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Introduction

Quantum information is an interdisciplinary field laying at the intersection of quantum mechanics,
mathematics, computer science and information theory: it sounds hence natural to review the
contributions of these disciplines as an introduction to quantum information and to this thesis.
Quantum mechanics represents one of the pinnacles of physics; at the doors of the twentieth
century, Max Planck hypothesized that light is emitted in the form of discrete particles of
energy. Albert Einstein in 1905, the annus mirabilis, developed further this intuition in order to
explain the photoelectric effect paradox [1], unsolved according to the laws of classical physics,
by interpreting light itself as made of fundamental particles, later referred to as photons. The
discretized nature of light was formalized by the Planck-Einstein-relation describing the energy
of these fundamental elements as the product of the Planck constant and the frequency of the
electromagnetic wave, E = hν. In 1924 Louis de Broglie did the converse: he associated to a
massive particle like the electron a wavelength λ according to a relation involving again the
Plank constant together with the momentum p of the particle itself, λ = h/p. These formulae
embody the wave-particle duality that characterizes this physical theory and allowed to explain
Nature in contexts where the classical interpretation failed. Quantum mechanics acknowledges
other illustrious fathers: Max Born, Wolfgang Pauli and Werner Heisenberg, known respectively
for instance for the Born rule [2], the Pauli exclusion principle and the Heisenberg uncertainty
principle [3], the latter stating that position and momentum of a quantum object cannot be
measured simultaneously with arbitrary precision: this is a constraint set by Nature itself, not
by experimental instruments! The most famous equation was provided by Erwin Schrödinger in
1926 [4], whose solutions are given by wavefunctions describing the allowed states of a quantum
system under the influence of a certain Hamiltonian operator. The wavefunction is indeed
one of the central objects of the theory: according to the so-called Copenhagen interpretation,
formulated by Niels Bohr and Werner Heisenberg, it embeds every information regarding the
physical system that one can retrieve through a measure. This action provides probabilistic
results in the classical world, and makes the wavefunction collapse into the eigenfunction related
to the observed quantity. However, before the measurement has been performed, the wavefunction
usually describes a superposition of states, as explained by the the Schrödinger cat epitome [5].
Other interpretations of quantum mechanics have been provided, for instance the fascinating
Hugh Everett’s many-world interpretation [6], but none is as widely accepted as the one given by
Bohr and Heisenberg. Quantum mechanics has been object of debate among its protagonists,
Einstein himself has been one of the most active critics of the theory. Convinced that it did

1



Figure 1.1: Participants of the fifth Solvay Conference, Brussels, 1927.
rear: A. Piccard, E. Henriot, P. Ehrenfest, E. Herzen, Th. de Donder, E. Schrödinger, J. E.
Verschaffelt, W. Pauli, W. Heisenberg, R. H. Fowler, L. Brillouin \ middle: P. Debye, M. Knudsen,
W.L. Bragg, H. A. Kramers, P. A. M. Dirac, A. H. Compton, L. de Broglie, M. Born, N. Bohr \
front: I. Langmuir, M. Planck, M. Curie, H. A. Lorentz, A. Einstein, P. Langevin, Ch. E. Guye,
C. T. R. Wilson, O. W. Richardson. (picture taken from Solvay Conference, Wikipedia, by
Benjamin Couprie, https://en.wikipedia.org/wiki/File:Solvay_conference_1927.jpg)

not provide a complete description of Nature, together with Boris Podolsky and Nathan Rosen
he constructed a thought experiment in 1935, the EPR paradox [7], aimed at proving that
the wavefunction does not contain all information of a physical system, hence contradicting
Copenhagen interpretation. The three authors argued that by separating to an arbitrary distance
two initially correlated electrons and accepting conservation law for total momentum, measuring
the spin of one of these particles must instantaneously affect the spin of the other one. This
phenomenon, now defined as quantum entanglement, would however imply faster-than-light
communication (this implication is actually not true as discussed in later contributions) that
would violate special relativity, and thus the paradox arises. To resolved it, Einstein, Podolsky
and Rosen proposed the existence of hidden variables, values existing before being the outcome of
a measurement, introducing the notion of local realism. John Stewart Bell used this approach to
derive constrains – experimentally detectable – called Bell’s inequalities [8] and argued that such
a theory could not reproduce all of the predictions of quantum mechanics. A number of tests,
such as the ones designed by Alain Aspect, showed that those inequalities are experimentally
violated, hence demonstrating hidden variables formulation to be incorrect.
Modern computer science may be considered to germinate from the David Hilbert’s attempt
to provide a more consistent and complete formulation of mathematics, tackling foundation
problems of this subject. In year 1900 he presented in Paris, at the Second International Congress,
twenty-three problems and continued during the first part of the twentieth century with the so-
called Hilbert’s Program. In 1928 he posed three questions among others [9, 10]. Is mathematics
complete, in the sense that every mathematical statement can be either proved or disproved? Is
mathematics consistent, i.e., no contradiction can be proved in its formalism? Is mathematics
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decidable, that is, does an algorithm exist so that it can be applied to any mathematical assertion
and decide whether this is true or false (this dilemma was called Entscheidungsproblem)? Three
years later Kurt Gödel answered the first two questions in a negative way: in his incompleteness
Theorems [11], he showed that a system with elementary arithmetics rules is either incomplete
or inconsistent; additionally, a systems of axioms cannot prove its own consistency. Gödel’s
work inspired the answer to the third Hilbert’s question, given independently in the same year
by Alonzo Church [12] and Alan Turing [13]. The latter formalized at a mathematical level
the universal Turing machine and showed the existence of problems that such a machine could
not solve. This abstract computer is conversely supposed to be able to perform any real-world
calculation, up to resources limitation, according to the Church-Turing Thesis. In the 1940s
started the race for building an electronic digital computer, whose descendants are today’s
computer machines; while interesting, we are not going to deepen this topic.
If Turing can be considered the father of modern computer science, Claude Shannon is the
equivalent for information theory. With his famous work, A Mathematical Theory of Communi-
cation published in 1948 [14], Shannon provided a quantitative definition of Information, and
explored communication through channels with two important coding theorems; the first one
on noiseless channels measures the amount of physical resources required to store the output
from an information source, the second one gives a bound on how much information is possible
to transmit reliably through a noisy channel. Information and physics are indeed strongly tied
together since the former can only exist and being transmitted in physical form. In viewpoint of
Landauer’s Principle, erasure of information will produce heat, and the amount thereof cannot
be reduced under a precise lower bound.

Computer science approached the quantum world in the 1970s and the link has consolidated dur-
ing the 1980s. In the one hand, according to the Moore’s law formulated in 1965 [15] (suprisingly
accurate over almost half a century), the number of transistors per integrated circuit doubles
every year, and so the increasingly small size of circuit components will unavoidably run up
against quantum effects. On the other hand, going back to the Church-Turing thesis, in 1985
David Deutsch asked whether there exists a universal computing device able to simulate every
physical system. For this end, being quantum mechanics the fundamental theory of physics, it
was necessary to look at designing a quantum computer. In addition to Deutsch, among the first
contributors in this new field we cite Alexander Holevo, R. P. Poplavskii, Yuri Manin, Roman
Ingarden, Steven Wiesner, Charles Bennet, Paul Benioff and Richard Feynman.
The most prominent question in quantum information that has puzzled the community from the
beginning of this emerging domain is the following: can quantum computers beat their classical
counterparts, i.e., can they solve problems that classical computers cannot and be faster in
finding a solution to problems that also classical machines can handle? Answering this question –
we refer to this goal as quantum supremacy [16] – has been unfortunately hard. One of the most
encouraging results has been provided in 1994 by Peter Shor [17], who designed an algorithm for
quantum computers able to factor rapidly large integer numbers, allowing for an efficient solution
of both the factoring and the discrete logarithm problems, which are supposed to have no efficient
solution on classical machines. A powerful implication of Shor’s algorithm is the possibility to
break easily a widespread security cryptosystem known as RSA [18]. The quest for quantum
supremacy is still ongoing [19, 20] and in particular, at the time of writing this work, Google
announced the release of a groundbreaking result, revealing a 49-qubit processor expected to per-
form calculations beyond the reach of the most powerful classical supercomputer of these days [21]!

Now leaving quantum information roots and perspectives behind, we shall get closer to the topic
of this work and introduce the subject of its investigation. The unitary group U(N) is defined
as the group of operators on C(N) such that UU † = U †U = 1, ∀U ∈ U(N), and it is usually
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identified with the group of N ×N unitary matrices satisfying the same property. This group in
of fundamental importance for quantum mechanics – and so of quantum information – since one
of its four postulates says [22, 23]:

The evolution of a closed quantum system is described by a unitary transformation.
That is, the state ψ of the system at time t1 is related to the state ψ′ of the system
at time t2 by a unitary operator U which depends only on times t1 and t2, i.e.,

|ψ′〉 = U |ψ〉 . (1.1)

With closed system we refer to a system that does not interact in any way with another one and
so can be treated as isolated; we will investigate this topic in Chapter 4.

Actually, any quantum map can be understood in terms of a unitary evolution on a larger system
according to the following construction. For this, we will denote the quantum physical systems as
Hilbert spaces and compose them with the tensor product. Please refer to Chapter 2 for details.

Theorem 1.1 (Stinespring dilation, cfr. [23]). Let E be a CPTP map from a system A to a
system B. Then there exists a complementary system R and an isometry, i.e., a metric-preserving
operator Ũ , such that

E : HA → HB (1.2)
ρA 7→ E(ρA) = TrR[Ũ † ρA Ũ ]. (1.3)

The isometry Ũ is called Stinespring dilation.

With this, we can further embed Ũ into a unitary operator U in HA ⊗HR, i.e., U is unitary and
for some fixed w0 ∈ HR satisfies U(v⊗w0) = Ũv, ∀v ∈ HA. It follows that we can write

E(ρA) = TrR[U † (ρA ⊗ |w0〉 〈w0|)U ] (1.4)

and so interpret E as an evolution compatible to the postulate for an extended system HA⊗HR.

It is therefore of great interest in the context of quantum information to investigate properties of
the group ruling evolutions of quantum systems; besides its mathematical importance, the goal
of this work is to demonstrate that continuous-time stochastic processes on this group lead to
phenomena such as decoupling and scrambling, particularly relevant for applications. In this
direction a different framework, namely, random quantum circuits, has already been studied [24–
28]; those are settings where at each step of the circuit a random unitary gate is applied on a pair
of qubits and indeed they are able to reproduce an approximate uniform distribution of unitary
operators on the entire system, decouple a subsystem or scramble information. An extensive
literature review will be provided in Chapter 5. On the other hand, a geometric formulation of
quantum computing in terms of a Riemann manifold was developed in 2006 by Michael Nielsen
and his colleagues [29–31], but does not seem to become established in the field of quantum
information yet. Again, stochastic processes and Brownian motions over Lie groups have been
rigorously defined [32–36] but without a quantum information perspective.

The principal goal of this work is to unify these different and apparently disconnected frameworks
under a common and comprehensive mathematical formulation. More precisely, we are going to
show that a Brownian motion over the unitary group defined through differential increments of
its Lie algebra induces a distribution of unitaries with the same properties displayed by the one
induced by random quantum circuits, that is, it produces unitary designs approximations and
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decouples one system form another, with compatible scaling in the system size and in the degree
of the moments. This implies a strong and fascinating link between continuous-time random
processes driven by stochastic Hamiltonian evolutions and setting with random quantum gates,
which beside its mathematical beauty can be of relevant interest for experimental implementations
in presence of noisy Hamiltonians or in order to understand exotic phenomena such as black holes
scrambling. Indeed, by expressing the scrambling condition in form of a decoupling theorem, in
Section 7.3 we provide an analytic argument to support the conjecture proposed by Yasuhiro
Sekino and Leonard Susskind [37], that is, black holes are the fastest scramblers in Nature,
destroying information in logarithmic time with respect to the degrees of freedom.
To prove our results regarding approximate unitary designs, we will make use of mathematical
tools from representation theory and probability. In order to estimate the speed of the local
diffusion over the unitary group, we will work with a mixed tensor representation of the Lie
algebra of the special unitary group in order to express the generator of the moments induced by
Brownian motion in terms of a peculiar object of the Lie algebra, the Casimir element. Using an
argument based on Young diagrams we will then identify the irreducible components of the latter,
whose eigenvalues characterize the convergence of the diffusion towards the uniform distribution,
or more precisely, towards its moments. To show fast decoupling in presence of Brownian motion,
we will conversely make use of a random walk over Pauli basis weights already employed in
refs. [24, 28], proving an almost linear time scaling in system size for the convergence to the
uniform distribution of this Markov chain. This will involve intriguing tricks of probability
theory, such as the Gambler’s ruin and the shuffling of cards investigated by Persi Diaconis [38–
40], now Professor of statistics and mathematics at Stanford and previously professional magician!

With his thesis this author hopes to provide a contribution at different planes. It aims to enhance
the understanding of fundamental aspects of quantum information theory regarding one of its
axioms and to unify different frameworks under a common formalism. It illustrates applications
for randomness involving the unitary group in the task of benchmarking quantum gates, to allow
quantum cryptography in the presence of imperfect sources of randomness and to strengthen the
black holes scrambling conjecture. Moreover, it supplies an example of applications in quantum
information of mathematical tools from probability and representation theory in addition to
mathematical results such as demonstrating a spectral gap for local diffusion over the unitary
group.

1.1 Structure of this thesis

The present work is based on the following projects developed during the PhD studies of
this author: Mixing properties of stochastic quantum Hamiltonians [41], here included in Sec-
tions 7.1, 7.2 and 7.3, Randomized benchmarking for individual quantum gates [42], illustrated
in Section 6.3, Quantum encryption with weakly random sources, here in Section 3.4. This
author is the principal investigator of the first two projects and contributed extensively in all
parts of both, conversely he contributed only partially to the third project, in particular for the
reduction of the involved concentration bounds from the unitary group to the special unitary
subgroup (not discussed in this work). Everything outside the mentioned sections is not novel
material, but part of the literature of quantum information and related fields.

Now describing the structure of the thesis, Chapter 2 contains the introductory material needed
in order to understand the successive pages and is divided in three parts. In the first section we
define the basic structures of quantum mechanics in terms of the quantum information formalism,
that is, Hilbert spaces, density operators, quantum channels, norms, and entropy quantities; note
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that this does not constitute a complete summary of all structures of quantum mechanics but
contains only those necessary for this work. In the second part we include a description of Markov
chains, also in the continuous-time version, and list the concentration bounds used (sometimes
implicitly) throughout the thesis. Finally we include a paragraph on Diaconis shuffling cards,
a peculiar topic connected to decoupling results in relation to random quantum circuits and
Brownian motion. In the third section we present in a self-contained way group and representation
theory material, with a particular focus on irreducible representations and Schur’s Lemma. The
last paragraph is a brief recapitulation of the principal definitions of Lie groups and Lie algebras.
In Chapter 3 we introduce the concept of distributions over the unitary group, with an emphasis
on the Haar measure and other distributions approximating it, the so-called approximate unitary
designs. We also define the notion of universality for a unitary distribution, with the particular
example in Section 3.2 constituted by the set of three important unitary operators, namely,
Hadamard, CNOT and T gates. In Section 3.3 we discuss the Clifford group as a unitary 2- and
3-design, and then conclude the chapter with a novel application of unitary designs in the context
of encryption in presence of an imperfect source of randomness (cfr. Section 3.4). Chapter 4 is
devoted to one of the most important topics of this work, that is, decoupling from the environment
for a quantum system affected by a random unitary evolution and a subsequent quantum channel
transformation. We present decoupling theorems in different fashions, that is, in terms of different
entropy quantities such as the quantum collision entropy and the hypothesis-testing entropy, a
measure for the probability of correctly distinguish two quantum states. In Chapter 5 we review
the literature regarding random quantum circuits, a central construction for the development
of this work. We will illustrate how subsequent implementations of local random gates lead
to the notions investigated in the previous chapters, that is, approximate unitary designs and
decoupling. A particular emphasis will be given to the fascinating mathematical tools used to
obtain these results, ranging from convergence of random walks on Pauli strings (cfr. Sections 5.1
and 5.3) to spectral gap bounds for induced Hamiltonians (see Section 5.2). Chapter 6 presents
one of the most relevant emerging techniques of quantum information aimed at gauging the
experimental implementation of quantum gates. In Section 6.1 we illustrate how to derive an
estimation of the average fidelity of Clifford gates through a polarization parameter obtained by
taking the average over random samples of gate sequences for various lengths and fitting the
according survival probability with respect to the sought parameter. Subsequently, we consider
an interleaved randomized benchmarking protocol to extract an estimation for a singular target
Clifford gate and use it to link randomized benchmarking to quantum process tomography (cfr.
Section 6.2). We conclude the chapter with Section 6.3 containing a new protocol to benchmark
individually tensor compositions of local gates outside the Clifford group by exploiting their local
and permutations symmetries. As a relevant example, we apply this scheme to tensor copies of
the T-gate (see Subsection 6.3.1). Chapter 7 encompasses the core of this work, namely, the
study of mixing properties of Brownian motion over the unitary group. After a definition of
this stochastic continuous-time process as an injection of differential increments over the Lie
algebra into the group through the exponential map, in Section 7.1 we prove that the diffusion
induces an approximate unitary design of arbitrary degree with linear dependence in the number
of qudits and polynomial dependence with respect to the design degree. Section 7.2 includes the
second main result – and the proof thereof – for Brownian motion over unitaries, that is, fast
decoupling of an affected quantum systems with respect to the environment. The last part of
the chapter, Section 7.3, illustrates two applications of the results, black holes scrambling and
dissipative dynamics, and mentions other possible connected settings. We summarize the content
of the thesis in the Conclusion Chapter 8 with some outlook on potential improvements and
follow-up projects.
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Preliminaries

In this chapter we provide the tools required to understand the literature review and the novel
results contained in this work. First, we have a short description of the formulation of quantum
information theory and its principal objects, e.g., density operators and quantum channels, and
state its fundamental principles. These notions are common knowledge in the field, and we will
mainly follow refs. [22, 23].
Since all the mathematical techniques used to discuss previous results and prove the new ones
rely on probability and group theory, the two subsequent sections will outline the necessary
constructions of these two mathematical fields.

2.1 Notation and fundamental structures in quantum informa-
tion

We identify the physical quantum system A by a Hilbert space HA; we only consider finite-
dimensional systems and we denote the dimension of HA by |A|. The set of homomorphisms (i.e.,
linear maps) between two systems A and B are denoted by Hom(HA,HB) and the set of endomor-
phisms, that is, homomorphisms from a Hilbert space onto itself, by End(HA) = Hom(HA,HA).
Density operators, defined in the next paragraph, are endomorphisms fully describing the state of
a quantum system (first postulate of quantum information) and hence are one of the central ob-
jects of study in quantum information. The Hilbert-Schmidt (inner) product for X,Y ∈ End(HA)
is given by 〈X,Y 〉 := Tr[X†Y ] with the induced metric ‖X‖ =

√
〈X,X〉.

Density operators A density operator on H is a normalized semi-definite operator ρ, in other
words, the set of all density operator is given by

S(H) := { ρ ∈ End(H) : ρ ≥ 0 and Tr ρ = 1 } ; (2.1)

one can also define subnormalized states as

S≤(H) := { ρ ∈ End(H) : ρ ≥ 0 and Tr ρ ≤ 1 } . (2.2)

A density operator ρ is pure if and olny if it can be writte as ρ = |ψ〉 〈ψ| for some ψ ∈ H.
Conversely, it follows from the spectral decomposition theorem that any density operator can be
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written in the form
ρ =

∑
x

pX(x) |ex〉 〈ex| , (2.3)

where pX is the probability mass function defined by the eigenvalues of ρ and { ex }x are the
corresponding eigenvectors. This helps us to interpret any density operator as a statistical
mixture of pure states with corresponding probability outcome pX(x). In particular, the state
ρ ∈ S(HA) with the form ρ = 1

|A| is called fully mixed.

Composition of subsystems For systems composed by n d-level subsystems (that we refer
to as qudits) we construct the global dn-dimensional system through the tensor product H1 ⊗
H2 ⊗ · · · ⊗Hn (fourth postulate of quantum information). In many cases, one considers 2-level
quantum subsystems called qubits, usually denoted as a superposition of computational basis
states, that is,

|ψ〉 = α |0〉+ β |1〉 , (2.4)

with α,β ∈ C so that |α|2 + |β|2 = 1. As a basis for endomorphism space on qubit systems, the
most common choice is given by Pauli matrices, together with the identity σ0 = 12. These are
given by

σ1 = X =

(
0 1
1 0

)
σ2 = Y =

(
0 −i
i 0

)
σ3 = Z =

(
1 0
0 −1

)
, (2.5)

which are Hermitian and traceless. By multipling them by the imaginary unit i, they become
anti-Hermitian and constitute a basis for the Lie algebra su(2), as we will discuss later. For
n-qubit systems, we obtain a basis by composing n Pauli matrices through the tensor product,
i.e.,

Pn =


n⊗
j=1

σkj : kj ∈ { 0, 1, 2, 3 }

 , (2.6)

and we will call the basis elements Pauli strings from now on. Density operators on a bipartite
system HAB := HA ⊗HB, are not only the ones given by the simple tensor product ρA ⊗ ρB
between possible states of the two individual subsystems. Such states are said to be independent
(or alternatively called product states): a measurement on the system A will give us no information
about the state of system B and vice versa.
Still, there exist correlated states for which this is no longer the case, and hence measuring one
of the two subsystems will provide us information about the other one. If a density ρAB can be
decomposed as a convex combination of tensor product states, i.e.

ρAB =
∑
j

pj ρ
j
A ⊗ ρ

j
B, (2.7)

then it is said to be separable. Conversely, states that cannot be written in such a form contain
an even “stronger” form of quantum correlation and are said to be entangled.

For a bipartite density operator ρAB we can derive the reduced operator ρA on HA by taking
its partial trace ρA := TrB ρAB. The reduced state fully characterizes all observable properties
of the subsystem A since it is the (unique) operator that provides the correct statistics for the
outcomes of measurements made on subsystem A. We note that the reduced state ρA of a pure
bipartite state ρAB is not necessarily pure; conversely any mixed density operator can be seen as
a reduced state of a pure state on a larger system. Such a construction, not unique in general, is
called purification.
For a general MA ∈ End(HA), we write MA ≡MA ⊗ 1B for the embedding on any HAB.
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Quantum channels Another fundamental structure is given by quantum channels; these are
maps that bring any density operator into another one, that is,

C : End(HA)→ End(HB)
ρA 7→ ρB,

(2.8)

with the following properties.

[1] The map C must preserve the convex mixture of the set of density operators, namely, for
any p ∈ [0, 1],

C(pρ1 + (1− p)ρ2) = p C(ρ1) + (1− p)ρ2. (2.9)

This is equivalent to the requirement for the channel C to be linear.

[2] The map C must be completely positive.
A map C : End(HA) → End(HB) is said to be positive if C(M) ≥ 0 for all M ≥ 0. Now,
in order to ensure that a state ρAR of a larger system HAR is again positive semi-definite
when C is applied, we require that the map C ⊗ IR is positive for any additional reference
system R. In this case, the map C is said to be completely positive.

[3] The new state should be normalized, thus we require Tr[C(MA)] = Tr[MA] for all MA ∈
End(HA). A map fulfilling this condition is said to be trace preserving.

The evolution of a quantum system is hence described by linear, completely positive and trace
preserving (CPTP) maps.

Representations of quantum channels It is often beneficial to represent quantum channels
in other terms. Depending on the situation, one may want to use one of the following representa-
tions.
Any CPTP map C can be written in terms of operator-sum representation, that is, for any
M ∈ End(H) there exists a set of (Kraus) operators {Kj }j under the constraint

∑
jK
†
jKj = 1

such that
C(M) =

∑
j

KjMK†j . (2.10)

For two Hilbert spaces HA and HB, the Choi-Jamiolkowski map J takes CP map TA→B ∈
Hom(End(HA), End(HB)) into positive semi-definite operators on HA′B (and vice versa), where
HA ∼= HA′ . This reduces the study of CP maps to the study of density operators.
Let {jA}|A|j=1 be an orthonormal basis of HA ∼= HA′ , with the maximally entangled vector

|ΨA′A〉 =
1√
|A|

∑
j

|j〉A′ ⊗ |j〉A. (2.11)

The Choi-Jamiolkowski map J from Hom(End(HA), End(HB)) to End(HA′B) is then defined
by

J (TA→B) := (IA′ ⊗TA→B)(|Ψ〉 〈Ψ|A′A). (2.12)

This mapping is an isomorphism, and its inverse for τA′B ∈ End(HA′B) is given by

J −1(τA′B) : MA 7→ |A| TrA′ [(EA→A′(MA)⊗ 1B)τA′B ], (2.13)

where EA→A′ : End(HA)→ End(HA′) is defined as

EA→A′(MA) :=
∑
i,j
|i〉A′ 〈j|AMA |i〉A 〈j|A′ . (2.14)

9



In this work, preservation of the eigenvalues structure is fundamental, and so the above repre-
sentation is not suitable. We will instead make use of the following two constructions. We can
identify End(HA) ' C|A|

2 , with |j〉 〈k| 7→ |j〉 ⊗ |k〉. Any map C acting as C(MA) =
∑
j XjMAYj

can accordingly be written as C '
∑
j Xj ⊗ Y T

j and we call such a formulation vectorisation
isomorphism.
When working in normalized Pauli basis

{
σ̃k := 1√

2n
⊗n
j=1 σkj : kj ∈ { 0, 1, 2, 3 }

}
(where we

slightly abused the notation and re-arranged the vectors (k1, . . . , kn) as numbers from 1 to 4n
labeled by k), it can be useful to make use instead of the Pauli-Liouville representation, as we
will do when discussing randomized benchmarking in Chapter 6. We can express any density
operator ρ and quantum channel C as a linear combination of projections onto the Pauli basis,
i.e.

ρ =
4n∑
k=1

ρkσ̃k and C(ρ) =
4n∑
k=1
C(σ̃k)ρk, (2.15)

where ρk := 〈σ̃k, ρ〉 and so we can represent them as

|ρ〉 =


ρ1
ρ2
. . .
ρ4n

 and Ck` = 〈σ̃k, C(σ̃`)〉. (2.16)

In this way, we may represent C(ρ) as a matrix-vector multiplication C |ρ〉 and the concatenation
of two channels D and C as a matrix multiplication DC. We can analogously represent a map
M ∈ End(HA) in the form

〈M | = (M1 M2 . . .M4n) with Mk = 〈M , σ̃k〉. (2.17)

WhenM is a measurement, the probability to obtain an outcome described byM when measuring
ρ is 〈M , ρ〉 (cfr. third postulate of quantum information).

Norms and distances between states In order to quantify the distance (or closeness)
between two quantum states, one can make use of the metric on End(H) (often defined with an
additional factor 1

2) induced by the 1-norm, given by

‖M‖1 := Tr
√
M †M =

∑
j

sj(M), (2.18)

where we denote by sj(M ) the j-th singular value of M . The so-called trace distance is then
defined as

δ(ρ,σ) = 1
2 ‖ρ− σ‖1 . (2.19)

This distance characterizes the maximum probability to successfully distinguish two states.
Another commonly used measure for the closeness between two density operators ρ,σ ∈ S(H) is
the fidelity

F (ρ,σ) :=
∥∥√ρ√σ∥∥1 . (2.20)

Note that F is always between 0 and 1, and that F (ρ, ρ) = 1. For pure states ψ = |ψ〉 〈ψ| and
φ = |φ〉 〈φ|, the fidelity takes the simple form

F (ψ,φ) = |〈ψ,φ〉| . (2.21)

A number of properties can be mentioned for the fidelity distance: Uhlmann’s Theorem, mono-
tonicity, contractivity and (strong) concavity, but none of these is relevant to this work so we are

10



not going to illustrate them.
The trace distance and the fidelity are related to each other; in particular, for pure states it
stands

F (ψ,φ)2 + δ(ψ,φ)2 = 1, (2.22)

while the relation for general density operators reads

1− F (ρ,σ) ≤ δ(ρ,σ) ≤
√

1− F (ρ,σ)2. (2.23)

To extend the argument to quantum channels, we define the channel fidelity for two CPTP maps
C1, C2 on a given density operator ρ simply by using the previous definition, i.e.

FC1,C2(ρ) := F (C1(ρ), C2(ρ)) =

∥∥∥∥√C1(ρ)
√
C2(ρ)

∥∥∥∥
1

. (2.24)

This quantity, for a quantum channel E and a unitary operation U and taking a pure state
φ = |φ〉 〈φ| as input, is called gate fidelity and can be simplified to

FE,U (φ) := Tr [U(φ) E(φ)] (2.25)

and defining Λ = U† ◦ E one has

FE,U (φ) = FΛ,I(φ) = Tr [φΛ(φ)] , (2.26)

that can be interpreted as quantifying the noise channel Λ for an implementation E of U .
The average gate fidelity is then obtained by integrating this quantity over the Haar measure on
pure states, that is,

E(FE,U ) = E(FΛ,I) :=
∫

Haar
Tr [φΛ(φ)] dφ. (2.27)

Conversely, the entanglement fidelity of a quantum channel E , defined as

Fent(E) := 〈Ψ| (I ⊗ E)(Ψ) |Ψ〉 , (2.28)

with |Ψ〉 being a maximally entangled state vector, can be written as [43]

Fent(E) = d−3∑
j

Tr[V †j E(Vj)], (2.29)

for any orthonormal basis {Vj }j such that Tr[VjVk] = d δj,k (in the case of n qubits, d = 2n).
Hence, it is simple to obtain when the trace of the quantum channel is known. The average gate
fidelity of E is then linked to this quantity by [43]

E(FE,I) =
dFent(E) + 1

d+ 1 =

∑
j Tr[V †j E(Vj)] + d2

d2(d+ 1) . (2.30)

Additionally, the diamond norm [44] of a CPTP map T is defined to be

‖T ‖� := sup
d

sup
X 6=0

‖(T ⊗ Id)X‖1
‖X‖1

, (2.31)

and it is the most common choice to quantify the magnitude of a quantum channel from a
physical perspective, since it considers the map as affecting only a part of an arbitrarily larger
system. The infinity norm ‖T ‖∞ is given by the largest singular value of T and instead used
in mathematical and technical contexts; in our case, for instance, it quantifies the gap ruling
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convergence and mixing times for moment operators.

The average gate fidelity can also be linked to the diamond norm, for instance with the following
lower bound (which is actually true for any gate fidelity on arbitrary density operators) [45]

E(FE1,E2) ≥ 1− ‖E1 −E2‖�, (2.32)

and additionally [46, Theorem 9]

r(d+ 1)/d ≤ 1
2‖Λ−I‖� ≤

√
d(d+ 1)r, (2.33)

where r := 1−E(FΛ,I) is the average error rate for Λ.

Entropy quantities Entropy quantities are essential in both classical and quantum informa-
tion theory because they measure the uncertainty (or the knowledge) of an observer regarding a
certain (quantum) system. This subfield has a deep and extensive literature and is continuously
expanding, so we will restrict ourself to the basic definitions. Entropy measures are used to
characterize processes or formulations such as decoupling theorems, as we shall see in the related
Chapter 4.

The von Neumann entropy is the quantum mechanical generalization of the classical Shannon
entropy and it is defined as

H(ρ) := −Tr (ρ log ρ). (2.34)

The next step is to introduce the quantum relative entropy of ρ ∈ S≤(H) with respect to σ ≥ 0,
given by

D(ρ‖σ) := Tr (ρ log ρ)−Tr (ρ log σ) (2.35)

if supp(ρ) ⊆ supp(σ) and +∞ otherwise.
We can then use this quantity to define the conditional von Neumann entropy for ρAB ∈ S≤(HAB)
with respect to σB ∈ S(HB) as

H(A|B)ρ|σ := −D(ρAB‖1A ⊗ σB); (2.36)

from this we can also define

H(A|B)ρ := sup
σB∈S(HB)

H(A|B)ρ|σ. (2.37)

We can now introduce min- and max-entropy. More precisely, we first define the quantum relative
max-entropy for ρ ∈ S≤(H) with respect to σ ≥ 0 by

Dmax(ρ‖σ) := inf
{
λ ∈ R : 2λ σ ≥ ρ

}
. (2.38)

The conditional min-entropy Hmin of ρAB ∈ S≤(HAB) with respect to σB ∈ S(HB) is given by

Hmin(A|B)ρ|σ := −Dmax(ρAB‖1A ⊗ σB) = sup
{
λ : 2−λ1A ⊗ σB ≥ ρAB

}
(2.39)

and
Hmin(A|B)ρ := sup

σB∈S(HB)
Hmin(A|B)ρ|σ. (2.40)

In particular, if HB is the trivial space, it follows that

Hmin(A)ρ = − log ‖ρA‖∞. (2.41)
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In analogous way we define the max-entropy; the quantum relative min-entropy for ρ ∈ S≤(H)
with respect to σ ≥ 0 is defined by

Dmin(ρ‖σ) := − log(F (ρ,σ)2). (2.42)

The conditional max-entropy Hmax of ρAB ∈ S≤(HAB) with respect to σB ∈ S(HB) is then

Hmax(A|B)ρ|σ := −Dmin(ρAB‖1A ⊗ σB) = log(F (ρAB,1A ⊗ σB)2) (2.43)

and also
Hmax(A|B)ρ := sup

σB∈S(HB)
Hmax(A|B)ρ|σ; (2.44)

if HB is the trivial space, then

Hmax(A)ρ = 2 log(Tr√ρA). (2.45)

The non-smooth version of decoupling theorem relies on the quantum conditional collision entropy.
Let ρAB ∈ S≤(HAB) and σB ∈ HB ,σB ≥ 0, then the quantum conditional collision entropy of A
conditioned on B of the state ρAB relative to σB is defined as

H2(A|B)ρ|σ := − log Tr
[{

(1A ⊗ σB)−1/4ρAB(1A ⊗ σB)−1/4
}2
]
. (2.46)

Taking the supremum over all normalized σB, we write

H2(A|B)ρ := sup
σB∈S(HB)

H2(A|B)ρ|σ. (2.47)

The smooth entropy versions are defined by taking the extremum over a set of nearby states,
where the notion of “nearby” is expressed in terms of the purified distance (cfr. ref. [23]). For
ε ≥ 0, the smooth conditional max- and min-entropy of A given B for ρAB ∈ S≤(HAB) are
defined as

Hε
max(A|B)ρ = inf

ρ̄AB∈Bε(ρAB)
Hmax(A|B)ρ̄ (2.48)

and
Hε

min(A|B)ρ = sup
ρ̄AB∈Bε(ρAB)

Hmin(A|B)ρ̄. (2.49)

This latter quantities are used to characterize the upper bound of decoupling Theorem in eq. (4.18)
at the end of Section 4.1.
Another entropy measure called hypothesis-testing entropy will be introduced later in Section 4.2.

2.2 Probability theory

Brownian motion, one of the core constructions in this work, is arguably the most important
and widely studied random process in probability theory. Looking at diffusion over the unitary
group requires a set of stochastic definitions and results that we are going to briefly explain in
the following.
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Markov chains A (discrete) stochastic process with a sequence of random variables X1,X2, . . .
whose next step depends solely on the current state is called a Markov chain. We consider a
finite set of values Λ = {λ1,λ2, . . . } which the variables Xn can assume during the process
and denote it as state space. For the variable Xn we can then assign a probability distribution
ωn = (ω1

n,ω2
n, . . . ) where ωkn = P(Xn = λk). If the state space is finite, the transition from Xn

to Xn+1 can be described by a transition matrix Pn with entries

pk,` = P(Xn+1 = λ`|Xn = λk) = P(Xn+1 = `|Xn = k) (2.50)

such that we have
ωn+1 = ωn Pn. (2.51)

If the process is time-homogeneous, then each transition is governed by the same transition
matrix P at each step, and thus

ωn = ω0 P
n. (2.52)

The stationary distribution of the process ω satisfies

ω = ω P (2.53)

and can hence be regarded as a fixed point of the chain. If, for all λk,λ` ∈ Λ, the following
relation (called detailed balance condition) stands,

ωkpk,` = ω`p`,k, (2.54)

the chain is reversible. A reversible Markov chain on a graph is called random walk.

A chain is said to be ergodic if it is irreducible and aperiodic. Irreducibility means, in rough
words, that any state of the chain can be reached in finite time, regardless of the starting value,
so that it exists m <∞ such that for all λk and λ`

P (Xn+m = `|Xn = k) > 0. (2.55)

More formally, we say that there exists only one communicating class. For a state λk of the
chain, the greatest common divisor of the set of all times m when a return to the state λk is
possible is called period of λk. A state is said to be aperiodic if its period is 1, that is, for all n

gcd {m : P (Xn+m = k|Xn = k) } = 1, (2.56)

and if every state is aperiodic, so is said to be the chain. Note that all states of an irreducible
chain have the same period and hence by proving aperiodicity for a single state one can infer
this property to the full state space.
A fundamental result in this regard is that every ergodic chain has a unique stationary distribution
toward which it will eventually converge. We refer as the mixing time of the chain to the number
of steps required to reach closeness to the stationary distribution. For two arbitrary distributions
ω and η, the total variation distance is given by

‖ω− η‖TV =
1
2 ‖ω− η‖1 =

1
2
∑
j

|(ω)j − (η)j | . (2.57)

Then the mixing time is defined as

τ (ε) := max
ω0

min
t≥0

{
t :

∥∥∥ω0P
t − ω

∥∥∥
TV
≤ ε

}
, (2.58)
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where ω0 is the initial probability distribution and ω the stationary distribution.

In this work, we consider Markov chain on Pauli strings (that we also address to as random walk
on Pauli basis) induced by Brownian motion. Since the latter is a continuous-time stochatic
process, the random walk will also be a continuous-time, described by jumps from a Pauli string
to another one, spaced out by waiting times where the process does not move. Specifically,
the function {N(t) : t ≥ 0 } counting the number of jumps occurred up to the positive time t
defines a Poisson process, given that the following properties are satisfied:

[1] N(0) = 0,

[2] the increments are independent and stationary,

[3] each increment N(t+∆t)−N(t) is distributed as a Poisson random variable with parameter
(mean) µ∆t.

The last condition implies that E[N(t)] = µt and, in particular, the probability that two or more
jumps occur in the time interval is negligible when this is small.

The waiting time W between two consecutive jumps is then described by an exponential distribu-
tion, having for µ > 0 a cumulative distribution function

P(W ≤ t) = 1− e−µ t (2.59)

and a probability density function
f (t) = µ e−µ t. (2.60)

In order to study the mixing time of this chain, we will project the random walk on Pauli basis
onto a one-dimensional simple random walk on the discrete state space Λ = { 1, 2, . . . ,n } with
jumps restricted to adjacent lattice points. This induced chain counts the number of single-qubit
identity elements (weights) of the Pauli strings that the original chain is visiting.
We will also put conditions on reaching certain points of the state space or reverting back to
already visited values, establishing that the walk has then ended. In this case we refer to random
walks with absorbing barrier. We can introduce the argument by mentioning here a famous
application for this concept: the Gambler’s ruin. Let us consider a player starting with an initial
amount of money being x Euro, winning at each bet 1 Euro with probability p and losing 1 Euro
with probability q = 1− p. The player wins if he reaches a total amount of N Euro, and goes
bankrupt if he loses all of his money. Let us denote the probability of winning starting with x
Euro by Px, and so the probability of going bankrupt will be 1−Px. Then we have

Px =


1−(q/p)x

1−(q/p)N if p 6= q
x
N if p = q = 1/2.

(2.61)

In particular, if the gambler is allowed to play forever until ruined, if p > 1/2 there is a
positive probability that he will never get ruined, otherwise, if p ≤ 1/2, ruin is unavoidable.
Mathematically,

lim
N→∞

Px =

{
1− (q/p)x if p > 1/2
0 if p ≤ 1/2.

(2.62)

In this work we will apply the following result for a random walk with absorbing barrier.

