2. Allgemeiner Teil

2.1. Halogen-Kationen

Die Kationen des Broms und des Iods sind schon seit langer Zeit bekannt und genau untersucht worden.^[7,8,15-20]

Die bereits 1882 beschriebene blaue Farbe einer Lösung von Iod in $Oleum^{[21-23]}$ konnte jedoch erst 1966 mit dem Nachweis des I_2^+ -Ions erklärt werden.^[7] Zwei Jahre später gelang es dann, das kirschrote Br₂⁺-Ion zu charakterisieren.^[8]

Obwohl das Cl₂⁺-Ion im verdünnten Gaszustand UV-spektroskopisch nachgewiesen wurde, war aber die Isolierung einer entsprechenden Verbindung des Chlors bisher nicht möglich.^[24]

2.1.1. Chlor-Kationen

2.1.1.1. Synthese eines Salzes des Cl₂⁺-Kations

In unserer Arbeitsgruppe wurde erst kürzlich gezeigt, dass durch die Oxidation von Chlor mit O_2^+ SbF₆⁻ das trapezförmige $Cl_2O_2^+$ -Ion entsteht.^[9] Dies kann als *side-on-π*-Komplex von O_2 an Cl_2^+ beschrieben werden. Aufgrund der Reversibilität der Anlagerung des O_2 an Cl_2^+ , wie durch Isotopenmarkierung gezeigt werden konnte, sollte das Cl_2^+ -Ion darstellbar sein, wenn sauerstofffrei gearbeitet wird.^[9]

Bei der Wahl eines geeigneten Oxidationsmittels muss beachtet werden, dass der freiwillige Ablauf dieser Reaktion sowohl von der Elektronenaffinität (EA) des Oxidationsmittels und dem ersten Ionisierungspotential (1. IP) des zu oxidierenden Moleküls, als auch von der Gitterenergie (U) des gebildeten Salzes abhängig ist. Dies soll, wie in Abbildung 1 gezeigt wird, am Beispiel der Reaktion von PtF₆ mit Sauerstoff verdeutlicht werden.

Abbildung 1: Born-Haber-Kreisprozess für O_2^+ PtF₆⁻, Energien in eV.^[6,25]

Der Synthese des O_2^+ PtF₆^{-[2]} folgten Versuche zur Oxidation von Xenon (1. IP 12.12 eV) mit PtF₆ (EA 7.0 eV),^[6,25] bei denen die erste Xenonverbindung "XePtF₆", deren Zusammensetzung jedoch noch nicht genau bekannt ist,^[26] entstand.

Somit sollte Iridiumhexafluorid, mit einer Elektronenaffinität von ca. 6.5 eV, Cl_{2} , mit einem 1. Ionisierungspotential von 11.5 eV, oxidieren.^[6,25] Diesem Vergleich liegt die Vereinfachung zugrunde, dass die Gitterenergien von $Cl_{2}^{+} IrF_{6}^{-}$ und $Xe^{+}PtF_{6}^{-}$ sehr ähnlich sein sollten.

2.1.1.2. Synthese und Kristallisation des CI_4^+ IrF₆⁻

In einer 1978 unter der wissenschaftlichen Leitung von BARTLETT angefertigten Dissertation^[27] wurde die Umsetzung von Chlor mit IrF_6 beschrieben. Der dabei entstehende blaue Feststoff wurde anhand von Raman-Spektren charakterisiert und es wurde vermutet, dass es sich bei diesem um Cl_2^+ IrF_6^- handelt. Versuche zur Züchtung von Einkristallen und zur Löslichkeit des Reaktionsprodukts wurden aber in der Literatur bisher nicht beschrieben.

Um für die Kristallstrukturuntersuchungen geeignete Einkristalle dieser blauen Verbindung zu erhalten, wurde versucht, den Feststoff zu lösen. Dabei erwies sich die hohe Instabilität des Produkts als ein Hindernis und meistens zersetzte sich die Substanz unter Gelbfärbung. Nur in wasserfreiem HF und in Mischungen aus wasserfreiem HF und SbF₅ hat sich das Produkt teilweise gelöst, zersetzte sich aber immer noch bei Temperaturen oberhalb –78 °C zu Salzen des Cl_3^+ -Ions, die mit anderen Anionen genau bekannt sind.^[9]

Es gelang jedoch, das Reaktionsprodukt trotz seiner Instabilität durch die Kristallstrukturanalyse, das Raman- und das ESR-Spektrum zu charakterisieren. Es handelt sich dabei nicht um das vermutete Cl_2^+ -Salz, sondern es bildet sich Cl_4^+ IrF₆⁻, also ein Cl_4^+ -Ion (Gleichung (1)).

$$2 \operatorname{Cl}_{2} + \operatorname{IrF}_{6} \longrightarrow \operatorname{Cl}_{4}^{+} \operatorname{IrF}_{6}^{-}$$

$$\tag{1}$$

Die Bildung des Cl_4^+ -Ions erfolgt auch, wenn elementares Chlor durch chlorhaltige Substanzen, z. B. CF_2Cl_2 , ersetzt wird.

2.1.1.3. Kristallstrukturanalyse und spektroskopische Charakterisierung von Cl_4^+ IrF₆⁻

 Cl_4^+ IrF₆⁻ kristallisiert in der monoklinen Raumgruppe P2₁/c. Im Kristall liegt ein rechteckiges Cl_4^+ -Ion vor, das keine auffälligen Kontakte zum IrF₆⁻-Ion aufweist (Abbildung 2). Der kurze Cl–Cl-Abstand (194 pm) ist deutlich zu dem im Cl₂ in der Gasphase (198 pm) verkürzt, jedoch länger als im gasförmigen Cl_2^+ (189 pm),^[28] was einem Oxidationszustand von $Cl_2^{+1/2}$ entspricht. Der Zusammenhalt der beiden Teile kommt, wie beim $Cl_2O_2^+$ -Ion, durch π^* - π^* -Wechselwirkungen, die auch bei anderen anorganischen Molekülen bekannt sind, zustande.

Abbildung 2: Struktur von $Cl_4^+ IrF_6^-$ im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist eine Moleküleinheit mit dem kürzesten interionischen Abstand. Atome ohne Bezeichnung werden durch das Symmetriezentrum erzeugt. Werte in pm.

