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Kurzzusammenfassung

Es wurden 561 elektronische Terme von 48 Ubergangsmetall Molekiilen AB,, (A = Sc-Ni,
B = Cu/Ag/Au, n = 1,2) mit der Multireference Configuration Interaction (MRCI) sys-
tematisch untersucht. All-Elektron Rechnungen im Valenz quadruple zeta Basissatz wurden
einschlieBlich skalar relativistischer Effekte mittels des Douglas-Kroll-Hess (DKH) Hamilto-
nian durchgefiithrt. Fiir zweiatomige Molekiile wurden vollstéandige und glatte Potential En-
ergie Kurven auf dem DKH-CASSCF und DKH-MRCI(4Q) Niveau berechnet. Molekulare
Eigenschaften—wie internuklearer Gleichgewichtsabstand (r.), harmonische Frequenz (we),
Anharmonizititskonstante (weze), Dissoziationsenergie (D.), und Dipole Moment (pe)—
wurden angegeben. Spin-Bahn-Kopplung, Kern Korrelations Effekte, und der Effekt un-
vollstandiger Basissatz wurden fiir ausgewahlte Systeme untersucht. Fiir die stérungstheore-
tische Behandlung der Spin-Bahn-Kopplung auf dem DKH-MRCI(+SO) Niveau, wurde die
Spin-Bahn-Kopplung variationel auf dem Niveau der exakte 2-Komponenten Dirac Gleichung
durchgefiihrt. Im Grundzustand wurde eine bindre Beziehung zwischen dem einatomigen
Ton AT (?5*1L;) und dem zweiatomigen Molekiil AB(X?5t1Aq) entdeckt. Fiir dreiatomige
Molekiile wurden zwei Satze von Potential Energie Flachen mittels kubischer Spline In-
terpolierung konstruiert. Der erste Satz bildet die molekularen D und Cs, Strukturen
und ihre Beziehung sind ab, symbolisiert durch E(fp AB,rA_B;28+1F). Der zweite Satz,
E(ra.p,m.5; 25T'A), reprisentiert die lineare ABB Form. Sie wurden zuniichst bewertet
durch Betrachtung der molekularen Stabilitdt in Bezug auf die Asymptoten A+ By, AB+ B,
und A 4+ 2B—alle im Grundzustand. Auflerdem wurden Strukturoptimierungen fiir die

niedrigsten Zusténde jedes Isomers durchgefiihrt.

13






Abstract

A total of 561 electronic terms of 48 transition metal molecules AB,, (A = Sc-Ni, B =
Cu/Ag/Au, n = 1,2) were systematically studied using multireference configuration inter-
action (MRCI) technique. All-electron calculations, employing valence quadruple zeta basis
sets, were performed incorporating scalar relativistic effects by means of the Douglas-Kroll-
Hess (DKH) Hamiltonian. For diatomic molecules, full and smooth potential energy curves
have been constructed at the DKH-CASSCF and DKH-MRCI(+Q) levels of theory, whereby
observable molecular properties—such as equilibrium internuclear distance (r.), harmonic
frequency (we), anharmonicity constant (wex.), dissociation energy (D), and dipole moment
(11e)—have been reported. Spin-orbit coupling, core correlation effects, and basis set incom-
pleteness have been probed for some selected systems. In order to assess the perturbative
treatment of spin-orbit coupling at the DKH-MRCI(+SO) level of theory, spin-orbit coupling
was dealt with variationally at the exact 2-component level of theory. A ground state bi-
nary relation between the atomic ion AT (?>*!L;) and the diatomic molecule AB(X?5t1Ag)
has been unveiled. For triatomic molecules, two sets of potential energy surfaces have been
constructed using spline interpolation. The D, and C9, molecular structures and the con-
nection between them, are pictured by the first set, symbolised by E(0pap,74-B; 2S“I‘). The
second set, E(rap,rp.p; >>T1A), represents the linear ABB form. These are assessed, first,
by considering the molecular stabilities with respect to the asymptotes A+ Bs, AB+ B, and
A + 2B—all being in ground state. Secondly, structure optimisation calculations have been

performed for the lowest states in each isomer.
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Chapter 1

Introduction

The elucidation of electronic structure of transition metal nanoclusters (clusters of a size
in the range of 1-100 nm), synthesised and characterised within the specialised areas of
nanoscience,” has become in the focus of quite many experimental and theoretical workers
in the last two decades.!™?® Heavy budgets allocated in science, engineering, and medicine—
resulting in countless number of active researchers working on the field—is an indication of the
importance. Numerous practical and basic studies have evinced lively interest in bimetallic
nanoclusters, because they are conceptually interesting and technologically important. Fur-
thermore, due to their fascinating and unusual structural, electronic, optical, and magnetic
properties, these nanoclusters have proved useful for various applications. These properties
differ significantly from those of monometallic species. In former times, also, monometallic
copper, silver, and gold were frequently mentioned in aristocratic medieval literature.?® In re-
cent times, most of the concentration has pointed towards bimetallic nanoclusters containing
the late d-block atoms; in particular, the prototypical group 11 elements (Cu/Ag/Au). These
clusters constitute the state intermediate between the extended metallic solids and the atoms.
Theoretical description of the smallest clusters—i.e., di- and triatomic molecules which may
be considered as building blocks for the nanoclusters—can be regarded as fundamental to
the present-day problem of the evolution of electronic structure from the atoms to the bulk.

The electronic structure of atoms, as they are brought together to form molecules, evolves
in time, in space, and in other dimensions (such as spin) according to the time-dependent
Schrodinger equation. The question is how does it evolve as one moves from isolated atoms to
the solid phase? Low-lying states of metal atoms, on the one hand, can be passably accurately
calculated via standard techniques in ab initio quantum chemistry. Electronic band structure
of infinite metallic solids, on the other hand, is (being) fairly understood using methods of
solid state physics. Intermediate size range consisting of finite nanoparticles is discerned to

a much lesser extent, and has thereby drawn special notice from many research groups.2’ %4

“nanomaterials, nanoclusters, nanoelectronics, nanophotonics, nanomagnetism, nanochemistry,
nanophysics, nanobiotechnology, nanobiology, nanomedicine, nanodrug delivery, nanotribology, nanoelec-
tromechanical systems, nanosensors, nanomaterials for energy, nanopolymers, nanocomposites, nanometals
and plasmonics, nanocarbon materials, nanocatalysts, etc.

19
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Figure 1.1: Atoms, diatomics, triatomics, and nanoparticles and their relative sizes.

Transition metal nanoparticles (figure 1.1), themselves, consist of smaller building blocks:
di- and triatomic molecules the understanding of physical and chemical properties of which is
of major importance and still remains a significant issue. As it appears that “the particle“ is
a continuous distribution of energy through space,?® and accordingly one can assume there is
no end to this breaking the particles into building blocks, the present work concentrates on the
di- and triatomic molecules. The work, which elaborates on three homologous sequences of
diatomic molecules AB (A = Sc-Ni, B = Cu/Ag/Au) and on three homologous sequences of
triatomic molecules A Bs, retrieves fundamental information about these systems, tracing, for
the first time, the evolution of electronic structure as a function of size: atoms — diatomics —
triatomics. Upon the formation of a triatomic molecule, the electronic states of the reactant
system(s), of the intermediate species, and of the product(s) are, according to the theory of
potential energy hyper-surface, correlated. This correlation, which has been an important
long-standing concept in physics and chemistry, can be described in terms of an intramolecular
evolution of the electronic structure from separated atoms to the assembled molecules. As
an indication of this intramolecular evolution, figure 1.2 shows how the electronic energy
levels evolve as one moves from the atom V via the diatomic molecule VAg to the triatomic
molecule VAgs; in ideal picture, however, the energy of any state would change continuously
and smoothly for V4+2Ag = VAg+Ag = VAgs. A revelation of direct ground state mappings,
unveiling the relationship between the AB and A’B molecules, would provide evidence that
electronic structure can unfold also through intermolecular evolution. The present work will
therefore make a (humble) contribution towards answering the above question, being still a
major unsettled interrogation in physical chemistry.

To what extent do the d orbitals take part in the chemical bond of transition metal com-
pounds, and how does the extent of their participation vary as one moves through the Periodic
Table?46 A realistic appreciation of the nature of the bond in a complete set of compounds
is of paramount importance for both basic science and applications. This work illuminates
the cardinal aspects of the class of molecules AB,, (n = 1,2) built from one challenging atom
A, and one (two) B atoms with a so-called hydrogen-like electronic configuration. The group
11 elements are thereby relatively more obedient in terms of electron correlation, but unruly

in terms of their own complexities including relativity. Since the molecules in question are
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Figure 1.2: Low-lying energy levels for V (experimental J-averaged values), VAg (theoretical),
and VAgs (theoretical).

expected to exhibit similar features, illustrative trends will undoubtedly pop up as one moves
horizontally through the 3d series and vertically over the coinage metal set, while indeed
treating the entire class uniformly. As A varies (horizontal movement), the general findings,
for instance, will indicate how the observable molecular properties, such as the equilibrium
A-B internuclear distances and the bond strengths, alter. As B varies (vertical movement),
it shall be shown that the bond strengths of Cu systems are slightly less than those of Ag,
whereas the molecules containing gold are anomalously more bound. Therefore, some general
features of the chemical bonding in the AB,, molecules will be established.

The number of transition metal di- and triatomic molecules, whose spectroscopic infor-
mation is sufficiently accurately known from experiment, is rather small. Previous studies
reported on some of the diatomic molecules AB, to the best of one’s knowledge, are in detail
discussed in subsection 3.1.1; they are less than sufficient. The situation is even worse for the
triatomic molecules ABs; no experimental, nor theoretical, results are procurable for these
perplexing particles.

The author of the present contribution commenced doing electronic structure calculations
at the university of Tehran, Iran, as early as 2012. He started to work on the ground and
low-lying excited states of the heteronuclear diatomic molecules AgAu, CuAg, and CuAu
solely embracing the multireference configuration interaction method. The work thereof was

4719 and, more importantly, provided the prerequi-

published in some international journals
site stepping stones for the present work addressing itself to the problem of obtaining reliable

and global description of the ground and low-lying excited states of 24 diatomic molecules
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AB and of 24 triatomic molecules ABs by pursuing systematic theoretical investigations and
by considering a multitude of quasi-degenerate states arising from the ground and low-lying
separated atom limits. In the light of the above questions concerning the electronic structure
of the AB,, molecules, the present investigation has begun in order to determine or predict
spectroscopic constants for the ground and low-lying excited states.

The inaugural aim of the current theoretical research was to unravel the electronic struc-
ture and how it evolves for the electronic symmetry species; when two or three transition
metal atoms are brought together to form a di- or triatomic molecule. Towards this end,
full and smooth potential energy curves have been calculated for the diatomic molecules AB,
and spectroscopic constants have been thereby reported in the AS representation. Spin-orbit
coupling, core-correlation effects, and basis set incompleteness have been investigated for
some selected systems. For the triatomic molecules ABs, the linear BAB, the bent BAB,
and the linear ABB structures were examined. Potential energy surfaces were constructed
by means of which spectroscopic properties were extracted. These were uniformly assessed
by an immense number of subsequent structure optimisation calculations.

Chapter 2 briefly remarks on quantum chemical methodology which has been employed.
This chapter also provides details on the computations. In chapter 3 a selection of the results
is discussed. Section 3.1 is devoted to the diatomic molecules, and section 3.2 is devoted to
the triatomic molecules. Chapter 4 summarises the findings. Finally, the full set of data, with
many tables and figures, for all 48 systems (diatomic AB and triatomic ABj3), are provided

in the appendices.



Chapter 2
Theory and Computations

In the first part of this chapter basic concepts of the nonrelativistic (or approximate 2-
component) and relativistic (or exact 2-component) quantum chemistry—used in the present
project for describing the electronic structure of the AB, molecules—are presented. The
configuration interaction model remains a cornerstone of the formalism employed through-
out this work; multiconfigurational self-consistent field (MCSCF), complete active space
self-consistent field (CASSCF), multireference configuration interaction (MRCI), Kramers-
restricted configuration interaction (KRCI), and diagonalising the spin-orbit matrix in a
multistate basis are all founded on this model. Although this part of the dissertation is the-
oretical in scope, due to time limitations, no attempt is made as to theoretical completeness
or rigorousness; for further details see refs. 50-64. In the second part of this chapter the
necessity of assessing the theoretical results presented on transition metal di- and triatomic
molecules and how the assessment was undertaken are discussed. Finally, computational
details, within the approximate and exact 2-component relativistic frameworks, are given at
the end of this chapter.

2.1 Some Remarks on Methodology

A wide range of experimental observations of some microphysical phenomena and the cor-
responding theoretical explanations provided the underlying physical ideas based on which
a number of postulates were developed in quantum mechanics. The inferential theory, built
upon the postulates, leads to the following assumptions whose validity is upheld by its pen-
etrating qualitative as well as quantitative predictive power. The theory assumes that an
abstract mathematical entity—a wave function in Schrédinger’s formulation, an eigenvector
in Heisenberg’s matrix approach, and a ket in Dirac’s general formalism [ (¢))—is conceivably
assigned to any microphysical system. The time dependent statevector, |¢)(¢)), belongs to a

Hilbert space and contains all the information about the system and can therefore represent
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it completely. A mathematical rule (a linear* Hermitian! operator) is defined in accord with
this entity. Upon the application of the operator on [i(t)), the statevector is transformed
into itself multiplied by a proportionality constant (complex number); A [)(t)) = « |(t)).
The theory assumes that any dynamical variable—e.g., 7(¢) and p(t)—corresponds to a linear
Hermitian operator whose eigenvectors form a complete basis set.}

The Schrédinger Equation. The time evolution of the state vector |¢(t)) of the system
is unfold by the time-dependent Schrédinger equation iid |1(t)) /8t = H |1(t)), where H is
the Hamiltonian operator corresponding to the total energy of the system. In quantum
chemistry, the customary interest is the time-independent Schrodinger equation for systems
which possess stationary states, i.e., the potential is independent of time. The physical state of
any molecule, containing N electrons—to which electric charge (e), intrinsic spin momentum
(8), and rest mass (m.) are assigned—and M nuclei, can be quantitatively described by the
nonrelativistic time-independent Schrodinger equation. In position representation (red), this

equation reads

M N M,N ‘
[ 3 v Yy ey et
- ong. YRa — o Vi, T o = = =
o 2Ma M H2me M S| — Ra| A% |Ra — Rp|
’ (2.1)
Jrz "I‘ 7 |:| R]\[ Tlyeeo, T ) E\I’(Rl,...,ﬁ[\y,?ﬂ,...,fﬁw).
i>7 v J

See appendix A for the derivation of this equation and for the definitions of the quantities.
Within the framework of the so-called clamped nuclei approximation, the nuclei are considered
to be fixed because m,/m. ~ 1836, m,, being the rest mass of proton. Thus, the first term
in equation (2.1)—i.e., the kinetic energy of the nuclei—vanishes and the nucleus-nucleus
repulsion, Y .5 Z4Z e/ \]%A — EB|, turns into a constant which, from the linearity of
Hamiltonian operator, can be transferred into the eigenvalue. This results in the electronic

Hamiltonian,

N2 N,M 742
R TR N RSN -
which describes the dynamics of N spinless electrons in the electrostatic field of M point
charges.! The solution of the corresponding Schrédinger equation, Hote ({7}, {RA}) =
Eatba ({7}, {R4}), gives electronic energies which parametrically depend on the spatial co-
ordinates of the nuclei, i.e., Eo({R}).

The Spin of Electron. The spin-free Hamiltonian shown in equation (2.2) depends
exclusively on the space coordinates of the electrons and nuclei (not on the spin coordinates).
However, electrons do possess intrinsic spin® which does not correspond closely to anything

in classical mechanics. It is assumed that the theory of spin can be built upon a general

*For a linear operator A(a [¢)) +b \qu)) = aA ) +bA|p). See appendix A for some properties of operators.
"For a Hermitian operator AT = A where (1| AT|¢) = (¢|A[y) .

For a complete basis 307 | |pn) (¢n| = I.

$However, real nuclei have spatial distribution (ref. 65).
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formalism of thAe angular momentum (see appendix A), which, in the matrix representation,
would lead to J2 |4, m;) = h2j(j + 1) |5, m;) and J. |j, m;) = hm; |j,m;). For the N-electron
molecule in question, according to the Russel-Saunders coupling scheme, the total spin op-
erator S reads S = Zf\il §(i), where §(i) is the spin operator corresponding to electron i;
§2|1/2,+1/2) = h2(3/4) |1/2,+1/2), and 8, |1/2,4+1/2) = +h(1/2)]1/2,+1/2).

The world in which the electrons live is a 5-space; with the coordinates 1, xo, z3, t, and
w. This space corresponds to points whose first four coordinates (x1, 2, x3, t) are expressed
in continuous representations. The fifth coordinate w is an unspecified spin variable which
should be dealt with according to the angular momentum algebra; [jl, jm] = ihiemndn, and
[ﬁ, jl] = 0. Since the spectra of these operators are discrete (see appendix A), w should,
in principle, be expressed as discrete variable. Within the LS, AS, and I'S coupling schemes
w can be integrated out. In the context of nonrelativistic time-independent formalism, the
x1,T9, 3 coordinates are included in the Hamiltonian, while the wave function collectively
depends on 1, z9, 3, and w.*

The Construction of Wave Function. In the light of the spin-free electronic Hamil-
tonian shown in equation (2.2), one can write [ﬁel,gz} = 0; hence, for the 1-electron sys-
tem the wave function can be written as [1/2,£1/2) ® [¢(7)). This can be rewritten as
o(1i) = f(wi)(r;), where ¢(7;) is dubbed spin orbital. The spatial orbital (7;), us-
ing the spherical Coulomb potential and in the spherical polar coordinate system, reads
(13,05, 0i) = Rpi(1)Yim, (0, pi). These spin orbitals (|¢)) constitute the 1-electron basis
for the construction of N-electron wave function (|®)) which—according to the antisymme-
try axiom, which is a general form of the Pauli exclusion principle—must by antisymmet-

ric with respect to interchange of the coordinates of any two electrons. This means that

f’ij |®) = —|®), or, equivalently,
(11, Tiy ey Ty s TN) = —O(T1, ., Ty Ty TN, (2.3)

where 7; denotes both spin (w) and space (x1, x2, x3) coordinates of electrons, and not time.
Equation (2.2), due to the existence of the ), ; e?/|F; — ;| term, does not allow one to write
®({7;}) as the product of ¢;(71)¢;(T)...¢r(7Tn) or in terms of a properly antisymmetrised
linear combination of them. The Hartree-Fock theory reduces ), ; e?/|F; — 7| to an effective
one electron operator such that ®({;}) is separable; the resulting approximate wave function
can be expressed as a Slater determinant which, on a basis of K spin orbital, reads ®({7;}) =
(N)=V2 T (—1)P Ba{i(m1) ¢ (72) - k() }-

The introduction of the post Hartree-Fock methods was prompted by the failure of this
model in correctly describing some properties such as dissociation of molecules. The con-

figuration interaction method is the first, and perhaps conceptually the simplest, approach

*Based on the unrivalled experience of this work on open-shell transition metal systems, it is thought
that it is not enough to incoherently introduce the spin of electrons in an ad hoc fashion, i.e., employing a
spin-free Hamiltonian operator and thrusting the spin of electrons into the wave function. However—as it
is typically undertaken in the contemporary electronic structure theory—the electronic Hamiltonian, for the
moment, remains spin-free within the wave function formalism that is touched here.
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that incorporates electron correlation, which is defined as the difference between the exact
nonrelativistic energy of the system (&) and the Hartree-Fock energy (FEj) obtained in the
limit of complete basis set Feorr = & — Ep. The interference phenomenon observed in the
double-slit experiment is mathematically formulated by the principle of superposition.®!:67
Ado(a)pting this principle to account for electron correlation leads to an exact wave function
that can be written as a linear combination of an infinite number of Slater determinants
(N-electron basis functions) formed from a complete set of spin orbitals (1-electron basis
functions). The resulting wave function, therefore, consists of a reference Hartree-Fock de-
terminant which, via electronic excitations, can generate the N-electron basis functions. In
practice, one has to work with a finite set of spin orbitals, and accordingly with the resultant
determinants which are no longer complete. In the full configuration interaction method, the
Hamiltonian matrix is diagonalised in the basis of this truncated space which constitutes the
reference determinant, the singly excited determinants, etc., up to and including the N-tuply
excited determinants. Even for small systems and moderately sized 1-electron basis sets, the
number of excited determinants is extremely large. Although, neglecting spin-orbit coupling,
using spin- and space-adaptation of the wave function one can eliminate a significant num-
ber of N-electron basis sets, in most cases the elimination is not enough to make the space

parcticable.

The Dirac Equation. It is nowadays well-known that in order to correctly describe
the chemistry of heavy elements one needs to consider the so-called relativistic effects—i.e.,
the deviation(s) of results obtained in a theoretical framework which is in accordance with
Dirac quantum mechanics, which is formulated in the light of Einstein’s theory of special
relativity, from those obtained according to Schrédinger quantum mechanics. The continuing
development of relativistic molecular orbital (MO) theory is reaching rows of the Periodic
Table that are nearly impossible to treat with nonrelativistic approaches. The 1-electron

Dirac Hamiltonian is written as
Hp =ca - (p+eA)+ Bmc* —edl, (2.4)

where ¢ is the speed of light, p(= —ihV) is the momentum operator, A is the vector potential,

and ¢ is the scalar potential. The 4 x 4 Dirac matrices a and B are given by

0, oy I, 0,
= ,t=(z,y,2), = , 2.5
o (m 02) @0.2), B (02 _12> (25)

where o, represents 2 x 2 Pauli spin matrices comprising

(o1 (o —i (1 0
U'T:(l 0>’Uy:<z’ O),@:(g _1>. (2.6)

Since the Dirac equation is only valid for 1-electron systems, the Dirac Hamiltonain has to

be extended to an N-electron Hamiltonain to treat the chemically interesting systems. A
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straightforward way to construct the relativistic N-electron Hamiltonian is to augment the
1-electron Dirac operator, equation 2.4, with a Coulomb or Breit (or its approximate Gaunt)
operator or both as a 2-electron term to yield Dirac-Coulomb (DC) or Dirac-Coulomb-Breit
(DCB) Hamiltonians. 5768

Douglas-Kroll Transformation. In a static potential V', such as that provided by the
clamped nuclei approximation, where the vector potential A is zero, the l-electron Dirac

equation can be written as

\I/L V4 2 . \I/L \I/L
Hp _ + me co-p _ 5 ’ 2.7)
oS co-p V-—mc?) \US gS

where U™ and ¥S are the large and small components and E is the energy of the particle.
The 2-component relativistic approach can be obtained by block-diagonalisation of the Dirac

Hamiltonian with a suitable unitary operator, U, that removes the off-diagonal blocks as

H, 0
UHU =T . 2.8
D ( 0 H) (2.8)

follows:

Consequently, the 2-component equation can be solved as H, ® = E®, which gives the eigen-
values for the electronic solution of the original Dirac equation. Douglas and Kroll® proposed
a procedure to decompose the overall transformation, U, into a sequence of simpler unitary
transformations, U = ...U3U-UUy. The Douglas-Kroll transformation correct to second
order in the external potential has been extensively studied by Hess and co-workers 7! and
has become one of the most familiar quasi-relativistic approaches. The Douglas-Kroll-Hess
(DKH) method is another term frequently used for the DK method in honour of the pioneering

work of Hess. %8

2.2 Assessment of the Results

Method-inherent errors, which are arisen form the approximations invoked through the his-
tory of quantum chemistry, do not allow one to warrant that theoretical results can be assessed
independently of experimental inputs. On the other hand, the apparent lack of experimental
data on the AB, molecules shows that the theoretical output of the present work cannot
be evaluated on the basis of comparison with dependable experimental information. In the
present work, for the diatomic systems, comparison is made between the theoretical results
and the experimental data limitedly available for some of the diatomic systems. For the
triatomic molecules, none of which has been experimentally characterised, absolute accuracy
has been attempted to be evaluated by devising a computational strategy which, with the aim
of self-consistency, undertakes self-assessment. This strategy has provided unique, uniform,
and universal representations of the low-lying electronic states of the ABs molecules using
two sets of potential energy surfaces, a series of structure optimisation calculations, and a

multitude of additional single point calculations. It is therefore fervently hoped that, in the
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light of globally reliable picture of the ABy molecules which is thoroughly assessed, the path
for experimental observation of these molecules has been cleared out. Just like the BeHs
molecule that had been long the subject of theoretical studies (ref. 72 and refs. therein), and

afterwards, it was observed in the gas phase in the work of Bernath et al. in 2002.7

Cornitens concoppticr concecved fhom Meory lo
consonant concofitualiontion concocled foom cxpicriinent
It has long been recognised that a reliable quantitative description of the electronic struc-
ture requires ab initio methods which are capable of sufficiently incorporating electron cor-
relation and relativistic effects. In comparison to main group chemistry, the involvement
of transition metal atoms (A = Sc-Ni) in the molecule will definitely complicate the calcu-
lations due primarily to their d-type open-shell nature. The molecule—built from transi-
tion metal atoms A having electronic configurations 3d™~24s?/3d™ '4s!, where m = 3(Sc)-
10(Ni)—will inherit the open-shell nature in such a way that the complexity of electronic
structure is substantially amplified. This is, firstly, because of the fact that the interaction
of electrons in molecules is more difficult to describe than in atoms; due to the external
field imposed by the bounded atoms, symmetry is degraded and, in turn, the electronic
states split into the corresponding irreducible representations of the resulting low-order point
group. For example, the combination of 4 (10) atomic terms in Hund’s case a (c) leads to
56 (224) I'S (spin-orbit coupled) molecular states which, in point group Cu,, are termed:
SFri@2Sp(2) and SF1i®2Sp(2) — X allelA0lea3y—(3)@31(3)@3A(3)a3e(3)®
Y(3) @ H(3) ®°A3) @ °®(3) @ 'S~ @ TII® A @ "®. Secondly, since the atomic states of
the metal centre mix heavily as the chemical bond is formed, the number of electronic con-
figurations dominating the low-lying wave functions increases dramatically. Thirdly—as this
work will illustrate—the degree of mixing depends on the molecular structures on which the
electronic state exhibits minimum. Thus, globally tried-and-true determination of potential
energy hyper-surfaces requires unbiased flexibility in the configuration mixing and orbital op-
timisation. This is to be achieved in such a way that smoothness of connection between two
arbitrary points on E(z1,x2, x3; 25T (21, 29, 23) being a triple representing 3 degrees of
freedom in a triatomic molecule and 25T1T" being the electronic state under consideration—is
fully guaranteed.
Table 2.1 compiles a list containing some of the programmes which were used in this work

in order to acquire, to process, to visualise, to analyse, and to interpret the theoretical data.

2.3 Computations: Douglas-Kroll-Hess Framework

Scalar relativistic effects were taken into account by means of the Douglas-Kroll-Hess (DKH)
method. %™ The all-electron valence quadruple-¢ Gaussian basis sets (dubbed def2-QZVPP)
were employed for the 3d metal atoms Sc-Cu.®” The segmented all-electron relativistically

contracted (SARC) Gaussian basis sets, again of valence quadruple- quality, were used for
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Table 2.1: List of main programmes used in this work

programme task diatomic® triatomic reference
MOLPRO  ab initio v v 74,75
ORCA ab initio v X 76,77
DIRAC relativistic ab initio v X 78
LEVEL spectroscopic constants v X 79
Gnuplot potential energy surfaces X v -

Veusz potential energy curves v X -

LaTeX typesetting v v -

@ Marks (vand X) indicate whether the programme was used or not.