Lemma 2.1 (Lemma A.6 in ref. [28]). Consider an asymmetric simple random walk with
probability of moving forwards p and probability of going backwards q = 1− p that starts at a > 0
and has an absorbing barrier at the origin. The probability that the walk eventually absorbs at
the origin is 1 if p ≤ q and (q/p)a otherwise.
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Hoeffding’s inequalities Hoeffding’s inequalities are an additive form of Chernoff bounds,
which are concentration inequalities on the tail probability of the sum of independent (but not
necessarily identically distributed) random variables. Hoeffding’s inequalities are exponentially
decreasing and are formulated as follows [47, Theorem 1]. Let us first assume X1, . . . ,Xn to be
i.i.d. Bernoulli random variables for all j and denote X = 1

n

∑n
j=1Xj . Then for all ε > 0,

P
(
X −E

[
X
]
≥ ε

)
≤


 E

[
X
]

E
[
X
]
+ ε

E[X]+ε 1−E
[
X
]

1−E
[
X
]
− ε

1−E[X]−ε

n

(2.63)

≤ exp{−2ε2n} (2.64)

and

P
(
X −E

[
X
]
≤ −ε

)
≤


 E

[
X
]

E
[
X
]
− ε

E[X]−ε 1−E
[
X
]

1−E
[
X
]
+ ε

1−E[X]+ε

n

(2.65)

≤ exp{−2ε2n}; (2.66)

this can be combined to

P
(
|X −E

[
X
]
| ≥ ε

)
≤ 2 exp{−2ε2n}. (2.67)

We can extend the bound for independent random variables Y1, . . . ,Yn with aj ≤ Yj ≤ bj ,
namely [47, Theorem 2],

P
(
Y −E

[
Y
]
≥ ε

)
≤ exp

−2ε2n2/
n∑
j=1

(bj − aj)2

 (2.68)

and equivalently

P
(
Y −E

[
Y
]
≤ −ε

)
≤ exp

−2ε2n2/
n∑
j=1

(bj − aj)2

 , (2.69)

such that again we can put them together as

P
(
|Y −E

[
Y
]
| ≥ ε

)
≤ 2 exp

−2ε2n2/
n∑
j=1

(bj − aj)2

 . (2.70)

Specifically, through this work we will make use of the following Chernoff-Hoeffding’s inequality.

Lemma 2.2 (Lemma A.4 in ref. [28]). Let Xk be the random variable giving the position of
a random walk after k steps starting at the origin with probability pj ≥ p of moving right and
probability qj ≤ p of moving left at step j and let µ = p− (1− p) = 2p− 1. Then for any η > 0

P (Xk ≥ µk+ η) ≤ exp
{
− η

2

2k

}
and P (Xk ≥ µk− η) ≤ exp

{
− η

2

2k

}
. (2.71)
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Diaconis shuffling of cards Convergence of Markov chains is an important object of study,
where for instance log-Sobolev constants play a major role [48]. A very useful instance is given by
the random walk on the symmetric group induced by random transpositions, with very curious
applications on shuffling a deck of cards [39]. More formally, we consider the symmetric group
Sn as the state space and write transition matrix given by random transpositions as

T (π, ρ) =


1/n if πρ−1 = I
2/n2 if πρ−1 is a transposition
0 otherwise.

(2.72)

We then ask how many steps of the chain are required in order to get arbitrarily close to the
uniform stationary distribution ω(π) = 1/n! (in the language of cards, this means how many
times we should swap two cards at random until the deck is completely shuffled). Diaconis and
Shahshahani provided an answer in ref. [38, Theorem 1]; for n ≥ 10 the mixing time of T to a
given precision ε is τ (ε) = O(n log n

ε ).
As an interesting remark, this convergence presents a cutoff phenomenon [40]. Taking for example
the particular case of Gilbert-Shannon-Reeds shuffling, in Theorem 1 of this work of Diaconis is
proved that with k = 3

2 log2 n+ θ steps the distance to the uniform distribution is bounded for
any initial distribution ω0 by

‖ω0P
k
GSR − ω‖TV = 1− 2Φ

(
−2−θ/4

√
3
)
+O(1/

√
n), (2.73)

where Φ(z) :=
∫ z
−∞ e−t2/2/

√
2π dt. The cutoff behavior around θ = 0 is illustrated in Figure 2.1.

This phenomenon can be observed in connection to the (high) degeneracy of the second-highest
eigenvalue of these chains.
Another relevant setting is the uniform sample with replacement from an urn with n balls, or
equivalently, the collection of n different coupons (indeed, this problem is called coupon collector’s
argument), one of them received uniformly at random after each time one buys the magazine.
Let ` be the number of draws required until each ball has been extracted (or coupon obtained)
at least once. Then [39, Lemma 2] for c ≥ 0 and n ≥ 1

P (` > n logn+ cn) ≤ e−c. (2.74)

2.3 Group and representation theory

In order to study the diffusion of a continuous-time stochastic process over the unitary set of
matrices and to exploit operators symmetries for the novel randomized benchmarking protocol
that we are going to present in Chapter 6, it is convenient to switch to the representation theory
framework and make use of the powerful results that we are going to recapitulate in the following
paragraphs.

Definition 2.3 (Group). A group G is a set of elements equipped with a binary operation
satisfying the following properties:
Closure: For all g,h ∈ G, g · h ∈ G.
Associativity: For all g,h, k ∈ G, (g · h) · k = g · (h · k).
Identity element: There exist a unique identity element, e, such that for all G ∈ G e · g = g · e = g.
Inverse: for every element g ∈ G there exist an inverse element g−1 such that g−1 · g = g · g−1 = e.
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If two group can be linked by a group isomorphism, they are said to be isomorphic. They will
then have many properties in common, in particular the same multiplication table or character
table (which we will introduce later). One can therefore easily obtain information about a group
if it is possible to find a group isomorphism connecting it to another well-known group; this is
indeed what we do in our protocol to deal with the local symmetry groups. A subset H ⊂ G is
called subgroup if all above conditions are still satisfied, e.g., the subset is closed with respect to
the group operation. A subgroup N such that g−1n g ∈ N for all n ∈ N , g ∈ G is said to be
normal and this is denoted by N CG. The set of all elements of G commuting with any element
of the group,

Z(G) := { z ∈ G : g−1zg = z for all g ∈ G } , (2.75)

is a normal subgroup and is called center of G.

One can define a (left) group action of G on a set M by a function

φ : G×M →M , (2.76)
(g,m) 7→ φ(g,m)

that fulfills the following two axioms:
Identity: for all m ∈M , φ(e,m) = m,
Compatibility: for all m ∈M , g,h ∈ G φ(g,φ(h,m)) = φ(g · h,m).
With this definition, we can furthermore establish the following.

Definition 2.4 (Orbit). An orbit G.m of an element m ∈ M is given by all elements in M
obtained by the action of G, i.e.,

G.m := {φ(g,m) : g ∈ G } . (2.77)

The action of G on M induces a partition of the set M itself, i.e., it regroups the elements into
subsets such that every element m ∈M is contained in one and only one of those.

Definition 2.5 (Stabilizer subgroup). The stabilizer subgroup of G with respect to m is the set
of all elements on G such that

Gm := { g ∈ G : φ(g,m) = m } . (2.78)
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It is always possible to couple two groups to generate a new one. This is indeed what we looking
for, having to combine symmetry of the local gates together with the invariance with respect to
permutations thereof.

Definition 2.6 (Direct product). Given two groups G and H, the direct product G×H is a
Cartesian product of ordered pairs (g,h), with g ∈ G,h ∈ G equipped with a binary operation
acting component-wise, that is,

(g1,h1) · (g2,h2) = (g1 · g2,h1 · h2). (2.79)

This new structure satisfies all axioms of closure, associativity, existence of identity – given by
(eG, eH) – and inverse element – (g−1,h−1) being the inverse of (g,h) – and so it is a group. An
alternative way to construct a new group from is given by the semi-direct product.

Definition 2.7 (Outer semi-direct product). Let N , H be groups, ϕ : H → Aut(N) be a
homomorphism from H to the set of automorphisms of N . Then the (outer) semi-direct product
with respect to φ, denoted by G = N oϕ H, is the group whose underlying set are the pairs
(n,h) ∈ N ×H equipped with an operation defined as

• : G×G→ G (2.80)
((n1,h1), (n2,h2)) 7→ (n1,h1) • (n2,h2) (2.81)

= (n1 ·ϕh1(n2),h1 · h2),

where n1,n2 ∈ N ,h1,h2 ∈ H.

This structure is again a group according to the defining axioms, with identity element (eN , eH)
and inverse (n,h)−1 = (ϕh−1(n−1),h−1). Note that the the set {(n, eH) : n ∈ N} is a normal
subgroup of G isomorphic to N .

It is also possible to go the other way around and obtain from a group G and a normal subgroup
N a new group called quotient group, denoted by G/N . This is the set of all cosets of N in G,
i.e.,

G/N := { gN : g ∈ G } , (2.82)

where gN is the left coset of N in G , namely,

gN := { gn : n ∈ N } . (2.83)

The latter definition stands for all subgroup N , not necessarily normal, however when N is
normal the left coset and the right coset (defined analogously) coincide. The set G/N is then a
group under the operation (gN) · (hN) = (gh)N .
We conclude this paragraph with the following definition of the canonical projection which is
involved in the construction of irreducible representations of a semi-direct product group.

Definition 2.8 (Canonical projection). Let N CG. The group homomorphism

τ : G→ G/N , (2.84)
g 7→ gN (2.85)

is called canonical projection.

We are now going to introduce representations, the core mathematical objects which the respective
theory is named after.
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Definition 2.9 (Representation). A representation of a group G on a vector space V is a group
homomorphism onto the general linear group on V ,i.e., a map

π : H → GL(V ), (2.86)
g 7→ π(g) (2.87)

such that
π(g) · π(h) = π(g · h). (2.88)

A representation is said to be faithful if it is injective, and its dimension corresponds to the
dimension of the vector field V . A subspace W ⊂ V is said to be invariant if, for all g ∈ G and
w ∈W ,

π(g)w ∈W . (2.89)
Furthermore, a representation is said to be irreducible if the only invariant subspaces are { 0 }
and V itself; often, this is abbreviated as irrep. Every complex representation of a finite group is
completely reducible, i.e., it can be decomposed as a direct sum of irreducible representations. This
property, together with Schur’s Lemma, makes irreducible representations and their characters a
central object in the theory and will also be particularly relevant in our work.

Definition 2.10 (Character of a representation). The character χπ of a representation π of a
group G on V is given by

χπ(g) = Tr[π(g)]. (2.90)

The dimension of a representation corresponds then to its character at the identity element, χπ(e).
For finite group, the number of irreducible representations is again finite, and the following result
is useful to check if all irreducible representations of a given group have been found.

Proposition 2.11 (Group order and irreducible representations dimension). The order of a
group G and the dimension of its irreducible representations are linked by

|G| =
∑

α : παirrep
χπα(e)

2. (2.91)

One of the most important properties for character of irreducible representations is the following
orthogonality relation.

Proposition 2.12 (Orthogonality formula). Let {χj }j be the set of characters of all irreducible
representations of a group G. Then

1
|G|

∑
g∈G

χ∗j (g)χk(g) =

{
1 if j = k

0 if j 6= k.
(2.92)

From this, follows one of the key results in representation theory is the formula for multiplicities,
used to decompose a representation into its irreducible components.

Proposition 2.13 (Multiplicity formula). Let χj be the character of the irreducible representation
πj and φ the character of the representation π of a group G. Then

1
|G|

∑
g∈G

χ∗j (g)φ(g) = mj , (2.93)

where mj is the multiplicity of the irreducible representation πj in the decomposition of π, so
that π is similar to a block diagonal matrix in the form

π(g) '
⊕

πj(g)⊗ 1mj ∀g ∈ G, (2.94)

with 1mj being the identity matrix on Cmj .
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Schur’s Lemma We write here one of the most important results in representation theory,
namely, Schur’s Lemma. We will restrict it on finite-dimensional representations case.

Lemma 2.14 (Schur’s Lemma). Let πj and πk be two irreducible representations of a finite
group G of dimension m and n respectively, and M an m× n matrix. If

πj(g)M π−1
k (g) =M ∀g ∈ G (2.95)

then πj and πk are equivalent irreducible representations or M = 0.

Furthermore, if
πj(g)M π−1

j (g) =M ∀g ∈ G (2.96)

then M = µ1, i.e., it is a scalar matrix.

Lie groups and Lie algebras Lie algebras and Lie groups are particularly relevant con-
structions because of their connection to physical models, such as continuous-time stochastic
Hamiltonians. In the following, we will mainly follow ref. [49] to illustrate the most important
definitions. We will restrict ourself to the study of the finite-dimensional case and focus on
matrix groups.

Definition 2.15. A Lie group is a smooth manifold G which is also a group and such that the
group product G×G→ G and the inverse map G→ G are smooth.

A matrix Lie group is a group of invertible square matrices with complex entries and, as the name
itself suggests, it is a Lie group according to the above definition. An alternative formulation
can be given through converging matrix sequences, which however we do not need to introduce.
Next, we define Lie algebras as follows.

Definition 2.16. A finite-dimensional Lie algebra g is a finite-dimensional vector space equipped
with a bilinear, skew-symmetric operation [·, ·] called Lie braket satisfying the Jacobi identity

[X, [Y ,Z]] + [Y , [Z,X ]] + [Z, [X,Y ]] = 0 for all X,Y ,Z ∈ g. (2.97)

A subalgebra h is a subspace of g such that [H,L] ∈ h for all H,L ∈ h, i.e., h is closed with
respect to the Lie braket.

To connect the two constructions, one makes use of the matrix exponential, given by the usual
power series; for a square matrix X, this is given by eX =

∑∞
k=0

Xk

k! . We then have the following
relation.

Definition 2.17. Let G be a matrix Lie group. The Lie algebra g of G is the set of all matrices
X such that etX ∈ G for all real values t.

The Lie braket of a Lie algebra of a matrix Lie group is then explicitly given by the commutator
[X,Y ] = XY − Y X.

When restricted to the lie algebra g of a matrix Lie group G, the matrix exponential e : g→ G
is called exponential map. One can ask whether this map is a universal cover of the Lie group.
This is in general not the case: one can find counter-examples for Lie group elements which
cannot be written by exponentiating an element of the corresponding Lie algebra. However, the
answer changes when considering a neighborhood around the identity 1G; indeed, for a matrix
Lie group G and its Lie algebra g, there exist a neighborhood U of 0 in g and a neighborhood
V of 1G in G such that the exponential map e : U → V is a homeomorphism. One can hence
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identify the two structures when working closely to the identity.

The Lie algebra can also be understood as the tangent space of its Lie group at some point g ∈ G,
given by the differential dγ/dt|t=0 of smooth curves γ : R→ G such that γ(0) = g. The tangent
space at the identity is also equivalent to the tangent space at any other point of the manifold
and one can prove this by using an argument based on left-invariant vector fields; hence, we can
restrict our considerations to the Lie algebra at the identity.

Now more concretely, in this work we study properties of N ×N invertible matrices U with
U †U = UU † = 1, called the unitary group U(N). This is a matrix Lie group whose Lie algebra
u(N) is given by the space of N ×N anti-Hermitian matrices, i.e., all matrices X such that
X† = −X. The special unitary group SU(N) is the subgroup of U(n) given by all unitary
matrices with determinant equal to 1. Its Lie algebra su(N) is characterized by the space of
N ×N anti-Hermitian matrices with vanishing trace.
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Measures over the unitary group and unitary designs

In this section we introduce the notions of measures on the unitary group and of unitary designs
that we will extensively use throughout this work.

When randomness is involved, the unitary evolution is no more completely determined so that
we assign a probability for a given evolution U to take place and affect the system; this leeds
us to the concept of probability distribution over the unitary group. In order to discuss these
topics in the following sections, we first need some formal definitions on topology and probability
measures in order to deal with uncountable sets such as the unitary group. We will use the
terms probability measure on U and probability distribution on U interchangeably; the former
expression is better suited in mathematical frameworks, the latter is predominant in the quantum
information literature.

Definition 3.1 (topology and topological space). Let X be a a non-empty set. A topology T
on X is a collection of sets such that

(i) X and ∅ ∈ T

(ii) the collection is closed under arbitrarily large unions

(iii) the collection is closed under pairwise intersection, that is, A,B ∈ T ⇒ A∩B ∈ T

The pair (X, T ) is called topological space.

The definition for σ-algebras is different, since the complement of a set is again in the collection
and is closed under countable many unions.

Definition 3.2 (algebra, σ-algebra and measurable space). Let X be a non-empty set. A
collection A of subsets of X is an algebra if the following axioms are fulfilled

(i) X ∈ A

(ii) A ∈ A ⇒ X \A ∈ A

(iii) A,B ∈ A ⇒ A∪B ∈ A

Furthermore, an algebra that is closed under countable many unions, i.e., satisfies
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(iv)
⋃
nAn ∈ A,

is called σ-algebra and together with X the pair (X,A) is a measurable space.

With these two definitions, we can introduce a new algebra that we will use when defining the
Haar measure on the unitary group.

Definition 3.3 (Borel algebra and Borel set). Let (X, T ) be a topological space. The smallest
σ-algebra containing all open sets in T is called Borel algebra. Elements of this algebra are Borel
sets.

It is now time for defining measures on such topological constructions. We start by generic
definitions with the final aim being the definition of measures over the unitary group.

Definition 3.4 (measure, probability measure and probability space). A measure on a measurable
space (X,A) is a map µ : A → [0,+∞] that is countably additive, i.e.,

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An),

for any countable collection {An }n of pairwise disjoint elements in the σ-algebra.
A measure µ : A → [0, 1] that additionally satisfies µ(X) = 1 is said to be a probability measure,
and the triple (X,A,µ) is called probability space.

A measure can also be discrete. More precisely, a measure µ is discrete with respect to a measure
ν if there exists an at most countable subset Y ⊂ X such that any one-point subset of Y is
µ-measurable and ν(Y ) = 0. Informally, we can say that a discrete measure on the unitary
group is a set of unitary operators (such as unitary gates of a random circuit) equipped with a
probability distribution.

3.1 The Haar measure and unitary designs
We first introduce a special class of measures over Borel algebras, which the Haar measure is
part of.

Definition 3.5 (Radon measure). Let (X, T ) be a topological space and B its Borel algebra. A
Radon measure on X is a measure µ : B → [0,+∞] such that

(i) for any compact set K ⊂ X, µ(K) <∞

(ii) for any B ∈ B, µ(B) = inf{µ(V ) : B ⊂ V and V open}

(iii) for any open set V ⊂ X, µ(V ) = sup{µ(K) : K ⊂ V and K compact}.

We are now finally ready to introduce the most important and extensively used measure on
the unitary group, namely, the Haar measure. This will be our main reference when discussing
probability distributions induced by stochastic processes over U.

Definition 3.6 (Haar measure, see ref. [50]). The Haar measure is the unique (up to a strictly
positive scalar factor) Radon measure which is non-zero on non-empty open sets and is left- and
right-invariant, i.e.,

µHaar(U) > 0 for any non-empty open set U ⊂ U (3.1)
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and
µHaar(B) = µHaar(uB) = µHaar(Bu), (3.2)

for any u ∈ U and Borel set B of U, where the left- and right-translate of B with respect to u is
given by

uB = {u b : b ∈ B } and Bu = { b u : b ∈ B } . (3.3)

In simpler words, this means that the measure is unaffected under translations of a given Borel set
and for this reason it is also called uniform measure. Proofs involving existence and uniqueness
can be found in ref. [51].
The Haar measure is widely used in quantum information, from decoupling theorems [52, 53]
to the study of quantum channels [54]. One of the fundamental properties of this particular
measure is characterized as the Schur-Weyl duality [55, 56] that we are going to mention after
introducing moment operators with respect to probability measures.

Definition 3.7 (k-th moment operator). The k-th moment operator Mk
µ on L(H⊗k) with respect

to a distribution µ on U(N) is given by

X 7→Mk
µ (X) := Eµ

[
U⊗kX (U †)⊗k

]
. (3.4)

The Schur-Weyl duality says that Mk
Haar is an orthogonal projection – with 〈A,B〉 := Tr[A∗B]

as inner product – onto the span of operators representing a permutation of the k tensor copies
of H (see ref. [56, Proposition 2.2] for a complete description). This means that all elements
of this space are eigenvectors with unit eigenvalue, while the complement space belongs to the
kernel. In the first two cases, for instance, we have

M1
Haar(X) =

1

N
Tr[X ] (3.5)

and
M2

Haar(X) = α1+ βF, (3.6)

where N denotes the dimension of H, F is the flip operator permuting the two copies of the
Hilbert space, i.e., F(|a〉 〈b| ⊗ |c〉 〈d|) = |c〉 〈b| ⊗ |a〉 〈d|, and α and β satisfy Tr[X ] = αN2 + βN
and Tr[FX ] = αN + βN2 (see ref. [52]).
In the particular case of U(4), i.e., the two-qubit case, when applied on the tensor product of
two Pauli matrices σα ⊗ σβ with α,β ∈ { 0, 1, 2, 3 }2, the second moment operator of the Haar
measure gives [24, 28]

M2
Haar(σα ⊗ σβ) =


1⊗ 1 if α = β = {0, 0}
1
15
∑
α 6={0,0} σα ⊗ σα if α = β 6= {0, 0}

0 if α 6= β

(3.7)

We are now ready to introduce one of the core concepts of this work: exact and approximate
unitary designs in terms of Mk

µ . Unitary designs have a wide range of applications in quantum
algorithm design [57–59], in quantum state and process tomography [60, 61], and in notions of
benchmarking [62, 63] – basically as a powerful tool for partial de-randomisation. Conceptually,
they feature strongly in descriptions of equilibration, thermalisation and scrambling [37, 64, 65].

Definition 3.8 (exact and approximate unitary designs). Let µ be a distribution over the unitary
group U(N). Then µ is an ε-approximate unitary k-design if∥∥∥Mk

µ −Mk
Haar

∥∥∥
�
≤ ε. (3.8)

For ε = 0, the distribution µ is also called an exact unitary k-design.
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Physically implementing an exact unitary design is in general neither an obvious nor an efficient
task. Fortunately, for a plethora of applications, exactness of a design is not required. Instead,
we are usually interested in obtaining approximate unitary designs, i.e., (discrete) distributions
which behave similarly to the Haar measure and which can be implemented efficiently. Also, we
would like to note that there are different formal definitions of unitary designs, each of which
being equipped with a different interpretation and being relevant in a number of context. For
instance, in the literature regarding randomized benchmarking, an exact unitary 2-design (which
is the most relevant design for protocols and applications in this domain) is said to satisfy the
following condition.

Condition 3.9 (twirling). Any exact unitary 2-design µ satisfies the so-called twirling condition,

Eµ[U Λ(U †X U )U †] = EHaar[U Λ(U †X U )U †], (3.9)

for all quantum channels Λ and operators X.

Further properties of twirled channels, such as depolarization of a quantum state, will be dis-
cussed later on in Section 6.1 where they will be directly employed in the task of characterizing
experimental implementations of unitary gates.

Observation 3.10. Being a unitary k-design implies being a unitary (k− 1)-design, since as
definition it stands that

Eµ

[
U⊗kX U⊗k

]
= EHaar

[
U⊗kX U⊗k

]
(3.10)

for all operators X ∈ L(H⊗k). We can choose X = Y ⊗ 1 with Y being an arbitrary operator in
L(H⊗k−1). Then follows

Eµ

[
U⊗k−1 Y U⊗k−1

]
= EHaar

[
U⊗k−1 Y U⊗k−1

]
, (3.11)

i.e., µ is unitary (k− 1)-design.

An effective way to obtain a bound on ε in eq.(3.8) is to analyze the gap of the moment
operator Mk

µ , leading to the following definition.

Definition 3.11 (tensor product expanders). A distribution µ on the unitary group U(N) is a
quantum (λ, k)-tensor product expander if∥∥∥Mk

µ −Mk
Haar

∥∥∥
∞
≤ λ. (3.12)

The following lemma links this definition to the one of designs.

Lemma 3.12 (criterion for being an approximate unitary design, cfr. [66, Lemma 2.2.14]). Let
µ be a distribution on U(N). If µ is a quantum (λ, k)-tensor product expander, then µ is also
an ε-approximate k-design with ε = Nkλ.

An important connection between eigenvalues and eigenspaces can be made for universal distri-
butions as we will see in Lemma 3.14 below. In order to amplify closeness of a distribution µ on
U(N) to the Haar measure, one can convolute it ` times with itself and obtain a new measure
µ?` on U(N). Importantly, it holds that

Mk
µ?` = (Mk

µ )
` . (3.13)

If the support of µ?` becomes dense in U(N) for large ` we call µ universal. More precisely, a
universal distribution can be defined as follows.
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Definition 3.13 (universal distribution). Let µ be a distribution on U(N). Then µ is said to
be universal if for all V ∈ U(N) and any δ > 0 there exists a positive integer ` such that

µ?` (Bδ(V )) > 0, (3.14)

where Bδ(V ) is the neighbourhood of V with radius δ > 0.

Here, the canonical way to capture the radius is in terms of the geodesic distance on U(N). It
should be clear, however, that any other equivalent metric gives rise to the same definition of
universality. This definition can be seen as a generalization of a universal gate set: if µ is the
uniform distribution over finitely many unitaries then this set of unitaries is universal if and only
if µ is universal.

Before concluding this part of the section with a small discussion about universality of discrete
sets, we mention an important result regarding the convergence of all moment operators for any
universal distribution to the ones of the Haar measure.

Lemma 3.14 (Lemma 3.7 in ref. [28]). Let µ be a distribution on U(N). Then all eigenvectors
of Mk

Haar with unit eigenvalue are eigenvectors of Mk
µ with unit eigenvalue. Additionally, if µ is

universal then µ is k-copy gapped for any positive integer k. This means that∥∥∥Mk
µ −Mk

Haar

∥∥∥
∞
< 1. (3.15)

As a consequence, Mk
µ?`

converges to Mk
Haar for `→∞. For many practical applications, however,

a bound on the convergence rate is needed. One of the central results of this work is to extend
such a bound from quantum circuits [27] to locally generated Brownian motion on U(N). As we
will discuss at the beginning of Chapter 7, Brownian motion over the unitary group induces a
probability distribution on U at any time T ; precise details will be given later on.

We now focus on a particular set that is extremely useful in quantum information in order to
approximate any unitary within any arbitrary accuracy ε.

3.2 Universality of Hadamard, CNOT and T-gate

A powerful result which allows implementation of arbitrary gates, up to arbitrary approximations,
is the universality of the following gate set, {H,T,CNOT }, represented by

1√
2

(
1 1
1 −1

)
,
(

1 0
0 eiπ/4

)
,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (3.16)

This particular set is hence of great interest in the quantum computing domain and used in
many quantum circuit settings [67].

We will present the argument in ref. [22], but we will illustrate only the fact that the Hadamard
gate and T-gate can be combined to approximate any single-qubit unitary operation to arbitrary
precision and invite the interested reader to refer to the book of Nielsen and Chuang for the
rest of the proof to extend universality on U(2n) for an arbitrary number n of qubits with the
addition of the CNOT gate.
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By construction, the T-gate is – up to a negligible global phase – a rotation around the ẑ-axis of
the Bloch sphere by an angle π/4,

T = e iπ/8Rz(π/4) ≡ e iπ/8 exp{−iπ/8 Z}. (3.17)

Analogously, the composition HTH is a rotation around the x̂-axis of the Bloch sphere by π/4
radiants. Up to a global phase, the multiplication of the two rotations gives

exp{−iπ/8 Z} exp{−iπ/8 X} = cos2 π

81− i sin π8

[
cos π8 (X + Z) + sin π8Y

]
. (3.18)

This corresponds to a rotation by an angle θ = 2 arccos
(
cos2 π

8
)
along a unit vector n̂ collinear

to ~n = (cos π8 , sin π
8 , cos π8 ); we denote it by Rn̂(θ). The crucial point is that θ can be shown to

be an irrational multiple of 2π. Now, by defining an angle θk = kθ mod 2π ∈ [0, 2π) and an
accuracy δ, we show that a repetition of its rotations fills the interval [0, 2π) with points such
that none of them is distant by more than δ from its nearest neighbor. Let us take N > 2π/δ,
then by pigeonhole argument there exist two rotations θk and θj with j, k ∈ { 1, 2, . . . ,N } such
that θk − θj = θ(k−j) ≤ 2π/n < δ, and, since θ is an irrational multiple of 2π, θk − θj 6= 0. Hence,
rotations θ`(k−j), ` = 1, 2, . . . fill up the interval [0, 2π] with points that are no more than δ far
apart.
Hence, let us fix δ = ε/3, then for any α there exists L such that

max
ψ
‖(Rn̂(α)−RLn̂ (θ)) |ψ〉‖ <

ε

3. (3.19)

Furthermore, one can show that conjugation by Hadamard gate can translate the rotational
axis on the Bloch sphere from n̂ to m̂ collinear to ~m = (cos π8 ,− sin π

8 , cos π8 ), for any angle α.
Formally,

HRn̂(α)H = Rm̂(α). (3.20)

By the same argument as above, we have

max
ψ
‖(Rm̂(α)−RLm̂(θ)) |ψ〉‖ <

ε

3. (3.21)

Now, making use of [22, Theorem 4.1], follows that any single qubit unitary U can be written as

U = eiαRn̂(β)Rm̂(γ)Rn̂(ω). (3.22)

Using the fact that errors add at most linearly, we conclude

max
ψ
‖(U −RL1

n̂ (θ)HRL2
n̂ (θ)HRL3

n̂ (θ)) |ψ〉‖ < ε (3.23)

for some integers L1,L2,L3. Hence, any single qubit gate U can be approximated, up to a
negligible phase factor, by combinations of Hadamard and T-gates.

In ref. [22, Section 4.5.2] it is proven that a combination of single qubit gates together with the
CNOT gate can implement arbitrary two-qubit unitary operations, while in Section 4.5.1 it is
pointed out that arbitrary local two-qubit gates can be composed to obtain any unitary n-qubit
gate. Hence, the set {H,T,CNOT } is universal in the sense of Definition 3.13.

While this is a very powerful result explaining the success of local quantum circuits, it is
unfortunately not efficient: there exist unitary transformations requiring O(n24n logc(n24n/ε))
gates from this specific universal set to be approximate within a precision ε.
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3.3 The Clifford group as a unitary 3-design
The Clifford group is one of the most relevant groups involved in this work and many others in
quantum information theory. It is defined as the normalizer subgroup in U(2n) of the Pauli
group P?n on n qubits generated by the set of Pauli matrices, i.e.,

Cn := {C ∈ U(n) : C†PC ∈ P?n ∀P ∈ P?n } . (3.24)

The dimension of this group is [68, Corollary 5.6]

|Cn| = 8
n∏
j=1

2(4j − 1)4j = 2n2+2n+3
n∏
j=1

(4j − 1) (3.25)

or, when neglecting global phase factors which are irrelevant when acting over conjugation, it is
reduced to [69]

|Cn| =
n∏
j=1

2(4j − 1)4j = 2n2+2n
n∏
j=1

(4j − 1). (3.26)

It has been proven – by induction – that the whole group is generated by the set {H,P,CNOT }
[70, 71], where

P = T2 =

(
1 0
0 i

)
. (3.27)

It is very interesting to remark that substituting the P-gate with the T-gate we achieve a universal
gate set, as mentioned in the previous subsection 3.2, and this is one of the main reasons why
the T-gate is of great interest for fundamental aspects of quantum information and applications
thereof.

In a recent result it has been proven – in two different approaches – that the Clifford group
is an exact unitary 3-design and that this is the highest level that this set can reach, i.e., it
is not a unitary 4-design [72, 73]. While this result is certainly important from a theoretical
perspective, unitary 3-designs do not play a particularly relevant role in applications, although
used to show that quantum speed-ups occur for most unitary operators [57]. Arguably, the real
breakthrough has been the result of Dankert et al. [74, Theorem 1], stating that the Clifford
group constitutes an exact unitary 2-design on arbitrarily large n-qubit systems. To this end,
one considers quantum channels of the form Λ(X) = AXB for A,B ∈ End(C2n) and show to
satisfy the twirl condition

ECn

[
U †AUXU †BU

]
= EHaar

[
U †AUXU †BU

]
, (3.28)

where in ref. [75] the RHS has been reformulated as

ECn

[
U †AUXU †BU

]
=

Tr[AB]Tr[X ]

4n 1+
2n Tr[A]Tr[B]−Tr[AB]

2n(4n − 1)

(
X − Tr[X ]

2n 1

)
. (3.29)

To evalute the LHS, one executes two twirls, the first one on the set of n-qubit Pauli matrices
and subsequently another one on representative elements of the quotient group Cn/Pn. The first
twirl gives (we label elements of the n-qubit Pauli set with an index j such that σ1 = 1n and use
Pauli-Liouville representation for A and B)

1
|Pn|

∑
σ∈Pn

σAσXσBσ =
1
4n

4n∑
j=1

rj σjXσj (3.30)
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for a certain set of constants { rj }j fulfilling the conditions r1 = Tr[A]Tr[B]/4n and
∑4n
j=1 rj =

Tr[AB]/2n. Now, let us pick representative elements {Q1, . . . ,Q|Cn/Pn| } of the quotient group
Cn/Pn so that, independently of the choice made, from the defining property of the Clifford
group as the normalizer of the Pauli group mapping uniformly on elements of the group (except
the identity) one has

ECn

[
U †AUXU †BU

]
=
|Pn|
|Cn|

|Cn/Pn|∑
k=1

4n∑
j=1

rj Q
†
kσjQkXQ

†
kσjQk (3.31)

= r1X +
1

4n − 1

4n∑
j=2

rj

|Cn/Pn|∑
`=2

σ`Xσ`. (3.32)

Using the 1-design identity 1
4n
∑4n
`=1 σ`Xσ` =

1
2n Tr[X ]1 we finally obtain the equivalence in

eq. (3.28).

3.4 Encryption from an imperfect source of randomness

In this section we are going to discuss an example on how the quantum realm can offer more
than the classical case.
In classical encryption, two parties A and B are communicating over an insecure channel, which
a listener L has access over, with the goal of transmitting a secret message M (usually composed
by a string of bits 0 and 1) from A to B. To do so, they share a private key K unknown to L, to
encrypt into a ciphertext C the message to be transmitted. The listener is passive, cannot inject
anything in the channel or manipulate the encrypted message, but can read it and also knows
the function used by A for encryption as well as the decryption function used by B. He also
knows the probability distribution of the random source the other two parties have access to. If
A and B share a perfect source of unbiased independent random bits, they can use it to generate
the private key K. If this secret key is indeed perfectly random, and additionally is at least as
long as the plaintext message M to be encrypted and has never been used before in whole or in
part, then codifying the message into a ciphertext C through modular addition of each digit of
the message with a digit of the key, i.e., using a so-called one-time pad protocol, ensures perfect
security: the transmitted message cannot be decrypted as proven by Shannon in ref. [76]. One of
the main issues is that a perfectly random source is very difficult to access, since most pyhsical
and computational sources are imperfect and do not output an unbiased distribution. Hence it is
relevant to investigate protocols based on these quasi-random sources and quantify how secure
they can be. In the work of McInnes and Pinkas [77], two possible weakly random sources are
considered. The first one, illustrated by Santha and Varizani [78], is a (SV) source outputting 0
with probability at least 0 ≤ δ < 1/2 and not more than 1− δ, and outputs otherwise 1. This
imperfect source is in a number of situation indistinguishable from the perfectly random one, and
thus the former can be used in place of the latter in different tasks such as pseudo-random number
generators, randomizing algorithms and stochastic simulation experiments, although as we shall
see in the following it does not guarantee a secure communication. The same can be said about
another quasi-random source investigated in ref. [79], called Probability Bounded source or simply
PRB source, which is defined with respect to two parameters, ` and b. A (`, b)-source, given an
arbitrary prefix α of the output sequence and any `-bit string β, the conditional probability that
the next ` bits emitted by the source is equal to β is at most 2−b, that is, P(β|α) ≤ 2−b.
Now, if A and B have both access to a SV source, it can be proven that any correct cryptosystem,
that is, a system where the probability that B decrypts the original message is close to 1 and
independent to the key and message length, is not secure; more precisely for any encryption of
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Figure 3.1

a single bit message and decryption functions there exist a SV source with parameter δ and a
strategy for the listener such that the probability that he recovers the same decrypted message
from C as B is greater or equal to 1/2 + p(δ), for some positive value p depending on δ but not
on the length of the key or the one of the ciphertext. For a parameter δ ≥ 0.45, [77, Theorem
3] tells us a specific value for the upper bound, that is,

P (L outputs the same as B) ≥ 1/2 + 1/2− 3/2δ + δ2

2.76 . (3.33)

For a PRB source, this bound gets even more pronounced with a constant advantage for (`, `− 1)-
sources and complete breaking for (`, `− 2)-sources. Let us assume that A encrypts a single
bit message to B using a n bit private key obtained by a shared PRB source. Then, for every
0 ≤ c ≤ n there exist an (n,n− c)-source and a strategy for the listener such that (cfr. [77,
Theorem 1])

P (L outputs the same as B) ≥


1 for 2 ≤ c ≤ n
1
2 +

2c
8 for 2− log2 3 ≤ c ≤ 2

2c−1 for 0 ≤ c ≤ 2− log2 3.
(3.34)

While secure communication based on a shared quasi-random source is hence not possible, in the
same work McInnes and Pinkas show that by providing the parties with an additional public
and perfectly random source it is possible to obtain a secure one-time pad.

In quantum mechanics, both plaintext and ciphertext are quantum objects, while the key is still
classical. The standard restriction imposed is that the dimensions of plaintext and ciphertext
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have to be the same, implying that the encryption operation is a unitary transformation. Taking
the formalism of Private Quantum Channel (PQC in short) introduced in ref. [80], we assume to
have N possible keys { kj }Nj=1, where each kj is distributed according to a probability pj , with∑
j pj = 1 and is linked to a unitary operator Uj . Suppose that A wants to send a pure state ψ to

B; first of all, A couples his system with a reference system R in a state ρR and then applies the
unitary transformation Uj according to the private key kj and finally sends the resulting state to
B. This second party knows the private key and so can apply the inverse transformation U †j and
trace out the reference system, recovering ψ. The listener L knows the strategy, the probability
distribution of the keys and also the correspondence between keys and unitary encryptions, but
does not know the private key, so from his point of view the state is given by the operation
considering all possibilities weighted according to the probability distribution of the keys, i.e.,

ρL =
∑
j

pjUj(|ψ〉 〈ψ| ⊗ ρR)U †j . (3.35)

The condition for a PQC is that ρL is the same for all possible quantum pure states representing
the set of plaintexts that Alice can encrypt (by linearity this is then true for all mixed states
over this set), hence it provides no information to L. Note that, for encryption without ancilla,
ρL = 1

2n whenever 1
2n is in the span of the input set [80, Theorem 4.3].

To reconnect this argument with the present work, we remark that by using an exact unitary
1-design, from Schur-Weyl duality it follows that any state will be encrypted into the fully
mixed state and so provides secure transmission for a PQC. Again, we ask whether secure
communication can be achieved with an imperfect random source in the quantum case. In our
work Quantum encryption with weakly random sources, we show that there always exists an
approximate unitary k-design supplied by a weakly random source outputting a random variable
X, namely,

Theorem 3.15. For arbitrary c ∈N0 (min-entropy loss parameter), arbitrary k, an arbitrarily
small ε > 0 and an arbitrary random variable X = {x1, . . . ,xN } with (sufficiently large)
n = logN and Hmin(X) ≥ n− c, there exists a set of unitaries {Uj}Nj=1 such that the distribution
{xj ,Uj }j is an ε-approximate unitary k-design.

This theorem shows that, in a sharp contrast to the classical world, in the quantum world we
can tolerate an arbitrary min-entropy loss, with an arbitrary precision.
On the other hand, it does not imply that we can implement practical encryption with weak
random source. The price we pay for small ε in Theorem 3.15 is enlarging the number of unitaries
we use while keeping the min-entropy loss fixed.
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Decoupling

The concept of decoupling is related to the one of correlation. The latter has been studied and
researched in both theoretical and experimental fields. This has led us to a relatively good
understanding of the topic and to methods to create correlated states. Decoupling is the opposite
task: we will analyze conditions under which an initial (correlated) state describing the joint
system between two subsytems, A and E, after a physical evolution, is decoupled, meaning that
after the process the two subsystems are uncorrelated.

