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1. Abstract 

The transcription factor MYC, encoded by the MYC gene, plays a central role in many 

cellular processes, such as cell growth, apoptosis and cell communication. However, 

as an oncogene, MYC also plays a central role in initiation and progression of many 

different types of cancers, including malignant lymphomas, and is therefore the focus 

of many oncological studies. 

Malignant lymphomas do not refer to a single disease entity, but describe a broad 

range of lymphatic neoplasias that derive from mature lymphoid cells. They can be 

subclassified into over 60 subtypes based on their differentiation, morphology and/or 

clinical course. Based on histology, malignant lymphomas can be generally 

distinguished into Hodgkin's lymphoma (HL) and Non-Hodgkin's lymphoma (NHL). 

NHL can be further sub-grouped according to their cell of origin into B- and T-cell NHL. 

Further subclassification exists based on additional histological, clinical and molecular 

criteria including chromosomal alterations and gene expression profiles. The present 

work deals with Burkitt's lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), 

which both belong to aggressive high-grade B-cell lymphoma. Here, we explore the 

role of the transcription factor MYC in the pathogenesis and clinical course of these 

lymphoma types. 

One hallmark of BL is the t(8;14) chromosomal translocation, leading to an 

overexpression of MYC protein. MYC translocations are however, not restricted to BL, 

but can also occur in DLBCL, although at a much lower frequency. MYC break-positive 

BL differ significantly from the MYC break-positive DLBCL in their clinical course, with 

BL associated with a complete cure of the majority of cases. 

To investigate the molecular differences between these two lymphoma subtypes, we 

performed a metabolic and proteomic study, identifying pyruvate as one of the 

discriminatory metabolites. This metabolic phenotype was further confirmed by 

proteomic studies of pyruvate metabolism-associated proteins (Schwarzfischer, et al., 

2017). In a second study, the genome-wide MYC binding pattern of BL, MYC break-

positive and -negative DLBCL was analyzed by chromatin immunoprecipitation 

followed by next generation sequencing (ChIP-Seq) and RNA-based next generation 

sequencing (RNA-Seq). Significant differences in the MYC DNA-binding patterns were 

identified, which were also mirrored in the different gene expression patterns. One of 

these differentially expressed genes code for the cell surface receptor CD97 
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(ADGRE5), which is significantly over-expressed in BL, but absent in MYC break-

positive and -negative DLBCL. 

This finding was confirmed by independent validation experiments, including 

immunohistological staining of cell lines and primary patient samples (Kleo et al 2018 

– submitted).  

This doctoral thesis was complemented by an investigation of long noncoding RNAs 

(lncRNAs) and their role in modulating the MYC-driven cellular transcriptome. Using 

NGS, we identified 13 lncRNAs, which were differentially expressed between BL and 

DLBCLs, one of which was strongly regulated by MYC. This IncRNA was able to 

modulate MYC-induced cell cycle genes with a strong impact on cell cycle progression. 

We therefore called this lncRNA MINCR (MYC-induced non-coding RNA) (Doose, et 

al., 2015).  

Taken together, this thesis provides additional evidence that MYC is not merely an 

on/off amplifier of gene activity but exerts specific actions on the gene expression 

program and – as a consequence – on cellular functions, a finding also true for 

aggressive lymphoma. Based on the MYC differences between BL and DLBCL, the 

identification of biomarkers for their distinction appears to be possible. Therefore it is 

justified to conclude that MYC plays an essential but diverse role in the pathogenesis 

of various lymphoma types, a finding which might be important for future treatment 

modalities. 

 

The analyses of this work were partly conducted in cooperation with other research 

groups and led to three publications, which provide the scientific basis for this 

cumulative thesis. 
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2. Zusammenfassung 

Der Transkriptionsfaktor MYC, kodiert durch das MYC Gen, spielt eine zentrale Rolle 

in vielen zellulären Prozessen wie Zellwachstum, Apoptose und Zellkommunikation. 

Als Onkogen spielt MYC aber auch eine zentrale Rolle in der Tumorentstehung vieler 

verschiedener Krebsarten - einschließlich maligner Lymphome - und steht daher im 

Mittelpunkt vieler onkologischer Studien. Unter dem Begriff „malignes Lymphom“ 

versteht man nicht eine einzelne Erkrankung, sondern er umfasst ein breites Spektrum 

von Neoplasien, die nach Funktion, Differenzierungsstadium, Morphologie/Histologie, 

Immunphänotyp und / oder klinischem Verhalten in über 60 Subtypen unterteilt werden 

können. Histologisch lassen sich maligne Lymphome zunächst in zwei große Gruppen 

einteilen: Hodgkin-Lymphome (HL) und Non-Hodgkin-Lymphome (NHL). Innerhalb 

des NHL wird eine weitere Unterscheidung nach dem Ursprung der Tumorzelle in B- 

und T-Zell-NHL vorgenommen, gefolgt von einer weiteren detaillierteren 

Unterklassifizierung basierend auf zusätzlichen zellulären, klinischen und molekularen 

Kriterien.  

Die vorliegende Arbeit beschäftigt sich mit dem Burkitt-Lymphom (BL) und dem 

diffusen großzelligem B-Zell-Lymphom (engl.: diffuse large B-cell lymphoma; DLBCL), 

die beide zum aggressiven B-Zell-Lymphom gehören. Im Fokus der Arbeiten stand 

dabei Rolle des Transkriptionsfaktors MYC in diesen Lymphom-Subtypen, welche 

einen sehr unterschiedlichen klinischen Verlauf aufweisen. Ein Kennzeichen des BL 

ist die chromosomale Translokation t(8;14), die zu einer Überexpression des MYC-

Proteins führt. Die MYC-Translokation ist aber nicht auf das BL beschränkt, sondern 

kann auch in DLBCL auftreten, jedoch viel seltener. Interessanterweise unterscheiden 

sich die MYC Bruch-positiven BL von der MYC Bruch-positiven DLBCL in ihrem 

klinischen Verhalten dadurch, dass BL-Tumorzellen sehr effizient durch konventionelle 

Chemotherapie abgetötet werden können. Dies führt bei der Mehrzahl der BL 

Patienten zu einer Heilung, während MYC Bruch-positive DLBCL-Patienten einen sehr 

schlechten klinischen Verlauf zeigen. 

Um die molekularen Unterschiede zwischen diesen Lymphom-Subtypen zu 

untersuchen, führten wir zuerst eine metabolische Studie durch, in der Pyruvat als 

einer der diskriminierenden Metaboliten identifiziert wurde. Dieser metabolische 

Phänotyp wurde durch proteomische Untersuchungen der Pyruvatstoffwechsel-

assoziierten Proteine bestätigt (Schwarzfischer, et al., 2017). In einem zweiten Ansatz 

wurde das genomweite MYC-DNA-Bindungsmuster von MYC Bruch-positiven BL und 
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MYC Bruch-positiven sowie -negativen DLBCL, durch Chromatin-Immunpräzipitation 

gefolgt von Next-Generation-Sequenzierung (ChIP-Seq) und RNA-basierter Next-

Generation-Sequenzierung (RNA-Seq), analysiert. Signifikante Unterschiede in den 

MYC-DNA-Bindungsmustern wurden gefunden, die sich auch in den verschiedenen 

Genexpressionsmustern widerspiegeln. Eines dieser differentiell exprimierten Gene 

kodiert den Zelloberflächenrezeptor ADGRE5 (CD97), der in BL signifikant 

überexprimiert ist, aber in DLBCL sowohl mit als auch ohne MYC-Translokation fehlt. 

Diese Beobachtung wurde durch unabhängige Validierungsexperimente bestätigt, 

einschließlich der immunhistologischen Färbung von Zelllinien und primärem 

Patientenmaterial (Kleo et al. 2018 - eingereicht).  

In einer weiteren Studie untersuchten wir die Rolle von langen nichtkodierenden RNAs 

(lncRNAs) und deren Einfluss auf das MYC-gesteuerte zelluläre Transkriptom. Unter 

den 13 differentiell exprimierten lncRNAs wurde eines stark durch MYC reguliert. Es 

ist in der Lage, MYC-induzierte Zellzyklusgene zu modulieren, was zu einer 

Kettenreaktion und letztlich zur Zellzyklusprogression führt. Daher nannten wir diese 

lncRNA MINCR (MYC-induzierte nicht-kodierende RNA) (Doose, et al., 2015).  

 

Zusammenfassend liefert diese Arbeit zusätzliche Indizien dafür, dass MYC nicht nur 

ein unspezifischer Aktivator der Genexpression ist. Vielmehr ist die unterschiedliche 

molekulare Aktivität von MYC auch für aggressive B-Zell Lymphome gültig und zeigt, 

dass MYC die Ausgabe des existierenden Genexpressionsprogramms der Zelle 

verstärkt. Darüber hinaus identifiziert diese Arbeit genomweite MYC-DNA-

Bindungsstellen von BL- und DLBCL-Zelllinien, die tiefere Einblicke in die molekularen 

Verhältnisse beider Lymphom-Subgruppen erlauben und wichtige Informationen für 

weiterführende Studien liefern. Diese identifizierten MYC-DNA-Bindungsstellen bieten 

großes Potenzial zur Identifizierung von neuen Stratifikationsmarkern zwischen 

DLBCL- und BL-Patienten, sowie Ansatzpunkte für neue therapeutische Ansätze. Die 

Korrelation von MYC mit MINCR zeigt eine Regulationsmöglichkeit der MYC-Aktivität 

durch lange nicht-kodierende RNAs und die Auswirkung auf das zelluläre 

Transkriptom. Somit spielt MYC eine wesentliche Rolle in der Modulation des 

Transkriptom einer Tumorzelle.  

Die Analysen dieser Arbeiten wurden in Kooperation mit anderen Forschungsgruppen 

durchgeführt und führten zu drei Publikationen, die für diese kumulative Arbeit 

verwendet werden. 
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3. Introduction 

3.1 Lymphatic system 

The lymphatic system is not a single organ, but rather distributed over the entire body 

with its functions and cells. It is closely connected to the body's defense system 

(immune system) and the blood-forming system in bone marrow (Milan, 1957, 

Olszewski, 1986, Padera, et al., 2016, Till, 1981). The lymphatic system consists of all 

lymphatics and the lymphatic organs, including the lymph nodes, spleen, lymphatic 

tissues in the gastrointestinal tract (e.g. the Peyer's plaques of the small intestine), the 

pharynx (tongues and palate almonds) as well as the thymus gland. The lymph nodes 

are small bean-shaped organs found in many parts of the body such as in the armpit, 

groin, pelvis, neck and the abdomen (Mahlke, et al., 2005, Suy, et al., 2016). They 

serve as filter stations for the lymph fluid, and produce and host cells that fight 

infections in the body. Via the lymph vessels, waste materials and disease promoters, 

e.g. bacteria or foreign body particles, are transported to the approx. 500-1000 lymph 

nodes (Grundmann, et al., 2012). The cells of the lymphatic system, the lymphocytes, 

originate from hematopoietic stem cells (HSCs) and differentiate into B-lymphocytes 

(B-cells) or T-lymphocytes (T-cells) (Delves, et al., 2017, Gutman and Weissman, 

1972, Santambrogio, 2013, Tanaka and Iwakiri, 2016). They fulfill different tasks in the 

innate and adaptive immune response. B-lymphocytes are responsible for antibody-

mediated immune defense, since they form immunoglobulins, which get in contact with 

a foreign substances (e.g. pathogens). T-lymphocytes directly have contact with 

foreign substances or virus-infected cells. They evoke the cellular immune response 

by presenting T-cell receptors (TCR) on their cell surface. 
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3.2. B-cell development 

B-lymphocytes (or B-cells) are characterized by rearranged immunoglobulin heavy and 

light chain genes, which encode antibodies. Antibodies are membrane bound 

receptors in all B-cell subtypes, with the exception of plasma cells. Plasma cells 

secrete a huge amount of antibody molecules and build the basis of humoral immune 

response (Delves, et al., 2017, Murphy, et al., 2018). B-cells develop from 

hematopoietic stem cells through mature immune-competent B-cells, and then to 

antibody-secreting plasma cells (Shapiro-Shelef and Calame, 2005). The production 

of B-cells occurs through a series of processes. Clusters of Differentiation (CD) 

proteins (a group of cell surface markers) and membrane immunoglobulin expression 

(e.g. IgM and IgD) can be used to identify the different stages of B-cell development or 

activation (Bernard and Boumsell, 1984, Brisslert, et al., 2006, Gathings, et al., 1977). 

The primary cell population in the bone marrow, which is clearly attributed to the B-cell 

development, consists of the pro-B-cells (Audzevich, et al., 2017, Osmond, et al., 

1992). They arise from the lymphoid precursor cells of the hematopoietic system and 

already express the B-cell marker CD19 and the CD45 isoform B220 (Osmond, et al., 

1992). Other important markers are CD43 (Treasure, et al., 1992, Wells, et al., 1994, 

Wiken, et al., 1989) and CD25 (Brisslert, et al., 2006, Rolink, et al., 1994), which allow 

a distinction between different developmental stages (Benschop and Cambier, 1999). 

