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Zusammenfassung

In dieser Doktorarbeit studieren wir die Monodromiegruppen von lisse Garben und Isokristallen

in positiver Charakteristik. Das erste Ziel ist es, die Unabhängigkeit für Objekte mit derselben

L-Funktion zu zeigen. Im letzten Abschnitt zeigen wir die Endlichkeit perfekter Torsionspunkte

einer abelschen Varietät. Dies erweitert den Satz von Lang–Néron und beantwortet positiv eine

Frage von Esnault.

Abstract

In this thesis we study the monodromy groups of lisse sheaves and isocrystals in positive char-

acteristic. The first aim is to prove independence results for objects with the same L-function.

In the last section we show the finiteness of perfect torsion points of an abelian variety. This

extends a theorem of Lang–Néron and answers positively a question of Esnault.
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Introduction

In the first half of the twentieth century, Weil started his visionary work aimed to extend the

known results in algebraic geometry to varieties over fields or rings arising from arithmetic.

His main contribution in this direction was the proof of the Riemann Hypothesis for smooth

projective curves over finite fields. The missing piece for a treatment of the problem in higher

dimensions was the lack of a suitable cohomology theory, with characteristic 0 coefficients, for

varieties over finite fields. For a smooth projective curve, a direct construction is available by

means of the Jacobian.

Grothendieck, influenced by the work of Serre, had the bright idea that étale covers was the

key tool to define a “nice” Q`-linear cohomology theory, in positive characteristic p, when ` is a

prime different from p. This cohomology is called `-adic étale cohomology. Some years later, he

also suggested a way to define a cohomology with p-adic coefficients, which is called crystalline

cohomology.

To a cohomology theory one can usually associate coefficient objects which represent vari-

ations of cohomology groups of constant rank. In the case of `-adic étale cohomology, these

objects are the `-adic local systems or lisse sheaves. For crystalline cohomology, the initial

notion of Grothendieck was the one of crystal, or its rational version, called isocrystal. The

category of isocrystals is very large. One important feature of the isocrystals “coming from ge-

ometry” is that they are naturally endowed with a Frobenius structure, namely an isomorphism

of the object with the Frobenius pullback of itself. Dwork discovered that the F -structure forces

a certain local convergence property which is not verified in general. The isocrystals endowed

with a Frobenius structure are called F -isocrystals.

When Berthelot introduced rigid cohomology, which is a certain variation of crystalline

cohomology, he also defined the category of overconvergent F -isocrystals. This category is

constructed Zariski-locally using Raynaud’s generic fibre of formal lifts. The characterizing

property of these objects is a certain convergence condition “at infinity”.

The common theme during my PhD has been the study of the category of lisse sheaves, as

well as the categories of convergent and overconvergent isocrystals. Under suitable assumptions

these categories are all Tannakian. Therefore, after possibly extending the field of constants,

they are equivalent to the category of linear representations of some pro-algebraic group scheme.

The image of the representation associated to an object is what we call the monodromy group

of the object. In the case of `-adic local systems, the monodromy groups have been already

extensively studied in the past. For the categories of F -isocrystals much less is known. In the

latter situation, an interesting feature, which does not admit an `-adic analogue, is the interplay

between the monodromy groups of convergent and overconvergent isocrystals.

Overconvergent F -isocrystals have many properties in common with `-adic local systems.

Crucial examples of this analogy are the theory of weights, developed by Kedlaya, and the Lang-
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lands correspondence, proven by Abe (on a smooth curve over a finite fields). This allows one to

prove that the monodromy groups of overconvergent F -isocrystals “behave like” the ones of lisse

shaves. The monodromy groups of convergent F -isocrystals remain instead quite mysterious.

Our thesis is divided in three sections. The last section is written in collaboration with

Emiliano Ambrosi. Let us briefly summarize the main results of each section.

Section 1: The monodromy groups of lisse sheaves and overconvergent F -isocrystals

We extend previously known results of Serre, Larsen-Pink, Chin on the structure of the mon-

odromy groups of `-adic local systems and their independence of ` to overconvergent F -isocrystals

on smooth varieties over a finite field. We extend, for example, Chin’s result on the independence

of the neutral component of the monodromy groups. For this purpose, we introduce and study

the Frobenius tori of overconvergent F -isocrystals. These were firstly introduced by Serre for

`-adic Galois representations. We also show that the slope polygons of an F -isocrystal defined

on an abelian variety over a finite field are constant. This recovers a result of Tsuzuki. To do

this we prove that in this case the monodromy groups are commutative via an Eckmann-Hilton

argument.

Section 2: Remarks on the companions conjecture for normal varieties

We study the companions conjecture for lisse sheaves on normal varieties over a finite field. The

conjecture has been proven for smooth varieties by Drinfeld. We analyze the obstruction to

extending it to normal singular varieties. We formulate and study a related conjecture which

we verify in some particular cases.

Section 3: Maximal tori of monodromy groups of F -isocrystals and applications

(joint with Emiliano Ambrosi)

We use the work done in Section 1 to study the monodromy groups of convergent F -isocrystals

which have an overconvergent extension. Thanks to the theory of Frobenius tori we show that

these groups are “big”. This fact has many consequences. On the one hand, we use it to prove

a special case of a conjecture proposed by Kedlaya on F -isocrystals. On the other hand, we

prove a finiteness result for the perfect torsion points of an abelian variety, giving a positive

answer to a question of Esnault. As an additional outcome of our work, we prove a weak

(weak) semi-simplicity statement for p-adic representations coming from pure overconvegent

F -isocrystals.
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1 The monodromy groups of lisse sheaves and overcon-

vergent F -isocrystals

1.1 Introduction

1.1.1 Background

Deligne in [Del80] generalized the Riemann Hypothesis over finite fields, previously proven by

himself, to a result on the behaviour of the weights of lisse sheaves under higher direct image.

He also formulated a conjecture on other expected properties of lisse sheaves [ibid., Conjecture

1.2.10]. This conjecture was inspired by the Langlands reciprocity conjecture for GLr.

Conjecture 1.1.1.1. 1 Let X0 be a normal scheme of finite type over a finite field Fq of char-

acteristic p and let V0 be an irreducible Weil lisse Q`-sheaf whose determinant has finite order.

(i) V0 is pure of weight 0.

(ii) There exists a number field E ⊆ Q` such that for every closed point x0 in X0, the char-

acteristic polynomial det(1 − Fx0t,Vx) has coefficients in E, where Fx0 is the geometric

Frobenius at x0.

(iii) For every prime ` 6= p, the eigenvalues of the Frobenii at closed points of V0 are `-adic

units.

(iv) For a suitable field E (maybe larger than in (ii)) and for every finite place λ not dividing

p, there exists a lisse Eλ-sheaf compatible with V0, namely a lisse Eλ-sheaf with the same

characteristic polynomials of the Frobenii at closed points as V0.

(v) When λ divides p, there exists some compatible crystalline object (“des petits camarades

cristallins”).

Objects with the same characteristic polynomials at closed points are also called companions

and the conjunction of (iv) and (v) is also known as the companions conjecture. The companions

conjecture for Weil lisse sheaves, namely part (iv), admits the following weaker form.

(iv’) If E is a number field as in (ii), for every finite place λ not dividing p, there exists a lisse

Eλ-sheaf compatible with V0.

In [Laf02] L. Lafforgue proved the Langlands reciprocity conjecture for GLr over function

fields. As a consequence, he obtained (i), (ii), (iii) and (iv’), when X0 is a smooth curve. Chin

1We will omit the part of the conjecture on the p-adic valuations of the Frobenius eigenvalues at closed points.

8



then showed that in arbitrary dimension, if (ii) and (iv’) are true for every finite étale cover of

X0, then (iv) is also true [Chi03]. As a consequence, one gets part (iv) of the conjecture when

X0 is a curve.

The lack of a Langlands correspondence for higher dimensional varieties (even at the level

of the formulation) forced one to generalize Deligne’s conjectures, reducing geometrically to the

case of curves. One of the difficulties is that one cannot rely on a Lefschetz theorem for the

étale fundamental group in positive characteristic (see for example [Esn17, Lemma 5.4]). This

means that one cannot, in general, find a curve C0 in X0 such that for every irreducible lisse

Q`-sheaf V0 of X0, the inverse image of V0 on C0 remains irreducible.

Luckily, one can replace the Lefschetz theorem with a weaker result. Rather than considering

all the lisse sheaves at the same time, one can fix the lisse sheaf and find a suitable curve where

the lisse sheaf remains irreducible (Theorem 1.3.7.5). In this way one can prove (i) and (iii) for

arbitrary varieties, using Lafforgue’s result. Parts (ii) and (iv’) require some more effort. The

former was obtained by Deligne in [Del12], the latter by Drinfeld for smooth varieties in [Dri12]

and it is still open in general. Following the ideas of Wiesend in [Wie06] Drinfeld used a gluing

theorem for lisse sheaves [Drinfeld, op. cit., Theorem 2.5].

Passing to (v), Crew conjectured in [Cre92a, Conjecture 4.13] that the correct p-adic analogue

of lisse sheaves might be overconvergent F -isocrystals, introduced by Berthelot [Ber96a]. To

endorse his conjecture, he proved the global monodromy theorem for these isocrystals, over a

smooth curve [Crew, op. cit., Theorem 4.9]. Many people have then worked in the direction

suggested by Crew (see for example [Ked04a] and [Ked06] for references).

Finally, Abe proves the Langlands reciprocity conjecture for overconvergent F -isocrystals,

over a smooth curve [Abe18]. In his work he used the theory of arithmetic D-modules introduced

by Berthelot in [Ber96b] and mainly developed by Abe, Berthelot, Caro, and Tsuzuki. Abe’s re-

sult, combined with Lafforgue’s theorem, shows that on smooth curves there is a correspondence

between (certain) lisse sheaves and (certain) overconvergent F -isocrystals. Abe–Esnault, and

later Kedlaya, generalized one direction of the correspondence by constructing on smooth vari-

eties of arbitrary dimension, lisse sheaves that are compatible with overconvergent F -isocrystals

(see [AE16] and [Ked18]). Even in this case, they construct lisse sheaves via a reduction to the

case of curves. They both prove and use some Lefschetz type theorem, in combination with

Drinfeld’s gluing theorem for lisse sheaves.

1.1.2 Main results

Following Kedlaya [Ked18], we refer to lisse sheaves and overconvergent F -isocrystals as coeffi-

cient objects. Let X0 be a smooth connected variety over Fq. Suppose that E0 is a coefficient

object on X0 with all the eigenvalues of the Frobenii at closed points algebraic over Q. Thanks

to the known cases of the companions conjecture, E0 sits in an E-compatible system {Eλ,0}λ∈Σ,

where E is a number field, Σ is a set of finite places of E, containing all the places which do not
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divide p, and {Eλ,0}λ∈Σ is a family of pairwise E-compatible Eλ-coefficient objects (as in (iv)),

one for each λ ∈ Σ (Theorem 1.3.8.2).

We use the new tools, presented above, to extend the results of λ-independence of the

monodromy groups. Let F be an algebraic closure of Fq and x an F-point of X0. For every

λ ∈ Σ, let G(Eλ,0, x) be the arithmetic monodromy group of Eλ,0 and G(Eλ, x) its geometric

monodromy group (see Definition 1.3.2.3). We generalize the result of Serre and Larsen–Pink

on the λ-independence of the π0 of the monodromy groups (see [Ser00] and [LP95, Proposition

2.2]).

Theorem 1.1.2.1 (Theorem 1.4.1.1). The groups of connected components of G(Eλ,0, x) and

G(Eλ, x) are independent of λ.

To prove such a theorem for overconvergent F -isocyrstals we have to relate their monodromy

groups with the étale fundamental group of X0. This is done in §1.3.3 and relies on some previous

work done by Crew in [Cre92a]. Then the proof follows [LP95, Proposition 2.2].

We assume now, in addition, that for every λ ∈ Σ, the coefficient object Eλ,0 is semi-

simple. Denote by ρλ,0 the tautological representation of G(Eλ,0, x). We obtain the following

generalization of [Chi04, Theorem 1.4].

Theorem 1.1.2.2 (Theorem 1.4.3.2). After possibly replacing E with a finite extension, there

exists a connected split reductive group G0 over E such that, for every λ ∈ Σ, the extension of

scalars G0 ⊗E Eλ is isomorphic to the neutral component of G(Eλ,0, x). Moreover, there exists

a faithful E-linear representation ρ0 of G0 and isomorphisms ϕλ,0 : G0⊗E Eλ
∼−→ G(Eλ,0, x)◦ for

every λ ∈ Σ such that ρ0 ⊗E Eλ is isomorphic to ρλ,0 ◦ ϕλ,0.

Notice that in Theorem 1.1.2.2 we have removed from [ibid., Theorem 1.4] the purity and

p-plain assumptions (cf. §1.3.1.15). Chin proves his result exploiting a reconstruction theorem

for connected split reductive groups (Theorem 1.4.3.4). To apply his theorem, he extends the

result of Serre in [Ser00] on Frobenius tori of étale lisse sheaves in [Chi04, Lemma 6.4]. We

further generalize Chin’s result on Frobenius tori.

Theorem 1.1.2.3 (Theorem 1.4.2.10). Let E0 be an algebraic coefficient object over X0. There

exists a Zariski-dense subset ∆ ⊆ X(F) such that for every F-point x ∈ ∆ and every object

F0 ∈ 〈E0〉, the torus T (F0, x) is a maximal torus of G(F0, x). Moreover, if G0 is a coefficient

object compatible with E0, the subset ∆ satisfies the same property for the objects in 〈G0〉.
We first prove Theorem 1.1.2.3 for algebraic étale lisse sheaves, by improving Serre’s finiteness

result in Corollary 1.4.2.7. This is done using Deligne’s conjectures. Then we deduce the general

case using a dimension data argument due to Larsen and Pink (see Proposition 1.4.2.8). Thanks

to Theorem 1.1.2.3, we are able to prove Theorem 1.1.2.2 following Chin’s method. Theorem

1.1.2.3 is also used in §3 as a starting point to prove some rigidity results for the convergent

F -isocrystals which admit an overconvergent extension. Thanks to Theorem 1.1.2.2 we are able

to prove a semi-simplicity statement for the Frobenii at closed points.
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Corollary 1.1.2.4 (Corollary 1.4.3.9). Let E0 be a semi-simple Q`-coefficient object. The set

of closed points where the Frobenius is semi-simple is Zariski-dense in X0.

This result is proven in [LP92, Proposition 7.2] for étale lisse sheaves. For overconvergent

F -isocrystals, the statement is new and it is obtained using Theorem 1.1.2.2. We will need

the full strength of Theorem 1.1.2.2, as we will also use the independence of the tautological

representation of compatible coefficient objects. Another outcome of the previous techniques,

is an independence result for the Lefschetz theorem for coefficient objects.

Theorem 1.1.2.5 (Theorem 1.4.4.2). Let f0 : (Y0, y)→ (X0, x) be a morphism of geometrically

connected smooth pointed varieties. Let E0 and F0 be compatible geometrically semi-simple coef-

ficient objects over X0. Denote by ϕ0 : G(f ∗0E0, y) → G(E0, x) and ψ0 : G(f ∗0F0, y) → G(F0, x)

the morphisms induced by f ∗0 and by ϕ and ψ their restriction to the geometric monodromy

groups.

(i) If ϕ is an isomorphism, the same is true for ψ.

(ii) If ϕ0 is an isomorphism, the same is true for ψ0.

We give a “cheap” proof of Theorem 1.1.2.5 which for ι-mixed coefficient objects avoids

Deligne’s conjecture. The proof relies on the Tannakian lemma [AE16, Lemma 1.6]. Finally, we

prove the following theorem for coefficient objects defined on abelian varieties.

Theorem 1.1.2.6 (Theorem 1.5.1.1). Let X0 be an abelian variety. Every absolutely irreducible

coefficient object with finite order determinant is finite. In particular, every ι-pure coefficient

object on X0 becomes constant after passing to a finite étale cover.

We propose two proofs. The first one uses the Künneth formula (Proposition 1.3.4.4), an

Eckmann–Hilton argument and the global monodromy theorem (Theorem 1.3.5.4). This proof

does not rely on the Langlands programme. The second proof is a consequence of the known

cases of the companions conjecture and the global monodromy theorem for lisse sheaves. Using

this method one could actually prove a more general statement (see Remark 1.5.1.5).

As a consequence, we give a proof of Deligne’s conjectures for coefficient objects that does

not use automorphic representations (Corollary 1.5.1.3). We also obtain in Corollary 1.5.2.2

an alternative proof of a theorem of Tsuzuki on the constancy of the Newton polygons of F -

isocrystals on abelian varieties [Tsu17, Theorem 3.7].

1.1.3 Comparison with previous work

In [Pal15, Theorem 8.23], Pál gives a proof of a special case of Theorem 1.1.2.2 for curves. It relies

on a strong Čebotarev density theorem for overconvergent F -isocrystals [ibid., Theorem 4.13],

which is now proven in [HP18]. Using the result on Frobenius tori, we do not use Hartl–Pál’s
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theorem. It is also worth mentioning that in [Dri18], Drinfeld proves the independence of the

entire arithmetic monodromy groups (not only the neutral component), over Q`. He uses a

stronger representation-theoretic reconstruction theorem (see Remark 1.4.3.11).

1.1.4 The structure of §1

We define in §1.3.1 the categories of coefficient objects and geometric coefficient objects, and we

prove some basic results. We also recall some definitions related to the characteristic polynomials

of the Frobenii at closed points, and we show that p-plain (cf. §1.3.1.15) lisse sheaves are étale

(Proposition 1.3.1.17).

In §1.3.2, we define the arithmetic and the geometric monodromy groups of coefficient ob-

jects, using the Tannakian formalism. We also introduce the Tannakian fundamental groups

classifying coefficient objects and geometric coefficient objects. We present a fundamental ex-

act sequence relating these groups (Proposition 1.3.2.6). The result is essentially all proven in

the appendix for general neutral Tannakian categories with Frobenius. Then in §1.3.3 we show

that the groups of connected components of these fundamental groups are isomorphic to the

arithmetic and the geometric étale fundamental group (Proposition 1.3.3.3). We also prove a

complementary result, namely Proposition 1.3.3.4.

In §1.3.4 we prove the Künneth formula for the fundamental group classifying geometric

coefficient objects for projective connected varieties with a rational point. In §1.3.5 we recall the

main result on rank 1 coefficient objects (Theorem 1.3.5.1). We introduce in §1.3.5.3 the notion

of type and we prove some structural properties for them. In §1.3.6 we recollect some theorems

from Weil II that are now known for coefficient objects of both kinds. For example, the main

theorem on weights (Theorem 1.3.6.1). We present in §1.3.7 the state of Deligne’s conjectures.

In §1.3.8 we give the definition of compatible systems of lisse sheaves and overconvergent F -

isocrystals and we state a stronger form of the companions conjecture in Theorem 1.3.8.2, due

to the work of Chin.

In §1.4, we investigate the properties of λ-independence of the monodromy groups varying

in a compatible system of coefficient objects. We start by proving in §1.4.1 the λ-independence

of the groups of connected components, generalizing the theorem of Serre and Larsen–Pink

(Theorem 1.1.2.1). In §1.4.2 we extend the theory of Frobenius tori to algebraic coefficient

objects and we prove Theorem 1.1.2.3. In §1.4.3 we prove Theorem 1.1.2.2 and Corollary 1.1.2.4

and in §1.4.4 we prove Theorem 1.1.2.5.

In §1.5 we focus on coefficient objects on abelian varieties. We give the two proofs of

Theorem 1.5.1.1, we prove Deligne’s conjectures for abelian varieties and we recover Tsuzuki’s

theorem in Corollary 1.5.2.2.
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1.2 Notation and conventions

1.2.0.1. We fix a prime number p and a positive power q. Let Fq be a field with q elements

and F an algebraic closure of Fq. For every positive integer s we denote by Fqs the subfield of

F with qs elements. If k is a field we will say that a separated scheme of finite type over k is a

variety over k. A curve will be a one dimensional variety. We denote by X0 a smooth variety

over some finite field k. If k is not specified, then it is assumed to be Fq. In this case, we denote

by X the extension of scalars X0⊗Fq F over F. In general, we denote with a subscript 0 objects

and morphisms defined over Fq, and the suppression of the subscript will mean the extension

to F. We write kX0 for the algebraic closure of Fq in Γ(X0,OX0). Sometimes it will be useful to

consider X0 as a variety over kX0 , just changing the structural morphism.

We denote by |X0| the set of closed points of X0. If x0 is a closed point of X0, the degree of

x0 will be deg(x0) := [κ(x0) : Fq]. A variety is said (F-)pointed if it is endowed with the choice

of an F-point. A morphism of pointed varieties (Y0, y) → (X0, x) is a morphism of varieties

Y0 → X0 which sends y to x. An F-point x of X0 determines a unique closed point of the

variety that we denote by x0. Moreover, x determines an identification kX0 = Fqs , for some

s ∈ Z>0.

1.2.0.2. The letter ` will denote a prime number. In general we allow ` to be equal to p. We fix

an algebraic closure Q of Q. For every number field E, we denote by |E|` the set of finite places

of E dividing `. We define |E|6=p :=
⋃
`6=p |E|` and |E| :=

⋃
` |E|`. We choose in a compatible

way, for every number field E ⊆ Q and every λ ∈ |E|, a completion of E by λ, denoted by Eλ.

For every prime `, we denote by Q` the union of all the Eλ, when E varies among the number

fields E ⊆ Q and λ is any place in |E|`. If K is a field of characteristic 0, an element a ∈ K is

said to be an algebraic number if it is algebraic over Q. If a is an algebraic number we will say

that it is p-plain2 if it is an `-adic unit for every ` 6= p.

1.2.1 Tannakian categories and affine group schemes

1.2.1.1. Let K be a field. We denote by VecK the category of finite dimensional K-vector spaces.

A Tannakian category over K will be a rigid abelian symmetric ⊗-category C together with an

isomorphism End(1) ' K, that admits a faithful exact K-linear ⊗-functor ω : C → VecL, for

some field extension K ⊆ L. We will call such a functor a fibre functor of C over L. If in

addition C admits a fibre functor over K itself, we say that C is a neutral Tannakian category.

For every Tannakian category C over K, we say that an object in C is a trivial object if it

is isomorphic to 1
⊕n for some n ∈ N. We say that an object V ∈ C is irreducible if the only

subobjects of V are 0 and V itself. We say that V ∈ C is absolutely irreducible if for ever finite

extension L/K, the extension of scalars V ⊗K L is irreducible. A Tannakian subcategory of C

2This is an abbreviation for the expression plain of characteristic p in [Chi04].
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is a strictly full abelian subcategory, closed under ⊗, duals, subobjects (and thus quotients). If

V is an object of C, we denote by 〈V 〉 the smallest Tannakian subcategory of C containing V .

1.2.1.2. If ω is a fibre functor of C, over an extension L, the affine group scheme Aut⊗(ω) over

L will be the Tannakian group of C with respect to ω. For every object V ∈ C, a fibre functor ω

of C induces, by restriction, a fibre functor for the Tannakian category 〈V 〉, that we will denote

again by ω. We also say that the Tannakian group of 〈V 〉 with respect to ω is the monodromy

group of V (with respect to ω). If the monodromy group of V is finite, we say that V is a finite

object.

1.2.1.3. For every affine group scheme G, we denote by π0(G) the group of connected components

of G and G◦ will be the connected component of G containing the neutral element, called the

neutral component of G. When G is an algebraic group, the reductive rank of G will be the

dimension of any maximal torus of G.

1.2.1.4. Let ϕ : G→ H be a morphism of affine group schemes over K and let f : RepK(H)→
RepK(G) be the induced restriction functor. By [DM82, Proposition 2.21], the morphism ϕ is

faithfully flat if and only if the functor f is fully faithful and it is closed under the operation of

taking subobjects. Moreover, ϕ is a closed immersion if and only if every object of RepK(G) is

a subquotient of an object in the essential image of f . In particular, if for a tensor generator V

of RepK(H) (cf. ibid.), the object f(V ) is a tensor generator of RepK(G), then ϕ is a closed

immersion. We will repeatedly use these facts in §1 without further comments. For simplicity,

when K is a characteristic 0 field, we will say that a morphism between affine group schemes

ϕ : G→ H is surjective if it is faithfully flat and we will say that ϕ is injective if it is a closed

immersion.

1.2.2 Weil lisse sheaves

We mainly use the notations and conventions for lisse sheaves as in [Del80].

1.2.2.1. If x is a geometric point of X0, we denote by πét
1 (X0, x) and πét

1 (X, x) the étale funda-

mental groups of X0 and X respectively. If k is a finite extension of Fq and k is an algebraic

closure of k, the inverse of the q[k:Fq ]-power Frobenius will be the geometric Frobenius of k (with

respect to k). We denote by F the geometric Frobenius of Fq with respect to F. For every

n ∈ Z>0 we denote by W (F/Fqn) the Weil group of Fqn (it is generated by F n). We also denote

by W (X0, x) the Weil group of X0.

Let x′0 be a closed point of X0 in the same connected component of x. For any choice of

a geometric point x′ over x′0, the geometric Frobenius of x′0 with respect to x′ determines by

functoriality an element γ ∈ W (X0, x
′). If we choose an étale path from x′ to x, it induces an
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isomorphism W (X0, x
′)
∼−→ W (X0, x). The conjugacy class of the image of γ in W (X0, x), that

we will denote by Fx′0 ⊆ W (X0, x), depends only on x′0. The elements in Fx′0 will be the Frobenii

at x′0.

1.2.2.2. For every ` 6= p we have a category LS(X,Q`) of lisse Q`-sheaves over X, that is

the 2-colimit of the categories LS(X,Eλ) of lisse Eλ-sheaves, where Eλ varies among the finite

extensions of Q` in Q`. If X0 is not geometrically connected over Fq then these categories are not

Tannakian (the unit objects have too many endomorphisms). If x is a geometric point of X0,

we denote by X(x) the connected component of X containing x. The categories LS(X(x), Eλ)

and LS(X(x),Q`) are then always neutral Tannakian categories.

If V is a lisse Q`-sheaf on X, an n-th Frobenius structure on V is an action of W (F/Fqn) on

the pair (X,V) such that W (F/Fqn) acts on X = X0 ⊗ F via the natural action on F. An n-th

Frobenius structure is equivalent to the datum of an isomorphism (F n)∗V ∼−→ V . The category

of lisse Eλ-sheaves equipped with a 1-st Frobenius structure will be the category of Weil lisse

Eλ-sheaves of X0, denoted by Weil(X0, Eλ). The categories Weil(X0, Eλ) are Tannakian. We

will often refer to Weil lisse sheaves simply as lisse sheaves of X0.