As definition, we say that a subsystem A is decoupled from another subsystem E (in most of the
cases, we identify the latter as the environment), if the state ρAE of the joint system has the
form ρAE = ρA ⊗ ρE . In terms of quantum information, such a state implies that system A does
not contain any information about the other system E, and vice versa.

Specifically, a decoupling theorem considers an initial state ρAE of a system A that may be
correlated to the system E. Then, the system A undergoes an evolution under a random unitary
UA followed by a CPM TA→B without any interaction with E, such that from the input system
A we obtain an output system B (see Fig 4.1). The decoupling theorem then quantifies – in
terms of entropic quantities – how uncorrelated the output system B is from the environment
E (on the average over the choices of the unitary) and consequently gives us conditions under
which a final decoupled state is obtained.

Decoupling is employed for numerous applications; many of them have in common that decoupling
of a system B from a system E is used to show that B is then maximally entangled with a
complementary system R. In fact, under the assumpion that R is chosen such that the joint
state ρBER is pure, if ρBE = ρB ⊗ ρE then there exists a subsystem R′ of R such that ρBR′ is
pure. Additionally, if ρB is fully mixed, then ρBR′ is maximally entangled.

In quantum information theory, this argument occurs in quantum state merging [81, 82]. As an
example, let us consider a two-player game: Alice and Bob share a quantum system described
by a density operator ρAB and each player controls a subsystem whose state corresponds to
the partial trace ρA and ρB respectively. Alice then communicates to Bob partial quantum
information such that he obtains the full state ρAB : she effectively merges her state with the one
of Bob.
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Figure 4.1: In the decoupling theorem, an initial bipartite state ρAE is affected by a unitary
evolution UA chosen at according to a certain distribution µ. Then, subsystem A is mapped to
another subsystem B through a completely positive map TA→B. Finally, the distance between
the final state and the product state τB ⊗ ρE is characterized by entropy measures.

In quantum information, a state transmission is considered faithful if, although the state merging
protocol may depend on the density operator of the source, it succeeds with high probability
for any pure state that has been sent. As stated in ref. [82], an equivalent (and elegant) way to
interpret this criterion for our two-player game is to imagine that ρAB is part of a pure state
|ψABR〉, where we consider also an additional reference system R. Alice’s goal is to transfer her
state ρA to Bob, but we also demand that, after the protocol, the total state still has high fidelity
with |ψABR〉 (meaning that they are nearly identical).
Now, the essential element of the state merging is that ρR must be unchanged, and Alice must
decouple her state from R: this is a scenario where we can apply a decoupling theorem.
There are also other protocols where decoupling theorems can be brought into play, for instance
erasure processes and other fields where randomness is involved [83] as well as for channel
capacities [84].

Applications for decoupling theorems can also be found in physics. In thermodynamics, evolution
of a system towards thermal equilibrium can be understood as a decoupling process from the
observer; in ref. [85], considerations on thermalisation are based on quantum entanglement and
interacting quantum systems.
In ref. [86] one studies processes to prepare states from density operators which are initially in
an arbitrary state: decoupling theorem are then used to identify pure subsystems which can be
then manipulated.
In viewpoint of Landauer’s principle, correlation and decoupling are related to the amount of
work needed to perform irreversible operations (like the erasure of information): the more we
know about the system, the less it costs to erase it [87].
Furthermore, in Section 7.3 we will discuss how scrambling conditions for black holes dynamics
can be formulated via a decoupling theorem.

4.1 Decoupling theorem and quantum entropy measures

Now formally, we provide a bound on decoupling in terms of quantum collision entropy measures,
defined in eq. (2.46). This is given as
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Theorem 4.1 (non-smooth Decoupling Theorem in ref. [52]). Let ρAE ∈ S≤(HAE) and TA→B
a CPM with Choi-Jamiolkowski representation τA′B = J (TA→B). Then

EHaar
∥∥∥T (UAρAEU †A)− τB ⊗ ρE∥∥∥1

≤ 2−
1
2H2(A|E)ρ− 1

2H2(A′|B)τ . (4.1)

Proof of Theorem 4.1. To prove this bound, one first applies the inequality

‖M‖1 ≤
√

Tr [σ]Tr [σ−1/2Mσ−1/2M †] (4.2)

for any M ∈ End(HA) and σ ≥ 0 ∈ HA, which in the particular case where M is Hermitian
becomes

‖M‖1 ≤
√

Tr [σ]Tr [
{
σ−1/4Mσ−1/4}2

]. (4.3)
Hence, for σB ∈ S(HB) and ωE ∈ S(HE), one can write∥∥∥T (UAρAEU †A)− τB ⊗ ρE∥∥∥1

≤ (4.4)√
Tr [

{
(σB ⊗ ωE)−1/4(T (UAρAEU †A)− τB ⊗ ρE)(σB ⊗ ωE)−1/4

}2
]. (4.5)

Now let us define the CPM T̃A→B( · ) = σ−1/4
B TA→Bσ−1/4

B and the states τ̃A′B = J (T̃ ) and
ρ̃AE = ω−1/4

E ρAEω
−1/4
E . One then rewrites the above as

∥∥∥T (UAρAEU †A)− τB ⊗ ρE∥∥∥1
≤
√

Tr
[{
T̃ (UAρ̃AEU †A)− τ̃B ⊗ ρ̃E

}2
]
. (4.6)

Using Jensen’s inequality, one can put the expected value under the square root:

EHaar
∥∥∥T (UAρAEU †A)− τB ⊗ ρE∥∥∥1

≤
√
EHaar Tr

[{
T̃ (UAρ̃AEU †A)− τ̃B ⊗ ρ̃E

}2
]

(4.7)

and then using EHaar
[
UAρ̃AEU

†
A

]
= 1
|A|1A ⊗ ρ̃E we simplify the expression as

EHaar Tr
[{
T̃ (UAρ̃AEU †A)− τ̃B ⊗ ρ̃E

}2
]
= (4.8)

EHaar Tr
[{
T̃ (UAρ̃AEU †A)

}2
]
−Tr

[
(τ̃B ⊗ ρ̃E)2

]
. (4.9)

Using what is sometimes informally called the swap trick, namely,

Tr [(M ⊗N)F] = Tr [MN ] (4.10)

for arbitrary M ,N ∈ End(HA) and F being the flip operator interchanging the two copies of
the subsystem A, one rewrites the first term to bring it into a precise form such that one can
subsequently apply the Schur-Weyl duality discussed in Section 3.1,

EHaar Tr
[{
T̃ (UAρ̃AEU †A)

}2
]
= EHaar Tr

[{
T̃ ⊗2(U⊗2

A ρ̃⊗2
AE(U

†
A)
⊗2)

}
FBE

]
(4.11)

= Tr
[
ρ̃⊗2
AE

(
EHaar

{
(U †A)

⊗2(T̃ †)⊗2(FB)U
⊗2
A

}
⊗FE

)]
, (4.12)

where one applies the definition of the adjoint of a superoperator in the second equality. The
coefficients satisfy

α|A|2 + β|A| = Tr [(T̃ †)⊗2(FB)]

= Tr [FBT̃ ⊗2(1AĀ)] = |A|2 Tr [FB τ̃⊗2
B ]

= |A|2 Tr [τ̃2
B ]

(4.13)
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and

α|A|+ β|A|2 = Tr [(T̃ †)⊗2(FB)FA] = Tr [FBT̃ ⊗2(FA)]

= |A|2 Tr [FB TrA′Ā′ [τ̃⊗2
A′B(FA′ ⊗ 1BB̄)]]

= |A|2 Tr [(1A′Ā′ ⊗ FB)τ̃⊗2
A′B(FA′ ⊗ 1BB̄)]

= |A|2 Tr [FA′B τ̃⊗2
A′B ]

= |A|2 Tr [τ̃2
A′B ].

(4.14)

The solution of this system of equations is

α = Tr [τ̃2
B ]

 |A|2 −
|A|Tr [τ̃2

A′B ]

Tr [τ̃2
B ]

|A|2 − 1

 and β = Tr [τ̃2
AB ]

 |A|2 −
|A|Tr [τ̃2

B ]

Tr [τ̃2
A′B ]

|A|2 − 1

 . (4.15)

Applying the inequality
1
|A|
≤ Tr [ξ2

AB ]

Tr [ξ2
B ]
≤ |A| (4.16)

for any ξAB ≥ 0, we can bound them with simpler expressions as α ≤ Tr [τ̃2
B ] and β ≤ Tr [τ̃2

A′B ].

The bound in equation (4.7) can be then expressed as

EHaar
∥∥∥T (UAρAEU †A)− τB ⊗ ρE∥∥∥1

≤
√

Tr [τ̃2
A′B ]Tr [ρ̃2

AE ] (4.17)

and the final expression of the theorem is finally obtained by using the definitions of τ̃A′B and
ρ̃AE together with the definition of the collision entropy H2.

Depending on the situation, one is generally more interested in a characterization of the bound
by more meaningful operational quantities such as the min- and max-entropy. In particular,
the following theorem makes use of smooth versions of these entropy measures, defined by the
density operator lying in a neighborhood of the “target” quantum state ρ and maximizing (or
minimizing) the entropy value. An extensive discussion regarding this topic is outside the scope
of this work, please refer to ref. [88] for further reading.
Knowing that the collision entropy is always greater or equal to the min-entropy, one can
substitute the former with the latter in Theorem 4.1 and then consider the smooth versions.
Hence, for any ε > 0, we have [52, Theorem 3.1]

EHaar
∥∥∥T (UAρAEU †A)− τB ⊗ ρE∥∥∥1

≤ 12ε+ 2−
1
2H

ε
min(A|E)ρ− 1

2H
ε
min(A

′|B)τ . (4.18)

4.2 Decoupling linked to hypothesis-testing

Another version of the decoupling theorem can be given in terms of the hypothesis-testing entropy.
Albeit constituting previous work on the topic by this author [89], it is actually not involved in
the remaining part of the thesis and this section can thus be overlooked.

Let us first introduce the ε-relative entropy Dε
H(ρ||σ) of a density operator ρ ∈ S≤(H) relative

to σ ≥ 0, defined as

2−DεH(ρ||σ) :=
1
ε

inf {〈Q,σ〉 : 0 ≤ Q ≤ 1∩ 〈Q, ρ〉 ≥ ε} . (4.19)
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In words, this reflects the minimal probability – rescaled by ε – that a strategy Q to distinguish ρ
from σ produces a wrong guess on input σ (i.e., mistaking σ for ρ), while maintaining a minimum
success probability ε in correctly identifying ρ.
Note that, for ε = 1, Dε

H(ρ||σ) is equal to the Rényi entropy of order 0. Properties for Dε
H

include:

[1] Positivity: for any ρ,σ ∈ S(H)
Dε

H(ρ||σ) ≥ 0 (4.20)

with equality if ρ = σ.

[2] Data Processing Inequality (DPI): for any completely positive, trace non-increasing map E

Dε
H(ρ||σ) ≥ Dε

H(E(ρ)||E(σ)). (4.21)

[3] Asymptotic Equipartition Property (AEP): let D(ρ||σ) = Tr [ρ(log ρ− log σ)] be the
relative entropy between ρ,σ.
Then, for any 0 < ε ≤ 1

lim
n→∞

1
n
Dε

H(ρ
⊗n||σ⊗n) = D(ρ||σ). (4.22)

The definition of the conditional Hε
H-entropy of ρAB ∈ S≤(HAB) with respect to σB ∈ S(HB) is

deduced from the relative entropy by

Hε
H(A|B)ρ|σ := −Dε

H(ρAB||1A ⊗ σB). (4.23)

We can take the supremum over all σB ∈ S(HB) and write

Hε
H(A|B)ρ := sup

σB∈S(HB)
Hε

H(A|B)ρ|σ. (4.24)

Hε
H is computable in terms of a semi-definite program, with primal and dual formulation

PRIMAL

minimize 1
ε Tr [QAB (1A ⊗ σB)]

subject to QAB ≤ 1AB
Tr [QABρAB ] ≥ ε
QAB ≥ 0

DUAL

maximize µ− 1
ε Tr [XAB ]

subject to µρAB − 1A ⊗ σB ≤ XAB

XAB ≥ 0

The complementary slackness conditions linking primal and dual optimal solutions {QAB} and
{µ,XAB} are

(µρAB − 1A ⊗ σB)QAB = XABQAB (4.25)
Tr [QABρAB ] = ε (4.26)

XABQAB = XAB. (4.27)

From eq. (4.25) we can then deduce that [QAB,XAB ] = 0 such that we can also infer [µρAB −
1A ⊗ σB,QAB ] = 0. Furthermore, one can see that the positive part of µρAB − 1A ⊗ σB is in
the eigenspace of QAB with eigenvalue 1.

The bound on decoupling depending on this entropy quantity is given as follows.
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Theorem 4.2 (Decoupling Theorem in ref. [89]). Let ε > 0, ρAE ∈ S≤(HAE), TA→B a CPM
with Choi-Jamiolkowski representation τA′B = J (T ). Let θE ∈ S(HE) be the optimal marginal
state such that Hε

H(A|E)ρ = Hε
H(A|E)ρ|θ. Then

EHaar
∥∥∥T (UAρAEU †A)− τB ⊗ ρE∥∥∥1

≤
√
ε 2−

1
2Hmin(A|E)ρ|θ− 1

2Hmin(A′|B)τ

+ 2−
1
2H

ε
H(A|E)ρ− 1

2Hmin(A′|B)τ .
(4.28)

For small value ε, the tightness of the bound is determined by two entropic values alone: the
sought Hε

H(A|E)ρ and Hmin(A′|B)τ . The first tells us that the harder is to correctly distinguish
the input state 1A ⊗ θE from ρAE , the tighter is the bound on decoupling. The second entropy
quantifies how well the CPM TA→B, identified by the Choi-Jamiolkowski isomorphism τA′B,
conserves correlation. Note that the influences of ρAE and of TA→B on the bound are independent
with respect to each other: there is no better suited mapping for some types of states than for
others, and vice versa. In particular, for the case where the CPM TA→B is chosen as a partial
trace erasing some qubits in subsystem A, we have

Hmin(A
′|B)τ = m− 2m′, (4.29)

where m is the initial number of qubits in A and m′ the number of remaining qubits in subsystem
B. This means that the higher is the number of erased qubits for a given system A, the tighter is
the bound. Moreover, according to the theorem, (for ε small enough such that the second term
of the bound is dominant), if the exponent

Hε
H(A|E)ρ +Hmin(A

′|B)τ (4.30)

is sufficiently larger than 0, then decoupling is achieved.

The proof of this decoupling theorem takes again as starting point the non-smooth version 4.1
and heavily relies on the next lemma.

Lemma 4.3. Let ε > 0 and ρAE ∈ S≤(HAE). Let θE ∈ S(HE) be the optimal marginal state
such that Hε

H(A|E)ρ = Hε
H(A|E)ρ|θ. Then

2−H2(A|E)ρ ≤ ε 2−Hmin(A|E)ρ|θ + 2−Hε
H(A|E)ρ . (4.31)

In addition, when ε approaches 0, we have as a corollary

Corollary 4.4. Let ε→ 0 and ρAE ∈ S≤(HAE). Then

H2(A|E)ρ ≥ HH(A|E)ρ. (4.32)

Proof of Lemma 4.3. Let {µ,XAE} be the dual optimal solution for the SDP for Hε
H(A|E)ρ. We

start from the definition of 2−H2(A|E)ρ and try to gain in the formula the expression µρAE −
1A ⊗ θE . We know that this is related to the dual formulation of the SDP for Hε

H(A|E)ρ and
that it is also present in the slackness conditions.

2−H2(A|E)ρ = min
σE∈S(HE)

Tr [(1A ⊗ σE)−1/2ρAE(1A ⊗ σE)−1/2ρAE ] (4.33)

= min
σE∈S(HE)

1
µ

Tr [(1A ⊗ σE)−1/2µρAE(1A ⊗ σE)−1/2ρAE ] (4.34)

= min
σE∈S(HE)

1
µ

Tr [(1A ⊗ σE)−1/2(µρAE − 1A ⊗ θE + 1A ⊗ θE)(1A ⊗ σE)−1/2ρAE ].

(4.35)
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We have some freedom about the choice of σE . Any state of the set S(HE) will give an expression
equal or greater than eq. (4.35). We therefore decide to take the optimal marginal state θE and
get

2−H2(A|E)ρ ≤ 1
µ

Tr [(1A ⊗ θE)−1/2(µρAE − 1A ⊗ θE + 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ] (4.36)

=
1
µ

Tr [(1A ⊗ θE)−1/2(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ]+ (4.37)

+
1
µ

Tr [(1A ⊗ θE)−1/2(1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ] (4.38)

≤ 1
µ

Tr [(1A ⊗ θE)−1/2(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ] +
1
µ

(4.39)

≤ 1
µ

Tr [(1A ⊗ θE)−1/2(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ] + 2−Hε
H(A|E)ρ , (4.40)

where the last inequality is motivated by

2Hε
H(A|E)ρ = µ− 1

ε
Tr[XAE ] ≤ µ. (4.41)

We focus now on the first term in eq. (4.40). Let 0 ≤ PAE ≤ 1AE be the primal optimal solution
in the SDP for Hε

H(A|E)ρ and define PAE := 1AE −PAE . We can then apply these two operators
to the expression µρAE − 1A ⊗ θE and make use of the slackness conditions. We have

1
µ

Tr [(1A ⊗ θE)−1/2(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ] (4.42)

=
1
µ

Tr [(1A ⊗ θE)−1/2(PAE + PAE)(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ] (4.43)

=
1
µ

Tr [(1A ⊗ θE)−1/2PAE(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ]+ (4.44)

+
1
µ

Tr [(1A ⊗ θE)−1/2PAE(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ]. (4.45)

The complementary slackness conditions for primal and dual optimal solutions {PAE} and
{µ,XAE} are given by

PAE(µρAE − 1A ⊗ θE) = PAEXAE (4.46)
Tr [PAEρAE ] = ε (4.47)

PAEXAE = XAEPAE = XAE . (4.48)

This means that the positive part of µρAE − 1A⊗ θE is in the eigenspace of PAE with eigenvalue
1, and meanwhile that PAE annihilates the positive part of µρAE − 1A ⊗ θE , i.e.,

PAE(µρAE − 1A ⊗ θE) ≤ 0. (4.49)

From this follows that the first term in expression (4.40) can be bounded as
1
µ

Tr [(1A ⊗ θE)−1/2(µρAE − 1A ⊗ θE)(1A ⊗ θE)−1/2ρAE ] (4.50)

≤ 1
µ

Tr [(1A ⊗ θE)−1/2XAE(1A ⊗ θE)−1/2ρAE ] + 0 (4.51)

≤ 1
µ

2−Hmin(A|E)ρ|θ Tr [(1A ⊗ θE)−1/2XAE(1A ⊗ θE)−1/2(1A ⊗ θE)] (4.52)

≤ 1
µ

2−Hmin(A|E)ρ|θ Tr [XAE ] (4.53)

≤ ε 2−Hmin(A|E)ρ|θ , (4.54)
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where we have used that, by definition of the quantum min-entropy, it stands that

2−Hmin(A|E)ρ|θ 1A ⊗ θE ≥ ρAE (4.55)

while the last inequality follows from

0 ≤ 2Hε
H(A|E)ρ = µ− 1

ε
Tr [XAE ] (4.56)

and consequently
Tr [XAE ] ≤ µ ε. (4.57)

Substituting (4.54) into expression (4.40) we can finally conclude

2−H2(A|E)ρ ≤ ε 2−Hmin(A|E)ρ|θ + 2−Hε
H (A|E)ρ . (4.58)

As we have seen in eq. (4.12), the notions of second moment operator and unitary 2-design as
well as the Schur-Weyl duality come into play in the proof idea of Theorem 4.1, from which
the other ones are stemming. From a mathematical perspective, this is the reason why unitary
2-design are strictly involved in decoupling [53]. Hence, all distributions over the unitary group
which are exactly unitary 2-designs will lead to the same result.
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Random quantum circuits

Quantum circuits are a fundamental tool of quantum information for manipulation of quantum
states [22, 90–92]. These are sequences of gate operations, such as the already introduced
Hadamard, CNOT or other Clifford elements, applied to an initial density operator. Implemented
gates are often two-qubit, since they can produce operators on multiple qubits by concatenation,
but more generally, considering a n-qubit initial state, we say that a quantum gate is `-local if it
has support on ` different qubits. We refer as size of the circuit to the number of quantum gates
it contains. Two or more local gates with different support can be applied simultaneously in one
single step, and we call depth of a circuit the total number of those steps.

In this work, a precise class of random circuit is taken into account: 2-local random quantum
circuits (RQC). These are circuits where at each step two qubits are chosen uniformly at random
and a 2-qubit gate, drawn according to a certain unitary distribution, is applied. RQC are
a powerful setting displaying important properties, such as efficiently approximating unitary
designs of polynomial degree, being a fast decoupler in a number of steps scaling almost linearly
in system size, and again being used to characterize the accuracy of gate implementations with
randomized benchmarking protocols. In the next section we present a milestone towards these
achievements is represented by the work of Harrow and Low [28], where they proved that RQC
are approximate unitary 2-designs, making use of a Markov chain strategy already employed in
ref. [93].

U1
U2

U2

U3

U3

U4

Figure 5.1
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5.1 Approximate unitary 2-designs with random walk on Pauli
basis

We begin the section by directly stating the main result and then we will proceed with the proof
restricted to RQC drawing from the 2-qubit Haar measure, which will be structured around the
evolution of Pauli coefficients defined right after the theorem.

Theorem 5.1 (Theorem 2.10 in ref. [28]). Let µ be a 2-copy gapped distribution on U(4) and
circ(µ) be a the distribution on U(2n) induced by a random circuit on n qubits drawing gates
according to µ. Then there exists C(µ) depending only on µ such that for any ε > 0 circ(µ) is
an approximate 2-design after C(µ)(n(n+ log 1/ε)) steps.

To prove the theorem the authors have studied the convergence rate of the Pauli basis coefficients
towards the uniform distribution. Let us denote the Pauli basis coefficients after T steps of a
RQC applied on an initial state ρ as

QTcirc(µ)(α,β) :=
1
4n Tr

σα ⊗ σβ


T times︷ ︸︸ ︷
Mk=2

circ(µ) ◦ · · · ◦M
k=2
circ(µ)(ρ)


 (5.1)

=
1
4n Tr

[
σα ⊗ σβ

(
©TMk=2

circ(µ)(ρ)
)]

, (5.2)

where α and β are n-tuples labeling the n-qubit Pauli strings.
We can now define the following mixing criteria, strictly tied to the above result (cfr. [28, Section
6]).

Lemma 5.2 (Lemma 2.11 in ref. [28]). Let µ and circ(µ) be two distribution as in Theorem 5.1.
Let the initial state ρ be such that Q0

circ(µ)(α,α) ≥ 0 fol all α and
∑
αQ

0
circ(µ)(α,α) = 1. Then

there exists a constant C(µ) depending on µ such that for any ε > 0

[i] for any T ≥ C(µ)n log 1/ε (2-norm convergence criterion)

∑
α,β 6={0,0}

(
QTcirc(µ)(α,β)− δα,β

2n(2n + 1)

)2
≤ ε (5.3)

[ii] for any T ≥ C(µ)n(n+ log 1/ε) (1-norm convergence criterion)∑
α,β 6={0,0}

∣∣∣∣QTcirc(µ)(α,β)− δα,β
2n(2n + 1)

∣∣∣∣ ≤ ε (5.4)

and for the special case where µ is the Haar measure over U(4), the condition is satisfied
for T = O(n log n

ε ).

The last statement of this lemma is particularly interesting because it lifts the uncertainty about
the constant C(µ) and at the same time provides a very useful investigation of the Markov chain
induced by the random circuit steps. We will summarize in the following the tight analysis for
the uniform Haar measure over U(4). First of all, we prove the suppression of the cross-terms in
1-norm, namely,

Lemma 5.3 (Lemma 5.1 in ref. [28]). After T = O(n log n
ε ) steps of a random circuit equipped

with uniformly distributed 2-qubit unitary gates∑
α 6=β

∣∣∣QTcirc(Haar)(α,β)
∣∣∣ ≤ ε. (5.5)
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To show this, one considers the variable H giving the number of different qubits hit by the circuit.
Then the probability that this variable is less or equal some value h after T steps is given by

P(H ≤ h) ≤
(
n

h

)(
h(h− 1)
n(n− 1)

)T
≤
(
n

h

)
(h/n)T . (5.6)

Since the second moment operator with respect to the Haar measure cancels out any tensor
product of different single qubit Pauli matrices, i.e., Mk=2

Haar(σα1 ⊗ σα2) = 0 for α1 6= α2 (cfr.
eq. (3.7)), every 2n-qubit Pauli string σα ⊗ σβ with αj 6= βj is immediately suppressed if the
qubit j has been hit by the circuit. When h distinct qubits have been it, at most 16n−h different
strings survive. Since ρ is a physical state at any time step and therefore Tr ρ2 ≤ 1, it follows∑
α,β(Q

T
circ(Haar)(α,β))2 ≤ 1 and so, if the state has at most N many non zero coefficients,

∑
α,β

∣∣∣QTcirc(Haar)(α,β)
∣∣∣ ≤ 1√

N
N =

√
N . (5.7)

Hence it follows

∑
α 6=β

∣∣∣QTcirc(Haar)(α,β)
∣∣∣ ≤ n−1∑

h=1
P(H = h)16(n−h)/2

≤
n−1∑
h=1

P(H ≤ h)4(n−h)

≤
n−1∑
h=1

(
n

h

)(
h

n

)T
4(n−h)

=
n−1∑
h=1

(
n

h

)(
1− h

n

)T
4h h→ n− h

≤
n−1∑
h=1

(
n

h

)
exp{−hT/n}4h.

(5.8)

Choosing T = n log n
ε finally gives

∑
α 6=β

∣∣∣QTcirc(Haar)(α,β)
∣∣∣ = O(ε).

Now one has to investigate how Pauli coefficients QTcirc(Haar)(α,α) evolve under consecutive steps
of the random circuit. As we already mentioned, we will make use of a Markov chain analysis to
describe the random walk on Pauli matrices induced by the RQC.
Considering eq. (3.7), if we remove the identity state 1⊗ 1, it is then possible to reach any state
of the chain, meaning that it is an irreducible chain. Moreover, the chain contains self loops,
being hence aperiodic. From these two properties follows that the chain is also ergodic, thus
converging to a unique stationary distribution (cfr. paragraph on Markov chains in Sec. 2.2).
From Lemma 3.14, we know that this is the uniform stationary distribution of the Haar measure,
ω(x) = 1

4n−1 . Furthermore, the chain is symmetric, and so is reversible. All those properties are
needed to prove that the chain mixes within ε in O(n log n

ε ) steps.

Now, let us construct the zero chain, i.e., the projected Markov chain counting the weights – or,
in other words, the number of non-zero elements – of the Pauli strings induced by the previous
chain. This new chain obeys to the following transition matrix.

Lemma 5.4 (Lemma 5.2 in ref. [28]). The zero chain has transition matrix P on state space
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Ω = { 1, 2, . . . } given by

P (`, k) =


1− 2`(3n−2`−1)

5n(n−1) ∆t k = `
2`(`−1)
5n(n−1)∆t k = `− 1
6`(n−`)
5n(n−1)∆t k = `+ 1
0 otherwise

(5.9)

for 1 ≤ `, k ≤ n.

The proof of this lemma will be completely analogous to the one of the zero chain provided in
the main result section for the jumps in the continuous-time stochastic process, so we address
the interested reader to Lemma 7.23.

Since the number of possible Pauli strings with weight k is 3k(nk), it follows that the stationary
distribution of this chain is (cfr. [28, Lemma 5.3])

ω0(k) =
3k(nk)
4n − 1. (5.10)

This can also be proven by direct calculation.

Once again, we construct an additional chain, which we will call accelerated chain, i.e., the
zero chain conditioned on moving, and consider the previous process as steps of the accelerated
chain plus their respective waiting times, that we will prove to be bounded by O(n logn) for
ε = poly(n). This new chain has transition matrix (cfr. [28, Definition 5.7])

Paccel(`, k) =


0 k = `

`−1
3n−2`−1 k = `− 1
3(n−`)

3n−2`−1 k = `+ 1
0 otherwise.

(5.11)

Note that the waiting time at site k is stochastically dominated by a geometric distribution with
parameter 2k

5n , since

1− P (k, k) = 2k(3n− 2k− 1)
5n(n− 1) ≥ 2k

5n . (5.12)

We divide now the state space Ω in three parts Ω1, Ω2, Ω3, partially overlapping, each with an
entry space Ej ⊂ Ωj and an exit condition Tj linked to the entry space of the next region. We
consider the walk successful if, for each of these regions, it reaches the exit condition within
n logn steps.

Region 1: Ω1 = [1,nδ] for some 0 < δ < 1/2, where the entry condition is the whole space
Ω1 and the exit condition T1 is satisfied when the walk reaches nδ. In this phase
the bias of the walk is considerable: the probability of increasing the weight at each
step of the accelerated chain is very high within this region of Ω, namely, 1− n2δ−1.
Conditioning on this event, that we shall denote “Forward”, we can bound the waiting
time W1 for a walk starting everywhere in Ω1 and ending at nδ using [28, Lemma
A.7]. Formally, we can consider a number of steps of order higher than logn, and get

P

(
W1 >

15
2 δn logn | Forward

)
≤ 2n−δ. (5.13)
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Hence, the probability for the first phase of the walk to complete successfully is close
to 1, since

P (the walk in region 1 is successful) ≤ P

(
Forward ∩ W1 ≤

15
2 δn logn

)
≤ P (Forward) ·P

(
W1 ≤

15
2 δn logn | Forward

)
(5.14)

≤ (1− n2δ−1)(1− 2n−δ) (5.15)
≤ 1− n2δ−1 − 2n−δ. (5.16)

Region 2: Ω2 = [nδ/2, θn] for some constant 0 < θ < 3/4 with E2 = [nδ, θn] and T2 = θn. In
this region, the probability of moving forward is lower bounded by

f(k) =
3(n− k)

3n− 2k− 1 ≥
3(1− θ)
3− 2θ =: f . (5.17)

Let us define the constants µ = 2f − 1 and µ̃ = µ/γ for some γ > 2. Then, using the
Chernoff-Hoeffding bound given in Lemma 2.2, one can show that the walk after t
accelerated steps will have passed the site s = µ̃t. Let Xt be the position of the walk
at accelerated step t where X0 = nδ, so we have [28, Lemma A.10]

P (Xt ≤ θn) ≤ exp{−2/3 µ θn}. (5.18)

If we assume that the walk never goes back beyond nδ/2, i.e., never leaves Ω2 from
its lower boundary, we bound the probability that after t = θn/µ̃ accelerated steps
the waiting time W2 is “too large” by (cfr. [28, Lemma A.11])

P

(
W2 ≥

15n log θn
µ

)
≤
( 4
θn

) 3
2µ

+
2 exp

{
−µnδ

4

}
1− exp{−µ/2} . (5.19)

To bound the probability of the event that the walk moves back to weights lower
than nδ/2, one makes use of the Gambler’s ruin (see the Preliminaries Chapter,
Lemma 2.1) and gets

P
(
The walk moves back to nδ/2− 1

)
≤
(

p

1− p

)nδ/2
. (5.20)

Summarizing, the walk in region 2 is successful if, given that the walk never leaves
Ω2, the accelerated chain reaches θn within t = θn/µ̃ steps and the waiting time is
not longer than O(n logn), or more formally

P (the walk in region 2 is successfull) ≤

1−
( 4
θn

) 3
2µ
−

2 exp
{
−µnδ

4

}
1− exp{−µ/2} −

(
p

1− p

)nδ/2
.

(5.21)

Region 3: Ω3 = [θn/2,n] with E3 = [θn,n]. The exit condition is satisfied when the restricted
chain has reached its stationary distribution with probability 1− ε. As Harrow and
Low showed, this happens in O(n log n

ε ) steps.
The transition matrix on Ω3 is given by

P ′(`, k) =


0 if ` < θn/2 or k < θn/2
1− P (θn/2, θn/2 + 1) if ` = k = θn/2
P (`, k) otherwise.

(5.22)
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The stationary distribution of P ′ is then

ω′(k) =

{
ω0(k)/(1− η) θn/2 ≤ k ≤ n
0 otherwise,

(5.23)

where η =
∑θn/2−1
k=1 ω0(k), and satisfies

n∑
k=θn/2

P ′(`, k)ω′0(`) = ω′0(k). (5.24)

The convergence time of the chain can be retrieved with the following argument based
on log-Sobolev constants. We are not going to introduce this object in an extensive
manner, we simply write its mathematical definition. Given a transition matrix P and
its stationary distribution ω (cfr. [28, Definition 4.8], the corresponding log-Sobolev
constant is

ρ := min
g

∑
k= 6=`(g(`)− g(k))2P (`, k)ω(k)∑
` ω(`)g(`)

2 log g(`2∑
k
ω(k)g(k)2

, (5.25)

where the minimum runs over all functions g assigning to elements of Ω a value in R.
The mixing time of a finite, reversible and irreducible Markov chain is then given by
[94, Lemma 3.7]

τ (ε) = O

(1
ρ

log log 1
ω ∗

+
1
λ

log n
ε

)
, (5.26)

where ω∗ is the smallest value of the stationary distribution and λ the spectral gap.
Imagine Rj to be the chain that uniformly mixes the site j, which converges in one
step and whose log-Sobolev constant ρj is independent with respect to n. Let Q
be the chain that chooses randomly a site uniformly mixes it, i.e., Q is the product
constructed from the Rj chains. Due to the next lemma, we know then that the chain
Q has a gap 1/n and ρQ = ρj/n.
Lemma 5.5. [94, Lemma 3.2] Let Rj , j ∈ { 1, 2, . . . ,n } be Markov chains with gaps
λj and log-Sobolev constants ρj. The product chain Q, whose state space is equal to
the product of the spaces for the chains Rj, is constructed by applying randomly at
each step one of the chains Rj. The spectral gap of the chain Q is then given by

λ =
1
n

min
j
λj (5.27)

and its log-Sobolev constant by

ρ =
1
n

min
j
ρj . (5.28)

Now, note that the log-Sobolev constant of the induced zero chain Q0 counting the
number of non-identity elements can only be larger than ρQ, since the minimum is
taken over a smaller number of functions over the state space. The transition matrix
for this chain is given by

Q0(`, k) =



n+2`
4n if k = `
`

4n if k = `− 1
3(n−`)

4n if k = `+ 1
0 otherwise,

(5.29)
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and its stationary distribution is the same as the one of the P chain. The construction
of the restricted chain Q′0 over the region Ω3 is completely analogous to P ′, and their
stationary distributions are the same. All these observations allow us to say using [28,
Theorem 4.6]

ρP ′ = ρQ′0 /A, (5.30)

with

A = max
k≥θn/2

Q′0(k, k+ 1)
P ′(a, a+ 1) = max

k≥θn/2

5(n− 1)
8k ≤ 5

4θ . (5.31)

Hence, we finally obtain a bound for the log-Sobolev constant of P ′, namely, ρP ′ ≥
4θρj
5n ,

and with the same argument an equivalent bound for the spectral gap, being Ω(1/n).
Using eq. (5.26), we conclude that the mixing time towards the stationary distribution
of the restricted chain is O(n log n

ε ). There is still to consider the case where the walk
moves back behind weight θn/2, but the probability of this event can be bounded
again by Gambler’s ruin to be

P(walk moves back to θn/2) ≤
(

θ

3(2− θ)

)θn/2
. (5.32)

Summarizing, we showed that in each of the three regions the walks on the zero chian P ends
successfully with failing probability poly(n) and combining together these results we conclude
that the chain mixes within ε towards the stationary distribution in a total amount of steps
being τ0 = O

(
n log n

ε

)
.

The next thing to do is to show that, once the zero chain has mixed, the full chain over Pauli
strings mixes in a number of steps of equivalent magnitude. Let us consider the collection of
sets of Pauli strings, where each set contains all Pauli strings with the same weight. Once the
zero chain has converged, we know that all sets are close to their “correct” probability 3k(nk)

4n−1 ,
where k is the weight characterizing the set. However, since the zero chain does not distinguish
among strings with the same weight having different positioning of identity elements or different
labeling of non-identity elements, we cannot say whether all strings within the same set are
uniformly distributed, as required for convergence of the full chain; an additional application
of a random permutation together with a cycling of all σ1,σ2,σ3 Pauli matrices will ensure
the desired result. The cycling is obtained by touching all sites at least once by the full chain,
since from (3.7) we see that it uniformly shuffles non-identity elements. By coupon collector’s
argument (see Preliminaries Chapter and eq. (2.74)), all sites have been hit with probability 1− ε
after O

(
n log n

ε

)
steps. This argument provided by Harrow and Low in Theorem 5.6 however is

flawed – as pointed out by the subsequent comments of Diniz and Jonathan [95] – when stating
that it also ensures that strings with the same elements but different positioning will have the
same distribution. These authors presented an alternative proof relying on repeated random
transposition chains. As we mentioned at the end of Section 2.2, in a number of articles by
Diaconis and his collaborators [38, 39, 96] this chain has been proven to converge toward a random
permutation within ε in O

(
n log n

ε

)
steps. The main question is then how we can apply those

transpositions on the Pauli elements; while this is known to be possible with an additional circuit
implementing for instance the Durstenfeld-Knuth shuffle algorithm [97], Diniz and Jonathan
showed that this is done by the full chain itself. Since in the following the distinction between
Pauli matrices is irrelevant, we construct a new chain C on the state space given by the vertices
of an hypercube, ΩC = { 0, 1 }n. Consider the set of Pauli strings σα represented by ~q ∈ ΩC

linked by the bijection ~q ↔ {α ∈ { 0, 1, 2, 3 }n : αj = 0⇔ qj = 0 } =: S~q, then construct the new
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chain as a projection

C(~p, ~q) :=
∑
α∈S~q

1
4n Tr

[
(σα ⊗ σα) Mk=2

circ(Haar)(σβ ⊗ σβ)
]

∀β ∈ S~p. (5.33)

with stationary distribution on ΩC/{0}n given by

ωC(~q) =
3|~q|

4n − 1, (5.34)

where |~q| is the number of 1’s in ~q. This simpler chain, according to [95, Lemma 1], has the same
mixing time of the full chain.
Now, let Aπ be the representation of the permutation π ∈ Sn on the space of probability
distributions over ΩC , i.e., given a distribution φ,

[Aπφ](~q) = φ(π(~q)). (5.35)

Then the uniform distribution of the repeated random transposition chain is given by S =
1
n!
∑
π∈Sn Aπ and the distance between any uniformly shuffled distribution on ΩC and the

stationary distribution ωC is equivalent to the one between φ0, i.e., the probability distribution
of the zero chain obtained by the projection

φ0(k) =
∑

~q∈ΩC :|~q|=k
φ(~q) ∀k ∈ Ω, (5.36)

and ω0. Formally [95, Lemma 2]

‖Sφ− ωC‖TV = ‖φ0 − ω0‖TV . (5.37)

As mentioned, the process itself performs random transpositions between identity and non-identity
elements. Looking at the projected chain C, we note that this can be written as

C =
1
5T
′ +

4
5M

′, (5.38)

where T ′ = 1
n(n−1)T

′
j,k and M ′ = 1

n(n−1)M
′
j,k are again chains given by 2-local elements whose

transition probabilities are collected in the following tables

T ′j,k 00 01 10 11
00 1 0 0 0
01 0 0 1 0
10 0 1 0 0
11 0 0 0 1

M ′j,k 00 01 10 11
00 1 0 0 0
01 0 1/4 0 3/4
10 0 0 1/4 3/4
11 0 1/4 1/4 1/2

i.e., C can be seen as a combination of two Markov chains. The chain T ′ is similar to the random
transposition chain T (cfr. eq. (2.72)) on the state space ΩC ; however, it lacks the identity
component: and even (odd) number of steps will always result in an even (odd) permutation of
the element ~q ∈ ΩC . This means that T ′ is a non-convergent, periodic chain. To overcome the
last issue, we rewrite C as

C =
1
5T +

4
5M , (5.39)

where we slightly modified the previous chains in order to incorporate the identity, i.e., T =
1
nI +

n−1
n T ′ and M =M ′ + 1

4n [T
′ −I]. Although the modified chain T is still reducible, it does

converge to the random permutation operator S over ΩC , namely,
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Lemma 5.6 ([95], Lemma 3). Each initial distribution ν on ΩC converges under the chain T to
its shuffled version Sν. Additionally, the mixing time

τT (ε) = max
ν

[min z : ‖T zν − Sν‖TV ] ≤ ε (5.40)

is O(n log n
ε ).

