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Abstract

Space usage has been a concern since the very early days of algorithm design. The
increased availability of devices with limited memory or power supply – such as smart-
phones, drones, or small sensors – as well as the proliferation of new storage media for
which write access is comparatively slow and may have negative effects on the lifetime –
such as flash drives – have led to renewed interest in the subject. As a result, the design
of algorithms for the limited workspace model has seen a significant rise in popularity in
computational geometry over the last decade.

In this setting, we typically have a large amount of data that needs to be processed.
Although we may access the data in any way and as often as we like, write-access to
the main storage is limited and/or slow. Thus, we opt to use only higher level memory
for intermediate data (e.g., CPU registers). Since the application areas of the devices
mentioned above – sensors, smartphones, and drones – often handle a large amount of
geographic (i.e., geometric) data, the scenario becomes particularly interesting from the
viewpoint of computational geometry.

Motivated by these considerations, we investigate geometric problems in the limited
workspace model. In this model the input of size n resides in read-only memory, an
algorithm may use a workspace of size s = {1, . . . , n} to read and write the intermediate
data during its execution, and it reports the output to a write-only stream. The goal
is to design algorithms whose running time decreases as s increases, which provides a
time-space trade-off.

In this thesis, we consider three fundamental geometric problems, namely, computing
different types of Voronoi diagrams of a planar point set, computing the Euclidean
minimum spanning tree of a planar point set, and computing the k-visibility region of a
point inside a polygonal domain. Using several innovative techniques, we either achieve
the first time-space trade-offs for those problems or improve the previous results.
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Introduction

Memory constraints have been studied since the introduction of computers, initially mo-
tivated by the high cost of memory (see, for example, Pohl [Poh69]). The first computers
often had limited memory compared to the available processing power. As hardware
progressed, this gap narrowed and the amount of memory available to computers grew
exponentially. Thus, other concerns became more important, and the focus of algorithms
research shifted away from memory constraints. Therefore, nowadays, many algorithms
have been developed with little or no regard to the amount of memory used.

On the other hand, in recent years, we have seen an explosive growth of small dis-
tributed devices such as tracking devices and wireless sensors. These gadgets are small,
have only limited energy supply, are easily moved, and should not be too expensive. To
accommodate these needs, the amount of memory on them is tightly budgeted. Thus,
programs that are oblivious to space resources are not suitable for such a setting. Fur-
thermore, even though memory became drastically cheaper than before, input data sizes
are growing rapidly. Hence, memory constraints became again an important issue for
these new devices as well as for huge datasets that have become available through cloud
computing. This poses a significant challenge to software developers and algorithm de-
signers: how to create useful and efficient programs in the presence of strong memory
constraints?

An easy way to model algorithms with memory constraints is to assume that the
input is stored in a read-only memory. This is appealing for several reasons. From
a practical viewpoint, writing to external memory is often a costly operation, e.g., if
the data resides on a read-only medium such as a DVD or on hardware where writing
is slow and wears out the material, such as flash memory. Similarly, in concurrent
environments, writing operations may lead to race conditions. Thus, it is useful to limit
or simply disallow writing operations on the input media.

From a theoretical viewpoint, keeping the working memory separate from the (read-
only) input memory has also advantages. Basically, it allows for a more detailed ac-
counting of the space requirements of an algorithm and for a better understanding of
the required resources. In fact, this is exactly the approach taken by computational
complexity theory. Here, one defines complexity classes that model sublinear space re-
quirements, such as the complexity class of problems that use a logarithmic amount of
space [AB09].
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1. Introduction

With this situation in mind, we focus on designing algorithms that need only a
limited number of cells of the read-write memory, while the input resides in read-only
memory, and the output is usually written sequentially to a write-only stream. In the
following chapter, we will introduce our model more formally.

1.1 The Limited Workspace Model

The present notion of a limited workspace algorithm was introduced to the computa-
tional geometry community by Tetsuo Asano [Asa08]. Initially, the model postulated a
workspace that consists of a constant number of cells [AMRW11, AMW11]. Over the
years, this was extended to also allow more workspace in exchange for a better running
time, which is known as time-space trade-off. In the following, we describe the most gen-
eral variant of the model which we will refer to as the limited workspace model. Studying
geometric algorithms in the limited workspace model constitutes the focus of this thesis.

The model is similar to the standard word random access machine, word RAM, in
which the memory is organized as a sequence of cells that can be accessed in constant
time via their addresses. Each memory cell stores a single data word [Knu97]. In contrast
to the standard word RAM, the limited workspace model distinguishes two kinds of
cells: (i) read-only cells that store the input; and (ii) read-write cells that constitute the
algorithm’s workspace. A cell of the workspace can store either an integer of O(logn)
bits, a pointer to some input cell, or a root of some polynomial of bounded degree that
depends on a fixed number of input variables (for example, the intersection point of two
lines, each passing through two input points). Here, n denotes the input size (measured
in the number of cells). We denote the number of cells of the workspace by s.

Typically, the output is larger than the workspace. Thus, we assume that the output
is written sequentially to a dedicated write-only stream. Once a data item is written
to the output stream, it cannot be modified or even accessed again by the algorithm;
see Figure 1.1. It usually depends on the algorithmic problem at hand how exactly the
output should be structured. As usual, the running time of an algorithm on a given
input is measured as the number of elementary operations that it performs. The space
usage is counted as the number of cells in the workspace. Note that the input does
not contribute to this count, but any other memory consumption does (like memory
implicitly allocated during recursion).

read-only input cells

read-write workspace cells

write-only output stream

Figure 1.1: The different types of memory cells available in the limited workspace model.
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1.2 Related Models

Although the objective is to have algorithms that are fast and at the same time
use little – ideally constant – workspace, it is normally not possible to achieve both
goals simultaneously. Thus, the aim is to balance the two. Often, this results in a
time-space trade-off : as more cells of workspace become available, the running time
decreases. Now, the precise relationship between the running time and the available
space becomes the main focus of our attention. For many problems, this dependency is
linear, i.e., by doubling the amount of workspace, the running time can be halved; see for
example [ABB+13,HP14,OA17] . However, recent research has uncovered a wide range
of possible trade-offs that often interpolate smoothly between the best known results for
constant and for O(n) cells of workspace; see for example [DE14,BKLS14]

1.2 Related Models

Designing algorithms that require little working memory is a classic and well-known
challenge in theoretical computer science. Over the years, it has been attacked from
many different angles. In the following, we briefly survey some widely studied models
that restrict the available workspace or the way the data is accessed. See also the survey
by Korman [Kor16] on the memory-constrained models.

Streaming algorithms. One of the most restrictive models that has been considered
is the one-pass or the streaming model. In a typical streaming algorithm, the elements
of the input can be scanned only once and in a sequential fashion. The underlying
motivation originates from the desire to process huge amounts of data, such as traffic
data on the internet, and in an online fashion. The goal is to perform some meaningful
computation on the input and usually to approximate the solution while the algorithm
is using as little workspace as possible to accomplish its task. Of course, the size of the
random-access workspace should be sublinear in the size of the input, otherwise there
would be no difference to the classic unconstrained model.

A natural extension of the above setting is the multi-pass model, in which the input
can be scanned a constant number of times; however, still in a sequential fashion and
using a limited workspace. In this model, the number of passes that an algorithm
makes over the input is accounted as a measure. Basically, one looks for a trade-off
between the number of passes and either the size of the workspace or the quality of the
approximation [Kor16].

The selection problem has been studied in the multi-pass model since the early work
of Munro and Paterson [MP80] and Frederickson [Fre87]. Many further problems have
been considered since then (see, e.g., the survey by Muthukrisnan [Mut05]). There
are also several results on geometric problems in the streaming model [Ind04, Cha06],
mostly dealing with problems concerning clustering and extent measures [AHPV04], but
also with classic questions, such as computing convex hulls or low-dimensional linear
programming [CC07].

3



1. Introduction

Read-only random-access model. As the name of read-only random access model
implies, in this model, the input is stored on a read-only randomly-accessible medium.
The main difference to the streaming model is that one has random access to each
element of the input, while in the streaming model, each element of the input can be
read only once (or constant number of times). The extreme version of the multi-pass
model that imposes no restriction on the number of passes coincides with the random
access model. Research on this model focuses on either computability (i.e., determining
whether a particular problem is solvable with a workspace of fixed size), or the design
of efficient algorithms whose running time is not much worse compared to the case in
which no space constraints exist [Kor16].

In computational geometry, this model was first introduced by Asano [Asa08] under
the name of constant workspace model. The constant workspace model is the case of the
read-only random-access model when the algorithm can use only a constant number of
read-write memory cells to accomplish its task. Assuming the size of the workspace as a
parameter, we accomplish time-space trade-offs in the read-only random-access model,
which is the main focus of this thesis.

In computational complexity theory, the algorithms in the constant workspace model
have been studied for many years under the name of log-space algorithms. The classic
complexity class LOGSPACE contains all algorithmic problems that can be solved with a
workspace which has only a logarithmic number (in the input size) of bits [AB09,Gol08].
The research on LOGSPACE has led to several surprising insights [Imm88,Sze87,Sav70],
perhaps most recently the st-connectivity algorithm by Reingold [Rei08] for undirected
graphs, an unexpected application of expander graphs. The focus in computational com-
plexity is mainly on what can be done in principle in LOGSPACE. Obtaining LOGSPACE-
algorithms with a low running time is usually a secondary concern.

In-place and restore models. Unlike in the previous models, the in-place model
assumes that the input resides in a memory that can be read and written arbitrarily.
The algorithm may use the input array as working space and may rearrange the elements
of the input or even modify them during the computation. The algorithm may use only
a constant number of additional memory cells. This means that small, multi-purpose
data structures can be encoded through appropriate permutation of the input, and some
algorithms in this model have even achieved a running time comparable to those in
unconstrained settings. However, it is still challenging to encode complex data structures
using the input elements, and therefore, the model severely restricts the algorithmic
options at our disposal.

The classic example of an in-place algorithm is heap-sort which, in addition to the
input array, requires only constantly many cells of workspace for the loop and for the
array indices. In computational geometry, in-place algorithms have been developed for
many problems, e.g., computing the convex hull and computing the Voronoi diagram of
a given planar point set [BIK+02,BCC04,CC08,CC10].

A more restrictive version of the in-place model, which is called the restore model,
has been introduced by Chan et al. [CMR14]. In the restore model, the algorithms

4



1.3 State of the Art

are allowed to modify the input array during the computation, but it is required that
the original input permutation is restored by the end of the computation. Thus, it
retains at least one of the advantages of the read-only model, namely, that the input is
not destroyed after the execution of the algorithm. This can play an important role in
certain applications [CMR14]. In particular, this model can potentially be useful in the
design of in-place algorithms, when one encounters subproblems that need to be solved
by subroutines, and these subroutines must leave the array in its original state by the
time they finish, see [CMR14] for further details.