The B-cell development takes place in two steps: first, an antigen-independent step 

that include the immunoglobulin gene rearrangement process for formation of a 

functional B-cell receptor (BCR) (also referred to antibody (Ab) at the protein level or 

Immunoglobulin (Ig) at the gene level) within the B-cells. This occurs in mammals 

initially in the fetal liver and later in the bone marrow. The second step involves foreign 

antigens, which initiate B-cell activation and differentiation in the periphery (Benschop 

and Cambier, 1999, Murphy, et al., 2018, Rink, et al., 2015). 

The key element in both development stages is the BCR. Its functionality in 

combination with appropriate growth factors, is a prerequisite to achieve each 

development stage (Mauri and Bosma, 2012). 

The modeling of the BCR is a complex process and plays a critical role for building the 

adaptive immune system by enabling the detection of a wide variety of antigens. 

Immunoglobulin genes encode the BCR. However, to generate the specificity and high 

variability of BCRs, gene rearrangement is necessary. 
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This immunoglobulin gene rearrangement processes take place during the B-cell 

development and concatenates, in several steps, noncontiguous variable (V), diversity 

(D), and joining (J) gene segments (Delves, et al., 2017, Murphy, et al., 2018, Rink, et 

al., 2015). 

A functional BCR consist of two identical light (L) chains encode by rearranged VL and 

JL gene segments and two identical heavy (H) chains encode by rearranged VH, DH 

an JH segments (Ehlich, et al., 1993, Ghia, et al., 1996, Murphy, et al., 2018). 

At the stage of late pro-B-cell, the cells begin to rearrange the gene of the 

immunoglobulin (Ig) heavy chain locus on chromosome 14. In the first step, a DH- is 

joined with a JH-segment followed by a fusion of VH-segment to the already generated 

DH/JH-segment rearrangements. When this process results in the formation of a 

functional reading frame for the Ig heavy chain, the cell expresses the pre-B-cell 

receptor (Pre-BCR) on the surface. This marks the first selection point in the B-cell 

development, and the cell reaches the pre-B-cell level (Melchers, 2005, Rink, et al., 

2015, van Zelm, et al., 2007). The Pre-BCR transmits a positive signal to the cell, 

causing it to enter the cell cycle and undergo cell divisions. In the case of a non-

functional immunoglobulin gene rearrangement, the second allele is used for a further 

round of recombination. If this also fails, the cell undergoes apoptosis (Mak and 

Saunders, 2011). If the pre-B-cell expresses a Pre-BCR onto the cell surface the 

rearrangement of the light chain locus on chromosome 2 (κ locus) or 22 (λ locus) takes 

place. The light chain is formed by recombination of VL- and JL-segments. However, 

no D-segment is involved for formation of a rearranged light chain gene (Ehlich, et al., 

1993, Ghia, et al., 1996, Murphy, et al., 2018, Rink, et al., 2015). After a productive 

rearrangement of the light chain, the complete BCR (immunoglobulin) can be 

expressed on the surface of the immature B-cell. Further immunoglobulin gene 

modifications at later stages of the B-cell development include the class switching 

involving the constant region of the heavy chain gene region (Stavnezer, 1996). All five 

immunoglobulin classes (IgM, IgD, IgG, IgA and IgE) are coded by a constant (C) 

segments of heavy chains gene locus (μ, δ, γ, α and ε) and increase additionally the 

diversity of the immunoglobulin (Yuan, 1984, Yuan and Tucker, 1984). 

The antigenic specificity of the immunoglobulins is mainly determined by the 

complementarity-determining regions (CDRs). The VH gene segments encode the 

CDR1 and CDR2, whereas, the V, D and J segments collectively contribute for CDR3 

formation, which is the most critical determinant of antigenic specificity. The framework 
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regions (FR) between the CDRs are less variable and are important for antibody 

structure (Boudinot, et al., 2002, Kiyoi, et al., 1992, Warren, et al., 2013). 

The formation of BCR (antibodies) is not triggered by an antigen, rather, the B-cells 

form a large number of antibodies with various specificities. Each B-cell has a unique 

receptor specificity. Upon antigen contact, the B-cell is being activated. B-cell 

activation occurs under appropriate conditions (e.g. in presence of interleukins, T-

helper cells) and via intracellular signal cascades (Delves, et al., 2017, Murphy, et al., 

2018). The cell multiplies, leaves the secondary lymphatic organs and begin as plasma 

cells with the production of high-affinity antibodies. 

B-cell activation by antigens can be T-cell independent (TI) or T-cell dependent (TD) 

(Lanzavecchia, 1985, Playfair and Purves, 1971). If T-cell interaction occurs, the 

antigen is internalized (endocytosis), processed (antigen processing) and presented 

as peptide fragments in major histocompatibility complex (MHC) class II molecules on 

the surface of B-cells (antigen presentation). The presented antigen (peptide fragment) 

on the B-cell surface, is recognized via a specific T-cell receptor (TCR) on the T-cell. 

Co-stimulated via CD40 (B-cell) and CD40-Ligand (T-cell) interaction, and in presence 

of cytokines, the B-cell becomes activated. The activated B-cell migrates together with 

T-cells into lymphoid follicles and form a so-called germinal center (Harwood and 

Batista, 2010, MacLennan, 1994). In the germinal center, the B-cell starts to proliferate, 

generate high-affinity B-cell receptors by somatic hypermutation and affinity 

maturation, and further differentiates into different B-cell types (e.g. plasma cell, 

memory cell). 

B-cells, which undergo T-cell independent activation (e.g. TI-antigens such as poly- or 

lipopolysaccharides of bacteria), however, do not form a germinal center. They are not 

able to undergo affinity maturation or complete isotype swichting. These B-cells 

become activated by TI antigen cross-linking, they start to proliferate and produce 

always antibodies of the IgM type. B-cells which are not activated by antigen binding 

within 3 days are subject to apoptosis (Mak and Saunders, 2011). 
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3.3. Classification of lymphomas 

Lymphomas include all types of neoplasia that derive from lymphocytes of the immune 

system. A correct distinction and classification of lymphoma types may be difficult, but 

is very important for the prognosis and ultimately for the selection of therapy. Malignant 

lymphomas can be divided into two main groups: Hodgkin's lymphoma (HL) and non-

Hodgkin's lymphoma (NHL) (Harris, et al., 2008, Jiang, et al., 2017, Swerdlow, et al., 

2016). 

The tumor cells of Hodgkin's lymphoma are mononucleated Hodgkin- and 

multinucleated Reed-Sternberg cells. They constitute a minority of the cells (0.1–10% 

of the cells) in affected lymph nodes (Amini and Enblad, 2003, Kuppers and 

Hansmann, 2005, Kuppers, et al., 1994). HL can be further sub-classified into two 

disease categories, the nodular lymphocyte predominant HL (NLPHL) and the classical 

HL (cHL) which can be further distinguished into four subtypes: nodular sclerosing 

(NScHL), mixed cellularity (MCcHL), lymphocyte depleted (LDcHL) and lymphocyte 

rich (LRcHL) (Amini and Enblad, 2003, Harris, et al., 2008, Jiang, et al., 2017, 

Swerdlow, et al., 2016). 

The classification of NHL has evolved steadily throughout the last century. An early 

classification system for NHL proposed by Gall and Mallory (Gall and Mallory, 1942) 

was further refined in the 1950s by Hicks et al (Hicks, et al., 1956). Twenty years later, 

it was recognized that NHLs were tumors of the immune system and derive from T- or 

B-cells, which led to the immunologically based classifications (Kiel classification) 

(Fulle and Pribilla, 1980, Lennert and Stein, 1978, Lennert, et al., 1975, Lukes and 

Collins, 1974). Therefore NHL are divided into major categories: B-cell lymphomas (B-

NHL; approx. 80-90% of cases) and T-cell lymphomas (T-NHL; approx. 10-20% of 

cases) (Ansell, 2015, Ansell and Armitage, 2005, Nogai, et al., 2011). A more clinically 

guided classification of B-NHL consists of indolent B-NHL or low-grade malignancy 

(e.g. follicular lymphomas, chronic lymphocytic leukemia, etc.) and aggressive B-NHL 

or high-grade malignancy (BL and DLBCL) (Cheson, 2008, Fulle and Pribilla, 1980, 

Jiang, et al., 2017, Weisenburger, et al., 1982). In 1994 the International Lymphoma 

Study Group (ILSG) published the "Revised European-American Classification of 

Lymphoid Neoplasms" (R.E.A.L. Classification) which summarized the current existing 

knowledge about neoplasms of the immune system and their clinical aspects to simplify 

cooperation between clinicians and scientists (Harris, 1995, Harris, et al., 1994, 

15



 
 

Sander, et al., 1997). The increased understanding of the immune system, the genetic 

abnormalities associated with NHL, and the methodological developments have led to 

the identification of several previously unrecognized subtypes of lymphomas (Martin-

Subero, et al., 2009).  

Microarray gene expression analyses showed that DLBCL can be subdivided into 3 

molecular different subgroups (GCB, ABC, type 3) (Alizadeh, et al., 2000, Rosenwald, 

et al., 2002). Furthermore, bases on gene-expression profiling analysis of BL by 

Hummel et al (Hummel, et al., 2006), a molecular definition of BL was outlined which 

sharply differentiates BL from DLBCL. The World Health Organization (WHO) 

classification of lymphoid neoplasms of 2008 (Harris, et al., 2008) and its revision in  

2017 (Arber, et al., 2016, Campo, et al., 2011, Swerdlow, et al., 2016, Wang and He, 

2016) considers in addition to histological and immunophenotypical features, many 

important molecular characteristics (Swerdlow, et al., 2017, Swerdlow, et al., 2008). 

The incidence of HL in USA and Europe population of is approximately 2-3/100.000 

per year. For NHL, the incidence is approximately 11-12/100.000 per year. Hence 

lymphomas are a common cancer diseases (Morton, et al., 2006, Torre, et al., 2015). 

 

 

Figure 2: Simplified classification of malignant lymphoma. Based on histological features, malignant lymphoma 
can be classified into Hodgkin ‐ and non‐Hodgkin lymphoma. Non‐Hodgkin lymphomas (NHL) comprises a large 
group of morphologically, immunophenotypically or genetically distinct lymphomas derived from B‐ or T‐cells. 
Depicted and highlighted are only those NHL entities, which are of interest for this thesis: MYC‐break positive 
Burkitt lymphoma (BL) and diffuse large B‐cell lymphoma (DLBCL) with MYC‐break (DLBCLpos) and those without 
a MYC‐break (DLBCLneg).  
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3.3.1 Burkitt lymphoma (BL) 

BL is one of the fastest growing human tumors and was named after its discoverer, the 

tropical doctor, Dr. Denis Burkitt (Burkitt, 1958). BL can be divided into three different 

types: (i) Endemic Burkitt Lymphoma: It is the most common type of BL, occurring 

mainly in Central and East Africa as well as in South America. Mostly, children and 

adolescents between 2-20 years are affected, with boys being affected twice as often 

as girls. (ii) HIV-associated Burkitt lymphoma: The HIV infection and the resulting 

immune deficiency predispose to the development of malignant tumors, typically only 

in the advanced stage of immunodeficiency. Nevertheless, HIV-associated Burkitt 

lymphoma belongs to the second most common HIV-associated neoplasia after 

Kaposi's sarcoma. (iii) Sporadic Burkitt lymphoma: It is the rarest type of BL and 

occurs worldwide in patients on an average, 10 years older than those with endemic 

lymphoma (Knowles, 2001, Robertson, 2012). Endemic BL usually occurs as a 

maxillary or facial bone tumor (50%-60% of eBL cases), with non-endemic BL usually 

affecting the abdominal organs (91%) (Dozzo, et al., 2017).  

BL accounts for about 30-50% of all childhood lymphomas, but represent only about 

1% of all adult lymphomas (Doval, et al., 2017, Harris and Horning, 2006, Magrath, 

2012, Sweetenham, et al., 1996). Phenotypically, they are positive for B-cell surface 

markers such as CD10, CD19, CD20, CD22, CD79a, PAX5, BCL6 and proliferation 

marker Ki-67 (Aldoss, et al., 2008, Chuang, et al., 2007, Haralambieva, et al., 2005, 

McClure, et al., 2005, Robertson, 2012, Stashenko, et al., 1980). 

The cause of BL is largely unknown, but an association with viral infections such as 

Epstein-Barr virus or HIV is already known (Hensel, et al., 2011, Hoffmann, et al., 2015, 

Pannone, et al., 2014). Around 90-95% of BL carry translocations which juxtapose the 

MYC gene from chromosome 8 next to the immunoglobulin heavy gene locus on 

chromosome 14 (approx. 85%), or immunoglobulin κ light chain on chromosome 2, or 

the λ light chain on chromosome 22 (Bernheim, et al., 1981, Croce, et al., 1983, 

Dallafavera, et al., 1982, Hummel, et al., 2006, Manolov and Manolova, 1972, Taub, 

et al., 1982, Zech, et al., 1976). Very rare BL cases lacking an identifiable MYC 

rearrangement or with unknown translocations (non-IG) partners are also known and 

are associated with an adverse clinical outcome (Haralambieva, et al., 2004, Hummel, 

et al., 2006, Leucci, et al., 2008). Furthermore, recent NGS studies of BL identify 

somatic mutations in the transcription factor TCF3, or its negative regulator ID3 in 

approximately 70% of BL cases. This respectively affects the function of transcription 
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factor TCF3, a master regulator of normal germinal center B-cell differentiation, and 

the ID3 mutations promote cell cycle progression and proliferation (Love, et al., 2012, 

Richter, et al., 2012, Schmitz, et al., 2014, Swerdlow, et al., 2016).  