For every geometric point x of X0 and every Eλ we define a functor

Ψx,Eλ : Weil(X0, Eλ)→ LS(X,Eλ)→ LS(X(x), Eλ)

where the first functor forgets the Frobenius structure and the second one is the inverse image

functor with respect to the open immersion X(x) ↪→ X. If V0 is a Weil lisse sheaf, we remove

the subscript 0 to indicate the lisse sheaf Ψx,Eλ(V0).

1.2.2.3. If we fix a geometric point x of X0, there exists an equivalence between the category

of Weil lisse Q`-sheaves over X0 and the finite-dimensional continuous Q`-representations of

the Weil group W (X0, x). The equivalence sends a Weil lisse sheaf V0 to the representation of

W (X0, x) on the stalk Vx. A Weil lisse sheaf such that the associated representation of the Weil

group factors through the étale fundamental group will be an étale lisse sheaf.

1.2.2.4. Notation as in §1.2.2.3. If V0 is a Weil lisse Eλ-sheaf, for every closed point x′0 ∈ |X0| the

elements in Fx′0 act on Vx. Even if these automorphisms are a priori different, their characteristic

polynomials do not change. We define (with a small abuse of notation) Px′0(V0, t) := det(1 −
tFx′0|Vx) ∈ Eλ[t]. This will be the (Frobenius) characteristic polynomial of V0 at x′0.

For every natural number n, a lisse Q`-sheaf is said to be pure of weight n, if for every

closed point x′0 of X0, the eigenvalues of any element in Fx′0 are algebraic numbers and all the

conjugates have complex absolute value (#κ(x′0))n/2. If ι : Q`
∼−→ C and w is a real number, we

say that a lisse sheaf is ι-pure of ι-weight w if for every closed point x′0 of X0 the eigenvalues

of Fx′0 , after applying ι, have complex absolute value (#κ(x0))w/2. Moreover, we say that a
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lisse Q`-sheaf is mixed (resp. ι-mixed) if it admits a filtration of lisse Q`-sheaf with pure (resp.

ι-pure) successive quotients.

1.2.3 Overconvergent F -isocrystals

1.2.3.1. Let k be a perfect field. We denote by W (k) the ring of p-typical Witt vectors over k

and by K(k) its fraction field. For every s ∈ Z>0, we denote by Zqs the ring of Witt vectors

over Fqs and by Qqs its fraction field. We suppose chosen compatible morphisms Qqs → Qp.

Let X0 be a smooth variety over k, we denote by Isoc†(X0/K(k)) the category of Berthelot’s

overconvergent isocrystals of X0 over K(k). See [Ber96a] for a precise definition and [Cre87] or

[Ked16] for a shorter presentation. The category Isoc†(X0/K(k)) is a K(k)-linear rigid abelian

⊗-category, with unit object O†X0
, that we will denote by K(k)X0 . The endomorphism ring of

K(k)X0 is isomorphic to K(k)s, where s is the number of connected components of X.

We will recall now the notation for the extension of scalars and the Frobenius structure of

overconvergent isocrystals. We mainly refer to [Abe18, §1.4].

1.2.3.2. For every finite extension K(k) ↪→ K we denote by Isoc†(X0/K(k))K the category of

K-linear overconvergent isocrystals of X0 over K(k), namely the category of pairs (M, γ), where

M∈ Isoc†(X0/K(k)) and γ : K→ End(M) is a morphism of (noncommutative)K(k)-algebras,

called the K-structure. The morphisms in Isoc†(X0/K(k))K are morphisms of overconvergent

isocrystals over K(k) which commute with the K-structure. We will often omit γ in the notation.

For (M, γ), (M′, γ′) ∈ Isoc†(X0/K(k))K, their tensor product in Isoc†(X0/K(k))K is de-

fined in the following way. We start by considering the tensor product of the two isocrystals

M⊗M′ in Isoc†(X0/K(k)). On this object K acts via γ⊗ id and id⊗γ′ at the same time. We

define N as the greatest quotient of M⊗M′ such that the two K-structures agree. Then we

define δ as the unique K-structure induced on N . Finally, we define (M, γ)⊗(M′, γ′) := (N , δ).

1.2.3.3. If K ⊆ L are finite extensions of K(k) and {α1, . . . , αd} is a basis of L over K we define

a functor of extension of scalars

(−)⊗K L : Isoc†(X0/K(k))K → Isoc†(X0/K(k))L.

An object (M, γ) ∈ Isoc†(X0/K(k))K is sent to
(⊕d

i=1Mi, δ
)

, where {Mi}1≤i≤d are copies of

M and δ is defined as follows. We denote by ιi the inclusion ofMi in the direct sum. For every

α ∈ L and 1 ≤ i ≤ d, we write α · αi =
∑d

j=1 aijαj, where aij ∈ K. The restriction of δ(α) to

Mi is defined as
∑d

j=1 ιj ◦ γ(aij). Different choices of a basis of L over K induce functors that

are canonically isomorphic.
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1.2.3.4. For every finite field k, and for every finite extension K(k) ⊆ K we choose as a unit ob-

ject of Isoc†(X0/K(k))K, the object KX0 := K(k)X0⊗K. We have endowed Isoc†(X0/K(kX0))K
with a structure of a K-linear rigid abelian ⊗-category. When X0 is geometrically connected

over k, the endomorphism ring of KX0 is isomorphic to K.

1.2.3.5. We want to define now the inverse image functor for overconvergent isocrystals with

K-structure. Suppose given a commutative diagram

Y0 X0

Spec(Fqs′ ) Spec(Fqs)

f0

that we will denote by f0 : Y0/Fqs′ → X0/Fqs with 1 ≤ s ≤ t.

We have a näıve inverse image functor f+
0 : Isoc†(X0/Qqs)Q

qs
′ → Isoc†(Y0/Qqs′ ) sending

(M, γ) to (f+
0 M, f+

0 γ), where f+
0 M is the inverse image of M to Y0 as an overconvergent

isocrystal over Qqs and f+
0 γ is the Qqs′ -structure on f+

0 M, given by the composition of γ with

the morphism End(M) → End(f+
0 M), induced by f+

0 . The functor f+
0 does not commute in

general with the tensor structure, thus one needs to “normalize” it.

The isocrystal f+
0 M is endowed with two Qqs′ -structures. One is f+

0 γ, the other is the

structural Qqs′ -structure as an object in Isoc†(Y0/Qqs′ ). We define f ∗0 (M, γ) as the greatest

quotient of f+
0 (M, γ) such that the two Qqs′ -structures agree. We equip it with the unique

induced Qqs′ -structure. For every finite extension Qqs′ ⊆ K, this construction extends to a

functor f ∗0 : Isoc†(X0/Qqs)K → Isoc†(Y0/Qqs′ )K. This will be the inverse image functor we will

mainly use.

1.2.3.6. We denote by F : X0 → X0 the q-power Frobenius3. Let K be a finite extension for

Qq. For every M ∈ Isoc†(X0/Qq)K and every n ∈ Z>0, an isomorphism between (F n)∗M and

M will be an n-th Frobenius structure of M. We denote by F-Isoc†(X0/Qq)K the category

of overconvergent F -isocrystals with K-structure, namely the category of pairs (M,Φ) where

M ∈ Isoc†(X0/Qq)K and Φ is a 1-st Frobenius structure of M, called the Frobenius structure

of the F -isocrystal. The morphisms in F-Isoc†(X0/Qq)K are the morphisms in Isoc†(X0/Qq)K
that commute with the Frobenius structure. For every positive integer n, the isomorphism

Φn := Φ ◦ F ∗Φ ◦ · · · ◦ (F n−1)∗Φ

3The letter F will denote two different types of Frobenius endomorphisms, depending if we are working with

lisse sheaves or isocrystals.
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will be the n-th Frobenius structure of (M,Φ). The category F-Isoc†(X0/Qq)K is a K-linear

rigid abelian ⊗-category. In this case, if X0 is connected, but not necessarily geometrically

connected, the ring of endomorphisms of the unit object is isomorphic to K.

When X0 is a smooth variety over Fqs , for every finite extension Qqs ⊆ K, the category

of K-linear isocrystals over Qqs with s-th Frobenius structure is equivalent to the category

F-Isoc†(X0/Qq)K (see [Abe18, Corollary 1.4.11]). We will use this equivalence without further

comments.

1.2.3.7. We extend the functor of the extension of scalars to F -isocrystals, imposing (M,Φ)⊗K

L := (M⊗KL,Φ⊗K idL), where Φ⊗K idL is a map from F ∗M⊗KL = F ∗(M⊗KL) toM⊗KL.

Let f0 : Y0 → X0 be a morphism, for every extension Qq ⊆ K, the functor f ∗0 defined in

§1.2.3.5 for K-linear overconvergent isocrystals extends to a functor

f ∗0 : F-Isoc†(X0/Qq)K → F-Isoc†(Y0/Qq)K

which sends (M,Φ) to (f ∗0M, f ∗0 (Φ)). If (X0, x) is a smooth pointed variety, geometrically

connected over Fqs and K is a finite extension of Qqs , the natural morphism f0 : X0/Fqs →
X0/Fq, induces a functor

Ψx,K : F-Isoc†(X0/Qq)K → Isoc†(X0/Qq)K → Isoc†(X0/Qqs)K

which sends (M,Ψ) to f ∗0M. We denote the objects in F-Isoc†(X0/Qq)K with a subscript 0

and we will remove it when we consider the image by Ψx,K in Isoc†(X0/Qqs)K.

1.2.3.8. For every finite extension K(k) ⊆ K, the category Isoc†(Spec(k)/K(k))K is equivalent

to VecK as a rigid abelian ⊗-category. Moreover, if k ⊆ k′ is an extension of finite fields, and

K(k′) ⊆ K, the Tannakian category F-Isoc†(Spec(k′)/K(k))K is equivalent to the category of

(finite-dimensional) K-vector spaces endowed with an automorphism.

1.2.3.9. Let (X0, x) be a smooth pointed variety, geometrically connected over Fqs . Let Eλ be

a finite extension of Qqs in Qp. The category Isoc†(X0/Qqs)Eλ admits a fibre functor over some

finite extension of Eλ. Assume that deg(x0) = n. Let i0 : x0/Fqn ↪→ X0/Fqs the immersion of

the closed point x0 in X0 (notation as in §1.2.3.5). Let E
(x0)
λ be the compositum of Eλ and Qqn

in Qp. Then the functor

ωx,Eλ : Isoc†(X0/Qqs)Eλ
⊗EλE

(x0)
λ−−−−−−→ Isoc†(X0/Qqs)E(x0)

λ

i∗0−→ Isoc†(x0/Qqn)
E

(x0)
λ

' Vec
E

(x0)
λ

is a fibre functor, as proven in [Cre92a, Lemma 1.8]. This means that for every finite extension

Eλ of Qqs , the category Isoc†(X0/Qqs)Eλ is Tannakian. Moreover, the composition of Ψx,Eλ with
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ωx,Eλ is a fibre functor for F-Isoc†(X0/Qq)Eλ over E
(x0)
λ , that we will denote by the same symbol.

Thus, for every finite extension Qqs ⊆ Eλ, the category F-Isoc†(X0/Qq)Eλ is Tannakian.4

1.2.3.10. Let i0 : x′0 ↪→ X0 be the immersion of a closed point of degree n. Let K be a

finite extension of Qq and L a finite extension of K which contains Qqn . For every M0 ∈
F-Isoc†(X0/Qq)K, we denote by Fx′0 the n-th Frobenius structure of i∗0(M0) ⊗K L. This will

be the (linearized geometric) Frobenius of M0 at x′0. By §1.2.3.8, it corresponds to a linear

automorphism of an L-vector space. The characteristic polynomial

Px′0(M0, t) := det(1− tFx′0|i
∗
0(M0)⊗K L) ∈ K[t]

will be the (Frobenius) characteristic polynomial of M0 at x′0. It is independent of the choice

of i0 and L.

In analogy with lisse sheaves, we say that overconvergent F -isocrystals are pure, ι-pure,

mixed or ι-mixed, if they satisfy the similar conditions on the eigenvalues of the Frobenii at

closed points.

1.3 Generalities

1.3.1 Coefficient objects

Let X0 be a smooth variety over Fq. Following [Ked18], we use a notation to work with lisse

sheaves and overconvergent F -isocrystals at the same time.

Definition 1.3.1.1 (Coefficient objects). For every prime ` 6= p and every finite field extension

K/Q`, a K-coefficient object will be a Weil lisse K-sheaf. If K is a finite field extension of Qq,

a K-coefficient object will be an object in F-Isoc†(X0/Qq)K. For a field K of one of the two

kinds, we denote by Coef(X0,K) the category of K-coefficient objects. For every object in

Coef(X0,K), the field K will be its field of scalars. A coefficient object will be a K-coefficient

object for some unspecified field of scalars K. For every prime `, the 2-colimit of the categories

Coef(X0, Eλ) with Eλ ⊆ Q` will be the category of Q`-coefficient objects and it will be denoted

by Coef(X0,Q`).

We will also work with a category of geometric coefficient objects. This is built from the cat-

egory of coefficient objects by forgetting the Frobenius structure. To get Tannakian categories,

in this case, we will put an additional assumption on the fields of scalars.

4The category F-Isoc†(X0/Qq)Eλ is actually Tannakian even when Eλ is just a finite extension of Qq. For

simplicity, in what follows, we will mainly work with finite extensions of Qqs , in order to make Isoc†(X0/Qqs)Eλ
a Tannakian category.
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Notation 1.3.1.2. From now on in §1, except when explicitly stated otherwise, (X0, x) will be

a smooth pointed variety over Fq, geometrically connected over Fqs for some s ∈ Z>0.

Definition 1.3.1.3 (Admissible fields). We say that a finite extension of Qqs is a p-adic admis-

sible field (for X0). To uniformize the notation, when ` is a prime different from p, we also say

that every finite extension of Q` is an `-adic admissible field. We will refer to this second kind

of fields as étale admissible fields. When Eλ is an admissible field, we will say that the place λ

is admissible.

Definition 1.3.1.4 (Geometric coefficient objects). For every p-adic admissible field K, we have

a functor of Tannakian categories Ψx,K : F-Isoc†(X0/Qq)K → Isoc†(X0/Qqs)K which forgets

the Frobenius structure (see §1.2.3.7). We denote by Coef(X(x),K) the smallest Tannakian

subcategory of Isoc†(X0/Qqs)K containing the essential image of Ψx,K. We will say that the

category Coef(X(x),K) is the category of geometric K-coefficient objects (with respect to x).

When K is an étale admissible field, we have again a functor Ψx,K : Weil(X0,K) →
LS(X(x),K) which forgets the Frobenius structure (see §1.2.2.2). The category of geometric K-

coefficient objects (with respect to x) will be the smallest Tannakian subcategory of LS(X(x),K)

containing the essential image of Ψx,K and it will be denoted by Coef(X(x),K).

For every `, the category of geometric Q`-coefficient objects will be the 2-colimit of the

categories of geometric Eλ-coefficient objects when Eλ varies among the admissible fields for

X0 in Q`. It will be denoted by Coef(X(x),Q`) and Ψx,Q` will be the functor induced by the

functors Ψx,K. If E0 is a Q`-coefficient object, we drop the subscript 0 to indicate Ψx,Q`(E0), thus

we write E for Ψx,Q`(E0). When X0 is geometrically connected over Fq we drop the superscript
(x) in the notation for the categories of coefficient objects, as they do not depend on x.

Definition 1.3.1.5 (Geometric properties). Let E0 a Q`-coefficient object E0. We say that

E0 is geometrically semi-simple, geometrically trivial or geometrically finite if the associated

geometric coefficient object E is semi-simple, trivial or finite in Coef(X(x),Q`). Notice that

although the object E depends on x, these properties for E depends only on E0.

Definition 1.3.1.6 (Cohomology of coefficient objects). Let E0 be an Eλ-coefficient over X0.

If E0 is a lisse sheaf, we denote by H i(X(x), E) (resp. H i
c(X

(x), E)) the λ-adic étale cohomology

(resp. the λ-adic étale cohomology with compact support) of X(x) with coefficients in E and

by H i(X0, E0) (resp. H i
c(X0, E0)) the fixed points by the action of F s on H i(X(x), E) (resp.

H i
c(X

(x), E)). When Eλ is p-adic, we denote by H i(X(x), E) (resp. H i
c(X

(x), E)) the rigid coho-

mology (resp. the rigid cohomology with compact support) of X0 with coefficients in E . We

also denote by H i(X0, E0) and H i
c(X0, E0) the respective Eλ-vector spaces of fixed points by the

action of the qs-power absolute Frobenius F s of X0.

Remark 1.3.1.7. For both kinds of coefficient objects, if Eλ,X is the unit object of

Coef(X(x), Eλ), the Eλ-vector space Hom(Eλ,X , E) is canonically isomorphic to H0(X(x), E).
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We also have a canonical isomorphism between Hom(Eλ,X0 , E0) and H0(X0, E0), where Eλ,X0 is

the unit object in Coef(X0, Eλ).

Proposition 1.3.1.8. Let (X0, x) be a smooth connected pointed variety, geometrically con-

nected over Fqs. The functor (F s)∗ is a ⊗-autoequivalence of Coef(X(x), Eλ). In particular,

when E
(x0)
λ = Eλ, the pair (Coef(X(x), Eλ), (F

s)∗) is a neutral Tannakian category with Frobe-

nius, as defined in A.1.1.

Proof. For lisse sheaves the result is well-known. In the p-adic case see [Abe18, Remark in

§1.1.3] or [Laz17, Corollary 6.2] for a proof which does not use arithmetic D-modules.

Corollary 1.3.1.9. Any irreducible object in Coef(X(x), Eλ) admits an n-th Frobenius structure

for some n ∈ Z>0.

Proof. By definition, an irreducible object F in Coef(X(x), Eλ) is a subquotient of some geomet-

ric coefficient object E that admits a Frobenius structure. By Proposition 1.3.1.8, the functor

(F s)∗ is an autoequivalence, thus it permutes the isomorphism classes of the irreducible sub-

quotients of E . This implies that there exists n > 0 such that (F ns)∗F ' F , as we wanted.

Remark 1.3.1.10. When X0 is geometrically connected over Fq, the category Coef(X,Qq)

is the same category as the one considered by Crew to define the fundamental group at the

end of §2.5 in [Cre92a]. A priori, this category is not equivalent to the one considered by Abe

to define, for example, the fundamental group in [Abe18, §2.4.17]. By Corollary 1.3.1.9, the

category Coef(X,Qq) is a Tannakian subcategory of the one defined by Abe.

Definition 1.3.1.11. A K-coefficient object is said constant if it is geometrically trivial, i.e.

if after applying Ψx,K it becomes isomorphic to a direct sum of unit objects. We denote by

Coef cst(X0, Eλ) the (strictly) full subcategory of Coef(X0, Eλ) of constant Eλ-coefficient ob-

jects. It is a Tannakian subcategory of Coef(X0, Eλ) which does not depend on x. We define

the category of constant Q`-coefficient objects, as the 2-colimit of the categories of constant

Eλ-coefficient objects.

1.3.1.12. For every prime `, the category Coef(Spec(Fq),Q`) is canonically equivalent to the

category of Q`-vector spaces endowed with an automorphism. For every a ∈ Q×` we define Q(a)

`

as the rank 1 coefficient object over Spec(Fq) associated to the vector space Q` endowed with

the multiplication by a.

Definition. Let pX0 : X0 → Spec(Fq) be the structural morphism. For every Q`-coefficient

object E0 and every a ∈ Q×` , we define

E (a)
0 := E0 ⊗ p∗X0

(
Q(a)

`

)
as the twist of E0 by a. A twist is algebraic if a is algebraic.

21



Remark 1.3.1.13. The operation of twisting coefficient objects by an element a ∈ Q×` gives an

exact autoequivalence of the category Coef(X0,Q`). In particular, for every coefficient object,

the property of being absolutely irreducible is preserved by any twist.

1.3.1.14. For every Q`-coefficient object E0 of rank r, we can associate at every closed point x0

of X0 the (Frobenius) characteristic polynomial of E0 at x0, denoted Px0(E0, t) = 1+a1t+. . . art
r,

where (a1, . . . , ar) ∈ Qr−1

` ×Q×` .

Definition. For every coefficient object E0, the Frobenius characteristic polynomial function

associated to E0 is the function of sets PE0 : |X0| → Qr−1

` ×Q×` that sends x0 to the coefficients

of Px0(E0, t).

Definition 1.3.1.15. Let ` be a prime number, K a field endowed with an inclusion τ : K ↪→ Q`.

We will say that a Q`-coefficient object E0 is K-rational with respect to τ if the characteristic

polynomials at closed points have coefficients in the image of τ . A K-rational coefficient object

will be the datum of τ : K ↪→ Q` and a Q`-coefficient object that is K-rational with respect to

τ . We will also say that an Eλ-coefficient object is E-rational if it is E-rational with respect

to the natural embedding E ↪→ Eλ ⊆ Q`. We say that a coefficient object is algebraic if it is

Q-rational for one (or equivalently any) map τ : Q ↪→ Q`. A coefficient object is said p-plain if

it is algebraic and all the eigenvalues at closed points are p-plain (see 1.2.0.2 for the notation).

We can compare two K-rational coefficient objects with different fields of scalars looking at

their characteristic polynomial functions.

Definition 1.3.1.16. Let E0 and F0 be two coefficient objects that are K-rational with respect to

τ and τ ′ respectively. We say that E0 and F0 are K-compatible if their characteristic polynomials

at closed points are the same as polynomials in K[t], after the identifications given by τ and τ ′.

Our general aim in §1 will be to convert the numerical data provided by the Frobenius

characteristic polynomials at closed points to structural properties of the coefficient objects. As

an example, we prove the following general statement on Weil lisse sheaves.

Proposition 1.3.1.17. Let ` be a prime different from p and let V0 be a Weil lisse Q`-sheaf on

X0. If all the eigenvalues of the Frobenius at x0 are `-adic units, then V0 is an étale lisse sheaf.

In particular, p-plain lisse sheaves are étale.

Proof. The property on the eigenvalues is preserved after an extension of the base field. Thus,

we can assume that x0 is a rational point, because étale lisse sheaves satisfy étale descent. Let

ρ0 be the `-adic representation of W (X0, x) associated to V0 and denote by Π0 ⊆ GL(Vx) the

image of ρ0. Write Π for the image of πét
1 (X, x) via ρ0. The group Π0 is generated by Π and

ρ0(γ), where γ is some element in Fx0 .
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Let Γ be the closure in GL(Vx) of the group generated by ρ0(γ). By the assumption on the

eigenvalues of ρ0(γ), the topological group Γ is compact, hence profinite. Moreover, the group

Γ normalizes Π, so that Π ·Γ ⊆ GL(Vx) is a profinite group. By construction, Π0 is contained in

the profinite group Π · Γ. Therefore, the `-adic representation ρ0 factors through the profinite

completion of W (X0, x), which is πét
1 (X0, x). This concludes the proof.

1.3.2 Monodromy groups

We introduce now the main characters of §1: the fundamental groups and the monodromy groups

of coefficient objects. They will sit in a fundamental exact sequence, which is the analogue of the

sequence relating the geometric étale fundamental group and the arithmetic étale fundamental

group. We have presented this exact sequence for general neutral Tannakian categories with

Frobenius in §A.2.

1.3.2.1. For every étale admissible field Eλ we take the fibre functor

ωx,Eλ : Weil(X0, Eλ)→ VecEλ

attached to x, which sends a lisse sheaf V0 to the stalk Vx. When Eλ is a p-adic admissible field,

we have defined in §1.2.3.9 a fibre functor for Isoc†(X0/Qqs)Eλ over E
(x0)
λ , denoted by ωx,Eλ . For

symmetry reasons, when Eλ is an étale field, we set E
(x0)
λ := Eλ. Thus for every admissible field

Eλ, we have a fibre functor ωx,Eλ of Coef(X(x), Eλ) over E
(x0)
λ . We will denote with the same

symbol the fibre functor induced on Coef(X0, Eλ). As the fibre functors commute with the

extension of scalars, for every ` we also have a fibre functor over Q` for Q`-coefficient objects.

We will denote it by ωx,Q` .

Definition (Fundamental groups). For every admissible field Eλ, we denote by πλ1 (X0, x) the

Tannakian group over E
(x0)
λ of Coef(X0, Eλ) with respect to ωx,Eλ . We write πλ1 (X, x) for the

Tannakian group of Coef(X(x), Eλ) with respect to the restriction of ωx,Eλ . The functor

Ψx,Eλ : Coef(X0, Eλ)→ Coef(X(x), Eλ)

induces a closed immersion πλ1 (X, x) ↪→ πλ1 (X0, x). We also denote by πλ1 (X0, x)cst the quotient

of πλ1 (X0, x), corresponding to the inclusion of Coef cst(X0, Eλ) in Coef(X0, Eλ).

Remark 1.3.2.2. Suppose that E
(x0)
λ = Eλ, then there exists an isomorphism of functors

η : ωx,Eλ ⇒ ωx,Eλ ◦ (F s)∗. For lisse sheaves, this is induced by the choice of an étale path

between x and the F-point over x with respect to F s : X → X. In the case of overconvergent

F -isocrystals, this is constructed in [Abe18, §2.4.18]. Let us briefly recall it.
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Let i0 : x0 ↪→ X0 be the inclusion of x0, the closed point underlying x. Let σ be the lift

to Qqn of the qs-power Frobenius of Fqn , where n is the degree of x0. For every overconvergent

F -isocrystal M on X0 we define

ηM : i+0 (M)⊗Qqn⊗Eλ Eλ
∼−→
(
Qqn ⊗σ↖Qqn i

+
0 (M0)

)
⊗Qqn⊗Eλ Eλ,

as the isomorphism which maps m⊗e to 1⊗m⊗e. The functor i+0 is the näıve pullback defined in

§1.2.3.5. The isomorphisms ηM induce an isomorphism of fibre functors η : ωx,Eλ ⇒ ωx,Eλ◦(F s)∗.

Thanks to this and Proposition 1.3.1.8, one can define a Weil group for coefficient objects over

the field Eλ (see §A.1.4).

