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Abstract

A platform architecture for positioning systems is essential for the realization of a flexible
localization system, which interacts with other systems and supports various positioning
technologies and algorithms. The decentralized processing of a position enables to push
the application-level knowledge into a mobile station and avoids the communication with
a central unit such as a server or a base station. In addition, the calculation of the
position on low-cost and resource-constrained devices presents a challenge due to the limited
computing and storage capacity as well as power supply. Therefore, this thesis proposes a
platform architecture which allows for the design of a system with the following advantages:
reusability of the components, extensibility (e.g., with other positioning technologies) and
interoperability. Furthermore, the position is computed on-the-fly on a low-cost device
such as a microcontroller, which simultaneously performs additional tasks such as data
collecting or preprocessing based on an operating system. The platform architecture is
designed, implemented, and evaluated based on two systems: a time-of-arrival and a field
strength-based positioning system. These systems use Ultra-Wideband (UWB) and Direct
Current (DC)-pulsed magnetic signals, respectively. Suitable algorithms are proposed to
compute an unoptimized position (start position). These algorithms will be analyzed and
compared with respect to the stability, efficiency, complexity, and memory requirements.
An adaptive algorithm is developed for the optimization of the position, which is based on
the Singular Value Decomposition (SVD), Levenberg–Marquardt (LVM) algorithm, and
the Position Dilution of Precision (PDOP). This algorithm allows an adaptive selection
mechanism for the LVM algorithm. This adaptive algorithm enables saving of resources
such as memory, computing time, and energy on resource-constrained devices. Furthermore,
two variants of the LVM algorithms are used: the Dahmen-Reusken LVM and Madsen LVM,
which are analyzed and compared with the Gauss-Newton algorithm. All the algorithms
are derived in a convenient form for resource-constrained devices. Since the parameters
of the LVM algorithm impact the accuracy as well as the required iteration number, the
influence and the choice of the right parameter combination will be determined, analyzed
and discussed. Finally, a method is designed and evaluated to reduce multipath errors on the
mobile station. This method allows an accurate localization in non-line-of-sight scenarios.
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CHAPTER 1

Introduction

Nowadays, the accurate localization of a user or an object is indispensable for Location-
Based Services (LBSs), such as asset tracking, inventory management, or routing and
navigation. In recent years, location sensing systems have become popular and emerged
as a vital research area. Therefore, research and commercial products have been devel-
oped in academic as in industrial contexts. Localization systems use various sensors and
communication technologies as well as approaches to locate objects or persons [1].

Global Positioning System (GPS) and similar systems play important roles in applications
such as car navigation or vehicle tracking and monitoring. GPS accuracy is restricted in
urban areas due to multipath propagation errors as well as limited visibility of the satellites,
especially with narrow streets and tall buildings [2]. Furthermore, although the use of
pseudo-lites, which generate and transmit GPS-like signals, might enable GPS to work
indoors; pseudo-lites based solutions must cope with several issues such as multipath effects,
precise synchronization, and government restrictions [3, 4].

Since GPS does not work in indoor environments, alternative localization techniques have
been developed for indoor positioning. Deak et al. present a survey on indoor localization
systems, which use different technologies such as Time of Arrival (TOA) or Received
Signal Strength Indicator (RSSI) [5]. Most indoor localization systems necessitate that
tags/electronic devices must be mounted on objects or carried by the person being tracked
to estimate their localization [5]. Common features of indoor localization systems are [6]:

• Deployment environment: The area where the system is used should be prepared
by installing fixed reference units, which interact with a mobile target to estimate
its location. Environmental conditions, such as walls, result in various grades of
attenuation, scattering, and reflection. These conditions should be considered by the
selection or design of the localization technology or system, respectively.
• System range: Indoor localization systems are usually limited to a small area and,

therefore, are referred to as Local Positioning Systems (LPSs). In contrast, the 2G/3G
cellular network positioning systems, or the Global Navigation Satellite Systems
(GNSSs) belong to global coverage localization systems.
• Geometric location model: The location information can be represented by using a two-

or three-dimensional geometric model such as a local Cartesian or a polar coordinate
system. A logical location model can be more appropriate in context-based applications:
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Given a room, which can be labeled as a kitchen or living room, where a person or an
object is located. Various positioning, as well as mobile computing applications, take
advantage of knowing a user’s logical location such as a coffeehouse or a restaurant.
This can allow a shopkeeper to send an electronic coupon, for purchasing coffee or
food, to a customer entering the store [7].
• Localization techniques: They can be divided into various classes [8]. Based on the
type of the distance measurement method, they can be classified as range-free or
range-based location systems. As a function of the implementation of the system,
they can also be classified as hardware-based and software-based positioning systems.
Depending on the system architecture, they can be grouped into tightly or loosely
coupled localization systems [9].

1.1. Research Objectives and Contributions

A platform architecture is required for the realization of the previously-mentioned localization
systems. To the best of our knowledge, there is neither a standard for the design, nor a
detailed description of the architecture of a positioning system. The architecture of most
localization systems is roughly described and divided into two parts: the sensor hardware
and the positioning algorithm [10]. The first part relies on a variety of technologies, such
as electromagnetic waves (e.g., Ultra-Wideband (UWB) or Wireless Local Area Network
(WLAN)), or ultrasound. The positioning algorithm is based on various signal measurement
methods, such as TOA, RSSI or Direction of Arrival (DOA) [10, 11].

The goal is to design and validate an open platform architecture that can be implemented
on resource-constrained devices such as microcontrollers. These devices can build an Internet
of Things (IoT) of networked embedded objects. The combination of real-time localization,
Internet, and embedded sensors allows transforming everyday objects into smart objects
that can interpret, perceive, and interact with the environment. The platform architecture
should be open in the sense of being able to communicate and interact with other systems
as well as being open source. The platform allows for decentralized, continuous (smooth),
and accurate localization.
In this thesis, the focus is on anchor-based indoor positioning systems. The main

contributions of this work are:

1. Proposal of a layer- and modular-based architecture, which enables on-the-fly location
calculation on the Mobile Station (MS). The position is computed on low-cost,
resource-constrained devices such as microcontrollers. The proposed platform is non-
proprietary and open, since it can be easily extended with other sensors to enable the
implementation of positioning systems based on other technologies. The proposed
platform can interoperate with existing systems and protocols such as IPv6 over
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Low-Power Wireless Personal Area Networks (6LoWPAN).
2. Development of a preprocessing method to remove outliers in measured data, which is

convenient for resource-constrained devices with limited stack memory.
3. Introduction of a method that calculates the 3D position based on the Singular Value

Decomposition (SVD).
4. Proposition of a pre-processed method for the localization calculation, avoiding the

execution of memory and computationally-expensive algorithms such as the SVD or
Moore–Penrose, on resource-constrained devices.

5. Demonstration of the feasibility to deploy the Moore–Penrose algorithm, which is
based on SVD, on resource-constrained devices.

6. Derivation of the Gauss–Newton as well as the Levenberg–Marquardt algorithms in a
convenient form for resource-constrained devices to improve the position estimate.

7. Development and exploration of an adaptive algorithm for saving resources such as
memory, computing time, and energy on resource-constrained devices. This adap-
tive algorithm is based on the SVD, Levenberg–Marquardt (LVM) algorithm and
the Position Dilution of Precision (PDOP). Furthermore, two variants of the LVM
algorithms are used: the Dahmen–Reusken–Levenberg–Marquardt (DR-LVM) and
Madsen–Levenberg–Marquardt (M-LVM), which are analyzed and compared with the
Gauss–Newton Method (GNM). All algorithms are derived in a convenient form for
resource-constrained devices. Since the parameters of the LVM algorithm impact the
accuracy as well as the required iteration number, the influence and the choice of the
right parameter combination will be determined, analyzed and discussed.

8. Design of a multipath detection and mitigation algorithm in a suitable way for resource-
constrained devices. This algorithm is implemented as well as evaluated in a simulated
and real environment to demonstrate that the mobile station can operate efficiently in
non-line-of-sight environments.

9. Achievement of the open source of the suggested platform architecture by integrat-
ing into RIOT-OS [12], a software library for performing numerical linear algebra,
positioning algorithms, and signal processing on resource-constrained devices.

These contributions are published in [13, 14, 15]. Other contributions related to the
dissertation are published in [16, 17, 18, 19, 20].

1.2. Thesis Outline

The remainder of the thesis is organized as follows:

Localization: Chapter 2 gives a brief overview of the measurement methods used as well
as the current state of the art of localization systems. Furthermore, both the UWB and the
magnetic-based positioning systems are compared.
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Operating Systems for Resource-Constrained Devices: In Chapter 3, first the
anatomy of resource-constrained devices is presented. Then, various operating systems for
resource-limited devices are compared. Finally, the RIOT-OS, which is a small, open-source
operating system for memory-constrained systems with a focus on low-power wireless IoT
devices, is introduced.

Open Platform for Positioning Systems: In Chapter 4, the author compares various
indoor localization systems from the industry as well as from the research area in terms
of the presented architecture and platform. He also provides a brief overview of existing
standards for localization systems. A layered, open platform for decentralized positioning
systems is introduced by describing the layers, the components, and their functions. The
platform is comprised of two main layers: The System Layer (SL) and the Application
Layer (AL). Both layers are discussed within this chapter.

Decentralized UWB-Based Indoor Localization System: In Chapter 5, a decen-
tralized localization system using UWB signals is introduced. Based on Chapter 4, the
proposed architecture is explored by implementing both the SL and AL. Suitable algo-
rithms are introduced in the AL to meet requirements such as limited stack size, computing
capacity in addition to the trade-off of the convergence time versus the accuracy by resource-
constrained devices. Furthermore, the UWB-based localization system is evaluated on a
Microcontroller Unit (MCU) in a real-world scenario and in terms of complexity, position
accuracy, computing time, as well as energy consumption.

Decentralized Magnetic Indoor Positioning System: The proposed architecture
is investigated by discussing and implementing all layers for the Magnetic Indoor Local
Positioning System (MILPS) in Chapter 6. The entire system is synchronized based on the
Time Division Multiple Access (TDMA) approach, which enables a stand-alone control of
coils. Additionally, the TDMA-based method allows the MS a correct assignment of the
magnetic field data generated by the coils. The localization and the optimization algorithms
are proposed in a convenient form for resource-scarce devices. Finally, the system is evaluated
based on a resource-constrained device, which is an MCU, in a real-world scenario and in
terms of complexity, position accuracy, computing time, and energy consumption.

Algorithms and Position Optimization: Suitable algorithms are investigated and
analyzed to compute a position on resource-constrained devices. These algorithms are
analyzed with respect to stability, complexity, and memory requirements. The Gauss–
Newton (GN) as well as the LVM algorithms, which are derived in a convenient form
for resource-constrained devices, are used for the position optimization. Two variants of
the LVM methods are analyzed and compared with the GNM. An adaptive optimization
algorithm is developed based on the SVD algorithm and the PDOP to allow an adaptive
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selection mechanism for the LVM algorithm. The adaptive selection mechanism enables
saving memory, computing time, and energy on resource-constrained devices. Furthermore,
the parameters of the LVM algorithms are analyzed, because they impact the number of
iterations and the accuracy of the position. The choice of the correct parameter combination
is also analyzed and discussed. Finally, an algorithm is designed and implemented in an
appropriate way for resource-limited devices to reduce the multipath effects on the mobile
station, and so enables an efficient localization in non-line-of-sight scenarios.

Example Applications: The proposed architecture is deployed in three real-world
scenarios. In the first scenario, an application that enables the localization of objects or
persons inside a building is developed. In the second scenario, moving persons are tracked
by using MILPS as well as an additional method to overcome the impact of spatially varying
ambient magnetic fields. In the third scenario, a robot is tracked by combining MILPS with
inertial measurement units. All these applications are described in Chapter 8.

Conclusion and Outlook: The thesis is concluded by outlining the results of theoretical
investigations and real-world deployments to resume with the systems’ adaptability and
accuracy in Chapter 9. The thesis is finalized with an outlook of possible applications and
extensions of the proposed platform architecture.





CHAPTER 2

Localization

Humans always have the need to know location information. In early childhood, children
explore their environment by developing a sense of time, shape, space, and place [21]. In
adulthood, they noticed the way to go hunting or how to reach basic resources such as food
or water. In order to answer the fundamental questions "Where am I ?" or "Where is it ?",
people developed various strategies by memorizing specific objects or/and features of the
environment: For example, mountains, unusually shaped plants or trees, or buildings such as
a church. For hundreds of years, sailors used the position of celestial bodies such as planets
or stars, the moon, or the sun, to navigate the sea. Nowadays, many technologies exist that
allow an automatic determination of the position of persons or objects. Well-established
technologies such as radar or GNSS rely on one or more sensor measurements, a common
process used by all localization technologies. A critical issue in localization technology are
measurement techniques, which will be discussed in the next Section 2.1.

2.1. Measurement Methods

Localization methods are based on various signal measurement approaches such as TOA,
DOA or RSSI. Generally, these methods involve the transmission and reception of signals
between one or more hardware devices [10]. In the following subsections, commonly used
measurement methods for localization will be presented.

2.1.1. Proximity Location Sensing

The proximity location method provides the location of an object in relation to an area or a
known position [22]. The object is captured by using a physical measurement technique,
which enables sensing the object’s presence within a limited range. Although the proximity
localization delivers coarse-grain information, it can be sufficient in some cases, for example,
to provide a statement about the room where a person is locating.

Methods for sensing proximity can be generally categorized into three classes [23]: wireless
or mobile cellular-based, Identification (ID), or physical sensing methods. In the first class,
the mobile object can be localized, if it is within the reach of one or more access points of a
wireless or mobile cellular network [24]. Mobile cellular network systems can be based on a
Global System for Mobile Communications (GSM), Universal Mobile Telecommunications
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1.6 MULTIPATH

In this section we will look at the effects of multipath, particularly in an indoor wireless
channel, on the basic UWB pulse we have described. We will see that, because of the
extremely short pulse widths, if these pulses can be resolved in the time domain then
the effects of multipath, such as inter-symbol interference (ISI), can be mitigated.

Multipath is the name given to the phenomenon at the receiver whereby after
transmission an electromagnetic signal travels by various paths to the receiver. See
Figure 1.8 for an example of multipath propagation within a room. This effect is
caused by reflection, absorption, diffraction, and scattering of the electromagnetic
energy by objects in between the transmitter and the receiver. If there were no objects
to absorb or reflect the energy, this effect would not take place and the energy would
propagate outward from the transmitter, dependent only on the transmit antenna
characteristics. However, in the real world, objects between the transmitter and the
receiver cause the physical effects of reflection, absorption, diffraction, and scattering,
and this gives rise to multiple paths. Due to the different lengths of the paths, pulses
will arrive at the receiver at different times, with the delay proportional to the path
length.

Transmitter

Receiver

Direct path

Path after one reflection

Path after two reflections
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Fig. 1.8 A typical indoor scenario in which the transmitted pulse is reflected off objects within
the room, thus creating multiple copies of the pulse at the receiver, with different delays.

UWB systems are often characterized as multipath immune or multipath resistant.
Examining the pulses described previously, we can see that if pulses arrive within

Figure 2.1.: A typical indoor scenario in which the transmitted pulse is reflected,
figure adapted from [29]

System (UMTS), or Long-Term Evolution (LTE) network [25, 26, 27]. The second class of
proximity sensing relies on ID systems, which, for example, interrogate a tag or scan a label.
The tags or labels can be either attached to a person or mounted on objects. Therefore, their
positions can be approximately localized, because ID systems such as barcode identification
systems have a known position. By using a physical sensing method, the contact with an
object is detected by means of touch or pressure sensors, or capacitive field detectors [23].
Partridge et al. presented a contact system that enables communication between the objects
being touched by a user as well as their identifications [28].

2.1.2. Received Signal Strength-Based Method

The position of a target can be estimated by measuring the strength of a signal originating
from various transmitters. The Received Signal Strength (RSS) method can use distances
between the target and the transmitter given that the attenuation of the received signal
is inversely proportional to the distance. In this case, the measured distances are affected
by factors such as Non-Line-of-Sight (NLoS), signal scattering, or multipath reflections,
which can intensify in an indoor environment due to the existence of obstacles such as
furniture or walls (see Figure 2.1). In the case of the line of sight, the electromagnetic signal
spreads out directly in a straight path from an emitter to a receiver and shows higher energy
compared with reflected signals (cf. Figure 2.1). Mapping RSS values to distances is called
a Propagation Model Algorithm (PMA). Alternatively, the RSS method can also use a
fingerprinting algorithm, which will be discussed in the next Section 2.1.3.
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2.1.3. Fingerprinting

The fingerprinting technique matches the features extracted from the sensor data against
location information, whereby the features can be the RSS or the light characteristics. The
fingerprinting approach can be divided into two classes: static or differential fingerprint-
ing [30]. With the static fingerprinting, the observed features are associated with an object
location [30]. However, with differential fingerprinting, the location is estimated by tracking
the difference between successive observation sets [30]. Location fingerprinting involves two
phases: the off-line and the on-line phase. In the first phase, also called the calibration
phase, a calibration function is created. The calibration function can be a radio map holding
the RSS values of the radio signals as a function of the localization [31]. In the online phase,
called the location estimation phase, the position is estimated based on the measured signal
strengths and the calibration function.

2.1.4. Angle-Based Method

The localization can be performed using angles that are relative to multiple reference
points [10]. This technique is called angulation since angles are used between a target and
the anchors.

The two-dimensional position of an object can be estimated by applying trigonometry to
the measured angles (α and β) and the distance (d) between two reference points A and B
(see Figure 2.2). In a the three-dimensional case, an azimuth measurement is additionally
needed for one distance and two angle measurements. This approach is called the Angle of
Arrival (AOA) in the literature.

α

β 

d

A

B

O

Figure 2.2.: Measurement method based on angulation

The angle can be determined by using an antenna array that is composed of adjacent
reference points equipped with antenna elements [32]. The angle α of the signal arriving
at the antenna array is measured based on the time difference of the wave signal at the
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stations S1 and S2 and the reference direction, which is normal to the line a (see Figure 2.3).

b
α 

S2S1

α 

a

Figure 2.3.: Measurement of the angle based on antenna array. Si, Antenna i

The angle α can be calculated as follows:

α = arcsin
(
c · ∆t

b

)
, (2.1)

where c is the velocity of light, ∆t is the time difference, and b is the distance between
two antenna elements.

2.1.5. Distance-Based Method

Distance-based methods rely on distance measurements between a transmitter and a receiver,
whereby the distance information can be obtained by the RSSI, AOA, TOA, or Time
Difference of Arrival (TDOA). This approach is called lateration due to the use of
distances between the localization entities.

2.1.5.1. Received Signal Strength Indicator

RSSI methods are based on the signal attenuation model, whereas the distance is resolved
by measuring the received signal strength (Prx) if the transmission power (Ptx) is known.
The distance d between the transmitter (Tx) and the receiver (Rx) can be calculated by
using the non-logarithmic loss-path equation as follows [33]:

Prx = k · Ptx
dα

(2.2)

d = α

√
k · Ptx
Prx

, (2.3)

where k is a constant and α is the path loss exponent.
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A corresponding and common model to estimate a distance between a Tx and Rx is the
log-distance path loss model, which presupposes that the Tx and Rx are equipped with
identical antennas and the reference distance d0 is known. Since, the mean path loss increases
exponentially with the distance [34, 35]:

PL ∝
(
d

d0

)α
, (2.4)

the mean path loss, in decibels, is defined as follows:

PL (d) [dB] = PL (d0) [dB] + 10 · α · log10

(
d

d0

)
+Xσ, (2.5)

where the PL (d0) is the path loss from the transmitter to the reference distance, the
logarithmic term is the path loss described by (2.4), and Xσ represents the log-normally
variation in the channel path loss, which is a zero mean Gaussian random variable. The
path loss exponent (α) indicates the signal drop over the distance in various environments
(see Table 2.1).

Table 2.1.: Typical values of path loss exponent; source: [36]
Environment Path Loss exponent

Free Space 2
Urban Area 2.7 to 3.5

Shadowed Urban Area 3 to 5
Indoor (line-of-sight) 1.6 to 1.8

2.1.5.2. Time of Arrival

The TOA is the most popular used measurement technique, which is based on the time
measurement of a radio signal between a transmitter and receiver. The ranging method can be
classified into the synchronous and asynchronous approach, whereas a global synchronization
is required by the synchronous method [37]. In this case, the synchronization is usually
accomplished by using expensive but precise oscillators and the ranging process is one-way [38].
By contrast, a global synchronization is not necessary using the asynchronous method, since
each ranging instance uses its own clock to measure the propagation time between two
ranging instances [39, 40]. In this case, the ranging is two-way or bidirectional [37]. The
TOA can be estimated by various ranging techniques, which one- and two-way ranging are
the main techniques [41]. Figure 2.4(a) illustrates the one-way TOA, whereby a time-stamp
is included in the generated signal from the transmitter Tx. The time of flight and the
distance can be calculated at the receiver Rx, respectively, as follows:
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Figure 2.4.: Time of Arrival: (a) One-way Ranging, (b) Two-way Ranging

towr = t2 − t1, (2.6)

d = c · towr, (2.7)

where the c is the speed of light.
In contrast, in case of the two-way ranging, the signal Round-Trip Time (RTT) is estimated

by sending a signal from the transmitter Tx that is replied by the receiver (see Figure 2.4(b)).
Analogously, the time of flight and the distance can be calculated at the transmitter Tx,
respectively, as follows:

ttwr = t1 − t4 −∆t, (2.8)

∆t = t3 − t2, (2.9)

d = c

2 · ttwr, (2.10)

2.1.6. Hybrid Methods

Hybrid measurement techniques use a combination of range or angle methods. Examples of
these methods are the TOA/AOA, TDOA/AOA or the TOA/RSS. Hybrid methods enable
an accurate determination of a position and a more reliable localization estimation. For
example, they can be beneficial if the number of Reference Stations (RSs) are limited [42].
The TOA can be combined with the AOA to improve the accuracy of a target position as
well as to eliminate the NLoS effects by using possible intersections of the TOA circles and
AOA line to the MS [43]. The location estimation can also be enhanced by mixing and
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combining the TOA and AOA. In this case, the best position outcome is selected from the
AOA, TOA, and the TOA/AOA methods based on the mean and variance of the distance
between each estimated position and their mean [44].

2.1.7. Dead Reckoning

Dead Reckoning (DR) is the oldest method of navigation that was used by ancient sailors to
find their way at sea. The estimation of a new (future) position is calculated by combining
compass heading, knowledge of sea currents, and the vessel speed. The speed of the vessel
is determined by measuring the time taken by an object thrown overboard to travel a
fixed distance along the side of the ship [45]. In modern systems, inertial sensors such as
digital accelerometers, magnetometers, and gyroscopes are used to realize dead reckoning
approaches. DR can be used for robot navigation, pedestrian-tracking, and autonomous
navigation. DR is the process of estimating a current position by projecting heading and
speed from a past position. The heading and speed are combined to a movement vector
(~v1) that represents the position change from a known position ~x0 to an estimated position
~x1 [45]. The heading is commonly measured by using magnetic sensors and a gyroscope.
The speed is usually provided by speed sensors already integrated into vehicles such as
automobiles, boats, or aircrafts. In contrast, users of wearable devices such as smartphones
are not equipped with such sensors. In this case, the speed can be estimated by using
pedometers or accelerometers [45].

2.2. Localization Systems

The exponential growth in information and communication technology, the increasing role
of ubiquitous computing, as well as semantic-oriented information and location data mining
tasks, have resulted in substantial business interests in LBSs [46, 47, 48]. The localization
systems can be deployed in outdoor as well as in indoor environments. The outdoor
localization systems are deployed outside buildings and usually use the GPS technology.
The indoor localization systems are used inside buildings such as hospitals or airports;
whereby indoor localization applications and technologies enable an automatic positioning of
persons or objects inside buildings and provide context-dependent information on a mobile
device. Examples of indoor LBSs are position assignment of products inside a warehouse
and the navigation to the right platform or gate at train stations or airports [49]. Figure 2.5
illustrates a system for the localization of fire fighters. This positioning system uses the
GPS and UWB for outdoor and indoor localization, respectively.
The surrounding environment characterizes a positioning system and determines its

constraints and expected performance. Theoretically, positioning systems can be deployed
both outdoors and indoors, but their efficiency differs greatly from each other, because indoor



14 Chapter 2. Localization

Figure 2.5.: Example of real-world localization system, figure adapted from [46]

surrounding areas raise a challenge for determining a position, especially for systems based
on wireless technologies. This occurs due to factors such as signal scattering and attenuation
because of the high density of obstacles, multipath reflections from walls and furniture,
NLoS and environmental changes due to opening doors and moving people [49]. Another
challenge is the position finding in a harsh environment and severe industrial conditions,
like a bunker, coal mine or locating a firefighter in a hazardous area (see Figure 2.5).
Positioning systems can be classified into two groups depending on the infrastructure:

infrastructure-less and infrastructure-based positioning systems. Examples of infrastructure-
less methods are video-based (e.g., smart-phone camera [50], robot navigation [51, 52]),
speech source based, or wireless sensor network-based methods. In contrast, infrastructure-
based positioning systems need an infrastructure such as permanently installed hardware,
electrical power, walls or tripods for reference points mounting, or Internet access [49].
Infrastructure-based positioning systems are, for example, UWB- or magnetic field-based
localization systems [53, 13]. The last two classes of positioning systems can complement
each other. The infrastructure-based positioning system can be used as a complementary
system in an infrastructure-less positioning system to provide a starting point or to support
a long-term stability. On the other hand, the infrastructure-less based method can cover
areas, which cannot be reached by an infrastructure-based method [54].
Another class of positioning systems are the collaborative and device-free localization
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systems. The collaborative position localization technique is based on various units (sensor
nodes) that collaborate to determine their positions. This technique is also called a coopera-
tive or network position location [11]. The collaboration between sensor nodes has normally
been assumed to occur in Wireless Sensor Networks (WSNs) [55]. Device-free positioning
systems, which can be used for perimeter security, enable the tracking of users without
wearing any devices. Device-free localization systems can use technologies such as pressure
or electric field sensors installed under the floor [56].
In the past few years, numerous technologies have been evaluated for positioning and

navigation tasks inside buildings. These technologies are based on several physical principles
and exhibit different performance characteristics. The physical layer can use a variety of
technologies, such as UWB [57, 58] or WLAN [59], which are based on electromagnetic waves.
Other localization systems are based on ultrasound [60], infrared [24], Radio Frequency
Identification (RFID) [61], Bluetooth [62] or computer vision techniques [63]. The main
drawbacks of these systems are signal propagation errors due to attenuation, shadowing,
multipath and signal delay inside buildings or poor lighting conditions. Even if some
technologies like UWB are more robust against the mentioned effects, it is impossible to
suppress signal propagation errors completely. However, in contrast to electromagnetic waves,
magnetic signals can pass through any building material without significant attenuation
or distortion and, are generally suitable for indoor positioning purposes. We restrict our
focus to UWB and the magnetic field technologies, since they are well suited for indoor
localization applications. We will provide a brief review about them in the next subsections.

2.2.1. Ultra-Wideband Signals

UWB signals occupy a wide band of frequency and are defined as signals with “a fractional
bandwidth of larger than 20% or an absolute bandwidth of at least 500 MHz” [64]. Therefore,
UWB signals are characterized by very short pulses and consequently a large bandwidth that
enables the reduction of the multipath effects as well as an accurate measurement of the TOA
between two UWB transceivers. These features facilitate the implementation of accurate
indoor localization systems. Furthermore, they enable high data rates (up to 100Mbps)
for near-field data transmission [29]. Figure 2.6 illustrates a UWB pulse in the time and
frequency domain, respectively. The UWB pulse shape is known as a Gaussian doublet,
which is typical of a nanosecond or picosecond order (see Figure 2.6(a)) [29]. The spectrum
of the UWB pulse signal is illustrated in Figure 2.6(b), whereby the center frequency is
about 5GHz with a 3 dB bandwidth
The Federal Communications Commission (FCC) sets a power requirement of 41.3 dB-

m/MHz, equal to 75 nW/MHz for UWB signals, which allows them to reside below the
noise floor and coexist with current radio services with minimal or no interference (see
Figure 2.7) [65]. In addition, this power restriction puts UWB systems in the class of unin-
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Fig. 1.2 (a) Idealized received UWB pulse shape wrx and (b) idealized spectrum of a single
received UWB pulse.

G(x) is one which fits the well-known equation
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where Eqn. (1.2) is assumed to be zero-mean. This is the origin of the name
Gaussian pulse, monocycle or doublet. A simple circuit for creation of the Gaussian
doublet is shown in Figure 1.3. Transmitting the pulses directly to the antennas
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Figure 2.6.: Idealized (a) UWB pulse and (b) the spectrum of an UWB pulse,
adapted from [29]

Figure 2.7.: Coexistence of UWB signals with narrowband and wideband signals [65]

tentional radiators such as Central Processing Unit (CPU) boards or computer monitors.

2.2.2. Ultra-Wideband Based Positioning Systems

UWB-based localization has gained a lot of interest in research as well as widespread usage
in industrial applications. Both classes will be briefly reviewed to provide an overview of
the current status and promising applications of UWB localization.

2.2.2.1. UWB-Based Systems from Research

Mahfouz et al. present a surgical navigation system, which enables tracking of smart
surgical tools and the logging of relevant objects such as a spacer block in the surgical
scene [66]. An autonomous mobile security robot that is called CoLORbot is proposed
in [67]. CoLORbot enables the environmental imaging of an unknown indoor area by using
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UWB-Radar devices and a range point migration method. Furthermore, the calculated maps
enable an autonomous navigation of the CoLORbot in an unknown environment. Fall et
al. studied a localization system for railway transport that is based on UWB and the Time
Reversal (TR) technique [68]. The TR technique supports an optimized signal detection by
increasing the received energy. The combination of the TR and UWB technique allows a
precise localization of the trains.

