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Zusammenfassung

Aufgrund fortschreitender experimenteller Fortschritte stellen nanoelektromecha-
nische Systeme ein faszinierendes Gebiet mit steigender Aufmerksamkeit dar. We-
gen ihrer kleinen Ausmafse erlauben diese Systeme die Erforschung fundamenta-
ler Physik und ermoglichen eine Vielzahl von Anwendungen, u.a. als Hochfre-
quenzresonatoren und ultrasensitiven Sensoren. Wegen starker Elektron-Phonon-
Wechselwirkung sind diese Systeme ein Paradebeispiel von bosonischen Freiheits-
graden, die an eine fermionische Umgebung im Nichtgleichgewicht koppeln.

Viele der Anwendungen erfordern ein generelles Verstdndnis der umgebungsindu-
zierten Kréfte auf ein klassisches System. Indem das Nanosystem als generelle zeit-
abhéngige Streuregion beschrieben wird, sind diese Kréfte kiirzlich als Funktion
der Streumatrix und seiner ersten adiabatischen Korrektur hergeleitet worden. In
dieser Arbeit prasentieren wir eine effizientere und direkte Herleitung dieser Kraf-
te ausschlieflich unter Benutzung der Streutheorie, die auf natiirlich Weise solche
Systeme beschreibt.

Kleine lokale Anderungen eines Streupotentials kénnen aufgrund der Anderson Or-
thogonalitdtskatastrophe drastische Auswirkungen auf Eigenschaften grofer Quan-
tensysteme haben. Im Gleichgewicht wurde der Orthogonalitétsexponent direkt mit
dem Reibungskoeffizienten eines klassischen System, das sich in einem freien Elek-
tronengas bewegt, verkniipft. Mit den erworbenen Kenntnissen zu den umgebungs-
induzierten Kréften verallgemeinern wir diese Idee ins Nichtgleichgewicht. Hierzu
untersuchen wir das Verhalten der Fidelitdtsamplitude und des Loschmidt Echos,
die dynamische Grossen der Orthogonalitdtskatastrophe darstellen.

Ein molekularer Transistor im ultimativen Miniaturisierungslimit ist kiirzlich expe-
rimentell realisiert worden. Atomar prézise Steuerspannung ist erzielt durch Repo-
sitionierung einzelner Ladungen durch Rastertunnelmikroskopie. Eine ausgeprigte
Leitwertliicke anstatt des erwarteten Ladungsentartungspunktes wurde gemessen.
Motiviert durch die experimentellen Beobachtungen erkléren wir dieses Verhalten
mit der Existenz zweier molekularer Konformationszustinde, was das konventionel-
le Bild des Einzelelektronentunnelns durch molekulare Transistoren generalisiert.
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Abstract

Due to ongoing experimental advances, nanoelectromechanical systems represent
a fascinating field of study which receives increasing attention. Because of their
small size, these systems allow for exploring fundamental physics and give rise to
a wide range of applications such as high frequency resonators and ultra-sensitive
sensors. Because of strong electron-phonon coupling, nanoelectromechanical sys-
tems provide a paradigmatic model for bosonic degrees of freedom coupled to an
out-of-equilibrium fermionic environment.

Many of the applications require a general understanding of the forces which are
induced by a quantum environment on a classical system. By considering the na-
nosystem as a generic time-dependent scatterer, these reaction forces have recently
been expressed via an adiabatic expansion in terms of the scattering matrix and
its first adiabatic correction. In this thesis, we present a more efficient and direct
derivation of these forces by solely using scattering theory which is natural to the
considered problem.

Due to the Anderson orthogonality catastrophe small local changes of a scattering
potential can drastically affect properties of large quantum systems. In equilibri-
um, the orthogonality exponent was related to the friction coefficient of a classical
particle moving in a free electron gas. Based on our knowledge on the environment-
induced forces, we generalise this idea to out-of-equilibrium situations. To this end,
we study the fidelity amplitude and the Loschmidt echo, which are dynamical mea-
sures of the Anderson orthogonality catastrophe.

A molecular transistor at the ultimate miniaturisation limit has recently been ex-
perimentally realised. Atomically precise gating is achieved via repositioning of
individual charges by scanning tunnelling microscopy. Remarkably, a pronounced
conductance gap instead of the expected charge degeneracy is observed. Motiva-
ted by the experimental observations, we explain this behaviour by the presence of
two different molecular conformational states, which generalises the conventional
picture of single-electron tunnelling through molecular transistors.
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1. Introduction

The ultimate aim to control miniaturised devices has a long history. Famous is
the talk given by Richard Feynman in 1959 at the annual meeting of the American
Physical Society at the California Institute of Technology about the miniaturisation
of electronic devices, where he offered $1000 to the inventor of a hard disk whose
size is 25,000 times smaller than a common page in a book and which can store
the information of the page itself [Feynman, 1960|. In this talk, he presented
various conceptual ideas how to reduce the size of electronic devices towards the
atomic scale. With ongoing experimental advances, many of the ideas of this talk
have now been realised and even exceeded the proposed scale, for instance with
the invention of the scanning tunnelling microscope (STM) |Binnig et al., 1982a,
Binnig et al., 1982b| and the atomic force microscope [Binnig et al., 1986]. The
$1000-challenge was eventually won in 1985 by Tom Newman using electron-beam
lithography [Dietrich, 1986]. Nowadays this technique enables the construction
of devices on the nanoscale |Park et al., 2002 Liang et al., 2002,|Kubatkin et al.,
2003, Roch et al., 2008, Song et al., 2009,|Leturcq et al., 2009).

Beyond the construction of nanoscale systems, controlling and detecting their mo-
tion are experimental challenges. In 1959 Richard Feynman proposed a second
challenge in his talk and offered "another $1000 [prize| to the first guy who makes
an operating electric motor — a rotating electronic motor which can be controlled
from the outside and, not counting the lead-in wires, is only 1/64 inch cube" [Feyn-
man, 1960|. This prize was awarded already two years later, but the small machine
did not contain any breakthrough ideas and creating control over the directed mo-
tion of molecular machines remained an unsolved issue [Dietrich, 1986} Feynman,
1993|. Nowadays different ways of driving nanomechanical systems into motion
have been developed. In the present thesis, we focus on nanoelectromechanical sys-
tems as promising candidates with enormous capabilities [Craighead, 2000, Roukes,
2000.

Nanoelectromechanical systems are nanoscale mechanical devices which are con-
trolled by running an electric current through the system. A strong coupling of
the system’s mechanical, that is vibrational, degrees of freedom to the electronic
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Figure 1.1.: A molecule between two contacts; (a) a molecular tunnel junction;
(b) a molecule on a surface with an adjacent STM tip. The tip and
the substrate serve as electrodes allowing for a sensitive control of the
system.

environment characterises these devices and opens a wide range of applications.
Possible applications range from medical diagnostics and data storage to ultra-
sensitive sensing of masses or forces or measuring displacements or charges |[Craig-
head, 2000, Roukes, 2000, Ke and Espinosa, 2005,|Cimalla et al., 2006, Eom et al.,|
. Nanoelectromechanical systems also find applications as pH sensors [Chen!
et al., 2006], biosensors [Besteman et al., 2003|/Cui et al., 2001, protein concentra-
tion detectors |Lee et al., 2007] and ultra-sharp tips in the context of atomic force
microscopy |[Bunch et al., 2004]. Due to their small size, new physical effects become
important in these devices which increases the interest in nanoelectromechanical
systems both at the experimental and at the theoretical level. In particular, the
theoretical treatment is strongly motivated by the complexity of these systems. Due
to the strong electron-phonon coupling, nanoelectromechanical systems constitute
a paradigm of vibronic degrees of freedom which couple to an out-of-equilibrium

fermionic quantum environment.

Nanoelectromechanical systems have been successfully realised within different con-
texts. Examples include suspended graphene sheets [Bunch et al., 2007|, carbon
nanotubes [LeRoy et al., 2004], one-dimensional wires |[Krive et al., 2010 and molec-
ular junctions [Park et al., 2000,|Galperin et al., 2007]. In the latter case an in-

dividual molecule is placed between electrodes or on a substrate with an adjacent
STM tip, cf. Fig.[I.1} In all these systems an electric current can induce forces on
the motion of the nanomechanical system by exciting the mechanical modes. This
is schematically depicted in Fig. [[.2] for the example of a nanotube. The strong
electron-phonon interactions also generate the opposite effect, that is an electric
current which is strongly influenced by the mechanical motion of the system. Un-
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Figure 1.2.: Controlling the motion of a nanoelectromechanical system by applying
a gate and bias voltage. A charge entering a nanotube distorts the tube
via electric repulsion from a gate voltage, Vgate.

derstanding the interaction between the nanosystem and its quantum environment
is of crucial importance for applications of nanoelectromechanical systems and con-
stitutes one of the main issues of the present thesis.

Transport through nanoelectromechanical devices broadly falls into two different
regimes. These regimes differ in the characteristic timescales of the electronic en-
vironment and the mechanical system and go along with different experimental
phenomena. The case of a fast-moving nanomechanical system coupled to slow-
moving electrons is for instance realised in the context of a single-molecule junction.
Electron-phonon coupling then is a consequence of the adjustment of the nuclear
configuration whenever the molecule is charged by individual electrons. The po-
tential landscape which describes the vibrational excitations is displaced depending
on the charge of the molecule. In the case of weak electron-phonon coupling this
leads to side-bands due to phonon-assisted tunnelling which have been observed
for instance in Refs. [Yu et al., 2004,|Sapmaz et al., 2006]. For strong electron-
phonon this displacement is large so that the overlap of the low-energy vibrational

states is suppressed. This results in a strong suppression of electron transport
at low bias voltages which is known as the Franck-Condon blockade [Koch and|
von Oppen, 2005, Koch et al., 2006, Leturcq et al., 2009]. On the other hand, in
the opposite regime of low mechanical frequencies, many electrons travel through
the nanostructure per oscillation period. The moving electrons then react to a
quasistatic nanosystem but strongly influence the mechanical motion
200061 Steele et al., 2009, [Lassagne et al., 2009} Stettenheim et al., 2010, Bode et al.)
2011, Bode et al., 2012b]. In the present thesis we investigate the interplay of the
nanostructure with its quantum environment in the latter regime, that is the limit
of a slowly moving nanoelectromechanical system. Moreover, we study transport

through a molecular transistor.
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Recently it has been shown, that for finite applied bias voltages the electrons, which
travel through the device, can perform work on the nanomechanical system |[Dun-
das et al., 2009, Brandbyge, 2009,(Todorov et al., 2010, Bode et al., 2011, Bode
et al., 2012b|. This principal idea opens applications for building of nanoscale de-
vices or quantum machines and is further studied in this thesis. A prototype of a
molecular motor whose motion is controlled by ac-voltage elements is described in
Ref. [Fennimore et al., 2003| where a tiny rotating metal plate is connected to a
suspended nanotube attached to leads. Further ac-driven nanomotors are proposed
in Ref. [Ponomarev et al., 2009 and experimentally addressed in Ref. [Salger et al.,
2009, while the idea of a dec-motor is proposed in Refs. [Bailey et al., 2008}|Qi and
Zhang, 2009]. Moreover, by placing an STM tip on top of an individual molecule
both translational [Kudernac et al., 2011 and rotational motion |Tierney et al.,
2011] of the molecule have been successfully induced experimentally. Directed mo-
tion is achieved by the specific atomic structure of the molecule or the tip.

The principal idea of using an electric current and the underlying strong electron-
phonon interactions as control mechanisms has wide applications and is not re-
stricted to electrically driven nanosystems or molecular motors. Heating and cool-
ing by a current, for instance, has also attracted attention both theoretically [Pec-
chia et al., 2007, Arrachea et al., 2014] and experimentally [Schulze et al., 2008,
Safavi-Naeini et al., 2012|. In fact, the back-action of the quantum environment
on the nanomechanical system can lead to cooling of a macroscopic object down to
the level where quantum effects become evident at the ultimate limit of measure-
ment |Naik et al., 2006,/Stettenheim et al., 2010].

In the seminal experiments in Refs. [Steele et al., 2009 |Lassagne et al., 2009| strong
electron-photon interactions have been experimentally demonstrated for a sus-
pended carbon nanotube. Similar features have been observed in Refs. [Benyamini
et al., 2014]. As these findings are crucial for applications and the theoretical under-
standing of nanoelectromechanical systems, the experimental results of Ref. [Steele
et al., 2009] are discussed in more detail next. The set-up is shown in Fig. [1.3|a)
and consists of a quantum dot which is embedded on a suspended carbon nanotube
with high quality factor. The nanotube is attached to two electrodes and is used as
a mechanical resonator, which is actuated into motion by applying a periodic radio
frequency signal with the aid of an adjacent antenna. By varying gate and bias
voltages, the current running through the tube is measured for different driving
frequencies. The result is presented in Fig. [I.3(b). The upper plot (A) shows the
measured current as a function of the gate voltage at fixed bias voltage and constant
driving frequency. Valleys in the current reflect the Coulomb blockade regime while
peaks in between the valleys are due to single-electron tunnelling. The number of
electron charges on the quantum dot thus changes by one from one valley to the
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Figure 1.3.: Experiment by Steele et al. (a) Schematic drawing of the experimen-
tal set-up (A) and STM image (B). (b) Current as a function of gate
voltage at fixed bias and bias voltage (A) and current as a function
frequency and gate voltage (B) The inset shows the behavior for differ-
ent bias voltages. The figures are taken from Ref. [Steele et al., 2009|
with permission from the American Association for the Advancement

of Science.

next.

Below this figure, a second plot (B) in Fig. [1.3|(b) depicts the main results of the
experiment. In this figure the current is shown as a function of both gate voltage
and driving frequency. The resonance frequency versus gate voltage is seen as a
dark curve in this figure. By comparing plot (B) and (A), two main features are
observed. On the one hand, a clearly detectable change in the resonance frequency
is seen whenever a single charge is added to the nanotube. This is due to the fact
that the addition of a single charge changes the electrostatic force acting on the
nanotube. Entering charges are repelled by the electric field created by the gate
voltage, which is sketched in Fig. [1.2] This results in a measurable frequency shift,
which — similar to the behaviour of a guitar string — is due to a stiffening of the
nanotube.

Besides a detectable frequency shift by the addition of single charges, figure (B)
shows that the resonance frequency decreases in form of dips when current flows at
the Coulomb blockade peaks. At the peaks, the tunnelling of single electrons exerts
a time-dependent, fluctuating force on the nanotube in addition to the electrostatic
force. This force changes the spring constant of the nanotube, which results in a
modification of the mechanical resonance frequency and by this produces the dips.
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The origin of this force can be traced back to a strong coupling between the me-
chanical and electronic degrees of freedom. The strong coupling between electrons
and phonons is a consequence of the strong correlation between the mechanical
motion and the tunnelling electrons. When the nanotube vibrates, the periodic
motion pumps charges in and out of the system. The attraction of these charges
to an adjacent gate voltage then results in a softening of the mechanical restoring
force [Woodside and McEuen, 2002, Benyamini et al., 2014]. The inset of figure (B)
shows the dependency of the dips in the resonance frequency as a function of the
applied bias voltage. A more pronounced dip is observed at a smaller bias volt-
age. This reflects the broadening of the Coulomb blockade conductance peaks, cf.
plot (A) of Fig. [L.3|b), which increases at larger bias voltages.

1.1. Theoretical modelling of
nanoelectromechanical systems

Besides the high degrees of tunability and control, the experiments in Refs. [Steele
et al., 2009, Lassagne et al., 2009, Benyamini et al., 2014] show the existence of
forces induced by charges which enter the nanoelectromechanical system. We refer
to these forces as adiabatic reaction forces in the regime of a slowly moving nano-
electromechanical system in the following. The adiabatic reaction forces provide
a mechanism to control the motion of the nanosystem. Many applications require
an understanding of these forces. We present a derivation of the adiabatic reaction
forces in nanoelectromechanical systems or, more generally, of adiabatic reaction
forces on a classically moving system induced by a quantum environment, which
can be both fermionic or bosonic, later in chapter 3|

For an understanding and a description of the reaction forces and of nanoelectrome-
chanical systems in general, a characterisation of transport through these systems
is important. We note that a theoretical description of transport through nanosys-
tems generally can be done by different approaches valid in different regimes. In
the following, we characterise the approaches, which are used in the present thesis,
and describe their validity.

Specifically, we treat the regimes of coherent and incoherent transport in this thesis.
The coherent transport regime is studied in the context of the adiabatic reaction
forces in chapter [3land 4] Incoherent transport is used for the description of sequen-
tial tunnelling through a single-molecule transistor in chapter [5] Next, we describe
these regimes, which give rise to different physical phenomena, in more detail.
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1.1.1. Coherent transport

When the system is phase coherent and can be described in terms of non-interacting
particlesﬂ the Landauer-Biittiker approach |Landauer, 1957, |Landauer, 1970} Lan-
dauer, 1975, Buttiker et al., 1985, |Biittiker, 1990, Buttiker, 1992} Buttiker, 1993,
Moskalets, 2011| has turned out to be a powerful tool, which fully accounts for
quantum phase coherence. In this context, "coherent" means that the quantum
mechanical coherence length is larger than the size of the system |[Bruus and Flens-
berg, 2004]. This means that transport must be described at the quantum level.

In the Landauer-Biittiker approach, the nanosystem is connected to source and
drain leads which are attached to electron reservoirs. The leads are assumed to be
macroscopically large with a small region where the electrons enter the system, cf.
Fig. [[.4] By this we assume that the incoming electrons possess the temperature
and chemical potential of the reservoirs. Moreover, the leads are treated as per-
fectly transmitting and thus treated as semi-infinite "ideal leads" where electrons
travel without scattering events. When the electrons move rapidly through the
nanoelectromechanical system on a timescale faster than the decoherence time, the
system gives rise to a scattering potential felt by the electrons travelling through
the system. Transport is then described by the scattering matrix with its reflection
and transmission coefficients.

Besides giving a simple expression of the conductance through a mesoscopic sys-
tem with multiple attached leads |Buttiker, 1992, Biittiker, 1993, Moskalets, 2011,
the Landauer-Biittiker approach successfully describes time-dependent transport
phenomena like quantum pumping [Biittiker et al., 1994, Brouwer, 1998|. In this
case periodic variations of the scattering potential in time, which can for instance
be induced by a moving nanoelectromechanical system, generate a direct current
through the system. Scattering matrix expressions of the pumped current through
the system have been derived in Refs. |[Brouwer, 1998, |Avron et al., 2001] and a
generalised description of an out-of-equilibrium quantum environment has been
obtained in Refs. |[Entin-Wohlman et al., 2002,Moskalets and Biittiker, 2005].

In this work, we make use of scattering theory to describe the adiabatic reaction
forces on a general nanoelectromechanical system. We give an introduction into
scattering theory in chapter [2| as it constitutes an important theoretical framework
for our analysis. Due to the restriction to non-interacting particles, the many-
body problem of many electrons scattering off the nanoelectromechanical system is

!To be more precise, by non-interacting "electrons" or "particles" we actually mean non-
interacting quasiparticles of a Fermi liquid |Landau, 1957al[Landau, 1957blLandau, 1959].
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Figure 1.4.: Geometry considered in the Landauer-Biittiker approach. Incoming
and outgoing waves are indicated by arrows. The attached reservoirs
are kept at fixed chemical potentials py, and pg.

conceptually simplified as it effectively reduces to a single-particle problem. Interac-
tions can be included within a mean-field theory where a varying charge distribution
changes the scattering potential, see e.g. Ref. |Biittiker et al., 1994].

1.1.2. Incoherent transport

The assumption of non-interacting particles is generally reasonable for extended sys-
tems at low temperatures |[Bruus and Flensberg, 2004]. Especially for smaller sys-
tems such as semiconductor quantum dots or molecular electronic devices, however,

electron-electron interactions become important as the charging energy increases
with decreasing system size [Rauch et al., 1998]. This increasing charging energy
dramatically changes the physical properties of the system and a different theoret-

ical description is needed. For interacting particles a general many-body approach
is necessary as particles cannot be treated independently any longer. Moreover,
as in small systems the single-particle energy-level spacing becomes large, elec-
tronic transport is sensitive to both energy scales, the energy-level spacing and the
charging energy. The sensitivity to both the charging energy and the level spacing
is reflected in the so-called Coulomb blockade |Gorter, 1951, Kouwenhoven et al. |
, that is the suppression of conduction at sufficiently low temperatures and
small applied bias voltages.

In the present thesis, we consider incoherent transport through a single-molecule
transistor, which is an electronic device on the molecular scale. In this regime, sim-
ilar to the Landauer-Biittiker approach, the system is attached to metallic contacts
in which the electrons are assumed to be non-interacting. Within the nanostruc-
ture, however, interactions are important. Denoting the tunnelling rates between
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Figure 1.5.: Sketch of the sequential tunnelling regime with incoherent transport
where the tunnelling rates I' are much smaller than the temperature
times the Boltzmann constant.

the system and the attached leads by I', we describe incoherent transport in the
limit I' < kT with temperature 7" and Boltzmann constant kp in the present
thesis, cf. Fig. Incoherent transport assumes that electrons sequentially tunnel
through the device and that the timescale between two sequential tunnelling events
is larger than the characteristic decoherence time of the electrons. Consequently,
the electronic reduced density matrix of the system describes a statistical mixture
and no coherences are taken into account. The tunnelling electrons are treated as
fully decohered particles. Hence, the theoretical description in the incoherent tun-
nelling regime is in terms of classical probabilities which characterise occupation
probabilities of the nanostructure. These probabilities fulfill the so-called Pauli
master equation or rate equation which describes transitions between all possible
states [Weiss, 1999, Bruus and Flensberg, 2004].

In chapter [5] we treat the sequential tunnelling regime in the limit I' < kT < Ae,
where Ace is the averaged level spacing of the quantum dot, so that electrons succes-
sively tunnel through a nanostructure with well-defined energy levels. The energy
levels within the nanostructure are well separated for I' < Ae as this condition
imposes the width of the respective energy levels to be much smaller than their
averaged level spacing. The requirement kgT < Ae models the nanostructure as a
semiconductor quantum dot with discrete energy levels participating in the conduc-
tion, since kg1 determines the width of the conduction window. As a consequence
of these assumptions, the nanostructure can be described by a set of probabilities
which describe the occupation number of single energy levels obeying the Pauli mas-
ter equation. We note that the nanostructure itself can be modelled as a metallic
dot with a continuous energy spectrum for Ae < kgT'. In the sequential tunnelling
regime or in the weak tunnelling limit, respectively, the tunnelling rates entering in
the Pauli master equation are calculated with the aid of Fermi’s golden rule. Out-
of-equilibrium situations induced by applying a bias voltage between the leads are
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Figure 1.6.: The conductance measured for a gold contact when retracting a tung-
sten STM tip from a clean gold surface after crashing the tip onto the
surface. The arrow indicates the direction of the tip motion. The fig-
ure is taken from Ref. |[Brandbyge et al., 1995]. The experiment was
performed at room temperature in ultra-high vacuum. The recording
time of the curve was approximately 20 ms. Copyright (1995) by The
American Physical Society.

then encapsulated in the tunnelling rates which depend on the chemical potential
of the different leads. The effect of blocking current, e.g. Coulomb blockade, is
generally observed at sufficiently small bias voltages and for kgT < max(Ae, F¢)
with I' < kgT, Ae and charging energy E¢ |Beenakker, 1991} Heikkila, 2013|.

The Pauli master equation successfully describes transport through molecular junc-
tions and quantum dots |Glazman and Pustilnik, 2005|Galperin et al., 2007]. When
the electrons in the nanostructure couple to vibronic degrees of freedom, further
phenomena can be explained with the aid of rate equations, e.g. the observation of
side-bands due to phonon-assisted tunnelling for weak electron-phonon coupling [Yu
et al., 2004,Sapmaz et al., 2006| or the Franck-Condon blockade, for strong electron-
phonon coupling [Koch et al., 2006, Leturcq et al., 2009]. Recently a general theory
of quantum pumping has been developed for the interacting case by using a rate
equation approach [Splettstoesser et al., 2006).

The transition between the coherent transport and the sequential (weak) tunnelling
regime with incoherent transport has experimentally been observed by gradually
decreasing the number of channels contributing to the conductance in Refs. |[van
Wees et al., 1988, |Wharam et al., 1988, Muller et al., 1992, |Krans et al., 1993
Brandbyge et al., 1995, Ohnishi et al., 1998, Yanson et al., 1998||Agrait et al., 2003|.
This has been realised in some of these references for instance in an STM set-
up by increasing the distance between the STM tip and the molecule or surface,

10
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respectively, or in molecular break junctions by increasing the distance between
the contacts. Recording the conductance as a function of the increasing distance,
then results in a stepwise decrease of the conductance by an amount which is
given by the quantum unit of conductance. An exemplary conductance curve taken
from Ref. [Brandbyge et al., 1995 is depicted in Fig. where the conductance is
recorded while retracting an STM tip from a gold surface. The limit of incoherent
transport describes the regime where the conductance is much smaller than the
quantum conductance |Beenakker, 1991 Nazarov and Blanter, 2010]. In Fig.
this is reached at distances larger than approximately 15 A between STM tip and
surface.

1.2. Adiabatic reaction forces

Ultimately aiming at controlling nanoelectromechanical systems, an understanding
of the forces on the vibrational degress of freedom induced by charges entering the
nanosystem is of crucial importance. We address the derivation of the adiabatic
reaction forces in the regime of coherent transport by using scattering theory. In
the derivation, however, we do not restrict ourselves to electronic transport through
a nanoscale object, we rather generalise the idea by considering a classical object
which moves in a quantum environment. We are then interested in the forces in-
duced by the quantum system on the classical degrees of freedom, i.e. the adiabatic
reaction forces.

An early version of adiabatic environment-induced forces is treated in the seminal
paper by M. Born and R. Oppenheimer in 1927 in the context of electrons moving
around atomic nuclei [Born and Oppenheimer, 1927|. Due to their large difference
in mass, the "heavy" nuclei move on timescales which are long compared to the
characteristic timescales of the surrounding "light" electrons. To lowest order in
the adiabatic expansion, the electrons see frozen nuclei and react instantaneously
to the positions of the nuclei. The instantaneous energy levels of the electrons,
that is the quantum environment, then give rise to a potential landscape felt by the
nuclei. The environment-induced force acting on the "heavy" system, which can be
extracted from the potential landscape depending on the instantaneous position of
the the system itself, is called Born-Oppenheimer force.

