THESIS

The function of Activin receptor type 1B signaling

in adult skeletal muscle

Inaugural-Dissertation
to obtain the academic degree
Doctor rerum naturalium (Dr. rer. nat.)

Submitted to
The Department of Biology, Chemistry and Pharmacy
Freie Universitat, Berlin
And
Ecole doctorale ED515 «Complexité du vivant »

Université Pierre et Marie Curie, Paris

by
KARIMA RELIZANI

from Algiers

2014



The research work presented in this thesis has been carried out from September 2010 till June
2014 in the laboratories:

« Biothérapies des maladies du systéme neuromusculaire » UMR-UPMC-AIM-UMT76, Inserm
U974, CNRS UMR 7215, Université Pierre et Marie Curie, Paris, France.

« Biothérapies des maladies neuromusculaires »UFR des sciences de la santé Simone Veil,
Université Saint-Quentin en Yvelines, France.

« AG Schuelke, Center and Department of Neuropediatrics, Charité Universitatmedizin,
Berlin, Germany.

Referees:

Dr. Delphine Duprez -UPMC representative and chair of the thesis committee
Dr. Anne Bonnieu- External examiner

Prof. Dr. Hadi Al-hasani — External examiner

Dr. Daniel Horbelt- Postdoctoral research fellow from FU

Supervisor: Dr. Helge Amthor- Thesis supervisor, UPMC

Supervisor: Prof. Dr. Petra Knaus —FU representative

Guest: Prof. Markus Schuelke, Charité

Date of Defense: 07 July 2014



Abstract

Myostatin, a growth factor of the TGF-f family that signals through the activin receptor-1IB
(ActRIIB), has been identified as an important negative regulator of skeletal muscle growth. However,
its effect on muscle energy metabolism and energy dependent muscle function remains largely
unexplored. I here investigated the consequence of impaired ActRIIB signaling for muscle metabolism
in two experimental models, i) the constitutive myostatin knockout mice and ii) following
pharmacological administration of soluble ActRIIB in adult mice. Our results demonstrate that
myostatin knockout mice develop a strong fatigability, a decrease in mitochondrial respiration and a
molecular signature towards a glycolytic metabolism. As these findings may be explained by the
congenital shift towards fast glycolytic muscle fibers in these mice, I investigated the effect of
inhibition of ActRIIB signaling in adult mice. I provide evidence, notably for the mdx mouse, model
for Duchenne muscular dystrophy, that ActRIIB blockade, despite an unchanged fiber type
distribution, leads to extreme exercise intolerance. This was associated with pathologically increased
serum lactate levels and myopathic features. In-depth biochemical and molecular analysis
demonstrates that blockade of ActRIIB signaling down-regulates the ATP channel porin, reduces
muscle capillarization and leads to a consecutive deficiency in oxidative phosphorylation. I also show
that ActRIIB regulates key determinants of muscle metabolism, such as PparP, Pgcla, and Pdk4,
thereby optimizing different components of muscle energy metabolism. Taken together, my results
demonstrate that ActRIIB blockade provokes a metabolic myopathy, especially in the context of
dystrophic muscle, in which an underlying metabolic stress already exists. In conclusion, I cannot
recommend the use of ActRIIB signaling blockade as a therapeutic strategy for muscle diseases.

Zusammenfassung

Myostatin, ein Signalmolekiil der TGF-B-Familie, vermittelt seine Wirkung iiber den Aktivin-
Rezeptor-1IB (ActRIIB) und ist ein extrem starker Hemmer des Skelettmuskelwachstums. Andere
Wirkungen des Myostatin, insbesondere die ihm zugeschriebene Regulierung des
Muskelenergiestoffwechsels und der energieabhdngigen Muskelfunktion, sind noch weithin
unerforscht. Ich habe in meiner Arbeit die Folgen einer gestorten ActRIIB-Signaliibertragung fiir den
Muskelstoffwechsel anhand zweier Experimentalmodelle untersucht: i) in einem konstitutiven
Myostatin-knockout-Mausmodell (Mstn™) und ii) mittels einer pharmakologischen ActRIIB-Blockade
in adulten Mausen durch Behandlung mit loslichem ActRIIB-Rezeptor. Unsere Ergebnisse zeigen,
dass die Mstn”-Miuse unter korperlicher Belastung schnell ermiiden. Diese vermehrte muskulére
Ermiidbarkeit geht mit einer verminderten mitochondrialen Atmung und einer molekularen
Verianderung zugunsten des glykolytischen Stoffwechsels einher. Diese Verdnderungen kénnten einer
angeborenen Muskelfaserverteilungsstorung zugunsten glykolytischer Fasern zugeschrieben werden,
die bei der Mstn”-Maus typischerweise auftritt. Ich habe deshalb die Auswirkung einer ActRIIB-
Blockade in der adulten Maus untersucht und konnte zunédchst zeigen, dass es dabei zu keiner
Faserverteilungsstorung kommt. Eine ActRIIB-Blockade fiihrt insbesondere im mdx-Mausmodell der
Muskeldystrophie Duchenne zu einer extremen Belastungsintoleranz. Dies geht einher mit einer
pathologischen Serumlaktaterh6hung und zunehmenden Zeichen einer Muskelerkrankung. Ich konnte
mittels biochemischer und molekularbiologischer Analysen zeigen, dass eine Inhibierung der
ActRIIB-Wirkung sowohl zu einer verminderten Bildung des ATP-Kanalproteins Porin fiihrt, als auch
zu einer verminderten Anzahl von Muskelkapillaren und zu einem sich daraus ergebenden Defizit der
oxidativen Phosphorylierung. Ich habe weiterhin herausgefunden, dass der ActRIIB-Signalweg
wichtige Kontrollgene des Muskelstoffwechsels reguliert, wie z.B. PparP, Pgcla und Pdk4, wodurch
im gesunden Muskel der oxidative Energiestoffwechsel optimiert wird. Zusammenfassend zeige ich in
meiner Arbeit, dass die ActRIIB-Blockade eine metabolische Muskelerkrankung hervorruft. Diese tritt
besonders bei einer vorgeschidigten dystrophen Skelettmuskulatur auf, da bei dieser
Erkrankungsgruppe schon vor Behandlung eine metabolische Schiadigung besteht. Aufgrund meiner
Ergebnisse kann ich die Anwendung einer ActRIIB-Blockade als Therapiestrategie fiir
Muskelerkrankungen nicht empfehlen.

Key words: myostatin, ActRIIB, knockout, myopathy, metabolism, Duchenne muscular dystrophy.
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INTRODUCTION

1. CHAPTER: THE SKELETAL MUSCLE

1.1 General introduction

Muscles are contractile tissues classified into three categories: cardiac, smooth and skeletal
muscles. Cardiac and smooth muscles are “involuntary” muscles (their action being not under
voluntary control) that allow the contraction of internal organs such as heart, stomach, intes-
tine, bronchi, blood vessels or uterus. Their actions enable vital functions such as blood circu-
lation and digestion. Skeletal muscle activity can be voluntary and allows movement of the
organism itself such as for locomotion and interaction with the environment. The single ex-
ception is the diaphragm, which controls breathing and is under both autonomic and direct
motor control. Cardiac and skeletal muscles have a characteristic “striated” appearance due to
the organization of their myofilaments, whereas the smooth muscle cells do not have a striated

appearance.

The voluntary contraction of the striated skeletal muscle is an essential property for its func-
tion, including maintenance of posture, generation of heat from muscle activity, and enabling
movement via force transduction on bones through tendons. It also serves as the body’s major
protein reservoir and as a key player of metabolism. It contributes significantly to the health
of the individual by maintaining protein homeostasis. The alteration of this function leads to
loss of muscle mass, which is also called muscle atrophy or sarcopenia. This can occur during

aging and in a number of diseases such as cancer, HIV infection and neuromuscular disorders.

1.2 Structure of muscle tissue

Skeletal muscle is composed of cylindrical muscle cells (also called muscle fibers) as well as
connective tissue cells, adipocytes, nerve and endothelial/vascular cells. The muscle fibers
which are responsible for the contraction are grouped in a fascicle surrounded by an envelope
of connective tissue that is called perimysium. Each fiber is itself surrounded by an envelope
called endomysium. The whole muscular tissue is covered by a layer of external connective
tissue which is called epimysium. Within a fascicle, the connective tissue of the endomysium
surrounds the individual fibers of skeletal muscle and interconnects the adjacent muscle fibers

(Figure 1).
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(2) Deep Fascia

(3) Skeletal
muscle

Epimysium (8)

(4) Blood vessel Perimysium (9)

(5) Fascicle

Endomysium (10)

(6) Muscle fiber
Nuclei (11)

(7) Sarcoplasma —{f MMYO‘[IDI’“ (12)

Figure 1: The skeletal muscle structure. The skeletal muscle is attached to the bone by a tendon (1) and
surrounded by two membranes: the deep fascia (2) and the epimysium (8). Skeletal muscle (3) is composed
of several fascicles (5). These fascicles are surrounded by a membrane called the perimysium (9) and are
irrigated in the extracellular matrix by blood vessels (4). Muscle fibers within the fascicle are surrounded by
a connective tissue called endomysium (10). Within each muscle fiber (6), we find myofibrils (12). (Modi-
fied from McGraw-Hill editions).

1.3 Muscle fibers and properties

Skeletal muscle is composed of multinucleated, elongated contractile cells called myofibers or
muscle fibers. Muscle fibers have a diameter between 10 and 100 um, and a length, which can
reach 30 cm (Wheater and Burkitt 1987). Each myofiber contains bundles of protein filaments
called myofibrils that extend the entire length of the cell. A myofibril is composed of a chain
of sarcomeres, which is the functional unit of contraction (Figure 2). A sarcomere contains the
myosin, which forms the thick filament, and the actin, which forms the thin filament. Thin
and thick filaments slide past each other during muscle contraction and each sarcomere short-
ens to 70% of its uncontracted, resting length (Darnell, Lodish et al. 1990). Each muscle fiber

is surrounded by a plasma membrane and an outer basement membrane (basal lamina). Dur-
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ing development, multinucleated muscle fibers are formed by the fusion and differentiation of
mononucleated cells. Satellite cells are localized between the plasma membrane and the basal
lamina of the muscle fiber and are believed to represent a muscle stem cell population capable
of cell division for muscle growth and repair ((Campion 1984); (Blau, Dhawan et al. 1993);
(Cornelison and Wold 1997)).

Sarcomere
| 1
I-band A-band I-band
11 ]
titin actin myosin actinin Cap-Z

N\

Z-disc M-band Z-disc

Figure 2: The skeletal muscle sarcomere. Schematic diagram showing the organization of the skeletal
muscle sarcomere. Elastic titin filaments (gray) extend from Z-disc to M-band to form a stable, yet flexible
myofibril scaffold holding myosin thick filaments (purple). Actin thin filaments (green) are capped at the Z-
disc by Cap-Z (cyan) and cross-linked to other actin filaments in adjacent sarcomeres by the actinin (blue).

1.3.1 Contractile properties

The molecular basis of a muscle contraction can be described by the “sliding filament” theory.
Two types of filaments are involved in this process, the thick filaments (myosin) and the thin
filaments (actin). In the presence of ATP and calcium, actin filaments slide along myosin fil-
aments thus allowing the shortening of the muscle necessary for a complete muscle contrac-

tion. The detailed process is depicted in (Figure 3).
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Figure 3: The interaction of myosin and actin during the contraction of a muscle fiber.

The speed at which a muscle fiber contracts depends on its metabolic and contractile proper-
ties. There are two types of muscle fibers, the type I and type Il fibers. Muscle fibers type 1
have a metabolism that is based primarily on the aerobic respiration. Their contractions are
slow but fatigue resistant and therefore able to support long-term moderate activity. They are
mostly found in the postural muscles. Muscle fibers types II are divided in mouse into IIA,
IIB and IIX. Like the fiber type I, muscle fiber types IIA contain many mitochondria and my-
oglobin. However, they are less resistant to long fatiguing activity as compared to type I fi-
bers. Muscle fiber types IIB cause rapid, short and powerful contractions. They operate under

anaerobic conditions and are needed during short intense exercise.
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The contractile properties of muscle fibers and thus their classification are based on the meas-
urement of the ATPase activity of myosin (Brooke and Kaiser 1970) or on the separation of
myosin heavy chain isoforms by electrophoresis ((Schiaffino, Gorza et al. 1989); (Gorza
1990); (Duris, Renand et al. 1999)). The type I fibers (slow) and type ITA, IIX and IIB (fast)
express MyHC isoforms I, Ila, IIx and IIb, respectively (Table 1). In addition to these adult
myosin isoforms, other isoforms have been identified in the foetus: embryonic, fetal and al-
pha-cardiac MyHC ((Weydert, Barton et al. 1987); (Picard, Gagniere et al. 1995); (Gagniere,
Picard et al. 1999)).

1.3.2 Metabolic properties

The muscle fibers can also be distinguished according to their metabolic type (oxidative ver-
sus glycolytic). There are two major types of fibers: oxidative fibers (type I fibers) and glyco-
lytic fibers (type II fibers) (Table 1).

Table 1: Characteristics of muscle fiber types
Fiber Types Myosin heavy | Contraction Metabolism ATPase
chain Isoforms speed activity
Slow | | Slow Oxydatif Low
A lla Oxydo-glycolytic
Fast 11X lIx Fast Oxydo-glycolytic High
1B Ib Glycolytic

The measurement of enzyme activities is often used to determine the metabolic type of mus-
cle fibers; for example, the activities of the isocitrate dehydrogenase (ICDH) or the succinate
dehydrogenase (SDH), two mitochondrial enzymes of the Krebs cycle, are used to character-
ize the aerobic oxidative metabolism of the muscle fiber. The measurement of the lactate de-
hydrogenase (LDH), an enzyme that catalyzes the conversion of pyruvate to lactate during
anaerobic glycolysis, is used to characterize the anaerobic glycolytic metabolism ((Robelin,
Picard et al. 1993); (Gagniere, Picard et al. 1999)). The oxidative capacity of the muscle fibers

has an inverse relationship with the diameter of the muscle fiber (Cassens and Cooper 1971).
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1.4 Glucose and lipid metabolism of skeletal muscle

Mitochondria are specialized organelles and function as the energy center for the cell, which
makes them essential for the survival of eukaryotic cells. They show significant differences
between the heart muscle and skeletal muscle, both in their oxidative capacity ((Ogata and
Yamasaki 1985); (Ventura-Clapier, Kuznetsov et al. 1998)) and the nature of their preferred
substrates (Bahi, Koulmann et al. 2004).

Each mitochondrium consists of four major compartments that differ in composition, activity
and function: [1] An outer membrane that is permeable to molecules with a molecular
weight of less than 6 kDa, separates the mitochondria from the cytoplasm. [2] An inner
membrane delimits the [3] intermembrane space from the [4] mitochondrial matrix,
which contains various enzyme complexes of different metabolic pathways such as the Krebs

cycle, the respiratory chain and the beta-oxidation of fatty acids.

The outer mitochondrial membrane

It contains multiple copies of a transport protein called porin, which forms together with the
adenine nucleotide transporter (ANT) a large aqueous channel through the lipid bilayer. This
membrane is permeable to molecules of up to 10,000 daltons, including small proteins and
short chain fatty acids. Porin is also called the ‘Voltage-dependent anion channel’ (VDAC). It
is the main channel for metabolites that regulate the mitochondrial respiration. In addition,
several enzymes of various metabolic pathways may be associated with the outer membrane
through interaction with porin. As examples, the hexokinase, the glycerolkinase, and the acyl-
CoA synthetase (ACS) regulate mitochondrial function via interaction with the VDAC
(Brdiczka, Kaldis et al. 1994).

The inner mitochondrial membrane

With reduced and selective permeability, the inner membrane constitutes a barrier for main-
taining a concentration gradient of ions and metabolites between the intermembrane space and
the mitochondrial matrix. Because of its low permeability, the inner membrane has many
transport systems for ion exchange and metabolites. The transport of the substrates is carried

out by more or less complex systems.

19



INTRODUCTION

1.4.1 The anaerobic metabolic pathway in muscle

Under conditions of reduced oxidative capacity (insufficient amount of mitochondria or lack
of oxygen), glycogen/glucose is converted into pyruvate by anaerobic glycolysis (Figure 4).
The pyruvate is then converted into lactate in the cytosol in the presence of the enzyme lactate
dehydrogenase (LDH). This process also leads to the reoxidation of the coenzyme NADH, to
2H" and NAD". The energy balance of anaerobic glycolysis is relatively poor, because it leads

to the net production of only two ATP molecules per molecule glucose.

- ’ ‘ Blood vessel
A A

>

Glucose 6
phosphate

Figure 4: Cellular process of the metabolism.

1.4.2 The aerobic metabolic pathway in muscle

Energy for normal mobility and during prolonged physical exercise is provided by the aerobic
pathway, whereas the anaerobic pathway is being used only during high intensity exercise
with short duration. The aerobic pathway requires the supply of substrate and oxygen. The

muscle will then oxidize the available substrates through different successive pathways:

The aerobic glycolysis

Glycolysis is the oxidation of glucose to pyruvate. It produces two molecules of ATP and two
molecules of NADH,. The pyruvate that is produced in the cytosol then enters into the mito-
chondria by active transport. Thereafter, pyruvate is further metabolized to acetyl-Coenzyme
A (acetyl-CoA) by oxidative decarboxylation under the action of three enzymes, which form

the pyruvate dehydrogenase complex (PDH) (Figure 5).
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Figure 5: The glycolytic pathway: In the case of insufficient oxygen, the cell produces energy by fermenta-
tion (glycolysis) to operate the system. This is much less effective than the oxidative catabolism way, and the
substrates are only partially degraded. In the presence of oxygen, mitochondria oxidize organic substrates
producing energy directly used by the cells and releasing CO,,

The mitochondrial p-oxidation

Once the acyl-CoA from fatty acids (FA) are transported into the mitochondria through the
carnitine shuttle, a series of transformations gradually and repeatedly removes two carbon
atoms at each turn of the cycle. This repeated processing is called p-oxidation and produces
one molecule of FADH,, of NADH, and of acetyl-CoA at each cycle of acyl-CoA degradation
(Figure 6).
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Figure 6: The mitochondrial B-oxidation.
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The Krebs cycle

The Krebs cycle consists of a series of biochemical reactions, whose purpose is to produce the
reduced equivalents (NADH; and FADH,) to be used in the production of ATP by the respira-
tory chain. This reaction chain forms a cycle since the last metabolite, the oxaloacetate, is also
involved in the first reaction. It is the final common pathway of all acetyl-CoA molecules,

whether resulting from glycolysis or the B-oxidation (Figure 7).
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Figure 7: The Krebs cycle.

The oxidative phosphorylation

The term oxidative phosphorylation (OXPHOS) is employed to describe the coupling between
the oxidation of the reduced equivalents and phosphorylation of ADP. This process involves
five complexes with multiple subunits, which are located at the inner membrane and form the
respiratory chain. Oxidation of NADH, at Complex I (NADH:ubiquinone reductase) and of
succinate/FADH, at Complex II (succinate:ubiquinone reductase) releases the electrons,

which are transported along the electron transport chain first onto ubiquinone (Q), then to
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Complex III and from there to cytochrome C (CYTC). Complex IV (Cytochrom C oxidase)

then transfers the electrons onto molecular oxygen:

Complex I = Q = Complex IIIl = CYTC = Complex IV = O, and
Complex I = Q = Il = CYTC = Complex IV = O,

The electron transfer is achieved through a series of oxidation-reduction reactions with vari-
ous constituents of the complex, which is coupled to the translocation of H ™ from the matrix
into the innermembrane space (only through complexex I, III, and IV) The final electron ac-

ceptor is oxygen, which is reduced to water by complex I'V.

The electrochemical gradient of H " generates a potential difference on both sides of the inner
membrane (AY =-220mV) and constitutes a source of electrochemical energy for the synthe-

sis of ATP powered by ATP synthase or complex V (Figure 8).

2 © @
Ublqumo:.:)chrome c
® _— ©
@ADHDH' 1,202+2@ ADP+Pi @
Figure 8: The oxidative phosphorylation.

1.4.3 The PPAR signaling and metabolism

PPARs (peroxisome proliferator activated receptors) are transcription factors belonging to the
nuclear receptor family. PPARs form heterodimers with retinoid X receptors (RXR), and
through the assistance of co-activators such as PGCla (peroxisome proliferator-activated re-
ceptor y coactivator 1a), they regulate gene transcription (Figure 9).Three isoforms of PPAR

exist in mammals, which differ in biological function and tissue distribution: PPARa, PPARY

and PPARS (also called PPAR).

The PPARa isoform is expressed in tissues with high metabolic flux, such as the heart and

liver. The y isoform is expressed in various tissues, such as the adipose tissue. PPARS, how-
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ever, is ubiquitously present in the body, with a significant level of expression in skeletal
muscle. PGCla and PPARS have a synergistic action and interact physically with each other
as shown by immuno-precipitation (Wang, Lee et al. 2003); (Dressel, Allen et al. 2003)).

PPARS ligands vv

l Tvly
- T ™

Nucleus

PPARS

RXR (V)
’ Activat)o{bv ligands ‘ EY
’ Recrﬁting of cofactor ‘ "\
’PPAI;\BQRXR comPIEX‘ CAM R Q%“
~—

’ RWrasel ‘ /

Skeletal muscle

Figure 9: PPARS activation (modified from (Takahashi, Tanaka et al. 2006)).

Metabolic phenotype and PPARS
It has been shown that PPARS plays an important role in the transport of fatty acids, their oxi-

dation in muscle and in the control of glycemia (Takahashi, Tanaka et al. 2006).

A) The conversion phenotype

When PPARGS is overexpressed in muscle, muscle fibers transform into a more oxidative phe-
notype ((Lunde, Ekmark et al. 2007); (Luquet, Lopez-Soriano et al. 2003)) with increased

oxidative capacity of glycolytic muscle ((Luquet, Lopez-Soriano et al. 2003); (Wang, Zhang
et al. 2004)).

B) Resistance to the obesity

Overexpression of a constitutive active form of PPARGS resulted in mice resistant to obesity
during a high fat diet program (Wang, Lee et al. 2003). In contrast, mice deficient in PPARS
showed a decreased basal metabolism, decreased heat production, and glucose intolerance

(Lee, Olson et al. 2006).
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1.4.4 Targets of the PPARs

The PDK4 gene has been identified as a direct and specific target of PPARS (Degenhardt,
Saramaki et al. 2007). In addition to this direct activation by PPARGJ, there exists also an indi-
rect activation. It has recently been shown that FoxOl1 is a specific target of PPARS (Nahle,
Hsieh et al. 2008) and that FoxO1 in turn up-regulates the transcription of PDK4 (Furuyama,
Kitayama et al. 2003). The signaling pathway PPARS = FoxO1 = PDK4 may therefore cre-

ate a positive feed-back loop and enhance the transcription of PDK4.

The kinase PDK4 phosphorylates the PDHc thereby decreasing its activity (Constantin-
Teodosiu, Baker et al. 2009). Thus, activation of PPARGS is able to inhibit PDH by activating
the transcription of PDK4. However, the metabolic impact on the oxidation of pyruvate has so

far not been investigated.

1.5 Regulation of muscle mass

The maintenance of muscle mass is dependent on different signaling pathways that control the
balance between the processes leading to atrophy and hypertrophy. Atrophy is characterized
by a decrease in fiber diameter and increased protein degradation. In contrast, hypertrophy is

characterized by an increase in size of muscle fibers and an increase of protein synthesis.

1.5.1 Muscle atrophy

Muscle atrophy or muscle loss can occur during pathophysiological conditions such as aging
and cancer. It is characterized by a decrease in fiber diameter and number of cytoplasmic or-
ganelles such as nuclei and mitochondria. Muscle atrophy is characterized by a decrease in the
number of myonuclei by apoptosis ((Allen, Roy et al. 1999); (Ferreira, Neuparth et al. 2008)).
Such unbalance of the nucleocytoplasmic ratio impairs the balance between protein synthesis
and proteolysis in favor of a decrease in protein synthesis. During muscle atrophy, the signal-
ing pathways are deregulated towards proteolysis (Figure 10) with subsequent activation of
the different enzyme systems necessary for this function, which are: the proteasome ubiquitin
pathway-dependent ubiquitin-ligases MuRF1 (Muscle Ring Finger protein 1) and atrogin-
1/MAFbx (Muscle Atrophy Fbox) ((Bodine, Latres et al. 2001); (Gomes, Lecker et al. 2001)).

The FoxO pathway

In skeletal muscle tissue, there are three isoforms of FoxO transcription factors (Forkhead box
0), FoxO1, FoxO3 and FoxO4. This family of transcription factors plays a crucial role in pro-

tein degradation. Their function is inhibited by their phosphorylation via the Akt pathway.
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Once phosphorylated, the FoxO proteins are excluded from the nucleus and cannot activate
the expression of a number of target genes involved in muscle atrophy (also called atrogenes)

such as atrophin-1/MAFbx and MuRF1.

Activation of FoxO proteins via their dephosphorylation occurs during muscle atrophy if the
signaling pathways such as the PI3K/Akt (Phosphatidyl Inositol 3 Kinase) are deregulated
(Stitt, Drujan et al. 2004). Overexpression of FoxO3 causes muscle atrophy (Sandri, Sandri et
al. 2004). The role of FoxO3 is inhibited by the expression of PGCla, a member of the super-
family of nuclear receptors acting as transcription factor of target genes (Sandri, Lin et al.

2006).

FoxOl is also involved in the loss of muscle mass (Kamei, Miura et al. 2004). Transgenic
mice overexpressing this factor have a body weight lower than that of control mice. FoxO1 is
a negative regulator of the expression of genes encoding the structural proteins of type I fi-
bers, such as the slow myosin isoform, the slow troponin isoform and the o-tropomyosin,
which leads to impaired skeletal muscle function (Kamei, Miura et al. 2004). In C,C;; my-
oblasts, the activation of FoxO1 decreases the mTOR (mammalian Target Of Rapamycin)
pathway, which is involved in the control of protein synthesis and increases the expression of
4EBPI (eukaryotic initiation factor 4E binding protein 1). 4EBP1 is a negative regulator of
initiation of translation and its upregulation thus leads to a decrease in protein synthesis

(Southgate, Neill et al. 2007).

The NFkB pathway

Activation of NFkB (nuclear factor kappa B) pathway is implicated in several pathophysio-
logical conditions characterized by the loss of muscle mass. Indeed, the activation of NF«kB in
mice induces ubiquitin-dependent proteolysis and significant overexpression of the ligase
MuRF1 but not atrogin-1/MAFbx (Figure 10) (Cai, Frantz et al. 2004). Consistent with these
data, it was reported that NFkB knockout-mice are resistant to atrophy secondary to the ex-

pression inactivation of atrogenes like atrogin-1/MAFbx and MuRF1 (Hunter and Kandarian

2004).

The Myostatin/BMP pathway

The growth factor myostatin (which will be detailed in chapter III) also contributes to muscle
atrophy. Durieux and collaborators induced ectopic expression of the myostatin gene after
electrotransfer into the tibialis anterior muscle of adult rats (Durieux, Amirouche et al. 2007).

They reported that overexpression of myostatin causes a significant decrease in muscle mass,
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fiber cross-sectional area and muscle protein content. No decrease in the number of fibers was
found. The overexpression of myostatin has also caused a significant decrease in the expres-
sion of genes encoding muscle structural proteins (e.g. MyHCIIb, troponin I and desmin), as
well as a decrease in the expression of MyoD and myogenin. Myostatin inhibits Akt phos-
phorylation and consequently induces an increase in active FoxO1. This activates the expres-
sion of related atrophy genes (McFarlane, Plummer et al. 2006). A recent study identified a
critical role for the BMP pathway in adult muscle maintenance, growth and atrophy. The au-
thors showed that inhibition of BMP signaling causes muscle atrophy, abolishes the hyper-
trophic phenotype of myostatin deficient mice and strongly exacerbates the effects of dener-

vation (Sartori, Schirwis et al. 2013).
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Figure 10: Different signaling pathways involved in the regulation of hypertrophy and atrophy of
muscle. (Modified from (Rommel, Bodine et al. 2001); (Cai, Frantz et al. 2004)).

The JNK and MAPK pathway

The studies performed on the soleus muscle of suspended rats have shown that the atrophy is
associated with increased activity of P38 MAPK (Mitogen-Activated Protein Kinase) and
JNK (Jun NH2-terminal kinase) (Childs, Spangenburg et al. 2003). JNK decreases protein

synthesis via downregulation of the signal induced by insulin and a reduction of Akt activity.
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This contributes to the development of insulin resistance during muscle atrophy (Hilder, Tou

et al. 2003).
Oxidative stress

Muscle atrophy may be associated with oxidative stress and the production of reactive oxygen
species (ROS). It has been shown that NFkB signaling pathways (Li, Atkins et al. 1999) and
FoxO (Furukawa-Hibi, Yoshida-Araki et al. 2002) can be activated by ROS. As a result, ROS
and oxidative stress can initiate the activation of signaling pathways leading to muscle atro-

phy (Furukawa-Hibi, Yoshida-Araki et al. 2002).

1.5.2 Muscle hypertrophy

Muscle hypertrophy is characterized by an increase in muscle mass resulting from an increase
in the size (hypertrophy) and/or the number of fibers (hyperplasia). Several studies have
shown the implication of satellite cells in muscle growth by promoting both protein synthesis
and maintenance of the nuclear-cytoplasmic domain (ratio of cytoplasm/number of myonu-
clei) (Moss and Leblond 1971). Several signaling pathways are involved in the hypertrophic

process and are responsible for the increase in protein synthesis and cell survival.

The IGF1-Akt signaling pathway

The involvement of IGF1 in skeletal muscle hypertrophy has been shown by many studies.
IGF1 leads to an increase of muscle mass by stimulating PI3K/Akt signaling pathway, an im-
portant pathway for protein synthesis (Rommel, Bodine et al. 2001). Its role has been con-
firmed in transgenic mice with overexpression of this factor in skeletal muscle, which causes
muscle hypertrophy ((Coleman, DeMayo et al. 1995); (Musaro, McCullagh et al. 2001)). In
addition, ectopic IGF1 expression in gastrocnemius and soleus muscles of adult mice also

causes muscle hypertrophy (Alzghoul, Gerrard et al. 2004).

The molecular mechanisms responsible for muscle hypertrophy involve the PI3K/Akt path-
way and its downstream targets (mTOR, S6K, elF2B). Several studies have demonstrated the
major role of Akt as a mediator of muscle hypertrophy ((Rommel, Bodine et al. 2001); (Lai,
Gonzalez et al. 2004)). For example, the hypertrophy of muscle fibers can be induced through
expression of a constitutively active form of Akt. The hypertrophy occurs via a marked in-
crease in fiber size and the activation of the protein synthesis pathways (Lai, Gonzalez et al.