Succinct data structures. In succinct data structures, the goal is to minimize the
precise number of bits that are needed to represent the data, getting as close to the
entropy bound as possible [Nav16, Jac88]. At the same time, one would like to retain
the ability to support the desired data structure operations efficiently. Although this
kind of approach drastically reduces the memory needed, in many cases a workspace of
Ω(n) bits are still necessary, and also the input data structure cannot be read-only since
it may need to be used as a working space. In computational geometry, succinct data
structures have been developed for classic problems like range searching, point location,
or nearest neighbor search [He13].

To bring our model into perspective, we compare it with the related models. Unlike
the typical viewpoint from computational complexity theory, our goal is to find the best
running time that can be achieved with a given space budget. In contrast to streaming
algorithms, we may read the input repeatedly and with random access. Unlike in-place
algorithms, our input resides in read-only memory, and the workspace can potentially
contain arbitrary data. When analyzing the space usage of an algorithm, we typically
ignore constant factors and lower order terms, whereas these play a crucial role in succinct
data structures.

1.3 State of the Art

As mentioned above, the initial investigations on geometric algorithms with limited
workspace focused on the case that only a constant number of workspace cells are avail-
able, but by now, we have time-space trade-offs for most problems that interpolate
between the constant and the linear workspace regime.

Table 1.1 summarizes the best known algorithms for some geometric problems in
the limited workspace model. We have categorized them into four groups: problems on
data sets, e.g., sorting; problems on point sets, e.g., Voronoi diagram; and problems on
polygonal domains, e.g., visibility, which itself is partitioned into two other categories.
Indeed, the intricate web of relationships between the three problems (i) triangulation
of a simple polygon; (ii) balanced partition of a simple polygon; and (iii) the shortest
path in a simple polygon induced us to put them in an individual group. See the recent
survey by Banyassady et al. [BKM18a] for more details.
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Introduction

Problem Running Time Space Source
shortest path in a tree n 1 [AMW11]
all nearest larger neighbors n logs n s [AK13]
sorting n2/(s logn) + n log s s [AEK13]
convex hull of a point set n2/(s logn) + n log s s [DE14]
triangulation of a point set n2/s+ n log s s [AMRW11,ABOS17]
Voronoi diagram/Delaunay triangulation n2 log s/s s [KMvR+17,BKM+18b] [This thesis]
Voronoi diagrams of order 1 to K (K ≤

√
s) n2K6polylog(s)/s s [BKM+18b] [This thesis]

Euclidean minimum spanning tree n3 log s/s2 s [AMRW11,BBM18][This thesis]
triangulation of a simple polygon n2/s s [OA17,AKP+16]
balanced partition of a simple polygon n2/s s [OA17]
shortest path in a simple polygon n2/s s [AMW11,HP16,OA17]
triangulation of a monotone polygon n logs n s [AK13]
visibility in a simple polygon n2/2s + n log2 n s [BKLS14]
k-visibility in a polygonal domain n2/s+ n log s s [BBB+18] [This thesis]
weak visibility in a simple polygon n2 1 [Abr13]
minimum link path in a simple polygon n2 1 [Abr13]
convex hull of a simple polygon n2 logn/2s s∗ [BKL+15]
convex hull of a simple polygon n1+1/ log s s∗∗ [BKL+15]
common tangents of two disjoint polygons n 1 [Abr15,AW16]

Table 1.1: A selection of problems and the best known running times in the limited workspace model. The O-notation has
been omitted in the bounds. If the space usage is given as s, then s may range from 1 to n. For s∗, it may range from 1 to
o(logn), and for s∗∗ it ranges from logn to n. The running times for k-visibility and for the convex hull of a simple polygon
have been simplified.
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1.4 Contributions

1.4 Contributions

In this chapter, we briefly explain the problems that we consider in this thesis and
the results that we obtain to solve those problems in the limited workspace model. In
all the following problems, we assume that the input is given in a read-only array of
size O(n) cells, and there is an additional read-write workspace of O(s) cells, where
s = {1, . . . , n} is a parameter of the model.1 An algorithm may use this workspace to
write the intermediate data, and it reports the output on a write-only stream. Such an
algorithm is called an s-workspace algorithm.

Computing variants of Voronoi diagrams for a point set. Let S be a planar
set of n point-sites in general position. For k ∈ {1, . . . , n − 1}, the Voronoi diagram
of order k for S is obtained by subdividing the plane into cells such that points in the
same cell have the same set of nearest k neighbors in S. The (nearest site) Voronoi
diagram (NVD) and the farthest site Voronoi diagram (FVD) are the particular cases
of k = 1 and k = n− 1, respectively. We develop a deterministic s-workspace algorithm
for computing NVD and FVD for the set S that runs in O

(
(n2/s) log s

)
time. Moreover,

we generalize our s-workspace algorithm so that for any given K ∈ {1, . . . , O(
√
s)}, we

can compute the family of all higher-order Voronoi diagrams of order k = 1, . . . ,K for
S in O

(
n2K5

s (log s+K logK)
)

total deterministic time or O
(
n2K5

s (log s+K 2O(log∗K))
)

total expected time.

Computing the Euclidean minimum spanning tree of a point set. Let S be a
planar set of n point-sites in general position. Consider the complete graph G on S where
the weight of each edge is the Euclidean distance between its endpoints. The Euclidean
minimum spanning tree (EMST) for S is defined as the spanning tree of G which has
the minimum weight among all the spanning trees of G. We provide an s-workspace
algorithm that computes the EMST for S in total O

(
(n3/s2) log s

)
deterministic time.

Computing the k-visibility region of a point inside a polygonal domain. Let P
be a simple polygon with n vertices, and let q ∈ P be a point in P . Let k ∈ {0, . . . , n−1}.
A point p ∈ P is k-visible from q if and only if the line segment pq crosses the boundary
of P at most k times. The k-visibility region of q in P is the set of all points that are
k-visible from q. We study the problem of computing the k-visibility region of q in P
in the limited workspace model. We present an s-workspace algorithm that reports the
k-visibility region of q in P in O(cn/s+c log s+min{dk/sen, n log logs n}) expected time.
Here, c ∈ {1, . . . , n} is the number of critical vertices of P for q, where the k-visibility
region of q may change. We generalize this result for polygons with holes and for sets of
non-crossing line segments.

1The assumption that we have O(s) cells instead of exactly s cells of workspace is for the sake of a
simple presentation. Thus, when describing our algorithms, we can ignore constant factors in the space
usage. The precise constant is a function that only depends on the implementation of the algorithms.

7



1. Introduction

1.5 Thesis Outline

After the introduction chapter, the thesis is divided into two parts. In Part I we in-
vestigate geometric problems on point sets. In Chapter 2, we present preliminaries and
background on problems that concern point sets, as well as the notations and definitions
that are used in Part I. Next, in Chapter 3, we provide our algorithms to compute the
nearest site Voronoi diagram, farthest site Voronoi diagram, and the family of higher
order Voronoi diagrams for a given planar set of points. Last, in Chapter 4, we describe
a simple time-space trade-off for computing the Euclidean minimum spanning tree for a
given planar set of points, and we introduce s-nets which are compact representation of
planar graphs. Finally, we explain how to use the s-nets to speed up our algorithm.

Part II is devoted to problems on polygonal domains, and it consists of two chap-
ters. In Chapter 5, we review preliminaries and background on problems that deal with
polygonal domains, as well as definitions and notations that are used in Part II. Fur-
thermore, we explain some techniques that are applied in our algorithms in the next
chapter. In Chapter 6, we tackle the problem of computing the k-visibility region of a
point in a polygonal domain. First, we describe a constant workspace algorithm for this
problem. Then, we use the same ideas to obtain a time-space trade-off which can be
easily described and understood. Last, we explain how to improve the running time of
our algorithm with the help of some data structures.

Finally, in Chapter 7, we provide a conclusion about geometric problems in the
limited workspace model and some suggestions for further research in this topic.

1.6 Publications

The results that are covered in this thesis have appeared in the following publications.

[BKM+18b] Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van
Renssen, Marcel Roeloffzen, Paul Seiferth, and Yannik Stein. Im-
proved time-space trade-offs for computing voronoi diagrams. Jour-
nal of Computational Geometry (JoCG), 7(2):19–45, 2018.
[A preliminary version appeared in proceedings of STACS 2017.]

[BBM18] Bahareh Banyassady, Luis Barba, and Wolfgang Mulzer. Time-space
trade-offs for computing Euclidean minimum spanning trees. In Pro-
ceedings of 13th Latin American Theoretical Informatics Symposium
(LATIN), pages 108–119, 2018.
[Co-winner of the Alejandro López-Ortiz best paper award.]

[BBB+18] Yeganeh Bahoo, Bahareh Banyassady, Prosenjit Bose, Stephane
Durocher, and Wolfgang Mulzer. A time-space trade-off for com-
puting the k-visibility region of a point in a polygon. Journal of
Theoretical Computer Science (TCS), 2018.
[A preliminary version appeared in proceedings of WALCOM 2017.]
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Preliminaries and
Background on Point Sets

In this chapter, we introduce basic notations and preliminaries on geometric problems
in the limited workspace model that deal with point sets in the plane. Some of the
most basic geometric problems that concern point set in the plane are convex hulls,
Voronoi diagrams, Euclidean minimum spanning trees, and some related structures.
These problems have also been an early focus in the study of the limited workspace
model. Here, we will give an overview of known results on these problems.

2.1 Convex Hulls

One of the most basic problems in computational geometry is the computation of pla-
nar convex hulls. In the following we define the convex hull and briefly present some
algorithms for computing it.

Definition. A subset S of the plane is called convex if and only if for any pair of points
p, q ∈ S the line segment pq is completely contained in S. The convex hull of a set S is
the smallest convex set S ′ that contains S. More precisely, it is the intersection of all
convex sets that contain S [BCvKO08]. See Figure 2.1a.

p

q
S

S ′

(a)

pi

pj

(b)

Figure 2.1: (a) A non-convex subset of the plane, S, and its convex hull, S ′. (b) The
convex hull of a finite set of points in the plane.
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2. Preliminaries and Background on Point Sets

Here, we only consider the problem of computing the convex hull of a finite set
of points S = {p1, . . . , pn} in the plane, which is denoted by CH(S). It can easily
be observed that CH(S) is a convex polygon and that the line segment pipj , for any
pi, pj ∈ S, is an edge of CH(S) if and only if all the points of S \ {pi, pj} lie to the right
of the directed line through pi and pj [BCvKO08]. See Figure 2.1b. These observations
help us to understand the geometry of the problem and to design several algorithms to
compute CH(S), i.e., to list its vertices along ∂ CH(S) starting from an arbitrary one.1
It is well-known that CH(S) can be computed in O(n logn) time when O(n) cells of
workspace are available; see the book by de Berg et al. for more details [BCvKO08].