 

3.3.2. Diffuse large B-cell lymphoma (DLBCL) 

30-40% of the diagnosed B-cell non-Hodgkin's lymphomas (B-NHL) are diffuse large 

B-cell lymphomas (Coiffier, 2001, Lossos, 2005, Nayak, et al., 2013). Thus, DLBCL is 

the most common malignant lymphoma worldwide. The highest probability of 

developing a DLBCL is between the ages of 40 and 80 years (Chan, et al., 1997). 

Comparable to BL, men are more likely to be affected than women (Savage, et al., 

2009). DLBCL is clinically, molecular and morphologically very heterogeneous, and 

the delineation of BL from DLBCL is not always possible by morphology and 

immunohistology. Early classification systems such as the Kiel classification from 

1974, subdivided DLBCL based on morphologic criteria into centroblastic, 

immunoblastic and anaplastic DLBCL subtypes (Fulle and Pribilla, 1980, Gerardma.R, 

et al., 1974, Lennert and Stein, 1978, Lukes and Collins, 1974, Stansfeld, et al., 1988). 

Centroblastic subtype is the most common and is associated with better survival when 

compared to immunoblastic and anaplastic DLBCL (Engelhard, et al., 1997, Federico, 

et al., 2005, Swerdlow, et al., 2016).  

Molecular gene expression analysis revealed that DLBCL can be sub-divided based 

on the similarities with the transcriptional profiles of their presumed cell of origin (COO) 

into two molecular groups corresponding to germinal center B-cells (GCB) and 

activated B-cells (ABC) (Alizadeh, et al., 2000, Rosenwald, et al., 2002, Sehn and 

Gascoyne, 2015). Around 30% of DLBCL cannot be assigned to either the GCB or the 

ABC type and are summarized as intermediate type. Patients with GCB-type DLBCL 

show a more favorable clinical course than those of the ABC or intermediate type 

(Alizadeh, et al., 2000, Blenk, et al., 2007, Hans, et al., 2004, Monti, et al., 2005).  

The knowledge of the chromosomal alterations in DLBCL allows for further subtyping, 

which can be correlated with prognosis. DLBCL patients with chromosomal 

translocations involving MYC and BCL2 or BCL6 gene (double-hit lymphoma – DHL) 

and less often, all three genes (triple-hit lymphoma – THL) represents about 5% of all 

cases of all DLBCL cases. Patients with MYC translocations with or without additional 

BCL2 or BCL6 translocation usually show an aggressive clinical course with a poor 
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clinical outcome (Hummel, et al., 2006, Kramer, et al., 1998, Oki, et al., 2014, Savage, 

et al., 2009, Visco, et al., 2013). 

 

3.4. Therapies of aggressive B-cell non-Hodgkin's lymphoma (B-   
NHL) 

Untreated patients suffering from aggressive B-NHL die within a few months. On the 

other hand, aggressive B-NHL are very sensitive to radiation and chemotherapy. A first 

improvement in treatment of DLBCL patients was achieved by introduction of the 

CHOP treatment scheme, a polychemotherapy, consisting of cytostatics (drug 

treatment of cyclophosphamide, hydroxydaunububin, oncovine and prednisolone), 

almost 40 years ago (Child, et al., 1983, Heinz, et al., 1985).  

BL are usually treated with CHOP therapy plus methotrexate, followed by ifosfamide / 

etoposide / cytosine arabinoside according to the treatment protocol applied to patients 

with B-cell acute lymphocytic leukemia (B-ALL). This therapy is well-suited and 

promising for children, but not for adult patients (Atra, et al., 1998, Kujawski, et al., 

2002, Pohlen, et al., 2011, Schwarzbich, et al., 2016). Since BL is a very fast-growing 

tumor, chemo- or radiotherapy leads to very efficient killing of the tumor cells. 

Response rates and long-term relapse-free survival after treatment are 

correspondingly high (up to 80%), but in advanced stages or adult age, the prognosis 

is less favorable (Sweetenham, et al., 1996).  

The survival rate of DLBCL patients varies considerably, reflecting the (molecular) 

heterogeneity of the individual tumors. This holds true despite the addition of Rituximab 

to the CHOP scheme (R-CHOP) which represents standard of care for DLBCL patients 

since approx. 15 years (Mounier, et al., 2003, Savage, et al., 2009, Winter, et al., 2006). 

Rituximab is a monoclonal antibody directed against the B-cell surface marker CD20. 

With this treatment, a significant improvement in overall survival (OS) can be reached. 

Unfortunately, dependent on patient age, about 30-60% of the DLBCL patients display 

no longtime treatment success (Coiffier, et al., 2002, Nogai, et al., 2011, Rosenwald, 

et al., 2002, Sehn and Gascoyne, 2015).  

The impact of molecular diversity of DLBCL (regarding to gene expression signatures, 

genetic alterations and other molecular features) for the selection of eligible therapeutic 

options is still underdeveloped. Hence, new treatment options in combinations with 
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precise molecular and histopathological characterization are necessary to improve 

clinical outcome.  

3.5. Transcription factor MYC 

MYC is one of the most important and known transcription factors. It was first 

discovered in avian leukemia virus (ALV), which cause myelocytomatosis in chicken 

and therefore, carries the name v-MYC (viral MYC) (Duesberg and Vogt, 1979, 

Sheiness, et al., 1978). The cellular version of the MYC protein, known as c-MYC 

(cellular MYC, and later only designated as MYC), was discovered initially in BL (Colby, 

et al., 1983, Dallafavera, et al., 1982, Dominguez-Sola, et al., 2007). Subsequently, it 

was described in other mammals (Hall, et al., 1991, Ma and Erickson, 1988, Reuse, et 

al., 1990) and plants (Gong, et al., 1999). MYC is a nuclear phosphoprotein, which is 

able to bind DNA, to initiate and regulate the transcription of a plethora of genes. MYC 

is a major global transcription factor that regulates approximately 10-15% of all human 

genes (Fernandez, et al., 2003, Knoepfler, 2007, Nie, et al., 2012, Poole and van 

Riggelen, 2017). MYC binds sequence-specifically to the DNA, together with MYC-

associated X-factor protein (MAX) (Nair and Burley, 2003). These MYC-MAX protein 

complexes can act as activators (Eberhardy and Farnham, 2001, Frank, et al., 2003, 

Liu, et al., 2003, Saunders, et al., 2006, Vervoorts, et al., 2003, Wu, et al., 1999) or 

suppressors of RNA polymerases and affect the expression of other genes (Brenner, 

et al., 2005, Gartel and Shchors, 2003, Gomez-Roman, et al., 2003, Latchman, 1997, 

Lee, et al., 1997, Mitchell and Tjian, 1989, Si, et al., 2010). Activation of MYC in 

noncancerous cells is triggered by growth factors and adequate nutrients, which bind 

to the cell surface and initialize via activation of histone acetyltransferases (TRRAP-

related histone acetylation complexes and INI1-associated chromatin-modulating 

proteins), a genomic activation cascade, which is responsible for cell proliferation and 

differentiation (Liu, et al., 2003, Marcu, et al., 1992, Meichle, et al., 1992, Stine, et al., 

2015). There are multiple levels of feedback loops and checkpoints of MYC activity 

especially because MYC is involved in many cellular processes such as cell growth, 

differentiation, cell cycle progression, apoptosis and cellular transformation (Amati, et 

al., 1998, Grandori, et al., 2000, Henriksson and Luscher, 1996, Levens, 2002, Stine, 

et al., 2015). In contrast, in cancer cells, an aberrant MYC activity is likely to promote 

tumorigenesis and is associated with approximately 60-70% of human cancers (Dang, 

et al., 2009, Dominguez-Sola and Gautier, 2014, Poole and van Riggelen, 2017, 
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Sheiness, et al., 1978). Some studies suggest that MYC might merely act as a global 

amplifier of gene expression programs (Lin, et al., 2012, McCarthy, 2012, Nie, et al., 

2012, Poole and van Riggelen, 2017). 

The human MYC proto-oncogene (HGN-ID 7553) is located on chromosome 8q24 and 

consists of 3 exons which encode a 2168 bp long mRNA,1320 bp of which are protein 

coding (Dallafavera, et al., 1982, Persson, et al., 1984). An open reading frame results 

in three distinct MYC protein isoforms: MYC-1 (454 aa), MYC-2 (439 aa) and a 

substantially shorter form called MYC-S (339 aa) (Hann, 1995, Hann, et al., 1994, 

Hann, et al., 1988, Spotts, et al., 1997) (Figure 3). The most frequently occurring AUG-

initiated form, MYC-2 (75-90%), is heterogeneously expressed in all human tissues. It 
possesses a nucleus localization signal (NLS) and a basic helix-loop-helix (bHLH), as 

well as a leucine-zipper (LZ) structural motif, capable of binding DNA. The canonic 

binding sequence (E-Box) of MYC protein is CACGTG, but it is also able to bind non-

canonical binding motives ((G|A)CA(A|C|G|T|N)(A|C|G|T|N)TG(G|A)) (Blackwell, et al., 

1993, Chaudhary and Skinner, 1999, Nair and Burley, 2003, Zeller, et al., 2006). 

Transcriptional gene activation involves the recruitment of multiple coactivators and 

protein complexes (e.g. mediator complex, positive transcription elongation factor b (P-

TEFb), the ATPases TIP48 and TIP49, and histone acetyltransferases such as CREB-

binding protein (CBP) and p300, GCN5 and TIP60) to E-box elements (Adhikary and 

Eilers, 2005, Blackwood and Eisenman, 1991). Both MYC mRNA and MYC protein 

have very short half-lives (approximately 10 min and 25 min, respectively) 

(Ciechanover, et al., 1991, Dani, et al., 1984, Hann, 2006, Herrick and Ross, 1994, 

Rabbitts, et al., 1985). Normal fibroblasts in cell culture express a few thousand 

molecules of MYC protein per cell (Waters, et al., 1991), but this can be over two orders 

of magnitude higher in cancer cells and cell lines (Lin, et al., 2012, Maguire, et al., 

1983, Taub, et al., 1982). The oncogenic potential of MYC in lymphomagenesis was 

first demonstrated in 1983 by Adams et al., who showed that the coupling of MYC gene 

with the immunoglobulin enhancer in transgenic mice resulted in the development of 

immature and mature B-cell neoplasms (Adams, et al., 1983, Adams, et al., 1985). The 

MYC proto-oncogene transforms into an oncogene often caused by a chromosomal 

translocation, insertional mutagenesis (via viruses) or through amplification of MYC 

gene (Meyer and Penn, 2008, Yokota, et al., 1986). MYC expression in various tumors 

is very heterogeneous, depending on the type of MYC dysregulation, and whether 

MYC overexpression is a timely or late event in the tumorigenesis (Shachaf, et al., 
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2008). Because of its ubiquitous role, MYC is thought to be an attractive therapeutic 

target.  

 
 

 
Figure 3: (A) Structure of MYC gene consisting of three exons, potential promotor areas (P0‐3) and 
polyadenylation signals (pA1 and pA2) are indicate. (B) Structure of MYC isoforms (MYC‐1, MYC‐2 and MYC‐S) 
including the high homologous conserved MYC Boxes (MB1, MB2) within the N terminal Domain (NTD), a nucleus 
localization signal (NLS) within the central peptide region, and bHLH‐LZ motif within the C‐terminal Domain (CTD). 
Stars indicates potential posttranslational modification sites. Figure adapted and modified from the UniProt 
Knowledgebase, 2017, human MYC # P01106, viewed 05.09.2017 <http://www.uniprot.org/uniprot/P01106> 
and literature (Chen, et al., 2014, Sarid, et al., 1987).  
 

 

3.6. Identification of MYC alterations used to support diagnostics  

In the case of lymphomas, specific chromosomal abnormalities can be used to support 

diagnostic process. Detection of a MYC translocation, in addition to other diagnostic 

criteria (e.g. B-cell marker and proliferation rate), is a hallmark of BL, but is also found 

in a fraction of DLCBL. Currently, there are three diagnostic methods available to 

detect MYC alterations in cell suspensions or tissue samples: conventional 

cytogenetics, fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC) 

(Fernandez, et al., 2012, Nguyen, et al., 2017, Raess, et al., 2018). 