Recent developments increased the interest in the Born-Oppenheimer force. Within
a Green function approach the Born-Oppenheimer force has been shown to possibly
give rise to a bistable potential and thus to switching in the case of a single electronic
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level coupling to one phononic mode [Mozyrsky et al., 2006, Pistolesi et al., 2008].
Moreover, when the quantum system is driven out of equilibrium it has been shown
that the Born-Oppenheimer force can be non-conservative [Dundas et al., 2009,
Brandbyge, 2009, (Todorov et al., 2010]. Dundas et al. proposed an application
to nanoelectromechanical systems by considering forces acting on the nuclei in a
wire where the quantum environment consists of electrons in the wire. The wire
is attached to electrodes which can drive the system out of equilibrium by a bias
voltage so that an electric current runs through the wire. It was then shown that
the curl of the force as a function of the instantaneous positions of the wire atoms
does not generally vanish in the presence of a bias voltage. As a consequence, the
integral over a closed path is non-zero which enables the possibility of exerting
work on the system. This opens a wide field of applications, e.g. building quantum
motors or quantum machines based on a current running through the system. A
conceptual idea for an adiabatic quantum motor is proposed in Ref. |[Bustos-Martn
et al., 2013|.

Besides possibly non-conservative forces, going to higher order in the adiabatic pa-
rameter, allows for a description of forces which are proportional to the velocity of
the slow moving system. For closed quantum systems with a finite energy spectrum
an expression of a Lorentz-like force has been derived in Ref. [Berry and Robbins,
1993|. However, as the quantum environment is assumed to be finite-sized in this
derivation, neither friction nor fluctuating forces are present. In nanoelectrome-
chanical systems on the other hand, by attaching leads, the system is opened and
dissipation occurs naturally. Furthermore, by the fluctuation-dissipation theorem
and the probabilistic nature of the scattering process, stochastic forces are expected
to appear. Indeed, expressions for both friction and stochastic forces are obtained
within an influence functional theory in the literature [Lii et al., 2012|. Moreover,
current-induced forces have been recently expressed in terms of Green functions
and the scattering matrix including its first non-adiabatic correction in Refs. [Bode
et al., 2011, Bode et al., 2012b| by relying on Keldysh Green function techniques.

In chapter [3| we provide a deeper understanding of adiabatic reaction forces by di-
rectly following the seminal derivation presented in Ref. [Berry and Robbins, 1993],
however, for an open system with a continuous energy spectrum. By this, our
approach is applicable to nanoelectromechanical systems. This enables a direct
comparison between the two set-ups of closed and open quantum environments.
We perform an adiabatic expansion purely within the methods of scattering theory
and derive all quantities appearing in the equation motion to linear order in the
adiabatic parameter. We rederive the expressions obtained in Refs. [Bode et al.,
2011, Bode et al., 2012b] in terms of the scattering matrix and its first adiabatic
expression without the detour using Keldysh Green functions. The use of scatter-

12



1.3. Loschmidt echo

ing theory alone underlines the generality of the obtained results which hold for
both fermionic and bosonic scattering environments. It can thus be applied to a
description of environment-induced force in optomechanical systems |Kippenberg
and Vahala, 2008| as well as cold-atom systems |Dalibard et al., 2011]. As being
simple and natural to transport set-ups, scattering theory furthermore easily al-
lows to consider symmetries of a given system as possible symmetries transfer to
well-known properties of the scattering matrix.

1.3. Loschmidt echo

When dealing with adiabatic reaction forces on a nanoelectromechanical system the
effect of an open quantum environment on a classical system is studied. In chapter
of this thesis we deepen the understanding of the interplay between a system and its
environment by turning the analysis around and considering the reverse problem,
that is the influence of the classical system on its quantum environment.

When a nanosystem moves in an electronic environment, different positions of the
nanosystem give rise to different scattering potentials felt by the electrons which
move through the nanostructure. This is schematically depicted in Fig. for the
example of a suspended nanotube which is attached to two metallic leads. Small
changes of a scattering potential can have drastic consequences on properties of
large quantum environments as known from the Anderson orthogonality catastro-
phe |Anderson, 1967|. In the seminal work in 1967 P. Anderson has shown that
the ground state overlap of a free fermionic many-body state and a state in the
presence of a local scattering potential vanishes as a power law in the system size
so that the states become orthogonal with increasing system sizes. The power-law
exponent, which describes the decay of the ground state overlap, is called Anderson
orthogonality exponent.

In this thesis, we study how the Anderson orthogonality exponent and the dynam-
ics of a classical nanosystem or a heavy particle are related. A relation between
the orthogonality exponent and the dissipation coefficient of a classical heavy par-
ticle has numerically been anticipated for a quantum environment in equilibrium
in Ref. [Sols and Guinea, 1987|. A few years later, for a free electron gas a direct
relation between the Anderson orthogonality exponent and the friction tensor for
slightly different positions of the local potential of the classical system was proven
for finite quantum environments in equilibrium in Ref. [Schonhammer, 1991]. Mo-
tivated by nanoelectromechanical systems, where a finite imposed bias voltage is
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V(X,+6X)

V(X
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Figure 1.7.: The Loschmidt echo in the context of nanoelectromechanical systems
exemplarily shown for a suspended nanotube attached to leads. Two
different positions of the nanotube, X; and X;+d.X, give rise to different
scattering potentials, V(X;) and V(X; + 6X), felt by the electronic
environment which defines the Loschmidt echo.

crucial for an ultimate control of the system, we analyse the relation between the
friction coefficient and the Anderson orthogonality in out-of-equilibrium situations
and study, under which conditions the relation remains valid.

We characterise the Anderson orthogonality exponent through the fidelity ampli-
tude and its absolute square value, the Loschmidt echo |Peres, 1984, |Jalabert and|
Pastawski, 2001, Gorin et al., 2006]. These quantities represent dynamical mea-
sures of the Anderson orthogonality catastrophe as we detail in chapter [l By
definition, the fidelity amplitude for quantum systems describes the overlap of two

many-body quantum states evolving with different Hamiltonians. In the picture of
a nanoelectromechanical system this corresponds to the evolution of the states of
the electronic environment with respect to two different positions of the nanodevice,
cf. Fig.[1.7 for the example of a suspended nanotube. An equivalent interpretation
of the fidelity amplitude is given in terms of irreversibility. The fidelity ampli-
tude quantifies how close a system returns to its original state under forward an
backward evolution with respect to two different Hamiltonians.

Specifically, we express the behaviour of the fidelity amplitude and the Loschmidt
echo in the small-distance limit in terms of scattering states in chapter [4 We
then make use of the acquired knowledge of the adiabatic environment-induced
reaction forces of chapter [3] to generalise the relation between the orthogonality
exponent and the friction tensor found in Ref. [Schonhammer, 1991] to an out-of-

equilibrium situation and to infinite systems with a continuous energy spectrum.
Both within the methods of scattering theory |[Thomas et al., 2012] and Green
functions [Bode et al., 2011, Bode et al., 2012b| we characterise the behaviour of
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the fidelity amplitude and the Loschmidt echo in terms of the Born-Oppenheimer
force, dissipation and fluctuations.

Besides an interpretation as a measure of irreversibility, the fidelity amplitude finds
applications in quantum chaos as a quantity defining the sensitivity to perturba-
tions [Stockmann, 2006 Haake, 2010] as well as applications in quantum information
theory. In the latter context, the fidelity amplitude has been connected to deco-
herence, that is the decay of the off-diagonal elements of a reduced density matrix
when coupling to an environment [Zurek, 2001} |Karkuszewski et al., 2002, |Cuc-
chietti et al., 2003,|Gorin et al., 2004]. Generally, a coupling to an environment
results in decoherence, which is intimately related to fluctuations and dissipation
in the system [Weiss, 1999|. Interesting for nanoelectromechanical systems is the
interpretation of the fidelity amplitude as the characteristic function of the work
distribution function when suddenly changing its Hamiltonian between two con-
figurations [Silva, 2008|. Since the Loschmidt echo and the fidelity amplitude,
have various interpretations in different areas of physics, ranging from statistical
mechanics to quantum chaos and to quantum information theory, a construction

of miniaturised devices at the quantum level requires an understanding of their
behaviour |Gorin et al., 2006].

1.4. Molecular transistors

A long-standing challenge of nanoelectronics consists in decreasing the size of elec-
tronic devices towards the construction of an electronic switching circuit with el-
ements which are made up of single atoms or molecules |Sotthewes et al., 2014].
The construction of miniaturised transistors based on single-electron tunnelling
plays a crucial role in this context as transistors can be used to control an electric
current between contacts by electrical gating. Due to their small size, challenges
in the construction of molecular transistors include both the connection of single
molecules to macroscopic source and drain contacts |Hipps, 2001| and the realisa-
tion of atomically precise gating. Promising techniques towards their construction
are provided by the break junctions |[Hamill et al., 2014], ¢f. Fig. [I.I(a), where a
nanoscale junction is created by opening and closing a narrow metallic constriction,
and by electron-beam lithography. Indeed, by forming a junction through electron-
beam lithography, the first single-electron transistor was experimentally realised for
a metallic dot in Ref. [Fulton and Dolan, 1987]. Later, further transistors where
single-electron tunnelling has been observed were constructed by using gated break
junctions [Champagne et al., 2005,[Perrin et al., 2013| and electron-beam lithogra-
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Figure 1.8.: Sketch of a molecular transistor as realised in Ref. [Martinez-Blanco
et al., 2015] which consists of a single molecule, here copper phthalo-

cyanine (CuPc), on an indium arsenide InAs(111)A-(2x2) surface and

an adjacent STM tip. Electrically charged indium adatoms on the sur-
face induce a local electrostatic potential of the the CuPc and hence
serve as an analogue of a gate voltage (V). By applying a bias volt-
age (Vp) between tip and surface the indium adatom gate electrode
controls the current running through the system.

phy [Park et al., 2002 [Liang et al., 2002,Kubatkin et al., 2003 Roch et al., 2008|Song
et al., 2009, Leturcq et al., 2009]. Atomically precise gating, however, cannot be
reached with these techniques.

In chapter [5] of this thesis we present the theoretical modelling and description
of an experiment performed in Ref. [Martinez-Blanco et al., 2015] which provides
a different technique for the construction of a single-molecule transistor at the
ultimate limit of miniaturisation. The basic mechanism behind achieving atomically

precise gating relies on repositioning individual electric charges on a surface by
using scanning tunnelling microscopy of individual atoms and molecules [Stroscio
and Eigler, 1991|. The main element of the transistor realised in Ref. [Martinez-
Blanco et al., 2015| is a phthalocyanine molecule |[Engel, 1997Wang et al., 2012|, in
particular free base phthalocyanine and copper phthalocyanine, which are adsorbed

on an indium arsenide InAs(111)A-(2x2) surface and are in close vicinity to an STM
tip. The set-up is schematically depicted in Fig. An analogue of a gate electrode
is formed by charged indium adatoms on the surface which induce an electrostatic
potential on the molecule. As the adatoms are weakly bound to the substrate,
they can be moved by the STM tip which enables a fine-tuning of the molecule’s
electrostatic potential and thus atomically precise gating. A bias voltage applied
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between the InAs surface and the STM tip creates an electric current running
through the system, which is controlled by the position of the indium adatoms.

With the high degree of tunability of the gate voltage by repositioning individ-
ual charges, the phthalocyanine molecule is tuned into the sequential tunnelling
regime. By modelling the molecule as a quantum dot, which is attached to two
electron reservoirs formed by the tip and the substrate, the conventional picture
of sequential tunnelling predicts a current-voltage diagram which is reminiscent of
Coulomb diamonds [Beenakker, 1991, Nazarov and Blanter, 2010]. Remarkably,
the observed current-voltage diagram in Ref. [Martinez-Blanco et al., 2015| shows
a pronounced conductance gap instead of the expected charge degeneracy point.

We explain this behaviour by the presence of two conformational states of the
molecule in the present thesis. The molecule can switch its conformational state
by thermally induced transitions and individual electrons change the charge state
of the molecule when tunnelling through the device. By assuming that the ground
state conformations of the neutral and the charged molecules are different, we
detail in chapter [5| that a gap naturally opens in the current-voltage characteristics.
We quantitatively confirm this conclusion by setting up a master equation, which
includes thermal transition rates between the conformations, which keep the charge
state of the molecule unchanged, and electronic transition rates, which change
the charge state at a fixed conformation. The solution of the stationary master
equation determines the stationary current, which verifies the occurrence of the
gap. Our results show that in the case of strong coupling between charge states
and conformational degrees of freedom, new physics arise due to a modification of
the conventional picture of sequential tunnelling through molecular transistor.

1.5. Fabrication of nanoelectromechanical systems

A molecular transistor, one-dimensional wires and molecular break junctions are
different examples of nanoelectromechanical systems. A large group of nanoelec-
tromechanical devices is formed by suspended mechanical objects. In the following,
we sketch how such suspended objects can be fabricated by using different exper-
imental techniques. In principle, these systems can be fabricated by two different
approaches [Madou, 1997, Craighead, 2000/Ke and Espinosa, 2005|. One approach,
commonly known as the top-down approach, starts from the fabrication of larger
bulk materials out of which nanoelectromechanical systems can be constructed for
instance by a combined method of using high-resolution electron-beam lithography
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Figure 1.9.: Sketch of the fabrication process of a suspended nanoelectromechanical
system. (a) A polymeric polymethylmethacrylate layer (cyan) on a
silicon oxide film (yellow) in between silicon (grey) is exposed to an
electron-beam (arrows); (b) deposition of metal which is followed by
(c) lift-off; (d) dry-etch transfer through the silicon layer on top and
(e) wet-etch through the silicon oxide film; (f) a contact metal (orange)
is evaporated; applying a bias voltage, V;, for instance can drive the
system into motion. []Craighead, 2000||.

and surface micromachining, cf. Fig. A thin polymeric polymethylmethacry-
late film is put as a resist on a wafer which is composed of a layer of silicon dioxide
in between a silicon substrate and a thin layer of silicon. In order to define the
shape of the device the polymeric thin is then exposed to an electron beam with
energies of the order of keV which changes the chemical composition of the resist.
Via metal decomposition and lift-off the sample is subsequently prepared for a dry-
and wet-etch through the silicon and the silicon oxide layer, respectively. An evap-
oration of the contact metal finally defines the nanoelectromechanical device. This
process however is limited for example by the roughness induced by the etching
process as well as by the resolution of the electron-beam lithography. Due to these
limitations, a different manufacturing approach called bottom-up approach widens
the fabrication possibilities which allows for producing devices made up of a few
atoms or molecules and is nowadays feasible. It consists in sequentially assembling
individual atoms or molecules which form the components and building blocks of
the nanoscale device. For the construction of larger devices with increasing com-
plexity of assembling this approach however becomes less controllable and effective.
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For this reason a combination of both the top-down and the bottom-up approach
is nowadays widely used for the creation of nanoelectromechanical systems which
for instance is done in Ref. [Husain et al., 2003|.

With ongoing experimental advances and theoretical achievements in the recent
years, strong attention has been paid to the class of suspended nanotubes as ultra-
high frequency resonators which are cylinders on a molecular scale made up of
atoms. Particularly interesting are nanotubes made up of carbon atoms due to
their extraordinary electronic and mechanical properties [lijima, 1991| and their
possible commercial implementations [De Volder et al., 2013|. Because of the sp?-
hybridised bonds between the carbon atoms, carbon nanotubes — concomitant with
their general lightness — posses a high intrinsic carrier mobility and conductivity.
Moreover, they possess an extremely high strength and stiffness along their lon-
gitudinal axis, while they are flexible and elastic along the tube waist |Terrones,
2003|. The specific structure of the carbon nanotubes allows for further different
fabrication techniques such as catalytic vapor deposition methods |Li et al., 1996],
laser ablation methods [Thess et al., 1996] and arc evaporation methods [Ebbesen
and Ajayan, 1992, Journet et al., 1997|. These methods are nowadays very advanced
so that carbon nanotubes with high quality factors of the order @ ~ 10° can be
produced [Hiittel et al., 2009,|Laird et al., 2011].

1.6. Alternative methods: Brownian motors

Nanoelectromechanical systems form a class of systems where the idea of controlling
the motion of a nanoobject is via running an electric current through the system.
There are alternative methods which provide different ways of driving nanomechan-
ical systems into motion. In the following, we sketch the conceptual idea of such
an alternative, that is a Brownian motor.

As the motion in the nanoscale range is dictated by fluctuations and stochastic
forces, the conceptual idea of a Brownian motor is to convert a stochastic input
signal into a directed motion of a particle or system [Reimann, 2002, Hanggi and
Marchesoni, 2009, Craig and Linke, 2009|. The basic mechanism behind gaining
useful work out of Brownian motion can be understood at a classical level by the
principle of a Smoluchowski-Feynman ratchet which is also known as a Brownian
ratchet [Feynman et al., 1963|. Such a system is schematically drawn in Fig.
and consists of an axle which has a paddle at one end and a ratchet which has the
shape of a circular saw with an asymmetric sawtooth wave. A pawl is linked to the
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Figure 1.10.: Sketch of the classical analogue of a Brownian ratchet. The pawl on
the left-hand side translates the stochastic collision of the surrounding
gas with the paddle on the right-hand side into a directed motion.
This figure is taken from Ref. |[Reimann, 2002] and reprinted with
permission from Elsevier.

ratchet preventing it from turning into one direction while allowing rotations of the
axle in the opposite direction. The fundamental concept of this set-up is the fact
that the entire machine is surrounded by a gas or particles which randomly collide
with the paddles on one end of the axle and hence induce a rotational motion
by transferring momentum from the gas to the paddle. This motion however is
undirected, as otherwise a perpetuum mobile would be created which contradicts
the second law of thermodynamics.

Indeed, such a ratchet has been realised on a molecular scale which revealed an
undirected motion [Kelly et al., 1997, Kelly et al., 1998, Sebastian, 2000]. Directing
the motion may be achieved by keeping the gas which surrounds the paddle at a
different temperature 77 compared to the ratchet and the pawl which are held at
temperature 75 by contacting the two ends of the axle to different baths. Energy
can then be converted from the the temperature gradient between the two thermal
reservoirs into mechanical work. In fact, it can be shown that for T} > T5 the axle
rotates in the above described manner while for 77 < T, the rotation is expected
to be inverted and thus against the pawl [Reimann, 2002]. Due to the small scale
of the set-up where thermal fluctuations are dominant an experimental realisation
of a molecular Smoluchowski-Feynman ratchet with different temperatures at both
ends of the system remains a strong challenge.
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1.7. Outline of the thesis

As we use the Landauer-Biittiker approach and, in this context, scattering theory
as a basic mathematical tool for a theoretical description of electronic transport
through nanoelectromechanical systems, we give an introduction to scattering the-
ory in chapter 2] In this chapter, we derive several formulas which are needed for
the derivation of the adiabatic reaction forces in terms of the scattering matrix and
its adiabatic correction in chapter [3] The derivation of the reaction forces solely
relies on the fundamentals of scattering theory and includes an adiabatic expansion
within this theory. Thereafter, we address the question on how the nanosystem
itself affects the evolution of the quantum environment. In particular, we study
how the Anderson orthogonality exponent and the dynamics of a classical particle,
which moves in a quantum environment, are related via calculating the Loschmidt
echo and the fidelity amplitude in chapter [, While we use the limit of coherent
transport for describing a classical nanosystem moving in a quantum environment,
we consider the regime of incoherent transport in chapter 5| to model sequential elec-
tron tunnelling through a molecular transistor as realised in Ref. [Martinez-Blanco
et al., 2015]. We conclude in chapter [6]

We set h =1 and kg = 1 throughout the thesis.
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2. Scattering theory

This chapter is devoted to an introduction to scattering theory which constitutes
the basic mathematical tool in our analysis of coherent transport through nanoelec-
tromechanical systems. In particular, scattering theory is used for the derivation of
the adiabatic reaction forces. In this derivation, we frequently refer to the formulas
derived below in this chapter. The expressions presented in this chapter are well
known in the literatureE] see for instance Refs. [Roman, 1965| Sakurai, 1994, Mello
and Kumar, 2004, Moskalets, 2011].

The concept of scattering theory is valid for a generic non-interacting Hamiltonian
which can be split into a "free" part and a term including the "scattering potential"
which is confined to a finite region. It is a powerful tool to address various topics
in physics. These topics range from the description of measurements aiming at
analysing a system’s structure, e.g. X-ray diffraction experiments or high energy
collisions of particles, to theoretical descriptions of, for instance, electron scattering
off impurities in a metal, which governs its electrical resistivity. In fact, many of
the formulas derived below apply to a huge variety of problems as we keep the
considered Hamiltonian quite general.

Later in the thesis, we particularly apply the formalism of scattering theory to na-
noelectromechanical systems within the derivation of the adiabatic reaction forces.
Nanoelectromechanical systems are in contact with source and drain electrodes,
which form electronic leads. According to the framework of scattering theory, the
leads are treated as ideal in the sense that electrons move in the leads without any
scattering events. Moreover, we assume the leads to be macroscopically large so
that they possess a continuous energy spectrum. By imposing a bias voltage, which
gives rise to different chemical potentials in the respective leads and hence out-of-
equilibrium conditions, electrons travel through the nanosystem. The nanosys-
tem itself acts as a scattering potential felt by the moving electrons, cf. Figs. [1.7]

and 2.11

!The formalism introduced here is mainly based on the lecture notes for Advanced Quantum
Mechanics by Prof. Piet W. Brouwer, Freie Universitit Berlin, winter 2012/2013.

23



2. Scattering theory

—

D

Figure 2.1.: A scattering potential V' (X) attached to three leads, each with chemical
potential ;. An electron entering from a certain lead scatters off the
potential and gets reflected into the same lead or transmitted into a
different lead.

The electrons in the leads are described by propagating wave packets. Initially,
we assume the electrons to be far away from the scattering region and hence we
expect no initial interaction with the scattering potential. This means, that the
initial state consists of a free wave packet approaching the scatterer. Eventually,
the electron reaches the scattering region and the interaction with the nanosystem,
i.e. the scatterer, changes its state. After the interaction the final state is a linear
superposition of free wave packets in each lead, which travel away from the scatter-
ing region, since there is no interaction between the electron and the scatterer once
the electron is far away. The free wave packets appear with a certain scattering am-
plitude called transmission or reflection coefficients depending on the initial state.
The absolute square value of the scattering amplitude determines the probability
to find the scattered particle in the respective lead, which can be the same lead or
a different attached one, cf. Fig.[2.]] When the energy of the scattering particle
remains unchanged by the scattering process, one speaks of elastic scattering, while
an inherent energy change is dubbed inelastic scattering.

Physically, we are interested in the transformation, which changes the incoming
into the outgoing states. The operator which effects this transformation is called
scattering matrix or S-matrix. The scattering matrix contains all relevant infor-
mation on the scattering process and constitutes the central quantity of scattering
theory.

In the remainder of this section, we introduce the general mathematical description
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of a single-particle scattering process including the definition of scattering states.
We define the scattering matrix and deduce some of its properties. Finally, we illus-
trate the concept and basic principles of scattering with wave packets by discussing
a one-dimensional problem where two leads are attached to the scatterer.

2.1. Scattering states

We model transport through the nanoelectromechanical system by assuming non-
interacting electrons (i.e. non-interacting quasi-particle excitations of a Fermi lig-
uid) which scatter off a scattering potential. As we will see later , this allows for an
effective treatment as single-particle scattering. We introduce the Hamiltonian felt
by a single electron, H, which encompasses an effective single-particle description
of the leads, Hy, and the effective local scattering potential, V. The idea of scatter-
ing theory is to describe the dynamical process of a scattering of wave packets by
stationary solutions of the corresponding Schrédinger equation. In order to enable
a description in terms of stationary states, we consider the Hamiltonian

H=Hy+V({t), V(t)=Ve (2.1)

with A = 1, where the scattering potential V' is slowly switched on and off with
a rate given by the positive parameter n. By "slow" we mean that the switching
process happens on timescales which are large compared to the dwell time, 7p, of
the scattering process. The dwell time describes the timescale that the scattering
particles remain in the scattering region. The slow time dependence of the scat-
tering potential thus has no effect on the description of the scattering potential,
as it can be viewed as unchanged during the scattering process. The introduction
of the small n < 1/7p is rather a mathematical trick: Stationary states become
slowly time-dependent. By introducing the slowly time-dependent potential V' (¢), a
"stationary" state gets transformed from an initial free stationary state at infinite
negative times t — —oo to the scattering state at t ~ 0, where the potential is
completely switched on, and to a free final stationary state at t rightarrowoo after
the scattering process. For a description of a scattering process we are interested
in the three limits £ — —o0, t =~ 0 and t — oo.