Ag and Au.®! Guided by the previous work on the heteronuclear diatomic molecules,*” 49

the Au basis set was augmented with two g functions taken from the def2-QZVPP basis. "
However, it was ascertained that augmenting the Ag basis does not improve the accuracy of
the results with respect to the experiment.*”*® Even though the Ag basis might convey an
impression of being ”small”,* noticeable improvement was not witnessed with addition of f

and g functions. Hence, the generally contracted basis sets finally used comprise

s p d f g s p d f g
Sc-Cr 24 18 9 3 2 1 6 5 3 2
Mn-Cu| 24 18 10 4 2 11 6 5 4 2
Ag 19 14 9 - - ” 12 9 5 - -
Au 22 15 11 6 2 17 11 8 2 2

For the ground state of NiCu, a sequence of aug-cc-pVnZ-DK basis sets (n = T, Q, and 5)
was used to estimate the complete basis set (CBS) limit by extrapolation of total energies
via the formula E,(r) = Ecps(r) + A(r)e= ™D 4+ B(r)e= =D where r is the internuclear
distance, Fcpg is the energy when basis set approaches completeness, and A and B—both
depending on r—are the unknowns. %2

In order to incorporate both static and dynamic electron correlation at the scalar rel-
ativistic level of theory, complete active space self-consistent field followed by multirefer-
ence configuration interaction were employed—CASSCF + 1 4+ 2 = MRCI. As zeroth-order
ansatz, a wave function of CASSCF type was used where the orbitals 3d4s(A) + ks(B),
k=4(Cu), 5(Ag), 6(Au) were included in the correlation treatment. Wave functions for the
terms arising from the lowest asymptotes A(*S*1L) + nB(2S), n = 1,2, were calculated us-
ing the state-averaged CASSCF (SA-CASSCF) method.® % Therefore, the outer-valence
orbitals were correlated, and the filled and highly contracted inner-valence orbitals—i.e.,

the molecular counterparts of the d orbitals of the B atoms—were, in most cases, con-

*Although the relative size of basis sets is typically a heated debate among authors and peer-reviewers,
whence many are idling to justify whether a basis is big or small, ”So long as big and small are merely relative
concepts, it is no help to explain the big in terms of the small. It is therefore necessary to modify classical
ideas in such a way as to give an absolute meaning to size.” P.A.M Dirac in ref. 50.
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strained to be doubly occupied. For NiCu, for instance, the molecular counterparts of the
3d4s (Ni) and 4s (Cu) orbitals were chosen yielding CAS(11,7). All states having dou-
blet spin multiplicity, i.e., 2A&) A = £t %~ I, A, ®, ..., and dissociating to the first six
separated atom limits at the CASSCF level (not the experimentally lowest limits), i.e.,
Ni 3d%s’CPF @ 'D @ 3P @ 'GQ) + Cu 4s'(3S) and Ni 3d%4s'(®D @ 'D) + Cu 4s'(®S),
were computed. The orbitals thus obtained were utilised for the CASSCF calculations of the
quartet states, and for the subsequent MRCI jobs.

h,8788 as implemented in MOL-

The internally contracted variant of the MRCI approac
PRO, and the individually selecting MRCI procedure,®® as implemented in ORCA, were
cooperatively employed in order to study the low-lying electronic states of the set of di-
atomic molecules AB (A = Sc-Ni, B = Cu/Ag/Au). The molecules TiCu, TiAg, VCu,
VAg, CrCu, CrAg, MnCu, MnAg, FeCu, FeAg, CoCu, CoAg, and NiAu were studied using
the individually selecting MRCI, while the molecules ScB, TiAu, VAu, CrAu, MnAu, FeAu,
CoAu, NiCu, and NiAg were investigated using the internally contracted MRCI. All of the
triatomic molecules were treated with the internally contracted MRCI. These are written
here as MRCI[(m/+m")E,(n/+n”)O]; where / denotes the involvement of electron or orbital
at the CAS reference wave functions while /7 denotes the involvement of electron or orbital at
the MRCI promotions. For NiCu, MRCI[(10+11)E,(5+7)0O] means that the d (Cu) orbitals
were correlated at the MRCI level whereas the d(Ni) +s(Ni) 4+ s(Cu) orbitals were taken into
account in the reference as well as the MRCI promotions. The simplest and most widely
used correction to the MRCI energy, i.e., the Davidson method, was used to partly rectify

the size-consistency errors. %’

For the diatomic molecules, the outer-core correlation effects on the ground state spec-
troscopic constants were investigated (cMRCI). The orbitals which were included in the
MRCI excitations consist of 3s3p3s3p (ACu), 3s3pdsdp (AAg), 3p5p (TiAu and VAu), and
3s3p5shp4f (the rest of AAu molecules). For the 3A state (3A; state) of VAu, the MRCI
expansions contain approximately 5.5 x 108 for the [(10+6)E,(5+8)0] space and 22.5 x 105
contracted configurations for the [(22+6)E,(11+8)O] space. For the ab initio calculations
it was highly favourable to employ full symmetry (Ciooy, Doop) for linear species (diatomic
molecules and linear triatomic structures). The quantum chemical tools which were used,
however, are limited to abelian point groups (Dsgj, and its subgroups). There, nevertheless,
exists some tools in which the symmetry is fully utilised; the diatomic problem of Ti, was
addressed in an MRCI study (ref. 90) where the D, symmetry was utilised in the calcula-

tions.

Spin-orbit matrix?! was diagonalised in the basis of SA-CASSCF or MRCI wave functions.
The diagonal elements of the resulting Hamiltonian were replaced by the Davidson corrected
DKH-MRCI energies. In addition to the DKH-MRCI-(SO) level, where spin-orbit coupling
was calculated a posteriori, an independent relativistic method was employed for the atoms
and diatomic molecules ACu in order to assess the reliability of the scalar results. Despite the

fact that relativistic effects are expected to be larger for silver- and gold-containing molecules
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attempts to relativistically describe these systems were not successful, primarily due to the

expensive calculations.

2.4 Computations: Exact 2-Component Framework

In the exact 2-component (X2C) calculations, the uncontracted triple-¢ basis sets (dyall-
v3z) were used for the atomic calculations except Au. For the gold atom and the diatomic
molecules ACu, due to the expensiveness, the size of basis sets was reduced even further;

namely, dyall-v2z. The large components of dyall-v3z consist of

s p d f
Sc 23 16 9 4
Ti-Cul 23 16 9 3
Ag 28 20 13 3

NN N OR

and the large components of dyall-v2z consist of (15s11p6d2f) for Sc, Ti, V, Fe, Co, Ni, Cu,
and (24s19p12d9f) for Au.9%9°

The molecular spinors were optimised using the average-of-configuration Dirac-Hartree-
Fock (AC-DHF).? For the atomic calculations, m valence electrons, 3 < m < 11, were
allotted among six Kramers pairs originating from (k—1)d+#ks; written here as AC-DHF(m|6).
The Kramers-restricted configuration interaction (KRCI) approach?” was employed on top.
In the case of ScCu, for example, the generalised active space (GAS) was subdivided into
three parts; SD10E(4in7)SD20KPs. Within the inner-valence spinors (dcy) two holes were
allowed. In (4in7), four electrons were distributed among 3dg.4ss. and 4scy,. And, the virtual

space—SD20KPs—consisted of 20 Kramers pairs to which excitations took place.






Chapter 3

Results

This work has constructed a plethora of potential energy curves, surfaces, and hyper-surfaces

for low-lying electronic states of the molecules AB,, correlating to the separated atom limits
A(3d™2452 /3d™ 148! PSHIL) 4 nB|(k — 1)d'0ks! 28],

where A = Sc-Ni, B = Cu/Ag/Au, n =1 or 2, 2S + 1 ranges from 1 to 7, L is either S, or D,
or F, m = 3(Sc)-10(Ni), and k£ = 4(Cu), 5(Ag), or 6(Au).

The first part of this chapter is devoted to the diatomic molecules AB, and the second part
is devoted to the triatomic molecules AB5. Since the number of electronic states considered
in the present project is truly immense, the in detail discussion is, unfortunately, limited to
some selected systems; the electronic structures of the diatomic molecule FeCu and of the
triatomic molecule ScCus are discussed individually. The isovalent species—FeAg, FeAu,
ScAgy, and ScAus—are very briefly touched at the appropriate places. Some illustrative
comments on CrB, CoB, NiB, TiBsy, VBsy, and CrBy are also made. Attentive reader is
recommended to peer at the appendices for a complete survey. The selection is, nevertheless,
carefully made in order that the fascinating physics of the triatomic molecules ABs, and of

course the atomic and diatomic constituents, are unveiled within an integrated body.

3.1 The Diatomic Molecules AB

3.1.1 Overview

In what follows the previous scrutiny on the diatomic molecules AB is given. Then, tabular
and graphical collections which are presented in the appendices are introduced.

198112 11137115 investigations have been reported for

Several experimenta and theoretica
some of the diatomic molecules AB (A = Sc-Ni, B = Cu/Ag/Au) and their ions. The
experimental dissociation energies of homo- and heteronuclear diatomic molecules built from
transition metal atoms were discussed in a review.?® The diatomic molecules XAu (X =

Ni,Co,Fe) were shown to exist in the vapour phase over liquid solutions of gold and transition
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metals at temperatures above 1800 K.?? Gaseous VAu was observed by high-temperature
mass spectrometry and its dissociation energy was determined. %% The CrCu molecule was,

103105 Tpitially, CrCu was formed in a krypton matrix at 4 K and

however, quite challenging.
it was indicated that the molecule has a ground state of 5% symmetry.'% Shortly afterwards,
an erratum was added in which the authors drew the conclusion that CrCu most probably

104

has an 8% ground state term. '°* Then, two years later, CrCu, CrAg, and CrAu were observed

in solid rare-gas matrices at 4 K and a 4% ground state was assigned to CrCu.!'%

The MnAg molecule was trapped in rare-gas matrices at 4 K, and, using electron spin

101

resonance spectroscopy, a 'Y ground state term was determined. %" The dissociation energy

of MnAu was measured using mass spectrometric studies. By analogy with the MnH hydride,

102 Resonant two-photon ionisation spec-

a 'Y ground state term was assumed also for MnAu.
troscopy was applied, firstly, to identify six band systems of NiCu and to determine the ground
state (X245 /2),106 and then, subsequently, to analyse and rotationally resolve a total of nine
band systems connecting the 3d 3d10 2 2A ground state to the 3d8Ni3d%£1020*1 manifold
of states.!?” Having obtained detailed spectroscopic analysis of NiCu in refs. 106 and 107,
the authors developed a ligand-field theory for transition metal diatomic molecules having
electronic conﬁguratlons of d%d¥We?, d%d%e?, and d5(3°F)d}o?0*l. Applying their model
to the d%ld o2 manifold of states in NiCu and to other systems, they demonstrated that
their ligand-field model* has some validity for diatomic molecules containing nickel. !%® Using
dispersed fluorescence, low-lying electronic terms of NiCu were investigated and four out of
the five terms from the 3d9N13d}301102 manifold were observed. % Spectroscopic investigations
showed that NiAu possesses a 2Aj /2 ground state term, and is in this respect analogous to the
isovalent molecule NiCu.''? A further dispersed fluorescence study provided spectroscopic in-
formation about the ground and low-lying excited terms of NiAu.!'' On the theoretical side,
full potential energy curves were obtained for the ground and low-lying terms of CrCu using

the multireference configuration interaction approach.!'?

Table B.2—containing 5 pages and being compiled in the appendices—Ilists a multitude
of energy levels of the metal atoms A and B together with the theoretical errors associated
with various levels of theory employed in the present work. Necessary group theoretical
analyses to switch from atomic terms to molecular terms and from (A,S) representation to 2
representation are given in tables B.3 (ScB), B.4 (TiB), B.5 (VB), B.6 (CrB), B.7 (MnB),
B.8 (FeB), B.9 (CoB), and B.10 (NiB).

Figures B.3 and B.4 display the potential energy curves for the ground and low-lying (A,S)
states of the diatomic molecules AB obtained at the DKH-CASSCF and DKH-MRCI(+Q)
levels of theory. Notice that, except for NiAu, the inner-valence orbitals, i.e., the d orbitals
of the B atoms, were not correlated at the DKH-CASSCEF level. These potential curves have
allowed to detail the spectroscopic information associated with the AS terms. The spectro-

scopic constants—including equilibrium internuclear distance (r.), harmonic frequency (w.),

*Further evidence will be accumulated in this study that this model holds also for the ground states of
the diatomic molecules AB.
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first anharmonicity constant (wez. ), dissociation energy (D.), dipole moment (i), and main
configuration weight (MCW)—were extracted from the DKH-MRCI(+Q) potential energy
curves and are gathered in tables B.11 (ScCu), B.12 (ScAg), B.13 (ScAu), B.14 (TiCu), B.15
(TiAg), B.16 (TiAu), B.17 (VCu), B.18 (VAg), B.19 (VAu), B.20 (CrCu), B.21 (CrAg), B.22
(CrAu), B.23 (MnCu), B.24 (MnAg), B.25 (MnAu), B.26 (FeCu), B.27 (FeAg), B.28 (FeAu),
B.29 (CoCu), B.30 (CoAg), B.31 (CoAu), B.32 (NiCu), B.33 (NiAg), and B.34 (NiAu). The
preliminary stage towards the current project on the AB, molecules was passed through
by elaborately describing the ground and low-lying excited states of (in chronological order)
AgAu, CuAg, and CuAu. The theoretical characterisation thereof provided a couple of small
pieces enriching the experimental authoritative masterpiece written on the perplexing puzzle
of the electronic structure of these species by Bishea and co-workers. 46116117 Heteronuclear
coinage metal diatomic molecules possess a closed-shell ground state of '+ symmetry that is
relatively simple. The ground state properties have been therefore reported in many studies.
In the excited states, however, the electronic structure becomes complicated due mainly to
the involvement of open-shell D-type states. Reliable theoretical description of the excited
states requires one to understand the difficulties arisen from the open-shell nature that was
briefly reviewed in the previous chapter. Furthermore, relativity and the large spin-orbit
splitting of the 2D term of gold causes special issues that need to be generally considered.
This work, at this point, reminds itself of the key findings on these compounds, in both AS
and ) representations. For more details see refs. 47 (AgAu), 48 (CuAg), and 49 (CuAu).

3.1.2 The Diatomic Molecules BB’

The B atoms. The coinage metal atoms B (Cu,Ag,Au) uniformly possess a 2S ground state
term that derives from the electronic configuration (k — 1)d!%ks!. In the absence of spin-
orbit coupling, the experimental separation energies for the transitions (k — 1)d%ks? 2D <«
(k—1)d'%ks! 2S are 1.49 eV (Cu), 3.97 eV (Ag), and 1.74 eV for Au (J-averaged energies). For
the transitions (k — 1)d'%kp! 2P° « (k — 1)d!%ks! 2S, the separation energies (see figure B.2)
are 3.81 eV (Cu), 3.74 eV (Ag), and 4.95 eV (Au).!!® Notice, firstly, that in the case of Ag, the
excited state 2P°(4d'%5p!) lies below 2D(4d%s!): E(?P°) = 3.74 eV and E(*D) = 3.97 eV.
From this one may assume that the electronic intricacy in silver containing systems (AAg;,)
is substantially less than the electronic intricacy in copper and gold homologs. Moreover,
concerning the Au atom, one important point that one must bear in mind is that the 5s and
5p electrons are in the same region of space as the 5d electrons (ref. 119). Therefore, in
addition to the valence 5d6s orbitals, the 5s5p orbitals should be included in the correlation
treatment.* The differential 5p-5d correlation was shown to decrease the 2D < 2S separation
energy. 120121 Secondly, in the case of the third-row transition metal atoms (including Au) the
J-averaging method is considered to be rather controversial. However, because the LS terms
5d1%6s! 2S (E = 0), 5d%6s% 2D (Ejave. = 1.74 eV), and 5d'%6p! 2P (E aye = 4.95 €V) are

energetically well separated from each other as compared to the spin-orbit splittings—i.e.,

*This argument has also some validity, but to a much lesser extent, in Cu (3s,3p,3d) and Ag (4s,4p,4d).
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1.52 eV for 2D : J' = 3/2 « J"” = 5/2 and 0.47 eV for ?P° : J' = 3/2 + J" = 1/2—the
J-averaging approximation might still be of some validity for the Au atom. On the other
hand, for the Ni atom, the ®D and ®F terms are much close to each other (AE = 0.03 eV)
than their individual spin-orbit splittings, i.e., 0.19 eV for ?D : J' = 1 + J” = 3 and 0.27 eV
for 3F : J' =2 ¢ J" =4.118

BB’. As compared with the homonuclear diatomic molecules (Cuz/Ags/Aus), there
has been experimentally little attention on heteronuclear molecules; especially because of
difficulties in their synthesis. As zeroth-order ansatz, a wave function of CASSCF type was
uniformly used, constructed by allotting 22 valence electrons to a total of 12 molecular orbitals
transforming as the set of (k—1)dg®ksp® (k—1)dp @ ksp: atomic orbitals at the separated
atom limit. The inclusion of merely s and d orbitals is an optimal choice which simultaneously
allows feasibility and acceptability. The CASSCF wave functions for 8 (44) electronic terms
of CuAg and AgAu (CuAu), arising from the interactions B(2S) + B'(2S) — 13X B(2S) +
B'(?’D) — 3{StelaA}B(2D)+B'(?D) — 3{S+3)ox-(2)ell(4) 2 A3) 2 ®(2)eT'}
were taken into consideration. Based on the DKH-MRCI(+Q) calculations, BB’ possesses a
X'¥+(X0%) ground state which is dominated by the configuration [¢1y,+) = |[d¥d L) so2s5*0) .
This notation suggests that the d orbitals of both parental atoms do not contribute to the
bonding and remain in the nature of atomic orbitals. The ground state ket can also be
written in the form [¢h1y+) = |do?dn*ds*dé**dr**do*2so?s6*) . This notation indicates that
the AS excitations from the d-type orbitals to sc* will follow the same trend as that of the
molecular orbitals. This is confirmed by the energy ordering obtained: 233+ < 1311 < 13A.

Nevertheless, due to multireference character, a different order is seen for singlet states.

At the DKH-MRCI(4Q) level, the X!+ ground state dissociates to B(2S) + B’(?S) with
D, of 1.65 eV (ref. 48), 2.05 eV (ref. 47), and 2.24 eV (ref. 49) for CuAg, AgAu, and CuAu,
respectively. As intuitively expected for the hydrogen-like systems, the ground state bonding
(so orbital) arises mainly from the overlap of the s atomic orbitals. The bonding molecular
orbital of BB’ is of o symmetry; at r = r. the o molecular orbital consists of s(B) +d,2(B)+
s(B') +d,2(B’) and at r — oo the o orbital corresponds to s(B) +s(B’). Spin-orbit coupling
has practically no influence on the X'S* ground state of BB’. This can be explained,
first, by the closed-shell character of X'X*. Second, the ground state is not asymptotically
influenced by spin-orbit coupling, because it correlates to B(QSI/Q) + B’(Qsl/z). For excited
states, however, spin-orbit coupling can affect the spectroscopic constants substantially. The
excited states of the coinage metal dimers with Q' = 0T all tend to have some ion-pair

character. This character derives from the separated ion limit
B* [(k ~1)d10ks” 13} + B~ [(k ~1)d10%s? 18],

from which only one 0% state arises. The transition from the X0" ground state to the 0T
ion-pair state is a charge transfer transition and should be extremely intense. The ion-pair 0™

state experiences a long-range Coulomb attraction that will certainly pull it into the energy
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subspace considered in this project. However, at and around r., the 0" states arisen from
the ion-pair and the valence separated atom limts mix heavily resulting in polarised orbitals

whose appearance would differ fundamentally from the atomic orbitals at r — oo.

AgAu. The spectroscopic constants of the X'¥F ground state* were calculated to be r, =
2.56 A, w. = 183.0 cm™!, weze = 0.56 cm™', and D, = 2.05 eV. The vibrational constants
show fair agreement with the experimental values: w!” = 198.22 4+ 0.11 em™! and wez!? =
0.51240.002 cm ™! (refs. 116,122).%7 The spin-orbit eigenstates, arising from the interactions
Ag(*S1/2) + Au(®Sy/2), Ag(®S1/2) + Au(®Ds5), and Ag(*S;/2) + Au(*Dj5) were calculated
via diagonalisation of the Breit-Pauli Hamiltonian matrix represented in the basis of the
AS wave functions. On the basis of the eigenstates—which are linear combinations of the
unperturbed AS states (configurations)—the excited A0" and B1 states are composed mainly
of '¥%(64%) and 11(48%) configurations. Therefore, in accordance with the selection rules
in the standard AS coupling notation®? (X+ <+ ¥+ | ¥+ « I | AS = 0), within the energy
range of interest the A0™ and B1 levels can be excited via electric dipole transitions, while
most of the other transitions in this range are electric-dipole forbidden and cannot be readily
observed. The associated spectroscopic constants were obtained with fair accuracy at the
DKH-MRCI(Q)-SO level of theory. For the A0T state they were calculated as (experimental
values in parentheses): we = 100(115.7) em™!, were = 0.71(0.74) cm~!. For the B1 state
We = 75.5(92.6) cm ™1, wexe = 0.92(1.06) cm 1. 4716122 The A0+ state shows a multireference
character with two dominant configurations involving the promotions so* < do*; 137 (64%)
and so* < dn*; 3II(16%). Since, upon inclusion of spin-orbit coupling, the 3II state splits to
the 0%, 07, 1, and 2 components, and the !X+ state splits to 07, the experimental assignment
of 2 = 0T for the A state is exquisitely confirmed. It is interesting to perceptively observe
how spin-orbit coupling influences wex, and D, for the A0T state. The degree of spin-
orbit stabilisation is shown to vary as a function of the internuclear separation. The greater
stabilisation at the separated atom limit relative to the equilibrium position decreases the
well depth, leading to a larger anharmonicity and smaller dissociation energy for the A0
state as compared to the parental A'X+ state.

CuAg. This diatomic molecule was the second one that was extensively investigated. In
addition to the 13{XT(2)II@ A} states, deriving from Cu(2S)+Ag(?S) and Cu(?D)+Ag(%9),
a 'Y7T state was initially found to lie low in energy showing significant contribution from
the CutAg~ ion-pair state. The strongest evidence that the X7 (07) state of CuAg is

*It should be stressed that there has been no experimental measurement for the ground state bond length
of AgAu, which might be simplistically dubbed as ”a simple” or ”a well-known” diatomic molecule. In
general, the electronic structure of a diatomic molecule depends on the energy levels, the spin, and the
spatial symmetries (in the LS scheme) of the constituent atoms. Without having gained adequate insight into
the situation at separated atom limits, it is impossible to provide global survey of the low-lying molecular
states. Ha, Ca, Pta, and Uz are all ”just” diatomic molecules. Reliable theoretical elucidation of electronic
structure—e.g., determination of full AS and 2 potential energy curves and the assessment of the absolute
accuracy—in the latter cases is predicted to be far beyond what standard tools nowadays can handle. It can
be therefore asserted that, despite highly developed modern software, before studying the molecular properties
of diuranium the atomic situation should be known. In a same manner, the electronic states of d- and f- block
diatomic molecules need be thoroughly described prior to the study of larger clusters.
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dominated by the ion-pair CutAg™ is the close correspondence of the potential energy curve
of the CuAg 'YX (0%) state with the ion-pair curve of the CutAg~ '3 (07) state obtained
from the —e?/r attractive potential. Furthermore, the dipole moment and the wave function
composition of the CuAg 'Y (01) state were both suggestive of considerable mixing with
CutAg~ (for further details see ref. 48). Scalar relativistic effects were also probed for
CuAg. Thus, potential energy curves at three levels of theory were calculated: MRCI(4+Q),
DKH-MRCI(+Q), and DKH-MRCI+(SO). Scalar relativistic effects are shown to increase the
binding strengths for the excited states; for example for the 3II state w(rel.) — we(nonrel.) =
25.4 cm~! and D, (rel.)— D, (nonrel.) = 0.16 eV. Furthermore, they stabilise the excited states
2!+ and 'II by 0.32 eV and 0.60 eV. This is due to the well-known relativistic stabilisation
of the ns orbitals and the relativistic destabilisation of the (n — 1)d orbitals.*®

CuAu. For the ground state, at the DKH-MRCI (DKH-cMRCI) level, the spectroscopic
constants are r, = 2.35 A(2.34 A) and D, = 2.24 eV(2.32 eV) with the Davidson correction
included. Comparison with available experimental data—i.e., ro = 2.3302 & 0.0006 A and
DY = 2.341 4 0.095 eV—reveals that the AS results are already in good agreement with
experiment. The X't ground state has a dipole moment that is oppositely oriented to
the one found for the 3%+ state: u(X'E+,r.) = —2.56 D corresponding to tCu-Au’~ and
u(3'2F, 7)) = 40.12 D corresponding to °~Cu-Au’*. Hence, the 3'%+ « X!'%F transi-
tion has a large charge transfer nature and should be very intense. The oscillator strength
calculated for this electronic transition is f=0.17.49

To summarise, complementing experimental data, affluent characterisation of the ground
(X0T) and low-lying exited states of the diatomic molecules BB’ (B = B’ = Cu/Ag/Au),
with and without considering relativistic effects (scalar effects and spin-orbit coupling), has
been given in refs. 47 (AgAu), 48 (CuAg), and 49 (CuAu). At the AS DKH-MRCI(+Q) level
of theory, the theoretical results on the 'A(+) excited states did not come to agreement with
experimental data. In the presence of spin-orbit coupling, however, not only the experimental
data were accurately reproduced, but also some tentative arguments on the excited states
were verified. Having succeeded® in accurately describing the S- and D-type states of the
BB’ molecules, this work is encouraged to go on. The next aim is to conduct a systematic
study of real transition metal molecules whose ground state cannot be easily distinguished

in terms of energy from the excited states.

3.1.3 The Diatomic Molecules FeB

FeCu. The Fe atom possess a °D ground state term which derives from the 3d%4s? electronic
configuration. The excited terms °F and 3F both arise from the configuration 3d”4s' and lie
at 0.87 eV and 1.49 eV (J-averaged energies).!'® Table B.2 shows that the energy ordering

*Note that the definition of ”success” is, here, based on classical ideas comprising of reproduction of
experimental data. In subsection 3.2.2, this work, lacking of experimental data on ScCuz and needing for
assessment of the results, gives an absolute meaning to ”success”. There, ”success” is not reproducing the
experimental data, but invariance of a property regardless of changes in the conditions of quantum chemical
calculation.
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of °D < 5F < 3F can be reproduced at the DKH-CASSCF(8E,60) level of theory; E(°F) =
0.49 eV and E(®F) = 1.32 eV. The Cu atom, on the other hand, exhibits a 2S ground
term which arises from the 3d'%4s! configuration. The DKH-CAS(11E,60) calculations,
incorrectly, yield a lowest state of 2D symmetry for Cu. Thus, the atomic results indicate that
for the FeCu molecule undertaking a CAS space of (9E,70)—i.e., correlating the 3d4s orbitals
of Fe and the 4s orbital of Cu—will lead to a lowest separated atom limit of Fe(°D) + Cu(2S).
However, adding the 3d orbitals of Cu preferentially stabilises the Cu 2D state such that the
lowest separated atom limit becomes Fe(?D) + Cu(?D).

For transition metal compounds nothing can guarantee that the ground state will neces-
sarily correlate to the ground state separated atom limit, i.e., where the constituent atoms are
in their lowest level. In fact, according to recent findings on the iron diatomic molecules TiFe
(ref. 123) and Fey (ref. 124), one expects the °Fp.-type molecular states to play important
role in the depiction of the low-energy electronic structure of the FeB molecules. Thus, for
the calculations on FeCu, the LS terms °D (Fe), °F (Fe), and 2S (Cu) have been considered.
The interaction of Fe(°D) + Cu(?S) and Fe(°F) + Cu(?S), in accordance with the Wigner-
Witmer rules, '?® gives rise to the AS molecular terms “*%{>+ @& £~ @ TI(2) © A(2) @ ®} (see
table B.8). These, after inclusion of spin-orbit coupling, lead to the Q terms $(19), 3(16),
5(12), 1(8), 3(4), L.

The AS potential energy curves for the ground and low-lying excited states of FeCu, based
on the DKH scalar relativistic approach obtained at the CASSCF and MRCI levels of theory,
are displayed in figures B.3 and B.4. The potential curves were calculated in a pointwise
manner by performing single point calculations for 45 internuclear distances in the range
from 1.80 A to 8.00 A. Although the CASSCF and MRCI curves differ markedly from each
other, they both imply that (a) the lowest (but not the most bound) state of FeCu is X®A
which is energetically so close to the excited states, (b) the quartet states arisen from the
second separated atom limit Fe(°F) + Cu(%S) are substantially more bound than all of the
states arisen from the lowest limit Fe(°D) + Cu(2S), and (c) the sextet states arisen from the

second limit are repulsive or at most only very weakly bound.

To quantitatively describe the electronic structure of FeCu, spectroscopic constants were
extracted from the potential energy curves and are compiled in table B.26. The XA ground
state of FeCu arises from the open-shell configuration di? so? so*! d6** d7*? do**(88%) and
minor contributions from excited configurations. At the DKH-MRCI[(10+9)E,(5+7)0] level,
the ground state X6A corresponds to the molecular properties r, = 2.44 A, w, = 193.6 cm™!,
WeZe = 1.90 cm™!, D, = 0.67 eV, and p = 2.24 D. Correlating the molecular counterparts
of the 3s3p orbitals in both atoms—i.e., DKH-MRCI[(26+9)E,(1347)O], one obtains r, =
2.48 A and D, = 0.58 eV. Therefore, for the FeCu X®A ground state, correlation effects
elongate the bond length (r.) by 0.04 A and decrease the binding strength (D,) by 0.09 eV.

The first excited state of FeCu is computed to be of *A symmetry and to lie above
XOA with an electronic energy (7%.) of 0.04 eV. The FeCu 1*A state has a slightly shorter

equilibrium bond length of 2.39 A, a larger harmonic frequency of 209.4 cm~!, and a smaller
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dissociation energy of 0.63 eV, as compared to the ground state. The FeCu 1*A state is more
multireference in character than the X®A ground state and is dominated by the configurations
Al so?so*? do*3 dn*? (51%) and Al so?so*! do*3dr*? do*! (33%). The electronic energies
of the excited states 1°TI, 6%, and 1*II-—all of which dissociate to Fe(?D) + Cu(2S)—are
obtained to be 0.07 eV, 0.08 eV, and 0.10 eV, respectively. One should note, however, that
the electronic energies for the lowest 4 excited states are smaller than the norm of error in
separation energy for the °F < °D transition of iron atom at the DKH-MRCI(+Q) level of
theory, i.e., || Eret — Ecalc|| = 0.10 €V (see table B.2).

The X~ state of FeCu is calculated to lie 0.25 eV above X%A and to correlate with
Fe(°F) + Cu(%S). Hence, it has the largest D, and w, among the (A,S) states which were
considered; D, = 1.39 eV and w, = 229.6 cm~!. In view of the configurations dominating the
wave functions—where the spin of electrons is singled out from the spatial coordinates—one
can, with many question marks and from a naive point of view, justify the stronger chemical
bond of 4X~ relativie to X%A in such a way as to comply with “the simple* picture that
chemists carry in their heads”.?® The singly bonded X6A state (vide supra and figure B.12)
has one molecular orbital of ¢ symmetry that is fully occupied, while the ¥~ state—primarily
associated with the d{), sa? so*! d0*2dr** (66%) triply bonded configuration—has molecular
orbitals of o and 7w symmetries being completely filled. According to selection rules in the
standard AS-coupling notation, electronic transitions from the X®A ground state to 1°1I,
to 26A, and to 2611 are allowed. It is, however, well-known that spin-orbit coupling causes,
firstly, splitting of multiplet electronic states which is usually accompanied by (slight) energy
stabilisation which is due to the level shift (AE) experienced by the lowest component of the
ground state X25T1A®)(X() through the interaction with some excited 25+ A(F) state (ref.
126)
| <QS/+1A,(i)(XQ)‘ Hso |XZS+1A(j:)(XQ)> 2

25414 (4) () — _
AB(XBHA® 0 = Xq) = [E(SHIA®) — B(XSHA®D)]

Secondly, spin-orbit coupling yields symmetry-allowed mixing between states with different
spin-space symmetries, destroying the validity of S as a good quantum number.