1.3.2.3. Every Eλ-coefficient object E0 generates three Eλ-linear Tannakian categories, the arith-

metic one 〈E0〉 ⊆ Coef(X0, Eλ), the geometric one 〈E〉 ⊆ Coef(X(x), Eλ) and the Tannakian

category of constant objects 〈E0〉cst ⊆ 〈E0〉. We will consider these categories endowed with the

fibre functors obtained by restricting ωx,Eλ .

Definition. (Monodromy groups) We denote by G(E0, x) the (arithmetic) monodromy group of

E0, namely the Tannakian group of 〈E0〉. The geometric monodromy group of E0 will be instead

the Tannakian group of 〈E〉 and it will denoted by G(E , x). We will also consider the quotient

G(E0, x) � G(E0, x)cst, which corresponds to the inclusion 〈E0〉cst ⊆ 〈E0〉. These three groups

are quotients of the fundamental groups defined in §1.3.2.1.

Remark 1.3.2.4. When V0 is a lisse sheaf and ρ0 : W (X0, x) → GL(Vx) is the associated

`-adic representation, then G(V0, x) is the Zariski-closure of the image of ρ0 and G(V , x) is

the Zariski-closure of ρ0(πét
1 (X, x)). When M0 is an overconvergent F -isocrystal, G(M, x) is

the same group defined by Crew in [Cre92a] and denoted by DGal(M, x). This group is even

isomorphic to the group DGal(M, x) which appears in [AE16]. This agrees with our previous

Remark 1.3.1.10.

Remark 1.3.2.5. As X0 is connected, the étale fundamental groups associated to two different

F-points of X0 are (non-canonically) isomorphic. Hence, in the case of lisse sheaves, the isomor-

phism class of the monodromy groups does not depend on the choice of x. For overconvergent

F -isocrystals, by the result of Deligne in [Del90], the monodromy groups associated to two dif-

ferent F-points become isomorphic after passing to a finite extension of Eλ. We do not know

any better result in this case.

Let us present now the fundamental exact sequence of X0 attached to some admissible place

λ. The sequence is a generalization of the one proven in [Pal15, Proposition 4.7].

Proposition 1.3.2.6. Let (X0, x) be a smooth pointed variety, geometrically connected over

Fqs and let λ be an admissible place for X0 such that E
(x0)
λ = Eλ.
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(i) The natural morphisms previously presented give an exact sequence

1→ πλ1 (X, x)→ πλ1 (X0, x)→ πλ1 (X0, x)cst → 1.

(ii) For every Eλ-coefficient object E0 and every F ∈ 〈E〉, there exists G0 ∈ 〈E0〉 such that

F ⊆ G.

(iii) For every Eλ-coefficient object E0, the exact sequence of (i) sits into the following commu-

tative diagram with exact rows and surjective vertical arrows

1 πλ1 (X, x) πλ1 (X0, x) πλ1 (X0, x)cst 1

1 G(E , x) G(E0, x) G(E0, x)cst 1.

(iv) The affine group scheme π1(C0, ω0)cst is isomorphic to the pro-algebraic completion of Z
over K and G(E0, x)cst is a commutative algebraic group.

(v) The affine group scheme πλ1 (X0, x)cst is canonically isomorphic to πλ1 (Spec(Fqs), x). In

particular, the profinite group π0(πλ1 (X0, x)cst) is canonically isomorphic to Gal(F/Fqs).

Proof. By Proposition 1.3.1.8, the datum of (Coef(X(x), Eλ), (F
s)∗) is a neutral Tannakian

category with Frobenius, in the sense of Definition A.1.1. Thus by Proposition A.2.3 we get all

the parts from (i) to (iv).

For (v), let qX0 : X0 → Spec(Fqs) be the morphism induced by the F-point x. We have a

inverse image functor

q∗X0
: Coef(Spec(Fqs), Eλ)→ Coef cst(X0, Eλ).

We want to construct a quasi-inverse qX0∗. For every E0 ∈ Coef cst(X0, Eλ), we have a canonical

identification H0(X(x), F ∗E) = H0(X(x), E), thus the s-th Frobenius structure Φs of E0 induces

an automorphism of H0(X(x), E) that we denote by qX0∗(Φs). We define qX0∗(E0) as the pair

(H0(X(x), E), qX0∗(Φs)) ∈ Coef(Spec(Fqs), Eλ).

The functor qX0∗ is a quasi-inverse of q∗X0
, thus q∗X0

induces an isomorphism

πλ1 (X0, x)cst
∼−→ πλ1 (Spec(Fqs), x).

Since Coef(Spec(Fqs), Eλ) is canonically equivalent to RepEλ(W (F/Fqs)), the profinite group

π0(πλ1 (X0, x)cst) is canonically isomorphic to Gal(F/Fqs).
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1.3.3 Comparison with the étale fundamental group

1.3.3.1. We continue our analysis of the fundamental groups of coefficient objects focusing on

their groups of connected components. The statements of this section are fairly easy for lisse

sheaves and difficult for overconvergent F -isocrystals. In the latter case, Crew had already

studied the problem when X0 is a smooth curve [Cre92a]. Later in [Ete02], Étesse proved

that overconvergent isocrystals with and without Frobenius structure over smooth varieties of

arbitrary dimension satisfy étale descent5. This allows a generalization of Crew’s work.

Drinfeld and Kedlaya have presented in [DK17, Appendix B] how to perform such a gen-

eralization for the arithmetic fundamental group of overconvergent F -isocrystals. We will be

mainly interested in the extension of their result to the geometric fundamental group.

1.3.3.2. Let Eλ be an admissible field for X0 such that E
(x0)
λ = Eλ. Following [DK17, Remark

B.2.5], we define

Repsmooth
Eλ

(πét
1 (X0, x)) := 2- lim−→

H

RepEλ(πét
1 (X0, x)/H)

where H varies among the normal open subgroups of πét
1 (X0, x). This category is endowed with

a fully faithful embedding

Repsmooth
Eλ

(πét
1 (X0, x)) ↪→ Coef(X0, Eλ).

The essential image is closed under subobjects. This functor induces a surjective morphism

πλ1 (X0, x) � πét
1 (X0, x), where πét

1 (X0, x) denotes here the (pro-constant) profinite group scheme

over Eλ associated to the profinite group πét
1 (X0, x). The subcategory

Repsmooth
Eλ

(Gal(F/kX0)) ⊆ Repsmooth
Eλ

(πét
1 (X0, x)),

of representations which factor through Gal(F/kX0) is sent by the functor to Coef(X0, Eλ)
cst.

Therefore, the composition of the morphisms

πλ1 (X0, x) � πét
1 (X0, x) � Gal(F/kX0)

factors through πλ1 (X0, x)cst. By Proposition 1.3.2.6.(v), the induced morphism πλ1 (X0, x)cst �
Gal(F/kX0) is surjective with connected Kernel. Finally, the homotopy exact sequence for the

étale fundamental group and the fundamental exact sequence of Proposition 1.3.2.6.(i) fit in a

commutative diagram

1 πλ1 (X, x) πλ1 (X0, x) πλ1 (X0, x)cst 1

1 πét
1 (X, x) πét

1 (X0, x) Gal(F/kX0) 1.

(1.3.3.1)

5In the article he states the result for overconvergent F -isocrystals, but the same proof works without Frobe-

nius structure.
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The central and the right vertical arrows are the morphisms previously constructed. The left

one is the unique morphism making the diagram commutative.

Proposition 1.3.3.3. Let (X0, x) be a smooth connected pointed variety. For every admissible

place λ, we have a commutative diagram

1 π0(πλ1 (X, x)) π0(πλ1 (X0, x)) π0(πλ1 (X0, x)cst) 1

1 πét
1 (X, x) πét

1 (X0, x) Gal(F/kX0) 1,

∼ ϕ ∼ ϕ0 ∼ ϕcst0
(1.3.3.2)

where the vertical arrows are isomorphisms and the rows are exact. The diagram is functorial

in (X0, x), when it varies among the smooth connected pointed varieties.

Proof. The diagram is constructed applying the functor π0 to (1.3.3.1), hence it is functorial.

We start by showing that the upper row is exact. As the functor π0 is right exact, it is enough to

prove the injectivity of the morphism π0(πλ1 (X, x))→ π0(πλ1 (X0, x)). We first extend the field of

scalars to Q`. The π0 of the Tannakian group of a Tannakian category is the Tannakian group

of the subcategory of finite objects. Thus, we have to prove that for every absolutely irreducible

finite geometric Q`-coefficient object E , there exists a finite object F0 ∈ Coef(X0,Q`), such

that E is a subquotient of F .

By Lemma A.2.2, there exists F ′0 ∈ Coef(X0,Q`) such that E is a subobject of F ′. As E is

absolutely irreducible, we can even assume F ′0 to be absolutely irreducible. In particular, there

exist g1, . . . , gn ∈ G(F ′0, x)(Q`) such that ωx,Q`(F
′
0) =

∑n
i=1 gi(ωx,Q`(E)). The algebraic group

G(F ′, x) is normal in G(F ′0, x), thus the vector spaces gi(ωx,Q`(E)) are G(F ′, x)-stable for every

i. In addition, their monodromy groups as representations of G(F ′, x) are all finite, as they are

conjugated to the monodromy group of E . Therefore F ′, being a sum of finite objects, is a finite

object.

Let W (F ′0, x) be the Weil group of 〈F ′〉, as defined in §A.1.4. Since G(F ′, x) is finite, there

exists n ∈ Z>0 such that (F n)∗ acts trivially on it. If ρ′ is the representation of G(F ′, x)

associated to F ′, then (F n)∗ρ′ = ρ′. Thus ρ :=
⊕n−1

i=0 (F i)∗ρ′ can be endowed with a Frobenius

structure

Φ : F ∗

(
n−1⊕
i=0

(F i)∗ρ′

)
∼−→

n−1⊕
i=0

(F i)∗ρ′

such that, for every 1 ≤ i ≤ n− 1, the restriction of Φ to F ∗ ((F i)∗ρ′) is the canonical isomor-

phism F ∗ ((F i)∗ρ′) = (F i+1)∗ρ′. The pair (ρ,Φ) induces a representation of W (F ′0, x) with finite

image and thus a finite coefficient object F0. The original geometric coefficient object E is a

subobject of F , therefore F0 satisfies the properties we wanted.

Finally, we prove that the vertical arrows of (1.3.3.2) are isomorphisms. The morphism ϕcst0

is an isomorphism by Proposition 1.3.2.6.(v). By diagram chasing, it remains to prove that ϕ0 is
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an isomorphism. For lisse sheaves, this is quite immediate. If a lisse sheaf has finite arithmetic

monodromy group, its associate `-adic representation factors through a finite quotient of the

Weil group of X0. In the p-adic case one can prove that ϕ0 is an isomorphism using [Ked11,

Theorem 2.3.7], as it is explained in [DK17, Proposition B.7.6.(i)].

Proposition 1.3.3.4. Let E0 be an Eλ-coefficient object on (X0, x).

(i) For every finite étale morphism f0 : (Y0, y)→ (X0, x) of pointed varieties, after extending

Eλ to an admissible field for Y0, the natural maps G(f ∗0E0, y)→ G(E0, x) and G(f ∗E , y)→
G(E , x) are open immersions.

(ii) There exists a choice of f0 : (Y0, y)→ (X0, x) such that, after extending Eλ to an admissible

field for Y0, the natural maps of the previous point induce isomorphisms G(f ∗0E0, y)
∼−→

G(E0, x)◦ and G(f ∗E , y)
∼−→ G(E , x)◦.

Proof. We notice that by Proposition 1.3.3.3 the group of connected components of the arith-

metic monodromy group (resp. geometric monodromy group) are quotients of the arithmetic

étale fundamental group (resp. geometric étale fundamental group), thus (i) implies (ii).

When E0 is a lisse sheaf, (i) is well-known. If E0 is an overconvergent F -isocrystal, the result

on the arithmetic monodromy groups is a consequence of [DK17, Proposition B.7.6.(ii)]. It

remains to prove (i) for the geometric monodromy groups of overconvergent F -isocrystals. It

is enough to treat the case when Y0 → X0 is a Galois cover with Galois group H and Y0 is

geometrically connected over Fq. As Y0 is geometrically connected over Fq, the group H acts

on 〈f ∗E〉 via Eλ-linear autoequivalences. Let 〈f ∗E〉H be the category of H-equivariant objects

in 〈f ∗E〉. After possibly extending Eλ, we can find isomorphisms of fiber functors between

ωy,Eλ and ωh(y),Eλ for every h ∈ H. A choice of these isomorphisms induces an action of H on

G(f ∗E , y).

By [Ete02], overconvergent isocrystals with and without F -structure satisfy étale descent.

Therefore, there exist fully faithful embeddings 〈E〉 ↪→ 〈f ∗E〉H and 〈f ∗E〉H ↪→ Isoc†(X0/Qq)Eλ .

The former embedding induces a morphism on the Tannakian groups ϕ : G(f ∗E , y) o H →
G(E , x). By definition, the subcategory 〈E〉 ⊆ Isoc†(X0/Qq)Eλ is closed under the operation of

taking subquotients. Thus, the same is true for 〈E〉 ⊆ 〈f ∗E〉H . This proves that ϕ is surjective,

which in turn implies that G(f ∗E , y) has finite index in G(E , x).

Corollary 1.3.3.5. Let E0 be a coefficient object on (X0, x). For every finite étale morphism

f0 : (Y0, y) → (X0, x) of pointed varieties, E0 is semi-simple (resp. geometrically semi-simple)

if and only if f ∗0E0 is semi-simple (resp. geometrically semi-simple).

Remark 1.3.3.6. We will see later a variant of Corollary 1.3.3.5 in Corollary 1.3.7.10. In

that case the result is obtained as a consequence of the theory of weights and the Langlands

correspondence.
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1.3.4 The Künneth formula

1.3.4.1. To prove Theorem 1.5.1.1 without using the existence of companions we will need the

Künneth formula for the fundamental group parameterizing geometric coefficient objects. For

simplicity we will prove it just for smooth connected projective varieties admitting a rational

point.

The main ingredient for the Künneth formula is the existence of a direct image functor for

smooth and proper morphisms of coefficient objects, that is a right adjoint of the inverse image

functor and that satisfies the proper base change. For lisse sheaves the classical direct image

has the desired properties. In the p-adic case the construction is more problematic. We will use

the direct image functor for arithmetic D-modules.

1.3.4.2. For every smooth projective variety X0 we take the triangulated category with t-

structure of holonomic complexes D[
hol(X/Qq), see [Abe18, Definition 1.1.1]. We have chosen X0

to be projective in order to make X0 realizable (cf. loc. cit.). We also consider the category of

holonomic complexes with F -structure, denoted D[
hol(X0/Qq), and for every p-adic admissible

field Eλ the categories enriched with Eλ-structure, denoted D[
hol(X/Qq)Eλ and D[

hol(X0/Qq)Eλ
[ibid. §1.4].

For every proper smooth morphism f0 : Y0 → X0 between smooth geometrically connected

projective varieties we dispose of adjuctions (f+, f+) and (f+
0 , f0+) of inverse and direct image

for holonomic complexes and holonomic complexes with F -structure respectively. They satisfy

the proper base change (see [ibid. §1.1.3] and [AC13, §1.3.14]).

We also consider the specialization functors

s̃p+ : Isoc†(X0/Qq)Eλ → D[
hol(X/Qq)Eλ , s̃p0+ : F-Isoc†(X0/Qq)Eλ → D[

hol(X0/Qq)Eλ

defined in §1.1.3.11 and §2.4.15 of [Abe, op. cit.]. They are fully faithful functors commuting

with the inverse image functors.

In light of [Car15, Théorème 3.3.1], for every object M ∈ Isoc†(Y0/Qq)Eλ and M0 ∈
F-Isoc†(Y0/Qq)Eλ , the complexes f+s̃p+(M) and f0+s̃p0+(M0) are in the essential image of

the specialization functors. Thus f+ and f0+ induce functors f∗ : Coef(Y,Eλ)→ Coef(X,Eλ)

and f0∗ : Coef(Y0, Eλ)→ Coef(X0, Eλ) that are right adjoints to f ∗ and f ∗0 respectively.

Remark 1.3.4.3. We notice that when X0 = Spec(Fq) and f0 is the structural morphism, by

the adjuction property, for everyM∈ Coef(Y,Eλ), the push f∗M∈ Coef(Spec(F), Eλ) is the

vector space of global sections of M.

Proposition 1.3.4.4. Let (X0, x) and (Y0, y) be two smooth projective connected pointed vari-

eties such that x0 and y0 are rational points. For every admissible field Eλ, the projections of

X0 × Y0 to its factors induce an isomorphism

πλ1 (X ×F Y, x× y)
∼−→ πλ1 (X, x)× πλ1 (Y, y).
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Proof. Let’s denote f0 : X0 × Y0 → Y0 the projection to the second factor and g0 : X0 × y0 ↪→
X0 × Y0 the natural inclusion. The morphism g0 induces a closed immersion X0 ↪→ X0 × Y0

that we denote by the same letter. If ϕ and ψ are the morphisms induced by g and f on the

fundamental groups classifying geometric coefficient objects, we obtain a sequence

1→ πλ1 (X, x)
ϕ−→ πλ1 (X ×F Y, x× y)

ψ−→ πλ1 (Y, y)→ 1

with ψ ◦ ϕ trivial.

We want to use Theorem A.2.1 to show that it is an exact sequence. This will imply the

original statement. Let’s consider the sequence of functors

Coef(Y,Eλ)
f∗−→ Coef(X ×F Y,Eλ)

g∗−→ Coef(X,Eλ).

The point (i) of Theorem A.1 (loc. cit.) follows from the existence of a section of f0, namely the

closed immersion of x0× Y0 ↪→ X0× Y0. The point (ii) and (c) are consequence of the existence

of a retraction for g0, given by the first projection X0 × Y0 → X0.

We want to show now that (a) and (b) are satisfied. Let’s consider the commutative square

X0 × Y0 Y0

X0 y0

f0

g0

f ′0

g′0

where f ′0 is the restriction of f0 to X0 × y0 = X0 and g′0 is the closed immersion of y0 in Y0.

Lemma 1.3.4.5. For every geometric Eλ-coefficient object E, the adjuction morphism f ∗f∗E →
E is injective. Moreover, after applying g∗, the morphism g∗f ∗f∗E → g∗E makes g∗f ∗f∗E the

maximal trivial subobject of g∗E.

Proof. To show the injectivity of the adjuction morphism, we use the fiber functors of the

Tannakian categories, associated to the rational points we are considering. Let G and H be the

affine group schemes πλ1 (X ×F Y, x× y) and πλ1 (Y, y). We know that the functor f ∗ is equivalent

to the functor ResHG : RepEλ(H)→ RepEλ(G), induced by ψ : G→ H.

As we have already proven that ψ : G → H is surjective, the induction functor IndGH :

RepEλ(G)→ RepEλ(H) is well defined at the level of finite-dimensional representations and it

is the right adjoint of ResHG . If we take N := Ker(ψ), the functor IndGH sends V ∈ RepEλ(G) to

V N , the induced representation of H on the subspace of V fixed by N .

By the uniqueness of the right adjoint of f ∗, the counit of (f ∗, f∗) is isomorphic to the counit

of the adjunction (ResHG , IndGH), induced by ψ : G→ H. If we apply the counit of (ResHG , IndGH)

to a representation V ∈ RepEλ(G) we obtain the natural inclusion V N ↪→ V , in particular an

injective map. As a consequence, the maps induced by the counit of the adjunction (f ∗, f∗) on

geometric coefficient objects are always injective.
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We show now the second part of the statement. As g∗ commutes with the fiber functors, the

morphism g∗f ∗f∗E → g∗E is injective. We have natural isomorphisms,

g∗f ∗f∗E ' f ′∗g′∗f∗E ' f ′∗f ′∗g
∗E ,

the second one given by the proper base change. At the same time we know that f ′∗g
∗E '

H0(X, g∗E), in the p-adic case thanks to the Remark 1.3.4.3. Thus g∗f ∗f∗E ' f ′∗H0(X, g∗E) is

the maximal trivial subobject of g∗E , as we wanted.

We now verify (a). It is enough to show that if E is an Eλ-geometric coefficient object of

X ×F Y such that g∗E is trivial, then f ∗f∗E ' E . As g∗E is trivial, by Lemma 1.3.4.5, we know

that g∗f ∗f∗E and g∗E are isomorphic, thus f ∗f∗E and E have the same rank. Therefore we know

that the adjuction map f ∗f∗E → E is an injective map between two objects of the same rank.

This means that it is an isomorphism.

To check (b) we have to show that for every geometric coefficient object E , there exists

F ⊆ E , such that g∗F is the maximal trivial subobject of g∗E . We know by Lemma 1.3.4.5

that f ∗f∗E , equipped with the adjunction morphism f ∗f∗E → E , is a subobject of E . We also

know by the lemma that after applying g∗, the pullback g∗f ∗f∗E becomes the maximal trivial

subobject of g∗E . Thus F := f ∗f∗E fulfills the required property.

1.3.5 Rank 1 coefficient objects

This section is an interlude on rank 1 coefficient objects. One of the starting points of Weil II is

a finiteness result for rank 1 lisse sheaves, which is a consequence of class field theory. Thanks

to a reduction to unramified p-adic representations of the étale fundamental group, the same

statement is now known for overconvergent F -isocrystals of rank 1.

Theorem 1.3.5.1 ([Del80, Proposition 1.3.4], [Abe15, Lemma 6.1]). Let X0 be a smooth variety

over Fq. Every Eλ-coefficient object of rank 1 is a twist of a finite Eλ-coefficient object.

Corollary 1.3.5.2. For every Q`-coefficient object E0 over X0, there exist a positive integer n

and elements a1, . . . , an ∈ Q×` such that

E ss
0 '

n⊕
i=1

F (ai)
i,0 ,

where for each i the coefficient object Fi,0 is irreducible with finite order determinant. If E0 is

E-rational, the elements a1, . . . , an can be chosen so that arii ∈ E for every i, where ri is the

rank of Fi,0.

Corollary 1.3.5.2 is important as it allows to reduce many statements on coefficient objects

to the case of absolutely irreducible coefficient objects with finite order determinant. It is

convenient to introduce the following definitions.
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Definition 1.3.5.3 (Types). We denote by Θ` the torsion-free abelian group Q×` /µ∞(Q`). The

elements of Θ` will be called the (`-adic) types. We will refer to the class of 1 in Θ` as the

trivial type. Let E0 be a Q`-coefficient object and let a1, . . . , an ∈ Q×` be as in Corollary 1.3.5.2.

We denote by Θ(E0) the set of classes of a1, . . . , an in Θ`. They will be the types of E0. Notice

that Θ(E0) is a set which depends only on E0. We also denote by X(E0) the group generated by

Θ(E0) in Θ` and by X(E0)Q the Q-linear subspace X(E0)⊗Z Q ⊆ Θ` ⊗Z Q.

Theorem 1.3.5.1 is used to prove a global version of Grothendieck’s local monodromy theorem,

usually known as the global monodromy theorem. Here the extension to F -isocrystals is due to

Crew.

Theorem 1.3.5.4 (Grothendieck, Crew). For every coefficient object E0, the radical subgroup6

of G(E , x) is unipotent.

Proof. In the case of lisse sheaves, this is a theorem of Grothendieck, and it is proven in [Del80,

Théorème 1.3.8]. In the p-adic case, Crew has proven the result when X0 is a smooth curve

[Cre92a, Theorem 4.9]. One obtains the result in higher dimensions replacing [ibid., Proposition

4.6] by Proposition 1.3.3.4 and [ibid., Corollary 1.5] by Theorem 1.3.5.1.

Corollary 1.3.5.5. Let E0 be a geometrically semi-simple coefficient object. The neutral com-

ponent G(E , x)◦ is a semi-simple algebraic group which coincides with the derived subgroup of

G(E0, x)◦.

Proof. By Cororollary 1.3.6.4, the geometric coefficient object E is semi-simple, thus the al-

gebraic group G(E , x)◦ is reductive. Thanks to Theorem 1.3.5.4, this implies that G(E , x)◦ is

semi-simple, therefore

G(E , x)◦ = [G(E , x)◦, G(E , x)◦] ⊆ [G(E0, x)◦, G(E0, x)◦] .

By Proposition 1.3.2.6.(iv), the quotient G(E0, x)◦/G(E , x)◦ is commutative, hence

[G(E0, x)◦, G(E0, x)◦] ⊆ G(E , x)◦.

This concludes the proof.

Thanks to Theorem 1.3.5.1, one can even prove that, under certain assumptions, the neutral

component of the arithmetic monodromy group is semi-simple and it is equal to the neutral

component of the geometric monodromy group. These results can be found for lisse sheaves in

[Dri18, §3.6].

6For us, the radical subgroup of an algebraic group will always be connected by definition.
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Proposition 1.3.5.6. For every coefficient object E0 and every connected finite étale cover

f0 : (Y0, y)→ (X0, x), we have Θ(E0) = Θ(f ∗0E0).

Proof. After taking semi-simplification and twists, we may assume that E0 is absolutely irre-

ducible with finite order determinant. In this case, the result is proven in [Dri18, Proposition

3.6.1] for lisse sheaves. The proof is the same for overconvergent F -isocrystals, as they satisfy

étale descent by [Ete02].

Proposition 1.3.5.7. Let E0 be a Q`-coefficient object. The following properties are equivalent.

(i) The algebraic group G(E0, x)◦ is semi-simple and it is equal to G(E , x)◦.

(ii) The coefficient object E0 is semi-simple and has trivial types.

In particular, semi-simple coefficient objects with trivial types form a Tannakian subcategory of

Coef(X0,Q`).

Proof. If E0 is a coefficient object which satisfies (i), all the rank 1 coefficient objects in 〈E0〉
have finite order under tensor. Thus, if Q(a)

` ∈ 〈E0〉 with a ∈ Q`, then a is a root of unity.

This implies that every type of E0 is trivial. Conversely, let us assume now that E0 satisfies (ii).

Thanks to Proposition 1.3.3.4, there exists a connected finite étale cover f0 : (Y0, y) → (X0, x)

such that G(f ∗0E0, y)
∼−→ G(E0, x)◦ and G(f ∗E , y)

∼−→ G(E , x)◦. By Proposition 1.3.5.6, the inverse

image f ∗0E0 satisfies the same assumptions as E0. We have reduced the problem to the case when

G(E0, x) is connected. Thus it is enough to show that the center Z of G(E0, x) is finite.