We introduce the eigenstates, |®,,(¢,t)), of the free Hamiltonian Hy, which repre-

sent the free states. Here, m is a combined channel-lead index and ¢ denotes the
corresponding energy. Their time dependence is given by

[Pi(e, 1)) = e [dm(e)) - (2.2)
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Figure 2.2.: Depiction of (a) a retarded scattering state and (b) an advanced scatter-
ing state. While a retarded scattering state is initially at large negative
times a free state propagating towards the scatterer, the advanced scat-
tering state is a free state travelling away from the scattering region at
large positive times. Arrows indicate time evolution and propagation
directions. The leads are not explicitly drawn in this figure.

with Hy |¢n(g)) = €|dm(e)). We normalise the free states as
<¢m(5)|¢m’ (5/» = 27 Oy 5(5 - 5/) . (2.3)

The single-particle scattering states, which we denote by |WZ (e, t)), are solutions
of the Schrédinger equation

i 0| VE (e,1)) = H |V (e,1)). (2.4)

The superscript + distinguishes between retarded (4) and advanced scattering
states (—). Both the retarded and advanced scattering states evolve in time with
respect to the same Schodinger equation, they differ however in their boundary
conditions at large times. For the scattering states, the introduction of the slow
time dependence of the potential is crucial. For large times before and after the
potential is switched on and off, the respective retarded (at ¢ — —o0) and advanced
(at t — 00) scattering state is assumed to be in a free state, which does not interact
with the scatterer. More precisely,

|UE (6,1 — Fo0)) = |D,(c, 1)) (2.5)

While the retarded scattering state describes a state which initially at ¢ — —oo
consists of an incident free state, the advanced scattering state is a free state leaving
the scattering region at ¢ — +o0c as shown in Fig. 2.2l Slowly switching on the
potential then means that the free state slowly begins to feel the potential V' until
the potential is completely switched on at ¢ = 0. Thus we are interested in the
general solution of the Schrodinger equation in the vicinity of ¢t = 0 where the
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scattering process takes place. At general times, the full solutions of the Schrédinger
equation reads for the retarded and advanced scattering state
t

(Ut (e,t)) = |P(e, 1)) —i/ At e HE= Yy () (Wt (e, 1)) (2.6)

— 00

V(o) = [@n(est) =i [ dt e OOV W), (2
t
which fulfil the boundary conditions in Eq. . In order to evaluate these time
integrals we recall that the scattering particles spend a finite time in the scattering
region, given by the dwell time. Hence the time interval in the above integration
is effectively finite. For small n < 1/7p we can assume the scattering potential
V(t) in Eq. to be constant within this finite time range and we can consider
the scattering states to be stationary. This allows us to replace |¥Z(e,t')) —
e == |WE (2 1)) in the above integral. The scattering states appearing in the
above integral equations are thus evaluated at the same time, which enables
an evaluation of the time integrals. An integration yields

U (e,1)) = |Pn(e, ) + GE(e) Vet | W) (e,)), t<0 (2.8)

U5, 1)) = [Pue, 1)) + Gl (e) Ve ™ Wy, (e,1)), £20

where we introduced the respective retarded and advanced Green function of the
free Hamiltonian

1
) 2.10
o (e) S HoEin (2.10)

We are interested in the solutions in the vicinity of ¢ = 0 for the stationary states.
We extract the dynamical phase

(U5 (e,)) = e |9 (e)) (2.11)
so that at ¢ = 0 Eqgs. and become
[WE(€)) = [ém(e)) + Go /() V1Y () (2.12)

This equation is called Lippmann-Schwinger equation in the literature. It consti-
tutes the basic equation for both the retarded and the advanced scattering state.
We note that the Lippmann-Schwinger equation is an implicit equation as the scat-
tering state appears on both sides of the equation. On a formal level however, we
can present a solution of this equation. By iteratively substituting the left-hand
side of Eq. into the expression on the right-hand side we can sum up all the
terms appearing on the right-hand side. Introducing the retarded and advanced

Green function of the full Hamiltonian H at t =0
1

GHE) = — = G+ GOV e
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2. Scattering theory

we can write the solution of the Lippmann-Schwinger equation as

[Um(©)) = L+ G V) [pm(e)) (2.14)

This equation is one of the main equations of this introductory section and has
many implications. It states that the scattering state is composed of a free state
and a scattered state. We can use the Lippmann-Schwinger equation and its
solution to show that the scattering states are normalised in the same way
as the free states. To this end, we write

(U ()7 () @ (1 +VEYVe) 97 ()

(1
\(1 ) )
=<¢m<e>|( — G V) T ()

= (¢m(e)|m (<))
= 27 Oy 62 — €')

(2.15)

where the last line is the normalisation of the free states in Eq. (2.3). Finally, we
note the completeness relation of the scattering states, i.e.

B E=TCNICIEE .10

Both the retarded and the advanced scattering states span the full Hilbert space
given by the Hamiltonian H.

2.2. The S-matrix

The S-matrix represents a key element of scattering theory. It connects the incom-

ing free states to the scattered outgoing states and contains all necessary informa-

tion on the scattering process. Making use of the fact that after the scattering

process the scattering state is a superposition of free states, the S-matrix is defined

as the on-shell overlap of the scattering states and the free states at large times,
27 Sy (€) 8(e — ') = tlim<<1> (e,t)|WF (1)) . (2.17)

— 00
Expressing the asymptotic (retarded) scattering state at large times as a superpo-

sition of free states, we deduce from Eq. (2.17)) that the elements of the S-matrix
are the amplitudes of each free state after the scattering event. In order to make
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2.2. The S-matrix

this statement more precise, we use Eq. (2.17)) and the completeness relation of the
free states to write

+ —zet
Jim W} (e,1)) anm ) [fn(2)) . (2.18)

Equivalently, the S-matrix can be defined using the advanced scattering state
through 27 S, () 0(e — &) = limy, (¥, (,1)|P, (', 1)), since the advanced
scattering state is assumed to be in a superposition of free states for large negative
times. Similarly we write for the advanced scattering state

lim U, ( ﬂstz e)|on(e)), (2.19)

t——o0

where the symbol * indicates complex conjugation. We note that the S-matrix does
not depend on time as both the scattering states and the free states are stationary
states with trivial time dependence and e’ = 1 for ¢ = ¢’ as imposed by the
0-distribution.

E 8

In the following we present some general properties of the S-matrix. We begin
by observing that the S-matrix can be expressed as the overlap of retarded and
advanced scattering states. This represents a useful tool and will be frequently
used below. In order to see this, we make use of the boundary condition of the
advanced scattering state, cf. Eq. , as well as the fact that the scalar product
of retarded and advanced scattering states does not depend on time as they fulfil
the same Schrédinger equation. Hence

270 Sy (€) 8(e — €') = lm (D, (2, )|V, (€, 1))

t—o00

= lim (U, (e, 6)|T}, (' 1))

t—o00

= (U ()|t (€7) - (2.20)

From the normalisation of the scattering states in Eq. (2.15]) and the last line in
Eq. (2.20) we deduce that the S-matrix is a unitary matrix, that is

> Snl) S (€) = G (2.21)

The unitarity of the S-matrix means that the normalisation of the states is un-
changed after the scattering process. This is expected as we deduce from the
definition of the S-matrix that it describes a change of basis.
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2. Scattering theory

2.3. Time-reversal

Next we study the effect of time reversal, i.e. the transformation t — —t, on the
scattering matrix. The Hamiltonian in Eq. is invariant under time rever-
sal. However, the time derivative in the Schrodinger equation (2.4) changes its
sign. Using the hermiticity H = H' of the full Hamiltonian we then deduce that
U (e, —t))* fulfils the same equations as | (e, 1)), that is i 9_y| P (e, —1))* =
H |¥E (g, —t))*. We note that when ¢ changes its sign, the velocity of the scatter-
ing particles changes such that the particles move in the opposite direction. Thus,
outgoing states become incoming states and vice versa. Referring to Eq. we
then define the incoming state ¥ (e, ¢)) as

Win(e, 1)) = Jim [W) (e, —1))" = -wfz €) [n(e))*. (2.22)

The outgoing state on the other hand is just the free state
[Wh (e, 1)) = e dm())" . (2.23)

The S-matrix connects these incoming and outgoing states. We write |0 (g, ¢)) =
> (S7HE) ) m [P (e, t) for large ¢ by definition of the scattering matrix. Inserting
the above expression then yields

Y i@ @) = S Dl (224)

n

We conclude that time-reversal symmetry implies that S*(¢) = S~'(¢). Due to
unitarity of the S-matrix, cf. Eq. (2.21]), we then deduce that

S(e) = ST (e) (2.25)

in time-reversal invariant systems [Moskalets, 2011].

2.4. The T-matrix

In the absence of a scattering potential, the scattering matrix is given by the unit
matrix. In scattering experiments one is often interested in transitions between
different incoming and outgoing states. This motivates us to subtract the unit
matrix from the scattering matrix and to define the transition matrix (T-matrix or

reaction matrix) as
Smm/ (8) = (Smm/ — ’iTmm/ (8) . (2.26)
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2.5. Scattering in one dimension

The T-matrix gives precisely that part of the scattering matrix which describes
transitions between different states during the scattering process. We note that this
does not mean that the diagonal elements of the T-matrix vanish, cf. Eq. . As
the scattering matrix can be written as the overlap of retarded and advanced scat-
tering states, cf. Eq. , we conclude with the aid of the Lippmann-Schwinger
equation (2.14) and the normalisation of the scattering states that

27 Sy (€) 0(e — &) = (Y (&) [y (€))
= (U () (€)) + (W (E)] = (W (e)]) [ (€)
= 27 Oy (€ — &) + (P (2)|V (GF(e) — GA(2)) |
=27 (Ommr — 1 (P (€)| V [0 (2))) O(e —€7),

Yo (1)

(2.27)

where it has been used that (¢ — &’ +in)™' — (¢ — & —in)~' = —2mid(e — &'). We
read off that the T-matrix can be expressed as the overlaps

T (€) = (Sm(E)|V [ (€)) = (W ()| V [ (€)) - (2.28)

The last identity can be obtained by performing analogous steps for the retarded
scattering state in the first line of Eq. . We stress that the overlaps defining
the T-matrix contain the scattering potential V. On the one hand we conclude that
in the absence of the scattering potential the T-matrix naturally vanishes, which is
reasonable since the scattering state remains unchanged for V' = 0. Moreover, we
note that due to the locality of the scattering potential V' the overlaps in Eq.
do not diverge although the overlap is evaluated for states at the same energy ¢.

2.5. Scattering in one dimension

To illustrate the above concepts, we consider the scattering of a spinless particle,
e.g. an electron, off a one-dimensional local potential V' (z). The aim of treating
the one-dimensional case is twofold. On the one hand, it shows how to deal with
scattering wave packets, which are a superposition of free waves. Moreover, it
highlights the elements of the scattering matrix by interpreting them as reflection
and transmission amplitudes. Accordingly, we consider the Hamiltonian in Eq.
with
P?

H, = o and V =V(z) (2.29)
in position representation. Here p = —id/0, is the momentum and m the mass
of the particle. The only constraint on the scattering potential is that it van-

ishes at |z| > . The eigenstates of the free Hamiltonian H, possess the energy
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2. Scattering theory

er = k?/(2m) and as the Hamiltonian is time independent, they evolve in time as
(x|®(k,t)) = ®(k,z,t) = e ¥ ¢(k, z) with the plane wave solutions
1 .
o(k,x) = (z[p(k)) = 7 et (2.30)
Dividing by the square root of the velocity v = Jei/0r = k/m accounts for unit
flux normalisation. This implies the orthonormality

(@(k)|G(K)) =27 d(ex —ew) - (2.31)

According to the boundary conditions in Eq. (2.5)), the retarded scattering state
at t — —oo is a wave packet with wave vector k; and thus consists of a linear
superposition of plane waves, that is

1By (1)) = / dk i (k) D (k. 1)) (2.32)

The advanced scattering state on the other hand is described by |®y, (¢)) for positive
t — oo. The functions fi,(k) determine the shape of the wave packet and are in
principle quite general. In the following we restrict to a Gaussian wave packet with
fr, (k) = exp[—(k — k;)?/(20)?]/v/270o to keep the analysis more simple. Hence
the momentum of the wavepacket has an uncertainty given by the width o of the
Gaussian functions. In position representation we have

Oy, (2, 1) = (2] P; (1)) = /dk‘ fui (k) d(k, ) e (2.33)

We consider the limit of small momentum uncertainty, i.e. ¢ < |k;|. The velocity
of the wave packet then is v; = k;/m and we expand the energy & to linear order
as e = k?/(2m) + v(k — k;). Within this approximation the wavepacket does
not disperse. Moreover we assume k; > 0, which means that ®,(x,t) is a wave
packet moving to the right, whereas ®_, (z,t) travels to the left. This allows us
to distinguish between the two initial (retarded) states |W} (t — —00)) = [Py, (1))
at distances much to the left of the scattering potential and |\I/ijz(t — —0)) =
|D_, (t)) at distances x > xy.

The (retarded) scattering state is a linear superposition of the eigenstates ¥ " (k, z) =
(x|t (k)) of the full Hamiltonian H in Eq. (2.1]) with energy &y

\I/;;(x,t) = <x|\lf;: (1) = /dk fr, ()T (k, ) ekt (2.34)

As the potential vanishes for |z| > x¢, the states ¢*(k,z) consist of plane waves
outside the scattering region. We introduce the coefficients a(k), b(k) € C and
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2.5. Scattering in one dimension

V(x) k) V(x) I

t(
M — - M M —
-X, )I(O X X )I<o X

(a) (b)

Figure 2.3.: Illustration of a retarded scattering state in one dimension as a wave
packet incident from the left at large negative times with wavevector
k;; (a) initial state; (b) final state. The coefficients r(k;) and t(k;) give
the respective reflection and transmission amplitudes.

write the general solution outside the scattering region as

o (k1) = 1 { a(k) [ek® +r(k) e~ he] +b(k) t' (k) Q‘““” ,for o < —x
’ VU | a(k)t(k) e +b(k) [e=*e + (k) e**] | for x>z
(2.35)
The coefficients r(k), '(k), t(k) and ¢'(k) are determined by the Schrédinger equa-
tion. As we consider small o < |k;| we approximate these coefficients as evaluated
at the initial wave vector k;. We determine a(k), b(k) by the boundary condition
that the initial retarded scattering state matches the free incoming wave. We get
a(k) =1, b(k) = 0 for a wave incoming from the left, so that

ikx —ikx
Wiet) = [k f eI e

An initial state approaching from the right at ¢t — —oo however implies that a(k) =
0, b(k) = 1. We denote the state incident from the right with a subscript —k;.
Consequently,

. (2.36)

\Ijtk‘(%t) = /dk’ for, (k) e ekt 1 { t,(ki>€_ik$ ,for < —xg

Vo L e (k) et for x> g

(2.37)
From Egs. and we can deduce the final (retarded) states at ¢ — oo
and |z| > . For the retarded scattering approaching the scatterer initially from

the left we deduce
(2,6 — o0) = t(k;) P, (2, 1) 4 r(ks) Py, (2,1). (2.38)
Similarly for the state incident from the right we get

Ut (@,t = 00) = t'(k;) Dy, (x,t) + 7' (ki) P, (2, 1) . (2.39)
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2. Scattering theory

V(x) , V(x) .
g s

(a) (b)

Figure 2.4.: Picture of a retarded scattering state in one dimension as a wave packet
initially approaching the scatterer from the right with wavevector k;;
(a) initial state; (b) final state. The respective reflection and transmis-
sion amplitudes are represented by the coefficients r/(k;) and #'(k;).

After the scattering process the states therefore consist of a superposition of free
waves travelling to the left and right. Equations (2.38)) and (2.39)) allow us to read
off the meaning of the coefficients introduced in Eq. . An initial wave packet
approaching the scattering region with wavevector k; from the left gets reflected
with amplitude r(k;) and transmitted with amplitude ¢(k;) as schematically de-
picted in Fig. [2.3] The coefficients 7/(k;) and t'(k;) describe the analogue for an
incoming particle from the right, cf. Fig. 2.4 The advanced scattering state is
treated in complete analogy. Comparing to Eq. shows that the elements of
the S-matrix precisely represent these reflection and transmission coefficients. We

S(k;) = ( T(k;) t’(k;) > . (2.40)

conclude that

The unitarity of the S-matrix implies that |r(k;)|?+ |t(k;)|* = 1 as well as |r'(k;)|* +
[t'(k;)|*> = 1 which represents the fact that the reflection and transmission prob-
abilities of the scattering particle must add to one. The T-matrix is obtained by

referring to its definition in Eq. (2.26]). We readily have

o 1=tk) (k)
T(kl-)——z( Lok 1 (R ) . (2.41)

We can determine the reflection and transmission coefficients from the Lippmann-
Schwinger equation in position representation. For the sake of convenience, we
present here the result for a symmetric potential,

Hh) = 1— / " V() (2.42)

(O -

r(k;) = ! /330 dz V(x) e?*i (2.43)

—x0
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2.5. Scattering in one dimension

We note that a symmetric potential means that the reflection and transmission
amplitudes are the same for particles approaching the scatterer from the left and
the right, hence r(k;) = 7/(k;) and t(k;) = t'(k;).
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3. Scattering theory of adiabatic
reaction forces

In this chapter we derive the forces induced by the backaction of a quantum environ-
ment on a classical system purely within the framework of scattering theory. Mo-
tivated by recent advances both in nanoelectromechanical systems [Pistolesi et al.,
2008, Bennett et al., 2010L|Lii et al., 2010L|Li et al., 2011,|Bode et al., 2011, Bode
et al., 2012blBode, 2012, Bunch et al., 2007, |Lassagne et al., 2009, Steele et al.,
2009] and in spintronics devices |Tserkovnyak et al., 2002, Kupferschmidt et al.,
2000, Brataas et al., 2008, Brataas et al., 2011,|Bode et al., 2012al Fert, 2008 Ralph
and Stiles, 2008, Misiorny and Barnas, 2009] the quantum environment is consid-
ered as an open system with a continuous energy spectrum. By this, we naturally
include fluctuations and dissipation in our description. We consider the case where
the system is driven out of equilibrium.

We are interested in the backaction of the quantum environment on the classical
system. We denote the classical system by the classical parameters X(t) = Xy,
which we also call classical degrees of freedom in the following. The dynamics of
the classical system, which moves in a quantum environment, is governed by the
Langevin equation
Po—F!=Fo=) Yas X5+ &a (3.1)
B

with the classical momentum, P, the classical external force, F, and « (3) de-
notes the component of the classical degree of freedom. On the right-hand side
of Eq. the environment-induced adiabatic reaction forces are collected. To
lowest order in the adiabatic parameter the classical system experiences the Born-
Oppenheimer force, F(X;), which depends on the instantaneous position of the
classical parameter. To next order in the adiabatic expansion forces proportional
to the velocity occur, which are described by the tensor, v(X;). The antisymmetric
part of the tensor «(X;) corresponds to a Lorentz-like force, while the symmet-
ric part describes dissipation. The fluctuating stochastic forces are characterised

by €.
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3. Scattering theory of adiabatic reaction forces

Figure 3.1.: Different vibrational modes of a nanotube attached to leads; (a) one
vibrational degree of freedom X, (b) three vibrational degrees of free-
dom Xj;. Oscillating nanotubes are a paradigm of nanoelectrome-
chanical systems where a classical system couples to a fermionic
environment.

An exemplary set-up in the context of nanoelectromechanical systems is depicted
in Fig. [3.1] where the classical coordinates X; correspond to different vibrational de-
grees of freedom of a suspended nanotube which is attached to leads. The quantum
environment consists of electrons moving through the nanotube and can be driven
out of equilibrium by applying a bias voltage. A more general set-up is schemat-
ically shown in Fig. [2.1] which leaves the interpretation of nanoelectromechanical
systems and depicts an arbitrary degree of freedom X;. The scattering region felt
by a quantum environment then depends on the position X,.

In this chapter, we find expressions of the environment-induced forces on the right-
hand side of the Langevin equation in terms of the scattering matrix and
its first adiabatic correction. Before we detail the derivation, however, we first
present the results in Sec. in order to simplify further reading. In Sec.
we then present the adiabatic expansion of scattering states, which provides the
mathematical input for a derivation of the reaction forces. Together with this
expansion, we present an explicit expression for the first adiabatic correction term
of the scattering matrix in terms of adiabatic scattering states. This is then used to
derive the adiabatic reaction forces in Sec. Thereafter we connect our approach
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3.1. Adiabatic reaction forces

to the Green function approach in Refs. [Bode et al., 2011, Bode et al., 2012b| by
applying our formalism to the description of a generic quantum dot coupled to leads
in Sec. Finally, we conclude in Sec.

This chapter is based on Ref. [Thomas et al., 2012]. []

3.1. Adiabatic reaction forces

The adiabatic reaction forces appearing in the Langevin equation are the conse-
quence of the backaction of the quantum environment on the classical degree of
freedom. We describe the environment by the non-interacting many-body Hamil-
tonian, H; = H(X;), which depends on time via the classical parameter X;. This
represents the coupling between the classical system and the quantum environment.
Our findings apply to any coupling strength between the classical parameter and
the quantum environment. For non-interacting particles, the many-body Hamilto-
nian can be represented by a one-particle operator. This enables a reduction to a
single particle problem and hence we can use the Landauer-Biittiker approach for a
description of transport through the system. By this, the above developed tools on
scattering theory can be applied. The treatment of interacting particles is beyond
of the scope of this thesis.

We express the adiabatic reaction forces in terms of the scattering matrix and its

first adiabatic correction below. We begin with the Born-Oppenheimer force. We
find [Bode et al., 2011, Bode et al., 2012b)|

RX)= [ 35 > e {Tsh@0.s) (32)
with 0, = 0/0X,(t). The energy e describes the initial energy of the scattering
particles and the index n is a combined channel-lead index. The leads are kept
at chemical potentials p, with distribution functions f,(¢). The trace tr{...} is
over the leads and scattering channels and II,, is a projector onto lead n. The
index ¢ of the scattering matrix S;(e) describes the dependence of the scattering
matrix on time via the classical parameter X;. We call this scattering matrix the
frozen scattering matrix as it gives the adiabatic limit with frozen classical degrees
of freedom X;.

In particular, this chapter is based on a collaboration with T. Karzig. M. Thomas and T. Karzig
contributed equally to the work. Some of the results of the collaboration are reported in
Ref. [Karzig, 2012].
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3. Scattering theory of adiabatic reaction forces

We can read off from the expression in Eq. that the Born-Oppenheimer force is
conservative in equilibrium. When the system however is driven out of equilibrium,
Eq. shows that the Born-Oppenheimer force can be non-conservative. By this,
work can be exerted on the system, which is the fundamental idea of the construc-
tion of quantum machines or motors [Dundas et al., 2009, Brandbyge, 2009,[Todorov
et al., 2010]. For a system where the classical particle moves on a closed path it
has been shown in Ref. [Bustos-Martn et al., 2013| that there is a direct relation
between the Born-Oppenheimer force and the charge ) p, which is pumped through
the system by adiabatically varying the parameter X, [Brouwer, 1998|. Specifically,
it has been shown in this reference that the integral along a closed trajectory reads
$dX; - F(X;) = QpV, to linear response in the bias voltage Vj,. This relation con-
stitutes the fundamental identity for an adiabatic quantum motor |Bustos-Martn
et al., 2013].

Next, we consider the symmetric part of the tensor ~(X;) with respect to the
indices o and [ which describes dissipation. We denote the symmetric part by a
superscript s and find |Bode et al., 2011|Bode et al., 2012b|

s

1sX0 = [ 5 Sl-opulr {ILa.S]()0:51)}
" (3.3)

S

+ / ;—; > hue)tr {0, (2) A7 () — A7 ()050(2)] }

The matrix A; (A-matrix) denotes the first adiabatic correction of the frozen scat-
tering matrix. We give an explicit expression of this matrix in terms of scattering

states in Eqgs. (3.28)) and (3.35)).

We point out that the first line in Eq. is positive definite, while the second
line is not. The second line vanishes in equilibrium. This immediately leads to a
positive friction coefficient in equilibrium. When the quantum system however is
driven out of equilibrium, negative friction can occur. A necessary condition for
negative friction is a non-vanishing A-matrix, which is indeed realisable for at least
two modes X; |Bode et al., 2012b]. An example where negative friction has been
measured is shown in Ref. [Lotze et al., 2012, where a macroscopic cantilever is
driven into motion by the fluctuations of an adjacent Hs-molecule.

We denote the Lorentz-like force, which corresponds to the antisymmetric part of

the tensor v(X;) with the superscript a. It reads [Bode et al., 2011, Bode et al.,
2012h)|

27 a

X0 = [ 55 3 £ (I [SiE0AxE) - 947 05,0)]} . (3
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3.2. Adiabatic expansion

The antisymmetric tensor 73 ; represents an effective magnetic field in the Langevin
equation which acts on the classical degree of freedom. By definition, it naturally
vanishes in one dimension. Furthermore it vanishes under time-reversal symmetry
in thermal equilibrium [Bode et al., 2011, Bode et al., 2012b], since S(g) = S7(¢)

and A(e) = —AT(g), cf. Sec.

We conclude with the white-noise correlator of the fluctuating force, D,s(X¢). It
is given by

DuX) =Y [ 5 50 1F (el {Hn (5/(0)2.5.(2)] 11,.51(2) agst<e>}
. (3.5)

where the minus sign refers to a fermionic environment and the plus sign to a
bosonic environment. The correlator D,5(X;) is positive definite, which can be
shown by changing to a basis where the correlator is diagonal and using of the
cyclic invariance of the trace [Bode et al., 2011]. Moreover, in equilibrium we have
by comparing to the expression of the friction tensor in Eq. and with the
aid of —0.f(e) = B f(e)[1 — f(e)] with inverse temperature /5 that friction and
the noise correlator are related via D = 27=y,. This is a manifestation of the
fluctuation-dissipation theorem.

The obtained results were derived in Refs. [Bode et al., 2011, Bode et al., 2012b| for a
fermionic quantum environment using Keldysh Green functions. Below, we present
a rederivation of these expressions — including the generalisation to a bosonic envi-
ronment — within the framework of scattering theory. This has several advantages:
(i) Our derivation is much more direct compared to the derivation in Refs. [Bode
et al., 2011, Bode et al., 2012b| and (ii) by this allows a comparison to the seminal
work in Ref. |Berry and Robbins, 1993| calculating the adiabatic reaction forces
for a closed quantum environment. (iii) The usage of scattering theory generalises
previous results to quantum environments which can be either fermionic or bosonic.
Before we enter the derivation, however, we formulate the necessary mathematical
input.

3.2. Adiabatic expansion

This section is devoted to the adiabatic expansion of the Lippmann-Schwinger
equation as developed in Ref. [Thomas et al., 2012]. This provides the basic math-
ematical input for a derivation of the reaction forces within scattering theory. As in
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3. Scattering theory of adiabatic reaction forces

the introductory section on scattering theory in chapter [2, we consider the single-
particle Hamiltonian
H=H,+V(t), (3.6)

which — similar to Eq. (2.1)) — consists of a free part Hy and a part given by the
spatially confined scattering potential V' (¢). In this chapter, however, we allow for
time dependence of the scattering potential via the classical degree of freedom X;.

The adiabatic expansion consists in assuming a slowly varying classical degree of
freedom X;. Generally, we characterise the time dependence on X; by a typical
frequency Q. By "slow" we then mean §) < 1/7p where 7p is the dwell time, that is
the time that the scattering particles spend within the scattering region V, [Wigner,
1955|. In the context of nanoelectromechanical systems, "slow" means that many
electrons travel through the system per oscillation period of the nanosystem. This
assumption allows for an expansion of the scattering potential V' (¢) in Eq. in
terms of time derivatives of the classical degree of freedom. To linear order in the
adiabatic parameter, we have

V() = [Vt Vo Ve X (L= 1)+ el (3.7)

with V, = V(X,). While the first term of the potential V' (¢) in Eq. describes
scattering with respect to a static configuration X, the second term in the potential
constitutes the next order expression by including small changes in the classical
parameter. By this, the second term is proportional to the velocity X,. The time 7
in Eq. is defined as the time, which gives rise to the classical configuration X .
We call this time central time hereafter.