The spin-orbit matrix was diagonalised in the basis of 14 25t1A() wave functions and
yielded 60  states in Hund’s case (c),'?” 40 of which lie low in energy and are shown
in figure B.5. The lowest ) term is predicted to be 2 = % which lies 0.05 eV below the
parental X6A state. The ground state symmetry of Ao, obtained at the DKH-MRCI+(SO)
level of theory, is in agreement with = % for the g?round state of FeCu from the X2C-
KRCI calculations (see table B.35). Table B.8 shows that, among the spin-orbit components
of °D—i.e., J = 4,3,2,1,0—Fe(°Dy) + Cu(zsl/g) is the only asymptote to which the X%
ground state can correlate. One should note that, sometimes, the spin-orbit eigenstates are
contaminated through minor contributions from intruder states. For example, the third term
of 2 = % symmetry is dominated by the 1°II state with a weight of 88%. This Q = % term lies

above the ground ) = % term with vertical excitation energies of 0.10 eV and is contaminated

“or simplistic
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with the involvement of %%, As can be seen from table B.8, the X% term can only give rise
to the components 2 = 1 or 3 or 3 (and not Q = 7).

FeAg and FeAu. For FeCu and FeAg, all of the 14 (A,S) states correlating to the
separated atom limits Fe(’D) + B(2S) and Fe(°F) + B(2S) were included in the calculations.
In the case of FeAu, however, only the lowest limit Fe(°D) + Au(?S) was considered. Tables
B.26, B.27, and B.28 show that the FeB molecules uniformly possess a ground state of 5A
symmetry. As it can be seen from figure B.4, the second asymptote Fe(°F) + B(2S) gives
rise to two sets of electronic states: the *A and ®A states, where A = X7, II, A, . As
the internuclear distance decreases from asymptotic values, e.g., r < 5 A, the cluster of
quartet states becomes energetically separated from the cluster of sextet states, with the
former being considerably lowered in energy. By analogy with the systems Fe(°F) 4+ Cu(?S)
and Fe(°F) + Ag(?S), it is predicted that the Fe(°F) + Au(?S) system will lead to quartet
states which are strongly bound as compared to the sextets. The sextet states deriving from
Fe(°F) + Cu(?S) are bound to a much lesser extent than those from Fe(°F) + Ag(2S); at the
DKH-MRCI(+Q) level, for the 26A state D, = 0.04 eV (FeCu) and D, = 0.21 eV (FeAg).
It should be emphasised that the FeB *A states correlating to Fe(3d"4s! °F) + B(ks! 2S) are
more bound than all of the quartet and sextet states resulting from Fe(3d%4s? °D)+ B(ks! 29).
In the light of the DKH-MRCI(+Q) results on FeCu and FeAg, one can write

De[FeB(XOA)]

Do[FeB(ix )] = V%

If this relation can be generalised to FeAu, the FeAu #X~ state dissociating to Fe(°F)+Au(29)
should have D, ~ 3.7 eV. This means that, considering the relation T,(°A « 4%7) =
D.(*27) — D.(°A) — T.(°F < °D), the FeAu *X~ state should lic ~ 1 eV below the 5A,
which, in this work, is assigned as the ground state of FeAu.

It is interesting to examine the A states originating from Fe(°D) 4+ B(?S) and the *A
states originating from Fe(°F) + B(2S), B = Cu/Ag. As the internuclear distance decreases
and as the quartet states arisen from Fe(°D) + B(?S) become energetically separated from
each other, the 11T and 1*A states descend much further in energy than 4¥*; e.g., for FeCu,
at the DKH-MRCI(4Q) level, the electronic energies are T.(1*A) = 0.04 eV, T,(1*I) =
0.10 eV, and T.(*$) = 0.34 eV. The rationale is that the quartet states (*A) originating
from Fe(°F) + B(2S) are strongly bound; i.e., D.[FeB(*A)] is calculated to be in the range
from 1.11 eV to 1.48 eV. The descent of the quartet states from the second asymptote
profoundly influences the quartet states resulting from the first asymptote, provided that
the space symmetry of the quartet states is similar. Because of the repulsive interactions
1*A & 2*A  and 1% < 241, the 1*A and 1*II states come to lie below *E7, for which
there are no states of same space symmetry descending from Fe(°F) + B(2S).

The energy ordering of the electronic states in FeCu and FeAg, based on the DKH-
MRCI(4+Q) calculations, is X0A < 1A < 11T < 6%+ < 141 < 127 < 1@ < 19t <
2411 < 2*A. The highest state of this sequence, 2*A, corresponds to T, = 0.53 eV (FeCu)
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and 0.50 eV (FeAg). Theoretical results indicate that the electronic states of FeAu fall in
the energetic order X6A < OII < 6%+ < 4A < 41 < 4SH(T, = 0.79 eV). At the DKH-
MRCI(+Q) level, the ground state dissociation energies of FeB are 0.67 eV (FeCu), 0.77 eV
(FeAg), and 1.86 ¢V (FeAu), respectively. From FeCu to FeAg, the ground state D, is slightly
increased by 15 % while from FeAg to FeAu it shows a drastic increase of 142 %. For the
FeCu and FeAg molecules outer-core correlation effects decrease D.(X%A) by 0.09 eV and
0.18 eV, and for FeAu they increase D.(X%A) by 0.13 eV. The experimental dissociation
energy of FeAu, obtained from the Knudsen mass spectrometric method, is available: DY =
1.95+0.22 €V.? Since no electronic term is experimentally assigned, it is presumed that the
reported value corresponds to the ground state. The experimental value of D8 agrees well
with the theoretical dissociation energy D.[FeAu(X%A)] = 1.86 eV and 1.99 eV without and
with outer-core correlation effects. One should note, however, that experimental dissociation
energies based on the third-law method are prone to error by much more than the published

error bounds. 2128

3.1.4 The Diatomic Molecules CrB, CoB, and NiB

CrB. With respect to the complexity of electronic structure, the CrB molecules are the
simplest cases investigated in this work. They all possess a well isolated X% T ground state
which correlates to the lowest asymptote Cr(S) 4+ B(2S). At the DKH-MRCI(+Q) level,
the lowest excited state of CrB is 8XF which has electronic energy of T, = 1.19 eV (CrCu),
1.12 eV (CrAg), and 1.95 eV (CrAu). Low-lying electronic states of CrCu had previously
come under an MRCI scrutiny. '3 The investigators utilised a full valence CAS(17,12) as
the active space, in contrast to the CAS(7,7) space that was used in the present study. For
the X% T ground state, their DKH-MRCI[17E,120]/ANO calculations led to r. = 2.47 A,
we = 183.6 cm™!, and D, = 1.20 eV. The present DKH-MRCI[(10+7)E,(5+7)0O] study leads
to re = 247 A, w. = 208.9 cm™!, and D, = 1.21 eV. Hence, as pointed out in ref. 113,
extending the active space from CAS(7,7) to CAS(17,12) has an insignificant or at most
small influence on spectroscopic constants.*

It is worth to mention that the experimental determination of the character of the ground

103-105 62 103 82 104
) )

state term of CrCu was quite challenging. In chronological order, the

453105 symmetries were proposed as correct answers. Note that the symmetry of the

and
most recent proposition of Y cannot be derived from the lowest asymptote Cr("S) + B(2S).

Surprisingly, the theoretical result, XX*, predicted in ref. 113 and now confirmed by this

*In general, although it is necessary to dynamically correlate the filled shell kdY in order to obtain a
reliable quantitative description of the low-lying terms of the AB,, species, inclusion of this shell in the CAS
calculations is unnecessary. In fact, since none of the diatomic terms (roughly 200 in total) considered in the
present study correlates to atomic asymptotes

AL+ B [(k ~ 1)d%s? 2D)],

where d-hole states of the coinage metal atoms B are involved, the inclusion of the kd} shell in the reference
space would result in convergence troubles.
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work, is in agreement with the earliest proposition made on the basis of experiment. 03

CoB. Unlike other subclasses, the CoB molecules do not exhibit the same ground state
term; at the DKH-MRCI(4+Q) level, the CoCu and CoAg molecules possess X3®, while
the CoAu molecule has X°®. According to potential energy curves of the CoCu *°A and
the CoAg 3°A states shown in figure B.4, the cluster of triplet states lies below the clus-
ter of quintet states, whereas for CoAu the situation is reversed. For the CoB °A « 3A
transitions, energy differences are calculated to be in the ranges 1.14-1.52 eV (CoCu), 0.86-
1.48 eV (CoAg), and —[0.27-0.53] eV (CoAu). On the one hand, due to the comparatively
small separation energies for the atomic transitions b*F < a*F (0.42 eV) and a’F < a*F
(0.88 eV), one expects that some of the >5A and 13A states resulting from Co(b*F) + B(%9)
and Co(a?F) + B(?S) play important role in the low-energy terms of the CoB molecules. On

the other hand, throughout all molecules AB, the interaction
A(3d™14s! 541 4 B[(k — 1)d kst 2S]

has been shown to be stronger than that of 3d™24s2. Hence, the CoB results are, at best, of
qualitative value. As an example, one of the largest discrepancies between the experimental
and theoretical dissociation energies is observed for CoAu: D8 =226 + 0.18 eV versus
D, = 1.59 eV. Thus, this work refrains from further interpreting the data on the electronic

structure of CoB since they will probably be at odds with future results.

NiB. The ground state term of the nickel atom is 3D(3d%4s!), and the lowest excited
terms 3F(3d%4s?) and 'D(3d%s!) lie at 0.03 eV and 0.33 eV.!!® The data collected in table
B.2 show that the ground term of Ni is correctly obtained as 3D at the DKH-MRCI(+Q)
level of theory. According to figure B.4, which displays the AS potential energy curves for
the low-lying states of NiCu and NiAg, these diatomic molecules exhibit a X?A ground state
which diabatically correlates to Ni(3F) + B(2S). It is interesting to analyse in some depth
the mixing between the molecular counterparts of the Ni ®D and the Ni 3F states in NiB.
The potential curves indicate that the degree of mixing is strong for the molecular terms
having 2IT and 2A symmetries. As the 12II and X2A states descend from Ni(*F) + B(2S),
they heavily perturb the 22IT and 22A states which originate from Ni(3D) + B(2S). This
perturbation, which is most probably amplified by higher 2II and %A states, yields avoided
crossings through interaction between X2A  22A and 1%TI « 22TI. The 24%* and 24®
terms remain unperturbed, however. A striking example which supports this argument is
provided by the ground state dipole moment of the NiH hydride. It has been established
that a X2A wave function that describes both atomic terms (Ni 3D and Ni 3F) equally well
reproduces the experimental dipole moment of NiH, whereas a wave function which is biased

towards Ni D or Ni ®F yields too large or too small dipole moments. '

It is remarkable that the electronic states of NiCu and NiAg deriving from the lowest
3 asymptotes—i.e., Ni(!D) + B(?S) — 2{S* @ Il ® A}, Ni(°F) + B(*S) —» ?{Z- o I ®
A @ @}, and Ni(®D) + B(?S) — 24{2* @ II & A}—were included along the full range of
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internuclear distances (2-8 A in case of NiAg). By a comparison between the DKH-CASSCF
and DKH-MRCI(4Q) potential energy curves shown in figures B.3 and B.4, one finds that
the experimentally lowest separated atom limit, i.e., Ni(3D) + B(?S), happens to be the
5th limit at the static correlated level. At the DKH-CASSCF level, the lowest asymptote
Ni(®D) + B(?S) lies higher than the separated atom limits associated with Ni(*F), Ni(D),
Ni(3P), and Ni(*!G). It, therefore, appears as if the dynamic correlation downshifts the
Ni(®D) + B(2S) limit by ~ 3.1 eV. The lowest asymptote gives rise to the 12X+ state which
lies below the X2A ground state at 2.3 A S r(NiCu) < 3.6 A and 2.5 A < r(NiAg). Analogous
behaviour is predicted for NiAu, for which the Ni(®D)+Au(2S) limit, in the basis of the DKH-
CASSCF calculations, lies higher in energy than Ni(*F) + Au(D); this leads to prohibitively
large calculations to track down the 2%A states dissociating to the ground state asymptote.
If the colossal calculations could be done in which Ni(®D) + Au(?S) is included along the full
range of 7, then it is predicted that E(X2A) > E(12%F) at r £ 2.35 A +0.1 A,

3.1.5 The Role of Spin-Orbit Coupling

Approximate 2-component treatment has allowed to schematically illustrate splittings of the
(A,S) to Q) states in the diatomic molecules AB which are given in figures B.5 (ACu), B.6
(AAg), and B.7 (AAu). At the DKH-MRCI+(SO) level of theory, the ground states are 3A;
(ScB), ‘@3, (TiB), "Ag+ (VB), 62;?2 (CrB), 'S5 (MnB), °Ag/y (FeB), *®,4 (CoB), and
2A5 /2 (NiB). For CoAu the ground state is of 5®5 symmetry. For the ACu molecules, in
addition to the approximate 2-component treatment, spin-orbit coupling was treated a prior:
using the X2C method. Table B.35 is a summary of the ground state terms obtained at the
spin-orbit-free DKH-MRCI(+Q) level (X25t!A), at the DKH-MRCI(4-Q) level considering
spin-orbit coupling (X25T1Agq), and at the X2C-KRCI level (X ). This table also details the
relativistic computations. As can be seen, the ground state terms predicted by the exact and
approximate methods are in complete agreement. However, although not reported in this
work, the results for the excited ) terms are not in quantitative agreement.

Figures B.8 and B.9 show the spin-orbit coupled potential energy curves of the ) states
of NiCu and NiAg obtained at the DKH-MRCI(4Q) level. Based on the associated (A,S)
potential energy curves in NiCu and NiAg, it is already known that the X?A and 1°II states
correlate to the Ni(3F) + B(?S) asymptote, whereas the 1257 state results from the Ni(3D) +
B(%S) asymptote. This suggests that the spin-orbit coupled X2A; /2 ground state dissociates
to one of the spin-orbit components of Ni(*F), i.e., Ni(*F4) 4+ B(%S; /2) or Ni(*F3) 4+ B(*S; /2)
or Ni(°F2) + B(?Sy ), all of which can give rise to © = 5/2 (see table B.10). Because of the
mixing between the 3D- and 3F-type molecular states, however, this naive idea is not totally
supported by the spin-orbit coupled curves; due to the existence of many perturbations,
avoided crossings, and discontinuities the curves appear to be completely shredded, causing
some of them to predissociate. For this reason, one cannot ascertain to which asymptotes

the low-lying € states diabatically correlate. Nonetheless, it is suggested that 1227, would

1/2
derive from Ni(*D3)+ B(?Sy /2), and the separated atom limits Ni(*Fy) + B(*S; 2), Ni(*F3) +
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B(*S1)3), Ni(*D3) + B(*S;/2), and Ni(°Da) + B(*S; ) are plausible candidates to which the
terms X2A5/2, X2A3/2, 12H3/2, and 12H1/2 would diabatically correlate. Therefore, in the
case of NiCu, the ground state dissociation energy calculated with respect to these likely
asymptotes are 1.28 eV (3Fy), 1.44 eV (3F3), 1.48 eV (3D3), and 1.57 eV (*Da).

Figure B.10 displays the low-lying electronic states of CoCu for atomic (r > 5 A), in-
termediate (3 A < r < 5 A), and molecular (2.1 A < r < 3 A) regions as a function of
the Sommerfeld’s constant (o = 1/c¢) calculated at the DKH-CASSCF level. This figure
also displays the total energy of the lowest state and how it varies as the speed of light (c)
changes. As c increases the excitation energies monotonically decrease for most of the states.
At the nonrelativistic limit (¢ = 10000 a.u.)—where the scalar relativistic effects and the
spin-orbit coupling are simultaneously cancelled out—the excitation energies for the systems
X30: Q' =3+ Q"=4 and @ =2 <+ Q" = 4 expectedly converge to zero. At the
separated atom limit, as ¢ decreases the excitation energies increase exponentially until they
reach their maximum value at the relativistic limit. The situation is, however, different at
the molecular structure (r = 2.30 A), where the Co atomic manifold of states splits due to
the external field imposed by the bounded partner atom Cu. At the molecular structure, as
c decreases the excitation energies do not increase exponentially; additionally the magnitude
of spin-orbit splittings is smaller compared to the atomic case. This is most probably be-
cause of the interaction with higher-lying states and may rationalise why spin-orbit splitting
is usually larger in the free atoms than in the molecules, where it is relatively quenched.*”

Figure B.16 visualises the spin-orbit splittings for the ground states of the atoms A and
of the diatomic molecules AB. There are two illustrative points in this plot. Firstly, the
ground state splittings in the AB molecules are equal to or less than those in the free atoms
A, with one exception: TiAu. Secondly, since the D-type states of coinage metal atoms B
are not involved, the splittings in copper, silver, and gold containing systems are of the same

order of magnitude.

3.1.6 Overall Trends

Figures B.13, B.14, and B.15 show the ground state spectroscopic constants 7., we, and D,
respectively, and how they vary as one moves from A = Sc to A = Ni for the diatomic
molecules AB calculated at the DKH-MRCI(+Q) level of theory. The ground state bond
lengths (r.) are calculated to be in the range 2.23 A (NiCu) - 2.64 A (ScCu) for B = Chu,
in the range 2.41 A (NiAg) - 2.75 A (ScAg) for B = Ag, and in the range 2.35 A (NiAu)
- 2.60 A (ScAu) for B = Au. The smallest r. within the row is obtained for NiB (X2A)
and the largest 7. within the row is obtained for ScB (X3A). The ratio r.(AAg)/r.(AB),
corresponding to the ground states of the ACu and AAu diatomic molecules, is predicted to
vary in the range of 1.055 £ 0.025. A striking similarity for the triatomic molecules ABy will
be revealed in subsection 3.2.6.

For a variety of reasons, including the observation of several transition metal oxides and

hydrides in the stars and therefore their astrophysical importance, the AH hydrides have
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received some critical and vast attention. 1397149 Looking for some connection, the ground state
symmetries of the atoms A, the monocations A", the hydrides AH, and the diatomic molecules
AB are compiled in table B.36. For 23 out of the 24 diatomic molecules AB considered in
the present work, an interesting binary relation between AT and AB has been unveiled.
According to this relation, provided that the ground state term of A%t is known (*+1Lj),
one can predict the ground state term of AB being 25*t1Aq; &' = S, Q= J, and A = L.
Notice that the projected orbital angular momentum A corresponds to the maximum value
of L along the internuclear axis and the projected total angular momentum €2 corresponds
to the maximum value of J along the internuclear axis. For example, the ground term of
Sct and ScB are ®D; and X2A;. In order to see whether the relation between AT (2511 )
and AB(X?'*t1Aq) has some validity for the larger class of diatomic molecules M B or not,
the scope of the study is slightly broadened from A = Sc-Ni to M = {d-block atoms} (see
table B.36). Due to lack of data one can only cast light on the systems YCu, MoB, WB,
RuCu, and PtB (B = Cu/Ag/Au). In the cases of YCu(X!'x*), 150,151 MOB(X62;_/2),152
and PtB(X2A, /2) 111,153,154 the ground state symmetries from literature and those suggested
by the mapping from M ™ to M B coincide; this is not the case, however, for WB and RuCu.

It is interesting to discuss a trend which would emerge upon a step-by-step move from
ScB (B = Cu/Ag/Au) to NiB from a molecular orbital point of view. For transition metal
diatomic molecules AB, one would ordinarily expect the valence s-type and d-type molecular
orbitals to fall into the energetic order dop < dmp < dip < so < so* < doy < dnfj <
dajzl.l%’128 Having this ansatz in mind, one can hypothetically invoke a reference closed-
shell configuration as so*2 dé*? dn*® do*?, where the dp-type and so orbitals are suppressed.
Notice that, according to the DKH-MRCI(+Q) results, the !XF state of ScB has significant
contribution (24-31%) from this closed-shell configuration—see tables B.11, B.12, B.13. Since
the exchange effects are to favour unpairing of the electrons across the quasi-degenerate dgc-
type orbitals, the so*2 shell cracks open and kicks out one of its electrons to the dé* orbital,
leading to a so*! dé*! dr*? do*? configuration of 3A symmetry which dominates (89-90 %)
the ground state of ScB. Fusing one electron to the resulting *A configuration one obtains
so*t d6*!t dn*! do*?, which is the main contribution (84-89 %) of the X*® ground state of
TiB. For the early transition metal atoms it seems that the ksp and 3d 4 orbitals mix leading
to a bonding so* orbital and to an anti-bonding do* orbital; so* is lower in energy and do*
is higher in energy to the point that it lies above the dd* and dn* orbitals. Additionally, by
analogy with the spin angular momentum, high orbital angular momentum states are favoured
over low orbital angular momentum states for the near-degenerate spaces—the AT (25+1L;)-

AB(X?5*1Aq) mapping is a strong indication of this proposition.

Therefore, on the basis of the previous *® configuration, sequentially infusing further a
dr* electron, a dd* electron, and eventually a do* electron would yield the so*! dé*! dn*2 do*?
(79-88 %), so*t do*? dn*? do*? (78-84 %), and so*! do*? dn*? do*! (84-90 %) configurations
dominating the ground states of VB (X?A), CrB (X°®Y1), and MnB (X7ST), respectively.
One sees here why spin should precede space; the MnB X7S+, so*! d6*? dn*? do*! configu-
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ration with S = 3 and A = 0 is favoured over, for instance, the MnB 511, so*! d6*? dn*? do*?
configuration with S = 2 and A = 1. The anti-bonding characteristic of the do* orbital
is confirmed by a sudden drop in dissociation energy; D.[CrB(X%%")] — D [MnB(X"%T)]
= 0.51 eV (B = Cu) and 0.38 eV (B = Ag). For B = Au, however, the do* orbital is
not anti-bonding in character which derives from the fact that the relativistic contraction
of the 6sa, orbital and the relativistic expansion of the 5da, orbitals significantly decrease
the 3d 4-6sa, mixing. For the late transition metal atoms the analysis proceeds similarly;
inserting a dé* electron and a dz* electron, one obtains the so*! dé*® dn*? do*! (88-89 %),
XOA state for the FeB molecules and the so*? d6*® dn*3 do*? (87-88 %), X3® state for the
CoCu and CoAg molecules. For the cobalt subclass, inserting a dn* electron does not have
the same effect on the three molecules. In CoCu and CoAg the insertion causes the so*
and do* electrons to pair reflecting tendency towards low-spin states which should be due
to energy lowering of the so* orbital leading to a sudden increase in dissociation energy;
D.[CoB(X3®)] — D.[FeB(X%A)] = 0.86 eV (B = Cu) and 0.83 eV (B = Ag). In CoAu, the
dr*! insertion leads to the so*! dd*3 dz*3 do*! (89 %), X°® state. Firstly, in comparison to
the early transition metal atoms, the 3d orbitals in Co and Ni are quite contracted and are
only capable of negligibly overlapping with the ksp orbital. Secondly, in the case of Co and Ni
containing diatomic molecules (CoB and NiB), the number of low-lying states is greatly in-
creased providing the possibility of contribution from the d 4 orbital to the bonding. Thirdly,
relativistic effects cause the 5d orbitals of the Au atom to expand and therefore to be more
available for dp orbital bonding than the 3d (Cu) and 4d (Ag) orbitals. These suggest that
in the case of the CoAu X°® state the involvement of the 5d?6s? 2D state has resulted in a
relatively strong dco-day interaction, which in turn favours the high-spin CoAu X°® state
in comparison to the low-spin X3® states in CoCu and CoAg. Finally, adding a d7* electron
to the low-spin configuration of the Co subclass leads to the so** d§*3 dr** (59-65 %), X2A

state for the NiB molecules.

Pursuant to the previous paragraph, it is attempted here to describe the bonding character
for the ground states of the diatomic molecules AB from a different perspective; the ion-pair
A" 4+ B~ contribution. Using concentric octagons, figure B.11 represents the ground state
terms of the monocations AT, of the monoanions B~, and of the diatomic molecules AB
together with the corresponding dominant configurations. In this figure the ground state
mapping between AT (2t!L;) and AB(X?*t!Aq) is indicated by straight lines connecting
the octagons’ vertices. In addition to this intra-vertex mapping, i.e., those from A" to
AB, there exists also inter-vertex mapping, oppressing the 4s orbitals, between Sct: 3d! 3D
and Nit: 3d? 2D (in green), between TiT: 3d? 4F and Co™: 3d® 3F (in magenta), between
V*: 3d* °D and Fet: 3d% D (in brown), and between Cr*: 3d® S and Mn™: 3d® 7S (in
violet). This is the inevitable corollary of the connection between electrons and electron
holes, according to which the diatomic molecules AB also exhibit mappings (oppressing the
inner-most and the outer-most o orbitals) between ScB: 6 X3A and NiB: 027453 X2A,
between TiB: 76! X4® and CoB (B = Cu/Ag): 0?7363 X3®, between VB: o'n?5! X°A
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and FeB: o'726% X6A, and between CrB: ¢'n26% X%+ and MnB: ¢'726%2 X"S*. Notice
that on the basis of the ion-pairs A 4+ B~ the cationic configurations d®> and d” and the
corresponding molecular configurations (omd)? and (o76)” do not emerge for the ground
states. This suggests, but does not prove, that the ground state bonding is dominated by the
electrostatic contributions, most importantly by the ion-pair contribution; the ground state
of AB would diabatically correlate to the lowest ion-pair separated atom limit AT + B~.
However, for an abstract ionic bond one would expect, firstly, a large dipole moment of
approximately 12 D for internuclear distance (r) around 2.50 A (ji = ¢7). Secondly, the
ion-pair term will show up as having dipole moment that linearly increases with respect to
internuclear distance. None of these two requirements for pure ionic bonds is fulfilled in the
MRCI results of this work.

The electronic configurations which dominate the ground and low-lying states of the
diatomic molecules AB, at the DKH-MRCI level, are shown in figure B.12. As it can be
seen, for the molecules ScB, TiB, VB, CrB, and MnB, the inner-most so orbital is always
doubly occupied. The second inner-most orbital, do*, is always empty or singly occupied;
therefore, as mentioned above, this orbital should be anti-bonding for the early transition
metal molecules. Interestingly, for the excited terms that are weakly bound (D, < 0.3
eV), i.e., 627 611, 6A 6@ in TiCu/TiAg, "2+, "II,"A in VCu/VAg, 8-+ in CrB, and “II
in MnCu/MnAg, the dominant configuration is soldo*!. For the excited terms that are
strongly bound, i.e., 2% 7, 2411, 24A, 24® in TiCu/TiAg, and 5T, 2511 , 2°A in VCu/VAg

O'*O

the dominant configuration is so?do*’. The situation is, however, different in the cases of

FeB, CoB, and NiB where the do* orbital is no longer of anti-bonding character.

3.2 The Triatomic Molecules AB>

3.2.1 Overview

As mentioned in subsection 3.1.2, the electronic complexity in silver containing systems
(AAg,) is predicted to be substantially less than that in copper and gold systems. For this
reason, as the first step, the (A,S) potential energy curves along the A-Ag internuclear dis-
tances were constructed for the low-lying states of AAgs molecules at the DKH-CASSCEF level
of theory. These potential curves are designated by E(r;25t!T") and presented in figures B.17
(AgScAg), B.18 (ScAgAg), B.19 (AgTiAg), B.20 (TiAgAg), B.21 (AgVAg), B.22 (VAgAg),
B.23 (AgCrAg), B.24 (CrAgAg), B.25 (AgMnAg), B.26 (MnAgAg), B.27 (AgFeAg), B.28
(FeAgAg), B.29 (AgCoAg), B.30 (CoAgAg), B.31 (AgNiAg), and B.32 (NiAgAg). Colours
are chosen in such a way that red always corresponds to the states with the lowest spin mul-
tiplicity, blue to the next higher multiplicity, magenta to the next, and green to the highest.
For instance, in the case of TiAgsy, red, blue, magenta, and green pertain to the singlet,
triplet, quintet, and septet states, respectively. This choice of colours is conserved for the
subsequent dynamically correlated surfaces. For the linear and bent AgAAg structures (Dsop,

and Cy, ), the internuclear distances r(A-Ag) were symmetrically varied at each fixed AgAAg
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bond angle: § = 40°,50°,...,180°. The full range 2 A < r(A-Ag) < 8 A, where possible, was
explored for the discrete AgAAg bond angles. For the linear AAgAg structure (Ciy), one
variable was defined (r) simultaneously representing the A-Ag and Ag-Ag distances. Some
of the qualitative findings on the electronic states of AAgy at the DKH-CASSCF level were
assumed to be generalisable to the ACus and AAus systems. For example, the doublet, the
quartet, the sextet, and the octet states of VAgs were investigated at the static correlated
level (see figure B.21). It was found that the doublet and octet states, regardless of the space
symmetry of the molecule, lie considerably higher in energy than the quartet and sextet
states. Therefore, in the subsequent DKH-MRCI(+Q) calculations on the V By molecules,
potential energy surfaces for the 4’6{A1 @ A @ By @ By} states were calculated. In the I'S

calculations, the abelian point group Co, was used.