Considering eq. (5.39), we can expect that at each step of the chain C with probability 1/5 a
random transposition is applied, and in the complementary case the chain M . We should hence
wait until the required number of transpositions has been applied, shuffling the distribution over
ΩC . In addition, note that the chain M ′, and so M , is symmetric with respect to permutations
of the sites, meaning that it commutes with T . We can therefore imagine that, after a number
of applications of the full chain, all steps of the M chain act at first, and then the repeated
transpositions will take place.
We have now all the tools that we need to prove the convergence of the full chain. Let us
first wait until the zero chain has converged within ε, i.e., the distribution φ0 on Ω satisfies
‖φ0 − ω0‖TV ≤ ε. Then according to eq. (5.37) the corresponding state φ of the chain C lies in
the neighborhood around the stationary distribution ωC with radious ε. Define a mixing time
for C restricted on states in this neighborhood as

τC(ε
′, ε) = max

ν∈Bε(ωC )
[min z : ‖Czν − ωC‖TV ] ≤ ε′ (5.41)

and use the following result

Lemma 5.7 ([95], Lemma 4). For all ε′ > 0 and all ε ≥ 0 and any δ > 0 satisfying ε′ > e−2δ2
+ ε

√
τC(ε′, ε) <

5
2

[
δ +

√
δ2 +

4
5τT

(
ε′ − ε− e−2δ2)] , (5.42)

Choosing ε = ε′/2 and δ =
√

1
2 log(4/ε′) such that

τC(ε
′, ε′/2) < 25

4

[1
2 log(4/ε′) +

4
5τT (ε

′/4)
]

. (5.43)

Since, as we already mentioned, τT (ε) = O(n log n
ε ), follows τC(ε

′, ε′/2) = O(n log n
ε′ ). Summa-

rizing, the mixing of the C chain within ε-approximation, which has the same dynamics as the
full chain according to [95, Lemma 1], is upper bounded by the mixing of the zero chain within
ε/2 plus the mixing of the C chain within ε starting from a state lying in the neighborhood of
ωC with radius ε/2, i.e.,

τC(ε) ≤ τ0(ε/2) + τC(ε, ε/2). (5.44)

This concludes the proof for the mixing conditions in Lemma 5.2, in both norm criteria, since
the 2-norm mixing time is deduced from the one with 1-norm (cfr. [28, Theorem 5.5]). From this
we can finally imply that (see [28, Section 6])

‖Mk=2
circ(Haar, O(n log n

ε
) steps) −M

k=2
Haar‖2� ≤ 24nε2 (5.45)

and hence prove Theorem 5.1.
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5.2 Approximate unitary designs from Hamiltonian gaps
Using a different approach, this first result on mixing properties of random circuits has been
enhanced by the work of Brandão, Harrow and Horodecki in ref. [27]. These authors showed
that, for any k, a single step of random circuit with 2-local gates from the Haar measure on
d-level subsystems is a (λ, k)- tensor product expander with λ given by

Theorem 5.8 (cfr. [27], Theorem 5).

λ = ‖Mk
circ(Haar) −M

k
Haar‖∞ ≤ 1−

(
425ndlogd(4k)e2d2k5k3.1/ log(d)

)−1
(5.46)

Using the fact that ` steps of the circuit corresponds to an `-convolution of the probability
distribution of one single step, and hence

Mk
µ?` = (Mk

µ )
` . (5.47)

together with Lemma 3.12 follows that

Theorem 5.9 (cfr. [27], Corollary 6, under a different definition for approximate unitary designs).
Random quantum circuits with 2-local gates drawn from the Haar measure are ε-approximate
unitary k-designs after

T ≥ 425ndlogd(4k)e2d2k5k3.1/ log(d)(nk log(d) + log (1/ε)) (5.48)

steps.

It is important to mention that this result applies on a slightly different circuit with respect to
the one considered by Harrow and Low: in this case, the 2-qudit gates act always act on adjacent
sites, and not on arbitrary pairs of qudits.

Additionally, this result can be extended to a more general class of random circuits with a gate
set in SU(d2) with algebraic entries where, for each gate, its inverse is also contained in the set.
Bourgain and Gamburd have shown in ref. [98] that a distribution uniformly picking at random
gates from such a set is a tensor-product expander with non-vanishing gap. One can then show
that

Corollary 5.10 (cfr. [27], Corollary 7, under a different definition for approximate unitary
designs). Let d ≥ 2, G = { g }mj=1 ⊂ SU(d2) be a universal gate set containing inverses and
where each gate is composed of algebraic entries. Then there exists C(G) such that a random
circuit drawing gates uniformly at random from G is an ε-approximate unitary k-design after

T ≥ C(G)ndlogd(4k)e2d2k5k3.1/ log(d)(nk log(d) + log (1/ε)) (5.49)

steps.

The proof is structured in four steps, that we are going to outline in the following.

Relating to spectral gap We consider an Hamiltonian Hn =
∑n
j=1 hj,j+1, where hj,j+1 acts

non-trivially on 2 qudits of the system. The spectral gap, ∆(Hn), is defined by the the difference
between the second lowest and the lowest eigenvalues of H.
The Hamiltonian terms hkj,j+1 acting on qudits j, j + 1 are the orthogonal complement of the
local k-th moment operators, i.e

hkj,j+1 = 1−EHaarU
⊗k,k
j,j+1, (5.50)
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where we used the vectorization isomorphism for the moment operator, as introduced in Sec-
tion 2.1, and subsequently we write Hk

n =
∑n
j=1 h

k
j,j+1.

The gap of the Hamiltonian is related with the tensor product expander of the kth-moment of
the random circuit distribution by (see [27, Lemma 16] )

‖Mk
circ(Haar) −M

k
Haar‖∞ = 1− ∆(Hk

n)

n
. (5.51)

It is therefore sufficent to lower bound the spectral gap of the Hamiltonian to obtain the mixing
time for the unitary design property.

Structure of Hk
n We should now consider the following two traits on eigenspaces of the kernel

of Hk
n and their projectors in order to proceed with the third step.

(i) The minimum eigenvalue of Hk
n is zero and the corresponding eigenspace is given by

Dk := span { | ψπ,d〉⊗n : | ψπ,d〉 := (1⊗ Vd(π)) | Ψd〉,π ∈ Sk } , (5.52)

where Ψ is the maximally entangled state on (Cd)⊗2k, Sk is the symmetric group of order k
and Vd(π) the representation of the permutation π ∈ Sk interchanging copies of Cd as

Vd(π) |v1〉 ⊗ · · · ⊗ |vk〉 = |vπ−1(v1)〉 ⊗ . . . |vπ−1(vk)〉

(ii) Let Dk be the projector onto Dk. If k2 ≤ dn, then

∑
π∈Sk

|〈ψσ,d|ψπ,d〉| ≤ 1 + k2

dn
∀σ ∈ Sk (5.53)

and
‖
∑
π∈Sk

|ψπ,d〉 〈ψπ,d|⊗n −Dk‖∞ ≤
k2

dn
. (5.54)

Hence, the vectors |ψπ,d〉 spanning the zero space of the Hamiltonian are “almost” pairwise
orthogonal.

Lower bounding the spectral gap Using the above properties and Nachtergaele’s result [99]
for lower bounding the gap of frustration free Hamiltonians whose ground space is spanned by
matrix product states, Brandão, Harrow and Horodecki showed

Lemma 5.11 (cfr. [27], Lemma 18). For every integers n and k such that n ≥ d2.5 logd(4k)e,

∆(Hk
n) ≥

∆(Hk
d2.5 logd(4k)e

)

4d2.5 logd(4k)e
. (5.55)

Bounding convergence using path coupling From the previous steps, we know that lower
bounding Hk

d2.5 logd(4k)e
is everything one needs to characterize the circuit distribution as a tensor

product expander. In order to do this, the authors revert back to the random circuit description
and bound the tensor product expander in terms of the Wasserstein distance; for two probability
measures ν1, ν2 on U(N), this is defined as

W (ν1, ν2) := sup {Eν1f(U)−Eν2f(U ) | f : U(N)→ R 1 - Lipschitz continuous} . (5.56)

The distrance between the Wasserstein distance of a measure ν on U(dn) and the Haar measure
is an upper bound of the tensor product expander of ν, i.e.,
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Lemma 5.12 (cfr. [27], Lemma 20). For every k and measure ν on U(dn) it stands

‖Mk
ν −Mk

Haar‖∞ ≤ 2kW (ν, Haar). (5.57)

Making use of the path coupling technique developed by Oliveira in ref. [100] from the previous
method proposed by Bubler and Dyer [101], one can prove the following bound on the Wasserstein
distance of a random quantum circuit and the Haar measure.

Lemma 5.13 (cfr. [27], Lemma 19).

W
(
(circ(Haar))?(n−1)`, Haar

)
≤
(

1− 1
en(d2 + 1)n−2

) `
n−1 √

2dn/2. (5.58)

We have now all necessary tools to prove the main theorem.

Proof of Theorem 5.8. From Lemmas 5.12 and 5.13, eqs. (5.51) and (5.47) we get for everym, k, `

1− ∆(Hk
m)

m
≤
(
23/2kdm/2

) 1
`(m−1)

(
1− 1

em(d2 + 1)m−2

) 1
(m−1)2 . (5.59)

In the limit `→∞, we obtain

∆(Hk
m) ≥ m−1e−m(d2 + 1)−m. (5.60)

Now, considering Lemma 5.11 and using the last equation setting m = d2.5 logd(4k)e, we lower
bound the spectral gap for arbirtrary n as

∆(Hk
n) ≥

1
4(d2.5 logd(4k)e)2

(
e(d2 + 1)

)−2.5 logd(4k)−1

≥ 1
4(d2.5 logd(4k)e)2e(d2 + 1)e−2.5(1+log(d2+1)) log 4k

log d

≥ 1
4(d2.5 logd(4k)e)2e(d2 + 1) (4k)

−2.5(1+log(1+d−2)+log (d2))/ log d

≥ (4k)−5−3.1/ log d

13.6 d2(d2.5 logd(4k)e)2 ,

(5.61)

where in the last inequality we used e(1 + d−2) ≤ 3.4 and 2.5(1 + log(1 + d−2)) ≤ 3.1 for d ≥ 2.
Under an further application of Lemma 5.51, we finally obtain Theorem 5.8 (this author cannot
confirm the constant 425, which is however irrelevant for scaling behavior).

5.3 Decoupling with random quantum circuits
As we have seen in Section 4.1, a system affected by a random unitary evolution decouples
from the environment whenever the unitary is drawn from a 2-design. A beautiful result from
Brown and Fawzi [24] shows that decoupling is also achieved with a RQC in almost linear time
with respect to the system size and hence is obtained faster than the unitary 2-design property.
Formally, this result is expressed as

Theorem 5.14. Let ρAE ∈ S(AE) be an initial arbitrary mixed state and UtρAEU
†
t be the

corresponding state after the application of t random two-qubit gates on the system A, which
is composed of n qubits. Let T : S(A) → S(B) be a completely positive trace preserving map
and let τA′B = IA′ ⊗TA→B(ΨA′A) be the Choi-Jamiolwowski representation of T . Then for any
δ > 0 there exists a constant c such that for all n and all t ≥ c n log2 n

Ecirc(Haar,t)‖T (UtρAEU
†
t )− τB ⊗ ρE‖1 ≤

( 1
poly(n) + 16δn · 2−H2(A|B)τ−H2(A|E)ρ

)1/2
. (5.62)
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The following calculations lead to the above theorem but are also fundamental to formalize our
novel results on continuous-time evolutions over the unitary group as an analogous decoupling
theorem. The proof makes use of a condition on Pauli strings distribution which is weaker than
approximate unitary 2-design, from which follows an improvement on the scaling.

Proof of Theorem 5.14. Using an Hölder-type inequality for operators, we write (dropping the
subscript circ(Haar, t) for the expectation)

E‖T (UtρAEU †t )− τB ⊗ ρE‖21 ≤ ETr[T̃ (Utρ̃AEU †t )2]− 2ETr[T̃ (Utρ̃AEU †t ) · τ̃B ⊗ ρ̃E ]
+ Tr[(τ̃B ⊗ ρ̃E)2]

≤ ETr[T̃ (Utρ̃AEU †t )2]−Tr[τ̃2
B ]Tr[ρ̃2

E ] +
1

poly(n) ,
(5.63)

where ρ̃AE = ρ−1/4
E ρAEρ

−1/4
E and T̃ = τ−1/4

B T τ−1/4
B . In the following, we omit the 1/poly(n)

term to help readability. One can rewrite the first term on the last line of eq. (5.63) using a
Pauli basis projection,

T̃ (Utρ̃AEU †t ) =
1
4n

∑
ν,ξ∈{ 0,1,2,3 }n

Tr[σξT̃ (σν)]σξ ⊗TrA[σνUtρ̃AEU †t ], (5.64)

as

Tr[T̃ (Utρ̃AEU †t )2] =
1
2n

∑
ξ∈{ 0,1,2,3 }n

1
4n Tr[σξT̃ (1A)]2 Tr[ρ̃2

E ]

+
1
8n

∑
ξ,ν,ν′∈{ 0,1,2,3 }n

/{ν,ν′}={0,0}

Tr[σξT̃ (σν)]Tr[σξT̃ (σ′ν)] TrA[σνUtρ̃AEU †t ]TrA[σν′Utρ̃AEU †t ]

= Tr[τ̃2
B ]Tr[ρ̃2

E ] +
1
8n

∑
ν,ν′∈{ 0,1,2,3 }n
/{ν,ν′}={0,0}

Tν,ν′ TrA[σνUtρ̃AEU †t ]TrA[σν′Utρ̃AEU †t ],

(5.65)

where one defines Tν,ν′ :=
∑
ξ Tr[σξT̃ (σν)]Tr[σξT̃ (σ′ν)]. The square root of the LHS of eq. (5.63)

can hence be bounded by

E‖T (UtρAEU †t )− τB⊗ρE‖1 ≤

E 1
8n

∑
ν,ν′∈{ 0,1,2,3 }n
{ν,ν′}6={0,0}

Tν,ν′ TrA[σνUtρ̃AEU †t ]TrA[σν′Utρ̃AEU †t ]


1/2

(5.66)
using Jensen’s inequality in addition to the previous calculations. In the next step, we are
going to connect this expression with the second moment operator using the swap trick given in
eq. (4.10), in a similar fashion as in the proof of Theorem 4.1. For any ν and ν ′,

ETr [TrA[σνUtρ̃AE ]TrA[σν′Utρ̃AE ]] = ETr [TrA[σνUtρ̃AE ]⊗TrA′ [σν′Utρ̃A′E′ ]FEE′ ]

= Tr
[
TrAA′ [(σν ⊗ σν′)(M2

circ(Haar,t) ⊗IEE′)(ρ̃AE ⊗ ρ̃A′E′)FEE′

]
=

1
4n

∑
µ,µ′∈{ 0,1,2,3 }n

Tr[(σν ⊗ σν′)M2
circ(Haar,t)(σµ ⊗ σµ′)⊗TrA[σµρ̃AE ]⊗TrA′ [σµ′ ρ̃A′E′ ]],

(5.67)
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where we used again a projection expansion on Pauli basis.
We now recall that Mk=2

circ(Haar,t)(σµ ⊗ σµ′) = 0 when µ 6= µ′ because of eq. (3.7), and we denote
the Pauli coefficient of σν after t steps of the random circuit applied on Pauli string σµ with

Qtcirc(µ, ν) :=
1
4n Tr

[
σν ⊗ σνMk=2

circ(Haar,t)(σµ ⊗ σµ)
]

. (5.68)

The term under the square root of the RHS of eq. (5.66) can then be re-formulated as

1
4n

∑
µ∈{ 0,1,2,3 }n,µ 6=0

Tr[TrA[σµρ̃AE ]2]
∑

ν∈{ 0,1,2,3 }n,ν 6=0
Tr[T̃ (σν)2]Qtcirc(µ, ν). (5.69)

One applies now the main technical result of the paper, namely,

Theorem 5.15 (Theorem 4.1 in ref. [24]). For any constants δ ∈ (0, 1/16) and η ∈ (0, 1) there
exists a constant c such that for any t ≥ c n log2 n and all Pauli strings σµ of weight ` and large
enough n ∑

ν∈{ 0,1,2,3 }n,ν 6=0

∣∣∣Qtcirc(µ, ν)n− pδ(ν)
∣∣∣ ≤ 1

(3− η)`(n`)
1

poly(n) ∀ν, (5.70)

where pδ is a (possibly subnormalized) distribution such that

pδ(ν) ≤
16δn

4n − 1. (5.71)

We then rewrite eq. (5.69) in order to include this distribution and subsequently use the above
result, that is,

(5.69) = 1
4n

n∑
`=1

∑
µ:|µ|=`

Tr[TrA[σµρ̃AE ]2]
∑

ν∈{ 0,1,2,3 }n,ν 6=0
Tr[T̃ (σν)2](pδ(ν) +Qtcirc(µ, ν)− pδ(ν))

(5.72)

≤ 1
4n
∑
µ6=0

Tr[TrA[σµρ̃AE ]2]
∑
ν 6=0

Tr[T̃ (σν)2]
4δn

4n − 1

+
1
4n

n∑
`=1

∑
µ:|µ|=`

Tr[TrA[σµρ̃AE ]2]
1

(3− η)`(n`)
1

poly(n) max
ν

Tr[T̃ (σν)2]. (5.73)

Now, we recall that some of these terms are by definition linked to the quantum collision entropy,
namely, ∑

µ

Tr[TrA[σµρ̃AE ]2] = 2n Tr[ρ̃2
AE ] = 2n 2−H2(A|E)ρ (5.74)

and since ΦA′A = 1
4n
∑
ν σν ⊗ σν one has

2−H2(A|B)τ =
1
8n
∑
ν

Tr[T̃ (σν)2]. (5.75)

We can then re-formulate the first term in eq. (5.73) as

1
4n
∑
µ6=0

Tr[TrA[σµρ̃AE ]2]
∑
ν 6=0

Tr[T̃ (σν)2]
4δn

4n − 1 = 4δn−n
∑
ν 6=0

Tr[T̃ (σν)2]
2n Tr[ρ̃2

AE ]−Tr[ρ̃2
E ]

4n − 1

≤ 4δn 2−H2(A|B)τ 2−H2(A|E)ρ . (5.76)
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Now, there is the second term in eq. (5.73) to be bounded by an inverse polynomial. To prove
this, Brown and Fawzi showed first

∑
ν :|ν|=`

Tr[TrA[σν ρ̃AE ]2] ≤ 12n4(3− η)`
(
n

`

)
(5.77)

leading to the desired bound, namely,

1
4n

n∑
`=1

∑
µ:|µ|=`

Tr[TrA[σµρ̃AE ]2]
1

(3− η)`(n`)
1

poly(n) max
ν

Tr[T̃ (σν)2] ≤ (5.78)

≤ 1
4n max

ν
Tr[T̃ (σν)2]

12n5

poly(n) ≤
1

poly(n) (5.79)

and this concludes the proof of Theorem 5.14.

As we pointed out before the proof, this calculations will also connect to a decoupling theorem
our main technical results, Theorem 7.19. The latter is in turn an equivalent formulation of
Theorem 5.15 in the framework of stochastically evolving continuous-time unitary evolutions and
so will be employed in the same way leading to fast decoupling. Both technical results rely on a
random walk on the zero chain in a similar fashion as in the work of Harrow and Low. In fact,
the work of Brown and Fawzi is based once again on the zero chain with the same transition
matrix (the one given in eq. (5.9)) since, while they look for a different property, they are using
the same local RQC . As we will see in Section 7.2.1, the continuous-time stochastic evolution
induces another random walk on the zero chain whose accelerated chain is exactly the one of
eq. (5.11). This means that, in order to show Theorem 7.19, we are going to borrow from the
work of Brown and Fawzi results regarding the accelerated chain that we are going to outline in
the following paragraphs.
The principal result is a bound on Pauli coefficients after t steps of the zero chain, namely,

Lemma 5.16. Let P be the Markov chain transition matrix (5.9). For any constants δ ∈ (0, 1/16)
and η in(0, 1) there exists a constant c such that for t ≥ c n log2 n and all integers 1 ≤ ` ≤ n and
1 ≤ k ≤ n, we have for large enough n

P t(`, k) ≤ 4δn
(nk)3

k

4n − 1 +
1

(3− η)`(n`)
1

poly(n) . (5.80)

Conceptually, this means that t ≥ c n log2 n steps of the transition matrix P lead to a distribution
which is close to the stationary one, (

n
k)3k

4n−1 , up to an exponential factor 4δn, with failure probability
1

(3−η)`(n`)
1

poly(n) .
To achieve this, one first divides the state space Ω into three regions: [1, r−), [r−, r+] and (r+,n]
for r− = (3/4− δ)n and r+ = (3/4 + δ)n.
Since it stands(

n

r−

)
3r− ≥ 4(1−δ)n and

(
n

r+

)
3r+ ≥ 4(1−δ)n (5.81)
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for sufficiently large n, one has for r ∈ [r−, r+] and any t ≥ 1

Pt(r, k) = 4n − 1
(nr)3r

(nr)3
r

4n − 1Pt(r, k)

≤ 4n − 1
(nr)3r

1
4n − 1

n∑
`=1

3`
(
n

`

)
Pt(`, k)

≤ 4n − 1
(nr)

3r
(nk)3

k

4n − 1

≤ 4δn
(nk)3

k

4n − 1

(5.82)

and so the condition (5.80) is immediately satisfied when starting within the region [r−, r+].
This means that we should investigate how many steps the chain needs in order to reach this
subset of the state space when starting from an arbitrary position ` ∈ [1, r−) or ` ∈ (r+,n]. In
the former case, the probability for the steps number Tr− needed to reach the region [r−, r+]
being larger than O(n log2 n) can be upper bounded by the following lemma.

Lemma 5.17 (Lemma 4.3 in ref. [24]). Let δ ∈ (0, 1/16) and η ∈ (0, 1). Then for a large
enough constant c (depending on δ and η) and large enough n, we have for all ` ≤ r−

P
(
Tr− > cn log2 n

)
≤ 2−2n +

1
(3− η)`(n`)

1
poly(n) . (5.83)

The proof can be split again in two lemmas, one giving a bound for exceeding a certain number
of accelerated steps S and the other one providing a bound on the waiting time when the former
event does not happen. More precisely, one has

P (T > t+ s) ≤ P (S > s) + P (S ≤ s,W1 +W2 + · · ·+WS > t) , (5.84)

where Wj denotes the waiting time between the accelerated steps j − 1 and j.
With the knowledge of the accelerated chain in eq. (5.11) and a Chernoff-type bound one obtains
for s > n

3δ

P (S > s) ≤ exp
(
− δ

2

18s
)

, (5.85)

so that one can bound this probability with an arbitrarily large exponential for some O(n)
accelerated steps.
Conversely, the waiting time can be bounded using a Gambler’s ruin argument (in fact, the real
problem arises when the walk, after reaching states with weights being at least a fraction of n,
goes back to states with low weights, where the expected waiting time is large) so that we obtain

P
(
S ≤ s,W1 +W2 + · · ·+WS > cn log2 n

)
≤ 1

(3− η)`(n`)
1

poly(n) , (5.86)

and this corresponds to the second term in the RHS of eq. (5.83).

The case for a walk starting from ` ∈ (r+,n] is easier to bound, namely, as

P
(
Tr+ > cn log2 n

)
≤ 2−2n (5.87)

since the bound on the waiting time does not require a specific argument: in the region for
k > r+, one has P (k, k) ≤ 4/5 and so all waiting times W1 +W2 + · · ·+WS are stochastically
dominated by a geometric distribution with parameter 4/5, allowing for a direct application of a
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Chernoff-type bound.

To go from Lemma 5.16 to the main result given in Theorem 5.15 an additional step is required.
The complete and explicit argument is quite complex and long, hence we provide here only a
summary thereof.

Let us go back to the full chain Q(µ, ν), assuming for the rest of the argument that the waiting
time does not exceed c n log2 n (event bounded by eq. (5.86)), and rewrite it as

Q =
2
5R+

3
5M (5.88)

where R = 1
2R̃+ 1

2FR, F is the operator that interchanges two random sites chosen at random,
and R̃ = 1

n(n−1)
∑
i,j R̃ij and M = 1

n(n−1)
∑
i,jMij are given by

R̃ij(µ, ν) =


1 if |µi,µj | = |νi, νj | = 0
1/3 if |µi,µj | = |νi, νj | = 1,µi = νi = 0
1/3 if |µi,µj | = |νi, νj | = 1,µj = νj = 0
1/9 if |µi,µj | = |νi, νj | = 2

(5.89)

and

Mij(µ, ν) =


1 if |µi,µj | = |νi, νj | = 0
1/9 if |µi,µj | = 1 and |νi, νj | = 2
1/9 if |µi,µj | = 2 and |νi, νj | = 1
1/27 if |µi,µj | = |νi, νj | = 2

(5.90)

respectively.
There are two important remarks. R does not change the weight of the string µ, only performs
permutations of the support and cycling of the Pauli labels 1,2,3. Additionally, R and M
commute, and so one can write T steps of the full chain Q as

QT =
∑

T1+T2=T

(3
5

)T1 (2
5

)T2
(
T

T1

)
MT1RT2 . (5.91)

Hence, one can first let the chain M run in order to reach a certain weight k, and then let R
run to change the support without altering its size. Assuming that after T1 steps of the chain
M we reached the Pauli string νM with |νM | = k, we analyze now how the support evolves by
constructing a random walk on the intersection between the support of the Pauli string touched
at time T1 + S, that we shall call νS , and some target string ν, both having support size k. Note
that if the support were completely random the intersection would then be made of k2/n qubits.
Let us call the chain IS , then its transition matrix is given by

IS(p, q) =


(k−p)2

n(n−1) if q = p+ 1
p(n−2k+p)
n(n−1) if q = p− 1

1− (k−p)2

n(n−1) −
p(n−2k+p)
n(n−1) if p = q.

(5.92)

The stationary distribution is

πI(k) =
( kk′)(

n−k
k−k′)

(nk)
(5.93)
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for k′ ∈ { 0, 1, . . . , k }. We want to bound the probability of reaching state k′ when starting from
some state r′. The closer is r′ to k2/n, the closer is this probability to the stationary distribution
πI ; more precisely, whenever r′ ∈ [k2/n− δ2n, k2/n+ δ2n] for some positive constant δ2,

∑
|ν′|=k:IS=k′

QT=T1+S(µ, ν ′) ≤ n22
nh

(
δ2
δ0

)
4δn

( kk′)(
n−k
k−k′)

(nk)

(nk)3
k

4n − 1, (5.94)

where h is the binary entropy function h(α) = −α logα− (1− α) log(1− α). The probability
to fail in reaching the region r′ ∈ [k2/n− δ2n, k2/n+ δ2n] can be bounded by an arbitrarily
exponentially decreasing function in n after O(n) steps using a Chernoff-type bound, as already
done previously, and can hence be neglected.
It remains to show that the probability in eq. (5.94) is more or less evenly split among all ν ′
with support size k. For any permutation π ∈ Sn and any relabeling L of the 3 Pauli indices it
stands that R(γ ◦ L (µ), γ ◦ L (ν)) = R(µ, ν) and hence R(µ, γ ◦ L (ν)) = R(µ, ν) for any γ and
L that leave µ unchanged. Therefore all 3k−k′(n−kk−k′) permutations and relabelings of ν acting
outside the support of νM satisfy the condition and are also equal in probability; in addition,
all combinations of possible intersections of the support of νM and ν can be seen as a simple
relabeling of the Pauli indices so that there are additional ( kk′) equally distributed strings for
each transformation acting outside the support of νM . Finally, all relabelings of each site in the
intersection of the supports produce 3 additional equally distributed strings ν. One can show
that a relabeling of at least k′− δ1n sites happens with very high probability after s = O(n logn)
applications of the chain R̃ (i.e., the complementary event can be bounded by an arbitrarily
exponentially decreasing function). Summarizing, a total of 3k−δ1n(n−kk−k′)(

k
k′) strings are equally

distributed. Using eq. (5.94), we can finally write

QT (µ, ν) ≤ 1
3k−δ1n(n−kk−k′)(

k
k′)

∑
|ν′|=k

QT (µ, ν ′) (5.95)

≤ 1
3k−δ1n(n−kk−k′)(

k
k′)
n22

nh

(
δ2
δ0

)
4δn

( kk′)(
n−k
k−k′)

(nk)

(nk)3
k

4n − 1 (5.96)

≤ n22
nh

(
δ2
δ0

)
3δ1n 4δn

4n − 1 (5.97)

≤ 16δn

4n − 1 (5.98)

for an adequate choice of δ1 and δ2 and large enough n. With this bound and the term coming
from the bound for a waiting time exceeding c n log2 n from eq. (5.86) we obtain Theorem 5.15.
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Randomized benchmarking

In order to realize a multi-qubit quantum computer it is necessary to estimate the accuracy of an
experimental implementation of unitary operations with high precision. One of the most relevant
methods to verify the error characterizing the incorrect implementation is quantum process
tomography [102, 103], which allows for a complete description of the implemented unitary gate
but suffers however from two major drawbacks. First of all, the method is not scalable in the
number of qubits: for a system of n qubits with dimension d = 2n, Θ(d2) expectation values have
to be estimated. Furthermore, this approach is sensitive to state preparation and measurement
(SPAM) errors since it cannot distinguish and handle separately the one related to the quantum
gate with the one coming from the generation of the initial state and the final measurement.
This challenge is aggravated by the fact that gate errors suitable for fault tolerant quantum
computing are extremely small, so that the characterization needs to be very precise.
An alternative and successful approach that we are going to illustrate in the following pages is
given by randomized benchmarking. This method is based on the randomization of the noise
channel associated to the unitary gate, which leads to a simpler extraction of information that
remains unaltered by the protocol. Also, it allows to overcome the two issues related to quantum
process tomography since it is robust against SPAM errors and, at least for protocols involving
the Clifford group, scalable in the system size. This however comes at the cost of recovering less
information: what we actually get is the average gate fidelity of the noise channel, that can then
be related to more physically relevant objects such as the diamond norm. Furthermore, additional
assumptions on the underlying model are required, in particular regarding the element to be
characterized, that is, the noise channel describing the experimental unitary gate implementation.
This may sound odd, but it is actually a general feature of estimation theory: one needs some
prior knowledge regarding the quantity one tries to gauge in order to use nontrivial estimation
methods [104]; for several protocols one assumes identical noise levels for each gate in the set of
operators to be benchmarked, which is a rather strong assumption that we aim to overcome with
our novel approach.

The literature on randomized benchmarking is quite extended, so we will focus on theoretical
discoveries leaving out experimental investigations. We will start with the arguably most
common and recognized randomized benchmarking method presented by Magesan, Gambetta
and Emerson [45, 105] after providing some mathematical background on the subject. However,
the basic idea has been generalized in several ways, using instead, for instance, the single-qubit
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dihedral group [106]. Still, the known schemes extract information averaged over a full group and,
except for protocols tied to the Clifford group [107], assume identical noise channel for all gates up
to small gate-dependent perturbations. To partially address the problem and allow for extraction
of the fidelity of a specific gate, a scheme called interleaved randomized benchmarking [108, 109]
makes use of random sequences of Clifford gates interlaced by the particular gate whose noise is
to be individually characterized, but it is still limited to the Clifford group itself or the T-gate.
In several ways the commonly made assumptions on the underlying processes are very demanding.
For example, refs. [45, 46, 105] require the 2-design property and so they are restricted to the
Clifford group on n qubits, whose size scales as Θ(2O(n2)). If one instead makes use of schemes
involving different gate sets, then the assumption on uniform noise channel for each gate of the
group may be overly strong. In our novel approach illustrated in Section 6.3 we will see that
some of these requirements can be largely relaxed at little additional cost, as far as quantum
resources are concerned.

6.1 The randomized benchmarking protocol with Clifford group
We are now going to illustrate the benchmarking protocol with Clifford gates. In few words,
we apply multiple random Clifford operators in sequence to an initial state ρ and then, before
measuring the final outcome with respect to some POVM E, we invert all gates with a single
final operator. We repeat the procedure multiple times in order to obtain an average of the
sample outcome which can be assumed to be close to the full average over the Clifford group.
More precisely, we perform the following steps.

(1) Draw a random sequence k` = (k1, . . . , k`) ∈N`
|C|.

(2) Apply to an initial state ρ (e.g., ρ = |0〉 〈0|) the sequence of random Clifford gates (labeled
with N`

|C|) generated according to k`,

Sk` = Cinv ◦ Ck` ◦ · · · ◦ Ck2 ◦ Ck1 , (6.1)

where Ginv := G†k1
◦ · · · ◦ G†k` is the channel (still in the Clifford group) given by the

composition of the inversion of all previous gates.

Cinv Ck` Ck2 Ck1

(3) Perform a POVM E to be defined later and measure the survival probability

Qk` = Tr[E Sk`(ρ)]. (6.2)

Repeat this step sufficiently many times in order to obtain a statistic that gives a reliable
result outcome.

(4) Repeat the previous steps for sufficiently many (say N) random sequences k`,1, . . . , k`,N of
length `. Then, calculate the average survival probability

Qseq(`) =
1
N

∑
k`

Qk` . (6.3)

The number N of random sequences should be chosen such that

Qseq(`) ≈ Qavg(`), (6.4)

where Qavg is the fidelity averaged over all possible sequences.

60



(5) Repeat the previous steps for different lengths ` and insert Qseq(`) into the fitting model,

Q(0)
avg(`) = Ap` +B zero order model (6.5)

Q(1)
avg(`) = Q(0)

avg(`) +C(`− 1)(w− p2)p`−2 first order model (6.6)

where Q(1)
avg(`) is suitable when considering gate-dependent perturbation of the noise

channel.
The parameters A,B,C absorb the SPAM errors and p is the polarization parameter that
we want to obtain for the following equations expressing the average gate fidelity in terms
of it.

Lemma 6.1 (Lemma 1 in ref. [54]). For any quantum channel Λ and density operator ρ we
have

twirl(Λ(ρ)) :=
∫

Haar
UΛ(U †ρU)U † dU = pρ+ (1− p)1

d
=: Λdep(ρ), (6.7)

where p is called depolarization parameter.

The depolarized channel can be interpreted as a quantum operator that with probability p returns
the initial state and otherwise the fully mixed state.
It is straightforward to see that the average fidelity of the depolarized channel is related to the
depolarization parameter by

E(FΛdep,I) = p+
1− p
d

. (6.8)

It is crucial to remark that both the average gate fidelity and the entanglement fidelity are
invariant with respect to twirling, namely,

Lemma 6.2 (Lemma 2 in ref. [54]). The average gate fidelity and the entanglement fidelity are
both invariant with respect to the twirling over the Haar measure, that is,

E(FΛ,I) = E(FΛdep,I) and Fent(Λ) = Fent(Λdep), (6.9)

and thus the benchmarking does not alter the fidelity of the original noise channel. This condition
uniquely defines the polarization parameter in eq. (6.7).

We now derive the fitting model in step (5). We notice that eq. (6.1) should return the identity
channel, unless we take into account that the gates are not perfectly implemented. Namely, we
assume that each Clifford gate is realized with an additional error channel Λ, identical for all
gates in the group. The random sequence Sk`(ρ) then becomes

Sk` = Λ ◦ Cinv ◦Λ ◦ Ck` ◦ · · · ◦Λ ◦ Ck2 ◦Λ ◦ Ck1 = Λ ◦ Cinv
(
©`
j=1Λ ◦ Ckj

)
. (6.10)

Λ Cinv Λ Ck` Λ Ck2 Λ Ck1

Let us now introduce the following reformulation with gates Dk again from the Clifford group.

(i) Dk1 := Ck1

(ii) define recursively Dkj+1 := Ckj+1 ◦ Dkj

(iii) from the two previous steps, follows Dinv = I.
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Hence, we have now

Sk` = Λ ◦ D†k` ◦Λ ◦ Dk` ◦ · · · ◦ D
†
k2
◦Λ ◦ Dk2 ◦ D

†
k1
◦Λ ◦ Dk1 (6.11)

and averaging over all possible sequences

S(0)avg(`) =
1
|C|`

∑
all sequences

Λ ◦ D†k` ◦Λ ◦ Dk` ◦ · · · ◦ D
†
k1
◦Λ ◦ Dk1 (6.12)

= Λ ◦
(

1
|C|
∑
k

D†k ◦Λ ◦ Dk

)
◦ · · · ◦

(
1
|C|
∑
k

D†k ◦Λ ◦ Dk

)
(6.13)

= Λ ◦ΛC ◦ · · · ◦ΛC︸ ︷︷ ︸
` times

, (6.14)

where ΛC is the noise channel Λ twirled over the (uniformly distributed) Clifford group. Recalling
from eq. (3.9) the twirling condition over unitary 2-designs, we know that ΛC = Λdep. This
implies, using eq.(6.7),

Q(0)
avg = Tr[E Λ©` Λdep(ρ)] = Tr[E Λ(ρ)] p` + Tr

[
E Λ

(
1

d

)]
(1− p`) := Ap` +B, (6.15)

where

A = Tr
[
E Λ

(
ρ− 1

d

)]
and B = Tr

[
E Λ

(
1

d

)]
(6.16)

absorb state preparation and measurement errors, since an imperfect realization of E′ of E and
ρ′ of ρ do not alter the fitting model expression.
One can slightly relax the condition for the noise channel, allowing for a small time- and gate-
dependent perturbation term, namely, Λj,k = Λ + δΛj,k and rewrite the first order random
sequence as

S(1)avg(`) = S(0)avg +
∑̀
j=1

1
|C|`

∑
all sequences

Λ ◦D†k` ◦Λ ◦Dk` ◦ · · · ◦D
†
kj
◦ δΛj,kj ◦Dkj ◦ · · · ◦D

†
k1
◦Λ ◦Dk1 .