When considering finite quantum systems an adiabatic expansion is conveniently
performed under the condition that €2 is much smaller than the typical level-
spacing Ae of the quantum system [Berry and Robbins, 1993|. As we however
attach leads to our system which gives rise to an infinite system with a continuous
energy spectrum and thus a vanishing single-particle level spacing, the condition
2 < Ac cannot be fulfilled. Instead, for systems with a continuous energy spec-
trum the adiabatic condition states that the classical frequency 2 is much smaller
than the inverse dwell time 1/7p.

3.2.1. Scattering states

Our aim in the following is to perform an adiabatic expansion of the scattering
states. We denote the respective time-dependent retarded and advanced scattering
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3.2. Adiabatic expansion

states by |UE (g, ¢)) with combined channel-lead index m, similar to the description
in chapter 2 The energy e describes the initial energy of the incident scattering
particle for the retarded scattering states and the final energy of the outgoing
particle for the advanced scattering states. These scattering states represent the
solutions of the full time-dependent Schrédinger equation

e _ +
i &‘\Dm(e,t» = H |V, (e,1)). (3.8)

The scattering states fulfil the boundary conditions in Eq. (2.5)). This means that
they evolve from/to free states at infinite times, which are solutions of the free
Hamiltonian Hy. Similar to the treatment in chapter [2] we extract the dynamical
phase

(Wi (e, 1)) = e (e, 1) (3.9)
[®n(e,t)) = e |Pm(€)) (3.10)

of both the scattering states and the free states, |®,,(¢,t)). The free states are
normalised as in Eq. (2.3)).

In order to perform an adiabatic expansion of the scattering states |V (g,t)) we
introduce the notation |[Entin-Wohlman et al., 2002]

Vi (e, ) = [ () + 0 () + ... (3.11)

where the scattering states |5 (¢)) give the adiabatic limit with frozen classical
degree of freedom X,. The states |07/, ()) denote the first order correction term
in the adiabatic expansion and thus are proportional to the classical velocity X, .
In the adiabatic limit, the scattering potential V, can be treated as static as it
depends on time only via the classical parameter. Hence the scattering states are
stationary states and fulfil the Lippmann-Schwinger equation, cf. Eq. ,

U5 (€)) = |8 (2)) + GFA(E) Vi b (e)) - (3.12)

The index 7 of the retarded and advanced Green functions indicates the frozen

configuration X,
1

(e — H, Lin)

with the notation H, = Hy + V; and n — 0*. A derivation of the Lippmann-
Schwinger equation is presented in Sec. [2|

GRIA(e) = (3.13)

In order to find an expression of the first adiabatic correction |5y (¢)) in Eq. (3.11)),
we explicitly consider the next order term, which is proportional to the velocity X,
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3. Scattering theory of adiabatic reaction forces

in Eq. , as a perturbation. To make intermediate steps more transparent we
briefly introduce a new notation which, however, is limited to the present discussion
in this section. The advantage of this notation is that is enables a direct comparison
to the treatment in the previous chapter. Accordingly we rewrite the Hamiltonian

in Eq. (3.7)) as
H=H91)+VY(t), H9{t) = Hy+ V,e M (3.14)

T T

and ‘/T(l)(t) = Vx. V.- X, (t—7)e M. Here, HY (t) denotes the Hamiltonian with
respect to the frozen configuration which gives rise to the adiabatic Lippmann-
Schwinger equation given in Eq. . The solution of the Schrédinger equa-
tion can then be written for the retarded and advanced scattering state as the
integral equation [analogous to Eq. (2.6)]

W (e 1)) = UK (2, 1)) — i /

—0o0

At e SO O ) W e ), (3.15)

oo ’
(o) = [0 (o) i [ ar S IOVI@) v, ). (316)
t
where |UX"" (g, t)) characterises the solution with respect to the Hamiltonian H (t).
We note that the boundary conditions of the scattering states are fulfilled in the
above integral equations as |Ux"=(g,t — Foo)) = |®p(e,t)). We are interested in
the first order correction term to the adiabatic limit. Similar to the treatment of the
static scattering problem in chapter , we replace |V (e, 1)) — e == [WXrE (2 ¢))
within the integral. We note that the integrand is already proportional to Vi so
that this replacement is allowed in the regime ) < 1 < 1/7p to linear order in the
adiabatic parameter. Moreover, we note that due to the restriction n < 1/7p we can
expand the exponent in the exponential as ifttl ds H (s) ~ —i(Hy + V,) (t —t) =
—iH, (t—1") to lowest order. We conclude to linear order in the adiabatic parameter

that
t
W (e, 1)) = U5 (e 1)) — i / d IO YO () WXt (e 1), (3.17)

—00

I‘I’;(&t)>=|‘1’§”(€7t)>—i/ dt' I V) W (1) (3.18)
t

With these considerations, the integration with respect to time can now be per-
formed. Using of #' e" = 9,e™ we get

0 +nt .
(W (e, 1)) =[O (e, 1)) + on ({_:_th{—er) Vx, Vo [0X Tt (e t)) - X, t<0
(3.19)
_ X — 8 eint X, — .
V(e 1) = [V (e,1)) — i \e—m —in) VXV (1) - X, >0,
(3.20)
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3.2. Adiabatic expansion

We are interested in the solution at ¢ — 0, cf. chapter 2] Hence we can neglect the
terms e in the above expressions. With the notation introduced in Eq.
and extracting the dynamical phase as in Eq. , we conclude to first order in
the adiabatic parameter

(e, ) = [ (2)) =i (GRAE) Ve [or(e) + .. (3.21)

with VT =V XTVT-XT and the frozen Green functions presented in Eq. as well
as by defining |[¢X%(¢)) = |[¢X*(e,t — 0)). In Eq. we have omitted the
term —7 G2/ () V, | X% (e)) as it is irrelevant in defining the scattering matrix and
its first adiabatic correction, the A-matrix [see below, cf. Eq. (3.29)]. Hereafter we
will replace 7 — t for notational reasons as 7 is the only remaining time argument
after performing the adiabatic expansion. Equation is the main result of this
section as it expresses the adiabatic correction terms of the full time-dependent
scattering states completely in terms of the frozen scattering states. It thus enables
an adiabatic expansion of the full time-dependent scattering matrix which is done
next.

3.2.2. Scattering matrix and A-matrix

Our next goal is an adiabatic expansion of the exact scattering matrix of the time-
dependent scattering problem which is defined as

Snk(e',2) = (¥, (', 10) |V (e, t0)) - (3.22)

We note that the time ¢, in the above overlap can be freely chosen. With the aid
of the Schrodinger equation, cf. Eq. , we readily show that the time derivative
with respect to ty of the full scattering matrix vanishes. This enables us to later
choose ty as the central time, which is defined as the time which gives rise to the
conformation X;.

As a consequence of the normalisation condition for the scattering states, the exact
scattering matrix is unitary, that is

Z/s—iSmn(a’,e)Snk(a,e”) =276(e" — ") - (3.23)

In the adiabatic limit with frozen Xy, the overlap in Eq. (3.22)) reduces to the overlap
of the frozen retarded and advanced scattering states. We call the scattering matrix
in the adiabatic limit frozen scattering matrix and denote it with a subscript ¢, i.e.

Sit(e)2mé(e — &) = (Wn (Nl (e)), (3.24)
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3. Scattering theory of adiabatic reaction forces

which is in accordance with the definition in Eq. (2.20)). In order to get an expression
of the first order correction term in the adiabatic expansion it is convenient to use
the Wigner representation

dé _;

S (e, 1) :/2—e_zat8(€+5/2,5—€/2) (3.25)
s

of the full scattering matrix. We can then write the time-dependent scattering

matrix for a slowly varying scattering potential V' (¢) up to first order in the adiabatic

expansion as

S(e,t) = Si(e) + A(e) + ... . (3.26)

Here, the frozen scattering matrix Si(e) represents the zeroth order and the ma-
trix

Ae) =) Ap(e)X, (3.27)

gives the first order correction term and is thus proportional to the velocity X,. We
dub this matrix A-matrix hereafter. We note that all quantities appearing on the
right-hand side of Eq. depend parametrically on time via the classical degree
of freedom X;. In the following we give an explicit expression for the A-matrix in
terms of the frozen scattering states. As the derivation is a bit lengthy we first
present the result,

A7) = 5 00 O AV ) - 5 W@ Vi 0uE ), (329

where we defined 0, = 0/0X, and |04 (e)) = 9.]Yx*(e)). We note that
expressions of the A-matrix in terms of Green functions have been obtained in the
literature in Refs. |[Bode et al., 2011, Bode et al., 2012b, Vavilov et al., 2001| or
alternatively by a first-order expansion of the exact solution of the time-dependent
system |Moskalets and Bittiker, 2004, Moskalets and Biittiker, 2005|. By Eq. ,
however, the A-matrix is now directly expressed in terms of the frozen scattering
states and can thus be systematically — as the scattering matrix itself, cf. Eq.
— obtained from the solution of the stationary scattering problem. Equation
is of crucial importance for the derivation of the adiabatic reaction forces which is
performed below.

Aiming at deriving Eq. we make use of the adiabatic expansion of the
Schrodinger equation for the scattering states in Eq. . This expansion en-
ables an adiabatic expansion of the full scattering matrix defined in Eq. . We
choose ty to be the central time t by relying on the previously shown independence

of to. We then expand the Wigner transform in Eq. (3.25) to first order in the
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3.2. Adiabatic expansion

adiabatic parameter using of Eq. (3.21]) as

Set) = [ Soe U e+ 501wt e~ 5.0)

27
= [ SR+ DI o)
i[5 wat—m_)“@;z( UKDy (329)
wi [ S WS+ DG+ PR - D)
+ ...

Applying the Green functions onto the scattering states gives GI*(e+£/2)[¢p*t " (e4))
(£€ + in) H**T (e4)). Then by using the identity [(€ 4+ in)™2 — (=€ +in)~?] =
271 0:0(£) we find

3

VA (3.30)

Sle.t) = Sie) — [ A [056)] (W (e 5 Wi IR (e - 5

An integration by parts finally yields

1 . 1 .
S(e,t) = Sie) + 504 (&) Vi [P () — 5™ () Vilo™ (o)) + ..
(3.31)
which is the desired expression for the A-matrix in Eq. (3.28]).

3.2.3. Some useful identities

In the remainder of this section we briefly derive some identities for the frozen
scattering states, the frozen scattering matrix and the A-matrix, respectively, which
will be useful in the derivation of the adiabatic reaction forces. We begin with the
fact that we can evaluate the time derivative of the frozen scattering state explicitly
by taking the time derivative of the Lippmann-Schwinger equation m With
the aid of the relation &GR/ A GR/ A A GR/ we deduce that |Entin-Wohlman
et al., 2002]

aXE(e)) = G (Vi [W¥* (e)) - (3.32)

Next we make use of the fact the frozen S-matrix is related to the frozen T-matrix

via Egs. (2.26]) and (2.28)). Taking the time derivative of Eq. (2.26) with the aid of
Eq. (3.32) and the Lippmann-Schwinger equation (3.12]) we then conclude

0,51 (e) = =i (Y= () Vi [ (e)) - (3.33)
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3. Scattering theory of adiabatic reaction forces

We can use this identity to show that
O (W* ™ (e) | Vi [0 X () = 00,5 (e) - (3.34)

This gives the alternative expression for the A-matrix
. i
Aule) = = () Vi[04 (€)) + 50:0:94(e) (3.35)

compared to the expression given in Eq. (3.28). Finally, we present a relation
between the frozen scattering matrix and the A-matrix [Moskalets and Biittiker,
2004, Moskalets and Bittiker, 2005, Bode et al., 2011, Bode et al., 2012b|, which is
a consequence of the unitarity of the full scattering matrix. From Eq. we
get

SH(e) Ai(e) + Al(e) Sile)
= —0.(XH @V WX (€) + 5 [ S1() -018:(6) - 2.0uS1(e) ()|
- _%ag [s;(g) 8,9,(e) — 0,57 (¢) St(e)] + % [Sj (€) 0:0154(e) — 0:0,5] (e) SM}

=+ [a810)0.5.6) - .51 (0) a5u(e)]
(3.36)

With these equations we are now ready to address the derivation of the adiabatic
reaction forces purely within the framework of scattering theory.

3.3. Derivation of the adiabatic reaction forces

In this section, we derive the adiabatic reaction forces with the aid of the above
formulas for the adiabatic expansion of the scattering states. We consider slowly
varying degrees of freedom X; and calculate the reaction forces to linear order in the
adiabatic parameter. Important is our assumption of a non-interacting quantum
environment, which enables a treatment within the Landauer-Biittiker approach
and hence scattering theory. To this end, we introduce the creation and annihi-
lation operators af (¢,t) and a, (e, t) which create and annihilate, respectively, the
time-dependent retarded scattering states |UF(e,¢)). The scattering states form a
complete set of basis states since time evolution is unitary. In the following, we
work in the Schrodinger picture so that the creation and annihilation operators
have the time argument ¢ appearing as a label to clarify which states are created or
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3.3. Derivation of the adiabatic reaction forces

annihilated. With these operators we can express the non-interacting many-body
Hamiltonian H; as

H, = / g—i / i—i%[fmmk al (e, t)ag(e, 1) (3.37)

in terms of the single-particle Hamiltonian H;, = Hy + V;. In the Schrodinger
picture, the operator of the total force, which is exerted by the out-of-equilibrium
quantum environment on the classical parameter X;, is defined as

Fx = —VH (3.38)

where V(...) = 0x,(...) is taken with respect to the classical degrees of freedom.
For any given trajectory X; we can then determine the average force on the classical
system by tracing out the quantum environment, that is

F(t) = F[X] = (Fx,) - (3.39)

Here we have used the notation (...) = Tr{p(¢)...} which indicates the quantum-
statistical average for a given X; with p(¢) being the many-body density matrix
of the quantum system evaluated at time ¢. We note that the average force given
by Eq. is a functional of the trajectory of the classical parameter. Its time
dependence is thus expressed via X; and its time derivatives Xt, Xt, Xf ... As we
assume a slow varying X; we in fact expand in powers of derivatives of the classical
degree of freedom and keep only linear order terms, i.e terms proportional to the
velocity X,.

By taking the quantum-statistical average in Eq. , the force F(t) contains
only the average forces, which appear on the right-hand side of the Langevin equa-
tion (3.1). The Langevin equation also includes fluctuating forces &(t), which de-
scribe both Johnson-Nyquist noise and shot noise |Blanter and Biittiker, 2000,
Nazarov and Blanter, 2010]. These fluctuating forces will be treated later. At
this point, we stress that the force F(t) is an expectation value evaluated for a
given X;. By this, no memory effects of the quantum environment are included
and the Langevin equation is given in the Markovian limit. In fact, the
Langevin equation implicitly contains a classical averaging over timescales,
which are short compared to the timescale of the dynamics of the classical system
and long compared to the timescale of the quantum environment. Within an out-
of-equilibrium Born-Oppenheimer approximation |[Bode et al., 2011}, Bode et al.,
2012b] the force is then represented by the above (average) quantum expectation
value for a given X;.

We continue with the evaluation of the average force F(t). We readily observe
that the expectation value (a! (¢,t)ax(¢’,t)) is independent of the time ¢. This
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3. Scattering theory of adiabatic reaction forces

can be seen by realising that the density matrix p(t) as well as the scattering
states |¢;}(e,t)) evolved from the unperturbed states by a unitary time evolu-
tion. Following the Landauer-Biittiker theory of mesoscopic conductors we can
then write

(al, (e, t)ar(, 1)) = fu(e)Opm2md(e — &), (3.40)
where fi(¢€) gives the distribution function of lead and channel m at energy . For
an electronic quantum environment fi () is the Fermi-distribution function, while
for a bosonic environment fi(e) represents the Bose-Einstein distribution. Similar
to Eq. (3.37) the force operator is a one-particle operator which can be written as

VH, = / / Z [VH,] . al (e, t)ar(e,t). (3.41)

Taking the quantum-statistical average then results in the following expression for
the average force

_ _/;1 ka ) (i (e, )| VH, |07 (2,1)) . (3.42)

We are now ready to determine the adiabatic reaction forces which appear in the
Langevin equation since Eq. expresses the average force in terms the full
time-dependent scattering states. With the aid of the adiabatic expansion of these
states as shown in Eq. we can express the average force to linear order in the
adiabatic parameter as

FIX, / 5 WO VU @)

g / 5 O Jil&) W] aV; (G YV [0 ()
P (3.43)

vt [ 5 o) W @IV (@) 2V o)

Here we have made use of the fact that the Hamiltonian depends on the classical
degree of freedom via the scattering potential so that VH, = VV,. From Eq. -
we can read off the reaction forces. The Born-Oppenheimer force corresponds to
the first line of the right-hand side of Eq. as it depends on the instantaneous
position X; of the classical parameter. The first-order correction term which is
proportional to X, that is the second and the third line of Eq. , give rise to
the friction force and the Lorentz-like force. Both terms are combined as —v - X,
in the Langevin equation . We give expressions of the reaction forces in terms
of the scattering matrix and the A-matrix in Secs. [3.3.1] and [3.3.2]
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3.3. Derivation of the adiabatic reaction forces

Next we address the stochastic force. To this end, we change from the Schrodinger
picture to the Heisenberg picture, hence we deal with time-dependent operators so
that ]:—X(t) depends explicitly on time. At the quantum-mechanical level we then
define the fluctuations of the force via the Heisenberg stochastic force operator as

£(t) = Fx, (t) — F(1). (3.44)

The origin of the fluctuating nature of the force is twofold. On the one hand,
fluctuations are a consequence of finite temperature effects, on the other hand
scattering of quantum particles is a probabilistic process which results in non-
equilibrium noise. We are interested in the noise correlator

Das(t,t') = {(&a(t)és(t')}, (3.45)

which is symmetric with respect to the classical components a and 5. The sym-
metrisation with respect to the components is indicated by the brackets {...};. As
we assume that X, varies slowly compared to the characteristic timescales of the
quantum system, we assume D,z(t,t") to be local in time on scales which appear
in the Langevin equation, i.e.

Dos(t, ') = Dog(t)d(t —t'). (3.46)

In order to take the fluctuations into account and to have the fluctuation-dissipation
theorem satisfied, the stochastic force &€(t) is included in the later description of
the adiabatic reaction forces. The fluctuating force enters in the Langevin equa-
tion 1} with &,(8)€3(t") = Dap(t)d(t — t'). Here, the overline represents the
classical averaging which is implicitly assumed in the Langevin equation. Aim-
ing at evaluating the correlator D,g(t), we perform a time average over the fast
timescale, that is the relative time 7 = ¢ — ¢’ in Eq. (3.49),

Das (X,) = /dTDaﬁ <t+ g,t— g) . (3.47)

We note that the fluctuation-dissipation theorem is already fulfilled in the limit of
a frozen classical parameter X; [Bode et al., 2011, Bode et al., 2012b]. Hence we
evaluate Eq. in the fully adiabatic limit and consider the zeroth order with a
static Hamiltonian which depends on time via the classical degree of freedom X..
We can thus use the frozen retarded scattering states as they represent a complete
basis. To this end, we introduce the creation and annihilation operators of the
frozen retarded scattering states, aXt(¢) and aXt(¢), which create and annihilate
the states [UXt()) at time ¢ which are eigenstates of the Hamiltonian H;. This
allows us to write

/ / Z () [OaHi) a7 () (3.48)
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3. Scattering theory of adiabatic reaction forces

for the force operator in the Schrodinger picture. The superscript, X;, of the
creation and annihilation operators stresses the adiabatic limit. A transformation to
the Schrodinger picture is readily done to zeroth order in the adiabatic parameter by
substituting ay*(g) — ar'(e,t+7) = e *7a,* () in the above expression where we
set the reference time to change between the different representation pictures as t.

For an evaluation of the noise correlator we then make use of the relation |Biittiker,
1992]

(T (en)an (e2)ag T (e3)ai™ (e0)) — (an T (en)at (e2)) ay  (e3) ey (ea)

2 (3.49)
= (27)" fm(e1) [1 F fr(€2)] Omi Ok 6(e1 — €4) (52 — €3) -

At this point we emphasise that this expression is valid for both a fermionic (—)
as well as a bosonic (+) quantum environment. Making use of Eq. (3.49) we can
express the averaged noise correlator in Eq. (3.47)) as

Das (X) = [ S funle) 117 o)) {03 @] Hlu <)
(U ()]0 Hy X ()}

Below we now use the above derived expressions in Eqs. ) and - for the
adiabatic reaction forces, that is the Born-Oppenheimer force, the friction force, the
Lorentz-like force and the noise correlator of the stochastic force, to express these

(3.50)

forces in terms of the frozen scattering matrix and its first adiabatic correction, the
A-matrix.

3.3.1. Born-Oppenheimer force

We read off the expression of the mean force (Born-Oppenheimer force) from the
first line of Eq. (3.43)) corresponding to the term which depends on the instanta-
neous X; and is independent of the velocity of the classical particle. We find

_/S > fale) WX () 0aVi [0X T (2)) (3.51)

We can bring this expression into a form which contains the scattering matrix. By
inserting a complete set 1 = [ 925 4 (e)) (47 ()| of advanced scattering

states, cf. Eq. (2.16), we get

—/§—§/§ an ) (R ()| ihpt = (1) (Wt~ ()] a Ve [93F (e)) -
(3.52)
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3.3. Derivation of the adiabatic reaction forces

We identify the scattering matrix by comparing to Eq. . Moreover, we iden-
tify the derivative of the scattering matrix with respect to the classical degree of
freedom. Indeed, due to the parametric time-dependence of the frozen S-matrix via
the classical parameter we deduce that

OaSui(€) = =i (U~ (€) aV U (€)) (3.53)

by referring to Eq. (3.33)). Altogether we conclude that

F, _/QMan S (£)8a S () . (3.54)

We can equivalently write this in matrix notation, which gives the result

o /%szn Jor {11,5(0)2,54(2) } (3.55)

where II,, is a projector onto lead n and the lower-case trace, tr{...}, is over the
channel space. We note that Eq. agrees with the expression for the mean
force obtained in Ref. |Bode et al., 2011] where the adiabatic reaction forces on
a nanoelectromechanical system are studied by using the non-equilibrium Keldysh
Green function approach.

We conclude this section by illustrating that the expression for the Born-Oppen-
heimer force obtained here is closely related to the Friedel sum rule [Friedel, 1952].
We begin by observing that for a discrete energy spectrum with energy levels E! =
E¥(X;) we can express the equilibrium Born-Oppenheimer force as, cf. Eq.
as well as Ref. [Berry and Robbins, 1993],

Fo(Xy) ==Y f(E})0.E;. (3.56)

We note that equilibrium means that all leads posses the same chemical poten-
tial p, = p and hence the index on the distribution function f,,(¢) can be dropped.
Next, we take the infinite volume limit which can be taken by replacing E! —
[deed(e — E}) in Eq. and expressing the number of states up to energy e
by N(e,X;) = ffoo de'v(e’,X;). Here, we have introduced the density of states v
and have made use of the relation 9,0 (¢ — E}) = —d (¢ — E}) 0,F}. In the infinite
volume limit the mean force can then be written as

Fa(X,) = / de f(£)0N (2, X)) (3.57)

The spatial derivative of the number of states is called emissivity [Biittiker et al.,
1994] which is a known quantity in the context of adiabatic quantum pump-
ing |Brouwer, 1998|. The Friedel sum rule |Friedel, 1952| relates N(g,X;) to the
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3. Scattering theory of adiabatic reaction forces

frozen scattering matrix |[Langer and Ambegaokar, 1961]

1
N(c‘:, Xt) = 2—mtr {h’l St<€)} s (358)
so that its spatial derivative reads
1
- T
OaN (e, X,) = 5t {st (g)@ast(g)} . (3.59)

This readily reproduces the expression of the Born-Oppenheimer force obtained in
Eq. (3.55)) in terms of the S-matrix in equilibrium.

3.3.2. Friction and Lorentz-like force

Both the friction tensor and the geometric Lorentz-like force, which are contained
in the tensor «, are given by the second and third line of the right-hand side of
Eq. . They constitute the adiabatic correction to the mean force. Since
O(...) = Dal...) X4, we read off

o= [ o S SEEEN 04 (GHO) uti = 0u¥i (GEE) 0n1]

Iw’“*( ) -
(3.60)

We begin with the symmetric part of the tensor ~, that is 755 = 1/2 (Yap + Vsa),
which has the meaning of a friction tensor in the Langevin equation of the classical
degree of freedom. By definition, we have

=i dngk X ()] 052 (G(E) 0aVi — 0uVi (GR(9))* 0V

|¢Xt+< N}

S

(3.61)

from Eq. (3.60)). Symmetrically exchanging the indices o and 8 as well as using
the relation (G;“)2 - (Gf)2 = —0.(G# — GE) = —27i0.6(¢ — H;), we can rewrite
Eq. (3.61)) after performing an integration by parts as

s = [ 4o [0 RN 0V 0(e — H) QWi [ ),
~ [ RO Ol 0V~ H) 93V (), (3.62)
= [ hule) O] Vi b= — H) D:i 0.0 ().
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3.3. Derivation of the adiabatic reaction forces

We insert a complete set of advanced scattering states between the partial derivative
of the scattering potential and the delta distribution in each of the three terms on
the right-hand side. This yields

Vo= = [ SE0Fle) LR ()] Vi [ )R ()] Vi 2 (o),
% () {04 (O 0V WE N (N VT (@)}, (3:63)
O LA T O CICAACE SO

We readily identify both the S-matrix, cf. Eq. (3.24) and Eq. (3.53]), and the
A-matrix, cf. Eq. (3.28) and Eq. (3.35), respectively, appearing in the above ex-
pression. This leads to the result

%0 = [ o e {masieose)],

" (3.64)
+ [ g 2 e {1 251047 - A @0.5.0)]

s

This expression coincides with the one obtained in Ref. [Bode et al., 2011|. The ap-
proach presented here enables a direct comparison to the calculation in Ref. [Berry
and Robbins, 1993] where the friction tensor vanishes for a closed quantum system.
With the above calculation we conclude that for an infinite quantum system with
a continuous energy spectrum the classical degree of freedom indeed experiences a
friction force proportional to the velocity.