2004).
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A recent study showed that transgenic mice overexpressing an active form of Aktl have a
muscle hypertrophy, which is due to the increase in the size specifically of muscle fibers type
IIb and is accompanied by an increase in the strength of these mice (Izumiya, Hopkins et al.
2008). In contrast, mice with an inactivated Aktl gene showed muscle growth retardation and

muscle atrophy (Yang, Tschopp et al. 2004).

The mTOR/S6K pathway

The mTOR pathway is one of the downstream targets of the PI3K/Akt signaling pathway. The
role of mTOR in muscle growth has been demonstrated in vivo by the observation that admin-
istration of rapamycin, an mTOR inhibitor, blocks muscle hypertrophy (Pallafacchina,
Calabria et al. 2002). The positive effect of mTOR on protein synthesis is mediated through
the phosphorylation of the S6K protein (ribosomal protein S6 kinase) a protein involved in the

regulation of mRNA translation into proteins (Ohanna, Sobering et al. 2005).

The GSK3p pathway

Control of protein synthesis also requires the regulation of the activation of the protein
GSK3p (glycogen synthase kinase 3 ), another downstream target of the PI3K/Akt pathway.
GSK3p blocks activation of the elF2B protein (eukaryotic initiation factor 2B), which is in-
volved in protein synthesis. An in vitro study showed that inactivation of GSK3f induced

significant hypertrophy of myotubes (Rommel, Bodine et al. 2001).

1.6 Muscle regeneration

Skeletal muscle is a stable tissue which under normal circumstances does not suffer much
damage and requires little turnover from the nuclei. However, damage caused by mechanical

or chemical trauma or disease causes a complete, fast and extensive regenerative response.

Muscle regeneration is characterized by two phases: a degenerative phase and a regenera-
tive phase. The initial event in muscle degeneration is characterized by necrosis. This process
is usually accompanied by an inflammatory reaction as evidenced by the infiltration of neu-
trophils and macrophages. After 48 hours, macrophages become the predominant cell type

and act as phagocytes of cellular debris (Skuk, Caron et al. 2003).

Muscle degeneration is followed by the process of muscle repair, which is in some ways
repeat steps of myogenesis. Satellite cells, the skeletal muscle stem cells, become activated
and they leave their quiescent state, begin to proliferate and generate progenitors. At this

stage, the expression of Pax7 decreases and favours the expression of Myf5 and MyoD. The
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expansion of these cells provides enough cells to repair the damaged muscle. The expression
of myogenin and Mrf4 initiates the differentiation and fusion of myoblasts with the broken
fibers for their repair, or the fusion of multiple myoblasts to form newly regenerated fibers.
Ultimately, regenerated muscle is morphologically and functionally identical as it was before

its damage.

1.7 Response of skeletal muscle to repetitive muscle damage

Muscle fiber integrity is strongly reduced in a number of neuromuscular disordes, notably in
muscular dystrophies, leading to repetitive cycles of degeneration and regeneration. Muscle
fibers in patients suffering from dystrophic muscle are very sensitive to mechanical stress or
other events that can damage it, because it is much more fragile than normal muscle. Constant
rounds of degeneration and regeneration require frequent qand prolonged proliferation of sat-
ellite cells. If the satellite cells are exhausted, muscle cannot be repaired any more which
leads to muscle wasting. Over time, the muscle fibers decrease in size and number, because
they are not repaired and are gradually replaced by connective and adipose tissue ((Irintchev,

Zweyer et al. 1997); (Luz, Marques et al. 2002)).
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2. CHAPTER: DUCHENNE MUSCULAR DYSTROPHY

2.1 History and disease description

Duchenne muscular dystrophy (DMD) was described for the first time in 1852 by Edward
Meryon. Then, the french physiologist Guillaume Benjamin Duchenne de Boulogne charac-
terized the disease in more detail, which attributed his name to the disease. DMD is a reces-
sive X-linked disorder, its incidence is about 1 in 3,500 in new born males around the world
(Emery 1993). DMD is one of the more severe forms of musclar dystrophy and it is character-
ized by progressive muscle wasting and loss of strength. Around the age of 4 years a patient
with DMD already suffers from an evident lack of strength. Due to the progressive nature of
the muscle disease, there is a linear decline in muscle strength in the arms and the legs, mak-
ing the children wheelchair dependent by the age of 7-12 years (Figure 11). In their teens
many patients develop breathing difficulties that can result in fatal lung infections. DMD is
characterized by a very high activity of creatine phosphokinase in the serum, which highlights
the widespread damage of muscle tissue. Indeed, the muscle tissue of DMD patients shows
evidence of multiple cycles of degeneration/regeneration. Over time, there is a replacement of
muscle fibers by connective tissue (fibrosis) and fatty tissue that eventually fills the entire
muscle. Patients usually die from respiratory or cardiac failure, or from pulmonary infections.
Today, with well defined standards of care, notably the combination of non-invasive noctur-
nal ventilation, surgical vertebral arthrodesis and cardio-protective mediation, life expectancy
of patients has significantly improved up to 40 years. Although extremely rare, women can
also be affected by DMD (Penn, Lisak et al. 1970). In the case of non-random X-inactivation

most women are asymptomatic, but they have an increased risk to develop a cardiomyopathy.

Figure 11: Mode of rising from the ground (Gower’s sign) of a boy suffering with Duchenne muscle
dystrophy. (from (Engel, Rodrigue et al. 1994)).
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2.2 The DMD gene

The gene whose mutations is responsible for DMD was first located on the short arm of the
X-chromosome in the Xp21 region, following the observation of a deletion in this region in
DMD patients (Francke, Ochs et al. 1985), or of a translocation of this region (Jacobs, Hunt et
al. 1981). The location of the DMD gene locus was then confirmed by the subtractive hybridi-
zation technique, and identification of the clone containing the DMD gene (Monaco,
Bertelson et al. 1985). Gene fragments were first isolated (Monaco, Neve et al. 1986) before

the cloning of the complete gene was achieved (Koenig, Hoffman et al. 1987).

Having a total size of 2.6 Mb, the DMD gene is the largest known human gene (Lander,
Linton et al. 2001). It comprises 79 exons and very large introns (some exceed 100 kb). How-
ever, the size of the messenger RNA (mRNA) of the DMD gene is only 14 kb (Koenig,
Hoffman et al. 1987).

The protein encoded by the DMD gene was identified shortly after the cDNA cloning, and
was called "dystrophin" (Hoffman, Monaco et al. 1987). It expression is not detectable in
DMD patients, neither by Western blot nor by microscopic analysis of cross sections of mus-
cle biopsies, while it is detected and located at the sarcolemma on muscle biopsies from

healthy subjects ((Bonilla, Samitt et al. 1988); (Watkins, Hoffman et al. 1988)) (Figure 12).

Figure 12: Microscopic images of cross-sections of human skeletal muscle. Hematoxylin/Eosin staining
(A-C) and Immunostaining with anti-dystrophin antibodies (D-E). A. Normal human muscle. B and C.
Dystrophic muscle of DMD patients, characterized by central nuclei (indicated by arrows), a variation in
fiber size (indicated by arrowheads) and a build-up of connective tissue (indicated by asterisks). The
muscle in C shows more dystrophic features than that in B. D. Dystrophin expression (brown staining)
at the sarcolemma of a normal muscle. E. Absence of dystrophin in the muscle section from a DMD
patient (From (Davies and Nowak 2006)).
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23 Mutations of the DMD gene

DMD is not the only disease caused by a mutation in the dystrophin gene. Becker muscular
dystrophy (BMD) is characterized by less severe symptoms, slower disease progression and
less severe muscle wasting than the DMD (Mostacciuolo, Lombardi et al. 1987). The cause
for the difference between DMD and BMD is the conservation of the reading frame despite
the mutation. This "reading frame hypothesis™ has been verified in 96% of DMD patients and
93% of BMD patients (Tuffery-Giraud, Beroud et al. 2009).

Mutations that maintain the reading frame (in-frame mutations) generally result in a truncated
but partly functional dystrophin and usually cause BMD. In DMD patients, however, muta-
tions disrupt the reading frame (frame-shift mutations), which eventually lead to total absence

of dystrophin (Koenig, Monaco et al. 1988) (Figure 13).

Epissage Epissage
50 ——¢ 51 — A52 50 — A51-52—¢ 53
mRNA A52 “Frame-shift mutation” mRNA A51-52 “In-frame mutation”
50 51 53 50 53
Absence of dystrophin Shorter dystrophin
DMD BMD
Figure 13: schematic representation of the reading frame hypothesis. Example of the deletion of exon 52
leading to a DMD phenotype compared with a deletion of exons 51 and 52, leading to a BMD phenotype.

In DMD and BMD, 65% of the pathogenic changes are large partial deletions that usually
affect multiple exons and 5% are partial duplications of one or more exons (Abbs and Bobrow
1992). The remaining 35% of the pathogenic changes are small duplications, deletions or

point-mutations.

2.4 Dystrophin and the Dystrophin Associated Protein Complex

Dystrophin is a protein with a molecular weight of 427 kDa. It is located at the inner-
membrane of the muscle cell, linked to a complex of many other proteins (Michele and

Campbell 2003). The presence of dystrophin and its complex is important for the mechanical
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stability of the cell membrane during muscle contraction and the muscle fibers’ resistance to

stretch. Dystrophin comprises four domains:

e The first 240 amino acids of the N-terminal portion of dystrophin form the actin binding
domain (Hammonds 1987).

e The second part, the central domain consists of an a-helix (Rod domain) of 24 tandem
repeats that gives dystrophin a stick-like shape. This structure is similar to spectrin, another
protein of the cytoskeleton (Koenig and Kunkel 1990).

e The third cysteine-rich domain binds to B-dystroglycan, the central part of the multimeric
dystrophin complex. It is the B-dystroglycan, which forms the transmembrane bridge be-
tween the intracellular and extracellular proteins.

e The fourth part is the C-terminal domain, which binds to other members of the complex

(Michele and Campbell 2003) (Figure 14).

Cysteine-rich
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Figure 14: Schematic of the structure of dystrophin.

These different regions allow dystrophin to bind to the proteins that form the DAPC complex
(Dystrophin-Associated Protein Complex), and also to bind to the cytoskeleton, which is es-

sential for maintaining the architecture and function of the muscle.

Dystrophin is found in all types of muscle tissue. The lack of dystrophin and its associated
protein complex causes instability in the muscle fiber membrane. Thus, in DMD patients,
physical stress caused by muscle contraction or stretching cause membrane ruptures

(Zubrzycka-Gaarn, Bulman et al. 1988).

2.5 Dystrophin isoforms

Although dystrophin has initially been identified in skeletal muscle and in cardiomyocytes,
there are at least seven promoters from which different isoforms are expressed. These
isoforms can be divided into two classes: full-length isoforms of about 427 kDa, and shorter

isoforms, which are expressed from internal promoters.
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In addition to muscle dystrophin, also called Dp427m, two other full-length dystrophins are
produced: Dp427c and Dp427p ((Boyce, Beggs et al. 1991); (Chelly, Hamard et al. 1990);
(Gorecki, Monaco et al. 1992)). Both isoforms have their own first exon (Chelly, Hamard et
al. 1990), which is spliced to exon 2 of the Dp427m transcript (Boyce, Beggs et al. 1991). The
Dp427c isoform is mainly expressed in cortical neurons and in the hippocampus, while
Dp427p is found in cerebellar Purkinje cells and also in skeletal muscle at a low level
(Gorecki, Monaco et al. 1992). A fourth isoform of 427 kDa was detected at very low levels
in lymphocytes (Nishio, Takeshima et al. 1994).

The shorter dystrophin isoforms are expressed from four internal promoters of the DMD gene
and are named according to their molecular weight ((Byers, Lidov et al. 1993); (Hugnot,

Gilgenkrantz et al. 1992); (Lidov, Selig et al. 1995)).

e The Dp260 isoform is preferentially expressed in the retina and is derived from a unique
first exon located in intron 29, which is spliced to exon 30 of the Dp427m (D'Souza,
Nguyen et al. 1995). Compared to the full-length 427 kDa isoform, Dp260 lacks the N-
terminal domain, two hinge regions and nine spectrin-like repeats.

e The DP140 isoform is expressed in the central nervous system from a promoter located in
intron 44 (Lidov, Selig et al. 1995). However, the methionine start codon for translation is
located in exon 51, forming a very long 5' untranslated region (5'UTR) for this isoform.
The DP140 has just the two hinge regions, five spectrin-like repeats, the cysteine-rich and
the C-terminal domain.

e The DP116 isoform is specifically expressed in Schwann cells of the peripheral nervous
system and in the embryonic brain. This isoform has a unique N-terminal domain encoded
by an intron located in exon 55 and spliced to exon 56 of the Dp427m encoding the distal
portion of the 21th repeat (Byers, Lidov et al. 1993).

e [soforms Dp71 and DP40 are expressed ubiquitously in non-muscle tissue ((Hugnot,
Gilgenkrantz et al. 1992); (Tinsley, Blake et al. 1993)). They both come from a single first
exon present in intron 62, spliced to exon 63 ((Blake, Love et al. 1992); (Feener, Koenig et
al. 1989)) and have a C- terminal alternative domain as compared to the other isoforms

(Figure 15).
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Figure 15: The different dystrophin isoforms.

Dp427 is the only isoform with a binding domain for actin. The short isoforms can therefore
just bind to the proteins of the DAPC, probably for stabilization (Blake, Weir et al. 2002).
Moreover, they have other functions such as the Dp260 for the normal function of the retina
(D'Souza, Nguyen et al. 1995) and the Dp71 a possible role for embryonic development
(Howard, Dally et al. 1999). The nature of the symptoms present in DMD and BMD patients
largely depends on the location of the mutation. For example, mutations that affect regions of
the DMD gene involved in the expression of Dp427c, Dp427p, DP140, or DP116 can cause
mental retardation ((Byers, Lidov et al. 1993); (Gorecki, Monaco et al. 1992)).

2.6 The Dystrophin Associated Protein Complex

At the level of the sarcolemma, dystrophin is part of a macromolecular protein structure called
the "Dystrophin-Associated Protein Complex" (DAPC). This complex is essential for main-
taining the structure of the muscle fiber. Dystrophin isoform Dp427m is bound to the intracel-
lular cytoskeleton via its N-terminal domain, which is associated with the actin filaments
while the C-terminal domain interacts with the proteins of DAPC and thereby transmit forces

during muscle contraction (Lapidos, Kakkar et al. 2004). This multimeric complex is com-
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posed of sarcoglycans a, 3, y and d, sarcospan, dystroglycans a and B, the dystrobrevines and
syntrophins (Yoshida and Ozawa 1990). The actin filaments are bound to the N-terminal do-
main and to the spectrin like-repeats domain of dystrophin (Rybakova, Patel et al. 2000),
while the B-dystroglycan, linked to the cysteine-rich domain, is associated non-covalently to
the a-dystroglycan to form the dystroglycan "subunit" of DAPC complex. To complete the
link between the cytoskeleton and the extracellular matrix, the highly glycosylated o-
dystroglycan binds to laminin in the basal lamina (Ibraghimov-Beskrovnaya, Ervasti et al.
1992). The dystrobrevines and syntrophins are both cytoplasmic proteins involved in cell sig-
naling ((Bhat, Adams et al. 2013); (Davies and Nowak 2006)) and are linked to the C-terminal
domain of dystrophin, whereas nNOS is localized at the sarcolemma and binds to the central

domain of dystrophin (Lai, Thomas et al. 2009) (Figure 16).
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Figure 16: DAPC complex (Dystrophin associated protein complex). The DAPC is composed of sarco-
plasmic proteins (dystrobrevin, syntrophins and nNOS (neuronal Nitric Oxide Synthase)), transmembrane
proteins (B-dystroglycans, the sarcoglycans) and extracellular proteins. The N-terminus of dystrophin binds
to the cytoskeleton through actin filaments. Therefore, the DAPC provides a strong mechanical link between
the intracellular cytoskeleton and the extracellular matrix. Different muscular dystrophies are caused by the
loss of one of the components of the DAPC (Schema from Luis Garcia).

37



INTRODUCTION

Mutations in genes encoding the protein members of the DAPC have been associated with
other forms of muscular dystrophies. For example, mutations in the sarcoglycans can lead to
limb-girdle muscular dystrophy ((Tome, Evangelista et al. 1994); (Eymard, Romero et al.
1997); (Hack, Groh et al. 2000)).

2.7 Animal models for DMD

For DMD there are both natural and man-made animal models in which mutations in the dys-
trophin gene lead to muscle dystrophy with all its pathophysiological consequences. From the
existing models I describe here the mdx mouse (muscular dystrophy, X-linked), which we
used in our project, the GRMD dog (Golden Retriever Muscular Dystrophy), and the HFMD
cat (Hypertrophic Feline Muscular Dystrophy).

2.7.1 The mdx mouse

The mdx mouse was the first identified animal model for human DMD. This X-linked muscu-
lar dystrophy occured spontaneously in the C57BL/10ScSn mouse line (Bulfield, Siller et al.
1984). A cytosine to thymine substitution in exon 23 results in a premature termination codon
(Sicinski, Geng et al. 1989) and produces a nonfunctional truncated dystrophin, which is de-

graded (Hoffman, Monaco et al. 1987).

Similar to patients with DMD, mdx mice show an absence of the dystrophin protein and re-
duced dystrophin mRNA levels (Chamberlain, Gibbs et al. 1988). However, after an initial
de- and regeneration cycle, clinical disease progression in the mdx mouse is much slower as in

DMD patients if related to the respective life span (Bulfield, Siller et al. 1984).

During the first weeks of life, damaged fibers are replaced by new fibers. These are regenerat-
ed from satellite cells and are resistant to further degeneration. An exception to the compara-
bly slow progression of the muscle pathology in the mdx mice is the rapid progressive degen-
eration of the diaphragm. Muscles from mdx mice have a significantly reduced specific
strength as compared to normal mice (Lynch, Hinkle et al. 2001). Although mdx mice share
not all pathological features with DMD patients, they are nevertheless a very attractive model

for evaluating various therapeutic approaches.

2.7.2 The GRMD dog

Several types of dystrophic dogs were described and the corresponding genetic cause deter-
mined ((Schatzberg, Olby et al. 1999); (Winand, Edwards et al. 1994)). The most studied and
best characterized model to date is the Golden Retriever Muscular Dystrophy dog (GRMD).

The mutation in the Dmd gene was found in the splice acceptor site of exon 7. This splice site
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mutation leads to skipping of exon 7 in the mRNA, disrupts the open reading frame and leads
to a stop codon in exon 8 (Sharp, Kornegay et al. 1992). Muscle weakness in these dogs be-
comes apparent around the age of 2 months and their lifespan is significantly reduced

(Valentine, Cooper et al. 1990).

At the histological level, the histopathology is similar to that of DMD patients with a hetero-
geneity of fiber size, the presence of degenerated hypertrophied fibers, focal necrosis with
macrophage infiltration as well as small regenerating fibers (Valentine, Cooper et al. 1988).
The creatine kinase activites in serum are very high and with age the amount of connective
tissue increases and also the percentage of central nuclei. There is a significant adipose meta-
plasia particularly in the temporal muscles, the diaphragm and biceps femoris. These charac-

teristics make the GRMD dog a close model of the human disease.

2.7.3 The HFMD cat

The HFMD cat (Hypertrophic Muscular Dystrophy Felin) has a large deletion (200 kb) in the
DMD promoter, which causes a deficiency of dystrophin in skeletal and cardiac muscles.
These dystrophic cats were described as having Hypertrophic Feline Muscular Dystrophy
(HFMD) due to predominantly hypertrophic phenotype they present. The disease is character-
ized by muscle degeneration and regeneration with accumulation of calcium deposits in the
muscle fibers without development of fibrosis. However, dystrophic cats have not been wide-
ly used as DMD models due to the limited similarity of their phenotpye with humans (Shelton
and Engvall 2005).

2.8 Revertant fibers

In muscle biopsies of DMD patients and of animal models, often some clusters of fibers can
be observed that express dystrophin ((Burrow, Coovert et al. 1991); (Hoffman, Morgan et al.
1990)). In these so-called “revertant fibers”, the dystrophin is properly localized and probably
functional since proteins of the DAPC can also be detected. These fibers are gathered in small
groups and can range between 1 and 10% of muscle fibers in mice. The number of fibers in-
creases with age in both DMD patients (Fanin, Danieli et al. 1995) and mdx mice (Lu, Morris
et al. 2000).

The genesis of revertant fibers is unclear. However, mutation involves the restoration of the
reading frame and the synthesis of a truncated dystrophin (Fanin, Danieli et al. 1995). Various
hypotheses have been forwarded to explain this exon skipping: (i) The theory of “reversion by
somatic suppression” (Winnard, Mendell et al. 1995) or (ii) the “alternative splicing” hypoth-
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esis (Lu, Morris et al. 2000). The theory of somatic reversion ((Klein, Coovert et al. 1992);
(Winnard, Mendell et al. 1995)) involves the appearance of a second mutation correcting the
effect of the first one. The hypothesis of alternative splicing seems also plausible (Wilton,

Dye et al. 1997).

2.9 Treatment strategies for DMD

Until now, there is no effective therapy to stop the progression of the disease, although several
promising experimental strategies are currently under investigation. These include gene thera-
py which aims to reintroduce a recombinant functional version of the dystrophin gene using
adeno-associated vectors, lentiviral or adenoviral vectors, as well as the modification of pre-
mRNA of dystrophin through splice modulation such as exon skipping. Several clinical trials
in DMD patients have already been performed, with exon skipping being the most advanced
therapeutic strategy. In parallel, cell therapies and pharmacological approaches such as the

upregulation of utrophin or the inhibition of myostatin have also been studied.

All these strategies are facing major challenges imposed by the nature of the muscular dystro-
phy. Indeed, the skeletal muscle is the most abundant tissue in the body and is composed of
large multinucleated fibers with nuclei that can no longer divide. Therefore, any strategy on
cell or gene replacement must restore the expression of relevant genes in hundreds of millions
of postmitotic nuclei, which are integrated in a highly structured cytoplasm and are surround-
ed by a thick basal lamina, but also have to deal with the immune responses to a “foreign”
protein. Similarly, most pharmacological approaches would interact with the biochemical
mechanisms of fiber degeneration that involve pathways such as calcium influx and activity

of proteases. Inhibitors of these processes have ofte a systemic toxicity.

2.9.1 Gene therapy

This approach makes use of the virus’ ability to enter a variety of cell types and express their
genomes. The goal is to provide patients with an alternative functional copy of the DMD gene
rather than repairing the locus in the genome of the patient. Most work in this field has tried to
optimize the delivery methods for targeted expression and the long-term expression of dystro-

phin in the muscles of the whole body.

Three types of viral vectors have been used by researchers to study gene delivery to dys-
trophic muscle: (i) adenoviral vectors, (ii) adeno-associated, and (iii) lentiviral vectors. All
three vectors have shown some success in transduction and stable expression in striated mus-

cle, but only the Adeno-Associated Virus (AAV) has been used in clinical trials.
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The Adeno-Associated Virus (AAV)

The Adeno-Associated Virus (AAV) is a single-stranded DNA virus of 4.7 kb, which requires
an association with an adenovirus or herpes virus for replication and assembly. There is a re-
combinant form (rAAV), which is not carrying viral genes and can be produced in high
amounts in the absence of a "helper" virus. This rAAV is capable to infect both dividing and
quiescent cells. The problem of the small size of the AAV genome has been corrected through
production of dystrophin microgenes (mini and micro-dystrophin) by removing a large part of
the "rod" domain and portions of the amino and carboxy terminal domain. The stable expres-
sion of genes following intramuscular injection of rAAV persists up to 2 years in mice and
more than 7 years in dogs and rhesus monkeys ((Monahan, Samulski et al. 1998); (Herzog,
Yang et al. 1999); (Rabinowitz and Samulski 1998)). Injections of a hybrid virus Ad/rAAV
were also tried. In mdx mice it was possible to recover dystrophin in the majority of muscle
fibers with this technique (Goncalves, van Nierop et al. 2005). The rAAYV is of great interest
for therapy development against muscular dystrophy thanks to its efficacy in reaching capil-
lary networks and infect muscle tissue. This capability has been exploited to develop tech-
niques for systemic delivery of genes in order to produce dystrophin in all skeletal muscles
((Wang, Zhu et al. 2005); (Koppanati, Li et al. 2009)). Unlike adenoviral vectors, AAV vec-
tors appear to have low immunogenicity. A phase I trial for hemophilia B using rAAV2 re-
ported no adverse effects in patients, who received intramuscular injections (Manno, Chew et
al. 2003). However, further studies in dogs and humans suggested that these vectors have the
potential to induce a cellular immune response that could strongly influence the nature of clin-
ical applications ((Mingozzi, Meulenberg et al. 2009); (Mendell, Campbell et al. 2010);
(Wang, Storb et al. 2010)).

The major problems of the rAAV gene delivery strategy

The problems faced by this therapeutic approach comprise the (i) production of sufficient
quantities of virus, (ii) the limited size of the AAV genome (the less immunogenic viral vec-
tor), (iii) the prevention of an immune response against the viral vector and the newly intro-
duced dystrophin, which — due to its absence in the fetus — would be considered “foreign” by

the body.

The problem of the large size (14 kb) of the dystrophin gene was quickly solved by the pro-
duction of mini- and micro-dystrophins. Indeed, BMD patients may have only 46% of the
full-length dystrophin and show only a moderate phenotype of the disease (England,

Nicholson et al. 1990). Such gene deletions were the basis for the generation of a mini- and a
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micro-dystrophin gene through removal of a large part in the rod domain to allow cloning into
the AAV. Systemic administration of a mini-dystrophin with AAV9 has been very efficient in
mice and dogs (Pichavant, Chapdelaine et al. 2010). However, a recent clinical trial using
intramuscular injections of AAV2 in DMD patients did not restore good expression of dystro-
phin and induced a T-cell immune response to the epitopes of dystrophin (Mendell, Campbell
et al. 2010).

2.9.2  The exon skipping

The principle of exon skipping

A large proportion of DMD cases are caused by a shift of the reading frame leading to the
production of a nonfunctional truncated dystrophin. Furthermore, deletions which do not dis-
rupt the reading frame allow the expression of a shorter but partially functional dystrophin as
in BMD. Therefore, the DMD phenotype could be theoretically transformed into a BMD phe-
notype through restoration of the reading frame. In some cases such restoration would be pos-
sible via exclusion of an additional exon that follows the disruption of the reading frame using

an antisense oligonucleotide (AQO) during the splicing of the pre-mRNA.

Exon skipping is a promising approach that could benefit up to 83% of DMD patients with
deletions (Aartsma-Rus, Fokkema et al. 2009). Antisense oligonucleotides affect splicing by
blocking the splice donor or acceptor sites by modifying the secondary structure of the
mRNA. The efficiency of these techniques has been demonstrated in cell culture. It has also
been tested in mdx mice (Alter, Lou et al. 2006) and showed an improvement of the pheno-
type. Skipping of exon 51 for example could be used for 13% of patients with DMD despite

presence of different mutations.

The major problems for the exon skipping strategy

Several challenges stand between exon skipping drugs and their routine clinical use: (i) the
restricted entrance to the cell, (ii) the relatively rapid elimination from the bloodstream, (iii)
the variability in efficiency of exon skipping from one muscle to another, and (iv) their low
efficiency in the heart. In addition, preclinical studies have shown that doses required for
functional improvement are too high to make a lifelong treatment feasible that would be en-
visaged for the majority of patients. Because of this, much hope is placed on the development
of PPMOs (Phosphorodiamidate Peptide Morpholino Oligomers), which are oligomers con-
jugated with peptides. PPMOs have a good potential to penetrate cells and to be easily inter-

nalized into muscle cells (Moulton and Moulton 2010) at lower doses ((Jearawiriyapaisarn,

42



INTRODUCTION

Moulton et al. 2008); (Yin, Lu et al. 2008)) and are efficient in the heart ((Jearawiriyapaisarn,
Moulton et al. 2010); (Wu, Moulton et al. 2008); (Wu, Lu et al. 2010)). However, cannot be

as easily used in humans as they are highly allergenic.

2.9.3 Cell therapies

Cell therapies aim to introduce cells capable of differentiating into new muscle in diseased
areas. These can either be myoblasts or stem cells that have the ability to differentiate into
muscle cells. This strategy showed some degree of success with myoblast transplantation into

the diseased tissue.

Myoblast transplantation involves their isolation from skeletal muscle of a healthy donor,
their expansion in culture and administration to dystrophic tissue. The incorporation of my-
oblasts from the donor into myofibers of the patient leads to a functional gene complementa-
tion, which means the expression of both exogenous and host genes in the myofibers (Watt,
Lambert et al. 1982). Following the promising results of transplantation into immuno-
depressed mdx mice ((Partridge, Morgan et al. 1989); (Vilquin, Asselin et al. 1994)), this ther-
apy was tested in clinical trials. Unfortunately, these studies failed (Mendell, Kissel et al.
1995). The poor result was attributed to a combination of insufficient immunosuppression of
the patients with an insufficient number of transplanted cells ((Gussoni, Pavlath et al. 1992);
(Karpati, Ajdukovic et al. 1993); (Mendell, Kissel et al. 1995)). Current strategies are thus
directed towards on the use of genetically modified donor myoblasts in order to reduce the

patient's immune response ((Li, Kimura et al. 2005); (Kazuki, Hiratsuka et al. 2010)).

2.9.4  The pharmacological approach

Pharmacological overexpression of utrophin

Utrophin is a protein of about 395 kDa, encoded by a gene on chromosome 6 in humans. The
primary structure of utrophin is very similar to dystrophin (80%), with an amino-terminal
domain rich in cysteine and a carboxy-terminal domain displaying a significant similarity to
dystrophin (Tinsley, Blake et al. 1992). Unlike dystrophin, which is expressed in the muscle
and to a lesser extent in the brain, utrophin is ubiquitously expressed, mainly at the neuromus-
cular and myotendinous junctions ((Clerk, Morris et al. 1993); (Tome, Evangelista et al.
1994)). The utrophin is also expressed at the sarcolemma in muscle during development or
regeneration ((Khurana, Watkins et al. 1991); (Tinsley, Blake et al. 1992)) and in skeletal
muscle of mdx mice and DMD patients (Mizuno, Nonaka et al. 1993). Utrophin and dystro-

phin share a lot of binding partners, for example the actin of cytoskeleton or members of the
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DAPC such as a-dystrobrevin (Peters, Sadoulet-Puccio et al. 1998) and B-dystroglycan
(Ishikawa-Sakurai, Yoshida et al. 2004), which bind to the carboxy-terminal domain of utro-

phin.

A promising pharmacological treatment for DMD seemed to increase the levels of utrophin
expression in the muscle fibers of patients in order to compensate for the absence of dystro-
phin. Studies in the mdx mouse have shown that the elevated utrophin levels in dystrophic
muscle fibers could restore the sarcolemmic expression of members of the DAPC complex

and moderate the dystrophic phenotype (Tinsley, Potter et al. 1996).

