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Abstract
Synthetic supramolecular systems share many similarities with natural biological

assemblies, especially when considering that the structure and guest binding are

typically governed by non-covalent interactions. As such, the defining characteris-

tic is that only comparably weak forces define the shape of a synthetic supramolecule

or the tertiary structure of a protein, so that the resulting dynamic binding mode makes

structure elucidation challenging. One of the major advances in recent analytical chem-

istry has been the development of ion mobility-mass spectrometry (IM-MS) to tackle the

challenging problems faced in proteomics, glycomics, metabolomics, and lipidomics.

By analogy, the prospects of applying IM-MS to supramolecules are bright and it is to be

expected that unprecedented analytical insights into diverse systems such as host-guest

complexes, molecular devices, self-assemblies and metallosupramolecular complexes

will be obtained.

The recurrent theme throughout this dissertation is that both structure (differentia-

tion of diastereomers, photoisomers, mechanoisomers) and non-covalent interactions

(hydrogen bonding, TTFn+/TTFn+-charge repulsion, dispersive interactions) can be

investigated by a combination of the three methods of ion-mobility mass spectrometry

(IM-MS), collision-induced dissociation (CID) and gas-phase H/D-exchange (GP-HDX).

In the study of the gas-phase chiral recognition of crown-ether ammonium complexes,

the importance of a single hydrogen bond for the enantiodifferentiation was revealed.

Similarly, in an azobenzene model a hydrogen bonding interaction led to an increased

stability of the (Z)-photoisomer. This surprising observation illustrates an important

aspect, namely that there can be significant differences between the gas-phase and the

solution environment. In the absence of solvent, both the stabilization of charged sites

and the Coulomb repulsion of nearby charges are accentuated.

In a way, the conundrum of supramolecular mass spectrometry revolves around the

problem that ions are easily manipulated in the gas-phase where a high analytic resolu-

tion power is available, to then face the question if the obtained results still reflect the

solution environment.

Therefore, it is very convincing to see that in three of the five presented studies, the

solution environment is reflected in a quantitative fashion: In the quantification of the

enantiomeric excess (first study), the quantification of photoisomer content (second
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study), and the quantitative determination of equilibrium constants for redox-controlled

dethreading (third study).

Together with these five studies, and the detailed description in the subsequent chapters,

I expect the treatment to be useful also from the practitioner’s point of view. It is my

hope that the performance, speed, and reliability with which measurements can be

performed with modern instrumentation will make IM-MS a routine analytical tool in

the repertoire of the working supramolecular chemist.
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Zusammenfassung
Synthetische Supramoleküle haben viele Gemeinsamkeiten mit natürlichen biologischen

Systemen. Besonders ins Auge fällt die Tatsache, dass in beiden Fällen nicht-kovalente

Wechselwirkungen strukturbestimmend sind. Während sich sowohl die Natur, z.B.

bei der Tertiärstruktur von Proteinen, als auch der supramolekulare Chemiker, z.B.

bei der Synthese von Inklusionsverbindungen, diesen dynamischen Bindungsmodus

zunutze machen, stellt die Untersuchung von nicht-kovalenten Wechselwirkungen die

analytische Chemie vor große Herausforderungen.

Um diesen Herausforderungen an die moderne Strukturaufklärung gerecht zu werden,

hat sich in den letzten Jahren die Kupplung der Ionenmobilitätsmassenspektrometrie

(IM-MS) als besonders vielversprechend hervorgetan. So konnten viele Fortschritte

im Bereich der Protein-, Lipid- und Kohlenhydratanalytik erzielt werden. Es er-

scheint daher naheliegend, dass IM-MS in Zukunft auch neue Einblicke in synthetisch-

supramolekulare Systeme verschaffen wird.

Ein wiederkehrendes Motiv in meiner Dissertation ist, dass sowohl die Struktur (z.B. die

Unterscheidung von Isomeren) als auch die nicht-kovalenten Wechselwirkungen (z.B.

Wassterstoffbrückenbindungen, TTFn+/TTFn+-Ladungsabstoßung) durch die Kombi-

nation von Ionenmobilitätsmassenspektrometrie (IM-MS), kollisionsinduzierter Dis-

soziation (CID) und Gasphasen-H/D-Austausch (GP-HDX) untersucht werden können.

So konnte in einer chiralen Erkennungsstudie von Kronenether/Ammonium-Komplexen

in der Gasphase die Auswirkung einer einzelnen Wasserstoffbrücke auf die Enantiodif-

ferenzierung gezeigt werden. Im Falle des später vorgestellten Azobenzolmodellsys-

tems führt eine Wasserstoffbrücke sogar dazu, dass das (Z)-Azobenzol in der Gasphase

das stabilere Photoisomer ist. Dies ist eine überraschende Beobachtung und offenbart,

dass sich die Verhältnisse zwischen Lösung und Gasphase dramatisch voneinander

unterscheiden können. In Abwesenheit stabilisierenden Lösungsmittels treten ladungs-

stabilisierende Kräfte und Coulomb-Abstoßung in den Vordergrund. Somit ergibt sich

für die supramolekulare Gasphasenchemie die etwas widersprüchliche Situation, dass

die Massenspektrometrie einerseits die gezielte Manipulation einzelner Ionen – und

somit eine hohe Trennkapazität – erlaubt, andererseits aber die Relevanz der erhaltenen

Daten für die Lösungsumgebung unsicher bleibt.

Wie die vorliegende Arbeit anhand von fünf Studien zeigt ist es jedoch sehr wohl
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möglich, klare Rückschlüsse auf die Lösungsumgebung zu ziehen. Unter anderem konn-

ten die enantiomere Zusammensetzung (erste Studie), der Anteil von Photoisomeren

(zweite Studie) und die Lage eines redox-induzierten Abfädelungsgleichgewichtes

(dritte Studie) in hoher Übereinstimmung mit der Lösungsumgebung quantifiziert

werden.

Ich hoffe, dass mit der vorliegenden Arbeit IM-MS als performante, schnelle und zu-

verlässige Technik auch aus praktischer Sicht für den supramolekularen Chemiker

zugänglicher wird.
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1

Introduction
The rising interest in functional supramolecular materials goes along with an increasing

demand for analytical methods suitable for the investigation of these systems. This is

why the further development of modern mass spectrometric gas-phase characterization

techniques is of high interest to the chemical community and will in the long run not

only facilitate the development of new supramolecular materials, such as molecular

shuttles and motors, but—even more importantly—provide deeper insights into both

the structure and the dynamics of these systems. A combination of multiple gas-phase

characterization techniques enables a deeper understanding of such systems that will

inevitably also lead to the development of new supramolecular materials, including

molecular devices, such as molecular shuttles and motors.

Gas Phase
Supramolecular Chemistry

⟶
mass selection

⟶ IRMPD action 
spectroscopy

ion molecule 
reactions

gas phase H/D 
exchange

ion mobility 
spectrometry

⟶
⟶
⟶

structuredynamics

fragmentation⟶

The aim of the present dissertation project is the study of supramolecular complexes

with advanced mass spectrometric techniques. The focus lies on the structure, especially

the differentiation of isomers, and the identification of intramolecular forces of these

systems. A particularly intriguing aspect of studying supramolecular systems in the

gas-phase is the possibility of investigating intramolecular forces such as hydrogen

bonding and van der Waals forces—both being major motifs in protein folding, enzyme

catalysis and molecular recognition in general—with simplified biological mimics in

the absence of solvent. The systems investigated in the five reported publications

are structurally diverse and include crown-ether ammonium pseudorotaxanes and

oligorotaxanes, azobenzene switches, and titanium helicates.
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Supramolecular chemistry is a large field that comprises a multitude of different classes

of new materials, the common feature being that the chemical systems under study are

made up from smaller molecular subunits. The forces holding these subunits together

are manifold, rising from weak van der Waals and π-π interactions to strong interactions

like electrostatic forces or hydrogen bonding. As shown in Table 1, these interactions

vary in strength over a wide range of few kJ/mol up to several hundred kJ/mol. [1,2]

Table 1: Overview over types of interactions and bonding important in supramolecular
chemistry. [1,2]

bond type bond energy [kJ/mol]

ion-ion interaction 200 - 300 tetrabutylammonium chloride

4 - 120hydrogen bonding DNA

covalent bond 120 - 500 ubiquitous

80 - 340coordinative bond potassium ferricyanide

Na⊕ … [15]-crown-550 - 200ion-dipole interaction

K⊕ in benzenecation-π interaction 5 - 80

acetone5 - 50dipole-dipole interaction

benzeneπ-π interaction 0 - 50

argon4 - 20van-der-Waals interaction

example

An important class of supramolecules are the so-called mechanically interlocked mol-

ecules (MIMs), as indicated in Figure 1. These are held together by their interlocked

three-dimensional arrangement, thus representing a mechanical type of bond, though

additional intramolecular forces between subunits might exist as well. While catenanes

consist of two interlocking rings, rotaxanes are characterized by a linear molecule

(termed the axle) being threaded through a macrocycle (termed the wheel), without

spontaneous dethreading. All systems that have been studied in this thesis are marked

in red, together with a page reference to the study. Together with the work of Anneli

Kruve-Viil, who focused on the study of catenanes and knots, the work of our group

encompasses almost all types of supramolecular systems, and all types of MIMs, and

shows the generality of gas-phase supramolecular chemistry methods. A more detailed

and highly interesting presentation of mechanostereochemistry can be found in the

recent textbook of Stoddart and Bruns and related publications. [3,4]
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Figure 1: Overview over the different types of materials under study in supramolecular
chemistry. Recently, attention has shifted to the class of mechanically interlocked
molecules (MIMs) due to their applications as molecular devices. Types of systems
studied in this thesis are marked in red. My studies focused on (pseudo-)rotaxanes,
host/guest complexes and helicates.
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The mechanical bonding between axle and wheel provides a means to assemble new

molecular shapes in a modular fashion. In our group, rotaxanes and pseudorotaxanes

thus present a central focus in the development of new materials.

Recently, our group developed a divalent pentastable redox-switchable donor-acceptor

rotaxane, [5] and showed that a photoswitchable rotaxane can operate on solid sup-

port. [6,7] These materials are promising for applications as stimuli-responsive materials

and as a starting point for building molecular devices. Going along with these new

developments, an increased understanding of the structure and the non-covalent inter-

actions in these complexes is pivotal. With that aim in mind, our group has developed

several systems to study multivalent binding, including chelate and allosteric coop-

erativity effects. [8–11] In these studies, isothermal titration calorimetry (ITC) is used to

determine binding energies and to differentiate enthalpic and entropic contributions

to the multivalent binding interactions. By systematically varying the host and guest

systems in a double mutant cycle, detailed knowledge about the multivalent binding

interactions, including chelate and cooperativity effects, is obtained. [8–11]

In multivalent binding, several weak interactions add up to create the overall binding

event, the guiding principle that takes effect in many natural processes as well.

Due to the very nature of multivalent binding—with several weak interactions at differ-

ent locations—analysis in the solution state can be challenging. This is why our group
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attempts to extend our knowledge about non-covalent binding in the gas phase through

mass spectrometry and ion mobility spectrometry. We have recently summarized the

advantages of studying molecular containers with these gas-phase techniques. [12]

While X-ray crystallography and NMR spectroscopy are widely employed analytical

methods in supramolecular chemistry, electrospray ionization (ESI)-MS is continuously

increasing in importance as a key technique for the characterization of supramolecules

providing the three “S” advantages highlighted by McLafferty: specificity, sensitivity

and speed. [12] ESI-MS can be used to study the solution environment and has been

employed successfully in numerous studies including protein folding and enzyme

catalysis. [12] On the other hand, isolated ions are studied in high vacuum. Thus, prop-

erties and reactivity intrinsic to the isolated ion of interest can be investigated in the

absence of solvent. This is particularly advantageous for supramolecular systems as

fast guest/ligand exchanges would often occur in solution, thereby complicating the

analysis. For studying non-covalent interactions, the simplification provided by isolat-

ing the species of interest and stripping off the solvent environment not only makes

the experimental results easier to interpret but also facilitates the comparison with

electronic structure calculations that are typically carried out in the gas phase.

ESI is a very efficient ionization method, that can be used to ionize most of the systems

encountered in supramolecular chemistry. For very weakly bound complexes, cold-

spray ionization (CIS) is useful, where the sample solution and ion source are cooled,

thereby generating ions with lower internal energy to prevent early fragmentation. [13]

The efficiency with which ESI and its variants ionizes most classes of polar compounds

means that many supramolecular systems can be easily transferred into the gas phase.

Once the ion has been isolated in the high vacuum of the mass spectrometer, shown

in Figure 2A, a wide array of gas-phase techniques is available to study its structure,

dynamics and reactivity. Several MS/MS techniques (CID, IRMPD, BIRD, . . . ) may be

used to fragment the isolated species (B), thereby gaining insight into the connectivity

of the ion as well as the strength of intramolecular forces. In that regard, gas-phase

H/D-exchange (C) has to be mentioned, as it provides a way to study the dynamics of

the subunits contained in the supramolecule and the intercomponent binding between

them and was used in our group to reveal the hydrogen bonding and dynamic behavior

of supramolecular systems in the gas phase. [14–17]



16 Introduction

quadrupole m/z m/z

⟹

⟹

m/z m/z
CID, IRMPD, ECD, BIRD, ...