We now turn to the geometric Lorentz-like force. We indicate antisymmetrisation
with respect to the spatial indices « and 8 by the brackets {...},. Then the
antisymmetric part 755 = 1/2 (Yap — Vga) reads

/ ae Z fi(e) 1 (Wt (o) [agvt (G(e)) Vi — 0.V (GF(2))” aﬁv;}

xfut (e >>}a ,
(3.65)

which follows from the expression in Eq. (3.60). We can identify the A-matrix

appearing in this expression by referring to Eq. (3.35). Making use of [GE(g)]? =
—0.GR(g) we show that

{Ba2e)} = {@w@0sVi (G1e) aVi ™ (o) } (3.66)

a
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3. Scattering theory of adiabatic reaction forces

and analogously for an expression in terms of the advanced Green function. We
conclude for the antisymmetric part of the tensor + that

X0 = [ 5 37 2 B {1 [sl0u470) st} wom)

a

by performing similar steps as above.

The above obtained expression of the antisymmetric tensor 75, coincides with the
expression in Ref. [Bode et al., 2011]. We remark that as opposed to Ref. |[Li et al.,
2010], the Lorentz-like force does not diverge in all of the above expressions, as we
necessarily deal with a finite dwell time.

3.3.3. Fluctuating force

We continue with the noise correlator of the stochastic force in Eq. (3.50]). Inserting
twice a complete set of advanced scattering states and comparing to Egs. (3.24)
and (3.53) we conclude

de n . m n
Dos = [ S50 15 pu@l {05 @ S M@ a6 ) L (369)
Similar to the friction tensor and the Lorentz-like force, we write this in matrix
notation as

DuX) =¥ [ 52 5e) 1% e {1 [0 0,500)] T sl@2560)}

s

(3.69)
This expression coincides with the result in Ref. [Bode et al., 2011|, where a
fermionic quantum environment is considered. From Eq. we deduce that
a similar result holds for a bosonic quantum system by replacing the Fermi distri-
bution function by the Bose-Einstein distribution and changing a sign.

3.4. Application: quantum dot attached to leads

The above expressions of the Born-Oppenheimer force, the friction force, the Lorentz-
like force and the noise correlator have been obtained in Refs. [Bode et al., 2011,
Bode et al., 2012b| by using Keldysh Green functions. In this work a nanoelectrome-
chanical mechanical system is considered which is attached to leads and couples to
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the "heavy" classical degree of freedom X; via electron-phonon coupling. The clas-
sical degree of freedom corresponds to a mechanical vibrational mode of the system
and the forces acting on the classical parameter are induced by a current which
runs through the system. In this section we show how the use of scattering theory
is related to this work. Accordingly, we consider the Hamiltonian |[Bode et al.,
2011, Bode et al., 2012b)|

Hx, =Hx +Hr+Hp+Hr (3.70)
where the different terms are specified as
P2
Hx = 207 + U(Xy) (3.71)

R RS M CMEICE (372)

Hp = Z df [ho(X)],,, s do (3.73)

Hy = / \/% )an(e)dm + h.c.) . (3.74)

Here, the operators cf () and cn(e) create and annihilate, respectively, the free
electronic states |¢,(¢)), which are approaching the scattering region from lead n =
L, R with chemical potential i, > pg. Hx describes the evolution of the mode X; in
the potential U(X;), with mass M and frequency wy. The Hamiltonian Hp models
the system’s Hamiltonian with states |m), created and annihilated, respectively, by
the operators d! and d,,,. Furthermore, Hy represents tunnelling between the leads
and the system with tunnelling amplitudes W,,.(¢) = (¢,()|W|m)/v/2r. The
mechanical degree of freedom couples to the electrons in the dot which is assumed
to be instantaneous and described by the matrix ho(X).

Our aim is to define a scattering problem from the electronic part of the Hamiltonian
in Eq. and to find an explicit expression of the A-matrix in terms of Green
functions. We start by observing that the free Hamiltonian H, in the above notation
is given by the lead Hamiltonian Hj. The scattering potential is given by the dot
and the coupling to the leads so that we can write V; = W', + I, WIIp +
[Ip Hpllp with the projector onto the lead space, I, and the projector onto dot
space, IIp. We note that the Hilbert space is a direct product of dot and leads spaces
so that Il - IIp = IIp - II;, = 0. With this we can define the Lippmann-Schwinger
equation, cf. Eq. (3.12), which defines the scattering process as

[Un T (€)) = T |y (e)) + Gi(e)Vi T [y (e)) (3.75)

where the Green function GE(¢) = (e — H;+in)~! is the adiabatic Green function of
the full Hamiltonian, i.e. the dot and the leads. We project Eq. (3.75) onto the dot
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space and define the adiabatic Green function of the dot as GE(g) = IIp GE(e) Ilp.
This gives

Ip [y (e)) = TIp Gy'(e) Ip WILL |6y (e))

(3.76)

= Gp(e) W ey (e)) -
The reason for projecting the Lippmann-Schwinger equation onto the dot space is
that the coupling to the mechanical degree of freedom is only via the dot Hamil-
tonian. This means that 0,V; = IIp0,Hpllp which implies by referring to the
definition of the A-matrix in Eq. (3.28]) that

1

A (6) = 5 (00X OIMpoHp T [0 (2)

(3.77)
()| T B, Hp T |a€w§f+<e>>) -

With the aid of Eq. (3.76)) we then deduce

Al =m) {35 (War(e) [GD(e)] ) [0chum] [GE(€)],,,,, Wikale)
klmn (378)

CWo(e) [CRE)],, b 8- ([CRE)]. Wi (6) } ,

which coincides with the expression obtained for the A-matrix in Refs. [Bode et al.,
2011, Bode et al., 2012b].

3.5. Conclusion

Nanoelectromechanical systems are a paradigm for systems in which a fast quan-
tum fermionic environment couples to slow classical coordinates. Aiming at con-
trolling these systems, an understanding of the forces induced by the environment
on the classical degrees of freedom is of crucial importance. In this chapter we have
phrased such an interaction generally by considering a classical parameter coupled
to an open quantum environment which can be both fermionic or bosonic. The set-
up thus applies to a wide range of systems, ranging from nanoelectromechanical
to optomechanical and to cold-atom systems. Motivated by the fact that nano-
electromechanical systems constitute open systems, we have considered a quantum
environment with a continuous energy spectrum. This has naturally led to the ap-
pearance of additional reaction forces such as dissipation and noise as opposed to the
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case of a closed quantum environment with a discrete energy-level spectrum [Berry
and Robbins, 1993].

Since transport in nanoelectromechanical systems is predominantly described by
the Landauer-Biittiker theory we have used scattering theory as a natural tool for
describing the environment-induced reaction forces. Out-of-equilibrium situations
have been taken into account by adjusting the chemical potential of the respective
scattering channels differently. We note however that scattering theory assumes
a non-interacting (many-body) model, so that we stress that all the above results
hold for the non-interacting case only.

Recently, the adiabatic-reaction forces have been expressed in terms of the scatter-
ing matrix and its first adiabatic correction in Refs. [Bode et al., 2011, Bode et al.,
2012b] in the context of nanoelectromechanical systems. Their derivation is based
on the usage of Keldysh Green functions. Here we have presented a rederivation of
these results, which solely relies on the methods of scattering theory, and thus is
much more direct. Due to the generality of our results the derivation furthermore
allows for a comparison with earlier results on adiabatic reaction forces for closed
quantum systems. While the adiabatic condition for closed quantum systems im-
plies that the typical frequency of the classical degree of freedom €2 is much smaller
than the energy-level spacing of the quantum system, this is obviously violated for
an open system with a continuous energy spectrum. As it has turned out, adia-
baticity requires the frequency €2 to be much smaller than the inverse dwell time,
which naturally distinguishes the two characteristics timescales of the quantum and
the classical system from each other.

Finally, as a consequence of the adiabatic expansion in the framework of the scatter-
ing theory, we have obtained an explicit expression of the first adiabatic correction
of the scattering matrix, the A-matrix, in terms of the adiabatic scattering states.
This is not only of theoretical importance, but also strongly simplifies direct calcu-
lations of concrete applications.
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4. Relation between the Anderson
orthogonality catastrophe and
the adiabatic reaction forces

The present chapter is devoted to the Anderson orthogonality catastrophe of a
quantum fermionic system and its relation to the adiabatic reaction forces, which
appear in the Langevin equation . They describe the motion of a nanoelec-
tromechanical system — or, more generally, a heavy particle — moving in a quantum
environment out of equilibrium. Our basic motivation stems from the seminal work
in Ref. [Schonhammer, 1991] where for a free electron gas in equilibrium a direct
relation between the orthogonality exponent and the dissipation has been obtained
in the limit of small variations of the classical system. Our main aim is a generali-
sation of this work to out-of-equilibrium situations.

We use the framework of scattering theory to connect the orthogonality catastrophe
to the adiabatic reaction forces. By this, we can rely on the previously obtained
expressions of the reaction forces in chapter [3] In equilibrium, the orthogonality
exponent was expressed in Ref. [Yamada and Yosida, 1982| in terms of the scat-
tering matrix for finite systems. This relation constitutes the starting point in
Ref. [Schonhammer, 1991| for identifying a relation to dissipation in the limit of
small distance, i.e. small variations in the coordinates of the heavy particle. In the
present chapter, we generalise these ideas to infinite systems and finite times by
studying the Loschmidt echo and the fidelity amplitude, which represent dynamical
measures of the orthogonality catastrophe.

We detail the close relation of the orthogonality catastrophe to the Loschmidt echo
and the fidelity amplitude later in this chapter. Both the orthogonality catastrophe
and the fidelity amplitude have been studied in many different contexts. Famous
is the so-called impurity problem which describes the effect on a fermionic system
when a local perturbation is suddenly changed. In this context, the Fermi-edge or
X-ray singularity constitutes a paradigm of the impurity problem where a power-
law divergence of the spectral function of the Fermi system is seen at the frequency
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threshold [Mahan, 1967,[Noziéres and de Dominicis, 1969|. Other examples include
cold-atom systems with time-dependent impurities [Knap et al., 2012|, the one-
channel Kondo problem [Yuval and Anderson, 1970] and Luttinger liquids [Schotte
and Schotte, 1969, Ogawa et al., 1992, Kane et al., 1994 including their exten-
sions |[Imambekov et al., 2012|. The Fermi-edge singularity is studied in out-of-
equilibrium situations with the aid of diagrammatic techniques [Ng, 1995, Ng, 1996|
and using functional determinants |[Abanin and Levitov, 2004,|/Abanin and Levitov,
2005| as well as scattering matrices at zero temperature [Muzykantskii et al., 2003].
Moreover, a generic spin-fermion model is discussed in Ref. [Segal et al., 2007| and
temperature effects in Refs. |[Dora et al., 2011} |Sindona et al., 2013|. Examples
with interacting particles can be found in Refs. [Doéra et al., 2013 Sachdeva et al.,
2014).

In this work, we discuss the relation between the fidelity amplitude and the adia-
batic reaction forces in the regime of small displacements of the classical system by
relying on the expressions of the adiabatic reaction forces in terms of both scatter-
ing theory |[Thomas et al., 2012| and Green functions |[Bode et al., 2011, Bode et al.,
2012b|. We begin in Sec. by defining the fidelity amplitude and the Loschmidt
echo for nanoelectromechanical systems and summarise their relation to the or-
thogonality catastrophe. Thereafter we consider the regime of small displacements
of the classical system in Sec. [§.2] Before treating out-of-equilibrium situations in
Sec. [4.3] we review some aspects on the equilibrium case in Sec. To illustrate
our findings we apply our results in Sec. to a simple model which is a single
level coupling to one vibrational mode. Finally, we conclude in Sec. 4.8

This chapter is based on the unpublished joint work with T. Karzig, S. Viola Kus-
minskiy and F. von Oppen to which we refer as Ref. [Thomas et al., 2015|.

4.1. Definition for nanoelectromechanical systems

The fidelity amplitude, A(7), is defined as the overlap of two quantum many-body
states, which evolve in time from the same initial state according to different many-
body Hamiltonians. For an initial quantum statistical mixture, this definition can
be generalised to

A(T) = (eMim e Ty | (4.1)

where the brackets (...) denote the quantum statistical expectation value with re-
spect to the (initial) Hamiltonian, H;. The (final) Hamiltonian, H, characterises
the perturbed Hamiltonian. Equivalently, the fidelity amplitude can be interpreted
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as a quantity which measures how closely a quantum system returns to the initial
state when forward and backward evolutions are governed by different Hamilto-
nians. The name fidelity amplitude originates from its applications to quantum
information theory. The Loschmidt echo is defined as the absolute square value of
the fidelity amplitude, i.e.

L(T) = |A{®)]*. (4.2)

The Loschmidt echo and the fidelity are good measures of the Anderson orthogonal-
ity catastrophe. This connection is well known in the literature and we illuminate
it in the following.

In the same year in which P. W. Anderson’s seminal paper on the orthogonality
catastrophe |Anderson, 1967| appeared, it was shown that the emission and the ab-
sorption spectral functions of a fermionic system diverge at the frequency threshold
as a power law [Mahan, 1967]. This divergence is referred to as the X-ray or Fermi
edge singularity. Two years later, the Fermi edge singularity and the orthogonality
catastrophe were shown in Ref. [Noziéres and de Dominicis, 1969| to be competing
effects by analysing the creation and annihilation of a hole deep in the Fermi sea.
In this context, the creation of a localised core hole can be modelled as a sudden
switching on of a perturbation of the Hamiltonian. In particular, P. Noziéres and
C. de Dominicis showed that the Green function of a tunnelling electron, which
describes the Fermi edge singularity, can be decomposed into two terms. The first
term describes the single-particle scattering by a time-dependent potential and
produces a divergence in the X-ray absorption spectral function to the creation
of excitons when the core hole is created. The second term, on the other hand,
describes the orthogonality effect, meaning the response of the Fermi sea to the
creation of the core hole. It tends to suppress the divergence of the absorption
spectral function with a power-law exponent given by the Anderson orthogonality
exponent |[Rivier and Simanek, 1971|. In this context, the response of the Fermi sea
is described in terms of the core hole propagator. It is evaluated by calculating the
ground-state overlap of the many-body fermionic states where one state evolves in
time with respect to the unperturbed Hamiltonian (without the core hole), and the
other state evolves with respect to the perturbed Hamiltonian (with the created
hole). Hence it is given by a fidelity amplitude of the form given in Eq. where
the Hamiltonians H; and H; describe the system in the presence and absence of
the hole, respectively.

The interpretation of the fidelity amplitude in the context of nanoelectromechanical
systems is illustrated in Fig. and Fig. When the classical system moves,
the scattering potential, felt by the quantum environment, changes. Hence the
displacements, X and X + 6X, induce the different Hamiltonians, H; = Ho + Vx
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S

Figure 4.1.: Sketch of a scattering region coupled to a classical degree of freedom. A
change of the position of the scatterer from X to X + §X is associated
with a different scattering potential V felt by the electrons travelling
through the system.

and Hf = 7’[0 + VX_ng.

In Eq. the change of the Hamiltonian from H; to H; happens instantaneously,
that is on a timescale much smaller than other timescales of the problem. We
generalise the expression in Eq. to include different ways of changing between
the initial and the final Hamiltonian. This generalisation provides more insight
into the dynamics of the coupled system-environment set-up and explains that
adiabatic quantities, such as the friction force, appear in a quantity which describes
the sudden change of the classical parameter, as we deduce later. Accordingly,
we allow for continuously changing the displacement of the classical system and
consider the Hamiltonian

H(t) = Ho+ Vx + g(t) IHx (4.3)

with 0Hx = Vxisx—Vx. This Hamiltonian is assumed to describe a non-interacting
fermionic environment, but is otherwise arbitrary. The function g(¢) introduced in
Eq. determines the quench protocol. It controls how rapidly the nanoelec-
tromechanical system changes its displacement. Initially at ¢ = 0 we assume the
classical system to be at the position X which is associated with the Hamilto-
nian Hoy + Vx so that g(0) = 0. We further consider the quench to stop at time 7
which means that we impose g(7) = 1. For a time-dependent Hamiltonian as in
Eq. , the fidelity amplitude generalises to

A(r) = (Ul (,0)U(7,0) ), (4.4)
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where Uy denotes the time-evolution operator of the initial Hamiltonian Hy + Vx
and U describes the time-evolution with respect to the time-dependent Hamilto-
nian H(t). Equation (4.4) gives the most general expression of the fidelity ampli-
tude.

In this work, we are particularly interested in the following two different quench
protocols: (i) a sudden quench with g(¢t) = 1 for ¢ > 0, for which the fidelity
amplitude in Eq. reduces to Eq. , and (ii) an adiabatic quench protocol,
where we assume a smoothly varying displacement with linearly increasing g(t) =
t/7. Later we show that the results in equilibrium do not depend on the particular
form of the adiabatic quench protocol. The results in out-of-equilibrium situations,
that is in the presence of an applied bias voltage, on the other hand can depend on
the precise form of g(t).

4.2. Perturbative expansion in small distances

We treat the fidelity amplitude and the Loschmidt echo in the regime of small dis-
placements X of the classical system. This allows for a perturbative treatment.
To do so, we introduce the interaction picture with respect to the initial Hamilto-
nian H;. We realise that the term within the quantum statistical expectation value
in Eq. is the time-evolution operator in the interaction picture. This means
that we can express the fidelity amplitude as

T

A(7) = (T exp ( —z’/dtg(t) 57—2X(t)) ), (4.5)

0

where the time dependence is given by 6Hx (t) = e™6H;e~™xt and T denotes the
time-ordering operator. We use Eq. to perform a perturbative expansion for
small variations of the local potential via the classical parameter X, so that we
consider

0Hx =Y 0aVx0Xo =) OaHx0X,. (4.6)

As in the previous chapter, we denote the components of the classical degree of
freedom by o and 3. To first non-vanishing order in both, the real and the imaginary
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part, we get from Eq. (4.4) for small 6X

T

In A(1) = —i/dtg(t) (6Hx (1))
E ] (4.7)
- / dt / ar gﬁjg@) 9(t') Das(t,1) - 0Xo 0X 5.,

where the first term is purely real and the second term purely imaginary. In the
above equation we have identified the noise correlator Dos(t, t') = (§Hx (t) 6Hx (') —
(6Hx (1)) (6Hx (t')) which is equivalent to the noise correlator defined in Eq.
in the previous chapter. We note that only the symmetric part of the noise corre-
lator is relevant due to the summation over the indices o and . As the first term
in Eq. is purely real, it gives rise to an overall phase of the fidelity amplitude.
The expression of this phase is readily identified to be identical to the expression
for the infinitesimal amount of work performed by the Born-Oppenheimer force.
This is revealed by a comparison to the expression of the Born-Oppenheimer force
in terms of scattering states, cf. Egs. (3.51)) to . The identification of this in-
finitesimal work entering as a phase in the fidelity amplitude is consistent with the
acquired dynamical phase of the eigenstate of the system by changing the Hamil-
tonian by 0Hx. Hence we can write

Ap(r) = ' 55 FOX) 4 (7)) (4.8)

for both, the sudden (P = S) and the adiabatic (P = A) quench scenario. As Ay =
2 \g, cf. Table [4.1] the phase of the sudden quench fidelity amplitude is half the
phase of the adiabatic fidelity amplitude.

In the following we restrict our analysis to the Loschmidt echo, which by Eq.
is defined as the absolute square value of the fidelity amplitude. We introduce the
matrix notation Y 4(...)ap 0Xa0Xg = 60X - (...) - 0X and deduce from Eq. (4.7)
that the Loschmidt echo for small displacements dX reads

T T

In£(r) = — / dt / dt' g(t) g(t') 6X' - D(t, ) - 6X . (4.9)

0 0

The Loschmidt echo is thus purely given by the integrated noise correlator D(, ).
The function ¢(t) describing the quench protocol enters as a weighting factor. For
Gaussian white noise, which is treated in the previous chapter, cf. Eq. , and
which is delta-correlated in time, we readily deduce from Eq. an exponential
decay of the Loschmidt echo. The strength of the decay is determined by 6X -
D(X) - X, where the precise exponent depends on g(t).
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In this chapter we consider the case where the correlator D,s(t,t") depends on the
difference ¢ — t’ in the time arguments. This is valid for stationary states. We
introduce the Fourier transform

D(w) = / dAte“ 2 D(AL), (4.10)
which immediately yields
o0 T 2
dw iwt T
InL(r)=— [ —| [ dtg(t)e X" D(w) - 6X (4.11)
T
0 0

with the symmetric noise correlator, D(w) = [D(w) 4+ D(—-w)]/2. By specifying the
quench protocol, the above time integration can be performed. For the sudden and
the adiabatic (linear) quench we then obtain

[e.e]

InLp(1)=— / d% Bp(w, ) 6X"-D(w) - 6X, (4.12)

where we have introduced the function Bp(w,T) as

Bs(w,7) =2 1‘%2(“”) (4.13)
Bu(w,T) = 2 [1 = cos(wT) — wr sin(wr)] + w?7?

i (4.14)
for the respective quench dynamics. We note that the upper cut-off of the frequency
integral in Eq. is given by the inverse dwell time. In the following analysis
we consider the limit of large times 7 >> 7, where the function Bp(w, 7) is sharply
peaked at small frequencies w = 0. This behaviour enables a perturbative treatment
of the noise correlator D(w) for small frequencies with respect to the inverse dwell
time. The relation between w and the temperature 17" determines whether the noise
is quantum or classical as we detail below.

We note that the above obtained relations of the Loschmidt echo and the fidelity
amplitude in terms of the correlator of the fluctuating force are generally valid
for small displacements 0X. In particular this means, that they also apply to
situations where the fermionic environment is driven out of equilibrium by applying
a bias voltage. Before addressing the out-of-equilibrium case, however, we first treat
the equilibrium situation in which fluctuations are determined by the fluctuation-
dissipation theorem.
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4.3. Equilibrium

In equilibrium, all leads possess the same chemical potential, which we denote by .
In Ref. |[Schonhammer, 1991] it was shown for finite systems in equilibrium that
the Anderson orthogonality exponent is directly proportional to the friction tensor
induced by the (non-interacting) fermionic environment. For the Loschmidt echo as
a dynamical quantity of the Anderson orthogonality this corresponds to the infinite
time limit 7 — oo. In the following we generalise the result of Ref. [Schonhammer,
1991] to open quantum systems which have a continuous energy spectrum and
determine the behaviour of the Loschmidt echo for finite times 7 larger than the
dwell time.

In equilibrium, the correlator of the fluctuating force and the friction tensoif] are
generally related via the fluctuation-dissipation theorem

D(w) = w coth (%") ) (4.15)

with inverse temperature 5 = 1/T. We begin with the case of zero temperature and
describe the effect of finite temperature later in Sec. [4.3.2] At zero temperature,
that is to lowest order in fw > 1, we deduce from the fluctuation-dissipation
theorem that D(w) = |w| v (w). Inserting this into Eq. (4.12) yields
| 1/mp
InLp(r) =—=— /wdw Bp(w,7) 06X - 4. §X (4.16)

™
0

to leading order in 7/7p, where the friction tensor v is taken at zero frequency.
Evaluating the above energy integral readily gives

InLp(r) =— ar {ln (L> + ’ye] OXT . 4% 56X (4.17)

m D

with Euler-Mascheroni constant v, = 0.5772. The constant ap takes a protocol-
dependent value. It takes the values aig = 2 and a4 = 1 for the respective quench
protocol. In the following analysis further constants occur, which depend on the
precise form of ¢(t). We summarise the protocol-dependent parameters in Ta-

ble .11

By referring to Eq. (4.17)) we conclude, that to leading order in 7/7p the Loschmidt
echo decays as a power law in time for both quench scenarios. This reflects the

IFor notational simplicity, we omit the superscript s of the friction coefficient, which has been
used in the previous chapter. For the same reason, we drop the notation, which stresses the
explicit dependence on X.
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Table 4.1.: Protocol-dependent constants which are used throughout the chapter.
The constant ap is universal and independent of the precise adiabatic
quench protocol. The other constants are only valid for the linear quench
scenario, i.e. g(t) = t/.

Symbol | Sudden quench (P = S) | Adiabatic quench (P = A)
ap 2 1
Bp 1 3
5p 2 1/2
Ap 1 2

Anderson orthogonality catastrophe |[Anderson, 1967|. In particular, we note that
the Loschmidt echo of the slow quench gives the orthogonality exponent. This can
be understood by referring to the definition of the Loschmidt echo in Egs.
and . In the infinite-time limit, the quantum many-body states, which appear
in the expectation value, adiabatically evolve to the many-body eigenstates of the
initial and the final Hamiltonian due to the respective evolution operator Uy and U.
By this, the adiabatic Loschmidt echo is the squared overlap of the quantum many-
body states of the initial and the final Hamiltonian, which explicitly shows the
relation to the orthogonality catastrophe [Dora et al., 2013]. We note that for a
finite system the limit of infinite times can be taken by replacing 7/7p by the size
of the system (up to prefactors, which are not dimensionless) [Miinder et al., 2012].
This yields the usual power-law decay with system size |[Anderson, 1967].

As expected, the power-law decay of the Loschmidt echo in Eq. is directly
proportional to the dissipation, which is in agreement with the known results in
the literature [Schonhammer, 1991]. The proportionality factor, however, depends
on the quench protocol. The coefficient ap takes the values ag = 2 and ay = 1, as
summarised in Table [.1] so that we deduce the relation

ﬁS(T) = ﬁA(T)Z. (418)

This relation between the adiabatic and the sudden quench Loschmidt echo was
also recently found in Refs. [Doéra et al., 2013,Sachdeva et al., 2014 for a Luttinger
Liquid for finite systems and infinite times 7. For our system, we show that this
relation is independent of the assumption that g(f) increases linearly in time.
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4.3.1. Adiabatic Protocols

The relation between the Loschmidt echo of the sudden and the adiabatic quench as
given in Eq. is valid for any adiabatic quenching protocol with a function g(t)
with ¢(0) = 0 and g(7) = 1, which increases as a power law on a timescale much
larger than the dwell time. We prove this in particular for g(t) = (¢/7)" wheren > 1
is a positive integer and show that Eq. holds with ap = 1. For this particular
form of g(t) the Loschmidt echo reads

T t n .
/ dt (_) ezwt
0 T

which follows from Eq. using the zero-temperature fluctuation-dissipation
theorem D(w) = |w|~¥%?(w). We can split the above integral into the regions w <
1/7 and w > 1/7. The first part contributes a constant to the Loschmidt echo,
where the precise value depends on the choice of n, and thus becomes irrelevant to

1/7p

2
InL4(7) _ ! / dww OXT . 4. 5X (4.19)
m
0

leading order in 7/7p > 1. Keeping only the remaining term, the Loschmidt echo

is given by
1 1/TD T t n 2
InLa(r) = —— / dww / dt (—) et §XT -~ §X . (4.20)
T 0 T
1/7

The above time integral can be performed by integrating by parts. To leading order

in 7/7p > 1 we find
T t no WT
/ dt (—) gt =S (4.21)
0 T iw

Substituting this into Eq. (4.19)) and integrating over frequencies yields

1
InLa(r)=——1In (l) OX 1. ~%. §X + const. (4.22)

m D

for all g(t) = (%)n We deduce for the large time decay of the Loschmidt echo the
desired power law as in Eq. (4.17)). This readily gives Eq. (4.18) which is thus valid

for a wide range of protocols.