Translocations of the MYC gene to other chromosomal locations can be identified by 

conventional cytogenetics or karyotype analysis. Unfortunately, this technique requires 

fresh tissue material and is time and labor intensive. It is thus not applicable in many 

diagnostic settings. An alternative method is the fluorescence in situ hybridization 

(FISH), using break-apart or fusion fluorochrome-labeled long DNA probes. A major 

advantage of the FISH method is that it can be performed on both fresh and formalin-

fixed paraffin-embedded (FFPE) tissue sections. However, based on the design of 
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DNA probes, FISH might eventually produce false negative results. This is due to the 

large spatial distribution of the MYC breakpoints in the genomic region of up to 1000 

Kb and the involvement of different break point regions (Haralambieva, et al., 2004, 

van Rijk, et al., 2008). The detection of MYC protein can be achieved by IHC on FFPE 

tissue section by antibodies targeting the N-terminus of MYC protein (Cattoretti, 2013, 

Gurel, et al., 2008). The IHC method can be carried out quickly and shows MYC 

deregulation by detection of increased MYC protein level, therefore applicable in most 

pathology laboratories. Finally, MYC (over-) expression can also be identifiable at the 

transcriptional level. Therefore, a variety of different methods are available ranging 

from real-time RT PCR, array-based approaches, NanoString Encounter methods to 

RNA-based NGS (Alidousty, et al., 2018, Jackstadt, et al., 2013). However, the 

detection of MYC (over-) expression at the transcriptional level is currently not the 

method of choice in the diagnostic setting. 

 

4. Aim of thesis 

The aim of this work is to investigate the various mode of action of MYC in two types 

of aggressive B-cell lymphoma, Burkitt lymphoma (BL) and diffuse large B-cell 

lymphoma (DLBCL). The understanding of the molecular mechanisms of MYC activity 

might help to identify new diagnostic or therapeutic options.  

To shed more light on the role of MYC, cell lines derived from: (1) MYC-break positive 

BL, (2) MYC-break positive DLBCL and (3) MYC-break negative DLBCL were 

investigated by complex high-throughput experiments including (i) metabolomics, (ii) 

proteomics, (iii) DNA binding of MYC and (iv) global gene expression. In addition, the 

impact of long noncoding RNAs (lncRNA) on the ability to modulate the MYC driven 

cellular transcriptome were investigated. 
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lymphoma and diffuse large B-cell lymphoma. 
 

 
Authors:  Kleo K, Dimitrova L, Oker E, Tomaszewski N, Berg E, Taruttis F, 

Engelmann JC, Schwarzfischer P, Reinders J, Spang R, Gronwald W, 
Oefner PJ, Hummel M. 

 
Journal:  BMC Cancer, submitted 2018 
   

The original article is online available at:  
Published at BMC Cancer. 2019 Apr 5;19(1):322. 
PMID: 30953469 

 

5.2.1. Synopsis 

MYC is a well described oncogenic transcription factor that plays a multifunctional role 

in many biological processes including cell proliferation and differentiation. MYC is also 

associated with many types of cancers including aggressive lymphoma such as BL 

and DLBCL. BL patients usually carry MYC translocation and show a better clinical 

course, whereas DLBCL patients with MYC translocation have a significantly worse 

clinical outcome. These opposite clinical courses raise the question regarding the role 

MYC plays in this distinct observations. In this work, three groups of cell lines derived 

from different aggressive non-Hodgkin B-cell lymphomas were employed: (i) Burkitt 

lymphoma (BL), (ii) MYC positive diffuse large B-cell lymphoma (DLBCLpos) – carrying 

MYC translocations and (iii) DLBCL without MYC translocation (DLBCLneg). Genome-

wide MYC-DNA binding sites were determined by chromatin immunoprecipitation, 

followed by a high-throughput sequencing experiment (ChIP-Seq). As a control, the 

ChIP-Seq experiment was performed with a H3K4me3 antibody, indicating areas of 

transcriptionally active nearby genes. ChIP-Seq data was bioinformatically evaluated 

and differential binding analysis was performed to ascertain the MYC binding status 

and histone modification status within the investigated entities (BL vs. DLBCL; BL vs. 

DLBCLpos; BL vs. DLBCLneg and DLBCLneg vs. DLBCLpos). In addition, global RNA 

expression profiles were determined by RNA sequencing (RNA-Seq). Our study 

identified different genome-wide MYC-DNA binding sites and RNA expressions profiles 

in BL and DLBCL cell lines. Furthermore, we show that ADGRE5 (alias CD97) is a 
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MYC target gene, which was found to be specifically expressed in BL. These results 

suggest that ADGRE5 is promising marker for distinction between BL and DLBCL 

irrespective of the MYC translocation status of DLBCL. 

  

5.2.2. Contribution 
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Abstract 33 

Background: MYC is a heterogeneously expressed transcription factor that plays a 34 

multifunctional role in many biological processes such as cell proliferation and differentiation. 35 

It is also associated with many types of cancer including the malignant lymphomas. There are 36 

two types of aggressive B-cell lymphoma, namely Burkitt lymphoma (BL) and a subgroup of 37 

diffuse large cell lymphoma (DLBCL), which both carry MYC translocations and overexpress 38 

MYC but both differ significantly in their clinical outcome. In DLBCL, MYC translocations are 39 

associated with an aggressive behavior and poor outcome, whereas MYC-positive BL show a 40 

superior outcome.  41 

  42 

Methods: To shed light on this phenomenon, we investigated the different modes of actions 43 

of MYC in aggressive B-cell lymphoma cell lines subdivided into three groups: (i) MYC-positive 44 

BL, (ii) DLBCL with MYC translocation (DLBCLpos) and (iii) DLBCL without MYC translocation 45 

(DLBCLneg) for control. In order to identify genome-wide MYC-DNA binding sites a chromatin 46 

immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) was performed. In 47 

addition, ChIP-Seq for H3K4me3 was used for determination of genomic regions accessible for 48 

transcriptional activity. These data were supplemented with gene expression data derived 49 

from RNA-Seq.  50 

 51 

Results: Bioinformatics integration of all data sets revealed different MYC-binding patterns 52 

and transcriptional profiles in MYC-positive BL and DLBCL cell lines indicating different 53 

functional roles of MYC for gene regulation in aggressive B-cell lymphomas. Based on this 54 

multi-omics analysis we identified ADGRE5 (alias CD97) - a member of the EGF-TM7 subfamily 55 

of adhesion G protein-coupled receptors - as a MYC target gene, which is specifically expressed 56 

in BL but not in DLBCL regardless of MYC translocation.  57 

 58 

Conclusion: Our study describes a diverse genome-wide MYC-DNA binding pattern in BL and 59 

DLBCL cell lines with and without MYC translocations. Furthermore, we identified ADREG5 as 60 

a MYC target gene able to discriminate between BL and DLBCL irrespectively of the presence 61 

of MYC breaks in DLBCL. Since ADGRE5 plays an important role in tumor cell formation, 62 

metastasis and invasion, it might also be instrumental to better understand the different 63 

pathobiology of BL and DLBCL and help to explain discrepant clinical characteristics of BL and 64 

DLBCL.  65 

 66 

Keywords: ADGRE5, CD97, MYC, ChIP-Seq, RNA-Seq, lymphoma, BL, DLBCL  67 

 68 
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Background 72 

The transcription factor MYC plays a multifunctional role in many cellular processes such as 73 

cell cycle progression, apoptosis and cellular transformation. Over-expression of MYC leads to 74 

an increased replication activity and is associated with different types of cancer. This holds 75 

also true for tumors of the immune system especially aggressive B-cell non-Hodgkin 76 

lymphomas (B-NHL) such as Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). 77 

BL is an extremely fast growing tumor that carries immunoglobulin/MYC translocations in 78 

almost all cases. The tumor is predominantly found in male children but may also occur in 79 

adults especially with a compromised immune system. Treatment of BL is mainly based on 80 

high dose chemotherapy with usually favorable clinical outcome [1]. In contrast, DLBCL rarely 81 

carries MYC rearrangements, which may be associated with both immunoglobulin and non-82 

immunoglobulin genes. Whereas DLBCL without MYC translocation reveals long-term survival 83 

of 60-70% of the patients treated with combined immune-chemotherapy, DLBCL with MYC 84 

translocation – regardless of its translocation partner – shows a very poor clinical outcome [2-85 

8]. It is currently unclear why BL and DLBCL with MYC translocations display this very different 86 

clinical course. In addition, molecular features for a precise stratification of patients into BL 87 

and DLBCL with MYC translocation are lacking despite the need for different treatment 88 

modalities. To determine the potentially different role of MYC in BL and DLBCL, we aimed at 89 

identifying their molecular features by means of chromatin immunoprecipitation combined 90 

with high-throughput sequencing (ChIP-Seq) and whole transcriptome shotgun sequencing 91 

(RNA-Seq) employing B-cell lymphoma cell lines. Validation of the results was performed with 92 

primary lymphoma tissue samples. 93 

Methods 94 

Cell Culture 95 

Three MYC break positive BL cell lines (Blue-1 / ACC-594; BL-2 / ACC-625 and BL-41 / ACC-160), 96 

two MYC break positive (Carnaval / ACC-724; U2932-R2 / ACC-633) and two MYC break 97 

negative (Karpas-422 ACC-32, U2932-R1 / ACC-633) DLBCL cell lines (overview Fig 1A) were 98 

obtained  in 2012 from the German Collection of Microorganisms and Cell Cultures (DSMZ). 99 

The sub-clones U2932-R1 and U2932-R2 were kindly provided by Dr. Quentmeier (DSMZ, 100 

Braunschweig, Germany) [9]. All cell lines were negatively tested for mycoplasma 101 

contamination prior to use and are currently not listed as cross-contaminated or misidentified 102 

cell lines according the International Cell Line Authentication Committee (ICLAC).  All cell lines 103 

were cultivated in RPMI 1640 medium supplemented with GlutaMAX™-I (Gibco, Thermo 104 

Fisher Scientific) and containing 20% of heat inactivated fetal bovine serum (PAN Biotech, 105 

Aidenbach, Germany) under a humidified atmosphere with 5% CO2 at 37°C. Cells were thawed 106 

and continuously split 3 times per week for a maximum period of three weeks. Cell counting 107 

was performed on a BD Accuri C6 Flow Cytometer (BD Biosciences, New Jersey, United States) 108 

and cell viability was determined by propidium iodide (PI) – staining (BD Bioscience, 109 
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Heidelberg, Germany) according to the manufacturer's recommendations. Only cells, which 110 

exhibited more than 90% vitality, were used for further investigation. 111 

Western Blotting 112 

1.5 x 106 vital cells were washed three times with PBS and lysed with protease inhibitors 113 

containing RIPA buffer supported by sonication. After measuring protein concentration using 114 

the BCA protein assay kit (Pierce, Thermo Fisher Scientific), protein lysates were separated 115 

under denaturing conditions via gels electrophoresis using 16% sodium dodecyl sulfate 116 

polyacrylamide gels (Invitrogen, California, United States) and transferred to Hybond-ECL 117 

nitrocellulose membranes (Amersham Biosciences, New Jersey, United States) by 118 

electroblotting. Membranes were blocked with a PBST 5% dry milk solution for 1 hour 119 

followed by incubation with the respective primary antibody solution at 4°C overnight. 120 

Subsequently, membranes were washed three times with PBST and incubated for 1 hour with 121 

a secondary antibody conjugated with horseradish peroxidase (information on primary and 122 

secondary antibodies is available in Supplementary S1 Table). Chemiluminescence was 123 

detected using HRP substrate (Luminata Forte, Merck Chemicals GmbH, Darmstadt, Germany) 124 

and FusionCapt Advance analysis Software (Fusion device, Vilber Lurmat GmBH, Eberhardzell, 125 

Germany). 126 

Quantitative real-time PCR analysis 127 

Total RNA was isolated from 1 x 106 vital cells after washing with PBS employing NucleoSpin 128 

RNA Kit (MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany). RNA fluorometric 129 

quantification was performed by means of the Qubit RNA quantification assay (Thermo Fisher 130 

Scientific). Total RNA was reverse transcribed into complementary DNA (cDNA) using TaqMan 131 

reverse transcription reagents. Real-time PCR analysis was realized using TaqMan Real-Time 132 

PCR Master Mix on a Step One Plus Real-Time PCR System (Thermo Fisher Scientific). All 133 

procedures were performed according to the manufacturer's recommendations. RT-PCR Taq-134 

Man probes are listed in Supplementary S1 Table. Relative RNA expression was calculated 135 

according to the comparative Ct method [10] using the average expression based on triplicates 136 

of two biological replicates of each cell line. For endogenous control b2-microglobulin (B2M) 137 

or succinate dehydrogenase complex, subunit A (SDHA) were used.  138 

ChIP-Seq experiments 139 

Chromatin immunoprecipitation (ChIP) was done according to published protocols [11, 12] 140 

with few modifications. Briefly, 2 x 107 vital cells were fixed for 10 min at 4°C in medium 141 

containing 1% formaldehyde. After blocking with 0.1 M glycine and washing four times with 142 

PBS, the cells were snap frozen and stored at -80°C. After thawing on ice each cell pellet was 143 

resuspended in 5 mL cold LB1 lysis buffer, incubated for 10 min at 4°C and for further 10 min 144 

ambient temperature in 5 mL LB2 lysis buffer before being finally dissolved in 3 mL LB3 buffer. 145 

Sonication was performed for 45 min [three cycles of 15 min each at high power in pulsed 146 
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mode (30 s on and 30 s off)] using titanium rods combined with a Bioruptor Sonicator 147 

(Diagenode, Seraing, Belgium). After addition of 300 μL 10% (vol/vol) Triton X-100 and 148 

centrifugation the supernatant was removed, 50 μL of which were stored as input DNA 149 

sample. 1.5 mL of the supernatant was incubated with 10 μg MYC antibody or 5 μg H3K4me3 150 

antibody at 4°C overnight. For ChIP antibody information, refer to Supplementary S1 Table. 151 