We notice that we may also assume E0 irreducible. Indeed, if E0 = F0 ⊕ G0 and Z1 and

Z2 are the centers of G(F0, x) and G(G0, x) respectively, then Z ⊆ Z1 × Z2. Therefore, if

Z1 and Z2 are finite the same holds for Z. Since Z is a group of multiplicative type, its

representation on ωx,Q`(E0) decomposes as a direct sum of characters
⊕r

i=1 χi, where r is the

rank of E0. By construction, the representation is faithful, thus χ1, . . . , χr generate the group

of all the characters of Z. On the other hand, as E0 is irreducible, the characters χ1, . . . , χr are

all isomorphic. Hence, by the assumption on the determinant, they are also finite. This implies

that the group of characters of Z is finite, hence Z is finite. This proves that G(E0, x) is semi-

simple. By virtue of Proposition 1.3.2.6, the quotient G(E0, x)/G(E , x) is a commutative group.

Since G(E0, x) is semi-simple, this implies that G(E0, x)/G(E , x) is finite, as we wanted.

Corollary 1.3.5.8. Let E0 be a Q`-coefficient object.

(i) For every F0 ∈ 〈E0〉, we have Θ(F0) ⊆ X(E0).

(ii) There exists a canonical map X∗(G(E0, x))→ X(E0) which becomes an isomorphism when

we tensor by Q.
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Proof. It is enough to prove (i) for the objects of the form E⊗m0 ⊗ (E∨0 )⊗n with m,n ∈ N. In

addition, we may assume that E0 has only one type. Write E0 as F (a)
0 with F0 with trivial types.

By 1.3.5.7, the coefficient object F⊗m0 ⊗ (F∨0 )⊗n has trivial types. Therefore, E⊗m0 ⊗ (E∨0 )⊗n

has type (m − n)[a] ∈ X(E0). This proves part (i). Let X∗(G(E0, x)) → X(E0) be the map

which associates to a rank 1 coefficient object its type. After tensoring by Q, the map becomes

injective, as a rank 1 coefficient object of trivial type has finite order under tensor. To prove

the surjectivity we have to prove that for every type [a] of E0, there exists n ≥ 1 and a rank 1

coefficient object L0 ∈ 〈E0〉 of type [an]. Since, by definition, there exists an irreducible object

F0 ∈ 〈E0〉 of type [a], we can pick L0 := det(F0).

1.3.6 Weights

In Weil II Deligne introduced the theory of weights for lisse sheaves. The same theory is now

available for overconvergent F -isocrystals, thanks to the work of Kedlaya in [Ked06]. Here the

main theorem.

Theorem 1.3.6.1 (Deligne, Kedlaya). Let X0 be a smooth geometrically connected variety over

Fq and E0 a ι-mixed coefficient object over X0 of ι-weights ≤ w. If α is an eigenvalue of F

acting on Hn
c (X, E), then |ι(α)| ≤ q(w+n)/2.

Proof. For lisse sheaves this is the main result in [Del80]. For overconvergent F -isocrystals it is

proven by Kedlaya in [Ked06].

Corollary 1.3.6.2. Let

0→ F0 → E0 → G0 → 0

be an exact sequence of coefficient objects such that F0 and G0 are ι-pure of weights w1 and w2

respectively.

(i) If w1 > w2 − 1 the sequence splits geometrically.

(ii) If w1 6= w2 and the sequence splits geometrically, then it splits.

Proof. We have an exact sequence

0→ Hom(G,F)F → Ext1(G0,F0)→ Ext1(G,F)F .

The group Ext1(G,F) is equal to H1(X,F ⊗G∨) and the coefficient object F0⊗G∨0 is ι-pure of

weight w1 − w2. Thus, by Theorem 1.3.6.1, the weights of H1(X,F ⊗ G∨) are at least equal to

w1 − w2 + 1. When w1 > w2 − 1, then H1(X,F ⊗ G∨) has positive weights, which implies that

F does not admit fixed points. Therefore in this case Ext1(G,F)F vanishes, which implies (i).

For (ii), suppose that the class associated to our extension is zero in Ext1(G,F), then it comes

from Hom(G,F)F . As F0 ⊗ G∨0 does not admit ι-weight 0 by assumption, Hom(G,F)F = 0,

hence the result.
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Corollary 1.3.6.3. For every ι-mixed coefficient object there exists an increasing filtration

0 = W−1(E0) ( W0(E0) ( · · · ( Wn(E0) = E0

where for every 0 ≤ i ≤ n, the quotient Wi(E0)/Wi−1(E0) is ι-pure of weight wi and w0 < w1 <

· · · < wn.

Corollary 1.3.6.4. Every ι-pure coefficient object is geometrically semi-simple. Conversely,

every ι-mixed geometrically semi-simple coefficient object is a direct sum of ι-pure coefficient

objects.

1.3.6.5. For every Q`-coefficient object E0 on X0, we can put together all the characteristic

polynomials at closed points and form a formal series

LX0(E0, t) :=
∏

x0∈|X0|

Px0(E0, t
deg(x0))−1 ∈ Q`[[t]].

This is called the L-function of E0.

Theorem (Trace formula). If X0 is geometrically connected over Fq, for every coefficient object

E0 we have

LX0(E0, t) =
2d∏
i=1

det(1− Ft,H i
c(X, E))(−1)i+1

.

Proof. For lisse sheaves, this is the classical Grothendieck’s formula, in the p-adic case see [ES93,

Théorème 6.3].

Thanks to the theory of weight, this formula can be used to compare the global sections of

compatible coefficient objects. The theory of weights is needed to control the possible cancella-

tions between the factors of the numerator and the denominator.

Proposition 1.3.6.6 ([Laf02, Cor. VI.3], [Abe18, Prop. 4.3.3]). Let X0 be a smooth geometri-

cally connected variety over Fq of dimension d. For every ι-pure coefficient object E0 of ι-weight

w, the dimension of H0(X, E) is equal to the number of poles of ι(L(X0, E∨0 (d))), counted with

multiplicity, with absolute value qw/2. If we also assume E0 to be semi-simple, the dimension of

H0(X0, E0) is equal to the order of the pole of L(X0, E∨0 (d)) at 1.

Proof. By Poincaré duality, the dimension of H0(X, E) is equal to the dimension of

H2d
c (X, E∨(d)) and the eigenvalues of F acting on H2d

c (X, E∨(d)) have ι-weight −α. At the

same time, by Theorem 1.3.6.1, for every 0 ≤ i ≤ 2d, the groups H i
c(X, E∨(d)) have ι-weights

less or equal than −α − 2d + i. The first part of the statement is then a consequence of the

trace formula (Theorem 1.3.6.5) applied to L(X0, E∨0 (d)). Indeed, by the observations on the
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weights, the polynomial det(1− Ft,H2d
c (X, E∨(d))) is relatively prime to the numerator of the

L-function. Hence, the number of poles of ι(L(X0, E∨0 (d))) with absolute value qw/2 is equal to

deg(det(1− Ft,H2d
c (X, E∨(d)))) = dim(H0(X, E)).

For the second part, we also use that by assumption the endomorphism F acts semi-simply

on H0(X, E). In particular, the geometric and the algebraic multiplicities of the eigenvalue 1

are the same. Therefore, thanks to Poincaré duality, the dimension of H0(X0, E0) is equal to

the multiplicity of 1 of det(1− Ft,H2d
c (X, E∨(d))). By the previous reasoning, this is the same

as the order of the pole of L(X0, E∨0 (d)) at 1.

Corollary 1.3.6.7. Let (X0, x) be a smooth connected pointed variety over Fq, let E0 and F0 be

E-compatible coefficients objects and suppose that E0 is ι-mixed. The following statements are

true.

(i) If E0 and F0 are geometrically semi-simple, then dim(H0(X(x), E)) = dim(H0(X(x),F)).

(ii) If E0 and F0 are semi-simple, then dim(H0(X0, E0)) = dim(H0(X0,F0)).

Proof. We may assume X0 to be geometrically connected over Fq by extending the base field.

Let Q`′ be the algebraic closure of the field of scalars of F0. Let ι′ : Q`′
∼−→ C be an isomorphism

which agrees with ι on E. Then F0 is ι′-mixed and its weights are equal to the ones of E0. In

addition, if W∗(E0) and W∗(F0) are the weight filtrations of Corollary 1.3.6.3, for each i the

quotients Wi(E0)/Wi−1(E0) and Wi(F0)/Wi−1(F0) are E-compatible. By the geometric semi-

simplicity assumption, it is enough to check (i) on these subquotients. But in this case, this

follows by Proposition 1.3.6.6. For (ii) we argue similarly.

Proposition 1.3.6.8. Two ι-mixed Q`-coefficient objects with the same characteristic polyno-

mial functions have isomorphic semi-simplifications.

Proof. For étale lisse sheaf, this is the classical Čebotarev’s density theorem, explained in [Ser66,

Theorem 7]. For general lisse sheaf, one can take the semi-simplification and then take suitable

twists of the absolutely irreducible components, to reduce to the étale case, by [Del80, Propo-

sition 1.3.14]. In this case, the assumption that the coefficient object is ι-mixed is not needed.

For the p-adic case the statement was proven by Tsuzuki using Proposition 1.3.6.6, see [Abe18,

A.3]. His proof works for ι-mixed lisse sheaves as well.

Remark 1.3.6.9. We will see later that thanks to the Langlands correspondence, it is possible

to show that every coefficient object is ι-mixed (Theorem 1.3.7.6). Therefore, Proposition 1.3.6.8

applies to every coefficient object.
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1.3.7 Deligne’s conjecture

We are ready to present Conjecture 1.1.1.1 for arbitrary coefficient objects. The extension of the

statement to overconvergent F -isocrystals was firstly proposed by Crew in [Cre92a, Conjecture

4.13]. This corresponds to the choice of the category of overconvergent F -isocrystals as a possible

candidate for Deligne’s “petits camarades cristallins”.

Conjecture 1.3.7.1. Let X0 be a smooth variety over Fq, let ` be a prime number and let E0 be

an absolutely irreducible Q`-coefficient object whose determinant has finite order. The following

statements hold.

(i) E0 is pure of weight 0.

(ii) There exists a number field E ⊆ Q` such that E0 is E-rational.

(iii) E0 is p-plain.

(iv’) If E is a number field as in (ii), then for every prime `′ (even `′ = ` or `′ = p) and for

every inclusion τ : E ↪→ Q`′, there exists an absolutely irreducible Q`′-coefficient object,

E-rational with respect to τ , which is E-compatible with E0.

We shall see that the conjecture, except part (iv’), is now known to be true. The missing

case of (iv’) is when `′ = p and X0 has dimension at least 2. We will postpone the discussions

on the analogue of Conjecture 1.1.1.1.(iv) in §1.3.8. We first recall an equivalent form of (i),

which for lisse sheaves is [Del80, Conjecture 1.2.9].

Conjecture 1.3.7.2. Every Q`-coefficient object on X0 is ι-mixed.

Proposition 1.3.7.3. Conjecture 1.3.7.1.(i) is equivalent to Conjecture 1.3.7.2.

Proof. We first prove that Conjecture 1.3.7.1.(i) implies Conjecture 1.3.7.2. By taking Jordan–

Hölder filtrations, Conjecture 1.3.7.2 reduces to the case of irreducible Q`-coefficient objects.

Let E0 be an irreducible Q`-coefficient objects. Thanks to Corollary 1.3.5.2, it is isomorphic to

F (a)
0 , where F0 is an irreducible Q`-coefficient object with finite order determinant and a ∈ Q×` .

By Conjecture 1.3.7.1.(i), the coefficient object F0 is ι-pure of weight 0, thus E0 is ι-pure of

ι-weight 2 logq(|ι(a)|). This gives the desired result.

Conversely, assume Conjecture 1.3.7.2 and let E0 be a Q`-coefficient object with finite order

determinant. Then, E0 is ι-pure for every isomorphism ι : Q`
∼−→ C. Since its determinant has

finite order, all the ι-weights of E0 are 0. This shows that E0 is pure of weight 0 (in particular,

E0 is algebraic).

When X0 is a smooth curve, Conjecture 1.3.7.1 is a consequence of the Langlands correspon-

dence for GLr, over function fields, and the Ramanujan–Petersson conjecture. The Langlands

correspondence for lisse sheaves and the Ramanujan–Petersson conjecture was proven by L.

Lafforgue. Abe proved later the Langlands correspondence for overconvergent F -isocrystals.

37



Theorem 1.3.7.4 ([Laf02, Théorème VII.6], [Abe18, §4.4]). If X0 is a smooth curve, Conjecture

1.3.7.1 and Conjecture 1.3.7.2 are true.

The extension of the results to higher dimensional varieties is performed via a reduction to

curves. One of the key ingredients is a Lefschetz theorem for coefficient objects.

Theorem 1.3.7.5 (Katz, Abe–Esnault). Let X0 be a smooth geometrically connected variety

over Fq. For every lisse sheaf E0 over X0 and every reduced finite closed subscheme S0 ⊆ X0,

there exists a geometrically connected smooth curve C0 and a morphism f0 : C0 → X0 with

a section S0 → C0, such that the inverse image functor 〈E0〉 → 〈f ∗0E0〉 is an equivalence of

categories. The same is true when E0 is a ι-pure overconvergent F -isocrystal.

Proof. For lisse sheaves see [Kat99, Lemma 6 and Theorem 8] as well as [Kat01]. In the p-adic

case see the (proof of) [AE16, Theorem 3.10].

Thanks to Theorem 1.3.7.5 and the work of Deligne in [Del12], the first three parts of the

conjecture follow from the curves’ case.

Theorem 1.3.7.6 (L. Lafforgue, Abe, Deligne, Abe–Esnault, Kedlaya). Parts (i), (ii) and (iii)

of Conjecture 1.3.7.1 and Conjecture 1.3.7.2 are true for every smooth variety over Fq.

Proof. For lisse sheaves, parts (i) and (iii) follow directly from Theorem 1.3.7.4, thanks to

Theorem 1.3.7.5. Switching to overconvergent F -isocrystals, Conjecture 1.3.7.2 is proven in

[AE16, Theorem 2.7] and independently in [Ked18, Theorem 3.1.9]. This implies Conjecture

1.3.7.1.(i) for overconvergent F -isocrystals. Part (iii) then follows from Theorem 1.3.7.4 thanks

to (i) and Theorem 1.3.7.5. Part (ii) is proven in [Del12, Theorem 3.1] for lisse sheaves and in

[AE16, Lemma 4.1] and [Ked18, Theorem 3.4.2] for overconvergent F -isocrystals.

The generalization of part (iv’) to higher dimensional varieties is yet incomplete. For the

moment we know how to construct from a coefficient object of both kinds, compatible lisse

sheaves. In dimension greater than one, we do not know how to construct, in general, compatible

overconvergent F -isocrystals.

Theorem 1.3.7.7 (L. Lafforgue, Abe, Drinfeld, Abe–Esnault, Kedlaya). Let X0 be a smooth

variety over Fq and E a number field. Let E0 be an absolutely irreducible E-rational coefficient

object with finite order determinant on X0. For every prime ` different from p and every

embedding τ : E ↪→ Q`, there exists a Q`-coefficient object which is E-rational with respect to τ

and E-compatible with E0.

Proof. Drinfeld has proven the theorem when E0 is a lisse sheaf [Dri12]. The proof uses L.

Lafforgue’s result and a certain gluing theorem for lisse sheaves [ibid., Theorem 2.5]. The gluing

theorem is inspired by the seminal work of Wiesend in [Wie06]. When E0 is an overconvergent F -

isocrystal the result was proven in [AE16] and later in [Ked18]. They both use Drinfeld’s gluing
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theorem for lisse sheaves. In [AE16] they prove and use Theorem 1.3.7.5 for overconvergent

F -isocrystals. In [Ked18] it is proven a weaker form, namely [ibid., Lemma 3.2.1], which is

enough to conclude.

The known parts of Deligne’s conjecture have many important consequences. First, as every

coefficient object is ι-mixed, one may apply Proposition 1.3.6.8 to every coefficient object. We

list here other corollaries, which we will use later.

Corollary 1.3.7.8. Let E0 and F0 be two compatible coefficient objects. If E0 is absolutely

irreducible, the same is true for F0. Moreover, if E is absolutely irreducible, even F is absolutely

irreducible.

Proof. Suppose that the coefficient object E0 is absolutely irreducible. Then by Theorem 1.3.7.6,

E0 is ι-pure. Thus the coefficient object End(E0) is semi-simple and pure of weight 0. Since E0

is absolutely irreducible, the vector space End(E0) = H0(X0, End(E0)) is one dimensional. After

replacing F0 by its semi-simplification, we may assume that it is a semi-simple coefficient object.

Thus, the coefficient object End(F0) is a semi-simple coefficient object which is compatible with

End(E0). By Corollary 1.3.6.7, the vector space End(F0) is one dimensional as well. This implies

that F0 is absolutely irreducible, as we wanted. For the second part of the statement we proceed

in the same way, applying Corollary 1.3.6.7 to End(E) and End(F).

Corollary 1.3.7.9. For every algebraic Q`-coefficient object E0, there exists a number field

E ⊆ Q`, such that E0 is E-rational.

Proof. It is enough to prove the result when E0 is absolutely irreducible. Thanks to Corol-

lary 1.3.5.2, the coefficient object E0 is isomorphic to F (a)
0 , where F0 is a coefficient object with

finite order determinant and a ∈ Q×` . As the determinant characters of E0 and F0 are algebraic,

even the number a is algebraic. Theorem 1.3.7.6 implies that F0 is E-rational for some number

field E ⊆ Q`, thus E0 is E(a)-rational.

Finally, thanks to Theorem 1.3.7.6, we also have following analogue of [Moc04, Theorem 7.1]

for smooth varieties over finite fields.

Corollary 1.3.7.10. Over a smooth variety over Fq, a Q`-coefficient object is geometrically

semi-simple if and only if it is a direct sum of ι-pure Q`-coefficient objects. In particular, for

every morphism f0 : Y0 → X0 of smooth varieties, if E0 is a geometrically semi-simple coefficient

object over X0, then f ∗0E0 is a geometrically semi-simple coefficient object over Y0.

Proof. Thanks to Theorem 1.3.7.6, every coefficient object is ι-mixed. Therefore, by Corol-

lary 1.3.6.4 we get the first part of the result. The property of a coefficient object to be a direct

sum of ι-pure coefficient objects is manifestly preserved by the inverse image functor f ∗0 . This

concludes the proof.
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1.3.8 Compatible systems

Thanks to Theorem 1.3.7.7, from a coefficient object which satisfies suitable properties, we

can construct many compatible coefficient objects with different fields of scalars. Looking at

Conjecture 1.1.1.1.(iv), one notices that Deligne also predicted that these fields should be the

completions at different finite places of a given number field. It is possible to upgrade The-

orem 1.3.7.7 to a stronger form thanks to the work of Chin in [Chi03]. To state the result,

we use Serre’s notion of compatible systems, which we extend to arbitrary coefficient objects.

As we cannot construct, at the moment, p-adic companions in general, we do not ask that the

compatible system contains a p-adic coefficient object for every p-adic place. On the other hand,

we do ask that it includes lisse sheaves for every finite place which do not divide p.

Definition 1.3.8.1 (Compatible systems). If E is a number field, an E-compatible system over

X0, denoted E0, is the datum of a set Σ of finite places of E containing |E|6=p and a family

{Eλ,0}λ∈Σ, where each Eλ,0 is an E-rational Eλ-coefficient object and every pair of coefficient

objects is E-compatible. For every λ, the coefficient object Eλ,0 will be the λ-component of the

compatible system.

If E ⊆ E ′ is a finite extension of number fields and E0 is an E-compatible system, the

compatible system obtained from E0 by extending the scalars to E ′ will be the E ′-compatible

system {E ′λ′,0}λ′∈Σ′ , where Σ′ is the set of places of E ′ over the places in Σ and for every λ′ ∈ Σ′

over λ ∈ Σ, the λ′ component is E ′λ′,0 := Eλ,0⊗EλE ′λ′ . We say that a compatible system is trivial,

geometrically trivial, pure, irreducible, absolutely irreducible or semi-simple if each λ-component

has the respective property.

Theorem 1.3.8.2 (after Chin). Let X0 be a smooth variety over Fq and E0 an algebraic Q`-

coefficient object of X0. There exists a number field E, a finite place ν ∈ |E| and an E-compatible

system E0, such that E0 is a ν-component of E0. When X0 is a curve, we can further find such

an E-compatible system E0 with Σ = |E|.

Proof. By extending the field of scalars of E0 and taking semi-simplification, we reduce to the

case when E0 is absolutely irreducible. By Corollary 1.3.7.9, the coefficient object E0 is E-

rational. Thus, thanks to Corollary 1.3.5.2, after possibly enlarging E there exists a ∈ E×

such that E0 is isomorphic to F (a)
0 , where F0 is an E-rational coefficient object with finite order

determinant. When ` 6= p, thanks to Theorem 1.3.7.7 and [Chi03, Main Theorem, page 3], after

possibly enlarging E again, the lisse sheaf F0 sits in an E-compatible system. By twisting all

the components by a, the same holds true for E0. When ` = p, thanks to Theorem 1.3.7.7, E0 is

E-compatible with some lisse sheaf V0. The result then follows from the previous case.

When X0 is a curve, we obtain the stronger result thanks to the existence of p-adic compan-

ions provided by Theorem 1.3.7.4. After possibly replacing E with a finite extension, we may

add to the compatible system previously constructed λ-components, for every place λ which
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divides p. Here we do not need a new finiteness result for overconvergent F -isocrystals, namely

a p-adic analogue of Chin’s theorem, because the set of places we are adding is finite.

Remark 1.3.8.3. Even if a coefficient object E0 is E-rational for some number field E, it could

be still necessary to enlarge E to obtain the E-compatible system E0. For example, let Q8 be

the quaternion group and let X0 be a connected smooth variety that admits a Galois cover with

Galois group Q8. Let H be the natural four-dimensional Q-linear representation of Q8 on the

algebra of Hamilton’s quaternions.

The representation H⊗QQ` is irreducible over Q` if and only if ` = 2. If we take ` 6= 2, then

H⊗Q Q` decomposes as a direct sum of two copies of an absolutely irreducible two dimensional

Q`-representation V` with traces in Q. The representation V` corresponds to an absolutely irre-

ducible Q-rational Q`-coefficient object which does not admit any Q-compatible Q2-coefficient

object. Indeed, suppose that there exists a semi-simple Q2-coefficient object V2, that is Q-

compatible with V`. Then V ⊕2
2 would be Q-compatible with H⊗Q Q2. By Proposition 1.3.6.8,

the coefficient object V ⊕2
2 would be isomorphic to H ⊗Q Q2. However, this is impossible, as

H⊗Q Q2 is irreducible.

1.4 Independence of monodromy groups

1.4.1 The group of connected components

In [Ser00] and [LP95, Proposition 2.2] Serre and Larsen–Pink have proven some results of `-

independence for the groups of connected components of the monodromy groups of lisse sheaves.

In this section, we shall generalize their results to general coefficient objects. We will adapt

Larsen–Pink’s proof. The main issue for p-adic coefficient objects is to relate the monodromy

groups with the étale fundamental group of X0. We have already treated this problem in §1.3.3.

By Proposition 1.3.3.3, for every coefficient object E0 we have functorial surjective morphisms

ψE0 : πét
1 (X0, x)→ π0(G(E0, x)) and ψE : πét

1 (X, x)→ π0(G(E , x)) of profinite groups.

Theorem 1.4.1.1. Let (X0, x) be a smooth geometrically connected pointed variety over Fq. Let

E0 and F0 be two compatible Eλ-coefficient objects over X0.

(i) There exists an isomorphism ϕ0 : π0(G(E0, x))
∼−→ π0(G(F0, x)) as abstract finite groups,

such that ψF0 = ϕ0 ◦ ψE0.

(ii) The isomorphism ϕ0 restricts to an isomorphism ϕ : π0(G(E , x))
∼−→ π0(G(F , x)).

Following [LP95, Proposition 2.2], we need two lemma to prove Theorem 1.4.1.1.

Construction 1.4.1.2. Let E0 be a Eλ-coefficient object of rank r. We fix a basis of ωx,Eλ(E0)

and we take the representation ρE0 : G(E0, x) → GLr,Eλ associated to E0. For every Q-linear
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representation θ : GLr,Q → GL(V ) we denote by E0(θ) the coefficient object associated to

(θ⊗QEλ) ◦ρE0 . Even if E0(θ) depends on the choice of a basis, its isomorphism class is uniquely

determined.

Lemma 1.4.1.3. Let E0 and F0 be compatible semi-simple objects. For every representation

θ of GLr,Q, we have that dim(H0(X, E(θ))) = dim(H0(X,F(θ))) and dim(H0(X0, E0(θ))) =

dim(H0(X0,F0(θ)))

Proof. Each pair (E0(θ),F0(θ)) is again compatible and semi-simple. Moreover, by Theorem

1.3.7.6, for every representation θ, the coefficient object E0(θ) is ι-mixed. Therefore, for every

θ, we may apply Corollary 1.3.6.7 to (E0(θ),F0(θ)).

Remark 1.4.1.4. Using the terminology of [LP90], Lemma 1.4.1.3 proves that G(E , x) and

G(F , x) (resp. G(E0, x) and G(F0, x)) have the same dimension data.

Lemma 1.4.1.5 ([LP95, Lemma 2.3]). Let K be a field and G a reductive algebraic subgroup of

GLr,K. If for every finite-dimensional representation V of GLr,K the dimension of V G◦ is equal

to the dimension of V G, then the group G is connected.

1.4.1.6Proof of Theorem 1.4.1.1. We explain the proof for the arithmetic monodromy groups.

For the geometric monodromy groups the proof is the same mutatis mutandis.

We notice that taking semi-simplification we do not change the group of connected compo-

nents of the arithmetic monodromy group. Thus we reduce to the case when F0 and G0 are

semi-simple. We firstly prove a weaker statement.

(i’) G(E0, x) is connected if and only if G(F0, x) is connected.

For every finite étale connected cover f0 : Y0 → X0, we denote by aY0 and bY0 the functions from

the set of isomorphism classes of representations of GLr,Q to the natural numbers, defined by

aY0(θ) := dim(H0(Y0, (f
∗
0E0)(θ))) and bY0(θ) := dim(H0(Y0, (f

∗
0F0)(θ))).