4.3.2. Finite temperature

Assuming a noise correlator which is delta-correlated in time, cf. Eq. (3.46)), yields
an exponential decay of the Loschmidt echo for the sudden and adiabatic quench
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scenarios. The result in Eq. is a power-law decay of the Loschmidt echo which
is thus inconsistent with assuming white noise. Thus, the power-law decay shows
the breakdown of the description in terms of a semiclassical, Markovian Langevin
equation, cf. Eq. . The Markovian approximation becomes invalid since the
system loses its memory as a power law and not exponentially. The reason for
the power-law decay of the Loschmidt echo in equilibrium and at zero temperature
is that the classical noise correlator vanishes in this limit. In the following we
show that both, finite temperatures and finite bias voltage, induce an additional
exponential decay on top of the power-law decay. We treat both cases separately
in the following and begin in this section by considering finite temperatures in the
absence of a bias voltage.

We start by considering the regime of small temperatures 0 < T < w. From the
fluctuation-dissipation theorem in Eq. we determine the finite temperature
correction term to the noise correlator as D(w) = |w| [1 4+ 2 exp(—/fw)] ¥*(w). To
leading order in 7/7p we deduce

L/mp
InLp(r) = ! /dwap(w,T) (L+2e ) 6XT- 4. 0X (4.23)

™
0

We can evaluate the above energy integral to quadratic order in 7/ and to lowest
order in 7p/f3. We obtain

T

InLp(r) = — -2 {m

Nl I (4.24)
Ve 9 K32 Y . .

D

We conclude that small finite temperatures induce a Gaussian decay of the Loschmidt
echo in addition to the power law.

The regime of large temperatures T > w corresponds to the classical regime. In
the classical limit, the noise correlator in Eq. becomes D(w) = 2T v (w),
cf. Sec. 3.3.3] which is the classical fluctuation-dissipation theorem. Inserting
the classical noise correlator into Eq. and performing the frequency integral
yields

2T

InLp(T) = ——=—06X' - . 5X (4.25)

BBp
to lowest order in 7/7p, where g = 1 and 54 = 3 depends on the protocol, cf.
Table 4.1} Indeed, the Loschmidt echo decays exponentially for both quenching
protocols in the classical limit at large 7" > w.
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4. Relation between the Anderson orthogonality catastrophe and the adiabatic . ..

4.4. Out of equilibrium

We now turn to the analysis of a fermionic environment driven out of equilibrium
by a bias voltage. This means that we consider different chemical potentials in the
leads. For clarity, we restrict the analysis to the case of two leads with chemical
potentials p;, = p+ Ap/2 and ur = p — Ap/2. Without loss of generality we
consider positive Apy > 0. We then determine the decay of the Loschmidt echo up
to linear response in the bias voltage in the exponent, that is we consider linear
order terms in Autp < 1.

Essential for the behaviour of the Loschmidt echo is the form of the noise correlator,
cf. Eq. . Both, with the aid of scattering theory and using non-equilibrium
Green functions, we find an expression of the noise correlator in terms of the friction
tensor valid to linear order in the bias voltage. We postpone the derivation to
Sec. and Sec. [4.6] respectively. Here, we present the result, that is

_ 60&) eq D[OvAM]
D(w)—wcoth< 5 - Aj

+ % ((w + Ap) coth (—ﬁ(w ; A“)) + (w— Ap) coth (MW ; AW)) Dz,ﬁm
i (2] s (52 T

(4.26)

As in chapter [3| the friction tensor v = v + 4™ is split into the pure out-of-
equilibrium contribution, 4" [cf. Eq. (3.4)], which vanishes in equilibrium, and
the remaining part, v¢ [cf. Eq. ], which however also contains a part stemming
from out-of-equilibrium conditions. The noise correlator generally depends on both
bias voltage and temperature. At zero frequency we denote the correlator as Dz a .-
In particular, Dy a,) describes the zero-frequency correlator at zero temperature,
We note that as Eq. is valid to linear response in the bias voltage, the friction
tensor is evaluated to linear response as v = v +~1? and 4" = 47/, where the
index denotes the order in the bias voltage. Moreover, we notice that Eq.
reduces to the equilibrium case in Eq. for Ap = 0.

In the following, we focus on the zero temperature limit. More precisely, this means
that we consider the limit T" < w as well as T" < Ap to be sensitive to out-of-
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4.4. Out of equilibrium
equilibrium effects. In this regime Eq. (4.26]) becomes

D D
D) = ol (71~ 202 ) 4 (fo A+ o - ) 22

A
g » (4.27)
v
Ap| — |w—A :
o (Jo+ ] = - Aul) X
In particular, this means that
e D [y w2 ned
D(w) = { Do + ol (v = 2532 + 7 < g
W] (v 4+ ~") L Jw| > Ap

which will be of interest below. We can use the noise correlator in Eq.
and to determine the behaviour of the Loschmidt echo in terms of the macro-
scopic coeflicients appearing in the Langevin equation for large times 7 > 7p.
Inserting the expression of the noise correlator into Eq. and performing the
time integration yields
1 Yo
InLg(r)=—— / dww Bp(w, ) 6XT - (4% 4 4me0) . §X
0

™

1 [AH
- / dw Bp(w, 7) 6XT - Dy a, - 6X
™ Jo (4.29)

1 o T D[O»Aﬂ] neq
v 2 dwwBp(w, ) 6XT - [ LA ynea) 5x
T Jo Ap

,.Yneq
Ap '

1o
- —/ dww? Bp(w, ) 6XT -
0

0X,

T
where we have split the integral into a part where w > Ay and a part where w < Apu.
It is now instructive to consider the different regimes of large and small times 7
relative to the inverse potential difference 1/Ap as these limits are analytically
solvable. We call the regime of small Auyr < 1 short-time dynamics and the
regime of large Aur > 1 long-time dynamics. Note that in both cases we still
consider large 7/7p.

4.4.1. Short-time dynamics

In the short-time limit, only the first integral in Eq. (4.29) survives to lowest order
in Apt while the other terms give quadratic corrections. An integration analogous
to the equilibrium case gives

ap

InLp(1)=— — [% +In (

L)} SXT . (71 4 A"e9) . §X (4.30)

TD
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4. Relation between the Anderson orthogonality catastrophe and the adiabatic . ..

We thus find that the short-time dynamics of the Loschmidt echo is determined
by the full friction tensor v = ¢ 4 "¢ in linear response. The decay of the
Loschmidt echo is, as in the equilibrium case, given by a power law. This is due to
the fact that at short timescales Aur < 1 the system is not sensitive to the bias
voltage. Consequently, we recover the behaviour of the equilibrium case.

The power-law decay in Eq. is valid within a certain time interval, which
we characterise in the following. To this end, we define two timescales. First,
we introduce the characteristic timescale, Tepar ~ 7p exp[l1/(6XT - v - §X)], which
defines the validity of the perturbative approach of treating small §X. Our re-
sults are thus valid for 7 > 7., Moreover, we introduce a second timescale,
Teor ~ Tp[|I(Ap7p)|/(Ap7p)]*/2. This timescale signals the onset of higher or-
der corrections in Ap7, which are of quadratic order, compared to the logarithmic
term o< In(7/7p), which is responsible for the power-law decay. We conclude that
Eq. is valid for times 7p, Toper K T K Teor, Where the power-law exponent is
given by the full friction tensor. Since the short-time dynamics of the Loschmidt
echo in this regime is essentially equivalent to the equilibrium case, we further con-
clude that the relation in Eq. between the Loschmidt echo of the sudden
quench and the Loschmidt echo of the adiabatic quench still holds in this limit.

4.4.2. Long-time dynamics

The long-time dynamics of the Loschmidt echo behaves quite differently from the
equilibrium case since the system becomes sensitive to the imposed bias voltage.
Analogous to the short-time dynamics, we use Eq. to determine the behaviour
of the Loschmidt echo. An evaluation of the energy integrals in the long-time
limit Apr > 1 yields

ap

InLp(1)=— — {% +1In (

L)} 5XT-7-5X

D

D
+ ap [% + In (Apt) ] oXt. (—XAM] + ’y?eq) - 0X
T 5 H (4.31)
— L 6Xt Dpay - 0X — LaXt 4t 5X
Bp Q

1 2 Djo.au
- _~ A sxi. Z0AH 5
+ 7T(ozp 5 cos( /M')> ), p

where §5 = 2 and §4 = 1/2 as written in Table In the linear response regime
for small bias voltages Aurp < 1 we can simplify this expression by writing the
logarithmic term as In(7/7p) = In(Ap7/(Ap7p)). Since Ap7p In(Ap7p) vanishes

74



4.4. Out of equilibrium

for small Ap 7p, we can write the long-time dynamics of the Loschmidt echo in this

regime as
1 2 D
InLp(r) = T sxt. Do, - 0X + —(ap _ 2 cos(Apr)> st 20 s
BP n BP i)
D

~ 22 [+ In(Apr) |0 <7eq _ M) 5X

T A

4]

+ 2Py (ApTp) 6XT - ~57. 6X — P sxt A X

@ T

(4.32)

By neglecting irrelevant terms for large times Ay 7 we can summarise the long-time
dynamics as

D
o e [0,Ap]
—Tpaxf.[—y q—T“}-ax

o) exp (— 06X Dipay - 0X ) (8u7) .
.33

% (AMTD)“TP(;)(T..YM.(;X '

Equation indeed shows a power-law decay of the Loschmidt echo which is
accompanied by an exponential suppression. The exponential decay, on the one
hand, is characterised by the shot-noise fluctuations in the system with positive
definite Dy a,;. This is in agreement with assuming white noise for the noise cor-
relator to leading order. The power-law decay, on the other hand, characterises the
next-order corrections to the white-noise contribution. The power-law exponent,
—ap/m X" [y — %ﬁ‘”] -0X, is given by a competition between dissipation and
fluctuations. This is a clear fingerprint of out-of-equilibrium situations. We note
that fluctuations and dissipation are related as v = Dy /(27) in equilibrium
so that the asymmetry between shot and Nyquist noise determines the sign of the
power-law exponent in the linear-response regime. The exponent can indeed be of
arbitrary sign, which is called "anti-orthogonality" in Ref. [Segal et al., 2007] when
it is positive. The leading order contribution of the power-law exponent in Au7p,
however, that is —ap/m 6X T+ [y — 2l

Ap
sign change occurs when the leading order term vanishes and the linear response

|-0X, is restricted to positive values. The
correction term, given by (!, becomes the relevant contribution.

Due to the presence of the protocol-dependent prefactor Sp in Eq. , which
determines the exponential decay of the Loschmidt echo, we conclude that the iden-
tity Ls(7) = La(7)?, cf. Eq. (£.18), is no longer valid for the long-time dynamics in
out-of-equilibrium situations. This departure can be attributed to the form of the
function ¢(¢). By means of Eq. we immediately obtain an exponential decay of
the Loschmidt echo with an exponent —6X - Dy, Ay - 0X when assuming Gaussian
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4. Relation between the Anderson orthogonality catastrophe and the adiabatic . ..

white noise for the sudden quench, while the exponent —1/3 oXT. Dy,ay - 0X fol-
lows from the linear behaviour g(¢t) = t/7. A quench protocol where g(t) grows as
an arbitrary power law ¢(t) = (¢/7)™ with positive integer n changes this prefactor
depending on the choice of n.

4.5. Derivation within scattering theory

In this section we present the derivation of Eq. which gives the noise corre-
lator in terms of the dissipation to linear response in the bias voltage and which
determines the behaviour of the Loschmidt echo. We derive the expression of the
noise correlator within the methods of scattering theory in this section and present
an equivalent derivation in terms of non-equilibrium Green functions in Sec. [4.6]

We begin the derivation by expressing the coloured noise correlator D(t,t") defined
in Eq. (3.45)) in terms of single-particle scattering states. To this end, we express
the non-interacting many-body Hamiltonian

/ / Hilin(e,€Na (e)aX ('), (4.34)

in terms of the single-particle Hamiltonian H; = Hy + Vx. Analogously, we intro-
duce the single-particle Hamiltonian §Hx = VVx - 6X. Similar to Eq. (3.37), the
operators aXT(g) and aX(e) create and annihilate the retarded single-particle scat-
tering states [1)X"()) of the initial Hamiltonian H; with combined channel and lead
index m and energy €. The corresponding advanced scattering states are indicated
with the superscript "—" instead of the superscript "+". The scattering states obey
the Lippman-Schwinger equation, cf. Egs. and (3.12)), and the boundary con-
ditions in Eq. as well as the normalisation condition in Eq. . In the basis
of the scattering states we denote the matrix elements of the operator VVx as

B VX (£, ") = (U ()|0aVxIUn T (') - (4.35)
For notational reasons, we introduce the matrix elements
Kl(e,e) = {0.VE"(c.€) 0sVR" (€' 2) }, - (4.36)

With these definitions we are now ready to express the explicit time-dependent
noise correlator in Eq. in terms of the single-particle scattering states via
the function K,‘:f (e,¢'). By calculating the quantum statistical expectation val-
ues [Biittiker, 1992] analogous to the derivation of Eq. (3.50), we get

pe.t)= [ 5[5 desz V1= fule) €DK ). (437)
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4.5. Derivation within scattering theory

We continue in Fourier space. We define the Fourier transform of the noise corre-
lator as

ﬁ(w):/g—;%fk(s—g> (1—fn<8—|—g)> K]m<€—g,8+g). (4.38)

We make two observations. First, we stress that by referring to the definitions
in Eqgs. and , the function K(e,€’) is expressed in terms of scattering
states, which are associated with an energy difference w = ¢ — ¢’. We expect the
overlaps in Eq. to change on energy scales up to the inverse dwell time 1/7p.
A description of the behaviour of the Loschmidt echo in terms of scattering states
is valid for large times 7 > 7p. Accordingly, we focus on this limit and evaluate
the function Ky, (¢ —w/2,e +w/2) to linear order in w < 1/7p, which captures the
long-time behaviour of the Loschmidt echo for 7 > 7. We note that a description
of the Loschmidt echo for microscopic timescales which are smaller than the dwell
time is beyond the scope of this chapter.

The second observation deals with the product of the Fermi functions, i.e. fi(e) [1—
fn(€")], in the expression of the noise correlator. Here, the out-of-equilibrium
conditions enter. We note that the form of the product limits the average en-
ergy € = (e +¢’)/2 to a region of the order Ay, = pur — i, around the averaged
chemical potential iy, = (g + p4n)/2. In order to still find an analytical expression,
we thus consider the linear response regime of small Auyg, 7p < 1. This allows for
an expansion of the function Ky, (e,¢’) around f,,, for small deviation €.

With these two observations we can make analytical progress to lowest order in 7p /7 <

1 and to linear response in Apy, 7p < 1. An expansion of the function Ky, (¢ —
w/2,e +w/2) in Eq. (4.38)) with respect to these regimes yields

D~ [ES A ) (1A )

X AR en (A1) + 2( = 1) O"Kin (1) — w0 0K (1)}, -

(4.39)

For notational reasons we have introduced the function Ky, () = Ky, (¢, €) as well
as the abbreviations

9K, () = 1 0. + 0.)Kpn(e, € 4.40
2

e'=e

for the symmetric and antisymmetric energy derivatives of the function Ky, (e, ¢’).
The energy integral in Eq. (4.38) can now be analytically performed. We find

" or

~ ]. w + Allzk;n w — a -
D) = 5 3 e ) (Kinli) ~ w0 Ki(m)) - (101)
kn

77



4. Relation between the Anderson orthogonality catastrophe and the adiabatic . ..

In order to be consistent with the linear response regime in Aug, 7p < 1, the
functions Ky, (i, ) and 0“Ky,, (T, ) needs to be expanded to first order in Ay, 7p.
In accordance with the previous section, we write the expression in Eq.
explicitly for two leads with pu;, = p+ Ap/2 and pr = p— Ap/2 and Ap > 0. This
means that the linear response regime requires the replacements

Kirn(pr) = Kop(p) + Ap oK (), (4.42)
Krr(pr) = Krr(p) — Ap0°Krr(p) (4.43)
aaKkn(ﬁkn) = aaKkn(M) (444)

in Eq. . We note that energy derivatives of the function Ky, are of the
order of the Wigner time delay, which is estimated to be of the order of the dwell
time. Hence this expansion is indeed valid to linear order in Ap1p. Moreover, we
observe the relations Kgr (1) = Kpg(p) and 0°Kgr (1) = —0°Kpr(p) which follows
immediately from the definition in Egs. and . With these considerations
we conclude that the symmetric noise correlator D(w) = [D(w) +D(—w)]/2 can be
written as

D(w) = iw coth (g‘”) [KLL<,“) + Krr(p) + Ap (aSKLL(N) - 8SKRR(M>)]
ﬁ ( w + Ap) coth (W) + (w — Ap) coth (M)) Kir(p)
s ( w— Ay coth <w> — (w+ Ap) coth (w)) K r(p)

(4.45)

since cothz = (e** + 1)/(e** — 1). The coefficient in the above equation can be
related to different terms describing the fluctuations and the dissipation of a heavy
particle in a quantum environment. In appendix [A] we show that

1 .
P Z Kkn(:u) = 70q ) <4'46)
kn
1 1 D[O,Au]
%KLR(N) = I (Krr(p) + Kro(p)) Ap (4.47)
A .
T2 (0K (1) + 0 Karlp) = 75 (4.48)
A ne
S5 (0" Kru(w) — O"Kinln) = 71 (4.49)

With these identifications we immediately deduce from Eq. (4.45]) the desired ex-
pression of the symmetrised noise correlator in Eq. (4.26)).
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4.6. Derivation within Green function formalism

4.6. Derivation within Green function formalism

Next, we present the derivation of the expression of the noise correlator in Eq.
within the methods of non-equilibrium Green functions. Since Eq. is of
crucial importance as it defines the decay of the Loschmidt echo and gives the
connection to the adiabatic reaction forces, we present this alternative derivation
here. Moreover, the formulation in terms of Green function allows for a more
intuitive treatment of applications to specific models, which we illustrate in the
next section. To this end, we write the initial Hamiltonian as

H,=Hx+Hr+Hp+ Hr, (4.50)

similar to the Hamiltonian in Eq. (3.70). The particular terms are defined in
Egs. (3.71)) to (3.74). Moreover, we define the time-dependent Green functions of
the dot

(GD) e (1) = —=i0(t —t') ({dn(t), 4}, (¢)}) . (4.51)
(GD ) (1) = 16(' — 1) ([ (2), ], (¢)}) (4.52)
(G (1) = i {da (8) (1) (4.53)
(G (1,1) = i (], (¢) (1)) (4.54)

where the notation {...,...} denotes the anti-commutator and the expectation val-
ues are taken with respect to the Hamiltonian ;. Our aim is to find an expression
for the noise correlator defined in Eq. in terms of Green functions in Fourier
space. We note that for stationary states the above Green functions depend on
the time difference ¢t — ¢’. With the above definitions we can then write the noise
correlator in time space as [Bode et al., 2012b|

Daslt —t) = tr{Aa Gt — ) As Gt — t)}

— [ [ E e a{r 0005} @)

with A, = 0,ho. The functions G7(¢) and G5(¢') represent the Fourier transforms
of the corresponding time-dependent Green function of the dot. From Eq. (4.55)
we find for the Fourier transform of the fluctuating force

Doy(w) = / AL A D (AL
:/g—itr{A G5 (= - —) ABGE)(H;)}S

[Edpa-na)
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4. Relation between the Anderson orthogonality catastrophe and the adiabatic . ..

In the last step we have replaced the time-dependent Green functions by the frozen
adiabatic Green functions |[Bode et al., 2012b|. This replacement is justified as
the fluctuation-dissipation theorem is already satisfied after this replacement, cf.
chapter [3] The retarded and advanced frozen Green function can be expressed in
terms of the respective retarded and advanced self-energies X7/4(e) = Fi Y, T ()
with T(g) = WT(e) I W(eg)/2 and projector I(g) = |dr(e)){dr(c)| onto lead k.
The coupling matrix W is defined via the tunnelling Hamiltonian in Eq. . We
stress the appearance of the factor 1/4/27 in the definition of the coupling matrix,
that is Wim(g) = (or(e)| W |m) /27, where m defines the dot level. In particular,
we have |Jauho et al., 1994]

1
g€ — ho(X) — YR/AC

GYA(e) = (4.57)

The frozen lesser and greater Green function, which appear in the expression of
the noise correlator, can be related to the adiabatic retarded and advanced Green
function with the aid of the Langreth rule [Jauho et al., 1994]

Gp(e) = GE(e) B=(e) Gple) (4.58)
Gple) = GE(e) 27 (e) Gp(e).- (4.59)

Here, we have introduced the lesser and greater self-energies
S5(e) =i Y fule) Wie) TIi(e) Wie) (4.60)
k
27 (e) = =i ) (1= fule)) Wi(e) Tlx(e) W(e). (4.61)
k

In order to simplify the notation we further define the function

K!8 =t { A0 GEE W) () W(e) GA(E)
(4.62)
% A G W) T () W(E) Gé@')}

S

We can now continue with the evaluation of noise correlator in Eq. (4.56). A
substitution of the lesser and greater Green function in Eqs. (4.58) and (4.59)) into

the expression of the noise correlator in Fourier space, cf. Eq. (4.56)), then gives

ﬁ(w) :/;—; %fk<e—%> (1—fn(€+§>> IN{kn(e—g,a—i-%}). (4.63)

We thus find an analogous expression of the noise correlator compared to the pre-
viously found expression in Eq. (4.38)), which has been derived within the methods
of scattering theory. The only difference, however, is that the function Kzf (e,€")
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4.7. Example: one-level model coupled to one vibrational mode

is replaced by the function Kgﬁ (¢,€’). In order to evaluate the above expression of
the noise correlator, we can follow the same steps as in the previous section. To
leading order in 7p/7 < 1 and linear order in Apy, 7p < 1, we can expand the
function Ky, (s — £, + %) in small w and to first order in ¢ around € = 7z;,,. This
yields an expression analogous to Eq. where each function Ky, is replaced
by K. Hence, for a derivation of the desired Eq. , we are left with identi-
fying the friction coefficient and the zero-frequency noise correlator in terms of the
function K. Indeed, in appendix [B| we show that

= %; Kin(12) = 5" (4.64)
1 - 1 /-~ ~ D
or Konln) = 1 (Kun(p) + K (p)) = =20 (4.65)
A:U/ ST/ ST e
T (0 Kenlw) + 0'Kanalp) ) = (4.66)
A > > ne
4—7/: <8“KRL(M) - 3aKLR(M)> =~ (4.67)

to linear response in Autp, which gives the connection to the adiabatic reaction
forces appearing in the Langevin equation. Moreover, we explicitly show in ap-
pendix |Bf the equivalence between the derivation in terms of Green functions and
the derivation within the methods of scattering theory in this appendix.

4.7. Example: one-level model coupled to one
vibrational mode

Now, we show how to apply the above formulas to a concrete example. We consider
a one-level system which couples to one classical degree of freedom and is attached
to two electron reservoirs. This model serves as a minimal model to illustrate the
above results and their validity. In the context of nanoelectromechanical systems,
this model can for instance describe a quantum dot confined on a nanotube which is
in contact with two electronic leads. The classical coordinate corresponds to a one-
dimensional vibrational mode of the tube in this picture. We focus on the analysis of
the sudden quench Loschmidt echo, since the behaviour of the slow quench dynamics
is qualitatively the same and differs only by the protocol-dependent constants listed

in Table 411

We denote the classical degree of freedom in one dimension by X = X (¢) and con-

sider the Hamiltonian in Eq. (4.50)) including the definitions in Eqgs. (3.71]) to (3.74)).
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Figure 4.2.: Plot of the Loschmidt echo in linear response, i.e. Eq. , (solid red
line) and comparison to the short-time dynamics in Eq. (thick,
dashed black line) and to the long-time dynamics in Eq. (thin,
dashed blue line). Parameters: I', = 0.3, ' =0.1,7p = 1/(I',4+'g) =
2.5, Ap = 0.1, Tepar = 30.37 (calculated), g = 0, 60X = 0.1, X = —0.3.
All distances are in units of \/(Mw?) and energies and inverse times
are in units of A\?/(Mwd).

We stress that the dot’s Hamiltonian Hp = ho(X) d" d depends on the classical co-
ordinate which expresses the coupling of the electrons in the dot to the classical
degree of freedom. In this example we treat the case of a linear coupling so that

ho(Xy) = 0 + A Xy, (4.68)

where A defines the strength of the coupling. We introduce the tunnelling ampli-
tudes, I', and I'g, which describe electronic tunnelling between the dot and the
left and right lead, respectively. In the wide-band approximation we can assume
that the tunnelling amplitudes are independent of the energy so that the coupling
matrix I is energy independent as well and reads

e (e )

From the coupling matrix we can deduce the retarded and advanced self-energy
as Y4 = F4(I'y + I'g). With the aid of Eq. (4.57), we then conclude that the
retarded and advanced Green function can be written as

(4.69)

/ B 1
GpE) = = ho(X)£i(Ts +Tr) (4.70)

By referring to the Mahaux-Weidenmiiller formula [Aleiner et al., 2002 we get an
expression of the frozen scattering matrix from the retarded and advanced Green
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Figure 4.3.: lllustration of the wvalidity of the linear response solution in
Eq. (dashed black line) by comparing to the general solu-
tion (solid red line). The general solution is obtained by a direct eval-
uation of the noise correlator in Eq. or for (a) Au = 0.2,
(b) Ap =04, (¢) Ap = 0.8 and (d) Ap = 2.4. Other parameters are
the same as in Fig.

function. We find

Si(e) =1—iW(e) GE(e) WT(e) (4.71)
2i L'y, VILTR
:1_5—50—>\X+i(FL+FR)<\/FLFR Tr ) ’ (472)

where we have dropped the index t of the frozen scattering matrix to simplify the
notation. We note that the A-matrix vanishes for the case of a one-dimensional
classical degree of freedom so that 4"“? = 0 [Bode et al., 2012b]. Consequently, the
behaviour of the Loschmidt echo is completely determined by the frozen scattering

matrix, since the adiabatic reaction forces can be calculated from the S-matrix
alone.
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4. Relation between the Anderson orthogonality catastrophe and the adiabatic . ..