So hat zum Beispiel auch das dem Cl_4^{+} -Ion verwandte I_4^{2+} eine rechteckige Struktur mit kurzen (258.6(3) pm) und langen (324.7(3) pm) Bindungen.^[29,30] Es liegt hier eine Verknüpfung zweier I_2^{+} -Einheiten über die mit einem Elektron besetzten π^* -Orbitale vor. Ebenso können beim Dimer von $Q_2^{[31]}$ oder beim diamagnetischen Dimer von ClO_2 unterhalb -108 °C^[32] Vergleiche zum Cl_4^{+} -Ion gezogen werden. Allerdings stehen diesen Dimeren zwei Elektronen für zwei (lange) Bindungen zur Verfügung, dem Cl_4^{+} -Ion nur eines.

Im Anion ist das Iridiumatom leicht verzerrt oktaedrisch von sechs Fluoratomen mit Bindungsabständen von 186.3(5) bis 189.2(4) pm umgeben. Dies entspricht den im $\text{Li}^+ \text{IrF}_6^-$ gefundenen Ir–F-Abstände von 187.5(3) pm.^[33]

Für einen Vergleich dieser Bindungsabstände mit denen im Iridium(VI)-fluorid haben wir röntgenographische Untersuchungen an Einkristallen von IrF_6 durchgeführt. Es wurden nämlich bisher nur Elektronen- und Neutronenbeugungen an IrF_6 in der Gasphase vorgenommen.^[34] Diese ergaben Ir–F-Bindungen mit einer Länge von 183.9(2) pm.

Unsere Kristallstrukturanalyse zeigte, dass das in der orthorhombischen Raumgruppe Pcmn kristallisierende IrF_6 wesentlich kürzere Ir-F-Abstände (182.7(6) bis 183.7(7) pm) im Vergleich zum Hexafluoroiridat(V)-Anion aufweist (s. Experimenteller Teil).

Das Raman-Spektrum (Abbildung 3) zeigt die Banden des oktaedrischen IrF_6^- -Ions und die Cl–Cl-Valenzschwingungen. Auffällig ist hierbei die hohe Intensität der Bande bei 175 cm⁻¹, die möglicherweise von einer Raman-Resonanz herrührt, da der erste (345 cm⁻¹) und eventuell der zweite (525 cm⁻¹) Oberton beobachtbar sind, obwohl mit einer Erregerfrequenz von 1064 nm fernab der Absorption im Sichtbaren angeregt wurde. Diese Bande bei 175 cm⁻¹ wird der symmetrischen Valenzschwingung des Cl_4^+ -Ions entlang der langen Bindung zugeordnet.

Abbildung 3: Raman-Spektrum von $Cl_4^+ IrF_6^-$ bei -80 °C.

Das ESR-Spektrum des Produktes der Reaktion von Chlor mit Antimon(V)-fluorid wurde schon Ende der 60er Jahre in der Literatur diskutiert und zuerst dem Cl_2^+ -Ion,^[35] dann einem ClOCl⁺-Ion zugeschrieben,^[36,37] wobei die dort wiedergegebenen Spektren der Resonanz des $Cl_2O_2^+$ -Ions^[9] sehr ähneln.

1976 wurde dann das ESR-Spektrum dieses Systems bei 4.2 K gemessen, und aufgrund der beobachteten Feinstruktur auf die Bildung des Cl_4^+ -Ions geschlossen.^[38]

Das von uns gemessene ESR-Spektrum von $Cl_4^+ IrF_6^-$ zeigt im Gegensatz zu dem oben beschriebenen Spektrum nur eine uncharakteristische breite Resonanz. Wir konnten an $H_2F^+ IrF_6^-$, welches durch Reduktion von IrF_6 mit SO₂ in HF hergestellt wurde (Gleichungen (2) und (3)), zeigen, dass IrF_6^- kein ESR-Signal gibt.

$$3 \operatorname{SO}_2 + 2 \operatorname{Ir} F_6 \longrightarrow 2 \operatorname{Ir} F_5 \operatorname{SO}_2 + \operatorname{SO}_2 F_2$$

$$\tag{2}$$

 $IrF_5 \cdot SO_2 + 2 HF \longrightarrow H_2F^+ IrF_6^- + SO_2$ (3)

2.1.1.4. Kristallstrukturanalyse von IrF_{5} . SO₂ und H_2F^+ IrF_6^-

Der Reaktionsverlauf nach Gleichung (2) konnte unter anderem durch das Raman-Spektrum der Reaktionsmischung nachgewiesen werden. Des weiteren gelang es, beim langsamen Abkühlen der Reaktionslösung Einkristalle vom IrF_5 · SO_2 zu erhalten. Es handelt sich hierbei, wie beim schon bekannten SbF_5 · $SO_2^{[39]}$ um ein sauerstoffverbrücktes Donor-Akzeptor-Addukt zwischen Schwefeldioxid und IrF_5 (Abbildung 4).

Diese Addukte kristallisieren zwar in unterschiedlichen Raumgruppen (IrF_5 · SO_2 : P1, SbF_5 · SO_2 : P2₁/n), ihre Molekülstrukturen sind aber sehr ähnlich. So ist der O–Ir-Bindungsabstand im IrF_5 · SO_2 mit 204(2) pm etwas kürzer als der O–Sb-Abstand im SbF_5 · $SO_2(211.6(4) \text{ pm})$.

Abbildung 4: Struktur von IrF_5 · SO₂ im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist eine Moleküleinheit. Werte in pm.

Es konnten auch Einkristalle von dem in der trigonalen Raumgruppe R $\overline{3}$ kristallisierenden H_2F^+ Ir F_6^- röntgenographisch untersucht werden. Bisher ist mit diesem Kation nur eine orthorhombische (Raumgruppe P2₁2₁2₁)^[40] und eine monokline (Raumgruppe C2/c)^[10] Modifikation mit Sb₂ F_{11}^- als Anion in der Literatur beschrieben worden. Sowohl das H_2F^+ Ir F_6^- , als auch das H_2F^+ Sb₂ F_{11}^- weisen im Kristall eine Fehlordnung des Kations auf. Die sich daraus ergebenen sechs interionischen $F \cdot \cdot \cdot F$ -Abstände betragen beim Undecafluorodiantimonat zwischen 264 und 278 pm und im Hexafluoroiridat 274.0(3) pm. Die H-Atome konnten, wie bei vielen röntgenographischen Strukturbestimmungen, nicht lokalisiert werden.