2.2.2.2. UWB-Based Systems from Industry

A commercial indoor localization system for assets and people tracking using UWB is offered
by the Zebra Enterprise Solutions [69]. This is a Real-Time Locating System (RTLS) called
Dart UWB operating in a range up to 200m line of sight and reaching an accuracy up
to 30 cm by using the TOA method. Figure 2.8 illustrates a UWB starter kit containing
various components such as a Dart hub or a tag; whereby the Dart hub includes a location
software to locate tags, which can be affixed to assets or worn by persons.

Figure 2.8.: Starter kit from the Zebra Enterprise Solutions [69]

Another player in the UWB commercial market is the Time Domain corporation that
offers the UWB P440 transceivers, which can operate in a range up to 240m [70]. The P440
modules use the two-way TOA method and have an accuracy of 2.1 cm (see Figure 2.9).
The P440 transceivers allow the implementation, for example, of an RTLS in a hospital
environment to track medical equipment, staff, or patients.
RTL-Service is a Russian company that offers a RTLS for localization and tracking of

people and objects [72]. The RTLS is based on the UWB modules from the DecaWave
company. The DecaWave modules are suitable for the TDOA and the TOA methods and
enable an accuracy of about 10 cm and a data update frequency of 1-10Hz. Furthermore,
UWB modules have a range of up to 300m [73].

2.2.3. Magnetic-Based Positioning Systems

Magnetic indoor localization systems can be classified into three categories: fingerprinting
(geomagnetism), permanent magnet-based, and current-based magnetic positioning systems.
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Figure 2.9.: The PulsON440 (P440) module from the Time Domain corporation [71]

These systems have various advantages and disadvantages, which are listed in Table 2.2.
Examples of each category will be briefly discussed in this section.

Table 2.2.: Advantages and disadvantages of magnetic positioning (pos.) systems.
NLoS, Non-Line-of-Sight

Magnetic Pos. Systems Advantages Disadvantages

Fingerprinting system No infrastructure.

the fingerprinting data resolution.
Localization accuracy scales with

in the setup phase.
Acquisition of magnetic maps

Permanent magnet system
NLoS conditions.
Operating under
High accuracy.

equations [49].
high-order non-linear

Mathematical models with
(up to 1m3).

Restricted coverage volume

Current-based system

reflections and multipath.
Not affected by
NLoS conditions.
Operating under
High accuracy.

for coverage area extension.
highly sensitive magnetometers

Necessity of high power energy or
Limited coverage area.
Infrastructure-based.

2.2.3.1. Fingerprinting-Based System

The first class of magnetic localization systems uses magnetic field fluctuations inside
buildings. Whereby, the source of the magnetic field fluctuations can be natural such as the
earth’s magnetic field, or man-made such as the electric power systems, industrial devices,
or the steel and reinforced concrete structures [74]. Magnetic fingerprinting can be applied
as a global self-localization if the anomalies enable a unique magnetic fingerprint and they
are nearly static as well as locally available inside a building [74].
A fingerprinting positioning system is presented in [74] which is based on the anomalies
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of the ambient magnetic fields. The system suggests that the ambient magnetic field may
remain sufficiently stable over long time periods. Furthermore, the system can only be used
for one-dimensional location cases, as for example, the localization of a person or a robot
within corridors. No coils for the generation of magnetic field are needed; only a three-axis
magnetometer is used to achieve an object or human self-localization. However, magnetic
maps should be provided prior to the localization process. The magnetic maps are created
for predefined pathways in the initialization phase. The proposed approach can be deployed
parallel to other positioning techniques, such as a range finder or machine vision methods.

2.2.3.2. Permanent Magnet-Based Systems

The second type of magnetic positioning systems performs a localization based on magnetic
fields created from permanent magnets. A positioning system that is based on permanent
magnets can be composed of magnetometers as reference points and a permanent magnet as
a mobile target. Alternatively, multiple permanent magnets with known locations can be
used as reference points to locate a mobile magnetometer. Song et al. present a positioning
system that is composed of a cylindrical permanent magnet [75]. The permanent magnet is
enclosed in a capsule and incorporated into a human body, whose position is now determined
by the magnetic signals measured from the magnetometer array. The system achieves an
average position deviation of about 1.8mm. Pham et al. propose a real-time magnetic
tracking system that comprises a permanent magnet and magnetometers. Based on the
measured magnetic signals, the tracking is calculated on a Personal Computer (PC) with an
accuracy of about 5mm [76].

2.2.3.3. Direct Current-Based Magnetic Field Signals

Magnetic fields can be generated by using direct or alternating current and permanent
magnets. We focus on direct-based magnetic field signals in this section and we describe the
current-based magnetic localization systems in the next Section 2.2.3.4.
Magnetism is a natural phenomenon that has been known since ancient times [77]. It

is interesting to note that positioning was one of the first applications of magnetism. The
compass provides, with respect to the earth’s magnetic field, one of the earliest forms of
navigation [78]. The compass complemented other navigation methods such as the use of
the sun, stars or landmarks.

Jean-Baptiste Biot and Félix Savart describe the magnetic induction ~B caused by a wire
carrying an electrical current I (see Figure 2.10). The infinitesimal magnetic induction d ~B
at point ~r can be calculated by applying the Biot-Savart law, as follows [79, 80]:

d ~B = µ0
4π

Id~s× ~r
r2 , (2.11)
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Figure 2.10.: Biot-Savart law

whereby µ0 is a constant called the permeability of free space:

µ0 = 4π × 10−7T
m

A
. (2.12)

The differential length vector d~s and the point vector ~r span a plane perpendicular to
the vector d ~B, which means that the magnetic induction is given as a vector product. To
calculate the entire magnetic field ~B created at some point, all the contributions from the
current elements Id~s should be summed up. In other words, the total magnetic field ~B can
be calculated by integrating Equation (2.11):

~B = µ0I

4π

∫ d~s× ~r
r2 (2.13)

2.2.3.4. Current-Based Systems

The third category artificially generates magnetic signals by using coils (beacons) with known
positions (reference points). The magnetic fields can be generated from coils by using pulsed
Direct Current (DC) or Alternating Current (AC). Currently, commercial current-based
magnetic positioning systems are designed for motion tracking and virtual reality in several
artistic, industrial, and bio-medical applications, which require a small coverage volume
(typically < 1.5 m3) [81, 82]. In that context, three orthogonal concentric coils are used,
and the magnetic sensor is connected to a central unit. The central unit activates the coils,
collects the sensors’ magnetic field data and performs the localization estimation.
Sheinker et al. propose a 3D experimental positioning system that is based on low

frequency magnetic fields. The system is composed of coils (beacons) that are excited by
an AC source to generate a time-varying magnetic field [83]. In addition, the MS includes
a tri-axial search-coil magnetometer, six blocks of phase lock-in amplifiers and a location
calculator. The system has an effective area of about 100 m2 and can be deployed, e.g., for
robot navigation and underground cavity mapping.

De Angelis et al. describe the design and implementation of an indoor positioning system,
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Figure 2.11.: Measurement methods classification

which is also based on AC magnetic fields [84, 85, 86]. The system consists of transmitter
coils that are placed at known positions and a receiver coil. Each transmitter coil is driven
by a signal generator to generate an electromagnetic field, which interacts with the receiver
coil by inducing a current. The position of the receiver coil is estimated based on the Root
Mean Square (RMS) voltage, which is measured at the receiver node. The system performs
in two phases: the calibration and the trilateration phase. In the first phase, the coils
and the receiver node are placed in line-of-sight conditions in an indoor environment to
determine the calibration parameters. In the second phase, the position of the receiver node
is calculated by using the trilateration method based on the received RMS voltages from
the transmitter coils.

2.3. Conclusion

Indoor localization systems are required for a person or object tracking, for example, in
healthcare institutions or logistics centers and warehouses. They enable personnel safety as
well as the increase of assets productivity. These positioning systems are based on various
measurement methods, which can be classified in range-based and range-free methods [87],
as illustrated in Figure 2.11.

The comparison of these methods shows that there is a trade-off between the measurement
error, complexity, and cost. Range-free methods such as fingerprinting can be achieved with
simple, built-in sensors, for example, a WLAN-interface in a smartphone. In contrast, range-
based methods such as TOA and TDOA can enable a reliable and accurate measurement.
Nevertheless, they need additional and complex equipment such as UWB transceivers, tags,
or precise synchronized reference points.
Localization systems can be classified into active and passive systems [5]. In the case of

active localization, the object or the person participate actively by mounting or wearing an
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Figure 2.12.: Classification of localization systems. Figure is adapted from [5]

electronic device, which sends the position or recorded data to a positioning system or an
application server, respectively. In the case of passive localization, the object or the person
is not mounting or wearing any electronic devices to deduce their positions. The position
is estimated by using the variance of a measured signal or video process [5]. Figure 2.12
outlines the active and passive localization systems.
Localization systems use various technologies such as WLAN, UWB, or RFID. The

selection as well as the design of a localization system, depends on the granularity and
accuracy required for a specific application and a deployment environment because there
are currently no standards for indoor positioning systems.
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Operating Systems for
Resource-Constrained Devices

In recent years, Operating Systems (OSs) for resource-constrained devices as well as for
processor-based embedded systems have gained interest. These OSs are designed to operate
on small devices including sensors and communication interfaces. Networks using these
devices can be deployed in a wide range of disciplines and applications, which also include
the following examples:

• Efficient Power Supply for Data Centers: The heat distribution of the network
devices and computer servers consolidated in a data center is a key operational
parameter that affects the energy consumption and the cooling behavior [88]. Energy
savings have great social and economic impact for these centers as they consume huge
amounts of energy (billions of kilowatts). Half of the energy is used by conservative
cooling systems due to the over-cooling or over-provisioning with the power of devices.
The deployment of wireless sensors across the machine enclosures allows for a reduction
in power consumption by automatically sensing the areas that require cooling. The
dynamic adaptation of the power consumption of the cooling system as well as of
the devices make the Information Technology (IT) infrastructure more efficient and
environmentally-friendly.

• Monitoring of Active Volcanoes: Wireless sensors allow the monitoring of un-
approachable environments such as a volcano without the use of cumber telemetry
systems. The wireless sensors build a network to record eruptions, earthquakes, or
seismo-acoustic events by using sampled seismic and acoustic sensor data [89]. The
sensor nodes locally compare the observed events to deduce their positions and to
report aggregate data to a camp using a long-range wireless link.

• Bridge Safety: The Structural Health Monitoring (SHM) of civil infrastructures
such as a bridge can be realized by using a WSN [90]. WSNs do not require expensive
equipment and installation, and the high-cost of wired solutions. The SHM is imple-
mented by using accelerometers, which gather synchronized data of the oscillations
and the movement within the structure of the bridge. The collected data permit the



24 Chapter 3. Operating Systems for Resource-Constrained Devices

observation of the structural health of the bridge in response to events such as damage
after an earthquake or high winds.

Although the previously discussed applications show only a small slice, where the networked
sensors can be deployed, they show differences between these networks and other computing
systems [91]:

1. They act in and respond to an unpredictable environment by collecting sensor data.

2. They use a wireless link due to the robustness, the deployment flexibility and mainte-
nance simplicity, and the low cost.

3. They operate as a stand-alone.

Resource-limited devices such as a microcontroller-based sensor nodes play a key role in
those applications. However, before we discuss various OSs for resource-limited devices, we
provide a brief description of a microcontroller-based sensor node.

3.1. Resource-Constrained Devices

Currently, resource-constrained devices are deployed in the context of IoT, which is an
evolution of the WSN [92]. The IoT enables the WSN to connect to the Internet and to
move away from proprietary and closed systems to the Internet Protocol (IP)-based sensor
networks [92]. Devices used in IoT are mostly low-cost, have limited energy resources,
and are equipped with low-end processors and little memory. Typical resource-constrained
devices are outlined in Table 3.1, which reveals their limited computation and memory
resources compared to a PC. Furthermore, Figure 3.1 shows the OpenMote, TelosB Mica2,
and the AVR Raven devices, respectively.

Table 3.1.: An overview of various resource-constrained devices

Device type Vendor MCU Frequency RAM Flash

Discovery Board ST Microelectronics 32Bit STM32F4 168MHz 192KB 1024KB

OpenMote OpenMote Technologies 32Bit CC2538SF53 32MHz 32KB 512KB

TelosB Mote Crossbow 16Bit MSP430 8MHz 10KB 48KB

TelosB Mica2 Crossbow 8Bit ATMega 1284P 16MHz 4KB 128KB

AVR Raven Atmel 8Bit ATMega 128L 20MHz 16KB 128KB
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(a) OpenMote [93] (b) TelosB Mica2 [94] (c) AVR Raven [95]

Figure 3.1.: Examples of resource-constrained devices:

Power Supply

Communication 
Interface

CPU

RAM Flash

Microcontroller
(MCU)

Sensors/
Actuators

Figure 3.2.: The main hardware components of a resource-constrained device

As illustrated in Figure 3.2, a resource-constrained device comprises the following compo-
nents:

Power supply provides the device with the energy. The device can include a microcon-
troller, sensors, or communication interfaces. The power supply is usually provided by
primary batteries, whereby energy harvesting offers an alternative [96].

Microcontroller unit is a central part of a device facilitating the processing of data, the
execution of a code sequence as well as the control of sensors. The MCU is comprised
of a CPU, Random-Access Memory (RAM), and a flash memory (cf. Figure 3.2).
The MCU includes additional modules such as non-volatile memory, General-Purpose
Input/Output (GPIO) pins, and hardware interfaces. Examples of hardware interfaces
are the Universal Asynchronous Receiver Transmitter (UART), the Serial Peripheral
Interface (SPI), or the Analog to Digital Converter (ADC). The MCU cores are
obtainable for the 8-bit, 16-bit, and the 32-bit architectures, whereby the RAM and
flash have a size of hundreds of kilobytes (cf. Table 3.1).

Sensors and actuators sensors represent the interface to the real world and enable the
observation of the physical environmental [33]. They transform a physical phenomenon
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to electrical signals; therefore, they can be classified, depending on their outputs, as
analog or digital sensors. There is a wide range of sensors measuring the environmental
parameters such as sound, image, temperature, magnetic fields, pressure, distance or
position. The actuators can control and interact with the environment, for example,
by switching on/off a relay, which controls a light bulb, a motor or another object in
the environment. Hence, the sensors allow for the representation and capture of the
physical world in the digital world; while the actuators enable performing actions in
the physical world triggered in the digital world [97].

Communication interface data exchange is needed to send and receive data between
individual IoT objects by using a communication device; whereby wired commu-
nication can be used such as a Controller Area Network (CAN), a Process Field
Bus (Profibus) or a Local Operating Network (LON). A more interesting case is the
wireless communication, by which various transmission media can be utilized such as
Radio Frequencies (RFs), ultrasound, electromagnetic waves, or optical communication.
Commonly, a receiver and a transmitter are required, which convert a bit stream
coming from the MCU to radio waves and vice versa [33]. Devices combining the trans-
mission and receiving tasks are called transceivers, which include a circuitry required
for both tasks. The circuity is composed of a modulator, demodulator, amplifiers,
filters, mixers and so on [33]. Commonly deployed transceivers by IoT devices are
off-the-shelf and available from the usual distributors. They are single-chip solutions
such as the TR1000 family from Murata Electronics or the CC1000 and CC2420 family
from Texas Instruments [33].

3.2. Operating Systems for Resource-Constrained Devices

The OS allows the management and sharing of resources as well as the development of
multi-tasking applications in a computer system. A real-time OS (RTOS) has the ability to
meet certain deadlines at the right time. Real-time capability does not necessarily mean
fast, but it denotes the deterministic behavior or the predictability of the response time [98].

An OS can be essentially characterized by the following key design issues [12]:

Kernel structure
The kernel can follow a monolithic model, layered approach, or microkernel paradigm.
The monolithic kernel is a simple way to implement an OS, which consists of two
spaces: a user space (unprivileged mode) and a kernel space (privileged mode). A
monolithic architecture is difficult to maintain and extend due the lack of modularity,
particularly when the system exceeds certain size. A layered-based architecture
is composed of various layers, that allow the designer to organize the kernel in a
hierarchical way. The main disadvantage of a layered approach is the difficulty to
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define the layers and maintain a boundary between the user space and the kernel.
Unlike other architectures, the microkernel provides a minimum set of functionalities
as well as a simple abstraction of the hardware. This is reached by implementing
minimal OS services like thread management or Inter-Process Communication (IPC).
The microkernel approach improves the reliability, if one service fails, as for example a
device driver; however, this will not cause the entire system to crash. Furthermore, it
facilitates the integration with third-party modules as well as an enhanced extensibility
based on the message change property.

Scheduler
The scheduler is the OS part deciding which task to run next by using a scheduling
algorithm. The scheduling strategy is closely coupled with the real time support, the
depth of user interaction, and the supported task priorities.

Programming model
The programming model provides an abstract view of the hardware for the application
developers by hiding the hardware complexity as well as enhancing the code portability
and longevity. In addition, it defines the context in which the tasks are executed: Either
all the tasks are executed in the same context and no memory space fragmentation
is needed, or each task runs in its own thread and allocates its own stack. The
programming model is tightly coupled with the range of available programming
languages for the application development. Typical programming models are the
event-driven and the multithreaded model [99]. The first model is suitable for resource-
limited devices, but it is not commonly used by traditional application developers. In
contrast, the second model is familiar to programmers, but it is unsuitable for resource-
constrained devices. Therefore, various light-weight multithreading programming
models are developed for resource-restricted devices [99].

There are a lot of OSs for resource-constrained devices, which vary in architecture, pro-
gramming model, scheduling, memory management and protection, communication protocol,
and real-time support [99]. Examples of these OSs are: FreeRTOS [100], TinyOS [101],
Contiki [102], MANTIS [103], Nano-RK [104], LiteOS [105], and RIOT-OS [12], with their
features summarized in Table 3.2.

3.2.1. FreeRTOS

FreeRTOS is a simple and user-friendly OS, which supports the most used architecture
for embedded systems such as ARM, PIC or Zilog’s Z80 [106]. It is written in C, has
about 2, 200 lines of code, and enables various services such as memory management, task
management, or inter-task communication. The scheduler provides three kinds of scheduling
methods: cooperative, preemptive, or prioritized scheduling policy. Although FreeRTOS
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Table 3.2.: Comparison of operating systems. FIFO, First-In, First-Out. TinyOS, TOS

OS Architecture Real Time Scheduling Model
Programming

Language
Programming

FreeRTOS Monolithic Full Support
cooperative

preemptive and
Round-robin

Threads C

TinyOS Monolithic No Support FIFO

TOS Threads
support for
event-driven,
Primarily

nesC

Contiki Modular Partial Support Event-based events
Protothreads and

constraints
C with some

MANTIS Layered No Support Round-robin
priority-based Threads C

Nano-RK Monolithic Full Support

scheduling
harmonized

monotonic and
Rate

Threads C

LiteOS Modular No Support Round-robin
priority-based

Events
Threads and LiteC++

RIOT-OS Microkernel Full Support

with priorities
and scheduling
preemptive
Tickless,
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is convenient for the most lightweight microcontrollers, it does not support low power
management features like the most real time operating systems. This is because energy-
saving methods of modern MCUs are platform-dependent [107, 108], and the OSs use
periodical timer interrupts, in order to manage the timers and the system time.

3.2.2. TinyOS

TinyOS is developed at the University of California (UC) in Berkeley and relies on a
component-oriented architecture [109]. The scheduler, which implements a simple First-In,
First-Out (FIFO) policy, provides a two-level scheduling hierarchy for events and tasks. The
tasks are processed in a run-to-completion manner and they cannot be self-suspended or
preempted. TinyOS implements an event-driven programming model, which consists of
interrupts and tasks [110]. TinyOS is written in a C dialect called nesC and uses one stack.
The execution of complex tasks increases the number of event handlers, and therefore the
complexity of the control logic.
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3.2.3. Contiki

Contiki follows a modular architecture as well as supports an event-driven model at the kernel
level. The kernel incorporates a lightweight event scheduler, which provides synchronous and
asynchronous events. Furthermore, it uses a single stack shared between protothreads. These
protothreads solve the problem of blocking invocations, which is a common drawback for
even-driven and non-preemptive kernels [111]. This enforces a state machine programming
style that increases the programming complexity. Like TinyOS, Contiki is based on an
event-driven programming model. Furthermore, it uses protothreads and a supplementary
library to support preemptive multithreading.

3.2.4. MANTIS

MANTIS is a small footprint OS with a size of about 500 bytes. MANTIS is developed at
the Colorado University and enables a prioritized threaded programming like the Portable
Operating System Interface (POSIX) thread model [112]. The scheduler uses a round robin
scheme for threads with the same priority, where higher priority threads are scheduled before
lower-priority ones. Furthermore, MANTIS supports semaphores, mutual exclusion, as well
as a low-level stack for the serial and radio communication. MANTIS does not provide a
memory protection mechanism [99].

3.2.5. Nano-RK

Nano-RK is a real-time OS that supports both hard and soft real-time applications by
using various real-time scheduling algorithms such as the rate harmonized or monotonic
scheduling [99]. It uses a monolithic kernel design, which enables the use of a static design-
time framework such as deadlines or task priorities to guarantee that deadlines are met.
Nano-RK offers the programmer a familiar multitasking paradigm as well as provides a
lightweight networking protocol stack that includes a communication abstraction which like
the socket interface. It also provides many wireless link layer protocols such as RT-Link or
B-MAC. In addition, Nano-RK supports two families of microcontrollers the Atmega and
the MSP430x family.

3.2.6. LiteOS

LiteOS is a multithreaded OS that provides a Unix-like abstraction for resource-constrained
devices [105]. It follows a modular architecture design. LiteOS enables a thread-based
programming mode as well as event handling by using callback functions. In addition,
it supports the object-oriented programming in the form of LiteC++ as well as provides
a hierarchical file system and a Unix-like shell. The kernel implements both the round-
robin and the priority-based scheduling. Furthermore, the kernel supports dynamic memory
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Table 3.3.: Measured RIOT-OS latencies of the LPC2387 MCU with a 72MHz
operating frequency; source: [107]

Interrupt Types Cycles Time in µs

Interrupt latency 50 0.700
Context switch outside an ISR 72 0.990

Context switch 600 8.4
Inter-Process Communication (IPC) delay 1300 18

allocation, which enables the user to allocate and de-allocate memory at the run-time. LiteOS
provides communication protocols at the Medium Access Control (MAC), network and
transport layer, whereby detailed documentation about these protocols is not available [99].

3.2.7. RIOT-OS

The RIOT-OS [12] is an open source IoT operating system developed at the “Freie Uni-
versität Berlin”. RIOT-OS is based on a microkernel architecture, which is inherited from
FireKernel [107] deployed for a rescue scenario to track and monitor fire fighters. To fulfill
real-time requirements for severe industrial or emergency scenarios, the micro-kernel provides
a zero-latency interrupt handling and prioritized threads with a minimum context-switching
time. Regardless of the system load, the maximum interrupt latency of the LPC2387 MCU
operating at 72MHz amounts to 50 cycles (700 ns). The maximum context switch time
outside an Interrupt Service Routine (ISR) is 72 cycles (900 ns) (cf. Table 3.3).

A tickless scheduler is implemented to achieve a maximum energy savings and to support
a deep-sleep mode by all resource-constrained MCUs. Since most schedulers wake up pe-
riodically to enable the switching between tasks, their behavior is dependent on periodic
timers, which is not desirable for the energy awareness. Furthermore, the most constrained
devices cannot be woken up from a timer interrupt, but only from external interrupt sources.
In this manner, the periodical timer interrupts prevent the deep-sleep mode leading to
excessive power consumption over the entire run-time. In addition, RIOT-OS features a
developer-friendly programming model by supporting the standard C/C++ programming
languages of the American National Standards Institute (ANSI). Furthermore, RIOT-OS
features standard multithreading, real-time behavior, and POSIX-like Application Program-
ming Interface (API) for all supported hardware, which scales from 16-bit microcontrollers
to 32-bit processors.

3.3. Conclusion

This chapter has shown the necessary hardware components for resource-constrained devices,
which can be embedded into daily objects and networked to build the IoT. These devices
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are characterized by scarce energy resources, limited storage capacity, and low computation
power. Therefore, the choice of components such as the MCU or the communication interface
is application-dependent and a trade-off between various criteria and constraints such as the
computation and the energy capacity. The use of an OS, which is a software part, provides the
following benefits to applications: simplification of design, hiding hardware complexity, and
increasing portability [113]. OSs provide various kernel architectures, scheduling algorithms,
and programming models. The choice of the OS could be challenging, since IoT devices
are resource-constrained and application-specific. The selection criteria of the OS can be
real-time capability, energy awareness, standard APIs support, or network protocols.





CHAPTER 4

Open Platform for Positioning Systems

A platform architecture for positioning systems is essential for the realization of a flexible
localization system, which interacts with other systems and supports various positioning
technologies and algorithms. The decentralized processing of a position enables to push
the application-level knowledge into a mobile station and avoids communication with a
central unit such as a server or a base station. In addition, the calculation of the position on
low-cost and resource-constrained devices presents a challenge due to the limited computing,
storage capacity as well as the power supply. Therefore, we propose a platform architecture
that enables the design of a system with the reusability of the components, extensibility
(e.g., with other positioning technologies) and interoperability. Furthermore, the position is
computed on-the-fly on a low-cost device such as a microcontroller, which simultaneously
performs additional tasks such as data collection or preprocessing based on an operating
system. The platform architecture is designed, implemented, and evaluated based on two
positioning systems: time-of-arrival and the field strength-based localization system. The
platform architecture is open in terms of being able to interact and communicate with
other systems as well as an open source. The platform architecture enables a decentralized,
continuous as well as an accurate localization [14].

4.1. Architectural Overview of Localization Systems

Positioning systems can be classified into three categories: centralized, decentralized, and
distributed architecture. Figure 4.1 illustrates different architectures. The architecture plays
a major role in the performance, reliability and energy consumption of a positioning system.
We distinguish between the architecture of the whole positioning and the components of the
system, such as the MS: The positioning system architecture describes the interaction and
the coordination between all system components, whereby a component can be a mobile
or a base station. The second specifies the design and implementation of an MS or a base
station. As data processing plays a key role in a positioning system, we firstly compare
different architecture approaches in this section.
The processing of the data or the location can be performed by using three classes of

architectures for positioning systems: central, decentralized and distributed.

• Centralized Architecture: This is the most commonly-used architecture, in which the
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(a) (b) (c)
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Figure 4.1.: Position evaluation: (a) central, (b) decentral, and (c) distributed

sensors or the MSs exclusively communicate with the base station. A base station
usually possesses more processing power, storage capacity and energy resources than
the MSs. The MS modules deliver data to the base station, such as raw sensor data or
the results of a signal processing step; normally, with the compression or reduction of
the data. The individual MSs have no knowledge about the semantics of the gathered
data that is transmitted to and interpreted by the base station. The advantages of a
centralized architecture include the usage of lightweight and low-cost MSs, since the
whole complexity is shifted to the base station; a high position resolution and a full
central overview of the observed phenomenon (e.g., event). The disadvantages comprise:
a single point of failure (e.g., the base station failure), which is not tolerable in a secure
scenario, and poor performance with a large number of MSs. In addition, the system
can fall into an energy starvation in case of continuous communication between the MSs
and the base station, whereby the power-saving techniques are difficult to implement.

• Decentralized and Distributed Architecture: In this architecture, data processing and
position computation occur in the mobile station, and no data, except the result of
a position finding, are sent to the base station. Furthermore, in a distributed MS
network, which is also referred to as collective evaluation [114], the MSs can exchange
data to collectively achieve and respectively augment the efficiency and the precision
of a positioning task [115]. This can be important in the case of using distributed
localization algorithms [116]. The distributed approach also favors cooperative sensing
and positioning when multiple MSs are present. The decentralized and the distributed
architecture exhibit the following advantages:

1. Scalability: the computational load and the communication overhead at each MS
do not depend on the MS number.

2. Robustness: the system is not affected if an MS or some MSs fail, since no node
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has a designated role and all nodes can perform data processing and transfer tasks.

3. Energy-awareness: the data traffic between the base station and the MSs is reduced,
since this architecture supports on-board or in-network processing, saving both link
bandwidth and node energy, which are critically-constrained resources [117].

The drawbacks of the decentralized and distributed architectures are: The MSs have no
global knowledge about the network topology or about a phenomenon. Components of
the distributed architecture only know about connections in their own neighborhood,
which requires a robust and self-healing network. Since the aim of the decentralized or
the distributed architecture is on the mobile station or in-network processing, the use of
lightweight and low-cost MSs is not possible. The MS should have an MCU with more
computational power and memory capacity, as well as an efficient application layer and,
in the case of a distributed evaluation, a communication protocol stack. The distributed
position evaluation is not the focus of this work. We use the decentralized architecture
due to the scalability, robustness and energy-awareness and on-the-fly capability of the
MS.

4.2. State of the Art

Firstly, we compare various Indoor Localization Systems (ILSs) from the industry as well as
from the research area in terms of their platforms and architecture. Finally, we give a brief
overview of various standards for localization systems.

4.2.1. Centralized Indoor Localization Systems

Ubisense has developed a RTLS based on the UWB radio technology, which allows simulta-
neous tracking of many tags by combining the AOA and the TDOA methods [118]. The
position of the tags is calculated in a location server using the signals transmitted from
the tags to the reference points synchronized by timing cable. The Ubisense RTLS has a
centralized architecture which can be divided in three parts: the sensor network, the location
engine, and the location platform. The sensor network comprises the tags and the reference
point sensors, which are distributed over the area and receive the UWB pulses form the
active tags. The location engine, running on a server, presents the software platform. It
enables the position calculation based on the data received from the reference points as well
as setting up the sensor network. Moreover, the location platform allows the user to define
location-based services and the visualization of the target area, for example, the highlighting
of an object entering a defined zone.
The Ekahau RTLS is a fingerprinting location system based on the RSSI method using

an existing WLAN-network to enable the tracking of phones, bar code scanners, or people
wearing WLAN tags [119]. Radio maps should be created in an initialization phase based on
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the RSSI and the coverage information of each Access Point (AP). The localization system
is centralized and includes a positioning engine, a site survey, and a client. The positioning
engine is a server that computes the position of the tag by using calibration information
and a probabilistic location detection algorithm. The site survey collects the coverage and
RSSI information of each AP. Furthermore, the client runs on a device such as a phone or
WLAN tag.