For precipitation of DNA indirectly bound to the respective antibody, 30 µg Dynabeads 152 

coupled with Protein G (Thermo Fisher Scientific) were added for each µg antibody and 153 

incubated for 3 h at 4°C. Subsequently, the beads were washed and the immunoprecipitated 154 

(IP) DNA was eluted. Finally, the eluate (input DNA and IP DNA) was reverse cross-linked 155 

overnight at 65°C followed by digestion with RNase A and Proteinase K. The resulting DNA was 156 

phenol/chloroform extracted, precipitated and the DNA was resuspended in 30 μL 10 mM 157 

Tris·HCl, pH 8.0. DNA was subjected to fluorometric quantification by the Qubit DNA 158 

quantification assay (Thermo Fisher Scientific). Ten ng of chromatin-immunoprecipitated DNA 159 

sample were processed with NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina library 160 

generation according to the manufacturer's recommendations. All amplified libraries were 161 

analyzed with the DNA 1000 Kit on the 2100 Bioanalyzer (Agilent, California, United States). 162 

Single-read NGS was done on an Illumina HiSeq 1500 system (50 cycles). Illumina adapters 163 

were trimmed from the raw sequence data and low quality bases and reads were removed 164 

with trimmomatic (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) [13]. Sequence 165 

data was aligned to the main chromosomes of the human reference genome (GRCh38) with 166 

bowtie version 0.12.7 (-e 70 -k 1 -m 1 -n 2 –best) [14]. H3K4 and MYC peaks were called with 167 

MACS2 [15] with a q-value cut-off of 0.1 and the peaks from the two replicate ChIP samples 168 

were summarized with IDR [16], keeping all peaks with an IDR < 0.1. Final peaks were 169 

annotated to the nearest transcription start site (TSS) using gene annotation from Ensembl 170 

release 77. Only peaks with a maximum distance of 2,000 bp to a TSS were kept. Artificial 171 

peaks were removed using the ENCODE blacklist 172 

(https://sites.google.com/site/anshulkundaje/projects/blacklists). Differential peaks between 173 

DLBCL with and without MYC break and BL were estimated using DiffBind [17] tool.  174 

RNA-Seq analysis 175 

Total RNA was isolated from 1 x 106  lymphoma cells, which were previously spiked in with 1 176 

x 105 insect cells (Schneider cells) for data calibration [18]. The quality of the RNA was 177 

determined with an Agilent 4200 TapeStation and Software A.01.05 (Agilent, California, 178 

United States). 500 ng RNA per sample were processed using the Illumina TruSeq Stranded 179 

mRNA LT Sample Prep Kit following the manufacturer’s instructions to generate libraries for 180 

RNA sequencing. Samples were sequenced on a Hi-Seq 4000 (single read mode; length 150 181 

bp) using the Illumina HiSeq 3000/4000 SBS 150 cycle kit. Sequence reads were aligned to a 182 

concatenated genome that consisted of the human (GRCh38) and the Drosophila 183 

melanogaster (BDGP5) reference genome, using STAR alignment tool [19] with default 184 

parameters. Gene annotation from Ensembl release 77 and feature Counts [20] with default 185 

parameters were used to assign read counts to human and Drosophila genes. Before 186 

differential gene expression analysis, we calculated DESeq2 sample sizeFactors [21] on the 187 
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Drosophila gene counts and applied them to the human sample data. This way, gene 188 

expression levels of the cell lines were calibrated to the number of sample cells. Then, gene 189 

expression levels were modeled with a generalized linear model assuming negative binomial 190 

distributed data and categorical variables for the lymphoma type (BL or DLBCL) and MYC status 191 

(MYC break positive or negative). Gene expression changes were tested for significance with 192 

the Wald test and fold changes with an associated False Discovery Rate (FDR) below 0.05 were 193 

considered significant differentially expressed. 194 

Proteomics 195 

The SWATH-MS-based quantification of the proteins ADGRE5, BYSL and NPM1 was obtained 196 

from previously published data [22]. SWATH-MS measurements were carried out on a 197 

TripleTOF 5600+ (Sciex, Darmstadt, Germany) coupled to an Ultimate 3000 nano-HPLC-system 198 

(Dionex, Idstein, Germany) using an 88 min-binary gradient. The PeakView 2.1 software (Sciex, 199 

Darmstadt, Germany) was employed for quantification of the peptides based on an in-house 200 

library. Only peptides with FDR<1%  and confidence >95% were considered for quantification. 201 

Peptide intensities were summed up and normalized to total protein intensity. Statistical tests 202 

were conducted using heteroskedastic 1-way ANOVA. 203 

Immunohistochemistry  204 

Immunohistochemical staining was performed using sections derived from formalin-fixed 205 

paraffin-embedded cell line blocks (n = 12) and primary tissue samples (n = 38). The use of 206 

human primary tissue samples was approved by the Institutional Review Board of the Charité 207 

– Berlin (EA4/104/11). The immunostaining carried out using the Leica Bond-maX autostainer 208 

(Leica Biosystems, Illinois, United States) according to the manufacturer’s protocol. After heat-209 

induced epitope retrieval, the sections were incubated with anti-c-myc and anti-CD97 210 

(ADGRE5) rabbit antibodies, respectively (dilution 1:200). Horseradish peroxidase-labeled 211 

Anti-rabbit-IgG using the Bond Polymer Refine Detection Kit (Leica Biosystems, Illinois, United 212 

States) was employed to convert the chromogen substrate. Staining was performed with 213 

appropriate positive and negative controls. 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 
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Results 223 

First, we determined MYC mRNA and MYC protein expression by qRT-PCR, Western blotting 224 

and immunohistochemistry, respectively, in cell lines derived from BL, DLBCLpos and 225 

DLBCLneg patients (Fig 1 B-D). With the exception of BL-41, all MYC break positive cell lines 226 

showed high expression of MYC mRNA. The level of MYC protein expression corresponded 227 

without exception with the presence of MYC breaks. The discrepant results between MYC RNA 228 

and MYC protein expression in BL-41 might reflect a longer half-life time of the MYC protein 229 

in BL-41 as compared to the other cell lines with MYC breaks [23-27]. Thus, less RNA is required 230 

to generate high amounts of MYC protein. 231 

 232 

 233 
Fig 1. MYC expression in DLBCL and BL cell lines. (A) Cell lines categorized according to their genomic MYC status 234 

(MYC break). (B) Quantitative MYC RNA expression as determined by RT-PCR; endogenous control for 235 

normalization: B2M expression.  (C) Western Blot analysis of MYC protein expression. (D) Immunohistochemical 236 

(IHC) staining for the cellular localization and distribution of MYC protein.  237 

 238 

To investigate the MYC DNA-binding capabilities in BL and DLBCL, we performed MYC ChIP-239 

Seq experiments to determine genome-wide MYC DNA-binding sites. Additional ChIP-Seq 240 

experiments for trimethylation of histone H3 at lysine 4 (H3K4me3) were carried out in order 241 

to locate genomic areas with open chromatin as indicators for potential transcriptional activity 242 
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of nearby genes [28, 29]. To bioinformatically identify differential MYC DNA-binding sites the 243 

DiffBind package [17] was employed using a pairwise comparison of the cell groups (BL vs. 244 

DLBCL; BL vs. DLBCLpos; BL vs. DLBCLneg and DLBCLpos vs. DLBCLneg). Similar differential 245 

binding analysis was performed with H3K4me3 ChIP-Seq data to ascertain genome wide 246 

differential histone patterns and potential active transcriptional sites. 247 

Detailed results of the bioinformatics analyses are available in supplementary S2 File (ChIP-248 

Seq data), while Figs 2 and 3 depict aggregated data. The overall number of MYC DNA-binding 249 

sites was higher (approx. 2-fold) in MYC break positive (BL, DLBCLpos) than MYC break 250 

negative (DLBCLneg) cells (Fig 2A). Next, we explored whether genes associated with MYC-251 

binding differed between the three groups of cell lines. Our data clearly indicate that there is 252 

not only a difference in the number of genes but in addition, that also different genes are 253 

targeted by MYC and/or H3K4 (Fig 2B). To identify differential MYC-binding genes we 254 

performed a differential peak analysis comparing four combinations: BL vs. DLBCL, BL vs. 255 

DLBCLneg, DLBCLpos vs. DLBCLneg and BL vs. DLBCLpos. Cell lines carrying MYC breaks have 256 

more genes located in the vicinity of MYC-binding sites which leads to a higher number of 257 

differential MYC-binding peaks in relation to MYC break negative cell lines (Fig 2C). Figure 3 258 

highlights a list of twenty target genes selected that yielded the highest fold changes. The 259 

analysis of the MYC-binding motifs of MYC target genes showed an interesting distribution 260 

(Fig 2D) with a preference for non-canonical E-Box motives (approx. 45 %), while only 4% 261 

carried exclusively the classical canonic E-Box motif (CACGTG) and 19% both motifs. Strikingly, 262 

32% of identified MYC targets genes displayed no known MYC-binding motifs. Non-canonical 263 

and/or canonical E-box was present in approx. 68 % of MYC target genes, thus corroborating 264 

previous studies of global mapping of MYC-binding sites [30].  However, the presence of E-box 265 

motives in the binding loci did not correlate with the regulation of associated genes [31, 32].  266 

 267 
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 268 

Fig 2. Differential binding patterns obtained by ChIP-Seq experiments. (A) Total gene counts identified by MYC-269 

Chip, H3K4me3-ChIP, and an overlay of MYC/H3K4me3-ChIP peaks after MACS2 IDR peak calling. (B) Venn 270 

diagrams illustrate the number of identified targets after IDR peak calling of MYC and H3K4 ChIP, respectively, 271 

limited to within 2,000 bp from Origin of Replication (ORI). Each count presents a single Ensembl gene ID. (C) 272 

Differential binding analysis between different lymphoma entities. Each count presents a single Ensembl gene 273 

ID, limitation by 2,000 bp of ORI, IDR < 0.1 and p-value < 0.05. (D) Distribution of MYC E-Box binding motif within 274 

the identified genes with differential MYC-Chip peaks. 275 

 276 

 277 
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 278 
Fig 3. Selected differentially bound genes derived from MYC and H3K4me3 ChIP-Seq experiments. Twenty 279 

selected target genes with a highest Log Fold Change value obtained from differential binding analysis for each 280 

pairwise comparison (BL_vs_DLBCL; BL_vs_DLBCLneg; BL_vs_DLBCLpos; DLBCLpos_vs_DLBCLneg). Restriction to 281 

2,000 bp upstream of transcriptional start site; IDR < 0.1 and p-value < 0.05.  282 

 283 

MYC-binding is not the sole factor for activating of gene expression and associated functional 284 

consequences. In order to gain a deeper insight into the transcriptional landscape and the 285 

impact of the various MYC-binding patterns, we performed RNA-Seq and correlated the 286 

results with the presence of MYC breaks and with the MYC and H3K4 binding patterns. In Fig 287 

4A the number of genes differentially expressed among the three cell line groups is given. The 288 

highest number of differentially expressed genes was found between BL and DLBCL in general, 289 

whereby the expression difference between BL and DLBCLpos was the lowest. This 290 

demonstrates that MYC has a major impact through activation of the same gene set, which 291 

constitutes a significant proportion of the entire transcriptome. In harmony with this notion, 292 

the comparison of the RNA-Seq data between BL and DLBCLneg, and DLBCLpos and DLBCLneg 293 

revealed very similar numbers of differentially expressed genes. This reinforces the similarity 294 

in the gene expression profiles of both types of MYC break positive cell lines. Lists of 295 

differentially expressed genes are given in Supplementary S3 File (RNA-Seq data). In Fig 4B 296 

some differentially expressed genes (from Supplementary S3 File) are functionally grouped 297 

into clustering of differentiation (CD) molecules (B1), integrin molecules (B2) or MYC-related 298 

molecules (B3) and visualized as heat maps. Most of the identified CD molecules seem to be 299 

upregulated in MYC break positive (BL, DLBCLpos) cell lines compared to MYC break negative 300 

(DLBCLneg) cell lines.  301 
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To validate the data derived from genome-wide DNA-binding and gene expression, we 302 

performed additional gene-specific ChIP (MYC and H3K4me3) and RT-PCR experiments (Fig 303 

4C). The selection criteria for the target genes were MYC DNA-binding according to ChIP-Seq 304 

and differential expression according to RNA-Seq. Among the identified genes, ZAP-70, 305 

ADGRE5, CDK20, GPAM, SMAD1 and TERT were the most interesting. Genes lacking 306 

differentially expression such as LARS, FARSA and already described as MYC target genes like  307 

BYSL [33] and NMP1 [34] were selected as positive control. By independent validation assays 308 

we were able to confirm the data derived from our ChIP-Seq and RNA-Seq analyses and 309 

demonstrate that a set of genes is able to reliably differentiate between lymphoma entities.  310 

 311 
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Fig 4.  RNA-Seq and validation of selected targets. (A) Overview of total counts of identified RNA-Seq targets 313 

after differential expression analysis between pairs of lymphoma (sub-) entities. (B) Exemplary heatmaps of 314 

differentially expressed targets grouped for (B1) clustering of differentiation molecules, (B2) integrin molecules, 315 

and (B3) MYC-related molecules. (C) Summary of the validation experiment for selected targets via additional 316 