= deuterating agent
m/z

D

H

HH
H

H H

HH
H

H

parent ion

D

DD D

D D

D

DD
DDD

D

D

D

D D

DD
D

DH
D

H

D

D

D

D
D

D

DD

D

D

labile hydrogens

deuteration

D

DD
D

D

⟹

m/zm/z

⟹

parent ion intermediate HDX complete HDX

drift tube

large medium small
arrival time

Mass selectionA:

MS/MS fragmentationB:

H/D exchange (HDX)C:

Ion mobility spectrometry (IMS)D:

Figure 2: After isolation of a selected ion into the high vacuum of the mass spectrometer,
many different gas-phase techniques are available to study both structure and dynamics
of the isolated species.

Finally, ion mobility-mass spectrometry (IM-MS) is a rapidly developing field, since

commercial instruments have become broadly available lately. As shown in Figure 2D,

the analyte ions are pulled through a drift tube by an electric field. The drift tube is

filled with a buffer gas, such as nitrogen or helium. As the analyte ions collide with

the molecules of the buffer gas, their movement through the drift tube is slowed down.

Bigger ions collide with the buffer gas more often, thereby delaying their arrival at

the detector. As the result, information about the size of the ion is obtained from the

arrival-time distribution (ATD). This is an important improvement as isomers and
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different conformations can be differentiated that were formerly indistinguishable by

MS due to having the same m/z. This advantage has been exploited in the study of

many natural systems and many insights have been gained about the conformation of

biomolecules in the gas phase. [18–20] However, we feel that the advantages of IMS in the

field of supramolecular systems are largely unexploited, a gap that needs to be filled as

IMS greatly enhances the amount of information about the isolated gas-phase species.

Each of these modern mass spectrometric methods will be discussed in more detail in

the following methods section.
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C H A P T E R

2

Methods

2.1 Electrospray ionization (ESI)

Electrospray ionization (ESI) is a soft ionization method where analytes may be either

inherently positively or negatively charged ions or neutral molecules, in which case

ionization is achieved by attachment of ions from the solution (e.g. H+, Na+, Cl−)

or deprotonation during the ESI process. ESI belongs to the group of atmospheric

pressure (AP) ionization methods and allows for easy liquid chromatography-mass

spectrometry (LC-MS) coupling. It is a soft ionization method that is suited for the

analysis of large and non-volatile polar compounds such as proteins and DNA. [21,22]

Particularly convenient is the formation of multiply charged species, so that ions with

high molecular mass are shifted into a smaller m/z-range covered by most (cheaper)

analyzers. Furthermore, due to the low amount of fragmentation, interpretation of the

results, including determination of the molecular mass, is simplified considerably. These

advantages make ESI the ionization method of choice in many biological applications

including proteomics, metabolomics and glycomics. Another promising field is the

study of supramolecular systems, which is the topic of this work. Figure 3 explains the

working principle behind the ESI method. [22,23] Typically, a polar solvent (e.g. MeOH,

H2O, MeCN) containing the analyte is pumped through a capillary needle. A high

voltage source (1-5 kV) establishes an electric field between the needle and a plate with

an inlet into the mass spectrometer. Due to the strong electrical field the liquid is drawn

through the tip of the needle, forming a so called Taylor cone. From there, solvent

droplets containing the analyte ions M+ are emitted and subsequently accelerated in

the electric field towards the plate. On their way, solvent molecules evaporate from

the droplets, while the charge remains. As a result, the charge density on the surface

increases until the Rayleigh limit is reached. [21–23]
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There are two models by which the for-

mation of the free gas-phase ions can

be explained (see Figure 4). [24] In the ion

evaporation model (IEM), the droplets get

smaller until the field strength gets high

enough to directly emit the ion from the

solvent droplet into the gas phase. In the

charge residue model (CRM), the droplets

undergo evaporation up to a point at

which the force of Coulomb repulsion

at the surface overcomes the surface ten-

sion. [24] The droplet releases charge and

mass in a so called Coulomb fission. From

there, clusters of solvent and analyte un-

dergo further evaporation finally yielding desolvated gas-phase ions. Small ions are

liberated into the gas phase according to the IEM, while larger ions are formed as

described by the CRM. [24] One common adaptation of ESI is the so called Z-spray which

provides a more efficient and cleaner way of generating ions and separating them from

solvent and buffer molecules. [24,25]

In a conventional ESI source, ions travel along a straight line into the instrument, as

shown on the left side of Figure 5. Even though most of the neutral molecules will

diffuse to the edge of the spray cone and finally be absorbed by the vacuum system,

some solvent molecules still arrive at the orifice towards the mass analyzer, the so called

skimmer. The solvent molecules/neutrals deposit and can thereby block the skimmer
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hole. The Z-spray prevents this problem by sending the ions on a Z-shaped trajectory,

as illustrated on the right side of Figure 5. By use of this configuration, only analyte ions

enter the orifice of the mass analyzer, whereas neutral molecules are quickly removed

by the vacuum system. [25]

inlet to
ESI source

neutral solvent
evaporating

ion beam

skimmer

to analyzer

inlet to
ESI source

neutral solvent
evaporating

Z-shaped
ion beam

skimmer

to analyzer

extraction cone

Figure 5: Illustration of a normal ESI source (left) in comparison to the Z-spray ion
source (right).
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2.2 Ion mobility-mass spectrometry (IM-MS)

The rapid advances in ion mobility-mass spectrometry (IM-MS) are starting to have

a significant impact on the analytical laboratories worldwide. While the history of

plain ion mobility spectrometry (IMS) reaches back about 50 years, [26] the more recent

hyphenation of ion mobility with mass spectrometry greatly expanded the scope. The

combination of the well-known analytical advantages of high-resolution mass spectrom-

etry with the molecular size and shape information from the ion mobility dimension

results in an unprecedented analytical power. Applications span across a plethora of

very different fields such as small-molecule chemistry, pharmacology, proteomics, and

glycomics. [27–30]

2.2.1 Drift-tube ion mobility spectrometry (DT-IMS)

When ions are exposed to an electric field (see Figure 6), they are accelerated along the

field lines and thus guided trough the drift cell according to the equation

m · a = Eel · q, (2.1)

where m is the mass, a is the acceleration, Eel is the electric field strength and q is the

charge of the ion. This simple motion is distorted upon the addition of a buffer gas, as

collisions with molecules in the gas scatter the ions in random directions. Under the

assumption that the electric field is uniform, the ion cloud thus gains a constant velocity

along the field lines, simultaneously growing in size due to diffusion. This constant

velocity can be explained by the cancellation of two opposing forces, the electric field

force accelerating and the friction force due to collisions with the buffer gas deaccelerat-

ing the ions at equilibrium. [26,31,32] Thus, we obtain

vd = K · Eel, (2.2)

where vd is the drift velocity, Eel is the electric field strength and K is a proportionality

constant called the ion mobility.
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Figure 6: A: General principle of ion mobility spectrometry. Ions are accelerated in
an electric field inside the IMS cell. Big ions experience many collisions with the
buffer gas leading to a long drift time, while small ions experience fewer collisions
leading to a smaller drift time. B: The collision cross section (CCS) gives an instrument-
independent description of the size of an ion, that can be thought of as the rotationally
averaged shadow of the ion. C: The combination of mass spectrometry with ion mobility
spectrometry leads to the hyphenated technique IM-MS.

As K is dependent on the applied temperature and pressure, it is convenient to define

the reduced ion mobility K� such that

K� =
p
p�
· T�

T
· K, (2.3)

where p� = 1013 mbar and T� = 273 K so that K� is independent of the temperature and

pressure in use. [26,31] By use of equation 2.2 and the fact that vd = L · t−1
d , we obtain

td =
L

K · Eel
+ t0, (2.4)
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where t0 is the dead time of the system. We apply the fact that

Eel = U · L−1 (U const.), (2.5)

leading to

td =
L2

K ·U
+ t0, (2.6)

so that the ion mobility K can be calculated from the slope of the curve obtained by

plotting the drift time td against the reciprocal voltage U−1. [26,31]

2.2.2 The Mason Schamp equation

Given the reduced mass µ, the temperature T, the charge q · e and the number density

N (i.e. the number of buffer gas molecules per unit volume), the Mason Schamp

equation [30]

Ω =
3
16
·

√
2π
µkB T

· q e
N K�

(2.7)

allows for the calculation of the collision cross section σ from the reduced ion mobility

K�. The collision cross section Ω is a device-independent description of the size of a

molecule, that can be derived by theoretical models as well. [26,30]
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2.2.3 Travelling wave ion mobility spectrometry (TW-IMS)

In travelling wave ion mobility spectrometry (TW-IMS), a sequence of symmetric

potential waves is continuously propagating through a tube, thereby pulling ions

through the IMS system, as shown in Figure 7. The velocity by which an ion is propelled

along the wave depends on the ion’s mobility K, so that different species transit the

cell in unequal drift times. [33] The ion dispersion capability and good sensitivity have

made TW-IMS an attractive platform for structural biology and handling of complex

separation tasks.

Figure 7: Dynamic electric field propelling ions in a travelling wave IMS system.

Despite its successful commercialization, for example in the Waters Synapt implementa-

tion, the fundamentals of TW-IMS have been understood only qualitatively. Therefore,

CCS values can only be deduced from TW-IMS data via empiric multipoint calibration

(see section 6.6, appendix, for a detailed procedure) using ions of known mobility (for

example determined by DT-IMS). [33]

2.2.4 The collision cross section (CCS)

The simplest description of the collision cross section is given via the projection approx-

imation (PA), where the CCS is given as the shadow projected by imaginary buffer gas

rays hitting the molecular surface and rotationally averaging the result (see Figure 8A).

This procedure can formally be expressed in terms of the integral

ΩPA = N ·
∫ 2π

0

∫π
0

∫+∞
−∞

∫+∞
−∞ M(φ,ψ, x,y)dxdydφdψ, (2.8)
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Figure 8: A: In the projection approximation (PA), the CCS is defined as the rotationally
averaged "shadow" of the ion. B: In the exact hard-sphere scattering (EHS), the scattering
angle of the buffer gas molecule with the ion is taken into account. In particular, grazing
collisions and multiple collisions with the buffer gas can be taken into account. C: The
typical CCS interpretation workflow. After the ground state† has been calculated with a
suitable electronic structure method (often DFT), the CCS is predicted via PA, EHS, or
TM. The theoretical value may then be compared with the experimental value so that
the structure of the ion can be confirmed.

where we define

M(φ,ψ, x,y) =

 1 if a collision occurs

0 otherwise.
(2.9)

Here,φ is the polar angle, andψ is the azimuthal angle of rotation around the geometric

center, and N is a normalization constant. With increasingly higher resolution of the

IMS instrumentation, it was felt that a more elaborate description of the CCS value was

needed. The exact hard sphere scattering (EHS) method [34] assumes an infinite hard

wall potential between each atom of the ion and the buffer gas molecules. By taking the

scattering angle, θ, into account, grazing collisions and multiple collisions in concave

ions are treated, as illustrated in Figure 8B. Formally, the EHS method can be expressed

in terms of the integral

ΩEHS = N ·
∫ 2π

0

∫π
0

∫+∞
−∞

∫+∞
−∞ 1 − cos θ(φ,ψ, x,y)dxdydφdψ, (2.10)

that also shows the similarity of the approach to the PA method. An even more elab-

orate treatment is provided by the trajectory method (TM), where the collisions are
†Here and throughout the rest of the text the word ground state refers to the set of 3D coordinates~r of a
molecular structure for which the geometry optimization algorithm converged, meaning that the energy
E(~r) is at a local minimum. That is, the derivative of the energy with respect to the position of the atoms,
∂E
∂~r , is the zero vector and the second derivative matrix of the system, ∂∂E

∂r∂r
, also known as the Hessian

matrix, which describes the curvature of the PES, has all positive eigenvalues.
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explicitly modelled by means of a Lennard-Jones (LJ) potential. While the TM method

is generally expected to give the most accurate physical description, it has been noted

that the method is more sensitive due to the parametrization of the LJ potentials, [35] and

considering the many influencing factors (LJ parameters, buffer gas temperature, . . .)

the simplicity of the PA method leads to a higher transparency of the achieved accuracy,

so PA at the moment seems to be favorable in the small-molecule regime where multiple

collisions are neglectable.

Finally, it should be noted that the investigation of new algorithms for the prediction of

CCS values is still an active field of research and new methods such as the projected

superposition approximation (PSA) method [36] are expected to give high accuracy with

a minimal runtime cost in the future.