Wang et al. have developed a high precision indoor localization system, which is centralized
and based on UWB technology [120]. This centralized architecture is achieved by using
a gateway and a control server. The mobile stations that are connected to the UWB
transceivers via Bluetooth transmit the measured distances between the mobile and the
reference stations to the gateway using a WLAN interface. The gateway supports up to
ten simultaneous connections with the MSs to forward the measurement data frames to the
control server. This, in turn, computes the position of the MS by using the trilateration
algorithm.

4.2.2. Decentralized Indoor Localization Systems

The most decentralized localization systems are based on smartphones, which use the on-
board sensors to calculate the position of a user. Smartphones are significant information
interfaces between the user and the environment possessing a substantial computational
capacity and communication capabilities [121]. They allow for the use of built-in sensors
such as an accelerometer, magnetometer, camera, communication interfaces as well as the
use of existing infrastructure such as the Internet or WLAN APs. Nonetheless, smartphones
incorporate relatively low-cost sensors, which do not facilitate an accurate localization
with centimeter- or millimeter-level accuracy. In this work, we want to achieve a cm-level
accuracy, which allows pedestrians and robots to navigate inside a building. Such an accurate
localization cannot be obtained from sensors embedded in smartphones. Furthermore,
potential energy consumers are the screen, continuous usage of on-board sensors, and the
communication interfaces. Smartphone-based localization systems can be classified in signal-
and inertial-based mobile ILS [122].

4.2.2.1. Signal-Based Indoor Localization Systems

Zhuang et al. developed an indoor localization system enabling simultaneous map acquisition
and repeated tracking (SMART) [123]. The indoor positioning and the map construction of
the unknown environment are achieved by measuring the radio signals of the WLAN APs as
well as sensing the motion speed and heading of the mobile device. The motion speed and
heading are measured by the built-in accelerometer and magnetometer, respectively. The
localization module is implemented on a smartphone to achieve a localization estimation,
while the ambient fingerprinting and the map construction is performed on a server.
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ARIEL proposed an automatic WLAN-based localization, which enables fingerprinting of
rooms in a building without the need of a floor plan [124]. The built-in accelerometer is
used to improve the accuracy of the system by correlating motion patterns with the signal
strength of the WLAN. ARIEL enables the room localization of a person. The smartphone
collects signal vectors, which are extended with the motion data from the accelerometer, and
delivers them to the server. The smartphone caches a local database storing the fingerprints
of the rooms that the user already visited to locally perform a room localization without the
deployment of the server. If a person enters an unvisited room, the smartphone must perform
WLAN-scans to acquire localization services. The scanning time is approximately thirty
minutes, when a user enters an unvisited room whose fingerprint has not been established.
Although the signal-based smartphone ILSs allow for the localization of users by using

existing infrastructure, most of them are based on fingerprinting, which needs a calibration
phase by manually collecting a vast amount of training data [125]. In addition, a retraining
process is necessary if the deployment environment is altered. Signal-based smartphone ILSs
do not enable continuous (smooth) localization. Furthermore, they show limited accuracy
due the instability and unreliability of the RSS and the absence of a causal relationship
between the Euclidean distance and the RSSI [126]. A higher accuracy can also be achieved
by using special hardware, not readily available for smartphones; or by using hundreds of
APs which are not practical [127].

4.2.2.2. Inertial-Based Indoor Localization Systems

Park et al. present a pedestrian tracking system that uses a smartphone incorporating
a magnetometer and an accelerometer sensor [128]. This tracking system is deployed for
indoor corridor environments, whereby the pedestrian location is estimated by using sensor
data and a Hidden Markov Model (HMM) determined by a Bayesian filter. The system is
implemented for various smartphone types as well as evaluated for four possible positions of
the device, for example, the user calling or pocket positions.
A pedestrian dead reckoning for indoor localization (SmartPDR) is developed by Kang

and Hal using inertial sensors embedded in the smartphone [129]. SmartPDR recognizes the
step event and computes the step length by using a three-axis accelerometer. The heading
direction is calculated by means of the magnetometer.
Smartphone inertial-based ILSs enable the localization of a user by using the on-board

magnetometer and accelerometer allowing for a continuous localization for only a certain time
due to the drift error of the inertial sensors. In addition, compass fluctuations due to variable
magnetic field induced by the indoor environment (e.g., ferromagnetic building materials)
lead to inaccurate heading estimations. Therefore, complicated algorithms are needed to
cope with these errors [130]. A starting point is essential for the tracking, which requires
the use of an external positioning system or the intervention of the user. Furthermore, a



38 Chapter 4. Open Platform for Positioning Systems

calibration process is needed for the estimation of the stride length of the user [122]. The
accuracy of the localization depends on the smartphone orientation and position with respect
to the user’s body [122].

4.2.2.3. Other Decentralized Indoor Localization Systems

Besides smartphones, there are other platforms that compute the position locally: Tango
is a platform using computer vision, inertial tracking, depth sensing and machine learning
to perform a position calculation [131]. Although Tango achieves centimeter-level indoor
positioning, the lighting conditions as well as scene similarity remain a challenge for Tango
devices. Thus, the positioning accuracy may decrease to meter-level [132]. Open Shoe is an
open source project for creating an embedded foot-mounted Inertial Navigation System (INS),
which enables pedestrian positioning and consists of an Inertial Measurement Unit (IMU)
and MCU [133]. The INSs also suffer from the problems of inertial sensors, although sensor
fusion methods such as Zero Velocity Update (ZUPT) can slightly correct the drift but
cannot counteract the effect of the forces during running. Many intelligent robots are based
on autonomous navigation and Simultaneous Localization and Mapping (SLAM) for creating
maps, whereas the localization plays an important role. Endo et al. show the application
of SLAM for visually impaired navigation systems based on Large-Scale Direct (LSD)-
SLAM [134]. SLAM-based systems allow accurate real-time position over long distances
without the drift as well as running algorithms locally on a robot [135]. Nevertheless,
challenges for SLAM algorithms are the map convergence as well as the computational and
memory requirements for real-time/real-world implementation [136].

4.2.3. Distributed and Cooperative Localization Systems

Schmid et al. present a proof-of-concept of an ad-hoc localization system for persons in
a WSN [137]. The initial positions of the anchor nodes are determined by the Pedestrian
Dead Reckoning (PDR) technique. In contrast, the approximate positions of the mobile
nodes (on-body nodes) are estimated based on the positions of the anchors, which broadcast
their positions in regular time intervals. The sensor nodes gather only sensor data by using
a ZigBee stack protocol allowing a multi-hop communication between the sensor nodes,
whereby the algorithms are performed off-line.

Yamagushi et al. present two approaches for collaborative indoor localization, which
are the stop-and-go localization and the People-Centric Navigation (PCN) methods [55].
The first approach relies on the use of ranging devices, whereas a stop-and-go activity
is performed to select a suitable set of reference nodes. The TDOA technique is used
for distance measurement, which is supported by ultrasound devices. Each sensor node
incorporates various ultrasound transmitters radially arranged to reach an omni-directional
range pattern. The second approach is based on collaborative PDR, whereby each mobile
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node provides its own trajectory to other nodes to form the group-averaged trajectory. The
users estimate their step vector by using smartphones, enabling the estimation of the step
count and direction.
Although, cooperative ILSs permit the improvement of the location coverage as well

as the location accuracy, especially in the case of poor geometric conditions [11]. These
systems must overcome operational requirements as well as technical challenges [55]. The
operational requirements can be related to privacy protection, for example, users do not
allow sharing of their positions; or the incentive of users to share their position, for example,
by getting network services [138]. Technical challenges include the selection of the reference
nodes, increasing energy efficiency which requires the optimization of space and time of
localization, and the self-localization by mobile nodes [55]. Another technical challenge is the
self-organization due the large numbers of MSs with random environmental characteristics.
The error propagation is a serious problem in the distributed evaluation. In addition, most
multihop localization techniques by cooperative localization in WSNs are not implemented
and are only treated at the theory level; or they were tested in simulated environments [139].

4.2.4. Standards for Localization

Although there are several positioning systems from the commercial or research fields,
the ANSI 371.1 RTLS and the Institute of Electrical and Electronics Engineers (I Triple-
E) (IEEE) 802.15.4.x localization standards give only the specification of the physical and
the MAC-Layer.

The ANSI 371.1 RTLS standard specifies the positioning accuracy as well as the physical
layer of a real time location system called WhereNet and developed by Zebra Technology
Company [140]. WhereNet supports both indoor and outdoor real-time positioning by using
TOA method and the 2.4GHz Direct Sequence Spread Spectrum (DSSS) technique [22, 25].
WhereNet is composed of tags sending signals at regular intervals to the time-synchronized
base stations.

The IEEE 802.15.4a is the first international standard specifying the wireless physical layer
to enable precision ranging [141]. Furthermore, it supports a prolonged range, high data rates,
improved robustness against interference to allow for applications in wireless personal area
networks, such as location-based routing and the tracking of moving objects. The physical
layer is based on UWB technology and supports Impulse Radio (IR) UWB and Chirp Spread
Spectrum (CSS) [40]. The MAC-Layer is specified at the IEEE 802.15.4-2003 and supports
slotted and unslotted Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) [142].
The IEEE 802.15.4d-2009 enables the CSMA/CA mechanism specified at the original
IEEE 802.15.4 standard [142].
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4.3. General Architecture of a Platform for Positioning Systems

The design of a positioning system is an interdisciplinary challenge that combines approaches
from various areas such as computer science, engineering, and mathematics. Therefore, the
design and implementation of a positioning system is a complex process that requires skills
in these fields.
The architecture of a platform includes data processing and the system component

interaction and design. In the case of a centralized or the decentralized and distributed
approach, data processing can be accomplished on a server or in a Mobile Station (MS),
respectively. The system component can be an MS or an anchor. We use the decentralized
architecture due to the on-the-fly capability, robustness, scalability, and energy-awareness of
the MS.

As mentioned in Section 1.1, the platform should be open in the sense of the interoperability
and communication with other open systems as well as open source. Furthermore, the
platform should allow for decentralized, accurate and smooth position locating.

4.3.1. System Interaction and Components

The proposed anchor-based ILS is composed of reference stations (anchors) and an MS,
which includes sensors enabling a distance or signal strength measurement. As illustrated
in Figure 4.2, the MS performs a ranging or signal strength measurement to the reference
stations, whereby the data processing as well as the position computation occurs on the MS.
The localization process consists of three distinct phases: measurement, preprocessing and
position estimation. In the first phase, the MS collects data after performing a measurement
to the anchors. The measurement data are preprocessed in the second phase, for example,
to eliminate outliers. Finally, the position is calculated at the third phase.

4.3.1.1. Layers Interaction of the Mobile Station

The suggested platform follows a modular-based architecture that ensures the portability
and the extensibility of the system. As illustrated in Figure 4.3, the system architecture of
the MS is divided into two layers: the system and the application layer.

The measurement data, such as distances or magnetic field strengths, are gathered as well
as synchronized by the SL after performing measurements to the RSs. These measurements
and their synchronizations are supported by the OS that controls the hardware sublayer
including devices such as UWB-transceivers or magnetometers. The collected distances
are delivered to the preprocessing sublayer for the removal of outliers or the calibration of
measurement data. Finally, the location is calculated by the position-estimation sublayer
using the data delivered by the preprocessing sublayer.
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Figure 4.3.: The architecture of the mobile station

4.3.2. System Layer of the Mobile Station

The SL consists of two sublayers: the hardware and the OS. Both sublayers will be discussed
in Sections 4.3.2.1 and 4.3.2.2.
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4.3.2.1. Hardware Layer

The hardware sublayer includes a computing unit (e.g., MCU), sensory unit and electronic
drivers. The sensory unit includes sensors such as UWB or magnetometer sensors to
accomplish distance or magnetic field strength measurements. The electronic driver circuits
enable, for example, interfacing with external driver units.

4.3.2.2. Operating System Layer

The OS simplifies the software design, hides the hardware complexity, and increases the
software portability (cf. Section 3.2). The OS sublayer includes a software interface driver
module, which provides interfaces to communicate with sensors or other devices. Most
digital sensors support standardized interfaces such as UART, SPI, and Inter Integrated
Circuit (I2C) buses encouraging the interoperability and the extensibility of the system
with other technologies. A synchronization unit can serve to synchronize the received sensor
data between a transmitter and receiver. Very precise clocks are required for some indoor
localization techniques such as TOA or TDOA. The kernel is the innermost portion of the
OS as well as the software part that provides basic services, distributes system resources, and
manages hardware [143]. The principal components of the kernel are a scheduler, interrupt
handlers, a memory management and protection mechanism, and system services such as
IPC or networking [99].

4.3.3. Application Layer

To ensure the portability and the extensibility of the system with various applications
and positioning algorithms, the AL as the highest level of the proposed platform, follows
a modular-based architecture. The interoperability of the AL, as well as that of the
MS can be extended by using an open-standard format such as the JavaScript Object
Notation (JSON) [144] in order to enable data exchange with other devices. An example
would be the data exchange between the MS and applications located on a PC. The AL is
subdivided into two sublayers: the preprocessing and the position computing sublayers (cf.
Figure 4.3). Both sublayers of the AL will be discussed in Sections 4.3.3.1 and 4.3.3.2.

4.3.3.1. Preprocessing

The preprocessing sublayer comprises data filtering that reduces the effect of statistical
outliers from data delivered by the SL. The outliers can be filtered out by using the mean,
the median or the Median Absolute Deviation (MAD) filters [145, 146]. The preprocessing
sublayer can also provide a calibration routine to correct uncertainties in the measured data.
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4.3.3.2. Position Estimation

The top-level sublayer provides the algorithmic core that computes the position. Commonly,
a positioning algorithm is applied to estimate the unknown position of a MS based on
measurements to reference points. The positioning algorithms must satisfy some practical
requirements to be implemented in a practicable system. For example, the algorithm should
be robust against noisy measurements, otherwise the performance of the algorithm can
drastically decrease. Before we describe some possible algorithms, we briefly introduce
several measurement methods along with performance metrics of positioning algorithms.

a) Measurement methods

The common measurements methods are based on signal strength, angular or distance
observations such as RSS, AOA or TOA. The TOA is the most popular measurement
technique, which can be estimated by using various ranging techniques such as the
one-way or two-way TOA and TDOA. Additionally, hybrid measurements can be used
for the positioning, for instance TDOA/AOA or TOA/RSS. See Section 2.1.

b) Performance metrics

The performance of a positioning algorithm can be evaluated by the following metrics:
accuracy, precision, complexity, robustness, scalability, resilience to error and noise,
coverage, and cost [10].

• Accuracy metrics: The localization accuracy metric shows how well the ground
truth and estimated positions match. There are several accuracy metrics such
as the Root Mean Square Error (RMSE), the Cumulative Distribution Func-
tion (CDF), the Probability Density Function (PDF) or the Frobenius met-
ric (FROB) [147].

Root mean square error is defined as:

RMSE =

√√√√√√
n∑
i=1

(x̂i − xi)2

n
, (4.1)

whereas x̂i and xi are the estimated and the true values, respectively, and n
is the number of observations.

Discrete/Continuous Probability density function gives the probability density
for discrete or continuous random variables [148].

Cumulative distribution function F (x) is the probability that a random variable
X assumes a value less than or equal to a given x [149].
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Frobenius gives the residual error between all n nodes in a network, which
consists of the reference stations RSi having a priori location information and
unlocalized mobile stations (MSs). Figure 4.4 illustrates a network comprised
of a MS and four RSs. The FROB estimates the RMSE of the total residual
error, which outlines the global quality of a positioning algorithm [150].
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Figure 4.4.: Example of a network

The FROB can be calculated as follows:

FROB =

√√√√ 1
n2

n∑
i=1

n∑
j=1

(
d̂ij − dij

)2
, (4.2)

whereby, d̂ij and dij are the measured and ground truth distances, respectively.

• Precision: the location precision is defined as “the percentage of the results
satisfying a predefined accuracy requirement” [151].

• Complexity: is determined in time and space and is commonly expressed by
the standard notation big O (O). The derivation of the analytic complexity
formula of various localization algorithms is difficult to establish, therefore the
computing time can be estimated [10]. The computing time depends on the
method of processing the localization. The positioning algorithms could be
quickly performed on a centralized server that possesses highly effective processing
capability and sufficient energy supply. In contrast, the position can be carried
out on a decentralized and mobile unit with constrained resources. A lack of
computing and energy resources will affect the complexity [10].
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• Scalability: is the ability of the algorithm to allow for the extension of the coverage
area as well as the increase of the number of components such as the MSs or the
reference stations.

• Resilience to error and noise: refers to the algorithm behavior in the presence of
errors and noise in input data [150].

• Cost metrics: A practical evaluation criterion is the cost of an algorithm, which
often is a trade-off against accuracy. Commonly cost metrics are the algorithm
complexity, convergence time, power consumption, and the reference to node
ratio [152].

4.3.3.3. Positioning Algorithms

Positioning algorithms can be classified into two groups: Deterministic and probabilistic
methods [11]. Deterministic methods determine directly the position based on the measure-
ments by applying, for example, the lateration or the least squares method. The lateration
is a popular location algorithm that computes the position of an unknown MS by measuring
its distance from multiple reference positions. The algorithm is called trilateration if the
number of reference points is three. Otherwise, it is called multilateration. On the other
hand, probabilistic methods [153, 154], which are known as Bayesian methods, enable the
position finding by considering the uncertainty of the measurements [11]. The Bayesian
methods proceed in two steps: the prediction and correction steps.

4.4. Conclusion

Although many research and commercial location sensing systems have been developed by
industrial and academic researchers, they are only roughly described. The architecture of
most systems is divided in two parts: the sensor hardware and the positioning algorithm [10].
The standards for localization such as the ANSI 371.1 RTLS and the IEEE 802.15.4.x cover
only the physical and the MAC layers. Figure 4.5 illustrates this relationship.

A modular-based architecture ensures the reusability of the software components as well
as the portability and the extensibility of the system. The decentralized architecture enables
to push the application-level knowledge into a mobile station and avoid the communication
with a server or a base station. Furthermore, the use of an OS supporting standard protocols
such as the Internet Protocol version 4 (IPv4) or 6LoWPAN allows the localization system
to communicate with existing systems and protocols. It also allows the implementation of
non-proprietary and open systems, which can be a part of the IoT. Therefore, the proposed
open platform can be a guideline for the designer of a positioning system to achieve a system
design with a high extensibility (e.g., with other positioning technologies), reusability of the
components, and interoperability.
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Sensor Hardware

Positioning Algorithm

(a) the industrial and academic area.

Physical Layer

MAC Layer

(b) the ANSI 371.1 RTLS and IEEE 802.15.4.x.

Figure 4.5.: Localization system architectures:

The Open-Source Mathematical Library for Resource-Constrained Devices (RcdMathLib)
facilitates performing numerical linear algebra, positioning algorithms, and signal processing
on resource-constrained devices (see Appendix A). It also allows the users a worldwide free
use of the library as well as the modification of the source code for their purposes. In addition,
the open source enables the developers to review and enhance existing source code [155,
156]. This library could enrich the RIOT-OS community with additional collaboration and
innovation in regard to localization techniques.



CHAPTER 5

Decentralized UWB-Based Indoor
Localization System

Based on the general discussion of the open platform discussed in Chapter 4, we now
present a TOA-based system that makes use of the UWB technology. We apply the
decentralized architecture for this positioning system [14]. The proposed system is composed
of several UWB transceivers with known positions as reference stations and one MS, which
also incorporates a UWB transceiver (see Figure 5.1). The UWB transceiver computes
a peer-to-peer distance to the reference stations using the two-way TOA measurement
technique [10]. The position is calculated on the MS based on the measured distances to
the RSs.

RS2

RS3 RS4

MS

RS1

Figure 5.1.: Principle of a UWB-based ILS. MS, Mobile Station. RSi, Reference
Station i

Figure 5.2 presents the architecture of the MS. In the first phase, the distances are collected
from the SL after performing distance measurements to the anchors. These measurements
are supported by the RIOT-OS that controls the hardware including the UWB-transceivers.
The collected distances are delivered to the preprocessing sublayer for the removal of outliers
in the second phase. Finally, the position is calculated based on the data delivered form the
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Figure 5.2.: System architecture of a Time-of-Arrival based MS

preprocessing sublayer in the third phase. The system as well as the application layer of
the UWB-based positioning system will be described in Sections 5.1 and 5.2, respectively.
Section 5.3 presents the complexity of the algorithms used. The system will be evaluated in
Section 5.4 as well as later in Section 7.6. The chapter is concluded in Section 5.5.

5.1. System Layer of UWB-Based Mobile Station

As illustrated in Figure 5.2, the SL is based on the previously discussed architecture template
(see Figure 4.3) and is composed of a hardware and an operating system sublayer, which
will be described in this section.

5.1.1. Hardware

The hardware is composed of four subsystems: the power unit supplying the sensor board
with energy, the MCU, the sensory unit and the driver circuits (see Figure 5.3). The
hardware layer is implemented based on the STM32F407, ARM Cortex-M4 core operating
at 168MHz and the UWB module P440 ranging sensor from TIME DOMAIN R©, which
enables ranging measurements with an accuracy of a few centimeters. The properties of
the MCU and the UWB ranging sensor used are summarized in the Tables 5.1 and 5.2,
respectively.
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(a) (b)

UWB 
Transceiver

UART

Power

UART

CPU

RAM Flash

Microcontroller
(STM32F4-MCU)

(c)

Figure 5.3.: Hardware of the UWB-based localization system. (a) STM32F407
Discovery Board [157], (b) UWB P440 transceiver [158], (c) simpli-
fied hardware block diagram

Table 5.1.: The properties of the STM32F407 MCU. MCU, Microcontroller Unit [159]
MCU Family Vendor Frequency RAM Flash

STM32F407 ARM Cortex-M4 ST Microelectronics 168MHz 192KB 1024KB

Table 5.2.: The properties of the deployed P440 ranging sensor [158]

Accuracy range
Max. operating

rate
Max. ranging Frequency range power

Transmission

2.1 cm 300m - 1100m 125Hz 3.1GHz - 4.8GHz 50µW

5.1.2. Operating System

We use the RIOT-OS, which is discussed in Section 3.2.7. Based on the architecture of the
RIOT-OS, we developed and integrated the device drivers for the P440 ranging sensor and
the UART controller. These software driver components build the driver module and are
part of the system layer (cf. Figure 5.2). The multithreading capability of RIOT-OS ensures
that various tasks can be performed quasi-parallel. Possible tasks are distance measurement
or position calculation.
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5.2. Application Layer of UWB-Based Mobile Station

As illustrated in Figure 5.2, the AL is composed of two sublayers: the preprocessing and the
position estimation. Both sublayers will be discussed in Sections 5.2.1 and 5.2.2, respectively.
The AL incorporates a command shell for interaction with a user or interaction with an
application by using the serial interface. Furthermore, the data is exchanged by using JSON
format between the MS and other systems such as applications located on a PC. This can
enhance the interoperability of the MS, which is achieved by using a minimalistic JSON
parser at the MCU.

5.2.1. Preprocessing

As indicated in Section 4.3.3.1, the preprocessing sublayer serves to remove the outliers in
the data delivered from the system layer. Therefore, we use the median filter to remove
noise from the measured distances captured from the UWB sensor [160]. We apply the shell
sort algorithm to implement the median filter, which does not require recursion such as the
quick sort algorithm [161]. Although the iterative shell sort algorithm is slower than the
quick sort algorithm, it is suitable for resource-constrained devices such as MCUs with a
limited stack size.

5.2.1.1. Shell Sort

Shell sort is a sorting method, which was invented by Donald Shell and published in 1951 [162].
It is designed to remedy the deficiencies of the insertion and bubble sort methods [163]. The
Shell sort algorithm divides the array of n data elements into k sub-arrays, whereby k is
called the Shell size. Then it uses a sort method for the k sub-arrays called k-sort. These
steps are repeated, and k is decremented until it reaches the value of 1. Given an array A
of n data elements to be sorted in ascending or descending order. The Shell algorithm is
described by Sengupta and Korobkin using the following steps [163]:

Step 1: Select a value for k (e.g., k = n).

Step 2: Divide A into k subarrays so that every subarray contains every k-th data element
of A.

Step 3: Sort each of these k subarrays by using a sorting method (e.g., insertion sort).

Step 4: Decrement the value of k by using a formula or a sequence of decreasing integers.

Step 5: Repeat steps 2 through 4 until k is equal to 1 (k = 1).

Step 6: The data elements of A are sorted in ascending or descending order.
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In the worst case, the performance of the Shell sort algorithm varies between O(n1.25)
and 1.6 · O(n1.25). This a remarkable improvement over the insertion algorithm, which has
a performance of O(n2). However, with the proper choice of the Shell size k, the complexity
of the algorithm decreases to O(n · (log(n))2) [164].

5.2.2. Positioning Algorithms

In this subsection, we initially present a multilateration approach for the position determi-
nation. Then, we describe two methods to calculate the linear least-squares problem for the
ranging based positioning system. Finally, we derive the equations to compute a Non-linear
Least Squares (NLS) method in a convenient form for MCUs. The NLS method enables the
position optimization.

5.2.2.1. Algebraic Multilateration Method

Assume (x, y, z) and (xi, yi, zi) for i = 1, 2, ..., n are the coordinates of the MS and of n
reference points, respectively. In addition, the measured distances between the reference
points and the MS are di. The unknown location of the MS is the intersection of the spheres,
whose equations are:

(x− xi)2 + (y − yi)2 + (z − zi)2 = di
2 i = 1...n (5.1)

The system of nonlinear equations in (5.1) can be solved by different methods [165,
166, 167]. We solved it by transforming the system of equations in a matrix form [168].
The algorithm used is not related to a specific anchor, since most algorithms subtract the
coordinates of a specific anchor for the linearization of the equation system. Additionally,
the algorithm gives a measure of the solvability of the multilateration problem and provides
a recursive least square approach to update the position [168]. The solution of the linearized
system is completely determined if the distances from four reference points are known. The
problem requires the estimation of the unknown position ~x = (x, y, z) such that:

A~u = ~b, (5.2)

where ~u = (x2 + y2 + z2, x, y, z), the matrix A and the vector ~b have the following
forms [168]:

A =



1 −2x1 −2y1 −2z1

1 −2x2 −2y2 −2z2

1 −2x3 −2y3 −2z3
...

...
...

...
1 −2xn −2yn −2zn


, (5.3)
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~b =



d2
1 − x2

1 − y2
1 − z2

1
d2

2 − x2
2 − y2

2 − z2
2

d2
3 − x2

3 − y2
3 − z2

3
...

d2
n − x2

n − y2
n − z2

n


. (5.4)

Equation (5.2) can be solved based on the QR decomposition in the microcontroller. An
efficient method to implement the QR decomposition is the Householder transformation [169].
If A is ill-conditioned or singular, the position ~x can be computed using the Moore–Penrose
pseudo-inverse algorithm [168, 169]. The Moore–Penrose pseudo-inverse is the best linear
reconstruction operator in the mean square sense [170], which is more robust and reliable
than the Householder transformation, but substantially more computationally expensive:

~u = A+~b, (5.5)

whereby A+ is the pseudo-inverse of the matrix A [168, 169]. The pseudo-inverse matrix
can be computed based on the SVD of the matrix A [171]. SVD enables the calculation
of the underdetermined and overdetermined systems of linear equations. Furthermore, the
SVD is more robust to numerical errors [172], but it is computationally expensive.

5.2.2.2. Preprocessed Pseudo-Inverse Matrix

Since the matrix A in (5.3) depends only on the coordinates of the RSs, the constant matrix
(A+) can be computed externally, e.g., in a PC. This method enables saving the resources
of the MS, which can be initialized with the matrix A+, and for example, with the help of
serial communication. In this case, the computation of a new ~x position in Equation (5.2) is
reduced to a matrix multiplication: A+~b.

5.2.2.3. Non-linear Least Squares Method: Gauss–Newton Method

The algebraic multilateration method does not always provide a good estimation due to the
measurement uncertainties [168]. In this case, the NLS method can be used to improve the
position calculated by the algebraic multilateration method. This method is based on the
minimization of the squares of the errors:

F (x, y, z) =
n∑
i=1

f2
i (x, y, z), (5.6)

whereby fi(x, y, z) is the error function:

fi(x, y, z) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 − di (5.7)
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Minimizing the sum of the square errors is a common problem in the area of applied
mathematics, which can be solved, for instance, with the Gauss–Newton or the Levenberg–
Marquardt algorithms [169]. We use the Gauss–Newton method to improve the estimated
position, which is calculated by using the Moore-Penrose pseudo-inverse algorithm.
Since the Gauss-Newton method requires the first derivatives, we define the following

Jacobian matrix:

Jf =



∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z

...
...