Such drug therapies aimed on utrophin overexpression have many advantages as they should
be effective for all DMD patients irrespective of their genetic defect and may be administered
systemically because overexpression of utrophin in tissues other than muscle does not appear

to cause adverse effects (Fisher, Tinsley et al. 2001).

Growth factors

One of the characteristic of the DMD pathology remains the loss of muscle strength which is
associated with loss of muscle mass. Some therapeutic approaches are therefore trying to
compensate for this loss of muscle force acting on the activation of muscle progenitors or in-

hibiting negative regulators of muscle growth.
A) Overexpression of IGF-1 (Insulin-like growth factor 1)

IGF1 is a positive regulator of muscle growth, which acts on the activation and proliferation
of muscle precursors. Overexpression of IGF1 prevents the loss of ager-related muscle mass,
causes hypertrophy and increased muscle strength. Studies in mdx mice showed an anatomical
and biochemical improvement associated with restoration of muscle strength after administra-

tion of IGF1 (Barton, Morris et al. 2002).
B) Inhibition of myostatin

Myostatin (also known as GDF8, Growth and Differentiating Factor §) was identified as a
member of the superfamily of TGF-B (Transforming Growth Factor ) that negatively regu-
lates muscle growth (McPherron, Lawler et al. 1997). Deletions in the myostatin gene are
responsible for the impressive musculature found in Belgian Blue cattle (Grobet, Martin et al.
1997). A similar phenotype is detected in mice carrying deletions in the myostatin gene or
expressing dominant negative transgenes ((Lee and McPherron 2001); (Zhu, Hadhazy et al.
2000)). Inhibition of endogenous myostatin synthesis can increase muscle mass and decrease

fat mass (McPherron and Lee 2002). Studies have shown that blocking myostatin by antibod-

44



INTRODUCTION

ies allowed an anatomical, physiological and biochemical improvement of dystrophic pheno-
type in mdx mice (Bogdanovich, Krag et al. 2002). Active mature myostatin can also be inhib-
ited through the N-terminal part of its protein product consisting of approximately the first
300 amino acids (commonly called the "propeptide"), which is normally cleaved and has the
ability to inactivate the mature protein by reassociation. The next chapter will introduce this
molecule in more detail and describe the different strategies of inhibition that were used in our

project.

45



INTRODUCTION

3. CHAPTER: MYOSTATIN

Myostatin, also called GDF8 (Growth and Differentiation Factor 8), is a secreted growth fac-
tor of the Transforming Growth Factor-B (TGFp) superfamily that negatively regulates skele-
tal muscle mass (McPherron, Lawler et al. 1997). Like other members of the TGF-B super-
family, myostatin is synthetized as a precursor protein with a signal sequence, an N-terminal
propeptide domain, and a C-terminal active domain ((Sharma, Kambadur et al. 1999); (Hill,
Davies et al. 2002)). Its inhibitory role in skeletal muscle growth was discovered by Lee ef al.
in 1997 when knockout of myostatin in mice resulted in a dramatic and widespread increase
in skeletal muscle mass. Individual muscles of myostatin null mice weigh approximately
twice as much as those of wildtype mice and this is the reasons of a combination of increased
muscle fiber number (hyperplasia) and fiber size (hypertrophy) (McPherron, Lawler et al.
1997) (Figure 17).

Figure 17: Myostatin mouse model. A. Mstn knock-out mice B. Upper forelimb muscles from Mstn™
mice C. Unper forelimb muscles from wild-tvne mice.

3.1 Myostatin gene and protein structure

The myostatin gene is located on human chromosome 2q32.2 and on mouse chromosome 1. It
comprises three exons and two introns and has a total length of 7.8 kb. Its mRNA contains 3.1
kb and encodes a protein of 375 amino acids (Gonzalez-Cadavid, Taylor et al. 1998) (Figure
18).

4 Exon1l W: Exon 2 jﬁ?u-’&,@&

Intron Intron

Figure 18: Genomic structure of the myostatin gene.
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The myostatin amino acid sequence and function appears to be highly conserved across the
species from mouse to humans. Mutations in the myostatin gene have been shown to result in
a massive increase of muscle mass and size in various species ((McPherron and Lee 1997);
(Grobet, Martin et al. 1997); (Kambadur, Sharma et al. 1997); (Schuelke, Wagner et al. 2004);
(Clop, Marcq et al. 2006); (Mosher, Quignon et al. 2007) ; (Hill, Gu et al. 2010)).

The myostatin protein is synthesized as a precursor with a molecular weight of 52 kDa and

undergoes two processes of proteolysis (McPherron, Lawler et al. 1997) (Figure 19).

1 24-25 240-243 375

NH2 SS Propeptide region Active domain |COOH

Figure 19 : Structure of the myostatin protein.

The first cleavage removes the first 24 N-terminal amino acids corresponding to the signal
sequence. The second cleavage occurs between amino acids 240 and 243 with the formation
of a latent complex, which contains the propeptide and the myostatin homodimer linked to
each other in a non-covalent fashion. The connection between the two units of the mature
homodimer is provided by several disulfide bounds. The activation of the latent complex is
achieved through the release of the active 26 kDa homodimer into the extracellular matrix
after cleavage of the propeptide by the metalloproteinase BMP1/TLD at the aspartate residue
at position 76 (Asp76) (Wolfman, McPherron et al. 2003) (Figure 20).
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Figure 20: Activation of the myostatin protein.

3.2 The myostatin knockout mouse model

The loss of myostatin function results in a strong increase in skeletal muscle mass. Individual
muscles in adult Mstn knockout mice (Mstn™") weigh twice as much as those from Msmn'"*
littermates. This muscle enlargement results from both myofibers hyperplasia and hypertro-
phy (McPherron, Lawler et al. 1997). The hypertrophic phenotype is due to an increase of the
cytoplasmic volume without a change in the number of myonuclei. This hypertrophy results
in an increase of the nuclear domain ((Qaisar, Renaud et al. 2012); (Wang and McPherron
2012); (Amthor, Otto et al. 2009)). In addition to increased muscle mass, Mstm” mice have

increased insulin sensitivity and reduced adipose tissue mass (Savage and McPherron 2010).

The glycolytic fibers are fast-contracting fibers that fatigue rapidly, whereas oxidative fibers
are slow-contracting fibers that are fatigue resistant. The Msm” muscles show an increased
number of the fast glycolytic type IIb fibers and a concomitant loss of oxidative type I and
type Ila fibers. This phenonomenon is associated with a mitochondrial depletion ((Amthor,

Macharia et al. 2007); (McPherron, Lawler et al. 1997)) and reduced expression levels of the
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peroxisome proliferator-activated receptor-gamma coactivator la (PGCla) (Lipina, Kendall

et al. 2010).

Depending on the investigation, Mstn”" mice demonstrate either an increase, no change or
even a decrease in the force production ((Amthor, Macharia et al. 2007); (Mendias, Marcin et
al. 2006); (Matsakas, Mouisel et al. 2010); (Whittemore, Song et al. 2003); (Schirwis,
Agbulut et al. 2013)). The knockout of the Mstn gene causes increased fatigability during ex-
ercise protocols ((Matsakas, Mouisel et al. 2010); (Savage and McPherron 2010)). At the
same time, Matsakas et al. demonstrated that endurance exercise training appears to signifi-
cantly modify the skeletal muscle phenotype of Mstn” mice and improve their force generat-
ing capacity (Matsakas, Macharia et al. 2012). Interestingly, exercise not only improved force
but also caused a reduction of muscle mass, descreased myofiber size and normalized the size

of the myonuclear domain ((Savage and McPherron 2010); (Matsakas, Mouisel et al. 2010)).

In order to evaluate the postnatal effect of an abrogation of the myostatin function in mice,
Grobet et al. generated a conditional Mstn knockout mouse model using gene targeting tech-
niques. They demonstrated that the postnatal inactivation of the myostatin gene in striated

muscle tissue caused a muscular hypertrophy phenotype (Grobet, Pirottin et al. 2003).

3.3 Myostatin expression

During development, myostatin expression is initiated in the myotome compartment of devel-
oping somites in mouse embryos and later becomes restricted to the cardiac and skeletal mus-
cle in adults, but can also be detected to lesser extent in adipose tissue and the mammary
gland ((McPherron, Lawler et al. 1997); (Sharma, Kambadur et al. 1999)). Myostatin expres-
sion is higher in fast glycolytic muscles than in slow oxidative muscles ((Carlson, Booth et al.
1999); (Wehling, Cai et al. 2000)). There is a positive correlation between the expression of
myosin heavy chain type I[IB (MyHCIIB) and myostatin mRNA abundance in skeletal muscle
(Carlson, Booth et al. 1999) suggesting that fast-twitch muscles could be more sensitive to

changes in myostatin expression.

In vitro, the myostatin gene is not, or only weakly expressed during the proliferative phase of
myoblasts ((Mendler, Zador et al. 2000); (Rios, Carneiro et al. 2002); (Kocamis, Gahr et al.
2002); (Deveaux, Picard et al. 2003)). Its expression increases in the C,C;, cells line when
differentiation is induced and peakes three to four days after induction at the time of myoblast
fusion ((Mendler, Zador et al. 2000); (Kocamis, Gahr et al. 2002)). In primary cultures of fetal

myoblasts and satellite cells, the expression peak was observed at the beginning of the fusion
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((Kocamis, Gahr et al. 2002); (Deveaux, Picard et al. 2003)) and mRNA-transcript abundance

fell with differentiation.

3.4 The myostatin signaling pathway

The various elements of the myostatin signaling pathway were defined in 2003 by Reb-
bapragada et al. (Rebbapragada, Benchabane et al. 2003). The mature C-terminal dimer of
myostatin binds with high affinity to ActRIIB (activin receptor IIB). It can also bind to ActRI-
IA, albeit to a lesser extent ((Lee and McPherron 2001); (Rebbapragada, Benchabane et al.
2003)). Following this binding, the intracellular signal cascade is initiated by recruitment of
the type I receptor, which is either ALK4 (activin-like kinase-4) or ALKS. This formation
allows phosphorylation of ALK4/5 which in turn leads to the phosphorylation and activation
of Smad2 and Smad3. This activation allows then the interaction with the co-Smad and trans-
location of the complex into the nucleus to regulate the expression of myostatin target genes
(Zhu, Topouzis et al. 2004). Another member of the Smad family, Smad 7, after stimulation
by myostatin abrogates myostatin signalling through an inhibitory feedback loop ((Zhu,
Topouzis et al. 2004); (Forbes, Jackman et al. 2006)). First, Smad 7 inhibits myostatin gene
expression (Forbes, Jackman et al. 2006), second, inhibits Smad2/3 phosphorylation by
ALK4/5 (Zhu, Topouzis et al. 2004) and third, interferes with the formation of the Smad2/3—
Smad 4 complex resulting in the inhibition of myostatin signaling (Zhu, Topouzis et al. 2004)
(Figure 21). Myostatin may compete with other molecules such as BMP7 for binding to the
the ActRIIB receptor thus antagonizing them (Rebbapragada, Benchabane et al. 2003). Trans-
genic mice with a dominant negative form of the ActRIIB receptor that carries a mutation in
its kinase domain, show a strong increase in muscle mass comparable to that observed in my-
ostatin knockout mice (Lee and McPherron 2001). The increase in muscle mass in these mice
is the result of hypertrophy and hyperplasia as already described in the myostatin knockout

mice.
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Figure 21: The myostatin signaling pathway.

3.5 Regulation of myostatin activity

Myostatin is synthesized and secreted by the myogenic cells and acts in an autocrine and

paracrine manner. It is also found in blood, however, its biological activity is almost exclu-

sively directed at the skeletal muscle. This suggests that circulating myostatin is inactive.

Several proteins form latent complexes with myostatin thereby inactivating its function. Other

molecules can prevent myostatin activation or secretion. Table 2 provides an overview of

molecules interacting with myostatin.

Table 2: Proteins with an influence on myostatin action

Myostatin binding proteins

Localisation Binding molecule Mpyostatin form bound Consequence of binding References
Serum Propeptide Mature myostatin Inhibits mstn receptor binding [1]
FLRG Mature myostatin Inhibits mstn receptor binding [2]
GASP1 Mature myostatin and propeptide  Inhibits mstn activation [3]
Skeletal muscle hSGT N-terminal signal peptide Inhibits mstn secretion and [4]
activation
Titin cap Mature mysotatin Inhibits mstn latent compex [5]
formation and secretion
Follistatin Mature myostatin Inhibits mstn receptor binding [6]
Decorin Mature myostatin Inhibits mstn receptor binding [7]

[1] (Thies, Chen et al. 2001); [2] (Hill, Davies et al. 2002); [3] (Hill, Qiu et al. 2003); [4] (Wang, Zhang et
al. 2003); [5] (Nicholas, Thomas et al. 2002); [6] (Amthor, Nicholas et al. 2004); [7] (Miura, Kishioka et al.
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3.5.1 Molecules binding myostatin

The myostatin propeptide

Like several members of the TGFB superfamily, myostatin is secreted in a latent form bound
to its propeptide, also known as LAP "latency associated peptide". It is possible to release the
active myostatin from its propeptide by acid treatment or heating (Zimmers, Davies et al.
2002). The cleavage of the propeptide by a member of the family of metalloproteases
BMPl/tolloid "Bone Morphogenetic Protein 1" or by serine proteases such as plasmin and
cathepsin D also allows the activation of myostatin (Wolfman, McPherron et al. 2003). If my-

ostatin forms a latent complex with its propeptide, it binding to its receptor is not possible.

FLRG

Some of the latent curculating myostatin is associated to FLRG "Follistatin Related Gene". If
TGFB and activin signaling is activated, the phosphorylated Smads bind to the FLRG promot-
er resulting in an increased production of secreted FLRG (Bartholin, Maguer-Satta et al.
2002). As a negative feed-back loop, FLRG then forms a complex with myostatin and pre-

vents its receptor binding.

GASP-1

GASP-1 "Growth and Differentiation Factor-Associated Serum Protein 1" is another protein
that binds to mature myostatin and to the latent propeptide complex. It is highly expressed in
skeletal muscle suggesting that it binds to myostatin during or shortly after its secretion.
GASP-1 contains a follistatin domain and a protease inhibitor domain. Consequently, this
protein regulates the activation of the latent complex I though its release of the mature myo-

statin (Hill, Qiu et al. 2003).

These three proteins, propeptide, FLRG and GASP-1, have very different structures and all
regulate the circulating myostatin. This highlights the importance of a strict and specific regu-
lation of this growth factor. The propeptide, GASP-1 and FLRG form distinct complexes with
myostatin and play different roles in the regulation of skeletal muscle mass (Hill, Qiu et al.

2003).

hSGT

Some studies show that hGST functions as a chaperone molecule involved in the folding and

development of proteins (Schantl, Roza et al. 2003). hSGT plays a role in regulating myo-
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statin secretion and activation via a direct interaction with its signal peptide in skeletal muscle

cells (Wang, Zhang et al. 2003).

Titin-cap

Titin-cap is a sarcomeric protein capable of binding mature myostatin to prevent the for-
mation of the latent complex thereby inhibiting its secretion. This occurs without alteration of

myostatin production or transformation (Nicholas, Thomas et al. 2002).

Follistatin

Follistatin is known to be an antagonist of several members of the TGFB family, including
GDF11 (Growth and Differentiation Factor 11), which is highly similar to myostatin. The
secretion of follistatin is highly related to myostatin. These two proteins interact directly and
their interaction inhibits the effect of myostatin on muscle development (Amthor, Nicholas et
al. 2004). As for myostatin, follistatin is also found in the serum. However, no complex with
these two molecules have been identified in serum (Schneyer, Rzucidlo et al. 1994). An alter-
native splicing event generates two different isoforms of follistatin. The short form (FS-288)
has a greater binding affinity to the surface of cells in the extracellular matrix than the long
form (FS-315) ((Inouye, Guo et al. 1991); (Sugino, Kurosawa et al. 1993)). Indeed, follistatin
contains a binding sequence for heparin allowing it to interact with proteoglycans on the cell
surface. Hence, follistatin produced in the muscle is maintained in the extracellular matrix
thus trapping and sequestering myostatin through complexation which then cannot circulate in
the serum (Sugino, Kurosawa et al. 1993). It is impossible for the myostatin to bind its recep-

tor if trapped in the extracellular matrix.

Decorin

Decorin is a small proteoglycan rich on leucines which contains a protein core with attached
chains of dermatan-sulfates. It is known to bind to members of the TGFB superfamily and
regulate their activities (Riquelme, Larrain et al. 2001). Decorin interacts with mature myo-
statin maintaining it in the extracellular matrix and keeping it away from its receptor on the

cells surface (Miura, Kishioka et al. 2006).
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3.6 The function of myostatin

3.6.1 Myoblast cell proliferation

The mechanism by which myostatin controls the number of muscle fibers was described by
Thomas et al. (Thomas, Langley et al. 2000). Myostatin inhibits the proliferation of C,Ci,
myoblasts by preventing their cell cycle progression beyond the G1 phase. This inhibition is
mediated by an increase of p21, an inhibitor of cyclin-dependent kinase (CKI), and a decrease
in expression and activity of cdk2 (cyclin-dependent kinase 2) its binding partner cyclin-E.
This is accompanied by an accumulation of Rb (Retinoblastoma) protein which is a major
substrate of cdks and in its unphosphorylated state plays a role in the transcription of specific
genes during the S-phase ((Thomas, Langley et al. 2000); (Langley, Thomas et al. 2004)). In
the absence of functional myostatin, Rb protein is phosphorylated and causes myoblasts to
proliferate ((Thomas, Langley et al. 2000); (Joulia, Bernardi et al. 2003)). This control of my-
oblast proliferation by myostatin is accompanied by a negative effect on both DNA and pro-
tein synthesis (Taylor, Bhasin et al. 2001). However, to which extent myostatin controls satel-

lite cell proliferation is still unclear (Amthor, Otto et al. 2009) (Figure 22).
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Figure 22: Role of myostatin in the regulation of proliferation and differentiation of myoblasts. (Mod-
ified from (Thomas, Langley et al. 2000)).
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3.6.2  Myoblast cell differentiation

Myostatin also regulates myoblast differentiation through inhibition of the expression of my-
ogenic transcription factors, such as Pax3, MyoD and Myf5, ((Rios, Carneiro et al. 2002);
(Amthor, Huang et al. 2002)). In C,C;, myoblasts, overexpression of myostatin reduces ex-
pression of genes encoding muscle structural proteins (MyHC IIb, Troponin I, desmin), and
decreases the expression of myogenic transcription factors (MyoD, Myf5 and myogenin)
((Langley, Thomas et al. 2002); (Durieux, Amirouche et al. 2007)). It has been reported that
overexpression or addition of myostatin to C,C;; cells induces a decrease in MyoD and my-
ogenin expression via activation of Erk1/2 ((Yang, Chen et al. 2006), (Huang, Chen et al.
2007)). The myogenic factors MyoD and Myf5 induce the activation of the Mstn promoter,
which shows the existence of a negative feed-back loop between myogenic factors and myo-

statin (Salerno, Thomas et al. 2004).

3.6.3 Muscle cell regeneration

Some studies have shown that myostatin controls muscle fiber size by maintaining the satel-
lite cells in a quiescent state and inhibiting protein synthesis (Thomas, Langley et al. 2000).
These authors show that myostatin acts on the proliferation and differentiation of myoblasts
during muscle growth, but also during regeneration. Recent data on the regeneration of skele-
tal muscle in Mstn” mice show the importance of myostatin in this process. In the absence of
myostatin, there is an increase of activation and self-renewal of satellite cells ((McCroskery,
Thomas et al. 2003); (Wagner, Liu et al. 2005)), an effect mediated by decreased expression
of Pax7 (McFarlane, Hennebry et al. 2008) (Figure 23). However, other studies came to an
opposite conclusion and show that there is no difference in the number of satellite cells or
myonuclei in the absence of myostatin, and that the hypertrophy is the result of an increase of
the cytoplasmic volume (Amthor, Otto et al. 2009). A recent study, suggested that myostatin
inhibition induces first the increase of fibers size and then the activation of satellite cells

(Wang and McPherron 2012).
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Figure 23: Role of myostatin in the regulation of muscle growth. (Modified from (McCroskery, Thomas
et al. 2003)).

3.6.4 The role of myostatin in adipogenesis

Myostatin is expressed at low levels in the adipose tissue. Its role in adipogenesis is suggested
by the observation that loss of myostatin function in Mstn” mice also decreases body fat mass
((McPherron, Lawler et al. 1997); (Lin, Arnold et al. 2002); (McPherron and Lee 2002))
while the total weight of fat deposits is increased in transgenic mice overexpressing myostatin
(Reisz-Porszasz, Bhasin et al. 2003). However, it remains to determine whether myostatin
regulates adipogenesis directly. One possibility is that the effect of myostatin on adipose mass
is the consequence of an alteration of skeletal muscle metabolism rather than a direct effect.
This hypothesis is supported by Guo ef al. (Guo, Jou et al. 2009) who show that inhibition of
myostatin signaling via overexpression of dnActRIIB (dominant negative activin receptor
type 1IB) in adipose tissue does not induce any change in body composition. In contrast, inhi-
bition of myostatin signaling in skeletal muscle resulted in a decrease of adipose mass (Guo,
Jou et al. 2009). These results suggest the decrease in the adipose tissue in Mstn”" mice to be

due to an indirect effect of the impaired skeletal muscle.
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3.6.5 Contractile phenotype

In addition to the regulation of muscle mass, myostatin also appears to regulate muscle fiber-
type composition. In cattle lacking myostatin and in the myostatin null mice there is an in-
crease in the percentage of fast type Il fibers together with a decrease of slow type I fibers as

compared to wildtype animals ((Girgenrath, Song et al. 2005); (Stavaux, Art et al. 1994)).

Thus the absence of myostatin leads overall to a faster and more glycolytic muscle phenotype.
Hennebry et al. proposed that myostatin could regulate fiber type composition by regulating
the expression of both myocyte enhancer factor 2 (MEF2) and MyoD during myogenesis
(Hennebry, Berry et al. 2009). Indeed, in the muscles of Mstn” mice Mef2-expression is
down-regulated. The transcription factor Mef2 is essential for the formation of slow type I
fibers and for an increase of MyoD expression. However, the change towards muscle fiber
type I is more likely a consequence of developmental processes since inhibition of myostatin

in adult animals does not cause such a transformation (Girgenrath, Song et al. 2005).

3.6.6 Muscle metabolism

It is well known that genetic inactivation of the myostatin gene in mice not only induces mus-
cle hypertrophy but also reduces body fat accumulation (McPherron and Lee 2002). A similar
lean phenotype can also be observed in mice that overexpress a dominant negative Activin
recptor type IIB (ActRIIB) transgene or following injection of the myostatin propeptide,
which binds to and inhibits the function of myostatin ((Guo, Jou et al. 2009); (Zhao, Wall et
al. 2005)). An increase in the percentage of glycolytic muscle fibers has been observed in
Mstn” mice (Hennebry, Berry et al. 2009). It has been shown that the increase of glycolytic
muscle fiber bulk could promote transcription of genes involved in fatty acid metabolism,
improve hepatic fatty acid oxidation resulting in a decline of fat mass and an improved lipid
metabolism (Izumiya, Hopkins et al. 2008). Consistent with the lean phenotype of Mstn™
mice, muscle specific inhibition of myostatin leads to reduced fat mass and improved insulin

sensitivity (Guo, Jou et al. 2009).

Inhibition of myostatin also leads to reduced adiposity and improved insulin sensitivity ani-
mal models for obesity. Lee at al. reported that crossing Agouti lethal yellow (Ay) mice (a
mouse model for obesity) with Mstn” mice resulted in a reduction of adipose tissue, lower
fasting blood glucose levels and elevated glucose tolerance if compared to the Ay mice alone

(McPherron and Lee 2002).
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Another study also demonstrated that enhanced muscle growth following myostatin inhibition
has a positive effect on fat metabolism via an increase of adiponectin, PPARa and PPARYy

expression (Suzuki, Zhao et al. 2008).

3.7 Therapeutic strategies based on myostatin blockade

There are several muscle diseases for which a myostatin inhibitor may provide a novel thera-
peutic approach. Sarcopenia or age related muscle atrophy, affects many elderly people and
increases the risk of injury and impairs their quality of life. Increased muscle mass could re-
store muscle strength and prevent injuries. Cachexia is a form of muscle wasting that affects
cancer patients or patients with severe cardiomyopathy. Increased muscle strength in cachec-
tic patients may improve quality of life, improve response to cancer therapy, and increase life
span. There are also a variety of muscular dystrophies, including Duchenne muscular dystro-

phy, for which increased skeletal muscle bulk may provide a therapeutic benefit.

Overexpression of myostatin in adult mice is responsible for the appearance of a cachexia
with severe muscle atrophy (Zimmers, Davies et al. 2002). It also contributes to loss of mus-
cle mass in patients affected with the HIV (Gonzalez-Cadavid, Taylor et al. 1998). In age-
associated sarcopenia myostatin mRNA- and protein levels were found to be significantly
increased ((Welle 2002), (Leger, Derave et al. 2008)). Such increase of myostatin signaling is
accompanied by a decreased activity of pathways involved in muscle hypertrophy such as the

IGF1/Akt pathway (Leger, Derave et al. 2008).

3.7.1 The different approaches to induce myostatin blockade

Many different strategies have been employed in order to inhibit either myostatin activity or
expression such as (i) the use of antisense-oligonucleotides, (ii) the administration of the my-
ostatin propeptide or (iii) of inhibitory-binding partners like follistatin, (iv) the administration
of anti-myostatin blocking antibodies, (v) the use of RNA interference (RNAi) and (vi) the
administration of a soluble ActRIIB receptor in order to inhibit the myostatin/ActRIIB path-

way.

Antisense oligonucleotides

Different chemistries of antisense oligonucleotides were used: the 2°O-methyl phosphorothio-
ate (2°OMePS) and the phosphorodiamidate morpholino oligomers (PMO). Both led to effi-
cient exon skipping and knockdown of myostatin mRNA ((Kemaladewi, Hoogaars et al.
2011); (Kang, Malerba et al. 2011)). The administration of these antisense oligonucleotides

increased muscle mass and myofiber size in wildtype mice.
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Kemaladewi et al. demonstrated the possible combination of two antisense oligonucleotides
to target two different genes, the MSTN as well as the DMD gene as a potential therapeutic
strategy against DMD (Kemaladewi, Hoogaars et al. 2011).

Mpyostatin interfering RNA

Short interfering RNAs (siRNAs) against myostatin have been administrated either locally
into mouse skeletal muscle or intravenously. This caused a marked increase in muscle mass
within a few weeks of application (Kinouchi, Ohsawa et al. 2008). These results suggest that

myostatin silencing is a powerful therapeutic tool to increase muscle mass.

The myostatin propeptide

Activation of myostatin requires the proteolytic cleavage of the propeptide by members of the
BMPI/TLD family of metalloproteases (Wolfman, McPherron et al. 2003). Using a mutant
form of the propeptide which is resistant to cleavage caused an increase of muscle mass after
injection into adult mice, presumably by forming latent complexes that could not be activated
by this group of proteinases ((Woltman, McPherron et al. 2003); (Lee 2008)). Such an in-
crease of muscle mass and force was also found after AAV-mediated overexpression of the
mutant propetide in rodent and canine animal models ((Bogdanovich, Krag et al. 2002);
(Morine, Bish et al. 2010); (Bish, Sleeper et al. 2011)). The authors reported an improvement
of the pathophysiology in the mdx mice following such treatment (Bogdanovich, Perkins et al.

2005).

Anti-myostatin antibodies

Antibodies against myostatin were tested as another therapeutic strategy. These antibodies
specifically bind and antagonize mature myostatin. Administration of anti-myostatin antibod-
ies into wildtype and mdx mice led to an increase of muscle mass and function
((Bogdanovich, Krag et al. 2002); (Whittemore, Song et al. 2003)). The increase in muscle
mass was also found after administration of anti-myostatin antibodies into mouse models of
cancer cachexia, muscle disuse, sarcopenia, and DMD ((Murphy, Chee et al. 2011); (Murphy,
Cobani et al. 2011); (Murphy, Koopman et al. 2010); (Murphy, Ryall et al. 2010)).

However, results in mouse models for limb-girdle muscular dystrophy and amytrophic lateral
sclerosis suggest that myostatin inhibition may be beneficial if instituted early or if the disease
is still mild, but it may be ineffective in advanced disease stages ((Bogdanovich, McNally et

al. 2008); (Parsons, Millay et al. 2006); (Holzbaur, Howland et al. 2006)).
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Myostatin binding proteins

In addition to the propeptide, other binding proteins are capable of regulating myostatin activ-
ity, including follistatin (FS), follistatin-related gene (FLRG) and growth and differentiation
factor-associated serum protein (GASP) ((Hill, Davies et al. 2002); (Hill, Qiu et al. 2003);
(Cash, Angerman et al. 2012)). Indeed, postnatal intramuscular injection of AAV encoding
myostatin inhibitor-proteins resulted in long-term improvement of muscle size and strength in
wildtype and mdx mice (Haidet, Rizo et al. 2008). The largest effect on muscle size and func-
tion was obtained by the follistatin construct (Haidet, Rizo et al. 2008), suggesting that fol-
listatin is the most efficient inhibitor protein of myostatin in order to stimulate muscle growth.
Overexpression of follistatin can further increase muscle growth even in mice that lack myo-
statin. This shows that further TGFB related ligands may cooperate with myostatin in sup-
pressing muscle growth (Lee 2007).

The soluble activin receptor type IIB (sActRIIB-Fc)

A soluble form of the activin receptor type IIB was produced and used as a therapy to increase
muscle mass. To stabilize the protein, the ActRIIB was fused to Fc-fragments, which allow
systemic application in different species including human. This soluble receptor can sequester
the free myostatin and others ligands and prevent their binding to the endogenous transmem-
brane receptors ((Lee, Reed et al. 2005); (Morrison, Lachey et al. 2009); (Sako, Grinberg et
al. 2010); (Souza, Chen et al. 2008)). Many studies show the potential of sActRIIB-Fc to in-
duce muscle growth and/or to prevent muscle loss in wildtype mice as well as in mouse mod-
els for different diseases. Treatment with sActRIIB-Fc improves muscle function in mouse
models for DMD, amytrophic lateral sclerosis and myotubular myopathy mouse by increasing
muscle weight and strength ((Cadena, Tomkinson et al. 2010); (George Carlson, Bruemmer et
al. 2011); (Morrison, Lachey et al. 2009); (Lawlor, Read et al. 2011)). In several animal mod-
els of cancer cachexia, blockade of the myostatin/ActRIIB pathway not only prevents further
muscle wasting but also completely reverses prior skeletal muscle loss (Zhou, Wang et al.
2010). Regarding the promising potential of this molecule to inhibit the myostatin/ActRIIB
pathway and to promote muscle growth and force generation, we decided to use this molecule

in our project
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3.7.2  Myostatin blockade as a therapy against DMD

Mpyostatin blockade in the mdx mouse

Many different studies were performed in order to evaluate the potential of interference with
the myostatin signaling pathway as a therapeutic strategy against DMD ((Wagner, McPherron
et al. 2002); (Bogdanovich, Krag et al. 2002)). Wagner et al. used Mstn”"/mdx double knock-
out mice and showed that the absence of myostatin stimulated muscle growth and force gen-
eration in mdx mice (Wagner, McPherron et al. 2002). At the histological level lack of myo-
statin increased fibers size and reduced fibrosis as well as fatty remodeling in the diaphragm

muscle, suggesting an improvement of muscle regeneration.