MYC / H3K4me3 ChIP enrichment analysis (C1) and additional TAQ-MAN RT-PCR analyses (C2) in BL (Blue-1; BL-317 

2, BL-41), DLBCLneg (Karpas-422; U2932-R1) and DLBCLpos (U2932-R2; Carnaval) cell lines (n = 2 biological 318 

replicates). 319 

 320 

Interestingly ADGRE5 (previously designated as CD97 and marked by an arrow in Fig 4, B1) 321 

shows strong selective expression in BL cell lines. On the other hand, some integrin molecules 322 

known to be binding partners of ADGRE5 are downregulated in BL as compared to DLBCL.  323 

To validated this interesting outcome we quantify the proteins of ADGRE5 and already known 324 

homogeneous expressed MYC targets like BYSL and NPM1, obtained from previously 325 

published proteomic data [22] (Fig 5 A) and western blot analysis (Fig 5 C). Finally, we 326 

demonstrated the discriminating character of ADGRE5 between BL and DLBCL in additional 327 

immunostainings of cell lines and FFPE tissue samples (Fig 5 D).  328 

 329 

 330 
Fig 5. ADGRE5 (alias CD97) protein expression in cell lines and patient tumor samples. (A) Proteomic analysis 331 

of ADGRE5, BYSL and NPM1 level in BL (i), DLBCLneg (ii) and DLBCLpos (iii) cell lines. (B) Schematic model of 332 

largest ADGRE5 isoform EGF (1,2,3,4,5), Arg-Gly-Asp integrin-binding motif (RGD), GPCR-autoproteolysis-333 

inducing domain (GAIN), epidermal growth factor domain (EGF), and nucleoside position of potential N-334 

glycosylation sites are indicated. (C)  Western Blot analysis of expression of ADGRE5, BYSL, NMP1 and 335 

endogenous control ß-actin and GAPDH in selected cell lines. (D) Immunohistochemical (IHC) staining of ADGRE5 336 

protein in BL, DLBCLpos and DLBCLneg cell lines and FFPE tumor tissue samples. (E) Overview of ADGRE5 staining 337 

FFPE tumor tissue samples and supplementary information. 338 

 339 

 340 
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Discussion 341 

Our RNA-Seq and ChIP-Seq data showed a significant overrepresentation of ADGRE5 in BL as 342 

compared to DLBCL regardless of the MYC break status of the latter. This finding was  343 

confirmed by independent additional target-specific ChIP experiments, RT-PCR and re-analysis 344 

of published proteomic data [22] (see Fig 4C1-2 and 5A). For further exploration, we selected 345 

ADGRE5 as an interesting candidate gene. ADGRE5 previously designated as CD97 [35] belongs 346 

to the adhesion G protein-coupled receptor (GPCR) subfamily E and was the first receptor of 347 

this gene family found to be associated with cancer [36]. ADGRE5 is a member of the EGF-TM7 348 

(seven-span transmembrane protein containing epidermal growth factor domains; Fig. 5 B) 349 

protein family and is constitutively expressed in granulocytes, monocytes as well as in subsets 350 

of T- and B-cells [37-42]. An increased ADGRE5 expression is found in some types of leukemia 351 

[43-46]. Interestingly, differential expression of ADGRE5 has also been described for several 352 

solid cancers such as lung, thyroid and colorectal carcinomas, indicating a tumor and/or tissue-353 

specific expression pattern [47-49]. Upregulation of ADGRE5 is often observed at the invading 354 

tumor front as well as in advanced tumor stages. Furthermore, ADGRE5 presents an 355 

unfavorable prognostic factor [50-54]. Depending on the cell type and tumor grade, ADGRE5 356 

protein exists in three isoforms resulting from alternative splicing [55]. ADGRE5 protein is 357 

cleaved by self-catalytic proteolysis into a large extracellular subunit, which contains three 358 

(EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) extracellular N-terminal epidermal growth 359 

factor (EGF)-like domains, that are coupled to the seven-span transmembrane subunit (TM7) 360 

via an extended spacer region [56-58]. As a surface receptor molecule, ADGRE5 has the ability 361 

to bind ligands of the cellular and extracellular matrix, enhances proteolytic activity of matrix 362 

metalloproteinases (MMPs) and thus triggers secretion of chemokines [59]. Finally, ADGRE5 363 

interacts with CD55 [60-63], the glycosaminoglycan chondroitin sulfate [64, 65], integrin [66] 364 

or CD90 [67] in an isoform-specific manner. Initial functional studies suggest that ADGRE5 is 365 

relevant for cell adhesion, migration and invasion [53, 59, 68]. 366 

To determine ADGRE5 isotype distribution in aggressive lymphoma, we performed Western 367 

blot analyses (Fig 5C) and found that the short isoform (EGF1,2,5) is homogeneously expressed 368 

in all cell lines, while the largest isoform (EGF1,2,3,4,5) was preferentially present in BL cell 369 

lines. This is a very striking finding, as the EGF-like repeat 4, which has been reported to 370 

interact with chondroitin sulfate, is only found in the largest ADGRE5 isoform [64-66]. The 371 

interaction of chondroitin sulfate and ADGRE5 (EGF4) mediates cell adhesion and 372 

angiogenesis and plays an important role in the interaction of activated T-cells, dendritic cells 373 

and macrophages. This observation fits very nicely to features of BL, especially angiogenesis 374 

and macrophage attraction. 375 

In order to determine the expression profile of ADGRE5 in primary patient specimens, we 376 

performed immunohistochemical staining (IHC). Figure 5D illustrates the higher expression of 377 

ADGRE5 on the cell surface of BL cell lines and primary BL patient specimens. In contrast, 378 

primary tissue specimens obtained from DLBCL patients and cell lines largely lacks ADGRE5 379 

protein expression irrespectively of the presence of MYC breaks. (Additional IHC staining 380 

results are shown in Supplementary S4 Fig). Table 5E summarizes the ADGRE5 IHC results 381 
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obtained for 38 patients suffering from BL and DLBCL, respectively. Overall, ADGRE5 is 382 

significantly more frequently positive in BL patients (88%) as compared to DLBCLs patients 383 

that were mainly negative (80%). Thus, the data derived from our cell line experiments are 384 

nicely reflected in primary patient specimens. 385 

Conclusion 386 

Here we describe the impact of MYC in three types of aggressive B-cell non-Hodgkin 387 

lymphomas: BL and DLBCL with and without MYC break (DLBCLneg and DLBCLpos, 388 

respectively). More MYC-binding sites were found by MYC ChIP-Seq in BL and DLBCLpos as 389 

compared to DLBCLneg. Interestingly, MYC was found to be bound to different target genes 390 

in BL and DLBCLpos, which is also reflected by their gene expression differences. By combined 391 

analyses, ADGRE5 (CD97) was identified as an interesting differentially expressed MYC target 392 

gene. Its expression, in particular that of the largest ADGRE5 isoform (EGF1,2,3,4,5), was 393 

significantly higher in BL than DLBCL. This observation was confirmed by additional validation 394 

experiments and by immunohistochemistry of primary FFPE patient samples. Based on the 395 

reported function of the EGF4 repeat as a receptor for chondroitin sulfate, we hypothesize 396 

that this might contribute to some peculiar features of BL, namely macrophage attraction and 397 

angiogenesis. In addition, we suggest ADGRE5 as a marker to discriminate between BL and 398 

DLBCL (regardless of the presence of MYC breaks) in patient stratification. 399 
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5.3.1. Synopsis 

The distinction of BL and DLBCL can be difficult at the transcriptional, 

immunophenotypical and genomic level. To contribute to this distinction and to obtain 

a better understanding of the different biological mechanisms between both subtypes, 

we developed a metabolomic and proteomic approach to study both established cell 

lines, as well as cryopreserved and formalin-fixed paraffin-embedded (FFPE) tissue 

sections of BL and DLBCL. BL and DLBCL cell lines were cultured, and metabolites 

were characterized from cell pellets and from cell culture supernatants. For metabolite 

analysis, multidimensional nuclear magnetic resonance (NMR) spectroscopy and 

mass spectrometry (MS) were used to identify metabolites, which differ in abundance 

between BL and DLBCL. 

 
Proteins were isolated from the cell pellets and then subjected to label-free nano LC-

SWATH-MS. Combined metaboproteomic analysis was also performed on frozen 

lymphoma tissue specimens (n=11). In addition, proteomics was applied to formalin-

fixed, paraffin-embedded (FFPE) tissue specimens (n=14). 

NMR analyses revealed that DLCBL cell lines produce and secrete significantly more 

pyruvic acid compared to BL cell lines. This observation was confirmed by materials 

from two independent laboratories in which the cell lines were cultivated under slightly 

different conditions. Investigation of single proteins did not provide a comprehensive 

view of the complex biological mechanisms of tumorigenesis. Therefore, additional 

comprehensive proteomic analysis was performed by using nano LC-SWATH-MS 
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technology to investigate protein profiles of BL and DLBCL. The metabolic phenotype 

was mirrored at the protein level leading to numerous differentially expressed proteins 

in the two disease entities. 
The proteomic analysis of the FFPE and frozen BL and DLBCL tissue specimens 

revealed that with this approach, one could clearly distinguish between BL and DLBCL. 

The concordance between the cryopreserved and the FFPE samples was excellent. 

Combined metabolic and proteomic analysis of BL and DLBCL showed that DLBCL 

cell lines and primary lymphoma tissues produce and secrete more pyruvic acid than 

BL. Pyruvic acid plays an important role in cellular redox metabolism and is also 

believed to be an angiogenic factor. Therefore, metabolic and proteomic analysis is a 

useful tool to discriminate between BL and DLBCL. Furthermore, it helps to identify 

differential biological processes which could be an explanation of the heterogeneity 

and clinical behavior observed within these lymphoma entities. 
 

5.3.2. Contribution 
  quota 
I Conception Cell culture experiments design (Laboratory 1) 100% 

II Execution Cell culture optimization 

Cell culture vitality measurements (FACS) 

Cell culture sample preparation 

Selection of patient material (frozen & FFPE tissue) 

Preparation & provision of patient material 

100% 

100% 

100% 

100% 

95% 

III Reporting Cell culture experimental (Lab.1) material/method section 100% 
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5.4.1. Synopsis 

In this publication, we described the impact of the transcription factor MYC and long 

non-coding RNAs (lncRNAs) to the cellular transcriptome. Based on RNA-Seq data 

from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas, we identified 

13 differentially expressed lncRNAs in IG-MYC-positive BL, which are regulated in the 

same direction by MYC in the model cell lines. One of the lncRNAs was investigated 

more intensively and designated MYC-induced long noncoding RNA (MINCR). This 

MINCR showed a strong correlation with MYC expression in MYC-positive lymphomas. 

To clarify the cellular role of MINCR, a RNA interference (RNAi) experiment followed 

by differential gene expression analysis was performed. The results revealed 

significant clustering of cell cycle genes next to genes down-regulated after MINlCR 

knockdown. Interestingly, these cell cycle genes were also enriched for MYC binding 

sites in their promoter regions. MINCR knockdown led to reduction of this MYC binding 

to the promoter regions of these genes. This suggests that MINCR can act as a 

modulator of the MYC transcriptional program and furthermore, leads to a reduction of 

MYC activity during cell cycle progression. The down-regulation of Aurora kinases A/B, 

chromatin licensing and DNA replication factor 1 (CDT1) explains the reduction of 

cellular proliferation observed in the MINCR knockdown model. Therefore, MINCR can 
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be regarded as a new interactor and potential therapeutic target of MYC regulatory 

transcription network via controlling the expression of cell cycle genes.  

 
 
 
5.4.2. Contribution 
  quota 
I Conception ChIP experimental design 80% 

II Execution ChIP experimental protocol optimization 

ChIP experimental provision 

ChIP experimental evaluation  

ChIP experimental interpretation 

70% 

100% 

100% 

60% 

III Reporting ChIP experimental material/method section 80% 
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6. Discussion  

MYC is one of the most described transcription factors which is involved in a wide 

range of cellular processes such as apoptosis, cell cycle, metabolism, cell growth, 

adhesion, angiogenesis and differentiation. It regulates the expression of a variety of 

protein-encoding and non-coding genes by activating or suppressing their respective 

expression. Due to this global role of MYC in many cellular processes, it is obvious that 

aberrant regulation of MYC also has far-reaching consequences for the cell fate. This 

oncogenic character ultimately leads to the fact that MYC is associated with well over 

70% of all cancers diseases (Dang, et al., 2009, Dominguez-Sola and Gautier, 2014, 

Poole and van Riggelen, 2017, Sheiness, et al., 1978). Although MYC is important for 

the renewal of normal proliferating cells (stem cell compartment and immune cells), 

many studies have focused on MYC as the target of cancer therapeutics because of 

its predominant role in tumor development (Chen, et al., 2014, Chen, et al., 2018, 

Ponzielli, et al., 2005). Inhibition of MYC transcription via bromodomain proteins (eg, 

BRD2, BRD3, BDR4 and BDRT) using BET (Bromodomain and Extra-Terminal motif) 

inhibitors is well established in model systems, but a broad clinical application is 

lacking. BET inhibitors lead to cell growth inhibition especially in BL cell lines (Delmore, 

et al., 2011, Mertz, et al., 2011). Other inhibitor strategies target MYC mRNA 

translation (via mTOR, CPEB), MYC stability (via USO28, PLK1, AURKA) or MYC-

MAX dimerization (via Mycro1 and Mycro2) (Clausen, et al., 2010, Follis, et al., 2009, 

Follis, et al., 2008, Hammoudeh, et al., 2009, Huang, et al., 2006, Kiessling, et al., 

2006, Mustata, et al., 2009, Park, et al., 2004, Park, et al., 2004, Prochownik and Vogt, 

2010). Despite the success in model systems employing direct MYC inhibitors, 

strategies that do not focus on MYC itself but its target genes are more promising 

alternatives. However, it is of particular importance to first identify these MYC target 

genes and then better understand the role of MYC in those respective cancer types.  