...
∂fn
∂x

∂fn
∂y

∂fn
∂z


(5.8)

We introduce the error function vector ~f :

~f =
(
f1, f2, f3, . . . , fn

)T
(5.9)

Starting with an initial position guess ~x (1) = (x̃, ỹ, z̃)T calculated by the multilateration
method, the Gauss-Newton method proceeds using the following iterations:

~x (k+1) = ~x (k) + ~s (k) (5.10)

~s (k) = −(JTf
(k)
Jf

(k))−1JTf
(k) ~f (k), (5.11)

where ~x (k) is the k-th approximation of the position and ~s (k) is the k-th error correction
vector. We calculate ~s by using the Moore–Penrose pseudo-inverse algorithm, since the
QR-decomposition, such as the QR-Householder algorithm, can fail due to the singularity or
poor conditioning of the matrices.
Using equations 5.7 and 5.8 lead to:

JTf Jf =



n∑
i=1

(x−xi)2

(fi+di)2

n∑
i=1

(x−xi)(y−yi)
(fi+di)2

n∑
i=1

(x−xi)(z−zi)
(fi+di)2

n∑
i=1

(x−xi)(y−yi)
(fi+di)2

n∑
i=1

(y−yi)2

(fi+di)2

n∑
i=1

(y−yi)(z−zi)
(fi+di)2

n∑
i=1

(x−xi)(z−zi)
(fi+di)2

n∑
i=1

(y−yi)(z−zi)
(fi+di)2

n∑
i=1

(z−zi)2

(fi+di)2

 , (5.12)

and

JTf
~f =

( n∑
i=1

(x−xi)fi
(fi+di) ,

n∑
i=1

(y−yi)fi
(fi+di) ,

n∑
i=1

(z−zi)fi
(fi+di)

)T
(5.13)

Equations (5.12) and (5.13) are composed of sum terms, which can be implemented in
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Table 5.3.: Complexity of various algorithms
Algorithm Complexity [flops]

Matrix multiplication: Am,n ×Bn,p mp(2n− 1) [173]

QR-Householder 2mn2 − 2
3n

3 [174]

Moore–Penrose pseudo-inverse 4m2n+ 8mn2 + 9n3 [175]

the microcontroller, for example using a for-loop; whereby, the upper bound of the loop
is n, which is equal to the reference point’s number. The matrix in Equation (5.12) is
symmetrical; this property can be used to reduce the computational burden by computing
only the upper or lower part of the matrix. Finally, the terms (fi+ di)2 and fi

fi+di , which
appear in each sum term of the matrix elements, can be computed only once by each iteration
in Equations (5.12) and (5.13), respectively.

5.3. Complexity of the Algorithms Used

The algorithms used in this chapter are based on the matrix multiplication, the QR-
Householder, and the Moore–Penrose pseudo-inverse algorithm. Their complexity is sum-
marized in Table 5.3, where m and n are the number of rows and columns of the matrix
A, respectively. While, n and p are the number of rows and columns of the matrix B,
respectively.

5.4. System Evaluation

In this section, we present the results of the experimental evaluation of the UWB-based
system. The aim of this evaluation is to demonstrate the feasibility to implement the
proposed platform architecture for a TOA-based system, and therefore we will not address
issues such as the impact of the placement of the anchors and the MS, or the selection of
the anchors on the localization accuracy. The impact of the MS related to the anchors’
placement and number is covered in Chapter 7. For the evaluation, we provide the results
of the accuracy measurements of the UWB-based system. Furthermore, we evaluated the
computing time of the algorithms on the STM32F407, which is running at 168MHz. Finally,
we evaluated the energy consumption of the algorithms running on the MCU as well as of
the MS in Section 5.4.3.

A static measurement setup was performed to inspect the positioning performance of the
UWB system, whereby four UWB reference transceivers were situated in the corners of a
6m × 7m room and the UWB mobile stations are placed in several points and at three
different heights in the room. Hence, the location of the MS is measured at 27 different
locations, whereby the measurement is repeated fifty times at each location. The MSs lie in
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Figure 5.4.: Experimental setup for position measures between various MSs and
four reference stations

a one-meter grid (see Figure 5.4).

5.4.1. Accuracy Evaluation

Figure 5.5(a) illustrates the three-dimensional position errors by using the algebraic multi-
lateration and the Gauss–Newton methods. Figure 5.5(b) shows the positioning error, which
is defined as the Euclidean distance between the estimated and true position. Figure 5.5(c)
contains the empirical CDF of the position error of all locations by using the algebraic
multilateration method; the error in the x- and y-coordinates is less than 3.5 cm, while
the error in the z-coordinate is less than 25.3 cm. The error in the z-coordinate results
from the unfavorable geometrical configuration, since the reference stations are located
at approximately the same height. By further applying the Gauss–Newton method, the
positioning error is reduced to 2.2 cm in the x- and y-coordinate, as well as to 11.2 cm in the
z-coordinate (see Figure 5.5(d)).

5.4.2. Computing Time Measurement

The matrix A+ is calculated based on the Moore–Penrose method only once, in the initial
phase at the start of the MCU or the positioning application. Based on the computed matrix
A+, the localization of the MS is determined by the algebraic multilateration method. The
position of the MS can be improved by using the Gauss–Newton algorithm, which uses the
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Figure 5.5.: UWB-based system: scatter plots, position errors, and empirical
CDFs. ML, Multilateration; GNM, Gauss–Newton Method. (a)
Scatter plot of the ML algorithm and the GNM, (b) position error
of the ML algorithm and the GNM, (c) empirical CDF of the points
estimated by the ML algorithm, (d) empirical CDF of the estimated
positions after the use of the GNM

position delivered from the algebraic multilateration method as a starting point. The Gauss–
Newton proceeds iteratively up to the desired accuracy or until the maximal iteration number
is reached. The average iteration number in this experiment is five. Despite the constrained
computing resources of the STM32F407-MCU, the computing time of each positioning is in
the order of 0.032ms without using the Gauss–Newton algorithm. In contrast, the mean
estimated position time increases up to approximately 7.9ms by using the Gauss–Newton
algorithm. The evaluation of the described computing steps is summarized in Table 5.4.
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Table 5.4.: Mean computing times of the algorithms used by the UWB-based
System. Computing times measured on a STM32F407-MCU running
at 168MHz

Algorithm Computing time [µs]

A+ for the multilateration method (at the start) 2115

Multilateration method 32

Gauss-Newton per iteration 1561

5.4.3. Energy Consumption

The energy consumption of the algorithms is measured based on the measurement of the
drain-source current in the supply line, which is powered by a reference voltage supply
Vcc (Vcc = 5V). Hence, the energy used for each localization processing task can be calculated
by integrating the electric power over the times, which are summarized in Tables 5.4. We
measured a current consumption of about 75mA at the ambient temperature of 26 ◦C for the
STM32F407-MCU in an active mode. The measured energies for the localization algorithms
by the UWB-based ILS are summarized in Table 5.5.

Table 5.5.: List of measured energy consumption values of the algorithms by the
UWB-based ILS

Algorithm Energy [µWs]

A+ by the multilateration method (at the start) 793.13

Multilateration method 12

Gauss–Newton per iteration 585.38

We also measured the energy consumption of the MS performed for the UWB-based ILS
by using the previously mentioned method for the energy consumption of the algorithms.
We measured a current consumption of about 410mA by the UWB transceiver; whereas,
the measurement time by the UWB-based ILS is 120ms. The total energy, required for a
position estimation, is calculated based on the current drain of the sensors, as well as the
energy consumption of the MCU (see Table 5.5). The energy usage of the UWB-based ILS
is summarized in Table 5.6, whereby the energy consumption of the UWB transceiver is
246mW.

Table 5.6.: List of measured energy consumption of the UWB-based ILS for a
position estimation
Localization System Energy [mWs]

UWB-based ILS 246 + 0.793 + 0.012 + 5× 0.585 ' 249.73
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5.5. Conclusion

The proposed platform enables position finding based on UWB technology as well as the use
of a low-cost device to implement decentralized computing. Compared with a smartphone,
the localization of an object or a person is independent of its orientation and position.
Furthermore, to provide for an accurate localization, the platform enables both smooth
localization and the deployment of various, accurate measurement devices. The use of
the RIOT-OS and standard formats extends the interoperability of the system with other
protocols and systems such as the IoT. Finally, the energy evaluation shows that the UWB
transceiver, which is the High Frequency (HF) part of the MS board, consumes the greatest
amount of energy.

The use of the Gauss–Newton algorithm improves the altitude (z-component) computed
by the algebraic multilateration method. The altitude errors are the result of a bad or
faulty configuration of the MS to the anchors: very small or huge angles between the signals
reaching the MS.



CHAPTER 6

Decentralized Magnetic Indoor Positioning
System

Decentralized magnetic indoor localization is a sophisticated method for processing
sampled magnetic data directly on a mobile station and thereby decreasing or even avoiding
the need for communication with the base station. In contrast to central-oriented positioning
systems, which transmit raw data to a base station, decentralized indoor localization pushes
application-level knowledge into the MS. A decentralized position solution therefore has a
strong feasibility to increase energy efficiency and to prolong the lifetime of the MS.

Numerous technologies for indoor positioning have been developed over the years. In [49,
10, 22, 32], a comparison of different technologies is provided in regard to accuracy, coverage,
update rate, hardware size and cost. The main challenge of these technologies is the signal
shadowing due to the presence of obstacles between the transmitter and receiver. Unlike other
technologies, magnetic signals can pass through obstacles without significant propagation
errors, even in NLoS scenarios. However, magnetic signals show a limited coverage area, since
the magnetic field strengths decay rapidly with distance. Hence, large coils and high-power
levels are required to reach a wide coverage.
To design a robust positioning system in challenging indoor environments, it is of

paramount importance to push the application-level data processing as deeply into the
MS as possible and to use a localization technology, which overcomes the limitations of
existing indoor positioning systems. The processing and the evaluation of sampled data
close to the source reduce the communication with the base station and minimize the energy
consumption of the mobile station. The decentralized magnetic positioning system follows
this strategy by designing the mobile station in such a way that the magnetic field data are
at first gathered, preprocessed, synchronized, and finally computed on-the-fly to provide the
spatial coordinates of the MS.
In this chapter, we present a complete architecture and the implementation of a decen-

tralized magnetic positioning system [13]. Furthermore, we introduce a technique for the
synchronization of the observed magnetic field on the MS with the artificially-generated
magnetic field from the coils. Based on Real-Time Clocks (RTCs) and a preemptive operating
system, this method allows a stand-alone control of the coils and a proper assignment of the
magnetic fields measured on the MS. A stand-alone control and synchronization of the coils
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and the MS have an exceptional potential to implement a positioning system without the
need for wired or wireless communication and enable a deployment of applications for rescue
scenarios, like localization of miners or firefighters. Furthermore, we discuss the localization
algorithms related to the decentralized MILPS.

MILPS is based on DC-pulsed magnetic signals that show no special multipath effects
and have excellent characteristics for penetrating various obstacles [176]. Therefore, MILPS
offers various benefits in comparison to other active positioning systems. In this work, we
propose a stand-alone localization system that enables a positioning in harsh conditions
without the need for communication infrastructure, nor fixed or tedious installations. The
main contribution of this work is the proposal of a decentralized control of the individual
coils (anchors), as well as the decentralized synchronization of the entire system without the
need for communication technology. Both the synchronization and the control of the coils
and MS are based on a preemptive real-time operating system and RTCs. The algorithms
for the localization as well as for the optimization are adapted for resource-constrained MSs.
Furthermore, the developed work can be summarized as follows:

1. The design of a decentralized positioning system by improving the MILPS and using
Coil Driver Units (CDUs), which are based on accurate RTCs. Furthermore, the MS is
extended with a sensor platform including a magnetic field sensor and an RTC. The
MS operates independently from the CDUs, and no communication channel is required.

2. The application of TDMA for the generation of periodic, distortion-free magnetic field
signals for a certain time period (e.g., 1 s). The TDMA allows the MS to distinguish
between the coils (reference points).

3. The evaluation of two approaches to drive and synchronize the coils.

4. The presentation, analysis, and evaluation of the algorithms for MILPS.

The remainder of the chapter is organized as follows: firstly, we review related works, then
we present MILPS as proof of concept in Section 6.1. We introduce a new, decentralized
version of MILPS in Sections 6.2 and 6.3, as well as a decentralized synchronization approach,
which is based on precise RTCs in Section 6.4. Then, we describe the architecture of the
CDU in Section 6.5. In Section 6.6, we discuss the algorithmic core of the system. We give
an experimental evaluation of the system in Sections 6.7 and 6.8. Finally, we conclude this
chapter in Section 6.9.

6.1. Related Work and Proof of Concept

This section is devoted to an overview of related work on positioning based on artificially-
generated magnetic fields, and to a review of our previous work as proof of concept.
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The emphasis is on summarizing the state of the art by focusing on the need for time
synchronization and the architecture.

6.1.1. Related Work

As mentioned in Chapter 2, the localization systems use various physical principles and exhibit
different performance characteristics. However, contrary to electromagnetic waves, magnetic
signals can pass through almost all building materials without significant attenuation
or distortion and are generally convenient for indoor localization purposes. Magnetic
indoor positioning systems are classified into three categories: fingerprinting (geomagnetic),
permanent magnet- and current-based magnetic positioning systems.

Fingerprinting positioning systems such as presented in [74, 177] require no synchronization
as well as no infrastructure such as coils. Only a three-axis magnetometer is used to achieve
a self-localization, which can be decentralized computed, for example, on a smartphone.
The position can be also centralized computed on a server such as the case in [177]. These
systems are restricted to one-dimensional locations (e.g., location of a person within a
corridor). The acquisition of magnetic maps in the setup phase is indispensable, whereby
the localization accuracy scales with the finger printing data resolution.

Permanent magnets can be used to implement a magnetic positioning system as presented
by Song et al. [75]. Song et al. use a permanent magnet enclosed in a capsule as a MS and
a magnetometer array as reference points. Most of these systems use a centralized unit such
as a PC or a microprocessor board to synchronize the measured magnetic data as well as to
compute the position [75, 76]. This class of magnetic positioning system has a restricted
coverage volume (up to 1m3) and uses complicated mathematical models with high-order
non-linear equations [49].
The third class artificially generates magnetic signals by means of coils with known

positions (reference points), which generate magnetic fields by using pulsed DC or AC.
The current-based magnetic positioning systems are deployed in industrial and bio-medical
applications and use a centralized approach to control the coils, synchronize the collected
magnetic field data, as well as to perform the localization estimation. In other words, the
central unit is responsible for the synchronization between all connected components [81, 82].
Sheinker et al. propose a 3D positioning system, which generates a time-varying magnetic
field by exciting coils with an AC source. The MS can distinguish between the beacons by
using a lock-in amplifier, since each beacon is assigned a specific frequency. This method
is similar to the Frequency Division Multiple Access (FDMA) approach. The positions
are calculated on a centralized PC on top of the measured magnetic field amplitudes and
phases [83].

Similar to our previous proof-of-concept, two experimental systems are introduced in [78,
178], which utilize coils placed at different positions to reach a wide coverage area. Since
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these systems are still in the prototype phase, a centralized approach is also used. Prigge
presents a prototype system that utilizes several coils [78]. A Code Division Multiple
Access (CDMA) approach is used to distinguish each generated signal. A timing box
generates the synchronization signal, which is distributed over a cable network to all coils
and via either a wireless or a wired connection to the MS. A synchronization method is
proposed in [178], which uses edge detection within the captured magnetic field signal to
correct the time drift between the coils and the MS. However, this concept faces many
difficulties if the captured signal is weak or the time drift is bigger than a certain amount
of time, which leads to a degradation of the location accuracy. Moreover, as in other
cross-correlation-based approaches, because of the uniformity of the coils switching pattern,
the MS is not able to distinguish every single coil [178].

6.1.2. Proof of Concept

The objective of our proposed MILPS is to provide a reliable and accurate indoor positioning
system that covers an entire building with a minimum of infrastructure and complexity. The
system consists of several coils placed inside or outside the building and a mobile sensor (cf.
Figure 6.1).

H-Bridge Current Source 

HMR 2300  
Sensor 

Coil 

(a)

Control Unit

Synchronization Bus

Current Source
Level Converter

Current Source

Coil 2 (anchor 2)Coil 3 (anchor 3)

Coil 1 (anchor 1)

Current Source

y

z x

magnetic sensor
(MS)

(b)

Figure 6.1.: Magnetic Indoor Local Positioning System (MILPS) platform. (a)
Main components; (b) Basic system overview with three coils and a
mobile sensor (MS)

The coils generate magnetic fields successively. By measuring the field components of
multiple coils (at least three) and using the coil coordinates in the building reference system,
the unknown 3D coordinates of the MS can be estimated by applying the trilateration
principle [168]. A simple theoretical and real example of a received magnetic field at the
MS is presented in Figure 6.2.
As shown in Figure 6.2(a), the direction of the electrical current of each coil is switched

in polarity to eliminate the overlying magnetic field of the Earth and other long periodic
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magnetic interferences. This is achieved by computing the differences between subsequent
positive and negative sample clusters (B+

i − B
−
i ), where B+

i and B−i are the calculated
medians of the first and second cluster, respectively. In addition, the magnetic field (Bi)
measured from the i-th coil is computed as follows:

Bi = B+
i −B

−
i

2 . (6.1)

A proof of concept was introduced in [179] by presenting a working prototype. The results
of the measurements performed with the prototype prove the feasibility to determine the 3D
position of a user or an object inside a building, even in NLoS conditions. The prototype is
based on artificially-generated magnetic fields and achieves a positioning accuracy of less
than 0.5m. The coils maintain synchronization through a communication link, which is
implemented as a cable or a wireless link. The MS is also synchronized with the coils and can
therefore distinguish the coil fields. The synchronization acquisition at the MS is computed
by using the cross-correlation between the receiving signal and a template square signal.
This method is, however, limited to stationary devices, because the square wave pattern
at the MS is distorted during movement. A so-called “stop and go” measurement must be
performed. That means, to regain the synchronization, the mobile station must regularly
stop. This is unpractical in a real tracking scenario. To deal with this limitation, a complete
centralized solution has been applied by sending the sensor raw data to a base station, which
activates the coils and performs the position calculation. However, this method would face
difficulties in a real indoor scenario, such as power consumption, low reliability of the data
transfer, data congestion, when various MSs are involved, etc.
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Although localization systems based on magnetic fields may be valuable for cluttered
environments, they are often limited by strict synchronization requirements. Accordingly,
there is a need for an improved synchronization system that has low power requirements,
requires no special synchronization hardware and is easy to implement in a variety of
scenarios. Thus, it is necessary to utilize synchronized clocks for both the transmitting coils
and the receiving MSs.

6.2. Architectural Overview

The decentralized MILPS is based on CDUs for a stand-alone control of the coils and a
MS for on-the-fly computing of the position. However, the resource constraints of the MS
pose various challenges that should be considered during the design phase. Typical resource
constraints are: restricted processing power, limited storage capacity, and limited energy
resources. The design constraints depend on the application and the environment in which
the MILPS is deployed. An important design factor that should be carefully treated is
the energy consumption of a MS, since MSs are mostly battery operated. The previous
considerations, like the resource constraints, the energy consumption of the MS and the
system topology, provide additional inputs for the system design and architecture, as detailed
in Sections 6.3 through 6.6.

Expanding on the principles of MILPS and the architectural view presented in the previous
Chapter 4, the focus is shifted from the system topology aspects to the MS and the CDUs’
design aspects. Based on the general discussion of architectures, MILPS principles and the
synchronization problematic of the system, we now present an exemplary platform for a
decentralized and synchronized magnetic positioning system. This platform is employed
in MILPS, whereas the mobile station and the anchors are equipped with real-time clocks,
and the MS additionally incorporates a magnetic sensor. The MS as well as the CDU are
designed in a layer-based architecture.

MILPS is a decentralized and magnetic-based positioning system, which is representative
for an RSS-based localization system. The MILPS developed in this work enables the
calculation of an optimized three-dimensional position on the MS based on the measurement
of the magnetic field as well as the elevation angle to the coils as anchors (see Figure 6.3).
As illustrated in Figure 6.4, the system architecture is divided into two layers: the

application and the system layer. The AL is the highest level of the MS or CDU, which
follows a modular-based architecture that ensures the portability and the extensibility of the
system. In the case of the MS, it is subdivided into two sublayers: the preprocessing and the
position computing layers (cf. Figure 6.4(a)). The first sublayer includes the data filtering
module, which removes statistical outliers from the data delivered from the system layer.
The second preprocessing module provides a calibration routine to correct inaccuracies of
the magnetic samples. The calibration routine is not addressed in this work. The top-level
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Figure 6.3.: MILPS principle

sublayer represents the algorithmic core that computes the position on the MS. In the case
of the CDU, the AL includes an application for controlling the coils (cf. Figure 6.4(b)).
Both ALs incorporate a command shell for the interaction with a user or an application by
using the serial interface.

6.2.1. Layers Interaction of the Mobile Station

The magnetic field data are gathered as well as synchronized by the SL after performing
measurements of the magnetic field strengths to the anchors. These measurements as
well as their synchronization are supported by the RIOT-OS that controls the hardware
sublayer including the magnetometer. The collected measurement data are delivered to the
preprocessing sublayer for removing outliers and calibrating magnetic data. Finally, the
position is calculated by the position-estimation sublayer based on the data delivered from
the preprocessing sublayer (see Figure 6.4(a)).

6.2.2. Layers Interaction of the Control Driver Unit

The coils are controlled via a driver circuit that is connected to an H-Bridge. The control and
the synchronization of the coils are performed by software drivers based on the RIOT-OS.
The control application layer enables the initialization, configuration, and control of the
CDUs by using the underlying SL (see Figure 6.4(b)).
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6.3. System Layer of MILPS Mobile Station

The SL is based on the previously discussed architecture template (see Figure 4.3). The
SL includes the hardware board, the power unit, and the RIOT-OS [12]. The RIOT-
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OS is a tickless real-time OS that supports multithreading and priority-based preemptive
multitasking (cf. Section 3.2.7).

6.3.1. Hardware

The hardware is composed of four subsystems: the power unit supplying the sensor board
with the energy, the MCU, the sensing unit, and the driver circuits. The MCU forms the
core of the system controlling the other three subsystems. The MCU is based on an ARM7
core, operating at 72MHz and has a memory capacity of 96KBRAM and 512KBRead-Only
Memory (ROM) (cf. Figure 6.5(b)).
The sensing unit includes the 3D-magnetic sensor HMR2300, which offers a sampling

rate of up to 154Hz and a range of ±2 gauss (G), with a resolution up to 70µG [180]. The
sensing unit can be extended with additional sensors, like a 3D-accelerometer or gyroscope
sensors to support a navigation scenario in indoor environments. The hardware of the MS is
illustrated in Figure 6.5. The properties of the LPC2387-MCU as well as of the HMR2300
magnetometer used are summarized in Table 6.1 and 6.2, respectively.
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(a) Mobile Station (MS) hardware.
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(c) Simplified hardware block diagram.

Figure 6.5.: MILPS: MS hardware overview. MCU, Microcontroller Unit. CDU,
Control Driver Unit.
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Table 6.1.: The properties of the deployed LPC2387-MCU. MCU, Microcontroller
Unit [181]
MCU Family Vendor Frequency RAM Flash

LPC2387 ARM7 NXP 72MHz 96KB 512KB

Table 6.2.: The properties of the HMR2300 magnetometer. FS, Full Scale [180]
Range Sample Rate Resolution Accuracy

±2 gauss (G) up to 154Hz up to 70µG 0.5%FS (over ±1G)

6.3.2. Operating System

Based on the architecture of the RIOT-OS, we develop and integrate device drivers for
the DS3234 real-time clock, the HMR2300 magnetometer, the SPI bus and the UART
controller. These software driver components build the driver module and are part of the
system layer (cf. Figure 6.4(a)). Due to the support of fast interrupt handling (low interrupt
latency) and multi-threading, the RTC and HMR2300 drivers run in concurrent threads,
thus, enabling the synchronization of the sampled magnetic data on the MS. Because of
the energy efficiency, RIOT-OS enables the development and deployment of energy-aware
applications on resource-constrained devices. Further energy savings can be achieved by
using MCU-specific power management techniques, which improve the lifetime of the MS.
The modular structure of the RIOT-OS allows not only the development of a magnetic-

based positioning system, such as MILPS, but also the deployment of localization systems
that use other technologies. The modularity and the developer-friendly features encourage
the reusability of common modules, e.g., filtering algorithms. The reusability of source
code is improved by defining clear interfaces between the individual layers and sublayers.
Therefore, MILPS can be easily extended with other technologies. By fusing data from
different types of sensors, it is possible to compensate for the shortcomings of a single
technology, such as coverage gaps, or to improve the positioning performance.

6.4. Synchronization

Synchronization plays a key role for MILPS, since the coils are activated in successive time
slots (TDMA), and the MS has to classify the sampled magnetic data into the proper coil
at the corresponding time. In general, a vital element for proper operation is a reliable
clock source, which is essential for microcontrollers and RTCs. Since the oscillators are the
basis for the MILPS synchronization sources-clocks, they will be discussed in combination
with timing and synchronization on resource-constrained devices in the next Sections 6.4.1
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and 6.4.2, respectively. Furthermore, we introduce a decentralized synchronization approach
based on a high precision RTC, as well as two synchronization methods of the CDUs in
Sections 6.4.3 and 6.5.2, respectively.

6.4.1. Stability and Accuracy of Oscillators

Oscillator circuits generate a sinusoidal or a square output signal. They are classified in
RC-, LC-, or quartz crystal oscillators. The quartz-based oscillators are preferred, since they
are more precise and accurate over a wider timeframe and temperature range compared to
other oscillator classes. Furthermore, they have a high Quality Factor (QF), which is equal
to the resonance frequency divided by the resonance width [182]. The QF of quartz-based
oscillators is in the range of 102 to 106. In contrast, a LC oscillator has a maximum QF
of 102. The quartz crystal is the core component of a crystal oscillator, which exhibits
mechanical and electrical properties. In other words, mechanical forces applied to the quartz
will generate an electrical field, conversely, electrical charges produce mechanical forces.
This phenomenon is known as the piezoelectric effect.

The quartz crystal is affected by factors such as the temperature, humidity, power supply
voltage and mechanical shocks [183, 184]. Furthermore, the frequency and stability can be
negatively impacted by the following factors:

• Aging: is a gradual change in frequency over a long period of time due to electrome-
chanical effects such as mass transfer and stress in the quartz.

• Short-term instabilities: are standard deviations of the fractional frequency fluctuations
for a specific averaging time that are random in nature and are referred to as noise.

• Phase noise: is the random fluctuations in the phase component of the output
signal [185].

• Temperature drift: means that the resonant frequency of the crystal varies depending
on the ambient temperature; consequently, high temperatures affect the nominal
frequency, which can reach a deviation of up to a few tenths of parts per million (ppm)
of seconds [185].

Based on the quartz crystal and electronic components such as capacitor, resistor and
transistor, various oscillator circuits can be configured. The common crystal-based oscillator
circuits are Pierce-, Colpitts-, and Hartley-Oscillator [186].

6.4.2. Timing and Synchronization on Resource-Constrained Devices

The passing time is crucial for a resource-constrained device such as a microcontroller, since
many tasks are time-driven or periodic such as data reading or balancing a scheduler queue.
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A full-fledged OS is a general-purpose OS that guarantees the best resource allocation for
all running processes by a Completely Fair Scheduler (CFS), which is not adapted to the
requirements of real-time systems [187]. Although full-fledged devices are not resource-
constrained, they are unsuitable to perform real-time periodic tasks such as controlling the
coils periodically, since full-fledged OSs are usually not preemptive [187, 188]. The real-time
characteristics of a full-fledged OS (e.g., Linux) can be improved by relatively complex
extensions [187, 188]. In the following paragraphs, we discuss the realization of the timing
and synchronization on microcontrollers.

The time can be specified as a relative and absolute time. Relative time is usually needed
to schedule an event for one second in the future, conversely managing the current time of
day requires a concept of absolute time. There are two types of clocks, the hardware and
the system clock. The first clock runs independently of the MCU and even if the device is
powered off. This clock provides a non-volatile unit for storing the wall-time, which is called
the RTC clock and is built into most modern MCUs [189, 190]. The second clock is based
on the system timer (MCU timer) which raises an interrupt at a preprogrammed frequency
called the tick rate. The tick is the time between two successive timer interrupts and is
equal to 1

tick rate . A global variable holds the number of ticks since the system was booted.
This variable is initialized from the kernel when the system boots up and is incremented by
one during each timer interrupt. On the other hand, the kernel uses the RTC to initialize a
second variable at start-up. By updating both variables inside the timer interrupt handler,
the kernel can keep track of both wall and system time.
Modern microcontrollers incorporate an internal RC oscillator which is often inaccurate

and sensitive to the supply voltage and temperature variations. Therefore, an external
crystal oscillator is used for improved stability, frequency accuracy, low power consumption,
and flexibility of a wide choice of frequency values [191]. The most common oscillator
configurations for microcontrollers are the Pierce and the Colpitts circuits [192, 193] (see
Figure 6.6). These circuits build external clock sources for the components of the microcon-
troller such as hardware timers. Timer architecture for driver and application programming
are based on these hardware timers.

Constrained OSs support timers with high resolution (up to 1µs), which are more conve-
nient for timing measurement or performing a task during a given time interval. Nonetheless,
they do not allow the measurement of absolute time. The absolute time plays a key role
in the synchronization of MILPS, since we must implement periodic tasks that rely on the
concept of absolute time. A further requirement is the kernel preemption that enables
application processes to preempt the kernel. Conversely, the synchronized tasks can be
strongly affected by other activities such as a disk or network traffic in a system, which does
not support preemption, especially when it is exposed to a heavy load. Nevertheless, due to
the temperature drift or aging, the source clock remains the weakest part of the system (cf.
Section 6.4.1).
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6.4.3. Synchronization Scheme Based on Real-Time Clocks

Based on the general discussion of the oscillators’ stability and synchronization on resource-
constrained devices, we now present a decentralized synchronization mechanism, which
implements the periodic control of the coils and the MS using the TDMA scheme (cf. Fig-
ure 6.7). The MS is synchronized with the CDUs without the need for a synchronization
bus or any kind of communication.
The goal is to generate time slots with a certain period (e.g., 1 s) or multiples thereof,

with a tolerance range of ±20%, which must not be exceeded during a total operating
time of 2–3 h (e.g., the period of a fire rescue operation). The core of our method is based
on the DS3234 low-power and accurate RTC with the accuracy of ±2 ppm or ±3 ppm for
the temperature ranges from 0 ◦C to 40 ◦C or from −40 ◦C to 80 ◦C, respectively. The
performance of the DS3234 is achieved by the combination of a Temperature Compensated
Crystal Oscillator (TCXO), which provides a high level of temperature stability, and the
RTC [195].