The Cy,-restricted potential energy surfaces were calculated for the low-lying states of the
BAB structures (linear and bent) at the DKH-MRCI(+Q) level and using (c¢)spline interpo-
lation. These potential surfaces are labelled by E(0pap,TAB; QSHF) and depicted in figures
B.33 (CuScCu), B.34 (AgScAg), B.35 (AuScAu), B.36 (CuTiCu), B.37 (AgTiAg), B.38 (Au-
TiAu), B.39 (CuVCu), B.40 (AgVAg), B.41 (AuVAu), B.42 (CuCrCu), B.43 (AgCrAg),
B.44 (AuCrAu), B.45 (CuMnCu), B.46 (AgMnAg), B.47 (AuMnAu), B.48 (CuFeCu), B.49
(AgFeAg), B.50 (AuFeAu), B.51 (CuCoCu), B.52 (AgCoAg), B.53 (AuCoAu), B.54 (Cu-
NiCu), B.55 (AgNiAg), and B.56 (AuNiAu). The Dy and Cg, point groups and the con-
nection between them have been examined. The ab initio inputs, based on which the ensuing
interpolation was carried out, are shown using the black points along the transparent po-
tential surfaces. The coordinate 6 is the ZBAB bond angle, the coordinate r is the A-B
distance, and 25t is the electronic state under consideration, with spin multiplicity 2S+1
and irreducible representation I". The distances B-A and A-B were altered symmetrically;
accordingly, the Cy,-constrained points on the Opap-r4p plane have been examined.* The
coordinate ranges 40° < 6 < 180° and 2 A <r <3 A were probed because it was intuitively
evident enough that the low-lying minima (including the ground state) would occur in these

ranges.

The Coq,-restricted potential energy surfaces were constructed for the low-lying states of
the linear ABB structures (Cagy). These potential surfaces are denoted by E(rap, rpp; 25TIA)
and represented in figures B.58 (ScCuCu), B.60 (ScAgAg), B.61 (ScAuAu), B.62 (TiCuCu),
B.63 (TiAgAg), B.64 (TiAuAu), B.65 (VCuCu), B.66 (VAgAg), B.67 (VAuAu), B.68 (Cr-
CuCu), B.69 (CrAgAg), B.70 (CrAuAu), B.71 (MnCuCu), B.72 (MnAgAg), B.73 (MnAuAu),
B.74 (FeCuCu), B.75 (FeAgAg), B.76 (FeAuAu), B.77 (CoCuCu), B.78 (CoAgAg), B.79
(CoAuAu), B.80 (NiCuCu), B.81 (NiAgAg), and B.82 (NiAuAu). The coordinates r4p and
rpp represent the A-B (vertical axis) and B-B (horizontal axis) internuclear distances, with
the ranges 2 A< rAB, BB < 3 A. Notice that the abscissa and the ordinate of a point on

the r4p-rgp plane correspond to vertical and horizontal axes.

*Although very unlikely, the minimum points obtained from these surfaces might correspond to saddle
points and not to true minima since the third coordinate of a triatomic 3-space was untouched.
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The potential energy surfaces E(0pap, 7 ap; 2>T'T) and E(rap, rpp; 25T A) have provided
a global representation of the low-lying states of the triatomic molecules ABy in their Dy,
Coy, and Cuyy structures. With the help of this global view, structure optimisation calcula-
tions were undertaken around the minima at the same level of theory but using the Cy point
group. The optimised minima thus obtained were then compared with the interpolated ones,
mutually verifying or refuting the equilibrium structures and the total energies associated
with the system in question. The energetics of the ground and low-lying states of the ABs
molecules are schematically illustrated in figures B.83 (ScCus), B.84 (ScAgz), B.85 (ScAuy),
B.86 (TiCuy), B.87 (TiAgy), B.88 (TiAuy), B.89 (VCuy), B.90 (VAgy), B.91 (VAuy), B.92
(CrCus), B.93 (CrAgs), B.94 (CrAusp), B.95 (MnCug), B.96 (MnAgs), B.97 (MnAus), B.98
(FeCug), B.99 (FeAgy), B.100 (FeAus), B.101 (CoCusg), B.102 (CoAgsy), B.103 (CoAus),
B.104 (NiCug), B.105 (NiAgs), and B.106 (NiAug). In these figures three ”axis-like” line
segments, tagged with the point groups (Deon, Coy, Coon) and the associated coordinates,
are drawn. The vertical axis (z) represents the total energy of the states. Parallel lines,
affixed with the equilibrium structures of the given state, indicate the same symmetry as the
principal line segments. Potential (Cs,) and optimised (Cs) minima are shown in black and
blue.

3.2.2 The Triatomic Molecules ScB-

ScCus.

The Moieties; Sc, Cu, ScCu, and Cuz. The ground state term of the scandium
atom is 2D(3d'4s?), and the lowest excited terms *F and 2F—both arising from the 3d%4s!
configuration—lie at 1.43 eV and 1.85 eV (J-averaged energies derived from experimental
data).''® On the basis of table B.2, the F < 2D and 2F < 2D separation energies of Sc,
at the DKH-MRCI(+Q) level of theory considering the core correlation effects of the 3s3p
orbitals, are calculated to be 0.11 eV(*F) and 0.20 eV (?F) larger than the experimental val-
ues. These separation energies are to be compared with another MRCI study where the
4F and °F terms of Sc were calculated to lie 0.10 eV and 0.09 eV below the experimental
levels. 1% The data compiled in table B.2 show two striking considerations as to the out-
come of the atomic results obtained at various levels of theory. First, for the LS transition
Sc 4F < Sc 2D, the separation energy, at the DKH-CAS(11,10) level, is only 0.09 eV larger
than the reference value—i.e., in better agreement with experiment than the dynamically
correlated level—which is obviously due to fortuitous cancellation of errors. Second, for the
spin-orbit transitions Sc *Fj <« Sc 2Dy, where J” = %,g and J' = %, %, %, %,
associated with the X2C-KRCI calculations are smaller than those associated with the spin-
orbit-free core-correlated DKH-MRCI(+Q) calculations. Including all of the atoms (Sc-Ni,
Cu/Ag/Au) and all of the transitions, the overall mean absolute deviations (MAD) from the
reference energies at the DKH-c-CASSCF, at the DKH-c-MRCI(4Q), and at the X2C-KRCI

levels of theory—coming up to one’s expectations—are obtained to be 0.74 eV, 0.06 eV, and

the errors

0.11 eV, respectively.
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An averaged coupled pair functional (DKH-ACPF) study at the complete basis set (CBS)
limit, considering the 3s3p core correlation effects, calculated a very accurate *F < 2D sep-
aration energy for the Sc atom which was about 0.02 eV smaller than the experimental
value. 82156157 This DKH-ACPF study—developing separate basis sets for valence-only cor-
relation, 3d4s, as well as those including the effects of outer-core correlation—yielded a core
correlation contribution of —0.32 eV for the *F < 2D transition of Sc; to be compared with
—0.21 eV obtained at the DKH-MRCI(+Q) level in the present work. Overall, including
all the 11 atoms, the mean absolute deviation of the core contributions calculated in the
present work from those calculated in the DKH-ACPF study is about 0.11 eV. Nonetheless,
use of basis sets that even contain special core-polarisation functions is yet highly desirable
for the inclusion of the core (or inner-shell) correlation energy. In a previous DKH-CCSD(T)
and DKH-CASPT2 study, the effect of adding two h-type functions to the ANO-RCC basis
sets for the 3d atoms was investigated and shown to lower the separation energies for the
std™=1 « s2d™~2 excitations. '*® Before proceeding any further, be reminded that “the state
of a microscopic system has a meaning independent of the basis in which it is expanded.” %!
For the current work the dependence of the atomic separation energies on the h-type functions
would disappointingly mean that the molecular states will become more dense and the en-
ergy gap between the clusters of terms will narrow along the potential energy curves/surfaces
when large basis sets are used; making it more difficult to record a global portrait of the
system under investigation. Another important inferential deduction on the 3d atoms is the
double shell effect which accounts for the essence of including an extra d shell in the active
space in order to extract accurate separation energies.'®®1%9 This active space enlargement
was out of the question for the current work because, similar to the increase in the size of

basis sets, it would have made the molecular calculations unfeasible.

The ground state of the copper atom is 2S(3d'%4s'), and the only d-hole excited state
2D(3d%4s?) lies at 1.49 eV (J-averaged energies). '8 The diatomic molecule Cug possesses the
X 12; (3d%213d10%0§ ) ground state which is, in energy scale, relatively well separated from the
lowest excited state.'%Y For the ground state of Cuy the experimental values of equilibrium
bond length and of dissociation energy are r. = 2.220 A and DY = 2.01+0.08 eV.% According
to table B.11, ScCu has a X3A (90% 3d) so?so*1dé*!) ground state that arises from the
Sc(?D) + Cu(?S) asymptote (see figure B.4), based on the DKH-MRCI[(10+4)E,(5+7)0]
calculations. For this state one finds r, = 2.64 A and D, = 1.17 eV at the valence correlated
level and 7. = 2.60 A and D, = 1.14 €V at the outer-core valence correlated level. In
view of the dominant configurations, rearrangements of the d-type electron (dd*!) among the
quasi-degenerate d-type orbitals lead to the so?so*1do*!(64%) 2T and so?so* dn*1(90%) 311
excited states lying 0.12 eV and 0.15 eV above the X3A ground state. By comparing the
ScCu X3A state with the Cuy X 12; state, one sees the latter system having a substantially
smaller equilibrium bond length (0.42 A) and a considerably larger dissociation energy (0.8
eV). For the ground state equilibrium bond lengths of ACu, the ScCu X?3A state is the upper

limit and the Cugy X 12; state is the lower limit—see figure B.13 for an illustration.
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Asymptotic Considerations. Interaction of the scandium atom with two copper atoms,
Sc(®D) + 2Cu(?S), irrespective of the atoms’ orientations, yields 15 electronic states: 10
doublet states and 5 quartet states. Table B.37 shows how the 24T states of ScCusy get
distributed over the irreducible representations of the point groups C', Cs, Cay, Dop, Cooy, and
Doop- For instance, within the D, point group, corresponding to linear CuScCu structure,
the ground state separated atom limit gives rise to the molecular states'?® 2{2; eXt ol e
I, ® Ay ® Ay} and 4{2;r @I, ® Ay} The Cp — Cooy — Co, correlation for the ScCuy 24T

states is schematically illustrated in figure 3.1.

24A(15)

I

2A(10) 4A(5)
|
I

|
I | I I
2%+ (2) 211(2) ZA(2) Ayt 4|H A

2A1(2) ?B1(2) %Ba(2) 2A1(2) 2A2(2) ‘A 1By ‘By YA 1A

Figure 3.1: Symmetry of the electronic states of ScCusa

Clearly, the Sc(?D) + 2Cu(?S) separated atom limit, associated with three free atoms in
their respective ground states, is not the lowest significant asymptote in the ScCuy triatomic
molecule. The ScCu(X3A) 4 Cu(?S) asymptote, associated with the diatomic molecule ScCu
and the copper atom, lies 1.114:0.06 eV below the Sc(?D) + 2Cu(?S) separated atom limit.
On the one hand, the dissociation energy (D.) of the ScCu X3A state, obtained at the DKH-
MRCI(4Q) level of theory, is 1.17 eV and 1.14 eV without and with the outer-core correlation
effects (table B.11). On the other hand, on the basis of the E(rsccu,Tcucy; >*A) potential
energy surfaces, the energy difference between a point corresponding to the ground state
Sc + 2Cu asymptote and a point corresponding to the ground state ScCu + Cu asymptote,
ie.,

E(oo, 00; 1 A1(2) & B & By @ AQ}) - E(2.64 A, 00 24 A & AQ}),

is 1.05 eV at the DKH-MRCI[(20+5)E,(10+8)O] level (see table B.38). These theoretical
dissociation energies for the ScCu XA state, or equivalently stated, the energy differences
(AE) between the asymptotes Sc(?D) + 2Cu(2S) and ScCu(X3A) + Cu(?S)—i.e., 1.17 eV,
1.14 eV, and 1.05 eV—can be combined in such a way as to comply with experimental
uncertainties; AE = 1.11 £ 0.06 eV.

Now, the third important asymptote, Sc(*D) + Cug(X 12;), is being discussed which
positively lies below the ScCu(X3A) + Cu(?S) asymptote. It is crucial that this statement be
quantified, if one is to adequately understand the electronic structure of the ScCus molecule.
In oder to do so, the corresponding energy difference (AE) between these two asymptotes

are estimated in what follows, despite the probable controversies which would arouse. In
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order to predict AF between these two asymptotes some of the experimental and theoretical
dissociation energies which are reported in literature for the Cus X 12; state are collected
in table B.38. Considering the experimental dissociation energy DJ = 2.01 + 0.08 eV for
the Cup X 12; state (ref. 160), and combining it with the theoretical dissociation energy
D, = 1.11 4+ 0.06 eV for the ScCu X3A state derived in the preceding paragraph,* one can
express this AFE in the form

E(2.64 A, 00 24{A; @ A2}> - E<oo, 222 A;2{A1(2) @ B1 & By & A2}> = 0.90 £ 0.14 eV.

Notice that the first term must correspond to a 4-fold degeneracy due to the X3A + 2§
interaction and the second term must correspond to a 5-fold degeneracy due to the 2D +
X 12; interaction. According to the E(rsccu, rcuCu; 2’41\) potentials, calculated at the DKH-
MRCI[(20+5)E,(10+8)O0] level of theory, AE = 0.62 eV; with the S¢(*D) + Cup(X'E])
asymptote being lower in energy. In a single reference coupled pair functional (CPF) study—
employing a basis of the size (16s,11p,6d,3f)/[10s,7p,4d,3f], in a modified CPF study—
utilising a basis of the size (16s,12p,7d,4f)/[6s5p3d2f], and in a second CPF study—using
a basis of the size [9s,7p,4d,3f,1g], the dissociation energy (D.) of the Cug XlE; state was
calculated to be 1.84 eV (ref. 161), 1.74 eV (ref. 162), and 1.81 eV (ref. 119). Considering
these dissociation energies, and combining them with D.[ScCu(X3A)] = 1.11 £ 0.06 eV one
obtains the Sc(*D) + Cuy (XS] ) asymptote lying 0.73(6) eV, 0.63(6) eV, and 0.70(6) eV, re-
spectively, below the ScCu(X3A) + Cu(?S) asymptote. Notice, finally, that the experimental
dissociation energy of the Cus X 12; state is overestimated in comparison with all theoretical
values collected and calculated here.

The ground state asymptote Sc(2D) + Cug (X 12;) is therefore proved to lie, energetically,
below the ScCu(X3A) + Cu(?S) asymptote. Group theory, on the other hand, tells one that
the Sc(?D) + Cug(X 12;) interaction through the Cyo,- and Cy,-restricted reaction channels
gives rise to the triatomic molecular terms 2{3* @I @ A} and 2{A4;(2) ® B; @ By @ Ax}.1%
Nothing prevents one from decreeing that these terms transform to 2{2; @I, & Ay} through
the Dooj-constrained channel. It therefore seems reasonable to postulate that the Sc 2D
atomic state has, due to the interaction with the Cuy X 12;’ state, converted into a %I’
cluster which consists of 5 D-based states being energetically well separated from the excited
states. In what follows it will be shown that this proposition holds for the linear structures
(Doon and Ciuyy) but not for the bent form (Cs,).

The D, Structure. According to figure B.83, which schematically illustrates the
low-lying electronic states of the ScCus molecule obtained at the spin-orbit-free DKH-MRCI
valence level of correlation, this triatomic molecule possesses a doublet (orbitally degenerate)

ground state that belongs to the linear CuScCu form.! The equilibrium Sc-Cu internuclear

*Zero-point energy corrections for both states are neglected.

TNotice that a ground state of Duop space symmetry, i.e., the linear BAB structure, is compatible with
the way an inorganic chemist would presume the structural model in transition metal complexes: one metal
centre (atom A) surrounded by well-structured ligands (B atoms) in such a way that symmetry is degraded
as less as possible—e.g., from spherical symmetry to linear Doop,.
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distance is calculated to be 2.666 A and 2.672 A based on the interpolated potential energy
surfaces and the structure optimisation calculations. Rounding these values, one obtains
r¢(ScCu) = 2.67 A for the ground state of the ScCuy molecule, which shows a slight elongation
as compared to the bond length of the diatomic molecule ScCu; 7.(X3A) = 2.64 A at the
DKH-MRCI(+Q) level and 2.60 A at the DKH-cMRCI(+Q) level (see table B.11). A triple
computation, i.e., three single point calculations employing the Cs, Cs,, and Dy, point groups,
undertaken at the D., equilibrium point of (180°,2.67 A) belonging to the #(CuScCu)-
7(ScCu) plane, shows that the ground state of the ScCus molecule is of 2A, symmetry.
For the simplicity of language this is written as (180°,2.67 A;XQAQ). The DKH-MRCI
wave functions show that the X 2Ag ground state has the dominant electronic configuration
d%ﬁn d%ﬁlz sag scr?ldc%l (86%) where the core orbitals have been suppressed and other open-shell
configurations with minor contributions are omitted. Notice that, similar to the diatomic
molecule ScCu, the Cu d orbitals do not contribute to bonding of the ground state of ScCus

and remain in the nature of non-bonding atomic orbitals.

An excited 22;’ state is calculated to occur above the X 2A, ground state of ScCuy with
vertical excitation energies of 0.116 eV (if one employs the Cs and the Dy, point groups)
or of 0.117 eV (if one employs the Cy, point group). Since one of the components of the
XQAQ state and the 22; state both transform to the 24 irreducible representation of the
Cy, point group, i.e., 22; — 24, and X2Ag — 24, @ 2A,, and since the sole lowest 24,
state was calculated in the potential surfaces, the 22; excited state is not displayed in figure
B.83. A second excited state, being of 2Hg symmetry, is computed to vertically lie at 0.215
eV (Cs and Dap,) or 0.216 €V (Cy,) and to exhibit its potential minimum at the Dy point of
(180°,2.65 A). The small vertical excitation energies for the 2uh X2A, (AE =0.12 eV)
and the 2Hg —~ X QAg (AE = 0.22 eV) transitions are suggestive of the near-degeneracy of

the dgc-type molecular orbitals in the ScCus molecule and imply that the 22; state should

2
g

configuration, while the 2Hg state should be generated from dmg < dd, and correspond to
2

2 1.1
S0, S0y dmg.

be generated from the one-electron doy < dd, excitation and correspond to the so so? daé

According to figure B.33 the Dy, *A states, lying in the range 2.2-2.3 eV above the
X 2Ag ground state, do not exhibit D, minima, and the linear CuScCu molecule, having
a quartet spin symmetry, will thereby transform into one of the Cj, minima. With the
quality of agreement between the high level ab initio calculations—i.e., potential energy
surface, structure optimisation, and single point calculations—there can be little doubt that
the ground state of ScCusy is X 2A,. Tt is intriguing to also comment on the invariance of
vertical excitation energies for the 22; and 2Hg states with respect to the point group used
in the calculations. It is believed that the invariance provides evidence that ScCuo, at least at
and around its global minimum, belongs to the subclass of systems which are ”successfully”
characterised in the present theoretical work. Uttering the word success, in this context,
refers to the absolute consistency between the theoretical results, and it is independent of

the fact that one is, still and unfortunately, suffering from the lack of experimental data on
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molecules such as ScCus. As it will be unveiled later on, this success is not notched up for
all of the ABs molecules. Therefore, although the present work is a good beginning point, it

is not sufficient for most of the molecules.

It is important to note how this work can comment on the exo- and endothermicity of the
ground state reactions like AB+ B — ABs and A+ By — ABs, the ground state displacement
reaction AB+ B — A+ B etc. This would be extremely useful for spectroscopists who have
to deal with molecular beams containing a vast range of species (e.g., atomic, diatomic, and
triatomic) whose relative stabilities should be known/estimated in advance to appropriately
target a desired mixed metal molecule, and not some species which are invariably present
in the molecular beam. According to table B.38, considering the dissociation energy for the

X3A ground state of the ScCu molecule one can write
ScCu(X3?A) — Sc(®*D) + Cu(®*S) AFE = 1.11+0.06 V. (1)

Additionally, considering the atomisation energy for the X 2A, ground state of the ScCuy

molecule one can write
Sc(?D) + 2Cu(*S) — ScCup(X24A,) AE = —293¢eV. (1)

By first adding a ground state copper atom to both sides of equation (T), and second adding
the resulting equation to equation (I) one can assert that the ground state reaction ScCu +
Cu — ScCus is exothermic, with AE = —1.82 £+ 0.06 eV.

The C5, Structure. In contrast to the Do CuScCu and the Cy,, ScCuCu structures
where the doublet states were found to be energetically well separated from the quartet
states, the Cy, CuScCu structure (figure 3.2) exhibits a complex electronic structure where
the doublet and quartet states, energetically and spatially, lie close to each other. These
quartet Cy, states are most probably originated from the *F state of atomic scandium that

lies 1.43 eV above 2D (J-averaged experimental energies). !

Based on the interpolated potential energy surfaces,
the bent CuScCu form possesses a lowest 2A; state
which lies 0.46 eV above the )~(2Ag ground state and
which exhibits its minimum where 6.(CuScCu) = 54°
and 7.(ScCu) = 2.646 A. Thus, the bent form in its
lowest 2A; state has an equilibrium Sc-Cu bond length
which is slightly shorter than the bond length in the
linear CuScCu structure in its ground XQAQ state, i.e.,
re(X2A4) —7¢(?A1) = 0.02 A. The copper-copper distance
is obtained as 7.(CuCu) = 2.404 A for the Cy, CuScCu
24, state; being 0.18 A longer than r. in the Cus X'zt
state. In the light of interpolated surfaces, for the energy ordering of the Cp, CuScCu 24T
states one can write 241(0.46) < *By < 4By < %Ay < 2By < 24y < 2By < *A4,(0.91),

Figure 3.2: Cy, ScCug
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where the electronic energies T, (in eV) are given in parentheses. For these states, outside
of the 2A4; state, the Sc-Cu bond length lies in the range of 2.69-2.72 A, and the equilib-
rium CuScCu bond angle is 8, = 53°. Structure optimisation calculations (employing the Cj
point group) agree well with the interpolated surfaces in this case and imply that the low-
est state of the O, CuScCu structure is of doublet spin symmetry (2A’). However, for the
electronic energies T, for the bond angles 6.(CuScCu), and for the bond lengths r.(ScCu)
the differences are obtained to be T.[>A’(optimised)] — T.[?A; (interpolated)] = +0.15 eV,
0.2 A’ (opt.)] — O[> A1 (int.)] = +1°, and r.[>A’(opt.)] — re[2A;(int.)] = +0.01 A at the DKH-
MRCI level. Hereafter, electronic energies (T,) are relative to the ground state (X) of the

triatomic molecule in question.

It is interesting to mathematically describe the E(6,2.65 A;2A; @2 A,) potentials for the
two components of the X 2Ag ground state (the 2A; and 24, states) of the ScCuy molecule
using a least-squares fit. Shown in figure 3.3 are the electronic energies of the 2A; and
2 A, states interpolated from the cspline technique against x, that is a variable to which the
0(CuScCu) bond angle has been mapped via the relation x = —1 + 6/xw. The interpolated
energies of the Doop, and the Cy, CuScCu 2A4; / 2 A5 states have been considered and fitted to

an expansion in terms of the Chebyshev polynomials Th;(z) of even order:

12
Vi) =D 7Y anTu (1<2<1), =140,
k=0

where agy are fitting coefficients (table B.39), Ty(x) = 1, Thi(z) = =z, and Tyyi(z) =
22Ty (x) — Ty_1(2). The sine factor [sin? (x/2)]7! guarantees that V(z) has singularities
at the left (f = 0°) and the right (# = 360°) interval ends. Notice that the electronic energies
should not change when reflected over the = 0 axis which implies that V(z) = V(—z) or,
equivalently stated, V(m + Af) = V(m — Af). This one-dimensional fit suggests that future
higher-dimensional studies are likely to succeed in simulating the rovibronic spectroscopy of
the ABs systems.

For the 2 A; state of the triatomic molecule ScCuy, the MRCI[(204-5)E,(10+8) O] expansion—
i.e., correlating all valence electrons—contains approximately 21 million contracted config-
urations. In total, for the 8 24T states of ScCus,* roughly 160 million configurations were
optimised at each ab initio point, based on which the subsequent interpolation was carried out.
In order to estimate the ”interpolation error” introduced due to the use of (c)spline technique,
three single point calculations were performed for the ScCuy 2A; state at the (180°,2.666 A)
and at the (54.05°,2.646 A) points, which belong to the r(ScCu)-0(CuScCu) plane (Do, and
Ca), and at the (3.099 A,2.274 A) point which belongs to the 7(ScCu)-r(CuCu) plane (Caoy).
The resultant energy differences E[2A;(opt.)] — E[?A;(int.)] were calculated to be 0.001 eV
(Doon), 0.167 €V (Cay), and 0.003 eV (Cyp); with the interpolated energies being lower than
those of ab initio calculations. The larger Cs, energy difference, AFE(Cs,) = 0.167 eV, as

*F = Al,BhBQ,AQ



3.2. THE TRIATOMIC MOLECULES AB> 57

1.6 T T T T T T T

14 1 cspline A, & _
[ cspline (Ay)  ©

[sin(x/2)]2 Z 12 ank Tag

K

E (eV)

08 1%

0.6 — 1

02

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x=-1+0/m

Figure 3.3: The E(6,2.65 A;2{A;® As}) potential of the Dy, and the Cs, CuScCu structures
obtained at the DKH-MRCI(+Q) level of theory

compared with the Dy, energy difference, AE(Dyp) = 0.001 eV, can be rationalised on the
basis of the slopes of the V(z) functions around the respective D, and Cs, minima (see

figure 3.3), i.e.,
aV(x) oV (x)

< .
ox z—0%t ox x—0.7% or —0.7%

Rectification of this error would, of necessity, require more ab initio inputs for the ensuing
interpolation, which were prohibitively expensive. The shortcoming due to the interpolation
noise—that can be to more or less extent generalised to other systems—exposes that for those
portions of potential energy surfaces where the bent Cs, forms are involved, the situation
becomes flawed and, interpolated and optimised results are predicted to disagree sharply,
leaving the corresponding results to be of uncertain reliability. As another example, for the
lowest °T" state of the bent Ca, AuTiAu structure T.(°Topt.) — Te(°Ting.) = 0.80 eV, which is
indeed disappointing.

The Cooy Structure. On the basis of figure B.83, the linear ScCuCu structure, at the
DKH-MRCI(+Q) level, has a lowest 2A state whose electronic energy (T) is 0.74 eV, whose
Sc-Cu bond length is 3.099 A (3.074 A), and whose Cu-Cu bond length is 2.274 A (2.259 A)
in the light of interpolated (optimised) results. Potential energy surfaces have also located a
211 state which lies 0.81 €V above the X 2Ag ground state and which exhibits its minimum
at r¢(ScCu) = 3.096 A and r.(CuCu) = 2.274 A. According to figure B.58" which shows the
iso-energy contours for the 24 A(H) gtates of the Cap ScCuCu structure, the 2A and 211 states

*A closer depiction of figure B.58 (interpolation grid of 100 x 100) is given by figure B.59 (interpolation
grid of 200 x 200).
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possess two minima on the r7(ScCu)-r(CuCu) plane under investigation. For example, for the
2A; and 2 A, states of ScCuCu, which are most likely the two components of a 2A state, the
contours have one minimum at (3.099 A,2.274 A) and another one around (2.83 A,2.27 A).
Notice that the iso-energy contours are overall drawn with the incremental level of 0.02 eV,
one in every three levels is tagged with energies. One can therefore, darting a glance over
the levels, approximately locate the minima and their electronic energies with respect to the

ground state of the given system.

ScAgs and ScAus. Similar to the ScCus molecule, the ScAgs and ScAus molecules
possess a X 2Ag ground state, for which potential energy surfaces and structure optimisation
calculations agree perfectly with each other, implying that the equilibrium bond lengths
re(Sc-B) are 2.743 A (ScAgy) and 2.604 A (ScAuy).

Figure B.17 displays the potential energy curves along the Sc-Ag internuclear distance
for the triatomic molecule ScAgo obtained at the DKH-CASSCF level of theory. As it can
be seen, at #(AgScAg) = 180° which corresponds to the linear Do AgScAg structure,
the lowest states are 2A4; and 24, (X 2A,) because in the CASSCF calculations the principal
(internuclear) axis was the z axis. However, in the DKH-MRCI(4Q) potential energy surfaces
shown in figure B.33 the principal axis was the y axis, leading to the Cs, components of 2A;
and 2B; for the ScAgs XzAg ground state. On the basis of figure B.17, for the linear
Doon, AgScAg structure, electronic states which derive from the second separated atom limit
Sc(*F) + 2Ag(%S), including the sextet states, do not contribute to the low-energy regime.
This justifies the absence of sextet states in the eventual DKH-MRCI(+Q) potential energy
surfaces of the ScBy molecules. Note, however, that the more one moves to the right of the
3d atoms—with a pragmatic borderline between Mn and Fe—the less reliable become the
DKH-CASSCEF potential energy curves; obviously it is because the less electron correlation is
recovered since the active orbitals are almost filled in the case of the molecules FeB,,, CoB,,
and NiB,, (n =1,2).

It is explained now how the full Do, symmetry assignment was made for the X QAg
ground state of ScAgs (and likewise for other triatomic species). Having found the location
of the global minimum of the potential energy surfaces (Desop, Cov, Coop) Of the ScAgs states
of interest, three single point calculations were performed at the D.. equilibrium point of
(180°,2.743 A) employing the Cs,, the Cs, and the Dy, abelian point groups. In the Cy,
calculation, it was indicated that the lowest state is of 2A (24 and 2B;) symmetry and that
the 2XF (24;) and 2TI (?Ay and 2By) excited states vertically lie at 0.132 eV and 0.23 eV.
The Cj calculation implied that the lowest state is of 2A (24’ and 2A”) symmetry and that
the 2% (2A’) and 2II (24’ and 2A”) excited states vertically lie at 0.131 eV and 0.229 eV. In
the Doy, calculation, it was found that the lowest state is of 2Ag (ZAQ and 2Blg) symmetry
and that the 22; (24,) and 211, (2Bs, and ?Bs,) excited states vertically lie at 0.131 eV and
0.228 eV. This triple computation therefore indicates that the ground state term of the ScAgs
molecule belongs to the Dy, AgScAg structure which occurs at (180°,2.743 A) and is of 2N,

symmetry. For some of the triatomic species, such as the VBs and NiB; molecules (see table
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B.38), the lowest states of Dy, space symmetry were not successfully assigned, because the
energy ordering of the low-lying states was not invariant with respect to the conditions of

calculations.