2.1.1.5. Synthese und Kristallstrukturanalyse des $CI_2O_2^+$ $HIr_2F_{12}^-$

Das $Cl_4^+IrF_6^-$ reagiert mit Sauerstoff, der langsam in die Perfluoralkoxy (PFA)-Gefäße diffundiert. Dabei bilden sich schwarze, sehr empfindliche Kristalle. Die Kristallstrukturuntersuchung zeigt, dass es sich um $Cl_2O_2^+HIr_2F_{12}^-$ handelt (Abbildung 5).

Abbildung 5: Struktur von $Cl_2O_2^+HIr_2F_{12}^-$ im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist eine Moleküleinheit mit dem kürzesten interionischen Abstand. Werte in pm. Die Position des Wasserstoffatoms H wurde wegen des kurzen Abstandes mittig zwischen F16 und F21 angenommen.

Das $Cl_2O_2^+$ -Ion ist hierbei identisch mit dem kürzlich von SEPPELT et al. beschriebenen Kation in $Cl_2O_2^+$ SbF₆⁻ und $Cl_2O_2^+$ Sb₆₋⁻ [9]

Von Interesse ist bei dieser Verbindung auch das Anion $HIr_2F_{12}^{-}$, das eine sehr kurze F–H–F-Brücke aufweist und somit als protoniertes $IrF_6^{-}({}^{-}F_5Ir-F \cdot \cdot \cdot H^+ \cdot \cdot \cdot F-IrF_5^{-})$ oder als durch IrF_5 solvatisiertes $HF_2^{-}(F_5Ir \cdot \cdot \cdot F-H-F^- \cdot \cdot \cdot IrF_5)$ beschrieben werden kann. Aus dem $F \cdot \cdot \cdot F$ -Abstand von 228(1) pm kann auf eine symmetrische Wasserstoffbrückenbindung, wie sie im HF_2^{-} -Ion bei einem $F \cdot \cdot \cdot F$ -Abstand von 227 pm vorliegt, geschlossen werden. In diesem Fall spricht man auch von einer starken Wasserstoffbrückenbindung, da der Abstand der Fluoratome deutlich kürzer (> 30 pm) als die Summe der van-der-Waals-Radien (r(F) = 140 pm) ist. Das H-Atom konnte bei einigen Salzen des HF_2^{-} mit Hilfe der Neutronenbeugung lokalisiert werden. In den meisten Fällen befindet sich das H-Atom mittig zwischen den Fluoratomen.^[41]

Die weitaus häufiger auftretenden unsymmetrischen Wasserstoffbrücken sind hingegen wesentlich schwächer und eher als elektrostatisch zu beschreiben.

2.1.2. Brom-Kationen

Brom kann neben dem schon erwähnten Br_2^+ -Ion noch weitere polyatomare Kationen ausbilden, wobei jedoch bisher keine $Br_2O_2^+$ - oder Br_4^+ -Ionen nachgewiesen werden konnten.

Die Ende der sechziger Jahre untersuchte Reaktion von Brom mit $O_2^+ As F_6^{-[42]}$ führte bisher nicht zur Bildung eines dem $Cl_2O_2^+$ -Ion entsprechenden Ions, sondern, wie auch 1991 durch Kristallstrukturanalyse gezeigt werden konnte,^[43] zum Br₃^+ As F₆⁻.

Wird nun die Reaktion von Brom mit O_2^+ SbF₆⁻ bei tieferer Temperatur im Gemisch aus wasserfreiem HF und SbF₅ ausgeführt, entsteht eine dunkelrote Lösung, in der beim langsamen Abkühlen dunkelbraune und rote Einkristalle entstehen. Die Kristallstrukturuntersuchungen ergaben, dass es sich bei den braunen Kristallen um Br₃⁺ SbF₆⁻ und bei den roten Kristallen um das bisher noch nicht bekannte Br₂F⁺ SbF₆⁻ handelt.

2.1.2.1. Kristallstrukturanalysen von Br_3^+ SbF₆⁻ und Br_2F^+ SbF₆⁻

Die Strukturanalyse des $Br_3^+ SbF_6^-$ gelang mit höherer Genauigkeit als für das $Br_3^+ AsF_6^{-}$.^[43] Das $Br_3^+ SbF_6^-$ kristallisiert nicht wie das entsprechende Hexafluoroarsenat in einer triklinen, sondern in einer orthorhombischen Raumgruppe. Die Struktur des fast symmetrischen Br_3^+ -Ions mit einem Br1–Br3–Br2-Winkel von 103.74(3)° ist jedoch der im $Br_3^+ AsF_6^-$ sehr ähnlich.

Es liegt eine ionische Struktur mit einigen Kation-Anion-Wechselwirkungen vor. Diese haben in beiden Strukturen die Bildung eines fast planaren Netzwerks (Summe der Winkel um Br3 $= 360.4^{\circ}$) bestehend aus zwei Fluor-Brücken zum zentralen und aus je einer Fluor-Brücke zu den terminalen Brom-Atomen zur Folge (Abbildung 6).

Abbildung 6: Struktur des Br_3^+ -Kations in Br_3^+ Sb F_6^- im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist das Kation mit den vier kürzesten interionischen Abständen. Werte in pm.

Die Struktur des $Br_2F^+SbF_6^-$ ist vergleichbar mit der des $Br_3^+SbF_6^-$. Der Br–Br-Bindungsabstand ist jedoch verkürzt und der Br2–Br1–F-Winkel beträgt 97.5(2)°. Durch die Kation-Anion-Wechselwirkungen bildet sich auch hier ein fast planares Netzwerk (Summe der Winkel um Br1 = 360.1 °), bestehend aus zwei Fluor-Brücken zum zentralen und einer Fluor-Brücke zum terminalen Brom-Atom aus(Abbildung 7). Das Fluoratom F weist eine Wechselwirkung zu einem Fluoratom des Anions in einem Abstand von 278.9(5) pm auf.

Abbildung 7: Struktur des Br_2F^+ -Kations in $Br_2F^+SbF_6^-$ im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist das Kation mit den drei kürzesten interionischen Abständen. Werte in pm.

Auffällig sind dabei eine besonders kurze Fluor-Brücke zum zentralen Brom-Atom, das die größte positive Teilladung im Ion tragen dürfte und die stärkere Verzerrung des SbF_6^- . Oktaeders im Vergleich zum $Br_3^+ SbF_6^-$. Die Ursache dafür ist wahrscheinlich die größere Elektrophilie des Br_2F^+ -Ions.