(6.17)
The trick now is to revert the notation Dkj = Ckj ◦ Dkj−1 so that the perturbations of steps
1, . . . , ` lead to the expression

∑̀
j=2

Λ ◦Λdep ◦ · · · ◦Λdep︸ ︷︷ ︸
`−j times

◦ (Wj ◦Λ)dep ◦Λdep ◦ · · · ◦Λdep︸ ︷︷ ︸
j−2 times

+Λ ◦
(

Λdep
)◦(`−1)

◦W1, (6.18)

where Wj := 1
|C|
∑
k C
†
k ◦ δΛj,k ◦ Ck. Using the commuting properties of depolarizing channels we

can rewrite ∑̀
j=2

Λ ◦ (Wj ◦Λ)dep
(

Λdep
)◦(`−2)

+ Λ ◦
(

Λdep
)◦(`−1)

◦W1. (6.19)

One can also incorporate a perturbation of the last channel Λ at step `+ 1, depending only on
the last gate Dk` , defining the channel R`+1 := 1

|C|
∑
k δΛ`+1,kD†k ◦Λ ◦Dk. The first order of the

random sequence can be then expressed as

S(1)avg(`) = S(0)avg +
∑̀
j=2

Λ ◦ (Wj ◦Λ)dep ◦
(

Λdep
)◦(`−2)

(6.20)

+ Λ ◦
(

Λdep
)◦(`−1)

◦W1 +R`+1 ◦
(

Λdep
)◦`

(6.21)
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so that the fitting model for the average survival probability becomes

Q(1)
avg = Tr[E S(1)avg(`, ρ)] = Ap` +B +C(`− 1)(w− p2)p`−2 (6.22)

with

A = Tr
[
E Λ

(Q1(ρ)

p
− ρ+ (p− 1)1

pd

)]
+ Tr

[
ER`+1

(
dρ− 1
pd

)]
(6.23)

B = Tr
[
ER`+1

(
1

d

)]
(6.24)

C = Tr
[
E Λ

(
ρ− 1

d

)]
(6.25)

w =
∑̀
j=2

wj/(`− 1), (6.26)

where wj is the depolarization parameter defined by

(Wj ◦Λ)dep (ρ) = wjρ+ (1−wj)
1

d
. (6.27)

According to ref. [45], second order terms can be neglected when the following conditions stand.
Let us first define a norm to quantify the distance between superoperators as

‖E‖H1→1 = max
X hermitian and ‖X‖1≤1

‖E(X)‖1 (6.28)

and the gate dependent perturbation averaged over all steps as

γj :=
1
|C|
∑
j

‖Λj,k −Λ‖H1→1. (6.29)

Then, the second order perturbation terms,∑
j2>j1

1
|C|`

∑
all sequences

Λ ◦ D†k` ◦Λ ◦ Dk` ◦ · · · ◦ D
†
kj2
◦ δΛj,kj2 ◦ Dkj2

◦ · · · ◦ D†kj1 ◦ δΛj,kj1 ◦ Dkj1 ◦ · · · ◦ D
†
k1
◦Λ ◦ Dk1 (6.30)

can be upper bounded in ‖ · ‖H1→1 norm by
∑
j2>j1 γj2γj1 and, when assuming that the noise is

time-independent and so γj = γ ∀j, by
∑
j2>j1 γ

2 = m(m+1)
2 γ2. The argument can be extended

to all higher order terms, so that

|Q(r+1)
avg −Q(r)

avg| ≤
∑

jr>···>j1
γjr · · · γj1 (6.31)

and again under time-independent noise assumption

|Q(r+1)
avg −Q(r)

avg| ≤
(
`+ 1
r

)
γr. (6.32)

The choice of the ‖ · ‖H1→1 in place of the more usual diamond norm is motivated by the fact that

‖E2 −E1‖H1→1 ≤ ‖E2 −E1‖� (6.33)

so that the bound provided by the former is tighter.
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The argument just now presented is presumably flawed and constitutes the starting point of
a new fitting [107] for the same Clifford gates protocol, fixing the problem and also lifting
gate-independence noise assumption for for those protocols strictly tied to the Clifford group.
Actually, the contribution of all higher order terms are (applying the binomial theorem)

h1 =
∑
q≥1

(
`+ 1
q

)
γq = (1 + γ)` − 1 ≈ e`γ − 1 zero order residuum (6.34)

h2 =
∑
q≥2

(
`+ 1
q

)
γq ≈ e`γ − 1− `γ first order residuum (6.35)

for the zero order and second order model, respectively. To stay in the range of magnitude 0.01
with respect to the dominant terms, the larger sequence lengths are ` ≈ 0.01/γ and ` ≈ 0.1/γ.
On the other hand, numerics from ref. [110] suggests that, in order to fit the exponential decay,
sequences of length ` ≈ 1/r (where we recall r being the average error rate of the noise channel) are
required. Hence, we conclude that negligible higher order terms impose the condition γ ≤ 0.01r
or respectively γ ≤ 0.1r. The first issue is to certify that the experimental implementation is
indeed in this regime, since it is likely to require fully reconstruction of the process matrix for
each noise channel. Secondly, such small deviations from the average noise channel Λ may be a
too strong constraint for effective implementations, in particular for the zero order model. By
showing that most of the gate-dependent perturbation noise terms cancel each others out, one
can improve the bound of ref. [45] at the cost of an additional exponentially decaying term in
the fitting model. That is [107, Theorem 4],

Qavg = Ap` +B + ε`, (6.36)

where the perturbation term ε`m satisfies

|ε`| ≤ δ1δ
`
2 (6.37)

for some δ1, δ2 that quantifiy the amount of gate dependence.
While, as mentioned above, the protocol is now suitable to benchmark gates with a noise compo-
nent that can be differentiated for each of them, one should remark that it still retrieves averaged
quantities only and not the individual noise levels.

We now turn on another important point, namely, the scalability of the protocol. The Clifford
group is large, in the sense that it scales as 2O(n2); consequently, the number of sequences of
length ` is 2`O(n2). This implies that in order to obtain the full average over all sequences, the
protocol does not scale either in system size nor in sequence length. The authors of ref. [45]
provide a bound using Hoeffding inequality,

P

(
| 1
N

N∑
k=1

Qk −Qavg| ≥ ε
)
≤ 2e

−2kε2
(b−2)2 , (6.38)

where [a, b] ⊆ [0, 1] is the interval where the survival probabilities Q’s can take value. For example,
supposing that we want a fidelity within 0.99 accuracy with failing probability ε = 10−3, and
assuming that b− a = 0.2, we will need approximatively k ≈ 7 · 104 different sequences. While
promising compared against quantum process tomography, this bounds seems to be significantly
loose according to suggestions from numerical simulations and experimental realizations, where
up to 100 sequences are used for each value ` [111], and with respect to the analytical investigation
in ref. [112] based on the irreducible decomposition of the two-fold tensor representation of the
Clifford group [113].
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6.2 Interleaved randomized benchmarking and other protocols
As previously mentioned, one of the major drawbacks of randomized benchmarking is that it
estimates only an error averaged over the gate set: gate-dependent components are not retrieved.
To overcome the issue, ref. [108] propose a protocol – called interleaved randomized benchmarking
– to characterize the error of an arbitrary individual Clifford gate C? by slightly modifying the
random sequence. After using the usual randomized benchmarking method described above and
obtaining the depolarization parameter p, one should run a second protocol where the random
gates are interlaced with the gate C?, that is,

S?k` = Λinv ◦ Cinv ◦ C? ◦ΛC? ◦Λk` ◦ Ck` ◦ · · · ◦ C
? ◦ΛC? ◦Λ ◦ Ck2 ◦ C? ◦ΛC? ◦Λ ◦ Ck1 (6.39)

= Λinv ◦ Cinv
(
©`
j=1C? ◦ΛC? ◦Λkj ◦ Ckj

)
, (6.40)

where the inverse gate is given by the composition of all random gates and interleaved C?
operators and where we consider the noisy implementation of ΛC? of C? and Λkj = Λ + δΛkj (i.e.,
considering a small perturbation) of the random gate Ckj . Defining Dk1 := Ck1 and recursively
Dkj+1 := Ckj+1 ◦ C? ◦ Dkj , we can re-forumulate the last expression as

S?k` = Λinv©`
j=1

(
ΛC? ◦Λkj

)dep
. (6.41)

Again, measuring the survival probability Qk?
`
and averaging over a number N? of different

random sequences for different values of `, one can fit the zero (6.34) or first order fitting model
(6.35) depending whether one assumes the Λkj to be the same for all random gates or having a
slight gate-dependent perturbation, obtaining a second depolarization parameter pC? . Together
with p, it is the possible to estimate the interval where E(FΛC? ,I) lies, which is within the two
values

E(Fmin,max) =
(d− 1)pC?/p

d
± I where I = min


(d−1)(|p−pC?/p|+1−p)

d
2(d2−1)(1−p)

pd2 + 4
√

1−p
√
d2−1

p .
(6.42)

A similar interleaved randomized benchmarking protocol was proposed in ref. [109], this time
to individually benchmark the T-gate by alternating it with randomly selected gates from the
Clifford and Pauli groups.

The Clifford group or more in general 2-design distributions are the common choice for randomized
benchmarking since they satisfy the depolarizing condition given by Lemma 6.7 at the core of
the fitting model derivation. However, a few proposal have been done to go past the two design
requirement [114]; one of this is the dihedral benchmarking [106] using a small group generated by
rotations around the ẑ-axis of the Bloch sphere coupled with the reflection on x̂ẑ-plane, that is,

Dj := 〈Rj ,X〉 where Rj := exp {i2π/j Z} . (6.43)

By choising j = 8, we obtain a group containing the T-gate which, as we mentioned in Section 3.2,
together with the gate H and CNOT, or more generally together with the Clifford group, builds
a universal gate set. While lifting the two-design requirement, the method still assumes the noise
to be gate-independent for all gates in the group, and is limited to single-qubit implementations.

The protocol is given by the following steps.

(1) Choose at random two binary strings of length `, z = (z1, . . . , z`) ∈ Z`
j and x =

(x1, . . . ,x`) ∈ { 0, 1 }`.
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(2) Prepare a system in an arbitrary initial state ρ.

(3) Apply the sequence

Sx,z = Ginv ◦Rz`j ◦ X
x` ◦Rz`−1

j ◦ X x`−1 ◦ · · · ◦ Rz1
j ◦ X

x1 , (6.44)

where Ginv := X b1 ◦ Zb2©1
k=`

[
Rkj ◦ X k

]†
, for a choice of b1, b2 ∈ Z2 explained below.

(4) Perform a POVM E.

(5) Repeat step (3) and (4) sufficiently many times in order to obtain a valid statistic of the
survival probability to a desired precision.

(6) Repeat the previous steps for a large enough number of different random sequences z and
x to obtain the average survival probability.

(7) Repeat the procedure for different value of ` and, for b1 = b2 = 0, fit the average survival
probability data into the model

Qavg(`, b1 = 0, b2 = 0) = Ap`0 +Bp`1 +C (6.45)

where A,B,C are constants absorbing SPAM errors and p0, p1 are the parameters charac-
terizing the average gate fidelity through the formula given in eq. (2.30) and the connection
between the fidelity of a channel and its twirled version in Lemma 6.2.

E(FΛ,I) =
1
2 +

1
6 (p0 + 2p1). (6.46)

One can also exploit linear combinations of the average survival probabilities for different values
of b1 and b2 to simplify the model into a linear fitting problem, that is,

Qavg(`, b1 = 0, b2 = 0) +Qavg(`, b1 = 0, b2 = 1)
−Qavg(`, b1 = 1, b2 = 0)−Qavg(`, b1 = 1, b2 = 1)
= 4Ap`0 (6.47)

and
Qavg(`, b1 = 0, b2 = 0)−Qavg(`, b1 = 0, b2 = 1) = 2Bp`1. (6.48)

The derivation of the fitting model follows the same idea of the one with Clifford gates without
perturbation terms. Accounting for a noise channel Λ – identical for all operators – representing
the imperfect implementation of the ideal unitary gates, we write

Savg = Λ ◦ X b1 ◦ Zb2 ◦
(

ΛDj
)◦`

, (6.49)

where ΛDj is the twirling of the noise channel Λ with respect to the dihedral group Dj .
Note that by construction ΛDj commutes with all elements of the diehedral group Dj and
therefore, from Schur’s Lemma, it can be decomposed into a block-diagonal form with respect to
the irreducible representations of the dihedral group, given by

Rkj X
x → 1 trivial

Rkj X
x →

(
cos(2πk/j) (−1)x+1 sin(2πk/j)
sin(2πk/j) (−1)x cos(2πk/j)

)
faithful

Rkj X
x → (−1)x parity
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for k ∈ Zj , x ∈ { 0, 1 }.
The matrix representation of the twirled channel includes each of these representations exactly
once, and so can be written (using a basis transformation bringing the matrix group in block-
diagonal form) as a diagonal matrix, i.e.,

ΛDj =


1 0 0 0
0 p1 0 0
0 0 p1 0
0 0 0 p0

 , (6.50)

so that in Pauli-Liouville presentation the average gate sequence can be expressed as

Savg = Λ ·


1 0 0 0
0 (−1)b2p`1 0 0
0 0 (−1)b1+b2p`1 0
0 0 0 (−1)b1p`0

 (6.51)

and hence the fitting model for the survival probability is

Qavg(`, b1 = 0, b2 = 0) = (−1)b1Ap`0 + ((−1)b1+b2B1 + (−1)b2B2)p
`
1 +C. (6.52)

The protocol can also be used to estimate an upper bound of the error implementation relative to
the T-gate, using the fact that the group D8 can be divided in two cosets, namely, D4, generated
by the Pauli matrix X and the phase gate P, and T ·D4. Precise details are given in ref. [106].

At the beginning of this chapter, we mentioned quantum process tomography as a non-scalable
and SPAM sensitive method to fully characterize a quantum channel. In ref. [115], the au-
thors describe a method to make use of randomized benchmarking to obtain tomographic
information about the unital part of a quantum channel. The link between the two techniques
allows to reconstruct the unital part of a CPTP map in a SPAM robust way, inheriting the
advantages of the randomized benchmarking protocol, but at the same time permitting the
characterization of arbitrarily large errors. The idea at the heart of this approach is that any
unitary map can be written as a linear combination of elements in the Clifford group and at the
same time this group spans the unital subspace of quantum CPTP maps (cfr. [115, Lemma IV.1]).

Using a modified version of interleaved randomized benchmarking protocol one can obtain the
average gate fidelity between a Clifford gate Cj and an arbitrary quantum channel E . By applying
in sequence

Sk` = C
†
k`
◦ C†j ◦ E ◦ Ck` ◦ · · · ◦ C

†
k2
◦ C†j ◦ E ◦ Ck2 ◦ C

†
k1
◦ C†j ◦ E ◦ Ck1 , (6.53)

according to the other protocols, this leads to an estimate of the average fidelity E(FE,Cj ) and
hence, using eq. (2.30), to Tr[EC†j ] for any Clifford gate. This allows to reconstruct the unital
part of E . Additionally, assuming that a unitary channel U can written as U =

∑
j βjCj , then

one can retrieve by linear combination of the randomized benchmarking data an estimate of
Tr[EU†] (and hence again the average gate fidelity E(FE,U )). For a single T-gate, this will require
the measurement of three Clifford gates, since

T =
1
21+

1−
√

2√
2

Z +
1√
2

e−iπ4Z . (6.54)

To obtain E(FE,U ) with precision ε with probability 1− δ, one requires (cfr. [115, section VI B])

O

NU
(∑

j |βj |
ε

)4

log NU
δ

 (6.55)
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samples (without taking into account the number of measurements for the same sequence to
obtain the survival probability), where NU is the number of Clifford gates with non-zero linear
coefficient βj . Note that this number may scale as O(d10) when NU = O(d2).

In a similar spirit, we propose a scheme aiming at loosing some of the strong assumptions
regarding the noise channel while maintaining robustness against SPAM errors at the cost of
increasing the classical computational effort.

6.3 Randomized benchmarking for individual quantum gates

In our work Randomized benchmarking for individual quantum gates [42], we present a new
protocol that is expected to be significant in two ways: in the first place, it is suitable to
benchmark quantum gates individually, including ones that are outside the Clifford group. Since
schemes for universal quantum computing necessarily make use of such gates, this constitutes an
important step forward. At the same time, we do not require twirling over the full Clifford group
or a 2-design, but only over a relatively small local symmetry group coupled with transpositions
gates. The novel idea in the present work is to exploit the symmetry of the quantum gate
itself in an appropriate fashion and hence reduce the amount of necessary quantum resources
and computational power. To achieve this goal, we harness advanced tools from representation
theory to arrive at schemes that require similar physical operations, but not tied to the 2-designs
property and which can make predictions beyond known prescriptions.
More conceptually speaking, and putting this contribution into a broader context, we show that
one can interpolate between common assumptions made when characterising quantum processes:
in other words, there is “room in the middle” between full quantum process tomography, which is
largely assumption-free but comes along with daunting resource requirements, and conventional
randomised benchmarking, which requires significantly less effort and is also robust against state
preparation and measurement (SPAM) errors, although it makes strong assumptions. We believe
that this conceptual insight into the ontology of assumptions when characterising quantum
processes subject to unknown quantum noise is equally important.

The setting

In the following, we are going to describe a protocol that provides the average gate fidelity of the
noisy channel Λ which characterizes the imperfect implementation Ũ of a target ideal unitary
gate U ,

E(FŨ ,U ) = E(FΛ,I) :=
∫

Haar
Tr [|φ〉 〈φ| Λ(|φ〉 〈φ|)] dφ. (6.56)

It is key to our method to explicitly exploit the local and permutation symmetries of U , allowing
for a drastic reduction of the fitting parameters and also inheriting robustness with respect to
SPAM errors. In this way, fitting models of well-known randomized benchmarking protocols can
be uplifted to this setting involving fewer assumptions.
Throughout this section, we consider quantum gates acting on n-qubit systems and we are
interested in benchmarking the accuracy of their implementation in a quantum circuit making
use of the protocol that we are going to explain later on. The method is particularly suitable for
gates consisting of tensor products of local gates, hence admitting additional symmetries with
respect to the exchange of qubit subsystems and it is applicable in those situations of single
layers of local unitary quantum gates. For concreteness and as a guiding example, we shall put
emphasis on single layers of circuits whose gates consist of tensor compositions of the T-gate
with other “popular” gates belonging to the Clifford group Cn, namely, H, P and CNOT that we
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write once again

H =
1√
2

(
1 1
1 −1

)
, T =

(
e−iπ/8 0

0 eiπ/8

)
,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , P =

(
1 0
0 i

)
, (6.57)

leading to a universal set. More generally, the protocol is suitable to benchmark tensor products
of local gates consisting in arbitrary rotations around x̂,ŷ,ẑ-axes of the Bloch sphere. In the
following, we will denote with U = U1 ⊗ · · · ⊗ Un the multi-qubit unitary operator – with Uj
acting on qubit j – that we intend to benchmark, acting as a single layer of a unitary circuit. At
the heart of the analysis will be its symmetry group, constructed from the symmetries of the
local gates Uj composing U and the permutations of qubits which the local gate acts upon. More
precisely, we choose the local symmetry group Aj of Uj as the subset of the single qubit Clifford
group whose elements commute with Uj . As an example, for Uj = T = exp(−iπZ/8), the group
of local symmetries is given by

AT := {U ∈ Cn : U † Z U = Z } . (6.58)

This is an abelian group of 4 elements isomorphic to the cyclic group of order 4, Z4. The set of all
possible permutations interchanging qubits affected by the same local gate is another symmetry
group of the target unitary U ; taking a pratical example, for the gate U = T⊗H⊗T⊗H⊗T,
this group is isomorphic to S3 × S2, i.e., all permutations of the first, third and fifth subsystems
combined with the transposition of the second and forth subsystems. The full symmetry group
G is then obtained through the semi-direct product Ano Π, where An is the direct product of
the local symmetry groups Aj constructed by the Kronecker product of the respective elements,
and Π is the representation of the subgroup of Sn consisting of all allowed permutations of the
qubits subsystems.

Remark

In order to apply our full protocol and combine the group An with Π, all local symmetry
groups Aj must be abelian. This is indeed a necessary condition to reconstruct the irreducible
representations of the full group G with the sole knowledge of the composing groups, as we will
discuss in a dedicated paragraph. Fortunately, this is the case for the symmetry of the gates
in eq. (6.57) and all other rotations around Bloch axes. Should the local symmetry groups not
be all abelian, the protocol is still valid setting G = An, i.e., without considering permutation
symmetries.

Assumptions and physical motivation

We denote with calligraphic letters the channel acting by gate conjugation on density operators,
i.e., U(ρ) := U †ρU , and the noisy implementation of the idealized gate channel U as Ũ := ΛU ◦ U ,
i.e., we account for a gate-dependent error channel ΛU whose average fidelity we want to
characterize with the proposed protocol. Since randomized benchmarking can be interpreted as
a trade-off between the level of characterization of the noise channel and the amount of physical
and computational resources needed, we will make the following assumption: the Pauli-Liouville
representation of the twirled noise channel, ΛG

U := |G|−1∑
j∈N|G|

G†jΛU Gj , is almost jointly
diagonalizable with the target unitary channel U (where again we consider it as a matrix in
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Pauli-Liouville representation), in the spirit of ref. [116]. This means that when the matrix U is
brought to diagonal form by some unitary transformation V , the off-diagonal elements of ΛG

U
under the same transformation are small. This is true in two cases. The first possibility is that
both U and the twirled noise ΛG

U are diagonalizable simultaneously in a certain basis, e.g., when
the decomposition of the representation of the symmetry group into irreducible representations
has no multiplicity: in this case, both U and the twirled noise ΛG

U are “forced” to assume a
diagonal form with respect to the irreducible subspaces. If this is not the case, then ΛG

U assumes
a sparse form with some off-diagonal entries, which have to be small with respect to the diagonal
elements. This is fulfilled whenever the original noise channel ΛU related to the implementation
of the gate U was almost jointly diagonalizable to begin with, or put in another perspective (see
again ref. [116]), it is almost commuting. This assumption is valid when the gate U is generated
by a Hamiltonian H applied for some run time t [117], i.e., U = e−iHt, which can be perturbed
for a small fraction of the time, or be applied for too much or too little time. More precisely,
assume that the gate Ũ , which is the physical realization of the ideal gate U , is obtained during
the application of some Hamiltonian H, perturbed (we denote the perturbed Hamiltonian as
R) for a fraction of time ∆t, i.e., Ũ = e−i(R∆t+Ht). Using the Zassenhaus formula [118], we can
rewrite the implemented gate as

Ũ = e−iHT e−iR∆t
∞∏
n=2

eCn(HT ,R∆t) (6.59)

= e−iHT (1− iR∆t+ §∆t) +O(∆t2), (6.60)

where
§ :=

∞∑
n=2

cn[H, [H, . . . , [H︸ ︷︷ ︸
n−1 times

,R] . . . ]]Tn−1, (6.61)

with the Zassenhaus coefficients cn that can be recursively calculated for instance as in ref. [118].
This implies that the off-diagonal elements of the matrix Ũ – computed in the eigenbasis of
U – are of order ∆t, justifying our assumption on the noise Λ. Furthermore, we ask the gates
belonging to the symmetry group G to be implementable with high accuracy. These gates either
perform a permutation of the subspaces of the system or belong to the Clifford group and so
can be for instance benchmarked with the well-known protocols [45, 105, 107] to guarantee high
fidelity.

The protocol

We propose a slightly modified version of the previous protocols. We apply in succession channels
defined by the gate U after the one induced by a gate uniformly drawn at random from the
symmetry group G. Note that, unlike previous protocols, the target gate U is not part of the
twirling group G: this is one of the reason why one can benchmark arbitrarily small rotations
over the Bloch axes with a relatively small number of gates. For a fixed sequence length `, the
protocol is constituted by the following steps:

(1) Prepare an initial state ρ (e.g., ρ = |0〉 〈0|).

(2) Draw a random sequence k` = (k1, . . . , k`) ∈N`
|G|.

(3) Apply the following operation generated by the symmetry operations Gki to the initial
state ρ

Ck`(ρ) = Ginv ◦ U ◦ Gk` ◦ · · · ◦ U ◦ Gk1 , (6.62)

where Ginv := G†k1
◦ · · · ◦ G†k` is the channel given by the composition of the inversion of all

previous random gates channels.
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(4) Perform a POVM E and measure the survival probability Qk` = Tr[E Ck`(ρ)]. To obtain
an appropriate precision for Fk` , this step has to be repeated sufficiently many times.

(5) Repeat the previous step for sufficiently many (say N) random sequences k`,1, . . . , k`,N of
length `. Then, calculate the sequences survival probability

Qseq(`, ρ) =
1
N

∑
k`

Qk` =
1
N

∑
k`

Tr[E Ck`(ρ)]. (6.63)

The number K of random sequences should be chosen such that

Qseq ≈ Qavg , (6.64)

where Qavg is the survival probability averaged over all possible sequences. The choice can
be motivated by an analysis on the variance of the random variable Q, with Qk` being a
realization and Qavg the mean of the distribution.

(6) Repeat the previous steps for different lengths `.

(7) Insert Qseq into the zero- or first-order fitting model,

Q(0)
avg(`, ρ) =

4n∑
j=1

(λj dj)
`ξj (6.65)

Q(1)
avg(`, ρ) = Q(0)

avg(`, ρ) +
∑
i 6=j

`−1∑
p=0

(λidi)
p (λjdj)

`−p−1 ζi,j (6.66)

where { dj } are the eigenvalues of the target matrix U and ξj , ζi,j are constants absorbing
SPAM errors, and obtain the parameters {λj } characterizing the average gate fidelity of
Ũ with respect to U .

The fitting model

Considering a noise channel Λ (where we now drop the subscript U to lighten notation) at each
implementation of U ◦ Gk, we can write

Ck` = Λ′ ◦ Ginv©1
t=` Λ ◦ U ◦ Gkt . (6.67)

Λ′ Ginv Λ U Gk` Λ U Gk1

Note that the error channel Λ′ characterizing the implementation of Ginv can be different from
the error for the implementation of U ◦ Gkt . Now, defining recursively Bkt := Gkt ◦ Bkt−1 with
Bk1 = Gk1 , and using the invariance of U under the action of G, we can rewrite

Ck` = Λ′©1
t=` B

†
kt
◦Λ ◦ Bkt ◦ U . (6.68)

When averaging over all possible sequences, we get Cavg = Λ′©1
t=` ΛG ◦ U , where ΛG :=

|G|−1∑
j∈N|G|

B†j ◦Λ ◦ Bj is now like U invariant with respect to the action of G. At this point
we use Schur’s Lemma to diagonalize the Pauli-Liouville representations of U and ΛG. If for
instance the decomposition of G into irreducible representations does not contain any multiplicity,
the two matrices are simultaneously diagonalizable. If conversely multiple of the same irreducible
representations occurs, in general there is no basis which brings both into a diagonal form and so,
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when diagonalizing the matrix U , the other will assume a block form, where each of these blocks
corresponds to an irreducible representation. For the moment, we assume that both matrices
are simultaneously diagonalizable. Writing d1, . . . , d4n and λ1, . . . ,λ4n to denote the diagonal
elements of U and ΛG respectively, we have

Q(0)
avg(`, ρ) =

4n∑
j=1

(λj dj)
`ξj , (6.69)

with ξj := Tr[E Λ′(vj)] 〈ρ, vj〉 absorbing the state preparation and measurement errors and where
{ vj }j is the set of the symmetry adapted vectors diagonalizing U .
We can now consider the case where also off-diagonal matrix entries are present. The main reason
of the protocol is that, by twirling the error channel over the symmetry group G, we reduce the
number of these off-diagonal matrix entries and so drastically decrease the amount of parameters
in the fitting model. Let us write ΛG = Λ0 + Λoff , with Λ0 being jointly diagonalizable with U .
Provided Λoff = {µi,j }i 6=j to be “small” (i.e., the second order perturbation being negligible),
we can consider the first order model

Q(1)
avg(`, ρ) = Q(0)

avg(`, ρ) +
∑
i 6=j

`−1∑
p=0

(λidi)
p (λjdj)

`−p−1 ζi,j , (6.70)

with ζi,j := µi,jdj Tr[E Λ′(vi)]〈ρ, vj〉. This expression may be re-formulated into a simpler form,
e.g., using the geometric series formula we obtain

Q(1)
avg(`, ρ) = Q(0)

avg(`, ρ) +
∑
i 6=j

(λjdj)` − (λidi)`

λjdj − λidi
ζi,j . (6.71)

As already mentioned, since we twirled over the symmetry group and so ΛG is block-diagonal, a
number of µi,j can be set to 0 in advance. More precisely, when a representation of the symmetry
group is written as a direct sum of irreducible representations as

π(g) =
⊕
α irrep

1mα ⊗ πα(g), (6.72)

where mα is the multiplicity of the irreducible representation πα, two matrices X and Y which
are both commuting with π(g) assume the form

X =
⊕
α

xα ⊗ 1dimα and Y =
⊕
α

yα ⊗ 1dimα, (6.73)

where xα, yα are square matrices with dim xα = dim yα = mα. One can then choose a basis such
that all xα are diagonal (so that X will assume a diagonal form), while Y will maintain a similar
form Y =

⊕
α ỹ

α ⊗ 1dimα. Hence, in our case, while diagonalizing U (from the Pauli-Liouville
representation), ΛG maintains a form as in eq. (6.73).

Construction of irreducible representations of semi-direct product groups

As we have discussed in the introduction of this section, it is possible to couple two groups to
construct a new one using direct and semi-direct products. We can also obtain all irreducible
representations of the latter using knowledge about irreducible representations of the original
two groups alone. For direct product, the procedure is straightforward, namely,

Theorem 6.3 ([119], Theorem 10, Chapter 3). Each irreducible representation of a direct group
G1×G2 is isomorphic to a representation π1⊗π2 with π1 and π2 being irreducible representations
of group G1 and G2 respectively.
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For a group generated by a semi-direct product N oH, a more sophisticated machinery is
needed (cfr. refs. [119, 120]), and works only if the normal subgroup N is also abelian, i.e., all
elements commute with respect to the group operation. Assuming N to be abelian, its irreducible
representations {χi }i are 1-dimensional and carry an action of G by

g · χi(a) = χi(g
−1ag) ∀a ∈ N and g ∈ G. (6.74)

Now, consider the orbits of the characters induced by the action of H and choose a set of
representatives {χr }r. For each r, let Hr be the stabilizer subgroup of χr in H and then define
Gr = N ·Hr. Now extend χr to Gr by

χr(ah) = χ(a) ∀a ∈ N and h ∈ Hr. (6.75)

Let θ be an irreducible representations of Hr and lift it to an irreducible representation θ̃
of Gr through the canonical projection P : Gr → Gr/N . As a final step, compose the two
representations and obtain a representation ρ

r,θ̃ of the group G by induction, i.e., ρ
r,θ̃ =

IndGGr (χr · θ̃). From ref. [119, Proposition 25], we know that the so constructed representations
ρ
r,θ̃ are irreducible and exhaust all irreducible representations of G. Since we will only need the

characters χρ
r,̃θ

of the irreducible representations of G to apply Schur’s Lemma in our protocol,
we will not elaborate on what induced representations are. To obtain the sought characters, it
suffices to make use of a Mackey-type formula

χρ
r,̃θ
(s) =

1
|Gr|

∑
g∈G

g−1sg∈Gr

χr · χθ̃ (g
−1sg). (6.76)

Connecting to the average gate fidelity

To retrieve from the fitted parameters the actual quantity that we aim to estimate, that is, the
average gate fidelity, we recall eq. (2.30) in Section 2.1 for an orthonormal basis {Vj }j such that
Tr[VjVk] = d,

E(FE,I) =
dFent(E) + 1

d+ 1 =

∑
j Tr[V †j E(Vj)] + d2

d2(d+ 1) , (6.77)

so that the average gate fidelity of the twirled error channel ΛG is related to the parameters
{λj }j obtained in the fitting model in eqs. (6.65)-(6.71) by

E(FΛG,I) =

∑
λj + d

d(d+ 1) . (6.78)

Now the question is what information about the original noise channel we can extract from the
twirled channeld ΛG. In fact their average gate fidelities are the same, since the entanglement
fidelity is invariant under twirling over the symmetry group G. Let us rewrite from eq. (2.29)

Fent(ΛG) = d−3∑
j

Tr[V †j ΛG(Vj)] (6.79)

=
d−3

|G|

|G|∑
k=1

∑
j

Tr[V †j g
†
kΛ(gkVjg

†
k)gk] (6.80)

=
d−3

|G|

|G|∑
k=1

∑
j

Tr[(W k
j )
†Λ(W k

j )], (6.81)

73



where we denote W k
j = gkVjg

†
k and used cyclicity of the trace. Since W k

j is again an orthogonal
basis with respect to the Hilbert-Schmidt inner product (i.e., Tr[(W k

j′)
†W k

j ] = d δj′j ∀k), then
d−3∑

j Tr[(W k
j )
†Λ(W k

j )] = Fent(Λ) so that

Fent(ΛG) =
1
|G|

|G|∑
k=1

Fent(Λ) = Fent(Λ) (6.82)

and hence
E(FΛ,I) = E(FΛG,I). (6.83)

Characterizing the error of the single gate U

In order to recover the fidelity of the gate U from the noise Λ, which originates from the
composition of U and a unitary gate from the symmetry group G, we first consider the χ matrix
representation of E ,

E(ρ) =
∑
i,j
χi,jPiρPj . (6.84)

We can characterize the error of the gate U distinguishing it from the one coming from the
symmetry group G, that we consider to be N for all element in the group (which can be
benchmarked separately using for instance the known methods to benchmark Clifford gates).
Using the bound from ref. [115, Appendix D] (where we set i = 0), we have

|χΛ◦N
0,0 − χΛ

0,0χ
N
0,0| ≤ 2

(
(1− χΛ

0,0)χ
Λ
0,0(1− χN0,0)χ

N
0,0

)1/2

+ (1− χΛ
0,0)(1− χN0,0). (6.85)

For an arbitrary channel E , we know that χE0,0 = Tr[E ]/d2 (cfr. [105, eq. 2.30] and eq. (6.78)),
so that we can recover the fidelity of the gate U form the one of the gates belonging to G and
from E(F(Λ◦N )G,I) obtained with our protocol. The bound is particularly valid in the regime
χN0,0 ≈ 1, i.e., when the gates of the symmetry group can be implemented with high fidelity.

Confidence interval

To asses the number of different random sequences that have to be sampled in order to justify
Qseq(`) ≈ Qavg(`) for a given sequence length `, Wallmann and Flammia in ref. [46] provided
bounds on the variance for the Clifford randomized benchmarking protocol described in ref. [105].
Their results show that a relatively small number of random sample is needed. We want to prove
a bound similar to that of ref. [46, Theorem 10] for the variance

σ2
` =

1
|G|`

∑
k`

Q2
k(`, ρ)−Qavg(`, ρ)2. (6.86)

In Pauli-Liouville representation and using (E|C|ρ)2 = (E⊗2|C⊗2|ρ⊗2), this can be expressed in
terms of a scalar product in the form

σ2
` =

1
|G|`

∑
k`

(E⊗2|C⊗2
k` |ρ

⊗2)− (E⊗2|C⊗2
avg,`|ρ

⊗2). (6.87)

Now, we assume to be in the regime Λ = 1+W∆t, where W is a bounded matrix under
additional assumption TrW = Θ(d2) , and expand the expression for the variance up the second
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order in ∆t,

σ2
` = ∆t2(E⊗2|

∑̀
j=1

1
|G|

∑
B∈G

(U ⊗U)`−j(B†WB ⊗B†WB)(U ⊗U)j |ρ⊗2) (6.88)

− (E⊗2|
∑̀
j=1

(U ⊗U)`−j(WG ⊗WG)(U ⊗U)j |ρ⊗2) +O(`2r2d4). (6.89)

The first term can be bounded as in ref. [46] using diamond norm properties and ref. [46,
Proposition 9] with 4d(d+ 1)`r. Again following that argument, the terms of order O(∆t3W 3)
and O(∆t4W 4) are O(`2r2d4). Knowing the structure of WG from the analysis of the symmetry
group G, we can upper bound the number of non-zero terms as∑

α

m2
α dα ≤ max

α
mα

∑
α

mα dα = max
α

mα d
2. (6.90)

From now on, we denote m = maxαmα and q = maxi,j qi,j , the largest matrix entry of W , that
we assume being independend of d. The second term in expression (6.88) obeys to the inequality

(E⊗2|
∑̀
j=1

(U ⊗U)`−j(WG ⊗WG)(U ⊗U)j |ρ⊗2) ≤ `q2m2d4. (6.91)

Now using
Tr[Λ] = d(d+ 1)E(F)− d (6.92)

follows
∆t = −rd(d+ 1)

Tr[W ]
, (6.93)

and so ∆t = O(r) since we assumed TrW = Θ(d2). Hence, the second term of eq. (6.88) is
O(m2 ` r2d4). While we do not have an exact estimation for the scaling of m for the general case,
in the illustrated example for tensor copies of T-gate this goes as O(log d). Summarizing gives a
bound for the variance

σ2
` ≤ 4d(d+ 1)`r+O(`2r2d4) +O(m2 ` r2d4), (6.94)

where the second term dominates the third one for ` � m2, i.e., in this regime the bound is
exactly equivalent to the one of ref. [46, Theorem 10]. This bound however is probably not tight,
and we are interested whether a bound similar to the one provided in ref. [112] can be obtained.

6.3.1 Example: Tensor copies of T-gate

We present an example to assess our protocol on one of the most relevant quantum gates, the
T-gate, which together with the Hadamard and CNOT gates gives rise to a universal quantum
circuit (cfr. Section 3.2). We are going to benchmark tensor copies of this gate too, up to four,
in order to get a feeling on the scalability and necessary resources for this method. We give in
the following the step-by-step protocol.

[1] Produce the n-Kronecker product group, denoted by An, of the local abelian symmetry
group


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 ,


1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 ,


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


,

which is isomorphic to the cyclic group of order 4, Z4.
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[2] Construct the representation of the symmetric group Sn permuting the local subsystems.

[3] Construct the full symmetry group G as a semi-direct product of An and Sn by multiplying
the respective 4n-dimensional matrix representations. Each g ∈ G is given by g = a.σ,
with a ∈ An,σ ∈ Sn.

[4] From the character table of Z4,

Z4 e γ γ2 γ3

χ0 1 1 1 1
χ1 1 i -1 -i
χ2 1 -1 1 -1
χ3 1 -i -1 i

construct the character table of An by taking the product of the respective characters

χc1,c2,...,cn(`1, `2, . . . , `n) := χc1(`1)χ
c2(`2) . . . χ

cn(`n) , (6.95)

where `j ∈ Z4 and cj is the label representing the irreducible representation.

[5] Divide the characters of An into orbits with respect to the action of Sn given by

σ.χ(a)c1,c2,...,cn := χ(σ−1aσ)c1,c2,...,cn . (6.96)

In this particular case, the action of Sn works as a permutation of the labels of the
irreducible representations, i.e.,

σ.χ(a)c1,c2,...,cn = χ(a)σ(c1,c2,...,cn). (6.97)

Choose for each orbit a representative element, for instance χ(a)c1,c2,...,cn with c1 ≤ c2 ≤
· · · ≤ cn, building a set {χj }j .

[6] For each representative element χj , find the stabilizer group Hj as a subgroup of Sn.

[7] For each irreducible representation π of Hj , write an irreducible representation of the
subgroup Gj := An ·Hj of G by

ρ̃jπ(a, gj) = χj(a) · π(gj). (6.98)

[8] Obtain the characters of the representation ρjπ of G induced by ρ̃jπ with the Mackey-type
formula,

χ
ρjπ
(s) =

1
|Gj |

∑
t∈G

t−1st∈Gj

χ
ρ̃jπ
(t−1st), (6.99)

and obtain the irreducible representation multiplicity mj
π in the decomposition of the

Pauli-Liouville representation of G by the formula

mj
π =

1
|G|

∑
g∈G

(
χ
ρjπ
(g)
)∗
· φ(g), (6.100)

where φ(g) is the trace of g in Pauli-Liouville representation.
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In case of n = 4, for instance, there are 256 different irreducible representations of A4 and
five stabilizer groups: the full permutation group S4 for the irreducible representations of the
form χa,a,a,a, a ∈ 0, 1, 2, 3, giving rise to 4 · 5 = 20 irreducible representations for G, S3 for the
representative irreducible representations of the form χa,a,a,b and χa,b,b,b with a < b, giving rise
to 12 · 3 = 36 new irreducible representations, S2 × S2 (isomorphic to the Klein 4 group) for
representative elements χa,a,b,b with a < b, so that a total of 6 · 4 = 24 irreducible representations
of G are derived, again representative elements χa,a,b,c,χa,b,b,c,χa,b,c,c with a < b < c have
stabilizer S2, producing additional 12 · 2 = 24 irreducible representations; finally, the single
representative element χ0,1,2,3 is the representative element of the sole orbit with trivial stabilizer.
Hence, we have in total 105 different induced irreducible representations of G whose characters
are obtained using eq. (6.99). As one can see from Table 6.1(d), only 22 of these irreducible
representations decompose the twirled noise matrix, and the trivial representation has the highest
multiplicity.

Results for n ≤ 4 We have obtained the irreducible decompositions for up to four tensor copies
of the T-gate (see the Appendix for the Mathematica code) and report in the next page, Table 6.1,
the decomposition of each twirled noise matrix. The superscripts of χ label the irreducible
representations of An, while after the semicolon we denote the irreducible representation of the
stabilizer group, where e denotes the trivial representation, sgn the sign representation, std the
standard representation for all subgroups of S4, kera the Kernel a representation of the Klein 4
group isomorphic to S2 × S2, while 2dim denotes the 2-dimensional representation of S4. We
note that χ2 never appears in the decomposition, and that the highest multiplicity, being n+ 1,
is always related to the trivial representation of the full group G. Additionally, we note that
exploiting Schur’s Lemma and the above considerations, the number of λj to be fitted when
benchmarking copies of the T-gate is

∑
α irrepmα; from 1 to 4 qubits, this number is 4, 11, 24, 46.