3.2.3 The Triatomic Molecules TiB,

Of the 24 triatomic molecules considered in this study, TiCus is the only molecule whose
linear Dy, CuTiCu form does not exhibit any bound electronic state (see figure B.86), and
TiAus is the only molecule whose linear Cs, TiAuAu form does not exhibit any bound
electronic state (see figure B.88). It is, by figures B.36, B.88, and B.107, evidenced that
the triplet states of the linear CuTiCu form are subject to a sort of distortion that breaks
the Dqop space symmetry into Cs, such that the global minimum of the potential energy
surfaces obtained at the DKH-MRCI(4Q) level of theory occurs at an unusual equilibrium
bond angle of #(CuTiCu) = 167° belonging to a 3A; state. The structure optimisation
calculations, likewise, suggest that the TiCuy molecule possesses a triplet ground state which
corresponds to a Cy, minimum of (177.5°,2.570 A) which is slightly deviated from linearity.
The force causing this distortion is in nature analogous to the one in homonuclear coinage
metal trimers Bs which breaks the X2E ground state in Dsj, symmetry into 2A; and 2B, in
C9,.%" In contrast to TiCug, the TiAgy and TiAu, molecules both possess a X 3<I>g ground
state which, according to optimised results, corresponds to r.(TiAg) = 2.633 A (TiAgy) and
re(TiAu) = 2.514 A (TiAuy), see figures B.87 and B.88 for further details.

It is worth to consider the relation A,[TiBs(X3®,)]/D.[TiB(X*®)] where D, is the disso-
ciation energy of the diatomic molecule TiB and A, is the atomisation energy of the triatomic
molecule TiBy. According to the DKH-MRCI(+Q) calculations without considering outer-
core correlation effects, this ratio is obtained to be 2.2 for B = Cu, 2.5 for B = Ag, and 2.3 for
B = Au. Using the ratio of 2.3 for B = Au, and considering D,[TiAu(X*®)] = 2.50 eV at the
core correlated level of MRCI[(22+5)E,(1147)0], one can predict an atomisation energy of
~5.8 eV for the X3®, ground state of TiAuy at the MRCI[(3846)E,(19+8)0] level of theory,
as compared to the A.[TiAug(X3®,)] = 5.57 eV obtained at the MRCI[(20+6)E,(104-8)O]
level of theory.

3.2.4 The Triatomic Molecules VB,

VCuy. It is, from figure B.89, indicated that the VCuy molecule (and likewise the VAgy
molecule) takes on a congested electronic structure in that the Do, the Cy,, and the Co,
isomers lie, in energy, so close to each other; that is, relative to the ScCus molecule one can

write

E (Cy, CuScCu #2A4;) — E (Do, CuScCu X?A,) = 0.46 eV,
E (Cy, CuVCu i°4;) — E (Do, CuVCu #*A,) = —0.06 eV,
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where Z denotes the lowest electronic state of the given isomer, but not necessarily the
ground state (X). Thus, this work does not determine the ground state of the VCuy and
VAgs molecules, it instead suggests two candidates: the linear D, BV B structure being
of quartet spin symmetry and the bent Cy, BV B structure being of sextet spin symmetry.
These two candidates are, within the accuracy of the present study, indistinguishable from
each other. Potential energy surfaces and structure optimisation calculations, performed
at the DKH-MRCI(4Q) level of theory, both imply that the linear Do, CuVCu structure
possesses a £4Ag state which can be orbitally degenerate. It is agreeable that these two
methods lead also to the same equilibrium V-Cu internuclear distance; r.[V-Cu(iA,)] =
2.522 A. This Dy bond length may be compared with that of the diatomic molecule
VCu: 7,[V-Cu(X°A)] = 2.47 A (table B.17). A single point calculation performed at the
Do, equilibrium point of (180°,2.522 A), employing the Cy point group in the calculation,
leads to energy ordering of *%, < #II,(0.01 eV) < *A/(0.03 eV), where vertical excitation
energies are given in parentheses. Employing the Cs, and Dsj, point groups, however, yields
I < %5 (0.01 eV) < *A4(0.03 eV) < *@4(0.15 eV). Therefore, the full spatial symmetry

of the lowest state of the D, CuVCu isomer cannot be fully assigned.

Figure B.107 shows that at § = 7 £ 660 the 4Ag state in D, splits into the *4; and
4B, states in Cy,. Similar to the Dy CuTiCu 3Ag states, the Dy CuVCu 4Ag state is
subject to the distortion, leading to a small distortion stabilisation in the electronic energy
of the *B; component. The distortion lowers the energy of the *B; state—not the partner
4 A, state—but the energy lowering is not enough to bring the B; state below the 42; or

4Hg states. On the basis of table B.38, for the atomisation energy of VCuy one can write
VCus [5<4Ag} 3 V(*F) +2Cu(?S)  AE =+ 248 eV.

This means that, if one chooses D8 = 2.01 + 0.08 eV as the dissociation energy of the Cuy
X 12:{ state, 190 the relative stability of the linear Do, CuVCu structure is only 0.4740.08 eV.
In the (5, form, VCus has a lowest sextet state that corresponds to the molecular structure
(53.8°,2.604 A) or (54°,2.584 A) based on optimised and interpolated results. The former
equilibrium point results in 7.[Cu-Cu(z°4;)] = 2.36 A, and the latter equilibrium point
gives 7.[Cu-Cu(i®4;)] = 2.35 A. These are to be compared with the experimental Cu-Cu
bond length in the diatomic molecule Cug; re(XIE;) =2.2195 A 190 that is Ar.(Cu-Cu) =
0.14(3) A increase upon formation of Cs, CuVCu according to Cuy(X'2f) + V(*F) —
VCusz(®Ay).

VAgs. The linear D, AgVAg structure has a tentative lowest 429_ term that, according
to the DKH-MRCI(+Q) calculations, corresponds to a V-Ag bond length of 2.611 A (opti-
mised) or 2.616 A (interpolated). Single point calculations performed at the Dy, equilibrium,
employing the Cs, and Dy, point groups, result in the energy ordering of 429_ < 4Hg(O.Ol) <
1A4(0.07) < 1®4(0.17), where vertical excitation energies (eV) are given in parentheses.

Employing the Cs point group, however, one obtains 42‘9_ ~ I, ~ 1A, < 19,(0.09 eV).
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Figure B.21 shows that, at the DKH-CASSCF level of theory, the cluster of the even states
4{29_ ® I, ® Ay, ® ®,}, which lies considerably below the odd counterpart, i.e., the 1A,
(A = 7,10, A, ®) states, correlates to the second separated atom limit V(*F) + 2Ag(?S),
which is experimentally the lowest separated atom limit.

It is remarkable that, similar to the D, CuVCu 4Ag state, as the linear AgVAg isomer
bends the 4Ag state splits into the 4; and 4B; states; the *B; state is subject to the
distortion, while the partner *A; state is not. The distortion stabilisation of the AgVAg
4B, state is, however, larger than that of the CuVCu “B; state such that it lowers the
AgVAg *B; state more, leading to the detection of a stationary point at (170°,2.600 A)
which is, according to figure B.90, isoenergetic with the lowest D, state(s) (425 and 411,).
Hence, the AgVAg B, state exhibits two extrema which are energetically and spatially so
close to each other: a D, extremum (presumably a saddle point) at [180°,2.62(3) A], and
a Cy, extremum (presumably a true minimum) at (170°,2.600 A). For the bent AgVAg
structure, the interpolated and optimised calculations agree that the lowest state is of sextet
spin symmetry (Co, #°T"). They, however, disagree on the equilibrium molecular structure
and on the relative energy of the lowest Cs, Z°T state. Interpolated potential surfaces lead to
r.[VAg(#%A1)] = 2.680 A, while optimised results yield 7.(VAg) = 2.720 A for the Z°T state
of the bent AgVAg. For the AgVAg bond angle and for electronic energies associated with the
linear-to-bent transition #6T(Cy,) 50429_(Dooh), the discrepancies are fe(opt.) — fe(int.) =
—3°, and Te(opt.) — Te(int.) = 0.31 eV. One can, from table B.38, state that adding one

silver atom to vanadium leads to stabilisation energy of 1.19 +0.05 eV
V('F) + Ag(*S) — VAg(X°A) AE=-1.1940.05¢V.
However, addition of two silver atoms gives
V('F) + 2Ag(*S) — VAgy(¥'S;) AE=-2T74eV.

Since addition of two Ag atoms stabilises the system by more than twice the amount one Ag
atom does, it may reflect the tendency of the cluster to grow further and further. %

VAusz. According to the DKH-MRCI(4+Q) results, this molecule is predicted to possess
a X*A, ground state having its equilibrium structure at r.(VAu) of 2.475 A (interpolated)
or 2.488 A (optimised). Similar to the VCuy and VAgs molecules, spatial symmetry of the
ground state of VAuy was not fully assigned because equilibrium single point calculations,
employing the Cy, and Dy, point groups, led to the energy sequence 42; < 4Hg(0.02) <
1A4(0.2) < 19,(0.30), with vertical excitation energies (eV) given in parentheses. Employing
the C, point group, however, yields *II, < 42; (0.02 eV) < 2A4(0.18 V) < 4®,(0.30 eV).

3.2.5 The Triatomic Molecules CrB,

CrCus. Based on the DKH-MRCI(+Q) calculations, the lowest states of the linear D,
CuCrCu, the bent C9, CuCrCu, and the linear C,, CrCuCu structures are practically de-
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generate within the accuracy of the present work (figure B.92).

In the light of the structure optimisation calculations, the ground state of CrCus belongs
to the linear Cy, CrCuCu structure and is of "S+ symmetry which has its minimum at
7(CrCu) = 2.586 A and r.(CuCu) = 2.265 A. The data amassed in table B.38 show that the
atomisation energy of the 7Y% state of the CrCusy molecule is only 1.87 eV. This means, being
inclined to agree with DJ = 2.01 £ 0.08 eV for the ground state of the diatomic molecule
Cug, that the CrCup molecule is (due to lack of a better word)* wunstable with respect to
the asymptote "S(Cr) + X '35 (Cug); a serious tendency to predissociate on a subnanosecond
time scale would probably prevent the observation of this molecule. On the other hand,
embracing the theoretical dissociation energies of the Cuy X 12; state—1.74 eV (ref. 162),
1.81 eV (ref. 119), 1.84 eV (ref. 161), and 1.62 eV (potential surfaces)—points to the more

logical conclusion that CrCus is loose and a metastable intermediate for the reaction

CrCu(X°%2™) + Cu(®S) — CrCuy(z7x™) AE = —0.71 £0.05 eV
CrCug(i'S") — Cr("S) + Cup(X'S)),

where for the latter equation AFE is estimated to be in the range of 0.03-0.25 eV. In gen-
eral, although it is informative to study loose molecules such as CrCus, these molecules,
irrespective of the electronic states, have low bond strength with respect to the By X 12;
state and would, most probably predissociate as soon as the energy exceeds the energy of the
A(PSTIL) + Bo(X '%F) asymptote. It is therefore predicted that very special experimental
techniques are required to trap and observe molecules like CrCus, for not only they are floppy
but also for the energetic and spatial proximity of the low-lying electronic states.

Potential energy surfaces imply that the linear Cs.,, CrCuCu structure has a lowest '3+
state. However, for the lowest Z’31 state of the linear Co,, CrCuCu structure the discrepan-
cies in total energies and in equilibrium molecular properties between the interpolated and op-
timised results are E[Z"X " (int.)]— E[Z7S T (opt.)] = 0.19 eV, r.[CrCu(int.)]—r¢[CrCu(opt.)] =
0.05 A, and r.[CuCu(int.)] — 7[CuCu(opt.)] = 0.09 A. For the linear structures (Duoj, and
Csov), where interpolation noise is estimated to be negligibly small, sharp disagreements be-
tween the interpolated and optimised results, as to electronic energies or equilibrium molec-
ular properties, are warning signals indicating that one of the methods (or both of them)
is biased towards some configuration in the CASSCF wave functions, and this bias was not
removed in the subsequent MRCI treatment.

It is worth noting that, from the Cy, standpoint, the “A; (7S) and 5A; (°S) states of the
Cr atom (table B.2), the X®4; (X%%T) and 84; (3%7) states of the CrCu diatomic molecule
(table B.20), and the 74 (#"X7F) and >A; (°Y1) states of the linear Cipo,, CrCuCu structure

are all orbitally non-degenerate states.

*A charming story on the MgH» molecule inhibits one from uttering the term stability and its word family.
In 1975, in the light of theoretical findings, Ahlrichs et al. stated: ”... we conclude that MgHs is not bound
with respect to Mg + Hz and hence not likely to be a stable species.” (ref. 164). In 2003, Shayesteh et al.
reported on the discovery of free gaseous MgHy (ref. 165).
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In contrast to the structure optimisation calculations which predicted a Cuop 275 ground
state for the triatomic molecule CrCug, the interpolated potential energy surfaces indicate
that the ground state of CrCus belongs to the Cy, isomer and is of A, symmetry (see
figure B.92). A second Cs, CuCrCu state of ®By symmetry has been interpolated to lie
energetically close to the #7A; state but spatially far away from this state. The energy
difference between the °Bs and #7A; states, at the interpolated level, is calculated to be
E(®Bs) — E(¥" A1) = 0.01 eV. The equilibrium structure of the ®By state is interpolated to
be 0. (CuCrCu) = 121° and r.(CrCu) = 2.489 A, and the equilibrium structure of the #7A;
state is found at (55°,2.540 A). Figure B.107 unveils that the CuCrCu °Bjy state, being the
C, component of a quintet doubly-degenerate Do state (presumably a 5Hg), is subject to
the distortion from linearity. However, in contrast to the distortion in the TiCus, VCus, and
VAgs molecules (vide supra), and in analogy with the distortion in the CrAgs molecule (vide
infra), the distortion of the CuCrCu ° By state causes a broad well (figure B.42) for its global
minimum which is most probably due to the weak bonding interaction in CrCus as compared
to the TiCug and VCus species. For TiCus, VCus, and CrCus the ground state atomisation
energies are calculated to be 2.52 eV, 2.48 eV, and 1.87 eV, respectively.

In order to appreciate the complexity of the electronic structure in a molecular system,
it is typically proved useful to consider the constituent fragments. The CrCus molecule is a
good example that the electronic states of the fragments cannot always be uniquely related to
those of the molecule. The Cr atom possesses a ground state, 7S, which is well separated from
the lowest excited state; °S (E = 0.94 eV). The Cu atom and the Cuz molecule have a simple
electronic structure, whose ground states are energetically well isolated from the excited
states. The CrCu molecule has a ground state, X®X ¥, which is also well separated from the
first excited state; X% (T, = 1.19 eV). However, adding a second Cu atom unpredictably
complicates the situation in that, within an energy range of 1 eV, the CrCus molecule exhibits
at least 22 (optimised and interpolated) electronic states, which in turn made this work

incapable of predicting its ground state.

CrAgs. According to figure B.93, which displays the low-lying electronic states of the
CrAgy molecule obtained at the DKH-MRCI(+Q) level of theory, CrAgy possesses a low-
est Cuop &' state which is, within the accuracy of the present study, degenerate with a
lowest Cy, #°By state, i.e., E[Z7Y T (int.)] — E[#°Ba(int.)] = 0.007 eV and E[Z"X T (opt.)] —
E[#°Bsy(opt.)] = 0.010 eV. Furthermore, in the case of the CrAgAg 27X " and the AgCrAg
#°By states the interpolated and optimised levels agree absolutely with each other, i.e.,
E[#"2% (opt.)] — E[Z7S1(int.)] = 0.000 eV and E[#°Bz(opt.)] — E[#°Ba(int.)] = 0.003 eV.
At the interpolated (optimised) level, for the Z7%* state the Cr-Ag bond length is 2.757 A
(2.758 A) and the Ag-Ag bond length is 2.602 A (2.603 A). According to figure B.23—
displaying the DKH-CASSCF potential energy curves along the Cr-Ag internuclear distance—
the L% state originating from the Cr(7S) + 2Ag(?S) separated atom limit and the triplet
states originating from the Cr(°D) +2Ag(?S) separated atom limit, irrespective of the molec-

ular structure, are not bound. Notice that the second seprated atom limit of the CrAgs
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molecule is, experimentally, Cr(°S) + 2Ag(2S).11® At the DKH-CASSCF level, however, the
second separated atom limit is calculated to be Cr(°D) + 2Ag(%9).

CrAus. In contrast to the CrCuy and CrAge molecules, CrAuy possesses a Do, Au-
CrAu X 52; ground state which is well separated from the lowest C3, AuCrAu and the C,
CrAuAu minima; that is, at the interpolated level, for the linear-to-bent transition &’ A; +—
X5E;, T, = 1.24 eV, and for the linear-to-linear transition '%1 «— X5Z;, T. =152 ¢eV.

3.2.6 Overall Trends

Figures B.108-B.117 display the A-B (B-B) bond lengths, A = Sc-Ni, B = Cu/Ag/Au, for
the lowest state of structures Do, BAB, Cy, BAB, and Cy,,, ABB calculated at the DKH-
MRCI(+Q) level of theory. For the Dy, BAB structures, for example, the lowest state bond
lengths r.(AB) are calculated to be in the range 2.36 A (NiCu) - 2.67 A (ScCu) for B = Chu,
in the range 2.50 A (NiAg) - 2.74 A (ScAg) for B = Ag, and in the range 2.36 A (NiAu) - 2.60
A (ScAu) for B = Au. Similar to the ratio 7.(AAg)/r.(AB), corresponding to the ground
states of the diatomic molecules AB, which was predicted to vary within 1.055 £ 0.025 (see
subsection 3.1.6), the ratio 7¢[AAg(Doon)]/Te[AB(Doon)], corresponding to the lowest states
of the linear BAB structures, is calculated to vary within 1.044 4+ 0.016. Figure B.108 shows
re(ACu) for the lowest and low-lying excited states of the Do, CuACu structures along with
the linear regression line expressed as ro = a Z4 + b, where a = —0.04 A, b = 3.46 A, and
Z 4 is the atomic number of the atom A. According to this figure, one can predict that the
Dyop, CuTiCu 3Ag states—outside of those states which are subject to the distortion from
linearity—would correspond to 7.(TiCu) ~ 2.58 A. Notice that linear CuTiCu did not show
any bound electronic states based on the DKH-MRCI(+Q) results presented in this work.
As one moves through the 3d atoms from Sc to V, the separation energies for the LS
excitations 3d™'4s' < 3d™24s? decrease; for scandium AE(‘F «+ 2D) = 1.43 eV, for
titanium AE(F <« 3F) = 0.81 eV, and for vanadium AE(°D « 4F) = 0.24 eV.!1® In
triatomic molecules ScAgy, TiAgs, and VAgs, a trend has emerged for the linear-to-bent
transitions which, most probably, relates to this increasing stabilisation of the higher spin
A states; at the optimised level for ScAgy AE[*T(Cy,) + 5(2Ag] = 0.88 eV, for TiAgs
AEPT(Ch) < X3®4] = 0.56 eV, and for VAgy AE[T(C) « #'%;] = 0.35 eV. This
perhaps reflects that the higher-spin states being of Cs, space symmetry are heavily influenced

by the atomic states deriving from the high-spin A 3d™~!4s! states.



Chapter 4
Synopsis and Conclusion

A total of 561 electronic terms of 24 bimetallic transition metal diatomic molecules AB
(A = Sc-Ni, B = Cu/Ag/Au) and of 24 bimetallic transition metal triatomic molecules ABs
were studied, allowing to uniformly determine the complete set of spectroscopic constants
for these species. All-electron calculations were undertaken treating scalar relativistic effects
on an equal footing with electron correlation which was incorporated using multireference

approaches.

For the diatomic molecules, spin-orbit coupling was calculated a posteriori based on the
CASSCF/MRCI eigenvalues and eigenstates as zeroth-order solutions. Full and smooth po-
tential energy curves were provided for the ground and low-lying states in the (A, S) represen-
tation, whereby spectroscopic constants were derived. As to the assessment, the theoretical
results on diatomic species show good agreement with the experimental data limitedly avail-
able for some systems. Exact 2-component relativistic calculations were performed for the
atoms and the ACu molecules in order to assess the credibility of the perturbative spin-orbit
coupling. Inclusion of outer-core correlation effects has allowed to evaluate the magnitude of

its influence on the spectroscopic constants of the ground state.

For the triatomic molecules, two sets of potential energy surfaces have been constructed
using spline interpolation, whereby observable molecular properties have been extracted. The
first set, E(0paB, TAB; 2S“F), describes the electronic states corresponding to the linear BAB
and the bent BAB structures as well as the smooth connection between them. The second
set, E(rap,rp B;QS“A), represents the electronic states corresponding to the linear ABB
structure. The potential minima thus obtained have been assessed, first, by considering their
relative stabilities with respect to the asymptotes A+ Bs, AB+ B, and A+ 2B—all being in
their respective ground states. Secondly, automatic structure optimisation calculations have

been applied for the lowest states of each isomer.

For the diatomic molecules AB, at the valence correlated DKH-MRCI-(SO) level of the-
ory, the following electronic ground state terms are found: 3A;(ScB), 4@, /2(TiB), °Ag+ (VB),
62;?2(CrB), "33 (MnB), %Ag9(FeB), 3®4(CoCu,CoAg), *®5(CoAu), and ?A 5(NiB). These
ground state terms could have been predicted by the mapping between the diatomic molecules

65
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AB and the monocations A*: Sct 3Dy, Tit *Fy5, VT °Dg, Crt 6855, Mn*t 7Sz, Fe™ 6Dy s,
Co* 3F4, and Nit ?Dj 5. The ground state mapping between At and AB, observed in this
study, accumulates further evidence as to the ligand field model (see ref. 108) which treats a
transition metal diatomic molecule (e.g., AB) as two positively charged cores, (A" and B™),
surrounded by a o2 cloud. Although the ground state of the AB molecule is predicted to
correlate with the separated atom limit A(3d™~24s?) + B[(k — 1)d'%ks!] in most cases, the A
3d™14s! configuration, due to a strong (s 4-sp) interaction, results in molecular states which
are sometimes more bound than the ground state; e.g., D[TiB(2*A)] — D.|[TiB(X*®)] =
0.13 eV(B = Cu) and 0.28 eV(B = Ag), D [FeB(*Y7)] — D.[FeB(X®A)] = 0.72 eV(B = Cu)
and 0.71 eV(B = Ag). The AAu molecules possess larger ground state dissociation en-
ergies than either the ACu or the AAg molecules which could be attributed to relativ-
ity; 166:167 0.67 eV [FeCu(X®A)] < D. < 1.81 eV [NiCu(X?A)], 0.77 eV [FeAg(X°®A)] <
D, < 1.68 eV [NiAg(X?A)], and 1.59 eV [CoAu(X°®)] < D, < 2.52 eV [ScAu(X3A)].

At the valence correlated DKH-MRCI(+Q) level of theory, the triatomic molecules whose
ground states (X) belong to the linear Dy, BAB isomer are ScBy (2A,), TiAgs (3®,),
TiAug (3®,), VAuz (*A§)), CrAus (°SF), MnBs (65F), FeBs (°A,), CoBs (*®,), and NiBs
(SA“E,*)). For the TiCus molecule a #3A; state, corresponding to a Cs, CuTiCu isomer which
is slightly distorted from the linear Dy, CuTiCu form [# = 167°(int.) and 6 = 178°(opt.)], is
predicted to be a good ground state candidate. For the VCuy and VAgy molecules, the linear
D.., BVB i‘4A(g_) state is practically degenerate with the bent Co, BVB #°T state within
the accuracy of this work—in the case of the VAgy molecule a distorted Cs, AgVAg 7*B;
state is also a good candidate for the ground state. For the CrCus and CrAgs molecules, four
spin-space symmetries are predicted for the ground state; a linear D, BCrB :ESE; state, a
linear C, CrBB 7%t state, a bent Cy, BCrB &7 A; state, and a bent Cs, BCrB #°By—in
the case of CrAgs a linear Dy, AgCrAg :i7AEgi/)u) is also a good candidate for the ground
state. Due to invariance of the energy ordering of the ground and the low-lying excited states
with respect to the change in the conditions of the calculations, it was sometimes possible to
unambiguously assign A quantum numbers to the Dy, ground states, and sometimes, due

to the quasi-degeneracy of the linear D..;, BAB states, it was not.
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Appendix A

Theory

Operators

An operator A is a mathematical rule which transforms one state vector into another. For
example, here are some operators freguently used in quantum mechanics; the unity operator:
I[4) = |4), the gradient operator V, the linear momentum operator pi)(7) = —ihVi(7),
the Laplacian operator V2, and the parity operator: ]51/1(/?) = ¢(—7). In the products of
operators the order matters in general; AB #* BA or [121, B] # 0. When the product AB
operates on a state vector |¢)), the operator B acts first on the state vector |¢) and then
the operator A acts on the state vector B|y); AB ) = A(B|¢)). If the operator A is
distributive, A(|¢)) 4 |¢)) = A |¢)) + A |¢), and if the operator A commutes with the complex
number a, [A,a] = 0, then A is said to be linear operator; A(a |1)) 4+ b|p)) = aA [¢)) + bA |¢).
The expectation value or the mean value of an operator /1, (121), with respect to a state vector
) is given by (A) = (|A|) / (¥]h). The Hermitian adjoint or conjugate of a complex
number a, af, is the complex conjugate of the complex number a; af = a*. The Hermitian
adjoint of an operator A, AT, is defined by the relation <1/}|121T|gz5> = <qb\/1|1,[)>* An operator A
is said to be Hermitian if it is equal to its adjoint At; A = AT or (y|A|p) = <¢|fl]z/1>*

Spin-Free Schrodinger Equation

In order to quantitatively describe the hydrogen atom—which consists of an electron and a
proton to either of which an electric charge, an intrinsic spin momentum, and a rest mass
(me or my,) are assigned—the nonrelativistic time-dependent Schrédinger equation for the
spinless particles, in position representation (red), reads

0

V2 + V(7 7es t) | U (Fpy Ty t) = ma\p(@,, 7o, t). (A1)

p

h2 v2 hQ

[

2my, 2me
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Assuming that V (7, 7,t) = V(|r, — 7e|) = V(r), that is the system is stationary and the
potential is scalar, the nonrelativistic time-independent Schrédinger equation reads

h2
2m, P C 2m,

[ 2LV x () = Ex(ip ), (A.2)
Transforming 7, and 7. to R and 7, R being the vector which connects the origin of the
coordinate system to the center of mass of the system, the nonrelativistic time-independent
Schrodinger equation reads
h2 h 2 = = P

[_mv _7v +V( )]¢(R7T>:EQ/J(R7T)7 (Aj)
where M = m,+m. and 1 = myme/(m,-+m.). Generalisation of the dynamics of the hydro-
gen atom to a neutral atom with atomic number of Z, the nonrelativistic time-independent

Schrodinger equation reads

B, R, & Ze e L
[_ZJ\/IVR_X;QWLGVTL_Z F—§’+Z|ﬂ*F}‘]w(R7 1, 27~"7TZ)

where M is the mass of the nucleus and R represents the position of the center of mass
of the nucleus. For a molecule containing M nuclei and N electrons® the nonrelativistic

time-independent Schrodinger equation reads

B M h2 vz - N h2 v2 _]\/J,N ZA€2 . ZAZB€2
2o, Vi = 2 g Vi T 2w 2 E A
A=1 A i=1 ¢ A |’1 'A’ A>B‘ A B‘ (A 5)
e2
+ZM:|1/)(R1,...,R]\4,T1,.. , T ) E?/)( ....,RM',Tl,...,TN)
g J

Within the framework of the so-called clamped nuclei approximation, the nuclei are con-
sidered to be fixed because m,/m. ~ 1836, m, and m. being the rest mass of proton and
electron. Thus, the first term in equation (2.1) vanishes and the nucleus-nucleus repulsion,
YoaspZaZ e/ |]§A — EB|, turns into a constant which, from the linearity of Hamiltonian
operator, can be transferred into the eigenvalue. This results in the electronic Hamiltonian
which describes the dynamics of N spinless electrons in the electrostatic field of M point

charges.

Ty — 1A

Nop2 Wz e’
AR s NP M) (8.6

*Since low-energy phenomena are addressed in this work, pair production does not take place (ref. 51)
and N is a constant.
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The solution of the corresponding nonrelativistic time-independent electronic Schrédinger
equation, Huta ({7}, {RA}) = Eata({F;},{R4}), gives electronic energies which explicitly
depend on the spatial coordinates of the electrons and parametrically on the spatial coordi-

nates of the nuclei, i.e., Fo({RA}).

Orbital Angular Momentum

According to classical physics, for a particle with linear momentum of p’and position of 7" one

can write
i 7k
L=7x ﬁ: X ) zZ| = (ypz - Zpy)l_"—i— (zp.’L‘ - mpz)j"" (xpy - yp:l;)ka (A7)
Pz Dy Dz

where L denotes the angular momentum of the particle. By substituting the dynamical
variables 77 and p’ by the corresponding quantum mechanical operators one can write L=
X 1%' — —ihi* x V for the orbital angular momentum, whose Cartesian components read
e = Jp. — 2Py = —ih(§0/0z — 20)0y), L, = ip, — ip, = —ih(20/dx — $0/dz), and

. = TPy — Y = —ih(20/0y — yd/Ox). Since the operators Z, 7, and Z mutually commute

SR

and so do the operators p,, py, and p., and since [z, p,| = ih, [y,p,] = ih, and [2,p.] = ik,

one can write

A~

[
- [Q ) éf)T] - [gﬁ?ﬁ viljz] - [éﬁy-/ épT] + [éﬁya jﬁz] (A8>

>

= [P, 2px + 2[2, Do)y = ih(EPy — §ps) = ihL,.