Constant Workspace. In one of the first papers that investigated geometric problems
with limited workspace, Asano et al. [AMRW11] observed that the convex hull of S can
be found in O(n2) time when O(1) cells of workspace are available. This is through a
straightforward application of Jarvis’ classic gift-wrapping algorithm [Jar73].

The essence of the algorithm is as follows: we scan S to find its leftmost point, and
we denote this point by p leftmost. This takes O(n) time, and it uses only O(1) cells of
workspace. We output p leftmost as a point on ∂CH(S), and we store it as the current
point p current. Then, we select the point p next ∈ S such that all the points in S are on
the left side of the directed line through p current and p next. This point may be found
in O(n) time by comparing the polar angles of all the points with respect to p current
taken for the center of polar coordinates, and using only O(1) cells of workspace for
p current and p next; see Figure 2.2. By definition, p next is the next counterclockwise point
on ∂CH(S), thus we output p next. Then, we store p next in p current, and we repeat the
above procedure in order to find the next counterclockwise points on ∂CH(S), one after
another, until we reach p leftmost again, i.e., until we select the point p leftmost as p next.
Clearly, we have to repeat this procedure h = O(n) times, where h is the number of
vertices on ∂CH(S), which makes a total running time of O(n2). The algorithm stores
only a constant number of indices as well as the variables p leftmost, p current and p next.

p leftmost

p current

pnext

Figure 2.2: An intermediate step of the algorithm in [AMRW11] for a given set of
points S. At the current step, three edges of CH(S) have been reported, and now the
algorithm selects p next as the next counterclockwise point on ∂ CH(S) by comparing the
polar angles of all the points with respect to p current.

1Throughout this thesis, for any finite set S, we denote the boundary of S by ∂S.
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2.1 Convex Hulls

Time-Space Trade-offs. As an extension of the constant workspace algorithm for
computing CH(S), we first mention the trade-off presented by Chan and Chen [CC07]
in the multi-pass model, which can also be used in the limited workspace model. Their
algorithm runs in O(n2/s + n log s) time, and it uses O(s) cells of workspace. The
algorithm imitates the classical Graham’s scan which takes a lexicographic sorting2 of
the points of S and builds their upper-hull (and lower-hull) by testing repeatedly whether
three consecutive points make a right turn or not.

In the limited workspace model, it is not possible to store the lexicographic sorting
of the points of S. Instead, Chan and Chen present a clever subroutine to select a batch
of s lexicographically consecutive points of S in O(n) time using O(s) cells of workspace,
see Chapter 5.3 for details. Such a batch of s points forms a vertical slab containing
s points of S. Their algorithm selects the s points in the leftmost slab, called σ, and
sorts them in O(s log s) time. Then, using any of the known O(s log s) time convex hull
algorithms, it constructs the upper-hull of the points in σ. Finally, among the points on
the upper-hull of σ, it eliminates the ones which do not appear on CH(S).

This is done in a Graham-scan fashion by doing a right turn check for every point on
the right of σ with the last segment of the tentative upper-hull of σ. Whenever a point
with a left turn is detected (i.e., a point above the last segment) the left turn is resolved
by pruning the points on the tentative upper-hull in the reverse order; see Figure 2.3.
This results in finding the edge of CH(S) which intersects the right wall of σ and takes
O(n) time. The algorithm outputs the remaining points on the upper-hull of σ, since
they belong to CH(S). Then, it proceeds to the next slab containing s points and it
performs the same procedure as above.

Since there are O(n/s) slabs and since processing each slab takes O(n+s log s) time,
the total running time of the algorithm is O(n2/s+n log s). The space usage for storing
the points in the current slab as well as some constant amount of information per each
such a point is O(s) cells of workspace.

σ

Figure 2.3: An intermediate step of the algorithm in [CC07]. At the current state, the
algorithm has found the upper-hull of the points in the slab σ. Now, the last segment of
the tentative upper-hull will be eliminated, since it makes a left turn with some of the
points on the right of σ.

2Lexicographic order of the points of S means that first we sort the points according to their x-
coordinate, and if some points have the same x-coordinate, then we sort them by their y-coordinate.
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2. Preliminaries and Background on Point Sets

Another time-space trade-off for computing CH(S) was later presented by Darwish
and Elmasry [DE14]. Their algorithm is quite similar to the algorithm by Chan and
Chen at a high level. The main difference is that the algorithm by Darwish and Elmasry
uses a heap data structure in order to recall the points and deal with them. More
precisely, they develop a heap data structure, called adjustable navigation pile, of size
O(b) bits, i.e., O(b/ logn) cells. Their algorithm uses three navigation piles, one to find
and extract the points in each slab, and the other two to construct the upper-hull of the
points in the slab and to prune it. The algorithm outputs CH(S) in O(n2/b + n log b)
time using O(b/ logn) cells of workspace.

The underlying adjustable navigation pile is very versatile, and it can also be used to
obtain time-space trade-offs for the sorting problem and for computing a triangulation
of a planar point set [AEK13,KMvR+17]. Due to the time-space product lower bound of
Ω(n2) for sorting n elements [Bea91], the achieved trade-offs for sorting and computing
convex hull are asymptotically optimal. In Chapter 3, we will use this algorithm as a
black box in order to compute the farthest site Voronoi diagram for S.

2.2 Voronoi Diagrams and Delaunay Triangulations

The Voronoi diagram is a versatile geometric structure that is closely linked to another
important structure, the so-called Delaunay triangulation [BCvKO08]. In this chapter
we introduce the Voronoi diagrams and the Delaunay triangulation in the plane.

Definition. Let S = {p1, . . . , pn} be a set of n ≥ 3 point-sites in the plane. We assume
general position, meaning that no three sites of S lie on a common line and no four sites
of S lie on a common circle.

A triangulation T for S is a maximal plane straight-line graph whose vertex set is
S. More precisely, T has as many edges as possible such that no edge between two
vertices can be added to T without destroying the planarity, i.e., any edge that is not
in T intersects one of the existing edges in its relative interior; see Figure 2.4.

Figure 2.4: An arbitrary triangulation of a planar set of sites in general position.

A triangulation of S is called Delaunay triangulation, DT(S), if and only if the
circumcircle of any triangle t in DT(S) does not contain any sites of S in its interior; see
Figure 2.5. It is well known that DT(S) always exists, and it is uniquely defined under
our general position assumptions.
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2.2 Voronoi Diagrams and Delaunay Triangulations

Figure 2.5: The Delaunay triangulation of a planar set of sites in general position.

The (nearest site) Voronoi diagram for S is obtained by classifying the points in the
plane according to their nearest site in S. For each site p ∈ S, the open set of points
in R2 with p as their unique nearest site in S is called the Voronoi cell of p. For any
two sites p, q ∈ S, the bisector B(p, q) of p and q is the line containing all the points in
the plane that are equidistant to p and q. The Voronoi edge for p, q consists of all the
points in the plane with p and q as their only two nearest sites. If it exists, the Voronoi
edge for p and q is a subset of B(p, q). Our general position assumption, and the fact
that n ≥ 3, guarantee that each Voronoi edge is an open line segment or a halfline.

Voronoi vertices are the points in the plane that have exactly three nearest sites in S.
Again by our general position assumption, every point in R2 is either a Voronoi vertex or
lies on a Voronoi edge or in a Voronoi cell. The Voronoi vertices and the Voronoi edges
form the set of vertices and edges of a plane graph whose faces are the Voronoi cells. This
graph is called the nearest site Voronoi diagram for S, and it is denoted by NVD(S); see
Figure 2.6. It has O(n) vertices, O(n) edges, and n cells [AKL13,BCvKO08].

Figure 2.6: The nearest site Voronoi diagram for a planar set of sites.

The farthest site Voronoi diagram for S, FVD(S), is defined analogously. Farthest
Voronoi cells, edges, and vertices are obtained by replacing the term “nearest site” by
the term “farthest site” in the respective definitions. Again, the farthest Voronoi vertices
and edges constitute the vertices and edges of a plane graph, called FVD(S). As before,
it has O(n) vertices and O(n) edges. However, unlike in NVD(S), in FVD(S) it is not
necessarily the case that all sites in S have a corresponding cell in FVD(S). Indeed, the
sites with non-empty farthest Voronoi cells are exactly the sites on the convex hull of
S. Furthermore, all cells in FVD(S) are unbounded. Hence, FVD(S), considered as a
plane graph, is a tree; see Figure 2.7 [AKL13,BCvKO08].
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2. Preliminaries and Background on Point Sets

Figure 2.7: The farthest site Voronoi diagram for a planar set of sites.

The Delaunay triangulations and the nearest site Voronoi diagrams are dual struc-
tures, i.e., there is an edge connecting two sites in DT(S) if and only if the cells of that
two sites in NVD(S) share an edge; see Figure 2.8. Due to this property, the algorithms
for computing one of these two structures are usually adaptable to compute the other
one. There are several algorithms to compute the Delaunay triangulation and the near-
est site Voronoi diagram of a set of n planar points in O(n logn) time provided that
O(n) cells of workspace are available.

Figure 2.8: Illustration for the duality of DT and NVD for a given set of points.

For FVD(S), it is also well known that, if we forego memory constraints, we can
compute FVD(S) in O(n logn) time using O(n) cells of workspace. Note that computing
a Voronoi diagram or computing a triangulation means to report each of its edges, exactly
once, in an arbitrary order [AKL13,BCvKO08].

Constant Workspace. For computing the Delaunay triangulation and the nearest
site Voronoi diagram of S using O(1) cells of workspace, Asano et al. [AMRW11] pre-
sented an O(n2)-time algorithm. Their algorithm for NVD(S) simply processes the sites
in S sequentially and for each p ∈ S outputs all the edges of the cell of p in counter-
clockwise order. To do this, they define a subroutine that computes a single edge of the
cell of p in a given direction. This is done in O(n) time by one scan of the input and
computing the bisector between any sites in S and p. While scanning the input, their
algorithm maintains the closest bisector to p in the given direction, which at the end of
the scan defines one edge of the cell of p; see Figure 2.9.
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2.3 Higher-Order Voronoi Diagrams

rp

q

B(p, q)

(a)

rp

q

(b)

Figure 2.9: An intermediate step of the algorithm in [AMRW11]. For p ∈ S and a
direction r, (a) the bisectors between p and all the points in S. (b) Since B(p, q)
intersects r closest to p, a portion of B(p, q) is an edge of the cell of p in NVD(S).