The built-in TCXO offers an accurate and stable reference clock, which keeps the accuracy
of the RTC within ±2 min per year in a temperature range from −40 ◦C to 80 ◦C [195]. In
addition, the TCXO provides a square-wave with four programmable frequencies from 1Hz
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to 8.2 kHz and a battery backup unit to continuously keep the time and settings in 256 bytes
of Static Random-Access Memory (SRAM).

For a typical deployment, MILPS operates in three distinct phases:

1. The initialization phase: Both the RTCs of the CDUs and the MS are set to the same
time. This phase is initiated by a user with the help of a serial splitter or wireless
connection. The RTC is integrated into the CDU and the MS via the SPI-interface.
Once the initialization is complete, the system enters the operating mode.

2. The operating mode: In this mode, each coil’s CDU is assigned to a fixed duration slot,
in which the coils are activated. Like TDMA, the time slots are cyclically organized (cf.
Figure 6.7). Simultaneously, the MS acquires the magnetic data from the HMR2300
sensor, which can be assigned to the source coils by means of the RTC and predefined
time windows. Based on the RIOT-OS, which provides a preemptive kernel scheduler
and a fast interrupt handling, the data sampling and the time division run in different
threads. Despite the clock drifts of the temperature-compensated RTCs in this phase,
the distance measurement is only affected if a certain timeframe elapses. The maximum
time threshold, which affects the distance measurement, is examined in the experimental
part and is in the order of 80 h (see Section 6.7).

3. The resynchronization phase: The clocks of the MS and the CDUs are reset to the same
time before the maximum time threshold elapsed.

6.5. Control Driver Unit

The CDU also follows a layered and a modular-based architecture (see Figure 6.4(b)). The
driver circuits integrated into the hardware sublayer enable the CDU boards to drive the coils,
which generate a square-wave signal as illustrated in Figure 6.2. The coils are controlled via a
CDU through a Solid State Relay (SSR)-Unit, which is interfaced with a driver circuit. The
SSR-Unit consists of four relays that have a maximum turn-off/on time of 300µs/1.0µs. The
four SSR switching elements form an H-Bridge to control the voltage polarity and to enable
a galvanic isolation between the control and the high voltage load circuit without the use of
mechanical parts. Commonly, the SSRs can achieve a fast switching frequency up to 108 Hz
and a response time up to 1 ns, and have no limited lifetime (number of operations) [196].
Therefore, the SSRs are more advantageous compared to the electromechanical relays. A
simple schematic in Figure 6.8 showing four switches connected in a bridge configuration,
whereby the switches 1 and 4 are closed and the switches 2 and 3 are kept open, causing a
current flow from the power source through switch 1, the coil, and switch 4. This leads to
the generation of a clockwise magnetic field. Analogously, the opposite magnetic field is
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induced by closing the switches 2 and 3. Both the MSs and the CDUs are equipped with
RTCs to realize a distributed synchronization as described in the previous Section 6.4.3.
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Figure 6.8.: Coil control for generating a bipolar magnetic field over a H-Bridge

6.5.1. Hardware

Each coil is driven via a CDU, which includes a LPC2387-MCU, an RTC and a driver circuit.
The driver circuit enables the CDU to interface with the H-bridge to control the voltage
polarity. Figure 6.9 illustrates the CDU, as well as the connection of the CDU with the coil
and the current source.
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Figure 6.9.: MILPS reference stations hardware. (a) Control Driver Unit (CDU),
(b) simplified hardware block diagram
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6.5.2. Coil Synchronization Schemes

Independent of the synchronization of the MS, the coil synchronization is based on RTCs
and can be used in two configurations:

1. The One-CDU configuration in which the coils are driven by the same CDU. This
configuration is less sensitive to the clock drifts, because the drift occurs only between
two clocks: the CDU and MS clocks (cf. Figure 6.10(a)).

2. The N-CDU configuration in which each coil is driven by a separate CDU, whereby
N is the number of coils. This synchronization is more sensitive to the clock drifts than
the One-CDU configuration, since the time drift can occur between each CDU- and MS-
RTC and between the CDU-RTCs in the neighboring time slots (cf. Figure 6.10(b)).

(a) One-CDU configuration. (b) Three-CDU configuration.

Figure 6.10.: Synchronization configurations for three coils

6.5.3. Application Layer

The AL of the CDUs includes an application to drive the coils in the One- or the N-CDU
configuration (see Figure 6.4(b)). This application enables the assignment of the time slots,
the adjustment of the activation time, and the control of the coils. The AL allows for the
initialization of the RTCs by using wired or wireless communication. The AL incorporates
a command shell to interact with the user or an application. Furthermore, the state of
each CDU such as the time or temperature can be requested by using the serial or wireless
communication.



6.6. Application Layer of MILPS Mobile Station 75

Figure 6.11.: Elevation angle Θi of the MS relative to the coil plane

6.6. Application Layer of MILPS Mobile Station

The AL is the highest level of the MS, which follows a modular-based architecture. It is
subdivided into two sublayers, the preprocessing and the position computing sublayers (cf.
Figure 6.4(a)). The first sublayer includes the data filtering module, which uses the median
filter to remove the outliers from the gathered magnetic data delivered from the system layer.
The top-level sublayer represents the algorithmic core that computes the position on the MS.
The AL also incorporates a command shell for the interaction with a user or an application
by using the serial or wireless interface like the UWB-based system. Furthermore, the AL of
the MS includes a minimal JSON parser. In the following section, we describe the algorithms
for the position estimation.
Theoretically, the magnetic field Bi generated from the coil i, is given by the following

equation:

Bi = K

r3
i

√
1 + 3 sin2 (θi) i = 1, 2, ..., n. (6.2)

In this context, K = µ0NtIF
4π , where Nt describes the number of turns of the wire, I is the

current running through the coil, F expresses the base area of the coil, µ0 is the permeability
of free space, ri is the distance between the MS and coil i, and θi is the MS elevation angle
relative to the coil plane [32, 78]. Figure 6.11 illustrates the elevation angle of the MS in
respect to the coil plan.
In the following subsections, we describe three methods to calculate the position of the

MS: The first one is the algebraic multilateration method, the second and third methods are
the NLS-based methods, which use the estimated position from the first method as a start
value. Since the algebraic multilateration algorithm does not always deliver an optimized
position due to the nonlinear measurement model, we used the NLS Gauss–Newton as well
as the Levenberg–Marquardt algorithm. Furthermore, we derived the equations to compute
these NLS methods in a convenient form for MCUs.
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6.6.1. Algebraic Multilateration Method

In the two-dimensional case (2D), when the coil i and the magnetometer lay on the same
horizontal plane, θi is equal to zero. Thus, (6.2) is reduced to the following equation:

Bi = K

r3
i

i = 1, 2, ..., n. (6.3)

The position of the MS is computed by using the algebraic multilateration method [168],
based on the distances to n coils, calculated according to:

ri = 3

√
K

B3
i

i = 1, 2, ..., n. (6.4)

In the general three-dimensional case (3D), the unknown elevation angles θi can be
estimated by using a three-axis accelerometer, which enables the measurement of the pitch
angle β and the roll angle κ of the MS [32]. Based on the measured pitch and roll angles,
the elevation angles between the MS and reference stations can be calculated as follows:

θi = arctan

−3
4 tan Ii ±

√(3
4 tan Ii

)2
+ 1

2

 , (6.5)

whereby Ii is the inclination of the magnetic field from coil i, which is calculated using:

Ii = arcsin
[
−Bx′ ,i sin β +By′ ,i cosβ sin κ+Bz′ ,i cosβ cosκ

Bi

]
, (6.6)

where Bx′ ,i, By′ ,i and Bz′ ,i are the magnetic field components in the coordinate system
of the sensor, which is integrated in the MS. Furthermore, Bi =

√
B2
x′ ,i

+B2
y′ ,i

+B2
z′ ,i

,
where Bi is the magnetic field magnitude. Hence, the distances ri between the MS and the
reference stations can be calculated based on the estimated elevation angles θi:

ri =
3

√√√√K
√

1 + 3 sin2 (θi)
Bi

i = 1, 2, ..., n. (6.7)

In this case, the position of the MS can also be calculated by using the algebraic multilat-
eration algorithm. Therefore, like the UWB-based localization system, the pseudo-inverse
matrix can be processed in a computing unit such as a PC or a laptop, in order to initialize
the MCU with the preprocessed result. In this way, the MCU has only to compute a matrix
multiplication to estimate an MS’s position.



6.6. Application Layer of MILPS Mobile Station 77

6.6.2. Non-linear Least Squares Method: Gauss–Newton Algorithm

Based on (6.2), the (x, y, z) coordinates of the MS can be computed by solving the following
nonlinear system of equations:

fi(x, y, z) = K

r3
i

√
1 + 3 sin2 (θi)−Bi = 0 i = 1, 2, ..., n (6.8)

whereby, ri =
√

(x− xi)2 + (y − yi)2 + (z − zi)2, sin θi = z−zi
ri

; (xi, yi, zi) and (x, y, z) are
the coordinates of the i-th coil and the MS, respectively. Further, Bi is the measured
magnetic field strength.

For simplicity, we set u = (x, y, z), the Gauss–Newton algorithm iteratively finds the best
estimate û, which minimizes the sum of squares:

û = argmin
u

n∑
i=1

(fi(u))2 (6.9)

The Gauss–Newton method starts with an initial guess ~x (1) calculated by the algebraic
multilateration method and proceeds iteratively (see Equations 5.10 and 5.11) [169, 197];
where Jf is the Jacobian matrix of the function: f = (f1, f2, ..., fn) at uk. The Jacobian
matrix Jf is calculated as well as simplified in a form suitable for resource-constrained
devices by using Equation (6.8) to:

Jf =



∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

...
...

...
∂fi
∂x

∂fi
∂y

∂fi
∂z

...
...

...
∂fn
∂x

∂fn
∂y

∂fn
∂z


, i = 1, 2, ..., n (6.10)

Whereby, ∂fi∂x ,
∂fi
∂y , and

∂fi
∂z are respectively equal to:

∂fi
∂x

= −3K∆xi

[
(∆xi)2 + (∆yi)2 + 5(∆zi)2

dmi

]
, (6.11)

∂fi
∂y

= −3K∆yi

[
(∆xi)2 + (∆yi)2 + 5(∆zi)2

dmi

]
, (6.12)

and

∂fi
∂z

= −12K
[

(∆zi)3

dmi

]
, (6.13)
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where, ∆xi = x− xi, ∆yi = y − yi, ∆zi = z − zi, and

dmi =
(
(∆xi)2 + (∆yi)2 + 4(∆zi)2

) 1
2
(
(∆xi)2 + (∆yi)2 + (∆zi)2

)3
. (6.14)

The iteration process stops when the updates become sufficiently small. Furthermore,
the initial guess ~x (1) is calculated by using the multilateration algorithm and the distances
ri as described in the first method (see Section 6.6.1). Like the UWB-based ILS, the
Gauss-Newton algorithm uses the Moore–Penrose pseudo-inverse algorithm to calculate the
error correction in (5.11) as well as to choose the ~x (k) with the minimum error value.
If the elevation angle θi is unknown, it can be approximated by replacing the term√
1 + 3 sin2 (θi) by “1.5” in (6.7) [78], or by using an iterative algorithm described in [198].

6.6.3. Non-linear Least Squares Method: Levenberg–Marquadt Algorithm

The Levenberg–Marquadt method is also an algorithm for solving the NLS problems that uses
the trust-region approach [169]. The advantage of the trust-region strategy is the stability
against the rank-deficiency of the Jacobian matrix Jf , which is one of the weaknesses of the
Gauss–Newton method [169]. Like the Gauss–Newton method, the Levenberg–Marquadt
method proceeds iteratively: ~x (k+1) = ~x (k) + ~s (k), whereby the error correction vector is
equal to:

~s (k) = −(JTf
(k)
J

(k)
f + µ2(k)

I)−1JTf
(k) ~f (k), (6.15)

where I is the identity matrix and µ is the damping parameter. The error vector ~s
is calculated by using the QR-Householder instead of the Moore–Penrose pseudo-inverse
algorithm, since it is less computing time consuming and the Levenberg–Marquadt method
is robust against the rank-deficiency of the Jacobian matrix Jf .

The initial damping-parameter µ(1) can be calculated based on the matrix A(1):

A(1) = JTf
(1)
J

(1)
f , (6.16)

as follows:

µ(1) = τ ·maxi{a(1)
ii }, (6.17)

where a(1)
ii are the diagonal elements of the matrix A(1) and τ is chosen by the user. As a

rule of thumb, a small value of τ should be chosen (e.g., τ = 10−6), if the initial guess ~x (1) is
believed to be a good approximation; otherwise τ = 10−3 or τ = 1 can be used. Furthermore,
the value of µ(k) can be updated based on the gain ratio % [199]:
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% = G(k) −G(k+1)

G(k) − ~g T (k)
~g (k) , (6.18)

G(k) = ~f T
(k) ~f (k), (6.19)

G(k+1) = ~f T
(k+1) ~f

(k+1)
, (6.20)

~g (k) = ~f (k) + J (k)
f ~s (k). (6.21)

µ(k+1) =


2 · µ(k) if % ≤ β0

µ(k)

2 if % ≥ β1

, (6.22)

whereby, 0 < β0 < β1 < 1 (e.g., β0 = 0.2 , β1 = 0.8).

6.7. Synchronization Evaluation

In this section, we present the results from our preliminary experimental evaluation of the
accuracy of the DS3234-RTC clocks in a real indoor environment. Subsequently, we validate
the correlation of the magnetic field data, which are generated from three coils, with the
magnetic values that are acquired from the MS. Furthermore, we investigate the impact
of the clock drift on the calculated distances and position using the coil magnetic field
measured at the MS.

6.7.1. Clock Drift Evaluation

Firstly, we measure the drift between two DS3234-RTCs by using a Digital Sampling
Oscilloscope (DSO) as well as by quantifying the time deviation over a period of three weeks
in an average ambient temperature of about 20.5 ◦C.
According to our measurements, the DS3234-RTCs have an average drift time of about

2.7ms per hour (0.75 ppm), which corresponds to a 0.4 sample deviation within an hour
by the maximal sample rate of 154 sample/s of the HMR2300 magnetometer. Figure 6.12
represents the average drift time within one and seven hours between two DS3234-Clocks,
whereby both figures show a time drift, which is different from zero by t = 0 s. Although
the RTCs are set to the same time by t = 0 s, they show an average drift time from one up
to two-tenths of milliseconds, due to the time delay during the initialization phase.
According to the measurements of the RTCs, the magnetic field data on the MS would

have an average sampling error of 30 samples in three days, which corresponds to ±19% of
the coil cluster time (cf. Figure 6.2(a)), and will be acknowledged in the results of the second
experiment. The observed average drift time of about 2.7ms does not differ significantly
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Figure 6.12.: Time deviations of the clocks

from the theoretical drift of about 3.0ms, which is calculated by using Equation (6.23) [200]:

ERR(ppm) = −0.042 ∗ (25− T )2, (6.23)

whereas ERR is the theoretical crystal frequency error and T is the operating temperature.
Theoretically, in the worst case, the average sample error after an hour is 0.4 samples, which
can lead to approximately ±20% of each coil cluster signal after three days. The RTC time
drifts away from the real time in a different direction and at a different rate (slow or fast),
which depends on the factors described in Section 6.4.1 and other subtle environmental
variables.

6.7.2. Clock Drift Impact

Secondly, to examine the synchronization on the MS and the impact of the clock drift on
the calculated distances and position, we setup a real-world experiment with three CDUs
and one MS, which gathers and synchronizes the magnetic data on a fixed position (cf.
Figure 6.13). The true distances between the MS and coils 1, 2 and 3 are 2.15m, 3.45m
and 3.9m, respectively. The coils are placed in the corners of two rectangular rooms with
a 6.7× 5.3m2 and 6.7× 5.79m2 surface. The rooms are separated by a 0.58m thick wall
(see Figure 6.13). The three coils are controlled in two different ways, via One-CDU or
Three-CDU units to compare the two CDU-configurations with respect to the clock drift as
well as the distance and position deviation. Furthermore, the synchronized data and the
calculated distances are logged in real-time on the MS, then transferred and subsequently
evaluated on a PC. At the beginning of the experiment, the clocks are initiated once. In
order to provide the maximum time threshold affecting the distance measures, none of the
clocks were resynchronized during the experiment. The distances d1, d2, and d3 between the
MS and coil 1, 2, and 3 are respectively calculated for a period of 104 h every four hours.
The vertical red lines in Figures 6.14 and 6.15 represent the beginning of coil 1’s first



6.7. Synchronization Evaluation 81
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Figure 6.13.: Experimental setup for distance measures between a MS and three coils

cluster, which is detected by the MS. Figure 6.14 shows the coil clusters after the initiation
of the CDU units and the MS in the One- and Three-CDU configurations. Signal transients
occur at the beginning of each cluster, due to the switching of inductive loads (coils).
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Figure 6.14.: The magnetic field at the beginning of the experiment and signal
transients
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Figure 6.15 shows the coil clusters for both One- and Three-CDU configuration after 24 h,
72 h, 96 h and 120 h. The coil’s cluster signals are free of distortion after one day (cf. Fig-
ures 6.15(a) and (b)). After three days, the sampling signals are distorted by using the
Three-CDU configuration (cf. Figures 6.15(d), (f), and (h)); in contrast, the signals remain
unchanged and distortion free by the One-CDU configuration (cf. Figures 6.15(c), (e), and
(g)). The signals are free of distortion, since the coils are controlled via one single CDU. By
contrast, the signal distortion of the N-CDU configuration is due to the superposition of
magnetic fields originating from coils with neighboring time slots (e.g., time slots 1 and 2).
A signal superposition occurs when the CDU of a neighboring time slot does not begin or
terminate the coil activation at the right time. After 96 h or 120 h, strong signal distortions
arise, which are shown in Figures 6.15(f) and (h), respectively. Although the One-CDU
configuration does not exhibit any cluster distortion, the time drift between the CDU- and
the MS-RTC rises steadily with time and reaches a time drift of about a third of the cluster
time after 120 h (cf. Figure 6.15(g)). The time drift between the CDU-RTCs and the
MS-RTC is marked by the red vertical lines.
The calculated distances d1, d2, and d3 between the coils and the MS remain relatively

constant in both CDU-configurations after a time lapse of 72 h and have an error up to a few
centimeters (cf. Figure 6.16), since the One- and Three-CDU configurations feature small
time drifts within this time interval, and the clusters are not strongly distorted in the Three-
CDU configuration (cf. Figure 6.15(d)). Furthermore, the gathered values of the magnetic
field are ignored from the MS for the transient period (cf. Figure 6.14), which consequently
decreases the effect of the time drift between the RTCs. By the One-CDU configuration,
the distances stay relatively stable in the time interval [72h, 92h], whereby the maximum
deviations of the calculated distances d1, d2, and d3 are about 21 cm, 30 cm and 34 cm,
respectively (cf. Figure 6.16(a)). In contrast, during the same interval, the maximum
deviations of the calculated distances d1, d2 and d3 are about 4 cm, 40 cm and 43 cm by
the Three-CDU configuration, respectively (cf. Figure 6.16(b)). As expected, the N-CDU
configuration generally exhibits a larger distance deviation compared against the One-CDU
configuration, since the N-CDU configuration is subject to (N + 1) error sources: N−CDU
and one MS RTCs. This leads to a false synchronization between the CDU-RTCs and the
MS-RTC, as well as to a superposition between the coils’ magnetic fields of successive time
slots. Furthermore, due to signal transients, five values of the captured magnetic field data,
which correspond to a 40ms guard time, are discarded from the beginning and the end of
each cluster. Thus, the calculated distances and positions have not yet been noticeably
affected by time drift. However, particularly after 92 h, the drift is significantly bigger
than 40ms and consequently leads to higher errors in the calculated distance and positions.
The distance d1 in the Three-CDU configuration remains virtually stable after a time

lapse of about 104 h (cf. Figure 6.16(b)); it presents an exception, since the MS-RTC and
the CDU-RTC of the first coil coincidentally drift in the same direction and with nearly
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(a) After 24 h (One-CDU).
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(b) After 24 h (Three-CDUs).
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(c) After 72 h (One-CDU).
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(d) After 72 h (Three-CDUs).
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(e) After 96 h (One-CDU).
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(f) After 96 h (Three-CDUs).
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(g) After 120 h (One-CDU).
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Figure 6.15.: The magnetic field samples of three coils (One-CDU and Three-CDUs)
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(b) Three-CDU configuration.

Figure 6.16.: Comparison of distance deviations

equal rate. Therefore, there is no time drift between the MS-RTC and the first CDU-RTC
(see the vertical red lines in Figures 6.15(b), (d), (f), and (h)). Moreover, the first cluster
remains distortion free; since, by coincidence, the RTC of the third cluster (the third time
slot) ceases early and the RTC of the second cluster begins late to deactivate or activate the
coils.
The MS position is determined by using the distances d1, d2, and d3 from the MS to

the coils. The distances are calculated on the MS and transmitted in real-time to a PC to
compute the MS position deviations in regard to the time drift for both CDU-configurations.
Figure 6.17 shows the position scatter as well as deviations of the MS for the One- and
Three-CDU configurations, whereby the One-CDU demonstrates less variation than the
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(a) One-CDU scatter plot.
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Figure 6.17.: Comparison of position scatter and deviations

Three-CDUs in relation to the calculated position (cf. Figures 6.17(a) and (b)).
The Three-CDU configuration exhibits more variance than the One-CDU configuration

in the x- and y-components of the MS coordinates after a time lapse of about 80 h (see
Figures 6.17(c) and (d)), since this configuration depicts more distance deviations due to
cluster distortions and the time drift to the MS compared to the One-CDU configuration. The
Three-CDU configuration causes more distance deviation than the One-CDU configuration
and, hence, diminishes the precision of the calculated position, particularly after a time
period of about 80 h.
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Figure 6.18.: Experimental setup for position measures between various MSs and
three coils

6.8. System Evaluation

In this section, we present the results of the experimental evaluation of the presented MILPS.
The aim of this evaluation is to demonstrate the feasibility to implement the proposed
platform of MILPS. Therefore, as in the previous experiment in Chapter 5, we will not
address issues such as the impact of the placement of the anchors or the location of the MS,
as well as the selection of the anchors on the localization accuracy. These issues are treated
in Chapter 7. The complexity of the algorithms used is presented in Section 5.3. For the
evaluation, we give the results of the accuracy measurements of the MILPS. Furthermore, we
evaluated the computing time of the algorithms on the LPC2387-MCUs, which are running
at the 72MHz. Finally, we evaluated the energy consumption of the algorithms as well as of
the MS by MILPS in Section 6.8.3.
For the computing time and the accuracy evaluation of the MILPS, we placed four coils

inside two rectangular rooms. The two rooms are separated by a 0.58m thick wall (see
Figure 6.18). Two coils are placed in a room with a surface of 5.3× 6.7m2, while the other
coils are placed in a room with a surface of 5.79× 6.7m2. The MSs are placed in a variety
of twenty-seven positions. The MSs represented in Figure 6.18 are in three different heights
of 0.655m, 1.423m, and 2.308m.

The true positions of the reference and mobile stations are determined by geodetic methods
with millimeter accuracy using a tachymeter. We choose this configuration to demonstrate
that the MILPS can measure the position even if the coils and the MSs are separated by
walls.
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6.8.1. Positioning Accuracy Measurement

Figure 6.19 presents a comparison between the algebraic multilateration, Gauss–Newton and
Levenberg–Marquardt methods in terms of errors, which are illustrated in Figure 6.19(a).
Figure 6.19(b) shows the positioning error, which is defined as the Euclidean distance
between the estimated and true position. As illustrated by this figure, the position errors
of point numbers 7 and 22 are out of the bound by the Gauss–Newton algorithm, since it
diverges. Figure 6.19(c) shows the experimental results of the positioning errors obtained
by the algebraic multilateration method. The positioning errors in Figure 6.19(c) are
represented by the empirical CDF. In this experiment, the error in the x and y components
is lower than 30 cm. However, the z component of the MS coordinates shows the worst
performance, since three coils were placed at nearly equal heights.

(a)
point number

0 5 10 15 20 25 30

po
si

tio
ni

ng
 e

rr
or

 [m
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Multilateration

Gauss-Newton

Levenberg-Marquardt

(b)

(c) (d)

Figure 6.19.: Cont.
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(e)

Figure 6.19.: MILPS: scatter plots, position errors, and empirical CDFs. GNM,
Gauss–Newton Method; ML, Multilateration; LVM, Levenberg–
Marquardt. (a) Scatter plot of the ML, the GN, and the LVM
algorithms, (b) position error of the ML, the GN, and the LVM
algorithms, (c) empirical CDF of the points estimated by the ML
algorithm, (d) empirical CDF of the estimated positions after the
use of GNM, (e) empirical CDF of the estimated positions after
the use of LVM algorithm.

The application of the Gauss–Newton method reduced the errors in the x- and y-coordinates
to 10 cm but impaired the z-coordinate values (see Figure 6.19(d)). In contrast, by using the
Levenberg–Marquardt method, the errors in the z-coordinates are limited to 0.6m for 93 %
of the measured points and to 1.1m for other points (see Figure 6.19(e)). Furthermore,
Figure 6.19(a) shows that the Levenberg–Marquardt method has generally lower deviations
in all coordinate components compared with other methods.

6.8.2. Computing Time Measurement

As explained in Subsection 6.6.1, we used the multilateration method to estimate the position
of the MSs illustrated in Figure 6.18. Therefore, the matrix A+ is also calculated based
on the Moore–Penrose method, only once, at the start of the MCU. Like the UWB-based
system, the position estimation of the MSs can be optimized by using the Gauss–Newton or
the Levenberg–Marquardt algorithms. Both algorithms utilize the position carried out by
the algebraic multilateration method as a starting point and proceed iteratively up to the
desired accuracy or when the maximal iteration number is reached. The average iteration
number in this experiment is seven and six for the Gauss–Newton and the Levenberg–
Marquardt method, respectively. The mean time of calculating a starting position by
resource-constrained LPC2387-MCU is approximately 0.1ms. The computing time of an
estimated position increases approximately up to 33ms or 21ms by using the Gauss–Newton
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or the Levenberg–Marquardt algorithm, respectively. The evaluation of the described
computing steps and the NLS methods used is summarized in Table 6.3.

Table 6.3.: Mean computing times of the algorithms used by MILPS. Computing
times measured on an LPC2387 running at 72MHz

Algorithm Computing time (µs)

A+ for the multilateration method (at the start) 4563
Multilateration method 92

Gauss–Newton method per iteration 4645
Levenberg–Marquardt method per iteration 3467

6.8.3. Energy Consumption

The energy consumption of the algorithms is measured based on the measurement of the
drain-source current in the supply line, which is powered by a reference voltage supply
Vcc (Vcc = 5V). Hence, the energy used for each localization processing task can be calculated
by integrating the electric power over the times, which are summarized in Table 6.3. We
measured a current consumption of about 69mA at the ambient temperature of 26 ◦C for
the LPC2387-MCU in the active mode. The measured energy for the localization algorithms
by MILPS is summarized in Table 6.4.

Table 6.4.: List of measured energy consumption values of the algorithms by the MILPS

Algorithm MILPS Energy (µWs)

A+ by the multilateration method (at the start) 1574.24
Multilateration method 31.74

Gauss–Newton per iteration 1602.53
Levenberg–Marquardt method per iteration 1196.12

We also measured the energy consumption of the MS performed for the MILPS by using the
method for the energy consumption of the algorithms. We measured a current consumption
of about 27mA by the magnetometer. Whereas, the measurement time by the MILPS is 1 s.
The total energy, which is required for a position estimation, is calculated based on the
current drain of the magnetometer sensor as well as the energy consumption of the MCU
(see Table 6.4). The energy usage of the MILPS is summarized in Table 6.5, whereby the
energy consumption of the magnetometer is 405mW.
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Table 6.5.: List of measured energy consumption of MILPS for a position estimation

Optimization algorithm Energy [mWs]

MILPS (Gauss–Newton) 405 + 1.6 + 0.032 + 7× 1.63 ' 418.04
MILPS (Levenberg–Marquardt) 405 + 1.6 + 0.032 + 6× 1.21 ' 413.89

6.9. Conclusion

In this chapter, we present a platform for an indoor location system that is designed and
implemented for a decentralized architecture using magnetic field strength as a measurement
method. This magnetic-based localization system can be used for specific applications such
as for the beverage industry to monitor processes in liquid-filled containers or in harsh
environments such as a coal mine. The magnetic-based system can compensate the RF
technology in the case of materials such as copper, steel or liquid due to high attenuation.
It can replace light-wave technology with opaque materials such as muddy liquid, dust
or smoke as well as being used instead of acoustic wave technology because of effects like
scattering or reflections. The magnetic-based ILS can also serve as an extension for the
UWB-based ILS to cover areas where the UWB signal is not available.

Although magnetic-based ILSs enable localization in NLoS scenarios as well as in opaque
environments, they provide a limited coverage area. A wide coverage requires a high energy
consumption as well as large coils. Magnetic localization systems that are based on very
low frequencies or static magnetic fields are sensitive to high magnetic noise sources such as
electric equipment and power lines [201]. Furthermore, the measured signals are distorted
by ferromagnetic and magnetic objects near the magnetometer [202].