In Figure 6.1 we illustrate the Pauli-Liouville representation of the twirled noise channel. One
can notice that it becomes more sparse by increasing the system size.
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Irreducible representation Multip.
χ0 2
χ1 1
χ3 1

(a) One T-gate decomposition.

Irreducible representation Multip. Irreducible representation Multip.
χ0,χ0; e 3 χ0,χ1; e 2
χ1,χ1; e 1 χ0,χ3; e 2
χ3,χ3; e 1 χ1,χ3; e 1
χ0,χ0, sgn 1

(b) Two T-gates decomposition.

Irrep Dim Multip. Irrep Dim Multip. Irrep Dim Multip.
χ0,χ0,χ0; e 1 4 χ0,χ0,χ3; e 3 3 χ0,χ0,χ1; sgn 3 1
χ1,χ1,χ1; e 1 1 χ0,χ1,χ1; e 3 2 χ0,χ0,χ3; sgn 3 1
χ3,χ3,χ3; e 1 1 χ1,χ1,χ3; e 3 1 χ0,χ1,χ3; e 6 2
χ0,χ0,χ0; std 2 2 χ0,χ3,χ3; e 3 2
χ0,χ0,χ1; e 3 3 χ1,χ3,χ3; e 3 1

(c) Three T-gates decomposition.

Irrep Dim M. Irrep Dim M. Irrep Dim M.
χ0,χ0,χ0,χ0; e 1 5 χ1,χ1,χ1,χ3; e 4 1 χ1,χ1,χ3,χ3; e 6 1
χ1,χ1,χ1,χ1; e 1 1 χ0,χ3χ3,χ3; e 4 2 χ0,χ0,χ1,χ1; kera 6 1
χ3,χ3,χ3,χ3; e 1 1 χ1,χ3χ3,χ3; e 4 1 χ0,χ0,χ3,χ3; kera 6 1

χ0,χ0,χ0,χ0; 2dim 2 1 χ0,χ0,χ0,χ1; std 8 2 χ0,χ0,χ1,χ3; e 12 3
χ0,χ0,χ0,χ0; std 3 3 χ0,χ0,χ0,χ3; std 8 2 χ0,χ1,χ1,χ3; e 12 2
χ0,χ0,χ0,χ1; e 4 4 χ0,χ0,χ1,χ1; e 6 3 χ0,χ1,χ3,χ3; e 12 2
χ0,χ0,χ0,χ3; e 4 4 χ0,χ0,χ3,χ3; e 6 3 χ0,χ0,χ1,χ3; sgn 12 1
χ0,χ1,χ1,χ1; e 4 2

(d) Four T-gates decomposition.

Table 6.1: Irreducible decomposition of the symmetry group G of multiple tensor copies of the
T-gate channel. The superscripts of χ label the irreducible representations of An while the word
after the semicolon the irreducible representation of the stabilizer group: e denotes the trivial
representation, sgn the sign representation, std the standard representation, kera the Kernel a
representation of the Klein 4 group, 2dim the 2-dimensional representation of S4.
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(a) Twirled noise matrix for one
T-gate.

(b) Twirled noise matrix for two
T-gates.

(c) Twirled noise matrix for
three T-gates.

(d) Twirled noise matrix for four
T-gates.

Figure 6.1: Matrix representation for the twirled noise of tensor copies of T-gates. The green
area represents the non-zero matrix entries. For each matrix, the irreducible representations are
sorted as in Table 6.1, reading from top to bottom, left to right.
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Brownian motion over the unitary group

In Chapter 5, we have described random quantum circuits and their link with random walks, a
discrete stochastic process. One of the principal aim of this work is to embed random quantum
circuits into a more general and continuous-time stochastic process over the unitary group,
namely, Brownian motion, which as we shall see in the following is directly related to the context
of stochastically fluctuating local Hamiltonians [64, 121]. In our article Mixing properties of
stochastic quantum Hamiltonians [41] we have proven that these two settings indeed have in
common many properties, from mixing results to the underlying random walks, as we shall
illustrate in this chapter.
The study of continuous-time unitary evolution, besides its relevance from a purely mathematical
perspective, can be of interest in order to understand spontaneous processes in Nature, such as
dissipative ones, and are reminiscent in many ways and sometimes exactly model thermalising
dynamics of interacting quantum systems with many constituents [122]. This link has prominently
been explored in the context of black hole thermalisation (cfr. Section 7.3). This phenomenon
is connected to the still unresolved puzzle asking how quickly black holes release information
about their microscopic state. Based on considerations from string theory and gauge-gravity
correspondences [123, 124], it is increasingly becoming clear that black holes do not destroy
information when evaporating. This insight raises the question on what time scales this release
of information precisely happens. It has been suggested that the time scale is set by the time it
takes to “scramble” the microscopic degrees of freedom of the black hole, in a way that initial
perturbations will be locally undetectable. In this regard, according to the famous fast scrambling
conjecture, black holes should indeed be perfect scramblers, taking a time logarithmic in the
number of degrees of freedom [37, 64].
More generally, any experimental setting in quantum mechanics will necessarily be interacting with
a classical exterior in one way or another. Many decoherence mechanisms can well be approximated
by a classical degree of freedom fluctuating randomly in time. In fact, effects like magnetic
field fluctuations are of this type, and so are Gaussian noisy processes in condensed matter
physics. This type of noise is usually seen as a detrimental type of decoherence, deteriorating
the correlation present in the quantum mechanical system. This connection to local dissipative
dynamics will be made clear below in Subsection 7.3 and in particular Proposition 7.28.
Again more technologically or pragmatically speaking, it should be highlighted that fluctuating
Hamiltonians by no means have to reflect unwanted external noise. Quite to the contrary, in many
applications in which random quantum circuits are envisioned, one can as well replace the quantum
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circuit by the mere time evolution under such a fluctuating Hamiltonian. In many situations this
can lead to a significantly simplified prescription, compared to implementing precisely controlled
quantum gates that are designed according to samples of some suitable classical probability
distribution. That is to say, in a number of instances, fluctuating Hamiltonians can be seen as
being vastly more feasible than random circuits that require the accurate realization of quantum
gates.

Brownian motion (also referred to as Wiener process in Probability theory) has a long history.
The Roman poet and philosopher Titus Lucretius anticipated in 60 b.C. in the second volume of
De rerum natura the description of this process,

For look closely, whenever rays are let in and pour the sun’s light through the dark
places in houses: for you will see many tiny bodies mingle in many ways all through
the empty space right in the light of the rays, and as though in some everlasting strife
wage war and battle, struggling troop against troop, nor ever crying a halt, harried
with constant meetings and partings; so that you may guess from this what it means
that the first-beginnings of things are for ever tossing in the great void. So far as may
be, a little thing can give a picture of great things and afford traces of a concept. And
for this reason it is the more right for you to give heed to these bodies, which you see
jostling in the sun’s rays, because such jostlings hint that there are movements of
matter too beneath them, secret and unseen. For you will see many particles there
stirred by unseen blows change their course and turn back, driven backwards on their
path, now this way, now that, in every direction everywhere. You may know that
this shifting movement comes to them all from the first-beginnings. For first the
first-beginnings of things move of themselves; then those bodies which are formed of
a tiny union, and are, as it were, nearest to the powers of the first-beginnings, are
smitten and stirred by their unseen blows, and they in their turn, rouse up bodies a
little larger. And so the movement passes upwards from the first-beginnings, and
little by little comes forth to our senses, so that those bodies move too, which we
can descry in the sun’s light; yet it is not clearly seen by what blows they do it.[125]

Many centuries later, in 1784, the physiologist and botanist Jan Ingenhousz described the
scattered motion of a coal dust particle on a surface of alcohol similarly to the observations of
the botanist Robert Brown in 1827 regarding the edgy motion of pollen grains suspended in
water. Albert Einstein in 1905 made use of Brown’s considerations and by formalizing Brownian
motion as a stochastic process he gave an interpretation for particle diffusion that also served to
indirectly confirm the existence of atoms and molecules. However, a completely mathematically
rigorous construction of this process and existence thereof is due to the mathematician Norbert
Wiener in 1923.

We are now going to approach a more formal description. Brownian motion over a topological
group such as U(N) is quite different from its equivalent over an Euclidean space. However,
recalling the definition and the main properties of the latter is certainly a useful exercise before
diving into the theory of Brownian motion over Lie groups.

Definition 7.1 (Brownian motion, cfr. Definition 2.18 in ref. [126]). A real-valued stochastic
process Bt, t ∈ [0,∞) is called Brownian motion if

(1) B0 = 0,

(2) B has stationary increments, i.e., for s, t with s ≤ t, Bt −Bs is equal in distribution to
Bt−s,
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(a) Scaling property of Brownian motion (picture taken from
Multiscale Statistics for Evolving Complex Systems, by R.
H. Riedi,
http://www.stat.rice.edu/riedi/research-easy.html.)

(b) Brownian motion in 3 dimensions
(picture taken from Brownian mo-
tion, Wikipedia, by T. J. Sullivan,
https://en.wikipedia.org/wiki/Brownian
motion.)

Figure 7.1

(3) B has independent increments, that is, for all 0 < t1 < t2 < · · · < tn, the increments
Bt1 −B0,Bt2 −Bt1 , . . . ,Btn −Btn−1 are independent random variables,

(4) for all 0 ≤ s < t, Bt −Bs ∼ N (0, t− s),

(5) the paths t 7→ Bt are continuous almost surely.

Brownian motions exhibit self-similarity properties, namely,

Proposition 7.2. Let Bt be a Brownian motion. Then B̃1
t = B1 −B1−t for 0 ≤ t ≤ 1 is equal

in distribution to Bt, (time-shifting). Moreover, B̃2
t =

{
0 t = 0
tB1/t t > 0

(time-inversion) and

B̃3
t = 1/cBc2t with c > 0 (Brownian scaling) are Brownian motions.

The latter construction, B̃3
t , tells us that we can “zoom in” a Brownian motion and obtain again

a Brownian motion, somehow in the same fashion as a fractal (see Fig. 7.1a).
One can also generalize the process introducing a drift term µ and re-scaling the variance by
σ2 writing Xt = X0 + µt+ σBt. The increments are then distributed as N (µ(t− s),σ2(t− s)),
and so we can describe any continuous-time (non-deterministic) Lévy process through Brownian
motion.

While this stochastic process is, by definition, almost surely continuous, it is also nowhere
differentiable (again almost surely), i.e., for all t

lim
h→0

sup B(t+ h)−B(t)

h
= +∞ and lim

h→0
inf B(t+ h)−B(t)

h
= −∞. (7.1)

This implies that the usual rules for differential and integration do not apply. Kiyoshi Itō
introduced a new theory in order to treat these operations for Brownian motion, called Itō
calculus [127, 128], nowadays widely applied in different contexts from pure mathematics to
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econometrics.

Constructing Brownian motion (and hence proving existence thereof) is possible in different ways,
e.g., with a Lévy construction, with harmonic functions or as a limit of a random walk. To briefly
illustrate the last case, let us consider a sequence of independent and identically distributed
random variables {Xn }n≥1 with E[Xn] = 0 and var(Xn) = 1. Note that we are not losing
generality, since we can always consider the renormalization

Xn −E[Xn]√
var(Xn)

. (7.2)

Let us now construct a random walk Sk =
∑k
n=1Xn and interpolate between the points, namely,

let us construct a random function in the space of continuous functions in [0,∞) , C([0,∞)),

S(t) := Sbtc + (t− btc)(Sbtc+1 − Sbtc). (7.3)

We re-scale the interpolation on C([0, 1]) by S∗n(t) = S(nt)/
√
n. Then the following theorem,

called Donsker’s invariance principle or alternatively functional central limit theorem, states
that:

Theorem 7.3 (Donsker’s invariance principle, cfr. [129]). The distribution S∗n converges weakly
to a Brownian motion on t ∈ [0, 1].

Note that the central limit theorem, extended by Donsker to the whole interval [0, 1], is the
underlying reason for the distribution of the increments of Brownian motion to be strictly normal.

Brownian motion can of course be brought in Euclidean spaces of larger dimension (Fig. 7.1b).
Then, for Bt ∈ Rd, the increments (B(t)−B(s))1, . . . , (B(t)−B(s))d are independent random
variables distributed according to N (0, t− s). Again, one can generalize the process adding
a drift vector µ ∈ Rd and a diffusion (symmetric, positive semi-definite) matrix Σ ∈ Rd ×Rd

and write Xt = X0 + µt+ ΣBt so that the increments are multivariate normal distributed with
expectation µ(t− s) and covariance matrix ΣΣT (t− s).

Brownian motion over a Lie group is however somehow different to construct. In particular,
central limit theorem is no more valid and so the distribution of the increments should not be
treated as normal distributed. Hence, we define Brownian motion on the unitary group U(n) as
follows [34–36]:

Definition 7.4 (Brownian motion on the unitary group). A process Ut on the unitary group
U(N) is called Brownian motion if the following conditions are satisfied.

(1) U0 = 1.

(2) For any time t ≥ 0, the increments are stationary, i.e., for any ∆t > 0 the increment
Ut+∆tU

†
t is equal in distribution to U∆tU

†
0 .

(3) For all 0 < t1 < t2 < · · · < tn, the (left) increments Ut1U
†
0 ,Ut2U

†
t1 , . . . ,UtnU

†
tn−1 are

independent.

(4) The paths t 7→ Ut are continuous almost surely.

Brownian motion Ut on the Lie group U(N) corresponds to Brownian motion Wt on the Lie
algebra u(N) through the exponential map, which for a matrix Lie group is given by the
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series exp(X) =
∑∞
n=0X

n/n!. More precisely, one can construct Brownian motion on U(N)
by injecting the differential of a Brownian motion from u(N) via the product integral of the
exponential map [130, 131],

Ut = lim
∆t→0

1∏
`=t/∆t

exp
{
W`∆t −W(`−1)∆t

}
U0 . (7.4)

We can turn to a more physical description through quantum Hamiltonians, whose increments
are denoted by

H`,∆t := i Θ`,∆t (7.5)
with

Θ`,∆t :=
1

∆t

[
W`∆t −W(`−1)∆t

]
(7.6)

being the increments in the Lie algebra u(N). More specifically, in this work we will consider
local Hamiltonian increments on the physical quantum system consisting of n subsystems of
dimension d, so that N becomes dn. Those subsystems interact according to a pattern captured
by an interaction graph with vertex set V and edge set E. In the special case of d = 2, this is
referred to the qubit case, and the system is an n-qubit system.
We assume that Θ`,∆t from eq. (7.6) is local with respect to an interaction graph (V ,E), where
each vertex in V corresponds to a d-level subsystem. Only qudits connected by an edge e ∈ E
may interact, i.e.,

Θ`,∆t =
∑
e∈E

θ
(e)
`,∆t , (7.7)

where each local term θ
(e)
`,∆t is supported on e. The local terms are explicitly given by

θ
(e)
`,∆t = −ih(e)0 +

∑
µ

A(e)
µ ξ

(e,µ)
`,∆t , (7.8)

where we specify each term in this equation in the following. h(e)0 are deterministic Hermitian
operators reflecting a constant drift in the evolution. Each noise operator A(e)

µ acts on the two
vertices connected by e as Aµ and as the identity elsewhere. {Aµ }µ is a basis of the real Lie
algebra

u(d2) := {X ∈ Cd2×d2
: X = −X†}. (7.9)

ξ
(e,µ)
k are real random variables representing the noise. We assume that the noise satisfies

E
[
ξ
(e,µ)
`,∆t

]
= 0, (7.10)

E
[
ξ
(e,µ)
`,∆t ξ

(e′,µ′)
`′,∆t

]
= − a

∆t
δ`,`′ δe,e′ κ

−1
µ,µ′ , (7.11)

where a > 0 is an arbitrary constant and the matrix κ is defined by

κµ,ν := −2d2 Tr(A†µAν). (7.12)

As we will explain later, this matrix is in fact the Killing metric tensor associated with the
basis {Aµ }µ.

Remark 7.5 (Orthonormal basis). If the basis {Aµ }µ is orthonormal then our assumption (7.11)
on the covariance simplifies to

E
[
ξ
(e,µ)
`,∆t , ξ(e

′,µ′)
`′,∆t

]
=

a

2d2∆t
δ`,`′ δe,e′ δµ,µ′ (7.13)

which represents white noise. This happens, for instance, if we choose the Pauli basis (see the
example processes in Example 7.1.5 and Section 7.2).
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Remark 7.6 (Overcomplete sets of operators). Additionally, we may consider an overcomplete
set of operators {Aµ }µ ∈ u(d2) as long as they give rise to a negative contribution to the
generator (7.23), since this will increase the gap of the moment operator induced by the stochastic
evolution and hence make the convergence even faster.

The above described Brownian motion with Hamiltonian increments as in eq. (7.7) with the
specified θ(e)` induces a Brownian motion Ut on the unitary group. We denote the distribution of
Ut at time t by SLH(t) and write the according expectation as ESLH(t).

7.1 Brownian motion on the unitary group is a k-design
In this section we investigate mixing properties of random quantum processes in quantum
many-body systems. We show that the locally generated Brownian motion gives rise to an
efficiently approximate unitary k-design of arbitrary order, i.e., each of its moment operators
converges to the one of the Haar measure in polynomial run time. Furthermore, the convergence
rate is compatible to that of a random quantum circuit in discrete time that we have discussed
in Section 5.2. Our main technical contribution is a connection between the generator of the
local diffusion and the Casimir element of the special unitary group. This allows us to obtain an
explicit uniform lower bound on the gap of the local generator, i.e., independent of the order
k. Hence, our contribution provides a new class of probability measures on the unitary group
whose set of generated unitaries has the spectral gap property [98, 132], and moreover, with an
explicitly known constant. This might be an unexpected result, as the convergence time of the
k-th moment increases with k for many processes.

Hence, for any of the time-fluctuating local Hamiltonians fulfilling the description given in the
previous part of the chapter, these results can be expressed in terms of quantum tensor product
expanders or approximate unitary designs as follows.

Theorem 7.7 (Local Brownian motions on U(dn) are quantum (λ, k)-tensor product expanders,
Theorem 9 in ref. [41]). Let UT be a unitary Brownian motion with the increments given in
eqs. (7.7)-(7.12) with the interaction graph (V ,E) being either a complete graph or a 1D nearest
neighbour graph. Then, for any run time

T ≥ 850dlogd(4k)e2d2k5k3.1/ ln(d) ln(1/λ)
a

, (7.14)

UT is a quantum (λ, k)-tensor product expander.

Then, using Lemma 3.12, we immediately obtain the subsequent corollary.

Corollary 7.8 (Approximate unitary k-designs, Corollary 10 in ref. [41]). For any run time

T ≥ 850dlogd(4k)e2d2k5k3.1/ ln(d) nk ln(d) + ln (1/ε)
a

, (7.15)

UT is an ε-approximate unitary k-design.

Theorem 7.7 can be seen as a unifying statement on random quantum processes. It extends the
results on random local quantum circuits, as considered in ref. [27, Corollary 7], to continuous
time dynamics under fluctuating Hamiltonians. Note that the scaling of the minimal run time
required for the generating of a unitary k-design is by a factor of n smaller with respect to the
circuit setting. This is due to the number of Hamiltonian interactions per time step growing
linearly in the system size for a 1D graph (which is, as discussed in Lemma 7.16, the slowest
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setting among all complete graphs), while for local random quantum circuits only one gate per
step is applied. If we re-scale the stochastic Hamiltonian with a pre-factor O(1/

√
n) so that

the k-th moment operator may be written in the same form as the one induced by a random
quantum circuit, i.e.,

Mk =
1
n

∑
j

(
mk
)j,j+1

, (7.16)

where
(
mk
)j,j+1

denotes the local moment operator applied on qubits j and j + 1, then we
would instead obtain the same scaling for the mixing time. Therefore, we can consider the two
scenarios as perfectly compatible.

7.1.1 Proof of Theorem 7.7

In this section, we prove Theorem 7.7 bounding the time after which the stochastic time evolution
becomes a tensor product expander. As a crucial step we investigate the gap of the local generator
induced by the Hamiltonian increments as given in eqs. (7.7)-(7.12).
The proof will be structured as follows: we first derive in Lemma 7.9 the generator of the k-th
moment operator and then describe how this allows us to express it as a tensor product expander
using previous results on random quantum circuits. In Subsection 7.1.2 we provide the central
mathematical result of this work, namely, a diagonalisation of the local generator by relating it to
the Casimir element in the enveloping algebra of su(d2). Since only certain irreps are contained
in the direct sum decomposition of the Casimir element, we will observe that no eigenvalue can
assume a value in the interval (0,1), giving rise to a local gap.
Much of the developed machinery will build upon the representation theory of the special unitary
group. It will also be helpful to use the identification of maps on matrices with matrices using
the vectorisation isomorphism (cfr. Section 2.1) to express the k-th moment operator as

Mk
µ = Eµ[πk,k(U)] , (7.17)

where πk,k(U ) is the (k, k)-mixed tensor representation of the group element U ∈ SU(N) given
by

πk,k(U) := U⊗k ⊗U⊗k. (7.18)

We also make use of the corresponding representation of the Lie algebra su(N) which is also
denoted by πk,k and satisfies the following for all X ∈ su(N):

πk,k(exp(X)) = exp(πk,k(X)), (7.19)

with

πk,k(X) =
k∑
i=1

X ⊗ 1i +
2k∑

i=k+1
X ⊗ 1i (7.20)

and
X ⊗ 1i := 11 ⊗ . . .⊗ 1i−1 ⊗X ⊗ 1i+1 ⊗ . . .⊗ 12k. (7.21)

This representation plays a central role in our analysis of the gap of the k-th moment operator of
the stochastic time evolution.
The k-th moment operator Mk

SLH(T ) has a generator that we explicitly calculate in the following.
In fact, the lemma also holds for general Brownian motions on U(N), not only the locally
generated ones considered in our theorems.
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Lemma 7.9 (The generator of the k-th moment operator). Let Mk
T be the k-th moment operator

of a unitary Brownian motion with increments Θ∆t as in eq. (7.6) at time T . Then

Mk
T = eGk T (7.22)

with
Gk = lim

t→0

(
E [πk,k(Θt)] +

1
2E

[
πk,k(Θt)

2 t
])

. (7.23)

Note that as Θt is anti-Hermitian, Gk is negative semidefinite. If the Brownian motion is universal
then the kernel of Gk is the invariant subspace of Mk.
Most steps in the proof of this lemma will be also used again in the proof of Theorem 7.7.

Proof. As Mk
T is a Markov process, we have

Mk
T = (Mk

∆t)
T/∆t . (7.24)

With the mixed tensor representation (7.18) and the definition of the k-th moment operator (3.4)
we obtain for a single time step

Mk
∆t = E [πk,k (U∆t)] (7.25)

= E [πk,k (exp {Θ∆t ∆t})] (7.26)

with U∆t = eΘ∆t ∆t and the increments Θ∆t from eq. (7.6). Using a Taylor expansion yields

Mk
∆t = E

[
eπk,k(Θ∆t)∆t

]
(7.27)

=
∞∑
p=0

(∆t)p

p!
E [πk,k(Θ∆t)

p] (7.28)

= 1dim(πk,k) +E [πk,k(Θ∆t)]∆t+E
[
πk,k(Θ∆t)

2
] ∆t2

2 +O(∆t2) . (7.29)

Composing the time steps as in eq. (7.24), we obtain

Mk
T = lim

∆t→0

(
1dim(πk,k) +

(
E [πk,k(Θ∆t)] +E

[1
2πk,k(Θ∆t)

2∆t
])

∆t
)T/∆t

(7.30)

and finishes the proof.

Additionally, we remark the following lemma on random quantum circuits generated by general
local distributions, which is implicitly contained in ref. [27, Corollary 7].

Lemma 7.10 (Relating global and local gaps). Let µloc be a distribution on U(d2) and circ(µloc)
be the distribution on U(dn) that applies a unitary drawn according to µloc to a uniformly chosen
edge of an interaction graph i, i+ 1. Then, its moment operator satisfies

‖Mk
circ(µloc) −M

k
Haar‖∞ ≤ 1−

(
1− ‖mk

µloc
−mk

Haarloc‖∞
) (

1− ‖Mk
circ(Haarloc) −M

k
Haar‖∞

)
,

(7.31)

where Haarloc denotes the Haar measure on U(d2).
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Proof. Setting
(
Mk

Haar

)⊥
= 1−Mk

Haar we have the relation

‖Mk
circ(µloc) −M

k
Haar‖∞ = ‖

(
Mk

Haar

)⊥
Mk

circ(µloc)

(
Mk

Haar

)⊥
‖∞ (7.32)

= ‖ 1
|E|

n−1∑
e∈E

(
Mk

Haar

)⊥
mk,(e)
µloc

(
Mk

Haar

)⊥
‖∞ . (7.33)

By denoting γ := ‖mk
µloc
−mk

Haarloc‖∞, we find mk,(e)
µloc ≤ (1− γ)mk,(e)

Haarloc + γ1, which implies the
operator inequality

(
Mk

Haar

)⊥(∑
e∈E

mk,(e)
µloc

)(
Mk

Haar

)⊥
≤ γ|E|

(
Mk

Haar

)⊥
(7.34)

+ (1− γ)
(
Mk

Haar

)⊥(∑
e∈E

m
k,(e)
Haarloc

)(
Mk

Haar

)⊥
. (7.35)

Since (1− γ) is positive, we can use the bound A ≤ ‖A‖∞ for the second summand on the right
hand side which, together with

‖Mk
circ(Haarloc) −M

k
Haar‖∞ = ‖

(
Mk

Haar

)⊥
Mk

circ(Haarloc)

(
Mk

Haar

)⊥
‖∞ (7.36)

finishes the proof.

Now we present the main proof of Theorem 7.7. Part of it will be completed with the lemmas
stated and proved subsequently.

Proof of Theorem 7.7. Thanks to Lemma 3.14 it is enough to bound the gap of the k-th moment
operator Mk

SLH(T ). According to Lemma 7.15, the time constant part of the Hamiltonian does
not affect the invariant subspace nor the gap of Mk

SLH(T ). Hence, we can set without loss of

generality h(e)0 = 0 ∀e. Additionally, in Lemma 7.16 we prove that the gap of an interaction
graph being a complete graph is larger than the one of a 1D graph. We hence consider only the
latter case in the proof.
Using the approximation (7.29) and expressing Θ in terms of the local terms θ(e) (as in eq. (7.8))
we obtain

Mk
SLH(∆t) = 1dim(πk,k) +

∑
e∈E

E
[
πk,k(θ

(e)
∆t )

2
] ∆t2

2 +O(∆t2) (7.37)

Using another Taylor approximation yields

Mk
SLH(∆t) = 1dim(πk,k) +

1
n

∑
e∈E

E

[
πk,k

(√
n θ

(e)
∆t

)2
]

∆t2

2 +O(∆t2) (7.38)

=
1
n

∑
e∈E

E

[(
exp{

√
n θ

(e)
∆t ∆t}

)⊗k,k]
+O(∆t2) . (7.39)

Next, we view G(θ
(e)
∆t ) := exp{

√
n θ

(e)
∆t ∆t} as a random gate in a G-random quantum circuit

considered in ref. [27]. The (system size independent) local k-th moment operator on edge e ∈ E
is

m
k,(e)
∆t := E

[(
exp{

√
n θ

(e)
∆t ∆t}

)⊗k,k]
. (7.40)
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Note that this k-th moment operator also corresponds to a Brownian motion but with a variance
re-scaled by a factor of n, cfr. also the parameter a in eq. (7.11). As its gap, i.e., the difference
between the largest and second largest eigenvalue, does not depend on e we simply denote the
gap of mk,(e)

∆t by ∆(mk
∆t). Then the local gap lemma 7.10 yields directly∥∥∥Mk

SLH(∆t) −M
k
Haar

∥∥∥
∞
≤ 1− ∆

(
mk

∆t

) (
1− ‖Mk

circ(Haar) −M
k
Haar‖∞

)
, (7.41)

where we recall that Mk
circ(Haar) is the k-th moment operator of single step of a local random

quantum circuit whose gates are chosen from the Haar measure. The gap of Mk
circ(Haar) can be

lower bounded with Theorem 5.8, that is,

(
1− ‖Mk

circ(Haar) −M
k
Haar‖∞

)
≥ 1

425ndlogd(4t)e2 d2 k5 k3.1/ ln(d) . (7.42)

Together with eq. (7.41), these results imply

‖Mk
SLH(∆t) −M

k
Haar‖∞ ≤ 1− ∆(mk

∆t) s/n (7.43)

with
s :=

(
425dlogd(4k)e2d2k5k3.1/ ln(d)

)−1
. (7.44)

In order to calculate ∆(mk
∆t) we use Lemma 7.9, eq. (7.40) and

E
[
πk,k(θ

(e)
t )

]
= 0 (7.45)

so that we can express mk,(e)
∆t as

m
k,(e)
∆t = exp

(
n g

(e)
k ∆t

)
= 1+ n g

(e)
k ∆t+O(∆t2) (7.46)

with
n g

(e)
k =

1
2 lim
t→0

E
[
πk,k(

√
n θ

(e)
t )2 t

]
=
n

2 lim
t→0

E
[
πk,k(θ

(e)
t )2 t

]
. (7.47)

Hence,
∆(mk

∆t) = n∆(gk)∆t+O(∆t2) , (7.48)

where ∆(gk) denotes again the spectral gap to the invariant subspace, i.e., minus the largest
non-zero eigenvalue of g(e)k .
As both k-th moment operators have the same unit eigenvalue eingenspace according to
Lemma 3.14, ‖Mk

SLH(∆t) −M
k
Haar‖∞ is the second largest eigenvalue of Mk

SLH(∆t). Hence,

‖Mk
SLH(T ) −M

k
Haar‖∞ = lim

∆t→0
‖
(
Mk

SLH(∆t)

)T/∆t
−Mk

Haar‖∞ (7.49)

= lim
∆t→0

(1− s∆(gk))
T/∆t (7.50)

= exp (−T s∆(gk)) . (7.51)

Observation 7.12 and Lemma 7.13 imply that the gap is the same as the variance (7.11) of the
noise, ∆(gk) = a/2, which completes the proof.
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7.1.2 Local gap

In order to calculate the local gap ∆(gk), the following representations for the algebra su(N)
will be used.

Trivial rep. π1 : su(N)→ gl(1,C), X 7→ 0, (7.52)
Fundamental rep. πf : su(N)→ gl(N ,C), X 7→ X, (7.53)

Adjoint rep. πad : su(N)→ gl (su(N)) , X 7→ adX , (7.54)

where adX is defined by adX(Y ) := [X,Y ].

Observation 7.11 (Omitting the phase). From the mixed-tensor representation we note that
we can restrict the analysis on the su(N) algebra instead of u(N).
Let C(n) be the center of U(n), that is, the set of all scalar matrices λ1 with λ element of the
circle group T = {λ : |λ| = 1 }. Let

Z(n) = SU(n) ∩ C(n) = { ei2πj/n1 : j = 0, . . . ,n− 1 }

be the center of SU(n), i.e., the subset of the C(n) with the roots of the unity.
It is known that [133]

U(n) = SU(n)×C(n)/Z(n), (7.55)

that is, the direct product SU(n)× C(n) is a n-fold cover of the unitary group U(n); for any
U ∈ U(n) with detU = λ, its inverse image with respect to the cover map is given by n

Cartesian pairs
{ (

S e−i2πj/n,β ei2πj/n 1
)

: j = 0, . . . ,n− 1
}
, where β is an arbitrary n-root of

λ and S ∈ SU(n) such that U = βS.
Let us define the interval in the unit circle I(n) = {λ = eiφ : φ ∈ [0, 2π/n) } ⊂ T. Then U(n)
is homeomorphic to SU(n)× I(n) and any matrix U ∈ U(n) can then be written uniquely as
U = βS, with β =

n√detU ∈ I(n) and S ∈ SU(n). Hence

πk,k(U) = U⊗k ⊗U⊗k = (βS)⊗k ⊗ (βS)⊗k = πk,k(S) (7.56)

and so the in this representation the two algebras are indistinguishable.

The Killing form K in su(N) is the symmetric bilinear form defined by

K(X,Y ) := Tr [adXadY ] . (7.57)

Denoting the Hilbert-Schmidt inner product of X and Y (in the fundamental representation) by
〈X,Y 〉 = Tr(X†Y ), the Killing form of su(N) can also be written as

K(X,Y ) = −2N 〈X,Y 〉 . (7.58)

In terms of a basis {Xµ}N
2−1

µ=1 of su(N) the Killing metric tensor κ is defined by

κµ,ν := K(Xµ,Xν) , (7.59)

as was already indicated in eq. (7.12). Then, the Casimir element in a matrix representation π
is

C(π) :=
∑
µ,ν

κ−1
µ,ν π(Xµ)π(Xν) . (7.60)
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According to eqs. (7.47) and (7.8), the local generator g(e)k of our unitary process with vanishing
driving h(e)0 = 0 is given by

g
(e)
k =

1
2 lim

∆t→0
E

πk,k

N2−1∑
µ=1

A(e)
µ ξ(e,µ)

2
∆t = −a2

N2−1∑
µ,ν=1

κ−1
µ,ν πk,k

(
A(e)
µ

)
πk,k

(
A(e)
ν

)
(7.61)

(where N := d2). The second equality follows from our central assumption (7.11). All g(e)k are
tensor copies of a local operator gk. Therefore, we will suppress the subscripts e in this section
from now on.

Observation 7.12 (Casimir element). Let gk be the generator of the local k-th moment operator
in eq. (7.61). Then

gk = −
a

2 C(πk,k) . (7.62)

More generally, an overcomplete set {Aµ } can also be admitted, as already mentioned in
Remark 7.6. The final result about the convergence rate – up to a constant O(1) – is still valid
as long as the generator and the Casimir element are related by an equation of the form

gk = −
a

2
′
C(πk,k) + g′ , (7.63)

where a′ > 0 and g′ is negative semidefinite so that it can only increase the gap.
In the following, we prove that the eigenvalues of the Casimir do not assume a value within the
interval (0, 1), for all k.

Lemma 7.13 (Casimir gap). Let Ik be the set of irreducible representations occurring in πk,k
and let mk(π) ∈N denote the multiplicity of each such representation π. Then

C(πk,k) '
⊕
π∈Ik

c2(π)1dim(π) ⊗ 1mk(π), (7.64)

where

c2(π)


= 0 if π ' π1,
= 1 if π ' πad,
> 1 otherwise.

(7.65)

In particular, the spectral gap of C(πk,k) is independent of k.

Proof. Since the Casimir element is an element of the center of the universal enveloping algebra,
from Schur’s Lemma follows that it acts as a multiple of the identity in each irreducible
representation (see ref. [134, Chapter 12]), so that (7.64) is immediate. Now, since the tensor
product between the fundamental representation and its conjugate are isomorphic to the direct
sum of the trivial and the adjoint ones, this means that the representation πk,k is isomorphic to
(π1 ⊕ πad)

⊗k.
The trivial representation is guaranteed to occur in the decomposition of πk,k into irreducible
representations (for example, via π⊗k1 ) and leads to the eigenvalue c2(π1) = 0. The adjoint
representation always occurs – for example, via πad ⊗ π

⊗(k−1)
1 and permutations thereof – too,

and leads to the eigenvalue c2(πad) = 1. If we can show that no other irreducible representation π
with c2(π) ≤ 1 occurs, the proof is complete.
One might think that this requires rather detailed knowledge about how tensor product represen-
tations of the form π⊗lad decompose into irreducible representations. To follow the next argument,
some basic knowledge regarding Young diagrams is necessary. These are arrays of boxes arranged
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in N − 1 left-justified rows whose length is non-increasing from top to bottom, each of them
connected to an irreducible representation, e.g.,

.

In particular, the following holds true.

• The Young diagram of the fundamental representation is given by one single box .

• The trivial representation does not have any box; we can denote it by ∅.

• The adjoint representation is given by a column of N − 1 boxes and a second column made
of a single box. For example, the adjoint representation of su(5) is given by

.

• The conjugate representation of a Young diagram whose first row contains ` boxes is given
by the complementary diagram (rotated by 180 degrees) shaping the rectangle of N rows
and ` columns. For example, for su(5) the conjugate representation of

is since they build .

Note that the conjugate diagram of the fundamental representation is given by a single
column of N − 1 boxes, while the adjoint representation is self-conjugate.

Young diagrams are particularly helpful when decomposing the tensor product of two represen-
tations into a direct sum of irreducible representations. Here, one follows two steps: first, one
combines the boxes of the two diagrams by adding, one at a time, all boxes in the first row of the
second diagram to the first one, respecting the condition of non-increasing length from top to
bottom for the rows of the newly created diagrams and remembering that each of them can have
at most N rows. One repeats the procedure for all rows in the second diagram. As a second step,
one discards all diagrams which do not satisfy specific rules that we are not going to mention
here; for a full description, see ref. [135]. Furthermore, for the algebra su(N) all columns with N
boxes occurring in a diagram can be deleted.
Recalling that the tensor product of the fundamental representation and its conjugate can be
decomposed as a direct sum of the trivial and the adjoint representation and taking again su(5)
as an example, we have

U ⊗U = πf ⊗ πf = ⊗ = ∅ ⊕ = π1 ⊕ πad , (7.66)

since a diagram with a column of N = 5 boxes is equivalent to the trivial representation.
An alternative way to express an irreducible representation of su(N) is to associate a Dynkin
label (λ1,λ2, . . . ,λN−1), where λb gives the number of columns made of b boxes. For instance,
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the fundamental representation is given by the label (1, 0, . . . , 0) and the adjoint representation
by (1, 0, . . . , 0, 1).
It is in fact sufficient to exploit a remarkably basic property which is shared by all the irreducible
su(d2) representations occurring in πk,k: their Young diagrams must have a number of boxes
which is divisible by d2. This can be seen for instance by induction: (π1 and πad) are two
representations made of 0 and d2 boxes respectively. Now consider a representation π whose
number of boxes is divisible by d2; π⊗ (π1⊕ πad) is again a direct sum of representation divisible
by d2, since tensoring with the trivial one does nothing and tensoring with the adjoint adds d2

boxes to the Young diagram of π. According to Young calculus only d2 boxes can be cancelled at
once. Hence, if the statement is true for (π1 ⊕ πad)

⊗k−1, then it holds for (π1 ⊕ πad)
⊗k.

Indeed, all such representations π other than the trivial and the adjoint one satisfy c2(π) > 1 as
we will show in Lemma 7.14 below.

Let λ := (λ1, . . . ,λN−1) with λi ∈N0 denote the Dynkin label of an irreducible representation π
of su(N). The eigenvalue of the Casimir element in the irreducible representation π is

c2(π) =
1

2N

N−1∑
i,j=1

(λi + 2)(A−1)i,jλj , (7.67)

where A is the Cartan matrix of su(N) [55, §21.3]. The inverse Cartan matrix is directly given
by

(A−1)i,j =
1
N

{
i (N − j) if i ≤ j
j (N − i) if i > j

, (7.68)

and is symmetric. We now show the following lemma.

Lemma 7.14 (Young diagrams). Let N > 2 and π be an irreducible representation of su(N)
such that the number of boxes in its Young diagram is divisible by N . If π is not isomorphic to
the trivial or adjoint representation, then c2(π) > 1.