Bogdanovich et al. also tested the ability of in vivo myostatin inhibition in order to ameliorate
the dystrophic phenotype in the mdx mouse (Bogdanovich, Krag et al. 2002). Blockade of
endogenous myostatin by monoclonal anti-myostatin antibodies for three months resulted in
an increase in body weight, muscle mass, muscle size and absolute muscle strength in mdx
mouse muscle. The authors further observed a significant drop of serum creatine kinase (CK)
activites to almost normal values and interpreted this as a proof of improved muscle fiber de-
generation. Murphy et al. found that young but not adult mdx mice responded to treatment wit

anti-myostatin antibodies (Murphy, Ryall et al. 2010).

Bogdanovich et al. also used the myostatin propetide as an alternative therapeutic strategy.
They found that treatment with recombinant propeptide increased muscle mass, improved
muscle force and reduced CK activities and muscle fibrosis in mdx mice (Bogdanovich,
Perkins et al. 2005). Qiao et al. used a modified myostatin propetide which is resistant to
cleavage, and induced a significant increase in skeletal muscle mass in normal as well as mdx
mice (Qiao, Li et al. 2008). The treated mdx mice showed larger and more uniform myofibers,
less fibrosis and lower serum CK activities. In addition, a grip force test and an in vitro tetanic
contractile force test demonstrated improved muscle strength. A treadmill test, however,
showed reduced endurance of the treated mdx mice as compared to their untreated counter-

parts.

Differently, Morine ef al. used a recombinant AAV to overexpress a secretable dominant neg-
ative from of myostatin under a liver specific promoter. Systemic myostatin inhibition led to
an increase of skeletal muscle mass and strength in both wildtype and mdx mice (Morine,
Bish et al. 2010). The soleus muscle of mdx mice demonstrated the most profound improve-

ment of force production and a shift towards faster myosin-heavy chain isoforms. Specific
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force, however, decreased in extensor digitorum longus muscle and remained unchanged in

the diaphragm.

Follistatin another therapeutic approach was also tested. Similar to the other approaches,
overexpression of follistatin increased muscle mass, reversed muscle pathology and improved

strength in the mdx mouse ((Haidet, Rizo et al. 2008); (Nakatani, Takehara et al. 2008)).

Different studies showed the beneficial effect of a soluble ActRIIB-Fc on the mdx muscle
pathology. They demonstrated that myostatin/ActRIIB blockade pathway led to an increase in
muscle mass with amelioration in muscle function ((Pistilli, Bogdanovich et al. 2011);
(George Carlson, Bruemmer et al. 2011); (Morine, Bish et al. 2010)). Remarkably, Pistilli and
collaborators showed that low-dose treatment of mdx mice with soluble ActRIIB-Fc improved

specific force without effecting muscle mass (Pistilli, Bogdanovich et al. 2011).

Blockade of myostatin/ActRIIB signaling pathway, however, does not correct the molecular
defect in DMD, which is the absence of dystrophin protein expression. For this, a double
strategy combining the restoration of a quasi-dystrophin and the inhibition of myostatin path-
way in mdx mice was proposed and studied by Dumonceaux and her collaborators. Interest-
ingly, they found an improvement in both absolute and specific forces (Dumonceaux, Marie et

al. 2010).

Myostatin blockade in the GRMD dog

Before starting clinical trials in human patients, it is important to determine the potential of
such a therapy in a more comparable disease model. Therefore, Bish ef al. evaluated systemic
myostatin inhibition in the golden retriever model of DMD (GRMD dog). In this study the
authors injected a single dose of a self-complementary adeno-associated virus type 8 (AAVS)
designed to express a secreted dominant-negative myostatin propeptide under a liver specific
promoter. This strategy, as discussed above, had before been evaluated in the mdx mouse
(Morine, Bish et al. 2010). The single injection was sufficient to induce an increase in muscle
mass, a better preservation of muscle architecture and a reduction of serum creatine kinase

(CK) activity and muscle fibrosis (Bish, Sleeper et al. 2011).

Clinical trials in men

Wagner et al. reported in 2008 on the first clinical trial (phase I/II) on adult patients with dif-
ferent muscular dystrophies (BMD, fascioscapulohumeral dystrophy, and limb-girdle muscu-
lar dystrophy) using monoclonal anti-myostatin antibodies (MY O-29) for systemic myostatin

blockade (Wagner, Fleckenstein et al. 2008). The study included 116 subjects and showed
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good safety and tolerability. There was no significant improvement in muscle strength or

muscle function in the treatment group, however, the trial was not powered for this.

Another phase II study was started in 2010 in DMD boys using a soluble form of the activin
receptor type IIB coupled to an Fc-fragment (sActRIIB-Fc). The trial was labeled ACE-031
and registered under NCT01099761; NCT01239758 at http://clinicaltrials.gov. The study was
designed to evaluate the potential of ACE-031 to provide disease-modifying effects on muscle
quality that would translate into durable benefits on strength and function for boys with DMD.
However, this trial had to be interrupted precociously based on some preliminary safety data.
Some patients suffered from minor nosebleeds, gum bleeding, and/or small dilated blood ves-
sels in the skin (see also http://www.acceleronpharma.com/products/ace-031/). Although the
underlying mechanism for these side effects remains to be determined in detail, it is known
that also Bmp9 and Bmp10 bind to the ActRIIB receptor, which are important regulators of
angiogenesis ((Souza, Chen et al. 2008); (David, Mallet et al. 2008); (David, Mallet et al.
2007)). It is possible that myostatin is also implicated in the signaling of endothelial cells,
since capillary density is strongly decreased in the absence of myostatin (Matsakas, Macharia

etal. 2012).

Actually, a phase I clinical trial is ongoing for treatment of patients with BMD and sporadic
inclusion body myositis (sIBM). This gene therapy trial is registerd under NCT01519349 at
http://clinicaltrials.gov and aims to evaluate the overexpression a human form of follistatin

(FS-344) using arAAV1.
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Aims of the thesis

Blockade of ActRIIB signaling is one of the promising therapeutic strategies because it rapid-
ly stimulates skeletal muscle growth. Previous work of our laboratory investigated mainly the
constitutive myostatin knockout mice and demonstrated a severe change of its contractile and
oxidative properties. This led to the general hypothesis of my thesis that myostatin determines
the oxidative metabolism of skeletal muscle. However, it should be pointed out that the con-
stitutive Mstm™ mice, despite being a very robust model for studying the role of ActRIIB sig-
naling, have only limited value for predicting the effect of ActRIIB blockade at the postnatal
stage because of their congenital fiber IIb predominance. We here investigated the abrogation
of the myostatin/ActRIIB signaling pathway using a soluble form of the Activin receptor type
IIb (sActRIIB-Fc) in adult wild-type and mdx mice. Prospective animal experimentation data
will help in the development of therapies for neuromuscular disorders based on myo-

statin/ActRIIB blockade.
e Aim1

To investigate the role of myostatin signaling in the constitutive myostatin knock-out
mouse mstn™. In order to determine the role of myostatin on muscle energy metabolism and
muscle function.

Objectives:

e to validate the effect of the absence of myostatin on muscle mass and function.

e to determine the effect of myostatin on the metabolic phenotype and endurance ca-

pacity.

e Aim?2

To investigate the role of ActRIIB signaling in the regulation of muscle energy metabo-
lism and energy muscle dependent function. Based on our results from the constitutive
mstn”” mice we were interested to investigate the effect of postnatal ActRIIB inhibition in

wild-type adult mice.
Objectives:

e to demonstrate the effect of ActRIIB inhibition on muscle mass and function.

e to determine the effect of ActRIIB inhibition on the metabolic muscle phenotype.
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e Aim3

To investigate, how ActRIIB blockade affects the metabolism of skeletal muscle in a dys-
trophic context. We seemed important to know how inhibition of ActRIIB signaling would
affect the metabolic phenotype of skeletal muscle in a context of a dystrophic muscle, which

is already damaged.
Objectives:

e to demonstrate the effect of ActRIIB inhibition on muscle mass and function.
e to determine the effect of ActRIIB inhibition on the metabolic phenotype of the dystrophic

muscle.

e Aim4

To investigate the combine effect of treatment with sActRIIB-Fc¢ and the restoration of
the dystrophin protein on dystrophic muscle function. It is important to determine if the
myostatin inhibition confer an additional benefit to the correction of the deficient gene and the

expression of the dystrophin protein in the context of Duchenne muscular dystrophy.
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1. Part 1: Role of myostatin in the regulation of muscle energetic

metabolism in mouse models

1.1 Effect of the ActRIIB blockade in wildtype and mdx mice

Project description: The loss of muscle size and strength is one of the major problems in
muscle diseases. Myostatin regulates skeletal muscle mass via its signaling trough the activin
receptor type 1IB (ActRIIB). Previous work in our laboratory suggested that myostatin plays
an important role for the oxidative metabolism in skeletal muscle by optimizing energy me-
tabolism and energy dependent muscle function. However, it was unknown, how myostatin
inhibiton would influence the muscle function and metabolism if initiated postnatally, and
especially in dystrophic muscle. We explored the hypothesis that myostatin/ActRIIB signaling

is a key regulator of oxidative metabolism in the adult muscle.

Experimental design: Mdx and wildtype adult mice were treated for four months with

sActRIIB-Fc, which is a powerful inhibitor of the ActRIIB signaling pathway.

Aim 1: To investigate the effect of ActRIIB signaling blockade on the function of normal

and dystrophic skeletal muscle in the adult mouse.

Work plan: The effect of the treatment on muscle function was assessed by measuring mus-
cle weight, muscle fiber distribution and muscle force. We also evaluated the exercise capaci-

ty of the mice and the level of the serum lactate before and after an exhaustive exercise.

Aim 2: To investigate the effect of a myostatin/ActRIIB signaling blockade on the capilla-

rization of normal and dystrophic skeletal muscle in the adult mouse.

Work plan: In order to explain the considerable increase in fatigue after treatment with
sActRIIB-Fc, we explored the extent of capillarization of the skeletal muscle in treated mdx

and wildtype mice which would be a good indicator of the blood perfusion of the muscle.

Aim 3: To investigate the effect of the ActRIIB signaling blockade on muscle metabolism
and mRNA levels of PPAR transcription factors of normal and dystrophic skeletal

muscle in the adult mouse.

Work plan: The exercise intolerance and lactate acidosis following ActRIIB blockade sug-

gested underlying changes in the mitochondrial muscle metabolism. To explain this phenom-
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enon, we explored genes at the molecular level that are involved in muscle energy metabolism
such as Pparf, Pgclo (key transcription factors that promote oxidative metabolism in skeletal
muscle), Pdk4 (an inhibitor of the pyruvate dehydrogenase (Pdh) and regulatory switch of
substrate utilization from glucose towards fatty acids) and Cpt/b (a mitochondrial protein

involved in the transport of fatty acids).

Aim 4: To investigate the effect of ActRIIB signaling blockade on the mitochondrial enzyme
activity of normal and dystrophic skeletal muscle in the adult mouse.

Work plan: We analyzed the activities of isolated respiratory chain complexes (COX, SDH)

and key enzymes of f-oxidation (HADHA) and Krebs Cycle (Citrate Synthase).

Aim S5: To investigate the effect of ActRIIB signaling blockade on the porin expression of
normal and dystrophic skeletal muscle in the adult mouse.

Work plan: We investigated the expression of the porin protein (VDAC), an ATP channel
located in the outer mitochondrial membrane, by qPCR and by Western blot in the skeletal

muscle from wildtype and mdx mice treated with sActRIIB-Fc.
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Abstract

Myostatin regulates skeletal muscle size via the activin receptor 1IB (ActRIIB). However, its effect on
muscle energy metabolism and energy dependent muscle function remains largely unexplored. This
question needs to be solved urgently since various therapies for neuromuscular diseases based on
blockade of ActRIIB signaling are being developed. Here we show in mice that four months of phar-
macological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme
muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myo-
pathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB
signaling down-regulates Porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix
leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phophorus
Magnetic Resonance Spectroscopy (**P-MRS). Further, ActRIIB blockade reduces muscle capillariza-
tion, which further compounds the metabolic stress. We show that ActRIIB regulates key determi-
nants of muscle metabolism, such as Pparf, Pgcla, and Pdk4 thereby optimizing different compo-
nents of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with
high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB
blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular

disorders.

Key words: ActRIIB, myostatin, metabolic myopathy, muscle fatigue, oxidative phosphorylation, beta-

oxidation, Duchenne muscular dystrophy, mdx mouse.
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INTRODUCTION

Skeletal muscle has inbuilt control mechanisms to prevent overgrowth. This function is executed, at
least in part, by secreted molecules including members of the transforming growth factor-B (TGF-B)
family, especially myostatin®. Myostatin signals via its transmembrane activin receptor II1B (ActRIIB)
and suppression of this pathway stimulates muscle growth?®. In the past few years, strategies have
been developed to treat muscle dystrophies, muscle wasting and cachexia by blocking the myo-
statin/ActRIIB pathway with first of many clinical trials already being concluded (ClinicalTrials.gov
NCT01099761, NCT01519349, NCT01423110, NCT01669174, NCT01601600, NCT01433263)’. Howev-
er, it remains a matter of controversy whether the hypertrophic muscles that form as a result of
blocking myostatin/ActRIIB signaling confer any functional benefit, because a number of groups have
reported loss of specific force of larger muscles in myostatin knockout mice and a faster fatigability
(Mstn”")¥**. In addition, myostatin knockout leads to a change of muscle contractile and metabolic

1215 commonly attributed to a change in muscle

characteristics towards a “glycolytic” phenotype
specification during development. In contrast to the constitutive myostatin deficiency of Mstn”" mice,
postnatal treatment with soluble activin IIB receptor (sActRIIB-Fc) in adult mice blocks myo-

statin/ActRIIB signaling and increases muscle force without altering the fiber type composition'®'’ .

Similar results have been obtained in the mdx mouse model of Duchenne muscular dystrophy*®*° .
However, a recent transcriptome profiling demonstrated a down-regulation of genes involved in
oxidative phosphorylation and mitochondrial function following treatment with sActRIIB-Fc*°. Anoth-
er study revealed a faster decline of muscle force following repetitive stimulation?*. Whether those
changes reflect solely a change towards a faster muscle phenotype or a relevant mitochondrial dys-
function is presently unknown. In the view of ongoing clinical trials we need to address the question
of how myostatin blockade affects the metabolism of dystrophic muscle in mdx mice, which already

2224 Here we explored the hypothesis that ActRIIB

has a preexisting deficit of mitochondrial function
signaling is a key regulator of oxidative metabolism in the adult muscle. We thus set out to systemat-
ically investigate in adult wild-type and mdx mice, how postnatal blockade of ActRIIB signaling using
sActRIIB-Fc might affect muscle energy metabolism and energy dependent muscle function. Our data
conclusively show the importance of ActRIIB signaling as a pivotal link that acts to balance muscle

size and strength against endurance capacity via optimization of energy metabolism.
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RESULTS

ActRIIB blockade in adult wild-type mice increases fatigability. Muscles of Mstn”" mice, a model of
constitutive inhibition of signaling via ActRIIB, exhibit a congenital fiber-type profile that is character-
ized by an increase in the number of fast “glycolytic” (MHCIIB) fibers and concomitant loss of “oxida-
tive” (MHCI, MHCIIA) fibers, which entails changes in muscle function, exercise capacity and muscle
metabolism®'2>%% To circumvent the effects of congenital fiber-type switching, we here inhibited
ActRIIB signaling in adult wild-type mice with a soluble form of the activin receptor fused with the Fc-
fragment of mouse IgG (sActRIIB-Fc). Four months of treatment promoted robust skeletal muscle
growth together with a significant increase in total body weight, confirming previously published
data (Fig. S1)°. Importantly, the increase in muscle mass was not accompanied by fiber-type conver-
sion (Fig. S2). The absolute maximal force of EDL and soleus muscle increased in parallel with muscle
size (Figs. 1a,c). Specific maximal force was conserved, implicating a proportional increase of force
and muscle mass (Fig. 1b). However, sActRIIB-Fc treatment also increased muscle fatigue (Figs. 1c,d)
and mice exhausted precociously during incremental speed running tests (Figs. 1e,g). Serum lactate,
being already significantly increased at resting state, rose to pathological levels following incremental
speed running (Figs. 1f,g). The concept of “Critical Speed” accurately reflects the capacity for aerobic
exercise and is based on the proportional relationship between “covered distance” and “time to ex-
haustion” at different velocities?’. During the four months treatment period, we found a steady de-
cline in Critical Speed in the treatment and control group, however, the decline over time was by far

larger in sActRIIB-Fc treated animals as compared to PBS-treated mice (Figs. 1h,i).

Severe exercise intolerance in dystrophic mdx mice following treatment with sActRIIB-Fc. In Du-
chenne muscular dystrophy and its mdx mouse model, oxidative metabolism is compromised due to

membrane damage and the resulting intracellular calcium overload®*?*

. Having shown that ActRIIB
blockade decreased aerobic exercise capacity in wild-type mice, we now investigated what effect
administration of sActRIIB-Fc would have on the metabolic phenotype of mdx mice. This information
would have important clinical implications for the strategies to use ActRIIB blockade for treatment of
muscle dystrophies. Despite a massive increase in skeletal muscle mass after sActRIIB-Fc treatment
(Fig. S1), absolute maximal force decreased in soleus muscle and most notably specific force in both
EDL and soleus muscles (Figs. 2a,b), serving as functional evidence for increased myopathic changes
of sActRIIB-treated dystrophic mdx muscle. Interestingly, sActRIIB-Fc treatment did not cause any
greater force decline during repetitive stimulation (Figs. 2c,d). Electromyography excluded problems
in neuromuscular transmission but revealed abnormal spontaneous potentials and the presence of
complex repetitive discharges in both PBS and sActRIIB-Fc treatment groups of the mdx mice (Fig.
S$3). Such polyphasic potentials are characteristic of dystrophic mdx muscle®®. As voluntary motor

activity seemed reduced when observing sActRIIB-Fc treated mdx mice, we proceeded to analyze
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their exercise behavior. Remarkably, at the end of the treatment period, sActRIIB-Fc treated mdx
mice suffered from severe exercise intolerance associated with a pathological serum lactate increase
(Figs. 2e-g, Video S1). It is important to note, that exercise capacity of mdx mice declined throughout
the four months treatment period, however, to a far larger extent in sActRIIB-Fc treated mdx mice

than in the PBS-treated control group (Figs. 2h,i).

SActRIIB-Fc treatment affects muscle capillarization. The ability of mitochondria to produce ATP
critically depends on the oxygen supply via tissue blood perfusion, thus a combination of hypoperfu-
sion plus exercise induced hypoxemia might explain the severe exercise intolerance. Treatment with
sActRIIB-Fc caused a drop in capillary density especially in the oxidative soleus muscle from mdx mice
with a subsequent increase in the capillary domain (Figs. 3a-d). The increase of the capillary domain
was also found in glycolytic EDL muscles of mdx mice, albeit to a lesser degree (Fig. S4a-d). Treatment
of mice as well as of C,C;, myotubes with sActRIIB-Fc down-regulated expression of Vegf-A suggest-
ing an indirect negative effect of myostatin blockade on capillary formation (Figs. 3e,f). Interestingly,
Vegf-A expression in mdx mice was much lower than in wild-type mice, and treatment with sActRIIB-
Fc did not decrease Vegf-A mRNA-abundance any further (Fig. 3e), suggesting the presence of addi-
tional mechanisms for regulating capillary density. In this regard the findings of Hayot et al. (2010)
are of special interest, who reported an induction of myostatin expression in muscles of rats exposed
to chronic hypoxia and in patients with chronic obstructive pulmonary disease (COPD). The authors
interpreted these findings as a potential cause for the muscle wasting that is often seen in COPD-
patients®’. These findings, however, could also be interpreted as a compensatory up-regulation of
myostatin to improve the metabolic functioning and to increase capillary density in a state of chronic
hypoxia. It is of special interest that endothelial cells strongly express the mRNAs of transmembrane
receptors (ActRIIA/B and ALK4/5) for myostatin or its homologs, whereas myostatin mRNA was only
expressed at low levels (Fig. 3g). Treatment of endothelial cells (HUVEC cell line) with increasing dos-
ages of recombinant myostatin in vitro increased the cell doubling time in culture, verifying a direct
effect of myostatin or its homologs on endothelial cell proliferation (Fig. S4e), however, the exact

ligands of muscle endothelial cell regulation in vivo remain to be determined.

ActRIIB signaling regulates Pgcla and Ppar transcription factors. The exercise intolerance and lactic
acidosis following ActRIIB blockade suggests underlying changes in muscle metabolism, a hypothesis
supported by previous transcriptome profiling®®. In agreement, we show that the copy numbers of
Pgcla and PparB, which are key transcription factors promoting oxidative metabolism in skeletal
muscle, are down-regulated after treatment with sActRIIB-Fc (Figs. 4b,c) and following treatment of
C,C1, myotubes with sActRIIB-Fc (Fig. 4g). On the protein level, down-regulation of Pgcla was more
pronounced in the mdx muscle if referred to Desmin abundance (Fig. 4a). Such loss of oxidative

properties was accompanied by a compensatory activity increase of Enolase, a key glycolytic enzyme
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(Fig. 4d). Furthermore, mRNA levels of Pdk4, an inhibitor of pyruvate dehydrogenase (Pdh) and a
regulatory switch of substrate utilization from glucose towards fatty acids*’, was strongly decreased
following sActRIIB-Fc treatment in mdx mice (Fig. 4e). We thus expected an inhibitory effect of
sAcvRIIB-Fc treatment on B-oxidation and found a down-regulation of Cpt1b mRNA levels (Fig. 4f).
Likewise, sActRIIB-Fc treatment of C,C;, myotubes reduced expression of genes controlling oxidative
metabolism and B-oxidation within 24 hours of treatment (Fig. 4g), implying a direct effect of myo-

statin signaling in the regulation of these genes.

We further focused our attention on the neuronal nitric oxide synthase (Nos1, nNos), because it is
well known that the sarcolemmal presence of the Nos1 enzyme is strongly reduced in the absence of

its binding partner dystrophin in patients with DMD and in mdx mice®"*?

. The resulting dysregulation
of NO-synthesis entails a failure of contraction induced vasodilatation as well as changes in the cellu-
lar calcium homeostasis associated with exacerbated post-exercise fatigability, exercise-induced

3335 We thus wondered, whether sActRIIB-Fc treatment would influ-

muscle edema and cell necrosis
ence sarcolemmal Nosl expression, hence further compromising the pathophysiological effect of
sActRIIB-Fc on vasculature and oxidative metabolism. As expected, we found a strong decrease of
Nos1 mRNA copy numbers in mdx muscles of both treatment groups in comparison to wild-type
muscle (Fig. S11a), which was paralleled by a strong decrease of sarcolemmal expression of Nosl
protein in mdx muscle (Fig. S11b). Furthermore, treatment with sActRIIB-Fc diminished Nos1 tran-
scription in wild-type and mdx muscle (Fig. S11a). However, subsarcolemmal Nos1 protein content
remained unchanged (Fig. S11b), and Western blot did not reveal any changes in Nos1 protein levels
in wild-type mice (Fig. S11c), whereas Nos1 protein levels in mdx mice were below detection levels
(data not shown). This suggests that sActRIIB-Fc treatment unlikely aggravates NO dysregulation of

dystrophin deficient muscle, although further experiments are required to ascertain or to exclude a

role of the ActRIIB-receptor on NO signaling.

Reduced oxidative metabolism in mdx muscle following treatment with sActRIIB-Fc. It should be
noted that the mRNA and protein levels of key regulatory genes (Ppar, Pgcla) important for oxida-
tive metabolism (Figs. 4b-c) were significantly lower in mdx than in wild-type mice, supporting previ-

ous findings that oxidative muscle metabolism is depressed in dystrophic muscle to some extent?3¢.

We therefore studied in real-time the response of the oxidative metabolism to a standardized bout
of exercise in anesthetized mdx mice either treated with PBS (controls) or sActRIIB-Fc. Muscle func-
tion and energy metabolism were assessed strictly noninvasively in calf muscle with an innovative
experimental setup using phosphorus (*'P) nuclear magnetic resonance spectroscopy (MRS)*’. An
exercise bout of six minutes consisting of repeated maximal isometric contractions was induced in

vivo by transcutaneous electro-stimulation. After induced repeated contractions fatigue levels (Fig.
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5a), intracellular acidosis (Fig. 5b) as well as phosophocreatine (PCr) consumption (Fig. 5¢c) were simi-
lar in both groups. However, the time constant of post-exercise phosphocreatine re-synthesis (tPCr)
was significantly prolonged in sActRIIB-Fc treated mdx mice (Figs. 5d,e). Given that PCr synthesis
during the post-exercise recovery period relies exclusively on oxidative ATP synthesis, TPCr has large-
ly been acknowledged as an important in vivo index of oxidative mitochondrial capacity. Hence the

prolonged TPCr demonstrates that sActRIIB-Fc treatment reduces oxidative metabolism in vivo.

The MRS results pointed to an underlying functional deficit of the skeletal muscle respiratory chain
complexes or B-oxidation in response to sActRIIB-Fc treatment. However, contrary to our hypothesis,
we found (i) largely unaffected ex vivo activities of isolated key mitochondrial enzymes (Krebs cycle:
citrate synthase [CS]; respiratory chain: cytochrome C oxidase [COX]; and B-oxidation: hydroxyacyl-
CoA-dehydrogenase [HADHA]) and (ii) similar succinate dehydrogenase [SDH] and COX fiber profiles
(Figs. S5-S7). In fact, COX and SDH enzyme activities even appeared somewhat increased in EDL mus-
cles (Figs. S5c¢,d, S6a, S7a), likely reflecting a compensatory increase in response to decreased aerobic
energy production. Furthermore, mitochondrial DNA (mtDNA) copy numbers remained largely un-
changed following treatment with sActRIIB-Fc (Fig. S8a). The normal mtDNA copy numbers together
with unaltered CS enzyme activities (Fig. S5a,b) let us conclude that ActRIIB blockade did not affect

mitochondrial mass.

Treatment with sActRIIB-Fc down-regulates Porin expression in wild-type and mdx muscle. Given
the abnormal post-exercise PCr re-synthesis (tPCr) along with normal respiratory chain activities, we
wondered whether the ATP transport from the mitochondrial matrix into the cytosol of skeletal mus-
cle cells might be affected, which might explain the diminished rate of aerobic energy production.
Keeping with such hypothesis, decreased protein levels of Vdac3 had already been reported for mdx
muscle, hinting towards a derangement of the ADP/ATP-shuttling system through the outer mito-

383940) 1 line with

chondrial membrane via the Voltage Dependent Anion Channels (VDAC, syn. Porin
these findings, a proteomic survey of differentially expressed proteins from wild-type and mdx
mouse hearts had discovered a substantial loss of Vdacl protein“. Indeed, here we show that wild-
type and to an even larger extent mdx muscles exhibited a considerable reduction of Porin mRNA-
transcripts (Fig. S8a) and protein levels (Fig. S9) after sActRIIB-Fc treatment. This pushes the muscle
even further into global mitochondrial dysfunction than dystrophin deficiency alone. Such secondary

mitochondriopathy might explain the high lactic acidosis and rapid fatigability of sActRIIB-Fc treated

mdx mice.

Myopathic changes in mdx mice following treatment with sActRIIB-Fc. We next investigated the
consequences of sActRIIB-Fc treatment on the extent of muscle dystrophy in mdx mice. Muscles from

both sActRIIB-Fc and PBS-treatment groups revealed typical dystrophic changes comprising muscle
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fiber necrosis, regenerating fibers, fibers with central nuclei, inflammatory infiltrates, and increased
fibrosis, which are difficult to quantify (Fig. S10a). Muscle degeneration is accompanied by a leak of
cytoplasmic enzymes such as creatine kinase (CK). We measured serum CK levels, which were largely
elevated in mdx mice from both treatment groups; however, we did not detect any significant differ-
ences since inter-individual variation was large (Fig. S10b). In mdx mice, muscle degeneration is fol-
lowed by excessive regeneration with abundant splitting of regenerated fibers, which appear as small
fiber profiles on transverse sections. Such excessive regeneration leads to an increase of muscle mass
(see comparison between wild-type and mdx mice: Fig. S1). Following treatment with sActRIIB-Fc,
muscles enlarged on average, if compared to PBS treatment, by =1.6 fold in mdx and by =1.3 fold in
wild-type mice (Fig. S1). However, analysis of morphometric features of EDL muscles from sActRIIB-Fc
treated mdx mice, revealed a further increase in the number of small fiber profiles if compared to
PBS-treated mdx mice (Fig. $10c). This finding suggestes that the excessive increase of muscle weight
was triggered by abnormal regeneration and not by fiber hypertrophy. The soleus muscle of mdx
mice, while not increasing its mass after sActRIIB-Fc treatment, exhibited an increased fiber size vari-
ation (Fig. $10d). In conclusion, the dystrophic phenotype of dystrophin deficient muscle persisted or

even increased following treatment with sActRIIB-Fc.
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DISCUSSION

Myostatin/ActRIIB signaling exerts three major functions on skeletal muscle. (i) It acts to limit its size,
(ii) promotes oxidative properties, and (iii) balances glucose versus fat utilization. The changes in
muscle physiology in hypermuscular mice following treatment of adult mice with sActRIIB-Fc high-
lights the fact that myostatin/ActRIIB blockade confers little functional advantage over wild-type
muscle due to its rapid fatigability. Improved muscle strength, however short lived, comes at the cost
of increased fatigability and exercise intolerance, which is often seen in patients with mitochondrial
disorders such as MELAS or MERRF syndrome®. Interestingly, muscle cramps are frequently ob-
served in whippet dogs with homozygous Mstn mutations*. Moreover, “double muscle cattle”, sev-

44,45

eral breeds of which have been identified to carry Mstn mutations™", are prone to exercise induced

46,47

lactic acidosis and severe rhabdomyolysis™"’. In myostatin deficient animals, such exercise failure

could be attributed to congenital fiber-type disproportion with a shift towards the expression of the

82548 \which is well known to be associated with loss of

fast IIB myosin heavy chain (MHC) isoform
oxidative properties of skeletal muscle and increased fatigability”***>*. In contrast to animals born
with mutations in the Mstn gene, we show that blockade of ActRIIB signaling in adult wild-type mice
beyond the period of muscle development does not have any impact on fiber-type composition, thus

confirming previous reports®’*.