2.2.5 IMS for the differentiation of isomers

Due to the size and shape information provided by the CCS, many types of isomerism

may be distinguished via IMS. For example, IM-MS has been used to distinguish pep-

tide isomers. [37] Figure 9 shows several examples of isomers and conformers that exhibit

characteristic differences in their CCS value. In general, more compact ions correspond

to a smaller CCS.

linear spheric

57.3 Å2 53.6 Å2 54.8 Å2 55.9 Å2

cis trans

inclusionside-on

96.6 Å2107.0 Å2

Figure 9: Several examples of how CCS val-
ues differ between different forms of iso-
mers/conformers. CCS values reported re-
fer to PA calculations.
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2.3 Energy-resolved IMS

In a technique referred to as energy-resolved IMS, [38] ions are activated in the gas phase

via collision-induced dissociation prior to entering the drift cell. This way, it was shown

that isobaric carbohydrates components with CCS differences as little as 3% could be

resolved by their different stabilities. By controlling the supplied activation energy,

certain components can be selectively suppressed. [38] In this text, energy-resolved IMS

will generally refer to the idea of activating an ion via CID before the IMS cell, and

noting the effect of the activation on the ion’s drift time or CCS. As shown in Figure 10,

the principle of energy-resolved IMS can be used to study the unfolding of the ions in

the gas-phase. It should be noted that the ion will increase in size upon unfolding in

most cases. However, as the study of the "molecular lasso" in later chapters will show,

unfolding can also lead to a more compact structure of the ion.
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Figure 10: Principle behind energy-resolved IMS folding studies. Activation of the ion
induces successive unfolding of the ion. By monitoring the change in the CCS value
information about the structure of the ion can be deduced.
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2.4 Collision-induced dissociation (CID)

Collision-induced dissociation (CID) is one of the most important methods to fragment

ions in the gas phase for the purpose of MS/MS-experiments. CID is assumed to follow

a two-step mechanism. The precursor ion, (A+ B)+, is activated by the collision with a

neutral target gas, N, and subsequently fragments: [39]

(A + B)+ + N → (A + B)+∗ + N (2.11)

(A + B)+∗ → A+ + B (2.12)

CID processes can be classified into two categories. Low-energy CID occurs in the

1-100 eV range of collision energy and is observed in triple quadrupoles, quadrupole

ion traps (QIT) and FT-ICR instruments. High-energy CID happens in the keV range

and is seen in sector field and TOF instruments. [39]

2.4.1 Survival yield (SY) method

The survival yield (SY) is a convenient quantitative measure [40–43] to describe the effi-

ciency of fragmentation, and can be linked to the internal energy of the ion. [44] The SY is

defined according to [45]

SY =

∫
Ip∫

Ip +
∑
i∈1···n

∫
IF,i

, (2.13)

where
∫

Ip is the integral of the intensity of the parent ion, while
∑
i∈1···n

∫
IF,i is the

sum of the intensity integrals of all n fragment ions. The SY can be well described by a

sigmoid function (see Figure 11), given by the expression

SY =
a− b

1 + e(Ecoll−E50%
coll)/d

+ b, (2.14)

where a and b are empirical constants with values close to 1 and 0, respectively, while

Ecoll is the collision energy in the laboratory frame, and E50%
coll where the SY is 50%,

is also termed the characteristic collision energy (CCE). Finally, d is the width of the

steepest part of the sigmoid. [45]
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Figure 11: Graphical plot
of the SY against the col-
lision energy with equa-
tions for determination of
the CCE in both labora-
tory and center of mass
frame.

As shown in Figure 11, the applied collision vol-

tage U directly corresponds to the laboratory frame

energy via multiplication by the charge q of the ion,

thus giving the equation

E50%
lab = q ·U = e · z ·U. (2.15)

Similarly, the collision energy in the center-of-mass

frame, E50%
cm , is obtained via evaluating the equation

E50%
cm = E50%

lab ·
mn

mn + mp
, (2.16)

where mn is the mass of the neutral molecule used

as the collision gas and mp is the mass of the parent

ion. For a molecule to fragment within the time frame of the CID experiment, it needs

to uptake more internal energy than the activation energy for fragmentation to drive

the reaction sufficiently fast. This excess energy is called the "kinetic shift" and generally

increases together with the available degrees of freedom which are higher for larger

molecules. [46,47] Nevertheless, interesting conclusions can be drawn for isobaric species

or in other cases—where the internal degrees of freedom are different—by careful

comparison with electronic structure methods, [48] or by correcting the kinetic shift either

theoretically or experimentally. [49–52]



30 Methods

2.5 Infrared multiphoton dissociation (IRMPD)

Infrared multiphoton dissociation (IRMPD) occurs in two steps. After photoactivation

of the precursor ion, (A + B)+, the excited ion subsequently fragments: [53]

(A + B)+ + n · hν → (A + B)+∗ (2.17)

(A + B)+∗ → A+ + B (2.18)

Here, n is the number of photons absorbed and hν is the photon energy. After absorption

of the IR radiation, the excitation energy is quickly redistributed over all vibrational

degrees of freedom, and IRMPD is thus an ergodic process. Photoactivation is achieved

by the use of IR lasers. As the energy provided by these lasers is not high enough to

initiate dissociation, multiphoton processes are needed to effect dissociation. IRMPD

may be used for MS/MS experiments with QIT and FT-ICR mass spectrometers, as

these are able to store ions for longer time periods. [53]
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2.6 Gas-phase H/D-exchange (GP-HDX)

The common reagents for gas-phase H/D-exchange (GP-HDX) include the basic ND3,

neutrals D2O and CH3OD, as well as the acidic DCOOD and CH3COOD, among sev-

eral other reagents. [54]

Mechanistically, GP-HDX consists of several steps (see Figure 12A). After the substrate

ion (S) and HDX reagent (R) have formed a complex, a proton transfer has to take place,

with the direction depending on whether an acid or base is used as the HDX reagent.

Subsequent steps are isotope scrambling, transfer of the deuteron and finally dissocia-

tion of the deuterated substrate and protonated reagent. Because proton transfers are

required, the rate of the HDX depends on the difference in proton affinity (PA) between

substrate and reagent. [54]A difference higher than ≈ 85 kJ/mol usually prohibits any

HDX. Notable exceptions are amino acids and peptides which have differences in PA as

high as 200 kJ/mol and still exhibit HDX in the gas-phase.
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Figure 12: A: General mechanism of GP-HDX. B: Onium
mechanism. C: Relay mechanism.

To explain the HDX in amino acids

and peptides, two different mech-

anisms have been proposed: The

onium (see Figure 12B) and the relay

mechanism (see Figure 12C). [55] Basic

reagents engage in the onium mecha-

nism, while less basic HDX reagents

exchange via the relay mechanism. [54]

As detailed mechanistic knowledge

about GP-HDX is available, the

method developed into a useful tool

for probing the structure of ions in

the gas-phase across a wide range of

functional groups. [56]
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GP-HDX is commonly applied to biomolecules. [54,57–59] The secondary, tertiary and qua-

ternary structure of proteins can be studied. [60] The principle is illustrated in Figure 13.

Protons that are buried inside the protein are inaccessible for the HDX reagent and

will not exchange. Protons engaged in hydrogen bonding will also exchange slower.

Thereby, information about the three-dimensional structure of the biomolecule is ob-

tained. [54,57–59] One study reported a setup for GP-HDX in a travelling wave ion guide

for the study of protein conformations. [61]
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Figure 13: Principle how the secondary, tertiary and quaternary structure of proteins
can be elucidated via HDX. Inner protons and protons engaged in hydrogen bonding
exchange slower than exposed hydrogens.

As noted before, synthetic supramolecular systems can be seen as mimics of biologi-

cal systems with deep functional and structural similarities. For example, hydrogen

bonding is a pervasive organization principle in natural systems and also used in many

synthetic supramolecular systems. Accordingly, detailed insights into the hydrogen

bonding of supramolecular systems can be obtained using a similar methodology as in

protein conformation studies.

This is nicely illustrated by several earlier studies of Henrik Winkler, including a one-

dimensional Grotthuss mechanism in resorcinarene and pyrogallarene capsules, [62]

gas-phase organocatalysis, [17] and the dynamic motion of building blocks within ions in

the gas-phase. [14,15]

The setup for GP-HDX experiments at our Fourier-transform ion cyclotron resonance

(FT-ICR) instrument was described in a recent review. [54]
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2.7 Instrumental setup

Travelling-wave ion-mobility mass spectrometry (TW-IMS) measurements were per-

formed with a Waters Synapt G2-S HDMS quadrupole TW-IMS time-of-flight mass

spectrometer (Manchester, UK) utilizing an electrospray ionization (ESI) source. [63] The

instrumental setup is shown in Figure 14 (top). Take note of the trap- and transfer-cells,

that are located before and after the IMS cell, respectively. Because of this flexible setup,

it is possible to either excite drift-time selected components (activation in transfer cell),

or to examine the influence of collisional activation on the size and shape of the ion

(activation in trap cell). GP-HDX experiments were performed using the Varian IonSpec

QFT-7-FT-ICR-MS, shown in Figure 14 (bottom). [54]
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Figure 14: Top: Instrumental setup of the Waters Synapt G2-S HDMS TW-IMS time-
of-flight mass spectrometer. Redrawn by the author from the description given in the
instrument manual. [64] Bottom: Instrumental setup of the Varian IonSpec QFT-7-FT-
ICR-MS instrument used for gas-phase H/D-exchange reactions.
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2.8 DFT in gas-phase supramolecular chemistry

The work presented here has been complemented with electronic structure calculations.

Mostly, the density functionals B3LYP, M06-2X and the semiempirical methods AM1 and

PM3 have been employed to obtain suitable molecular structures for CCS calculations.

In this section, the theoretical background of density functional theory (DFT) and how

it relates to other electronic structure methods is briefly presented.

Generally, ab initio electronic structure methods base their description of electronic

systems on fundamental theoretical principles, such as the electronic Schrödinger

equation [65]

ĤΨ = EΨ. (2.19)

Here, Ψ is the electronic wave function, E is the exact electronic energy and Ĥ is the

non-relativistic electronic Hamiltonian in the Born-Oppenheimer approximation. As

a direct solution is computationally not feasible, suitable approximations are used to

reduce the computational complexity of the problem. In the Hartree-Fock (HF) method,

the electronic wave function Ψ is approximated by a single Slater determinant [66,67]

Ψ = ||ψ1 ·ψ2 · · ·ψn||, (2.20)

where the spatial part of the spin orbitals are expanded as a linear combination of

gaussian-type basis functions φj of the form

ψ
spatial
i =

∑
j

cij · φj (2.21)

with suitable expansion coefficients cij. [66,67] This means that electron correlation—the

instantaneous interaction between different electrons in the system—is neglected. There-

fore, even if a complete basis set was employed, the obtained energy, the so called HF

limit, would still lie higher than the exact solution. This difference between the HF limit

and the exact energy is called the correlation energy of the system. [68] The fundamental

cause of this energy is the repulsive electron-electron interaction that occurs if two

electrons occupy a nearby space and is not treated in the effective HF potential. To

remedy these shortcomings, a frequently applied electronic structure method—that

relies on its own theoretical foundations—is density functional theory (DFT). In DFT, it
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is assumed that all properties of the system can be expressed in terms of the electron

density ρ(~r). While the electronic wavefunction depends on the x-,y-, and z-coordinate

of all n electrons—3n coordinates in total—the electron density ρ(~r) can be expressed in

terms of the three coordinates~r = x, y, z in space, only. So by formulating the problem

in terms of the electron density, a large reduce in the computational cost is achieved. [68]

In 1964, the Hohenberg-Kohn theorems were first formulated, [69] that would later form

the foundation of DFT, as it is known today. Briefly, the Hohenberg-Kohn existence

theorem states that there exists a unique functional E such that

E [ρ(~r)] = Eelec. (2.22)

Here, Eelec is the exact electronic ground state energy of the system. Furthermore,

Hohenberg and Kohn showed that the electron density obeys the variational principle,

meaning that the exact electronic ground state energy is the global minimum. [70] Both the

existence and variational Hohenberg-Kohn theorems together constitute the theoretical

foundation of DFT. [70]

While a function can be seen as a map from one scalar to another scalar value, a

functional maps a function to a scalar quantity. Here, the function ρ(~r) depends on the

spatial coordinates~r, while the energy E is a functional of the density ρ(~r). Kohn and

Sham postulated that the functional can be expressed in the general form [68]

E [ρ(~r)] = Te [ρ(~r)] + Vne [ρ(~r)] + Vee [ρ(~r)] + Exc [ρ(~r)] , (2.23)

where Te is the kinetic energy of the non-interacting electrons, Vne is the nuclear-

electron attraction, while Vee is the classical part of the electron-electron repulsion.