By repeating the same procedure, they find the next counterclockwise edges of the
cell of p. Since finding each edge takes O(n) time, and since NVD(S) has O(n) edges,
it takes O(n2) time to compute NVD(S) using O(1) cells of workspace. For DT(S),
in a dual way, they provide a subroutine which outputs one edge incident to a point
p ∈ S. Then, they find the next counterclockwise edges incident to p and repeat it for
all the points in S. This results to an O(n2) running time algorithm that uses O(1)
cells of workspace. They also use this algorithm as a black box in order to compute the
Euclidean minimum spanning tree for S; see Chapter 2.4.

Time-Space Trade-offs. Korman et al. [KMvR+17] gave a randomized time-space
trade-off for computing NVD(S) that runs in O

(
(n2/s) log s + n log s log∗ s

)
expected

time, provided that s cells of workspace may be used. The algorithm is based on a
space-efficient implementation of the Clarkson-Shor random sampling technique [CS89]
that makes it possible to divide the problem into O(s) subproblems with O(n/s) sites
each. All subproblems can then be handled simultaneously with the constant workspace
method of Asano et al. [AMRW11], resulting in the desired running time.

We have developed a deterministic algorithm that provides a better time-space trade-
off [BKM+18b]. Our algorithm computes NVD(S) as well as FVD(S) in O

(
(n2/s) log s

)
time, using s cells of workspace, thus saving a log∗ s factor for large values of s compared
to the result of Korman et al. [KMvR+15]. We believe that our method is simpler and
more flexible than the previous methods. The main idea is to obtain NVD(S) and
FVD(S) by processing S in batches of s sites each, using a special procedure to handle
sites whose Voronoi cells have a large number of edges. See Chapter 3 for the full
description of the algorithm.

2.3 Higher-Order Voronoi Diagrams

A natural extension of nearest site and farthest site Voronoi diagrams is captured as
higher-order Voronoi diagrams. In the following we see the definition and some basic
properties of higher-order Voronoi diagrams.
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2. Preliminaries and Background on Point Sets

Definition. Let S = {p1, . . . , pn} be a set of n ≥ 3 point-sites in the plane. We assume
general position, meaning that no three sites of S lie on a common line and no four sites
of S lie on a common circle. Let x ∈ R2 be a point in the plane. The distance order for
x is the sequence of sites in S ordered according to their distance from x, from closest
to farthest. By our general position assumption, there are at most three sites in S with
the same distance to x.

For k ∈ {1, . . . , n− 1}, a subset Q of S is called a k-subset if |Q| = k. The Voronoi
diagram of order k for S is obtained by classifying the points in the plane into cells, edges,
and vertices according to the k-subset whose sites achieve the k smallest distances in the
distance order of the points. We denote the Voronoi diagram of order k for S by VDk(S);
see Figure 2.10. Observe the two cases of VD1(S) = NVD(S) and VDn−1(S) = FVD(S).
We use HVD as the abbreviation of higher-order Voronoi diagram.

Figure 2.10: The Voronoi diagram of order 2 for a planar set of sites in general position.

We call a cell C of VDk(S) a k-cell, and we represent it as the k-subset whose sites
are the first k sites in the distance order of all the points in C. Let Q ⊂ S be the
k-subset representing a k-cell, then we denote this k-cell by Ck(Q); see Figure 2.11. For
simplicity, the cell of p ∈ S in NVD(S) and FVD(S) is denoted by C1(p) and Cn−1(p),
respectively. As mentioned before, the boundary of a cell Ck(Q) is denoted by ∂Ck(Q).

p1

p2
p3

p4
p5

p6

C4,5,6

C2,3,6
C1,2,5

C3,5,6

C2,3,5

C1,4,5

C1,2,4

C1,2,3

C2,5,6C2,4,5

Figure 2.11: The diagram VDk(S) for k = 3 and S = {p1, . . . , p6} and the k-cells are
shown. As an example, the k-cell C4,5,6 contains all the points in the plane whose first
k sites in their distance order form the k-subset {p4, p5, p6}.
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2.3 Higher-Order Voronoi Diagrams

Similarly, we call a vertex v of VDk(S) a k-vertex. It is known that there exists a
disk Dv with center v such that |∂Dv ∩S| = 3 and |D̊v ∩S| ∈ {k− 2, k− 1}, where ∂Dv

is the boundary and D̊v is the interior of Dv. We call v an old vertex if |D̊v ∩S| = k−2,
and a new vertex if |D̊v ∩S| = k− 1; see Figure 2.12. We represent v by the set Dv ∩S,
marking the sites on ∂Dv.

vn

vo

Dvn

Dvo

p1

p2
p3

p4
p5

p6

Figure 2.12: The diagram VDk(S) for k = 3 and S = {p1, . . . , p6}. The interior of the
disk Dvn with center vn contains k − 1 sites {p5, p6}, so the k-vertex vn is new. The
interior of the disk Dvo with center vo contains k−2 sites {p3}, so the k-vertex vo is old.

Finally, the edges of VDk(S) are called k-edges. A k-edge ek is represented by k + 3
sites of S: the k−1 sites closest to ek, the two sites that come next in the distance order
for the points on ek and are equidistant to ek, and one more site for each endpoint of ek,
to define the corresponding k-vertices. For each endpoint v of ek, there are two cases: if
v is an old vertex, the third site defining v is among the k − 1 sites closest to ek, and if
v is a new vertex, the third site is not among those k − 1 sites; see Figure 2.13.

p1

p2

p3

p4
p5

p6
vn

e1

vo

e2

C4,5,6

C2,3,6

Figure 2.13: The diagram VDk(S) for k = 3 and S = {p1, . . . , p6}. The k-cell C4,5,6
corresponds to the k-subset {p4, p5, p6}. The k-edge e1 is represented by the set {p5, p6}
(the k− 1 sites closest to e1), the two sites p3 and p4 that are equidistant to e1, and the
site p2 that defines the k-vertex vn. Since vn is a new k-vertex, the site p2 is not among
the k − 1 closest sites to e1. The k-cell C2,3,6 corresponds to the k-subset {p2, p3, p6}.
The k-edge e2 is represented by the set {p2, p3} (the k − 1 sites closest to e2), the two
sites p5 and p6 that are equidistant to e2, and the site p2 that defines the k-vertex vo.
Since vo is an old k-vertex, the site p2 is among the k − 1 closest sites to e2.
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We actually represent each k-edge with two directed half-edges, such that the k-half-
edges are oriented in opposing directions, and such that each k-half-edge is associated
with the k-cell to its left. The order of the endpoints in the representation of ek encodes
the direction of each of the k-half-edges of ek.3 The k-half-edge is directed from the tail
vertex to the head vertex.

It is known that the Voronoi diagram of order k for a set of size n is a plane graph
of complexity O(k (n− k)) [AKL13]. In the following we present some other properties
of higher-order Voronoi diagrams that we will use in our algorithm in Chapter 3. See
for example the paper by Lee [Lee82] and the book by Aurenhammer et al. [AKL13] for
further details.

Property (I) LetQ1, Q2 ⊂ S be two k-subsets such that the k-cells Ck(Q1) and Ck(Q2)
are both non-empty and are adjacent (i.e., they share a k-edge e). Then, the set
Q = Q1 ∪ Q2 is a (k + 1)-subset, and Ck+1(Q) is a non-empty (k + 1)-cell; see
Figure 2.14 for an illustration.

p1

p2

p3

p4

p6

C4,5

C5,6e

p5

Figure 2.14: For the set S = {p1, . . . , p6} and k = 2, the two diagrams VDk(S)
(green) and VDk+1(S) (beige) are shown. The k-cells C4,5 = Ck({p4, p5}) and
C5,6 = Ck({p5, p6}) are non-empty, and they share the k-edge e on their boundaries.
The (k + 1)-subset Q = {p4, p5} ∪ {p5, p6} = {p4, p5, p6} corresponds to a non-empty
(k + 1)-cell (shown hashed) which contains e in its interior.

Property (II) Let Q ⊂ S be a (k + 1)-subset such that Ck+1(Q) is non-empty. Then,
the part of VDk(S) restricted to Ck+1(Q) is identical to (i.e., has the same vertices
and edges as) the part of FVD(Q) restricted to Ck+1(Q). Furthermore, the edges
of FVD(Q) in Ck+1(Q) do not intersect the boundary, but their endpoints either
lie in the interior of Ck+1(Q) or coincide with vertices of ∂Ck+1(Q). Hence, for
every (k+ 1)-cell C, the number of k-edges in C lies between 1 and O(k+ 1)4, and
these edges form a tree; see Figure 2.15.

3Note that for higher order Voronoi diagrams, we denote both a k-half-edge or a k-edge by ek. This
is for sake of simplicity.

4More precisely, the number of k-edges in C is bounded by the number of edges in the farthest site
Voronoi diagram of the set Q of k + 1 sites, which is at most 2k − 1 edges [BCvKO08].
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p1

p2

p3

p4

p5 p6

C2,3,5

Figure 2.15: For the set S = {p1, . . . , p6} and k = 2, the two diagrams VDk(S) (green)
and VDk+1(S) (beige) are shown. The (k+1)-cell C2,3,5 = Ck+1({p2, p3, p5}) is filled with
beige. Inside C2,3,5, the edges of VDk(S) are identical to the edges of FVD({p2, p3, p5}).
These edges meet the boundary of C2,3,5 only on the vertices of ∂C2,3,5.

Property (III) If v is an old k-vertex, then it is also a new (k − 1)-vertex, and if v is
a new k-vertex, then it is also an old (k + 1)-vertex. In particular, every vertex
appears in exactly two Voronoi diagrams of consecutive order; see Figure 2.16.
Note that all 1-vertices are new, and all (n− 1)-vertices are old.

p1

p2
p3

p4
p5

p6

(a)

p1

p2

p3

p4
p5

p6

(b)

Figure 2.16: The diagram VDk(S) (green) for k = 2 and S = {p1, . . . , p6}. (a) The
diagram VDk−1(S) is shown in beige. The empty vertices of VDk(S) are old k-vertices,
and they also appear in VDk−1(S) as new (k−1)-vertices. (b) The diagram VDk+1(S) is
shown in beige. The empty vertices of VDk(S) are new k-vertices, and they also appear
in VDk+1(S) as old (k + 1)-vertices. Every vertex of VDk(S) appears in exactly one of
VDk−1(S) or VDk+1(S).