After sActRIIB-Fc treatment the mice exhibit clinical signs of early muscle fatigue, exercise intoler-
ance, and lactic acidosis — characteristic signs for a depression of B-oxidation, a shift towards anaero-
bic glycolysis, and ATP-deficiency. Interestingly, whereas ex vivo mitochondrial respiratory chain en-
zyme activities and mtDNA copy numbers were within the normal range, in vivo *'P-MRS clearly
demonstrated a down-regulation of oxidative energy metabolism in sActRIIB-Fc treated mdx mice.
We further demonstrate a significant loss of the Porin complex in sActRIIB-Fc treated mice, pointing
towards an underlying defect of ATP-handling and ATP-transport as one causative mechanism for the
metabolic phenotype. A second aggravating factor, which further compromised exercise tolerance, is
the decrease of capillary density and the increase of the capillary domain. Previous reports attributed
such reduced capillary density to the increase of muscle fiber size®®**. However, here we demon-
strate a net numerical loss of capillaries per fiber following treatment with sActRIIB-Fc. This finding
was most pronounced in mdx mice with a profound rarefication of the capillary bed in dystrophic
muscle. In dystrophinopathies diminished sarcolemmal Nos1 results in dysregulation of the capillary

adaptive response to exercise leading to functional muscle ischemia®**?

. Our protein analysis argues
against a further aggravation of the capillary adaptive response by additional loss of Nos1 in sActRIIB-
Fc treated animals, despite the fact that Nos1 mRNA levels were clearly reduced. sActRIIB-Fc treat-
ment of dystrophic mdx mice dramatically worsened the myopathic phenotype as shown by the large
deficit in specific force. As lack of dystrophin per se alters mitochondrial function in DMD patients
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and mdx mice**?*3®

, the blockade of myostatin signaling initiates a vicious cycle resulting in severe
secondary metabolic myopathy. We also found an increased fiber size variation after sActRIIB-Fc

treatment of mdx mice pointing towards increased myopathic changes even at the tissue level.

In the past several investigators have used different strategies of interfering with the ActRIIB recep-
tor mediated signaling pathway in order to treat mdx mice and GRMD dogs. This was done either

through injection of sActRIIB-Fc'*>?, AAV-mediated gene transfer'®>*

or antibodies directed against
the ActRIIB receptor™. Overall the conclusions were optimistic about the usefulness of such strategy
to treat dystrophinopathies. However, it should be noted that our results and conclusions differ from
previously published work in various aspects. We think the reason for that mainly lies in the choice of
endpoints to define success or failure of such a treatment. For DMD patients, clinically relevant and
quantifiable improvements would comprise better performance in the six-minutes walk®® and im-
provement of respiratory function. This implies the ability of the patient’s body to maintain a certain
workload for a prolonged time period and not just to be able to produce single bouts of maximum

18,19

short-duration muscle activity as tested by tetanic muscle contractions or by the whole body ten-

sion method™. In most studies the increase of muscle size was taken as an endpoint™®***°

, automati-
cally assuming that big muscles are healthier muscles. This basic assumption is put into question by
our results. None of the studies investigated endurance capacity, which evaluates the effect of a
treatment on the physiology of the entire body over a longer time period and would thus be a rele-
vant parameter that could translate into improvement of life quality in patients. Several studies, one
using the identical sActRIIB-Fc compound™, reported a small, but significant decline of CK values af-

ter ActRIIB blockade'®'***. We were unable to reproduce this finding, the reason for these differ-

ences remaining unresolved.

We show that myostatin controls the metabolic profile of skeletal muscle, and its blockade depresses
the main molecular determinants of oxidative metabolism and B-oxidation. Interestingly, genetic
inactivation of Ppar8, similar to myostatin/ActRIIB blockade, reduced oxidative properties of skeletal
muscle®®. This adds further evidence that myostatin controls the muscle oxidative phenotype via
peroxisome proliferator-activated receptors (PPAR) and Pgcla, the downstream target of Ppar6,
while the down-regulation of Pdk4 indicates a shift away from B-oxidation towards glucose metabo-
lism. These qPCR data are strongly corroborated by a recent transcriptome study following treatment
with sActRIIB-Fc of wild-type mice®. However, we lack direct evidence to ascertain a shift towards
higher glucose metabolism, although the down-regulation of Pdk4 and up-regulation of Enolase can
be counted as indirect indicators for such a change. The unfavorable combination of decreased vas-
cularization and metabolic changes after ActRIIB blockade is likely to cause a rapid imbalance be-
tween increased cytosolic ATP hydrolysis and insufficient mitochondrial ATP synthesis during exhaus-

tive exercise. The subsequent shift towards anaerobic glycolytic ATP synthesis explains the rapid fa-
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tigability and the pathologically increased lactate production®’. However, the metabolic adaption in
response to myostatin may differ in diverse physiological and pathophysiological contexts, e.g. myo-
statin was reported to improve motor performance in aged mice®. Further work is required to eluci-

date the metabolic function of myostatin in different disease situations and during ageing.

In conclusion, our results suggest that myostatin/ActRIIB signaling optimizes oxidative metabolism of
skeletal muscle leading to lower muscle fatigability and amelioration of endurance capacity. Such
fundamental functions of myostatin should be taken into account in the development of therapies
based on myostatin/ActRIIB blockade. However, it should be kept in mind that our experimental de-
sign does not allow to determine which effects can be ascribed to myostatin blockade alone and
which to the inactivation of other TGF-B family members such as bone morphogenetic proteins
(BMP), growth and differentiation factors (GDF) and activins that may also be sequestered by the
soluble ActRIIB. Further investigations are required to answer the question, such as whether emerg-
ing therapies based on PPAR agonists might be able to prevent such adverse effects of ActRIIB block-
ade on the oxidative metabolism and on exercise tolerance. Furthermore, dose regime studies could
answer the question, whether short-term treatment or pulse treatment may circumvent secondary

effects of myostatin/ActRIIB blockade on muscle metabolism.
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FIGURES

Figure 1: Treatment of adult wild-type mice with sActRIIB-Fc. All tests were done after a 4 months
treatment of the wild-type mice with either sActRIIB-Fc or PBS (controls). (a) Absolute maximal force
(n=10 for each condition), and (b) specific maximal force of EDL and soleus muscles (n=10 for each
condition). (c) Force recordings during the fatigue protocol over 180 s, and (d) Fatigue resistance of
EDL (n=9 for PBS treated mice and n=8 for sActRIIB-Fc treated mice) and soleus muscles (n=10 for PBS
treated mice and n=9 for sActRIIB-Fc treated mice). (e) Running distances during incremental speed
running until exhaustion (n=5 for each condition). (f) Serum lactate levels at rest and 5 min after in-
cremental speed running until exhaustion (n=5 for each condition). (g) A plot depicting the relation-
ship between travel distance until exhaustion during incremental speed running and serum lactate,
which was measured 5 min after exhaustion, for individual mice (n=5 for each condition). (h) Critical
Speed before and after 1, 2 and 4 months of treatment with sActRIIB-Fc in comparison to PBS-
treated control mice (n=5 for each condition). (i) A plot depicts the proportional relationship be-
tween distance run (y-axis) and time to exhaustion (x-axis) at different velocities. The slope of the
regression line indicates the Critical Speed. Values are shown as means £ SEM. p-Values were calcu-

lated using the nonparametric U-Test.
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Figure 2: Treatment of adult mdx mice with sActRIIB-Fc. All tests were performed after a 4 months
treatment of the mdx mice with either sActRIIB-Fc or PBS (controls). (a) Absolute maximal force (n=9
for each condition for EDL muscles and n=10 for each condition for soleus muscles), and (b) specific
maximal force of EDL (n=9 for each condition) and soleus muscles (n=10 for each condition). (c) Force
recordings during the fatigue protocol over 180 s of EDL and soleus muscles, and (d) fatigue re-
sistance for EDL (n=8 for each condition) and soleus (n=10 for PBS treated mice and n=8 for sActRIIB-
Fc treated mice). (e) Running distance during incremental speed running until exhaustion (n=5 for
each condition). (f) Serum lactate levels at rest and 5 min after incremental speed running until ex-
haustion (n=5 for each condition). (g) A plot depicts the relationship between travel distance until
exhaustion during incremental speed running and serum lactate, which was measured 5 min after
exhaustion, for individual mice (n=5 for each condition). (h) Critical Speed before and after 1, 2 and 4
months of treatment with sActRIIB-Fc in comparison to PBS (n=5 for each condition). (i) A plot depicts
the proportional relationship between distance run (y-axis) and time to exhaustion (x-axis) at differ-
ent velocities. The slope of the regression line indicates the Critical Speed. Values are shown as

means + SEM. p-Values were calculated using the nonparametric U-Test.
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Figure 3: The effect of myostatin/ActRIIB signaling on vascularization. All investigations were done
after a 4 months treatment of wild-type and mdx mice with either sActRIIB-Fc or PBS (controls). (a-d)
Capillarization of wild-type soleus (n=430 fibers from PBS treated muscles (n=3) and n=300 fibers
from sActRIIB-Fc treated muscles (n=3)) and mdx soleus muscle (n=605 fibers from PBS treated mus-
cles (n=3) and n=836 fibers from sActRIIB-Fc treated muscles (n=4)). Histograms in (a) and (c) depict
the distribution of capillaries per muscle fiber (in [%]), whereas diagrams in (b) and (d) depict the
capillary domain, the fiber area per capillary (in [um?]). Values are depicted as means + SEM. (e)
Vegf-A relative mRNA-copy numbers as expressed per 10° x 185 rRNA copies in wild-type TA muscle
(n=5 for each condition). (f) Vegf-A relative mRNA-copy numbers in C,C;, myotubes following 24 h
treatment with sActRIIB-Fc in comparison to control cultures (n=3 for each condition). (g) Relative
mRNA-copy numbers of MSTN and myostatin receptors ActRIIA/B and ALK4/5 in cultures of human
umbilical vein endothelial cells (HUVEC) in comparison to muscle samples from a healthy control and
a patient with Duchenne muscular dystrophy. Values are shown as means + SEM. p-Values were cal-

culated using the nonparametric U-Test.
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Figure 4: Effect of myostatin/ActRIIB signaling on muscle metabolic phenotype. All investigations
were done after a 4 months treatment of wild-type (n=5 for each condition) and mdx mice (n=5 for
each condition) with either sActRIIB-Fc or PBS (controls). (a) Western blots (left side) depict bands for
Pgcla referenced to Desmin. The bar chart (right side) depicts the quotients of Pgcla/Desmin band
densities. (b) Pgcla and (c) Ppar8 relative copy numbers in the TA muscle from wild-type and mdx
mice as expressed per 10° x 18S rRNA copies. (d) Enolase enzymatic activity in EDL (n=5 for each con-
dition) and soleus muscles (n=5 for each condition). (e-f) Relative mRNA-copy numbers of genes in-
volved in the regulation of the oxidative metabolism in TA muscle from wild-type and mdx mice and
(g) from C,C;, myotubes following 24 h treatment with sActRIIB-Fc in comparison to control cultures
(n=3 for each condition). Values are shown as means + SEM. p-Values were calculated using the non-

parametric U-Test.
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Figure 5: In vivo investigation of muscle function and oxidative metabolism in mdx calf muscles by
non-invasive >'P-MRS. Investigations were done in mdx mice that were treated either with sActRIIB-
Fc (n=5) or with PBS (controls; n=4). (a) The extent of force reduction was measured at the end of the
6 min period of electro-stimulation and is represented as percent of the starting value. (b) The drop
of intracellular pH and (c) phosphocreatine (PCr) concentration was determined at the end of the 6
min in vivo electro-stimulation period. (d) For each animal, the post-stimulation time course of PCr
was fitted to a mono-exponential function with a least mean-squared algorithm in order to calculate
the PCr recovery time constant (tPCr): tPCr = -t/In(PCr/APCr). During recovery from exercise, PCr is
re-synthesized exclusively via oxidative ATP-synthesis. Thus the tPCr is considered a reliable in vivo
index of mitochondrial oxidative capacity. (e) TPCr was significantly larger in sActRIIB-Fc treated mdx
mice (200 + 39 s versus 78 + 20 s in the control group), which is a strong in vivo indicator of an im-

paired oxidative mitochondrial metabolism in the sActRIIB-Fc treated mdx mice.
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MATERIALS AND METHODS

Animals. Male mdx mice (on a C57BL/10ScSn background) were bred in the animal facility of the
Medical Faculty of Paris VI and kept according to institutional guidelines. Wild-type male C57BL/6)J
control mice were purchased from Charles River (France). Two-months-old wild-type and mdx mice
were injected twice weekly subcutaneously with 10 mg/kg with the rodent form of the soluble activin
receptor IIB (sActRIIB-Fc; Acceleron Pharma) for a total of four months before sacrifice. The methods
of sACtRIIB-Fc synthesis have previously been described®. All animal studies have been approved and

were carried out under the laboratory and animal facility licenses A75-13-11 and A91-228-107.

Evaluation of the critical speed. Mice were subjected to three or four separate bouts of runs until
exhaustion at various treadmill speeds (between 20 and 80 cm/s according to individual motor ca-
pacity, one run per day) according to previously published protocols®’. Critical Speed, an index of the
aerobic exercise capacity, was calculated from the slope (a) of the regression line, plotting the dis-

tance (y) against the time to exhaustion (x) from the different runs.

Blood lactate assessment during exhaustive exercise. Lactate concentrations were determined in
blood samples collected from the tip of the tail using a Lactate pro LT device (Arkray Inc, Kyoto, Ja-
pan) at rest before exercise (0 min) and 5 min after treadmill running-induced exhaustion. Exhaustion
was defined as the time point at which the mice were unable to run anymore and stayed on the grid
despite repeated electric stimulation. The running test started at the lowest speed of 5 cm/s to allow
a warm-up and then increased by 1 cm/s every 30 seconds until exhaustion. This protocol is illustrat-
ed by the Video S1 which demonstrates the running test of sActRIIB-Fc treated wild-type (left) and
mdx mice (right) side by side. The starting speed of 5 cm/s was increased by 1 cm/s every minute
until exhaustion of the mdx mouse at 19 cm/s after 14 minutes, while the wild-type mouse was still

able to run at a speed of 40 cm/s.

Electromyographic examination. Electromyographic examination of the triceps brachialis, tibialis,
gastrocnemius and quadriceps femoris muscles was performed in mice anesthetized with isoflurane.
Standard non-invasive needle electromyography was conducted on a Viking Quest EMG apparatus
(Viasys, Nicolet Biomedical, Madison, Wisconsin) using concentric bipolar needle electrodes. Inser-

tional activity and pathological spontaneous activity were recorded.

Measurement of contractile properties. Absolute maximal isometric tetanic force (PO) was measured
during tetanic contractions (frequency of 50-100 Hz, train of stimulation of 1,500 ms for soleus and
750 ms for EDL). Specific maximal isometric force (sP0) was given as the quotient between force and
muscle weight. For analysis of fatigue resistance, muscles were stimulated at 75 Hz for 500 ms, every

2 seconds over 3 minutes. See details in the Online Supplementary Material.
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Western blot. Protein was extracted from frozen tibialis anterior (TA) muscle of wild-type and mdx
mice and processed as described®. Briefly, after homogenization of the muscle in RIPA buffer with a
proteinase inhibitor cocktail (Complete®, Roche-Diagnostics) proteins were separated through de-
naturating SDS-PAGE with the Laemmli system and blotted onto nitrocellulose membranes by the
semidry method (Biometra). The blots were probed with anti-Porin as primary antibody (VDAC 31HL,
AB-2, Calbiochem), anti-PGCla (Santa-Cruz), anti-Nosl (Abcam) and corresponding peroxidase-
labeled secondary antibodies. The desmin and GAPDH bands were used as loading control for mus-
cle. Bands were visualized by chemiluminescence. The protein bands were quantified by measuring
their integrated density within a rectangle that covered the entire individual band and subtracting
the integrated density of an empty rectangle of exactly the same size in the vicinity using the Image)

software.

Enzyme measurements. Enolase, citrate synthase [CS], cytochrome C oxidase [COX] and hydroxyacyl-
CoA-dehydrogenase [HADHA] activities were determined in extracts from frozen cryostat sections

using a coupled enzyme assay®® as detailed in the Online Supplementary Material.

Histology and SDS-PAGE. H&E, SDH and COX staining were performed using routine histological pro-
tocols. The following primary antibodies were used for immunohistochemistry: anti-CD31
(Pharmingen), anti-MHCIIA (SC-71, DSMZ), anti-MHCI (BAD5, DSMZ), anti-Nos1 (Abcam) and anti-
Laminin (Dako) followed by secondary antibodies with various fluorophores (AlexaFluor®, Invitro-

gen). See details in the Online Supplementary Material.

Morphometric analysis of capillary number and capillary domains: Cryosections of 12 um of the EDL
and soleus muscles of PBS- and sActRIIB-Fc treated animals were stained with anti-laminin to deline-
ate the muscle fibers. Muscle capillaries were stained with anti-CD31. Fluorescent photographs were
taken with a 20x objective on a Microscope (Zeiss, Axiolmager Z1) and saved as TIFF files. These im-
ages were projected on a flatscreen coupled with a graphic tablet, which enabled the manual retrac-
ing of the muscle fiber outlines and the counting of capillaries that were found around it. For the EDL
the fibers of the entire muscle cross section were analyzed and for the soleus muscle the fibers from
10 representative non-overlapping visual fields. For each muscle fiber we determined the cross sec-
tional plane [um?] and counted the number of bordering capillaries. The capillary domain [um?] for

each fiber was calculated by dividing its cross sectional plane by the number of bordering capillaries.

Cell Culture. C,C,, cells were grown in DMEM (Gibco 41966-029) supplemented with 1% Pen/Strep
and 20% FBS (Gibco 10500-064) to semiconfluency at 37°C and 5% CO, for 2 days. Thereafter the
medium was replaced by DMEM + 10% horse serum (Gibco 26050-088) to induce fusion into multi-
nucleated myotubes. sActRIIB-Fc was added to a final concentration of 200 ng/ml to the culture me-

dium of the myotubes. After 24 h the myotubes were harvested by trypsinization, washed and pel-
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leted for RNA extraction. Human umbilical vein endothelial cells (HUVEC) were grown to confluency,
trypsinized and pelleted for RNA extraction. The doubling time of the cells was determined using the
AlamarBlue reagents from Invitrogen (UK). Briefly, cells were plated at 20% confluency and allowed
to settle for 12 h before introducing recombinant myostatin (R&D Systems). The cells were grown for
24 h before addition of 0.1 volume of AlamarBlue reagent and incubation at 37°C for 20 min before
photometric analysis. The cells were then washed and cultured in fresh medium containing myo-
statin. Cell proliferation was monitored every 24 h for 4 days after initial introduction of myostatin.
Cell number was determined by comparison of absorbance against a standard curve. All experiments

were performed in triplicate.

RT-qPCR. Real-Time gqPCR was performed according the SYBR Green® protocol (Applied Biosystems)
on the Eco Real-Time PCR System (lllumina) with a HotStart Taq polymerase. For primer sequences
see Online Supplementary Material. Fold changes were calculated according to the efficiency cor-
rected -AAC, method®. The use of normal and of DMD muscle from patients was covered by the ap-
proval of the ethical review board of the Charité (#216/2001). All patients or their legal guardians

provided written informed consent according to the Declaration of Helsinki.

In vivo MRS investigation of muscle function and oxidative metabolism. Mice were anesthetized
with 4% isoflurane in 100% air at a flow of 3 I/min and were placed into a home-built cradle specifi-
cally designed for the strictly noninvasive MRS investigation of muscle function and energetics®.
Throughout the experiment, anesthesia was maintained using a facemask continuously supplying
1.75% isoflurane in 33% O, (0.2 I/min) and 66% N,0 (0.4 |/min). Animal body temperature was con-
trolled by a rectal probe and maintained at physiological values by a feedback loop that regulated an
electrical heating blanket. MR spectra were recorded in the 4.7 T horizontal magnet of a 47/30 Bio-
spec Avance MR system (Bruker, Karlsruhe, Germany) equipped with a Bruker 120-mm BGA12SL (200
mT/m) gradient insert. Calf muscle were electro-stimulated transcutaneously to produce maximal
repeated isometric contractions at a frequency of 1.7 Hz. Mechanical performance was measured
using a foot pedal coupled to a force transducer. Concentrations of phosphorylated compounds and
intracellular pH of the calf muscle were continuously measured with an elliptic (8 x 12 mm?) *'P-MRS
surface coil during 6 min of rest, 6 min of electro-stimulation and 16 min of recovery. MRS data were
processed using a custom-written analysis program developed on the IDL software (Research System,
Boulder, CO, USA). In order to determine the time constant of post-exercise phosphocreatine re-
synthesis (tPCr, an in vivo index of oxidative mitochondrial capacity), the time course of phosphocre-
atine concentrations during the post-stimulation period was fitted to a mono-exponential function
with a least mean-squared algorithm (Fig. 5d): tPCr = -t/In(PCr;/APCr), where APCr is the extent of

PCr depletion measured at the start of recovery period.
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Statistical analysis. Data were analyzed and significance levels calculated using the non-parametric
Wilcoxon-Mann-Whitney U-Test, as stated in the legends and detailed in the Online Supplementary
Material. Values are presented as means + SEM (Standard Error of the Mean). Significance levels

were set at p<0.05.
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Supplemental Online Information

Supplemental methods
Measurement of contractile properties

The contractile properties of extensor digitorum longus (EDL) and soleus muscles were studied in
vitro according to previously published protocols '. Muscles were soaked in an oxygenated Tyrode
solution (95% 0O, and 5% CO,) containing 58.5 mM NaCl, 24 mM NaHCOs;, 5.4 mM KCI, 1.2 mM
KH,PQO,, 1.8 mM CaCl,, 1 mM MgSQ,, and 10 mM glucose (pH7.4) and maintained at a temperature
of 22°C. One muscle tendon was attached to a lever arm of a servomotor system (300B, Dual-Mode
Lever, Aurora). After equilibration (30 min), field electrical stimulation was delivered through elec-
trodes running parallel to the muscle. Pulses of 1 ms were generated by a high power stimulator
(701B, Aurora). Absolute maximal isometric tetanic force (PO) was measured during tetanic contrac-
tions (frequency of 50-100 Hz, train of stimulation of 1, 500 ms for soleus and 750 ms for EDL). The
muscle length was adjusted to an optimum (LO) that produced PO. Specific maximal isometric force
(sP0) was calculated by dividing the force by the weight of the muscle. Fatigue resistance was then
determined after a 5 min rest period. The muscles were stimulated at 75 Hz during 500 ms, every 2 s,
for 3 min. The time taken for initial force to fall by 50% (EDL) or 30% (soleus) was then measured. All
data were recorded and analyzed on a microcomputer, using the PowerLab system (4SP, AD Instru-

ments) and software (Chart 4, ADInstruments).
Histology

For CD31 expression, frozen unfixed 12 um sections of EDL and soleus muscles were blocked 1 h in
PBS plus 2% BSA and 2% SVF. Sections were then incubated overnight with primary antibodies: anti-
CD31 (Pharmigen) and anti-laminin (Dako). After washes in PBS, sections were incubated 1 h at room
temperature with secondary antibodies with various fluorophores (AlexaFluor®, Invitrogen). After

washes in PBS, slides were mounted in Fluoromount-G (Southern Biotech).

For expression analysis of Myosin Heavy Chains (MHC) isoforms, primary antibodies were: anti-MHCI
(hybridoma#BA-D5, Deutsche Sammlung von Mikroorganismen und Zellkulturen DSMZ) and anti-
MHClla (hybridoma#SC-71, DSMZ). For MHC-immunohistochemistry, frozen unfixed 12 um sections
were blocked 1 h in PBS plus 2% BSA and 2% SVF. Sections were then incubated overnight with pri-
mary antibodies against laminin (Dako) and MHCI and MHClla isoforms. After washes in PBS, sections
were incubated 1 h with secondary antibodies with various fluorophores (AlexaFluor®, Invitrogen).
After washes in PBS, slides were finally mounted in Fluoromont-G (Southern Biotech). Morphometric
analyses were made on whole sections of EDL and soleus muscles. Images were captured using a

digital camera (Hamamatsu ORCA-AG) attached to a motorized fluorescence microscope (Zeiss Axi-
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olmager Z1), and morphometric analyses were made using the MetaMorph v7.5 software (Molecular

Devices).

For Nosl expression, frozen unfixed 12 um sections of EDL muscles were rehydrated in PBS, fixed
with 4% PFA for 10 min, blocked in 4% BSA for 1 h. Sections were then incubated overnight at room
temperature with primary antibodies: anti-Nos1 (Abcam). After washes in PBS, sections were incu-
bated 1 h at room temperature with secondary antibodies with various fluorophores (AlexaFluor®,
Invitrogen). After washes in PBS, slides were mounted in Fluoromount-G (Southern Biotech). Images

were captured by confocal laser scanning microscope (Leica SPE DM2500).
RT-qPCR

Total RNA was isolated from frozen muscle after pulverization in liquid nitrogen from C,C,, cell pel-
lets and from endothelial human cells with the Trizol® (Invitrogen) extraction protocol. Isolated RNA
was quantified using the NanoDrop® ND-1000 spectrophotometer (Thermo Scientific) and cDNA was
synthesized using the Thermoscript® RT PCR System (Invitrogen). After cDNA synthesis, Real Time
PCR was performed by using the SYBR Green® PCR Master Mix Protocol (Applied Biosystems) in trip-
licate on the ECO Real-Time PCR System (lllumina) with a hotstart-Tag polymerase. A 10 min dena-
turation step at 94°C was followed by 40 cycles of denaturation at 94°C for 10 s and anneal-
ing/extension at 60°C for 30 s. Before sample analysis we had determined for each gene the PCR
efficiencies with a standard dilution series (10°-10” copies/pl), which subsequently enabled us to
calculate the copy numbers from the C; values >. mRNA levels were normalized to 18S rRNA. The se-

quences for the primers used are listed below:

Table of oligonucleotides used for RT-gPCR of mouse and human tissues

Gene ‘ Primer sequence (5'-3’) ‘ Direction
Oligonucleotide primers used for mice
PparB8 AGCCACAACGCACCCTTT forward
CGGTAGAACACGTGCACACT reverse
Pgcla GAAAGGGCCAAACAGAGAGA forward
GTAAATCACACGGCGCTCTT reverse
Vegf-A AAGCCAGCACATAGGAGAGATGA forward
TCTTTCTTTGGTCTGCATTCACA reverse
Cptlb TCGCAGGAGAAAACACCATGT forward
AACAGTGCTTGGCGGATGTG reverse
Pdk4 AGGTCGAGCTGTTCTCCCGCT forward
GCGGTCAGGCAGGATGTCAAT reverse
Nos1 AAGGAGCAAGGAGGCCATAT forward
ATATGTTCTGAGGGTGACCCC reverse
Vdac1 (Porin) ACTGTGGAAGACCAGCTTGC forward
TGCTCCCTCTTGTACCCTGT reverse
MTCO2 GCCGACTAAATCAAGCAACA forward
CAATGGGCATAAAGCTATGG reverse
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18S rRNA CATTCGAACGTCTGCCCTATC forward
CTCCCTCTCCGGAATCGAAC reverse
Oligonucleotide primers used for humans
ACVR2B AGCCGTCTATTGCCCACA forward
CATGTACCGTCTCGTGCCTA reverse
ACVR2A AGGTTGTTGGCTGGATGAT forward
GCCCTCACAGCAACAAAAAT reverse
ALK4 GTCTTGGTTCAGGGAAGCAG forward
GGACCCGTGCTCATGATAGT reverse
ALK5 TTGCTCCAAACCACAGAGTG forward
TGAATTCCACCAATGGAACA reverse
18S rRNA CATTCGAACGTCTGCCCTATC forward
CTCCCTCTCCGGAATCGAAC reverse

Measurement of enzyme activities

[1] Enolase: Enolase-catalyzed conversion of 2-phospho-d-glycerate to phosphoenolpyruvate at 25°C
was monitored spectrophotometrically at 340 nm. Activity was expressed in international units (IU)

per mg of protein.

[2] Citrate synthase: Citrate synthase-catalyzed conversion of oxaloacetate and acetyl-CoA to citrate
at 30°C was monitored spectrophotometrically at 412 nm. Activity was expressed in international

units (IU) per mg of protein.

[3] Cytochrome C oxidase (COX): Cytochrome C oxidase-catalyzed oxidation of cytochrome C at 30°C
was monitored spectrophotometrically at 550 nm. Activity was expressed in international units (I1U)

per mg of protein.

[4] Hydroxyacyl CoA dehydrogenase (HADHA): HADHA-catalyzed conversion of acetoacetyl-CoA to
hydroxybutyryl-CoA at 30°C was monitored spectrophotometrically at 340 nm. Activity was ex-

pressed in international units (IU) per mg of protein.
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Supplemental Figures
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Supplemental Figure 1. Effect of sActRIIB-Fc on body weight and muscle weight in wild-type and
mdx mice.

2-months-old wild-type mice (a,c,e,g) and mdx mice (b,d,f,h) were systemically treated for 4 months
with sActRIIB-Fc or PBS (n=5 for each condition). (a,b) Effect of sActRIIB-Fc on body weight increase in
comparison to PBS treated control mice. (c,d) Dorsal view on the upper shoulder girdle with fore
limbs. (e-h) Effect of sActRIIB-Fc on muscle wet weight of quadriceps (QUAD), gastrocnemius (GAS),
tibialis anterior (TA), plantaris (PL), extensor digitorum longus (EDL), and soleus (SOL) muscles (n=5
for each condition). Values are shown as means = SEM. p-Values were calculated using the nonpara-
metric U-Test.
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Supplemental Figure 2. Effect of sActRIIB-Fc on fiber-type distribution of EDL and soleus muscles
from wild-type and mdx mice.

(a-d) Fiber-type distribution of soleus and EDL muscles from wild-type mice (a,c) and mdx mice (b,d)
after 4 months treatment with sActRIIB-Fc compared to muscles from PBS treated control mice. (a,b)
Fiber-type composition of the soleus muscle as shown by the relative fiber-type distribution from
entire transverse sections following immunostaining with anti-MHCI and MHCIIA antibodies. Un-
stained fibers (non MHCI/IIA) were considered IlIb or IIx. (c,d) Fiber-type composition of the EDL mus-
cle as shown by the relative fiber-type distribution from entire transverse sections following im-
munostaining with anti-MHCI and MHCIIA antibodies. Unstained fibers (non MHCI/IIA) were consid-
ered llb or llx. MHCI positive fibers were only exceptionally seen and are therefore not depicted.
Values are shown as means = SEM.
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Supplemental Figure 3. Effect of sActRIIB-Fc on EMG recordings of mdx mice.

Examples of spontaneous potentials recorded under anesthesia in triceps brachialis muscle of mdx
mice. The upper trace was recorded in a PBS treated mouse, the lower trace in a sActRIIB-Fc treated
mouse. Both traces show complex repetitive discharges (sensitivity, 200 pV/division upper trace,
50uV/division lower trace, sweep speed, 10 ms/division).
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Supplemental Figure 4. Effect of myostatin on capillaries and endothelial cell proliferation.