The last term Exc is the exchange-correlation functional that takes all other aspects of

the real system into account. Then, in the Kohn-Sham procedure, it is solved for the

orbitals χi, from fictional non-interacting partials, that minimize the energy by solving

the pseudo-eigenvalue equations

ĥKSi χi = Eiχi, (2.24)
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in a fashion very similar to the Hartree-Fock-Rothaan-Hall method. [67] Here ĥKSi is a

single-particle Hamiltonian, and we express the density in terms of the fictional orbitals

as [71]

ρ(~r) =
∑
i

(χi)
2. (2.25)

The key point is that for a similar computational cost as HF, the energy obtained in DFT

includes electron correlation. [68] In principle, DFT could give the exact

ground state energy if the exchange correlation term was known.
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Figure 15: Illustration of the accuracy
achieved with different methods of
DFT.

However, as the exact form of the functional

Exc remains unknown, a multitude of different

approximations have been suggested. These

can be seen as climbing a ladder on the ac-

curacy scale, as illustrated in Figure 15. [72,73]

Beginning with local density (LDA), the accu-

racy can be systematically improved reaching

near chemical accuracy (±1 kcal/mol). [72–74]

For the exchange term, Becke’s method is often

employed. [75] For the correlation term, a func-

tional by Lee, Yang and Parr is often used. [76]

Hence the acronym BLYP is used. Besides

pure DFT methods (BLYP, VWN), hybrid-DFT

methods are used (B3PW91, mpW1k), where a

mixing with HF is included. For organic systems, one of the most popular is the B3LYP

hybrid functional. This includes the Becke exchange and the LYP correlation functional

and is of the form [77,78]

EB3LYP
xc = (1 − a)ELSDAx + aEHFx + b∆EBx + (1 − c)ELSDAc + cELYPc , (2.26)

where LSDA is the acronym for local spin density approximation. The three coefficients

a, b, c are responsible for the naming of this functional, and are fitted to empirical data.

A relatively recent development are the meta hybrid functionals that include terms

depending on the kinetic energy density and HF exchange. [77] One popular meta hy-

brid functional is M06-2X developed by Y. Zhao and D. G. Truhlar. [79] M06-2X shows
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Table 2: Overview over DFT studies/benchmarks on different types of non-covalent
interactions. A general overview can be found in [80].

type of interaction set size refs

crown-ether alkali cation complexation 5 [81]

crown-ether ammonium complexation >10 [82],[83]

dispersion 10 [84],[85]

dispersion in hydrocarbons 12 [86]

dispersion in heavy-atom hydrides 28 [87]

hydrogen bonds 66 [84],[88]

halogen, chalcogen and pnictogenbonds 30 [89]

charge transfer 11 [90],[91]

a high performance in benchmarks of thermodynamical properties (dissociation en-

ergies, ionization energies, electron and proton affinities, . . . ), as well as π-systems

and non-covalent interactions. [79,92] Hence, M06-2X is a promising functional for use in

supramolecular chemistry and in particular in the prediction of ground state geometries

for CCS calculations. A similar accuracy is achieved with the TPSS/TPSSh (hybrid)

meta-GGA functional, [93] for which state of the art accuracy has been reported in the

reproduction of the thermochemistry of crown ether ammonium complexes. [82]

The treatment of non-covalent interactions with DFT may even approach chemical

accuracy provided that the right functionals and a sufficiently large basis set is used.

The Minnesota functionals already treat dispersion from the parametrization step of the

functional. [94] In other density functionals a dispersion correction, such as Grimme’s D3

model, [87] should be employed. [95,96] Table 2 gives an overview of benchmarks for differ-

ent types of non-covalent interactions. Further information on the theoretical treatment

of non-covalent interactions with DFT can be found in the provided references.

For the computationally assisted interpretation of mass spectra, very large databases

have been collected for electron ionization (EI), [97,98] out of which common fragmenta-

tion pathways could be deduced. [99,100] This allows the operator to interpret EI spectra by

database look-ups as well as rule-based spectra simulation. [101,102] For collision-induced

dissociation (CID), the amount of data available is comparably small. One reason is the

influence of many parameters on the final spectrum, so that it is difficult to compare
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CID spectra between instruments and even laboratories. [97,103] Even though a standard-

ization of CID that supports database comparisons was proposed, [104] and common

fragmentation pathways of some compound classes have been identified, [105–108] there

is still no unified way for the computer-assisted interpretation of CID spectra. [108]

As of today, the only computational assistance available to the CID operator are elec-

tronic structure calculations that can be used in different ways to predict fragmentation

pathways. [97]

DFT was applied to rationalize spectra of peptides and proteins. [109,110] In the field of

small molecules, the references are comparibly scarce. Characteristic losses of ammo-

nia, water, and carbon monoxide from aromatic molecules with amino, hydroxyl, and

carboxyl groups have been identified by DFT. [111] In particular, the rate-limiting step

for these losses under CID conditions were calculated so that conclusions about the

reaction mechanism of these neutral losses could be drawn. [111] Similarly, DFT was used

to explain carbon monoxide losses in the proton adducts of five-membered lactons. [112]

The important observation common to all these DFT studies is that the protonation

site directs the subsequent fragmentation in its proximity. [97] The bond length changes

induced by protonation were directly linked to the observed fragments, for which both

DFT and semiempirical methods may be used. [113,114]

Recently, an important step towards the fully-automated prediction of EI spectra has

been realized. [115,116] While the fragmentation mechanisms of EI differ from CID, there

remains the hope that a fully automated prediction of CID spectra can be realized

in the near future, maybe even including rule-based approaches that do not rely on

comprehensive databases. [108] A software-assisted CID spectra simulation would need

to address both kinetic and thermodynamic aspects in the implementation of the pre-

diction algorithm. [97]

Similar questions as discussed above for CID also arise in the computational assistance

of IM-MS data. In particular, the automated prediction of CCS values of a given analyte

would be highly desirable from a practical viewpoint.

At the moment, explicit modelling of the molecule with a suitable electronic structure

method is still necessary. The obtained ground state geometry is then used as input to

the CCS prediction routine.

DFT was used for the interpretation of IM-MS studies for diverse systems including



39Methods

catechin epimers, [117] Tröger bases, [118] host/guest complexes, [119,120] protonated water

clusters, [121] tripeptides, [35] and even 20-residue peptides. [122] Alternatively, semiem-

pirical calculations have been employed including the coordination chemistry of ter-

pyridines, [123] chiral hexaimine macrocycles, [124] and oligorotaxanes. [125] The theoretical

underpinnings of these semiempirical procedures are the topic of the next section.
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2.8.1 Semiempirical calculations

While DFT is the method of choice for many questions of modern computational

chemistry, it’s scaling of O(n3), where n is the number of electrons of the system, still

imposes restrictions on the system size. [126] Although better scaling DFT methods

are currently in development, [127] semiempirical methods still remain a choice for the

qualitative treatment of very large organic systems.

Semiempirical methods are based on a similar theoretical foundation as HF, but use a

minimal basis set and approximate or completely neglect terms such as inner electrons

or the two electron integral. To correct for the errors introduced by these approximations,

parameters are introduced that are fitted either to experimental data or ab initio methods.

The big advantage is the low computational cost and the resulting short runtime of

semiempirical calculations. However, the obtained results are only representative when

the treated system is covered by the parametrization of the method. [128]

Most semiempirical methods are based on the modified neglect of differential overlap

(MNDO). [129] Here, the two electron integral of each atom type is fitted with respect to

empirical properties such as enthalpy of formation, geometry, dipole moment or first

ionization energy. In zero differential overlap (ZDO), all products of basis functions that

locate the same electron at different atoms are neglected. [130]

The Austin Model 1 (AM1) developed by M. J. S. Dewar is based on MNDO but employes

a modified expression for the nuclei-nuclei repulsion term. [131] This modified expression

includes a (physically incorrect) attractive interaction between nuclei to simulate van

der Waals forces. An advantage of AM1 is that hydrogen bonding is treated to some

extend and that enthalpies of formation are more accurate than in MNDO. [130]

James Stewart developed the Parametric Model 3 (PM3) which uses a Hamiltonian that

is very similar to AM1, but bases the parametrization on a broader number of molecular

properties. [132] This difference in parametrization allows PM3 to treat hydrogen bonds

comparably well, although inter- and intramolecular interactions are still exaggerated

in some cases (e.g. the hydroxyl group in 1-pentanol is strongly attracted to the terminal

methyl group). [130]

Despite these caveats, there is an ample amount of reference studies on the use of

semiempirical methods in mass spectrometry to guide new investigations. [114,116,133–137]
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C H A P T E R

3

Summarized Results
This chapter summarizes the main results of my thesis, which have been published in

five peer-reviewed papers, including collaborations with the groups of Markus Albrecht

from RWTH Aachen, Kari Rissanen from University of Jyvaskala, Beate Paulus and

Biprajit Sarkar from Freie Universität Berlin.

The aim of my dissertation project was the study of supramolecular complexes with

advanced mass spectrometric techniques. Throughout the five studies reported here,

the two major aspects are the differentiation of different types of isomers and the inves-

tigation of intramolecular forces (as illustrated in Table 3).

Table 3: Overview over the five main projects of my dissertation, and the different
types of isomerism and interactions investigated.

Study Isomerism/Structural Aspect Interaction

1. chiral recognition diastereomers/enantiomers hydrogen bonding

2. azobenzene photo-
    isomerization

(E)/(Z)-photoisomers hydrogen bonding

3. molecular lasso mechanoisomers crown-ether ammonium
complexation / hydrogen 
bonding, TTFn+/NH3R

+-
charge repulsion

4. oligorotaxane conformers/mechanoisomers crown-ether ammonium
complexation, TTFn+/TTFn+-
charge repulsion

5. titanium helicates monomer/dimer-equilibrium dispersive interactions,
solvent effects
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To gain the necessary structural details needed to identify isomers or underlying in-

tramolecular/intermolecular non-covalent interactions, I employed a combination of

several mass spectrometric techniques, as shown in Table 4. All three methods can be

used to investigate both isomerism and underlying non-covalent interactions.

Table 4: Overview of how modern mass spectrometric methods can reveal information
about isomerism and non-covalent interactions.

Method Isomerism Interaction

Ion mobility-mass
spectrometry (IM-MS)

differences in drift time/CCS TTFn+/TTFn+-charge repulsion
increases CCS, stronger hydrogen
bonding may affect CCS

Collision induced
dissociation (CID)

differences in stability and
fragmentation pathways

stronger hydrogen bonding
increases stability of ion

Gas-phase H/D
exchange (GP-HDX)

differences in exchange rate
and number of exchangeable
protons

hydrogen bonding influences
exchange rate, strong hydrogen
bonding may completely
inhibit any GP-HDX

In my initial first-author study, [138] chiral BINOL-based crown-ether ammonium com-

plexes were investigated. Chirality plays a fundamental role throughout chemistry,

biology, and pharmaceutics, as the three major building materials of life— proteins,

nucleic acids, and polysaccharides— are based on chiral monomers so that recognition

events in living organisms always occur in an intrinsically chiral environment. Hence,

two enantiomers of the same drug can display vastly different pharmacological effects.

Thalidomide (Contergan) is the most prominent example, where the (R)-enantiomer

has the desired anti-nausea effect, while the (S)-enantiomer is teratogenic, although

quick in vivo racemization is possible. [139] Still, in the past decades, thalidomide has

undergone a remarkable comeback from a dreadful drug inducing birth defects (due to

its quick in vivo racemization) into an effective therapy for treating leprosy and multiple

myeloma. [140]

While plain mass spectrometry in itself cannot distinguish enantiomers as they have

the same m/z-ratio (isobaric), several approaches have been suggested to implement

enantioseparation in MS by the formation of diastereomeric non-covalent complexes.

In a seminal publication by Sawada, [141] it was established that enantioselectivity can be
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achieved in fast atom bombardment (FAB)-MS by the relative peak intensity method

on diastereomeric non-covalent complexes. This approach was extended towards gas-

phase reactions of cyclodextrin complexes. [142] Another important example is Cooks’

kinetic method, which is based on the collision-induced dissociation (CID) of cop-

per/amino acid complexes, among several other systems. [143–148] Another approach

towards gas-phase enantiodifferentiation is a modification of classical ion mobility-

mass spectrometry (IM-MS). As shown in Figure 16 (IA), neither mass spectrometry

nor plain IM-MS differentiate between enantiomeric ions. The underlying reason be-

ing that both experiments are inherently achiral, so that no enantioseparation can be

achieved. However, addition of (S)-2-butanol to the buffer gas affords a chiral medium

(see Figure 16 (IIA)), that differentiates between enantiomeric ions by drift time (Fig-

ure 16 (IIC)). [149] Another strategy again relies on non-covalent complex formation

between both enantiomeric ions and a chiral host molecule H*: After formation of

diastereomeric complexes G(R) ⊂ H* and G(S) ⊂ H*, both diastereomeric ions are physi-

cally different and therefore also correspond to different drift times.