By Lemma 1.4.1.3, for every finite étale connected cover Y0 → X0, we have aY0 = bY0 . Suppose

that G(E0, x) connected. By Proposition 1.3.3.4, for every étale connected cover f0 : (Y0, y) →
(X0, x), the groups G(f ∗0E0, y) and G(E0, x) are isomorphic via the natural morphisms, thus

the functions aY0(θ) and aX0(θ) are equal. Thanks to Proposition 1.3.3.3, we also know that

there exists an étale Galois cover f0 : (Y0, y) → (X0, x) such that G(f ∗0F0, y) is isomorphic to

G(F0, x)◦. The functions bY0(θ) and bX0(θ) are equal because of the comparison with aY0(θ)

and aX0(θ). Therefore, by Lemma 1.4.1.5, the group G(F0, x) is connected. This concludes the

proof of (i’).

To prove (i) we show that Ker(ψE0) and Ker(ψF0) are the same subgroups of πét
1 (X0, x).

By symmetry it is enough to show that Ker(ψE0) ⊆ Ker(ψF0). This is equivalent to proving
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that if f0 : (Y0, y) → (X0, x) is the Galois cover associated to Ker(ψE0), then the natural map

Ker(ψE0) → πét
1 (X0, x)/Ker(ψF0) is the trivial map. In other words, it is enough to show that

G(f ∗0F0, y) is connected. As G(f ∗0E0, y) is connected by construction, this is a consequence of

(i’).

1.4.2 Frobenius tori

We extend here the theory of Frobenius tori developed by Serre and Chin in [Ser00] and [Chi04,

§5.1] to algebraic coefficient objects over varieties of arbitrary dimension. The result for overcon-

vergent F -isocrystal is completely new. In §3, it is used to get information on the monodromy

groups of convergent F -isocrystals.

Construction 1.4.2.1 (Frobenius tori). For every Eλ-coefficient object E0 and every closed

point i0 : x0 ↪→ X0 we have a functor 〈E0〉 → 〈i∗0E0〉 of inverse image. For every F-point x over

x0, this functor induces a closed immersion G(i∗0E0, x) ↪→ G(E0, x). Let Fx0 be the E
(x0)
λ -point

of G(i∗0E0, x) corresponding to the Frobenius automorphism and let F ss
x0

be its semi-simple part.

The Zariski closure of the group generated by F ss
x0

is the maximal subgroup of multiplicative

type of G(i∗0E0, x). This will be called the Frobenius group attached to x0 and it will be denoted

by M(E0, x). Its connected component will be the Frobenius torus attached to x0, denoted by

T (E0, x). If E0 is E-rational, the torus T (E0, x) descends to a torus T̃ (E0, x) over E, such that

T (E0, x) ' T̃ (E0, x)⊗E E(x0)
λ .

To prove our main theorem on Frobenius tori we first need another outcome of Deligne’s

conjecture. This is a finiteness result for the set of all the possible valuations of the eigenvalues

of the Frobenii at closed points.

Notation 1.4.2.2. Let us fix a prime `. For every prime `′ (even `′ = ` or `′ = p), we denote

by I`′(Q`) the set of field isomorphisms Q`
∼−→ Q`′ and by I∞(Q`) the set of field isomorphisms

Q`
∼−→ C. For every `′ 6= p we endow Q`′ with the `′-adic valuation v : (Q×`′ ,×) → (R,+),

normalized such that v(`′) = 1. On Qp we consider the p-adic valuation v, normalized so that

v(q) = 1. Finally, we endow C with the morphism v : (C×,×)→ (R,+) defined by a 7→ logq(|a|).

Definition 1.4.2.3. Let E0 be a Q`-coefficient object. For every closed point x0 ∈ |X0|, let

Ax0(E0) be the set of Frobenius eigenvalues at x0. For ∗ = `′,∞ we define

V∗(E0) :=
{
v(ι(a))/ deg(x0) | x0 ∈ |X0|, a ∈ Ax0(E0), ι ∈ I∗(Q`)

}
.

We denote by V6=p(E0) the union of all the subsets V`′(E0) ⊆ R with `′ 6= p and V∞(E0) ⊆ R and

by V (E0) the subset Vp(E0) ∪ V6=p(E0) ⊆ R.
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We also define for ∗ = `′,∞, the set

V Θ
∗ (E0) :=

{
v(ι(a)) | [a] ∈ Θ(E0), ι ∈ I∗(Q`)

}
and V Θ

6=p(E0) and V Θ(E0) as before (cf. §1.3.5.3).

Proposition 1.4.2.4. Let E0 be a Q`-coefficient object.

(i) V 6=p(E0) = V Θ
6=p(E0).

(ii) If E0 is algebraic, the set V (E0) is finite.

Proof. By the definition of Θ(E0), it is enough to prove part (i) when E0 is irreducible with finite

order determinant. In this case, by Theorem 1.3.7.6, the coefficient object E0 is pure of weight

0 and p-plain. Therefore, we have V6=p(E0) = V Θ
6=p(E0) = {0}. When E0 is algebraic, by [Ked18,

Lemma-Definition 4.3.2], the set Vp(E0) is finite. Moreover, as the types of E0 are algebraic, the

set V Θ(E0) is finite as well. Thanks to part (i), this implies that V (E0) is finite.

1.4.2.5. Let (X0, x̃) be a smooth connected pointed variety over Fq and E0 an algebraic Q`-

coefficient object of rank r. Let GLr be the algebraic group GLr,Q` . For every x ∈ X0(F),

we choose an isomorphism between ωx̃,Q` and ωx,Q` (which exists by [Del90]) and a basis of

ωx̃,Q`(E0). This determines in turn an embedding G(E0, x) ↪→ GLr for every x. Let Gr
m ⊆ GLr

be the standard maximal torus. We denote by χ1, . . . , χr the standard basis of X∗(Gr
m). The

Frobenius torus T (E0, x) ⊆ G(E0, x) ↪→ GLr is conjugated, by a Q`-points of GLr, to some

subtorus Tx ⊆ Gr
m. The torus Tx is uniquely determined up to the action of the permutation

group Sr on Gr
m.

Definition. Let C(E0) be the set of GLr-conjugacy classes of Frobenius tori T (E0, x) where x

varies among the F-points of X0. Let D(E0) be the set of R-linear subspaces of X∗(Gr
m)R which

admit a set of generators in V (E0)r ⊆ X∗(Gr
m)R. We have a natural action of Sr on D(E0).

Proposition 1.4.2.6. Let E0 be an algebraic coefficient object. There exists an injective map

of sets δ : C(E0) ↪→ D(E0)/Sr.

Proof. Let x be an F-point of X0 and αx,1, . . . , αx,r the eigenvalues of the Frobenius at x.

We define Yx ⊆ Rr = X∗(Gr
m)R as the R-linear subspace generated by the elements yιx :=(

yιx,1, . . . , y
ι
x,1

)
, where ι is an element in I(Q`) and yιx,i := v(ι(αx,i)). By definition, Yx ∈

D(E0) and its class [Yx] in D(E0)/Sr does not depend on the order of the Frobenius eigenvalues

αx,1, . . . , αx,r. We set δ([Tx]) := [Yx]. We want to show that δ is injective.

The natural pairing (·, ·) : X∗(Gr
m) × X∗(Gr

m) → Z induces a map fx : X∗(Gr
m)Q →

Hom(Yx,R). The group X∗(Tx)Q is the quotient X∗(Gr
m)Q/Kx, where Kx is the Q-linear sub-

space of elements χ⊗ a/b in X∗(Gr
m)Q with χ|Tx of finite order under tensor. We want to prove
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that the Kernel of fx is Kx. In particular, that Yx uniquely determines Kx, hence the subtorus

Tx ⊆ Gr
m. We first prove that fx(Kx) = 0. Let χ = χ⊗a11 ⊗ · · · ⊗ χ⊗arr ∈ X∗(Gr

m) be a character

which is finite on Tx. Since (αx,1, . . . , αx,r) ∈ Tx(Q`), we have that βx := αa1x,1 · . . . · αarx,r is a root

of unity. Therefore, for every ι ∈ I(Q`),

fx(χ)(yιx) = a1y
ι
x,1 + · · ·+ ary

ι
x,r = v(ι(βx)) = 0.

This implies that fx(χ) = 0.

On the other hand, let χ = χ⊗a11 ⊗ . . .⊗χ⊗arr ∈ X∗(Gr
m) be a character which is sent to 0 by

fx. We want to show that the restriction of χ to Tx is finite. Since the subgroup generated by the

point (αx,1, . . . , αx,r) ∈ Tx(Q`) is Zariski dense in Tx, it is enough to show that βx := αa1x,1 . . . α
ar
x,r

is a root of unity. By the assumption E0 algebraic, we know that βx is an algebraic number.

Moreover, for every ι ∈ I(Q`), we have that v(ι(βx)) = a1y
ι
x,1 + · · · + ary

ι
x,r = fx(χ)(yιx) = 0.

Thus, by Kronecker’s theorem, βx is a root of unity.

Corollary 1.4.2.7. Let E0 be an algebraic Q`-coefficient object. The set C(E0) is finite.

Proof. By Proposition 1.4.2.4.(ii), the set V (E0) is finite. Therefore, by definition, D(E0) is finite

as well. Thanks to Proposition 1.4.2.6, this proves that C(E0) is finite.

From here we could prove directly Theorem 1.4.2.10 for étale lisse sheaves exploiting

Čebotarev’s density theorem as in the proof of [Ser00, Théorème at page 12]. We need in-

stead two other results to deal with non-étale lisse sheaves and p-adic coefficient objects.

Proposition 1.4.2.8 (after Larsen–Pink). Let E0 and F0 be two compatible coefficient objects

on X0. The reductive ranks of G(E0, x) and G(F0, x) are equal.

Proof. We may assume that E0 and F0 are semi-simple. Then the result follows from [LP90,

Proposition 1] applied to G(E0, x) and G(F0, x), thanks to Lemma 1.4.1.3.

Lemma 1.4.2.9. Let E0 be an E-compatible system. For all but finitely many λ ∈ |E|6=p, the

λ-component of E0 is an étale lisse sheaves.

Proof. Let E0 be a component of E0 and x0 a closed point of X0. As E0 is algebraic, for all

but finitely many primes ` 6= p, the Frobenius eigenvalues at x0 are `-adic units. Therefore, by

Proposition 1.3.1.17, for every λ ∈ |E| which divides such an `, the λ-component of E0 is an

étale lisse sheaf.

Theorem 1.4.2.10. Let X0 be a smooth connected variety over Fq and E0 an algebraic coefficient

object. There exists a Zariski-dense subset ∆ ⊆ X(F) such that for every F-point x ∈ ∆ and

every object F0 ∈ 〈E0〉, the torus T (F0, x) is a maximal torus of G(F0, x). Moreover, if G0 is a

coefficient object compatible with E0, the subset ∆ satisfies the same property for the objects in

〈G0〉.
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Proof. Let x be a geometric point and i0 : x0 ↪→ X0 the embedding of the underlying closed

point. For every object F0 ∈ 〈E0〉, we have a commutative square of functors

〈F0〉 〈E0〉

〈i∗0F0〉 〈i∗0E0〉.

i∗0 i∗0

It induces a square on monodromy groups

G(F0, x) G(E0, x)

M(F0, x) M(E0, x).

i0∗ i0∗

If T (E0, x) is a maximal torus in G(E0, x), then the same is true for T (F0, x) in G(F0, x) (see

for example [Hum75, Corollary C, page 136]). This shows that it is enough to prove the result

when F0 = E0. Moreover, we may assume that E0 is semi-simple, because semi-simplification

does not change the reductive rank of the monodromy group.

We notice that by Proposition 1.4.2.8, if G0 is a coefficient object compatible with E0, the

torus T (E0, x) is maximal in G(E0, x) if and only if T (G0, x) is maximal in G(G0, x). Therefore, it

is enough to prove the result for some coefficient object compatible with E0. By Theorem 1.3.8.2,

E0 sits in a semi-simple compatible system E0. By Lemma 1.4.2.9, there exists a component of

E0 which is an étale lisse sheaf. Let us denote it by V0. After replacing X0 by a connected finite

étale cover we may assume by Proposition 1.3.3.4 that G(V0, x) is connected for any choice of

x. We choose an F-point x̃ of X. By Corollary 1.4.2.7, the set of conjugacy classes of Frobenius

tori T (V0, x) in GL(ωx̃,Q`(V0)), where x varies among the F-points of X0, is finite. Arguing as

in [Ser00, theorem at page 12], as a consequence of Čebotarev’s density theorem for the étale

fundamental group of X0, there exists a Zariski-dense subset ∆ ⊆ X(F) such that for every

F-point x ∈ ∆, the torus T (V0, x) is maximal inside G(V0, x) (see also [Chi04, Theorem 5.7] for

more details). This concludes the proof.

Remark 1.4.2.11. In the proof of Theorem 1.4.2.10, we need the results of §1.3.7 to prove the

following properties of the coefficient object E0.

(i) E0 is ι-mixed.

(ii) The set V (E0) is finite.

(iii) E0 admits a compatible étale lisse sheaf.

For many coefficient objects “coming from geometry”, it is possible to prove these properties

directly, without using Theorem 1.3.7.4.
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1.4.3 The neutral component

We start with a first result on the independence of the neutral components of the monodromy

groups of coefficient objects. As in Theorem 1.4.1.1, the independence result we need is Corol-

lary 1.3.6.7.

Proposition 1.4.3.1. Let X0 be a smooth geometrically connected variety over Fq. Let E0 and

F0 be two compatible coefficient objects over X0.

(i) If E0 and F0 are semi-simple, E0 is finite if and only if F0 is finite.

(ii) If E0 and F0 are geometrically semi-simple, E is finite if and only if F is finite.

Proof. Thanks to Proposition 1.3.3.4, we may assume that the arithmetic and the geometric

monodromy groups of E0 and F0 are connected. By Theorem 1.3.7.6, we know that E0 and

F0 are ι-mixed. Thus, thanks to Corollary 1.3.6.7, the coefficient object E0 is trivial (resp.

geometrically trivial) if and only if the same is true for F0.

1.4.3.2. The next result we want to prove is a generalization of [Chi04, Theorem 1.4]. Let

(X0, x) be a smooth connected pointed variety over Fq. Let E be a number field and E0 a

semi-simple E-compatible system over X0. For every λ ∈ Σ, we denote by ρλ,0 the associated

representation on ωx,Eλ(Eλ,0).

Theorem. After possibly replacing E by a finite extension, there exists a connected split re-

ductive group G0 over E such that, for every λ ∈ Σ, the extension of scalars G0 ⊗E Eλ is

isomorphic to G(Eλ,0, x)◦. Moreover, there exists a faithful E-linear representation ρ0 of G0 and

isomorphisms ϕλ,0 : G0 ⊗E Eλ
∼−→ G(Eλ,0, x)◦ for every λ ∈ Σ such that ρ0 ⊗E Eλ is isomorphic

to ρλ,0 ◦ ϕλ,0.

Following Chin, we use a reconstruction theorem of a reductive group from the Grothendieck

semiring of its category of finite-dimensional representations.

Notation 1.4.3.3. If C is a Tannakian category, we denote by K+(C) its Grothendieck semir-

ing. If E0 is a coefficient object and C = 〈E0〉, we denote it by K+(E0). Finally, when

C = Rep(G) with G an algebraic group, we will write K+(G).

Theorem 1.4.3.4 ([Chi08, Theorem 1.4]). Let G and G′ be two connected split reductive groups,

defined over a field K of characteristic 0. Let T and T ′ be maximal tori of G and G′ respectively.

For every pair of isomorphisms ϕT ′ : T ′
∼−→ T and f : K+(G)

∼−→ K+(G′) making the following

diagram commuting
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K+(G) K+(G′)

K+(T ) K+(T ′),

f

ϕ∗
T ′

there exists an isomorphism ϕ : G′
∼−→ G of algebraic groups such that the induced homomorphism

ϕ∗ on the Grothendieck semirings is equal to f and the restriction of ϕ to T ′ is equal to ϕT ′.

Remark 1.4.3.5. The maximal tori that we will use to apply Theorem 1.4.3.4 will be the

Frobenius tori provided by Theorem 1.4.2.10. Suppose that E0 is a coefficient object and for

some F-point x, the group M(E0, x) is connected and T̃ (E0, x) is a split torus over E. Then, the

group of characters of T̃ (E0, x) is canonically isomorphic to the subgroup of E× generated by the

eigenvalues of Fx0 . The isomorphism is given by the evaluation of a character at the point F ss
x0

.

In particular, if E0 sits in an E-compatible system E0 and T̃ (Eλ,0, x) is split over E for one λ ∈ Σ

(or equivalently every λ ∈ Σ), the semirings K+(T̃ (Eλ,0, x)) are all canonically isomorphic when

λ varies in Σ. Moreover, notice that for every λ ∈ Σ, the semiring K+(T̃ (Eλ,0, x)) is canonically

isomorphic to K+(T (Eλ,0, x)).

The known cases of the companions conjecture provide isomorphisms of the Grothendieck

semiring of compatible objects. A bit surprisingly, we have these isomorphisms even if we do not

dispose, at the moment, of a general way to construct compatible overconvergent F -isocrystals

in dimension greater than 1.

Proposition 1.4.3.6. Let E0 and F0 be two compatible coefficient objects such that all the

irreducible objects in 〈E0〉 and 〈F0〉 are absolutely irreducible. There exists a unique isomorphism

of semirings K+(E0)
∼−→ K+(F0) preserving the characteristic polynomial functions.

Proof. The uniqueness and the injectivity of the map are consequences of Theorem 1.3.6.8 that

we can apply thanks to Theorem 1.3.7.6. By Theorem 1.3.8.2, when F0 is a lisse sheaf, there

exists a morphism of semirings f : K+(E0)→ K+(F0) preserving the characteristic polynomial

functions. We notice that to prove the final statement, it is enough to show that f is an

isomorphism in this case. Indeed if E0 and F0 are two compatible overconvergent F -isocrystals,

we can always find, by Theorem 1.3.8.2, a compatible lisse sheaf G0. Then, the isomorphism

K+(E0)
∼−→ K+(F0), is obtained via the composition

K+(E0)
∼−→ K+(G0)

∼−→ K+(F0).

By Corollary 1.3.7.8 and the hypothesis, f sends irreducible objects to irreducible ob-

jects. Hence, if [H0] ∈ K+(E0) and
∑n

i=0 mi[Hi
0] is the isotypic decomposition of [H0], then∑n

i=0 mif([Hi
0]) is the isotypic decomposition of f([H0]). In particular, a summand of an ele-

ment in the image of f is again in the image of f . By construction, we know that for every

n,m ∈ N, the classes
[
F⊗n0 ⊗ (F∨0 )⊗m

]
are in the image of f . This shows that f is surjective.
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Remark 1.4.3.7. The assumption that the irreducible objects in 〈E0〉 and 〈F0〉 are absolutely

irreducible is verified, for example, when G(E0, x) and G(F0, x) are split reductive groups. In

particular, it is always possible to obtain this condition after a finite extension of the fields of

scalars of the coefficient objects.

1.4.3.8Proof of Theorem 1.4.3.2. Thanks to Theorem 1.4.1.1, there exists a Galois cover of

X0 such that all the arithmetic monodromy groups of the compatible system are connected.

By Proposition 1.3.3.4, the neutral components of the monodromy groups remain unchanged

when we pass to the cover. By Remark 1.3.2.5, after extending E, we may change the F-point x

without changing the isomorphism class of the monodromy groups. Thanks to Theorem 1.4.2.10,

we may choose x, so that T (Eλ,0, x) is a maximal torus in G(Eλ,0, x) for every λ ∈ Σ. Moreover,

after enlarging the base field, we may assume that x0 is an Fq-point. We fix a place µ ∈ Σ.

As G(Eµ,0, x) is connected and reductive, up to replacing E with a finite extension, there exists

a connected split reductive group G0, defined over E, which contains a maximal torus T0,

such that G0 ⊗E Eµ ' G(Eµ,0, x) and T0 ' T̃ (Eλ,0, x). We choose ρ0 : G0 ↪→ GLr,E and

ϕµ,0 : G0 ⊗E Eµ
∼−→ G(Eµ,0, x) such that ϕµ,0(T0 ⊗E Eµ) = T (Eµ,0, x) and ρ0 ⊗E Eµ ' ρµ,0 ◦ ϕµ,0.

The isomorphism ϕµ,0 induces an isomorphism

ϕ∗µ,0 : K+(Eµ,0)
∼−→ K+(G0 ⊗E Eµ)

which sends [Eµ,0] to [ρ0 ⊗E Eµ]. As T0 is split over E, for every λ ∈ Σ the reductive group

G(Eλ,0, x) is split. By Proposition 1.4.3.6, for every λ ∈ Σ, there exists a unique isomor-

phism gλ,µ : K+(Eλ,0) ' K+(Eµ,0) preserving the characteristic polynomial functions, hence

it sends [Eλ,0] to [Eµ,0]. As G0 is split and connected, there exists a canonical isomorphism

hµ,λ : K+(G0 ⊗E Eµ)
∼−→ K+(G0 ⊗E Eλ). We take

fλ,0 := hµ,λ ◦ ϕ∗µ,0 ◦ gλ,µ : K+(Eλ,0)→ K+(G0 ⊗E Eλ).

By construction it commutes with the natural isomorphism K+(T (Eλ,0, x)) ' K+(T0 ⊗E Eλ).
Thanks to Theorem 1.4.3.4, the isomorphism fλ,0 induces an isomorphism ϕλ,0 : G0 ⊗E Eλ

∼−→
G(Eλ,0, x) such that fλ,0 = ϕ∗λ,0. As fλ,0([Eλ,0]) = [ρ0 ⊗E Eλ], the representations ρ0 ⊗E Eλ and

ρλ,0 ◦ ϕλ,0 are isomorphic.

Corollary 1.4.3.9. Let E0 be a semi-simple Q`-coefficient object. The set of closed points where

the Frobenius is semi-simple is Zariski-dense in X0.

Proof. Twisting the irreducible summands of E0, we may assume that E0 has trivial types.

Hence by Theorem 1.3.7.6, the coefficient object E0 is algebraic. Let x̃ be an F-point of X0

and ρE0 : G(E0, x̃) ↪→ GL(ωx̃,Q`(E0)) be the tautological representation. If E0 is an étale lisse

sheaf, by [LP92, Proposition 7.2], there exists a Zariski-dense set of closed points x0 such that

the Frobenius at x0 is Γ-regular with respect to ρE0 : G(E0, x̃) ↪→ GL(ωx̃,Q`(E0)) (cf. ibid.). In
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particular, at these points the Frobenius is (regular) semi-simple by [LP92, Proposition 4.6].

If E0 is not an étale lisse sheaf, by Theorem 1.3.8.2 and Lemma 1.4.2.9, there exists a semi-

simple compatible étale lisse sheaf V0. By the previous discussion, there exists a Zariski-dense

set of closed points of X0 which are Γ-regular with respect to the tautological representation

ρV0 : G(V0, x) ↪→ GL(ωx,Q`(V0)). By Theorem 1.4.3.2, for all these closed points, the Frobenius

is Γ-regular even with respect to the tautological representation ρE0 : G(E0, x) ↪→ GL(ωx,Q`(E0)).

Thus we conclude again thanks to [LP92, Proposition 4.6].

Remark 1.4.3.10. As a consequence of Theorem 1.4.3.2, we obtain the same result of indepen-

dence for the geometric monodromy groups. Indeed, by Corollary 1.3.5.5 if E0 is a geometrically

semi-simple coefficient object, G(E , x)◦ is the derived subgroup of G(E0, x)◦.

Remark 1.4.3.11. If we weaken the statement of Theorem 1.4.3.2, asking that all the isomor-

phisms between G0 and the monodromy groups are defined over Q`, rather than Eλ, one can

prove it differently. One can use [KLV14, Theorem 1.2], a stronger version of Theorem 1.4.3.4,

in combination with Proposition 1.4.3.6. This proof does not use Frobenius tori.

The author became aware of the theorem of Kazhdan–Larsen–Varshavsky reading [Dri18].

In his paper, Drinfeld uses this result as a starting point to prove the independence of the entire

monodromy groups over Q` (not only the neutral components).

1.4.4 Lefschetz theorem

In this section, we prove an independence result for Theorem 1.3.7.5. This could also be obtained

as a consequence of Theorem 1.4.3.2. Here we have preferred to give a proof which exploits the

full strength of the Tannakian lemma [AE16, Lemma 1.6]. A similar argument is used in [ibid.,

Corollary 3.7]. In our proof, when the coefficient objects are ι-mixed, we do not need the results

in §1.3.7. We first prove a lemma which relates the arithmetic and the geometric situation.

Lemma 1.4.4.1. Let (Y0, y)→ (X0, x) be a morphism of geometrically connected pointed vari-

eties over Fq. Let E0 be a coefficient object on X0.

(i) If the natural morphism f∗ : G(f ∗E , y)→ G(E , x) is an isomorphism, the same is true for

f0∗ : G(f ∗0E0, y)→ G(E0, x).

(ii) If E0 is geometrically semi-simple and f0∗ : G(f ∗0E0, y)◦ → G(E0, x)◦ is an isomorphism,

even f∗ : G(f ∗E , y)◦ → G(E , x)◦ is an isomorphism.

Proof. We want to use the functorial diagram of Proposition 1.3.2.6.(iii) to show that the mor-

phism f0∗ in (i) is surjective. As Y0 and X0 are geometrically connected, f0∗ : πλ1 (Y0, y)cst →
πλ1 (X0, x)cst is an isomorphism, thus f0∗ : G(f ∗E0, y)cst → G(E0, x)cst is surjective. On the other

hand, at the level of geometric monodromy groups, f∗ : G(f ∗E , y) → G(E , x) is surjective by

assumption. The surjectivity of f0∗ : G(f ∗0E0, y) → G(E0, x) is then a consequence of the other

50



two. For (ii) we notice that by Corollary 1.3.5.5, the algebraic groups G(f ∗E , y)◦ and G(E , x)◦

are the derived subgroups of G(f ∗0E0, y)◦ and G(E0, x)◦ respectively. Thus we get the result.

Theorem 1.4.4.2. Let f0 : (Y0, y)→ (X0, x) be a morphism of geometrically connected smooth

pointed varieties. Let E0 and F0 be compatible geometrically semi-simple coefficient objects over

X0. Let ϕ0 : G(f ∗0E0, y) → G(E0, x) and ψ0 : G(f ∗0F0, y) → G(F0, x) be the morphisms induced

by f ∗0 and let ϕ and ψ be their restriction to the geometric monodromy groups.

(i) If ϕ is an isomorphism, the same is true for ψ.

(ii) If ϕ0 is an isomorphism, the same is true for ψ0.