„Identification of ADGRE5 as discriminating MYC target between 
Burkitt lymphoma and diffuse large B-cell lymphoma”  

(Kleo et al.) 

In the publication of Kleo et al. (submitted to BMC Cancer, 2018), we first looked 

closely at the role of MYC with respect to its target genes in two types of aggressive 

lymphomas, namely BL and DLBCL. To this end, we identified MYC and H3K4me3 
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DNA binding sites in BL and DLBCL cell lines via ChIP-Seq experiments. For better 

characterization of MYC-related subgroups we subdivided the BL and DLBCL cell lines 

into three groups (MYCpos BL, MYCpos DLBCL and MYCneg DLBCL) as defined by 

the presence or absence of a MYC translocation. In parallel, the cellular RNA 

expression was investigated by the help of RNA-Seq experiments. The methods of 

choice (ChIP-Seq and RNA-Seq) are powerful tools to identify genome-wide genomic 

MYC binding sites and RNA expressions profiles in the investigated cell lines. ChIP-

Seq offers a number of advantages such as high resolution, low background and 

complete genome coverage (Park, 2009). A critical element using ChIP technology is 

the quality of the antibody (here antibody against MYC protein), which have influence 

to the number of enriched MYC target sites in relation to the background (input DNA). 

Furthermore, it is important to note that a small number of cell lines was used for this 

work (n=7), as these cell lines were the only ones available, which had the required 

characteristics for this study. 

We identified a large number of genomic MYC binding sites which were different 

among the investigated molecular lymphoma groups (BL and DLBCLs).  

The number of identified MYC DNA binding sites was almost twice in cell lines with 

MYC translocation (BL, DLBCLpos) as compared to cell lines without MYC 

translocation (DLBCLneg). This indicates that the number of MYC-binding target sites 

is related to the increased MYC protein level in cell lines with a chromosomal MYC 

rearrangement.  

Previous studies show that gene profiles transcriptionally regulated by MYC vary in 

different cell types and show only a little overlap into distinct basic functional groups 

(such as metabolism, cell-cycle or DNA replication) (Li, et al., 2003, Zeller, et al., 2003). 

This observation also holds true for B-cell Lymphoma, where significant number of 

MYC DNA binding sites have been identified to occur in common for all three groups. 

Further emphasis was also placed on the MYC DNA binding sites that are different 

between the investigated groups (BL; DLBCLpos and DLBCLneg). The observation 

that MYC can bind to different target genes in B-cell lymphomas (here BL, DLBCL) 

implies that MYC alone could not explain the differences in gene expression per se. 

Other transcription regulatory elements may also have effects, and MYC may function 

here as a universal enhancer of individual cellular gene expression.  

A universal transcriptional enhancer activity of MYC was described by Lie and Nie in 

2012 (Lin, et al., 2012, Nie, et al., 2012), and we intended to test this hypothesis in the 
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B-cell lymphoma entities - BL and DLBCL - as well. The B-cell transcriptome is specific 

to the particular lymphoma entity and the identification of different MYC-DNA binding 

pattern results in a diagnostic potential for a better differentiation between the 

individual lymphoma entities.   

The binding of MYC to the promoter region is important, but not sufficient for the 

transcription of respective genes. The observation that only about half of the identified 

MYC DNA binding sites match those of H3K4me3 DNA binding sites (indicator for 

transcription activity) suggests that MYC can act as a transcriptional activator as well 

as transcriptional repressor. This property of MYC has already been described in other 

studies (Dominguez-Sola, et al., 2007, Herkert and Eilers, 2010, Kretzner, et al., 1992). 

To correlate MYC binding and corresponding transcription, we performed RNA-Seq 

and determined specific differential expression profiles for the respective lymphoma 

entities. The number of differenly expressed transcripts between MYC-break positive 

and negative cell lines was much higher when compared to MYC-break positive BL 

and DLBCL cell lines, where the differences were not all related to MYC binding. 

Therefore we decided to focus on MYC target genes which are different based on Chip-

Seq as well by RNA-Seq between the investigated groups. For validation, we selected 

4 MYC target genes (NPM1, LARS, BYSL and FARSA) which are equally expressed 

in all three groups and 6 MYC targets (ZAP70, ADGRE5, CDK20, GPAM, SMAD1 and 

TERT) which are characterized by differential expression. For further validation, we 

focused on ADGRE5 due to its biological function and doe to the availability of specific 

antibodies, which could be applied in further experiments. These experiments, 

comprising additional cell lines and primary patient tumor samples, confirmed ChIP-

Seq and RNA-Seq findings, and demonstrated that ADGRE5 is significantly highly 

expressed in BL than in DLBCL independent of the MYC break status of the latter.  

ADGRE5 (alias CD97) belongs to the adhesion G protein-coupled receptor (GPCR) 

subfamily E, and has already been found to be related to several cancer entities (Aust, 

et al., 1997, Hamann, et al., 2015). As a member of the EGF-TM7 (seven-span 

transmembrane protein containing epidermal growth factor domains) protein family, it 

is constitutively expressed in granulocytes, monocytes as well as in subsets of T- and 

B-cells (Ancuta, et al., 2009, Eichler, et al., 1997, Gasz, et al., 2005, Jaspars, et al., 

2001, Kop, et al., 2009, Veninga, et al., 2008). An increased ADGRE5 expression is 

also found in some types of leukemia (Bonardi, et al., 2013, Coustan-Smith, et al., 

2011, Maiga, et al., 2016, Mirkowska, et al., 2013). The differential expression of 
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ADGRE5 between BL and DLBCL is well in line with other observations from solid 

cancers that ADGRE5 displays a tumor and/or tissue-specific expression pattern (Aust, 

et al., 2016, Boltze, et al., 2002, Liu, et al., 2005). Furthermore, some publications 

describe ADGRE5 as an unfavorable prognostic factor (He, et al., 2015, Safaee, et al., 

2013, Si, et al., 2010, Steinert, et al., 2002, Wu, et al., 2012). As a surface receptor, 

ADGRE5 has the ability to bind ligands of the cellular and extracellular matrix, enhance 

proteolytic activity of matrix metalloproteinases (MMPs), and thus triggers secretion of 

chemokines (Galle, et al., 2006). Furthermore, initial functional studies suggest that 

ADGRE5 is relevant for cell adhesion, migration and invasion (Galle, et al., 2006, 

Kobayashi, et al., 2013, Steinert, et al., 2002). ADGRE5 interacts in an isoform-specific 

manner with CD55 (Abbott, et al., 2007, Chiu, et al., 2008, Hamann, et al., 1996, 

Toomey, et al., 2014), the glycosaminoglycan chondroitin sulfate (Kwakkenbos, et al., 

2005, Stacey, et al., 2003), integrin (Wang, et al., 2005) or CD90 (Wandel, et al., 2012). 

Interestingly, we found by Western blotting that ADGRE5 isotype distribution is 

different in aggressive lymphoma, with the largest isoform (EGF1,2,3,4,5) preferentially 

present in BL cell lines. It was found that an interaction of chondroitin sulfate and 

ADGRE5 (via EGF-like repeat 4) mediates cell adhesion and angiogenesis, and plays 

an important role in the interaction of activated T-cells, dendritic cells and macrophages 

(Kwakkenbos, et al., 2005, Stacey, et al., 2003, Wang, et al., 2005). This observation 

fits nicely to features of BL such as (neo-)angiogenesis and macrophage attraction 

(Pham, et al., 2018, Ribatti, et al., 2013). Finally, the observed higher ADGRE5 

expression in BL cell lines was also confirmed in additional BL cell lines and in primary 

BL patient tumor tissue. 

In conclusion, this study demonstrates the different gene binding activity of MYC in 

different types of aggressive B-cell lymphoma, which might help to explain their 

different clinical course. The identified differential MYC binding patterns and the 

resulting expression of MYC target genes may provide new starting points for better 

diagnostic stratification of lymphoma patients. Furthermore, it might contribute to the 

development of new cancer therapeutics. Although the genomic and transcriptional 

state of a lymphoma cell provides fascinating insights into cellular processes, it 

constitutes only a partial aspect and a snapshot. It does not reflect the complexity and 

the interaction between individual proteins and the impact of metabolites. Therefore, 

the work of Schwarzfischer et al. 2017, aims elaborating the metabolome and 

proteasome of BL and DLBCL. 
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“Comprehensive metaboproteomics of Burkitt's and diffuse large B-
cell lymphoma cell lines and primary tumor tissues reveals distinct 

differences in pyruvate content and metabolism”  
(Schwarzfischer et al. 2017) 

Metabolomic and proteomic methods were used to perform mass spectroscopy in 

selected cell lines as well as in patient tissues (FFPE and frozen tumor tissue) derived 

from BL and DLBCL patients (Schwarzfischer, et al., 2017). In mass spectroscopy, 

ionized molecules are analyzed according to their mass and ion charge ratio. The 

resulting spectra are specific for the respective molecules, and targets are ultimately 

identified by comparison to known spectra available in public databases. Thus, mass 

spectroscopy technology allows a large number of biomolecules (metabolites and 

proteins) to be identified at the same time, providing a comprehensive insight into the 

underlying biological processes (Houk, et al., 1980, O'Reilly and Rappsilber, 2018, 

Zenobi, 2013).  
The metabolomic analysis of cell culture supernatant from BL and DLBCL cell lines 

initially identified pyruvate as a discriminating metabolite. Pyruvate is produced and 

secreted in significantly higher levels in DLBCL as compared to BL. This interesting 

observation could be shown not only extracellularly (cell culture supernatant), but also 

intracellularly in the cell pellet as well as in frozen tumor materials. Pyruvate is an 

important intermediate in the breakdown of glucose during cellular energy production 

(glycolysis) (Berg, et al., 2017). It can also be formed by the metabolism of various 

amino acids such as alanine (transamination), serine (oxidative deamination) or 

cysteine (desulfuration). Pyruvate itself can then be further metabolized in the cellular 

metabolic cycle to lactate (lactate metabolism), to L-alanine (amino metabolism), to 

acetyl-coenzyme A (citrate cycle) or to oxaloacetate (glycogenesis) (Berg, et al., 2017). 

Furthermore, pyruvate is described as an angiogenesis factor in tumorigenesis (Jung, 

et al., 2011, Lee, et al., 2001), and is in harmony with the angiogenic pathway and the 

increased microvessel density (MVD) observed in DLBCLs (Passalidou, et al., 2003). 

To identify differences at the protein level beyond pyruvate itself, several 

representative proteins of the associated KEGG pathways (glycolysis, PPP, oxidative 

phosphorylation and carbon metabolism) were identified in a subsequent proteomic 

investigation. 
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It could be shown that BL express significantly more LDHA (LDHA: lactate 

dehydrogenase A) which is responsible for the inter-conversion of L-lactate and 

pyruvate, with concomitant inter-conversion of NADH and NAD+ (Berg, et al., 2017). It 

is already known that LDHA transactivation is triggered by MYC (Dang, 2012, Shim, et 

al., 1997), and this could explain the observation that besides pyruvate, lactate is much 

more frequently accumulated in DLBCL as compared to BL cell lines and frozen tumor 

tissue. 

The inter-conversion of L-Lactate and pyruvate is impaired by the reduced LDHA 

expression in DLBCLs, and the metabolites (L-Lactat and pyruvate) accumulate intra- 

and extracellularly (Berg, et al., 2017). Furthermore, the increased concentration of 

glycolytic enzymes, such as hexokinase 1 (HXK1), glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (also known as G3P), phosphoglycerate kinase 1 (PGK1) 

and triosephosphate isomerase (TPIS), observed in DLBCL also conclusively explains 

the increased pyruvate concentration because, such glycolytic enzymes catalyze the 

conversion of glucose stepwise to pyruvate (Berg, et al., 2017). These and others 

proteomic differences between BL and DLBCL reflect not only the metabolic phenotype 

but also could explain the higher proliferation observed in BL. Although a direct link to 

MYC deregulation has not been inferred, our data suggests that proteins of the one-

carbon metabolism pathway like deoxyuridine 5′-triphosphate nucleotide hydrolase 

(DUT), thymidylate synthase (TYSY), dihydrofolate reductase (DYR), phosphoserine 

aminotransferase (SERC), serine hydroxymethyltransferase, mitochondrial (GLYM); 

D-3-phosphoglycerate dehydrogenase (SERA) and nucleoside diphosphate kinase A 

(NDKA) are more abundant in the BL.  