For the other two commutations, according to the cyclic permutation © — y — z — x, one has
(Ly,L.] = ihL, and [L., L,| = ihL,. Notice that [, L,| = 0, [#, L,] = ih?, [#, L.] = —ihy,
(pe L) = 0, [po Ly) = ihpz, and [py, L) = —ihp,. Therefore, [#, L2] = ih(Ly? + 2L, — L.j -
ﬁf’y) and [Py, [_:2] = 7:h(fﬁt/ﬁz + lﬁzf’y - izﬁy - iﬁyﬁy)

General Formalism of Angular Momentum
A general angular momentum operator J can be defined in terms of its components jx, jy

and J, such that [jm, jy] = ihJ,, [jy, jz] = ihJ,, and [jz, jx] = ihjy, or equivalently stated

T x J= —inJ. (A.9)

o &ko S
< >@K(> .y
o Nko ol

Notice that [J_Q, jk] = 0, where k stands for z, y, and z.
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For example,
[T, T2 ] (A.10)

In the light of the relation Jy = J, + ijy, one can write [ﬁ,ji] =0, [j+,j_} = 2hJ.,
and [jz, ji] = +hJy. Tt is easy to show that jij; = Ji2 — jZZ + hJ, which leads to j2 =
(1/2)(JyJ_ 4+ J_Jy) + J2. Considering the relation J. |, B) = hB|a, ), one can write
Jo(Je|a, ) = h(B £ 1)(Jx |a, B)). So, J*(Jx |, B)) = h*a(Jx |, B)). Considering the

equation J2 lo, B) = R%a|a, B), it is easy to verify that a > (2. It can be shown that
—j < m < j. To summarise J2 |, m) = h2j(j + 1) |7, m) and J |j,m) = hm |j, m).

The Hydrogen Atom

For the hydrogen atom, equation (A.6), ignoring the kinetic energy of the proton and using

the Coulomb potential in CGS system, can be written as

Ry e\
(—ﬁvgﬁﬁw_Eu (A.11)

It is unique of the hydrogen atom (hydrogen-like ions) and its spherical potential that the
partial differential equation (A.11) can be separated into three ordinary differential equations

in the spherical polar coordinate system; x = rsinf cosy, y = rsinfsinyp, and z = r cosf.

So,
f}f ig 22 +l Lg 5 gg +Li2 fiw
2u | 2 or = 2 singag\ """ 99 sin? 0 0?2 r

2 )2
:{ ﬁ<10]P”¢:Em

T ror2 Rz

(A.12)

The exact solution of equation (A.12) is therefore a product of two functions; a R,;(r)
radial function which is associated with the Laguerre polynomials and a Y},,,(¢, ¢) spherical
harmonic. Boundary conditions lead to quantisation and the principal quantum number

n=1,2,...,00, the azimuthal quantum number [ =0,1,...,n —1, and m =0, +£1,...,+£l.
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Tables and Figures

Table B.1: Available experimental data for the diatomic molecules AB

. Za| 91 99 93 24 25 26 27 ag | Za 7
B B
29 - - - CrCu® - - CoCu’ NiCuF 29
47 - - CrAg? MnAg/ - - NiAg 47

79 ScAu® - VAu’ CrAu® MnAuw? FeAu" CoAw NiAu™ 79

@ DY (ref. 98) ® DY (refs. 98,100)

¢ X251y 28 + 1 =4 (ref. 105) or 6 (ref. 103) or 8 (ref. 104), DY (ref. 98)

4 X6% (ref. 105) ¢ X5% (ref. 105), D (ref. 98) F XT3 (vef. 101), DY (refs. 98,101)
9 DY (refs. 98,102) h DY (ref. 98) ¢ DY (vef. 98)

7 DY (ref. 98) ¥ X?As/2,A,B,C,D,E,F, Do, 7e,we,weTe, ... (refs. 98,106-108,112)

PX2AMA, we (ref. 112)
X2 Ny, Q=3/2,Q=1/2,Q =3/2,Q =1/2,[18.4]5/2, [18.5]3/2, Do, 70, we, ... (refs. 98,110,111)
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Table B.2: Errors in excitation energies for the low-lying electronic levels of the metal atoms A (Sc-Ni) and B (Cu/Ag/Au) calculated at
various levels of theory (CASSCF, MRCI, KRCI) considering relativistic effects. Table entries are Egef — Ecale (€V), where the reference

energies are given in last column. The spin-orbit coupled components (J) are indented relative to the parental AS terms.

atom configuration term J c-CAS®* CAS® CAS-v¢ ¢-MRCI¢ MRCI¢ MRCI-v¢ KRCI® expt.’
Sc 3d!4s? ’D 0.00 0.00 0.00 0.00 0.00 0.00 - 0.000000
3/2 - - - - - 0.00 0.00 0.000000
5/2 - - - - - 0.00 —0.01 0.020871
3d24s! iR —0.09 0.68 —0.13 —0.11 —0.32 —0.27 - 1.426944
3/2 - - - - - —0.27 —0.06 1.428297
5/2 - - - - - —0.27 —0.06 1.432971
7/2 - - - - - —0.27 —0.07 1.439491
9/2 - - - - - —0.28 —0.07 1.447811
3d24s! ’F —0.36 0.21 —0.13 —0.20 —0.17 —0.17 - 1.846282
5/2 - - - - - —0.17 —0.09 1.850597
7/2 - - - - - —0.17 —0.09 1.864960
Ti 3d24s? 3F 0.00  0.00 0.00 0.00 0.00 0.00 - 0.000000
2 - - - - - 0.00 0.00 0.000000
3 - - - - - 0.00 0.00 0.021094
4 - - - - - 0.00 —0.01 0.047966
3d34s! °F —-1.19 —-0.15 —1.02 0.05 —0.28 —0.24 - 0.805758
1 - - - - - —0.24 0.03 0.812944
2 - - - - - —0.24 0.03 0.818143
3 - - - - - —0.24 0.03 0.825860
4 - - - - - —0.24 0.03 0.835995
5 - - - - - —0.24 0.03 0.848419
3d?4s? D -0.15 —0.25 —0.24 —0.05 —0.11 —0.10 - 0.871961
2 - - - - - —0.10 —0.24 0.899549
3d2%4s? 3p —-0.24 —-0.29 —0.32 —0.01 —0.12 —0.14 - 1.032141
0 - - - - - —0.14 —0.21 1.046007
1 - - - - - —0.14 —0.21 1.052926

Continued on next page
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Table B.2 — Continued from previous page

atom configuration term J c-CAS® CAS’ CAS-v¢ ¢-MRCI¢ MRCI¢ MRCI-v¢ KRCI® expt.’
2 - - - - - —0.14 —0.22 1.066555
Vv 3d34s? iF 0.00  0.00 0.00 0.00 0.00 0.00 - 0.000000
3/2 - - - - - 0.00 0.00 0.000000
5/2 - - - - - 0.00 0.00 0.017033
7/2 - - - - - 0.00 —0.01 0.040104
9/2 - - - - - 0.00 —0.01 0.068558
3d*4s! 5D —0.60 0.09 —0.80 0.07 —0.17 —0.17 - 0.245144
1/2 - - - - - —0.17 0.04 0.261889
3/2 - - - - - —0.17 0.04 0.266964
5/2 - - - - - —0.17 0.04 0.275259
7/2 - - - - - —0.18 0.04 0.286572
9/2 - - - - - —0.18 0.04 0.300634
3d*4s! D —-0.92 —0.29 —0.84 —0.04 —0.10 —0.14 - 1.026226
1/2 - - - - - —0.15 —0.04 1.043079
3/2 - - - - - —0.15 —0.04 1.050919
5/2 - - - - - —0.15 —0.04 1.063602
7/2 - - - - - —0.15 —0.04 1.080617
3d34s? ip —-0.21 —-0.36 —0.38 0.01 —0.14 —0.15 - 1.164965
1/2 - - - - - —0.15 —0.23 1.183383
3/2 - - - - - —0.15 —0.23 1.194839
5/2 - - - - - —0.15 —0.24 1.218096
Cr 3d54s! S —0.56  0.00 —0.75 0.00 0.00 0.00 - 0.000000
3 - - - - - 0.00 0.00 0.000000
3d54s! 53 —-0.84 —-0.31 —0.74 —0.09 0.07 0.02 - 0.941430
2 - - - - - 0.02 —0.11 0.941430
3d*4s? D 1.00 0.88 1.00 —0.11 0.00 0.03 - 1.003056
0 - - - - - 0.03 —0.23 0.960970
1 - - - - - 0.03 —0.23 0.968413

Continued on next page
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Table B.2 — Continued from previous page

atom configuration term J c-CAS® CAS® CAS-v¢ c¢MRCI¢ MRCI¢ MRCI-v¢ KRCI® expt.’
2 - - - - - 0.03 —0.23 0.982877
3 - - - - - 0.03 —0.23 1.003675
4 - - - - - 0.03 —0.24 1.030008
Mn  3d%4s? 63 0.00 0.00  0.00 0.00 0.00 0.00 - 0.000000
5/2 - - - - - 0.00 0.00 0.000000
3d64s! 5D 0.40  0.68 —0.07 0.01 —0.33 —0.36 - 2.145076
9/2 - - - - - —0.36 —0.18 2.114214
7/2 - - - - - —0.36 —0.20 2.142695
5/2 - - - - - —0.36 —0.22 2.163713
3/2 - - - - - —0.37 —0.23 2.178214
1/2 - - - - - —0.37 —0.23 2.186728
Fe 3d%4s? °D 0.00 0.00 0.00 0.00 0.00 0.00 - 0.000000
4 - - - - - 0.00 0.00 0.000000
3 - - - - - 0.00 0.00 0.051569
2 - - - - - 0.01 0.00 0.087286
1 - - - - - 0.01 0.00 0.110114
0 - - - - - 0.00 0.00 0.121266
3d74s! °F 0.10 0.38 0.37 0.13 —0.10 —0.10 - 0.874930
5 - - - - - —0.09 —0.06 0.858996
4 - - - - - —0.09 —0.06 0.914602
3 - - - - - —0.09 —0.06 0.958157
2 - - - - - —0.10 —0.06 0.990111
1 - - - - - —0.10 —0.06 1.011056
3d74s! 3F —0.10 0.17 0.16 0.10 —0.07 —0.07 - 1.488361
4 - - - - - —0.07 —0.11 1.484864
3 - - - - - —0.07 —0.11 1.557357
2 - - - - - —0.08 —0.11 1.607896

Continued on next page
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Table B.2 — Continued from previous page

atom configuration term J c-CAS® CAS’ CAS-v¢ ¢-MRCI¢ MRCI¢ MRCI-v¢ KRCI® expt.’
Co 3d74s? a‘F 0.00 0.00  0.00 0.00 0.00 0.00 - 0.000000
9/2 - - - - - 0.00 0.00 0.000000
7/2 - - - - - 0.00 0.00 0.101171
5/2 - - - - - 0.00 0.00 0.174426
3/2 - - - - - 0.00 0.00 0.224328
3d®4s! biF —-2.72 —-2.56 —3.30 0.05 —0.01 —0.15 - 0.417152
9/2 - - - - - —0.14 —0.16 0.431815
7/2 - - - - - —0.15 —0.16 0.513624
5/2 - - - - - —0.15 —0.16 0.581508
3/2 - - - - - —0.15 —0.16 0.629323
3d84s! a’F —2.88 —2.73 —3.38 —0.07 —0.09 —0.24 - 0.878525
7/2 - - - - - —0.24 —0.19 0.922741
5/2 - - - - - —0.25 —0.19 1.049007
Ni 3d%4s! 3D -3.15 —3.13 —3.83 0.00 0.00 —0.13 - 0.000000
3 - - - - - —0.15 —0.41 0.025390
2 - - - - - —0.16 —0.33 0.109083
1 - - - - - —0.15 —0.32 0.212396
3d84s? 3F 0.03  0.03 0.03 —0.07 —0.02 0.03 - 0.029799
4 - - - - - 0.00 0.03 0.000000
3 - - - - - 0.00 —0.06 0.165167
2 - - - - - —0.01 —0.08 0.274817
3d94s! D —-1.26 —1.58 —1.57 —0.09 —0.06 —0.20 - 0.332089
2 - - - - - —0.25 —0.40 0.422778
Cu 3d104g! 23 —2.79 —2.79 —3.48 0.00 0.00 0.00 - 0.000000
1/2 - - - - - 0.00 0.00 0.000000
3d%4s? ’D 1.49 1.49 1.49 0.15 0.15 0.38 - 1.490259
5/2 - - - - - 0.38 0.43 1.3889476

Continued on next page
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Table B.2 — Continued from previous page

atom configuration term J c-CAS® CAS® CAS-v¢ c¢MRCI¢ MRCI¢ MRCI-v¢ KRCI® expt.’

3/2 - - - - - 0.38 0.41 1.6422256
Ag 4d105s! 23 0.00  0.00  0.00 0.00 0.00 0.00 - 0.000000
1/2 - - - - - 0.00 0.00 0.000000
4d105pt 2pe - - —0.01 - - —0.29 - 3.740082
1/2 - - - - - —0.26 - 3.663988
3/2 - - - - - —0.31 - 3.778129
4d95s2 ’D 1.33 1.33 1.32 0.42 0.53 0.51 - 3.971346
5/2 - - - - - 0.51 —0.04 3.749567
3/2 - - - - - 0.52 —0.05 4.304016
Au 5d196s! 23 0.00 0.00 0.00 0.00 0.00 0.00 - 0.000000
1/2 - - - - - 0.00 0.009 0.000000
5d”6s? ’D 0.52 0.52 1.16 0.02 —0.10 —0.02 - 1.744555
5/2 - - - - - 0.04 —0.099 1.135841
3/2 - - - - - —0.10 —0.089 2.657625
h
MAD/ 0.74  0.67  0.86 0.06 0.09 0.12 - 0.00
MAD - - - - - 0.13 0.11 0.00

¢ SA-CASSCF(n,10), where the number of active electrons n varies from 11 to 18 for the atoms Sc to Ni. n = 19 for the atoms B. The 10 active or-
bitals are (k — 1)s+(k — 1)p+(k — 1)d+ks. k = 4 for the atoms A and Cu, k =5 for Ag, and k = 6 for Au.

® SA-CASSCF(m,6), where the number of valence electrons m varies from 3 to 10 for the atoms Sc to Ni. m = 11 for the atoms B. The 6 active orbitals
are (k — 1)d+ks.

¢SA-CASSCF(m,9). The 9 active orbitals are (k — 1)d+ks+kp.

4 MRCI calculations on top of the corresponding SA-CASSCF calculations as defined in the footnotes a, b, and ¢. Davidson correction has been in-
cluded in the MRCI energies.

¢ AC-DHF(m|6) with the subsequent GASCI(m|l). The 6 Kramers pairs are composed of the (k — 1)d+ks atomic spinors. [ is the number of virtual
orbitals which was chosen on a case-by-case basis (37 <[ < 76).

f MAD stands for mean absolute deviation from the reference energies, (1/5) S>7_, | Eret(i) — Ecaic(i)|, 7 = 31 and j = 88 for the AS and spin-orbit cases.
91In contrast to other atoms for which the dyall-v3z basis (ref. 92) were used in the KRCI calculations, for the Au atom the dyall-v2z basis (ref. 94)
was employed.

" See also ref. 168 for the LS terms of the configurations s', p
iEXperimental energies for the levels E; were taken from ref. 118.

1=5 4179 and 1713 for some further atoms and cations.
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Table B.3: Correlation between atomic and molecular terms in ScB. Energies are in eV.

Sc B (A,S) terms energy Sc B () terms energy

2D, 3d%4s? 28, (k—1)dV%ks! 3[Zt @Il @ A]* 0.00 3/2 1/2 2@1(2)@ 0T @0~ 0.00
5/2 1/2 3®212)31(2)® 0t a0~ 0.02

aly+ = ot Mm=1 TA=2 Syt=0"a1 M=0te0 @102 SA=10293

Table B.4: Correlation between atomic and molecular terms in TiB. Energies are in eV.

Ti B (A,S) terms energy Ti B Q terms energy
SF, 3d%4s® 28, (k—1)d%ks? S -eldeAa @ 000 2 1/2 3a2(2)ei(2) 0.00

312 ITes@2ei2ei(2 0.02

4 12 Jei@2)ei2ei2ai(2 0.05
°F, 3d%4s' 28, (k —1)d%s! 40X @Ilo Ao @] 0.81 1 1/2 312 0.81

2 1/2 3e3@2)ei2 0.82

312 Tes2ei2ei(2 0.83

4 172 Jel2el@2e(2)oi(2 0.84

5 12 Yael@el@es2ei(2ei(2) 085
25T = 1/2 M= 1/2@®3/2 A =3/295/2 20 =5/207/2 YT = 1/293/2 ‘M=1/201/203/285/2 A=

1/2@3/2¢5/2¢7/2 ‘P =3/205/207/209/2 %" = 1/203/205/2 ‘M=1/201/203/203/205/207/2 A=1/20

1/203/205/207/209/2 & =1/203/205/207/269/2@ 11/2
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Table B.5: Correlation between atomic and molecular terms in VB. Energies are in eV.

\Y B (A,S) terms energy V B Q terms energy

AF, 3d%4s? 28, (k—1)dV%s! 3P[X-ollao Ao ®* 0.00 3/2 1/2 2¢1(2)® 0t a0 0.00
5/2 1/2 3@22)®1(2)® 0T a0~ 0.02
7/2 1/2 49312)®22)®1(2)@ 0t @0 0.04
9/2 1/2 5®4(2)®3(2)®22)®1(2)®0" ®0~ 0.07

6D, 3d%4s! 28, (k—1)d%ks! SRt oIle A)° 0.25 1/2 1/2 1@0t@0~ 0.26
3/2 1/2 2¢1(2)e 0" a0 0.27
5/2 1/2 3@2(2)®1(2)® 0T a0~ 0.28
772 1/2 49312)®22)e1(2) 0T @0~ 0.29
9/2 1/2 5®4(2)@3(2)®2(2)®1(2)® 0T @0~ 0.30

3y = 0tel M=0"e0 @1a2 SA=192@3 3p=20304 St otel1e2 55" =20 0192 MT=0"®0 &
101®2®3 PA=0"00 0l1020304 P=192¢30495 TT=0 910283 M=0"®0" ®1e102020304
"N=0"00 16162034485

Table B.6: Correlation between atomic and molecular terms in CrB. Energies are in eV.

Cr B (A,S) terms  energy Cr B Q terms energy
7S, 3d°4s' %S, (kK —1)d'0ks!  68[xnt]e 0.00 3 1/2 Ia3@2e3(2)ei(2) 0.00
58, 3d°4s' 28, (kK —1)d'0ks!  46[xnF]e 094 2 1/2 Ze3(2)®i(2 0.94

Nt = 1/2@3/2@5/2 5yt = 1/2@3/205/207/2 vt =1/203/2
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Table B.7: Correlation between atomic and molecular terms in MnB. Energies are in eV.

Mn B (A,S) terms energy Mn B terms energy

68, 3d%4s? 28, (k — 1)d0%ks! >7[xT]e 0.00 5/2 1/2 3@22)@1(2)e 0T @0~ 0.00

6D, 3d%4s! 28, (k —1)d%s! 57Nt oIlg Al* 2.15 9/2 1/2 5®4(2)®3(2)®212)d1(2)@0t a0~ 211
7/2 1/2 4932 a22)®1(2)@ 0T @0 2.14
5/2 1/2 3®2(2)®1(2)a 0T @0~ 2.16
3/2 1/2 201(2)a 0T @0~ 2.18
1/2 1/2 10t @0~ 2.19

Byt = 0tel1e2 SI=0"@0  @1e1e263 SA=0te0 gl1e29304 Tt 0 e19263 M=0"Te0 @alole
202®3d4 N=0"00 ®1l0162030485

Table B.8: Correlation between atomic and molecular terms in FeB. Energies are in eV.

Fe B (A,S) terms energy Fe B Q terms energy

5D, 3d%4s? 28, (k—1)dVks' 4=t olIe Al 000 4 12 fal@al@2 o2 ®i(2 0.00
3 12 Ies@2ei2ei(2 0.05
2 1/2 3e3(2)ei(2 0.09
1 1/2 3812 0.11
0o 1/2 1 0.12

SF, 3d74s' %S, (k—1)d"%s! 2" eloAad 087 5 12 Yel@aelRel@aei@ael2 086
4 12 Jel2el2ei2ael( 0.91
3 12 Ie3@2ei2ei@) 0.96
2 1/2 2e3@2)ei(2 0.99
112 3932 1.01

“Ivt = 1/2@3/2 YT = 1/29 3/2 ‘M= 1/201/2@3/2¢ 5/2 A= 1/203/205/297/2 D= 3/205/207/209/2
byt = 1/203/205/2 Y = 1/2®3/2®5/2 ‘M= 1/201/203/203/205/207/2 A= 1/201/203/205/2®7/2®9/2
50 = 1/2@3/205/207/2@9/2®11/2
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Table B.9: Correlation between atomic and molecular terms in CoB. Energies are in eV.

Co B (A,S) terms energy Co B () terms energy
4F, 3d74s% %S, (k—1)d%s! 3P[R- o Ile A @ ®]* 0.00 9/2 1/2 5@4(2)®3(2)®2(2)@1(2)®0" w0~ 0.00
7/2 1/2 4932)®22)®1(2)@ 0t @0 0.10
5/2 1/2 3@22)@1(2)e 0T @0~ 0.17
3/2 1/2 201(2) @0t a0 0.22
3% = 0tel M= 0"00” @l1a2 A=10203 o=203d4 YT =0 @lo2 M=0"a0 alela263
PA= 0T 00 @9le203604 "= 102036405
Table B.10: Correlation between atomic and molecular terms in NiB. Energies are in eV.
Ni B (A,S) terms energy Ni B () terms energy
3D, 3d%s' 28, (k- 1)d!%s! 24[Stollo A)® 0.00 3 1/2 Ia22)e32®i(2 0.03
2 1/2 2@3(2)83(2) 0.11
1 1/2 3@3(2) 0.21
SF, 3d%s? %8, (k—1)d%%s! 24" eloAad® 003 4 1/2 Sol@aei@e3(2®i(2) 0.00
3 12 Ies@2eiei2) 0.17
2 1/2 2@3(2)3(2) 0.27
D, 3d%s! 28, (k—1)d"%s! 2ot @ e Al® 033 2 1/2 Se3@2ai© 0.42
2T = 1/2 2t = 1/2 M= 1/2@3/2 A =3/2@5/2 20 =5/207/2 YT =1/283/2 vt = 1/2@3/2

M=1/201/263/2®5/2 ‘A=1/203/205/207/2 “©=3/205/207/209/2
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Table B.11: Bond length r.(A), harmonic frequency and anharmonicity constant w, wet.(cm™"), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule ScCu obtained at the DKH-MRCI(+Q) level

No. Term Te We wete De T e MCW¢
1 X3A
MRCI® 264 1986 0.52 1.17 0.00 1.02 90% [24421001]
cMRCI® 2.60 202.0 0.65 1.14 0.00 0.95 87% [24421001]
]

2 In+ 2.59 207.1 0.76 1.05 0.12 0.29 64% [24421100] 4 25% [24422000]
3 30 2.63 1928 050 1.02 0.15 0.70 90% [24421010]
4 3nt 2.63 194.2 0.52 0.96 021 042 90% [24421100]
5 1A 2.65 1972 044 096 021 0.19 88% [24421001]
6 I 2.65 184.2 0.50 0.78 0.39 0.92 90% [24421010]

® Dipole moments () and main configuration weights (MCW) correspond to r = 2.65 A. The occupations of the
orbitals cmdooomd are given in brackets. Weights larger than one-tenth are reported.
® MRCI[(104+4)E,(5+7)0] ¢ MRCI[(2644)E,(1347)0]

Table B.12: Bond length 7 (A), harmonic frequency and anharmonicity constant w,wez.(cm™1), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule ScAg obtained at the DKH-MRCI(+Q) level

No. Term Te We WeZTe Do T. 1 MCWwW?®

1 X3A

MRCI® 275 1754 0.46 1.21 0.00 0.73 89% [24421001]

cMRCI¢ 272 173.7 0.38 1.11 0.00 0.72 88% [24421001]
[ ]

2 Ixt 271 1798 0.68 1.14 0.07 040 65% [24421100] + 24% [24422000]
3 30 274 172.6 055 1.1 0.10 0.38 89% [24421010]
4 1A 275 1723 053 1.07 0.15 —0.21 87% [24421001]
5 3ut 2.75 1745 0.60 1.04 0.18 0.08 90% [24421100]
6 I 277 1634 0.78 091 030 0.73 89% [24421010]

“ Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.75 A. The occupations of the
orbitals omdooond are given in brackets. Weights larger than one-tenth are reported.
" MRCI[(10+4)E,(5+7)0] ¢ MRCI[(26+4)E,(13+7)0]

Table B.13: Bond length re(A), harmonic frequency and anharmonicity constant we, wez.(cm™!), dissociation
energy D, (eV), electronic energy T¢(eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule ScAu obtained at the DKH-MRCI(+Q) level

No. Term Te We WeZe De T, ue MWC?*
1 X3A
MRCI® 2.60 226.2 0.79 2.52 0.00 2.00 89% [24421001]
cMRCI¢ 2.52 2427 0.58 2.69 0.00 1.90 87% [24421001]
expt. - - - 2.87(0.18)¢ - - -
2 Iyt 2.54 240.7 0.73 2.38 0.15 1.76  56% [24421100] + 31% [24422000]
3 81 2.62 2232 0.60 2.33 0.19 1.91 89% [24421010]
4 1A 2.59 228.0 0.65 2.29 0.23 1.49 87% [24421001]
5 3ut 2.62 224.2 0.65 2.21 0.31 1.64 89% [24421100]
6 I 2.62 217.3 0.56 2.02 0.50 2.19 88% [24421010]

“ Dipole moments () and main configuration weights (MCW) correspond to r = 2.60 A. The occupations of the orbitals
omwdooond are given in brackets. Weights larger than one-tenth are reported.

" MRCI[(10+4)E,(5+7)0] ¢ MRCI[(40+4)E,(2047)0]

¢ From ref. 98. The experimental bond strength in ref. 98 is D). No electronic term was mentioned/assigned in this work.
It is presumed that the reported value corresponds to the electronic ground state term calculated in the present work.
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Table B.14: Bond length r.(A), harmonic frequency and anharmonicity constant we, wet.(cm™!), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight(MCW) of the

APPENDIX B. TABLES AND FIGURES

low-lying states of the diatomic molecule TiCu obtained at the DKH-MRCI(+Q) level

No. Term Te We wete De T e MCW¢
1 X*'®

MRCI® 252 214.6 0.75 1.14 0.00 2.75 84% [24421011]

cMRCI¢ 251 2121 071 1.10 - 2.07  83% [24421011]
2 14y~ 2.53 230.0 1.07 1.06 0.08 2.68 54% [24421020] + 29% [24421002]
3 141 2.53 208.1 0.78 099 0.15 2.71 65% [24421011] 4 18% [24421110]
4 1*A 2.52 206.8 1.75 0.87 027 2.74 89% [24421101]
5 Z2A 2.54 1947 1.38 0.77 0.37 1.39 66% [24421101] 4 22% [24422001]
6 20 2.54 1932 0.96 0.73 0.41 2.08 88% [24421011]
72 2.56  187.9 0.97 0.70 0.44 1.82 54% [24421011] 4 26% [24421110]
8 2x- 2.56 1882 1.22 0.67 0.48 212 67% [24421020] 4 22% [24421002]
9 2!A 2.56  190.4 0.51 1.27 0.76 3.78 81% [24420021]
10 21 2.58 187.2 0.83 1.20 0.83 3.55 43% [24420111] + 26% [24420012]

+ 13% [24421110]
11 24y~ 2.58 188.1 1.41 1.20 0.83 3.44 45% [24420102] 4+ 19% [24421020]
+ 11% [24420120]

12 2% 2.55 189.1 1.41 1.13 0.90 3.53 78% [24420111]
13 SA 326 362 235 0.04 200 1.71 88% [24411021]
14 % 347 125  0.06 0.02 201 1.51 92% [24411111]
15 OII 442 11.7  0.06 0.02 2.02 1.69 63% [24411111] 4+ 27% [24411012]
16 %~ 471 11.7 010 0.01 2.02 1.60 55% [24411102] 4+ 37% [24411120]

? Dipole moments (¢) and main configuration weights (MCW) correspond to r = 2.50 A. The occupations of the
orbitals cmdooonmd are given in brackets. Weights larger than one-tenth are reported.
" MRCI[(10+5)E,(5+7)0]

¢ MRCI[(26+5)E, (13+7)0]
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Table B.15: Bond length r.(A), harmonic frequency and anharmonicity constant we, wet.(cm™!), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule TiAg obtained at the DKH-MRCI(+Q) level

No. Term Te We wete De T e MCW¢

1 X4
MRCI® 263 1926 021 1.19 0.00 1.92 85% [24421011
cMRCI¢ 2.62 189.1 0.94 1.04 0.00 1.60¢ 83% [24421011]¢

]

]
2 1%~ 2.65 190.0 0.17 1.13 0.07 1.13 58% [24421020] + 27% [24421002]
3 1M 2.65 188.6 0.30 1.08 0.11 1.81 63% [24421011] + 22% [24421110]
4 1A 2.65 186.2 0.43 1.02 0.18 1.74 88% [24421101]
5 2A 2.65 180.4 0.72 0.90 0.30 0.83 68% [24421101] + 18% [24422001]
6 20 2.65 180.6 1.26 0.86 0.34 1.27 87% [24421011]
7 I 2.66 177.9 1.63 0.83 0.37 1.15 53% [24421011] + 27% [24421110]
8 2%~ 2.68 175.6 1.50 0.79 0.41 1.35 66% [24421020] + 21% [24421002]
9 2A 2.65 187.3 0.65 1.47 0.73 2.60 81% [24420021]
10 241 2.66 185.5 0.76 1.42 0.78 2.53 43% [24420111] + 29% [24420012)]
11 24y~ 2.66 184.5 0.74 1.41 0.79 249 49% [24420102] + 13% [24421020]

+ 12% [24420120]

12 20 2.65 189.2 0.79 1.39 081 229 77% [24420111]
13 SA 2.95 97.8 146 030 1.89 1.62 88% [24411021]
14 5o 3.05 831 1.05 024 196 1.49 91% [24411111]
15 o1 310 70.8 050 020 1.99 1.71 59% [24411111] + 31% [24401112]
16 6%~ 319 624 069 0.17 2.03 1.67 61% [24411102] + 31% [24411120]

® Dipole moments () and main configuration weights (MCW) correspond to r = 2.65 A. The occupations of the
orbitals cmdooomd are given in brackets. Weights larger than one-tenth are reported.