2.1.2.2. Synthese und Kristallisation von Br2⁺ Sb3F16⁻

Die Kristallstruktur des Br_2^+ -Ions in dem aus der Reaktion von BrF_5 mit SbF_5 erhaltenen $Br_2^+Sb_3F_{16}^-$ wurde erstmals 1968 beschrieben^[15] und 1971 ausführlicher diskutiert.^[16] Aus dieser Röntgenstrukturanalyse konnten jedoch nur Bindungsabstände mit Abweichungen von 1 bis 4 pm ermittelt werden.

Das $Br_2^+Sb_3F_{16}^-$ kann einfacher nach einer in der Literatur beschriebenen Umsetzung von Brom mit Peroxodisulfuryldifluorid dargestellt werden (Gleichung (4)).^[18]

$$Br_2 + S_2O_6F_2 \longrightarrow 2 BrSO_3F \xrightarrow{Brom, Antimon(V)-fluorid} 2 Br_2^+Sb_3F_{16}^- + 2 Sb_2F_9SO_3F$$
(4)

Das dabei entstehende Sb₂F₉SO₃F lässt sich im Hochvakuum leicht aus dem Reaktionsansatz entfernen. Wird das feste $Br_2^+Sb_3F_{16}^-$ mit wasserfreiem HF versetzt, und diese Lösung langsam abgekühlt, erhält man Kristalle von Br_3^+ und Br_2F^+ -Salzen. Es findet also bei der Reaktion mit HF eine Disproportionierung gemäß Gleichung (5) statt.

$$4 \operatorname{Br}_{2}^{+} + \operatorname{F}^{-} \longrightarrow \operatorname{Br}_{2} \operatorname{F}^{+} + 2 \operatorname{Br}_{3}^{+}$$

$$\tag{5}$$

PADMA und PEACOCK beschrieben 1981 die Reaktion von Brom mit $OsF_6^{[19]}$ und identifizierten den dabei entstehenden rotbraunen Feststoff anhand von Raman- und Massenspektren, sowie einer Elementaranalyse als $Br_2^+OsF_6^-$. Die in dieser Arbeit beschriebene Umsetzung des $Br_2^+OsF_6^-$ mit Brom führt nicht zur Bildung des Br_3^+ -Ions. Das Hexafluoroosmat(V) des Br_2^+ -Ions scheint also im Vergleich zum Antimonat, stabiler gegenüber Disproportionierung zu sein.

Unsere Untersuchungen zum $Br_2^+ OsF_6^-$ zeigten jedoch, dass auch dieses Salz in HF das Br_3^+ -Ion ausbildet. Kühlt man die aus der Umsetzung von $Br_2^+ OsF_6^-$ mit HF erhaltene Lösung langsam ab, entstehen Kristalle des $Br_3^+ OsF_6^-$, dessen Kristallstruktur der des $Br_3^+ SbF_6^$ entspricht.

Führt man die Oxidation von Brom mit einem stärkeren Oxidationsmittel, wie z. B. IrF_6 , durch, kommt es zur Bildung einer Verbindung des Br_5^+ -Ions. Es gelang uns, Einkristalle des $Br_5^+IrF_6^-$ in HF zu erhalten, und diese röntgenographisch zu untersuchen.

Die Kristallstruktur des $Br_5^+IrF_6^-$ ist isomorph zu den 1991 beschriebenen Kristallstrukturen der entsprechenden Hexafluoroarsenate bzw. –antimonate.^[44]

Aufgrund der misslungenen Versuche zur Kristallzüchtung einer Verbindung des Br_2^+ aus HF, haben wir die erstaunliche Stabilität des $Br_2^+Sb_3F_{16}^-$, dass einen Schmelzpunkt von 69 °C und einen Siedepunkt von 200 °C im Hochvakuum hat,^[16] zur Züchtung von Einkristallen aus einer Schmelze dieses Salzes genutzt. Das durch die Oxidation von Brom mit S₂O₆F₂ dargestellte $Br_2^+Sb_3F_{16}^-$ wird in einer Ampulle auf 140 °C erhitzt und die Schmelze auf Raumtemperatur abgekühlt. Die Struktur der so entstehenden Kristalle konnte von uns untersucht werden.

2.1.2.3. Kristallstrukturanalyse von $Br_2^+ Sb_3 F_{16}^-$

Die Struktur entspricht der 1971 veröffentlichten Kristallstruktur,^[16] wobei die Bindungsabstände mit wesentlich geringeren Abweichungen angegeben werden können. Der Br–Br-Bindungsabstand ist mit 216.8(2) pm deutlich kürzer zu dem in kristallinem Brom $(228.9(3) \text{ pm bei} -100^{\circ}\text{C})^{[45]}$ und der kürzeste Br··· F-Kontakt beträgt bei 274.8(4) pm. Diese ionische Struktur weist keine Wechselwirkungen zwischen den Br₂⁺-Einheiten auf.

2.2. Kationische Xenonverbindungen

Eine weitere Zielsetzung dieser Arbeit im Zusammenhang mit der Stabilisierung ungewöhnlicher Oxidationsstufen sollte die Darstellung des bislang nur anhand des Mikrowellenspektrums nachgewiesenen Gold(I)-fluorids sein.^[46] Durch Reduktion von Gold(III)-fluorid mit einem schwach koordinierenden Agens, gelang es vor kurzem das erste Derivat von AuF, das $F_3As-Au \cdot \cdot F \cdot \cdot SbF_5$ zu synthetisieren und charakterisieren.^[14] Folgerichtig müsste das AuF durch die Umsetzung von AuF₃ mit einem noch schwächer koordinierenden Reduktionsmittel als es AsF₃ ist gebildet werden. Diesen Anforderungen sollte Xenon gerecht werden. Ein denkbarer Reaktionsweg stellt Gleichung (6) dar.