(a-d) Investigations were done after a 4 months treatment of wild-type and mdx mice with either
sActRIIB-Fc or PBS (controls). Plots in (a-d) depict capillarization of wild-type EDL (n=1625 fibers from
PBS treated muscles (n=3) and n=2752 fibers from sActRIIB-Fc treated muscles (n=4)) and mdx EDL
muscle (n=2609 fibers from PBS treated muscles (n=3) and n=2137 fibers from sActRIIB-Fc treated
muscles(n=3)). Histograms in (a) and (c) depict the distribution of muscle fibers according to the
number of capillaries per muscle fiber. Diagrams in (b) and (d) depict the capillary domain (average
fiber area serviced per capillary [um?]). Values are depicted as means + SEM. (e) Cultures of human
umbilical vein endothelial cells (HUVEC) were treated for 24 h with recombinant myostatin at con-
centrations of 0.06, 0.10 and 0.33 pg/ml. At low concentration (0.06 pg/ml), myostatin inhibited cell
proliferation as the doubling time of cells in culture increased. Higher myostatin concentrations
caused large variability of doubling time which was caused by cytotoxicity. All values are statistically
significant relative to the control.
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Supplemental Figure 5. Effect of sActRIIB-Fc on enzymes activities of mitochondrial respiratory
chain in EDL and soleus muscles from wild-type and mdx mice.

(a-f) Wild-type and mdx mice were systemically treated with sActRIIB-Fc or PBS for 4 months and
enzyme activities were measured in muscle homogenates from EDL (n=5 for each condition) and
soleus muscles (n=5 for each condition) for (a,b) citrate synthase [CS], (c,d) cytochrome-C oxidase
[COX] and (e,f) hydroxyacyl-CoA dehydrogenase [HADHA]. Values are shown as means + SEM. p-
Values were calculated using the nonparametric U-Test.
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Supplemental Figure 6. Effect of sActRIIB-Fc on SDH and COX enzyme activity on muscle sections of
EDL and soleus muscles from wild-type mice.

(a-d) Images of transverse sections of (a,b) EDL muscle and (c,d) soleus muscle from wild-type mice
stained for (a,c) succinate dehydrogenase [SDH] activity and (b,d) cytochrome-C oxidase [COX] activi-
ty after 4 months treatment with sActRIIB-Fc in comparison to muscles from PBS treated control
mice.
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Supplemental Figure 7: Effect of sActRIIB-Fc on SDH and COX enzyme activity on muscle sections of
EDL and soleus muscles from mdx mice.

(a-d) Images of transverse sections of (a,b) EDL muscle and (c,d) soleus muscle from mdx mice
stained for (a,c) SDH activity and (b,d) COX activity after 4 months treatment with sActRIIB-Fc in
comparison to muscles from PBS treated control mice.
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Supplemental Figure 8. Effect of sActRIIB-Fc on mitochondrial DNA copy number and transcription
of the gene encoding the mitochondrial protein Porin in muscles from wild-type and mdx mice.

All investigations were done after a 4 months treatment of wild-type (n=5 for each condition) and
mdx mice (n=5 for each condition) with either sActRIIB-Fc or PBS (controls). (a) mitochondrial DNA
copy numbers expressed as the ratio between MTCO2 [mtDNA] per Ndufvl [gDNA] copy numbers in
the TA muscle from wild-type and mdx mice to quantify mtDNA/myonucleus ratio. (b) Porin (Vdac1)
relative copy number in the TA muscle from wild-type and mdx mice as expressed per 10° x 185 rRNA
copies. Values are shown as means = SEM. p-Values were calculated using the nonparametric U-Test.
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Supplemental Figure 9. Effect of sActRIIB-Fc on the expression of the mitochondrial protein Porin in
muscles from wild-type and mdx mice.

The Western blots depict bands of Porin (Vadcl) referenced to GAPDH (a,b) and to Desmin (c,d) of TA
muscles from wild-type (n=5 for each condition) (a,c) and mdx (n=5 for each condition) (b,d) mice
after 4 months of treatment with sActRIIB-Fc in comparison to muscles from PBS treated control
mice. The bar charts depict the quotients of Porin (Vdacl) band densities / GAPDH (Desmin) band
densities with the average of the PBS-treated samples normalized to 1. Values are shown as means +
SEM. p-Values were calculated using the nonparametric Man-Whitney-U-Test.
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Supplemental Figure 10. Effect of myostatin/ActRIIB signaling on muscle phenotype.

(a,d) 2-months-old mdx mice were systemically treated for 4 months with sActRIIB-Fc (n=5 for each
condition). (a) Cross section of the soleus muscle from mdx mice treated with sActRIIB-Fc, sectioned
at mid belly level and stained with H&E (left image). Close-up showing muscle fibers with central
nucleation, cellular infiltrates, endomysial fibrosis, and muscle fiber necrosis (arrow) (middle image)
as well as regenerating muscle fibers (arrowhead) (right image). (b) Serum creatine kinase levels after
4 months of treatment with sActRIIB-Fc in comparison to PBS-treated mdx mice (n=5 for each condi-
tion). (c,d) The histogram depicts the cross sectional areas of muscle fibers from (c) EDL muscles and
(d) soleus muscles after 4 months of treatment with sActRIIB-Fc in comparison to PBS-treated mdx

mice. Values are shown as means = SEM. p-Values were calculated using the nonparametric U-Test.
CSA, cross sectional area.
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Supplemental Figure 11. Effect of sActRIIB-Fc on the expression of Nos1 in muscles from wild-type
and mdx mice.

All investigations were done after a 4 months treatment of wild-type and mdx mice with either
sActRIIB-Fc or PBS (controls). (a) Nos1 relative copy number in the TA muscle from wild-type (n=5 for
each condition) and mdx mice (n=5 for each condition) as expressed per 10° x 185 rRNA copies. Val-
ues are shown as means + SEM. p-Values were calculated using the nonparametric U-Test. (b) Repre-
sentative images following immunohistochemistry against Nos1. (c) The Western blots depict bands
of Nos1 referenced to GAPDH of TA muscles from wild-type mice (n=4 for each condition). The bar
charts depict the quotients of Nos1 band densities / GAPDH band densities with the average of the
PBS-treated samples normalized to 1.
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Supplemental Videos
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Supplemental Video. Effect of sActRIIB-Fc on incremental speed running in mdx mice.

The video demonstrates the effect of sActRIIB-Fc in mdx mice on aerobic exercise capacity during an
incremental speed running test. Right lane: 6-months-old mdx mouse, which was treated for 4
months with sActRIIB-Fc (twice weekly subcutaneous injection of 10 mg/kg sActRIIB-Fc; mouse
marked with a red spot). Left lane: 6-months-old mdx mouse, which was treated for 4 months with
PBS (mouse marked with a blue spot). Mice were placed on the treadmill for one minute before
starting the treadmill at a very low speed of 5 cm/s. Speed was subsequently increased by 1 cm/s
each minute. The mdx sActRIIB-Fc treated mouse exhausted at a speed of 19 cm/s and was taken off
the treadmill. The PBS treated mdx mice carried on running beyond 40 cm/s. The video is in *.mov
format and can best be viewed with the QuickTime® Viewer (free download from
http://www.apple.com/de/quicktime/download/)
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1.2 Effect of the absence of myostatin in the Mstn™ mouse model

Project description: Myostatin is considered as a potent negative regulator of skeletal muscle
mass. Mice lacking myostatin gene (Mstn™") exhibit a strong hypermuscular phenotype due to
both myofiber hypertrophy and hyperplasia. The Mstn” muscle exhibits an increased number
of fast glycolytic myofibers and a loss of oxidative fibers, which reflects a profound loss of
oxidative metabolic properties of the muscle which are associated with mitochondrial deple-
tion. Previous work suggested that such profound fiber type conversion in the absence of my-
ostatin negatively alters muscle behavior during exercise, fatigability and mitochondrial func-
tion. We therefore investigated how myostatin regulates muscle energy metabolism and ener-
gy dependent muscle function in Mstn” mice and the role of myostatin in the regulation of the

PPAR transcriptional activators in the energy metabolism of the skeletal muscle.

Contribution to the project: This project was principally conducted in the laboratory by a
postdoctoral researcher Etienne Mouisel, and I worked with him on this project at the begin-
ning of my thesis. For this study, I contributed experiments to decipher the role of myostatin
in the regulation of PPAR transcription factors. I designed primers specific to each PPAR
isoform and performed a quantitative PCR on the Msm” and wildtype muscles. The results
suggested that myostatin plays an important role to maintain the oxidative metabolism of the
skeletal muscle via the PPAR signaling pathway. I also performed fiber type profiling and
analyzed morphometric parameters of skeletal muscle from wildtype and Mstn™ mice. I found
an increase in the proportion of type IIb fibers, which was corroborated by the anaylsis of
myosin heavy chain isoforms on SDS-PAGE thus confirming the conversion of the Mstn™

muscles towards a more glycolytic phenotype.
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RESULTS

SUMMARY

Myostatin (Mstn) participates in the regulation of skeletal muscle size and emerges as a regulator of
muscle metabolism. We here hypothesized that lack of myostatin profoundly depresses energy de-
pendent muscle function. For this extent, we explored Mstn”" mice as a model for constitutive ab-
sence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myo-
statin blockade in adult wild-type mice. We show that muscles, which develop in constitutive lack of
myostatin, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts mus-
cle energy metabolism away from aerobic towards anaerobic mode as evidenced by decreased mito-
chondrial respiration and PPARs transcriptional regulator expression, increased enolase activity and
exercise induced lactic acidosis. In consequence, constitutively reduced myostatin signaling diminish-
es exercise capacity, while the hypermuscular state of Mstn”" mice increases oxygen consumption
and energy cost of running. We wondered whether these results are the mere consequence of the
congenital fiber type switch towards a glycolytic phenotype of constitutive Mstn”" mice. We there-
fore over-expressed myostatin propeptide in adult mice, which did not affect fiber type distribution.
However, propeptide mediated myostatin blockade also caused larger muscle fatigability and de-
creased exercise capacity as well as decreased PPAR-6/5 and PGC1-a expression. In conclusion, our
results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigabil-
ity, thus optimizing the delicate balance between muscle mass and force, energy metabolism and

endurance capacity.

KEYWORDS

myostatin, exercise capacity, muscle fatigue, PPAR.
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INTRODUCTION

Skeletal muscle has inbuilt control mechanisms to prevent overgrowth, which are executed at least in
part by secreted molecules of the transforming growth factor-g (TGF-B) family, the most important
being myostatin (Mstn). Suppression of myostatin signaling stimulates muscle growth, however, the
functional benefits arising from myostatin deficiency remain under debate, because the larger mus-
cles of myostatin knockout mice lose specific force (4, 28, 34, 40). On the other hand, a heterozygous
Mstn-mutation in racing dogs (whippets) increases performance in short distance races (37), which
could be explained by a fiber type conversion from oxidative to glycolytic phenotype. Previous work
suggested that such profound fiber type conversion in the absence of myostatin negatively alters
muscle exercise behavior, fatigability and muscle mitochondrial function (6, 15, 18, 29, 39, 42). How-
ever, a direct effect of myostatin on muscle metabolism has not yet firmly established despite in-
creasing evidence for an important impact of TGF-B/Smad signaling pathway on energy homeostasis
(9, 13, 32, 47). Moreover, the question remains open, whether previoulsy observed metabolic and
functional changes are the mere consequence of congenital fiber type conversion following constitu-
tive lack of myostatin or whether myostatin regulates muscle metabolism in a direct fashion. We
here hypothesised that myostatin regulates energy dependent muscle function and that this can be
independent of the muscle fiber type phenotype. We first characterised in detail the muscle contrac-
tile, metabolic and functional phenotype of constitutive Mstn”" mice and demonstrate a profound
deficit for aerobic exercise. We then compared this phenotype to the effect of myostatin blockade in
adult muscle and likewise found an increased fatigability and reduced capacity for aerobic exercise
following overexpression of myostatin propeptide despite an unchanged fiber type composition.
These data and the role of myostatin in the regulation of PPAR transcriptional activators comprehen-
sively illustrate the importance of myostatin as a pivotal link that acts to balance muscle size and

strength against endurance achieved by an optimization of energy metabolism.
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RESULTS

Decreased endurance exercise capacity and voluntary motor activity in myostatin deficiency

An index for endurance exercise capacity is the maximal oxygen uptake per body weight (VO,max [ml
0,/min/kg]), which was determined at incremental treadmill speeds in metabolic cages. Initially, the
oxygen uptake is proportional to the running speed but levels off at a plateau, the so-called VO,max,
beyond which no further increase is possible. Nevertheless, running velocity can still increase beyond
the speed at VO,max to reach the maximal velocity (vPeak [m/min]) before exhaustion of the ani-
mals. VO,max of Mstn” mice was reduced by 10% (p=0.004; Figure 1A) and a similar tendency was
shown for vPeak in comparison with Mstn** mice (p=0.13; Figure 1B), while Mstn”" mice had an in-
termediate phenotype. Hence, such decreased oxygen consumption in vivo parallels the decreased
OXPHOS rates in vitro. However, absolute VO,max [ml/min] of Mstn”" mice was increased by 14%
(p=0.004; Figure 1C) owing to a respectively 20% and 24% increase of total and lean body mass
(p<0.01; data not shown). In consequence, the energy cost of running (Running Economy at 13

m/min) was increased by 15% in Mstn”~ as compared to Mstn** mice (p=0.01; Figure 1D).

“Critical Speed” accurately reflects the capacity for aerobic exercise and is based on the proportional
relationship between distance run and time to exhaustion at different velocities (8). Mstn”" mice
became exhausted more rapidly, resulting in a 30% lower Critical Speed as compared with Mstn*'*
mice (15.9+1.2 vs 22.9+1.2 m.min™, p<0.001; Figure 1E). These findings provide further evidence that
the double muscle phenotype we observed in Mstn” mice (16.4+0.3 vs 8.4+0.2 mg for soleus muscle,
as compared to Mstn*'* mice, p<0.001; similar observations were made for others hindlimb muscles)
cannot compensate for inefficient energy metabolism to maintain endurance capacity. The “Respira-
tory Exchange Ratio” (RER), COaeliminated/ O2consumed, indicates the type of fuel being metabolized to
supply the body with energy. Resting and maximal RER were slightly increased in Mstn™" mice and
even further increased in Mstn” mice as compared with wildtype animals (Figure 1F). This implicates
a preference for glycolysis over fatty acid oxidation, which is considered to be disadvantageous for
endurance exercise (46).

In order to evaluate the impact of a decreased endurance capacity on voluntary locomotion, total
night-time activity was measured and revealed no significant difference between Mstn” and Mstn**
mice, although we observed a trend towards lower total motor activity in myostatin deficiency
(1,792+279 counts /12 hours and 2,333 +255 counts /12 hours respectively, p=0.16). However, upon
a metabolic challenge consisting of food deprivation, Mstn”" mice failed to increase their motor activ-

ity as compared to the marked increase seen in Mstn*™* mice (Figure 1G), which further demonstrates

that myostatin deficiency impairs motor activity.
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Profound fatigability of myostatin deficient skeletal muscle

In order to assess the respective part of skeletal muscle fatigability on the decreased endurance ca-
pacity observed in myostatin deficient mice, we next determined how muscle force was maintained
upon repetitive stimulation. Soleus muscle from Mstn”" mice fatigued far more rapidly following re-
petitive stimulation (t;o% po) = 72 ) as compared to Mstn™* soleus (tos oy = 100 s; p<0.001), while
heterozygous Mstn"" muscle had an intermediate phenotype (Figure 2A). Remarkably, myostatin
deficient muscle, despite being about twice as strong at the beginning of the experiment (389+11 vs
233+5 mN for soleus absolute maximal tetanic force PO, as compared to Mstn*'* mice, p<0.001), fa-

+/+

tigued so rapidly that absolute maximal force dropped to Mstn™" levels after 3 min of repetitive te-

tanic stimulation (Figure 2B). This rapid force decline caused the specific force of Mstn” muscles to
decrease from 91% at the start to 59% at the end of the fatigue protocol in comparison to Mstn*'*
muscles (p=0.04 and p<0.001 respectively; Figure 2C). Interestingly, similar results were found for the
fast glycolytic extensor digitorum longus (EDL, -21% concerning the fatigue index in Mstn” vs Mstn™*)
muscle as well as for the entire posterior lower leg compartment (fatigue index was decreased by
48% in Mstn”" vs Mstn™*), for which measurements were performed in situ to maintain blood perfu-

sion during the stimulation protocol (data not shown).
Increased glycolysis and decreased mitochondrial respiration rates in myostatin deficiency

To investigate whether increased muscle fatigability in the absence of myostatin resulted from in-
creased anaerobic glucose metabolism-induced muscle acidosis, we determined serum lactate levels
after exhaustive treadmill exercise. In Mstn”" mice, serum lactate was already elevated at resting
state and increased disproportionately to 12.1+1.1 mmol/l at 5 min post exercise as compared to
5.1+0.4 mmol/l in controls (p<0.001; Figure 2D). The elevated serum lactate in myostatin deficient
mice concurred with an increased enzymatic activity of enolase (Figure 2E), a key component of gly-
colysis. To determine whether lactate accumulation resulted from defective oxidative phosphoryla-
tion (OXPHOS), we investigated mitochondrial respiration rates in situ for OXPHOS complexes |, Il and
IV. Mstn”* muscles revealed higher respiration rates for the predominantly oxidative soleus muscle
as compared with the predominantly glycolytic EDL muscle (Figure 2G). Remarkably, the absence of

** EDL muscles, and

myostatin decreased OXPHOS rates of the soleus muscle to the level of Mstn
Mstn”" EDL further lost OXPHOS activity of up to 42% (Figure 2G). It is unlikely that such OXPHOS
reduction was merely due to mitochondrial depletion, because complex | (Cxl) activity remained un-
altered. The CxIl/Cxl and CxIV/CxI ratios decreased in myostatin deficient muscle, which might be an
indicator for qualitative changes in the assembly of the cytochrome c oxidase (complex IV) and of the
entirely nuclear encoded succinate dehydrogenase (complex Il), (Figure 2F). In fact, the biochemical

+/+

profile of mitochondria from Mstn”" soleus muscle resembled that of Mstn”* EDL mitochondria and
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suggested a shift of mitochondrial qualities from the "slow oxidative" to the "fast glycolytic" type.
This shift in metabolic activity was accompanied by a profound conversion of the contractile pheno-
type of Mstn” soleus muscle away from slow/oxidative myosin heavy chain type 1 (MHC-1) towards
fast/glycolytic MHC-2x/MHC-2b (Figures 3A-C). In line with these observations are the findings that
the K,,(ADP) in resting soleus muscle was much higher than that for EDL muscle (Figure 2H). K,,(ADP)
was decreased by addition of creatine, in both EDL and soleus muscle demonstrating the coupling
between mitochondrial creatine kinase and the adenine nucleotide translocase. Absence of myo-
statin lowered the K.,(ADP) of the soleus muscle towards the level of the fast glycolytic EDL muscle,

and the K.,(ADP) of Mstn”" EDL decreased even further (Figure 2H).
Decreased expression of PPAR transcription factors in myostatin deficient muscle

We next aimed to gain molecular insight explaining the metabolic dysregulation observed in myo-
statin deficiency. We hypothesized that myostatin might act in a signaling cascade upstream of PPAR
transcriptional regulators since inactivation of myostatin and inactivation of PPARB/6 (43) had both
resulted in a similar loss of oxidative phenotype. In wildtype mice, as expected, PPARB/S5, PPARa and
PPARy mRNA expression levels were 2-3 times higher in the predominantly oxidative soleus muscle
than in the predominantly glycolytic EDL muscle. As predicted, transcription of PPARs in the soleus

muscle of Mstn”" mice (Figure 3D) fell to about the level seen in Mstn"*

EDL muscle (Figure 3E), while
in EDL muscle of Mstn”" mice, levels of PPARs fell below the already low values found in Mstn™* EDL,
although this was statistically significant only for PPARa (Figure 3E). Together, these results suggest

that myostatin may promote high oxidative metabolism in skeletal muscle via PPAR signaling.
Myostatin blockade by AAV-propeptide in adult mice increases fatigability.

To determine the role of myostatin on energy dependent muscle function during adulthood, we
over-expressed myostatin propeptide using AAV as expression vectors. Injection of AAV2/8-
propeptide into the femoral artery led to robust transgene expression (Figure 4A) and slight increase
of the lower leg muscle weights (Figure 4B). Importantly, soleus muscle fatigued more rapidly after
propeptide treatment (Figure 4D), despite only minimal changes of absolute maximal and specific
force at the start of the fatigue protocol (Figure 4D) and an unaltered fiber-type composition (Figure
4C). Interestingly, expression of PPAR-8/6 and PCG1-a transcripts were reduced (Figure 4E), suggest-
ing changes in the regulation of oxidative metabolism independent of muscle fiber type composition.
Moreover, myostatin propeptide treatment diminished exercise capacity 6 months following system-
ic intravenous treatment with myostatin AAV2/8-propeptide (Figures 4F and 4G). Hence we were
able to show that myostatin blockade in adult wild-type mice caused a similar deficit in aerobic mus-
cle properties as shown for Mstn”" mice and that these effects were independent of muscle fiber

type constitution.
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DISCUSSION

Myostatin exerts a dual function on skeletal muscle as it limits its size and promotes oxidative prop-
erties. We here show that myostatin acts to economize muscle energy expenditure, because smaller
muscle requires less oxygen during exercise. The higher OXPHOS activity and lower respiratory ex-
change ratio point towards increased fatty acid consumption as a preferred fuel in the presence of
myostatin and suggests higher energy efficiency as compared with the energetically less efficient
glycolysis in states of myostatin deficiency. The emerging property of myostatin to save fuel com-
bined with a simultaneous increase in running endurance and maximal running velocity might explain
the high conservation of myostatin during evolution and the rare occurrence of myostatin mutations.
The comparison of muscle physiology between hypermuscular myostatin knockout and wildtype
mice sheds light on the fact that myostatin deficient muscle confers little functional advantage over
wildtype muscle due to its rapid fatigability. We have demonstrated that the fatigability and dimin-
ished capacity for forced and voluntary motor activities seen in Mstn”" described by us and others
(18, 29, 39, 42) goes in parallel with a reduction of muscle OXPHOS activities. Interestingly, recent in
vivo investigations using *'P MRS supports our findings as the relative contribution of oxidative ATP
production to total ATP turnover was reduced following repeated isometric contractions of Mstn”"
muscles, whereas ATP cost of contraction was increased (15). Thus, muscle strength due to myostatin
deficiency comes at the cost of exercise intolerance, which is often seen in patients with mitochon-
drial disorders such as MELAS or MERRF syndrome (24). Interestingly, muscle cramps are frequently
observed in whippet dogs with homozygous Mstn mutations (37). Moreover, “double muscle cattle”,
several breeds of which have been identified to carry Mstn mutations (17, 30), are prone to exercise

induced lactic acidosis and severe rhabdomyolysis (20, 21).

However, a number of questions result from our work. We ask, whether the observed decrease in
oxidative metabolism and energy dependent muscle function is an indirect effect and a consequence
of the profound congenital fiber type changes that is typically found in constitutive absence of myo-
statin. We therefore blocked myostatin in adult wildtype mice using myostatin propeptide, which did
not affect fiber type composition, and this is in agreement with previous studies following blockade
of myostatin or its activin |IB receptor (ActRIIB) signaling (3, 11, 12, 36). Importantly, treatment with
soluble ActRIIB-Fc to block myostatin and homologues signaling factors caused a molecular signature
away from oxidative metabolism (41). Supporting the hypothesis that myostatin regulates oxidative
metabolism independently of muscle fiber composition, we here found that treatment with myo-

statin propeptide caused muscle fatigability and decreased aerobic exercise capacity.

We show that myostatin deficiency impacts on expression of PPARa/8/y transcription factors, which

control metabolic properties but not muscle mass (43, 45). This indicates that myostatin may control
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the muscle oxidative phenotype notably via PPAR activity. Indeed, downstream targets of PPAR-8
such as PGC1-a and Cox4 were down-regulated in Mstn”" mice (26). Furthermore, knockout of PPAR-
8, similar to Mstn” mice, reduced oxidative properties of skeletal muscle (43). Importantly, we here
show, that myostatin blockade in adult mice following overexpression of myostatin propeptide also
reduced expression of PPAR-6 and PGCI1-a, supporting the hypothesis that myostatin directly regu-
lates oxidative metabolism. However, the exact molecular mechanism remains to be elucidated as

yet little is known about direct molecular targets of myostatin signaling.

Interestingly, distinct but complementary effects on the metabolic profile of obese insulin-resistant
mice occur when PPAR-8 and myostatin are activated and inhibited, respectively (7). Moreover, work
on myostatin-mediated effects through AMPK (23, 44, 48) raise a number of questions concerning
mediators and signaling pathways implicated on muscular metabolic effects of myostatin. It would be
of interest to substantiate these findings by an analysis of muscle microRNA network as this was re-

cently shown to control metabolism via action on nuclear receptors such as PPARs (14).

A further question concerns the problem whether muscle hypertrophy following lack of myostatin
entails changes in oxidative muscle metabolism. In fact, we previously have shown that long-term
exercise improved contractile and metabolic features of Mstn” mice, however, these improvements
came at the expense of muscle hypertrophy as muscles lost in size (28). These results suggest that
the regulation of muscle size and metabolic phenotype by myostatin is linked, however, it remains to

be determined whether the regulation of both processes can be dissociated from each other.

Can we generalize the conclusion of our work that lack or blockade of myostatin always negatively
affects aerobic muscle function? It is important to note that previous work demonstrated a beneficial
effect of myostatin blockade during ageing (38). It is quite likely that protection from muscle atrophy,
often caused by pathologically up-regulated myostatin, such as during sarcopenia, cardiac and tumor
cachexia, and the resulting protection from functional and metabolic decline that mediates myo-
statin blockade by far outweighs the negative effect of such blockade on muscle metabolism (19, 27,
49). Similarly, myostatin blockade improved running performance in obese and insulin resistant
(ob/ob) mice (7), again, benefits on insulin signaling and glucose metabolism in these mice may large-
ly outweigh potential negative effects on muscle oxidative metabolism, especially if combined with a
PPAR-8 agonist. It should be noted that treatment of adult mice under high fat diet with soluble
ActRIIB did not alter fat mass and glucose metabolism (33), whereas treatment of obese and insulin
resistant mice (ob/ob) with anti-myostatin antibodies improved glucose homeostasis and glucose
tolerance (7). In fact, the metabolic changes following myostatin blockade could be beneficial for
patients with insulin resistance, and recently it was shown that AAV-propeptide overexpression me-

diated higher glucose uptake in skeletal muscle, which is likely mediated by an up-regulation of
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membrane glucose transporters (12). Thus, further work is required to define under which circum-

stances myostatin blockade could exert beneficial effects to combat insulin resistance and over-

weight.