CHAPTER 7

Algorithms and Position Optimization for
Resource-Constrained Devices

In this chapter, we describe suitable algorithms to compute a start position. These
algorithms will be analyzed with respect to stability, complexity, and memory requirements.
The accuracy of the calculated position depends on the location of the reference points as
well as of the position of the searched point relative to the reference stations. A metric about
the relative position of the reference station to each other and to the unknown position
is the Dilution of Precision (DOP). DOP can be expressed more specifically by separate
measurements [203]:

• Horizontal Dilution of Precision (HDOP): Gives a measure about the horizontal
positioning accuracy.
• Vertical Dilution of Precision (VDOP): Gives a measure about the vertical positioning

accuracy.
• Time Dilution of Precision (TDOP): Gives a measure about the timing accuracy.
• Geometric Dilution of Precision (GDOP): Includes HDOP, VDOP, and TDOP.

We use PDOP, which is a measure about the expected position inaccuracies in the x-, y-,
and z-directions. Furthermore, the accuracy of the position estimate also depends on the
accuracy of the sensors which, for example, measure a distance or magnetic field strength
to/from the reference stations. Therefore, the calculated start position can be optimized
by using optimization algorithms such as the Gauss–Newton or the Levenberg–Marquardt
methods.

We analyze and compare the GNM with two variants of the LVM methods. The LVM meth-
ods used are the Dahmen and Reusken LVM (DR-LVM) and Madsen LVM (M-LVM) [199,
204]. Experience and the analysis show that the use of the optimization algorithms is not
always necessary. Therefore, we develop an adaptive algorithm for the optimization of the
position, which is based on the SVD, LVM algorithm, and the PDOP. This method allows
for an adaptive selection mechanism for the LVM algorithm. This adaptive algorithm enables
saving of resources such as memory, computing time, and energy on resource-constrained
devices. Furthermore, the parameters of the LVM algorithm impact the accuracy as well
as the required iteration numbers. Therefore, the influence and the choice of the right
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parameter combination will be analyzed and discussed. In addition, we design and evaluate
a method to detect and mitigate multipath effects on the mobile station, which enables
an accurate localization in non-line of sight scenarios. This method is implemented and
evaluated in simulated and real environments [15].

7.1. Primary Problem

The trilateration is a localization algorithm, which computes the position of an unknown
MS by measuring its distance from three reference positions. The unknown position can
also be calculated with the multilateration method, if more than three reference points
are accessible. Assume (x, y, z) and (xi, yi, zi) for i = 1, 2, ..., n, are the coordinates of the
MS and of n reference points, respectively. In addition, the measured distances between
the reference points and the MS are di, which are the radii of the individual spheres. The
searched location of the MS is the intersection of the spheres, whose equations are:

(x− xi)2 + (y − yi)2 + (z − zi)2 = d2
i i = 1...n (7.1)

The system of nonlinear equations in (7.1) can be solved by different methods [165, 166,
167]. Most methods translate the non-linear Equation (7.1) into a linear equation by relating
it to a specific reference station. Therefore, we solved (7.1) by transforming the system of
equations into a matrix form [168]. The algorithm used is not related to a specific anchor,
since other algorithms subtract the coordinates of a specific anchor for the linearization
of the equation system. Additionally, the algorithm gives a measure of the solvability of
the multilateration problem and provides a recursive least square approach to update the
position [168]. The solution of the linearized system is completely determined if the distances
from four reference points are known. The problem requires the estimation of the unknown
position ~x = (x, y, z) such that:

A~u = ~b, (7.2)

where ~u = (x2 + y2 + z2, x, y, z), the matrix A and the vector ~b have the following
forms [168]:

A =



1 −2x1 −2y1 −2z1

1 −2x2 −2y2 −2z2

1 −2x3 −2y3 −2z3
...

...
...

...
1 −2xn −2yn −2zn


, (7.3)
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~b =



d2
1 − x2

1 − y2
1 − z2

1
d2

2 − x2
2 − y2

2 − z2
2

d2
3 − x2

3 − y2
3 − z2

3
...

d2
n − x2

n − y2
n − z2

n


. (7.4)

The solution of Equation (7.2) represents the primary problem for a position estimation
by using distances to the reference stations. This can also be solved in the case of the
MILPS, which is a signal-based localization system if the elevation angles to the reference
stations are known. Since the aim is the implementation of a localization system based
on resource-constrained devices, it is important to use stable, efficient and resource saving
algorithms to solve the primary Equation (7.2).

Finally, the position obtained from Equation (7.2) can be optimized, since it depends on
various factors such as the measurement inaccuracies, the location to the reference points,
the non-linearity of the measurement model. The requested accuracy can be application-
dependent. For example, determining if a person or an object is in a room requires low
location accuracy, which can measure a couple of meters. Depending on the accuracy of
the sensors as well as the algorithms used, the solution of (7.2) can reach an accuracy from
meter to centimeter range (cf. Section 7.6). The position obtained from Equation (7.2)
can be optimized by using optimization algorithms such as the Gauss–Newton or the
Levenberg–Marquardt. The position calculated from (7.2) represents a starting solution
for the optimization algorithm, which can reach an accuracy up to a few millimeters (cf.
Section 7.5 and 7.6).

7.2. Finding of an Approximate Position

The positioning problem in Section 7.1 is described using the matrix model in (7.2). Solving
the system of linear equations in (7.2) is a central field of matrix computations, whereby
various decompositions are applied to implement efficient matrix algorithms. Four important
decompositions of the matrix A are: the Cholesky (see Section 7.2.1), LU (Lower Upper,
see Section 7.2.2), QR (see Section 7.2.3), and the SVD (Singular-Value Decomposition,
see Section 7.2.6) decomposition, whereas AAT = LDLT , A = LU , A = QR, and
A = UΣV T , respectively. In this work, the Cholesky factorization is used in combination
with the normal equation.
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7.2.1. Normal Equation by Cholesky Factorization

The solution of (7.2) can be reduced to solve the linear equation:

ATA~x = AT~b. (7.5)

This equation is called the normal equation, which has some numerical limitations. Vital
information may be lost during the formation of the matrix ATA due to the finite precision
arithmetic [205]. In addition, the normal equation is more sensitive to perturbations than
the original linear system A~x = ~b, since its accuracy depends on the condition number
κ
(
ATA

)
: κ

(
ATA

)
= [κ (A)]2, where κ (A) is the condition number of the matrix A.

Therefore, the normal equation can lose twice as many digits of accuracy as approaches
based on QR factorization or SVD [206].
The Cholesky decomposition can be used to solve the normal equation, since ATA is

symmetric and positive definite [206]. The total cost of calculating ATA, AT~b, and the
Cholesky factorization is about n2m+ 1

3n
3 flops [206].

7.2.2. LU Decomposition

The LU decomposition factorizes the matrix A in a lower triangular matrix L and an upper
triangular matrix U . The matrices L and U have the entries `ij = 0 and uij = 0 for all
j > i and i > j, respectively:

A = LU . (7.6)

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

...
...

an1 an2 an3 . . . ann


=



1 0 0 . . . 0
`21 1 0 . . . 0
`31 `32 1 . . . 0
...

...
...

...
...

`n1 `n2 `n3 . . . `nn





u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n

0 0 u33 . . . u3n
...

...
...

...
...

0 0 0 . . . unn


.

Equation (7.2) can be rearranged to:

L(U~x) = ~b, (7.7)

whereby:

L~y = ~b (7.8)

U~x = ~y (7.9)

The linear equation system A~x = ~b can be solved by first resolving Equation (7.8) then
Equation (7.9).
Although the LU decomposition is easy to program as well as needs only about the
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half iteration number compared to the QR iteration, it is limited to a square matrix and
could easily be unstable [207]. The restriction to square matrices means that the LU
decomposition can be used only for a system with four reference stations, which is not
practical for localization applications. Hence, we focus only on the QR and the SVD
decomposition due to the numerical instability as well as the restriction to the quadratic
matrices of the LU factorization.

7.2.3. QR Decomposition

The QR decomposition splits the matrix A into an orthogonal matrix Q and an upper
triangular matrix R:

A = QR. (7.10)

The matrix Q ∈ Rmxn is orthogonal if:

QTQ = I, (7.11)

whereby I is the identity matrix. An orthogonal matrix Q has the following features:

• The column vectors of Q build an orthonormal basis of the vector space Rm.

• The inverse matrix of Q is easy to calculate:

Q−1 = QT . (7.12)

The linear system A~x = ~b can be solved as follows:

QR~x = ~b (7.13)

R~x = Q−1~b = QT~b, (7.14)

whereby QT~b is a matrix-vector multiplication and the unknown vector ~x can be solved
by back substitution.

The QR decomposition can be done by applying the Gram-Schmidt, Givens rotation, or
Householder algorithm. The Gram-Schmidt method is not recommended in practice, since
it is sensitive to rounding errors (numerically unstable) [208]. Therefore, we focus only
on the Givens rotation and Householder methods in Sections 7.2.4 and 7.2.5, whereby the
Householder approach is the most efficient one [199]. Furthermore, the QR factorization
enables to solve overdetermined equation systems, which have more equations than unknowns.
That means the row number (m) is greater than of the column number (n) of the matrix A.
In our case related to localization, the number of the anchors is greater than four.
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7.2.4. Givens Rotation Algorithm

The Givens rotation method is based on bringing the column vectors of the matrix A in the
vertical position in the direction of the axes by plane rotations to eliminate the corresponding
entries. Plane rotations can be described as in Sections 7.2.4.1 through 7.2.4.3.

7.2.4.1. Basic Operation

The basic operation is the rotation of vectors in anticlockwise by an angle θ. Figure 7.1
illustrates the rotation of two unit vectors ~e1 and ~e2 to the vectors ~v1 and ~v2, respectively:

~v1 =
[
cos θ
sin θ

]
, ~v2 =

[
− sin θ
cos θ

]

Figure 7.1.: Basic operation of the Givens algorithm: vector rotation

The rotation of the vectors ~e1 and ~e2 can be written in matrix form as:

G
[
~e1 ~e2

]
=
[
cos θ − sin θ
sin θ cos θ

]
= Rθ, (7.15)

whereas Rθ is a two-dimensional rotation matrix. A general vector ~x can be expressed as:

~x =
[
x1

x2

]
= x1 ~e1 + x2 ~e2

The vector ~x can be rotated as:

G [~x] = x1G [~e1] + x2G [~e2] .

Hence, ~x rotates anticlockwise by θ as its components do.
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7.2.4.2. Givens Rotation in 2-D

Let A be a general (2× 2) matrix: A =
[
a11 a12

a21 a22

]
.

A = QR⇐⇒ QTA = R =
[
r11 r12

0 r22

]
. (7.16)

This can be achieved by using the Givens rotation that rotates the vector
[
a11

a21

]
around

the z-axis to the vector
[
r11

0

]
, as illustrated in Figure 7.2. The vector

[
a12

a22

]
will be also

rotated, whereby (7.16) can be described as:

[
c −c
s s

] [
a11 a12

a21 a22

]
=
[
r11 r12

0 r22

]
. (7.17)

-θ 

X

Y

Z

a11

a21

r11

0

Figure 7.2.: A 2-D Givens rotation

cos(−θ) = c = a11√
a2

11 + a2
21

, sin(−θ) = −s = a21√
a2

11 + a2
21

,

Hence, QT is defined as:

QT =
[
c −s
s c

]
= 1√

a2
11 + a2

21

[
a11 a12

−a21 a22

]
(7.18)

In this case, the Givens rotation matrix (G) is equal to: G = QT .
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7.2.4.3. Givens Rotation in n-D

The Givens rotation matrices are obtained by embedding the previous planar rotations
defined in (7.18) in a (m×m) matrices, which are defined as follows:

Gi,j =



i↓ j↓

1
. . .

1
i→ c 0 . . . 0 s

0 1 0
... . . . ...
0 1 0

j→ −s 0 . . . 0 c

1
. . .

1



, (7.19)

whereas Gi,j is the rotation in the plan spanned by the unit vectors ~ei and ~ej [199, 197].
This rotation affects only the rows i and j.

7.2.4.4. Givens Rotation Principle

This example demonstrates the principle as well as the changes in the matrix illustrated
below by using Givens rotations [199]:


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


G1,2−−−→


~ ~ ~

0 ~ ~

∗ ∗ ∗
∗ ∗ ∗


G1,3−−−→


~ ~ ~

0 ∗ ∗
0 ~ ~

∗ ∗ ∗


G2,3−−−→


∗ ∗ ∗
0 ~ ~

0 0 ~

∗ ∗ ∗



G1,4−−−→


~ ~ ~

0 ∗ ∗
0 0 ∗
0 ~ ~


G2,4−−−→


∗ ∗ ∗
0 ~ ~

0 0 ∗
0 0 ~


G3,4−−−→


∗ ∗ ∗
0 ∗ ∗
0 0 ~

0 0 0


The new computed matrix entries using Gi,j are marked with ~. The following transfor-

mation sequence would also be possible: G1,2, G1,3, G1,4, G2,3, G2,4, G3,4.
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7.2.4.5. Givens Rotation Example


3 5
0 2
0 0
4 5


G1,4−−−→


5 7
0 2
0 0
0 −1


G2,4−−−→


5 7
0
√

5
0 0
0 0

 ,

where

G1,4 =



3
5 0 0 4

5
0 1 0 0
0 0 1 0
−4
5 0 0 3

5

 , G2,4 =


1 0 0 0
0 2√

5 0 −1√
5

0 0 1 0
0 1√

5 0 2√
5



7.2.5. Householder Algorithm

The Householder approach works with plane reflections on (n− 1)-dimensional hyperplanes
inside of plane rotations. The required zeros in the matrix R are produced by a series of
reflections in the right planes. The hyperplanes can be defined by their normal vectors ~v,
whereby the plan reflections are defined as follows in Section 7.2.5.1.

7.2.5.1. Basic Operation

The Householder method can be established by using projections and reflections, whereby
the basic operation is the reflection of a vector at a plane, as illustrated in Figure 7.3.

Figure 7.3.: Basic operation of the Householder algorithm: vector reflection

Let ~x be a vector and Hv be a plane defined by the normal vector ~v, whereby the reflection
of ~x is the vector ~Px (see Figure 7.3). The projection of ~x can be calculated based on the
vector ~w as follows:

~Px = ~x+ ~w (7.20)
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The vector ~w can be determined by its magnitude ‖~w‖ and its direction, which is parallel
to the vector ~v. Therefore, the direction of ~w is equal to ~ew = ~v

‖~v‖ and so ~w is:

~w = ‖~w‖ ~ew = ‖~w‖ ~v

‖~v‖
, (7.21)

The magnitude of ~w can be calculated by using the inner product of the vector −~x and ~v:

〈−~x,~v〉 = −~xT~v = ‖~x‖ ‖~v‖ cos(θ),

cos(θ) = −~xT~v
‖~x‖ ‖~v‖

,

in addition:

‖~w‖ = cos(θ) ‖~x‖ ,

hence
‖~w‖ = −~x

T~v

‖~v‖
(7.22)

Thus, by substituting (7.22) in (7.21) we get:

~w = −~x
T~v~v

‖~v‖ ‖~v‖
= ~w = −~v ~x

T~v

‖~v‖2

~w = −~v~x
T~v

~vT~v
, (7.23)

whereas ‖~v‖ =
√
~vT~v.

From (7.23) two points can be extracted:

• The point from any ~x to the plan (mirror): ~w.

• The point from any ~x to the reflection: 2~w.

The projection vector ~Px can be calculated by substituting (7.23) in (7.20):

~Px = ~x− 2~v~x
T~v

~vT~v

~Px = ~x− 2~v~v
T~x

~vT~v

~Px = ~x

(
I − 2~v~v

T

~vT~v

)
, (7.24)
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whereas, the Householder matrix Qv is:

Qv = I − 2~v~v
T

~vT~v
(7.25)

The Householder matrix reflects the vector ~x at the plan Hv.

7.2.5.2. Householder Transformation

The basic task is to find ~v ∈ Rn for ~y ∈ Rn in order that:

Qv~y = ±‖~y‖2 ~e1 (7.26)

The solution of this basic task is:

~v = ~y ± ‖~y‖2 ~e1 (7.27)

In order to avoid loss of significance, ~v is selected as:

~v = ~y + sign (y1) ‖~y‖2 ~e1, (7.28)

whereby y1 is the first element of ~y and sign (0) = 1 [199]. The rules of the Householder
are summarized as:

α = sign (y1) ‖~y‖2
~v = ~y + α~e1 (7.29)

Qv~y = −α~e1

7.2.5.3. Householder Principal

A =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


Q1−−→ Q1A =


~ ~ ~

0 ~ ~

0 ~ ~

0 ~ ~


Q2−−→ Q2Q1A =


∗ ∗ ∗
0 ~ ~

0 0 ~

0 0 ~



Q3−−→ Q3Q2Q1A =


∗ ∗ ∗
0 ∗ ∗
0 0 ~

0 0 0


The new computed matrix entries using the matrix Qv are marked with ~.
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7.2.5.4. Householder Example

For ~y = [2, 2, 1]T is to find a ~v ∈ R3, that applies:

Qv~y = ±‖~y‖2 ~e1 = ±3


1
0
0

 ,
we get α = 3, ~v = ~y + α~e1, and so

Qv = I − 2~v~v
T

~vT~v
= 1

15


−10 −10 5
−10 11 −2
−5 −2 14

 (7.30)

7.2.6. Singular Value Decomposition

The QR, as well as the SVD, use orthogonal transformations to reduce the least squares
problem to a triangular and a diagonal system, respectively. Both methods provide a
stable way of computing matrices, but QR methods may fail when the matrix A is nearly
rank-deficient. Therefore, the SVD is recommended for rank-deficient as well as nearly
rank-deficient matrices. An m by n matrix A can be decomposed as:

A = UΣV T = (orthogonal)(diagonal)(orthogonal), (7.31)

with A~vi = σi ~ui, (7.32)

whereby the columns of U and V are the left and right singular vectors, respectively. The
diagonal elements of the matrix Σ are the singular values [209]:

Σ = diag(σ1, σ2, · · · , σr) ∈ Rmxn, (7.33)

whereby r = min(m,n) and σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.
The SVD of the matrix A is very close to the eigenvalue-eigenvector QΛQT factorization

of the positive definite matrix ATA. The eigenvalues, as well as the eigenvectors, are in the
diagonal matrix Λ and the orthogonal matrix Q, respectively. An eigenvalue λ with the
eigenvector ~v of the matrix A are a scalar and a nonzero vector that satisfy:

A~v = λ~v. (7.34)

(A− λI) = ~0. (7.35)

In addition, the matrix ATA is semi-positive definite, since:
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1. The matrix ATA is real and symmetric, therefore, the eigenvalues are real, and the
eigenvectors form an orthonormal basis for Rn.

2. The scalar: ~xT (ATA)~x = (A~x)T (A~x) = ‖A~x‖2 ≥ 0.

Therefore, the eigenvalues (λi) of the matrix ATA are positive (λi ≥ 0), whereas:

σi =
√
λi. (7.36)

Hence, the diagonal (but rectangular) matrix Σ has the eigenvalues from the matrix AAT .
Furthermore, the columns of the (m×m) matrix U are eigenvectors of the matrix AAT ,
while the columns of the (n× n) matrix V are eigenvectors of the matrix ATA [209]. This
can be demonstrated as follows:

AAT =
(
UΣV T

) (
UΣV T

)T
= UΣV TV ΣTUT = UΣΣTUT , (7.37)

whereas ΣΣT is the m by m eigenvalue matrix with σ2
1, σ

2
2, · · · , σ2

r on the diagonal.
Similarly:

ATA = V ΣTΣV T , (7.38)

where ΣTΣ is the n by n eigenvalue matrix with σ2
1, σ

2
2, · · · , σ2

r on the diagonal.
Equation (7.38) implies:

ATA~vi = σ2
i ~vi (7.39)

Proof of: A~vi = σi ~ui. Multiplying (7.39) by the matrix A:

AATA~vi = σ2
iA~vi(

AAT
)

(A~vi) = σ2
i (A~vi) , (7.40)

which means that A~vi is an eigenvector of the matrix AAT , whereby the length of the
vector A~vi can be calculated by multiplying (7.39) by the vector ~viT as follows:

~vi
T
(
ATA~vi

)
= ~vi

T
(
σ2
i ~vi
)

(A~vi)T (A~vi) = σ2
i ~vi

T ~vi

‖A~vi‖2 = σ2
i . (7.41)

Therefore, the unit eigenvector is:

A~vi
σi

= ~ui, (7.42)
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and it applies:
AV = ΣU . (7.43)

7.2.6.1. Computation of the Singular Value Decomposition

The calculation of the SVD is costlier than the computation of the QR decomposition
either by the Gevins or the Householder algorithm [205]. Computing the SVD by finding
the eigenvalues of the symmetric matrix ATA, as seen in the previous Section 7.2.6,
is not a numerically effective method due to round-off errors in the calculation of the
matrix ATA [205]. Therefore, there are various algorithms that implement the SVD in a
numerically effective way.
The Golub–Kahan–Reinsch (GKR) algorithm, which works in two steps, is a widely

used method for computing the SVD [205]. In the first step, the matrix A is reduced to a
bidiagonal matrix B, while in the second step, the matrix B is further reduced to a diagonal
matrix of singular values. Other algorithms are the Chan SVD, Demmel–Kahan Zero-Shift
QR, the Differential Quotient Difference (DQD) algorithm of Fernando and Parlett [205].

7.2.7. Summary and Comparison of Decomposition Algorithms

There are four important matrix decompositions: Cholesky, LU, QR, and SVD. The
Cholesky decomposition is used to solve the normal equation, which can become unstable
due to the rounding errors corresponding to [κ (A)]2 instead of κ (A).
The LU factorization can be achieved by using the Gaussian Elimination (GE). GE is

efficient, since it requires only n3

3 flops, but it is unstable for arbitrary matrices. The use
of the GE without pivoting is not recommended in practice except for column diagonally
dominant or symmetric positive definite matrices [205]. Furthermore, the LU decomposition
is limited to square matrices.
The QR factorization can be applied to every matrix, which means the matrix can be

rectangular. Furthermore, pivoting is not required to admit a stable QR decomposition
of a matrix. The QR factorization is unique if the matrix is not singular. The QR
decomposition can be calculated by using the Classical Gram–Schmidt (CGS), Modified
Gram–Schmidt (MGS), the Givens rotation, or the Householder algorithm. The CGS is
numerically unstable, while the MGS has a better stability property, but it is not as stable
as the Gevins or the Householder methods [205]. The Householder is more efficient than
the Givens, since they need 2n2 (m− n/3) and 3n3 (m− n/3) flops, respectively. Both
algorithms have a guaranteed stability but fail if the matrix is singular or nearly rank-
deficient.
The SVD is more expensive than the Givens or the Householder algorithms, but it is

numerically stable and can handle the rank deficiency. The GKR method needs about 4m2n+
8mn2 + 9n3 flops to compute the SVD of an m by n matrix.
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A comparison of the algorithms building the matrix decompositions is summarized in
Table 7.1.

Table 7.1.: Comparison of decomposition algorithms for an (m× n) matrix A
Algorithms Decomposition Pivoting Stability Cost Remark

normal equation
Cholesky for AAT=LDLT no Can be unstable n2m+ n3

3 rounding errors
Instability due

pivoting
without

elimination
Gauss

A=LU no Unstable 2n3

3 quadratic matrices
Limited to

pivoting
with

elimination
Gauss

A=LU yes Stable 2n3

3 quadratic matrices
Limited to

(CGM)
Gram-Schmidt

Classical
A=QR no Unstable 2mn2

of orthogonality
Possible severe loss

Gram-Schmidt
Modified A=QR no better than GM 2mn2

methods
Householder
Givens or

Not as stable as

Givens A=QR no Stable 3n3(m− n

3 ) rank deficiency
Cannot handle

Householder A=QR no Stable 2n2(m− n

3 ) rank deficiency
Cannot handle

Reinsch
Golub-Kahan- A=UΣV T no Stable

4m2n+
8mn2+

9n3 SVD
is based on

The algorithm

7.2.8. Memory Requirements

Memory requirements are considered only for the Givens, Householder, and GKR SVD
methods, since they are stable as well as enable the solution of overdetermined linear systems.
The Givens matrices can be calculated implicitly; in other words, it is not necessary to
build them. Furthermore, the matrix R can be constructed by overwriting the matrix A.
Therefore, the memory necessary for the Givens method is approximately equal to m× n,
which is needed to calculate the matrix Q. As is the case with the Givens method, the
construction of Householder matrices is not necessary, and the required memory space is
also approximately equal to m×n. In addition to the matrices U , Σ and V , the GKR SVD
needs three n× n matrices. These square matrices are used for the Householder reduction
method as well as the Golub–Kahan SVD step [210]. Therefore, the memory needed for the
GKR SVD is approximately equal to: 4(n× n) + 2(m×m).
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7.3. Position Optimization Algorithms

In the previous Section 7.2, we showed how to find an approximate position by solving (7.2).
In this section, we use optimization algorithms to refine the accuracy of the approximate
position. The optimization can be achieved by using non-linear least squares methods.
The NLS method optimizes the position (solution) computed by (7.2). These methods are
iterative, whereby each iteration step needs a solution of the corresponding linear least
squares problem. The NLS problem is a special case of the general optimization problem in
Rn [197]. The NLS approach is based on the minimization of the squares of the errors of
the measured distances or the strength of the magnetic field, see Section 5.2.2.3 and 6.6.2,
respectively. Thus, the following function must be minimized:

F (x, y, z) =
n∑
i=1

f2
i (x, y, z) (7.44)

Whereby, fi(x, y, z) is the error function. Minimizing the sum of the square errors is
a common problem in applied mathematics, which can be solved, for instance, with the
Gauss–Newton or the Levenberg–Marquardt algorithm [169].

7.3.1. Non-Linear Least Squares Problems

The equations (5.1) as well as (6.7) are an over-determined system of equations, which
should be conveyed to a NLS problem. The general NLS problem that should be solved for
the UWB-ILS and for MILPS is:

~x ∗ ∈ R3 , ‖~f(~x ∗)‖2 = min
~x∈R3

‖~f(~x)‖2 . (7.45)

The NLS problem of the UWB-ILS as well as of the MILPS will be presented in Sec-
tions 7.3.1.1 and 7.3.1.2, respectively.

7.3.1.1. UWB-ILS: Non-Linear Least Squares Problem

The algebraic multilateration method does not always provide a good estimation due to the
measurement uncertainties [168]. Therefore, we define the error function fi,1(x, y, z) of the
UWB-ILS as follows:

fi,1(x, y, z) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 − di i = 1, ..., n. (7.46)
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7.3.1.2. MILPS: Non-Linear Least Squares Problem

The error function of the MILPS is:

fi,2(x, y, z) = k

r3
i

√
1 + 3 sin2 θi −Bi = 0 i = 1, 2, ...,m (7.47)

Starting from an approximation solution ~x (0), the iterative approach creates a series
of {~x (i+1)}i≥0, which converge to the solution of the problem. The start vector ~x (0) is
calculated by using the multilateration algorithm based on the SVD. Since the SVD can
deliver a good solution in the sense of the least squares method, the start vector ~x (0) can
be the searched solution. If the start position ~x (0) should be optimized, the optimization
algorithm is used beginning from the start position ~x (0).

7.3.2. Jacobi-Matrices

As mentioned in Section 5.2.2.3 and 6.6.2, the Jacobian matrices of UWB-ILS as well as for
MILPS are derived in a convenient form for resource-constrained devices. The Gauss–Newton
as well as the Levenberg–Marquardt method require the first derivatives; therefore, we define
the following Jacobian matrix:

Jf =



∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

...
...

...
∂fi
∂x

∂fi
∂y

∂fi
∂z

...
...

...
∂fn
∂x

∂fn
∂y

∂fn
∂z


, (7.48)

whereby the error function vector ~f is:

~f =
(
f1, f2, f3, . . . , fn

)T
. (7.49)

The Jacobian matrices of the UWB-ILS as well as of MILPS are defined in (5.12),(5.13)
and (6.11),(6.12),(6.13) respectively.

7.3.3. Gauss–Newton Algorithm

The Gauss–Newton method is a numerical approach that can be used for solving NLS
problems. The GNM proceeds by using the error function fi and the Jacobian matrix Jf as
follows:

1. Choose a convenient start position ~x (0), which is computed using the multilateration
algorithm based on the SVD defined in Section 7.2.6.
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2. Consider the following iteration scheme:

~x (i+1) = ~x (i) + ~s (i) , i = 0, 1, 2, ..., (7.50)

whereby the vector ~s (i) is the solution of the following linear system:(
JTf Jf

)
~s (i) = −JTf ~f(~x (i)). (7.51)

The position ~x (i) is accepted as an approximate solution, if the following condition is
satisfied:

‖~s (i)‖2 ≤ εx · (1 + ‖~x (i)‖2) ,

whereas εx is the accuracy bound, which can be selected by the user. A further
condition is required: i > imax to avoid an infinite loop. The maximal number of
iterations imax is also selected by the user.

The GNM can achieve good performance, but only if the matrix JTf Jf will not be singular,
that means if JTf Jf has a full rank. In some cases, the matrix JTf Jf tends to be singular
after only a few iterations, thus the method diverges. In our case, Equation (7.51) is solvable,
if and only if the (3× 3) matrix JTf Jf is invertible (has a full rank). Hence, the convergence
of the GNM is not always guaranteed, it makes this method unsuitable for solving the NLS
problem (7.45) for a practical and accurate method of computing a position.

An alternative approach is provided by the Levenberg–Marquardt method, which will be
discussed in the next Section 7.3.4.

7.3.4. Levenberg–Marquardt Algorithms

The Levenberg–Marquardt algorithm belongs to the class of numerical optimization ap-
proaches for solving NLS problems using the least squares method. The LVM algorithm
combines the GNM with a regularization parameter µ > 0 to guarantee the robustness of
the method. The scalar µ > 0 is also called the damping parameter [204]. Two variants of
the LVM algorithms will be discussed in Sections 7.3.4.1 and 7.3.4.2.