For any given K ∈ {1, . . . , n − 1}, the family of higher-order Voronoi diagrams of
order 1 to K for S contains all VDk(S) for k = 1, . . . ,K, and it is denoted by HVD1:K(S).
Computing a single diagram VDk(S), means to report each of its k-edges, exactly once,
in some arbitrary order. Furthermore, computing HVD1:K(S) is equivalent to compute
all VDk(S) for k = 1, . . . ,K, in increasing order of k.
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2. Preliminaries and Background on Point Sets

For computing a single Voronoi diagram of order k, the best known randomized
algorithm takes O

(
n logn+ nk 2O(log∗ k)) time and O(nk) space [Ram99], while the best

known deterministic algorithm takes O
(
n logn+nk log k

)
time and O(nk) space [Cha00,

CT16].5 For any given K ∈ {1, . . . , n−1}, the family of higher-order Voronoi diagrams of
order 1 to K can be computed in O(nK2+n logn) deterministic time using O

(
K2(n−K)

)
space [AGSS89,Lee82].

Time-space Trade-offs. For computing a specific higher-order Voronoi diagram,
without first finding the diagrams of lower order, there are several efficient algorithms in
the classic setting, when Ω(n) cells of workspace are available [CT16,AdBMS98,Ram99].
It would be interesting to extend any of them to obtain a general trade-off, or even an
algorithm for constant workspace. However, as of now, for the whole range of k and s,
we are not aware of any time-space trade-off. For s ∈ O(1), one can compute a single
Voronoi diagram of order k in O(n4) time using the naive algorithm that considers the
whole arrangement which is obtained by a well-known geometric transformation of the
set of n point-sites to a set of planes in three dimensions [CE87].

In this arrangement, computing the Voronoi diagram of order k is equivalent to
computing the vertical projection of the k-level of the arrangement. To do this, we
consider each vertical line through one of the O(n3) intersection points of the planes
in the arrangement. On a vertical line l through an intersection point x, we count the
number of planes that intersect l above the point x. If the point x is the intersection of
the kth plane with either the (k − 1)th or (k + 1)th, then x is clearly on the k-level of
the arrangement. This takes a total of O(n4) time using O(1) cells of workspace. It is
not known to us, if an additional workspace of O(s) cells can be exploited in this naive
approach to achieve a better running time, e.g., O(n4/s).

For the family of higher-order Voronoi diagrams, the situation is different since we
can compute each higher-order Voronoi diagram using the previously computed diagrams
of the lower levels. Based on this idea, we use our NVD(S) algorithm as a building block
to compute HVD1:K(S) for a given parameter K ∈ O(

√
s). Our algorithm reports all

the edges of VD1(S), . . . ,VDK(S) in O
(
n2K5

s (log s + K 2O(log∗K))
)

expected time or in
O
(
n2K5

s (log s+K logK)
)

deterministic time, using a workspace of size O(s) cells.
In this algorithm, to compute edges of a Voronoi diagram of order k, we use edges of

the diagram of order k − 1. However, this needs to be coordinated carefully in order to
prevent edges from being reported multiple times, and to not exceed the space budget.
Since the edges of all the diagrams are computed simultaneously, or in other words in a
pipelined fashion, at any step of our algorithm, we need O(k) cells of workspace to store
the state of the sub-algorithm which computes the Voronoi diagram of order k. This
makes a total of O(K2) cells of workspace. Hence, due to the space limit, K has to be
in O(

√
s). We will explain the details of this algorithm in Chapter 3.

5This algorithm uses the rather involved dynamic planar convex hull structure of Brodal and Ja-
cob [BJ02]. If the reader prefers a more elementary method, we can substitute it by the slightly
slower, but much simpler, previous result by the same authors. The running time then becomes
O(n logn+ nk log k log log k) [BJ00,CT16].
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2.4 Euclidean Minimum Spanning Trees

Another fundamental geometric structure that has been studied in the limited workspace
model is the Euclidean minimum spanning trees of a planar set of point-sites. In this
chapter we define the Euclidean minimum spanning tree and we briefly mention some
algorithms for computing it.

Definition. Let G = (V,E) be a graph with vertex set V and edge set E. A spanning
tree of G is defined as a subgraph G′ of G with the vertex set V and the edge set E′ ⊂ E,
such that G′ is a tree, i.e., it has no cycle, and there is a path between every two vertices
of G′. It is clear that, if G is not connected, then it has no spanning tree, otherwise it
might have several spanning trees and at least one; see Figure 2.17a.

Let S = {p1, . . . , pn} be a set of n sites in the plane. Let GS be the complete
and weighted graph with vertex set S, where the edges are weighted with the Euclidean
distance of their endpoints. A spanning tree of GS that has the minimum weight, among
all possible spanning trees of GS , is called the Euclidean minimum spanning tree of S,
and is denoted by EMST(S). Under a general position assumption, i.e., no three sites
in S lie on a common line, no four points in S lie on a common circle, and the distance
between every pair of points in S is distinct, EMST(S) is unique; see Figure 2.17b.

(a) (b)

Figure 2.17: For a planar set of sites S, (a) a spanning tree of the complete graph with
S as the vertex set. (b) the Euclidean minimum spanning tree of S.

Several classic algorithms are known that compute EMST(S) in O(n logn) time using
O(n) cells of workspace [BCvKO08], where computing EMST(S) means to report each
of its edges exactly once in an arbitrary order. Recall the classic algorithm by Kruskal
to find EMST(S) [CLRS09]: we start with an empty forest T , and we consider the edges
of GS one by one, by increasing weight. In each step, we insert the current edge e into
T if and only if there is no path between its endpoints in T ; see Figure 2.18. In the end,
T is EMST(S). Using a union-find data structure, we can keep track of vertices of T in
each component, and thus, we can determine if there is a path in T between the two
vertices or not. Since this data structure provides constant time operations, the time
needed for adding the edges of GS to T is dominated by the time needed for sorting the
edges of GS by their weight.
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e1

v

w

(a)

v

u

e2

(b)

Figure 2.18: An intermediate state of the Kruskal forest T , for a planar set of points.
(a) In the current step the algorithm adds e1 to T , since there is no path between v and
w. (b) In the following step, the algorithm checks e2, and since v and u are connected
it does not add e2 to T .

It is well-known that EMST(S) is a subgraph of DT(S); see Figure 2.19. Thus, it
suffices to consider only the edges of DT(S) instead of the edges of the complete graph
GS . Using this, Kruskal’s algorithm needs to consider O(n) edges of DT(S) and runs in
O(n logn) time, when O(n) cells of workspace are available [BCvKO08].

Figure 2.19: An illustration for the fact that EMST(S) is a subgraph of DT(S), for a
set of points S. The dashed edges belong to EMST(S).

Constant Workspace. The task of computing EMST(S) was among the first prob-
lems to be considered in the limited workspace model. Asano et al. [AMRW11] provided
an algorithm that reports the edges of EMST(S) using O(n3) time and O(1) cells of
workspace. This is still the fastest algorithm for the problem when only O(1) cells of
workspace are available.

Since EMST(S) is a subgraph of DT(S), Asano et al. use their constant workspace
Delaunay triangulation algorithm (see Chapter 2.2) in order to produce edges of DT(S),
one by one. Every time that a new Delaunay edge e is detected, the algorithm pauses
the computation of DT(S), and using a subroutine, it determines if e is in EMST(S).

More precisely, they use the bottleneck shortest path property of minimum spanning
trees: a Delaunay edge e = pq is not in EMST(S) if and only if DT(S) has a path
between p and q consisting only of the edges with length less than |pq| [Epp00]. Let
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2.4 Euclidean Minimum Spanning Trees

DT<e be the subgraph of DT(S) with the edges of length less than |e|. Therefore, to
decide if e is in EMST(S) or not, it must be determined whether there is a path between
p and q in DT<e. Since any subgraph of DT(S) is planar, if such paths exist, then one of
those paths together with e forms a face. Thus, by walking from p along the boundary
of that face, q must be encountered. If not, such a path does not exist. In the former
case e is reported as an edge of EMST(S); see Figure 2.20.

e

p

q

Figure 2.20: The subgraph DT<e for a planar set of sites S and an edge e = pq of
DT(S). To decide if e belongs to EMST(S), we check the existence of a path from p
to q in DT<e. This is done by walking along the face of DT<e that is intersected by e
starting from p.

To perform each step of the walk on DT<e, they use one iteration of the Delaunay
triangulation algorithm. This subroutine receives the current edge pq, and it computes
only the next clockwise Delaunay edge incident to p in O(n) time using O(1) cells of
workspace. The algorithm may repeat this procedure for edges incident to p, until it
finds the first edge with length less than |e|. This concludes one step of the walk. Each
walk generates a subset of the edges of DT(S), and each edge is generated at most twice.
Thus, O(n2) is the total running time to decide if an edge e of DT(S) is in EMST(S).
The required space is constant.

Since DT(S) has O(n) edges, and since it takes O(n2) time to decide membership in
EMST(S), the total time to find all the edges of EMST(S) is O(n3). Furthermore, the
overhead for computing all edges of DT(S) is O(n2), which is negligible compared to the
remainder of the algorithm. The space bound is immediate. With a slight modification
in the algorithm, we can report the edges of EMST by increasing length: we repeatedly
compute the whole diagram DT(S), and each time we find the shortest edge e ∈ DT(S)
whose membership in EMST has not been checked. After checking if e ∈ EMST, we
again compute the whole DT(S) to find the next shortest edge. This causes an overhead
of O(n3) which is just a constant factor in the total running time of the algorithm.

Time-Space Trade-offs. Using the immediate idea of the constant workspace algo-
rithm by Asano et al. [AMRW11] and combining it with our time-space trade-off for
computing NVD(S) (more precisely, a modified version of the algorithm that can com-
pute the Delaunay triangulation) [BKM+18b] does not give us a better trade-off than
the running time of O

(
(n3/s) log s

)
and space usage of O(s) for computing EMST(S).

This bound is clearly not optimal when s = O(n) cells of workspace are available.
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Based on the idea of combining the two algorithms and by applying some new tech-
niques, we develop a time-space trade-off that provides a smooth transition between the
O(n3)-time algorithm with constant cells of workspace [AMRW11] and the O(n logn)-
time algorithm using a workspace of O(n) cells [BCvKO08]. Our algorithm computes
EMST(S) in O

(
(n3/s2) log s

)
time using O(s) cells of workspace [BBM18].

This algorithm uses the workspace in two different ways: we check s edges in parallel
for membership in EMST(S). Furthermore, we introduce s-nets which are compact
representations of planar graphs in O(s) cells of workspace. Applying s-nets, one can
speed up Kruskal’s MST algorithm on S by better exploiting the additional workspace.6
The s-net structure seems to be of independent interest as it provides a compact way to
represent planar graphs that could be utilized by other algorithms that deal with such
graphs. We will explain the details of this algorithm in Chapter 4.