IMS cell

N2 or He
buffer gas
(achiral)

(R)

(S)

IA

m/z

(R) (S)

(R) (S)

IB

drift time

IC

IMS cell

(S)-2-butanol
buffer gas

(chiral)

(R)

(S)

IIA

m/z

(R) (S)

(R) (S)

IIB

drift time

IIC

IMS cell

(R)

(S)

IIIA

m/z

(R) (S)

(R) (S)

IIIB

drift time

IIIC

H*

H*

H* H*

H* H*

N2 or He
buffer gas
(achiral)

Figure 16: Principle behind chiral IMS.
IA: An achiral buffer gas cannot differen-
tiate between enantiomers, so no enantio-
differentiation occurs in neither MS (IB) nor
IMS (IC). II: A chiral buffer gas may dif-
ferentiate enantiomers, so that a splitting
into a pair of peaks is observed in the ATD
(IIC). III: Non-covalent complexation of the
analyte enantiomers with a chiral host H*
will lead to diastereomeric complexes, that
are physically different and hence appear as
separate features in the ATD (IIIC).



44 Summarized Results

Three different scenarios of G* ⊂ H* are possible: 1) The size difference between both

complexes is too small to be resolved at all, and a single feature is observed in the

ATD. 2) The size difference is large enough to baseline-separate both ions, in which case

both diastereomers are clearly identified, and may also be quantified directly via peak

integration (after prior calibration with reference standards).

ee
 / 

%

drift time

(S)

H*

H*

(R)

line of 
centroids 

Figure 17: Graphical illustration of
the systematic drift time shifts ob-
served for small size differences be-
tween diastereomeric host/guest
complexes. In these cases, the
centroids of the gaussian peaks
will gradually shift between the
drift time values of clean enan-
tiomers, such that there is a di-
rect linear mapping between the
centroid drift time and the enan-
tiomeric composition, as for exam-
ple expressed in terms of the ee.

3) The size difference is too small to allow for

baseline resolution of both features, but is still

detectable. In this case, a single peak will be

observed in the ATD, of which the centroid will

experience an ee-dependent shift.§ This special

scenario is depicted in Figure 17. It turns out

that there is a direct linear map between the

centroid drift times of the gaussian peaks and the

enantiomeric composition of the sample. Hence,

the ee can be directly obtained from the centroid

drift time after prior calibration. The centroid of a

peak in an ATD is obtained via the weighted sum

∑
i

Ai · td,i ,

where i is the bin index, A denotes the abundance

(i.e. ion count) at bin i, td,i denotes the drift time

of bin i. What makes this approach especially

interesting is the fact that potentially very small

structural differences can be studied of a mass-selected component contained in a com-

plex multi-component mixture.

To test this approach in practice, I designed a TW-IMS study of crown-ether ammonium

complexes.

§ Where ee =
∣∣∣∣ [R] − [S]
[R] + [S]

∣∣∣∣, where [R], [S] is the concentration of the two enantiomers, respectively.
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Figure 18: Overview of the two BINOL based 24-crown-7 ethers (R)/(S)-1 and
tetracarboxyl-18-crown-8-ether (S)-6, and differently substituted amino acids 2-5. [138]

As shown in Figure 18, this study examined two BINOL based 24-crown-7-ethers

(R)/(S)-1, as well as 18-crown-6-ether (S)-6 as hosts, and differently substituted amino

acids 2-5 as guests.

Table 5 shows the collision cross section values measured for each of these crown-

ether/ammonium complexes. A clear observation is that the homochiral complexes

(e.g. (R)-2+(R)-1) exhibit smaller CCS values than the corresponding heterochiral com-

plexes (e.g. (S)-2+(R)-1). Furthermore, the CCS difference between homo- and heterochi-

ral complexes, ∆Ω, successively increases with a bigger substituent size

Guest Ωhomochiral/Å
2
Ωheterochiral/Å

2
∆Ω/Å

2

2 205.0 205.8 0.8± 0.1

3 194.4 194.7 0.3± 0.2

4 215.2 216.7 1.5± 0.1

5 211.4 211.7 0.3± 0.2

Table 5: Overview of CCS values of homochiral and
heterochiral complexes of 1 with differently substituted
guests. Both small substituents and removal of the
COOH hydrogen donor group lead to a drop in the
CCS difference.

and can be understood

by considering that larger

substituents will also in-

duce larger size differences

geometry-wise. However,

for the large substituent in

guest 5, the CCS difference

is comparably small.
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In the study, it is shown that the reason for this phenomenon—that methyl esterification

drastically lowers ∆Ω in comparison to the free carboxyl group—lies in the hydrogen

bonding between the crown ether host and the free carboxyl group in the guest. Gas-

phase H/D-exchange (GP-HDX) experiments were performed, that further support the

existence of hydrogen bonding of the carboxyl group to the crown ether host.

Seeing the tremendous success of amino acids in mass spectrometry-chiral recognition

studies, [150] the observation that the free carboxyl group seems to have a strong influence

on the enantiodifferation is very interesting. Indeed, while a vast amount of research

has been performed on chiral recognition in the gas phase, [151,152] an understanding of

the exact interactions responsible for the recognition often remains elusive. As such,

seeing that both targeted methyl esterification and gas-phase H/D-exchange reveal the

influence of a single hydrogen bond on the enantiodifferentiation provides a new handle

on understanding the molecular forces underpinning gas-phase chiral recognition.

Finally, the question was addressed if the phenomenon of gradually shifting centroids

illustrated in Figure 17 could be used for ee quantification. The best results for this

method of ee quantification were obtained with tetracarboxyl-18-crown-6-ether 6. As

shown in Figure 19, the small shift of the centroid drift time (left) can indeed be directly

linearly correlated to the ee of the sample (R2 > 0.986). So the study nicely illustrates

that not only non-covalent interactions can be unveiled, but that the accuracy of ee-

quantification is already at a practically useful level: even small structural differences

can be reliably investigated with the "centroid method".
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Figure 19: Systematic change in drift time (left) observed for complexes of (S)-18-crown-
6-tetracarboxylic acid 6 and varying enantiomeric composition of a (R)/(S)-2 mixture,
and ee quantification (right). Errors correspond to five measurements and two standard
deviations. [138]
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In my second first-author publication, [153] I studied the photoisomerization of a 4,4’-

diamido-azobenzene model system. The photoisomerization of azobenzene function-

alized materials has a rich history as a versatile tool to drive controlled molecular

motion, [154–156] thereby providing exciting opportunities for dynamically responsive

molecular systems and materials. [157–160] However, connected with this increased inter-

est in the synthesis and potential applications of photoswitches, there is also a need

for the development of new analytical methods to reveal photoresponsive molecular

behavior.

Naturally, the question arised if the approach for seeing small structural differences of

the first study could be extended towards other systems. So the second study illustrates

how TW-IMS can provide valuable insights into the dynamic behavior of azobenzene

photoswitches, but also highlights the current limitations.

As in the case of enantiomers considered in the first study, mass spectrometry cannot

differentiate between different photoisomers, as the isomeric ions have the same sum

formula and are thus isobaric (having the same mass). However, due to the additional

size information offered by IMS (see Figure 20A), it is possible to distinguish isomers by

IM-MS. As discussed in section 2.2.5, it would generally be expected that cis-isomers

are more compact than the corresponding trans-geometry.

A recent DT-IMS study [161] reported that (E)- and (Z)-isomers of an azobenzene function-

alized dendritic bolaamphiphile could only be differentiated by IMS in the disodium

adduct M+2Na⊕. In case of the protonated ion, the photoisomers could not be resolved

and only a single feature was observed in the ATD.

In agreement with earlier IMS studies on photoisomerization, [123,161–163] we propose the

following explanation: Protonation of the azo group reduces the barrier of rotation

around the N=N bond, leading to a quick thermal backrelaxation (Z)→(E), as illus-

trated in Figure 20B. In consequence, only the thermodynamically favored (E)-isomer

is observed in the ATD. In an attempt to test this hypothesis, the author devised three

azobenzene model systems 1-3 (see Figure 20C), of which only 1 features a basic group

at the side chains, while 2 and 3 are protonated at the central azo group (see Figure 20C).

Thus, if the mechanism of thermal backrelaxation proposed in Figure 20B is indeed

correct, it would be expected that resolution of the photoisomers is only possible for 1,

while 2 and 3 would yield a single feature in the IMS experiment.
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Figure 20: A: While classical mass spectrometry cannot differentiate between differ-
ently shaped ions, photoisomers can be directly distinguished by differences in the
drift time in the IMS experiment. B: Proposed mechanism of fast thermal relaxation in
azobenzenes upon protonation of the azo group. C: To test this hypothesis, a diamido-
azobenzene model system 1 was developed. The secondary amine group provides
a site for stable charge formation, thus preventing the protonation of the azogroup.
Additional control experiments were performed on systems 2 and 3, as protonation here
occurs preferentially at the azobenzene group. Copyright Wiley-VCH Verlag GmbH &
Co. KGaA. Reproduced with permission. [153]
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161

The UV-VIS spectrum of 1 features the typical optical transitions observed for diamido

azobenzenes. [164,165] Furthermore, the thermal relaxation half life of t1/2 ≈ 540 min. was

found to be suitable for IMS analysis. To ascertain that the protonation occurs at the

amino moiety, collision-induced dissociation (CID) experiments were performed, as

described in section 2.4. Bond cleavages adjacent to the ammonium groups explain the

formation of all fragments with major intensity. Most prominently, formation of neutral

styrene and primary ammonium ions is observed via 1,2-elimination.

By use of the survival yield (SY) method, the gas phase stability of an ion is determined

in terms of the characteristic collision energy (CCE). Further details of this method

are described in section 2.4.1. By the SY method (see Figure 21), (Z)-1 was found to

be ∆V ≈ 1.5 V more stable than (E)-1. This is surprising, as the stability trend in

solution is reversed. The enthalpy of isomerization for plain azobenzene was found

to be ∆Hisom.
(
(Z) → (E)

)
= −(49 ± 1) kJ/mol by reaction-solution calorimetry, [166]

so, at first glance, a similar situation would be expected for the gas-phase as well. To

rationalize this surprising finding, we postulated a proton-bridged hydrogen bond in

(Z)-1. To test this hypothesis, gas-phase H/D exchange (GP-HDX) experiments were

performed. As shown in Figure 22A, it is observed that (Z)-1 exchanges slower than

(E)-1, i.e. k(E)/k(Z) ≈ (2.5± 0.4), which is in line with the proposed ionic hydrogen bond

in the (Z)-isomer. To further support this interpretation, semiempirical calculations

were performed at the PM3 level of theory. [132] As shown in Figure 22B, the (Z)-isomer

is indeed predicted to be about ∆E ≈ 15 kJ/mol more stable, and the hydrogen bond is

A (E)-1 (Z)-1B

Figure 21: Survival-yield (SY) method for the determination of the characteristic col-
lision voltage (CCV). A: SY-plot of (E)-1+H⊕. B: SY-plot of (Z)-1. Surprisingly, the
gas-phase stability of (Z)-1+H⊕ is higher than that of (E)-1+H⊕. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission. [153]
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Figure 22: A: Gas-phase H/D-exchange experiment of (E)-1+H⊕ and (Z)-1+H⊕ with
MeOD, which both follow a pseudo-first-order reaction. A faster exchange is observed
for (E)-1+H⊕ (k(E)/k(Z) ≈ 2.5 ± 0.4). B: Modelling of the gas-phase stability of both
photoisomers using the semiempirical PM3 method. C: Lowest energy conformer of
(Z)-1. The proton bridge (N⊕–H · · ·O = C) is highlighted. Copyright Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission. [153]

clearly located in the ground state†molecular structure minimum (see Figure 22C). With

this good understanding of the protonation site and intramolecular stabilization of (Z)-1

by ionic hydrogen bonding, we turned our attention to the ion mobility experiments.

Given a 1:1-mixture of (Z)- and (E)-1, as shown in Figure 23A, the IM-MS experi-

ment yields two peaks in agreement with the initial hypothesis. The drift times of

td(Z) ≈ 5.2 ms and td(E) ≈ 7.1 ms correspond to CCS values of Ω(Z) ≈ 151 Å
2

and

Ω(E) ≈ 188 Å
2

after polyalanine calibration. This is in good agreement with theoretical

results obtained by CCS predictions, either obtained by the more conventional trajectory

†See footnote on page 25 for a clear definition of ground state in this context.
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Figure 23: A: Ion mobilogram of a 1:1-mixture of both photoisomers of 1, featuring two
peaks that correspond to (Z)-1+H+ and (E)-1+H+. B: Theoretical collision cross sections
of both photoisomers obtained using the projection approximation on a molecular
dynamics simulation (simulation time: 100 ps; time step: 1 fs; using the AMBER force
field, [167] and verlocity verlet as implemented in Gabedit. [168]). Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission. [153]

method (TM) approximation, or by means of a molecular dynamics (MD) simulation 7→

projection approximation (PA) pipeline. Finally, the question was investigated wether

the integration obtained from both peaks in the ATD corresponds to the photoisomer

content. For this, mixtures of different (E)/(Z)-isomer ratios were generated by mixing

irradiated and non-irradiated 1 in defined amounts. The integral ratio of both peaks

properly reflects the photoisomer content with a good linear correlation (R2 > 0.978)

that is at a practically useful level. An increase of the trap voltage to induce collisional

activation of the ions before entering the IMS cell does not have any observable effect on

the isomer ratio. Hence, as long as the activation remains in a reasonable range (Utrap <

15 V), no collision-induced isomerization occurs under typical ESI conditions. Upon

several cycles of photoswitching, both TW-IMS monitoring and UV-VIS monitoring

give comparable results. Hence, quantification of photoisomers can also be reliably

performed with this method.