 $AuF_3 + Xe \xrightarrow{?} AuF + XeF_2$ (6)

Es ist aber auch, wie beim $F_3As-Au \cdot \cdot F \cdot \cdot SbF_5$, die Ausbildung eines Adduktes vorstellbar, zumal ein AuXe⁺-Kation im Massenspektrum detektiert werden konnte.^[47]

2.2.1. Das AuXe₄²⁺-Kation

2.2.1.1. Synthese und Eigenschaften von $AuXe_4^{2+}$ (Sb₂F₁₁)₂

Die Umsetzung von AuF₃ in einer HF/SbF₅-Mischung mit Xenon bei Raumtemperatur führte zu einer dunkelroten Lösung, deren Farbe bei einem Xenon-Druck von ca. 1000 kPa bestehen bleibt. Wird diese Lösung langsam auf –78 °C abgekühlt, bilden sich Einkristalle, deren Kristallstruktur gelöst werden konnte. Es handelt es sich um einen völlig unerwarteten, neuartigen Gold-Komplex, das AuXe₄²⁺(Sb₂F₁₁⁻)₂. Dieser Komplex repräsentiert die erste stabile Verbindung mit einer Edelgas-Metall-Bindung.

Die Verbindung ist bis –40 °C stabil, wobei eine Erwärmung über diese Temperatur zum Schmelzen und Austreten gasförmigen Xenons, sowie einer Farbänderung von dunkelrot zu hell orange führt.

Liegt der Komplex in HF/SbF₅-Lösung bei einem Xenon-Druck vor, führt das Entfernen von gasförmigem Xenon im Vakuum zur Kristallisation von Au(SbF₆)₂, eine der wenigen Gold(II)-Verbindungen.^[12] Au(SbF₆)₂ reagiert mit Xenon in HF/SbF₅ reversibel zum AuXe₄²⁺ (Sb₂F₁₁⁻)₂.

2.2.1.2. Kristallstrukturanalyse von AuXe₄²⁺ (Sb₂F_{11⁻)₂}

Die Verbindung kristallisiert in der triklinen Raumgruppe $P\overline{1}$.

Das Goldatom ist quadratisch-planar von vier Xenonatomen mit Au–Xe-Bindungslängen von 272.8(1) bis 275.0(1) pm umgeben. Drei schwache Kation-Anion-Kontakte mit Au \cdot · F-Abständen von 267.1(4) bis 315.3(4) pm vervollständigen die Koordinationssphäre des Goldatoms (Abbildung 8, Tabelle 1).

Die kürzesten Kontakte zwischen Xenon und Fluor sind ca. 310 pm lang und die Struktur des $Sb_2F_{11}^{-}$ -Ions zeigt keine Unterschiede zu anderen Verbindungen, die dieses Anion besitzen.

Abbildung 8: Struktur von $AuXe_4^{2+}(Sb_2F_{11})_2$ im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist eine Moleküleinheit mit den kürzesten interionischen Abständen.

Au–Xe1	273.30(6)
Au–Xe2	274.98(5)
Au–Xe3	272.79(6)
Au–Xe4	274.56(5)
Au · · F12	267.1(4)
Aut··F26	295.0(4)
Au · · F25	315.3(4)

Tabelle 1: Ausgewählte Bindungsabstände in pm aus der Kristallstruktur von $AuXe_4^{2+}(Sb_2F_{11})_2$.

Die Kristallstruktur des AuXe₄²⁺ Sb₂F₁₁⁻ zeigt, dass wie im H₃O⁺ Sb₂F₁₁^{-[48]} unterschiedliche interionische Wechselwirkungen ausgebildet werden. Das Anion hat sowohl über die axial als auch über die äquatorial gebundenen Fluoratome Kontakte zum Kation. Die beiden längeren F· · · Au-Kontakte im AuXe₄²⁺ Sb₂F₁₁⁻ kommen durch äquatoriale Fluoratome und der kürzere Kontakt durch ein axiales Fluoratom zustande. Es liegen somit zwei unterschiedliche Sb₂F₁₁⁻ Ionen vor, die sich in den Bindungslängen und -winkeln unterscheiden.

2.2.1.3. Spektroskopische Charakterisierung von AuXe₄²⁺ (Sb₂F_{11⁻)₂}

Das Raman-Spektrum von $AuXe_4^{2+}(Sb_2F_{11})_2$ zeigt neben den für das Sb_2F_{11} -Anion typischen Banden eine sehr intensive Bande bei 129 cm⁻¹ (Abbildung 9). Diese wird der symmetrischen Valenzschwingung des $AuXe_4^{2+}$ -Ions zugeordnet, unterstützt durch Ergebnisse verschiedener ab initio- und Dichte-Funktional-Theorie-Rechnungen, die diese Schwingungsbande bei ca. 100 cm⁻¹ voraussagen,^[49,50].

Die von uns durchgeführten Hartree-Fock ab-initio-Rechnungen wurden mit dem Programm Gaussian 98^[51] durchgeführt. Die Basissätze stammen vom Institut für Theoretische Chemie, Universität Stuttgart. Diese wurden auch für die Dichtefunktional-Theorie-Rechnungen nach der Becke 3 Methode^[52] mit der Korrektur von LEE, YANG und PARR^[53] verwendet.

Abbildung 9: Raman-Spektrum von AuXe₄²⁺ (Sb₂F₁₁⁻)₂ bei -100 °C.

Eine weitere Möglichkeit der spektroskopischen Charakterisierung liegt in der ESR. Das ESR-Spektrum von $AuXe_4^{2+}(Sb_2F_{11}^{-})_2$ in HF weist bei Temperaturen von -83 bis 20 °C nur eine uncharakteristische Resonanz auf. Eine Hyperfeinaufspaltung, hervorgerufen durch ¹⁹⁷Au mit I = 3/2, konnten wir nicht beobachten.

2.2.1.4. Theoretische Betrachtungen zum AuXe₄²⁺ (Sb₂F₁₁⁻)₂

Bisher waren nur Xenonverbindungen, die direkte Xenon-Bindungen zu Fluor, Sauerstoff, Stickstoff, Kohlenstoff, Xenon selbst und Chlor enthalten, bekannt.

Erste Hinweise, dass Edelgas-Metall-Bindungen gebildet werden können, gab es durch die in Edelgasmatrix identifizierten Komplexe (CO)₅Mo··· Xe, (CO)₅W··· Kr, (CO)₅Mo··· Kr und (CO)₅Fe⁺··· Kr^[54] und die in überkritischen Xe- und Kr-Lösungen beobachteten kurzlebigen Übergangszustände mit Xenon- oder Krypton-Metall-Bindungen,^[55] wobei der erst vor kurzem gelungene Nachweis der bemerkenswerten Verbindungen Ar–AuCl und Kr–AuCl durch die Mikrowellenspektroskopie^[56] hervorzuheben sei.