2.5 Relative Neighborhood Graphs

The relative neighborhood graph is an interesting geometric structure which is related
to both Euclidean minimum spanning tree and the Delaunay triangulation for a set of
point-sites in the plane. In this chapter, first, we define the relative neighborhood graph,
and then, we illustrate the relation between these three graphs. We also explain who to
exploit this property.

Definition. Let S = {p1, . . . , pn} be a set of n point-sites in the plane. For two sites
u, v ∈ S, we define the lens of u and v as the intersection of the disk centered at u and
passing through v with the disk centered at v and passing through u. The lens of u and
v is called empty if and only if it contains no sites of S \ {v, v}. In other words, the two
sites u and v has the empty lens property, if there is no site w ∈ S \{u, v} such that both
|uw| and |vw| are shorter than |uv|, where |uv| denotes the Euclidean distance between
u and v; see Figure 2.21.

Du
Dv

vu

Figure 2.21: A set of sites S and two sites u and v in S. The disks Du and Dv have
radius |uv| and are centered at u and v, respectively. The two sites u and v satisfy the
empty lens property since Du ∩Dv is empty of other sites of S.

6Although the spirit of the algorithm is the same, in [BBM18], the walks are performed in the relative
neighborhood graph of S instead of DT(S). This is critical, since DT(S) is not of bounded degree.
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The relative neighborhood graph of S is the undirected graph with vertex set S ob-
tained by connecting two sites u, v ∈ S with an edge if and only if the lens of u and v is
empty [Tou80]. This graph is denoted by RNG(S). One can show that a plane embed-
ding of RNG(S) is obtained by drawing the edges as straight line segments between the
corresponding sites in S; see Figure 2.22.

u v

Figure 2.22: The RNG(S) and an edge uv in RNG(S). The lens of u and v is empty.

By definition, RNG(S) is a subgraph of DT(S).7 Furthermore, each vertex in
RNG(S) has at most six neighbors, so RNG(S) is a bounded degree graph. The graph
RNG(S) has O(n) edges. We will denote the number of those edges by m. Given S,
we can compute RNG(S), meaning that we can report each of its edges exactly once, in
O(n logn) time using O(n) cells of workspace [Tou80,JT92,MM17].

It is well-known that EMST(S) is a subgraph of RNG(S) [BCvKO08]. In particular,
this implies that RNG(S) is connected; see Figure 2.23. Additionally, this indicates that
we can compute EMST(S) in Kruskal’s algorithm using edges of RNG(S). However,
since both RNG(S) and DT(S) have O(n) edges, the running time of Kruskal’s algorithm
in the classic setting (when O(n) cells of workspace are available) does not improve if
we use edges of RNG(S) instead of DT(S). Nevertheless, unlike DT(S), the degree of
vertices in RNG(S) is bounded, and thus, using RNG(S) for finding EMST(S) in the
limited workspace model has some advantages over using DT(S).

Figure 2.23: An illustration of the fact EMST(S) ⊆ RNG(S) ⊆ DT(S). The dashed
black edges belong to EMST(S) and are a subset of the green edges which represent
RNG(S). All these edges forms a subset of the edges of the underlying graph DT(S).

7If e = uv is in EMST(S), then the lens of u and v is empty, which means that the smallest circle
passing through both u and v is also empty of other sites of s. Thus, e belongs to DT(S).
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In order to ensure a unique EMST for the given set S, while determining EMST(S)
using RNG(S), we assume the general position mentioned in Chapter 2.4, by which the
edge lengths in RNG(S) are pairwise distinct. We define ER = e1, . . . , em to be the sorted
sequence of RNG(S) edges, in increasing order of length. For i ∈ {1, . . . ,m}, we define
RNGi to be the subgraph of RNG(S) with vertex set S and edge set {e1, . . . , ei−1}. Thus,
to check if ei belongs to EMST(S), the algorithm by Kruskal checks if the endpoints of
ei lie on the same component of RNGi or not; see Figure 2.24.
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Figure 2.24: The RNG for a set of sites S. The labels represent the indices of the edges
in the sorted sequence ER. The subgraph RNG19 is shown in black. The edge e19 does
not belong to EMST(S) since its endpoints lie on the same component of RNG19.

We represent each edge ei ∈ ER by two directed half-edges. The two half-edges are
oriented in opposite directions such that the face incident to a half-edge lies on its left.
We call the endpoints of a half-edge the head and the tail such that the half-edge is
directed from the tail endpoint to the head endpoint. Furthermore, directed half-edges
will be denoted as −→e and undirected edges as e; see Figure 2.25.8

F
ei

−→ej
u

v

F ′

Figure 2.25: A schematic drawing of the faces F, F ′ of RNG(S). The two half-edges that
correspond to the edge ei are oriented such that the face incident to each of lies on its
respective left. The sites v and u are the head and the tail endpoints of the half-edge
−→ej = −→uv, respectively.

8For simplicity we have used similar notations for a k-half-edge and a k-edge in higher order Voronoi
diagrams. However, in the content of relative neighborhood graphs, we need to distinguish a half-edge
−→e from an edge e.
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Using the concept of half-edges, we define the face-cycle in a planar graph for each
face in the graph or the outer face of each connected components of the graph. More
precisely, for i ∈ {1, . . . ,m}, a face-cycle in RNGi is the circular sequence of consecutive
half-edges such that (i) they bound either a face in RNGi or an outer face in a connected
component of RNGi; and (ii) every two consecutive half-edges e and e′ in a face-cycle
share an endpoint which is the head vertex of e and the tail vertex of e′.

The definition implies that all the half-edges in a face-cycle are oriented in the same
direction and the face (or outer face) incident to the half-edges lies on their left. Note
that every half-edge lies on only one face-cycle; however, every site of S might be on
several face-cycles; see Figure 2.26. Furthermore, the partial relative neighborhood graph
RNGi can be represented as a collection of face-cycles.

v

Figure 2.26: A schematic drawing of RNGi for a planar set S of sites is in black. The face-
cycles of RNGi are in beige. All the half-edges of each face-cycle are directed according
to the arrows on the corresponding cycle. The site v ∈ S is on three face-cycles of RNGi.
Each of the six half-edges incident to v are only on one face-cycle.

Let j ≥ i ≥ 1. We define the predecessor and the successor in RNGi for a half-edge
−→ej with head w as follows: the predecessor −→pj of −→ej is the half-edge in RNGi which has
w as its head and is the first half-edge encountered in a counterclockwise sweep from −→ej
around w. The successor −→sj of −→ej is the half-edge in RNGi which has w as its tail and is
the first half-edge encountered in a clockwise sweep from −→ej around w; see Figure 2.27
for an illustration. Note that, if there is no edge incident to w in RNGi, we set both pj
and sj to Null.

Let i > j ≥ 1. For the half-edge −→ej in RNGi that lies on the face-cycle F , we
define the next edge on F as follows: the next edge of −→ej is the half-edge on F whose tail
endpoint is the head endpoint of −→ej . Note that the next edge for a half-edge −→ej is defined
with respect to each diagram RNGi, where i > j and thus −→ej ∈ RNGi. However, the
predecessor and successor of −→ej are defined with respect to each diagram RNGi, where
i ≤ j, meaning that −→ej 6∈ RNGi.
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−→ej

w

−→pj−→sj

−→ej′

−→pj′
−→sj′
w′

Figure 2.27: For j, j′ ≥ i ≥ 1, a schematic drawing of RNGi and the half-edges −→ej with
the head w and −→ej′ with the head w′ are shown. For −→ej the predecessor and the successor
are −→pj and −→sj , respectively. For −→ej′ the predecessor and the successor are −→pj′ and −→sj′ ,
respectively.

Time-Space Trade-offs. Using a similar technique as the one for computing NVD(S),
we obtain a same time-space trade-off for computing RNG(S), i.e., an s-workspace algo-
rithm with O

(
(n2/s) log s

)
running time. Furthermore, since EMST(S) is a subgraph of

RNG(S), we use our RNG(S) algorithm as a blackbox in Kruskal’s algorithm to establish
a time-space trade-off for computing EMST(S). As we have mentioned in the previous
chapter, the resulting s-workspace algorithm computes EMST(S) in O

(
(n3/s2) log s

)
time. In Chapter 4, we will describe these algorithms in detail.
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In this chapter, we describe a deterministic s-workspace algorithm for computing NVD
and FVD for a given planar set S of n point-sites that runs in O

(
(n2/s) log s

)
time.

Moreover, we generalize our s-workspace algorithm such that, for any given K ∈ O(
√
s),

it computes HVD1:K(S) in O
(
n2K5

s (log s + K 2O(log∗K))
)

total expected time or in
O
(
n2K5

s (log s+K logK)
)

total deterministic time.
In Chapter 3.1, we restate the approach by Asano et al. [AMRW11] for computing

NVD(S) with a constant size workspace, and we show that the same technique can be
used to compute FVD(S). In Chapter 3.2, we introduce a new time-space trade-off
for computing NVD(S) and FVD(S). Finally, in Chapter 3.3, we use the s-workspace
algorithm from Chapter 3.2 as a building block in a new pipelined algorithm in order to
compute HVD1:K(S).

3.1 A Constant Workspace Algorithm for NVD and FVD

For the given planar set S = {p1, . . . , pn} of n point-sites, stored in a read only array,
our task is to compute NVD(S) and FVD(S) using only a constant number of cells of
workspace. We summarize the properties of FVD(S) that are relevant to our algorithms
in the following two facts. More details can be found, e.g., in the book by Aurenhammer,
Klein, and Lee [AKL13]. See Figure 3.1 for an illustration.

Fact 3.1. Let S be a set of n point-sites in the plane in general position, and let p ∈ S.
The cell Cn−1(p) is not empty if and only if p lies on ∂ CH(S). In this case, the farthest
Voronoi cell of p is unbounded. Furthermore, if r, l ∈ S are the two adjacent sites of p
on ∂ CH(S), then the cells Cn−1(p) and Cn−1(r) share an unbounded edge which is a
subset of the bisector B(p, r), and analogously the cells Cn−1(p) and Cn−1(l) share an
unbounded edge which is a subset of the bisector B(p, l).

Fact 3.2. Let S be a set of n point-sites in the plane in general position. Let l, p, r ∈ S be
three consecutive sites on ∂ CH(S) in counterclockwise order, and let c be the intersection
of the bisectors B(p, l) and B(p, r). Then, the ray from p toward c intersects ∂Cn−1(p)
(not necessarily at c).

31



3. Voronoi Diagrams

p

r

B(p, r)

l

B(p, l)

Cn−1(p)

c

Figure 3.1: An illustration of Facts 3.1 and 3.2: The sites l, p, r ∈ S are consecutive on
∂ CH(S). The boundary ∂Cn−1(p) contains a subset of B(p, l) and of B(p, r), Fact 3.1.
The ray from p toward c = B(p, l) ∩B(p, r) intersects ∂Cn−1(p), Fact 3.2.