As the ionization efficiency between both photoisomers differ, it is necessary to perform

a calibration with known (E)/(Z)-ratios. However, where relative information is of

interest, as for example when first-order processes are to be monitored, no calibration

is necessary. To take a concrete example, the determination of first-order thermal

relaxation processes is independent of the intensity scale. Here, it would be directly

possible to infer the thermal relaxation rate from the integration ratio in the ATD.
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The two prior studies show that both very small structural differences (diastereomers)

and dynamic properties (photoisomers) can be studied by TW-IMS, but the question

remained how the method would perform on larger and more complex molecules.

In my third publication, as the second-author, [169] I performed the IMS measurements in

a project with Hendrik Schröder, who developed a new redox-switchable pseudo[1]-

rotaxane, that has a lasso-type structure based on crown-ether ammonium complexation.

In the wheel of this pseudo[1]rotaxane, a redox-active tetrathiafulvalene (TTF) unit

was incorporated (see Figure 24A) that can be reversibly oxidized to the radical cation

TTF·+ and dication TTF2+. It was recently shown that the redox switching of the TTF

unit can be used for the expulsion of the ammonium thread in crown-ether ammonium

pseudo[2]rotaxanes. [170]

A B

C D

Figure 24: A) Synthesis of lasso-type pseudo[1]rotaxane 2 from Boc-protected precur-
sor 1. B) Normalized cyclic voltammograms (100 mV · s−1, CH2Cl2, 1 mM, 298 K) of
precursor 1 (red) and pseudo[1]rotaxane 2 (black) with NBu4PF6 (0.1 M) as electrolyte.
C) Normalized arrival time distributions (ATDs) in the IM-MS experiment of the increas-
ing oxidation states 0,+1,+2 of 2. D) Normalized ATDs of the signal for 2 (m/z 1008) after
collision-induced dissociation (CID) experiments with increasing trap voltage (collision
energy) from top to bottom. [169]
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In this study, the idea was to use the redox-controlled assembly/disassembly of axle

and wheel to implement a lasso-type motion of the pseudorotaxane. In three steps,

the Boc-protected precursor 1 was synthesized according to a literature procedure (see

Figure 24 A). [171–173] Subsequent deprotection and salt exchange lead to the desired

pseudo[1]rotaxane 2 in 49% overall yield. The electrochemical properties of both 1 and

2 were investigated by Hendrik Schröder using cyclic voltammetry (CV). Precursor

1 exhibits two fully reversible redox waves over a wide range of different scan rates,

with half wave potentials of E1
1/2 = 0.05 V and E2

1/2 = 0.33 V. They correspond to the

two one-electron oxidation steps of the TTF unit. The redox potentials of 1 provide a

reference, as no repulsive axle-wheel interaction can occur. Pseudo[1]rotaxane 2 also

exhibits two reversible redox waves (E1
1/2 = 0.13 V; E2

1/2 = 0.34 V) which are, however,

anodically shifted by ∆E1
1/2 = +80 mV and ∆E2

1/2 = +10 mV, in comparison to 1,

respectively. Structurally, these potential differences can be explained by considering

the charge repulsion between the oxidized TTF unit at the wheel and the threaded am-

monium axle. Hence, the less strongly affected second oxidation potential is indicative

of a partial expulsion of the axle that occurs already after the first oxidation step. To

reveal further details of the redox-switching process, digital simulations of the cyclic

voltammogram were performed, that give approximate equilibrium constants of the

different redox states.

It has to be noted that the lasso-type molecular motion cannot be easily shown by NMR

spectroscopy, as the singly oxidized radical-cation is a paramagnetic species, which

leads to substantial line-broadening. Therefore, only the CV data were available to

support the claim of a lasso-type redox-responsive behavior.

To provide definite evidence of the redox-induced opening of 2 by a "lasso"-type mecha-

nism, I performed IM-MS experiments utilizing the setup described in section 2.7. As

shown in Figure 24 C, pseudorotaxane 2 does indeed successively unfold upon increase

of the oxidation state. Furthermore, the equilibrium constants by IMS are in good agree-

ment with the constants obtained by digital simulations of the CV in solution. Finally,

energy-resolved ion mobility unfolding experiments were performed as described in

section 2.3. As shown in Figure 24 D, the pseudorotaxane 2 does indeed open up upon

collisional activation before the ion mobility cell. These results strongly support the

proposed redox-induced opening of 2.
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At first glance, the fact that the opened molecular lasso corresponds to a smaller ion than

the threaded structure might seem surprising. However, a similar effect was noted in an

IMS study of lasso peptides. [174] Hence, there seem to be two viable explanations for this

unexpected effect: (1) After unthreading of the molecular lasso, the positively charged

ammonium station is stabilized by dipole interactions with the electron-rich naphtalene

moiety, or (2) the reduction in size upon unthreading is an inherently geometric effect,

which would explain why a similar observation has been reported for the structurally

unrelated, but topology-wise homologous lasso peptides. [174] The reason for this effect

could lie in the gained flexibility of the ion after unfolding, which could give access

to a randomly coiled, globular conformation. The closer the geometry approaches an

ideal sphere, the higher the reduction in the CCS value. As this discussion shows, there

are still several interesting questions left to be answered about the influence of the

"topology" on the CCS value. From this angle, the question if other "lasso"-type objects

will similarly exhibit a smaller CCS/drift time upon opening is intriguing.

The previous study illustrates that IM-MS can visualize the molecular motion induced

by charge repulsion in TTF based systems. Naturally, the question then arised whether

an even more complex rotaxane system featuring multiple TTF sites can be investigated

in a similar manner.

Hence, in my fourth publication, as the third-author, I contributed IMS measurements

to investigate the accordion-like motion of a group of electroswitchable crown ether/

ammonium-oligorotaxanes (see Figure 25). Briefly, the conclusions that can be drawn

stem from the charge repulsion-induced increase in the CCS value upon oxidation

of the TTF wheels on the oligorotaxane. While the first oxidation of the single-unit

rotaxane leads to a big increase in the CCS of ∆Ω ≈ +60 Å
2
, a much smaller increase

of ∆Ω ≈ +15 Å
2

is observed for the oligorotaxane with two wheel units. These obser-

vations are in line with the proposed intramolecular charge stabilization within the

mixed-valence complex of the TTF-bearing wheels. Hence, when taking the other spec-

troscopic results by CV/DPV, EXSY-NMR, EPR and UV/VIS into account, this strongly

indicates that an accordion-like motion is operative in the studied oligorotaxane.

As in the third study, IM-MS enables the observation of the dynamic movement of a

molecular switch that is hardly available through any other spectroscopic technique.
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Figure 25: TTF-containing wheel TTFC8, free ammonium (Rn) and acetylated (AcnRn)
oligo[n+1]rotaxanes (n = 1–3), and their cartoon representations (BArF−24 = tetrakis(3,5-
bis(trifluoromethyl)phenyl)borate). Reproduced from [175] with permission by John
Wiley & Sons, Inc.

In my fifth publication, [176] I contributed exchange kinetics experiments by mass spec-

trometry to a study of hierarchically assembled helicates, that are a probe for the

evaluation of the energetics of weak interactions. As shown in Figure 26A, two

catecholate based titanium helicates Li2[LR
3 Ti] form a triply lithium-bridged dimer

Li[Li3LR
6 Ti2]. As shown in Figure 26B, the energetics of the putative dispersive in-

teractions between two helicate cores can be determined by comparing differently

subtituted systems with the other substituents or the unsubstituted case. The dif-

ference then corresponds to the Gibb’s free enthalpy of the interaction, ∆∆Gvdw. In

the same fashion, ∆∆Hvdw and ∆∆Svdw are obtained. While the main argumenta-

tion of the study revolves around the NMR characterization of the energetics of the

monomer/dimer equilibrium, I contributed MS exchange experiments. A typical ex-

change reaction is shown in Figure 26C, in this case the exchange of methyl- and

ethyl-substituted helicate cores. Figure 26D shows the corresponding mass spectrum,

in which both reactants and the five exchange products can be clearly identified. In this

fashion, the gradual exchange of helicate cores was monitored over time for all sub-

stituent sizes (R = Me, Et, nPr, nBu, nPent, nHex, nHept, nOct, nNon, nDec, nUndec),

from which a roughly linear correlation between exchange rate and substituent size was

obtained. This trend is in agreement with the postulated dispersive interactions between
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spectrum (D).

substituents of the helicate cores, as the additional stabilization of the dimer will

likely slow down the exchange kinetics as well. While the MS exchange experiments

clearly show longer exchange times for bigger alkyl chain substituents—and are thus

congruent with the putative dispersive interactions in the helicates—other effects could

be responsible for the observations made, instead. For example, the long-chained

alkyl substituents are non-polar, while the core is highly polar, so the substituent size

could stronlgy affect the solute-solvent interactions as well, which could influence

both thermodynamics and kinetics of the 2 × helicate-monomer � helicate-dimer

equilibrium. Hence, it is still questionable if the observed trends in thermodynamics

and kinetics are indeed caused by dispersive interactions. Still, the two observations

that 1) the trend in thermodynamic parameters by NMR spectroscopy in DMSO as the

solvent and 2) the exchange kinetics via MS in THF as the solvent both fit to the theory of

putative dispersive interactions make the involvement of solvent effects quite unlikely.

In this regard, the MS measurements provided additional assurance that solvent-solute

interactions due not interfere with the conclusions drawn in the publication.
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In the next section, a short list of the major conclusions of the five studies is presented

and the subsequent outlook section will discuss remaining questions and possible future

directions for further research.

3.1 Main conclusions

1. Study. Chiral recognition in crown ether/ammonium complexes.

• The importance of a single hydrogen bond for the gas-phase chiral recog-

nition of crown ether/ammonium complexes is revealed by GP-HDX and

targeted methyl esterification.

• The ee quantification via the systematic change in the centroid drift time is

evaluated as a practically useful technique.

2. Study. IMS study of photoisomerism in a 4,4’-diamidoazobenzene model.

• If the azobenzene moiety is protonated, a fast thermal backrelaxation is

induced, so that photoisomers cannot be distinguished via IMS.

• In the present model system, the (Z)-isomer displays a higher gas-phase

stability than the (E)-isomer.

• GP-HDX experiments reveal the underlying hydrogen bond responsible for

this surprising stabilization effect.

3. Study. Redox-controlled self-inclusion of a pseudo[1]-rotaxane ("molecular lasso").

• Ion mobility-mass spectrometry experiments allow the direct observation of

the redox-controlled opening of the molecular lasso due to TTFn+/NH3R
+-

charge repulsion.

• Increasing oxidation states go along with the successive unfolding of the

molecular lasso.

• In the same manner, collisional activation also induces a gradual opening of

the molecular lasso.

• The quantitative equilibrium constants obtained by IM-MS are in reasonable

agreement with the CV experiments carried out in solution.
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4. Study. Accordion-like motion in electrochemically switchable crownether/ammonium

oligorotaxanes.

• Comparison of CCS trends with different oxidation states supports the

accordion-like motion in the oligorotaxane due to TTFn+/TTFn+-charge re-

pulsion.

5. Study. Chasing weak forces: hierarchically assembled helicates as a probe for the evaluation

of the energetics of weak interactions.

• Titanium helicates with larger substituents exhibit slower exchange rates in

kinetics monitored by ESI-MS. This supports the proposed theory of disper-

sive interactions between the helicate cores.
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C H A P T E R

4

Discussion and outlook
After summarizing the main results of the five studies in the preceding chapter, this

discussion and outlook section seeks to discuss the relation of the work to prior research

in the field of gas-phase supramolecular chemistry as well as possible future directions.

The main theme of the presented work is that it is the combination of IM-MS with CID

and GP-HDX that leads to the highest detail of information about the gas-phase struc-

ture and behavior of the ion.

The first study of this thesis on the chiral recognition in crown ether ammonium

complexes is based on a thorough foundation of prior reports on the subject. Fig-

ure 27 shows several other chiral crown ether hosts that have been described for chiral

recognition by mass spectrometry. [177] In fact, numerous other chiral selectors (cin-

chona alkaloids, [178,179] cyclodextrines, [180,181] resorcinarenes, [182,183] tetralactam macro-

cycles [184,185]) may be employed to study a plethora of analytes (alkyl ammonium

ions, [186,187] amino acids, [180,188] peptides, [189,190] and drugs such as ibuprofen, [191] peni-

cillamine, [192] pramipexole, [193] tenofovir, [193] valacyclovir [193]). All the cited studies
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Figure 27: Several examples of crown ethers used in MS chiral recognition studies. [177]
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rely on ESI-MS, but employ different methods for achieving enantiodifferentiation. Still,

they share the common principle that a diastereomeric complex between the analyte

and the chiral selector is formed. The interaction between these two components during

complex formation must be strong enough that both diastereomeric complexes differ in

an observable physical property. If one wishes to design a chiral selector targeted to a

specific analyte, these non-covalent interactions in the complex thus play a crucial role

for the success of the chiral recognition.