7.3.4.1. Dahmen-Reusken Levenberg–Marquardt Algorithm

The NLS problem [199] to be solved is

arg min
~x

∥∥∥(Jf (~x)
µI

)
~s+

(~f(~x)
0
)∥∥∥2

2
, (7.52)

which can be transformed into the following equation:

(JTf (~x), µI)
(
Jf (~x)
µI

)
~s = −(JTf (~x), µI)

(
f(~x)

0

)
, (7.53)
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it follows:

(JTf (~x)Jf (~x) + µ2I)~s = −JTf (~x)~f(~x) (7.54)

It has the advantage over the GNM that the matrix in the left side of (7.54) is no longer
singular or nearly singular. This is achieved by the regularization of the matrix JT

f Jf with
the factor µ2I, whereby I is a (3× 3) identity matrix. Hence, the matrix

(Jf (~x)
µI

)
has always

a full rank and, therefore, a unique solution. Equation (7.54) has a unique solution, since
the matrix (JTf (~x)Jf (~x) + µ2I) is positive definite [199].
It applies [199]:

‖~s (i)‖2 ≤
‖~f(~x (i))‖2

µ
. (7.55)

As can be seen from Equation (7.55), the damping parameter (µ > 0) controls the
correction vector ~s (i). Small or large corrections can be achieved by a suitable choice of the
value of µ in each iteration step. The parameter µ is denoted as µ(i) to clarify its dependence
on the iteration steps.

The approximate solution of the position ~x is calculated in each iteration step as in (7.50),
where ~s (i) is the solution of the following linear system:

(JTf (~x (i))Jf (~x (i)) + (µ(i))2I)~s (i) = −JTf (~x (i))~f(~x (i)) (7.56)

We solve (7.56) by using the Householder instead of the SVD algorithm to save memory
stack and computing time on resource-constrained devices. This is possible due to the
robustness of the LVM method.
To guarantee the convergence of the LVM algorithm, the value of µ(i) should not be

selected too large or too small. For example, a large value of µ(i) leads to a small correction,
hence the LVM algorithm will slowly converge, if ~x (i) is still far from the solution [199]. For
this reason, a strategy for controlling the damping parameter µ is introduced. In this way,
the actual value of µ(i) is augmented, reduced, or maintained in each iteration step by using
the parameter ρµ defined as:

ρµ = ‖~f(~x (i))‖22 − ‖~f(~x (i) + ~s (i))‖22
‖~f(~x (i))‖22 − ‖~f(~x (i)) + Jf (~x (i))~s (i))‖22

=: ∆R(~x (i), ~s (i))
∆R̃(~x (i), ~s (i))

, (7.57)

whereby ∆R̃(~x (i), ~s (i)) ≥ 0 as well as ∆R(~x (i), ~s (i)) > 0 [199].
The strategy used for controlling the parameter µ is defined as:


ρµ ≤ β0 ~s (i) is not accepted. Set µ(i) = 2µ(i) and compute again ~s (i)

β0 < ρµ < β1 ~s (i) is accepted. Use µ(i) for ~s (i+1)

ρµ ≥ β1 ~s (i) is accepted. Use µ
(i)

2 for ~s (i+1)

(7.58)
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whereby 0 < β0 < β1 < 1 (e.g., β0 = 0.2, β1 = 0.8).
The experience has shown that the selection of the initial value µ(0) impacts the accuracy

as well as the cost of the LVM algorithm (cf. Sections 7.5.4.3 and 7.7.3). In this context,
it is difficult to find a well-founded strategy in the literature for the selection of the initial
value µ(0). A start value of µ(0) = 0.01 is proposed in [211]. Another strategy is suggested
in [212, 213], whereby µ(0) is equal to 1 or 10, if the initial guess ~x (0) is believed to be a
bad approximation. In contrast, µ(0) is equal to 0.001 or 0.010, if the initial guess ~x (0) is
believed to be a good approximation. In this work, the strategy suggested by [204] is used.
In this strategy, the initial value µ(0) is calculated based on the matrix A(0):

A(0) = JT
f

(0)
J

(0)
f (7.59)

as follows:
µ(0) = τ ·maxi{a(0)

ii }, (7.60)

where a(0)
ii are the diagonal elements of the matrix A(0) and τ is chosen by the user. As a

rule of thumb, a small value of τ should be chosen (e.g., τ = 10−6), if the initial guess ~x (0)

is believed to be a good approximation; otherwise, τ = 10−3 or τ = 1 can be used.
The DR-LVM algorithm terminates such as the GNM, if the following conditions are

satisfied:

1. ‖~s (i)‖2 ≤ εx · (1 + ‖~x (i)‖2)
2. i ≥ imax ,

whereby, εx is the accuracy bound that is selected from the user. In summary, the algorithm
can be described by the pseudo-code of Algorithm 1.
As can be seen from the Algorithm 1, the DR-LVM algorithm is recursive. Therefore,

the recursive DR-LVM method is changed in an iterative procedure, in order to port it
to limited stack memory devices such as microcontrollers. The iterative approach has an
additional while-loop compared to the recursive method, as demonstrated in Algorithm 2.

7.3.4.2. Madsen Levenberg–Marquardt Algorithm

Another variant of the LVM algorithm is proposed by Madsen et al. [204], whereby the NLS
problem to be solved is

arg min
~x

∥∥∥(Jf (~x)√
µI

)
~s+

(~f(~x)
0
)∥∥∥2

2
. (7.61)

The search direction ~s (i) is calculated recursively (~x (i+1) = ~x (i) + ~s (i)) according to the
following formula:

(JTf (~x (i))Jf (~x (i)) + µ(i)I)~s (i) = −JTf (~x (i))~f(~x (i)). (7.62)
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Algorithm 1 Dahmen-Reusken LVM algorithm (recursive)
1: function DR_LVM_ALG(εx, β0, β1, ~x

(0), τ, imax)
2: i = 0; ~x = ~x (0); B = JTf (~x)Jf (~x); ~H = JTf (~x)~f(~x);
3: µ(0) = τ ·maxi {bii(~x)}; µ = µ(0);
4: Solve (B + µ2I)~s = − ~H for ~s;
5: while ((‖~s‖2 > εx(1 + ‖~x‖2) and (i < imax)) do
6: [~s, ρµ] = CORRECTION(~x, µ, β0, β1);
7: ~x = ~x+ ~s;
8: i = i+ 1;
9: end while
10: end function
1: function correction(~x, µ, β0, β1)
2: B = JTf (~x)Jf (~x); ~H = JTf (~x)~f(~x);
3: Solve (B + µ2I)~s = − ~H for ~s;
4: ρµ = ‖~f(~x)‖2

2−‖~f(~x+~s)‖2
2

‖~f(~x)‖2
2−‖~f(~x)+Jf (~x)~s)‖2

2
;

5: if (ρµ ≤ β0) then
6: [~s, ρµ] = CORRECTION(~x, 2µ, β0, β1);
7: else if (ρµ ≥ β1) then
8: µ = µ

2
9: end if

10: end function

As previously mentioned, we compute (7.62) by using the Householder algorithm to save
memory stack as well as computing time.

The initial value of the damping parameter µ(0) is calculated according to Equation (7.60).
Furthermore, the value of µ(i+1) for the next iteration depends on the ratio %, which is
defined as:

% =
1
2(‖~f(~x (i))‖22 − ‖~f(~x (i+1))‖22)

1
2(~s (i))T (µ(i)~s (i) − JTf (~x (i))~f(~x (i)))

, (7.63)

The algorithm terminates if the change in ~x (i) is very small:

‖~x (i+1) − ~x (i)‖2 ≤ ε1(‖~x (i)‖2 + ε2), (7.64)

or, if the following condition is fulfilled:

‖JTf (~x)~f(~x)‖2 ≥ ε1. (7.65)

An additional termination criterion is required to avoid an endless loop is: i ≥ imax. The
accuracy bounds ε1, ε2, and imax are selected by the user. In summary, the algorithm can
be described by the pseudo-code in Algorithms 3 and 4.
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Algorithm 2 Dahmen-Reusken LVM algorithm (iterative)
1: function DR_LVM_ALG(εx, β0, β1, ~x

(0), τ, imax)
2: i = 0; ~x = ~x (0); B = JTf (~x)Jf (~x); ~H = JTf (~x)~f(~x);
3: µ(0) = τ ·maxi {bii(~x)}; µ = µ(0);
4: Solve (B + µ2I)~s = − ~H for ~s;
5: while ((‖~s‖2 > εx(1 + ‖~x‖2) and (i < imax)) do
6: [~s, ρµ] = CORRECTION(~x, µ, β0, β1);
7: while (true) do
8: if (ρµ ≤ β0) then
9: µ = 2µ

10: [~s, ρµ] = CORRECTION(~x, µ, β0, β1);
11: else if (ρµ ≥ β1) then
12: µ = µ

2
13: break;
14: else
15: break;
16: end if
17: end while
18: ~x = ~x+ ~s;
19: i = i+ 1;
20: end while
21: end function
1: function correction(~x, µ, β0, β1)
2: B = JTf (~x)Jf (~x); ~H = JTf (~x)~f(~x);
3: Solve (B + µ2I)~s = − ~H for ~s;
4: ρµ = ‖~f(~x)‖2

2−‖~f(~x+~s)‖2
2

‖~f(~x)‖2
2−‖~f(~x)+Jf (~x)~s)‖2

2
;

5: end function

Algorithm 3 Madsen LVM algorithm [204], Part 1
1: function MADS_LVM_ALG(ε1, ε2, ~x

(0), τ, imax)
2: i = 0; ~x = ~x (0); B = JTf (~x)Jf (~x); ~H = JTf (~x)~f(~x);
3: µ(0) = τ ·maxi {bii(~x)}; µ = µ(0);
4: while ((| ~H‖2 > ε1) and (i < imax)) do
5: i = i+ 1; µ = µ(0);
6: Solve (B + µI)~s = − ~H for ~s;
7: if (‖~s‖2 ≤ ε2(‖~x (i)‖2 + ε2)) then
8: break;
9: else

10: ~xnew = ~x+ ~s; % =
1
2 (‖~f(~x)‖2

2−‖~f(~xnew)‖2
2)

1
2~s
T (µ~sJT

f
(~x)~f(~x))

11: if (% > 0) then
12: ~x = ~xnew; B = JTf (~x)Jf (~x); ~H = JTf (~x)~f(~x);
13: µ = µ ·max {1

3 , 1− (2%− 1)3}; v = 2;
14: else
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Algorithm 4 Madsen LVM algorithm, Part 2
15: µ = µ · v; v = 2 · v;
16: end if
17: end if
18: end while
19: end function

7.3.5. Multipath Distance Detection and Mitigation and Position Optimization Algorithm

Although UWB technology allows an accurate range estimation, its accuracy is altered by
the problems of NLoS such as blockage situations or multipath [214]. Multipath fading is
caused by wave reflection or diffraction from objects such as walls, ceilings, or moving persons
inside a closed room. In the worst case scenario, the multipath signal can be interpreted
as a direct path signal leading to false distance measurement. Prieto et al. proposed the
so-called Robust Position Estimation in Ultrasound Systems (RoPEUS) algorithm to reduce
multipath effects in an ultrasonic positioning system [215]. We used a reduced version
of the RoPEUS algorithm, since UWB signals are less sensitive to multipath effects than
ultrasonic signals. This algorithm uses the Least Trimmed Squares (LTS) estimator, which
combines the robust regression with outlier detection method [216]. The main differences to
our approaches are: We compute the position by using the multilateration method based on
SVD, whereby the LVM algorithm is only used if an unfavorable geometric configuration
occurs. In other words, the LVM method is invoked, if a PDOP threshold value is exceeded.
Furthermore, our algorithm is optimized for devices with limited stack memory.

The flowchart in Figure 7.4 illustrates our algorithm. The observed distance measurements
to n anchors are split into all possible sub-experiments of distance measurements to k anchors
(k < n). The total number of possible experiments is equal to

(n
k

)
.

In the first step, we select sub-experiments of distance measurements to k reference
points, then we compute the estimated position using the multilateration algorithm for all k
combinations as well as the corresponding n residuals ri, as follows:

ri = Ri − di, i = 0, 1, . . . , n, (7.66)

where, Ri are the calculated distances from the MS to the RSs and di are the measured
distances. Finally, the k smallest squared residuals are summed: from

(n
k

)
possible ri, a

smallest one is saved in the variable rmin. The position associated with rmin is the solution
of the algorithm. By this procedure, up to n-k corrupted measurements could be discarded.

In the second step, we check the geometrical configuration of the chosen reference points:
If the calculated PDOP value is bigger than a given threshold (see Section 7.5.4.2), we
refine the solution by using the LVM algorithm, whereby the position computed from the
Multipath Distance Detection and Mitigation (MDDM) algorithm is used as a start solution.
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Figure 7.4.: Flowchart of the multipath distance detection and mitigation, and
position optimization algorithm

7.4. Position Dilution of Precision and Empirical Cumulative Distribution
Function

We perform test cases based on PDOP values to develop a method, which decides whether
the LVM algorithm should be used or not. We briefly describe the PDOP as well as the
Empirical Cumulative Distribution Function (ECDF) to evaluate the algorithms tested.

7.4.1. Position Dilution of Precision

The quality of the position is given by PDOP. The lower its value, the higher a positioning
accuracy can be achieved. PDOP can be calculated as follows [217, 218]:

M =



x1 − x
R1

y1 − y
R1

z1 − z
R1

−1

x2 − x
R2

y2 − y
R2

z2 − z
R2

−1
...

...
...

...
xm − x
Rm

ym − y
Rm

zm − z
Rm

−1


, (7.67)
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where Ri =
√

(xi − x)2 + (yi − y)2 + (zi − z)2. Furthermore, (x, y, z) and (xi, yi, zi) are
the positions of the searched MSs and the reference stations, respectively.

Qp = (MTM)−1 =


q2
x q2

xy q2
xz q2

xt

q2
xy q2

y q2
yz q2

yt

q2
xz q2

yz q2
z q2

zt

q2
xt q2

yt q2
zt q2

t

 (7.68)

The value of PDOP is calculated by using the first four diagonal elements of the matrix
Qp:

PDOP =
√
q2
x + q2

y + q2
z . (7.69)

In this work, the matrix Qp is computed by using the pseudo-inverse technique based on
the SVD to avoid the problem of rank deficiency.

7.4.2. Empirical Cumulative Distribution Function

The results of the test cases are illustrated and evaluated by using the ECDF. The ECDF
gives a global view of the errors in the x-, y-, and z-directions. The errors are calculated
based on the absolute error, which is the difference between the searched and the calculated
position: |approximate position− Pi|, whereby Pi is the exact position. The ECDF F (e) is
defined as:

F (e) =


0 e < e1

Fi = F (ei) ei ≤ e < ei+1, i = 1, 2, ...k − 1,

1 e ≥ ek

(7.70)

where 0 ≤ F (e) ≤ 1 and Fi is the relative cumulative frequency:

Fi =
i∑

j=1
fi =

i∑
j=1

f(ej) = f(e1) + f(e2) + ...+ f(ei), (7.71)

whereby, fi is the relative frequency:

fi = hi
U

= absolute frequency
sample size , (7.72)

where U is the number of the calculated absolute errors ei, and hi specifies how often the
absolute error ei occurs in the sample Us.
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7.5. Evaluation of UWB-ILS in a Simulated Environment

In this section, various test cases are performed to find out, when the execution of the LVM
algorithm is necessary on the basis of the PDOP values. These tests are accomplished by
sampling a closed room, whereby each point corresponds to two positions: a nominal and an
approximate position. The approximate positions are calculated by using randomly noisy
distances. First, we present a basic sampling configuration, then we introduce test cases
with eight, four, and finally with an increasing number of references stations (from five
up to eight reference stations). In addition, a parameter analysis is achieved to assess the
parameter combination enabling the best performance. The results of each test scenario are
evaluated and graphically presented using the ECDFs. The examination of all possible RS
configurations to determine a generally applicable threshold of PDOP is not possible and is
not the focus of this thesis. Usually, the position of the RSs can be freely selected to ensure
good coverage [11]. Therefore, we propose a way how to determine the PDOP threshold in
the next subsections.

7.5.1. Environments and Parameters Used

The LVM algorithms will be analyzed and compared in simulated and real environments.
Furthermore, the GNM is compared with the LVM algorithm in a real environment. The
simulated tests are accomplished and evaluated in MATLAB. The real tests are achieved
in the STM32F4 microcontroller as well as in Raspberry Pi 3 but they are evaluated
in MATLAB. The unoptimized position ~x (0) (start position) is calculated by using the
multilateration algorithm defined in Section 7.1. The multilateration approach is based
on the SVD method [14]. The precision of the optimization algorithms is denoted with ε;
then one has: ε = εx = ε1 = ε2. The GNM is implemented with ε equal to 10−5, while the
DR-LVM and M-LVM algorithms are performed and compared with ε-values from 10−6 up
to 10−1. The maximal iteration numbers (imax) are set to 100 for all optimization algorithms.
The DR-LVM algorithm is performed with: β0 = 0.2 and β1 = 0.8; these parameters are not
required for the M-LVM method. Both variants of LVM algorithms are implemented and
tested with the following τ -values: 1, 10−3 and 10−6. We set all the accuracy bounds equal
(εx = ε1 = ε2 = ε) as well as the maximal iteration equal to 100 to compare the algorithms
at the same conditions. We used the DR-LVM algorithm instead of the M-LVM algorithm
since they deliver the same result by almost all parameter combinations, furthermore, the
DR-LVM and M-LVM algorithms will be compared in Section 7.5.5.

7.5.2. Basic Sampling Configuration

The basic sampling configuration of the tests is the cube (see Figure 7.5). The number of
the points sampled inside the cube is 8000, whereby the distance between two neighbor
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Figure 7.5.: Layer view of sampled cube’s space

points (in the x- or y- direction) is one meter. The distance from the reference station to
the nearby point is also one meter. The true positions are in fact unknown, but they are
used in the test cases to evaluate the results. An approximate position is calculated for each
true position by means of the multilateration algorithm as well as optimized by using the
LVM algorithm. The multilateration algorithm uses the distances measured between the
MS and the RSs. Furthermore, a PDOP value is calculated depending on the position of the
references stations and the approximate position, which is a start point ~x (0) for the LVM
algorithm. The cube’s space is sampled layer-by-layer from top to bottom, whereby each
layer is sampled row-wise in the y-direction and each line is sampled from left to right (see
Figure 7.5). The vertical green lines in Figure 7.5 illustrate the order in which the points
are sampled at each layer marked by red lines.

7.5.3. Test Configuration with Eight Reference Stations

The reference stations (S1, S2, . . . , S8) are placed at the corners of the cube to reach a good
configuration (see Figure 7.6). The coordinates of the reference stations are defined as
follows:

S1(x1, y1, z1) = S1(1, 1, 1)

S2(x2, y2, z2) = S2(19, 1, 1)

S3(x3, y3, z3) = S3(19, 19, 1)

S4(x4, y4, z4) = S4(1, 19, 1) (7.73)

S5(x5, y5, z5) = S5(1, 1, 19)

S6(x6, y6, z6) = S6(19, 1, 19)
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S7(x7, y7, z7) = S7(19, 19, 19)

S8(x8, y8, z8) = S8(1, 19, 19)

Figure 7.6.: A 3-D configuration with 8 UWB reference stations
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Figure 7.7.: A 3-D configuration with 7992 positions searched

The number of the points sampled inside the cube is 7992, since the reference stations are
not incorporated (see Figure 7.7). Figure 7.8 depicts the PDOP values of the sampled points,
whereas the vertical red lines represent the layers of the cube. Figure 7.9 is a section from
Figure 7.8 and represents the PDOP values of the points inside a layer, which is illustrated
in Figure 7.5.
The points between two vertical green lines in Figure 7.9 belong to a straight line, as

illustrated by the horizontal green lines in Figure 7.5. The PDOP value of these points
decreases the closer they are to the middle. In other words, the points inside the cube,
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Figure 7.8.: PDOP values as a function of the approximate (start) positions ~x (0)
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which are nearest to the reference stations, have a poorer PDOP value. In this case, the
configuration of the reference stations with respect to the approximate position (start vector
~x (0)) is poor. The points in the middle of each row have the best PDOP values. The best
PDOP value has the point located in the center of the cube. The PDOP values of the points
inside a cube configuration with eight reference stations remain below 1.51.

Figure 7.10 shows a comparison between the multilateration and the DR-LVM algorithm,
whereby the ECDF of the positions calculated with both algorithms are almost the same.
The DR-LVM algorithm optimizes the position up to a maximum of 1.6 cm in all directions.
In this case, the use of the LVM algorithm is not necessary.
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(a) ECDF of the points estimated by the ML
algorithm.
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(b) ECDF of the estimated positions after the
use of the DR-LVM method.

Figure 7.10.: Comparison of the ML and the DR-LVM algorithms for a configu-
ration with 8 anchors

7.5.4. Test Configuration with Four Reference Stations

In this subsection, we investigate a practical case with four reference stations, which is
the minimum number of reference stations in the 3-D case, otherwise the matrix A will
be singular (cf. Equation (7.3)). We will treat a good as well as a poor configuration,
which is formed by placing all the reference stations at almost the same height. The good
and bad configurations are selected to demonstrate that the use of the LVM algorithm is
not necessary by a good configuration. Furthermore, the bad configuration is formed to
stress the algorithms and to demonstrate the necessity of the optimization algorithms. The
optimization is achieved by the DR-LVM algorithm with τ = 10−6 and ε = 10−2.

7.5.4.1. Four Reference Stations with Good Configuration

As shown in Figure 7.11, the reference stations are located pairwise at various heights. The
points are sampled like the case for eight reference stations. The number of the sampled
points is equal to 7996, since the RSs are excluded.
The coordinate of the reference stations (S1, . . . , S4) are defined as follows:

S1(x1, y1, z1) = S1(1, 1, 1)

S2(x2, y2, z2) = S2(20, 1, 20)

S3(x3, y3, z3) = S3(20, 20, 1)

S4(x4, y4, z4) = S4(1, 20, 20)

(7.74)

The approximate positions and their PDOP values are calculated in the simulation.
Figure 7.12 shows the PDOP values of approximate (not optimized) positions, which lie
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Figure 7.11.: Good configuration with four reference stations
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Figure 7.12.: PDOP values of 4-RSs good configuration

under 3.2.
The ECDF of the approximate positions before and after the use of the DR-LVM method is

illustrated in Figure 7.13. The DR-LVM algorithm demonstrates only a minimal improvement
of the position. Based on these and the previous results, the following rule can be extracted:
The use of the LVM method is not necessary for PDOP values under 3.2.

7.5.4.2. Four Reference Stations with Bad Configuration

This configuration is composed of four reference stations, whereby the points are sampled in
the same way as seen in the previous case, but the reference stations are approximately at
the same height (see Figure 7.14). The z-coordinates of the RS1 up to RS4 are equal to 1,
1.3, 1.5 and 1.9, respectively. The x- and y-coordinates of the RSs are the same as defined
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(a) ECDF of the points estimated by
the ML algorithm.
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the DR-LVM algorithm.

Figure 7.13.: Comparison of the ML and the DR-LVM algorithms for a good
configuration with 4 anchors
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Figure 7.14.: Bad configuration with four reference stations

in (7.74).
The approximate positions and their PDOP values are calculated for each point. The

approximate position is calculated by using the multilateration method as well as noisy
distances. The PDOP values illustrated in Figure 7.15 are a function of the calculated
approximate positions. These positions are the start vectors for the LVM algorithm. In
Figure 7.15, the PDOP values are significantly larger compared to the previous test scenario
with good configuration and four anchors. The PDOP values are greater than 5.

The ECDFs of the points calculated by the multilateration method and optimized by the
DR-LVM algorithm are illustrated in Figures 7.16 and 7.17.

The absolute errors for 90 % of the simulated points before running the DR-LVM algorithm
in the x- and y-directions are 0.17m and 0.30m (see Figure 7.16(a)). The absolute errors in
the x- and y-directions are limited to 0.16m and 0.18m after using the DR-LVM method,
as depicted in Figure 7.16(b).
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Figure 7.15.: PODP values of a 4-RSs bad configuration
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Figure 7.16.: Bad configuration with 4 anchors, focus on the x and y errors

The absolute errors of the optimized positions are significantly reduced using the DR-LVM
algorithm, especially in the z-direction. The errors in the z coordinates are limited to 0.2m
for 80 % of the points, while they amount to about 7m before the running of the DR-LVM
algorithm (cf. Figures 7.17(a) and 7.17(b)). The second rule, which can be extracted is as
follows: The invocation of the DR-LVM algorithm is indispensable for PDOP values above
8. The PDOP value is set to 8 as a limit, since the PDOP value of the 99.63% of the points
is about 8.

7.5.4.3. Parameter Analysis

The choice of the τ and the ε parameters is very important for the efficiency and the success
rate of the LVM algorithm. Therefore, various test cases are performed to determine the
appropriate parameter combination. Figure 7.18 shows the results of the test cases of the
DR-LVM algorithm implemented with different precision ε and τ values.
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Figure 7.17.: Bad configuration with 4 anchors, focus on the z errors

As can be seen from Figure 7.18, the absolute error in the x-, y- and especially in the
z-direction will be smaller by the same τ value, the higher is the claimed accuracy (ε). That
means, small absolute errors require small ε values. By the same accuracy value (ε), τ with
the value of 10−6 delivers the best result (see Figures 7.18). The absolute position error
remains unchanged with precision values less than or equal to 10−3 (ε ≤ 10−3) for all τ
values. For the precision ε = 10−2, the LVM approach has the same absolute position error
except for τ equal to 1. For the precision ε = 10−1, the LVM algorithm shows poor results
compared with ε equal to 10−6 up to 10−3.

Figure 7.18.: Cont.
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Figure 7.18.: Comparison of the DR-LVM algorithm with six accuracy bounds (ε)

7.5.4.4. Iteration Number Analysis

The iteration number of the LVM algorithm will be analyzed, in order to define the best (ε,
τ) combination based on the previous observations. Figure 7.19(a) shows the mean iteration
number of the DR-LVM algorithm as a function of the precision ε for τ equal to 1, 10−3,
and 10−6. In this case, the DR-LVM algorithm with τ equal to 1 shows the largest iteration
number. In contrast, the DR-LVM algorithm needs the smallest as well as approximately
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(a) DR-LVM algorithm. The curves of τ equal
1e−3 and 1e−6 overlap.

(b) M-LVM algorithm.

Figure 7.19.: Mean iteration numbers of the DR- and M-LVM algorithms for
τ = 1, 10−3, 10−6

the same mean number of iterations for τ = 10−3 and τ = 10−6.
The DR-LVM algorithm, in general, requires for τ = 10−3 more iterations as for τ = 10−6.

The mean iteration number decreases with increasing ε values; therefore, the ε-parameter is
selected for the largest value at which the absolute position error remains unchanged. As
previously demonstrated, this value is equal to ε = 10−2.
The third rule that can be extracted from the parameter analysis is: By the use of the

DR-LVM algorithm, ε = 10−2 and τ = 10−6 are to choose, since they deliver the best
accuracy and smallest iteration number.

7.5.5. Comparison of Dahmen-Reusken and Madsen LVM–Algorithms

Both variants of the LVM algorithms are compared with different precision ε- and τ - values.
Therefore, the DR-LVM and M-LVM methods are performed with the following parameter
values: ε from 10−1 to 10−6 and τ equal to 1, 10−3, or 10−6.

The DR- and M-LVM algorithms have almost the same iteration numbers. The DR-LVM
algorithm requires a little fewer iteration numbers as the M-LVM algorithm for τ equal
to 10−6, but no general statement can be made about other τ -values (cf. Figure 7.19).

The DR-LVM and M-LVM methods show different results by ε = 10−1 (see Figure 7.20).
They reveal almost the same result by ε = 10−2 except for τ equal to 1. Both algorithms
deliver the same result independently from τ values for ε equal to 10−6 up to 10−3.
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Figure 7.20.: ECDF of the Dahmen-Reusken and Madsen algorithms with ε = 10−1

Figure 7.21.: ECDF of the Dahmen-Reusken and Madsen algorithms with ε = 10−2
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Figure 7.22.: ECDF of the Dahmen-Reusken and Madsen algorithms with ε = 10−3

Figure 7.23.: ECDF of the Dahmen-Reusken and Madsen algorithms with ε = 10−4
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Figure 7.24.: ECDF of the Dahmen-Reusken and Madsen algorithms with ε = 10−5

Figure 7.25.: ECDF of the Dahmen-Reusken and Madsen algorithms with ε = 10−6

7.5.6. Test Scenario with Increasing Number of Reference Stations

We perform various tests to demonstrate that the correlation between PDOP and the position
errors stays by RS-configurations different than the previous eight- and four-RS configuration.
These tests also revealed that the position accuracy depends not only on the location of the
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reference stations to the approximate positions, but also on the number of the deployed refer-
ence stations. Therefore, a test scenario is created to demonstrate the impact of the number
of the RSs on the position accuracy. The number of the RSs varies from five up to eight. The
coordinates of the RSs (S1 up to S8) used are defined in (7.73). The PDOP values become
smaller with increasing number of the RSs, as shown in Figures 7.26(a), 7.27(a), 7.28(a),
and 7.29(a). The maximal PDOP value is below 4.6 for all anchor configurations, which
refers to a good room configuration. The Figures 7.26(b), 7.27(b), 7.28(b), and 7.29(b) show
that the absolute error of the approximate positions decreases with increasing number of the
RSs. The maximum improvement of the approximate positions varies from 2 cm up to 4 cm,
as is shown in Figures 7.26(c), 7.27(c), 7.28(c), and 7.29(c).