In the following two lemmas, we show how to find a single edge of a given cell of
NVD(S) or of FVD(S). Then, in Theorem 3.5, we repeatedly use the procedure of
finding a single edge of a cell in order to find, first, all the edges of the same cell, and
then the edges of all the other cells of NVD(S) and FVD(S).

Lemma 3.3. Let S be a set of n point-sites in the plane in general position. Suppose
that S is given in a read-only array. For any p ∈ S, in O(n) time and using O(1) cells
of workspace, we can determine whether Cn−1(p) is not empty. If so, we can also find a
ray that intersects ∂Cn−1(p).

Proof. By Fact 3.1, it suffices to check whether p lies inside CH(S). This can be done
with simple gift-wrapping: pick an arbitrary site q ∈ S \ {p}. Scan through S and find
the sites pcw and pccw in S which make, respectively, the largest clockwise angle and
the largest counterclockwise angle with the ray pq, such that both angles are at most π.
Both pcw and pccw are easily obtained in O(n) time using O(1) cells of workspace. If the
cone pcwppccw that contains q has an opening angle larger than π, then p is inside CH(S)
and consequently Cn−1(p) is empty; see Figure 3.2a. Otherwise, p is on ∂ CH(S), with
pcw and pccw as its two neighbors; see Figure 3.2b. By Fact 3.2, the ray from p through
B(p, pcw) ∩B(p, pccw) intersects ∂Cn−1(p).

p

q

pccw pcw

(a)

p

q

pccw

pcw

(b)

Figure 3.2: An illustration of Lemma 3.3. (a) The counterclockwise angle pcwppccw is
larger than π and p is inside CH(S). (b) The counterclockwise angle pcwppccw is smaller
than π and p is on ∂ CH(S).
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3.1 A Constant Workspace Algorithm for NVD and FVD

Lemma 3.4. Let S be a set of n point-sites in the plane in general position that is stored
in a read-only array. Suppose we are given a site p ∈ S and a ray γ that emanates from
p and intersects ∂C1(p). Then, we can report an edge e of C1(p) that intersects γ in
O(n) time, using O(1) cells of workspace. An analogous statement holds for FVD(S).

Proof. Among all bisectors B(p, p′), for p′ ∈ S \ {p}, we find a bisector B∗ = B(p, p∗)
that intersects γ closest to p.1 We can find B∗ by scanning the sites of S and maintaining
a closest bisector in each step. By the definition of NVD(S), it follows that the edge e
is a subset of B∗. To find the portion of B∗ that forms a Voronoi edge in NVD(S), we
do a second scan of S. For each p′ ∈ S \ {p, p∗}, we check where B(p, p′) intersects B∗.
Each such intersection cuts a piece from B∗ that cannot appear in NVD(S), namely the
part of B∗ that is closer to p′ than to p. After scanning all the sites of S, the remaining
portion of B∗ is exactly e. Since the current piece of B∗ in each step is connected, we
need to maintain only the at most two endpoints. Overall, we can find an edge e of C1(p)
that intersects γ in O(n) time using O(1) cells of workspace; see Figures 3.3a and 3.3b
for an illustration.

The procedure for FVD(S) is analogous, but we take B∗ = B(p, p∗) to be the bisector
intersecting γ farthest from p, and we cut from B∗ the pieces that are closer to p than to
any other site in S \ {p, p∗}. Note that here γ is the given ray that intersects ∂Cn−1(p).
We conclude that an edge e of Cn−1(p) that intersects γ can be found in O(n) time using
O(1) cells of workspace; see Figures 3.3a and 3.3c.

p1

p2

p3

p4

p5

p7

B(p1, p2)

B(p1, p4)

B(p1, p5) B(p1, p7)

B(p1, p3)

γ

(a)

p1

p2

p3

p4

p5

p7

γ

B∗
B(p1, p7)

B(p1, p3)

C1(p1)

(b)

p1

p2
p3

p4

p5

p7

γ

B(p1, p4)

B∗
Cn−1(p1)

(c)

Figure 3.3: An illustration of Lemma 3.4. (a) Among the bisectors between p1 and all
the other sites, the bisector B(p1, p2) intersects the ray γ closest to p1 and the bisector
B(p1, p3) intersects the ray γ farthest from p1. (b) A portion of B∗ = B(p1, p2) is an
edge of C1(p1) and its endpoints are defined by the bisectors B(p1, p3) and B(p1, p7).
(c) A portion of B∗ = B(p1, p3) is an edge of Cn−1(p1) and its endpoint is defined by
the bisector B(p1, p4).

1If γ happens to intersect a vertex of C1(p), there are two such bisectors. Otherwise, B∗ is unique.
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3. Voronoi Diagrams

Theorem 3.5. Suppose we are given a planar set of n point-sites S = {p1, . . . , pn} in
general position, stored in a read-only array. We can find all the edges of NVD(S) in
O(n2) time, using O(1) cells of workspace. The same holds for FVD(S).

Proof. First, we restate the strategy that was proposed by Asano et al. [AMRW11] for
NVD(S), and then we show how to adapt it for FVD(S).

We go through the sites in S. In step i, we process pi ∈ S to detect all edges of
C1(pi). For this, we need a ray γ to apply Lemma 3.4. We choose γ as the ray from
pi to an arbitrary site of S \ {pi}. This ensures that γ intersects ∂C1(pi). Now we use
Lemma 3.4 to find an edge e of C1(pi) that intersects γ. We consider the ray γ′ from pi
through the endpoint of e that lies to the left of γ (if it exists), and we apply Lemma 3.4
to find the adjacent edge e′ of e in C1(pi).2 The ray γ′ hits both e and e′, so we perform
a symbolic perturbation to γ′ so that only e′ is hit. We repeat this procedure to find
further edges of C1(pi), in counterclockwise direction; see Figure 3.4a. This continues
until we return to e or until we find an unbounded edge of C1(pi). In the latter case, we
start again from the right endpoint of e (if it exists), and we find the remaining edges
of C1(pi) in clockwise direction.

Since each edge of NVD(S) is incident to two Voronoi cells, this process will detect
each edge twice. To avoid repetitions, whenever we find an edge e of C1(pi) with e ⊆
B(pi, pj), we report e if and only if i < j. Since NVD(S) has O(n) edges, and reporting
one edge takes O(n) time and O(1) cells of workspace, the result follows.

For FVD(S), the procedure is almost the same. However, when we process each site
pi ∈ S, we first check if Cn−1(pi) is non-empty, using Lemma 3.3. If so, the algorithm
from the lemma also gives us a ray γ that intersects ∂Cn−1(pi). From here, we proceed
exactly as for NVD(S) to find the remaining edges of Cn−1(pi); see Figure 3.4b.

γ

p

(a)

γ

p

(b)

Figure 3.4: For p ∈ S, the starting ray γ emanates from p to (a) another arbitrary site
of S to find an edge of C1(p), (b) the intersection of the bisectors between p and its
neighbors on CH(S) to find an edge of Cn−1(p). The next rays, in both (a) and (b),
emanate from p through the left endpoint of the last computed edge.

2The bisector that defines the left endpoint of e is also the bisector that is spanned by e′. Thus, the
first scan of the input in Lemma 3.4, for finding the line spanned by e′, is not strictly necessary. However,
since we must scan the input anyway to determine the endpoint of e′, we chose to present the algorithm
as doing two scans. This keeps the presentation more uniform at the expense of only a constant factor
in the running time. The same comment also applies to our algorithms in Chapters 3.2 and 3.3
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3.2 A Time-Space Trade-Off for NVD and FVD

In this chapter, we adapt the algorithm from Chapter 3.1 to a time-space trade-off
for computing NVD(S) and FVD(S). Suppose we have O(s) cells of workspace at our
disposal, for some s ∈ {1, . . . , n}. As before, we are given a planar set of n point-
sites S = {p1, . . . , pn} in general position in a read-only array, and we would like to
report all edges of NVD(S) or FVD(S) as quickly as possible. While the algorithm from
Chapter 3.1 needs two passes over the input to find a single edge of the Voronoi diagram,
the idea now is to exploit the additional workspace in order to find s edges of the Voronoi
diagram in parallel, using two passes.

3.2.1 Finding a Single Edge of Some Cells

In the following lemma, we show how to find simultaneously a single edge for s different
cells of NVD(S) or of FVD(S), using O(s) cells of workspace.

Lemma 3.6. Suppose we are given a set V = {v1, . . . , vs} of s sites in S, and for each
i = 1, . . . , s, a ray γi emanating from vi such that γi intersects ∂C1(vi). Then, we can
report, for each i = 1, . . . , s, an edge ei of C1(vi) that intersects γi, in O(n log s) total
time, using O(s) cells of workspace. An analogous statement holds for FVD(S).

Proof. The algorithm has two phases. In the first phase, for i = 1, . . . , s, we find the
bisector B∗i that contains ei, and in the second phase, for i = 1, . . . , s, we find ei, i.e.,
the portion of B∗i that is in NVD(S).

The first phase proceeds as follows: we group S into batches Q1, Q2, . . . , Qn/s of s
consecutive sites (according to the order in the input array).3 We start with considering
the union of the set V and the first batch Q1, and we compute NVD(V ∪ Q1). Since
|V ∪ Q1| ≤ 2s, this takes O(s log s) time using O(s) cells of workspace. Now, for i =
1, . . . , s, we find the edge e′i of NVD(V ∪ Q1) that intersects γi closest to vi, and we
store the bisector B′i that contains e′i. This can be done in total time O(|V ∪Q1|), since
each ray originates in a unique Voronoi cell, and since we can simply traverse the whole
diagram NVD(V ∪Q1) to find the intersection points; see Figure 3.5a.

Then, for j = 2, . . . , n/s, we again compute NVD(V ∪Qj). For i = 1, . . . , s, we find
the edge in NVD(V ∪Qj) that intersects γi closest to vi, in total time O(|V ∪Qj |). We
update B′i to the bisector that contains this edge if and only if its intersection with γi is
closer to vi than for the current B′i. We claim that after all batches Q1, . . . , Qn/s have
been scanned, B′i is the desired bisector B∗i ; see Figure 3.5. To see this, let B∗i = B(vi, p),
for a site p ∈ S \ {vi}. Then, for the batch Qj with p ∈ Qj , the Voronoi diagram
NVD(V ∪ Qj) contains an edge on B∗i . This is because V ∪ Qj ⊂ S and NVD(S) has
an edge of B∗i . Furthermore, by definition, the bisector between no other site and vi
intersects γi closer to vi than B∗i .

