipid 
metabolism 

 
 

MAV_4343 

 3-oxoacyl-[acyl- 

carrier-protein] 
synthase 2 

 
 

Fatty acid synthesis 

 

 

MAV_1572 

  

3-oxoacyl-[acyl- 

carrier-protein] r 

eductase 

Fatty acid biosynthesis, 

biotin metaboilsm, 

biosynthesis of unsaturated 
fatty acids 
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MAV_4916 

 Oxidoreductase, short 

chain dehydrogenase/ 

reductase family 

protein 

Fatty acid biosynthesis, 

biotin metaboilsm, 

biosynthesis of unsaturated 

fatty acids 
 

MAV_0218 
 

pks13 
Polyketide synthase 
13 

 

Lipid biosynthesis proteins 

 
 

MAV_4917 

  

MaoC like domain 

protein 

fatty acid biosynthetic 

process, oxidation- 

reduction process 

 

 

 

 

MAV_0572 

 

 

 

 

ispF 

 
 

2-C-methyl-D- 

erythritol 2,4- 

cyclodiphosphate 
synthase 

Isopentenyl diphosphate 

biosynthetic process, 

methylerythritol 4- 

phosphate pathway, 

terpenoid backbone 

biosynthesis 

 

 

 

 

 

DOWNREGULATED GENES 

 
Cellular Processes 

and Signalling 

   

 
Cell 

wall/membrane/env 

elope biogenesis 
(M) 

   

 
 

MAV_1098 

 
 

mscL 

Large conductance 

mechanosensitive 
channel protein 

 
 

Ion channel activity 

 
 

MAV_0306 

  
 

Lipoprotein LpqH 

Pathogenesis, host 

cell surface receptor 
binding, 

Post-translational 

modification, 

protein turnover, 
and chaperones (O) 

   

 

MAV_4807 
 

grpE 
molecular 
chaperone GrpE 

Protein folding, 
stress response 

 
 

MAV_4806 

 
 

dnaJ 

 

Chaperone protein 

DnaJ 

DNAreplication, 

protein folding, 

response to heat 

Defense 

mechanisms (V) 

   

 

MAV_2905 

  

Ppe family protein 
Mycobacteria 
virulence 
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Metabolism    

Amino acid 

transport and 

metabolism 

(C) 

   

 
 

MAV_3837 

 
 

leuD 

3-isopropylmalate 

dehydratase 
small subunit 

 

leucine biosynthetic 

process 

 
 

MAV_3838 

 
 

leuC 

3-isopropylmalate 

dehydratase 
large subunit 

 

leucine biosynthetic 

process 

Lipid transport and 

metabolism (I) 

   

MAV_5190  Acyl-CoA synthase metabolic process 

 
 

MAV_2192 

 3-oxoacyl-[acyl- 

carrier-protein] 
synthase 1 

 

Fatty acid 

biosynthesis 

 

MAV_2193 
 

acpP 
 

Acyl carrier protein 
Fatty acid 
biosynthesis 

Inorganic ion 

transport and 
metabolism (P) 

   

 
 

MAV_3021 

  

Biphenyl-2,3-diol 

1,2-dioxygenase 1 

xenobiotic catabolic 

process, iron ion 

binding 

 

 

MAV_2753 

 

 

katG 

 

 

Catalase-peroxidase 

Phenylalanine and 

tryptophan 

metabolism,respons 
e to oxidative stress 
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9.4 Supplementary Table S4a: List of the substrates equally used by both the 

strains- wild type (MAH 104) and mutant lysXmut in the metabolic 

microarray analysis 

 
The number and letter of each substrate indicate the exact position in the PM plate. 

 
 

PMI 

Carbon substrates 

1,"C05 -Tween 20" 

2,"D05 - Tween 40" 

3,"E05 - Tween 80" 

4,"C09 - D-Glucose" 

5,"F07 - Propionic Acid" 

 

PM3 

Nitrogen substrates 

6,"G10 - D,L-a-Amino-Caprylic Acid" 



109 
 

9.4.1 Supplementary Table S4b: List of the substrates differentially used by the 

strains- wild type (MAH 104) and mutant lysXmut in the metabolic 

microarray analysis 

 
The number and letter of each substrate indicate the exact position in the PM plate. 

 

 

 
PM1 

Carbon substrates 

1,“H07 – Glucuronamide“ 

2,“H05 - D-Psicose” 

3,”C08 - Acetic acid” * 

4,”G09 - Mono-methyl succinate” 

5,”G10 – Methyl pyruvate” 

6,”H08 - Pyruvic acid” * 

 

PM2 

Carbon substrates 

7,”F08 - Sebacic acid” 

8,”B03 - b-D-Allose” 

9,”D12 - Butyric acid” 

10,”E02 - Caproic acid” 

 
PM3 

Nitrogen substrates 

11,”E09 - D-Galactosamine” 

12,”A09 - L-Asparagine” 

13,”A11 - L-Cysteine” 

. 

PM3 

Phosphorous substrates 

14,”B05 - Carbamyl phosphate” 

15,”A03 - Sodium pyrophosphate” 

 

 
* The differentially used substrates with statistical significance are underlined. Significant 

differences between isolates were calculated by comparison of mean point estimates and their 95% 

confidence intervals for the parameter A using the functions ´extract´ and ´ci-plot´ within the R-opm 

package (42). 
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9.5 Supplementary Table S5: The pathway analysis of substrates differentially 

used in the metabolic microarray analysis by the lysX mutant strain when 

compared to the wild type (MAH 104) 

 
The pathways were obtained by using the "KEGG pathway database”. 

 
Substrate Pathways associated 

 
Acetic acid 

 
Glycolysis / Gluconeogenesis * 

 Taurine and hypotaurine metabolism 

 Pyruvate metabolism** 

 Propanoate metabolism** 

 C5-Branched dibasic acid metabolism 

 Methane metabolism 

 Sulphur metabolism 

 Biosynthesis of secondary metabolites** 

 Microbial metabolism in diverse environments 

 Biosynthesis of antibiotics 

 Carbon metabolism 

 Degradation of aromatic compounds 

Pyruvic acid Glycolysis / Gluconeogenesis * 

 Taurine and hypotaurine metabolism 

 Pyruvate metabolism** 

 Microbial metabolism in diverse environments 

 Degradation of aromatic compounds 

 Citrate cycle (TCA)** 

 Pentose phosphate pathway 

 Cysteine and methionine metabolism 

 Benzoate degradation* 

 Pentose and glucuronate interconversions 

 Ascorbate and aldarate metabolism 

 Alanine, aspartate and glutamate metabolism 

 Glycine, serine and threonine metabolism* 

 Monobactam biosynthesis 

 Valine, leucine and isoleucine biosynthesis** 

 Arginine and proline metabolism 

 Tyrosine metabolism 

 Phenylalanine metabolism 

 D-Alanine metabolism 

*- Pathways enriched according to DAVID or STRING analysis**- Pathways enriched according to both 

DAVID and STRING analysis 
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