In conclusion, our results suggest that myostatin optimizes oxidative metabolism of skeletal muscle
thereby decreasing muscle fatigability and ameliorating endurance exercise properties. These fun-
damental functions of myostatin should be taken into account when developing therapies based on
myostatin blockade. Further investigations are required to answer the question whether emerging
therapies based on PPAR agonists might be able to prevent adverse effects of myostatin blockade on

the oxidative metabolism and exercise tolerance.
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Figure 1: Global motor activity and energy expenditure of adult Mstn”, Mstn*", and Mstn** mice. (A)
Maximal oxygen uptake (VO,na) Normalized to body weight. (B) Peak running velocity reached after
sequential increase of treadmill speed (vPeak). (C) Whole body absolute maximal oxygen consump-
tion. (D) Energetic cost of running measured as oxygen consumption per distance run at 13 m/min
running speed. (E) The plot depicts the proportional relationship between distance run (y-axis) and
time to exhaustion (x-axis) at different velocities. The regression lines together with regression equa-
tions indicate the critical speed. (F) Respiratory Exchange Ratio (RER) at rest and at vPeak. (G) Effects
of 24 h food restriction (dashed line) or free feeding (plain line) on total activity (beambreaks/40
min). Values are shown as means+SEM. Number (n) of mice examined: n=6 Mstn*"; n>8 Mstn”" and
Mstn*/*.
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Figure 2: Effect of myostatin deficiency on muscle force and metabolic properties. (A-C) Studies of

muscle fatigue and force in the soleus muscles from 4-months-old female Mstn*’*, Mstn*" and Mstn”

mice. (A) Fatigue index of the soleus muscles given as the time [s] during which the force had de-

clined by 30% (T(so%p0;). (B) Force recordings during the fatigue protocol over 180 s. (C) Specific force
at the beginning and at the end of the fatigue protocol. (D-H) Metabolic measurements before and
after exercise. (D) Serum lactate levels at rest and 5 min after exhaustive running exercise. (E) Eno-

lase enzymatic activity of the soleus muscle. (F) Ratios of respiration rates of mitochondrial complex-
es of soleus and EDL muscles. (G) Mitochondrial respiration rates for complex |, 11 and IV of soleus and
EDL muscles. (H) Km for ADP and ADP+creatine of soleus and EDL muscles. Values are shown as

meanstSEM. Number (n) of muscles analysed: n>6 for each genotype.
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Figure 3: Effect of myostatin deficiency on myofiber type composition (A-C) and expression of PPAR

transcription factors (D-E). (A) Images of fiber type composition of soleus muscle from Mstn”" mice
and Mstn** mice. Immunohistochemistry was performed to depict MHC-1 fibers (green), MHC-2a
fibers (purple), MHC-1/2a hybrid fibers (orange), non-stained MHC2x or MHC2b fibers (black) and
Laminin (blue). (B) Relative fiber type distribution from entire transverse sections of soleus muscle

following immunostaining described above. (C) SDS-page electrophoresis of MHC isoforms shows an
additional band of MHC-2b expression in Mstn”" mice. (D-E) PPARa, 8/6 and y mRNA relative copy
number in the soleus muscle (D) and EDL muscle (E) from Mstn*"* mice and Mstn”" mice expressed

per 10° 18S rRNA copies. Values are shown as means + SEM. Number (n) of muscles analysed: n25 for

each genotype.
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Figure 4: Muscular and systemic effects of AAV-propeptide-mediated adult myostatin blockade. (A-E)
Functional, morphometric and metabolic analysis of the hindlimb muscles one month after injection
of AAV2/8-myostatin-propeptide or PBS into femoral arteries of 2-months-old C57BL/6J mice. (A) RT-
PCR depicting exogenous myostatin-propeptide expression only after AAV2/8 transfection (lane 1:
molecular weight marker; lanes 2-6: individual muscles). (B) Wet weights for soleus, extensor digi-
torum longus (EDL), plantaris and tibialis anterior (TA) muscles. (C) Soleus relative myofiber type dis-
tribution. (D) Fatigue index (left) and specific tetanic force (right) of the soleus muscle at the begin-
ning and at the end of the fatigue protocol. (E) PPAR-8/5 and PGC1-a mRNA relative copy number in
the TA muscle. (F-G) Exercise capacity of C57BL/6J mice treated systemically (i.v) with AAV2/8-
myostatin-propeptide or PBS. (F) Effect of AAV2/8-myostatin-propeptide on critical speed before and
6 months after systemic application. (G) The plot depicts the proportional relationship between dis-
tance run (y-axis) and time to exhaustion (x-axis) at different velocities. The slope of the regression

line indicates the Critical Speed. Values are shown as meanstSEM. Number (n) of muscles or mice
examined: n=4-6.
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Methods

Animals

Mstn+/+, Mstn*" and Mstn”" mice, on a C57BL/6J background (31), were bred using a heterozygous
mating system in the animal facility of CERFE (Evry, France) and kept according to institutional guide-
lines. Investigations on mice (from 2 to 6 months old) were carried out under the laboratory and
animal facility licenses A75-13-11 and A91-228-107. Partly, C57BL/6J control mice (Mstn+/+) were
purchased from Charles River (France). Body mass composition (lean tissue mass, fat mass, free wa-
ter and total water content) was analyzed using an Echo Medical systems’ EchoMRI (Whole Body

Composition Analyzers, EchoMRI, Houston, USA).
Evaluation of exercise performance
[A] Evaluation of the Critical Speed

The Critical Speed (CSp) defines the proportional relationship between distance run and time to ex-
haustion at different velocities. Mice were exercised on a 10.6 x 30-cm double-lane treadmill (LE
8709, Bioseb, Chaville, France) as published (8). The protocol consisted of four runs at various speeds
(between 20 and 80 cm.s™ according to individual motor capacity, one run per day) leading to ex-
haustion between 3 and 45 min. CSp is based on the hyperbolic relationship between speed and time
to fatigue during separate bouts of exhaustive runs performed at different speeds. Therefore, CSp
was calculated from the slope (a) of the regression line, plotting the distance (y) versus the time to
exhaustion (x) from the four runs, according to the equation y = ax + b (b being the anaerobic dis-

tance capacity).
[B] Blood Ilactate assessment during exhaustive exercise

Lactate concentration was determined in blood samples (5 pl) collected from the tip of the tail using
a Lactate pro LT device (Arkray Inc, Kyoto, Japan) at the time points 0 and 5 min after treadmill run-
ning-induced exhaustion. Exhaustion was defined as the time point at which mice could not run an-
ymore and stayed on the grid despite repeated electric shocks. The running test started at the lowest
speed of 5 cm.s™ to allow a warm-up and was increased by 1 cm.s™ every 30 seconds until exhaus-

tion.
[C] Measurement of maximal oxygen consumption

An index of endurance exercise capacity is the maximal oxygen uptake per body weight (VO,max).
Initially, oxygen uptake is proportional to the running speed, and this relationship peaks at a plateau,
the so-called VO,max. Oxygen consumption was measured by means of a rapid-flow, open-circuit

indirect calorimeter fitted with a one-lane motorised treadmill (Columbus Instrument, Columbus,
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OH) as published (25). The single-lane test treadmill was placed in a metabolic chamber. Ambient air
was flushed through the chamber at a rate of 0.66 .min™, and gas samples were extracted to meas-
ure oxygen content (Oxymax, Columbus instrument, Columbus, OH). Gas samples were dried, meas-
ured every 15 s and oxygen consumption (VO,) was calculated using Oxymax software. The gas ana-
lyzers were calibrated with standardized gas mixtures before every test session (Air Products, Paris,
France), as recommended by the manufacturer. The test described below provided a measure of
VO,max, defined as the highest oxygen consumption attained during the testing protocol. The veloci-
ty attained by the mouse at this VO,max was then considered as the vWO,max. The maximal velocity

(vPeak) was measured at the end of the test.
[D] Incremental test load

Mice were treadmill exercised on with adjustable belt speed (0-99.9 m.min™) and electric shock bars
(0-2 mA) at the rear of the belt to provide a stimulus encouraging each mouse to run. Over a one
week period, the mice were familiarised with the treadmill through the completion of four 10 min
running sessions from 0 to 9 m.min™. The mice subsequently performed an incremental exercise test,
without slope. The exercise intensity was increased by 3 m.min (starting from 10 m.min) every 3

min, and the exercise continued until exhaustion.
Measurement of voluntary locomotion

Total voluntary locomotor activities were determined in individual cages with bedding, food and wa-
ter (Labmaster, TSE Systems GmbH). Animals were acclimated in individual cages for 48 hours before
experimental measurements. Each cage was embedded in a frame with an infrared light beam-based
activity monitoring system, allowing measurement of total locomotion. Data collection was recorded
every 40 minutes during the whole experiments and express by number of beam break. Mice had
access to food and water ad libitum except for the 12 hours fasting in order to stimulate motor activi-

ty of mice.
Measurement of contractile properties

The contractile properties of extensor digitorum longus (EDL) and soleus muscles were studied in
vitro according to previously published protocols (2). Muscles were soaked in an oxygenated Tyrode
solution (95% 0O, and 5% CO,) containing 58.5 mM NaCl, 24 mM NaHCOs;, 5.4 mM KCl, 1.2 mM
KH,PQ,, 1.8 mM CacCl,, 1 mM MgSO, and 10 mM glucose (pH7.4) and maintained at a temperature of
22°C. One muscle tendon was attached to a lever arm of a servomotor system (300B, Dual-Mode
Lever, Aurora). After equilibration (30 min), field electrical stimulation was delivered through elec-
trodes running parallel to the muscle. Pulses of 1 ms were generated by a high power stimulator
(701B, Aurora). Absolute maximal isometric tetanic force (PO) was measured during tetanic contrac-

tions (frequency of 50-100 Hz, train of stimulation of 1,500 ms for soleus and 750 ms for EDL). The
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muscle length was adjusted to an optimum (LO) that produced PO. Specific maximal isometric force
(sP0) was calculated by dividing the force by the estimated cross-sectional area (CSA) of the muscle.
Assuming muscles have a cylindrical shape and a density of 1.06 mg.mm>, the CSA corresponds to
the volume of the muscle divided by its fiber length (Lf). The Lf to LO ratio of 0.70 (soleus) or 0.45
(EDL) was used to calculate Lf. Maximal power (Pmax) was determined from force-velocity data that
were obtained by eliciting contractions (train of 1,000 ms, 150 Hz) at 3-5 different afterloads (10-40%
P0). Specific Pmax (sPmax) was calculated by dividing Pmax by muscle weight. Fatigue resistance was
then determined after a 5 min rest period. The muscles were stimulated at 75 Hz during 500 ms,
every two second, for 3 min. The time taken for initial force to fall by 50% (EDL) or 30% (soleus) was
then measured. All data were recorded and analyzed on a microcomputer, using the PowerlLab sys-

tem (4SP, AD Instruments) and software (Chart 4, ADInstruments).

The isometric contractile properties of gastrocnemius (+ soleus) were studied in situ as previously
described (22). Mice were anesthetized (pentobarbital sodium, 50 mg/kg). Supplemental doses were
given as required to maintain deep anesthesia throughout the experiments. The foot was fixed with
clamp and the knee was immobilized using stainless steel pins. The distal tendon of the plantaris
muscle was cut. The Achilles tendon was attached to an isometric force transducer (Harvard). Great
care was taken to ensure that the blood and nerve supply remained intact during surgery. The sciatic
nerves were severed proximally and stimulated distally by a bipolar silver electrode using supra-
maximal square wave pulses of 0.1 ms duration. All isometric measurements were made at an initial
muscle length of LO. Force productions in response to tetanic stimulations (PO) were successively
recorded (pulse frequency from 50 to 150 Hz, train duration of 500 ms), at least 1 min was allowed
between each contractions. The muscle mass (m) was measured to calculate sPO. Fatigue resistance
was then determined after a 5 min rest period. The muscle was stimulated during 500 ms at 100 Hz,
every 2 s, for 3 min. The duration corresponding to a force decreased by 50% was noted. After con-
tractile measurements, the animals were killed with an overdose of pentobarbitone. Muscles were
then weighed, frozen in liquid nitrogen or in isopentane pre-cooled in liquid nitrogen and stored at -

80°C until histology or biochemical analyses.
Mitochondrial respiration and cytosolic enzyme measurements
[A] Measurement of OXPHOS activity

The mitochondrial respiration was studied in situ in saponin-skinned fibers. Briefly, fibers were sepa-
rated under a binocular microscope in solution S at 4°C (see below) and permeabilized in solution S
with 50 pg/ml of saponin for 30 min. After being placed 10 min in solution R (see below) to wash out
adenine nucleotides and creatine phosphate, skinned separated fibers were transferred in a 3 ml

water-jacketed oxygraphic cell (Strathkelvin Instruments, Glasgow, UK) equipped with a Clark elec-
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trode, as previously described (5), under continuous stirring. Solutions R and S contained the follow-
ing: 2.77 mM CaK,EGTA, 7.23 mM K,EGTA (100 nM free Ca**), 1 mM free Mg**, 20 mM taurine, 0.5
mM DTT, 50 mM potassium-methane sulfonate (160 mM ionic strength), and 20 mM imidazole (pH
7.1). Solution S also contained 5.7 mM Na,ATP, 15 mM creatine-phosphate, while solution R con-
tained 5 mM glutamate, 2 mM malate, 3 mM phosphate, and 2 mg/ml FA free bovine serum. After
the experiments, fibers were harvested and dried, and respiration rates were expressed as mi-
cromoles of O, per minute per gram dry weight. Solution R~ was similar to solution R without sub-

strates and was used to determined maximal VO, rates for different substrates
[B] Measurement of the maximal muscular oxidative capacities

After the determination of basal respiration rate V,, the maximal fiber respiration rate was measured
at 22°C in the presence of saturating concentration of ADP (2 mM), as phosphate acceptor and glu-
tamate-malate as mitochondrial substrates (Vgm). The acceptor control ratio was Vgu/Vo and repre-

sented the degree of coupling between oxidation and phosphorylation.
[C] Measurement of the respiratory chain complexes

When Vg was recorded, electron flow goes through complexes |, 1I, Ill, and IV. Then 4 min after this
Vem measurement, the complex | was blocked with amytal (2 mM), and then complex Il was stimulat-
ed with succinate (25 mM). In these conditions, mitochondrial respiration was effected by complexes
I, Il, and IV (Vs). After that, N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD, 0.5
mM) and ascorbate (0.5 mM) were added as an artificial electron donor to cytochrome-c. In these
conditions, cytochrome-c oxidase (complex 1V) was studied as an isolated step of respiratory chain

(Vrmep). The ratios Vs/Vem and Viweo/Vewm allow exploration of complexes I, Il, and V.
[D] Measurement of cytosolic enzyme

Enolase activity was determined in extracts from frozen cryostat sections using a coupled enzyme

assay (35).
Immunostaining and SDS-Page

For MHC-immunohistochemistry, primary antibodies were: MHC-1 (hybridoma#BA-D5, Deutsche
Sammlung von Mikroorganismen und Zellkulturen DSMZ), MHC-2a (hybridoma#SC-71, DSMZ), MHC-
2x (hybridoma#6H1, Developmental Studies Hybridoma Bank) and MHC-2b (hybridoma#BF-F3,
DSMZ). Briefly, frozen unfixed 10 pm sections were blocked 1 h in PBS plus 1% BSA, 1% sheep serum,
0.01% Triton X-100 and 0.001% sodium azide. Sections were then incubated overnight with primary
antibodies against laminin (Dako) and MHC isoforms. After washes in PBS, sections were incubated 1
h with secondary antibodies. Slides were finally mounted in Fluoromont (Southern Biotech). Mor-

phometric analyses were made on whole soleus muscles. Images were captured using a digital cam-
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era (Hamamatsu ORCA-AG) attached to a motorized fluorescence microscope (Zeiss Axiolmager.Z1),

and morphometric analyses were made using the software MetaMorph 7.5 (Molecular Devices).

For MHC gel electrophoresis, the muscles were extracted on ice for 60 minutes in 4 volumes of ex-
tracting buffer (pH 6.5) as previously described (10). Following centrifugation, the supernatants were
diluted 1:1 (v/v) with glycerol and stored at -20 °C. MHC isoforms (MHC-1, MHC-2a, MHC-2x, MHC-
2b) were separated on 8% polyacrylamide gels which were made in the Bio-Rad mini-Protean Il Dual
slab cell system as described previously (1). The gels were run for 31 hours at 72 V (constant voltage)
at 4°C. Following migration, the gels were silver stained. The positions of the different MHC bands
were confirmed by Western blotting using antibodies directed against different MHC isoforms. The

gels were scanned using a video acquisition system.
Production and injection of AAV-propeptide mediated adult myostatin blockade

The myostatin propeptide construct, prepared by PCR amplification of C57BI6 cDNA, using the pri-
mers 5'-CCG CTC GAG ATG ATG CAA AAA CTG CAA ATG-3' and 5'-CCG GGA TCC CTA TTA GTC TCT CCG
GGA CCT CTT-3', was introduced into an AAV-2-based vector between the 2 inverted terminal re-
peats and under the control of the cytomegaly virus promoter using the Xhol and BamH] sites. The
AAV myostatin propeptide was produced in human embryonic kidney 293 cells by the triple-
transfection method using the calcium phosphate precipitation technique with both the pAAV2 pro-
peptide plasmid, the pXX6 plasmid coding for the adenoviral sequences essential for AAV production,
and the pRepCAp plasmid coding for AAV8 capsid. The virus was then purified by 2 cycles of cesium
chloride gradient centrifugation and concentrated by dialysis. The final viral preparations were kept
in PBS solution at -80°C. The particle titer (number of viral genomes) was determined by a quantita-

tive PCR.

Detailed procedure for intra-arterial injection was previously described (16). Briefly, anesthetized 2
month old C57BL/6J wild-type male mice underwent femoral artery and vein isolation of right
hindlimb. After clamping the femoral vein and two collaterals, a catheter was introduced in the fem-
oral artery and the AAV preparation (2.5 x 10** vg per injection) was injected in a volume of 1 ml per
20g of body weight at a rate of 100 pl.s™. Then, left hind limb was processed in the same manner and
injected with a same volume of PBS. For systemic delivery, 1 x 10" vg of AAV2/8-myostatin propep-

tide was injected into the retro-orbital sinus or with PBS for controls.
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RT-qPCR

Total RNA was extracted from frozen muscle after pulverization in liquid nitrogen and from cultured
C,Cy, cell pellets with the TRIzol® (Invitrogen) extraction protocol. 2.25 ug total RNA were reversely
transcribed using the Thermoscript RT PCR System (Invitrogen) with random hexamers in 60 pul reac-
tion volume of which we used 4 pl for each subsequent gPCR-reaction and 2 pl of a 1:10 dilution for
the 18S reference gene. We used the following oligonucleotide primers for gPCR: 18S rRNA (refer-
ence gene): (F) 5’-CAT TCG AAC GTC TGC CCT ATC-3’, (R) 5’-CTC CCT CTC CGG AAT CGA AC-3’; Ppar-a:
(F) 5’-GGG CAA GAG AAT CCA CGA AG-3’, (R) 5’-CGT CTT CTC GGC CAT ACA CA-3’; Ppar-B/6: (F) 5'-
AGC CAC AAC GCA CCC TTT-3’, (R) 5-CGG TAG AAC ACG TGC ACA CT-3’; Ppar-y: (F) 5’-CGA GTC TGT
GGG GAT AAA GC-3’, (R) 5'-GGA TCC GGC AGT TAA GAT CA-3’; PGC1-a : (F) 5'-GAA AGG GCC AAA CAG
AGA GA-3’, (R) 5’-GTA AAT CAC ACG GCG CTC TT-3’. The gPCR for each sample was run with the SYBR
Green® protocol (Applied Biosystems) in triplicate on an ABI PRISM 7700 sequence detection system
(Applied Biosystems) with a hotstart Taq polymerase. A 10 min denaturation step at 94°C was fol-
lowed by 45 cycles of denaturation at 94°C for 10 s and annealing/extension at 60°C for 30 s. Before
sample analysis we had determined for each gene the PCR efficiencies with a standard dilution series
(10°-107 copies/ul), which subsequently enabled us to calculate the copy numbers from the C, values,

using the AAC; method.
Statistical analysis

Data were analysed using either one-way ANOVA, followed by Tukey post-hoc test, or
paired/unpaired Student's t tests. Values are presented as means + SEM. The significance level was

set at p<0.05.

135



RESULTS

ACKNOWLEDGEMENTS

We would like to acknowledge Stéphanie Rimbaud for helping with the mitochondrial respiration
protocol and the Functional & Physiological Exploration Platform (FPE, Université Paris Diderot, Sor-
bonne, Paris Cité, BFA, EAC 4413 CNRS, F-75205 Paris, France).

GRANTS

This work was supported by the Association Francgaise contre les Myopathies towards HA, AF, AV, LG,
and EM, Association Monegasque contre les Myopathies and the Parents Project France towards HA
and CH, Aktion Benni & Co towards HA, the Deutsche Forschungsgemeinschaft and the Université
Franco-Allemand towards KR, HA and MS (as part of the MyoGrad International Graduate School for
Myology DRK 1631/1 and CDFA-06-11), and NeuroCure Exc 257 to MS.

DISCLOSURE

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHORS’ CONTRIBUTIONS

EM, KR, LMH, RD, CH, OA, LA, SL, AV, AF and HA carried out the experiments. VB assisted in the
measurement of maximal oxygen uptake during exercise. SL assisted in the voluntary locomotor ac-
tivity experiments. RVC assisted in the mitochondrial respiration experiments. EM, MS and HA car-
ried out all the analyses and the figures. HA designed the study and drafted the manuscript with the
help of EM, KP, LG and MS. All authors read and approved the final manuscript.

136



RESULTS

LITERATURE

1. Agbulut O, Noirez P, Beaumont F, and Butler-Browne G. Myosin heavy chain isoforms in
postnatal muscle development of mice. Biol Cell 95: 399-406, 2003.

2. Agbulut O, Vignaud A, Hourde C, Mouisel E, Fougerousse F, Butler-Browne GS, and Ferry A.
Slow myosin heavy chain expression in the absence of muscle activity. Am J Physiol Cell Physiol 296:
C205-214, 2009.

3. Akpan |, Goncalves MD, Dhir R, Yin X, Pistilli EE, Bogdanovich S, Khurana TS, Ucran J, Lachey
J, and Ahima RS. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity.
Int J Obes 33: 1265-1273, 2009.

4, Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F,
Vrbova G, Partridge T, Zammit P, Bunger L, and Patel K. Lack of myostatin results in excessive
muscle growth but impaired force generation. Proc Nat/ Acad Sci U S A 104: 1835-1840, 2007.

5. Athea Y, Viollet B, Mateo P, Rousseau D, Novotova M, Garnier A, Vaulont S, Wilding JR,
Grynberg A, Veksler V, Hoerter J, and Ventura-Clapier R. AMP-activated protein kinase alpha2
deficiency affects cardiac cardiolipin homeostasis and mitochondrial function. Diabetes 56: 786-794,
2007.

6. Baligand C, Gilson H, Menard JC, Schakman O, Wary C, Thissen JP, and Carlier PG.
Functional assessment of skeletal muscle in intact mice lacking myostatin by concurrent NMR
imaging and spectroscopy. Gene Ther 17: 328-337, 2010.

7. Bernardo BL, Wachtmann TS, Cosgrove PG, Kuhn M, Opsahl AC, Judkins KM, Freeman TB,
Hadcock JR, and LeBrasseur NK. Postnatal PPARdelta activation and myostatin inhibition exert
distinct yet complimentary effects on the metabolic profile of obese insulin-resistant mice. PLoS One
5:e11307, 2010.

8. Billat VL, Mouisel E, Roblot N, and Melki J. Inter- and intrastrain variation in mouse critical
running speed. J Appl Physiol 98: 1258-1263, 2005.

9. Brown ML, Bonomi L, Ungerleider N, Zina J, Kimura F, Mukherjee A, Sidis Y, and Schneyer
A. Follistatin and follistatin like-3 differentially regulate adiposity and glucose homeostasis. Obesity
19: 1940-1949, 2011.

10. Butler-Browne GS, and Whalen RG. Myosin isozyme transitions occurring during the
postnatal development of the rat soleus muscle. Dev Biol 102: 324-334, 1984.

11. Cadena SM, Tomkinson KN, Monnell TE, Spaits MS, Kumar R, Underwood KW, Pearsall RS,
and Lachey JL. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth
independent of fiber type. J Appl Physiol 109: 635-642, 2010.

12. Cleasby ME, Jarmin S, Eilers W, Elashry M, Andersen DK, Dickson G, and Foster K. Local
Overexpression of the Myostatin Propeptide Increases Glucose Transporter Expression and Enhances
Skeletal Muscle Glucose Disposal. Am J Physiol Endocrinol Metab, 2014.



RESULTS

13. Fournier B, Murray B, Gutzwiller S, Marcaletti S, Marcellin D, Bergling S, Brachat S, Persohn
E, Pierrel E, Bombard F, Hatakeyama S, Trendelenburg AU, Morvan F, Richardson B, Glass DJ, Lach-
Trifilieff E, and Feige JN. Blockade of the activin receptor Ilb activates functional brown adipogenesis
and thermogenesis by inducing mitochondrial oxidative metabolism. Mol Cell Biol 32: 2871-2879,
2012.

14, Gan Z, Rumsey J, Hazen BC, Lai L, Leone TC, Vega RB, Xie H, Conley KE, Auwerx J, Smith SR,
Olson EN, Kralli A, and Kelly DP. Nuclear receptor/microRNA circuitry links muscle fiber type to
energy metabolism. J Clin Invest 123: 2564-2575, 2013.

15. Giannesini B, Vilmen C, Amthor H, Bernard M, and Bendahan D. Lack of myostatin impairs
mechanical performance and ATP cost of contraction in exercising mouse gastrocnemius muscle in
vivo. Am J Physiol Endocrinol Metab 305: E33-40, 2013.

16. Gonin P, Arandel A, Van Wittenberghe L, Marais T, Perez N, and Danos O. Femoralintra-
arterial injection: a tool to deliver and assess recombinant AAV constructs in rodents whole hind
limb. J Gene Med 7: 782-791, 2005.

17. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S,
Menissier F, Massabanda J, Fries R, Hanset R, and Georges M. A deletion in the bovine myostatin
gene causes the double-muscled phenotype in cattle. Nat Genet 17: 71-74, 1997.

18. Hennebry A, Berry C, Siriett V, O'Callaghan P, Chau L, Watson T, Sharma M, and Kambadur
R. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene
expression. Am J Physiol Cell Physiol 296: C525-534, 2009.

109. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, and Molkentin JD. Genetic
deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation
121:419-425, 2010.

20. Holmes JH, Ashmore CR, and Robinson DW. Effects of stress on cattle with hereditary
muscular hypertrophy. J Anim Sci 36: 684-694, 1973.

21. Holmes JH, Robinson DW, and Ashmore CR. Blood lactic acid and behaviour in cattle with
hereditary muscular hypertrophy. J Anim Sci 35: 1011-1013, 1972.

22. Hourde C, Vignaud A, Beurdy I, Martelly I, Keller A, and Ferry A. Sustained peripheral
arterial insufficiency durably impairs normal and regenerating skeletal muscle function. J Physiol Sci
56: 361-367, 2006.

23. Hulmi JJ, Oliveira BM, Silvennoinen M, Hoogaars WM, Ma H, Pierre P, Pasternack A,
Kainulainen H, and Ritvos O. Muscle protein synthesis, mMTORC1/MAPK/Hippo signaling, and capillary
density are altered by blocking of myostatin and activins. Am J Physiol Endocrinol Metab 304: E41-50,
2013.

24. Janssen AJ, Schuelke M, Smeitink JA, Trijbels FJ, Sengers RC, Lucke B, Wintjes LT, Morava E,
van Engelen BG, Smits BW, Hol FA, Siers MH, Ter Laak H, van der Knaap MS, Van Spronsen FJ,
Rodenburg RJ, and van den Heuvel LP. Muscle 3243A-->G mutation load and capacity of the
mitochondrial energy-generating system. Ann Neurol 63: 473-481, 2008.



RESULTS

25. Kemi OJ, Loennechen JP, Wisloff U, and Ellingsen O. Intensity-controlled treadmill running in
mice: cardiac and skeletal muscle hypertrophy. J Appl Physiol 93: 1301-1309, 2002.

26. Lipina C, Kendall H, McPherron AC, Taylor PM, and Hundal HS. Mechanisms involved in the
enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of
myostatin-deficient mice. FEBS Lett 584: 2403-2408, 2010.

27. Macdonald EM, Andres-Mateos E, Mejias R, Simmers JL, Mi R, Park JS, Ying S, Hoke A, Lee
SJ, and Cohn RD. Denervation atrophy is independent from Akt and mTOR activation and is not res-
cued by myostatin inhibition. Dis Model Mech 2014.

28. Matsakas A, Macharia R, Otto A, Elashry MI, Mouisel E, Romanello V, Sartori R, Amthor H,
Sandri M, Narkar V, and Patel K. Exercise training attenuates the hypermuscular phenotype and
restores skeletal muscle function in the myostatin null mouse. Exp Physiol 97: 125-140, 2012.

29. Matsakas A, Mouisel E, Amthor H, and Patel K. Myostatin knockout mice increase oxidative
muscle phenotype as an adaptive response to exercise. J Muscle Res Cell Motil 31: 111-125, 2010.

30. McPherron AC, and Lee SJ. Double muscling in cattle due to mutations in the myostatin
gene. Proc Natl Acad Sci U S A 94: 12457-12461, 1997.

31. McPherron AC, Lawler AM, and Lee SJ. Regulation of skeletal muscle mass in mice by a new
TGF-beta superfamily member. Nature 387: 83-90, 1997.

32. McPherron AC. Metabolic functions of myostatin and GDF11. Immunol Endocr Metab Agents
Med Chem 10: 217-231, 2010.

33. McPherron AC, Guo T, Wang Q, and Portas J. Soluble activin receptor type IIB treatment
does not cause fat loss in mice with diet-induced obesity. Diabetes Obes Metab 14: 279-282, 2012.

34. Mendias CL, Marcin JE, Calerdon DR, and Faulkner JA. Contractile properties of EDL and
soleus muscles of myostatin-deficient mice. J App/ Physiol 101: 898-905, 2006.

35. Merkulova T, Dehaupas M, Nevers MC, Creminon C, Alameddine H, and Keller A.
Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal
muscle. Eur J Biochem 267: 3735-3743, 2000.

36. Morine KJ, Bish LT, Selsby JT, Gazzara JA, Pendrak K, Sleeper MM, Barton ER, Lee SJ, and
Sweeney HL. Activin |IB receptor blockade attenuates dystrophic pathology in a mouse model of
Duchenne muscular dystrophy. Muscle Nerve 42: 722-730, 2010.

37. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, and Ostrander
EA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in
heterozygote dogs. PLoS Genet 3: €79, 2007.

38. Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ibebunjo C, and Lynch GS. Antibody-
directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal
muscle structure and function. FASEB J 24: 4433-4442, 2010.

39. Ploquin C, Chabi B, Fouret G, Vernus B, Feillet-Coudray C, Coudray C, Bonnieu A, and
Ramonatxo C. Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox

139



RESULTS

status, and impairs tolerance to chronic repetitive contractions in muscle. Am J Physiol Endocrinol
Metab 302: E1000-1008, 2012.

40. Qaisar R, Renaud G, Morine K, Barton ER, Sweeney HL, and Larsson L. Is functional
hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber
level? Faseb J 26: 1077-1085, 2012.

41. Rahimov F, King OD, Warsing LC, Powell RE, Emerson CP Jr, Kunkel LM, and Wagner KR.
Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor. Physiol
Genomics 43: 398-407, 2011.

42. Savage KJ, and McPherron AC. Endurance exercise training in myostatin null mice. Muscle
Nerve 42: 355-362, 2010.

43, Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, Tardivel A, Desvergne B, Wahli W,
Chambon P, and Metzger D. PGClalpha expression is controlled in skeletal muscles by PPARbeta,
whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4: 407-414,
2006.

44, Shan T, Liang X, Bi P, and Kuang S. Myostatin knockout drives browning of white adipose
tissue through activating the AMPK-PGCla-Fndc5 pathway in muscle. FASEB J 27:1981-1989, 2013.

45, Wagner KD, and Wagner N. Peroxisome proliferator-activated receptor beta/delta
(PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol
Ther 125: 423-435, 2010.

46. Weber JM. Metabolic fuels: regulating fluxes to select mix. J Exp Biol 214: 286-294, 2011.

47. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, Zerfas P, Zhigang D,
Wright EC, Stuelten C, Sun P, Lonning S, Skarulis M, Sumner AE, Finkel T, and Rane SG. Protection
from obesity and diabetes by blockade of TGF-B/Smad3 signaling. Cell Metab 14: 67-79, 2011.

48. Zhang C, McFarlane C, Lokireddy S, Bonala S, Ge X, Masuda S, Gluckman PD, Sharma M, and
Kambadur R. Myostatin-deficient mice exhibit reduced insulin resistance through activating the
AMP-activated protein kinase signalling pathway. Diabetologia 54: 1491-1501, 2011.

49, Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS,
Lacey DL, Goldberg AL, and Han HQ. Reversal of cancer cachexia and muscle wasting by ActRIIB
antagonism leads to prolonged survival. Cell 142: 531-543, 2010.

140



RESULTS

2. Part 2: The role of the myostatin blockade in combination with

gene therapy muscular dystrophy.

Project description: Duchenne muscular dystrophy is a severe neuromuscular disease char-
acterized by progressive degeneration of the skeletal muscle. One of the most promising ther-
apeutic strategies based on, RNA splice-modulation (so-called exon skipping) of the DMD
premessenger RNA. The adeno-associated virus AAV-U7 mediates exon skipping and re-
stores the dystrophin protein in mdx mice. The soluble activin receptor type IIB linked to the
Fc fragment (sActRIIB-Fc) is used to inhibit the myostatin/ActRIIB signaling pathway in
order to promote the skeletal muscle growth and function. We hypothesized that the combined
treatment with the AAV-U7 and the sActRIIB-Fc may synergistically improve the dystrophic
phenotype in the mdx mouse. We therefore investigated the effect of each treatment alone and

in combination on muscle strength and function.

Contribution to the project: This project was performed in collaboration with the laboratory
of Peter A.’t Hoen (Leiden University Medical Center in Netherlands). The study was mainly
conducted by a post-doctoral researcher from each laboratory (Etienne Mouisel and Willem
Hoogars). I contributed to this study and assisted during muscle forces measurements. I per-
formed the immunostaining and the Western blot to verify the restoration of the dystrophin
protein after the treatment with the AAV-U7. We found that the combination of the two strat-
egies maintains the benefit of each treatment, but did not show any synergistic effects on the

function of the mdx dystrophic skeletal muscle.
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GENERAL DISCUSSION

The inhibition of the myostatin/ActRIIB signaling pathway has many effects on a numbers of
muscle properties, such as physiological, contractile or oxidative properties. During my thesis,
I explored these effects in two mouse models, (i) the constitutive myostatin knockout mice
and (ii) through inhibition of the ActRIIB signaling pathway by treatment of adult mice with

the soluble activin receptor IIb.