We illustrate the result of the Loschmidt echo in Eq. , which is valid to linear
response in the bias voltage, in Fig. [1.2 as a function of time. A comparison to the
short-time dynamics, cf. Eq. , and the long time dynamics, cf. Eq. ,
shows consistency in the respective limit. The dwell time in the present model is
given by the inverse electronic tunnelling rates, that is 7p = 1/(I'y + I'g). We
stress that the use of scattering theory limits our results to timescales which are
larger than the dwell time. We chose an asymmetric coupling I';, # I'g to guarantee
that v{? is non-zero.

The one-level model coupled to a one-dimensional classical degree of freedom al-
lows for a comparison of the linear response solution in Eq. and the general
non-linear response solution, which is not restricted to small Ayu 7p, at zero temper-
ature. The general solution can be obtained by a direct calculation of the coloured
noise correlator in Fourier space, that is Eq. in terms of scattering states
or Eq. in terms of Green functions. The behaviour of the Loschmidt echo
is then obtained by referring to Eq. (£.12)). The matrix dxVx(e,€’) in Eq. (4.35)),
which is necessary to evaluate the coloured noise correlator, can be expressed in
terms of the retarded Green function of the dot as

Ox V(e e') = [W- GE(e)  Oxho(X) GE () - WT] (4.73)

where the product of the coupling matrices is an outer product. This can bee
seen by recalling that dxVyx = Ilp dxho(X)IIp and by substituting Eq.
into Eq. . We note that Eq. is general in the sense that it is neither
restricted to to large times 7 > 7p nor to the linear response regime Ap7mp < 1.
We depict a comparison of the general solution and the linear response solution in
Fig. for different values of Au keeping the dwell time constant. Indeed, Fig.
shows that the linear response solution is consistent with the general solution for
small Aputp < 1.

4.8. Conclusion

In this chapter we have expressed the decay of the fidelity amplitude and its ab-
solute square value, the Loschmidt echo, as microscopic quantities in terms of the
mesoscopic reaction forces, which describe the motion of a heavy particle in a quan-
tum fermionic environment. Our results are valid for small changes of the position
of the heavy particle. By the Anderson orthogonality it is known that small changes
of the scattering potential felt by the fermionic environment, which are induced by
small displacements of a classical particle, can have drastic consequences for large
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quantum systems. For a finite system the Anderson orthogonality exponent has
been related to the friction coefficient in equilibrium in the small-distance limit in
Ref. |Schonhammer, 1991]. Motivated by nanoelectromechanical systems, we have
generalised this relation to out-of-equilibrium situations which possess a continuous
energy spectrum.

The fidelity amplitude and the Loschmidt echo are dynamical quantities of the
Anderson orthogonality. Generally allowing for both, a slow and a sudden quench
scenario, we have expressed their dependence on time in terms of the coloured
noise correlator of the classical degree of freedom. At zero temperature without an
applied bias voltage the fluctuation-dissipation theorem then predicts a power-law
decay of the Loschmidt echo at times larger than the dwell time with an expo-
nent controlled by the dissipation. The power-law behaviour reflects the Anderson
orthogonality catastrophe. This behaviour is inconsistent with a noise correlator
which is delta-correlated in time as white noise induces an exponential decay. In
this sense, the power-law decay signals the breakdown of the semiclassical descrip-
tion in terms of the Langevin equation in the Markovian limit since the classical
noise correlator is zero in equilibrium in the zero temperature limit.

Moreover, at times smaller than the inverse bias voltage, we have shown that
the Loschmidt echo of the sudden quench scenario is the absolute square value
of the Loschmidt echo characterising a slow quench. For finite quantum systems
this relation has recently been derived in the infinite time limit within a Luttinger
Liquid model in Refs. [Dora et al., 2013, Sachdeva et al., 2014]. In this chapter, we
have found this relation for non-interacting infinite systems and finite times.

At long times, which are larger than the inverse applied bias voltage, we have shown
to linear order in the bias voltage that the power-law decay of the Loschmidt echo
is exponentially suppressed with a strength controlled by the shot-noise fluctua-
tions. This decay is in agreement with assuming white noise to leading order. The
power-law behaviour characterises the next-order correction term to the white-
noise contribution where have shown that the power-law exponent is determined
by a competition between dissipation and fluctuations. Due to this competition the
power-law exponent can change its sign when the system is driven out of equilib-
rium, a phenomenon called anti-orthogonality [Segal et al., 2007].

Small but finite temperatures imply a Gaussian behaviour of the Loschmidt echo.
When the temperature is large and the classical limit is reached, we have recovered
an exponential decay of the Loschmidt echo which stems from the classical version
of the fluctuation-dissipation theorem. Finally, we have shown how to apply the
derived expressions to a concrete example by considering a single level coupled to
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one vibrational mode. This example describes for instance a quantum dot con-
fined on a nanotube and thus illustrates the applicability to nanoelectromechanical

systems.

86



5. Atomic-scale gate control of a
single-molecule transistor by
individual atoms

In this chapter we present a theoretical description and explanation of the experi-
ment performed in Ref. [Martinez-Blanco et al., 2015]. The experiment deals with
a system miniaturised to its ultimate limit, that is a transistor made up of a single
organic molecule. The set-up is schematically depicted in Fig. and consists of
a single molecule on a semiconductor surface with adjacent STM tip. The source
and drain electrodes are formed by the surface and the STM tip, respectively, and
positively charged atoms on the surface in the vicinity of the molecule serve as a
gate electrode by inducing a local electrostatic potential on the molecule. The cur-
rent running through the system when applying a bias voltage between the surface
and the tip is then controlled by repositioning the charges on the surface.

Three-terminal electronic devices on the molecular scale have recently been realised
using electron-beam lithography [Park et al., 2000, Liang et al., 2002, Kubatkin
et al., 2003,/Yu and Natelson, 2004}, Roch et al., 2008, |Song et al., 2009| Leturcq
et al., 2009| and gated break junctions [Champagne et al., 2005,Perrin et al., 2013]
in the context of spin correlations |Liang et al., 2002,|Roch et al., 2008|, vibronic
excitations [Park et al., 2002, Song et al., 2009,|Leturcq et al., 2009] and Coulomb
blockade |Park et al., 2002, Liang et al., 2002,/Champagne et al., 2005, Leturcq et al.,
2009,|Perrin et al., 2013]. Atomic-scale gating however is not possible with these
approaches. The experiment in Ref. [Martinez-Blanco et al., 2015] uses scanning
tunnelling microscopy as a basic mechanism for gating on the atomic and molec-
ular scale [Stroscio and Eigler, 1991] and thus provides a new technique towards
engineering and controlling single-molecule electronic devices.

Concerning the theoretical description, this chapter is an example of the incoher-
ent transport limit where transport is described by classical probabilities. Since
decreasing the size of an electronic device towards the molecular scale means that
the average level spacing of the system increases, we consider the limit where tun-
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nelling rates are much smaller than both the level spacing and the temperature.
Consequently, electrons tunnel sequentially through the device which is treated
in analogy to a semiconductor quantum dot [Kouwenhoven et al., 2001|. This is
opposed to the mesoscopic systems described in the previous chapters where we
assume coherent transport.

The present chapter is based on Ref. [Martinez-Blanco et al., 2015|. The experiment
was performed by J. Martinez-Blanco, C. Nacci and S. Folsch. M. Thomas, E.
Locane, F. von Oppen and P. Brouwer provided the theoretical description and
modelling[T] Experimental data, which is used in this chapter, has been provided
by S. Foélsch and J. Martinez-Blanco.

5.1. Experimental set-up and observations

The main ingredients of the molecular transistor in Ref. [Martinez-Blanco et al.,
2015| constitute the planar m-conjugated molecules free-base phthalocyanine (HyPc)
and copper phthalocyanine (CuPc) whose structure is shown in Fig. [5.Ij(a). The
molecules are adsorbed on an indium arsenide InAs(111)A-(2x2) surface where
the centre of the molecule is positioned above an indium (In) vacancy site, cf.
Fig. (b) By construction, the InAs surface contains a low coverage of approx-
imately 0.005 monolayers of additional native donor-type In adatoms which are
positively charged. Since van der Waals interactions dominate the surface binding
with no charge transfer between the surface and the molecule, both the molecule
and the In adatoms are weakly bound to the In vacancies and can thus be reposi-
tioned by attractive force interactions with the STM tip. This allows for controlling
the induced electrostatic potential, ¢, of the molecule by changing the distance be-
tween molecule and charged In adatoms. The experimental set-up thus describes
a three-terminal molecular transistor where the STM tip and the surface act as
electrodes and the In adatoms serve as an analogue of a gate electrode.

The principal operating mechanism of the molecular transistor is illustrated in
Figs.[5.1j(c) and (d). Figure[5.1|(c) shows topography images of two collected trimers
of In adatoms and the HyoPc molecule in a distant position (right panel) and in a
position between the trimers (left panel). The reduced apparent height of the
molecule in the centre of the trimers as compared to the remote position indicates
that the molecule is charged when the molecule is in close vicinity of the trimers.

1Using density functional theory S. C. Erwin predicted the molecular orientations for the different
charge states.
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Figure 5.1.: (a) Molecular structure of free-base phthalocyanine (left) and copper
phthalocyanine (right) with hydrogen (light grey), carbon (dark grey),
nitrogen (blue), copper (brown). (b) Structure of the InAs(111)A-
(2x2) surface. The indium atoms (green) form the topmost layer and
the arsenic atoms (red) the second layer. The lattice constant of the
(2x2) In-vacancy reconstruction is o’ = 8.57 A. (c,d) STM topography
image of the set-up. (c) The HyPc molecule (large white circle) is
positioned in the centre of the two trimers of In adatoms (left panel)
and moved along the dashed arrow to a distance of 124’ away from the
centred position (right panel). The apparent height of the molecule
is 2.2A in the position away from the centre and 0.9A in between
the trimers. This indicates the charged state of the molecule in the
centred position. The STM images were taken at 50 pA and 0.5V. (d)
The HyPc molecule is moved along the dashed arrow in between In
adatoms forming a corral. The molecule is positioned in the centre
(left panel), and 24’ (middle panel) and 4a’ (right panel) away from
it. The values of the induced potential in (d) correspond to the values
of ¢ in Fig.[5.2] These STM topography images were taken at 100 pA
and 0.65V.
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5. Atomic-scale gate control of a single-molecule transistor by individual atoms

In fact, moving the molecule towards the In adatoms shifts the lowest unoccupied
molecular orbital (LUMO) of the phthalocyanine molecule below the Fermi energy,
which eventually charges the molecule. This increases the local work function and
thus the local tunnelling barrier so that a charged molecule is seen with a reduced
apparent height [Swart et al., 2011,|Fernandez-Torrente et al., 2012].

In order to get a more fine-tuned stepwise increase of the local induced potential ¢,
which enables further insights into the process of charging the molecule, different
assemblies of indium adatoms have been constructed. Figure [5.1](d) shows a corral
assembly which induces an electrostatic potential which is highest at the centre of
the corral and decreases approximately linearly with increasing distance along the
dashed arrow drawn in Fig. [5.1{(d). This figure shows three different positions of the
HyPc molecule, which gives rise to three different gating potentials ¢. The resulting
current I at these gatings as a function of the applied bias voltage, V}, is depicted in
Figs. [5.2(a)-(c) by keeping the STM tip fixed above the molecule. With increasing
potential ¢ a switch between two I-V}, curves with different slopes is clearly visible in
all graphs where at intermediate ¢ the transition reveals a hysteretic behaviour. The
different curves indicate the different charge states of the molecule. In particular,
the steeper slope corresponds to the neutral state since a higher potential charges
the molecule negatively. A similar characteristic behaviour of the hysteresis has
been observed in the context of bistable switching of phthalocyanine molecules on
layers of sodium chloride which are grown on copper substrates [Swart et al., 2011].
In the present experiment, however, the hysteresis is only observed at low bias
voltages, while at higher bias voltages a dynamical crossover between the neutral
and the charged state is observed. The CuPc molecule shows analogous behaviour.
There, the crossover is observed at a gating potential which is approximately 45 mV
larger as compared to the HyPc molecule. For both molecules the coercivity, that
is the width of the hysteresis, varies when changing the ramping speed of the bias
voltage. Figure [5.2d) shows this dependence, where the error bars result from
statistical fluctuations of subsequent measurements of the coercivity.

Figure depicts STM images for parameters where the molecule is bistable. Dif-
ferent ground-state conformations are observed for the respective charge states of
the molecule. In principle, the three equivalent conformers, {M°}, of the neutral
HsPc molecule are observed for which the molecular lobes are parallel or perpen-
dicular to any of the three (110) in-plane directions [Nacci et al., 2012|. At higher
potential ¢, when the HyPc molecule is negatively charged, STM images reveal six
equivalent conformational states, { M ~}. Figure shows one conformation corre-
sponding to the neutral molecule and two conformers corresponding to the negative
charge state. The topography images indicate that the transition between the two
different conformational states is given by an in-plane rotation of the molecule in-
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Figure 5.2.: Current as a function of bias voltage (I-V} curves) at constant (a)
¢ =106mV, (b) ¢ = 121 mV and (c) ¢ = 132mV corresponding to the
positions shown in Fig. [5.1(d). The STM tip is held fixed above the
HyPc molecule. At intermediate ¢ the current switches between two
different curves in form of a hysteresis. The hysteresis is quenched and
the crossover is shifted to different biases at higher and lower ¢. At a
bias voltage of approximately —125mV a kink in all figures indicates an
InAs surface state [Folsch et al., 2014] which is confined by the charged
indium adatoms. (d) Coercivity as a function of ramping speed for the
HyPc molecule (dark grey) and the CuPc molecule (red) at constant
¢ =125mV and ¢ = 170 mV, respectively.
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Figure 5.3.: Upper panels: STM images of the HyPc molecule on the InAs(111)A-
(2x2) surface at 50pA and —60mV. The negatively charged
molecule (middle and right panel) is rotated by +15° and a slightly
tilted and shifted compared to the neutral molecule (left panel). The
horizontal stripes in the left STM image are due to a charging of the
molecule while the image was taken. The CuPc molecule show an anal-
ogous behaviour. Lower panel: Sketch of the molecular conformations
corresponding to the above STM images. Only the in-plane rotations
are depicted.

cluding a tilt or a slow shift of the molecule in the lateral direction [Schuler et al.|
2013|. For the CuPc molecule analogous conformers are observed.

The observed current through the molecule dramatically depends on the induced
electrostatic potential. Figure (a) depicts the measured I-V, curves in form of a
diagram for a larger range of ¢ with fixed STM tip above a single CuPc molecule.
In agreement with the description of sequential tunnelling through a single level
attached to two leads |[Nazarov and Blanter, 2010], a conductance gap is observed
for each ¢ which decreases when the gate voltage shifts the level closer to the Fermi
energy. The deduced normalised conductance map in Fig. [5.4(b) elucidates this
behaviour. The strong peaks in the normalised conductance as a function of V
and ¢ correspond to the values where the LUMO enters the conduction window
and thus indicates when the sequential tunnelling sets in. Remarkably, however,
the normalised conductance map shows a pronounced gap of approximately 600 mV
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Figure 5.4.: (a) Current I as a function of the gating potential ¢ and the sam-
ple bias V;, for the CuPc molecule. The STM tip is held fixed above
the molecule. (b) Normalised differential conductance calculated from
Fig. (a). (c) The peaks extracted from the differential conductance in
Fig. (b) together with the observed crossover in the conductance in
Fig. 5.2l (d) Same as Fig. (c) for the HyPc molecule.

instead of an expected charge degeneracy point. Moreover, the observed crossover
in the conductance and the hysteresis, cf. Fig. [5.2] are observed within this gap as
depicted in Fig. [5.4(c). The HyPc molecule shows similar features as summarised
in Fig. [5.4(d). In the next chapter we present an explanation of these observations
within a rate equation approach describing the coupled evolution of the electronic
and conformational dynamics of the molecule.
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5.2. Theoretical model and explanations

The general observations of the experiment can be explained within a schematic
model which describes sequential tunnelling through a single level. This level is
formed by the phthalocyanine molecule which is modelled as a semiconductor quan-
tum dot ] and is attached to the STM tip and the InAs(111)A-(2x2) surface both
acting as electron reservoirs. Inspired by the above experimental observations,
we assume that the neutral and the negatively charged molecule possess different
ground state conformations. Generally the molecule can exist in the two con-
formations denoted by x = MY M~ irrespective of the charge state, where the
conformation M? corresponds to the ground state of the neutral molecule and the
conformation M~ to the ground state of the negatively charged molecule. We
assume that transitions between these conformations are thermally induced, and
current-induced switching of the conformational state is strongly suppressed by
Franck-Condon physics. We will see in the following that these assumptions natu-
rally lead to a pronounced gap in the differential conductance map as observed in

Fig. .4

We begin with defining the Hamiltonian of the set-up. Depending on the confor-
mational state x, electron transport is described by the tunnelling Hamiltonian

H®E — H(”)

mol

+ Ho+ Ho+ Hig  + H (5.1)
where the individual terms are introduced in the following. The first term in
Eq. (5.1]) describes the phthalocyanine molecule, which we model by discrete energy
levels

ng'fo)l = Z&t,(j'g c,TjD Cop + U(Nc) ) (5.2)
vp

Here, £5%) is the energy of the vp-th level in the molecule [created (annihilated)

by ¢l (cp)] in conformation k. The term U (N,) in Eq. accounts for the
electron-electron interactions in the molecule, where N. gives the charge state of
the molecule. In the constant interaction model the electron-electron interaction is
given by the electrostatic energy Fc N, (Nc—l) with charging energy Ec = ¢2/(2C%)
where Cy, = C; + Cs + Cy is the sum of tip, gate and substrate capacitances, cf.
Fig. p.5[a). We include the effect of the bias voltage V, and the induced local

A~

potential ¢ on the molecule into the definition of U(N,), which is changing the

2We call the quantum dot in the limit of small temperatures relative to the level spacing "semi-
conductor" quantum dot. This highlights the similarity to a semiconductor, where only a small
fraction of the total number of electrons contributes to the electric current [Kouwenhoven et al.,
2001].
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Figure 5.5.: (a) Schematic switching circuit of the set-up, cf. Fig. . The charged
indium adatoms induce a local potential ¢ = Cy/Cs, V; on the molecule
with Oy, = C; + U5 + C;. The coupling between tip and molecule is
described by the level arm factor o = C;/Cx. (b) Sequential tunnelling
through the LUMO at positive and negative bias voltages.

effective energy levels of the molecule. Hence U (Nc) reads
U(N.) = EcN,(N.— 1) +eN.¢+eaN.V. (5.3)

The so-called lever arm factor, o = C;/CY;, characterises the coupling between the
molecule and the STM tip and takes a value between zero and one. The closer «
is to one, the stronger is the coupling.

We model the tip (subscript t) and the substrate (subscript s) as electronic reser-
voirs kept at fixed chemical potential u; and g, respectively. Electrons with energy
e and channel index v, or v, in the respective lead are created (annihilated) by the
operators ¢, () [, /ue(€)]. Hence

Vs /Ut
H, = /dgza—uj e, (0 (5.4)

where 7 = t,s. The leads are assumed to be metallic where the electrons are
regarded as non-interacting and they hence possess a continuous energy spectrum.
Tunnelling to/from the tip and the substrate is described by

K de’—j K K,t) *
HY :/%Z(t;vt ¢ () e+t et ¢, (2)) | (5.5)

HY) = / S e @t @) (5.6)

where ¢l occupies the lowest unoccupied molecular orbit (LUMO) in conforma-
tion k. We assume tunnelling only through the LUMO as we consider a strong
effective dependence of the energy levels on the bias voltage, cf. Fig. [5.5(b).
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Figure 5.6.: Definitions of the rates appearing in the master equation.

Motivated by the experiment, we can restrict our model to the cases No = 0,1
as the molecule is either in the neutral or negatively charged state. Denoting
the charge state by 0 and 1, this leads to the effective four states |M°,0), [M°, 1),
|M~,0), and |[M~, 1) relevant for our description. While [M?,0) and |M ™, 1) are the
ground states of the neutral and charged molecule, respectively, the corresponding
excited states are |[M~,0) and |M~,1). We introduce the effective energies, F(x,0)
and F(k, 1), associated with these states. Using Eqs. and we can write

(MO)

E(M°,0) = (5.7)
E(M° 1) = (M tep+eal (5.8)
E(M~,0) = ggM*) (5.9)
EM-1) =M 4ep+eal (5.10)

We note that the many-body energy 58”) consists of a sum of the energies 51(,73) in

Eq. (5.2) up to the highest occupied orbital level of the isolated molecule and the
many-body energy 5&”) consists of the sum up to the lowest unoccupied level of the
isolated molecule.

Our main assumption is that the neutral and the negatively charged molecules have
different ground-state conformations. This means that we assume

(M™)

MO
S0 o

and M) < M) (5.11)

We consider the sequential tunnelling regime, which assumes that tunnelling rates
are much smaller than both temperature and level spacing of the molecule. We
thus consider the limit of incoherent transport and describe the system by the
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occupation probabilities P(M°,0), P(M°, 1), P(M~,0) and P(M~,1) of the four
states of the molecule. The Pauli master equation describes the time dependence
of these probabilities and reads

dP(M°,0) _ Mo 0 MO
= ' oP(M0)+TM) (MO 1) — 00, -+ TM1P(MP,0),
(5.12)
dP(M~,0) M- _ M- _
—— = 0 - PMC0) + ™MD P 1) = [0+ T 1P, 0),
(5.13)
dP(MO, 1) 1 _ MO 1 MO
== o P(M )+ T PP, 0) — 10, -+ TN P(MO) 1),
(5.14)
dP(M~,1) 1 M- _ 1 M- _
— = T P(MO 1) + TM D P, 0) — [0 + TN OIP(M~,1)

(5.15)

This should be combined with the normalisation condition P(M?,0) + P(M° 1) +
P(M~,0)+ P(M~,1) = 1. The rates appearing in the master equation, which are
denoted by T', describe the electronic tunnelling rates between the charge states
of the molecule. The charge state is indicated by the superscript. The conforma-
tional transition rates on the other hand are denoted by I' where the superscript
labels the conformation. In the rate equations (5.12)) to (5.15) we have neglected
tunnelling-induced switching rates which are strongly suppressed due to Franck-
Condon physics. The rates are illustrated in Fig. 5.6 and specified below.

We calculate the tunnelling rates to linear order in the tunnelling Hamiltonian, cf.
Egs. (5.5) and (5.6)), with the aid of Fermi’s golden rule. For the electronic rates
this leads to

Ty = 109ne[E(x, 1) = E(x,0)]| + {"ne[E(x, 1) = eV, — E(5,0)],  (5.16)
Ty =t ng[E(k,0) — E(k,1)]| + tnp|E(k,0) + Vi, — E(k,1)] (5.17)

with Fermi distribution function np(g) = 1/(e/¥#7 41). The electronic rates consist
of two terms. The term proportional to téﬁ) describes electronic tunnelling from or
to the tip and the term proportional to tg”) tunnelling from or to the substrate.

Note that ng(—¢) =1 — np(e).

We assume that the transitions between the two conformations are thermally in-
duced [Danilov et al., 2006]. A calculation of the conformational switching rates
is done in analogy to the case of the electronic rates by replacing the coupling to
the electronic reservoirs by a coupling to a (bosonic) thermal bath. The Fermi dis-
tribution function is then replaced by the Planck function, np(e) = 1/(e/*7 — 1),
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Figure 5.7.: Two-step transitions. Left: The rate Ay which describes the switch
M~ — MP°. Right: The rate A_ describing the switch M° — M.

and anti-commutation relations by commutation relations. Using Fermi’s golden
rule, we find that

re) = yWNe) Inp[B(M ™, No) — E(M°, No))|, (5.18)
T, p0 = 7Y [np[B(M°, Ne) — B(M™, No)]| (5.19)

with N = 0,1. The rate vV¢) is independent of the potential and temperature.

For the investigated molecules in the experiment the electronic tunnelling rates are
much larger than the conformational switching rates. We can find a closed-form
solution of the master equation (5.12))-([5.15]) to linear order in this ratio. We begin

with the zeroth order solution

()
_ TIHO
— —
T3
T + Ty

which results from neglecting all conformational rates I' in the master equation.
Here, P(k) = P(k,0) + P(k,1) describes the probability of finding the molecule
in the conformational state x regardless of the charge state. In order to find the
solution valid to first order in the conformational tunnelling rates, we insert the
solution in Egs. (5.20) and (5.21)) into the rate equations ([5.12)-(5.15). This yields

dP(M©
% =AgP(M™)—A_P(M°), (5.22)
dP(M™)
ST) =A_ P(MO) — Ay P(M™), (5.23)
where we have introduced the notation
M=) (0 M~)~(1
Ay = T80 Tt + oo T (5.24)
0 (M=) | (M) ’ '
o' + 1o
M (0 MO 1
A = L% P+ Lo Do (5.25)
- (MO) (MO) ‘ )
T + 1o
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The rates Ag and A_ describe the switching between the molecular conformations
as two-step transitions as sketched in Fig.[5.7 We are interested in the stationary
solution of Egs. — which we denote as P(M°) and P(M~). Together
with the normalisation condition P(M°) + P(M~) =1 we find

P(M°) = AA—JfAO, (5.26)
(M) = A_A; i (5.27)

We use the stationary solution of the master equation to calculate the stationary
electronic current through the molecule as

M 5 M=) 5as— M%)+ M™) /-
I:6<T0(—>1)P(M0v0)+T(§—>1)P(M 70)_T1(—>0)P(M0’1)_T1(—>0)P(M ’1)> :
(5.28)

The resulting current diagram as a function of the induced local potential ¢ and
the bias voltage Vj, is depicted in Fig. |5.8(a) for the parameters T' = 30K, C; =
107®F, C;=10""F,C, =1.9-1071F, ¢(M°,0) = 420 meV, ¢(M°, 1) = 650 meV,
e(M~,0) = 530meV, (M, 1) = 545meV, tM) = (M) = oig-1, (M) =
M) = 3.109571, 4 = () = 10751, Strikingly, the current shows a pronounced
gap of zero current at all ¢ in agreement with the experimental observations. The
additional black lines in Fig.|5.8|(a) which distinguish the regions of zero and nonzero

current can be read off from the electronic transition rates in Eqs. (5.16]) and (5.17)).