Proof. By Lemma 1.4.4.1, part (i) implies part (ii). Notice that ϕ and ψ are always injective,

thus to prove part (i) it is enough to prove that if ϕ is surjective, even ψ is so. Suppose that

ϕ is surjective, we want to apply [AE16, Lemma 1.6] to prove that ψ is surjective. Indeed, the

morphism ψ satisfies the hypothesis (?) of the lemma by Theorem 1.3.5.1. Thus we are reduced

to show that f ∗ : 〈F〉 → 〈f ∗F〉 is fully faithful.

A functor of Tannakian categories commuting with fibre functors is always faithful. Hence

it is enough to prove that f ∗ preserves the dimensions of the Hom-sets, or equivalently that for

every G ∈ 〈F〉 we have

h0(G) = h0(f ∗G), (1.4.4.1)

where we denote by h0 the dimension of the space of global sections of geometric coefficient

objects.

We proceed by steps. First we prove that for every pair of coefficient objects G ′,G ′′ ∈ 〈F〉,
they satisfy the equality (1.4.4.1) if and only if the same is true for G ′ ⊕ G ′′. By the additivity

of h0, it is clear that if the geometric coefficient objects satisfy the equality individually, then

the same is true for their direct sum. Conversely, if h0(G ′ ⊕ G ′′) = h0(f ∗(G ′ ⊕ G ′′)), then

h0(G ′)− h0(f ∗G ′) + h0(G ′′)− h0(f ∗G ′′) = 0.

Since f ∗ is faithful, then h0(G ′) − h0(f ∗G ′) ≤ 0 and h0(G ′′) − h0(f ∗G ′′) ≤ 0. Thus h0(G ′) =

h0(f ∗G ′) and h0(G ′′) = h0(f ∗G ′′), as we wanted. In particular, as 〈F〉 is a semi-simple category,

we have proven that it is enough to show (1.4.4.1) for the objects of the form F⊗m ⊗ (F∨)⊗n
with m,n ∈ N.

We fix m,n ∈ N. By the hypothesis, the ⊗-functor f ∗ : 〈E〉 → 〈f ∗E〉 is fully faithful,

therefore the equality (1.4.4.1) holds for E⊗m ⊗ (E∨)⊗n. By Corollary 1.3.6.7.(i), as we know

by Theorem 1.3.7.6 that every coefficient object is ι-mixed, we have that h0(E⊗m ⊗ (E∨)⊗n) =

h0(F⊗m⊗(F∨)⊗n) and h0(f ∗(E⊗m⊗(E∨)⊗n)) = h0(f ∗(F⊗m⊗(F∨)⊗n)). Hence, we get h0(F⊗m⊗
(F∨)⊗n) = h0(f ∗(F⊗m ⊗ (F∨)⊗n)). This concludes the proof.
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1.5 Coefficient objects on abelian varieties

1.5.1 A finiteness result

Let X0 be an abelian variety over Fq with identity x0 and let x be a geometric point over x0.

We prove a finiteness statement for coefficient objects defined on X0.

Theorem 1.5.1.1. Let X0 be an abelian variety. Every absolutely irreducible Eλ-coefficient

object with finite order determinant is finite. In particular, every ι-pure Eλ-coefficient object on

X0 becomes constant after passing to a finite étale cover.

1.5.1.2 Proof without companions . After extending Eλ we can assume that λ is an admissible

place for X0. We want to prove that the fundamental group πλ1 (X, x) is commutative via an

Eckmann–Hilton argument [EH62, Theorem 5.4.2]. As X0 is projective, by Proposition 1.3.4.4,

the two projections of X0 ×X0 to its factors induce an isomorphism

πλ1 (X ×F X, x× x)
∼−→ πλ1 (X, x)× πλ1 (X, x).

If m : X ×F X → X is the multiplication map of X, the morphism

m̃∗ : πλ1 (X, x)× πλ1 (X, x)
∼−→ πλ1 (X ×F X, x× x)

m∗−→ πλ1 (X, x)

endows πλ1 (X, x) with the structure of a group object in the category of affine group schemes.

By Eckmann–Hilton, this implies that πλ1 (X, x) is commutative.

Let E0 be an absolutely irreducible coefficient object with finite order determinant. We

notice first that the geometric monodromy group G(E , x), being a quotient of πλ1 (X, x) is also

commutative. On the other hand, as E0 is semi-simple, G(E , x) is reductive. Thus we have proven

that G(E , x) is a group of multiplicative type. By Theorem 1.3.5.4, we deduce that G(E , x) is

finite. As the coefficient object E0 is absolutely irreducible with finite order determinant, by

Proposition 1.3.5.7 G(E , x) has finite index in G(E0, x). Thus E0 is a finite coefficient object.

To prove the second part, by Proposition 1.3.3.3, it is enough to show that a ι-pure coefficient

object E0 is geometrically finite. By Corollary 1.3.6.4, we already know that E0 is geometrically

semi-simple. Thus, after extending the field of scalars and taking the semi-simplification, we

can assume that E0 is absolutely irreducible. By Corollary 1.3.5.2, there exists a twist F0 of E0

with finite order determinant. By the first part of the statement, we know that F0 is finite, thus

E0 is geometrically finite, as we wanted.

The previous proof does not use Theorem 1.3.7.4. It relies mainly on Theorem 1.3.5.4 and

Proposition 1.3.4.4. As a consequence, we obtain a proof of Deligne’s conjectures for abelian

varieties that does not use the Langlands correspondence.

Corollary 1.5.1.3. If X0 is an abelian variety, then Conjecture 1.3.7.1 holds.
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Proof. Let E0 be an absolutely irreducible Q`-coefficient object whose determinant has finite

order. By the previous proposition E0 is finite, thus the eigenvalues of the Frobenii at closed

points are roots of unity. In particular, E0 is pure of weight 0 and p-plain. Moreover, E0

corresponds to an absolutely irreducible Q`-linear representation ρ of a finite quotient G of

πét
1 (X0, x). As G is a finite group, there exists a number field E ⊆ Q` and an absolutely

irreducible E-linear representation ρ̃ of G such that ρ̃⊗E Q` ' ρ.

We deduce first that E0 is E-rational. In addition, if `′ is a prime, for every embedding

τ : E ↪→ Q`′ the representation ρ̃⊗E Q`′ corresponds to an absolutely irreducible Q`′-coefficient

object, E-rational with respect to τ and E-compatible with E0. This concludes the proof.

1.5.1.4 Proof of Theorem 1.5.1.1 with companions . By Corollary 1.3.5.2 there exists a twist

F0 of E0 with finite order determinant. In light of Theorem 1.3.7.6, there exists a number

field E such that F0 is E-rational and ι-pure. By Theorem 1.3.7.7 there exists an E-rational

lisse Q`-sheaf G0, E-compatible with F0. By Corollary 1.3.7.8, the lisse sheaf G0 is absolutely

irreducible. As πét(X, x) is commutative, thanks to Theorem 1.3.5.4 for lisse sheaves, we know

that G is finite. By Proposition 1.3.5.7, also G0 is finite. By virtue of Proposition 1.4.3.2, the

coefficient object F0, being compatible with G0 and absolutely irreducible, is finite as well. This

proves the first part of the statement. For the second part we can proceed as in the proof in

§1.5.1.2.

Remark 1.5.1.5. Even if the second proof uses a deep result as Theorem 1.3.7.7, it has the

advantage that can be adapted to a wider class of varieties. Indeed, to apply the reasoning, it is

enough that πét
1 (X, x) contains an open subgroup that is a solvable profinite group, namely an

open subgroup which contains a finite normal series of closed subgroups with abelian successive

quotients.

1.5.2 Newton polygons

Tsuzuki has proven that the Newton polygons of F -isocrystals on an abelian variety are constant

[Tsu17, Theorem 3.7]. We use Theorem 1.5.1.1 to recover his result. We recall first the notion

of Newton polygon at closed points of a coefficient object.

Definition 1.5.2.1. Let X0 be a smooth variety, ` a prime number and ιp an isomorphism

between Q` and Qp. Let vp the p-adic valuation of Qp, normalized such that vp(q) = 1. We

denote by the same symbol the valuation induced by ιp on Q`. Let E0 be a Q`-coefficient object

on X0 and x′0 a closed point of X0. We consider the characteristic polynomial Px′0(E0, t) =

a0 + a1t + · · · + art
r of E0 at x′0, where a0 = 1 and (a1, . . . , ar) ∈ Qr−1

` ×Q×` . Let Λx′0,ιp
(E0) be

the polygonal chain in R2 with vertexes( (
i, vp(ai)/ deg(x′0)

) )
0≤i≤r

.
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We define the ιp-Newton polygon of E0 at x′0 as the boundary of the upper convex hull of

Λx′0,ιp
(E0). We say that E0 is ιp-isoclinic of ιp-slope v if for every closed point x′0, the ιp-Newton

polygon of E0 at y0 consists of one segment of slope v. We say that E0 is ιp-unit-root if it is

ιp-isoclinic of ιp-slope 0.

Corollary 1.5.2.2. Let X0 be an abelian variety. The ιp-Newton polygon at closed points of

a coefficient object E0 defined on X0 is independent of the point. Moreover, if E0 is absolutely

irreducible, then it is ιp-isoclinic.

Proof. After extending the field of scalars and taking the semi-simplification, E0 can be expressed

as a direct sum of absolutely irreducible coefficient objects. This operation does not change the

ιp-Newton polygons at closed points. As a consequence, it is enough to show that if E0 is

absolutely irreducible, then it is ιp-isoclinic.

We know by Corollary 1.3.5.2 that such a coefficient object is the twist of a coefficient

object with finite order determinant. Hence, in light of Theorem 1.5.1.1, it is a twist of a

finite coefficient object. A finite coefficient object is ιp-unit-root, because the eigenvalues of the

characteristic polynomials at closed points are all roots of unity. At the same time, the twist

of a ιp-unit-root coefficient object by a ∈ Q×` is ιp-isoclinic of ιp-slope vp(a). This yields the

desired result.

Remark 1.5.2.3. One could even show that Tsuzuki’s result (Corollary 1.5.2.2) implies Theo-

rem 1.5.1.1. First, taking twists, one reduces the theorem to the case of ιp-unit-root coefficient

objects. By [Ked11, Theorem 2.3.7], the coefficient object is then determined by a representation

of the étale fundamental group. As the geometric étale fundamental group of an abelian variety

is commutative, the finiteness of the geometric monodromy group becomes a consequence of

class field theory.
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2 Some remarks on the companions conjecture for nor-

mal varieties

2.1 Introduction

2.1.1 The companions conjecture

Let Fq be a finite field of characteristic p and X0 a normal variety over Fq. Let ` be a prime

different from p and V0 an absolutely irreducible Weil lisse Q`-sheaf on X0 with finite order

determinant. For every closed point of X0, we have a well-defined characteristic polynomial

associated to the action of the Frobenius at that point. Let E ⊆ Q` be the field generated

by the coefficients of all these polynomials. Deligne has proven in [Del12], that E is a finite

extension of Q. He shows this finiteness exploiting the known case when X0 is a curve, proven by

L. Lafforgue in [Laf02] as a consequence of the Langlands correspondence. This property of the

field E was conjectured by Deligne in [Del80, Conjecture 1.2.10] together with other properties

for V0. One of them is the following one.

Conjecture 2.1.1.1 (Companion conjecture). After possibly replacing E with a finite extension,

for every finite place λ not dividing p, there exists a Weil lisse Eλ-sheaf compatible with V0 (same

characteristic polynomials of the Frobenii at closed points).

When X0 has dimension 1, the conjecture is again a consequence of the Langlands correspon-

dence. In higher dimension, Drinfeld in [Dri12] proved Conjecture 2.1.1.1 when X0 is smooth.

He uses some ideas of Wiesend developed in [Wie06] to deduce the result from the case of curves.

Unluckily his method can not be applied directly to prove the full conjecture [Drinfeld, op. cit.,

§6].

2.1.2 The obstruction

Suppose for simplicity that the singular locus of X0 consists of one closed point and that we

can solve the singularity. In other words, suppose that there exists a smooth variety Y0 and a

proper morphism f0 : Y0 → X0 which sends Z0 ⊆ Y0 to a closed point x0 ∈ |X0| and which is

an isomorphism outside Z0. Assume also that Z := Z0 ⊗Fq F is connected. We have an exact

sequence

πét
1 (Z, z)

i∗−→ πét
1 (Y0, z)

f0∗−−→ πét
1 (X0, x)→ 1

in the sense that the smallest normal closed subgroup containing the image of i∗ is the kernel

of f0∗ (see Lemma 2.3.1.2).

This means that every Weil lisse sheaf V0 on Y0, such that V0|Z ' Q⊕r` for some r, is the

inverse image of a Weil lisse sheaf defined over X0. As we know the companions conjecture on

Y0, in order to deduce it for X0, we have to verify the following.
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Property 2.1.2.1. For every pair (V0,W0) of compatible absolutely irreducible Weil lisse

sheaves with finite order determinant on Y0, the sheaf V0 is trivial on Z := Z0 ⊗ F if and

only if the same is true for W0.

In general, if this property holds we say that the morphism Z0 → X0 is balanced (Definition

2.3.2.4).

Conjecture 2.1.2.2 (Conjecture 2.3.2.5). Let X0 and Z0 be varieties over Fq. If X0 is normal,

every morphism g0 : Z0 → X0 is balanced.

We show that the property of a morphism to be balanced is “invariant under deformations”

(Proposition 2.3.2.8). We also prove the conjecture in some cases.

Theorem 2.1.2.3 (Theorem 2.4.2.3). Let g0 : Z0 → X0 be a morphism between two varieties

over Fq. Suppose X0 normal, then g0 is balanced in the following cases.

(i) When Z0 is a normal variety.

(ii) When Z0 is a semi-stable curve with simply connected dual graph.

(iii) If the smallest closed normal subgroup of πét
1 (X0, x) containing the image of πét

1 (Z, z) is

open inside πét
1 (X, x).

(iv) If πét
1 (X, x) contains an open solvable profinite subgroup.

2.2 Notation

We fix a prime number p and we denote by q a certain power of p. Let Fq be a field with q

elements and F an algebraic closure F of Fq. A variety over a field k will be a separated scheme

of finite type over k. We denote by X0, Y0, Z0, ... varieties over Fq and by X, Y, Z, ... the base

change of them to F. In general we always denote with a subscript 0 objects and morphisms

defined over Fq and the suppression of it will mean the extension to F.

If X0 is connected and x is a geometric point of X0 then we denote by πét
1 (X0, x) and

πét
1 (X, x) the étale fundamental groups of X0 and X, by W (F/Fq) the Weil group of Fq and by

W (X0, x) the Weil group of X0. If y0 is a closed point of X0 then we write Fy0 ⊆ W (X0, x) for

the conjugacy class of geometric Frobenii of y0 and we call Fy0 the Frobenii at y0.

The letter ` will denote a prime number different from p. For every ` we fix an algebraic

closure of Q`, denoted by Q`. We have a category LS(X,Q`) of lisse sheaves defined over X.

Adding an action of W (F/Fq) we obtain the category of Weil lisse Q`-sheaves defined over X0,

denoted by Weil(X0,Q`). We often call them simply lisse sheaves. We denote Weil lisse sheaves

with a calligraphic letter, as for example V0, and their restriction to X removing 0.
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For every natural number n, a lisse sheaf is said pure of weight n if for every closed point

x0 of X0 and every isomorphism Q`
∼−→ C, the eigenvalues of any Frobenius automorphism

induced by Fx0 have complex absolute value (#κ(x0))n/2. In the rest of the exposition the

representations of the Weil group and the étale fundamental group will always be continuous

and finite dimensional even if not said explicitly.

If E is a number field, an E-compatible system over X0, denoted V0, is a family {V0,λ}λ-p
where:

(i) For every λ - p, V0,λ is an E-rational lisse Eλ-sheaf with respect the natural inclusion

E ↪→ Eλ.

(ii) The lisse sheaves V0,λ are pairwise E-compatible.

For every λ, the lisse sheaf V0,λ will be the λ-component of the compatible system.

2.3 Balanced morphisms

2.3.1 Finite étale covers of a contraction

Definition 2.3.1.1. Let f0 : Y0 → X0 be a morphism between two varieties and Z0 a closed

subvariety of Y0. We say that f0 is a contraction of Z0 if f0 is a surjective morphism, which is

an isomorphism outside Z0 and such that the image of Z0 is a subvariety W0 of X0 of dimension

0.

Let Y0 be a geometrically connected normal variety over Fq and i0 : Z0 ↪→ Y0 a closed

immersion, where Z0 is proper and geometrically integral over Fq. Suppose in addition that

there exists a normal variety X0 over Fq and f0 : Y0 → X0 a contraction of Z0.

Lemma 2.3.1.2 (Corollaire 6.11, SGA I, Exposé XI). For every geometric point x of X0 over

x0 and every geometric point z of Z0 over x. We have an exact sequence

πét
1 (Z, z)

i∗−→ πét
1 (Y0, z)

f0∗−−→ πét
1 (X0, x)→ 1

in the sense that the smallest normal closed subgroup containing the image of i∗ is the Kernel

of f0∗.

Remark 2.3.1.3. Under the hypothesis of the lemma, the datum of a lisse sheaf on X0 is equiv-

alent to the datum of a lisse sheaf on Y0, geometrically trivial on Z0. Hence if the companions

conjecture holds for Y0, the conjecture on X0 is equivalent to the following conjecture.

Conjecture 2.3.1.4. Let V0 be an E-rational, lisse Eλ-sheaf on Y0. If V0 is geometrically

trivial on Z0, for every other finite place λ′ - p, every semi-simple compatible lisse Eλ′-sheaf is

geometrically trivial on Z0.

57



2.3.2 The conjecture

We study Conjecture 2.3.1.4 in a slightly more general setting.

Definition 2.3.2.1. Let Z0 be a connected variety. A compatible system V0 on Z0 is balanced

if one of the following conditions is verified.

(i) For every λ, the lisse sheaf V0,λ is geometrically trivial.

(ii) It does not exist any λ such that the lisse sheaf V0,λ is geometrically trivial.

A compatible system V0 on Z0 is strongly balanced if the dimension of H0(Z,Vλ) does not

depend on λ. If Z0 is not connected we say that a compatible system is balanced (resp. strongly

balanced) if it is balanced (resp. strongly balanced) for every connected component.

Remark 2.3.2.2. To prove that a compatible system is balanced, we can always make some

dévissage. Indeed, the property to be balanced remains invariant when we take a finite ex-

tension of the base field. Secondly, thanks to Corollary 1.3.6.4, every pure lisse sheaf on X0

is geometrically semi-simple, hence we can always assume that the compatible system is semi-

simple. Using [Del80, Proposition 1.3.4], we can also reduce to the case when V0 has finite order

determinant. In particular, we can work with V0 étale.

Proposition 2.3.2.3. Let Z0 be a normal variety over Fq. Every pure compatible system on Z0

is strongly balanced.

Proof. We can suppose Z0 geometrically connected. As Z0 is normal, if U0 is a dense open

of Z0, the étale fundamental group of U maps surjectively onto the étale fundamental group

of Z. Thus a lisse sheaf over Z0 is geometrically trivial if and only if the restriction to U0 is

geometrically trivial. This means we can also assume Z0 to be smooth. In this case we may

apply Corollary 1.3.6.7.

Definition 2.3.2.4. Let g0 : Z0 → X0 be a morphism between two varieties over Fq. We say

that g0 is a balanced morphism if for every pure compatible system V0 of X0, the pullback g∗0V0

is balanced.

We reformulate Conjecture 2.3.1.4 in a more general setting.

Conjecture 2.3.2.5. Let X0 and Z0 be varieties over Fq. If X0 is normal, every morphism

g0 : Z0 → X0 is balanced.

Notation 2.3.2.6. For simplicity, let us a assume from now on Z0 geometrically connected.

We have a morphism πét
1 (Z, z)

g∗−→ πét
1 (X0, x). For every étale compatible system V0 on X0 we

denote by {ρ0,λ}λ-p the associated family of `-adic representations of πét
1 (X0, x). Let Im(g∗) be

the smallest normal closed subgroup of πét
1 (X0, x) containing the image of g∗.
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Remark 2.3.2.7. A morphism g0 is balanced if and only if for every étale pure compatible

system on X0, the inclusion Im(g∗) ⊆ Ker(ρ0,λ) for one λ implies the same inclusion for every

other place λ. In particular, the property of a morphism to be balanced depends only on

the inclusion Im(g∗) ⊆ πét
1 (X0, x) as topological groups together with the assignment of the

conjugacy classes of the Frobenii at closed points of πét
1 (X0, x) and their degrees.

As a consequence of the remark, we prove an “homotopy invariance” of balanced morphisms.

Let Y0 and S0 be two varieties over Fq and h0 : Y0 → S0 a proper and flat morphism with

connected and reduced geometric fibers. Let s0 and s′0 be closed points of S0 and write Z0 and

Z ′0 for the fibers of h0 above these points.

Proposition 2.3.2.8. Let f0 : Y0 → X0 be any morphism. The restriction g0 := f0|Z0 is

balanced if and only if g′0 := f0|Z′0 is balanced.

Proof. Let z and z′ be two geometric points of Z0 and Z ′0 respectively and x and x′ their images

via f0. By the homotopy exact sequence, the pairs of topological groups (πét
1 (X0, x), Im(g∗))

and (πét
1 (X0, x

′), Im(g′∗)) are isomorphic, with isomorphism given by an isomorphism between

πét
1 (X0, x) and πét

1 (X0, x
′) induced by a path from x to x′. This isomorphism respects the

conjugacy classes of Frobenii at closed points and their degrees. We conclude by Remark

2.3.2.7.

2.4 Some examples

We can verify now Conjecture 2.3.2.5 in some cases. Notice that thanks to Proposition 2.3.2.3

we already know the conjecture when Z0 is normal.

2.4.1 Semi-stable curves

Let Z0 be a connected semi-stable curve over Fq. Denote by {Z(i)}1≤i≤n the set of the irreducible

components of Z. Assume that for every i, the component Z(i) is smooth. Let z be a geometric

point of Z and for every 1 ≤ i ≤ n, let z(i) be a generic geometric point of Z(i). We denote by

Γ the dual graph of Z and by P the point of Γ associated to the connected component where z

lies.

Proposition 2.4.1.1 ([Sti06]). The choice of étale paths {γ(i)}1≤i≤n joining z to z(i) for every

i determines an isomorphism

πét
1 (Z, z) ' πét

1 (Z(1), z(1)) ∗ · · · ∗ πét
1 (Z(n), z(n)) ∗ π1(Γ, P )∧,

where π1(Γ, P )∧ is the profinite completion of the topological fundamental group of Γ.

Corollary 2.4.1.2. If Γ is a tree, every pure compatible system on Z0 is balanced.
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Proof. Proposition 2.4.1.1 shows that when Γ is a tree, the geometric étale fundamental group

of Z0 is generated by the étale fundamental groups of the components Z(i), which are smooth

by assumption. Hence, by Proposition 2.3.2.3, we get the result.

2.4.2 Finite monodromy

The invariance of the L-function of compatible lisse sheaves can be used, as in Proposition

2.3.2.3, to prove that some morphisms are balanced. This kind of method works only under

strong finiteness conditions.

Proposition 2.4.2.1. If Z0 is geometrically connected, a morphism g0 : Z0 → X0 is balanced

in the following cases.

(i) If the smallest closed normal subgroup of πét
1 (X0, x) containing the image of πét

1 (Z, z) is

open inside πét
1 (X, x).

(ii) If πét
1 (X, x) contains an open solvable profinite subgroup.

Proof. Let V0 be a pure compatible system on X0. For every λ - p let Gλ be the geometric

monodromy group of V0,λ.

(i) If g∗0(V0,λ) is geometrically trivial on Z0, then by assumption Gλ is finite. By [LP95,

Proposition 2.2] the same is true for every λ and the groups Ker(ρλ) ∩ πét
1 (X, x) are all

equal when λ varies. This implies that for every λ, the group πét
1 (Z, z) is contained in

Ker(ρλ). Therefore, for every λ, the lisse sheaf g∗0(V0,λ) is geometrically trivial.

(ii) By Corollary 1.3.6.4, the groups Gλ are all semi-simple as V0 is pure. Thanks to the

assumption that πét
1 (X, x) is solvable, we also know that all the groups Gλ are solvable.

Hence they are finite and we can proceed as in the previous case.

Corollary 2.4.2.2. A dominant morphism g0 : Z0 → X0 is balanced. In particular, if X0 is a

smooth curve, every morphism g0 : Z0 → X0 is balanced.

Proof. As g0 is dominant, we can find a smooth connected variety Z ′0 ⊆ Z0 such that g0|Z′0
is again dominant. In particular, the morphism g0|Z′0 is generically finite, hence the image of

the geometric étale fundamental group of Z0 has finite index in πét
1 (X, x). Thus we can apply

Theorem 2.4.2.1 to conclude.

To summarize our results we state them as a unique theorem.
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Theorem 2.4.2.3 (Proposition 2.3.2.3, Corollary 2.4.1.2 and Proposition 2.4.2.1). Let g0 :

Z0 → X0 be a morphism between two varieties over Fq. Suppose X0 normal, then g0 is balanced

in the following cases.

(i) When Z0 is a normal variety.

(ii) When Z0 is a semi-stable curve with simply connected dual graph.

(iii) If the smallest closed normal subgroup of πét
1 (X0, x) containing the image of πét

1 (Z, z) is

open inside πét
1 (X, x).

(iv) If πét
1 (X, x) contains an open solvable profinite subgroup.
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3 Maximal tori of monodromy groups of F -isocrystals

and applications (joint with Emiliano Ambrosi)

3.1 Introduction

3.1.1 Convergent and overconvergent isocrystals

Let Fq be a finite field of characteristic p and let X0 be a smooth geometrically connected variety

over Fq. The first Weil cohomology introduced to study X0 is the `-adic étale cohomology, where

` is a prime different from p. Its associated category of local systems is the category of Weil lisse

Q`-sheaves, denoted by Weil(X0,Q`). While p-adic étale cohomology is not a Weil cohomology

theory, moving from ` to p one encounters two main p-adic cohomology theories: crystalline

cohomology and rigid cohomology. These two give rise to different categories of “local systems”.

We have the category F-Isoc(X0) of Qp-linear convergent F -isocrystals over X0 and the category

F-Isoc†(X0) of Qp-linear overconvergent F -isocrystals over X0.