The reported finding in my thesis that a single hydrogen bond is responsible for the

chiral recognition by CCS value is therefore of significance also considering recog-

nition studies with other chiral selectors. So even though similar studies have been

reported, [194] the combination of gas-phase techniques to understand the influence of a

single hydrogen bonding contribution to the chiral recognition is novel in the field and

useful for the design of new chiral selectors.

Still, several questions remain for future research: Would a more stable complex always

be more compact (exhibit a smaller CCS), or are there cases where the more stable

complex is less compact? Besides (un)natural amino acids, what are possible other

substrates to use for the ee quantification? Can the method of small CCS changes be

used for molecular self-sorting studies? What other types of structural evolution over

time can be studied with the "centroid method"?

Several types of photoisomers have been investigated with IMS, as depicted in Figure 28.

The energetic barries for isomerization and fragmentation of a series of retinal chro-

mophores were determined by CID-IMS, [195] and the photoisomerization and pho-

todissociation of carbocyanine dyes was achieved by photoexcitation of ions with a

Titanium:Sapphire laser immediately before the drift tube, [196] or of azobenzenes by

excitation with an LED array during ionization. [197] Donor-acceptor Stenhouse adducts

are a new class of photoswitches with excellent synthetic tunability and fatigue re-

sistance. [198,199] A coupling of CID-IM-MS with laser excitation was used to study the

two-step photocyclization of a charge-tagged donor-acceptor Stenhouse adduct. [200]

Similarly, the (E)- and (Z)-isomers of a spiropyran-merocyanine were investigated with

IM-MS by excitation before ionization. [201]
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With the background of this existing research, the second study of my thesis illuminated

the possibility of a charge-induced thermal backrelaxation mechanism of azobenzenes

that can intervene in the differentiation of photoisomers. Hence, it is important that

sites for stable charge formation are available remotely to the azogroup. It was shown

that, when these conditions are met, even quantitative information about the photoi-

somerization process can be revealed. Again, the combination of different gas-phase

techniques is a novel direction in the field of gas-phase photoisomerization studies and

the information that nearby charges can induce backisomerization is also valuable from

a practical viewpoint.

In the future, it would be interesting to generalize the presented method to the study of

multi-component mixtures and possibly other types of photoswitches (e.g. spiropyrans,

diarylethenes) in a quantitative fashion. It would also be interesting to discover if

other photoswitch types similarly exhibit reversed gas-phase stabilities compared to

the solution environment.

In my third study, unfolding experiments were performed by coupling CID and IM-MS

to investigate the opening of the molecular lasso. One early study reported a CID-

IM-MS assay for the quantification of the stabilization that ligand binding has on the

folded state of soluble and membrane proteins. [202] By monitoring the CCS value of the
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protein-ligand complex while increasing the collisional activation, the energetic barrier

for unfolding was revealed. If the stabilizing effect of ligand-protein binding is large,

one requires a high collision energy to induce unfolding, which can be quantified using

specialized data analysis software. [202,203]

In fact, there are numerous reports of the application of IM-MS to biomolecules.

But while there is a similar interest in the investigation of the binding of small molecules

to artificial supramolecular receptors, the number of IM-MS studies on artificial supra-

molecular systems remains comparably scarce. [203]

One IM-MS study [204] on the binding of lysine to cucurbiturils (see Figure 29A) and

α-cyclodextrin reported the interesting observation that [CB[5]+Lys+H]+ corresponds

to an exclusion-complex (Ωexp ≈ 184 Å
2
, Ωtheor,incl ≈ 170 Å

2
, Ωtheor,excl ≈ 185 Å

2
),

while [CB[6]+Lys+2H]2+ is a threaded inclusion structure (Ωexp ≈ 189 Å
2
,Ωtheor,incl ≈

193 Å
2
,Ωtheor,excl ≈ 218 − 225 Å

2
). [204] A very interesting insight into the structure of

O

O O
O

OOO

O

NN
N

N
N N N

N

N

N

N
NN

N
N

O O

N N N N

OO

N N N NN

n {
(n = 1): CB[6]
(n = 2): CB[7]
(n = 3): CB[8]

≡

N⊕N
H H

N N⊕

NH2

⊕
H⊕

A B

drift time / ms drift time / ms

Ω(exclusion) ≈ 220 Å2 Ω(inclusion) ≈ 200 Å2
NH2

⊕NH3

NH2

⊕NH3

= 1h = 24h
C D

Figure 29: A: Structure of cucurbit[6-8]urils (CB). B: Fragments observed for a hydropho-
bic azocompound in CB[7]. By CID-IMS, the compactness of the host with different
guests can be investigated. For example, the protonated form was shown to be less
compact than the inclusion complex with the guest. [205] C: Schematic drawing of the
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the inclusion complex of CB[7] with a hydrophobic azocompound as the guest was

reported by CID-IM-MS. [205] As shown in Figure 29B, the guest successively fragments

until the protonated CB[7] is left. Interestingly, the proton adduct corresponds to a larger

drift time than the inclusion complex with the whole guest. Hence, the intramolecular

forces that stabilize the host-guest complex also induce a compactation of the ion in the

gas-phase. [205]

For the binding of CB[6] to protonated para-phenylenediamine as the guest, the time

dependence of inclusion complex formation was studied. [120] As sketched in Figure 29C,

the exclusion complex corresponds to a larger CCS value (Ω(exclusion) ≈ 220 Å
2
), while

the threaded structure (Figure 29D) is about 10% smaller (Ω(inclusion) ≈ 200 Å
2
). [120]

A recent study of an oligorotaxane investigated the progressive unfolding upon increas-

ing charge states by a combination of CCS calculations with PM6 molecular dynamics

simulations. [206] These examples illustrate that IM-MS represents an ideal tool to differ-

entiate exclusion and inclusion complexes.

When comparing the third study of the thesis with this existing research, it could be

argued that the differentiation of threaded from dethreaded complexes has already been

established. However, note that our study showed that the integration in the IM-MS

experiment reproduces the equilibrium constants obtained by CV in solution. Hence,

it was shown that a quantitatively accurate picture of the redox-controlled opening of

the pseudo[1]rotaxane in solution was obtained. Furthermore, the unfolding of the

pseudo[1]rotaxane yields a more compact ion—a surprising finding.

Several interesting questions remain for future research: Can equilibrium constants be

determined in the same way for other types of redox switches? What is the reason for

the surprising observation that the opened molecular lasso corresponds to a smaller

CCS value? And why is a similar effect observed for lasso peptides which are only

related by the topology of the system? Can the observed phenomenon be reproduced

with molecular modelling or molecular dynamics simulations?

It was a recurrent theme in the studies of this thesis and in several of the discussed

references, that it is the combination of IM-MS with CID and GP-HDX that leads to the

most detailed information about the gas-phase structure and behavior of the ion.

A combination of IM-MS and GP-HDX was used in studies on bradykinin fragments, [207]

and for lasso peptides, [174] while the coupling of CID and IM-MS was for example used
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in the structure elucidation of strained aromatic hydrocarbon macrocycles. [208]

However, the five studies of this thesis show unprecented ways in which the combina-

tion of all three methods allow both the differentiation of isomers and the investigation of

non-covalent interactions. Figure 6 gives a final overview of the information that can be

obtained by designing gas-phase experiments with a combination of these methods.

Table 6: As the examples from this thesis show, a combination of IM-MS, CID and
GP-HDX gives detailed insight into the gas-phase structure and dynamics of an ion.

GP-HDXCIDIM-MS

number of exchanging
protons, rate of exchange

inclusion vs exclusion

hydrogen bonding

observables: m/z, drift time, CCS,
ΔCCS on activation

non-covalent
interactions:

unfolding studies

isomerism: diastereomers, 
inclusion vs exclusion,
(E)/(Z)-photoisomers,
conformers (some cases)

fragmentation,
characteristic collision 
energy

stability of interactions

inclusion vs exclusion,
diastereomers (Cooksʹ 
kinetic method)

In future studies, it would be possible to gain even more structural insights into hydro-

gen bonding by the use of IRMPD action spectroscopy. With this, a much more detailed

view of an ion’s structure could be obtained in some cases. [209–212]

Another intriguing direction for future research could be the computational prediction

of mass spectra. [115,116] In particular, the computational prediction of CID spectra could

give additional structural information of the ion. [114]

Another interesting type of experiment is ozone-induced dissociation in TW-IMS, that

was recently reported for our instrument setup. [213]

From the viewpoint of systems chemistry, a fascinating possibility is to study the

structural evolution of a complex system over time, as was recently showcased for

TW-IMS. [120]

One very exciting question is whether gas-phase structural characterization techniques

give an accurate picture of the solution environment. In this regard, studies that com-

bine several independent techniques and compare the structural information are very
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valuable. Table 7 gives a selection of techniques for possible future studies, along with

their advantages and disadvantages.

As this discussion shows, the possibilities to extend the presented work in the future

are only limited by the creativity of the researcher.
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IM-MS MS/MS GP-HDX
NMR spectro-

scopy
X-ray crystallo-

graphy
circular

dichroism

gas gas gas liquid, solid (or gas) solid liquid, solid, gas

highly sensitive,
low sample 
consumption

mixtures can be 
analysed with high 
analytic capacity

rapid acquisition,
time limiting
factor is often
the simulation

information about
spatial (3D) 
arrangement of ion:
individual isomers 
and conformers 
may be identified

highly sensitive,
low sample 
consumption

phase

method

speed

mixtures

sample

mixtures can be 
analysed with high 
analytic capacity

rapid, interpretation 
maybe aided by
spectral databases
or ab initio methods

structural
information

information about 
connectivity from 
fragments, stability 
information from 
SY method

highly sensitive,
moderate sample 
consumption

mixtures can be 
analysed with high 
analytic capacity

relatively slow as
different HDX times
must be scanned

information about 
hydrogen bonding,
in some cases about
3D structure of ion

non-destructive,
around > 0.1 mg
of sample needed

can be rapid for 
small molecules 
(<500 Da)

generally difficult,
DOSY or 3D-NMR 
may assist in 
complex samples

detailed structural 
information about 
all aspects of 
molecular structure

non-destructive,
must be crystallized non-destructive

direct determination
of atomic positions,
thus including
stereochemical 
information, bond 
lengths and angles

pure sample needed

slow rapid

pure sample needed

diagnostic 
information about 
certain structural 
features such as 
α-helicity

limits

CCS calculations 
rely on simulations 
that are challenging 
for large systems, 
resolution may be 
too low

no detailed insight 
into 3D structure, 
isomers and 
conformers typically 
not distinguished,
kinetic shift

interpretation of 
HDX results can be 
challenging, often 
additional tests with 
complementary 
techniques needed

mixtures lead to 
complex spectra that 
are hard to interpret,
large amount of 
sample needed

only pure crystal, 
representative of 
solution?

cannot be used for 
mixtures, no detailed 
structural information 
except characteristic
bands 

Table 7: Overview of the three gas-phase techniques in comparison to three common solution techniques.
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5.1 IMS and gas phase H/D exchange: revealing the importance of a

single hydrogen bond for the chiral recognition of crown ether am-

monium complexes

The study discussed in this chapter has been published at the 23th of April 2018 in

Chemical Communications, a peer-reviewed journal of the royal society of chemistry:

Ion mobility and gas phase H/D exchange: revealing the importance of a

single hydrogen bond for the chiral recognition of crown ether ammonium

complexes

Wollschläger, J. M. ; Simon, K.; Gaedke, M. and Schalley, C. A.

Chem. Commun. 2018, 54, 4967-4970.

This work is available online:

https://doi.org/10.1039/C8CC01671B

Abstract. Two new BINOL-based chiral crown ether/ammonium complexes are stud-

ied by travelling-wave ion-mobility spectrometry. Homo- and heterochiral crown

ether/ammonium complexes differ in their collision cross sections, and these differences

go along with changes in hydrogen bonding as revealed by gas phase H/D-exchange

experiments. Applications for the determination of enantiomeric excess are discussed.

Contributions made by the author:

The author is first author and major contributor to the study, including formulation

of the main argumentation, the design of gas-phase experiments, and writing of the

manuscript. Marius Gaedke performed the synthesis of the new BINOL macrocy-

cles. Konstantin Simon contributed to the gas-phase experiments and data analysis

procedures during a student internship.
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5.2 IMS study on the photoisomerization of a 4,4’-diamidoazobenzene

model

The study discussed in this chapter has been first published at the 4th of February 2019

in ChemPhotoChem, a peer-reviewed journal at Wiley-VCH:

Ion Mobility-Mass Spectrometric Investigation on the Photoisomerization

of a 4,4’-Diamidoazobenzene Model

Wollschläger, J. M. and Schalley, C. A.

ChemPhotoChem 2019, in press.