My results, which I presented in the previous chapter, evoke a number of questions arise when
regarding the multiple effects of myostatin on the regulation of muscle mass, function and

metabolism.

1. Myostatin and muscle force

The constitutional absence of myostatin in the Mstn” mouse model produces an impressive
hypermuscular phenotype. However, this excessive muscle growth is to variable extent asso-
ciated with loss of specific force as reported by several publications ((Amthor, Macharia et al.
2007); (Mendias, Marcin et al. 2006)). Despite the fact that all these authors used exactly the
same myostatin knockout mouse model from the same original source (Se-Jin Lee, Johns
Hopkins University), force measurements differed considerably ranging from a diminished
total and specific force as observed by Matsakas et al. (Matsakas, Macharia et al. 2012), to an
increased absolute force with no or only little decreased specific force as observed by Schir-
wis et al. (Schirwis, Agbulut et al. 2013). The cause for these enormous differences in muscle

force production as observed by these different authors remains unresolved.
What could cause such differences in the muscle force?

One hypothesis addresses environmental factors, as the mice were bred in different animal
houses. Mice may behave differently under one breeding condition or another, and the results
of a study may also depend on the age of the animals and the timepoints of measurement. No-
tably, this concerns their voluntary motor behavior as this likely determines muscle physio-
logical properties. However, this was not controlled in all these different studies. Interesting-
ly, it has previously been shown that voluntary exercise capacity strongly varies between in-
dividual Msm™ mice (Matsakas, Mouisel et al. 2010), which further points to the fact that
muscle mass increase not consistently improves motor performance in each individual mouse.
The hypothesis that motor exercise influences muscle force was studied by Matsakas et al.
(Matsakas, Macharia et al. 2012). They showed that the diminished force in Mstn™” mice
could be improved by endurance exercise. In this study, mice were subjected to a swimming

exercise for 5 weeks, which improved their force production (Matsakas, Macharia et al.
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2012). However, the muscle became more oxidative and lost in weight and fiber size suggest-
ing that myostatin deficiency could be antagonized by exercise (Matsakas, Macharia et al.
2012). This also demonstrates that the muscle mass and muscle metabolism are related with

each other.

Regarding our knowledge on the role of myostatin on muscle function, we have to consider
that our studies in rodents were performed using inbred laboratory mouse lines, notably on the
C57BL6 background. I assume that voluntary motor activity is likely different between mice
in captivity and in real wildtype mice, as is the free access to food. In fact, we have little in-
formation about what would be the consequence of hypermuscularity, leanness (loss of white
body fat) and glycolytic phenotype in a real wildtype situation following loss of function of

myostatin.
Can an inbred mouse line really be considered being wildtype?

My opinion is no, and this for the simple reason that mice have adapted to life in captivity for
over 50 years, such as for the C57BL6 line. Such long-term inbreeding surely created a genet-
ic adaptation to the captive environment. Indeed, a mutation in the 7bcldl gene has been
identified in the SJL mice line (lean Swiss Jim Lambert) that endows protection against obesi-
ty even with a calorie-rich diet because this mutation increases the use of lipids in the skeletal
muscle (Chadt, Leicht et al. 2008). Thus, a mutation of the myostatin gene may be very dis-
advantageous in real wild life. This may be the reason that also in other specie (cattle, sheep
and dogs) spontaneous mutations are practically never found except in circumstances of selec-

tive breeding.

Having found that endurance exercise (swimming) ameliorated the force production of Mstn™
mice, we here asked for the effect of other forms of exercise on the hypertrophic myostatin
deficient muscle. In a yet unpublished work, we studied the effect of muscle overload, which
is considered as a type of resistance training. Surprisingly, we found that the maximal force in
Mstn” mice after overload was largely increased without further gain in muscle weight. This
lead to an enormous increase of the specific force (Figure 24). These results demonstrate the
high plasticity inherent to skeletal muscle, which allows a rapid adaption in response to phys-

iological stimuli.
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Figure24: Muscle force production after overload treatment

There is still an ongoing debate about the cellular and molecular mechanisms that specify
specific force, especially in the context of myostatin deficiency. I started to address this ques-
tion and performed a transcriptome analysis following overload of Mst”™ muscle. These re-
sults are not yet fully interpreted and verified, however, extracellular matrix adaption seems to
play an overwhelming role in the regulation of muscle specific force. Other groups discussed
a causative relation between nuclear domain and specific force production. It has been shown
that the hypertrophic phenotype in the absence of myostatin resulted from an increase in the
cytoplasmic volume without an increase in the number of myonuclei, thereby enlarging the
nuclear domain ((Amthor, Otto et al. 2009); (Qaisar, Renaud et al. 2012); (Wang and
McPherron 2012)). However, as we found (Figure 24) no difference in specific force between

non-overloaded wildtype and Mst” mice, we believe that other factors are responsible.
2. Myostatin and endurance capacity

We have demonstrated that larger muscles of Mstn” mice were associated with decreased

endurance capacity.
Why are myostatin knockout mice more fatigable?

In manuscript 2, Mstn” mice were analyzed in detail to determine their muscle function and
metabolic phenotype. We found that maximal oxygen consumption (VOxmax) Was increased as
compared to wildtype mice despite lower peak velocity. VOomax, if expressed per body
weight, however, was reduced suggesting less oxygen consumption per unit of muscle tissue.
On the other hand, oxygen consumption, the so-called “running economy”, was reduced,

showing that larger muscles of Mstn”” mice are energetically highly insufficient. In fact, the
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absence of myostatin leads to an increased energy cost of muscle contraction (Giannesini,

Vilmen et al. 2013).

In manuscript 1, we subjected wildtype and mdx mice to a treadmill exercise test and found
that after treatment with sActRIIB-Fc, mice were no longer able to run the same distance as
control mice. We observed a strong fatigability and pronounced exercise intolerance, notably
in mdx mice. This suggests a relation between muscle mass and endurance capacity. Interest-
ingly, cattle deficient in myostatin suffer from severe rhabdomyolysis and high lactate levels

following exercise (Holmes, Ashmore et al. 1973).
Does muscle hypertrophy decrease the ability for endurance exercise?

It is common knowledge that the type of competitive sport is associated with different muscle
mass phenotypes. Hence, long distance runners rather have a slim musculature as compared to
the muscle hypertrophy of bodybuilders, weight lifters and sprinters. In fact, endurance exer-
cise seems incompatible with muscle hypertrophy, such as our group has demonstrated for
Mstn” mice that actually lost muscle mass after swim training (Matsakas, Macharia et al.
2012). Taken together our results suggest, that myostatin is a signaling molecule that optimiz-

es skeletal muscle mass and force, energy metabolism and endurance capacity.

In the whippet dogs, it has been shown that myostatin deficiency improves racing perfor-
mance. Mosher ef al. observed that dogs heterozygous for the myostatin mutation are more
muscular than wildtype dogs and are significantly faster during short distance racing competi-
tions. One may assume that decreased myostatin levels in these dogs, similar as in mice or
cattle, result in a conversion towards a more glycolytic phenotype that may be advantageous
for short distance races. These results demonstrate for the first time that a mutation in the my-
ostatin gene is linked to an increase of athletic performance (Mosher, Quignon et al. 2007).
However, “bully” (=hypermuscular) homozygous Mstn” whippet dogs often suffer from
muscle cramps. It should be noted here that muscle cramps could result from a metabolic dys-
function such as mitochondrial myopathy, however, this has never been analyzed in these
animals. In 2004, Schuelke et al. described for the first time a human individual carrying a
mutation in the myostatin gene. Interestingly, the mother of this little boy, who was heterozy-
gous for this mutation, was a former high performance athlete (Schuelke, Wagner et al. 2004).
Although, no other human case had been described so far, these findings may indicate, that

reduced levels of myostatin may increase athletic short-term performance in humans.

161



GENERAL DISCUSSION

3. Myostatin and muscle metabolism

Does myostatin deficiency during development cause congenital changes of skeletal muscle
metabolism?

Studies of the Mstn”" mouse model showed phenotype changes such as hypermuscularity (in-
crease in size and number of fibers) (McPherron, Lawler et al. 1997) and a conversion of
muscle fibers towards a more glycolytic phenotype ((Girgenrath, Song et al. 2005);
(Hennebry, Berry et al. 2009)). This strongly suggests that the “metabolic signature” of the
muscle has been prenatally defined during developmental stages because Mstn” animals are
constitutive knockout mice. However, I am not aware of studies proving that gene or protein
expression patterns changed towards a more glycolytic phenotype already at the prenatal or
early postnatal stages. I would like to stress that muscle fibers first express developmental
forms of myosin heavy chain (MHC), which is replacd in mice by adult forms only during
early postnatal stages (Agbulut, Noirez et al. 2003). In this context it remains still unknown
whether in Msm” muscle precursors become determined towards a more glycolytic fate once
they differentiate. Interestingly, blockade of the myostatin signaling pathway in adult mice by
using either anti-myostatin antibodies, AAV-propeptide, or the soluble activin receptor type
IIb, stimulated muscle growth without provoking changes in fiber type composition (Cadena,
Tomkinson et al. 2010). These findings support the view that changes in the contractile mus-
cle metabolic phenotype only occur following developmental abrogation of myostatin signal-

ing as seen in constitutive Mstn” mice.

This over-simplification of the different roles of myostatin during prenatal and postnatal func-
tion eventually supported the rationale to develop therapeutic strategies based on myostatin
blockade and their application to humans, because metabolic side effects were not expected. |
consider these therapeutic trials, which were based solely on this assumption, as far too prem-
ature as insufficient preclinical work had been performed to clarify this point. I hypothesized
that myostatin maintains its regulatory role on muscle metabolism through all developmental
stages (including adulthood and muscle regeneration as in dystrophic mdx mice). This hy-
pothesis forms the central rational for my PhD-thesis and the herein presented results on the

effect of myostatin/ActRIIB signaling in adult muscle.

Hence, metabolic features are not simply the consequence of developmental fiber type deter-
mination. I hypothesized that myostatin has a direct effect on muscle metabolism inde-

pendently of its effects on muscle mass, contractile properties and fiber type composition.
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A recent study on the gene expression profile of the skeletal muscle after a treatment with
sActRIIB-Fc revealed changes in the expression of genes related to mitochondrial biogenesis
and oxidative phosphorylation (Rahimov, King et al. 2011), which supports the above hy-
pothesis. In fact, the gene expression profile in the sActRIIB-Fc treated mice was similar to

that of Mstn”” mice.

We first explored the PPAR signaling pathway, as PPAR transcription factors act as regula-
tors of lipid metabolism and glucose homeostasis. In manuscript 1, I demonstrated that fol-
lowing treatment with sSActRIIB-Fc, mRNA expression levels of Ppard and other genes relat-
ed to the PPAR signaling pathway were decreased, e.g. Pgcla as a major factor of the regula-
tion of mitochondrial biogenesis, and Pdk4 as key protein in the regulation of glucose metabo-
lism and fatty acids. This strongly suggests that the ActRIIB signaling pathway regulates the
metabolism of skeletal muscle. However, these changes in gene regulation may appear sec-
ondary to other phenotype changes, considering that we treated mice for a period of 4 months.
We hence turned our investigation to an in vitro system and treated C,Ci, cells with
sActRIIB-Fc. Indeed, we again noted a decrease in the mRNA-expression of Ppard, Pgcla,
Cptlb and Pdk4 already 24 hours following exposure to sActRIIB-Fc. This strongly indicates

a direct effect of myostatin on the regulation of genes implicated in muscle metabolism.

Can we conclude on the function of myostatin by performing solely loss of function exper-

iments?

Most studies to understand the role of myostatin used various strategies to inhibit myostatin
signaling (anti-myostatin antibodies, AAV-propeptide, and sActRIIB-Fc). In my opinion, this
is insufficient if we aim to determine the role of a given molecule, because alternative mecha-
nisms or compensatory pathways may blunt or even distort the inhibitory effect. Therefore, it
would be interesting to determine the effect of myostatin on skeletal muscle metabolism when
overexpressing this molecule. Different strategies of myostatin overexpression could be con-
sidered, such as the use of ectopic AAV-mediated expression of myostatin or treatment with
recombinant active myostatin. Studies of overexpression of myostatin have been conducted
and showed a strong induction of muscle atrophy ((Zimmers, Davies et al. 2002); (Durieux,
Amirouche et al. 2007)). We tried a similar experiment in our laboratory by engrafting myo-
statin expressing CHO cells into Nude mice. Unfortunately, the uncontrolled proliferation of
CHO cells caused tumors to variable extent, and it was not possible to determine whether the
cachexia was the result of overexpressing myostatin or ordinary tumor cachexia. Alternative-

ly, I propose an experiment whereby to ectopically overexpress myostatin in the Msn™ mouse
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as this would confirm whether the metabolic phenotype is fixed or whether the muscle metab-

olism could be reverted towards a more oxidative phenotype.
4. Myostatin and mitochondria

Several studies revealed that myostatin deficiency is associated with a reduction in mitochon-
drial content in skeletal muscle fibers thus diminishing the mitochondrial oxidative capacity
((Amthor, Macharia et al. 2007), (Ploquin, Chabi et al. 2012)). However, the decrase of mito-
chondrial mass in Msn” mice could be the simple consequence of their conversion towards
glycolytic fiber phenotype. A reduction of mitochondrial content thus would cause a parallel
reduction of mitochondrial respiration, which we (manuscript 2) and others have shown for
Mst” mice. Such decreased mitochondrial respiration is likely responsible for the observed

decrease in VOoax/kg.

However, the constitutive Mstn” mouse model does not really answer the question whether
the decrease of mitochondrial mass might be an indirect effect of the congenital myostatin
deficiency or whether in fact myostatin regulates mitochondrial biogenesis throughout life,
including the mature adult muscle. Welle ef al. demonstrated that the post-developmental lack
of myostatin does not reduce of the number of mitochondria markers, including expression of
mitochondrial enzymes such as citrate synthase (CS) and cytochrome ¢ oxidase (COX) and

also the mRNA expression of some mitochondrial proteins (Personius, Jayaram et al. 2010).

In agreement, we demonstrate in manuscript 1 that treatment with sActRIIB-Fc does not in-
fluence mitochondrial mass. Indeed, there was no decrease in the copy number of mitochon-
drial DNA (mtDNA) following treatment with sActRIIB-Fc. However, does mtDNA content
mirrors the mitochondrial mass? I consider yes: In a previous study on Mstn”™ mice it has
been shown that the decrease of mtDNA correlated with the decrease in mitochondrial num-
ber as counted by electron microscopy. However, counting mitochondrial number using elec-
tron microscopy is a very unreliable method, as it is now being known that mitochondria are
very dynamic organelles that build large networks and constantly fuse and split. In my opin-
ion, other markers such the activity of CS or COX are more reliable references for the deter-

mination of mitochondria mass.

We showed that the activity of mitochondrial enzymes such as CS and the mtDNA quantifica-
tion remained unchanged following treatment with sActRIIB-Fc. Thus myostatin unlikely

controls mitochondrial biogenesis in the adult.
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Considering all these results, how can we explain the profound fatigability observed in mice

after treatment with sActR11B-Fc particularly in the mdx context?

Remarkably, >'P-NMR spectroscopy on muscles following treatment with sActRIIB-Fc re-
vealed a deficit of phosphocreatine resynthesize (pCr) in mdx mice (manuscript 1), indicating
a deficit of the oxidative metabolism. What could be the underlying mechanism? We hy-
pothesized a problem in the ATP transport from the mitochondria to the cytosol. This
transport involves porin channels, which is a protein located in the outer membrane of mito-
chondria. Our hypothesis was based on a proteomic study that demonstrated a decreased ex-
pression of porin in mdx heart muscle (Lewis, Jockusch et al. 2010). Indeed, we found that the
expression of porin was strongly reduced in wildtype as well as in mdx mice following treat-

ment with sActRIIB-Fc (manuscript 1).

As I have already discussed above, the enzyme activity of COX and SDH was not decreased
in the mice following the treatment with the sActRIIB-Fc. In fact, COX even was slightly
elevated suggesting a the compensatory up-regulation of the OXPHOS complexes. However,
measuring single OXPHOS complexes in isolation cannot rule out a deficit in the pathway of
mitochondrial respiration for sure. We should repeat the same experiment and analyze the
effect of sActRIIB-Fc on mitochondrial respiration and ATP production by polarographic
methods. In this context, a recent transcriptome analysis, performed on muscles mice after
treatment with sActRIIB-Fc, showed a decrease in the expression of genes related to mito-
chondrial biosynthesis and oxidative phosphorylation (Rahimov, King et al. 2011). This fur-

ther supports the view that myostatin regulates muscle metabolism at adult stage.

Taken together, our results show that changes in mitochondrial composition (loss of porin) is
likely responsible for the impairment of oxidative metabolism and ATP productin after abro-
gation of ActRIIB signaling. This could sufficiently explain the observed phenotype of mdx
mice following sActRIIB-Fc treatment: exercise intolerance and lactic acidosis, both being

typical signs of a mitochondrial myopathy.

Are there additional factors that contribute to the exercise intolerance observed in the mdx
mice following treatment with sActR11B-Fc?

We easily notice in our study (manuscript 1) that the mitochondrial mass is reduced in the
control mdx mice as compared to the control wildfype mice. Based on this observation and the
fact that the oxidative metabolism of muscle is decreased in the mdx mice, we can spposet that

even mild additional stress can contribute to such exercise intolerance.
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5. Myostatin and vascularization

Although a mitochondrial dysfunction is the likely cause of exercise intolerance following
treatment with sActRIIB-Fc, we cannot exclude a more upstream mechanism such as insuffi-
cient oxygen supply of the skeletal muscle. Interestingly, skeletal muscle of myostatin defi-
cient mice (Mstn”™ and Cmpr) demonstrates a decline in capillary density in comparison to
normal mice ((Matsakas, Macharia et al. 2012); (Rehfeldt, Ott et al. 2005)). However, this had
originally been interpreted as being a secondary event following a switch towards a more gly-

colytic fiber phenotype.

In manuscript 1, I observed a decrease in the number of capillaries per fiber in sActRIIB-Fc
treated mice in parallal to a strong increase of fiber size, which caused an increase of the ca-
pillary domain. Futher, the decrease in capillary number per fibers was far more severe in
sActRIIB-Fc treated mdx mice than wildtype mice. I thus assume that ActRIIB signaling is
pivotal for the capillary growth during the remodeling of the dystrophic mdx muscle. In this
respect it is quite interesting that VEGF mRNA-expression was already reduced in mdx mice
as compared to wildtype mice and did not drop further after sActRIIB-Fc treatment. My data
strongly suggest that the reduction in the number of capillaries contributes to the phenotypic
alteration of skeletal muscle that further aggravates the secondary metabolic myopathy, espe-
cially in mdx mice. However, blockade of myostatin by sActRIIB-Fc may not be the only
cause of the observed phenotype, since sActRIIB-Fc binds multiple members of the TGFf
family such as GDF11, BMP9, BMP10 and activin ((McPherron 2010); (Lee, Reed et al.
2005); (Lee, Lee et al. 2010); (Souza, Chen et al. 2008)). Notably, BMP9 and BMP10 are
important factors that regulate the proliferation and differentiation of endothelial cells (lit).
However, the respective role of different ActRIIB receptor ligands following treatment with
sActRIIB-Fc on the endothelial cells remains to be determined.

Does myostatin/ActRIIB signaling directly affects endothelial cells or is this an indirect
effect via VEGF regulation.

Here we showed that endothelial cells strongly express activin type 1 and type 2 receptors,
whereas myostatin was only little expressed. This suggests that myostatin acts on endothelial
cells in a paracrine or endocrine fashion but not in an autocrine manner. To further approach
this question, we treated HUVEC endothelial cells with increasing doses of recombinant myo-
statin and showed an increase in the cell doubling time in vitro. These results strongly suggest

that myostatin or homologs may regulate the growth of muscle capillaries in a direct fashion.
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It is therefore important to take into consideration the effect of myostatin on muscle vascular-

ization when developing therapeutic strategies based on myostatin blockade.

To have a more global view on the transcriptional changes following treatment with
sActRIIB-Fc, we performed a transcriptome analysis. These data have not yet completely
been interpreted and are not included in my thesis. Interestingly, Nos/ expression was the
most differentially expressed gene between treated and untreated mdx mice and was largely
downregulated. I took these results further and performed quantitative real time PCR (RT-
gPCR) and found that NosI expression was strongly reduced in control mdx mice as com-
pared to control wildtype mice, which confirmed previous studies ((Brenman, Chao et al.
1995); (Chang, lannaccone et al. 1996)). However, expression levels dropped further after
sActRIIB-Fc treatment in wildtype as well as in mdx mice. This reduction may contribute to
the dysregulation of NO-synthesis, as NO is required for exercise induced vasodilatation as
well as for the cellular calcium homeostasis associated with exacerbated post-exercise fatiga-
bility. However, protein analysis (Western blot and immunostaining) did not reveal any
changes in Nosl levels in wildtype mice, while Nosl in mdx mice was below the detection
levels. We therefore failed to validate the transciptome results at protein level. Thus Nosl
could be responsible for the observed exercise intolerance following the treatment with

sActRIIB-Fc.

In Duchenne muscular dystrophy and its mdx mouse model, oxidative metabolism is com-
promised due to membrane damage ((Jongpiputvanich, Sueblinvong et al. 2005); (Kuznetsov,
Winkler et al. 1998)). Therefore, clinical studies are currently ongoing for Duchenne patients
in order to improve the oxidative metabolism of their muscles using Idebenone
(NCT01027884, ClinicalTrials.gov) or Citrulline (NCT01995032, ClinicalTrials.gov). Anoth-
er clinical trial in Becker patients is using the Sildenafil to resolve the problem of vascular

dysregulation in order to improve muscle perfusion (NCT01350154, ClinicalTrials.gov).

6. Myostatin and heart muscle

The likely role of myostatin on heart muscle regulation has also to be taken into account when
analyzing the effect of myostatin/ActRIIB blockade. Unfortunately, in our study we did not
analyze the heart of the mice (manuscript 1). Indeed, it might be possible that our mice had
developed a cardiomyopathy following treatment with sActRIIB-Fc, which could be alterna-

tively responsible for observed fatigability during endurance exercise.
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It has already been shown that cardiac cells or cardiomyocytes synthesize myostatin (Rodgers,
Interlichia et al. 2009). This cardiac myostatin not only had an autocrine effect on cardiac
striated muscle, moreover overexpression of this protein induced a pronounced atrophy of the
heart (Heineke, Auger-Messier et al. 2010). Heart myostatin had also an endocrine effect on
skeletal muscle and induced skeletal muscle atrophy (Heineke, Auger-Messier et al. 2010).
Conversely, overexpression of myostatin in skeletal muscle did not induce any effect on the

heart muscle (Artaza, Reisz-Porszasz et al. 2007).

The Mstn” mice showed a cardiac hypertrophy (Rodgers, Interlichia et al. 2009). This was
discussed as a physiological adaptive response to the hypermuscular phenotype induced by
myostatin deficiency, rather than a pathological response. In a different study, no cardiac phe-
notype was observed on Mstn” mice (Cohn, Liang et al. 2007). Similarly, a 4-months treat-
ment with sActRIIB-Fc did not affect the cardiac function of young mdx mice (Morine, Bish
et al. 2010)a. However, another study showed clear signs of increased cardiac dilation in mdx
mice after long-term treatment over 11 months via AAV-mediated overexpression of a secret-

ed dominant negative myostatin propeptide (Morine, Bish et al. 2010)b.

Taken together, there is a potential risk to aggravate the cardiomyopathy in DMD patients
after a long-term treatment. This must also be taken into account when considering myostatin

blockade as therapeutic strategy and further investigations are necessary into this direction.

7. Myostatin blockade as a therapeutic strategy

In Duchenne muscular dystrophy, skeletal muscle undergoes cycles of degeneration and re-
generation, and in consequence, serum creatine kinase is largely increased. Blockade of myo-
statin has been proposed as a therapeutic approach for Duchenne muscular dystrophy. Im-
portantly, such strategy does not treat the underlying cause of DMD, the absence of dystro-
phin. The rational of using myostatin blockade as a therapeutic strategy is based on the idea
that myostatin blockade could improve skeletal muscle either by stimulating regeneration or
by increasing muscle fiber size and therefore delay or even reverse muscle wasting. Interest-
ingly, some studies have shown that myostatin blockade decreased the level of serum creatine
kinase (Bogdanovich, Krag et al. 2002), which was interpreted as an amelioration of the dys-
trophic phenotype. Patridge et al.discussed that the dystrophin-deficient muscle may become
more resistant to degeneration if fibers are increased in size, and this may slow down the pro-
gression of the disease pathophysiology (Zammit and Partridge 2002). However, other studies

did not find a significant decrease in creatine kinase level and there is until now no experi-
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mental evidence that larger muscle fiber would be more damage resistant (Wagner,
McPherron et al. 2002). One should rather ask whether a strategy, which stimulates the

growth of diseased muscle, would convey any therapeutic benefit if used on its own.

Different studies conducted in the mdx mouse model have shown the benefit for dystrophic
muscle if using myostatin inhibition ((Bogdanovich, Krag et al. 2002); (Morine, Bish et al.
2010); (Pistilli, Bogdanovich et al. 2011); (George Carlson, Bruemmer et al. 2011)). Such
promising results formed the rationale to consider clinical phase I/II trials with muscular dys-
trophy patients. Indeed, Wagner et al. showed that the use of anti-myostatin antibodies was
tolerated in patients (Wagner, Fleckenstein et al. 2008). However, in most studies conducted
in patients, the increase of muscle size was taken as an endpoint. Assuming the fact that big
muscles are healthier muscles. None of the studies investigated endurance capacity, which
evaluates the effect of a treatment on the physiology of the entire body over a longer time
period and would thus be a relevant parameter that could translate into improvement of life

quality for patients.

We here treated mice for a period of 4 months, which would be quite a short period for DMD
patients, who would require a treatment for many years. In the light of my data, however, this
carries a significant risk of developing secondary unwanted effects at the metabolic level.
Furthermore, in mice, the large gain in muscle mass due to systemic treatment did not im-
prove the skeletal muscle function. To prevent metabolic adverse effects, I therefore propose a
different approach. The first approach would be to determine, which would be the smallest
dose of the soluble receptor required to bring benefit on muscle mass without changing mus-
cle metabolism. Another approach would be a pulse therapy for short periods, thus avoiding
possible side effects of a continuous application. Such pulse therapy could be considered for

many types of muscle atrophy, such as post surgery, cancer induced, cachexia or sarcopenia.

One may also consider to prevent metabolic side effects of myostatin blockade by pharmaco-
logical treatment that stimulates oxidative metabolism, e¢.g. by PPARS agonists. These mole-
cules are known to reduce the oxidative stress and to promote fatty acids oxidation in moder-
ately obese men (Riserus, Sprecher et al. 2008). AMPK agonists (AICAR) also stimulate the
fatty acid oxidation in type 2 diabetic patients (Boon, Bosselaar et al. 2008). Clinical trials
have already been conducted and showed an increase of fatty acids oxidation. Indeed, Narkar
et al. have shown that 4-weeks treatment of mice with AICAR (5-aminoimidazole-4-
carboxamide-1-B-D-ribonucleoside) improved endurance and activated genes of the oxidative

metabolism (Narkar, Downes et al. 2008). Another study by Bernardo ef al. showed that the
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use of PPARGS agonists improved the oxidative properties of muscle with and without the in-
hibition of myostatin (Bernardo, Wachtmann et al. 2010). Until now, there is still no specific
molecule to selectively activate the PGCla signaling pathway. It has already been shown that
an increase of PGCla in aging mice prevented atrophy and preserved the mitochondrial func-
tion (Wenz, Rossi et al. 2009). It would also be interesting to cross PGCla overexpressing
mice with Mstn” mice to see whether this would improve their oxidative metabolism. Inter-
estingly, Hollinger ef al. overexpressed PGCla in mdx mice and observed an improvement of
muscle function that was accompanied by an increase of markers for oxidative capacity
(Hollinger, Gardan-Salmon et al. 2013). Taken together these different observations, I believe
that using such therapies in combination could potentiate the benefits on muscle metabolism

and prevent the downsides of isolated myostatin inhibition.

Furthermore, the use of sActRIIB-Fc alone, which is a systemic treatment, interferes with the
TGF-B signaling pathway in muscle and in other cell types and tissues. A phase II clinical
trial in DMD patients using the soluble ActRIIB (ACE-031) was stopped prematurely because
of the occurrence of side effects (minor nosebleeds and small dilated blood vessels)
(NCTO01099761, ClinialTrials.gov). This did not come as surprise to us as we have shown in
manuscript 1, that ActRIIB signaling has an influence on capillary denisity. So far no com-
pound is known that would only abrogate ActRIIB signaling in the muscle and not in neigh-
boring tissues, which could be used as a potentially safer therapeutic strategy. Interfering with
the ligands at the extracellular level will always result in off-target effects. It would thus be
better to interfere with the intracellular signalling cascade. For this, the molecular mechanism

of the muscle growth signaling pathway has to be determined in more detail.
What are the molecular targets of myostatin signaling?

We do not know yet the immediate molecular targets of myostatin signaling that have an in-
fluence on muscle metabolism. Interestingly, a recent study identified a critical role for the
bone morphogenetic protein (BMP) pathway in muscle mass regulation (Sartori, Schirwis et
al. 2013). The authors showed that BMP signaling is the fundamental hypertrophic signal in
mice. Inhibition of BMP signaling caused muscle atrophy and abolished the hypertrophic
phenotype of myostatin deficient mice ((Sartori, Schirwis et al. 2013; Winbanks, Chen et al.
2013)). Following these results I hypothesize that the regulation of muscle mass and metabo-
lism of the skeletal muscle may use specific PhosphoSmads: Smad 1/5/8 (BMP signaling)

regulating muscle mass and Smad 2/3 (myostatin pathway) regulating muscle metabolism.
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It would be very interesting to consider, (i) a combined approach of restoration of dystrophin
expression by RNA splicing modulation and (ii) myostatin blockade, as a treatment for DMD
patients. In manuscript 3, we have successfully demonstrated the benefits of the restoration of
dystrophin in muscle function coupled to the advantage of myostatin inhibition on muscle
growth. Unfortunately, the synergistic effect of the two therapies was not very obvious as
muscles did not become stronger. It would be very interesting to study metabolic properties in

mice that had been treated with a combination of both approaches.

In the light of my results, I cannot recommend the use of myostatin/ActRIIB interference as a
therapeutic strategy for Duchenne muscular dystrophy, at least in isolation, because side ef-

fects of the treatment may even aggravate the disease.
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