Proof. First observe that we can immediately rule out all irreducible representations whose
Young diagrams consist of a single column because the maximal column height for su(N) is
N − 1 (i.e., Dynkin labels having a single entry 1 and 0 everywhere else). In the following we
will analyse the growth behavior of the quadratic form (7.67) as we move from one irreducible
representation (i.e., Dynkin label) to the next one.
It will turn out very helpful to know the column sums of the inverse Cartan matrix A−1. Clearly,
the sum of the first (or equally the last) column is (N − 1)/2. The sum of any other column
is strictly greater than this value. Indeed, pick a column j and denote its sum by aj . One can
easily convince oneself that aj = j (N − j)/2 .
Now we compare the quadratic Casimir eigenvalues of different irreducible representations, i.e.,
Dynkin labels λ. As it turns out, adding 1 to any component of any Dynkin label λ always
increases this eigenvalue at least by almost 1/2,

c2(λ+ ei)− c2(λ) ≥
N2 − 1

2N2 =: ∆N . (7.69)

Here ei is the i-th canonical basis vector of RN−1. So, starting from the trivial representation
with c2(0, 0, . . . , 0) = 0 we immediately obtain the crude lower bound

c2(λ1, . . . ,λN−1) ≥ ∆N
N−1∑
i=1

λi = ∆N‖λ‖1. (7.70)
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Observe that 2∆N < 1 < 3∆N . Thus we are guaranteed to obtain a quadratic Casimir eigenvalue
strictly greater than 1 whenever we add at least three arbitrary columns to the (empty!) Young
diagram of the trivial representation.
This leaves us with those irreducible representations whose Young diagrams have exactly two
columns, i.e., with the Dynkin labels (1, 1, 0, . . . , 0), (2, 0, 0, . . . , 0) and all permutations thereof.
As is well-known (and can be checked easily with the explicit formula below) the quadratic
Casimir eigenvalue of the adjoint representation (1, 0, . . . , 0, 1) is exactly 1. We would like to
show that any other placement of the two ones yields a strictly greater eigenvalue. Suppose these
occur in positions 1 ≤ α < β < N . Then,

c2(λ) =
1

2N
(
(A−1)α,α + 2(A−1)α,β + (A−1)β,β + 2aα + 2aβ

)
≥ 1

2N
(
(A−1)1,1 + 2(A−1)1,N−1 + (A−1)N−1,N−1 + 2a1 + 2aN−1

)
= c2(1, 0, . . . , 0, 1)
= 1.

(7.71)

It is easy to see that this inequality turns into a strict one if either of the two ones is not
at the first or last position. Finally consider a Dynkin label λ with a single non-vanishing
component λα = 2 at position α (i.e., a Young diagram with exactly two columns of height α),

c2(λ) =
2
N

(
(A−1)α,α + aα

)
=
N + 2
N2 α (N − α). (7.72)

From the global minimum of the quadratic function α (N −α) we easily obtain the lower bound

c2(λ) ≥ 1 + N − 2
N2 (7.73)

and thus c2(λ) > 1 for all N > 2 as claimed.

7.1.3 Hamiltonian driving

We now show that a time constant part in a stochastic Hamiltonian cannot affect the gap of the
k-th moment operator.

Lemma 7.15 (Hamiltonian driving). Let Mk
T be the k-th moment operator of a universal

Brownian motion with increments Θ∆t as in eq. (7.6). Write Θ∆t as

Θ∆t = −iH0 + F∆t , (7.74)

where −iH0 and F∆t are its anti-Hermitian time constant and fluctating parts, respectively, with

F∆t =
∑
µ

Bµ ξ
µ
∆t, B†µ = −Bµ , E[ξµ∆t] = 0 , and E[ξµ∆t ξ

ν
∆t] = −

a

∆t
δµ,ν .

Let M̃k
T be defined similarly but without driving, i.e., with H0 = 0. Then M̃k

T and Mk
T have the

same gap, i.e.,
‖M̃k

T −Mk
Haar‖∞ = ‖Mk

T −Mk
Haar‖∞. (7.75)

Proof. Lemma 3.14 implies that the gap of Mk
∆t is ‖Mk

∆t −Mk
Haar‖∞. Hence,

‖Mk
T −Mk

Haar‖∞ = lim
∆t→0
‖Mk

∆t −Mk
Haar‖T/∆t

∞ (7.76)

is the gap of Mk
T and, similarly, for M̃k

T .
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Using the connection between Brownian motion and its increments (7.4) and a Trotter-Suzuki
approximation we obtain

Mk
∆t = E [exp{πk,k(−iH0 + F∆t)∆t}] +O(∆t2)

= E [exp{πk,k(F∆t)∆t}] exp{πk,k(−iH0)∆t}+O(∆t2)

= M̃k
∆t exp{πk,k(−iH0)∆t}+O(∆t2) . (7.77)

As exp{πk,k(−iH0)∆t} is a fixed unitary, up to an error of order O(∆t2), the gap of Mk
∆t and

M̃k
∆t are the same. This finishes the proof.

7.1.4 More general interaction graphs

The generator from Lemma 7.9 of the k-th moment operator of the unitary Brownian motion
inherits the locality structure from the increments (7.7). Hence, it can be written as

Gk =
∑
e∈E

g
(e)
k , (7.78)

where Gk is the generator associated to Θ∆t and g
(e)
k to θ(e)∆t according to eq. (7.23). Presumably,

among all connected graphs, the gap of Gk could have a minimum for 1D nearest neighbour
graphs. Here, we show that adding edges to this graph can only increase the gap, which can only
lead to a faster mixing in Theorem 7.7.
In the following lemma, the spectral gap ∆(G) of an operator G is the difference of the second
smallest and smallest singular value.

Lemma 7.16 (The spectral gap of the generator is concave). Let (Gi)i be a finite set of negative
semidefinite and Hermitian operators with common non-trivial kernel and p be a probability
vector. Then

∆

(∑
i

piGi

)
≥
∑
i

pi ∆(Gi) . (7.79)

This lemma implies that the gap of the generator (7.78) can only become smaller when one
removes edges from E, while keeping E connected. Hence, the gap in the case of a one dimensional
graph can also only be smaller as the gap in case of a complete graph.

Proof. Let K denote the common kernel of (Gi)i. Then it is also the kernel of any operator in
the convex hull of (Gi)i. The gap of Gi is the smallest singular value of Gi restricted to the
orthogonal complement of K and similarly for G :=

∑
i piGi. Hence, it is enough to show that

the smallest singular value as the function

G 7→ min
〈x|x〉=1

| 〈x|G |x〉 | (7.80)

is concave. But this follows from the smallest singular value being the minimum of the linear
functions G 7→ 〈x|G |x〉.

Remark 7.17 (Frustration free Hamiltonians). The same argument applies when the operators
are all positive semidefinite. Hence, the gap of frustration free Hamiltonians, as considered in
ref. [27], is also a concave function, i.e., it can only increase under taking convex combinations.
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7.1.5 Example: White noise in the Pauli basis

We conclude the discussion on approximate unitary designs with an example involving the specific
setting in eqs. (7.85) and (7.86), and see that the choice of the Pauli matrices as a basis precisely
matches, under the representation theoretic approach, the assumption on the covariance for the
variables ξ.
Consider n = 2 qubits (thus N = 4) and the Hamiltonian increments

Θ∆t := −i
3∑

α,β=0
σα ⊗ σβ ξ

(α,β)
∆t , (7.81)

where ξ(α,β)
∆t are i.i.d. real random variables with zero mean and covariance

cov[ξ(α,β)
∆t ξ

(α′,β′)
∆t ] = δα,α′δβ,β′

1
∆t

, ∀α,β. (7.82)

Leaving out the term σ0 ⊗ σ0 ξ
(0,0)
∆t we can easily restrict Θ∆t to its traceless part

Θ0,∆t =
15∑
µ=1

τµ ξ
µ
∆t , (7.83)

where we defined the anti-Hermitian operators τµ := −iσµ1 ⊗ σµ2 so that { τ1, τ2, . . . , τ15 } =
{ τ(0,1), τ(0,2), . . . , τ(3,3) } form a basis of the fundamental representation of su(4). From eq. (7.12)
we compute the Killing metric tensor (7.59) with respect to this basis as

κµ,ν = −8 Tr(τ †µτν) = −32δµ,ν . (7.84)

From eq. (7.11) and the assumption in eq. (7.82) immediately follows a = 32. Observation 7.12
tells us then g2 = −16C(π2,2) = and hence the second moment operator Mk=2

SLH(∆t) has a gap of
16∆t, matching eq. (7.110) in the decoupling section that we are going to discuss.

With this, we conclude the analysis of the first principal results emerging from the study of the
diffusion over the unitary group induced by stochastic local Hamiltonians. In the next section
we will investigate a second mixing property for such a setting, namely, fast decoupling, again
linked to the analogous result for random quantum circuit illustrated in Section 5.3.

7.2 Fast decoupling induced by Brownian motion on the unitary
group

We show in the following decoupling with almost linear scaling in the system size under a unitary
evolution obeying to Brownian motion laws. We interpret the time-fluctuating Hamiltonian in
the framework of a continuous-time random walk, relating it with the discrete random walk
induced by random quantum circuits with Haar distribution according to the description given
in Chapter 5. The continuous-time walk has been first formalised by Montroll and Weiss [136]
as a sequence of random transitions (jumps) spaced out by waiting times and been object of
successive study [137], being applied to a wide range of fields of physics [138–140].
The exact correspondence between the accelerated steps of the random walk induced by random
quantum circuits given in ref. [28] and the jumps of the continuous-time random walk generated
by the fluctuating Hamiltonian infers a close similarity between the discrete circuit and the
continuous process and can be hence used to relate results from these two settings. This fact
is again to be seen in the task of bringing discrete and continuous-time processes involving the
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unitary group under the same umbrella.

We restrict ourself into a more specific formulation of the fluctuating quantum Hamiltonian,
considering an n-qubit system and taking the Pauli matrices together with the identity (times the
imaginary unit) as a basis of the Lie algebra u(2n). Inspired by the Hamiltonian given in ref. [64],
for which a reading of the fast scrambling conjecture has been studied, we set the increments in
eqs. (7.7) and (7.8) of the Brownian motion to be

Θn,`,∆t = −iHn,`,∆t := −i
( 2
n(n− 1)

)1/2 ∑
j<k

3∑
α,β=0

σjα ⊗ σkβ ξ
(j,k,α,β)
`,∆t , (7.85)

where σjα ⊗ σkβ means that σα ⊗ σβ is applied on qubits labeled j and k, respectively. We recall
that ξ(j,k,α,β)

`,∆t are i.i.d. real random variables with zero mean and covariance

E
[
ξ
(j,k,α,β)
`,∆t ξ

(j′,k′,α′,β′)
`′,∆t

]
=

1
∆t

δ`,`′δk,k′δj,j′δα,α′δβ,β′ ∀j, k,α,β (7.86)

which is obtained from eq. (7.13) by choosing a = 8. The pre-factor of (2/(n(n− 1)))1/2 is
chosen so that the initial rate of diffusion of a local operator scales as O(1/n). This is to normalize
the time scale for the diffusion process in order to compare it with the random quantum circuit
model in refs. [24, 28], where the probability that a local operator experiences a random gate is
2/n per discrete time step.
For our results, we need to define the permutation invariance property. This condition is required
to deduce a dominant probability distribution on the final Pauli coefficients when starting with
an analysis of the evolution of the Pauli weights. Indeed, the random walk on Pauli weights does
not distinguish among strings having same support size but different support, hence it provides
the probability distribution for each set of strings with the same support size, but not on Pauli
strings taken singularly.

The permutation invariance property has already been debated in the proof of ref. [28] showing
that random quantum circuits with Haar measure are approximate unitary 2-designs. In ref. [95]
it has been discussed that this essential condition in the proof had not been granted and an
argument making use on random transpositions based on the work of Diaconis (see refs. [38, 39])
has been put forward solving this issue. Since we cannot prove that permutation invariance is
achieved with sufficiently high probability by the stochastic Hamiltonian evolution itself within a
run time scaling almost linearly in n, we impose it as a pre-condition for the initial state. Actually,
we can relax the condition and ask for a “large portion” of the qubits, but not necessarily all, to
be invariant with respect to an arbitrary permutation. This allows us to apply our result to a
larger family of states, for instance those whose support is very small. More formally, we define
the permutation invariance property as follows.

Definition 7.18 (Permutation invariance property). Let 0 ≤ γ < 1. Let σπ(µ) denote a Pauli
string whose label is given by interchanging the sub-indices of µ according to the permutation
π. Then, for an arbitrary quantum state ρ of a n-qubit system, we say that it satisfies the
γ-permutation invariance property if there exists a subset of (1− γ)n qubits which is invariant
with respect to any permutation, i.e.,

Tr[σµρ] = Tr[σπ(µ)ρ] (7.87)

for every Pauli string σµ and every permutation π on this subset of qubits.
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Note that any state ρ with |supp(ρ)| ≤ γn is permutation invariant with respect to this definition.

Our second main result states that, under a unitary evolution describing Brownian motion,
decoupling is achieved with a run time scaling almost linear in system size. First of all we
need an upper bound on the distance between the distribution of these Pauli coefficients and a
distribution which is close to the uniform one.
We denote the Pauli basis coefficients after a continuous-time evolution with run time T as

QT (µ, ν) :=
1
4n Tr

[
σν ⊗ σνMk=2

n,SLH(T )(σµ ⊗ σµ)
]

. (7.88)

Then we formulate the following condition.

Theorem 7.19 (Mixing condition for Pauli coefficients, Theorem 12 in ref. [41]). For any
constants δ ∈ (0, 1/16), η ∈ (0, 1) there exist constants ς > 0 and 0 < γ0 ≤ 1/2 such that for a
total run time T ≥ ς n log2 n and large enough n∑

ν∈{0,1,2,3}n,ν 6=0

∣∣∣QT (µ, ν)− pδ(ν)
∣∣∣ ≤ 1

(3− η)`(n`)
1

poly(n) (7.89)

where σµ is an arbitrary string whose support has size ` and has a subset of (1− γ)n qubits, with
γ < γ0, which is invariant with respect to any permutation, and pδ is a (possibly sub-normalised)
distribution on Pauli strings such that

pδ(ν) ≤
5δn

4n − 1 ∀ν. (7.90)

From Theorem 7.19 we obtain the final result on decoupling. Theorem 7.20 is achieved by
arguments analogous to the random quantum circuit case given in ref. [24] so that we do not
need any additional work to prove it.

Theorem 7.20 (Fast decoupling, Theorem 13 in ref. [41]). Consider a bipartite quantum state
ρAE ∈ SAE of an n-qubit system A coupled with some other system E. Let then ρAE undergo a
unitary evolution Ut induced by stochastic local Hamiltonian increments as in eq. (7.85) acting
upon system A, followed by a completely positive trace preserving map T : SA → SB which maps
from A to another system B. Let τA′B denote the Choi-Jamiolkowski isomorph of T . Then, for
any δ ∈ (0, 1/16) there exist ς > 0 and 0 < γ0 ≤ 1/2 such that for all γ-permutation invariant
states with γ < γ0 and total run times T ≥ ς n log2 n and for large enough n

ESLH(T )

{∥∥∥T (UT ρAEU †T)− τB ⊗ ρE∥∥∥1

}
≤
( 1

poly(n) + 5δn · 2−H2(A|B)τ−H2(A|E)ρ

)1/2
, (7.91)

where SLH(T ) denotes the distribution over the unitary group induced by the Brownian motion
with run time T .

7.2.1 Proof of Theorem 7.19

The section is devoted to the proof Theorem 7.19. To show our result, we consider a fluctuating
Hamiltonian on a complete graph whose increments are given in eq. (7.85), in the limit of ∆t→ 0.
As already mentioned, this result then implies Theorem 7.20 by application of the same proof
technique used for the random quantum circuit case in ref. [24].
First, we analyse how the support size of an initial Pauli string evolves during the process, then
we observe how the qubits are made invariant under relabelling of the Pauli elements; this,
together with the permutation invariance condition, leads to the desired result. Decoupling of an
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arbitrary n-qubit system A is mainly described by the second moment operator induced by the
evolution. The expansion coefficients in the Pauli basis are given in eq. (7.88). We recall that,
since the Brownian motion on U(2n) is Markovian, the second moment operator at time T on X
is given by concatenating T/∆t times the operator Mk=2

n,SLH(∆t), i.e.,

Mk=2
n,SLH(T )(X) = lim

∆t→0
Mk=2
n,SLH(∆t) ◦ · · · ◦M

k=2
n,SLH(∆t)︸ ︷︷ ︸

T/∆t times

(X) (7.92)

=: lim
∆t→0

©T/∆t
s=1 Mk=2

n,SLH(∆t) (X) . (7.93)

Note that, since the Hamiltonian in eq. (7.85) generating Brownian motion is dependent on
system size, we must include an additional subscript.
In Taylor approximation, up to an error O(∆t2), Mk=2

n,SLH(∆t) results from the sum of two-qubit
moment operators acting on any possible qubit pair j, k, i.e.,

Mk=2
n,SLH(∆t) =

2
n(n− 1)

∑
j<k

(
Mk=2

2,SLH(∆t)

)j,k
+O(∆t2) . (7.94)

This can be seen through calculations analogous to the ones from eqs. (7.37)-(7.39). We can
hence interpret this process as a qubit pair being uniformly randomly chosen at every time step
(`− 1)∆t and a two-qubit unitary U2,`,∆t := exp{−iH2,`,∆t ∆t} being applied. Therefore, in the
following subsection we first consider the restricted two-qubit case, which provides useful results
and insights to be used for the investigation of the general case with n qubits.

Two-qubit analysis of the second moment operator

Considering a two-qubit system, here we would like to understand the evolution of Mk=2
2,SLH(T )

through Mk=2
2,SLH(∆t) and show the following lemma, which is compatible to the analysis of the

local gap discussed in the previous section (as showed in Example 7.1.5) .

Lemma 7.21 (Two-qubit case). Then the local second moment operator associated to the
Hamiltonian increments (7.85) converges exponentially to the second moment operator of the
uniform distribution, i.e.,

‖Mk=2
2,SLH(T ) −M

k=2
2,Haar‖∞ ≤ e−16T . (7.95)

Proof. To prove the convergence rate, we want to express Mk=2
n,SLH(∆t) in terms of the Pauli basis

and compute the gap. We can see directly that the identity on 4 qubits is an eigenvector with
unit eigenvalue

Mk=2
2,SLH(∆t)(14) = E

[
U⊗2

2,`,∆t14(U
†
2,`,∆t)

⊗2
]
= 14. (7.96)

We then observe the unitary evolution acting on a Pauli element σµ⊗ σν , with µ, ν ∈ {0, 1, 2, 3}2
and calculate its expectation with a Taylor expansion for the unitary, taking into account terms
with leading order in ∆t (and suppressing subscripts for H),

Mk=2
2,SLH(∆t)(σµ ⊗ σν) = E

[
U2,`,∆t (σµ1 ⊗ σµ2) U

†
2,`,∆t ⊗U2,`,∆t (σν1 ⊗ σν2) U

†
2,`,∆t

]
(7.97)

= E

[(
12 − iH∆t− 1

2H
2∆t2

)
(σµ1 ⊗ σµ2)

(
12 + iH∆t− 1

2H
2∆t2

)
⊗
(
12 − iH∆t− 1

2H
2∆t2

)
(σν1 ⊗ σν2)

(
12 + iH∆t− 1

2H
2∆t2

)]
+O(∆t2).
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We now recall that the ξ white noise variables are i.i.d. with zero mean and covariance as in
eq. (7.86). Considering only the non-vanishing linear terms in ∆t in the expectation, we have

Mk=2
2,SLH(∆t)(σµ ⊗ σν) = σµ ⊗ σν + ∆t2E

[
HσµH ⊗ σν + σµ ⊗HσνH

]
− ∆t2

2 E
[
H2σµ ⊗ σν + σµH

2 ⊗ σν + σµ ⊗H2σν + σµ ⊗ σνH2
]

− ∆t2E
[
[H,σµ]⊗ [H,σν ]

]
+O(∆t2). (7.98)

Let us consider the second term, in particular

E [HσµH ⊗ σν ] = 1
∆t

(∑
α,β(σα ⊗ σβ)(σµ1 ⊗ σµ2)(σα ⊗ σβ)

)
⊗ (σν1 ⊗ σν2). (7.99)

If µ = 0, then
E [H 12H ⊗ σν ] = E

[
H2 ⊗ σν

]
=

16
∆t
12 ⊗ σν . (7.100)

Otherwise, for µ 6= 0, at least one among µ1 and µ2 is not 0. Let us assume µ1 6= 0. Then,
∀β, σασµ1σα ⊗ σβσµ2σβ equals σµ1 ⊗ σβσµ2σβ for α = 0,µ1 and −σµ1 ⊗ σβσµ2σβ for the other
two indices of α. Thus, summing over α gives 0. The same applies for µ1 arbitrary, µ2 6= 0.
We conclude that the second term in the expression for Mk=2

2,SLH(∆t) vanishes if both µ and ν are
different from {0, 0}.
Now we look at the first part of the third term and we get that

E
[
H2σµ ⊗ σν

]
=

1
∆t

∑
α,β

(σα ⊗ σβ)2σµ ⊗ σν =
16
∆t

σµ ⊗ σν . (7.101)

Hence, keeping terms to leading order in ∆t we have

Mk=2
2,SLH(∆t)(σµ ⊗ σν) = (1− 32∆t)σµ ⊗ σν − ∆t2E [[H,σµ]⊗ [H,σν ]] (7.102)

= (1− 32∆t)σµ ⊗ σν − ∆t
∑
α,β

[σα ⊗ σβ,σµ1 ⊗ σµ2 ]⊗ [σα ⊗ σβ,σν1 ⊗ σν2 ],

(7.103)

when both µ and ν are different from {0, 0}, and conversely

Mk=2
2,SLH(∆t)(12 ⊗ σν) = (1− 16∆t)12 ⊗ σν , (7.104)

Mk=2
2,SLH(∆t)(σµ ⊗ 12) = (1− 16∆t)σµ ⊗ 12. (7.105)

We now divide the set of all possible strings σµ ⊗ σν in three parts: the identity 14, the set of
strings of the form σµ ⊗ σµ, and all remaining strings of the form σµ ⊗ σν with µ 6= ν. We can
then make use of the matrix representation of the operator Mk=2

2,SLH(∆t) as a matrix with respect
to Pauli basis, which gives

Mk=2
2,SLH(∆t) =

1
A

B

 , (7.106)

where A is a 15× 15 matrix related to the set of σµ⊗ σµ elements (without the identity 116) and
B is a 240× 240 matrix for σµ⊗ σν elements. The detailed proof of this finding is laid out in the
separate subsequent Lemma 7.22.
We now consider the matrix A; we compute the action of Mk=2

2,SLH(∆t) over all possible σµ⊗ σµ and
look for eigenvalues. We obtain a non-degenerate eigenvalue 1 whose eigenvector is the uniform
sum over all non-identity Pauli matrices

F =
1
15

∑
γ 6=0

σγ ⊗ σγ . (7.107)
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We then have a 9-fold degenerate eigenvalue 1− 40∆t and a 5-fold degenerate eigenvalue 1− 24∆t.
We are free to bound all these eigenvalues with 1− 16∆t. We now deal with the action of the
second moment operator on terms of the form σµ ⊗ σν with µ, ν 6= 0 and µ 6= ν. Only four
choices of σα ⊗ σβ do not commute for a given pair µ, ν, i.e.,

Mk=2
2,SLH(∆t)(σµ⊗ σν) = (1− 32∆t)σµ⊗ σν − 4∆t{±σγ1 ⊗ σd1 ± σγ2 ⊗ σd2 ± σγ3 ⊗ σd3 ± σγ4 ⊗ σd4}

(7.108)
with γi 6= di, for each σµ ⊗ σν . This means that each column of the matrix B has one entry
(1− 32∆t) (in the diagonal element) and four entries ±4∆t, and 0 otherwise. Hence,

‖B‖1 = max
j

∑
i

|ai,j | = 1− 16∆t. (7.109)

By the Gershgorin circle theorem, and taking also into account (7.104) and (7.105), we can upper
bound the highest eigenvalue of B with 1− 16∆t. For a single time step, the two-qubit second
moment operator can be upper bounded by the following diagonal matrix

Mk=2
2,SLH(∆t) ≤


1

1
1− 16∆t

. . .
1− 16∆t

 , (7.110)

where we recall that the 2-fold degenerate eigenvalue 1 corresponds to the identity and F.

Lemma 7.22 (Local second moment operator). Mk=2
2,SLH(∆t) is Hermitian, maps elements of

the set of strings of the form σµ ⊗ σµ to a linear combination of elements of the same set and
elements of the set of strings of the form σµ ⊗ σν with µ 6= ν again to a linear combination of
elements of the same set, such that there is no mixing between the two sets. Hence, we can
represent the operator Mk=2

2,SLH(∆t) as a matrix with respect to Pauli basis in the following form

Mk=2
2,SLH(∆t) =

1
A

B

 , (7.111)

where A is a 15× 15 matrix related to the set of σµ ⊗ σµ elements (without the identity 116) and
B is a 240× 240 matrix for σµ ⊗ σν elements.

Proof. From eq. (7.102) and (7.103), follows directly that Mk=2
2,SLH(∆t) is Hermitian. Moreover we

see, again from eq. (7.103), that elements of the set σµ ⊗ σµ are mapped to a linear combination
of elements of the same set. This, in addition to the fact that Mk=2

2,SLH(∆t) is Hermitian, implies
that elements of the set σµ⊗σν with µ 6= ν are mapped again to a linear combination of elements
of the same set.

Next, we make use of this analysis to understand how n-qubit Pauli strings evolve during the
continuous-time process. As already mentioned, the continuous-time random walk induced by
the Hamiltonian increments can be interpreted as a sequence of jumps defining a discrete random
walk spaced out by i.i.d. waiting times.
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Markov chain analysis on weights

The proof strategy for Lemma 7.19 begins with the analysis of the evolution of the coefficients:
we observe how the support size behaves during the process, inferring a probability that, for
a given initial string σµ with support size `, after run time T the string has support size k.
Conditioned on some specific event EW that we will discuss later, this probability can be upper
bounded as

P
(
{T , `, k}

∣∣∣ EW) :=
∑
|ν|=k

QTEW (µ, ν) ≤
(
n

k

)
3k 4δn

4n − 1. (7.112)

Having a total of (nk)3
k strings with support size k, we then show that almost all of them have

the same probability.
Considering the analysis in the previous section on the two-qubit case and that, the local structure
of Mk=2

n,SLH(∆t) given in eq. (7.94) we introduce a Markov chain over the weights of the string
similarly to ref. [28] (where this projected chain is called zero chain). The chain runs over the
state space Ω = {1, 2, . . . ,n} and the transition probability from ` at time t to k at time t+ ∆t
is described by the matrix element

P (`, k) :=
∑

ν :|ν|=k

1
4n Tr

[
σν ⊗ σνMk=2

n,SLH(∆t)(σµ ⊗ σµ)
]

(7.113)

for any choice of µ with support size `.

Lemma 7.23 (Transition matrix of the zero chain). The zero chain has transition matrix P on
state space Ω = {1, 2, . . . ,n},

P (`, k) =



1− 16`(3n−2`−1)
n(n−1) ∆t k = `

16`(`−1)
n(n−1) ∆t k = `− 1

48`(n−`)
n(n−1) ∆t k = `+ 1

0 otherwise

(7.114)

for 1 ≤ `, k ≤ n.

Proof. We consider the analysis of the two-qubit second moment operator in Section 7.2.1. It is
straightforward to note that, after application of Mk=2

n,SLH(∆t), the weight of the string can only
vary by 1 or stay the same. The weight decreases if a pair of two non-identity terms σ ⊗ σ is
chosen and is transformed in a pair with one identity element (namely, σ⊗ 1 or 1⊗ σ); there
are in total four choices for σα ⊗ σβ which produce such a transition. According to the two-qubit
case, the probability that one of these Pauli operators is chosen is 4 · 4∆t = 16∆t and since the
probability of choosing a pair with weight 2 is `(`− 1)/(n(n− 1)), we have

P (`, `− 1) = 16`(`− 1)
n(n− 1) ∆t . (7.115)

The weight of the string can be increased if an identity term paired with a non-identity term is
chosen (i.e., σ⊗ 1 or 1⊗ σ) and transformed into a pair of two non-identity terms σ⊗ σ. The
probability of obtaining such a result (conditioned on choosing such a pair) after application of
the two-qubit second moment operator is 24∆t, since there are in total 6 choices for σα ⊗ σβ to
produce such a transition. Furthermore, the probability of choosing an identity and non-identity
pair is given by 2`(n− `)/(n(n− 1)); hence

P (`, `+ 1) = 48`(n− `)
n(n− 1) ∆t. (7.116)
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Finally, the probability of staying at the same weight is obtained by simply requiring the total
probability to sum to unity.

It is therefore possible to reach each state of the chain, meaning that it is irreducible. Moreover,
the chain contains self loops, being hence aperiodic. From these two properties follows that the
chain is also ergodic, thus converging to a unique stationary distribution.

Lemma 7.24 (Stationary distribution of zero chain). The stationary distribution of the zero
chain is

ω0(k) =
3k(nk)
4n − 1. (7.117)

Proof. This follows from straightforward calculation.

The stationary distribution is actually analogous to the one of the chain induced by a random
quantum circuit under the Haar measure (see ref. [28, Lemma 5.3]). Another crucial analogy
is the exact equivalence of the accelerated chain (i.e., the chain conditioned on moving) of the
two different settings. This means that, when moving, the random walk on weights is identically
biased for both random quantum circuits under Haar distribution and the stochastic Hamiltonian
process. From the description of Montroll and Weiss, the jumps of the random quantum circuit
are contained in the fluctuating Hamiltonian evolution, spaced out by i.i.d. waiting times.
Concretely, the accelerated chain is given by

Paccel(`, k) =


0 k = `

`−1
3n−2`−1 k = `− 1
3(n−`)

3n−2`−1 k = `+ 1
0 otherwise.

(7.118)

With these analogies, we can prove the next theorem using results from the proof of ref. [24,
Theorem 4.2], many of which are illustrated in Section 5.3. We should take care of the parts of the
proof involving the waiting time, because it is where the two walks differ. Now, we re-formulate
the result for the continuous-time case.

Lemma 7.25 (Mixing condition on support size). Let P be the Markov chain transition matrix
defined in Lemma 7.23. For any constants δ ∈ (0, 1/16), η ∈ (0, 1) there exists a constant ς > 0
such that for T ≥ ς n log2 n and all integers 1 ≤ ` ≤ n and 1 ≤ k ≤ n, we have for large enough
n

P ({T , `, k}) =
∑

ν :|ν|=k
QT (`, k) ≤

(
n

k

)
3k 4δn

4n − 1 +
1

(3− η)`(n`)
1

poly(n) , (7.119)

where {T , `, k} is the event that an initial Pauli string with support size `, after a run time T ,
has weight equal to k.

Proof. We start by defining the following points,

r− :=
(3

4 − δ
)
n and r+ :=

(3
4 + δ

)
n. (7.120)

Then, considering eq. (5.82), it follows that for an initial weight of ` ∈ [r−, r+]

P({T , `, k}) ≤
(
n

k

)
3k 4δn

4n − 1 (7.121)

for any T > 0.
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To deal with the case ` ∈ [1, r−), for random quantum circuits it has been shown that the
probability that the interval [r−, r+] of the state space has been reached is very high for a
number of gates O(n log2 n). Here we prove the same scaling result for the run time of the
continuous-time process, that is, the total waiting time between the jumps, can be bound with
the following lemma.

Lemma 7.26 (Waiting time).

P(EcW ) := P(Wr− > ς n log2 n) ≤ 1
(3− η)`(n`)

1
poly(n) (7.122)

for some sufficiently large ς.

Proof of Lemma 7.26. To prove this result on the waiting time, we first assume that we reach the
region [r−, r+] within S ≤ s accelerated steps for some s = O(n) and we bound the probability
that the waiting time exceeds ς n log2 n. We will deal with the case of P(S > s) afterwards. Now,
let M be the smallest site visited during the walk, and let {yi}Si=1 be a sequence of accelerated
steps where S ≤ s, with waiting times {Wi}Si=1 respectively, satisfying the event

H =
n⋂
j=1

[
S∑
k=1

I(Xk ≤ j) ≤ zj/µ

]
, (7.123)

where I is the indicator function and Xk is the random variable assuming values in Ω =
{1, 2, . . . ,n} describing the state of the chain at step k and z chosen as O(logn). In words, this
means that, if H occurs, then no site has been visited “too often”. This is a useful event, since
the smaller is the value of the current state of the chain, the smaller is the parameter of the
exponential distribution dominating the waiting time. Namely, we have

1− P (k, k) = 16k(3n− 2k− 1)
n(n− 1) ∆t ≥ 16k

n
∆t. (7.124)

So, dealing with three events, we consider the bound

P(W > t) = P(W > t ∩ H ∩ S ≤ s) + P(W > t ∩ H ∩ S > s)

+ P(W > t ∩ Hc ∩ S ≤ s) + P(W > t ∩ Hc ∩ S > s)

≤ P(W > t | H ∩ S ≤ s) + P(H ∩ S > s)

+ P(Hc ∩ S ≤ s) + P(Hc ∩ S > s)

≤ P(W > t | H ∩ S ≤ s) + P(Hc | S ≤ s) + P(S > s). (7.125)

Conditioning on the two previous event and setting M = m for arbitrary m ∈ {1, . . . , `}, we
have to find an upper bound for the waiting time being too large; more precisely for a given run
time t, we show:

Lemma 7.27 (Waiting time conditioning on event H).

max
{yi}

P
(
W (y1) + · · ·+W (yS) ≥ t

∣∣∣ M = m , H
)
≤ e−

8k
n
t 2zm/µezm/(2µ) logn. (7.126)

Proof of Lemma 7.27. We recall that this is the exactly the sequence visiting m for zm/µ (for
simplicity, we assume it to be an integer) times and all other j > m sites for z/µ times, hence

W (y1) + · · ·+W (yS) ≤
zm/µ∑
i=1

Em,i +
z/µ∑
i=1

r∑
k=m+1

Ek,i, (7.127)
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where Ek,i are i.i.d. exponential distributions with parameter p(k) = 16k/n. Now applying
Markov’s inequality we obtain

P

zm/µ∑
i=1

Em,i +
z/µ∑
i=1

r∑
k=m+1

Ek,i > t

 ≤ E
[
exp

{
α
(∑zm/µ

i=1 Em,i +
∑z/µ
i=1

∑r
k=m+1Ek,i

)}]
eαt

(7.128)

= e−αt
(

p(m)

p(m)− α

)zm/µ r∏
k=m+1

(
p(k)

p(k)− α

)z/µ

for α < p(m). Let us choose α = p(m)/2, then we have

P

zm/µ∑
i=1

Em,i +
z/µ∑
i=1

r∑
k=m+1

Ek,i > t

 ≤ e−
8m
n
t 2zm/µ

 r∏
k=m+1

2k
2k−m

z/µ

(7.129)

≤ e−
8m
n
t 2zm/µezm/(2µ) logn.

With this lemma we obtain an equivalent result for the waiting time as in ref. [24] up to the
prefactor of t. Hence, for t > ς n log2 n with ς sufficiently large, applying the bounds on the
probabilities P(M = m) for each value of m ∈ {1, . . . , `} proved for the random quantum circuit
case, we have

P (Wr− > t | H ∩ S ≤ s) =
∑̀
m=1

P(M = m) max
{yi}

P (W (y1) + · · ·+W (yS) ≥ t | M = m)

(7.130)

≤ 1
(3− η)`(n`)

1
poly(n) .

The last two probability terms in eq. (7.125) depend only on the path of the accelerated random
walk before reaching the interval [r−, r+]. Looking at the accelerated chain and considering
` being in the region [1, (3/4− δ)n), we have 3(n− `)/(3n− 2l− 1) ≥ 1/2 + δ for any n. So,
constructing a random walk X ′k starting at the origin moving forward with probability 1/2 + δ
and backward with 1/2− δ, it follows

P (S > s) ≤ P (X ′s < r− − `) (7.131)
= P (X ′s < 2δ s− (2δ s+ `− r−))

≤ exp
(
− (2δs+ `− r−)2

2s

)
,

where in the last inequality we have used the Chernoff-Hoeffding bound in ref. [28, Lemma A.3]
assuming 2δs+ `− r− > 0. We conclude that the probability for the waiting time to be larger
than s ≥ φn is exponentially decreasing in n for large enough φ. The last remaining term in
eq. (7.125) can instead be bounded by

P(Hc | S ≤ s) ≤ 1
(3− η)`(n`)

1
poly(n) (7.132)

so that the proof of Lemma 7.26 is now complete.
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The case that remains to be discussed is the one of an initial Pauli string with support size
` ∈ (r+,n] to reach [r−, r+]; again the analysis is divided on accelerated steps and waiting times.
Regarding the former, the probability of going backward is larger than the one of moving forward
starting from point z with

P (z, z + 1) !
= P (z, z − 1) ⇔ (7.133)

z − 1
3n− 2z − 1 = 3 n− z

3n− 2z − 1, (7.134)

from which follows that
z =

3
4n+

1
4. (7.135)

This means that for any n > 1/(4δ) the probability of moving backward at each site of region
(r+,n] is at least 1/2 + ε for some ε > 0, and again using the argument for the case with ` < r−
the probability of not reaching r+ in S ≤ s steps is upper bounded by an exponential decreasing
function for s ≥ φ′n for sufficiently large φ′. In this instance, all waiting times are stochastically
dominated by parameter p(3n/4) = 12, hence there is no necessity to define an event equivalent
to H. For S ≤ s accelerated steps, using again a Chernoff-Hoeffding inequality, the bound on the
total waiting time is exponentially decreasing in s for a run time Wr+ > (log 2/6)s. The proof
of Lemma 7.25 is then complete.

From the zero chain to the full distribution

Once the weight distribution has reached an equilibrium such that the condition in eq. (7.112) is
fulfilled, we need to show that all Pauli strings sharing the same weight have a similar probability.
To prove this, we need to show that almost all Pauli strings with the same support but different
Pauli labels {1, 2, 3} are equivalent in probability. This, together with the permutation invariance
property assumed for the initial state, which is conserved during the whole stochastic Hamiltonian
process, will bring us to the desired result.