By [Ked04b], these two categories are related by a natural fully faithful functor

ε : F-Isoc†(X0)→ F-Isoc(X0).

When X0 is proper, the functor ε is an equivalence of categories. In general, the two categories

have different behaviours. While F-Isoc†(X0) shares many properties with Weil(X0,Q`) as we

have seen in §1, the category F-Isoc(X0) has some exceptional p-adic features.

For example, thanks to [Ked18, Prop. 1.2.7 and Prop. 1.2.8], for every E0 ∈ F-Isoc(X0),

after possibly shrinking X0, there exists a filtration

0 = E0
0 ⊆ E1

0 ⊆ ... ⊆ En0 = E0

where for each i the quotient E i+1
0 /E i0 has a unique slope si at closed points and the sequence

s1, . . . , sn is increasing. When E0 = ε(E†0) for some E†0 ∈ F-Isoc†(X0), the subobjects E i0 in

general are not in the essential image of ε as well (see for example [Ked16, Remark 5.12]). Our

main result highlights a new relationship between the subquotients of E†0 in F-Isoc†(X0) and

the ones of E1
0 in F-Isoc(X0).

Theorem 3.1.1.1 (Theorem 3.3.1.2). Let E†0 be an irreducible Qp-linear overconvergent F -

isocrystal. If E0 admits a subobject of minimal slope F0 ⊆ E0 with a non-zero morphism F0 →
OX0 of convergent isocrystals, then E†0 has rank 1.

Remark 3.1.1.2. Theorem 3.1.1.1 proves a particular case of the conjecture in [Ked16, Remark

5.14]. Even if the conjecture turned out to be false in general, Theorem 3.1.1.1 corresponds to

the case when F1 ⊆ E1 has minimal slope and E2 is the convergent isocrystal OX0 , endowed

with some Frobenius structure (notation as in [ibid.]).
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3.1.2 Torsion points of abelian varieties

Before explaining the main ingredients of the proof of Theorem 3.1.1.1, let us describe an appli-

cation to torsion points of abelian varieties. This was our main motivation to prove Theorem

3.1.1.1. Let F be an algebraic closure of Fq and F ⊆ k be a finitely generated field extension.

Recall the classical Lang–Néron theorem (see [LN59] or [Con06] for a more modern presenta-

tion).

Theorem 3.1.2.1 (Lang–Néron). If A be an abelian variety over k such that Trk/F(A) = 0,

then the group A(k) is finitely generated.

By Theorem 3.1.2.1, denoting by A(n) the Frobenius twist of A by the pn-power Frobenius,

we have a tower of finite groups A(k)tors ⊆ A(1)(k)tors ⊆ A(2)(k)tors ⊆ . . . . In June 2011,

in a correspondence with Langer and Rössler, Esnault asked whether this chain is eventually

stationary. An equivalent way to formulate the question is to ask whether the group of kperf-

rational torsion points A(kperf)tors is a finite group, where kperf is a perfect closure of k. As an

application of Theorem 3.1.1.1, we give a positive answer to her question.

Theorem 3.1.2.2 (Theorem 3.4.1.1). If A be an abelian variety over k such that Trk/F(A) = 0,

then the group A(kperf)tors is finite.

Remark 3.1.2.3. Theorem 3.1.2.2 was already known for elliptic curves, by the work of Levin in

[Lev68], and for ordinary abelian varieties, by [Rös17, Theorem 1.4]. When ` is a prime different

from p, the group A[`∞] is étale, hence A[`∞](kperf) = A[`∞](k). Therefore, in Theorem 3.1.2.2,

the finiteness of torsion points of prime-to-p order is guaranteed by Theorem 3.1.2.1.

To relate Theorem 3.1.2.2 to Theorem 3.1.1.1 we use the crystalline Dieudonné theory, as

developed in [BBM82]. The proof of Theorem 3.1.2.2 is by contradiction. If |A[p∞](kperf)| =∞,

then there exists a monomorphism Qp/Zp ↪→ A[p∞]ét from the trivial p-divisible group Qp/Zp
over k and the étale part of the p-divisible group of A. Spreading out to a “nice” model A/X of

A/k and applying the contravariant crystalline Dieudonné functor D, one gets an epimorphism of

F -isocrystals D(A[p∞]ét) � D((Qp/Zp)X) ' OX over X. By a descent argument and Theorem

3.1.1.1, the quotient extends to a quotient D(A[p∞]) � OX over X. Going back to p-divisible

groups, this gives an injective map Qp/Zp ↪→ A[p∞] over k. Therefore, A[p∞](k) would be an

infinite group, contradicting Theorem 3.1.2.1.

3.1.3 Monodromy groups

The categories F-Isoc(X0) and F-Isoc†(X0) and their versions without Frobenius structures

Isoc(X0) and Isoc†(X0) are neutral Tannakian categories. The choice of an F-point x of X0

induces fibre functors for all these categories. To prove Theorem 3.1.1.1, we study the mon-

odromy groups associated to the objects involved. For every E†0 ∈ F-Isoc†(X0), we have already
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seen that we can associate an object E0 := ε(E†0) ∈ F-Isoc(X0). We denote by E† ∈ Isoc†(X0)

(resp. E ∈ Isoc(X0)) the isocrystals obtained from E†0 (resp. E0) by forgetting their Frobenius

structure. Using the Tannakian formalism, we associate to each of these objects an algebraic

group G(−). They all sit naturally in a commutative diagram of closed immersions

G(E) G(E0)

G(E†) G(E†0).

If E†0 is irreducible and its determinant has finite order, by Proposition 1.3.5.7, the group

G(E†0)/G(E†) is finite. We prove that the same is true for G(E0)/G(E).

Proposition 3.1.3.1 (Proposition 3.3.1.1). Let E†0 be an irreducible overconvergent F -isocrystal

with finite order determinant. The quotient G(E0)/G(E) is finite.

To prove Proposition 3.1.3.1, we have to show that G(E) is “big”. We study G(E) as a

subgroup of G(E†) and we prove our fundamental result.

Theorem 3.1.3.2 (Theorem 3.2.3.9). If E†0 is an overconvergent F -isocrystal, then G(E) con-

tains a maximal torus of G(E†).

To prove Theorem 3.1.3.2, we use the existence of Frobenius tori which are maximal tori

of G(E†0) (Theorem 3.2.3.4). First we reduce to the case when E†0 is semi-simple and algebraic

(cf. Definition 3.2.3.3). By Theorem 3.2.3.4, there exists a closed point i0 : x0 ↪→ X0 such that

the subgroup G(i∗0E
†
0) ⊆ G(E†0) contains a maximal torus of G(E†0). Since over a closed point

every F -isocrystal admits an overconvergent extension, one has G(i∗0E
†
0) = G(i∗0E0). Hence,

G(E0) contains a maximal torus of G(E†0). To pass from G(E0) ⊆ G(E†0) to G(E) ⊆ G(E†),
we will apply Theorem 3.2.3.4 to an auxiliary overconvergent F -isocrystal Ẽ†0 over X0, such

that G(Ẽ†) = G(E†), G(Ẽ) = G(E) and with the additional property that the natural map

G(Ẽ0)/G(Ẽ)→ G(Ẽ†0)/G(Ẽ†) is an isomorphism.

Remark 3.1.3.3. In [Cre92a, page 460] Crew asks whether, under the assumptions of Theorem

3.1.3.2, the group G(E) is a parabolic subgroup of G(E†). In two subsequent articles [Cre92b]

and [Cre94], he gives a positive answer to his question in some particular cases. Since parabolic

subgroups of reductive groups always contain a maximal torus, Theorem 3.1.3.2 is an evidence

for Crew’s expectation.

To deduce Theorem 3.1.1.1 from Proposition 3.1.3.1, we first reduce ourself to the situation

where the determinant of E†0 has finite order. To simplify, let us assume that F0 = E1
0 and G(E0)

is connected. Proposition 3.1.3.1 implies that G(E) = G(E0) hence that the morphism E1
0 → OX0
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commutes with the trivial Frobenius structure on OX0 . In particular, E1
0 has slope 0, so that the

minimal slope of E0 is 0. Since the determinant of E0 has finite order, this implies that E1
0 = E0

hence that E0 admits a quotient E0 � OX0 in F-Isoc(X0). As ε : F-Isoc†(X0) → F-Isoc(X0)

is fully faithful, E†0 admits a quotient E†0 � O†X0
in F-Isoc†(X0). On the other hand, E†0 is

irreducible, so that the quotient gives actually an isomorphism E†0 ' O
†
X0

.

3.1.4 Weak (weak) semi-simplicity

As an additional outcome of Theorem 3.1.3.2, we get a semi-simplicity result for extensions

of constant convergent F -isocrystals. For us, a constant F -isocrystal will be an object E0 ∈
F-Isoc(X0) such that its image in Isoc(X0) is isomorphic to O⊕nX0

for some n ∈ Z>0.

Let F-Isocpure†(X0) denote the Tannakian subcategory of F-Isoc(X0) generated by the

essential image via ε : F-Isoc†(X0)→ F-Isoc(X0) of pure objects in F-Isoc†(X0). This category

is large enough to contain all the F -isocrystals “coming from geometry”. More precisely, for

every smooth and proper morphism f0 : Y0 → X0 and every i ∈ N, the subquotients of the higher

direct image Rif0,crys∗OY0 are in F-Isocpure†(X0) by [KM74] and [Shi08] (see [Amb18, Fact 3.1.1.2

and Fact 3.2.1.1]). Thanks to a group-theoretic argument (Lemma 3.2.3.8), Theorem 3.1.3.2

implies the following.

Corollary 3.1.4.1 (Corollary 3.2.3.12). A convergent F -isocrystal in F-Isocpure†(X0) which is

an extension of constant F -isocrystals is constant.

Remark 3.1.4.2. One can construct on A1
Fq non-constant extensions of constant convergent

F -isocrystals. Corollary 3.1.4.1 shows that these extensions are outside F-Isocpure†(A1
Fq). One

can further construct these extensions in such a way that the resulting convergent F -isocrystal

has log-decay, in the sense of [KM16]. Therefore, as a consequence of Corollary 3.1.4.1, we get

new examples of convergent F -isocrystals with log-decay which do not “come from geometry”.

Remark 3.1.4.3. Let E0 be a convergent F -isocrystal with constant Newton polygons. Corol-

lary 3.1.4.1 implies that G(E) has no unipotent quotients. Let E1 be the convergent isocrystal

which underlies the subobject of E0 of minimal slope. Since G(E1) is a quotient of G(E), it

does not have unipotent quotients as well. In [Cha13, Conjecture 7.4 and Remark 7.4.1], Chai

conjectures that if E†0 is the higher direct image of a family of ordinary abelian varieties, then

G(E1) is reductive. Corollary 3.1.4.1 may be thought as a first step towards his conjecture.

3.1.5 Organization of §3

In Section 3.2 we introduce the monodromy groups of the various categories of isocrystals and we

prove Theorem 3.1.3.2. In Section 3.3 we prove Theorem 3.1.1.1 and some of its consequences.

Finally, in Section 3.4 we prove Theorem 3.1.2.2.
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3.1.6 Notation

3.1.6.1. Let K be a characteristic zero field and C a K-linear Tannakian category. A Tannakian

subcategory of C is a strictly full subcategory of C closed under direct sums, tensor products,

duals and subobjects. For E ∈ C, we denote by 〈E〉 the smallest Tannakian subcategory of C

containing E . Let ω : C → K a fibre functor. For every E ∈ C, the restriction of ω to 〈E〉
defines a fibre functor of 〈E〉. We denote by G(E) the Tannakian group of 〈E〉 with respect to

this fibre functor. In general, the fibre functor will be clear from the context, so that we do not

keep ω in the notation. The group G(E) will be called the monodromy group of E .

3.1.6.2. When G is an algebraic group, we denote by rk(G) the dimension of a maximal torus

of G and we will call it the reductive rank of G. We say that a subgroup H of G is of maximal

rank if rk(H) = rk(G). Let K be a characteristic 0 field, G and H two affine groups over K and

f : G→ H a morphism of affine group schemes. We will say that f is injective if it is a closed

immersion and that f is surjective if it is faithfully flat. Since over a characteristic 0 field every

affine group scheme is reduced, this does not generate any confusion.

3.2 Monodromy of convergent isocrystals

3.2.1 Review of isocrystals

We recall in this section some basic facts about isocrystals. See [Ked16, §2] for more details.

Throughout §3.2.1, let k be a subfield of F. We denote by W (k) the ring of Witt vectors of k

and by K its field of fractions. We write Qp for a fixed algebraic closure of Qp, and we choose

an embedding of W (F) in Qp. Let X be a smooth variety over k.

Definition 3.2.1.1. We denote by Isoc(X) the category of Qp-linear convergent isocrystals.

Let OX be the convergent isocrystal associated to the structural sheaf. We also denote by

F-Isoc(X) the category of Qp-linear convergent F -isocrystals. This category consists of pairs

(E ,Φ), where E is a convergent isocrystal and Φ is a Frobenius structure on E , namely an isomor-

phism F ∗E ∼−→ E . Let Crys(X/W (k)) be the category of crystals of finiteOX,crys-modules and let

Crys(X/W (k))Qp be the extension of scalars of Crys(X/W (k)) to Qp. Let F-Crys(X/W (k))Qp
be the category of objects in Crys(X/W (k))Qp endowed with a Frobenius structure.

Theorem 3.2.1.2 (Ogus, Berthelot). There exists a canonical equivalence of categories

F-Crys(X/W (k))Qp
∼−→ F-Isoc(X).

Proof. The result follows from [Ked16, Theorem 2.2] after extending the field of scalars from K

to Qp.
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Remark 3.2.1.3. In light of Theorem 3.2.1.2, we will feel free to refer to convergent F -

isocrystals simply as F -isocrystals.

Definition 3.2.1.4. Let Isoc†(X) be the category of Qp-linear overconvergent isocrystals and

F-Isoc†(X) the category of Qp-linear overconvergent F -isocrystals. The overconvergent isocrys-

tal associated to the structural sheaf will be denoted by O†X .

By definition, there is a natural functor ε : F-Isoc†(X)→ F-Isoc(X).

Theorem 3.2.1.5 (Kedlaya). The functor ε : F-Isoc†(X)→ F-Isoc(X) is fully faithful.

Remark 3.2.1.6. Even if this functor is fully faithful, the essential image is not closed under

subquotients. Thus, the essential image is not a Tannakian subcategory in the sense of §3.1.6.1,

so that the induced morphism on Tannakian groups is not surjective. Nevertheless, the mor-

phism is an epimorphism in the category of affine group schemes (see [BB92]). See Remark

3.2.3.11 for further comments.

Definition 3.2.1.7. Suppose that X is connected and let E be an F -isocrystal of rank r. We

denote by {aηi (E)}1≤i≤r the set of generic slopes of E . We use the convention that aη1(E) ≤ · · · ≤
aηr(E), thus the choice of the ordering does not agree with [DK17]. We say that E is isoclinic

if aη1(E) = aηr(E). A subobject F of E is of minimal slope if it is isoclinic of slope aη1(E). See

[Ked16, §3 and §4] for more details on the theory of slopes.

3.2.2 The fundamental exact sequence

We shall briefly review the theory of monodromy groups of F -isocrystals. These monodromy

groups have been firstly studied by Crew in [Cre92a]. In Proposition 3.2.2.4, we introduce a

fundamental diagram of monodromy groups that we will extensively use in the next sections.

Notation 3.2.2.1. Let X0 be a smooth geometrically connected variety over Fq. We choose

once and for all an F-point y of X0. This defines fibre functors for all the Tannakian categories

of isocrystals previously defined. We write 1†0 for the overconvergent F -isocrystal O†X0
endowed

with its canonical Frobenius structure. For every E†0 ∈ F-Isoc†(X0) we consider three associated

objects. We denote by E† ∈ Isoc†(X0) the overconvergent isocrystal obtained from E†0 by

forgetting the Frobenius structure. The image of E†0 in F-Isoc(X0) will be denoted by removing

the superscript †. At the same time, E will be the convergent isocrystal in Isoc(X0), obtained

from E0 ∈ F-Isoc(X0) by forgetting its Frobenius structure. Here a summary table.

Isocrystal F -Isocrystal

Convergent E E0

Overconvergent E† E†0
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For each of these objects we have a monodromy group G(−) (see §3.1.6.1) with respect to the

fibre functor associated to our F point y.

Definition 3.2.2.2. We say that a convergent isocrystal is trivial if it is isomorphic to 1
⊕r for

some r ∈ N. An F -isocrystal E0 is said constant if the convergent isocrystal E is trivial. We

denote by F-Isoccst(X0) the strictly full subcategory of F-Isoc(X0) of constant objects. For

E0 ∈ F-Isoc(X0), we denote by 〈E0〉cst ⊆ 〈E0〉 the Tannakian subcategory of constant objects

and by G(E0)cst the Tannakian group of 〈E0〉cst. Finally, for α ∈ Qp and E0 ∈ F-Isoc(X0), we

denote by E (α)
0 the F -isocrystal obtained from E0 multiplying its Frobenius structure by α. We

will call E (α)
0 the twist of E0 by α. We give analogues definitions for overconvergent isocrystals.

Remark 3.2.2.3. The category F-Isoccst(X0) is a Tannakian subcategory of F-Isoc(X0) in the

sense of §3.1.6.1. Let pX0 : X0 → Spec(Fq) be the structural morphism of X0. Every constant

F -isocrystal is the inverse image via pX0 of an F -isocrystal defined over Spec(Fq). The category

F-Isoc(Spec(Fq)) is equivalent to the category of Qp-vector spaces endowed with a linear auto-

morphism. The automorphism is induced by the Frobenius structure. Since the functor p∗X0
is

fully faithful, the same is true for F-Isoccst(X0). As a consequence, the monodromy group of

any constant object is commutative. Finally, the natural functor ε : F-Isoc†(X0)→ F-Isoc(X0)

induces an equivalence of categories between F-Isoc†cst(X0) and F-Isoccst(X0).

Proposition 3.2.2.4. The natural morphisms induce a commutative diagram

0 G(E) G(E0) G(E0)cst 0

0 G(E†) G(E†0) G(E†0)cst 0

with exact rows. The left and the central vertical arrows are injective and the right one is

surjective.

Proof. The inverse image functor with respect to the q-power Frobenius of X0, is equivalence of

categories both for the convergent and overconvergent isocrystals over X0 (see [Ogu84, Corollary

4.10] and [Laz17]). The exactness of the rows then follows from Proposition A.2.3. In addition,

the right vertical arrow is surjective because, by the discussion in Remark 3.2.2.3, the functor

〈E†0〉cst → 〈E0〉cst is fully faithful and the essential image is closed under subquotients.

Remark 3.2.2.5. We do not know whether the natural quotient ϕ : G(E0)cst � G(E†0)cst is an

isomorphism in general. Via the Tannakian formalism, to prove the injectivity of ϕ, one has to

show that the embedding 〈E†0〉cst ↪→ 〈E0〉cst is essentially surjective. While every F0 ∈ 〈E0〉cst
comes from an object F †0 in F-Isoc†(X0), we do not know whether such an F †0 lies in 〈E†0〉. This
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will be the main issue in the proof of Theorem 3.2.3.9. We bypass the problem by embedding E†0
in an auxiliary overconvergent F -isocrystal Ẽ†0 with G(Ẽ0)cst ' G(Ẽ†0)cst. One can use Theorem

3.2.3.9 to show that if E†0 is algebraic (cf. §3.2.3.3) and semi-simple, then ϕ is an isogeny.

3.2.3 Maximal tori

In this section, we briefly recall the main theorem on Frobenius tori of overconvergent F -

isocrystals in §1.4.2 and we use it to prove Theorem 3.2.3.9. For this task, the main issue is to

pass from the arithmetic situation (Corollary 3.2.3.6) to the geometric one (Theorem 3.2.3.9).

We keep the notation as in §3.2.2.1

Definition 3.2.3.1. Let i0 : x0 ↪→ X0 be the closed immersion of a closed point of X0. For

every overconvergent F -isocrystal E†0 we have an inclusion G(i∗0E
†
0) ↪→ G(E†0), with G(i∗0E

†
0)

commutative. The image of the maximal torus of G(i∗0E
†
0) in G(E†0) is the Frobenius torus of E†0

at x0, denoted by Tx0(E
†
0).

3.2.3.2. Thanks to Deligne’s conjecture for lisse sheaves and overconvergent F -isocrystals (cf.

§1.3.7), for a certain class of overconvergent F -isocrystals it is possible to construct `-adic

companions (cf. [ibid.]) where ` is a prime different from p. From this construction one can

translate some results known for lisse sheaves to overconvergent F -isocrystals. Theorem 3.2.3.4

is an example of such a technique (see also §3.4.3.2). For the existence of companions one needs

some mild assumptions on the eigenvalues of the Frobenii at closed points.

Definition 3.2.3.3. An overconvergent F -isocrystal E†0 is algebraic if the eigenvalues of the

Frobenii at closed points are algebraic numbers.

Theorem 3.2.3.4 (Theorem 1.4.2.10). Let E†0 be an algebraic overconvergent F -isocrystal.

There exists a Zariski-dense set of closed points x0 of X0 such that the torus Tx0(E
†
0) is a

maximal torus of G(E†0).

Remark 3.2.3.5. It is worth mentioning that when E†0 is pure Theorem 3.2.3.4 is also a con-

sequence of the new crystalline Čebotarev density theorem proven by Hartl and Pál [HP18,

Theorem 12.2].

Corollary 3.2.3.6. Let E†0 be an algebraic overconvergent F -isocrystal. The closed subgroup

G(E0) ⊆ G(E†0) is a subgroup of maximal rank.

Proof. Thanks to Theorem 3.2.3.4, we can find a closed embedding of a closed point i0 : x0 ↪→ X0

such that Tx0(E
†
0) is a maximal torus of G(E†0). We have a commutative diagram
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G(i∗0E0) G(E0)

G(i∗0E
†
0) G(E†0),

∼

where the morphism G(i∗0E0)→ G(i∗0E
†
0) is an isomorphism by Remark 3.2.2.3. Since G(i∗0E

†
0) is

a subgroup of G(E†0) of maximal rank, the same is true for the subgroup G(E0) ⊆ G(E†0).

Corollary 3.2.3.7. If E†0 be an algebraic semi-simple overconvergent F -isocrystal, then G(E0)cst

and G(E†0)cst are groups of multiplicative type.

Proof. As discussed in Remark 3.2.2.3, the groups G(E†0)cst and G(E0)cst are commutative. It

suffices to verify that they are also reductive. The former is a quotient of G(E†0), which is

reductive because E†0 is semi-simple. The latter is a quotient of G(E0), which by Corollary

3.2.3.6 is a subgroup of G(E†0) of maximal rank. Since G(E0)cst is commutative, Ru(G(E0)cst) is

a quotient of G(E0). Thus Ru(G(E0)cst) is trivial by the group-theoretic Lemma 3.2.3.8 below.

This concludes the proof.

Lemma 3.2.3.8. Let K be an algebraically closed field of characteristic 0, let G be a reductive

group over K and let H be a subgroup of G of maximal rank. Every morphism from H to a

unipotent group is trivial. Equivalently, the group Ext1
H(K,K) vanishes.

Proof. Every unipotent group is an iterated extension of copies of Ga. Therefore, it is enough to

show that every morphism from H to Ga is trivial. Suppose there exists a non-trivial morphism

ϕ : H → Ga. As char(K) = 0, the image of ϕ is Ga itself. We write K for the kernel of ϕ. Every

map from a torus to Ga is trivial, thus the subgroup K ⊆ G has maximal rank as well. This

implies by [Mil15, Lemma 18.52] that NG(K◦)◦ = K◦. By construction, K is normal in H, thus

H is contained in NG(K), which in turn is contained in NG(K◦). This implies that K◦ = H◦,

thus that H/K is a finite group scheme, against the fact that H/K ' Ga.

Theorem 3.2.3.9. Let E†0 be an overconvergent F -isocrystal. The subgroup G(E) ⊆ G(E†) has

maximal rank.

Proof. If we replace E†0 with its semi-simplification with respect to a Jordan–Hölder filtration,

we do not change the reductive rank of G(E†) and G(E). Thus we may and do assume that E†0
is semi-simple. This implies that E† is semi-simple as well. We also notice it is harmless to twist

the irreducible summands of E†0 . Thus, we may assume that all the irreducible subobjects of E†0
have finite order determinant, hence that E†0 is algebraic and pure of weight 0 (Theorem 1.3.7.6).

Choose a set of generators χ1,0, . . . , χn,0 of X∗(G(E0)cst). Let V †0 (resp. V0) be the representation

of G(E†0) (resp. G(E0)) associated to E†0 (resp. E0). As every constant F -isocrystal comes from
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an overconvergent F -isocrystal, for every i, the character χi,0 extends to a character χ†i,0 of

πF-Isoc†

1 (X0), the Tannakian group of F-Isoc†(X0). Take

Ṽ †0 := V †0 ⊕
n⊕
i=1

χ†i,0

and write Ṽ0 for the induced representation of πF-Isoc
1 (X0), the Tannakian group of F-Isoc(X0).

By construction, the groups of constant characters X∗(G(Ṽ0)cst) and X∗(G(V0)cst) are canon-

ically isomorphic. Moreover, since Ṽ † ' V † ⊕ Q⊕np and Ṽ ' V ⊕ Q⊕np , we get isomorphisms

G(Ṽ †) ' G(E†) and G(Ṽ ) ' G(E). Thus it is enough to show that rk(G(Ṽ †)) = rk(G(Ṽ )).

By Proposition 3.2.2.4, there exists a commutative diagram with exact rows

0 G(Ṽ ) G(Ṽ0) G(Ṽ0)cst 0

0 G(Ṽ †) G(Ṽ †0 ) G(Ṽ †0 )cst 0

where the first two vertical arrows are injective and the last one is surjective. As Ṽ †0 is still

algebraic and pure of weight 0, by Corollary 3.2.3.6, rk(G(Ṽ0)) = rk(G(Ṽ †0 )). Since the reductive

rank is additive in exact sequences, it is enough to show that G(Ṽ0)cst and G(Ṽ †0 )cst have the

same reductive rank. We will show that the morphism ϕ : G(Ṽ0)cst → G(Ṽ †0 )cst of the previous

diagram is actually an isomorphism. We already know that ϕ is surjective. As G(Ṽ0)cst and

G(Ṽ †0 )cst are groups of multiplicative type by Corollary 3.2.3.7, it remains to show that the map

ϕ∗ : X∗(G(Ṽ †0 )cst)→ X∗(G(Ṽ0)cst) is surjective. This is a consequence of the construction of Ṽ †0 .