This work is available online:

https://doi.org/10.1002/cptc.201800251

Abstract. The photoisomerization of a new 4,4’-diamidoazobenzene model is investi-

gated with ion mobility-mass spectrometry. Taking observations of previous studies and

new control experiments into consideration, a mechanism for a fast thermal (Z)→(E)-

isomerization of azobenzenes during ionization is proposed. The experiments clearly

show that a fast (Z)→(E) isomerization is operative when the azo group is protonated,

while it can be prevented, when another protonation site remote from the azo group

is offered. Besides this, the peak integration ratio in the ion mobilogram is shown to

closely correlate with the photoisomer ratio in solution. Future prospects for applica-

tions in photocatalysis and systems chemistry are discussed.

Contributions made by the author:

The author is creator and major contributor to the study, including synthesis, design

of gas-phase experiments, and writing of the manuscript. The author wants to thank

students Thobias Trebut and Lukasz Polewski for contributions to this project during

student internships.
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5.3 Redox controlled self-inclusion of a pseudo[1]-rotaxane

The study discussed in this chapter has been published at the 26th of July 2017 in

Chemical Communications, a peer-reviewed journal of the royal society of chemistry:

Redox-controlled self-inclusion of a lasso-type pseudo[1]rotaxane

Schröder, H. V.; Wollschläger, J. M. and Schalley, C. A.

Chem. Commun. 2017, 53, 9218-9221.

This work is available online:

https://doi.org/10.1039/c7cc05259f

Abstract. The self-inclusion behavior of a tetrathiafulvalene-containing lasso-type

pseudo[1]rotaxane can be reversibly switched between threaded and non-threaded

states by redox-stimuli. The switching mechanism was investigated by cyclic voltam-

metry in solution and monitored by ion mobility mass spectrometry in the gas phase.

Contributions made by the author:

Design and synthesis of the pseudo[1]rotaxane have been performed by H.V. Schröder.

The author designed energy-resolved ion mobility experiments as well as ionization

and oxidation procedures that are compatible with ESI-MS analysis. This entails careful

optimization of instrument parameters to ensure control over the internal energy of

the ions. The ion mobility data are in good agreement with the results of cyclic voltam-

metry experiments carried out in solution by H.V. Schröder, and were utilized in the

present study to confirm the redox-controlled switching of the tetrathiafulvalene based

lasso-type pseudo[1]rotaxane, thus providing the evidence for the major claim of the

study.
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5.4 Accordion-like motion in electrochemically switchable crown ether/

ammonium oligorotaxanes

The study discussed in this chapter has been published at the 25th of October 2017 in

Journal of the American Chemical Society, a peer-reviewed journal of the american chemical

society:

Accordion-Like Motion in Electrochemically Switchable Crown Ether/

Ammonium Oligorotaxanes

Schröder, H. V.; Stein, F.; Wollschläger, J. M. and Sobottka, S.; Gaedke, M.;

Sarkar, B. and Schalley, C. A.

Angew. Chem. Int. Ed. 2019, 58, 1-6.

This work is available online:

https://doi.org/10.1002/anie.201813265

Abstract. Reversible oxidation reactions in electrochemically switchable oligorotaxanes

with tetrathiafulvalene (TTF) decorated 24-crown-8 ether wheels generate intramolec-

ular mixedvalence and radical-cation interactions between the wheels. This induces

shuttling of the wheels and a contraction of interwheel distances. Further oxidation

generates repulsive forces between the TTFs and maximizes the inter-wheel distances

instead. These interactions and co-conformational changes were not observed for struc-

turally similar controls in which acetyl groups along the axle prevent translational

motion of the wheels. This operation mode of oligorotaxanes, which is reminiscent of

an accordion-like motion, is promising for functional materials and nanodevices such

as piston-type rotaxane motors.

Contributions made by the author:

The author contributed IMS experiments for the free and acetylated TTF oligorotaxanes

in different charge/oxidation states. Parameters for TW-IMS parameters have been

properly tuned to cover the range of charge states from +1 to +3. By comparison of

CCS values between different oxidation states of the oligorotaxanes, additional evi-

dence for the accordion-like motion was gained to complement the other spectroscopic

techniques.
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5.5 Chasing weak forces: hierarchically assembled helicates as a probe

for the evaluation of the energetics of weak interactions

The study discussed in this chapter has been published at the 25th of October 2017 in

Journal of the American Chemical Society, a peer-reviewed journal of the american chemical

society:

Chasing Weak Forces: Hierarchically Assembled Helicates as a Probe for

the Evaluation of the Energetics of Weak Interactions

Van Craen, D.; Rath, W. H.; Huth, M.; Kemp, L.; Räuber, C.;

Wollschläger, J. M. ; Schalley, C. A.; Valkonen, A.; Rissanen, K. and Al-

brecht, M.

J. Am. Chem. Soc. 2017, 139, 16959-16966.

This work is available online:

https://doi.org/10.1021/jacs.7b10098

Abstract. London dispersion forces are the weakest interactions between molecules.

Because of this, their influence on chemical processes is often low, but can definitely

not be ignored, and even becomes important in cases of molecules with large contact

surfaces. Hierarchically assembled dinuclear titanium(IV) helicates represent a rare

example in which the direct observation of London dispersion forces is possible in

solution even in the presence of strong cohesive solvent effects. Hereby, the dispersion

forces do not unlimitedly support the formation of the dimeric complexes. Although

they have some favorable enthalpic contribution to the dimerization of the monomeric

complex units, large flexible substituents become conformationally restricted by the

interactions leading to an entropic disadvantage. The dimeric helicates are entropically

destabilized.

Contributions made by the author:

The author contributed MS/MS experiments and time-resolved MS studies to reveal

the exchange kinetics of the titanium helicates for a homologous series of different

n-alkyl, cycloalkyl, branched alkyl and fluoroalkyl substituents. The exchange kinetics

contributed evidence to the study of dispersive interactions in the titanium helicates.
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[117] Troć, A.; Zimnicka, M.; Danikiewicz, W. Journal of Mass Spectrometry 2015, 50, 542–548.

[118] Révész, g.; Schröder, D.; Rokob, T. A.; Havlík, M.; Dolenský, B. Angewandte Chemie

International Edition 2011, 50, 2401–2404.

[119] Carroy, G.; Lemaur, V.; De Winter, J.; Isaacs, L.; De Pauw, E.; Cornil, J.; Gerbaux, P. Physical

Chemistry Chemical Physics 2016, 18, 12557–12568.

[120] Carroy, G.; Daxhelet, C.; Lemaur, V.; De Winter, J.; De Pauw, E.; Cornil, J.; Gerbaux, P.

Chemistry-A European Journal 2016, 22, 4528–4534.

[121] Servage, K. A.; Silveira, J. A.; Fort, K. L.; Russell, D. H. The Journal of Physical Chemistry

Letters 2014, 5, 1825–1830.

[122] Schubert, F.; Rossi, M.; Baldauf, C.; Pagel, K.; Warnke, S.; von Helden, G.; Filsinger, F.;

Kupser, P.; Meijer, G.; Salwiczek, M.; Koksch, B.; Scheffler, M.; Blum, V. Physical Chemistry

Chemical Physics 2015, 17, 7373–7385.

[123] Santos, J. J.; Toma, S. H.; Lalli, P. M.; Riccio, M. F.; Eberlin, M. N.; Toma, H. E.; Araki, K.

Analyst 2012, 137, 4045–4051.
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6.5 Data analysis workflow and software development

Methods to interactively explore data form a crucial strategy to tackle any scientific

data-heavy problem. Jupyter notebooks (http://jupyter.org/) provide an interactive

computing environment that allows the convenient document creation, editing and shar-

ing. [214] What really sets the jupyter project apart from other software solutions is the

ability to embedd rich media and executable code into a single HTML notebook. Code

is written in python, a general purpose programming language—so the possibilities

are endless. Besides the convenience of use and the many possibilities for adaptation,

jupyter is also easily integrated into any existing workflow. Furthermore, as jupyter

notebooks typically rely on the excellent open source ecosystem of numeric computing

libraries such as numpy, [215] scipy, [216] matplotlib, [217] scikit-learn, [218] sympy, [219] tensor-

flow, [220] among many others, the results are highly transparent and easily reproducible.

Integration of computation and visualization into jupyter HTML notebooks offers a

highly modular approach for scientific computing and data analysis.

As shown in Figure 30, a small python library, libms, was used to provide common

data workflows including the visualization of MS, MS/MS and IMS spectra, the auto-

mated plot of survival yield runs and the automated calibration of TW-IMS data. For the

prediction of CCS values, an open source implementation of the PA and EHS CCS predic-

tion algorithms, goccs, was developed by the author.a Further information regarding

this project can be found on the author’s github page (https://github.com/jmwoll).

libms

automated feature 
extraction (including 
gaussian fi�ing of
ATDs)

support for report 
generation: 
calibration curves,
statistical metrics

spectra visualization
(using matplotlib)

goccs
EHS & PA CCS
calculation

flexible input
of parameters

MD simulation

Figure 30: Overview over data analysis software developed for my thesis.

aThe GPL3 licensed goccs software can be found under the DOI: https://doi.org/10.5281/zenodo.
1285206

https://github.com/jmwoll
https://doi.org/10.5281/zenodo.1285206
https://doi.org/10.5281/zenodo.1285206
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6.6 Typical TW-IMS CCS calibration procedure

Typically, TW-IMS CCS calibration has been performed using polyalanine reference

standard. For best results, the IMS cell is started and let to equilibrate for at least 45 min.

This is done to ensure that the internal pressure of the IMS cell settles to a constant

value. In the mean time, a solution of 0.01 mg-0.05 mg polyalanine in 1 mL acetonitrile is

prepared, to which 0.4% HCOOH are added. The mass spectrum should give a polymer

distribution as depicted in Figure 31 (bottom) and a high linear correlation, as shown in

Figure 31 (top right).

Table 8 shows them/z-values and the corresponding CCS values in helium and nitrogen.
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Figure 31: top left: Example of an automated gaussian fit for the fully automated
extraction of drift time centroids from the ATD. top right: A typical linear calibration
curve obtained as the final result. bottom: Mass spectrum of polyalanine (0.01 mg/1 mL,
acetonitrile+0.4% HCOOH) as used for TW-IMS CCS calibration.
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Table 8: Important data for TW-IMS calibration using the polyala-
nine reference. [221]

formula ΩHe/Å
2
ΩN2/Å

2
m/z z

3Ala+H⊕ 89 151 232.13 +1

4Ala+H⊕ 100 166 303.17 +1

5Ala+H⊕ 114 181 374.20 +1

6Ala+H⊕ 128 195 445.24 +1

7Ala+H⊕ 141 211 516.28 +1

8Ala+H⊕ 157 228 587.31 +1

9Ala+H⊕ 170 243 658.35 +1

10Ala+H⊕ 181 256 729.39 +1

11Ala+H⊕ 194 271 800.43 +1

12Ala+H⊕ 206 282 871.46 +1

13Ala+H⊕ 217 294 942.50 +1

14Ala+H⊕ 228 306 1013.54 +1

11Ala+ 2H⊕ 197 296 400.72 +2

12Ala+ 2H⊕ 208 309 436.24 +2

13Ala+ 2H⊕ 220 320 471.75 +2

14Ala+ 2H⊕ 232 333 507.27 +2

15Ala+ 2H⊕ 243 344 542.79 +2

16Ala+ 2H⊕ 255 357 578.31 +2

17Ala+ 2H⊕ 265 369 613.83 +2

18Ala+ 2H⊕ 276 380 649.35 +2

19Ala+ 2H⊕ 287 393 684.87 +2

20Ala+ 2H⊕ 297 404 720.38 +2

21Ala+ 2H⊕ 308 416 755.90 +2

22Ala+ 2H⊕ 317 428 791.42 +2

23Ala+ 2H⊕ 327 437 826.94 +2

24Ala+ 2H⊕ 337 448 862.46 +2

25Ala+ 2H⊕ 348 458 897.98 +2

26Ala+ 2H⊕ 358 470 933.50 +2

formula ΩHe/Å
2
ΩN2/Å

2
m/z z

19Ala+ 3H⊕ 338 482 456.91 +3

20Ala+ 3H⊕ 348 491 480.59 +3

21Ala+ 3H⊕ 361 501 504.27 +3

22Ala+ 3H⊕ 373 518 527.95 +3

23Ala+ 3H⊕ 386 532 551.63 +3

24Ala+ 3H⊕ 399 545 575.31 +3

25Ala+ 3H⊕ 412 561 598.99 +3

26Ala+ 3H⊕ 425 576 622.67 +3

27Ala+ 3H⊕ 438 592 646.35 +3

28Ala+ 3H⊕ 452 606 670.02 +3

29Ala+ 3H⊕ 465 621 693.70 +3

30Ala+ 3H⊕ 479 634 717.38 +3

31Ala+ 3H⊕ 490 649 741.06 +3

32Ala+ 3H⊕ 502 666 764.74 +3

33Ala+ 3H⊕ 516 674 788.42 +3
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