Let M be the Markov chain on the first n-qubits induced by M2
n,∆t, and define an accelerated

version as
A :=

1
36∆t

(M − (1− 36∆t)I). (7.136)

If we define an operator
R =

2
n(n− 1)

∑
j<k

Rj,k , (7.137)

where Rj,k randomises one qubit site in the following way,

Rj,k(σ
j
µ ⊗ σkν ) =



1
3
∑
α=1,2,3 σ

j
α ⊗ 1k if µ 6= 0, ν = 0,

1
3
∑
α=1,2,3 1

j ⊗ σkα if µ = 0, ν 6= 0,

1
6
∑
α=1,2,3 σ

j
α ⊗ σkν + 1

6
∑
α=1,2,3 σ

j
µ ⊗ σkα if µ 6= 0, ν 6= 0,

1j ⊗ 1k if µ = ν = 0,

(7.138)

then according to Section 7.2.1, the accelerated chain can be written as

A =
1
3R+

2
3L, (7.139)
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where
L =

2
n(n− 1)

∑
j<k

Lj,k (7.140)

and

Lj,k(σ
j
µ ⊗ σkν ) =



1
6
∑
α=1,2,3 σ

j
µ+1 ⊗ σkα + 1

6
∑
α=1,2,3 σ

j
µ+2 ⊗ σkα if µ 6= 0, ν = 0,

1
6
∑
α=1,2,3 σ

j
µ ⊗ σkν+1 +

1
6
∑
α=1,2,3 σ

j
µ ⊗ σkν+2 if µ = 0, ν 6= 0,

1
12

(
σjµ+1 ⊗ σkν + σjµ+2 ⊗ σkν + σjµ ⊗ σkν+1 + σjµ ⊗ σkν+2

)
+ 1

6

(
σjµ+1 ⊗ 1k + σjµ+2 ⊗ 1k + 1j ⊗ σkν+1 + 1

j ⊗ σkν+2

)
if µ 6= 0, ν 6= 0,

1j ⊗ 1k if µ = ν = 0,
(7.141)

with the notation σ3+1 = σ2+2 = σ1 and σ3+2 = σ2. Note that R does not produce any change
in the weight or transpositions between identities and non-identity elements, it solely performs a
local randomisation of the Pauli labels. This means that only the chain L is responsible for the
random walk on the weights.
We would like to upper bound the probability that more than βn sites have not been randomised
after s steps of chain R (we denote the complement of this event as ER). Knowing that there
are ( nβn) such regions, this is given by union bound

P(EcR) ≤
(
n

βn

)
(1− β)s ≤ 2h(β)n e−βs, (7.142)

where h : [0, 1] → [0, 1] is the binary entropy function. This probability can then be upper
bounded by an arbitrarily exponentially decreasing function in n for some s = O(n). Hence,
to ensure that s randomisations have been performed to fulfill the event ER with sufficiently
large probability, given eq. (7.139) and by application of an Hoeffding’s inequality follows that
it is again sufficient to apply O(n) steps of the accelerated chain A. Since the waiting time
is dominated by an exponential distribution with parameter 36, the bound on the probability
for the waiting time of this process to exceed WR = ςR n can be bounded by an arbitrarily
exponentially decreasing function in n for a sufficiently large ςR with the same argument used
for the random walk on weights when starting from ` > r+.
In conclusion, assuming that event EW and ER have been satisfied, we have for γ < γ0 ≤ 1/2 :

1. For strings ν with support size k ≤ γ0 n,

QT (µ, ν) ≤
∑
|ν|=k

QT (µ, ν) ≤
(
n

γ0 n

)
3γ0 n 4δn

4n − 1 ≤ 2nh(γ0) 3γ0 n 4δn

4n − 1. (7.143)

2. For strings ν with support size k ≥ (1− γ0)n, given event ER at least (1− β)n sites of the
support have been uniformly randomised, hence

QT (µ, ν) ≤ 1
3k−β n

∑
|ν|=k

QT (µ, ν) ≤ 2nh(γ0) 3β n 4δn

4n − 1. (7.144)

3. For strings ν with support size γ0 n < k = κn < (1− γ0)n such that κ− γ0 = O(1)
(otherwise, we can apply slightly modified versions of the bounds in the two previous cases),
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given event ER at least (1− β)n sites of the support have been uniformly randomised. In
addition, if we assume the γ-permutation invariance property for the initial string σµ, we
obtain

QT (µ, ν) ≤ 1
3k−β n

1
((1−γ)nk−γn )

∑
|ν|=k

QT (µ, ν) ≤ 3β n
[ 1
κ− γ0

]γ0 n 4δn

4n − 1. (7.145)

Now, for an appropriate choice of β and γ0,

QT (µ, ν) ≤ 5δn

4n − 1 (7.146)

for all µ and ν.
Also, having proven that there exists ς such that, for all T ≥ ςn log2 n, P(EcR) is bounded by an
exponentially decreasing function in n and that

P(EcW ) ≤ 1
(3− η)`(n`)

1
poly(n) (7.147)

and having proven that, if both event have been satisfied and the permutation invariance property
is assumed, we have

QT (µ, ν) ≤ 5δn

4n − 1 (7.148)

for all µ and ν, we conclude the proof for the main Lemma 7.19.

As mentioned in the main result section, the decoupling theorem is valid for all states which are
invariant with respect to any permutation on (1− γ)n qubits, in the sense of Definition 7.18,
and not only for Pauli strings taken singularly. Consider a set of min

{
(n−γn`−γn), (

n−γn
` )

}
≤ b`,γ ≤

max
{
(n−γn`−γn), (

n−γn
` )

}
Pauli strings {σµ }µ with support size ` which is invariant with respect

to any of such permutations. Assuming that the above events have been satisfied, at least the
same number of qubits in the final Pauli strings {σν }ν is invariant with respect to permutations
since the stochastic evolution preserves this property. Hence, for the argument from the previous
subsection, we have: ∑

µ

QT (µ, ν) ≤ b`,γ
5δn

4n − 1 (7.149)

This, together with the fact that Tr[σµρ] is the same for all strings related by these permutations,
allows to apply the proof in ref. [24] for the decoupling Theorem for all density states ρ composed
by permutation invariant sets of Pauli strings.

7.3 Fast scrambling and other applications
We discuss in the following two interesting applications for Brownian motion on the unitary
group, that is, black holes scrambling and dissipative dynamics, and hint at a third one making
use of fluctuating Hamiltonian dynamics in quantum information processing.

Fast scrambling In the last decade, black holes have been considered from a quantum
information perspective, providing toy models and fresh insights to the field. In particular, it
has been conjectured that they are fast scramblers [37, 141, 142]. A system is scrambled when
any previous perturbation has been thoroughly spread among the degrees of freedom so that to
recover the information contained in the original perturbation one should access simultaneously
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Figure 7.2: A quantum memory system M is initially entangled with a reference system denoted
by R and is subsequently thrown into a black hole A (left picture). As the black holes leaks
out Hawking radiation, it shrinks into a smaller system B. When a controlled subystem of the
irradiated environment E′, has become maximally entangled with the reference system R, the
initial information M has been mirrored (right picture).

a large fraction of the entire system. The minimum time for mixing information is then called
scrambling time. More specifically, in ref. [37] three hypotheses have been outlined: the most
rapid scramblers take logarithmic time in the degrees of freedom, the bound is saturated for
matrix quantum mechanics, i.e., systems whose degrees of freedom are n× n matrices, black
holes are the fastest scramblers in Nature. The authors of ref. [64] brought evidence about the
conjectures regarding scrambling in logarithmic time by investigating Brownian quantum circuit
and Ising model on sparse random graphs. There are two related mixing conditions for unitary
dynamics that satisfy the requirements for scrambling, as discussed in refs. [37, 141], or ref. [142],
respectively. The relation between our results and both of these conditions will be discussed in
the following.
In ref. [141], one considers the black hole’s internal system A and the radiated environment E.
Furthermore, one defines an additional reference system R, initially maximally entangled with a
quantum memory system M that is subsequently thrown into the black hole. As the Hawking
radiation leaks out, we would like R to become maximally entangled with a subsystem of E over
which we can have control, hence having recovered the initial state of M , and so interpreting
the black hole as a mirror (see Fig. 7.2). This may be translated into a scrambling condition
through a decoupling theorem. As the black hole evaporates, A shrinks into a smaller system B
which decouples from R. More formally, this means that

EHaar

{∥∥∥∥TrA\B
(
UA ρARU

†
A

)
− 1B
|B|
⊗ ρR

∥∥∥∥
1

}
≤ 2−γ , (7.150)

where ρAR is a quantum state where subsystem E shares m Bell pairs with A, and A is otherwise
mixed, and γ is the difference between the number of qubits emitted as Hawking radiation and
the number of qubits of system M . The approximate statement

Eω

{∥∥∥∥TrA\B
(
UA ρARU

†
A

)
− 1B
|B|
⊗ ρR

∥∥∥∥
1

}
≤
√

4−γ + 4mε (7.151)

is satisfied in expectation for an ensemble of unitary transformations ω being an approximate
2-design in the sense that the Pauli coefficients are close to the uniform distribution, i.e.,∑

ν 6=0
|qω(µ, ν)− qu(µ, ν)| ≤ ε ∀µ , (7.152)

109



where

qu(µ, ν) = 1
4n − 1 ∀µ, ν and qω(µ, ν) = 1

4n Tr
[
σν ⊗ σνMk=2

ω (σµ ⊗ σµ)
]

. (7.153)

This condition was shown in ref. [28] to be satisfied by a random quantum circuit of size
O(n logn) (when ε = 1/poly(n)) and analogously by a stochastic local Hamiltonian, according
to the analysis on random walk in Section 7.2.1 and following the same reasoning as in ref. [28],
with a run time T = O(n logn). However, in order to compare time scales with ref. [64], we take
the same convention and divide the global scrambling time by the time it takes to scramble a
single subsystem; in this case we obtain a scrambling time of τ∗ = O(logn). Hence, our work
also provides an alternative proof for the scaling of the scrambling time in ref. [64], although our
argument does not involve any intermediate conjecture, such as the final statements of ref. [64,
Appendix B].
In ref. [142], a slightly different scrambling condition is required for the unitarity of black hole
evaporation to hold, given postselection on the final state at the singularity inside the black hole.
One considers the composite system HM ⊗Hin ⊗Hout representing the infalling matter, the
infalling negative energy Hawking radiation behind the event horizon and the outgoing positive
energy Hawking radiation outside the horizon, respectively. Again, one defines a reference system
S which is maximally entangled with a subsystem M1 ⊂M . After the application of a random
unitary transformation U on HM ⊗Hin and subsequently tracing out the complement subsystem
of S, we have (cfr. [142, eq.(3)])

EHaar

{∥∥∥∥TrS
(
U ρU †

)
− 1S
|S|

∥∥∥∥
1

}
≤
√
|HM1 |
|Hin|

. (7.154)

A relaxed version of this bound, namely,

Eω

{∥∥∥∥TrS
(
U ρU †

)
− 1S
|S|

∥∥∥∥
1

}
≤
√

5δn |HM1 |
|Hin|

+
1

poly(n) , (7.155)

where n = log2 (|Hin||HM |), follows from the condition∑
ν 6=0
|qω(µ, ν)− 4δnqu(µ, ν)| ≤ 1

(3− η)`(n`)
1

poly(n) , (7.156)

for every Pauli string σµ with support size ` .

The above condition was shown to hold in ref. [24] for random quantum circuits of size O(n log2 n).
Applying the equivalence established Section 7.2.1, it follows from Theorem 7.19 that this is
fulfilled by a stochastic local Hamiltonians in time τ ′∗ = O(log2 n), when again we take the
convention of ref. [64] and divide global scrambling time by the time to scramble a single
subsystem.

Dissipative dynamics arising from fluctuations As pointed at the beginning of this
chapter, there is an intimate relationship between time-fluctuating dynamics and Markovian
dissipative evolution, a connection that we will now make explicit. Brownian motion Ut on the
unitary group yields an average dynamics given by

ρ(t) := E[UtρU
†
t ], (7.157)

which describes a dissipative quantum Markovian evolution of the state ρ. In this sense, time-
fluctuating classical noise is precisely a specific source of dissipation. Indeed, the use of controlled
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dissipative Markovian dynamics has received much interest in recent years [143–145].

The generator of the dynamical semi-group given by the evolution (7.157) has been calculated in
Lemma 7.9. For k = 1, the generator is immediately expressed in the following proposition.

Proposition 7.28 (Fluctuations as dissipative processes). Let Ut be a Brownian motion with
increments Θ∆t as in eq. (7.6). Write Θ∆t as

Θ∆t = −iH0 + F∆t , (7.158)

where −iH0 and F∆t are its anti-Hermitian time constant and fluctuating parts, respectively, with

F∆t =
∑
µ

Bµ ξ
µ
∆t, B†µ = −Bµ , E[ξµ∆t] = 0 , and E[ξµ∆t ξ

ν
∆t] = −

a

∆t
δµ,ν .

Then ρ(t) = E[UtρU
†
t ] gives rise to a quantum dynamical semi-group and evolves according to

the Lindblad equation

d

dt
ρ(t) = −i [H0, ρ(t)]− a

∑
µ

(
BµρB

†
µ −

1
2
(
B†µBµρ+ ρB†µBµ

))
(7.159)

with ρ(0) = ρ.

Proof. According to Lemma 7.9 the evolution has a generator

G1 = lim
t→0

E
[
Θt ⊗ 1+ 1⊗Θt

]
+

1
2 lim
t→0

E[(Θt ⊗ 1+ 1⊗Θt)
2] t , (7.160)

where the mixed tensor representation π1,1 from eq. (7.20) is used. It remains to show that the
generator is of Lindblad form. The proposition’s hypothesis yields

G1 = −iH0 ⊗ 1+ i1⊗H0 +
1
2 lim
t→0

E[(F 2
t ⊗ 1+ 1⊗ F

2
t + 2Ft ⊗ F t)] t (7.161)

= −iH0 ⊗ 1+ i1⊗HT
0 −

a

2
∑
µ

(B2
µ ⊗ 1+ 1⊗B2T

µ − 2Bµ ⊗BT
µ ) , (7.162)

where we have used that Bµ = −BT
µ . The identification vec(XY Z) = (X ⊗ ZT ) vec(Y ) and

B†µ = −Bµ finish the proof.

Applications in quantum information processing We finally mentioned a third, immedi-
ate, application, which seems yet particularly important when having potential technological
applications in quantum information processing in mind. It should be now clear that whenever
the aim is to realize an approximate unitary design, the evolution under a fluctuating Hamiltonian
constitutes a valuable option. We have illustrated a number of domains of quantum information
where unitary designs play a prominent role, and seen that with a suitable random circuit
one can generate approximate unitary designs. Such a scheme, however, requires the precise
implementation of a deep quantum circuit consisting of a large number of local quantum gates.
The above results tell that, instead of implementing a quantum circuit, a suitably stochastic
Hamiltonian evolution can be used to give rise to exactly the same dynamics and hence be chosen
whenever such an approach is more feasible.
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Conclusions and outlook

In this thesis we investigated distributions over the unitary group and properties thereof from
a quantum information theoretic perspective. We motivated the fundamental importance of
the group by discussing applications in a number of circumstances and settings. After the
preliminaries, in Chapter 3 we introduced the notion of distributions of unitaries, in partic-
ular highlighting the concept of universality and the construction of the Haar measure as a
uniform distribution. We formalized in the same chapter a notion whose importance we have
extensively motivated throughout the work: suitable distributions that constitute so-called
unitary designs which approximate the Haar measure. As a first novel result, we discussed
how quantum cryptography in the Private Quantum Channel formalism is more robust than
the classical counterpart in presence of an imperfect source of randomness by expressing the
encryption through a random unitary operator drawn from a unitary design. We then illustrated
in Chapter 4 another particularly relevant topic in quantum information theory strictly tied to
unitary 2-designs, namely, decoupling. This is involved in a number of applications, from state
merging to thermodynamic equilibration and again, as we discussed in the last chapter, as a black
hole scrambling condition. We have collected different formulations for decoupling theorems, in
terms of different entropy measures such as the quantum collision entropy, the min-entropy and
the hypothesis-testing entropy. In Chapter 5 we connected these two topics, unitary distributions
and decoupling, with a prominent setting of quantum information, that is, random quantum
circuits. Indeed, with this construction one is able to implement efficiently unitary designs
and also decouple rapidly a system from another. In Chapter 6 we illustrated randomized
benchmarking, one of the most relevant emerging applications for random quantum circuits. By
twirling noise channels over suitable groups of unitary operators, we can estimate the fidelity of
experimental gates implementations. Previous literature focuses on twirls over 2-designs, such as
the Clifford group, to characterize this quantity. While those protocols rely on the depolarization
of the noise channel, we exploit conversely symmetries of the associated target unitary gate: the
underlying mathematical tools of representation theory and in particular the Schur’s Lemma
force the twirled noise matrix representation into a block-diagonal form, whose matrix entries
can be fitted as parameters. This, at the cost of higher classical computational resources, allows
to benchmark individually quantum gates outside the Clifford group. In Chapter 7 we eventually
switched to a continuous-time framework with the final goal of unifying random processes over
the unitary group under the same umbrella. More precisely, we showed that results on unitary
designs and decoupling obtained with the implementation of a random quantum circuit can
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be extended to Brownian motions on the manifold of the unitary group. We formalized the
stochastic process through differential Brownian increments on the Lie algebra subsequently
injected through the exponential map into the group. Two applications of this diffusion model
are presented: dissipation and black holes scrambling. One of the first outlook of this work is to
find other settings where the presented results can be applied; we conjecture that this is the case
of experimental implementations of noisy Hamiltonians for quantum optics purposes.
Again regarding the continuous-time scheme, one should investigate a possible improvement in the
scaling of the moments convergence with respect to their degree, perhaps to the point of making
the result completely independent of it, as already argued in ref. [27] for the random quantum
circuit counterpart. Another important improvement would be to remove the permutation
invariant condition for the initial state considered for fast decoupling. We tried several shuffling
and mixing techniques (cfr. refs. [38, 39, 48]) without success, but we are still of the opinion
that this assumption can be eliminated.
Now moving to the novel benchmarking protocol, one of the first follow-up projects should
certainly involve a sharper bound for the confidence interval in the fashion of the one provided in
ref. [112] for Clifford group twirling. An approach in the fashion of ref. [113], studying the tensor
representations of the involved symmetry groups, could in principle lead to similar bounds.

This work does not however aim at providing new results and bounds in terms of new frameworks
only, but also wants to stimulate mathematical applications in quantum information theory. In
order to develop a novel randomized benchmarking protocol, we extensively applied group and
representation theoretic tools to exploit systems and operators symmetries. Furthermore, we
extended the discrete-time setting of random quantum circuits to one of the most relevant topics
of probability theory, namely, Brownian motion. To prove equivalent results, we shifted to a
Lie algebra formulation and made use of tools such as Young diagrams and Dynkin labels to
establish a gap for the local generator of the moment operator which is entirely independent of
its degree. This is by itself a remarkable result, in the same fashion of the one that Bourgain
and Gamburd have shown in ref. [98] for gate sets with algebraic entries, where in our case we
also provide an explicit value. Again, to show our version of decoupling theorem with random
unitaries chosen accordingly to a diffusion model and to estimate convergence times, we combined
random walk on Pauli strings results from refs. [28] and [24] regarding stationary distributions,
projections of chains and barrier absorptions. This author hence hopes that both results as well
as mathematical techniques will be of interest in this and other fields.
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Appendix

Mathematica notebook for randomized
benchmarking on 3-fold tensor copies of T-gate

123



Construct representation of S3
In[1]:= F12 = ConstantArray[0, {64, 64}];

Do[

Do[

Do[

j = 16 * c + 4 * b + a + 1; k = 16 * c + 4 * a + b + 1;

F12[[j, k]] = 1,

{a, 0, 3}], {b, 0, 3}], {c, 0, 3}]

In[3]:= F23 = ConstantArray[0, {64, 64}];

Do[

Do[

Do[

j = 16 * c + 4 * b + a + 1; k = 16 * b + 4 * c + a + 1;

F23[[j, k]] = 1,

{a, 0, 3}], {b, 0, 3}], {c, 0, 3}]

In[5]:= F13 = ConstantArray[0, {64, 64}];

Do[

Do[

Do[

j = 16 * c + 4 * b + a + 1; k = 16 * a + 4 * b + c + 1;

F13[[j, k]] = 1,

{a, 0, 3}], {b, 0, 3}], {c, 0, 3}]

In[7]:= F123 = F13.F12;

F132 = F12.F13;

In[9]:= S3Group = {IdentityMatrix[64], F12, F13, F23, F123, F132};

Character table of S3

In[10]:= trivialrep = {1, 1, 1, 1, 1, 1};

signrep = {1, -1, -1, -1, 1, 1};

standardrep = {2, 0, 0, 0, -1, -1};

S3irreps = {trivialrep, signrep, standardrep};

Construct symmetry group of 3 tensor copies of T-

gate and its irreps

In[14]:= LPTgate = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 0 -1 0

0 1 0 0

0 0 0 1

,

1 0 0 0

0 0 1 0

0 -1 0 0

0 0 0 1

,

1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 1

;

In[15]:= Cyc4Trivial = {1, 1, 1, 1};

Cyc1 = {1, , -, -1};

Cyc2 = {1, -1, -1, 1};

Cyc3 = {1, -, , -1};

Cyc4Characters = {Cyc4Trivial, Cyc1, Cyc2, Cyc3};



In[20]:= DirectProductGroup = Flatten[Table[

KroneckerProduct[LPTgate[[p]], KroneckerProduct[LPTgate[[j]], LPTgate[[k]]]],

{p, 1, 4}, {j, 1, 4}, {k, 1, 4}], 2];

In[21]:= FullGroup =

Flatten[Table[DirectProductGroup[[j]].S3Group[[k]], {k, 1, 6}, {j, 1, 64}], 1];

In[22]:= TraceFullGroup = Map[Tr, FullGroup];

In[23]:= DirectProductCharacters =

Table[Flatten@Table[Cyc4Characters[[a, p]] * Cyc4Characters[[b, q]] *

Cyc4Characters[[c, r]], {p, 1, 4}, {q, 1, 4}, {r, 1, 4}],

{a, 1, 4}, {b, 1, 4}, {c, 1, 4}];

(*the labels a, b, c represent which irrep is chosen from the k4 Group,

the labels p,q,r the group element*)

Action of S3 on characters
In[24]:= OneOrbits = Table[If[Inverse[S3Group[[ll]]].DirectProductGroup[[j]].S3Group[[ll]] 

DirectProductGroup[[k]], 1, 0], {ll, 1, 6}, {j, 1, 64}, {k, 1, 64}];

In[25]:= MatrixPlot /@ OneOrbits

Out[25]= 
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,

1 20 40 64
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,

1 20 40 64
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,

1 20 40 64

1

20

40

64

1 20 40 64

1

20

40

64

,

1 20 40 64

1

20

40

64

1 20 40 64

1

20

40

64



In[26]:= CharacterOrbits =

Table[Table[OneOrbits[[j]].DirectProductCharacters[[a, b, c]], {j, 1, 6}],

{a, 1, 4}, {b, 1, 4}, {c, 1, 4}];

(*first three entries label the representation,

last entry label the permutation group element*)

In[27]:= CharacterOrbitsFlat = Flatten[CharacterOrbits, 2];

DirectProductCharactersFlat = Flatten[DirectProductCharacters, 2];
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Sort orbits and select representative characters

In[29]:= OrbitsLists = Flatten /@

Map[Position[DirectProductCharactersFlat, #][[1]] &, CharacterOrbitsFlat, {2}]

Out[29]= {{1, 1, 1, 1, 1, 1}, {2, 5, 17, 2, 5, 17}, {3, 9, 33, 3, 9, 33}, {4, 13, 49, 4, 13, 49},

{5, 2, 5, 17, 17, 2}, {6, 6, 21, 18, 21, 18}, {7, 10, 37, 19, 25, 34},

{8, 14, 53, 20, 29, 50}, {9, 3, 9, 33, 33, 3}, {10, 7, 25, 34, 37, 19},

{11, 11, 41, 35, 41, 35}, {12, 15, 57, 36, 45, 51}, {13, 4, 13, 49, 49, 4},

{14, 8, 29, 50, 53, 20}, {15, 12, 45, 51, 57, 36}, {16, 16, 61, 52, 61, 52},

{17, 17, 2, 5, 2, 5}, {18, 21, 18, 6, 6, 21}, {19, 25, 34, 7, 10, 37},

{20, 29, 50, 8, 14, 53}, {21, 18, 6, 21, 18, 6}, {22, 22, 22, 22, 22, 22},

{23, 26, 38, 23, 26, 38}, {24, 30, 54, 24, 30, 54}, {25, 19, 10, 37, 34, 7},

{26, 23, 26, 38, 38, 23}, {27, 27, 42, 39, 42, 39}, {28, 31, 58, 40, 46, 55},

{29, 20, 14, 53, 50, 8}, {30, 24, 30, 54, 54, 24}, {31, 28, 46, 55, 58, 40},

{32, 32, 62, 56, 62, 56}, {33, 33, 3, 9, 3, 9}, {34, 37, 19, 10, 7, 25},

{35, 41, 35, 11, 11, 41}, {36, 45, 51, 12, 15, 57}, {37, 34, 7, 25, 19, 10},

{38, 38, 23, 26, 23, 26}, {39, 42, 39, 27, 27, 42}, {40, 46, 55, 28, 31, 58},

{41, 35, 11, 41, 35, 11}, {42, 39, 27, 42, 39, 27}, {43, 43, 43, 43, 43, 43},

{44, 47, 59, 44, 47, 59}, {45, 36, 15, 57, 51, 12}, {46, 40, 31, 58, 55, 28},

{47, 44, 47, 59, 59, 44}, {48, 48, 63, 60, 63, 60}, {49, 49, 4, 13, 4, 13},

{50, 53, 20, 14, 8, 29}, {51, 57, 36, 15, 12, 45}, {52, 61, 52, 16, 16, 61},

{53, 50, 8, 29, 20, 14}, {54, 54, 24, 30, 24, 30}, {55, 58, 40, 31, 28, 46},

{56, 62, 56, 32, 32, 62}, {57, 51, 12, 45, 36, 15}, {58, 55, 28, 46, 40, 31},

{59, 59, 44, 47, 44, 47}, {60, 63, 60, 48, 48, 63}, {61, 52, 16, 61, 52, 16},

{62, 56, 32, 62, 56, 32}, {63, 60, 48, 63, 60, 48}, {64, 64, 64, 64, 64, 64}}

In[30]:= uniqueOrbits = Union[Sort /@ OrbitsLists]

Out[30]= {{1, 1, 1, 1, 1, 1}, {2, 2, 5, 5, 17, 17},

{3, 3, 9, 9, 33, 33}, {4, 4, 13, 13, 49, 49}, {6, 6, 18, 18, 21, 21},

{7, 10, 19, 25, 34, 37}, {8, 14, 20, 29, 50, 53}, {11, 11, 35, 35, 41, 41},

{12, 15, 36, 45, 51, 57}, {16, 16, 52, 52, 61, 61}, {22, 22, 22, 22, 22, 22},

{23, 23, 26, 26, 38, 38}, {24, 24, 30, 30, 54, 54}, {27, 27, 39, 39, 42, 42},

{28, 31, 40, 46, 55, 58}, {32, 32, 56, 56, 62, 62}, {43, 43, 43, 43, 43, 43},

{44, 44, 47, 47, 59, 59}, {48, 48, 60, 60, 63, 63}, {64, 64, 64, 64, 64, 64}}

In[31]:= groupedOrbits = Sort[Sort /@ Union /@ uniqueOrbits, Length[#1] ≤ Length[#2] &]

Out[31]= {{1}, {22}, {43}, {64}, {2, 5, 17}, {3, 9, 33}, {4, 13, 49}, {6, 18, 21},

{11, 35, 41}, {16, 52, 61}, {23, 26, 38}, {24, 30, 54}, {27, 39, 42},

{32, 56, 62}, {44, 47, 59}, {48, 60, 63}, {7, 10, 19, 25, 34, 37},

{8, 14, 20, 29, 50, 53}, {12, 15, 36, 45, 51, 57}, {28, 31, 40, 46, 55, 58}}

In[32]:= OrbitRepresentative = Min /@ groupedOrbits

Out[32]= {1, 22, 43, 64, 2, 3, 4, 6, 11, 16, 23, 24, 27, 32, 44, 48, 7, 8, 12, 28}

In[33]:= OrbitRepresentativeChar = DirectProductCharactersFlat[[#]] & /@ OrbitRepresentative;

Construct irreps with stabilizer S3

In[34]:= (*trivial rep on S3*)

charact1 = Flatten[#, 1] &@Table[#, {xx, 6}] & /@ OrbitRepresentativeChar[[1 ;; 4]];
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In[35]:= (*sign rep on S3*)

charact2 = Flatten[#, 1] &@{#, -#, -#, -#, #, #} & /@ OrbitRepresentativeChar[[1 ;; 4]];

In[36]:= (*standard rep on S3*)

charact3 =

Flatten[#, 1] &@{2 #, 0 #, 0 #, 0 #, -#, -#} & /@ OrbitRepresentativeChar[[1 ;; 4]];

Construct irreps with stabilizer {Identity,F12}

In[37]:= threeorbitssubgroup =

Flatten[Table[DirectProductGroup[[j]].S3Group[[k]], {k, 1, 2}, {j, 1, 64}], 1];

In[38]:= threeorbitssubgroupirreps = Table[

{Flatten[{DirectProductCharacters[[a, b, b]], DirectProductCharacters[[a, b, b]]},

1], Flatten[{DirectProductCharacters[[a, b, b]],

-1 * DirectProductCharacters[[a, b, b]]}, 1]}, {a, 1, 4}, {b, 1, 4}];

Construct matrices representing the conjugate action t^(-1) s t

In[39]:= conjugatematrices = Table[

Inverse[FullGroup[[t]]].FullGroup[[s]].FullGroup[[t]], {s, 1, 384}, {t, 1, 384}];

Construct induced characters from irreps having orbits with three elements each

In[40]:= inducedcharactermatrices =

Table[If[conjugatematrices[[s, t]]  threeorbitssubgroup[[r]], 1, 0],

{s, 1, 384}, {t, 1, 384}, {r, 1, 128}];

In[41]:= MatrixPlot /@ inducedcharactermatrices[[1 ;; 10]]

Out[41]= 
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
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In[42]:=

In[43]:= inducedcharactervectors =

Table[Map[#.threeorbitssubgroupirreps[[a, b, t]] &, inducedcharactermatrices],

{a, 1, 4}, {b, 1, 4}, {t, 1, 2}];

In[44]:= threeorbitsinducedcharacters =

Table[1 / 128 * Map[Total, inducedcharactervectors[[a, b, t]]],

{a, 1, 4}, {b, 1, 4}, {t, 1, 2}];

Construct induced characters from irreps having orbits with six elements each 

Note that the subgroup given by the trivial stabilizer is the direct product group itself

In[45]:= inducedcharactermatrices2 =

Table[If[conjugatematrices[[s, t]]  DirectProductGroup[[r]], 1, 0],

{s, 1, 384}, {t, 1, 384}, {r, 1, 64}];

In[46]:= MatrixPlot /@ inducedcharactermatrices2[[1 ;; 10]]

Out[46]= 
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

In[47]:= inducedcharactervectors2 =

Table[Map[#.DirectProductCharacters[[a, b, c]] &, inducedcharactermatrices2],

{a, 1, 4}, {b, 1, 4}, {c, 1, 4}];

In[48]:= sixorbitsinducedcharacters =

Table[1 / 64 * Map[Total, inducedcharactervectors2[[a, b, c]]],

{a, 1, 4}, {b, 1, 4}, {c, 1, 4}];
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Sort irreps
There are in total 40 irreps, 12 from the one orbit characters with stabilizer S3, 12x2 from the three-

orbit characters with stabilizer S2, 4 from the six-orbit characters with trivial stabilizer

In[49]:= FullGroupirreps = ConstantArray[0, {40, 384}];

Do[FullGroupirreps[[a]] = charact1[[a]], {a, 1, 4}];

Do[FullGroupirreps[[a + 4]] = charact2[[a]], {a, 1, 4}];

Do[FullGroupirreps[[a + 8]] = charact3[[a]], {a, 1, 4}];

Do[FullGroupirreps[[12 + a - 1]] = threeorbitsinducedcharacters[[a, 1, 1]], {a, 2, 4}];

In[54]:= FullGroupirreps[[16]] = threeorbitsinducedcharacters[[1, 2, 1]];

FullGroupirreps[[17]] = threeorbitsinducedcharacters[[3, 2, 1]];

FullGroupirreps[[18]] = threeorbitsinducedcharacters[[4, 2, 1]];

FullGroupirreps[[19]] = threeorbitsinducedcharacters[[1, 3, 1]];

FullGroupirreps[[20]] = threeorbitsinducedcharacters[[2, 3, 1]];

FullGroupirreps[[21]] = threeorbitsinducedcharacters[[4, 3, 1]];

FullGroupirreps[[22]] = threeorbitsinducedcharacters[[1, 4, 1]];

FullGroupirreps[[23]] = threeorbitsinducedcharacters[[2, 4, 1]];

FullGroupirreps[[24]] = threeorbitsinducedcharacters[[3, 4, 1]];

Do[FullGroupirreps[[24 + a - 1]] = threeorbitsinducedcharacters[[a, 1, 2]], {a, 2, 4}];

FullGroupirreps[[28]] = threeorbitsinducedcharacters[[1, 2, 2]];

FullGroupirreps[[29]] = threeorbitsinducedcharacters[[3, 2, 2]];

FullGroupirreps[[30]] = threeorbitsinducedcharacters[[4, 2, 2]];

FullGroupirreps[[31]] = threeorbitsinducedcharacters[[1, 3, 2]];

FullGroupirreps[[32]] = threeorbitsinducedcharacters[[2, 3, 2]];

FullGroupirreps[[33]] = threeorbitsinducedcharacters[[4, 3, 2]];

FullGroupirreps[[34]] = threeorbitsinducedcharacters[[1, 4, 2]];

FullGroupirreps[[35]] = threeorbitsinducedcharacters[[2, 4, 2]];

FullGroupirreps[[36]] = threeorbitsinducedcharacters[[3, 4, 2]];

FullGroupirreps[[37]] = sixorbitsinducedcharacters[[1, 2, 3]];

FullGroupirreps[[38]] = sixorbitsinducedcharacters[[1, 2, 4]];

FullGroupirreps[[39]] = sixorbitsinducedcharacters[[1, 3, 4]];

FullGroupirreps[[40]] = sixorbitsinducedcharacters[[2, 3, 4]];

Checking whether the irreps are correct...

In[77]:= CheckOrthogonality =

Table[If[1 / 384 * Sum[Conjugate[FullGroupirreps[[a, h]]] * FullGroupirreps[[b, h]],

{h, 1, 384}]  1, 1, 0], {a, 1, 40}, {b, 1, 40}];
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In[78]:= MatrixPlot[CheckOrthogonality]

Out[78]=
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In[79]:= CheckOrthogonalityConverse =

Table[If[1 / 384 * Sum[Conjugate[FullGroupirreps[[a, h]]] * FullGroupirreps[[b, h]],

{h, 1, 384}]  0, 1, 0], {a, 1, 40}, {b, 1, 40}];

In[80]:= MatrixPlot[CheckOrthogonalityConverse]

Out[80]=
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In[81]:= Sum[FullGroupirreps[[a, 1]]^2, {a, 1, 40}]  384 (*Dimension Formula*)

Out[81]= True

All orthogonality and dimension formulae are correct!
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Irreducible decomposition
In[82]:= Do[

Print[

1 / 384 * Sum[Conjugate[FullGroupirreps[[m, j]]] * TraceFullGroup[[j]], {j, 1, 384}],

" multiplicity of irrep ", m], {m, 1, 40}]

4 multiplicity of irrep 1

1 multiplicity of irrep 2

0 multiplicity of irrep 3

1 multiplicity of irrep 4

0 multiplicity of irrep 5

0 multiplicity of irrep 6

0 multiplicity of irrep 7

0 multiplicity of irrep 8

2 multiplicity of irrep 9

0 multiplicity of irrep 10

0 multiplicity of irrep 11

0 multiplicity of irrep 12

3 multiplicity of irrep 13

0 multiplicity of irrep 14

3 multiplicity of irrep 15

2 multiplicity of irrep 16

0 multiplicity of irrep 17

1 multiplicity of irrep 18

0 multiplicity of irrep 19

0 multiplicity of irrep 20

0 multiplicity of irrep 21

2 multiplicity of irrep 22

1 multiplicity of irrep 23

0 multiplicity of irrep 24

1 multiplicity of irrep 25

0 multiplicity of irrep 26

1 multiplicity of irrep 27

0 multiplicity of irrep 28

0 multiplicity of irrep 29

0 multiplicity of irrep 30

0 multiplicity of irrep 31

0 multiplicity of irrep 32

0 multiplicity of irrep 33

0 multiplicity of irrep 34
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0 multiplicity of irrep 35

0 multiplicity of irrep 36

0 multiplicity of irrep 37

2 multiplicity of irrep 38

0 multiplicity of irrep 39

0 multiplicity of irrep 40
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Zusammenfassung

Nach den Axiomen der Quantenmechanik wird die Zeitentwicklung quanten-mechanischer Sys-
teme durch unitäre Operatoren beschrieben. Aus diesem Grund ist das Studium und Verständnis
der entsprechenden Gruppe von großem Interesse. Ein Teilbereich der Forschung an dieser Gruppe
mit besonders breitem Anwendungsgebiet in der Quanteninformationstheorie sind stochastische
Zufallsprozesse über die unitäre Gruppe. Hier spielen sogenannte unitäre Designs eine zentrale
Rolle. Dies sind besondere Dichteverteilungen, die die Momente des uniformen Haar-Maßes
reproduzieren, und somit eng verknüpft sind mit Konzepten wie Quanten-Tomographie, Äquilib-
rierung, Thermalisierung, Verschlüsselung und Scrambling. Die bisherige Forschung konnte
zeigen, dass unitäre Designs effizient angenähert werden können durch randomisierte Quanten-
Schaltkreise mit lokalen unitären Gattern. Mithilfe von diesen Schaltkreisen lassen sich sowohl
die Präzision experimenteller Implementierungen unitärer Gatter anhand von randomisierten
Benchmarking-Protokollen auswerten, als auch Systeme die äußerst schnell von ihrer Umfeld
entkoppeln.
Der hauptsächliche Beitrag dieser Arbeit ist die Entwicklung eines Formalismus, mit dem die
oben beschriebenen Ergebnisse auf kontinuierliche Zeitentwicklungen angewendet werden können,
das heisst, eine Untersuchung der Brown’sche Bewegung über die unitäre Gruppe. Um dies
zu erreichen, entwickeln wir zum einen eine darstellungstheoretische Formulierung unitärer
Designs und nutzen die daraus resultierenden Werkzeuge um einen Ausdruck für den Abstand
zwischen lokalen Generatoren zu errechnen, die zu den verschiedenen Momenten einer Verteilung
bei einem Diffusionsprozess in Zusammenhang stehen. Hieraus lässt sich weiter berechnen, in
welchen Zeitskalen die Konvergenz dieser Momente zu denen des Haar-Maßes garantiert werden
kann. Zum anderen beschreiben wir die stochastische Zeitentwicklung als eine Projektion auf
einen Random Walk über Pauli-Matrizen und verknüpfen diese Formulierung des Problems mit
randomisierten Quanten-Schaltkreisen. Hierdurch lässt sich eine Entkopplung von System und
Umfeld erreichen, die nahezu linear in der Systemgröße skaliert.
Zusätzlich zu der Entwicklung eines einheitlichen Formalismus für Zufallsprozess über die
unitäre Gruppe präsentiert diese Arbeit also neue mathematische Ergebnisse und Techniken
im Bereich der Quanteninformationtheorie. Nicht zuletzt werden auch Anwendungen dieser
Ergebnisse im Bereich der Dynamik schwarzer Löcher diskutiert, nämlich mit Hinblick auf das
Informationsparadoxon.
Ein weiteres, neues Ergebnis dieser Arbeit, unabhängig von Brown’scher Bewegung, ist ein
randomisiertes Benchmarking-Protokoll, welches existierende Protokolle zum Schätzen der
Genauigkeit von Gattern verbessert, indem es Symmetrien in diesen Gattern ausnutzt. Auch
dieser Fortschritt basiert auf Darstellungstheorie und nutzt diese, um den rechnerischen Aufwand
und die Menge verwendeter Quanten-Ressourcen zu reduzieren.
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Abstract
According to one of the fundamental axioms of quantum mechanics, unitary operators rule
the evolution of any quantum system; it is thus of prominent importance to investigate the
corresponding group and discover its properties. Random processes over the unitary group
have indeed a wide range of applications in the context of quantum information; in particular,
they are involved in the construction of peculiar distributions – called unitary designs – which
mimic the uniform Haar measure by matching its moments and are thus deeply connected
to the description of phenomena such as quantum tomography, equilibration, thermalization,
encryption and scrambling. Previous approaches have shown that unitary designs are efficiently
approximated by random quantum circuits with local unitary operators. Moreover, these circuits
are used to characterize the precision of experimental implementations of unitary gates via
randomized benchmarking protocols and to rapidly decouple a system from the environment.
The main novel contribution of this work is to extend these mixing properties to a continuous-
time framework, namely, Brownian motion over the unitary group induced by stochastic local
Hamiltonians. In order to achieve these new results, on the one hand we move to a representation
theoretic formulation and make use of its tools to establish the gap of local generators linked to
the moments of the distribution induced by the diffusion process; from this we then derive an
expression for the length of time it takes to ensure convergence toward the moments of the Haar
measure. On the other hand we project the stochastic evolution onto a random walk on Pauli
matrices and tie this description to the analogous one for random quantum circuits to achieve
decoupling in a run time scaling almost linearly with respect to the system size. In addition to
providing a unifying framework for random processes over the unitary group, we hence aim at
presenting new mathematical results and techniques for quantum information. We furthermore
discuss applications to black holes dynamics in the perspective of the information paradox.
As an additional novel result not related to Brownian motion, we propose a randomized bench-
marking protocol exploiting the symmetry of the gate whose accuracy has to be estimated,
in order to overcome current shortcomings afflicting the known schemes. We again rely on
representation theory to reduce the computational effort and the amount of employed quantum
resources.
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