(a) (b) (c)

Figure 7.26.: 5-anchor configuration

(a) (b) (c)

Figure 7.27.: 6-anchor configuration

(a) (b) (c)

Figure 7.28.: 7-anchor configuration
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(a) (b) (c)

Figure 7.29.: 8-anchor configuration. (a) PDOP value, (b) ECDF before the
use of the LVM algorithm, (c) ECDF after the use of the LVM
algorithm

7.5.7. Evaluation of the Multipath Distance Detection and Mitigation and Position
Optimization Algorithm

We perform a simulation experiment by extending the simulation in Section 7.5.3 with the
multipath effect to validate the performance of the MDDM algorithm. The multipath effect
is modeled as follows [219]:

εM,W (d) = γW log (1 + d) (7.75)

= G (mM,W , σM,W ) log (1 + d) (7.76)

fγw (x) = 1
σM,W

√
2

e
−(x−mM,W )2

2σ2
M,W , (7.77)

where, G (mM,W , σM,W ) is a Gaussian random variable with mean mM,W and vari-
ance σ2

M,W . The parameters used for the simulation are summarized in Table 7.2.

Table 7.2.: Parameter used for the evaluation of the multipath distance detection
and mitigation algorithm

Parameter Value

β0 0.2
β1 0.8

Maximal iteration number 100
ε 1e−5

τ 1e−6

PDOP Threshold 8
Number of multipath affected distances 2

mM,W 0.88
σM,W 152.2

Figure 7.30 shows the ECDF of the position errors without and with the use of the MDDM
algorithm. The position error is less than 3.2m for 90 % of the points before the use of
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(a) (b)

Figure 7.30.: Empirical CDFs. (a) Without the use of the MDDM algorithm, (b)
with the use of the MDDM algorithm. MDDM, Multipath Distance
Detection and Mitigation

MDDM (cf. Figure 7.30(a)). In contrast, the position error is reduced to 40 cm for 90 % of
the points after applying the MDDM method (cf. Figure 7.30(b)).

7.6. Evaluation of UWB-ILS in a Real Environment

In this section, the DR-LVM algorithm is deployed in a real-world scenario, whereby four RSs
are used. The bad configuration is formed to stress the algorithms. The DR-LVM algorithm
is evaluated in respect to accuracy and iteration number to validate the rules extracted
from the previous Section 7.5. Furthermore, the computing time of the MDDM algorithm is
measured on resource-limited devices. Finally, the DR-LVM method is compared with the
GN algorithm.
Four reference stations are used, as shown in Figure 7.31, whereby their coordinates are

defined as follows:

S1(x1, y1, z1) = S1(0, 0, 1.67)

S2(x2, y2, z2) = S2(4.5, 0, 0.75)

S3(x3, y3, z3) = S3(4.5, 4.5, 0.75)

S4(x4, y4, z4) = S4(0, 4.92, 0.86)

(7.78)

Four UWB reference transceivers were in a 6m × 7m room and the UWB mobile stations
are placed in several points and at three different heights in the room. The location of the
MS is measured at 27 different locations, whereby the measurement is repeated fifty-three
times at each location (see Figure 7.32).
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Figure 7.31.: A 4-anchor configuration for a real scenario analysis

Figure 7.32.: A 4-anchor configuration with 27 points

7.6.1. Accuracy Measurement

The PDOP values, which are over 8.6, are calculated depending on the location of the
approximate positions as well as of the RSs, as shown in Figure 7.33(a). The DR-LVM
algorithm is performed with τ = 10−6 and ε = 10−2 according to the third rule derived in
Section 7.5.4. The Figures 7.33(b) and 7.33(c) show that the DR-LVM algorithm improves
the approximate position in all directions, particularly in the z-direction. The true positions
are surveyed by using a laser-based system with a precision of less than 5mm.

7.6.2. Iteration Number

In this experiment, we chose (ε, τ) equal to (10−2, 10−6) to reach the smallest iteration
number with a minimum of position errors, as demonstrated in Section 7.5.4.4. Figure 7.34
shows that (ε, τ) equal to (10−2, 10−6) delivers the smallest iteration number by the minimal
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Figure 7.33.: PDOP values and the comparison of the ML method with the
LVM algorithm. ML, Multilateration, LVM, Levenberg–Marquardt.
ECDF, Empirical Cumulative Distribution Function

Figure 7.34.: Iteration number of the DR-LVM algorithm in real scenario. The
curves of τ equal 1e−3 and 1e−6 overlap
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errors for the measured points, which confirms the results found in Section 7.5.4.3 and 7.5.4.4.

7.6.3. Computing Time Measurement

The computing time of the MDDM algorithm is evaluated on STM32F4-MCU as well as on
Raspberry Pi 3 [220]. We used Raspberry Pi 3, which has more capacity (Quad Core 1.2GHz
and 1GBRAM) as the STM32F4-MCU to demonstrate the scalability of the MDDM
algorithm. By a configuration of 8-RSs, the MDDM algorithm requires approximately 210ms
and 4ms on STM32F4-MCU and Raspberry Pi 3. Figure 7.35 shows the mean execution
time of the MDDM approach as a function of the anchor numbers.
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(a) Time Measurement on STM32F4 MCU
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(b) Time Measurement on Raspberry Pi 3

Figure 7.35.: Computing time evaluation of the MDDM algorithm
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7.6.4. Comparison of the Levenberg–Marquardt and Gauss–Newton Method

The DR-LVM algorithm will be compared with the Gauss–Newton method by using ε equal
to 10−5. Both algorithms are compared based on real measurements within the same room
as in Figure 7.31. The LVM and GN methods show almost the same performance if the
quadratic matrix JTf Jf is not singular, as shown in Figure 7.36.

(a) ECDF of the GNM.
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(b) ECDF of the LVM algorithm.

Figure 7.36.: Comparison of the GNM and LVM algorithm if the matrix JTf Jf
is not singular

The GNM shows a poor performance as well as diverges, when the matrix JTf Jf is near
singular. In contrast, the LVM algorithm remains stable (see Figure 7.37).
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(a) ECDF of the GNM.
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(b) ECDF of the LVM algorithm.

Figure 7.37.: Comparison of the GNM and LVM method if the matrix JTf Jf is
near-singular
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(a) ECDF of the GNM. (b) ECDF of the LVM algorithm.

Figure 7.38.: Comparison of the GNM and LVM algorithm if the matrix JTf Jf
is singular

The GN algorithm fails in case the matrix JTf Jf is singular, while the LVM algorithm
remains stable, as illustrated in Figure 7.38. The mean iteration numbers of the GN and
the LVM methods are equal to 5 and 3, respectively, if the matrix JTf Jf is not singular.
The mean iteration of the GN method increases to the maximal iteration number (100), if
the matrix JTf Jf is near-singular or singular; while the mean iteration number of the LVM
method stays stable and rises to approximately 11 iterations. The GN and LVM algorithms
require an average time of 1561µs and 1548µs per iteration, respectively, by using an MCU
running at 168MHz.

7.7. Evaluation of MILPS in a Simulated Environment

The LVM algorithm is analyzed for the MILPS by using the PDOP values and the ε and τ
parameters, as seen in the previous Section 7.5. The tests are performed in the same way as
in the previous Sections 7.5.3 and 7.5.4, whereas the DR-LVM is used. The approximate
position is calculated by using noisy field strengths. The MILPS has a reach of about 9m,
whereby a configuration with eight coils as reference stations is illustrated in Figure 7.39 [221].

7.7.1. PDOP Analysis

There is no correlation between the absolute errors and the PDOP values by MILPS. The
LVM method is needed, although the eight-reference configuration in a cube form enables
good coverage. The PDOP values vary from 1.623 to 5 for the most approximate (start)
positions. The use of the LVM approach is indispensable since the absolute errors in all
direction are approximately 1.5m for 90 % of the points. The use of the LVM approach
limits the errors to about 40 cm for 90 % of the points, as shown in Figure 7.40 [221].
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Figure 7.39.: MILPS: a 3-D configuration with 8 coil configuration
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(b) ECDF of the points estimated by the ML
algorithm.
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(c) ECDF of the estimated positions after the
use of the LVM algorithm.

Figure 7.40.: PDOP analysis of a configuration with 8 reference stations
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Furthermore, there are no clear boundaries for the PDOP values as in the previous case
of the UWB-ILS (cf. Section 7.5). The values of the PDOP of the configuration with 8
references stations overlap with the values of the configuration with 4 references stations, as
shown in Figures 7.40(a) and 7.41(a). The estimated positions in the configuration with 4
RSs shows more errors as in the configuration with 8 RSs, therefore the LVM method is
also needed (see Figure 7.41).
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(b) ECDF of the points estimated by the ML
algorithm.

(c) ECDF of the estimated positions after the
use of LVM algorithm.

Figure 7.41.: PDOP analysis of a configuration with 4 reference stations

The LVM algorithm is necessary to improve the approximate positions by MILPS due
to the nonlinear measurement model. In addition, the errors by MILPS are more complex
than by the UWB-based ILS, since the measurements are influenced by ambient noise.

7.7.2. Noise Analysis

The ambient noise, as well as the measurement inaccuracies of the sensors, also affect the
position accuracy of the approximate positions calculated by the multilateration method.

The LVM algorithm reaches an improvement of the position error in the meter as well as
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in the centimeter range for noise values up to about 0.04mG and 0.5µG (see Figure 7.42
and 7.43). The LVM method enables an optimization of the position in the millimeter range
from a noise value of about 0.4µG, as shown in Figure 7.44. The LVM approach shows no
effect from a noise value of about 0.01µG (see Figure 7.45).
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Figure 7.42.: ML and LVM algorithms for noise equal to 0.04mG
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Figure 7.43.: ML and LVM algorithms for noise equal to 0.5µG
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Figure 7.44.: ML and LVM algorithms for noise equal to 0.4µG
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(a) (b)
Figure 7.45.: Multilateration (ML) and Levenberg–Marquardt (LVM) algorithms

for noise equal to 0.01µG. (a) ECDF of the ML algorithm, (b)
ECDF of the LVM algorithm. ECDF, Empirical Cumulative Dis-
tribution Function

7.7.3. Parameter Analysis

The τ -parameter with the value of 10−6 shows almost the smallest mean iteration count for
ε-values between 10−6 and 10−1, as demonstrated in Figure 7.46.

Figure 7.46.: MILPS: mean iteration numbers of the LVM algorithm for τ =
1, 10−3, 10−6

The LVM algorithm shows the same and the smallest absolute errors for the parameters
τ = 10−3 as well as τ = 10−6 for the values of ε from 10−6 up to 10−3. The LVM method
shows a slight difference by τ = 1 and ε = 10−3 but shows the same performance for all
the τ values for the values of ε between 10−6 and 10−4. The tuple (τ , ε) = (10−6,10−3)
is chosen, since it allows the position optimization with the smallest position error and
iteration number. For the sake of simplicity, Figures 7.47 shows only the ECDF of the
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multilateration as well as of the LVM algorithm for the parameter τ = 10−6. The LVM
method performs with the same level of accuracy for the ε values less than or equal to 10−3,
as seen in Figure 7.47. Therefore, the value of ε is chosen equal to 10−3 to minimize the
absolute position error as well as the iteration numbers of the LVM approach.
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Figure 7.47.: ECDF of the DR-LVM algorithm with τ = 10−6

7.8. Conclusion

Cholesky, LU, QR, and SVD algorithms are important matrix decompositions to solve
equations for the lateration problem. Cholesky and LU decompositions are unsuitable
because of rounding errors, and instability, as well as the limitation to quadratic matrices.
We demonstrated that the Householder transformation, which is a method to implement
the QR decomposition, is efficient as well as has guaranteed stability. The Householder
transformation fails, if the matrix is rank-deficient or nearly rank-deficient. SVD algorithm
is the most reliable among the three methods, since it is stable and able to reliably deal
with the rank-deficiency or near rank-deficiency of a matrix. In contrast, the SVD method
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is (by far) the most expensive.
The solution of the multilateration algorithm by using the SVD is not always optimal,

since the accuracy of the searched point is affected by many factors such as its relative
position to the reference stations, the coverage (number) of the reference stations, the
accuracy of the measured data, and the measurement model. Therefore, the position can
be optimized by using NLS methods such as GN or LVM algorithms. Since the GNM can
diverge, it is unsuitable for practical implementations. In contrast, the LVM algorithm has a
guaranteed convergence, whereby the choice of the right parameter is of utmost importance.
The parameter selection impacts the efficiency and the success rate of the LVM algorithm.
The parameter choice can be achieved by analyzing the deployment site based on sensors
accuracy, PDOP values, the quality of the starting point, and the measurement model.
These algorithms enable an accurate and smooth localization determination as well as an
adaptive selection of the optimization algorithms locally on the MS. Furthermore, the
MS deployed in the UWB-ILS can operate in NLoS environments by using the multipath
detection and mitigation (MDDM) algorithm . This algorithm is designed and implemented
for devices with limited resources. We implemented as well as evaluated the algorithms
in a simulated and in a real environment. We used the resources-constrained devices such
as STM32F4 and Raspberry Pi 3 to measure the performance of the algorithms in a real
environment.
We demonstrated that there is a correlation between the absolute errors and the PDOP

values as well as that the invocation of the LVM method is not always necessary by UWB-ILS.
On the contrary, there is no correlation between the absolute errors and the PDOP values
by MILPS. Therefore, the use of the LVM algorithm is indispensable. The invocation of
the LVM method can be saved on MILPS if the environment, as well as the sensors, are
low-noise.





CHAPTER 8

Example Applications

In this chapter, we briefly describe three applications in which the platform is deployed.
The first one enables the localization of objects or persons inside a building. The second
application enables tracking of moving persons inside a building by overcoming the impact
of spatially varying ambient magnetic fields on MILPS. Finally, a robot is tracked in the
third application.

8.1. Indoor Localization in a Building

Three coils were placed outside and around the building to achieve indoor localization (see
Figure 8.1(a)). This can be achieved up to the third floor, as demonstrated by the magnet
strengths captured in the third floor (see Figure 8.1(c)). Figure 8.1(c) shows that the magnet
signals could be good detected in the third floor.
The position accuracy is evaluated by comparing the true and the measured positions

by the MILPS. An accuracy of about 50 cm is achieved. Table 8.1 summarizes the relative
errors of the measured points at the first and the third floor.

Table 8.1.: MILPS: the 3-D positions in the first and the third floor
Position Floor ∆X[m] ∆Y [m] ∆Z[m]

1 1 −0.06 0.15 0.042
2 1 0.46 0.19 −1.11
3 1 −0.17 0.06 1.62
4 3 −0.08 0.11 −0.13
5 3 −0.22 −0.68 0.06

8.2. Foot-Mounted Navigation Using MILPS

The platform architecture is deployed for foot-mounted localization by using MILPS [18]. Due
to the advantageous characteristics of magnetic signals such as penetration of various obstacles
and robustness against fading effects, MILPS permits positioning in harsh environments.
Nevertheless, indoor tracking remains a challenge, due to the non-stationary property of the
ambient magnetic fields, signal transients and eddy current effects. These disturbing effects
cannot be eliminated during the tracking phase as a result of its spatially-varying character.
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(a) The university building. (b) The plan of the third floor.
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(c) The magnetic signal strength at the third floor.

Figure 8.1.: MILPS deployment in a real-world scenario

Figure 8.2 shows real captured magnetic clusters in a stationary as well as in the movement
phase of a person. In the stationary phase, the ambient magnetic field (offset) is constant
and can be mitigated by applying the difference according to (6.1). In the movement stage,
the magnetic clusters are distorted because of the varying, overlying ambient magnetic field.
The estimation of the coil magnetic field using (6.1) fails in this case. Furthermore, the
cluster leading edges are also strongly affected, thus synchronization adjustments would
briefly fail. We use MILPS as well as a foot-mounted IMU to overcome the impact of
spatially-varying ambient magnetic fields. This method is suitable for pedestrian tracking,
since the magnetometer is in a zero-velocity state during the stance phase. The zero-velocity
state is detected by measuring the acceleration or the turn rates by means of an IMU
sensor [18].
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Figure 8.2.: Captured magnetic field signal clusters: distortion-free clusters (sta-
tionary case: left and right part); distorted clusters (movement case:
middle part)

Figure 8.3 shows a real-world indoor environment, where various objects such as metal
bookcases, a table, and other furniture are placed. The tracked person is wearing a shoe-
mounted IMU to capture the magnetic field and the angular rate data. The person walked
along predefined paths using marked points with known coordinates.

Coil 1

Coil 3
Door

Wall Coil 2

6.7 m

5.3 m 5.79 m

0.58 m

Table

Start

Iron bookcase

Stop

Start

Stop

Figure 8.3.: Experiment setup of foot-mounted navigation by using MILPS and an IMU
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8.3. Robot Localization

The platform architecture is deployed to localize a robot that travels along predefined closed
paths on a floor [17]. This platform combines artificially generated magnetic fields with
the data of the inertial measurement unit. The IMU is used to cover areas that cannot be
reached from the MILPS. The localization system is implemented by using a sensor fusion
method as well as a kinematic motion model based on a Kalman Filter. Furthermore, air
pressure observations are gathered in combination with an adaptive filtering approach to
provide information about altitude changes. Figure 8.4(a) shows the robot traversing a
ramp. Figure 8.4(b) illustrates the tracking paths of the mobile robot driven with a velocity
of about 1m/s along various closed loops. One round consists of the following consecutive
track points:

1 - 2 - 3 - 5 - 7 - 6 - 4 - 5 - 8 - 9 - 11 - 13 - 12 - 10 - 11 - 1

(a) Robot Platform.

(b) Tracking path of the robot.

Figure 8.4.: Robot tracking with the fusion of MILPS and IMU [17]

The experimental results show that the robot can be localized with accuracies of less
than 1.5m and 0.5m in the horizontal plane and in z-direction, respectively (cf. Figure 8.5).
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(a) True and estimated positions on the xy plane.

(b) Tracking paths in the xyz plane.

Figure 8.5.: Tracking results of the robot in two- and three-dimensions [17]





CHAPTER 9

Summary and Outlook

Localization techniques enable applications such as car navigation systems, emergency
services, or tourist tour planning. Furthermore, localization can be a value-added service
for other areas such as the automation of industrial systems and equipment, medicine,
autonomously acting systems, and networked mobility. To realize such applications, a
platform architecture is needed.

The proposed designed platform architecture can be implemented on resource-constrained
devices such as microcontrollers, which can build an Internet of thing of networked embedded
objects. The combination of real-time localization, Internet, or embedded sensors allows
transforming everyday objects into smart objects that can interpret, perceive, and interact
with the environment. Therefore, the suggested platform uses the IoT operating system
RIOT-OS, which is compatible with various devices such as TI MSP430, AVR Atmega, or
ARM Cortex-M3-4. The RIOT-OS enables the realization of non-proprietary and open
platform architectures, since it supports the 6LoWPAN, Internet Protocol version 6 (IPv6)
and User Datagram Protocol (UDP) facilitating the interoperability with existing systems
and protocols. The interoperability is extended by using the JavaScript object notation
to enable data exchange with machines. For example, the data exchange between the
mobile station and applications located on a PC. JSON is a text-based, lightweight, and
language-independent data interchange format. Furthermore, the use of the operating system
for resource-constrained devices, which is a software part, provides benefits to applications
such as simplifying the design, hiding hardware complexity, and increasing the portability of
the source code.
The architecture of the platform is layered- and component-based to enable the use of

various localization technologies and positioning algorithms as well as the reuse of software
components such as the preprocessing or the matrix operation algorithms. The following
points, which are related to the fundamental limitation of preprocessing, matrix computation,
and optimization algorithms for positioning by resource-constrained devices, are addressed:

1. A preprocessing method to remove outliers in measured data, which is convenient to
resource-constrained devices especially in terms of limited stack memory.

2. A method was introduced, which calculates the 3-D position based on the singular
value decomposition.
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3. A preprocessing method was proposed for the localization calculation, avoiding the
execution of memory and computationally expensive algorithms such as the SVD or the
Moore–Penrose pseudo-inverse on resource-constrained devices. Whereby, the complex
computation can be shifted to an external device, which possesses more memory and
computing capacity. The resource-constrained device is initialized only once with the
result of the inverse matrices before deployment.

4. Various methods are described that are suitable to compute an unoptimized position
(start position). These algorithms have been analyzed and compared in respect to the
stability, complexity and memory requirements.

5. The demonstration of the feasibility to deploy the Moore–Penrose algorithm, which is
based on SVD, on resource-constrained devices.

6. The improvement of the position estimate by using the Gauss–Newton as well as
the Levenberg–Marquardt algorithms, which are derived in a convenient form for
resource-constrained devices.

7. An adaptive algorithm for the optimization of the position was developed, which
is based on the SVD, Levenberg–Marquardt algorithm and the position dilution of
precision. This algorithm supports an adaptive selection mechanism for the Levenberg–
Marquardt algorithm. This adaptive algorithm enables savings in resources such as
memory, computing time, and energy on resource-constrained devices. Furthermore,
two variants of the LVM algorithms are used: the Dahmen-Reusken LVM and Madsen
LVM are analyzed and compared with the Gauss–Newton method. All the algorithms
are derived in convenient form for resource-constrained devices. Since the parameters
of the LVM algorithm impact the accuracy as well as the required iteration number,
the influence and the choice of the right parameter combination have been determined,
analyzed and discussed.

8. The energy consumption of the algorithms as well as of the mobile station for the
UWB-based ILS and the magnetic indoor local positioning system are evaluated on
resource-constrained devices (LPC2387- and STM32F4-based boards).

9. The design and evaluation of a method to reduce multipath errors on the mobile
station, which enables an accurate localization in non-line of sight scenarios. This
method is implemented as well as evaluated in a simulated and real environment. The
STM32F4 microcontroller as well as in Raspberry Pi 3 are used to evaluate the method
in real environment.

The platform architecture is tested for UWB and for magnetic field-based technologies.
The proposed magnetic-field based system is a stand-alone localization system that enables
a positioning in harsh conditions without either the need for communication infrastructure
nor a fixed or tedious installation. The main contribution of this system is the proposal
of a decentralized control of the individual coils (anchors), as well as the decentralized
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synchronization of the entire system without the need for communication technology. Both
the synchronization and the control of the coils and MS are based on a preemptive real-time
operating system and real-time clocks. Furthermore, the developed work of the magnetic-
based system can be summarized as follows:

1. The design of a decentralized positioning system by improving the MILPS using coil
driver units based on accurate RTCs. Furthermore, the MS is extended with a sensor
platform, which includes a magnetic field sensor and an RTC. The MS operates
independently from the CDUs, and no communication channel is required.

2. The application of time division multiple access for the generation of periodic, distortion-
free magnetic field signals for a certain time period (e.g., 1 s). The TDMA allows the
MS to distinguish between the coils (reference points).

3. The evaluation of two approaches to drive and synchronize the coils.
4. The development, analysis, and evaluation of algorithms for MILPS based on resource-

limited devices.

The UWB-based ILS has a maximal error of approximately 3.5 cm in the x- and y-
coordinates and a maximal error of approximately 25.3 cm in the z-coordinates by using
the Multilateration (ML) algorithm. In this case, the reference points are located at
approximately the same altitude to impair the position in the z-direction and to stress the
algorithms. The 3D position can be refined by using the GN algorithm that achieves a
maximal error of approximately 2.2 cm in the x- and y-coordinates and a maximal error of
approximately 11.2 cm in the z-coordinates. The position can also be improved by applying
the LVM algorithm that is stable, since it delivers the same results if the GN algorithm
does not diverge. Furthermore, the LVM algorithm delivers a stable position, if the GN
algorithm diverges and shows a poor performance. In the NLoS scenarios, the position
can be optimized by using the MDDM algorithm that can reduce the position errors up to
approximately 40 cm as well as the errors in the z-coordinates up to 0.6m.

MILPS has a maximal error of approximately 30 cm in the x- and y-components by
using the ML algorithm. However, the z-component of the MS coordinates shows the
poorest performance, if the coils are placed at nearly equal heights. The invocation of
the LVM method, which is necessary, can reduce the errors in the x- and y-coordinates
to approximately 10 cm. The LVM algorithm can limit the errors in the z-coordinates to
approximately 0.6m. The LVM method has generally lower deviations in all coordinate
components compared with other methods such as the ML or the GN method.
Finally, the platform architecture was deployed in various real-world scenarios. The

proposed platform architecture can also be a basis for a distributed localization approach.
This is a fruitful research area, since the majority of multihop localization techniques are
not implemented, are only treated at the theory level or tested in simulated environments.





APPENDIX A

Open Source Software Library for Numerical
Linear Algebra and Localization

(RcdMathLib)

RcdMathLib is an open-source library for resource-constrained devices such as microcon-
trollers that provides linear algebra, localization, and optimization algorithms. RcdMathLib
has a modular and pyramidal architecture as shown in Figure A.1, whereby each layer rests
upon the underlying layers. The RcdMathLib is composed of three main components: linear
algebraic, localization, and optimization layers.

Utils Matrix Vector

Applications

Matrix, vector, and algebraic operations

Solving of systems of multivariant linear & non-linear 
equation systems (LESs & N-LESs) Solve mulivariant LESs & N-LESs

Pseudo-Inverse

Determination of an approximate (start) position

Position optimization:

Localization applications

Matrix inverse computation 

Matrix decompositions 

MDDM

Optimization algorithms

Multipath distance detection and mitigation

Householder GivensSVD Householder GivensSVD

GNM LVMGNM LVM

Localization Algorithms

Figure A.1.: Architecture of the RcdMathLib

A.1. Linear Algebraic Layer

The linear algebraic layer builds the base of the whole library and provides basic as well
as complex linear algebraic operations. Basic algebraic operations are, for example, the
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addition or multiplication of vectors or matrices; while complex operations are the calculation
of the inverse, pseudo-inverse, or the solution of over-determined linear equation systems.
The linear algebraic layer also allows solving multivariant non-linear equations. All these
operations are implemented based on efficient algorithms such as QR-Householder or SVD
methods, as well as in a convenient form for resource-constrained devices. Furthermore, the
util-module provides various algorithms such as the Shell Sort algorithm or the Box-Muller
method to generate normally distributed random variables.

A.2. Localization Layer

The localization layer enables the calculation of a position based on algorithms such as
trilateration algorithm. The localization algorithms also provide for the measurement as
well as the error models of the respective localization technique. They also enable the
computation of the Jacobian matrices, which are needed for the optimization layer.

A.3. Optimization Layer

The optimization layer allows the detection and mitigation of multipath effects in the case of
distance-based localization technique. This Layer enables also the refinement of a position
delivered from the localization layers by using optimization algorithms such as GNM or
LVM algorithm.

A.4. Application Layer

Users can implement efficient localization applications such as the tracking of persons or
objects by using the previously described layers.



ANHANG B

Zusammenfassung
Eine Plattformarchitektur ist hilfreich für die Realisierung von flexiblen Lokalisierungssys-

temen, die sowohl mit verschiedenen Systemen interagieren als auch zahlreiche Lokalisierungs-
technologien und -Algorithmen unterstützen. Die dezentrale Bearbeitung von einer Position
ermöglicht die Verschiebung der Anwendungsschicht in die mobile Station und so vermei-
det sie die Kommunikation mit einer zentralen Recheneinheit wie z.B. einem Server oder
einer Basisstation. Außerdem stellt die Positionsberechnung in einem kostengünstigen
und ressourceneingeschränkten Gerät eine Herausforderung wegen begrenzter Rechen- und
Speicherkapazität sowie Energieversorgung dar. Deshalb bietet diese Dissertation eine Platt-
formarchitektur, die für einen Systemdesigner die folgenden Vorteile ermöglicht: Wiederver-
wendbarkeit von fertigen Modulen, Erweiterbarkeit z.B. mit anderen Lokalisierungstechnolo-
gien, und Interoperabilität. Zeitgleich (on-the-fly) wird die Position in einem kostengünstigen
Gerät wie ein Mikrocontroller berechnet. Basierend auf einem Betriebssystem führt das
Gerät gleichzeitig zusätzliche Arbeitsschritte wie Datensammlung oder -bearbeitung aus.
Die Plattformarchitektur wurde für zwei Systeme entworfen, implementiert und evaluiert:
entfernungs- und feldstärkebasierte Positionssysteme. Beide Systeme verwenden jeweils die
Ultra-Breitband-Technologie (UWB) und gepulste Gleichstrom-Magnetfelder. Geeignete
Algorithmen wurden für die Berechnung einer nicht optimalen Position (Startposition)
vorgeschlagen. Diese Algorithmen wurden hinsichtlich Stabilität, Effizienz, Komplexität und
Speicherbedarf verglichen und analysiert. Ein adaptiver Algorithmus für die Positionsopti-
mierung wurde basierend auf der Singulärwertzerlegung (SWZ), dem Levenberg–Marquardt
(LVM) Algorithmus und dem Dilution of Precision (DOP)-Wert entwickelt. Der DOP-Wert
ist ein Maß über die relative Position der Spulen zueinander und zur gesuchten Position. Der
adaptive Algorithmus ermöglicht die Einsparung von Ressourcen wie bespielweise Speicher,
Rechenzeit und Stromverbrauch von Geräten mit eingeschränkten Ressourcen. Außerdem
wurden zwei Varianten von den LVM-Algorithmen verwendet: die Dahmen-Reusken LVM
und Madsen LVM Algorithmen. Beide Algorithmen wurden mit dem Gauss–Newton Algo-
rithmus verglichen und analysiert. Sämtliche Algorithmen wurden in eine geeignete Form für
Ressourcen-eingeschränkte Geräte abgeleitet. Die Parameterauswahl vom LVM-Algorithmus
beeinflusst sowohl die Genauigkeit als auch die erforderte Iterationszahl. Demzufolge wurde
der Einfluss and die Auswahl von der genauen Parameterkombination untersucht, analysiert
und diskutiert. Schlussendlich wurde eine Methode zur Reduzierung der Mehrwege-Fehler
in mobilen Stationen entwickelt und bewertet. Diese Methode ermöglicht eine präzise
Lokalisierung in Szenarien ohne direkte Sichtverbindung zu den Referenzstationen.
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