Besonders interessant sind die 1995 von PYYKKÖ durchgeführten Rechnungen,^[57] die für die Ionen AuXe₂⁺ und AuXe⁺, das 1998 im Massenspektrum detektiert werden konnte,^[47] kovalente Gold-Xenon-Bindungen voraussagen.

Im AuXe₄²⁺-Ion liegen kovalente Bindungen vor, wobei Xenon als σ -Donor zum Au²⁺ fungiert. Dies wird aus der von uns berechneten Ladungsverteilung im Kation deutlich. Diese zeigt, dass der Hauptteil der positiven Ladung beim Xenon (ca. 0.4 pro Xenon) liegt.

Gold ist aufgrund des relativistischen Effekts das elektronegativste Übergangsmetall,^[58] womit dieser große Ladungstransfer zu erklären ist. Die Bindung zwischen Gold und Xenon kann also prinzipiell wie eine Bindung zwischen Xenon und einem elektronegativen Hauptgruppenelement gesehen werden. Im Xenondifluorid wird ein Ladungstransfer von 0.5 Elektronen zum elektronegativen Fluoratom berechnet.^[59]

Durch die Ausbildung der interionischen Wechselwirkungen wird eine oktaedrische Koordinationsgeometrie um das Au²⁺-Ion geschaffen. Durch Jahn-Teller-Verzerrung, die auch bei Komplexen von Metallen mit d⁹-Konfiguration auftritt, ist sie tetragonal verzerrt. Eine Dehnung des Oktaeders wird durch den größeren antibindenen Charakter des mit einem Elektronenpaar besetzten d_{z²}-Orbitals im Vergleich zu dem mit einem einzelnen Elektron besetzten d_{x²-v²}-Orbital verstärkt.

Bei der Reduktion von Au³⁺ zu Au²⁺ und der Komplexierung von Au²⁺ ist die große Brönsted-Acidität der HF/SbF₅-Lösung notwendig. Das Au³⁺-Ion liegt in Fluorid-Systemen normalerweise als AuF₄⁻-Ion vor. Wird dieses protoniert, entsteht das Au(HF)₄³⁺-Ion, welches ein größeres Oxidationspotential als das AuF₄⁻-Ion hat. Die Komplexierung wird demnach ein Gleichgewicht gemäß Gleichung (7) sein, vorausgesetzt Xenon ist die stärkste Base im System.

$$Au^{2+}(HF)_n + 4 Xe \implies AuXe_4^{2+} + n HF$$
(7)

Beim Betrachten der Reaktionsgleichung (Gleichung (8)) wird wiederum die Rolle der Protonen im System deutlich.

$$AuF_3 + 6 Xe + 3 H^+ \longrightarrow AuXe_4^{2+} + Xe_2^+ + 3 HF$$
(8)

Der Reaktionsverlauf gemäß Gleichung (8) kann auch durch die Identifizierung von $Xe_2^+ Sb_4F_{21}^-$ in der festen Reaktionsmischung nachgewiesen werden.

2.2.2. Das XeCl⁺-Kation

Aus einem für die Kristallisation des $AuXe_4^{2+}(Sb_2F_{11})_2$ hergestellten Reaktionsansatz konnten dunkelgelbe Kristalle isoliert werden, deren Kristallstrukturuntersuchung zeigte, dass es sich um die Verbindung $XeCl^+Sb_2F_{11}$ handelt.

2.2.2.1. Kristallstrukturanalyse von XeCl⁺ Sb₂F₁₁⁻

Die Verbindung kristallisiert in der orthorhombischen Raumgruppe Pna2₁, wobei in der Elementarzelle zwei kristallographisch verschiedene, aber sonst gleiche Einheiten $XeCl^{+}Sb_{2}F_{11}^{-}$ sind. Die Molekülstruktur entspricht der schon lange bekannten Struktur des XeF^{+} -Salzes, das in der monoklinen Raumgruppe P2₁ kristallisiert.^[60]

Der interionsche Kontakt ist im XeCl⁺Sb₂F₁₁⁻ jedoch mit einem Xe···· F-Abstand von 261.4(6) pm im Vergleich zur entsprechenden Fluorverbindung (235(4) pm) verlängert (Abbildung 10). Bei diesem Vergleich ist jedoch zu beachten, dass die Kation-Anion-Wechselwirkung im XeCl⁺Sb₂F₁₁⁻ über ein axiales, im XeF⁺Sb₂F₁₁⁻ über ein äquatoriales Fluoratom des Anions vollzogen wird.

Abbildung 10: Struktur von XeCl⁺Sb₂ F_{11}^{-} im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist das Ionenpaar I mit dem kürzesten interionischen Abstand, die Zahlenwerte in Klammern geben die Abstände im Ionenpaar II wieder. Werte in pm.

Bisher sind nur wenige Verbindungen, die Xe–Cl-Bindungen aufweisen bekannt. Es gibt nur eine weitere Kristallstruktur einer Xe^{II}–Cl-Verbindung, die des $[(C_6F_5Xe)_2Cl][AsF_6]$.^[61] Der Xe–Cl-Bindungsabstand ist aber mit 284.7(2) bzw. 278.4(2) pm deutlich länger als im XeCl⁺Sb₂F₁₁⁻.

Andere Xe^{II}–Cl-Verbindungen, wie das XeCl₂ und das XeClF konnten bisher nicht in Substanz isoliert werden. Sie wurden bei tiefen Temperaturen in Matrix durch die Schwingungspektren^[62] und die Mößbauer-Spektroskopie^[63] charakterisiert.

Die Synthese einer Xenon^{VI}–Chlor-Verbindung, dem CsClXeO₃, wurde schon 1967 veröffentlicht.^[64] Die aus der Umsetzung von XeO₃ mit einer wässerigen CsCl-Lösung erhaltene Substanz wurde 1971 schwingungsspektroskopisch untersucht^[65] und 1977 erfolgte dann die Kristallstrukturuntersuchung der entsprechenden Rb- bzw. Cs-Salze, die bis 150°C stabil und als A₉(XeO₃Cl₂)₄Cl (mit A= Cs, Rb) beschrieben werden.^[66] Das Xenon ist dabei verzerrt oktaedrisch von 3 Sauerstoffatomen und 3 Chloratomen umgeben. Die Xe–Cl-Bindungsabstände betragen dabei für die Cs-Verbindung 295-297 pm und sind somit wesentlich länger als im XeCl⁺Sb₂F₁₁⁻.