They are given by

E(k,1) — E(k,0) =0, (5.29)
E(k,1) — E(k,0) —eW}, =0. (5.30)

While the first equation characterises the transition line where an electron enters
(leaves) the molecule from (into) the substrate, the second equation describes the
transition for tunnelling processes from (into) the tip.

The gap in the current—voltage diagram is highlighted schematically in Fig. |5.8(b)
and can be understood as follows. We first note that by the assumption that the
neutral and the negative molecules possess different ground-state energies, both
conformations have different charge degeneracy points. In particular, assuming
Eqgs. (5.11) means that the charge degeneracy point of the conformation MY is
shifted to larger ¢ as compared to the charge degeneracy point of the conforma-
tion M ~. This gives rise to different regions in the current—voltage diagram, which
we label by I-IX in Fig. |5.8(b). These regions differ by the conformations that are
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Figure 5.8.: Current I as a function of ¢ and Vj, and stability diagram. (a) Calcu-
lated current using Eq. and (b) sketch of the current diagram.
The black lines correspond to Eqgs. and with k = M? (solid
black line) and k = M~ (dashed black line). The blue line represents
the switching line which is calculated from Eq. . The observed
crossover in the conductance and the hysteresis is along this switching
line in region IV.

favoured and hence define the observed current. Irrespective of the conformational
state, the molecule is in the conducting regime in regions I and II and in the blocked
regime in regions III-V. The situation is more subtle in the regions VI-IX. Here the
current is blocked for one conformation while the molecule is conducting in the
other conformation. As tunnelling-induced conformational transitions are strongly
suppressed by Franck-Condon physics, the conformation MY is stable in regions VI
and VII and the conformation M~ is stable in regions VIII and IX. This means
that the current is blocked in all the regions VI-IX and we find a conductance gap
at all ¢.

In the experiment, a small co-tunnelling [Nazarov and Blanter, 2010| current is
observed in the region IV of Fig. |5.8(b), which depends on the molecular confor-
mation, cf. Figs. and The above description which calculates the elec-
tronic transition rates by using Fermi’s golden rule, however, predicts a vanish-
ing current in this region and is valid to linear order in the tunnelling Hamilto-
nian, cf. Egs. and . A description of co-tunnelling includes higher or-
der correction terms in the tunnelling Hamiltonian. The resulting co-tunnelling
current in region IV is determined by the time-averaged co-tunnelling current
for the conformations M° and M~, weighted by the probabilities to find the
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5.2. Theoretical model and explanations
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Figure 5.9.: (a) Non-stationary solution P(M?°) of the master equation with lin-
early varying bias voltage at fixed ¢ = 150 mV and constant ramping
speed 500 mV /s. The coercivity is defined as the half-distance between
the solution with increasing (red dashed line) and decreasing (black
solid line) bias voltage at probability P(M°) = 1/2. (b) Calculated
coercivity as a function of ramping speed at ¢ = 150mV. Other pa-
rameters in both plots are the same as in Fig. (a).

molecule in the respective conformations, that is P(M°) = P(M°,0) + P(M°,1)
and P(M~) = P(M~,0) + P(M~,1).

The crossover of the conductance between two different values and the hysteretic
behaviour presented in Figs. and are observed within this region IV and
are seen because of co-tunnelling effects. These features can also be explained
within the present model. To this end, we use the stationary solution of the master
equation to determine the transition line

?mﬁ):ﬁmf):%, (5.31)
where the switch between the conformations M° and M~ takes place. This switch-
ing line splits region IV in the current-voltage diagram into two regions with dif-
ferent molecular conformations. As each conformation gives rise to a different
co-tunnelling conductance, the crossover between the two different conductances
is along this line shown as the blue line in Fig. |5.8(a). Since the conformational
switching rates are slow compared to the electronic tunnelling rates, hysteretic be-
haviour is observed when sweeping the bias voltage across this line. Figures (c)
and (d) show that the hysteresis is most pronounced at small biases. This is due
to the fact that the corresponding switching rates between the conformations, cf.
Egs. (5.24) and (5.25), depend on the bias voltage via the Fermi function. At low
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5. Atomic-scale gate control of a single-molecule transistor by individual atoms

bias voltages the switching rates are small so that finite ramping speeds of the bias
induce hysteresis. As the switching rate increases exponentially with increasing
bias voltage, hysteresis is only observed at low biases.

We can determine the coercivity, that is the half-width of the hysteresis, by nu-
merically solving the time dependent master equation ([5.12))-(5.15]) for linearly in-
creasing or decreasing bias voltage at constant ¢. A typical solution is shown in
Fig. p.9(a) for the same parameters as in Fig. [5.§a) but at fixed ¢ = 150mV.
Clearly the conformational state at small bias voltages is seen to depend on how
the bias voltage is swept. While an increasing bias voltage favours the confor-
mation M? at small bias voltages, decreasing the bias voltage on the other hand
results in the favoured conformation M~ for values around zero bias. The coercivity
is then extracted by taking the difference of the solutions for gradually increasing
and decreasing the bias voltage at probability one half and dividing by two. The
resulting coercivity as a function of ramping speed is depicted in Fig. p.9(b). We
find good qualitative agreement with the experimental observations.

5.3. Conclusion

Single-molecule transistors play an important role in the process of miniaturising
electric circuits towards the ultimate limit, i.e. circuits with elements made up of
single atoms or molecules. A realisation of a single-molecule transistor is presented
in Ref. [Martinez-Blanco et al., 2015] where the transistor is formed by the HoPc and
the CuPc molecule placed individually on an InAs(111)A-(2x2) surface and an
adjacent STM tip. Gating is achieved by repositioning charged indium adatoms on
the surface and bringing them close to the molecule.

Many of the observations of this experiment have been explained in this chapter
within a schematic model of incoherent transport through a single level. The ph-
thalocyanine molecule has been modelled as a semiconductor quantum dot attached
to two electron reservoirs formed by the STM tip and the InAs(111)A surface. Al-
lowing for thermally-induced switching between two conformational states, electron
transport through the molecule has been calculated via a master equation approach
which describes the coupled dynamics of charge and conformational transitions.
The corresponding rates have been calculated within Fermi’s golden rule. We have
assumed that the neutral and negatively charged molecules possess different ground
state conformations and that tunnelling-induced switching is suppressed by Franck-
Condon physics. While the stationary solution of the master equation has explained
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5.3. Conclusion

the observed current at different bias and gate voltages and its pronounced conduc-
tance gap, the non- stationary solution with a linearly changing bias voltage and
fixed gate voltage has explained the observed hysteretic behaviour.

Some features of the experiment, however, are not captured in the theoretical de-
scription and require a more refined model. In the present model, for instance,
the calculated transition line, which defines the switching in the current—voltage
diagram [cf. Eq. and the blue line in Fig. |5.8|, shows a small kink around
zero bias voltage. This characteristic behaviour is not observed in the experiment
presumably due to the fact that this kink is located in the region where the hys-
teretic behaviour is most pronounced. Furthermore, the extrapolated lines which
separate the regions of zero and nonzero current in the current—voltage diagram
cross at zero bias voltage. This can be seen from Egs. and and is
illustrated in Fig. 5.8l The observations in Fig. [5.4 however, do not show this
feature, where the extrapolated lines cross at finite bias. In principle, this can be
explained by current-induced heating of the molecule. An increasing temperature
has the effect of shifting the crossing point to nonzero bias voltages. But since the
average waiting times between two successive electron tunnelling events are much
longer than the electronic tunnelling times and the vibrational relaxation rates of
the molecule |[Harris et al., 1991} Lee et al., 2005|, current-induced heating can be
excluded in our model. Alternatively, a more accurate description of the electro-
static interaction of the molecule with its environment in principle affects the slopes
and crossing points of the separation lines which distinguish the regions of zero and
nonzero current. Although a more refined model can reproduce more features of
the experimental observations, we have restricted ourselves to a schematic model,
which explains the general observations with a minimal number of parameters.
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6. Conclusion

This thesis aims at further increasing our understanding of nanoelectromechanical
systems and the control of their motion. Nanoelectromechanical systems are char-
acterised by strong electron-phonon interactions and, therefore, are manipulated
by driving the system out of equilibrium via imposing a bias voltage and running
an electric current through the device. In this context, understanding the forces
exerted by the electrons on the nanosystem is of fundamental importance. Based
on the recently obtained expressions of the adiabatic reaction forces in terms of the
scattering matrix and its first adiabatic correction [Bode et al., 2011, Bode et al.,
2012b|, we present a rederivation of these adiabatic reaction forces in the present
thesis. Our derivation is more direct and efficient and thus provides further under-
standing of the nature of the forces. With our derivation, we generalise previous
works to a generic classical system coupled to a quantum environment which can
be of both fermionic or bosonic nature. This opens a wider range of applications
including possible applications in optomechanical systems, spintronics or ultra-cold
atoms.

The derivation of the adiabatic reaction forces in this thesis is based on an adia-
batic expansion within the methods of scattering theory. The starting point closely
follows the seminal work in Ref. [Berry and Robbins, 1993| on environment-induced
forces for closed quantum systems, with a discrete energy spectrum. This enables
a direct comparison to our work, in particular concerning the absence of dissipa-
tion for closed quantum systems. For nanoelectromechanical systems, in contrast,
friction naturally occurs when opening the system by attaching leads to it. At
a mathematical level, opening the system is accompanied by a continuous energy
spectrum which then allows for a friction term, as shown in this thesis. A further
advantage of our approach is that it gives an explicit expression of the first adiabatic
correction of the scattering matrix in terms of scattering states. This expression
strongly simplifies direct calculations for specific realisations, which is essential for
applications. Moreover, our derivation specifies the limits of validity. For closed
quantum system an adiabatic expansion is performed under the condition that the
level spacing of the quantum system is large compared to the frequency of the os-
cillator. The adiabatic condition for open systems with a continuous spectrum, on
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6. Conclusion

the other hand, requires the inverse dwell time of the quantum system to be large
compared to the frequency of the resonator.

Understanding the effect of the environment driven out of equilibrium is essential
for the ultimate aim of controlling quantum systems. In nanoelectromechanical
systems, out-of-equilibrium situations enable a negative friction coefficient and a
non-conservative Born-Oppenheimer force. The latter condition opens the possi-
bility to exert work on the system |[Dundas et al., 2009, Brandbyge, 2009,(Todorov
et al., 2010]. This is the basic idea of an electronically driven molecular motor. Re-
cent experiments motivate the importance of a theoretical description of reaction
forces on the path towards creating directed translational [Kudernac et al., 2011|
or rotational motion [Tierney et al., 2011] on the molecular scale. The knowledge
gained in this thesis provides further insight towards creating directed forces which
control the motion of such systems. In particular, the Born-Oppenheimer force
plays a crucial role for the basic idea of constructing an adiabatic quantum motor.
This is due to the fact that the work exerted by the Born-Oppenheimer force when
the system is forced to move on a cyclic path is proportional to the pumped charge
through the system when adiabatically varying its parameters |[Bustos-Martn et al.,
2013|.

Understanding the interaction of a classical system, which moves in a quantum en-
vironment, is further deepened in the present thesis by reversing the point of view
and studying the effect of the classical system on the quantum environment. Due to
the Anderson orthogonality catastrophe it is known that small changes of a classical
system can have a profound impact on a large quantum environment. We have stud-
ied the fidelity amplitude and its absolute square value, the Loschmidt echo, which
represent dynamical measures of the Anderson orthogonality catastrophe. In par-
ticular, we have expressed these microscopic quantities in the small-distance regime
in terms of the mesoscopic adiabatic reaction forces, that is the Born-Oppenheimer
force, the friction coefficient and the correlator of the stochastic force. To this end,
we have made use of the achieved knowledge and expressions of the environment-
induced forces in terms of both the scattering matrix and its first order adiabatic
correction and, equivalently, in terms of non-equilibrium Green functions.

A relation between the friction coefficient and the Anderson orthogonality expo-
nent has been found in Ref. [Schonhammer, 1991 for finite quantum systems in
the small-distance limit. In this thesis, we have generalised this idea to nano-
electromechanical systems, which can be driven out of equilibrium, by considering
infinite quantum systems with a continuous energy spectrum and a finite imposed
bias voltage. We have found that the coloured noise of the classical degrees of
freedom determines the behaviour of the Loschmidt echo at all times. Using the
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fluctuation-dissipation theorem, we have then recovered a power-law decay of the
Loschmidt echo in equilibrium and at zero temperature with an exponent propor-
tional to the dissipation. This reflects the Anderson orthogonality. Since a noise
correlator, which is delta-correlated in time, implies an exponential decay of the
Loschmidt echo, the power-law behaviour signals the breakdown of the semiclassical
description of the Markovian Langevin equation.

To linear order in the bias voltage, we have shown that an exponential decay of
the Loschmidt echo suppresses the power-law behaviour at times, which are larger
than the inverse bias voltage. The exponential decay is consistent with a white-
noise assumption to lowest order and the power-law behaviour characterises the
next-order correction term. While the exponential decay is determined by the
shot-noise fluctuations, we have found that the power-law exponent is given by a
competition between fluctuations and dissipation, which ultimately determines the
sign of the exponent.

Furthermore, we have analysed the effect of finite temperatures. We have recovered
an exponential decay of the Loschmidt echo in the classical limit of large temper-
atures, which is a manifestation of the classical fluctuation-dissipation theorem.
Moreover, we have illustrated the applicability to nanoelectromechanical systems
by applying the derived formulas to a concrete example of a single level, which is at-
tached to two leads and coupled to one vibrational mode. This example represents,
for instance, a quantum dot confined on an oscillating nanotube.

The use of scattering theory in the derivation of the adiabatic environment-induced
forces and in the analysis of the Loschmidt echo limits the validity of the results to
non-interacting scattering particles. Interactions can be included at a mean-field
level. Generally, taking interactions into account may yield interesting departures
from the results discussed in this thesis. Moreover, interesting features are expected
by studying a quantum system instead of a classical system which is coupled to a
fermionic or bosonic environment.

The ultimate limit of miniaturisation and control is reached by electronic devices
on the atomic or molecular scale, where individual electrons sequentially tunnel
through the system. This thesis provides a theoretical model of a transistor on the
molecular scale recently realised in Ref. [Martinez-Blanco et al., 2015|. This exper-
iment uses the techniques of bottom-up molecular manipulations by STM [Stroscio
and Eigler, 1991] and by this provides a technique to reach atomically precise gat-
ing. The transistor consists of a phthalocyanine molecule (free base phthalocyanine
or copper phthalocyanine) on an InAs(111)A-(2x2) surface and an adjacent STM
tip. By construction, a low coverage of additional positively charged native donor-

107



6. Conclusion

type indium adatoms is absorbed on the substrate. As these adatoms are weakly
bound to the substrate, they can be repositioned by the STM tip and change the
local electrostatic potential on the phthalocyanine molecule. Thus, they serve as
an analogue of a gate electrode with atomic precision. A bias voltage applied be-
tween the STM tip and the InAs surface then creates a current running through
the system which is controlled by the position of the indium adatoms. Remarkably,
the current as a function of applied bias and gate voltage shows a pronounced gap
instead of the expected charge degeneracy point.

Motivated by the experimental observations, we have explained the occurrence of
the gap by the existence of two distinct conformational states of the phthalocyanine
molecule. We have introduced a schematic model which treats the phthalocyanine
molecule as a semiconductor quantum dot and explains the general experimental
observations. The tip and the substrate have been treated as electron reservoirs
kept at different chemical potentials in the presence of the bias voltage. Tunnelling
through the molecule has then been described by the solution of the rate equations
which involve transition rates between the two different conformational states and
rates changing the charge state of the molecule. These coupled dynamics show
the presence of new features and explain the the occurrence of the gap in the
current—voltage diagram, which extends the established understandings of sequen-
tial transport in transistors on the molecular scale. We have further confirmed this
conclusion by a quantitative calculation of the experimentally observed features.

The present thesis discusses nanoelectromechanical systems ranging from nanos-
tructures, such as oscillating graphene sheets or nanotubes, to electronic devices
made up of individual molecules. The ultimate goal is to manipulate and con-
trol these miniaturised devices on the nanoscale. Our study of both the adiabatic
reaction forces and the single-molecule transistor deepens our understanding of
transport through these materials and thus enables interesting perspectives for the
future. On the one hand, an exciting perspective is the creation of directed adi-
abatic reaction forces which is essential for the construction molecular machines.
On the other hand, single-molecule transistors are fundamental devices in the field
of nanotechnology as they provide a way to control transport in molecular materi-
als. By this, they open the door towards the construction of electric circuits with
elements made up of individual molecules.
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A. Loschmidt echo within
scattering theory

In this appendix, we derive Egs. to purely within the methods of
scattering theory which gives the relation of the Loschmidt echo to the adiabatic
reaction forces to linear response in the bias at zero temperature. Throughout the
appendix we frequently refer to the definition of the frozen scattering matrix in
Eq. and its relation to the A-matrix via Egs. (3.35)). Furthermore Eq.
is used to identify the derivative of the scattering matrix with respect to the classical
degree of freedom.

We begin with the identification of the friction tensor v = 4 + ™. For an
expansion to linear response in the bias voltage we use the notation

Y = vy + 1 (A1)
A"l = AT (A.2)

introduced in the main text where the index denotes the order in Au 7p. There is
no term ~y;“? since the term 4" represents a pure out-of-equilibrium contribution.
The friction tensor is expressed in terms of the S- and A-matrix in Eq. where
the first term equals v°? and the second term gives 4"¢4. It is straightforward to
show for two leads with chemical potentials up = p+ Au/2 and pur = p — Ap/2
that the above contributions to the friction tensor in linear response read

i)os = 1 > {ousi 0:500},, (A3)
(Fi%)es = 5= iﬁjae [(2:510)- 95509, = (0u810)- 25542)) |+ (A4)

() = ﬁ [ (081 0) - A2 0) — AP ) - 0uu))
- (aist*(m AL = A - a5 () ) (A5)
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A. Loschmidt echo within scattering theory

Essential for a derivation of Eqs. (4.46) to (4.49) is an expression of the func-

tion Ki,(e) = Kin(e,€) in terms of the scattering matrix. From the defini-

tion in Eq. ( - together with Eq. and by twice inserting the resolution
= [ 10X ()) (X (e)] of the advanced scattering states we find

Ky () = (08 ()10 Vx[Un () (i (2)|95 Vi [T ()

= (0u51(e) - 5u(e)) (81 - 0551()) . (A.6)

kn n

Since the scattering matrix is unitary, so that S} (¢) - S;(¢) = 1, we conclude that

CS KR = ol 950} = (i, (AT)

47 ™ s

The last step follows by comparing to Eq. ({A.3]) and gives the first desired Eq. (4.46)).

Next, we address the identification of the coefficient v, We note that K’ (e) =
Kg,f (¢) is symmetric under exchanging the indices k and n, which readily follows
from the symmetric summation over the indices of the classical degree of freedom,
that is a and 8. We deduce the relations 9* K2 (¢) = %@K,?f(s) and K7 (e) =
GSK;“,? (¢). By referring to the linear response expression in Eq. we conclude
that

Ap

L lrKsie - oK) = S Y o [Kike) - K]

n=L,R

_ %6‘5 { [(2a81(e)- 035()) | = (281 ©)0s5:9)) | EZM}S

= (11"ag » (A.8)

E=N

which proves the relation in Eq. (4.48)).

The identification of the pure out-of-equilibrium contribution to the friction tensor
in linear response requires an expression of the antisymmetric energy derivative of
the function Ky, in terms of the S- and the A-matrix. Similar to the previous cases,
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we insert the resolution 1 = [ 937 |yX=(£))(¥X ()| twice and get

0Ky (e) = 5 (0- = 0) K (e, €)

e'=¢e

{O07 (€)1 0aVihX () (WX () 9V (2))
W (©)OnVR X ) (X (2)] 05Vl 003 (e))
— (U ()]0 Vi - [ [0 () (WX ()] DVl (e)) |
=——Z{ 0aSH™(2) 0. [ S (e) S (2)] BaSit(e) |

Iy {(asiors0),, (o),
- (Af (o) - st<e>),m (5e) - 2ui(e)) } (A.9)

1
2
1
T2
+

s

s

Now we are ready to identify the coefficient v7“Y. We note that 0“K,?f (e) =
8”’[(” (¢) is antisymmetric under exchanging the lead indices and in particular
we deduce that 9* K27 () = 0. Hence we have

Ap

oK) - o K] = 3 > O KR — 0K ()

=B (o510 A0 AV 50)
— (0T () - A1) = A () - 6a5t<u>)RR J

neq

= (7]

S

)ag (A.10)

which shows Eq. (4.49). Here we have used that tr{f)aStT . Af — AtﬁT < 0,5} =0
which expresses the vanishing of vy = 0.

Finally, we address the derivation of Eq. (4.47)) which involves the relation to the
zero-frequency noise correlator, Dip a,) = D(X). At zero frequency the we deduce

from Eq. that
/dg Z Fule) [L— (o)) K22(e). (A11)

m=L,R

We note that this expression is consistent with the expression of the classical noise
correlator in Eq. (3.69). For small temperatures 7" we can write the product of the
Fermi functions as fx(e)[1 — fr(e)] = =T O.frx(e) = T 6(¢ — py). Consequently, in
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linear response we find

Das(X (Z Ko %[sz() M%%@)}) (A12)
v % (K3 + K3 ()] (A1)

because K (¢) = K% (). With 5 0. = 0° we readily deduce from the second term
the validity of Eq. (4.47) at zero temperature.
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B. Loschmidt echo within Green
function formalism

This appendix is devoted to the derivation of Egs. (4.64) to within the meth-
ods of non-equilibrium Green functions which provides an alternative derivation
compared to the derivation based on scattering theory. We conclude this appendix
by showing the equivalence of both methods.

We start the derivation with the expression of the full friction tensor in terms of
the adiabatic lesser and greater Green functions of the dot [Bode et al., 2011}|Bode
et al., 2012b|

'yaﬁz/;l—itr{AaGg(s) Ag@EGg(s)} : (B.1)

S

Out-of-equilibrium enters in this expression via the Green functions, which can
be expressed in terms the Fermi functions and the retarded and advanced Green
functions of the dot via Langreth rule, cf. Egs. (£.58) and (4.59). In equilibrium,
we find with the definition of the function K in Eq. (]42‘) at zero temperature
that

i = [ 530t { A GBEW ) () W ()
X G (1) Mg G5 () W (1) TL, (1) W (1) GE‘(#)}S (B.2)
== A (B.3)

which is equal to Eq. (4.64). For the linear response term ~{?+~7“ we expand the
Fermi function of the left and right lead as f/r(e) = f(¢) FAu/20.f(¢). Inserting
Eqgs. (4.58) and (4.59) into Eq. (B.1]) we find to linear order in the bias voltage after
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integrating by parts

cay e ALy (ie <7
(Y{"+H] q)aﬁ - 8T O: (KLg(:u’E) + KLé(g’u))s:u

Ao (ot ~ap Ao [ as o
T 2 (KRL(:Uvg) + Kgp(e, N))EZH R O: (KLL(/“Lv €) + KRL(@M))E:N
A:u a3 a3
~ 0 (KiRne) + Kigem)
d€ o e e e’
+ [ 52 ) (Reiee) + Ribee) - Kif(ee) - Kiero

—Ki{(e6) - Ki(e,0) + Kinle, ) + Kifyle.o))
(B.4)
at zero temperature. We note that the terms in the last two lines cancel each

other because Ky, (e, ¢) = Ky (e, €) which readily follows from the definition of the
function K,,. We are thus left with

(7o = T2 (' R5E ) — 0 Ki)) + 22 (0K ) — 0K

(B.5)
The first term corresponds to the coefficient 477 and the second terms to the coef-
ficient 47Y. This leads to the desired Egs. and (4.67).

We now turn to the zero-frequency noise correlator Dipa,) = D(X). In terms of
lesser and greater Green functions of the dot the noise correlator reads [Bode et al.,
2011, Bode et al., 2012b)|

DoslX) = [ 55 (A G3(0) A G5(6)).. (B.6)

Similar to the identification of the friction tensor, we continue by applying Langreth
rule, that is we make use of Egs. and . We identify the function K by
referring to Eq. and deduce at zero temperature with the aid of fr(e) (1 —
fr(€)) =0 that

de ~a
DaX)= [ 55 3 AL - hERE
knm=L,R
A:u F o3 a3
= 5 (Reatn) + i) (B.7)
to linear response in the bias. Here we have used that Ky, (g) = K,;(¢). The last

line agrees with Eq. (4.65]).

We conclude this appendix by explicitly showing the equivalence between the func-

tion Ky, (e,e’), defined in Eq. (4.36) in terms of scattering states, and the func-
(.62

tion K;m(é‘, ¢’), introduced in Eq. (4.62) in terms of Green functions. To show the
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equivalence, we follow similar steps as in Sec. where we have shown that the
retarded scattering states and the retarded Green function of the dot are related
via Eq. . A similar equation holds for the advanced scattering states and
their relation to the advanced Green function of the dot. Inserting Eq. into
the definition of the function Ky, in Eq. , we get

K (e.e) = {<¢k(€)| W(e) G () Aa GH(E) WH(E [hn(€)) (0n ()| W (") Gp(€)

X X5 GHEVWHE) l6x(0) |
(B.8)

since 0,Vx = lpdyho(X)IIp and A, = 0yhg, cf. Sec. E With II,(¢") =
|90 (")) (Pn(e")] and making use of the symmetry in the indices a and 8, we de-
duce that

K,?f(a,s’) = tr {0, Hx GR(NWTIHENTL () W () G ()
x JsHx G(e) W'(e) () W(e) Gp(e) },
= Kp,(e.€)
by referring to Eq. (4.62). Hence we have shown that the functions Ky, (e,€’)

and K;m(s, ¢’) are identical. This shows that the present Green function approach
is equivalent to the formulation in terms of scattering states.
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