* MRCI[(10+5)E,(5+7)O] ¢ MRCI[(26+5)E,(13+7)0]

4 These values correspond to r = 2.60 A.

Table B.16: Bond length re(A), harmonic frequency and anharmonicity constant we,wez.(cm~1), dissociation
energy D.(eV), electronic energy T(eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule TiAu obtained at the DKH-MRCI(4Q) level

No. Term Te We WeTe Do T. e MCW¢?

1 X'

MRCI® 254 231.9 058 241 0.00 1.55 89% [24421011]

cMRCI¢ 249 2414 0.49 250 0.00 1.48 88% [24421011]
]

2 Ay- 2.55 2294 0.57 230 0.1 1.58 58% [24421020] 4 31% [24421002]

34 2.55 2288 0.61 227 0.14 151 64% [24421011]

4 A 255 227.3 053 225 0.16 1.32 89% [24421101]

5 2A 252 2332 0.65 200 041 1.01 79% [24421101]

6 20 255 2300 052 1.99 042 127 89% [24421011]

72 2.55 2285 053 1.90 051 1.28 46% [24421011] + 19% [24421110]
]

[
8 2%~ 2.56 226.8 0.45 1.87 0.54 1.34 54% [24421020] + 26% [24421002]

? Dipole moments (¢) and main configuration weights (MCW) correspond to r = 2.55 A. The occupations of the
orbitals omdooomd are given in brackets. Weights larger than one-tenth are reported.
® MRCI[(104-5)E,(5+7)0] ¢ MRCI[(22+5)E,(11+7)0]
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Table B.17: Bond length r.(A), harmonic frequency and anharmonicity constant we, wet.(cm™!), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule VCu obtained at the DKH-MRCI(+Q) level

No. Term Te We wete Do T e MCW¢
1 X°A
MRCI? 2.47 226.5 2.37 1.25 0.00 2.32 79% [24421021]
cMRCI¢ 247 1970 -0.64 1.20 - 1.89% 82% [24421021]¢
2 1°11 249 222.7 3.09 1.13 0.12 248 55% [24421012]
RID M 2.50 251.1 8.48 0.87 0.38 2.07 75% [24421102] + 14% [24421120]
4 5ut 255 189.3  0.63 1.18 0.42 3.41 78% [24420022]
5 % 2.50 244.8 9.38 0.80 0.45 2.09 90% [24421111]
6 2°I 251 2152 439 1.02 059 2.85 52% [24420112] + 31% [24421111]
7 3%~ 2.51 212.7 528 0.66 0.60 1.00 48% [24421102] + 21% [24422002]
8 I 2.51 209.3 429 0.65 0.60 1.20 36% [24421012] 4+ 33% [24421111]
9 3A 2.51 206.5 3.77 0.64 0.61 1.52 84% [24421021]
10 3@ 252 1943 254 0.63 0.62 1.05 57% [24421111] + 27% [24422011]
11 2°A 2.50 222.3 6.56 0.69 0.92 2.77 T74% [24420121]
12 A 330 21.6 141 0.02 158 1.88 91% [24411121]
13 "t 426 11.7 0.20 0.01 1.59 2.25 8&2% [24411022]
14 "I 4.63 11.7 0.27 0.01 1.60 2.11 91% [24411112]

“ Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.45 A. The occupations of the
orbitals omdooond are given in brackets. Weights larger than one-tenth are reported.
“ MRCI[(26+46)E,(13+7)0O)]

" MRCI[(10+6)E,(5+7)0]

4 These values correspond to r = 2.50 A.

Table B.18: Bond length re(A), harmonic frequency and anharmonicity constant we, wez.(cm™1), dissociation
energy D.(eV), electronic energy Te(eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule VAg obtained at the DKH-MRCI(+Q) level

No. Term Te We WeZe De T, ue MCW®@

1 X°A

MRCI® 259 1923 0.62 124 0.00 162 7% [24421021]

cMRCI¢ 2.61 183.6 0.59 1.15 - 1.30  79% [24421021]
2 1°11 2.60 186.9 0.55 1.14 0.10 1.81 51% [24421012] + 14% [24420112]
3 5%t 2.62 1788 0.59 1.31 0.31 2.28 77% [24420022] + 10% [24411022]
4 Oy 2.63 1772 0.17 092 0.32 147 74% [24421102] + 14% [24421120]
5 °® 2.64 173.2 0.17 0.85 0.39 1.37 89% [24421111]
6  2°11 2.64 1745 024 1.15 048 1.79 50% [24420112] + 31% [24421111]
7 3%T 2.65 162.5 0.12 0.72 0.52 048 50% [24421102] + 18% [24422002]

+ 10% [24421120]

8 I 2.64 165.0 0.75 0.71 0.53 0.64 36% [24421012] + 35% [24421111]
9 2°A 2.63 174.1 0.06 1.07 0.56 1.62 69% [24420121] + 13% [24421021]
10 3A 2.65 161.7 0.52 0.68 0.56 1.62 84% [24421021]
11 3® 2.65 164.1 1.67 0.68 0.56 0.64 60% [24421111] + 24% [24422011]
12 A 3.03 812 1.34 0.22 1.41 1.51 90% [24411121]
13 %t 3.05 722 1.00 0.19 1.44 1.92 83% [24411022]
14 I 3.22 587 114 0.14 149 1.75 90% [24411112]

? Dipole moments (@) and main configuration weights (MCW) correspond to r = 2.60 A. The occupations of the
orbitals omdooomd are given in brackets. Weights larger than one-tenth are reported.

" MRCI[(10+6)E,(5+7)0]

¢ MRCI[(26+6)E, (13+7)0]



101

Table B.19: Bond length r.(A), harmonic frequency and anharmonicity constant w, we.(cm™!), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule VAu obtained at the DKH-MRCI(+Q) level

No. Term Te We weTe Do T ue MCW¢
1 X°A
MRCI® 251 2358 0.58 2.29 0.00 1.57 88% [244210210]
cMRCI® 2.49 239.0 —0.62 2.33 0.00 1.52 87% [244210210]
expt.¢ - - - 2.47(0.12) - - -
2 °II 2.50 234.7 0.59 2.29 0.00 1.43 47% [244210120] + 42% [244211110]
3 Sn- 2.50 2315 0.46 2.24 0.05 1.34 77% [244211020] 4 12% [244211200]
4 5P 2.52 229.5 0.60 2.09 0.20 1.40 88% [244211110]
5 3%~ 248 237.7 0.70 1.83 0.46 0.86 50% [244211020] + 18% [244220020]
6 Gl 249 237.8 0.63 1.81 0.48 1.05 39% [244210120] + 29% [244211110]
+ 11% [244220110]
7 3A 2.51 235.7 0.66 1.73 0.56 1.41 80% [244210210]
8 3P 2,50 233.2 0.59 1.68 0.60 1.20 57% [244211110] + 23% [244220110]

“ Dipole moments (1) and main configuration weights (MCW) correspond to 7 = 2.50 A. The occupations of the orbitals
omdooondo are given in brackets. Weights larger than one-tenth are reported.

 MRCI[(10+6)E,(5+8)O] ¢ MRCI[(22+46)E,(11+8)0]

4 DY from ref. 100. No electronic term was mentioned/assigned in this work. It is presumed that the reported value corre-
sponds to the electronic ground state term calculated in the present work.
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Table B.20: Bond length r.(A), harmonic frequency and anharmonicity constant we, wet.(cm™!), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule CrCu obtained at the DKH-MRCI(4Q) level

No. Term Te We weTe Do Te ne MCW¢

1 XOxntb
MRCI® 2.47 2089 1.30 1.21 0.00 217 78% [24420122]
cMRCT? 2.46 2033 1.35 1.11 - 1.64¢ 77%  [24420122]°
MRCI(SD)+Qf 2.468 183.6 0.64 1.195 0.00 - 77.4% [24420122]
expt. - - - 1.61(0.26)9 - - -

2 8yt 3.90 20.1  1.64 0.02 1.19 096 92% [24411122]
MRCI(SD)+Q/ - - - - 1.439 - 91.9% [24411122]

3 20n+ 2.75 57.7  —0.80 0.33 1.82  0.34 40% [24411122] +

39% [24421022]
4 Axt 2.48 1885 —7.58 0.16 2.00 0.40 44% [24421022] +

19% [24411122] +
16% [24420122]

“ Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.45 A. The occupations of the
orbitals omdooond are given in brackets. Weights larger than one-tenth are reported.

®In ref. 103, the CrCu molecule was formed in a solid krypton at 4 K, and it was indicated that the molecule has
a %% ground state term. In the very same year (1981), the authors published an erratum in which they drew the
conclusion that CrCu most probably has an 8% ground term—ref. 104. Two years later, however, they observed
the molecule in solid rare-gas matrices at 4 K and assigned a *% ground term to CrCu—ref. 105.

¢ MRCI[(104+7)E,(5+7)0] ¢ MRCI[(26+7)E,(13+7)0]

¢ These values correspond to r = 2.50 A.

f From ref. 113. In ref. 113, CAS(17,12) was employed as the active space and as the reference space. The elec-
tronic term energy reported in ref. 113 is vertical excitation energy.

9 DY from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the reported value
corresponds to the electronic ground state term calculated in the present work.

Table B.21: Bond length re(A), harmonic frequency and anharmonicity constant we,wez.(cm™1), dissociation
energy D.(eV), electronic energy Te(eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule CrAg obtained at the DKH-MRCI(+Q) level

No. Term Te We wele Do T, w® MCw¢®
1 X62+b
MRCI® 2.60 188.6 1.53 1.25 0.00 1.26 81% [24420122]
cMRCI? 2.61 1825 1.66 1.08 - 0.83  80% [24420122)
8yt 318 542  0.67 0.13 1.12 1.26 92% [24411122]
2653+ 2.85 70.7 —0.08 0.46 1.72 0.26 45% [24411122] + 34% [24421022]
iyt 2.52 136.9 —0.85 0.31 1.87 0.18 47% [24421022] + 18% [24411122] +
14% [24420122]

“ Dipole moments (1) and main configuration weights (MCW) correspond to 7 = 2.60 A. The occupations of the or-

bitals owmdooond are given in brackets. Weights larger than one-tenth are reported.

b Experimental ground state term is °% (ref. 105).

¢ MRCI[(10+7)E,(5+7)0]

¢ MRCI[(26+7)E,(13+7)0]
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Table B.22: Bond length re(A), harmonic frequency and anharmonicity constant w,wez.(cm™1), dissociation
energy D.(eV), electronic energy Te(eV), dipole moment p(D), and main configuration weight(MCW) of the
low-lying states of the diatomic molecule CrAu obtained at the DKH-MRCI(+Q) level

No. Term Te We WeXe Do T e MCW¢

1 X62+b
MRCI¢ 2.50 230.9 0.71 2.01 0.00 3.81 84% [24420122]
cMRCI? 2.46 2385 0.86 1.96 0.00 3.55 82% [24420122]
expt. - - - 2.17(0.18)¢ - - -

2 8yt 321 39.1 142 0.05 1.95 —0.21 91% [24411122]

® Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.50 A. The occupa-
tions of the orbitals owmdooond are given in brackets. Weights larger than one-tenth are reported.

® Experimental ground state term is °% (vef. 105).

¢ MRCI[(10+T7)E,(5+7)0] ¢ MRCI[(40+7)E,(20+7)0]

¢ DY from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the

reported value corresponds to the electronic ground state term calculated in the present work.

Table B.23: Bond length r.(A), harmonic frequency and anharmonicity constant we, weze(cm™"), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule MnCu obtained at the DKH-MRCI(4Q) level

No. Term Te We wele Do T I MCWw?®
1 X'st
MRCI® 247 184.1 129 0.70 0.00 2.53 85% [24421122]
cMRCI¢ 2.52 1742 224 0.57 - 2.45  84% [24421122]
2 1PuF 253 1624 203 042 027 1.13 67% [24421122] + 14% [24422022]
3 o1 239 2185 0.51 1.33 1.61 1.76 83% [24421032]
4 2%T 240 217.7 0.13 133 1.62 2.02 70% [24422022] + 12% [24421122]
5 A 244 2056 0.84 1.20 1.74 1.98 83% [24421023]
6 2'%t 279 128.6 094 0.38 2.56 0.66 79% [24412122] + 10% [24411222]
7 I 415 124 036 0.01 2.93 0.06 91% [24411132]

“ Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.50 A. The occupations of the

orbitals omdooomd are given in brackets. Weights larger than one-tenth are reported.
» MRCI[(10+8)E,(5+7)O] ¢ MRCI[(2648)E,(13+7)0]
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Table B.24: Bond length re(A), harmonic frequency and anharmonicity constant we,wez.(cm™1), dissociation
energy D.(eV), electronic energy T(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule MnAg obtained at the DKH-MRCI(4Q) level

No. Term Te We WeXe De T, w® MCW¢
1 X'yt
MRCI® 259 169.2 026 0.87 0.00 1.71 84% [24421122]
cMRCI¢ 2.66 147.6 1.42 0.61 0.00 1.84 83% [24421122]
expt. - - - 0.99(0.22)% - - -
2 1°%t 2.67 141.9 0.90 0.56 0.31 0.61 69% [24421122]
3 OII 2.53 197.6 0.74 1.46 1.79 0.65 83% [24421032]
4 25%* 2.55 195.6 0.57 1.43 1.82  0.91 74% [24422022]
5 °A 2.56 184.8 0.55 1.33 1.92 092 84% [24421023]
6 11 3.04 65.7 063 0.19 3.06 0.32 91% [24411132]

“ Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.60 A. The occu-
pations of the orbitals cmdooonmd are given in brackets. Weights larger than one-tenth are reported.

" MRCI[(104-8)E,(5+7)O] ¢ MRCI[(2648)E,(1347)O]

¢ From ref. 98 (D). No electronic term was mentioned/assigned in this work. It is presumed that the

reported value corresponds to the electronic ground state term calculated in the present work.

Table B.25: Bond length r.(A), harmonic frequency and anharmonicity constant we, weze(cm™'), dissociation
energy D.(eV), electronic energy T(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule MinAu obtained at the DKH-MRCI(+Q) level

No. Term Te We WeLe Deg T ue MCw?®
1 X'sf
MRCI® 248 231.2 0.60 1.93 0.00 1.49 90% [24421122]
cMRCI¢ 245 - - 2.05 0.00 1.43 89% [24421122]
expt.¢ - - - 1.88(0.13) - - -
expt.¢ - - - 1.95(0.13) - - -
2 Out 2.47 230.7 0.69 1.27 0.66 1.26 35% [24422022] +

34% [24421122] +
19% [24420222]

“ Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.50 A. The occu-
pations of the orbitals owmdooond are given in brackets. Weights larger than one-tenth are reported.

» MRCI[(10+8)E,(5+7)O]

¢ MRCI[(40+8)E,(20+7)0]

¢ From ref. 102. In ref. 102, the authors assumed a "% electronic ground state term for MnAu by
analogy with MnH.

¢ DY from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the

reported value corresponds to the electronic ground state term calculated in the present work.
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Table B.26: Bond length re(A), harmonic frequency and anharmonicity constant w,wez.(cm™1), dissociation
energy D.(eV), electronic energy T¢(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule FeCu obtained at the DKH-MRCI(+Q) level

No. Term Te We wele Do T e MCw?®
1 X°A
MRCI® 244 193.6 1.90 0.67 0.00 2.24 88% [24421123]
cMRCI¢ 248 1755 146 0.58 - 2.15¢ 87% [24421123]¢
2 1*A 239 2094 277 0.63 0.04 0.96 51% [24422023] + 33% [24421123]
3 1611 246 186.3 2.17 0.60 0.07 2.17 88% [24421132]
4 Oyt 246 1833 1.95 0.59 0.08 1.95 87% [24422122]
5 141 239 199.5 214 057 0.10 0.92 43% [24421132] + 30% [24422032] +
10% [24421033]
6 4u- 235 2296 1.71 1.39 0.25 1.49 66% [24421042] + 12% [24421024]
7 4P 2.38 2204 152 1.32 0.32 1.63 78% [24421033] + 10% [24411133]
8§ Axt 2.53 1488 1.95 0.33 0.34 1.30 84% [24422122]
9 211 2.43 2025 048 1.21 043 1.76 35% [24421033] + 34% [24421132] +
10% [24422032]
10 2'A 245 1931 1.84 1.11 0.53 204 50% [24421123] + 28% [24422023]
11 26A 3.14 41.3 219 0.04 1.60 0.33 89% [24412123]
12 6% 460 109 021 001 1.63 0.25 75% [24411142] + 15% [24411124]
13 201 418 103 015 0.01 1.63 0.26 46% [24411133] + 43% [24412132]
14 5@ 4.62 10.2 0.28 0.01 1.63 0.35 90% [24411133]

® Dipole moments () and main configuration weights (MCW) correspond to r = 2.45 A. The occupations of the

orbitals omdooond are given in brackets. Weights larger than one-tenth are reported.
" MRCI[(104+9)E,(5+7)0]

¢ MRCI[(26+9)E, (13+7)0]

dAL r =250 A.
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Table B.27: Bond length re(A), harmonic frequency and anharmonicity constant we,wez.(cm™1), dissociation
energy D.(eV), electronic energy T(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule FeAg obtained at the DKH-MRCI(+Q) level

No. Term Te We wele Do T e MCw?®
1 X°A
MRCI® 2.56 168.9 0.91 0.77 0.00 1.41 88% [24421123]
cMRCI¢ 2.63 150.5 1.23 0.59 - 1.51% 87% [24421123]¢
2 1A 255 182.6 2.11 0.71 0.06 0.12 49% [24422023] + 36% [24421123]
3 1611 2.60 163.8 1.71 0.69 0.08 1.40 87% [24421132]
4 Oyt 2.61 160.6 1.28 0.68 0.09 1.31 87% [24422122]
5 141 2,55 173.1 2.03 0.65 0.12 0.17 44% [24421132] + 29% [24422032] +
10% [24421033]
6 4u- 250 203.3 0.99 148 0.25 0.38 67% [24421042] + 13% [24421024]
7 40 252 196.8 0.77 143 0.31 0.52 80% [24421033]
8§ Axt 2.67 1325 1.01 045 0.33 0.74 84% [24422122]
9 241 258 1859 1.21 1.33 0.41 0.82 33% [24421132] + 36% [24421033] +
10% [24422032] +
10 24A 2.60 171.8 0.50 1.23 0.50 1.11 47% [24421123] + 32% [24422023]
11 6%~ 3.05 625 121 015 158 0.51 74% [24411142] + 16% [24411124]
12 26A 2.96 83.8 1.87 0.21 1.52 0.56 89% [24412123]
13 211 3.03 70.8 1.15 0.18 1.55 0.50 48% [24411133] + 42% [24412132]
14 63 313 554 1.04 0.14 1.60 0.64 48% [24411133]

® Dipole moments () and main configuration weights (MCW) correspond to r = 2.55 A. The occupations of the

orbitals omdooond are given in brackets. Weights larger than one-tenth are reported.
" MRCI[(104+9)E,(5+7)0]

¢ MRCI[(26+9)E, (13+7)0]

4 These values correspond to r = 2.60 A.
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Table B.28: Bond length re(A), harmonic frequency and anharmonicity constant w,wez.(cm™1), dissociation
energy D.(eV), electronic energy T¢(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule FeAu obtained at the DKH-MRCI(+Q) level

No. Term Te We wWeXe Do T, e MCW¢
1 XSA
MRCI® 2.43 2388 0.69 1.86 0.00 1.18 89% [24421123]
cMRCI® 2.39 249.7 0.68 1.99 0.00 1.18 89% [24421123]
expt. - - - 1.95(0.22)¢ - - -
611 2.45 2358 1.46 1.64 022 129 89% [24421132]
6yt 2.44 236.1 1.43 1.61 0.25 1.17 89% [24422122]
4 AA 2.42 2380 094 1.30 0.56 1.17 49% [24421123] + 27% [24422023] +
13% [24420223]
5 I 2.44 2332 1.08 1.19 0.68 1.05 50% [24421132] + 26% [24422032] +
13% [24420232]
6 Azt 2.45 227.7 1.04 1.07 0.79 1.04 75% [24422122] + 13% [24421222]

“ Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.45 A. The occupations of the orbitals
omdooomd are given in brackets. Weights larger than one-tenth are reported.

* MRCI[(10+9)E,(5+7)O] “MRCI[(404+9)E,(20+7)0]

4 DY from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the reported value corre-

sponds to the electronic ground state term calculated in the present work.
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Table B.29: Bond length re(A), harmonic frequency and anharmonicity constant we,wez.(cm™1), dissociation
energy D.(eV), electronic energy T(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule CoCu obtained at the DKH-MRCI(+Q) level

No. Term Te We WeXe Do T, w® MCW¢
1 X3
MRCI® 231 2394 127 1.53 0.00 0.54 88% [24422033]
cMRCI¢ 2.31 2354  1.37 1.46 - 0.50 87% [24422033]
expt. - - - 1.69(0.22)¢ - - -
2 3A 232 2286 0.59 1.47 0.06 0.69 72% [24412043] + 15% [24421043]
3 3% 2.33 2234 —1.01 147 0.07 0.65 67% [24422024] + 21% [24422042]
4 31 2.33 229.1  0.73 1.46 0.07 0.66 57% [24422033] + 26% [24412034]
5 %0 2.38 2134  0.96 0.32 1.21 1.30 83% [24421133]
6 5%~ 240 172.2 522 0.14 1.40 0.93 57% [24421124] + 29% [24421142]
7 I 4.33 10.8 0.04 0.01 1.52  0.54 65% [24421133] + 23% [24411134]
8 A 4.33 13.8 0.57 0.01 1.52  0.23  91% [24411143]

“ Dipole moments (z) and main configuration weights (MCW) correspond to 7 = 2.30 A. The occupations of the orbitals
omdooond are given in brackets. Weights larger than one-tenth are reported.

» MRCI[(10410)E,(547)0] ¢ MRCI[(26+10)E,(13+7)0]

4 DY from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the reported value corre-

sponds to the electronic ground state term calculated in the present work.

Table B.30: Bond length r, (A), harmonic frequency and anharmonicity constant we,weze (cm™1), dissocia-
tion energy D, (eV), electronic energy T,(eV), dipole moment p (D), and main configuration weight (MCW)
of the low-lying states of the diatomic molecule CoAg obtained at the DKH-MRCI(4Q) level

No. Term Te We weTe Do T, ue MCW?
1 X3
MRCI® 247 208.8 0.84 1.60 0.00 0.51 87% [24422033]
cMRCI¢ 2.48 2044 0.81 144 - 0.40¢ 87% [24422033]¢
2 3y 2.47 203.6 1.23 156 0.05 0.34 68% [24422024] + 20% [24422042]
3 S3A 2.48 2085 1.24 1.55 0.05 0.37 78% [24412043]
4 310 2.48 204.6 0.97 1.55 0.06 0.35 56% [24422033] + 29% [24412034]
5 0@ 2.45 1783 6.91 0.68 0.92 1.34 64% [24421133] + 23% [24412133]
6 5%- 2.48 2042 1.33 043 1.17 0.92 50% [24421124] + 25% [24421142] +
11% [24412142]
511 2.59 1345 9.65 021 1.40 0.39 59% [24421133] + 24% [24411134]
8 °A 3.06 52.6 096 0.13 1.48 0.46 91% [24411143]

® Dipole moments () and main configuration weights (MCW) correspond to r = 2.45 A. The occupations of the
orbitals omdooond are given in brackets. Weights larger than one-tenth are reported.

® MRCI[(10410)E,(547)0] °MRCI[(26+10)E,(13+7)0]

¢ These values correspond to r = 2.50 A.
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Table B.31: Bond length re(A), harmonic frequency and anharmonicity constant w,wez.(cm™1), dissociation
energy D.(eV), electronic energy T¢(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule CoAu obtained at the DKH-MRCI(+Q) level

No. Term Te We wWeXe Do T, e MCW¢
1 X5
MRCI® 241 2382 095 1.59 0.00 1.49 89% [24412133]
cMRCI¢ 2.38 248.1 0.87 1.71 0.00 1.56 88% [24412133]
expt. - - - 2.26(0.18)% - - -
2 S~ 241 233.8 084 1.52 0.07 1.37 66% [24412142] + 23% [24412124]
3 Il 242 233.7 091 1.49 0.10 1.48 58% [24412133] + 31% [24422132]
4 SA 242 233.0 0.68 1.48 0.11 1.53 89% [24422123]
5 30 240 2335 1.01 1.21 0.38 1.04 59% [24412133] + 15% [24422033]
6 3%~ 241 230.5 097 1.14 0.45 0.99 54% [24412142] + 15% [24412124] +
11% [24422042]
311 242 2282 1.05 1.10 0.48 1.01 44% [24412133] + 31% [24422132]
3A 242 2260 124 1.06 0.53 1.05 85% [24422123]

® Dipole moments (1) and main configuration weights (MCW) correspond to r = 2.40 A. The occupations of the orbitals

omdooornd are given in brackets. Weights larger than one-tenth are reported.

® MRCI[(104-10)E,(5+7)0]

4 DY from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the reported value corre-

¢ MRCI[(40+10)E, (20+7)O]

sponds to the electronic ground state term calculated in the present work.
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Table B.32: Bond length r.(A), harmonic frequency and anharmonicity constant we, wet.(cm™!), dissociation
energy D.(eV), electronic energy T¢(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule NiCu obtained at the DKH-MRCI(4Q) level

No. Term Te We wee De T e MCW¢
1 X2A
MRCI-1" 233 2544  0.78 1.81¢ 0.00 —0.20° 74% [24420243] + 15% [24411243]’

MRCI® 223 2723 092 1.33° 0.00 143 59% [24420243] + 15% [24421143] +
13% [24411243]

X?As/

MRCI-SO 2.23 2782 - t9 000 142 -

expt.* 2.2330 273.01 1.00 2.05 0.00 - d) dR;o?

expt.* - - - 2.08 - - -
2 12t 231 230.0 0.95 1.48 0.00 2.00 67% [24420144] + 18% [24411144]
3 171 225  267.0 045 1.25 0.08 1.66 59% [24420234] + 16% [24411234]
4 221 2.88  166.0 4.54 0.75 0.73 1.00 32% [24421233] + 25% [24421134]
5  22A 2.69 167.0 554 0.69 0.80 1.10 73% [24421143] + 10% [24420243]
6 1*A 241  182.0 2.00 0.49 0.84 145 90% [24421143]

expt.4 0.11 1.94 - d¥ dR;oto*?
7140 242 176.8 2.01 047 0.86 1.21 51% [24421233] + 39% [24421134]
8§ 4%~ 244  167.2  1.97 044 0.89 0.94 T72% [24421224] + 17% [24421242]
9 1o 245  163.9 2.03 042 091 0.96 89% [24421233]
10 20 2.49 1454 220 030 1.02 0.68 88% [24421233]
11 2%~ 249 1441 216 0.30 1.03  0.71 70% [24421224] + 14% [24421242]

“ Dipole moments (;) and main configuration weights (MCW) correspond to 7 = 2.25 A. The occupations of the orbitals
omwdooond are given in brackets. Weights larger than one-tenth are reported.

" MRCI[(104+-11)E,(5+7)0]

“From ref. 106. For the X2A5/2 ground state term experimental values along with errors are: r. = 2.2330(0.006) A,
we = 273.01(1.15) cm ™, wexe = 1.00(0.38) cm ™!, and Do = 2.05(0.10) eV.

¢ From ref. 112. Experimental values along with errors: D, = 0.11(0.05) eV, and T, = 1.94(0.02) eV.

¢ With respect to the separated atom limit Ni(*F) 4 Cu(*S).

F With respect to the separated atom limit Ni(®D) 4+ Cu(?S).

9D, = 1.28, 1.44, 1.48, and 1.57 eV with respect to Ni(*F4) + Cu(*S12), Ni(*F3) + Cu(*S1,2), Ni(®D3) + Cu(*Si,2), and
Ni(°Dz) + Cu(*S1,2), respectively. " MRCI[(11)E,(7)O]. " These values correspond to r = 2.35 A.