2.2.2.2. Synthese von XeCl⁺ Sb₂ F_{11}^{-}

Es stellt sich nun die Frage nach der Herkunft des Chlors im XeCl⁺-Kation. Vermutlich stammt es aus Verunreinigungen des SbF₅. Wird SbF₅ mit geringen Mengen SbCl₅ versetzt, findet ein Chlor-Fluor-Austausch unter Bildung von Antimon(V)-chloridfluoriden statt.^[67] Das XeCl⁺-Kation sollte somit durch die Umsetzung einer Xe^{II}-Verbindung mit einer SbF₅/SbCl₅-Mischung gezielt darstellbar sein.

Aus der Reaktion von XeF₂ mit SbCl₅ in HF/SbF₅ erhält man eine dunkelgelbe Lösung, deren Farbe auch bei Raumtemperatur erhalten bleibt. Beim langsamen Abkühlen dieser Lösung entstanden wieder Kristalle von XeCl⁺Sb₂F₁₁⁻. Werden diese über eine Temperatur von -20° C erwärmt, schmelzen sie und oberhalb von 0° C ist das Austreten eines Gases zu beobachten.

2.2.2.3. Spektroskopische Charakterisierung von XeCl⁺ Sb₂ F_{11}^{-}

Durch die Aufnahme eines ¹²⁹Xe-Kernresonanz-Spektrums und des Raman-Spektrums von $XeCl^+Sb_2F_{11}^-$ konnte die Verbindung weitergehend charakterisiert werden.

Das ¹²⁹Xe-NMR-Spektrum einer Lösung von XeCl⁺Sb₂ F_{11}^- in HF/SbF₅ zeigt ein breites, einem Dublett ähnelndem Signal bei einer chemischen Verschiebung von –551 ppm (bezogen auf XeOF₄). Die Aufspaltung des Signals beträgt 5165 Hz und die Halbwertsbreite 8084 Hz (Abbildung 11).

Abbildung 11: ¹²⁹Xe-NMR-Spektrum des XeCl⁺-Kations in HF/SbF₅.

Für die Kopplung eines Spin¹/₂Kerns mit einem Kern des Spins I > ¹/₂würde man ein Signal mit einer Multiplettstruktur von 2I+1 Linien erwarten. Chlor hat zwei Isotope mit einem Kernspin von I = $^{3}/_{2}$, deren natürliche Häufigkeit für ³⁵Cl 75.4% und für ³⁷Cl 24.6% beträgt. Man würde also zwei Quadrupletts mit jeweils gleich intensiven Linien im Spektrum des Spin¹/₂Kerns erwarten. Die Peakflächenverhältnisse zwischen beiden Sätzen müssten der natürlichen Häufigkeit der Isotope entsprechen. Diese Spin-Spin-Kopplung ist aber meistens

nicht zu beobachten, da ³⁵Cl und ³⁷Cl ein Quadrupolmoment besitzen und somit eine schnelle Relaxation stattfindet. Eine Spin-Spin-Kopplung ist nur dann zu beobachten, wenn ein kugelsymmetrisches elektrisches Feld um den Cl-Kern vorhanden ist. Das mit höherer Symmetrie die Auflösung der Multipletts besser wird, zeigen das gut aufgelöste ¹⁹F-NMR-Spektrum für Verbindungen des ClF_6^+ -Kations (O_h-Symmetrie)^[68] und das nur schwach aufgelöste ¹⁹F-NMR-Spektrum des FClO₃ (annähernd T_d-Symmetrie),^[69] das wie das ¹²⁹Xe-NMR-Spektrum des XeCl⁺Sb₂F₁₁⁻ ein breites, einem Dublett ähnelndem Signal aufweist. Das Spektrum wurde in der Literatur ausführlich interpretiert.^[70] Demnach kann das ¹²⁹Xe-NMR-Spektrum des XeCl⁺Sb₂F₁₁⁻ als Summe zweier Spektren, eines von Xe³⁵Cl⁺ und eines von Xe³⁷Cl⁺, betrachtet werden. Aufgrund des zylindrischen elektrischen Felds um den Cl-Kern im XeCl⁺-Ion (C_{ew}-Symmetrie) ist eine Auflösung des Multipletts vorhanden.

Im ¹²⁹Xe-NMR-Spektrum einer Lösung des XeF⁺SbF₆⁻ in HF/SbF₅ ist im Vergleich dazu ein breites Singulett (Halbwertsbreite 357 Hz) bei einer chemischen Verschiebung von -618 ppm (bezogen auf XeOF₄) zu beobachten.

Das bei -120 °C gemessene Raman-Spektrum von XeCl⁺ Sb₂F₁₁⁻ zeigt Abbildung 12. Für dessen Interpretation liegen zum Vergleich nur die schwingungsspektroskopischen Daten für XeCl₂,^[62] das eine Xe–Cl-Valenzschwingung bei 254 cm⁻¹ aufzeigt, vor.

Für eine kationische Spezies müsste die Valenzschwingung zu höheren Wellenzahlen verschoben sein, wie es auch beim XeF₂ (Xe–F-Valenzschwingung bei 496 cm⁻¹) und beim XeF⁺ (Xe–F-Valenzschwingung bei 615 cm⁻¹) festzustellen ist.^[71]

Im Raman-Spektrum von $XeCl^+Sb_2F_{11}^-$ sind jedoch neben den Sb–F-Schwingungen des Anions, auch Schwingungsbanden des XeF^+ -Kations zu beobachten (Abbildung 12).

Abbildung 12: Raman-Spektrum von $XeCl^+Sb_2F_{11}^-$ bei –120 °C.

Durch die Aufnahme eines Raman-Spektrums von $XeF^+SbF_6^-$ (Abbildung 13) konnte jedoch gezeigt werden, dass das in Abbildung 12 wiedergegebene Spektrum eine Bande bei 391 cm⁻¹ aufweist, die diesem Kation nicht zuzuordnen ist.

Abbildung 13: Raman-Spektrum von $XeF^+SbF_6^-$ bei -80 °C.

Von uns durchgeführte Berechnungen sagen eine Xe–Cl-Valenzschwingung bei ca. 390 cm⁻¹ voraus, sodass diese Bande dementsprechend zugeordnet werden kann.