The observation of increased expression of enzymes related to the one-carbon 

metabolism is in line with published data describing that MYC could activate the serine 

and glycine synthesis pathway (Shim, et al., 1997, Sun, et al., 2015). This could explain 

the increased utilization of glucose for the production of glycine in BL whereas, in 

DLBCL, the pyruvate synthesis is the preferred pathway. Ultimately, the glycine 

cleavage refuels the one-carbon metabolism which plays an essential role in 

biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status and 

the substrates for methylation reactions (Locasale, 2013, Molyneux, et al., 2012, 

Vazquez, et al., 2013). This can be regarded as an additional argument for the role of 

MYC in cancers by its impact on specific metabolic pathways (Dang, 2012, Dang, 

2013, Stine, et al., 2015). 
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To conclude, in Schwarzfischer et al. 2018, we investigated metabolic and proteomic 

differences between BL and DLBCL, and discovered differential intra- and extracellular 

concentrations of pyruvic acid between BL and DLBCL cell lines and tumor tissue 

samples. This metabolic phenotype is also reflected by proteomic differences in 

pyruvate pathway-related enzymes.  

Complex cellular physiological and metabolomic processes are widely interconnected, 

and are controlled by different regulatory mechanisms. Next Generation Sequencing 

experiments have shown that up to 70% of the human genome is actively transcribed 

(Carninci, et al., 2005), but only 2% of these are ultimately protein coding (Djebali, et 

al., 2012, Mattick and Makunin, 2006). The functional roles of this huge amount of non-

coding transcripts are still not yet fully understood, but more and more reports suggest 

their effects on cellular physiology and an abnormal expression in several diseases 

(Flockhart, et al., 2012, Holdt, et al., 2013, Huarte, et al., 2010, Prensner, et al., 2011, 

Sauvageau, et al., 2013). One class of non-coding transcripts are represented by long 

non-coding RNAs (lncRNA), which are involved in regulation of post-transcriptional, 

epigenetic and gene transcription processes (Ma, et al., 2015, Orom, et al., 2010, Orom 

and Shiekhattar, 2013, Perkel, 2013). 

As a transcription factor, MYC underlies also a tight regulation and feedback control 

by co-factors and suppressors (Vervoorts, et al., 2003, Yuan, et al., 2009). One of the 

major ways to control MYC levels in cells is via targeted degradation by the ubiquitin–

proteasome system (UPS) (Farrell and Sears, 2014, Popov, et al., 2007) and another 

regulatory element like lncRNA (Hamilton, et al., 2015, Iaccarino, 2017). However, 

despite the established role of transcription factor MYC in cancer therapy, little is 

known about the effects of long non-coding RNAs for the modulation of MYC 

expression an activity. 

“MINCR is a MYC-induced lncRNA able to modulate MYC's 
transcriptional network in Burkitt lymphoma cells”  

(Doose et al. 2015) 

In the work from Doose et al 2015, we performed RNA-Seq derived from two MYC-

inducible cell lines and a cohort of 91 B-cell lymphomas to identify MYC-regulated 

lncRNAs. Furthermore, the functional role of a group of differentially expressed 

lncRNAs with correlation to MYC expression was investigated using RNA interference 

(RNAi) and Chromatin Immunoprecipitation (ChIP).  
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RNA-Seq data obtained from two cell lines (P493-6 and hT-RPE-MycER) and germinal 

center (GC)-derived B-cell lymphomas samples revealed 143 lncRNAs. These 

lncRNAs were significantly differentially expressed by the activation of MYC in the 

P493-6 cells and the hT-RPE-MycER cells, respectively. Parallel analysis of 16 BL 

tumor samples compared to the normal GC B-cells revealed 367 lncRNAs significantly 

up- and down-regulated in BL, respectively. 13 lncRNAs differentially expressed in IG-

MYC-positive BL and regulated by MYC in the inducible cell lines were identified 

(Doose et. all 2015 / Fig 1C), suggesting that MYC could be either directly or indirectly 

involved in transcriptional regulation of those RNAs (Doose, et al., 2015). In 

comparison to published MYC ChIP-Seq data from inducible P493-6 cells (Sabo, et 

al., 2014) and BL cell lines (Seitz, et al., 2011), we confirm that 7 out of 13 lncRNAs 

were bound by MYC under MYC-high conditions in the region around the 

transcriptional start site (TSS). This finding suggests that some of the identified 

lncRNAs may be directly targeted by MYC. Furthermore, at least 10 out of 13 lncRNAs 

were either transcribed regions or active promoters based on the analysis of DNA 

methylation and presence of DNase I hypersensitive sites (DHS) at the TSS site. 

Among the 13 lncRNA, the lncRNA with highest significance (Ensembl ID: 

ENSG00000253716) was regarded as a MYC-regulated transcript. LncRNA 

ENSG00000253716 had all characteristics associated with open chromatin and active 

transcription. Furthermore, the expression of ENSG00000253716 was reduced after 

MYC knockdown in BL cell lines, leading to the designation of this transcript as MYC-

induced long non-coding RNA (MINCR). The MINCR gene is located on chromosome 

8q24.3 and conserved throughout primates, but not in other vertebrates. MINCR also 

has a RefSeq entry defined as uncharacterized LOC100507316. ENCODE annotates 

at least six different isoforms transcribed from the MINCR gene locus, with a long 

isoform (MINCR_L) composed of three exons and all others containing two exons 

(short isoform: MINCR_S). A qRT-PCR analysis performed using isoform-specific sets 

of primers confirmed that the short isoform (MINCR_S) is more expressed in BL. 

Detailed characterizations of MINCR expression suggests that it is enriched in the 

nuclear fraction and is ubiquitously expressed among different tissues. Analyzing the 

expression of MINCR in the entire ICGC MMML-Seq  cohort shows that the expression 

of the lncRNA MINCR strongly correlates with MYC expression, not only in BL, but also 

in other GC-derived MYC-positive lymphomas and other cancer types (Richter, et al., 

2012, Richter, et al., 2012). To determine the functional role of MINCR, RNAi 
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knockdown was performed and the effect of a possible change in cell 

proliferation/viability was investigated. The data generated provides evidence that 

MINCR RNAi results in a time-dependent decrease in cellular proliferation, 

independent of the MYC activation status. However, MINCR knockdown led to a 

significant reduction in the percentage of cells with a DNA structure corresponding to 

cells in S phase and G2/M phase. MINCR knockdown had also effects on cellular 

viability and cell cycle progression. Performing RNA-seq of hT-RPE-MycER cells 48 h 

after transfection with the two MINCR siRNAs showed no significant changes in 

expression of the most proximal genes upstream and downstream from MINCR. 

Overall, our data demonstrates that the reduction of proliferation observed in hT-RPE-

MycER cells after MINCR knockdown depends on the down-regulation of a set of 

genes important for cell cycle progression. Particularly, cell cycle genes coding for 

Aurora kinase A (AURKA), AURKB, and chromatin licensing and DNA replication factor 

1 (CDT1) were also reproducibly down-regulated in BL-2 cells after MINCR 

knockdown. Additional MYC ChIP experiments indicate that some of MINCR-regulated 

genes are also MYC targets. Additional knockdown experiments of AURKA, AURKB 

and CDT1 led to reduction in cellular viability in hT-RPE-MycER cells. Furthermore, 

the effect was even more pronounced after MYC activation. These data imply that 

down-regulation of cell cycle genes (like AURKA, AURKB, and CDT1) can contribute 

to reduced basal proliferation observed after MINCR knockdown. Interestingly, AURKA 

and AURKB, just like CDT1, have already been shown to play a crucial role in MYC 

induced oncogenic transformation and lymphoma development (Seo, et al., 2005, 

Yang, et al., 2010). 

To conclude, the oncogenic transcription factor MYC is known to play a crucial role in 

the pathogenesis of many neoplasms by controlling the expression of many genes. 

The role of lncRNAs during MYC-induced oncogenic transformation was investigated 

in Doose et al. 2015, where we identified a new MYC-regulated lncRNA named MYC-

induced long noncoding RNA (MINCR). MINCR is functional, and controls cell cycle 

progression by influencing the expression of MYC-regulated cell cycle genes. 

Therefore, MINCR is a novel player in the MYC transcriptional network, and represents 

a potential therapeutic target in the fight against malignant lymphoma and other 

cancers that rely on MYC expression. 
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7. Conclusion and Perspectives 

MYC is a common oncogene identified as affected by chromosomal translocation in 

BL and in a subgroup of DLBCL (Ott, et al., 2013). The oncogenic events leading to 

aberrant MYC expression is usually associated with an aggressive clinical behavior in 

B-cell neoplasms. A MYC translocation – alone or accompanied with BCL2 and/or 

BCL6 translocations - confers an increase in aggressive behavior (Kramer, et al., 

1998). However, MYC chromosomal translocation is also present at low frequencies 

in healthy individuals (Janz, et al., 2003), and therefore it cannot alone be the reason 

for lymphomagenesis.  

Although BL and DLBCL are well-defined lymphoma entities, molecular-pathological 

studies have identified several subgroups with intermediate features, which are often 

associated with an aggressive cancer behavior. There are still challenges for routine 

diagnostics to identify these subgroups by immunohistochemistry or genetic analysis. 

Gene profiles transcriptionally regulated by MYC vary in different cell types and show 

only a little overlap between distinct functional groups (such as metabolism, cell-cycle 

or DNA replication) (Li, et al., 2003, Zeller, et al., 2003). A potential explanation for this 

differential MYC-related transcriptional activity is given by studies from Ni et al 2012 

and Lin et al 2012. These studies suggest that MYC functions as an enhancer of 

generally transcribed genes in the cell (Lin, et al., 2012, Nie, et al., 2012). Therefore, 

the different MYC target gene signatures, observed between DLBCL and BL, may also 

reflect the different gene expression profiles, observed due to the cell origin in different 

germinal center compartments (Alizadeh, et al., 2000, Hans, et al., 2004, Hummel, et 

al., 2006, Victora, et al., 2012). 

 

The present work compiles the data derived from three studies (Kleo et al., 

Schwarzfischer et al. and Doose et al.) to investigate various aspects of MYC-driven 

aggressive B-cell lymphomas. Several approaches such as ChIP-Seq, RNA-Seq, 

mass spectroscopy and RNA interference were employed to disclose differences 

between BL and DLBCLs, and to gain insights into their complex cell physiology. 

Besides the identification of differential genomic and transcriptional patterns we also 

discovered different metabolic and proteomic profiles, which expand our knowledge 

about the complex cellular physiological processes of MYC-driven B-cell lymphomas. 

Our already published and submitted data identified new differential target molecules 

and metabolites (such as ADGRE5 and pyruvate), which possess the potential to 
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support precise diagnostic distinction among the investigated lymphoma types. 

Furthermore, the impact of lncRNAs for MYC-associated B-cell lymphoma was 

investigated, leading to the identification of MINCR as a novel modifier of the MYC 

transcriptional network. 

The generated data sets represent an excellent basis for additional investigations to 

further explore aggressive B-cell lymphoma and to support the development of 

alternative therapeutic strategies to combat MYC-driven aggressive B-cell lymphomas.  
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10. Abbreviations 
aa aminoacid 
Ab antibody 
ADGRE5 adhesion G protein‐coupled receptor E5 
BCR B‐cell receptor 
bHLH basic helix‐loop‐helix  
BL Burkitt lymphoma 
B-NHL B‐Cell Non‐Hodgkin lymphoma 
bp base pair 
BYSL Bystin Like 
CD cluster of diffrentiation 
CDK20 Cyclin Dependent Kinase 20 
CDRs complementarity‐determining regions  
ChIP Chromatin‐Immunoprecipitation 
GPAM Glycerol‐3‐Phosphate Acyltransferase, Mitochondrial 
DLBCL diffuse large B‐cell lymphoma 
DLBCLneg diffuse large B‐cell lymphoma negative for MYC rearrangement 
DLBCLpos diffuse large B‐cell lymphoma positive for MYC rearrangement  
DNA deoxyribonucleic acid 
FARSA Phenylalanyl‐TRNA Synthetase Subunit Alpha 
FFPE formalin‐fixed paraffin‐embedded 
FISH fluorescent in situ hybridization  
H3K4me3 histone H3 containing the trimethylated lysine 4 
HL Hodgkin lymphoma 
HSCs hematopoietic stem cells  
Ig immunoglobulin 
IHC immunohistochemistry  
LC-SWATH-MS liquid chromatography – sequential window acquisition of all theoretical fragment ion 

spectra – mass spectrometry 
lncRNA long non‐coding RNA 
LARS Leucyl‐TRNA Synthetase 
LZ leucine‐zipper  
Max MYC‐associated X‐factor protein  
MHC major histocompatibility complex  
MINCR Myc‐Induced long non‐coding RNA 
NHL Non‐Hodgkin lymphoma 
NLS nucleus localization signal  
NPM1 Nucleophosmin 1 
RNA ribonucleic acid 
SMAD1 SMAD Family Member 1 
TCR T‐cell receptor 
TD T‐cell dependent 
TERT Telomerase Reverse Transcriptase 
TI T‐cell independent 
WHO World Health Organization  
ZAP70 Zeta Chain Of T Cell Receptor Associated Protein Kinase 70 
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