¥ DY = 2.084+0.22 eV from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the reported
value corresponds to the electronic ground state term calculated in the present work.
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Table B.33: Bond length r.(A), harmonic frequency and anharmonicity constant we, wet.(cm™!), dissociation
energy D.(eV), electronic energy T (eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule NiAg obtained at the DKH-MRCI(4Q) level

No. Term Te We wete Do T, we MCW¢
1 X2A
MRCI-1" 2,50 218.0 0.50 1.68° 0.00 —0.41 72% [24420243] + 72% [24411243]
MRCI? 241 2373 0.58 1.68° 0.00 0.65 64% [24420243] + 14% [24411243]
X?As)o
MRCI-SO 2.40 234.1 - t9 000 0.63 -
expt.° 2.40¢ 235 - 1.96% 0.00 - d& d;so?
2 12yt 244 2117 0.74 1.647 0.02 1.09 68% [24420144] + 17% [24411144]
3 1% 243 2265 048 1.64 0.05 0.85 66% [24420234] + 17% [24411234]
4 221 3.31 1819 4.08 0.63 1.03 0.46 49% [24421233] + 36% [24421134]
5  22A 329 139.1 13.56 0.56 1.10 0.56 80% [24421143]
6 1A 2.57 1554 1.47 054 1.14 0.87 91% [24421143]
7 140 2.58 1533 0.11 0.54 1.15 0.70 51% [24421233] + 39% [24421134]
8§ 4x- 2.59 1482 1.43 0.52 1.17 0.70 73% [24421224] + 17% [24421242]
9 4o 2.60 144.6 1.37 049 1.19 056 90% [24421233]
10 20 264 1321 1.59 040 1.28 0.32 67% [24421233]
11 2% 2.64 1315 1.58 040 1.29 0.32 71% [24421224] + 14% [24421242]

? Dipole moments (@) and main configuration weights (MCW) correspond to r = 2.40 A. The occupations of the orbitals

omdooond are given in brackets. Weights larger than one-tenth are reported.
® MRCI[(10411)E,(547)0]
“From ref. 112. Experimental value along with error is: we = 235(25) cm™ .

¢ From ref. 112. r. and Dy correspond to some Theoretical values published in a private communication by E. Broctawik.

¢ With respect to the separated atom limit Ni(*F) + Ag(*S).
T With respect to the separated atom limit Ni(*D) 4+ Ag(*S).

9 D. =1.63, 1.66, 1.74, and 1.79 eV with respect to Ni(*F4) + Ag(*S1,2), Ni(®D3) + Ag(*S1,2), Ni(*D2) + Ag(*S1/2), and

N1(3F3) + Ag(QSl/Q)
" MRCI[(11)E,(7)0].
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Table B.34: Bond length r.(A), harmonic frequency and anharmonicity constant we, we.(cm™!), dissociation
energy D.(eV), electronic energy T¢(eV), dipole moment p(D), and main configuration weight (MCW) of the
low-lying states of the diatomic molecule NiAu obtained at the DKH-MRCI(+Q) level

No. Term Te We wee De T e MCW¢
1 X2A
MRCI® 235 2423 1.69 202 0.00 216 65% [24420243] + 12% [24421143]
cMRCI® 2.34 2598 0.46 1.99 - 2.05  66% [24420243] + 10% [24421143]
expt.? 2351 2594 0.72 252 0.00 - d a0
expt.® - - 2.60 — - -
2 %0 236 271.3 2.79 1.94 0.08 2.40 54% [24420234] + 15% [24421134]
3 I 236 2385 1.16 1.32 0.69 246 36% [24421134] + 27% [24421233]
4 A 2.38 206.1 242 131 0.71 256 74% [24421143]
5 4y 236 266.0 4.69 1.31 0.71 2.33 45% [24421224] + 16% [24422124]
6 ‘@ 2.39  229.8 1.39 1.19 0.83 2.35 53% [24421233] + 17% [24422133]
7 2% 2.38 2142 031 1.02 1.00 1.95 42% [24421224] + 15% [24422124]
8 20 241 2141 1.08 094 1.08 1.89 49% [24421233] + 17% [24422133] +

11% [14422233] 4+ 10% [24412233]

® Dipole moments (1) and main configuration weights (MCW) correspond to 7 = 2.40 A. The occupations of the
orbitals cmdooond are given in brackets. Weights larger than one-tenth are reported.

¢ MRCI[(30+21)E,(15+12)0]
¢ From refs. 110 and 111. For the ground state term X2A5/2 experimental values along with errors are: ro = 2.351(1) A,
We =259.44 0.4 cm™ !, wexe = 0.72+£0.03 cm™', and Dy = 2.52 £ 0.17 V.
¢ DY =2.60 £ 0.22 eV from ref. 98. No electronic term was mentioned/assigned in this work. It is presumed that the
reported value corresponds to the electronic ground state term calculated in the present work.

® MRCI[(21)E,(12)O0].

Table B.35: AS and € ground state terms of the ACu (A = Sc-Ni) diatomic molecules obtained at the
approximate and exact 2-component levels of theory

ground state term

details of the 2-c¢ calculations

ACu

R G P 01 AC-DHF KRCI considered € values
ScCu  3A A, 1 2(1inl,1in5) SD10E(4in7)SD20KPs  0,1,2,3
TiCu ‘o 19y,  3/2  1(3inl3) SD10E(5in7)SD14KPs  1/2,3/2,5/2.7/2,9/2
VCu A 5A, 0 1(4in6) SD10E(6in7)SD12KPs  0,1,2,3,4
CrCu 5%+ 62;'/2 - - -
MnCu 7%t (D32 - - - -
FeCu A Agjy  9/2  1(9in7) SD10E(9in7)SD13KPs  1/2,3/2,5/2.7/2,9/2
CoCu 3@ 39, 4 1(20in15) SD10E(10in7)SD28KPs 1,2,3,4,5
NiCu  2A 2As;, 5/2  1(21in12)  SDI0E(11in7)SD28KPs  1/2,3/2,5/2,7/2

“ With the Douglas-Kroll-Hess Hamiltonian method at the multireference configuration interaction level including Davidson
corrections, DKH-MRCI(+Q)
b At the DKH-MRCI(4+Q) level with perturbative treatment of spin-orbit coupling
¢ With the exact 2-component Hamiltonian at the Kramers-restricted configuration interaction level
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Table B.36: Ground state terms of the d-block systems M, M, M B (B = Cu/Ag/Au), and
MH.

Atom Molecule Atom Molecule

M® Mt MB°  MHC M M* MB MH
Sc Dz *Dy X3A; Xyt Mn S5, 7Ss X'sd XTet
Ti 5Fy  FgppX1®y X0 Fe 5Dy DgjpX%Ag;p XAz
V. %F3, "Dy X5Ag  X°Ay+ Co *Fy, 5Fy X397 X3P,
Cr 7Sz S5 X°sy, X°%F Ni  3Fy 2Dy X250 X205

Pertinent species

Y ?Dyp 'S X'yt Xyt Tc 9S50 7Ss 3 X5t
Zr  PFy  AFgyt®se XAy Ru °F5  4Fgpytdg,  XIN™
Nb 6Dy, 5Dg "Ny X°A Rh  “Fg, °F4 S0, X3A3
Mo 7Sz 685 X085, X0%F Pd 'S 2Dy jp2N50 XQ=1/2
La  ?Dyn  °Fy S0y X'yt Re 9S50 7S3 >3 X5t
Hf 5Fy  ?Dy) 2Ngp XPAy) Os "Dy Dy SAg/p X1
Ta 1F3, °F K XQ=0t Ir “Fy °Fs s XQ=0"
W ®Dy ODypBAy  XOUT Pt 3Dg Dy X2A5n  X2Aj
Ac Dy 'S 1ot X'yt Rf  5Fy  2Dgjp2Dgp0 -
Db Fy5 °F, 30y - Sg "% Fyp 103 -
Bh %5, 7 2 - Hs 724 "7 50 -

“From ref. 118. ® Mapping between the M ™ cations and the diatomic molecules M B is indicated by dotted
lines. °The ground state terms of hydrides are taken from refs. 130(ScH), 131(TiH), 132(VH), 133(CrH),
134(MnH), 135(FeH), 136(CoH), 137(NiH), 169(YH), 170(MoH), 171(WH), 172(RuH), 173(PtH), 138(LaH),
139(AcH), 140(ZrH), 141(HfH), 142(NbH), 143(TaH), 144(TcH), 145(ReH), 146(OsH), 147(RhH), 148(IrH), and
149(PdH). ¢ CoAu has a X°® ground state. ° Experimental terms: X®Y(ref. 103) or X®%(ref. 104) or X*¥(ref.
105) for CrCu, X°S for CrAg and CrAu(ref. 105), X*>A;,, for NiCu(ref. 106), X>A for NiAg(ref. 112), X*As,
for NiAu(ref. 111), X% for YCu(refs. 150,151), X°% for MoCu, MoAg, MoAu, WCu, WAg, and WAu(ref. 152),
X*A (theoretical) for RuCu(ref. 174), X?Ajs, for PtCu(ref. 111), X5/2 (theoretical) for PtAg(ref. 153), X*As /-
for PtAu(ref. 154).
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Table B.38: Significant points—separated atom limits A + 2B, asymptotes AB + B, asymp-
totes A + B, and the triatomic molecules ABy, A = Sc-Ni and B = Cu/Ag/Au—on the
potential energy hyper-surfaces obtained at the DKH-MRCI(4+Q) level.

asymptotes energy (eV) level
A(PHIL) 2B(2S) 0.00 (ref. 118)
ScCu(®A) Cu(?S) —1.17 MRCI

~1.14 cMRCI

—1.05 MRCI®
Sc(?D) Cup(*%) —1.67 MRCI

—1.74 MCPF (ref. 162)

~1.81 CPF (ref. 119)

—1.84 CPF (ref. 161)

—2.01(8)  expt. (ref. 160)
ScCug(X2A,) —2.93 MRCI
ScAg(3A) Ag(?S) —1.21 MRCI

~1.11 cMRCI

~1.16 MRCI
Sc(?D) Ag('Sf)  —1.46 MRCI

—1.48 CPF (ref. 119)

—1.65(3)  expt. (refs. 160,175)
ScAge(X2A,) —3.27 MRCI
ScAu(3A) Au(?9) —2.52 MRCI

—2.69 cMRCI

—2.46 MRCI

—2.87(18) expt. (ref. 98)
Sc(?D) Au('Bf)  —219 MRCI

—2.290(8) expt. (ref. 116)
ScAuy(X2A,) —5.73 MRCI
TiCu(*®) Cu(?9) —1.14 MRCI

~1.10 cMRCI

—0.97 MRCI
Ti(®F) Cup(*%)) —1.86 MRCI
TiCug(X°T) —2.52 MRCI
TiAg(1®) Ag(?S) -1.19 MRCI

—1.04 cMRCI

—0.96 MRCI
Ti(°F) Ago(1S]) —1.50 MRCI
TiAgy(X3®,) —2.97 MRCI
TiAu(*®) Au(?S) —2.41 MRCI

Continued on next page
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Table B.38 — Continued from previous page

asymptotes energy (eV) level
—2.50 cMRCI
—2.03 MRCI
Ti(®F) Aup('S})  —2.52 MRCI
TiAug(X3®,) —5.57 MRCI
VCu(°A) Cu(?S) -1.25 MRCI
—1.20 cMRCI
—1.17 MRCI
V(*F) Cup(*2f) —1.57 MRCI
VCuy(#4A57) —2.48 MRCI
VAg(°A) Ag(?S) —1.24 MRCI
—~1.15 cMRCI
—1.14 MRCI
V(*F) Agr () —1.48 MRCI
VAgo (34 By) —2.74 MRCI
VAu(®A) Au(?S) —2.29 MRCI
—2.33 cMRCI
—2.37 MRCI
—2.47(12) expt. (ref. 100)
V(*F) Au('Sf)  —2.24 MRCI
VAuy(X4A0) —5.14 MRCI
CrCu(®x™) Cu(?S) -1.21 MRCI
—~1.11 cMRCI
—1.20 MRCI (ref. 113)
—0.51 MRCI
—1.61(26) expt. (ref. 98)
Cr(7S) Cur (') —1.62 MRCI
CrCus(z7%7) —1.87 MRCI
CrAg(52+) Ag(?S) -1.25 MRCI
—1.08 cMRCI
—0.46 MRCI
Cr(7S) Ago (D)) —1.29 MRCI
CrAgy(z72T) —1.81 MRCI
CrAu(®y™) Au(?S) —2.01 MRCI
—-1.96 cMRCI
—1.55 MRCI

—2.17(18) expt. (ref. 98)

Continued on next page
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Table B.38 — Continued from previous page

asymptotes energy (eV) level
Cr(7S) Au('nf)  —2.28 MRCI
CrAuy(X°5}) —4.13 MRCI
MnCu("%7) Cu(?S) —0.70 MRCI
—0.57 cMRCI
—0.76 MRCI
Mn(6S) Cup('f) —1.63 MRCI
MnCuy (X6%}) —2.49 MRCI
MnAg("¥F) Ag(?S) —0.87 MRCI
—0.61 cMRCI
—0.60 MRCI
—0.99(22) expt. (ref. 98)
Mn(6S) Ago (o)) —1.31 MRCI
MnAgy(X6%]) —2.38 MRCI
MnAu("¥F) Au(?S) —-1.93 MRCI
—2.05 cMRCI
—2.02 MRCI

—1.88(13) expt. (ref. 102)
—1.95(13) expt. (ref. 98)

Mn(68S) Aup('Sf)  —2.25 MRCI
MnAug(X0%F) —4.83 MRCI
FeCu(bA) Cu(?S) —0.67 MRCI
—0.58 cMRCI
—0.70 MRCI
Fe(°D) Cup('2f) —1.62 MRCI
FeCuy(X°A,) —2.47 MRCI
FeAg(°A) Ag(®S) —0.77 MRCI
—0.59 cMRCI
—0.93 MRCI
Fe(°D) Ag () —1.55 MRCI
FeAgs(X°A,) —2.75 MRCI
FeAu(®A) Au(?S) —1.86 MRCI
—1.99 cMRCI
—1.81 MRCI
—1.95(22) expt. (ref. 98)
Fe(°D) Aup('E})  —210 MRCI
FeAuy(X°A,) —4.68 MRCI

Continued on next page
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Table B.38 — Continued from previous page

asymptotes energy (eV) level
CoCu(3®) Cu(?S) —1.53 MRCI
—1.46 cMRCI
—0.60 MRCI
—1.69(22) expt. (ref. 98)
Co(a’F) Cur(*%) —1.98 MRCI
CoCuy(X1®,) —2.61 MRCI
CoAg(3®) Ag(?S) —1.60 MRCI
—1.44 ¢cMRCI
—1.82 MRCI
Co(a%F) Ag(*E)) —2.77 MRCI
CoAgy(X*®,) —3.77 MRCI
CoAu(°®) Au(?9) ~1.59 MRCI
-1.71 cMRCI
~1.52 MRCI
—2.26(18) expt. (ref. 98)
Co(a'F) Auy('3)) —2.09 MRCI
CoAug(X*®,) —4.29 MRCI
NiCu(?A) Cu(®S) -1.33 MRCI
—~1.81 MRCI-1
—0.20 MRCI

—2.05(10) expt. (ref. 106)
—2.08(22) expt. (ref. 98)

Ni(3F) Cup(*2f) —1.62 MRCI
NiCuy(X3A57) ~2.19 MRCI
NiAg(?A) Ag(?S) —1.68 MRCI
—1.68 MRCI-1
—~1.51 MRCI
Ni(3F) Agr () —2.70 MRCI
NiAgy(X3A57) —3.52 MRCI
NiAu(2A) Au(?S) —2.02 MRCI
~1.99 cMRCI
-1.03 MRCI

—2.52(17) expt. (ref. 176)

—2.60(22) expt. (ref. 98)
Ni(®F) Aup('S})  —2.08 MRCI
NiAug(X3AL7) ~4.16 MRCI

Continued on next page
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Table B.38 — Continued from previous page

asymptotes energy (eV) level

 For the diatomic molecules AB two MRCI levels of theory are given: one (first)
corresponding to the diatomic potential energy curves and one (second) corre-

sponding to the triatomic potential energy surfaces, i.e., the respective asymp-

totes.
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Table B.39: Fitting coefficients (eV) corresponding to the E(6,2.65 A;2{A; ® As}) potentials

of ScCusy
coefficients %A, 24,
agQ 3504.97 3726.92
ag 6677.19 7087.39
a4 5765.94 6087.23
ag 4501.92 4709.39
ag 3163.12 3265.36
a10 1985.33 2013.36
alo 1101.09 1091.24
a4 531.08 511.132
a6 217.539 201.697
alg 72.9551 64.4592
a0 18.8526 15.6334
a99 3.34722 2.5508

a4 0.306674 0.208975
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Figure B.1: Low-lying energy levels for V (experimental J-averaged values), VAg (theoreti-
cal), and VAgy (theoretical).
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Figure B.2: The experimental energy levels for the B (Cu/Ag/Au) atoms. The source is the
NIST website.
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B = Cu/Ag/Au) obtained at the DKH-CASSCEF level of theory.
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Figure B.11: Octagonal representation of the ground state configurations and terms for the
ion-pair AT + B~ and the diatomic molecules AB and the binary relation observed between
them.
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Figure B.13: Ground state bond lengths (r.) of the diatomic molecules AB (A = Sc-Ni,
B = Cu/Ag/Au), obtained at the DKH-MRCI(+Q) level of theory. Dashed lines correspond
to the calculations considering outer-core correlation effects.
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Figure B.14: Ground state harmonic frequency (we) of the diatomic molecules AB (A = Sc-Ni,
B = Cu/Ag/Au), obtained at the DKH-MRCI(+Q) level of theory. Dashed lines correspond
to the calculations considering outer-core correlation effects.
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Figure B.15: Ground state dissociation energies (D.) of the diatomic molecules AB (A =
Sc-Ni, B = Cu/Ag/Au), obtained at the DKH-MRCI(+Q) level of theory. Dashed lines
correspond to the calculations considering outer-core correlation effects.
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Figure B.16: Ground state spin-orbit splitting (SOS) for the atoms A and the diatomic
molecules AB (A = Sc-Ni, B = Cu/Ag/Au).
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corresponds to the lowest total energy for the associated angle.
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Figure B.21: E(0,r;25TT) for AgVAg obtained at the SA-CASSCF(7,8). Zero of energy

corresponds to the lowest total energy for the associated angle.
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Figure B.22: E(r;?5*1A) for VAgAg obtained at the SA-CASSCF(7,8).
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Figure B.23: E(0,r; 27T for AgCrAg obtained at the SA-CASSCF(8,8). Zero of energy
corresponds to the lowest total energy for the associated angle.
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Figure B.25: F(6,r;25*1T) for AgMnAg obtained at the SA-CASSCF(9,8). Zero of energy
corresponds to the lowest total energy for the associated angle.
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Figure B.26: E(r;?5t1A) for MnAgAg obtained at the SA-CASSCF(9,8).
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Figure B.27: E(6,r;?5*1T) for AgFeAg obtained at the SA-CASSCF(10,8). Zero of energy
corresponds to the lowest total energy for the associated angle.
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Figure B.28: E(r;?5*1A) for FeAgAg obtained at the SA-CASSCF(10,8).
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Figure B.29: E(0,r;?5t'T) for AgCoAg obtained at the SA-CASSCF(11,8). Zero of
energy corresponds to the lowest total energy for the associated angle.
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Figure B.31: E(#,r;?5*IT") for AgNiAg obtained at the SA-CASSCF(12,8). Zero of
energy corresponds to the lowest total energy for the associated angle.
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Figure B.32: E(r;?5*1A) for NiAgAg obtained at the SA-CASSCF(12,8).
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Figure B.33: PESs, E(6,r;25t1T"), of CuScCu obtained at DKH-MRCI[(20+5)E,(10+8)0]. Ab initio points are
indicated in black. Continued on next page
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Figure B.34: PESs, F(0,r;257T), of AgScAg obtained at DKH-MRCI[(20+5)E,(104+8)0]. Ab initio points are
indicated in black. Continued on next page
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Figure B.35: PESs, E(6,7;25*1T"), of AuScAu obtained at DKH-MRCI[(204-5)E,(10+8)O]. Ab initio points are
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Figure B.36: PESs, E(6,r; 21T, of CuTiCu obtained at the DKH-MRCI[(20+6)E,(10+8)O] level of theory. Ab
initio points are indicated in black.
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Figure B.39: PESs, E(6,r;25%1T"), of CuVCu obtained at the DKH-MRCI[(20+7)E,(10+8)O] level of theory. Ab
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Figure B.42: PESs, E(6,r; 25T, of CuCrCu obtained at the DKH-MRCI[(20+8)E,(10+8)O] level of theory. Ab
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Figure B.45: PESs, E(6,7;257'T), of CuMnCu obtained at the DKH-MRCI[(20+9)E,(10+8)O] level of theory. Ab
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Notice that the iso-energy contours (figures B.58-B.80) are overall drawn with the incre-
mental level of 0.02 eV, one in every three levels is tagged with energies. One can therefore,
darting a glance over the levels, approximately locate the minima and their electronic energies

with respect to the ground state of the given system.
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Figure B.61: Potential energy surfaces, F(7scAu, "AuAu; 2’4A), of the linear ScAuAu structure obtained
at DKH-MRCI[(20+5)E,(10+8)O]. Ab initio points are indicated with the intersections of the grid
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Figure B.62: Potential energy surfaces, E(rTicu, rcucy; >°A), of the linear TiCuCu structure obtained
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Figure B.64: Potential energy surfaces, E(rTiau, "Auau; “°A), of the linear TiAuAu structure obtained
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at DKH-MRCI|[(2047)E,(10+8)0O]. Ab initio points are indicated with the intersections of grid lines.

Iso-energies are in eV and relative to the lowest state.
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Figure B.66: Potential energy surfaces, E(rvag, rAgAg; 46A), of the linear VAgAg structure obtained
at DKH-MRCI[(20+7)E,(10+8)O]. Ab initio points are indicated with the intersections of grid lines.
Iso-energies are in eV and relative to the lowest state.
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Figure B.67: Potential energy surfaces, F(rvau, "AuAu; 4’6!\)7 of the linear VAuAu structure obtained
at DKH-MRCI[(20+7)E,(10+8)O]. Ab initio points are indicated with the intersections of grid lines.
Iso-energies are in eV and relative to the X*A(-) ground state.
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Figure B.69: Potential energy surfaces, E(rcrag, "AgAg; %7TA), of the linear CrAgAg structure obtained
at DKH-MRCI[(20+8)E,(10+8)0]. Ab initio points are indicated with the intersections of grid lines.
Iso-energies are in eV and relative to the #7X7F state.
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Figure B.70: Potential energy surfaces, E(rcrau, "AuAu; 5’7A), of the linear CrAuAu structure obtained
at DKH-MRCI[(20+8)E,(104-8)O]. Ab initio points are indicated with the intersections of grid lines.
Iso-energies are in eV and relative to the X 5Eg+ ground state.
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Figure B.83: Low-lying I'S states of ScCugz within the symmetries Dyop, Coon, and Coy,
obtained at the MRCI[(20+5)E,(10+8)0] level of theory. Potential minima are shown in

black and optimised minima in blue.
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Figure B.84: Low-lying I'S states of ScAgs within the symmetries Dyop, Coon, and Co,
obtained at the MRCI[(20+5)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue. Note that here the ground state has the A; and B;
components, while in the CASSCF potentials with § = 180° (figure B.17) it has A; and As.
This is due to the change of principal axis in the calculations.
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Figure B.85: Low-lying I'S states of ScAug within the symmetries Dyop, Coon, and Coy,
obtained at the MRCI[(20+5)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.86: Low-lying I'S states of TiCugz within the symmetries Dyop, Coon, and Co,
obtained at the MRCI[(20+6)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.87: Low-lying I'S states of TiAgs within the symmetries Dy, Coon, and Co,
obtained at the MRCI[(20+6)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.88: Low-lying I'S states of TiAug within the symmetries Doop, Coon, and Co,
obtained at the MRCI[(20+6)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.89: Low-lying I'S states of VCug within the symmetries Dyp, Cooy, and Coy,

obtained at the MRCI[(20+7)E
black and optimised minima in blue.

,(104-8)0] level of theory. Potential minima are shown in
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Figure B.90: Low-lying I'S states of VAgs within the symmetries Dyop, Coon, and Co,

obtained at the MRCI[(20+7)E
black and optimised minima in blue.

,(104-8)0] level of theory.

Potential minima are shown in
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Figure B.91: Low-lying I'S states of VAug within the symmetries Dyop, Coow, and Coy,
obtained at the MRCI[(20+7)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.92: Low-lying I'S states of CrCug within the symmetries Dyop, Cooy, and Co,
obtained at the MRCI[(20+8)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.93: Low-lying I'S states of CrAgs within the symmetries Dyop, Coon, and Coy,
obtained at the MRCI[(20+8)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.94: Low-lying I'S states of CrAus within the symmetries Dyop, Coow, and Coy,
obtained at the MRCI[(20+8)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.95: Low-lying I'S states of MnCug within the symmetries Dyop, Coop, and Coy,
obtained at the MRCI[(20+9)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.96: Low-lying I'S states of MnAgs within the symmetries Dsop, Coon, and Co,
obtained at the MRCI[(20+9)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.97: Low-lying I'S states of MnAus within the symmetries Dyop, Coon, and Coy,
obtained at the MRCI[(20+9)E,(10+8)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.98: Low-lying I'S states of FeCug within the symmetries Dyop, Coon, and Co,
obtained at the MRCI[(20+10)E,(1048)O] level of theory. Potential minima are shown in

black and optimised minima in blue.
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Figure B.99: Low-lying I'S states of FeAgs within the symmetries Do, Coon, and Coy,
obtained at the MRCI[(20+10)E,(1048)O] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.100: Low-lying I'S states of FeAug within the symmetries Dyop, Coon, and Co,
obtained at the MRCI[(20+10)E,(1048)0O] level of theory. Potential minima are shown in
black and optimised minima in blue.



259

E(eV)

(2.433 A,2.662 A;64,/6A4,) i
(2.435 A,2.650 A; 6B, /5Bs) \

(55°,2.481 A;2By)
T 1.5 /(55° 2481 AfBl)
(55°,2.475 A2 Ay)

/ (55°,2.474 A; 2Ay)

/ (59.6°,2.468 A;*A")
(60.4°,2.452 A:247) /| /(59.8°,2.464 A 1A”)

’ ’ + 1 (58.7°,2.473 A;6A")
(550,2.47§ /};432) X (58.8°,2.471 A;6A")

(55°,2.481 A;*A;)
(55°,2.480 A:*By)

(55°,2.478 A;%A,)

(54°,2.507 A;9B,)

(2.530 A,2.279 A;*Ay)

(2.527 A,2.280 A;*B; /*

(2.524 A, 2.27

(54°,2.499 A;9B)

(54°,2.501 A;6A,)
(54°,2.500 A;%A4,)

(2.474 A,2.287 A;4 A7 /A A"

(180°,2.381 A;4A,/4By)

o YN [ I
(180 ,2.387 A, A / A ) —0 (1800, 2.384 A;4A2/4BQ)
O
X
3: Dooh: (eCuCoCuy TCoCus 2S+1F)
oo o, .
y e
N G,
N ) Oll) %
®C} IO(I,' QSX
N Z
ov )

Figure B.101: Low-lying I'S states of CoCug within the symmetries Doop, Cooy, and Cyy,
obtained at the MRCI[(20+11)E,(1048)0] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.102: Low-lying I'S states of CoAgs within the symmetries Dyop, Cooy, and Co,
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Figure B.103: Low-lying I'S states of CoAus within the symmetries Dyop, Cooy, and Coy,
obtained at the MRCI[(20+11)E,(1048)O] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.104: Low-lying I'S states of NiCug within the symmetries Dyop, Coon, and Co,
obtained at the MRCI[(20+12)E,(104-8)O] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.105: Low-lying I'S states of NiAgs within the symmetries Do, Cooy, and Coy,

obtained at the MRCI[(20+12)E,(10+8)0]
black and optimised minima in blue.

level of theory. Potential minima are shown in
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Figure B.106: Low-lying I'S states of NiAus within the symmetries Dyop, Coon, and Co,
obtained at the MRCI[(20+12)E,(1048)0O] level of theory. Potential minima are shown in
black and optimised minima in blue.
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Figure B.107: Cuts along PESs, E(0,r ~ r; QSHF), obtained at the DKH-MRCI level of theory.
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Figure B.108: Equilibrium A-Cu internuclear distances r.(ACu) of the low-lying states of the
linear D, CuACu structures (A = Sc-Ni), obtained at the DKH-MRCI(+Q) level of theory.
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Figure B.109: Equilibrium A-Cu internuclear distances r.(ACu) of the low-lying states of the
bent Cy, CuACu structures (A = Sc-Ni), obtained at the DKH-MRCI(+Q) level of theory.
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Figure B.110: Lowest state equilibrium A-Cu bond lengths r.(ACu) of the linear ACuCu
(Csow) structures (A = Sc-Ni), obtained at the DKH-MRCI(+Q) level of theory.
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Figure B.111: Lowest state Cu-Cu bond lengths 7.(CuCu) of the linear Cy, ACuCu struc-
tures (A = Sc-Ni), obtained at the DKH-MRCI(+Q) level of theory.
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Figure B.112: Lowest state A-Ag bond lengths r.(AAg) of the linear D, AgAAg structures
(A = Sc-Ni), obtained at the DKH-MRCI(4Q) level of theory.
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Figure B.113: Lowest state equilibrium A-Ag bond lengths r.(AAg) of the linear Coo,, AAgAg

structures (A = Sc-Ni), obtained at the DKH-MRCI(+Q) level of theory.
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Figure B.114: Lowest state Ag-Ag bond lengths of the linear C, AAgAg structures (A
Sc-Ni), obtained at the DKH-MRCI(+Q) level of theory.
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Figure B.115: Lowest state equilibrium A-Au bond lengths r.(AAu) of the linear Dy, AuAAu
structures (A = Sc-Ni), obtained at the DKH-MRCI(4Q) level of theory.
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Figure B.116: Lowest state equilibrium A-Au bond lengths r.(AAu) of the linear Cn,, AAuAu
structures (A = Sc-Ni), obtained at the DKH-MRCI(4Q) level of theory.
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Figure B.117: Lowest state Au-Au bond lengths r.(AuAu) of the linear Cr,,, AAuAu struc-
tures (A = Sc-Ni), obtained at the DKH-MRCI(4Q) level of theory.
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