Die den XeF⁺- und XeCl⁺-Kationen entsprechenden Brom- bzw. Iod-Verbindungen sind bisher nicht bekannt, wobei die für das XeI⁺-Ion durchgeführten ab-initio-Rechnungen^[72] die Instabilität dieses Kations aufzeigen.

2.2.3. Versuche zur Synthese weiterer Xenon-Metall-Verbindungen

Die erst kürzlich veröffentlichten Dichtefunktional-Theorie-Rechnungen^[50] zeigen, dass auch andere Metall–Edelgas-Verbindungen stabil sein sollten.

Es wurden hierbei die Ligand-Bindungsenergien für verschiedene $[MXe_4]^{2+}$ -Komplexe, mit M = Übergangsmetall, berechnet. Die Ligand-Bindungsenergien sind definiert als die klassische Energieänderung bei der Reaktion nach Gleichung (9).

$$[MXe_4]^{2+} \longrightarrow M^{2+} + 4 Xe \tag{9}$$

Besonders interessant ist die Feststellung, dass für den dem $AuXe_4^{2+}$ entsprechenden Platin-Komplex ungefähr dieselbe Ligand-Bindungsenergie wie für das Tetraxenonogold(II)-Kation errechnet wurde, womit die Synthese dieses Komplexes möglich sein sollte.

2.2.3.1. Umsetzung von Pd(SbF₆)₂ mit Xenon

Aus der Beobachtung, dass Au(SbF₆)₂ in einer HF/SbF₅-Mischung unter Xenondruck das AuXe₄²⁺-Ion ausbildet, kann vermutet werden, dass auch andere in Supersäure gelöste Metall-Kationen befähigt sind, einen Xenon-Komplex zu bilden.

Ein vielversprechender Weg schien dabei die Umsetzung des in HF gut löslichen $Pd(SbF_6)_2$ mit Xenon zu sein.

Palladiumpulver lässt sich nach der von BARTLETT und Mitarbeitern beschriebenen Methode leicht in HF/SbF₅ mit Fluor oxidieren.^[73] Wird eine Suspension von Palladiumpulver und HF/SbF₅ unter einem Fluordruck von 1 bar mehrere Stunden geschüttelt, erhält man eine blaue Lösung. Nachdem das Lösungsmittel im Hochvakuum abdestilliert wurde, bleibt eine türkisfarbener Feststoff zurück, der in der oben genannten Arbeit durch Röntgenpulveraufnahmen als Pd(SbF₆)₂ charakterisiert wurde.

Das in einer Mischung von HF mit SbF₅ gelöste Pd(II)-Kation bildet jedoch unter den zum $AuXe_4^{2+}$ führenden Reaktionsbedingungen keinen Xenon-Komplex aus.

2.2.3.2. Umsetzung von PtF₄ mit Xenon

Platinpulver lässt sich in mit Alkalifluorid versetztem wasserfreien HF mit Fluor oxidieren.^[73] Man erhält die entsprechende Alkalihexafluoroplatinat(IV)-Lösung in HF (Gleichung (10)), aus der PtF_4 als hellbrauner Feststoff, nach Zugabe von AsF_5 , ausfällt (Gleichung 11)). Das dabei entstehende Alkalihexafluoroarsenat ist in HF löslich und kann aus dem PtF_4 ausgewaschen werden.

$$2 F^{-} + 2 F_{2} + Pt \longrightarrow PtF_{6}^{2-}$$
(10)

$$PtF_6^{2-} + 2AsF_5 \longrightarrow PtF_4 + 2AsF_6^{-}$$
(11)

Das nach dieser Methode hergestellte PtF_4 ist kaum in HF/SbF_5 löslich. Wird auf diese Lösung Xenon gegeben, ist keine Reaktion zu beobachten, das braune PtF_4 bleibt unverändert.

2.2.3.3. Umsetzung von IrF₆ mit Xenon

Wird auf eine hellgelbe Lösung von Iridiumhexafluorid in HF/SbF_5 Xenon gegeben, erhält man eine dunkelgelbe Lösung, aus der durch langsames Abkühlen Einkristalle erhalten werden konnten. Bei dem röntgenografisch untersuchten Kristall handelte es sich um $(XeF)^+(IrSbF_{11})^-$.

2.2.3.4. Kristallstrukturanalyse von XeF⁺ IrSbF₁₁⁻

XeF⁺ IrSbF₁₁⁻ kristallisiert in der monoklinen Raumgruppe Cc.

Der kürzeste interionische Xe–F-Abstand ist mit 228.6(9) pm kürzer als im XeF⁺Sb₂F₁₁⁻ (235(4) pm).^[57] Die Ausbildung dieses Xe–F-Kontakts erfolgt hierbei über ein an Iridium gebundenes Fluoratom, das einen langen Ir–F-Bindungsabstand von 196(1) pm aufweist. Die übrigen terminalen Fluoratome sind mit Bindungsabständen von 181(1) bis 187(1) pm an das Iridium gebunden.

Der Xe–F–Ir-Bindungswinkel ist mit 122.8(5)° kleiner als der Xe–F–Sb-Bindungswinkel im $XeF^+Sb_2F_{11}^-$ (147°) (Abbildung 14).

Abbildung 14: Struktur von $(XeF)^+(IrSbF_{11})^-$ im Kristall, ORTEP-Darstellung, Schwingungsellipsoide repräsentieren 50% Aufenthaltswahrscheinlichkeit. Gezeigt ist eine Moleküleinheit mit dem kürzesten interionischen Abstand. Werte in pm.

Die interionische Wechselwirkung erfolgt also vorzugsweise über die Seite des Anions, die eine geringere Fluoridionenaffinität aufweist. In einer erst kürzlich erschienen Arbeit von CHRISTE und Mitarbeitern wurde eine quantitative Skala für die Lewisacidität verschiedener Verbindungen erstellt.^[74] Dabei weist SbF₅ eine der höchsten Fluoridionenaffinitäten auf.

Das $IrSbF_{11}$ -Ion hat ein verbrückendes Fluoratom, das sowohl zum Ir als auch zum Sb einen Bindungsabstand von 202(1) pm besitzt. Der Ir–F–Sb Bindungswinkel ist mit 138.2(5)° kleiner als es im Sb_2F_{11} (150°) der Fall ist.