Indeed, X∗(G(Ṽ0)cst) = X∗(G(V0)cst) is generated by χ1,0, . . . , χn,0 and for every i, the character

χ†i,0 ∈ X∗(G(Ṽ †0 )cst) is sent by ϕ∗ to χi,0.

Corollary 3.2.3.10. Let E†0 be an algebraic overconvergent F -isocrystal. The reductive rank of

G(E†0)cst is the same as the one of G(E0)cst.

Proof. The result follows from Corollary 3.2.3.6 and Theorem 3.2.3.9, thanks to Proposition

3.2.2.4 and the additivity of the reductive ranks with respect to exact sequences.

Remark 3.2.3.11. Using Theorem 3.2.1.5, one can show that when E† is semi-simple, the

functor 〈E†〉 → 〈E〉 is fully faithful. Therefore, in this case, G(E) ⊆ G(E†) is an epimorphic

subgroup (cf. Remark 3.2.1.6). Nevertheless, Theorem 3.2.3.9 does not follow directly from

this, because epimorphic subgroups can have, in general, lower reductive rank. For example, let

K be any field and let G be the algebraic group SL3,K. The subgroup H of G defined by the

matrices of the form
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a 0 ∗
0 a ∗
0 0 a−2

 ,

with a ∈ K×, is the radical of a maximal parabolic subgroup of G. Therefore, by [BB92, §2.(a)

and §2.(d)], H is an epimorphic subgroup of G. On the other hand, the reductive rank of H

is 1. More surprisingly, in characteristic 0, every almost simple group contains an epimorphic

subgroup of dimension 3 [ibid., §5.(b)].

Another consequence of Theorem 3.2.3.9 is given by the following result that we will not

use, but which has its own interest. We have already discussed it in §3.1.4.

Corollary 3.2.3.12. Let E†0 be a overconvergent F -isocrystal and assume that E† is semi-simple.

Every F0 ∈ 〈E0〉 which is an extension of constant F -isocrystals is constant.

Proof. The statement is equivalent to the fact that the group Ext1
G(E)(Qp,Qp) vanishes. The

result then follows from Theorem 3.2.3.9 thanks to Lemma 3.2.3.8.

3.3 A special case of a conjecture of Kedlaya

3.3.1 Proof of the main theorem

As a consequence of the results of §3.2.3, we obtain a special case of the conjecture in [Ked16,

Remark 5.14]. We shall start with a finiteness result. We retain the notation as in §3.2.2.1.

Proposition 3.3.1.1. If E†0 is an irreducible overconvergent F -isocrystal with finite order de-

terminant, then G(E0)cst is finite. In particular, every constant subquotient of the F -isocrystal

E0 is finite.

Proof. We first notice that E†0 is algebraic thanks to Deligne’s conjecture (Theorem 1.3.7.6). By

Corollary 3.2.3.7, we deduce that the algebraic groups G(E0)cst and G(E†0)cst are of multiplicative

type and by Corollary 3.2.3.10 that they have the same dimensions. The algebraic group G(E†0)cst

is finite thanks to Proposition 1.3.5.7. Therefore, the same is true for G(E0)cst.

Theorem 3.3.1.2. Let E†0 be an irreducible overconvergent F -isocrystal. If E0 admits a subobject

of minimal slope F0 ⊆ E0 with a non-zero morphism F → 1, then F = E and E ' 1.

Proof. Observe that both the hypothesis and the conclusion are invariant under twist. Thus,

by [Abe15, Lemma 6.1], we may assume that the determinant of E†0 is of finite order, hence

unit-root. We first prove that E†0 is unit-root as well. If r is the rank of E†0 , since

r∑
i=1

aηi (E
†
0) = aη1(det(E†0)) = 0 and aη1(E†0) ≤ · · · ≤ aηr(E

†
0),
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it suffices to show that aη1(E†0) = 0. Let F � T be the maximal trivial quotient of F . By

maximality, it lifts to a quotient F0 � T0, where T0 is a constant F -isocrystal. The overcon-

vergent F -isocrystal E†0 satisfies the assumptions of Proposition 3.3.1.1, hence T0 is finite. As

the F -isocrystal F0 is isoclinic and it admits a non-zero quotient which is finite, it is unit-root.

This implies that aη1(E†0) = 0, as we wanted.

We now prove that E†0 has rank 1. Since E†0 is unit-root, by [Ked16, Theorem 3.9], the functor

〈E†0〉 → 〈E0〉 is an equivalence of categories. Therefore, if E0 has a constant subquotient, the

same is true for E†0 . But E†0 is irreducible by assumption, thus it has to be itself a constant

F -isocrystal. Since irreducible constant (Qp-linear) F -isocrystals have rank 1, this ends the

proof.

Remark 3.3.1.3. The statement of Theorem 3.3.1.2 is false in general if we do not assume that

F0 ⊆ E0 is of minimal slope. A counterexample is provided in [Ked16, Example 5.15].

3.3.2 Some consequences

Corollary 3.3.2.1. Let E†0 be an overconvergent F -isocrystals and F0 a subobject of E0 of mini-

mal generic slope. If E† is semi-simple, then the restriction morphism Hom(E ,1)→ Hom(F ,1)

is surjective.

Proof. As E† is semi-simple if we replace E†0 with its semi-simplification with respect to a Jordan–

Hölder filtration, we do not change the isomorphism class of E†. Thus we may and do assume

that E†0 is semi-simple. The proof is then an induction on the number n of summands of some

decomposition of E†0 in irreducible overconvergent F -isocrystals. If n = 1 this is an immediate

consequence of Theorem 3.3.1.2. Suppose now that the result is known for every positive integer

m < n. Take an irreducible subobject G†0 of E†0 , write H0 := G0×E0F0 and consider the following

commutative diagram with exact rows and injective vertical arrows

0 H F F/H 0

0 G E E/G 0.

As E†0 is semi-simple, the quotient E†0 � E†0/G
†
0 admits a splitting. This implies that the lower

exact sequence splits. We apply the functor Hom(−,1) and we get the following commutative

diagram with exact rows

0 Hom(E/G,1) Hom(E ,1) Hom(G,1) 0

0 Hom(F/H,1) Hom(F ,1) Hom(H,1).
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Since H0 and F0/H0 are subobjects of minimal slope of G0 and E0/G0 respectively, by the

inductive hypothesis, the left and the right vertical arrows are surjective. By diagram chasing,

this implies that the central vertical arrow is also surjective, as we wanted.

Remark 3.3.2.2. By the theory of weights, if E†0 is pure then E† is semi-simple, hence one can

apply Theorem 3.3.2.1 in this situation. The theorem is instead false without the assumption

that E† is semi-simple. For example, when X0 = Gm,Fq , there exits a non-trivial extension

0→ 1
†
0 → E

†
0 → (1†0)(q) → 0,

which does not split in Isoc†(X0). If F0 ⊆ E0 is the rank 1 trivial subobject of E0, then the map

Hom(E ,1)→ Hom(F ,1) is the zero map, even if Hom(F ,1) = Qp.

We end the section presenting a variant of Corollary 3.3.2.1, where we consider morphisms

in F-Isoc†(X0).

Corollary 3.3.2.3. Let E†0 be an algebraic semi-simple overconvergent F -isocrystals with con-

stant Newton polygons and of minimal slope equal to 0. The restriction morphism Hom(E0,10)→
Hom(E1

0 ,10) is an isomorphism.

Proof. Since E†0 is semi-simple, E† is semi-simple as well. By Theorem 3.3.2.1, the restriction

morphism Hom(E ,1)→ Hom(E1,1) is surjective. As the group G(E0)cst is reductive (Corollary

3.2.3.7), the action of the absolute Frobenius F on Hom(E ,1) and Hom(E1,1) is semi-simple,

so that the restriction morphism

Hom(E0,10) = Hom(E ,1)F → Hom(E1,1)F = Hom(E1
0 ,10)

is still surjective. The injectivity follows from the fact that E0/E1
0 has positive slopes. Indeed,

this implies that there are no non-zero morphisms from E0 to 10 which factor through E0/E1
0 .

3.4 An extension of the theorem of Lang–Néron

3.4.1 p-torsion and p-divisible groups

We exploit here Corollary 3.3.2.1 to prove the following result on the torsion points of abelian

varieties. Let F ⊆ k be a finitely generated field extension and let kperf be a perfect closure of

k.

Theorem 3.4.1.1. If A be an abelian variety over k such that Trk/F(A) = 0, then the group

A(kperf)tors is finite.

As we have already discussed in Remark 3.1.2, thanks to Theorem 3.1.2.1, it is enough to

show that A[p∞](kperf) is finite.
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Notation 3.4.1.2. Throughout §3.4, let k0 ⊆ k be a finitely generated field such that k = Fk0

and such that there exists an abelian variety A0/k0 with A ' A0⊗k0 k. Let Fq be the algebraic

closure of Fp in k0. We choose a smooth geometrically connected variety X0 over Fq, with

Fq(X0) ' k0 and such that there exists an abelian scheme f0 : A0 → X0 with constant Newton

polygons and generic fiber A0/k0. We denote by X and A the extension of scalars of X0 and

A0 to F.

Lemma 3.4.1.3. If |A[p∞](kperf)| = ∞, then there exists an injective morphism (Qp/Zp)X ↪→
A[p∞]ét.

Proof. We first prove that the group A[p∞](kperf) is isomorphic to A[p∞]ét(X), showing thereby

that A[p∞]ét(X) is infinite as well. As kperf is a perfect field, the map

A[p∞](kperf)→ A[p∞]ét(kperf) = A[p∞]ét(k),

induced by the quotient A[p∞] � A[p∞]ét, is an isomorphism. In addition, as the Newton

polygons of f : A → X are constant, the étale sheaves A[pi]ét are locally constant on X.

Therefore, since X is smooth, the restriction morphism A[p∞]ét(X) → A[p∞]ét(k) induced by

the inclusion of the generic point Spec(k) ↪→ X is an isomorphism. These two observations

show that A[p∞](kperf) ' A[p∞]ét(X), as we wanted.

Since |A[p∞]ét(X)| = |A[p∞](kperf)| = ∞, a standard compactness argument shows that

there exists a morphism (Qp/Zp)X ↪→ A[p∞]ét. For the reader convenience, we quickly recall

it. We define a partition of A[p∞]ét(X) in subsets {∆i}i∈N in the following way. Let ∆0 := {0}
and for i > 0, let ∆i := A[pi]ét(X) \ A[pi−1]ét(X). When j ≥ i, the multiplication by pj−i

induces a map ∆j → ∆i. These maps make {∆i}i∈N an inverse system. We claim that every

∆i is non-empty. Suppose by contradiction that for some N ∈ N, the set ∆N is empty. By

construction, for every i ≥ N the sets ∆i are empty as well. Since every ∆i is finite, this implies

that A[p∞]ét(X) is also finite, which is a contradiction. As every ∆i is non-empty, by Tychonoff’s

theorem, the projective limit lim←−∆i is non-empty. The choice of an element (Pi)i∈N ∈ lim←−∆i

induces an injective map (Qp/Zp)X ↪→ A[p∞]ét, given by the assignment [1/pi] 7→ Pi. This yields

the desired result.

3.4.2 Reformulation with the crystalline Dieudonné theory

We restate the classical crystalline Dieudonné theory in our setup.

3.4.2.1. Let

D : {p-divisible groups /X} → F-Crys(X/W (F))

be the crystalline Dieudonné module (contravariant) functor, where F-Crys(X/W (F)) is the

category of F -crystals (cf. [BBM82]). In [ibid.], it is proven that this functor is fully faithful
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and D(A[p∞]) ' R1fcrys∗OA. Extending the scalars to Qp and post-composing with the functor

of Theorem 3.2.1.2, we define a Qp-linear fully faithful contravariant functor

DQp : {p-divisible groups /X}Qp → F-Isoc(X).

The functor sends the trivial p-divisible group (Qp/Zp)X,Qp to the F -isocrystal (OX , idOX ) on

X. When X = Spec(F), the functor induces an equivalence

DQp : {p-divisible groups / Spec(F)}Qp
∼−→ F-Isoc[0,1](Spec(F)),

where F-Isoc[0,1](Spec(F)) is the category of F -isocrystals with slopes between 0 and 1. Since

DQp is compatible with base change, this implies that for every X, the functor DQp is exact, it

preserves the heights/ranks and it sends étale p-divisible groups to unit-root F -isocrystals.

3.4.2.2. By [Ete02, Théorème 7], the F -isocrystal R1f0,crys∗OA0 over X0 comes from an over-

convergent F -isocrystal, which we denote by E†0 . Let F0 be the maximal unit-root subobject

of E0 and let (F0)X be the inverse image of F0 to X, as an F -isocrystal. By the discussion in

§3.4.2.1, we have the following result.

Lemma 3.4.2.3. The quotient A[p∞] � A[p∞]ét is sent by DQp to the natural inclusion (F0)X ↪→
(E0)X .

Thanks to Lemma 3.4.2.3, we can reformulate Lemma 3.4.1.3 in the language of F -isocrystals.

Corollary 3.4.2.4. If |A[p∞](kperf)| =∞, then there exists a quotient (F0)X � (OX , idOX ).

Proof. Thanks to Lemma 3.4.1.3, if |A[p∞](kperf)| =∞, then there exists an injective morphism

(Qp/Zp)X ↪→ A[p∞]ét. By Lemma 3.4.2.3, after we extend the scalars to Qp, this morphism is

sent by DQp to a quotient (F0)X � (OX , idOX ).

3.4.3 End of the proof

We need to rephrase the finiteness of torsion points given by the theorem of Lang–Néron in

terms of morphisms of isocrystals on X0. This will lead to the proof of Theorem 3.4.1.1. Retain

notation as in §3.4.2.2.

Proposition 3.4.3.1. If there exists a morphism E → OX0 which is non-zero on F , then

Trk/F(A) 6= 0.

Proof. The maximal trivial quotient E � T , descends to a quotient E0 � T0, where T0 is

a constant F -isocrystal. We base change this quotient from X0 to X, as a morphism of F -

isocrystals, obtaining a quotient (E0)X � (T0)X in F-Isoc(X). Since T0 is an F -isocrystal
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coming from Spec(Fq), the F -isocrystal (T0)X comes from Spec(F). Thanks to [Ked16, Theorem

3.5], (T0)X decomposes in F-Isoc(X) as

(T0)X = (T ′0 )X ⊕ (O⊕nX , idO⊕nX
)

where (O⊕nX , idO⊕nX
) is the maximal unit-root subobject of (T0)X and n ≥ 0. As F0 is unit-root,

it is sent via the quotient (E0)X � (T0)X to a non-zero unit-root F -isocrystal, so that n > 0.

Thus, (E0)X admits a quotient to (OX , idOX ) in F-Isoc(X). Since DQp is fully faithful, such a

quotient comes from a monomorphism (Qp/Zp)X,Qp ↪→ A[p∞]Qp in the category of p-divisible

groups with coefficients in Qp. The map, after possibly multiplying it by some power of p, comes

from an injection (Qp/Zp)X ↪→ A[p∞] of p-divisible groups over X. By Theorem 3.1.2.1, this

implies that Trk/F(A) 6= 0.

Proof of Theorem 3.4.1.1. Assume by contradiction that |A[p∞](kperf)| = ∞. By Corollary

3.4.2.4, we have a quotient (F0)X � (OX , idOX ) in F-Isoc(X). Forgetting the Frobenius struc-

ture, we get a quotient FX � OX in Isoc(X). By a descent argument (see for example the

proof of [Kat99, Proposition 1.3.2]), the morphism FX � OX descends to a quotient F � OX0

in Isoc(X0). By Theorem 3.3.2.1, the map extends to a quotient E � OX0 in Isoc(X0). We

obtain then a contradiction by Proposition 3.4.3.1.

Remark 3.4.3.2. The proofs of Theorem 3.2.3.4 and Proposition 3.3.1.1 rely on the known

cases of Deligne’s conjecture. In particular, they rely on the Langlands correspondence for lisse

sheaves proven in [Laf02] and the Langlands correspondence for overconvergent F -isocrystals

proven in [Abe18]. We want to point out that to prove Theorem 3.4.1.1 we do not need to

use this theory. More precisely, when E†0 is an overconvergent F -isocrystal which “comes from

geometry”, for example any overconvergent F -isocrystals appearing in §3.4, Theorem 3.2.3.4

can be proven more directly, as explained in Remark 1.4.2.11. Even in the proof of Proposition

3.3.1.1, if E†0 “comes from geometry” we do not need Theorem 1.3.7.6.
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A Neutral Tannakian categories with Frobenius

We introduce in this appendix the notion of neutral Tannakian categories with Frobenius, and

we present a fundamental exact sequence for these categories. This formalism applies to the

categories of coefficient objects, as explained in Proposition 1.3.1.8. We have preferred to work

here in a more general setting in order to include some other categories, such as the category of

convergent isocrystals.

A.1 Definition and Weil group

Definition A.1.1. A neutral Tannakian category with Frobenius is a neutral Tannakian cate-

gory over some field K, endowed with a K-linear ⊗-autoequivalence F ∗ : C̃→ C̃.

Construction A.1.2. We fix a neutral Tannakian category with Frobenius (C̃, F ∗) over some

field K. We denote by C0 the category of pairs (E ,Φ), where E ∈ C̃ and Φ is an isomorphism

between F ∗E and E . A morphism between two objects (E ,Φ) and (E ′,Φ′) is a morphism f :

E → E ′ such the following diagram commutes

F ∗E E

F ∗E ′ E ′.

Φ

F ∗f f

Φ′

Let Ψ : C0 → C̃ be the forgetful functor sending (E ,Φ) to E . Write C for the smallest Tannakian

subcategory of C̃ which contains the essential image of Ψ.

Choose a fiber functor ω of C̃ over K. It restricts to a fibre functor of C which we will

denote by the same symbol. We write ω0 for the fibre functor of C0 given by the composition

ω ◦Ψ. We define π1(C, ω) and π1(C0, ω0) as the Tannakian groups of C and C0 with respect to

ω and ω0 respectively. The functor Ψ induces a closed immersion π1(C, ω) ↪→ π1(C0, ω0) and

for every E0 = (E ,Φ) ∈ C0 a closed immersion G(E , ω) ↪→ G(E0, ω0).

Definition A.1.3. We say that an object in C0 is constant if its image in C is trivial, i.e.

isomorphic to 1
⊕n for some n ∈ N. The constant objects of C0 form a Tannakian subcategory

Ccst ⊆ C0. Let π1(C0, ω0)cst be the Tannakian group of Ccst with respect to ω0. The inclusion

Ccst ⊆ C0 induces a faithfully flat morphism π1(C0, ω0) � π1(C0, ω0)cst. For every object

E0 ∈ C0, we denote by G(E0, ω0)cst the Tannakian group of the full subcategory 〈E0〉cst ⊆ 〈E0〉
of constant objects. This induces a faithfully flat morphism G(E0, ω0) � G(E0, ω0)cst.

A.1.4. Suppose that (C̃, F ∗) admits an isomorphism of fibre functors η : ω ⇒ ω ◦ F ∗. The

group π1(C, ω) is then endowed with an automorphism ϕ which is constructed in the following
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way. For every K-algebra R, the automorphism ϕ sends α ∈ π1(C, ω)(R) to η−1
R ◦α ◦ ηR, where

ηR is the extension of scalars of η from K to R.

Definition (Weil group). Let W (C0, ω0) be the group scheme over K which is the semi-direct

product π1(C, ω)oZ, where 1 ∈ Z acts on π1(C, ω) as ϕ acts on π1(C, ω). We will call W (C0, ω0)

the Weil group of C0.

Remark A.1.5. Thanks to [Del90], we know that if K is algebraically closed, an isomorphism

η as in §A.1.4 always exists. This is not the case in general when K is not algebraically closed.

This is due to the existence of non-isomorphic algebraic groups with equivalent categories of

linear representations. For coefficient objects, an isomorphism η can be constructed each time

that a fibre functor exists, as it is explained in Remark 1.3.2.2.

Lemma A.1.6. Let (C̃, F ∗) be a neutral Tannakian category with Frobenius which admits a

fibre functor ω isomorphic to ω ◦ F ∗. There exists a natural equivalence of categories C0
∼−→

RepK(W (C0, ω0)) and a natural morphism ι : W (C0, ω0)→ π1(C0, ω0) such that the following

diagram commutes

RepK(π1(C0, ω0))

C0

RepK(W (C0, ω0)),

ι∗

∼

∼

where the equivalence C0
∼−→ RepK(π1(C0, ω0)) is the one induced by the fibre functor ω0. In

addition, the image of ι is Zariski-dense in π1(C0, ω0).

Proof. For every (E ,Φ) ∈ C0, we extend the natural representation of π1(C, ω) on the vector

space ω(E) to a representation of W (C0, ω0). Write e for the identity point in π1(C, ω)(K). We

impose that (e, 1) ∈ W (C0, ω0)(K) acts on ω(E) via ω(Φ) ◦ ηE , where ηE is the isomorphism

induced by η between ω(E) and ω(F ∗E). This defines an equivalence C0
∼−→ RepK(W (C0, ω0))

and a morphism ι : W (C0, ω0)→ π1(C0, ω0) satisfying the required properties. By the Tannaka

reconstruction theorem, the affine group π1(C0, ω) is the pro-algebraic completion of W (C0, ω0),

thus the image of ι is Zariski-dense in π1(C0, ω).

A.2 The fundamental exact sequence

A.2.1. We briefly recall the general criterion for the exactness of sequences of Tannakian groups.

Let L
q−→ G

p−→ A be a sequence of affine group schemes over a field K. Write

RepK(A)
p∗−→ RepK(G)

q∗−→ RepK(L)

for the induced sequence of functors.
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Theorem ([EHS07, Theorem A.1]). Suppose that p is faithfully flat and q is a closed immersion.

Then the sequence L
q−→ G

p−→ A is exact if and only if the following conditions are fulfilled.

(a) For every V ∈ RepK(G), the image q∗(V ) in RepK(L) is trivial if and only if V ' p∗U

for some U ∈ RepK(A).

(b) For every V ∈ RepK(G), if we write W for the maximal trivial subobject of q∗(V ) in

RepK(L), there exists V ′ ⊆ V in RepK(G) such that q∗(V ′) = W .

(c) For every W ∈ RepK(L), there exists V ∈ RepK(G) such that W is a subobject of q∗(V ).

Lemma A.2.2. Let (C̃, F ∗) be a neutral Tannakian category with Frobenius and let ω be a fibre

functor of C̃. The subgroup π1(C, ω) ⊆ π1(C0, ω0) is a normal subgroup. In particular, for

every F ∈ C there exists G0 ∈ C0 such that F ⊆ Ψ(G0).

Proof. Thanks to Theorem A.2.1, the second part of the statement follows from the first one.

We may verify that the subgroup is normal after extending the field K to its algebraic closure.

Under the additional assumption that K is algebraically closed, by Remark A.1.5 there exists

an isomorphism between ω and ω ◦ F ∗, so that we can construct the Weil group W (C0, ω0) as

defined in §A.1.4. By Lemma A.1.6, the group scheme W (C0, ω0) is endowed with a natural

morphism ι : W (C0, ω0) → π1(C0, ω0) with Zariski-dense image. Let H be the normalizer of

π1(C, ω) in π1(C0, ω0). The group π1(C, ω) is normal in W (C0, ω0), hence the K-point (e, 1) ∈
W (C0, ω0)(K) normalizes π1(C, ω). As a consequence, ι(e, 1) ∈ π1(C0, ω0)(K) is contained in

H(K). The group W (C0, ω0) is generated by π1(C, ω) and (e, 1), thus the image of ι is contained

in H. This implies that H = π1(C0, ω0), which shows that π1(C, ω) is normal in π1(C0, ω0), as

we wanted.

Proposition A.2.3. Let (C̃, F ∗) be a neutral Tannakian category over K with Frobenius and

let ω be a fibre functor of C̃. The following statements hold.

(i) The morphisms constructed in §A.1.2 and §A.1.3 form an exact sequence

1→ π1(C, ω)→ π1(C0, ω0)→ π1(C0, ω0)cst → 1.

(ii) For every E0 = (E ,Φ) ∈ C0 and every F ∈ 〈E〉, there exists G0 ∈ 〈E0〉 such that F ⊆ Ψ(G0).

(iii) For every object E0 = (E ,Φ) ∈ C0, the exact sequence of (i) sits in a commutative diagram

with exact rows

1 π1(C, ω) π1(C0, ω0) π1(C0, ω0)cst 1

1 G(E , x) G(E0, x) G(E0, x)cst 1,
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where the vertical arrows are the natural quotients.

(iv) The affine group scheme π1(C0, ω0)cst is isomorphic to the pro-algebraic completion of Z
over K and G(E0, x)cst is a commutative algebraic group.

Proof. We already know that the sequence of part (i) is exact on the left and on the right. It

remains to show the exactness in the middle using Theorem A.2.1. Condition (a) is satisfied

by construction. For condition (b) we notice that a ⊗-functor sends trivial objects to trivial

objects. Therefore, for every (E ,Φ) ∈ C0, the maximal trivial subobject F ⊆ E is sent by

F ∗ to the maximal trivial subobject of F ∗(E). This means that the restriction of Φ to F ∗(F)

defines an isomorphism between F ∗(F) and F that we denote by Φ|F . The pair (F ,Φ|F) is the

subobject of (E ,Φ) with the desired property. Condition (c) is proven in Lemma A.2.2.

For part (ii) we notice that the subgroup G(E , ω) ⊆ G(E0, ω0) is a quotient of π1(C, ω) ⊆
π1(C0, ω0), thus it is normal. By Theorem A.2.1, this implies the desired result. The diagram

of part (iii) is obtained by taking the natural morphisms of the Tannakian groups. To prove

that the lower sequence is exact we proceed as in part (i), replacing Lemma A.2.2 with part

(ii). Finally, the category Ccst is equivalent to RepK(Z), thus π1(C0, ω0)cst is isomorphic to

the pro-algebraic completion of Z over K. In particular, for every E0 ∈ C0, the algebraic group

G(E0, ω0)cst, being a quotient of π1(C0, ω0)cst, is commutative. This concludes the proof.
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Selbständigkeitserklärung

Hiermit versichere ich, Marco D’Addezio,

– dass ich alle Hilfsmittel und Hilfen angegeben habe,

– dass ich auf dieser Grundlage die Arbeit selbständig verfasst habe,
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