3For ease of explanation, we assume that n/s ∈ N. If n/s /∈ N we group S into dn/se batches. Each
such a batch has exactly s elements, except for the last batch Qdn/se which may have fewer than s
elements.
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Figure 3.5: For V = {p1, p2, p3} ⊂ S = {p1, . . . , p9} and the given starting rays from the
sites in V : (a) the intersection of the rays with NVD(V ∪Q1) where Q1 = {p4, p5, p6};
(b) the intersection of the rays with NVD(V ∪ Q2) where Q2 = {p7, p8, p9}; (c) the
resulting closest bisectors to the sites in V after scanning all the batches of sites in S.

In the second phase, we again group S into batches Q1, . . . , Qn/s of size s. We again
compute NVD(V ∪ Q1). For i = 1, . . . , s, we find the portion of B∗i inside the cell of
vi in NVD(V ∪ Q1), and we store it in ei; see Figure 3.6a. Then, for j = 2, . . . , n/s,
we compute NVD(V ∪ Qj), and for i = 1, . . . , s, we update the endpoints of ei to the
intersection of the current ei and the cell of vi in NVD(V ∪ Qj). This is done in total
O(|V ∪Qj |) time by traversing the whole diagram. After processing Qj , there is no site
in V ∪

⋃j
m=1Qm that is closer to ei than vi, i.e., no site whose bisector with vi cuts a

bigger portion of ei. Thus, at the end of the second phase, ei is the edge of C1(vi) that
intersects γi; see Figure 3.6. Due to the properties of the Voronoi diagram, throughout
the algorithm, ei is a connected subset of B∗i (i.e., a ray or a line segment), and it can
be described with O(1) cells of workspace.
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Figure 3.6: The endpoints of the bisectors obtained from the first phase in the cells of
(a) NVD(V ∪ {p4, p5, p6}); and (b) further in NVD(V ∪ {p7, p8, p9}). (c) The edge on
the cell of each site of V that intersects the corresponding ray.
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3.2 A Time-Space Trade-Off for NVD and FVD

In total, we construct O(n/s) Voronoi diagrams, each with at most 2s sites. Since
we have O(s) cells of workspace available, it takes O(s log s) time to compute a single
Voronoi diagram. Thus, the total running time is O(n log s). At each point in time,
we have O(s) sites in workspace and a constant amount of information for each site,
including the Voronoi diagram of these sites, so the space bound is not exceeded. The
proof for FVD(S) is analogous.

3.2.2 Finding All the Edges According to Their Incident Cells

Now we describe our time-space trade-off algorithm. At each point in time, we have a set
V of s sites in workspace. We use Lemma 3.6 to produce a new edge for each site in V .
Once all edges for a site v ∈ V have been found, we discard v from V and replace it with
a new site from S (we say that v has been processed completely). We stop this process
as soon as all but fewer than s sites have been processed completely. At this point, we
do not use Lemma 3.6 any longer. This is because Lemma 3.6 needs two passes of the
input to find a single new edge for each site in V . Thus, if there is a cell with many
edges, too many passes will be necessary; see Figure 3.7 for an example. To avoid this,
we will need a different method for finding the edges of the remaining cells, see below.
We call these remaining cells big and the other cells small. By definition, all small cells
have O(n/s) edges, but big cells may have a lot more edges (even though this does not
have to be the case).

Figure 3.7: An example of an NVD that has three cells with too many edges, while all
the other cells are of constant complexity, i.e., they have three or four edges.

In order to avoid doubly reporting edges, our algorithm is split into three phases. In
the first phase, we process the whole input to identify the big cells (no edge is reported
in this phase). The second phase scans the input again and reports all edges incident to
at least one small cell. The third phase reports edges incident to two big cells.
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3. Voronoi Diagrams

First phase. The aim of this phase is to find the big cells. We describe how we use
Lemma 3.6 in more detail. We scan all sites with non-empty Voronoi cells. For NVD(S),
since all sites have a non-empty cell, we can scan them sequentially. The starting ray
is constructed in the same way as in Theorem 3.5. For FVD(S), by Fact 3.2, we need
to find the sites on the convex hull of S. For this, we use the algorithm of Darwish
and Elmasry [DE14] that reports the sites on the convex hull of S in clockwise order
in O(n2/s logn + n log s) time using O(s) cells of workspace; see Chapter 2.1 for more
details. We run the Darwish-Elmasry algorithm until s sites on the convex hull have
been identified. Then, we suspend the convex hull computation and process those sites.
Whenever more sites are needed, we simply resume the convex hull algorithm. Since the
convex hull is reported in clockwise order, we know the two neighbors for each site on
the convex hull, and using Fact 3.2, we can find a starting ray for each such a site.

At each point in time, our Voronoi algorithm has s sites from S with non-empty cells
in memory. We apply Lemma 3.6 to compute one edge on the cell of each such site.
After that, we iteratively update the rays of all sites in memory to find the next edge of
each cell, as in Theorem 3.5. Whenever all edges of a cell have been found, we remove
the corresponding site from memory, and we replace it with the next relevant site; see
Figure 3.8. Since (1) the Voronoi diagram of S has O(n) edges, (2) in each iteration
we produce s edges, and (3) each edge is produced at most twice, it follows that after
O(n/s) iterations, fewer than s sites remain in memory. All other sites of S must have
been processed.

Thus, after the first phase, we have identified all big cells (those that have not been
processed fully). Since there are at most s of them, we can store the corresponding sites
explicitly in a table B. We sort those sites according to their indices, so that membership
in B can be tested in O(log s) time.

Figure 3.8: Illustration of the algorithm after nine iterations of Lemma 3.6 for a set S
of n = 35 sites and workspace of size O(logn) cells. The green segments are the edges
of NVD(S) that have already been found. The gray and the red sites represent the
sites which have been fully processed and those which are currently in the workspace,
respectively.
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3.2 A Time-Space Trade-Off for NVD and FVD

Second phase. The second phase is very similar to the first one.4 Pick s sites to
process; repeatedly use Lemma 3.6 to find edges for each site; once all edges of a site v
have been found, replace v with the next site; continue until only big cells remain. The
main difference now is that we report some Voronoi edges (making sure that every edge
is reported exactly once). More precisely, suppose that we discover a Voronoi edge e
while scanning the cell Ci of a site vi, and that e is also incident to the cell Cj of the site
vj . Then, we report e if and only if one of the following conditions holds (see Figure 3.9):

(i) both Ci and Cj are small and i < j; or
(ii) Ci is small and Cj is big.

Figure 3.9: An illustration of the algorithm at the end of the second phase. The red
sites correspond to the big cells. The edges between every two big cells have not been
reported (gray edges). All the other edges have been reported exactly once (black edges).

Third phase. The purpose of the third phase is to report every Voronoi edge that is
incident to two big cells. For this, we compute the Voronoi diagram of the sites of big
cells, in O(s log s) time. Let EB denote the set of its edges. The edges of EB that are
also present in the Voronoi diagram of S need to be reported (the edges may need to be
truncated); see Figure 3.10.

In order to determine which edges of EB remain in the diagram, we proceed similarly
as in the second scan of Lemma 3.6: in each step, we compute the Voronoi diagram V
of B and a batch of s sites from S. For each edge e of EB, we check whether e is cut off
in V. If so, we update the endpoints of e to the intersection of e and the cell for one of
the sites defining e. After all edges have been checked, we continue with the next batch
of s sites from S. After processing all the sites of S, the remaining O(s) edges in EB
that have not become empty constitute all the edges of the Voronoi diagram of S that
are incident to two big cells. In contrast to Lemma 3.6, we report O(s) edges that are
not necessarily incident to s different cells.

4Indeed, these two phases could be merged into one. However, as we will see below, it is not straight-
forward to do so for higher-order Voronoi diagrams. Thus, for consistency, we split the two phases even
for k = 1 and k = n− 1.
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3. Voronoi Diagrams

Figure 3.10: An illustration for the observation that the edges in NVD(S) which are
between two big cells are a subset of the (possibly truncated) edges in NVD(B). The
sites corresponding to the big cells are shown in red.

Theorem 3.7. Let S = {p1, . . . , pn} be a planar set of n point-sites in general position,
stored in a read-only array. Let s be a parameter in {1, . . . , n}. We can report all edges
of NVD(S) in O

(
(n2/s) log s

)
time, using O(s) cells of workspace. An analogous result

holds for FVD(S).

Proof. Lemma 3.6 guarantees that the edges reported in the second phase are part of
NVD(S). Also, conditions (i) and (ii) ensure that no edge is reported twice. Clearly,
if an edge e ∈ NVD(S) is incident to two big cells, the same edge (possibly a superset)
must be present in NVD(B). For the reverse inclusion, first note that since B ⊂ S,
an edge incident to two big cells that is not present in NVD(B) cannot be present in
NVD(S). Furthermore, for each edge e of NVD(B), we consider all sites of S and remove
only the portions of e that cannot be present in NVD(S).

Finally, we need to analyze the running time. The most expensive part of the al-
gorithm lies in the O(n/s) invocations of Lemma 3.6 during the first and the second
phase. Other than that, creating the table B needs O(s log s) time, and we perform
O(n) lookups in B, two for each edge of NVD(S). Each lookup needs O(log s) time,
so O(n log s) time in total. The third phase does a single scan over the input, and it
computes a Voronoi diagram for each batch of s sites, which totally takes O(n log s)
time. Thus, the running time of the algorithm is O

(
(n2/s) log s

)
.

At each point during the algorithm, we store only s sites that are currently being
processed (along with a constant amount of information attached to each such site),
the table B of at most s sites, the batch of s sites being processed (and the associated
Voronoi diagram). All of this can be stored using O(s) cells of workspace, as claimed.

For FVD(S), the approach is analogous. The only difference is that now we must
also find the convex hull of S. With the algorithm of Darwish and Elmasry [DE14], this
takes O

(
(n2/s) log s

)
time for O(s) cells of workspace, so the asymptotic running time

does not increase.
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3.3 A Time-Space Trade-Off for the Family of HVDs

We now consider the computation of higher-order Voronoi diagrams where we have O(s)
cells of workspace at our disposal, for some s ∈ {1, . . . , n}. We are given an integer
K ∈ O(

√
s), and we would like to report HVD1:K(S), the family of higher-order Voronoi

diagrams of order 1 to K for S. For this, we generalize our approach from Chapter 3.2,
and we combine it with a recursive procedure. More precisely, for k = 1, . . . ,K − 1,
we compute the edges of VDk+1(S) by using previously computed edges of VDk(S). To
make efficient use of the available memory, we perform the computation of the diagrams
VD1(S),VD2(S), . . . ,VDK(S) in a pipelined fashion, so that in each stage, the necessary
edges of the previous Voronoi diagrams are at our disposal and the total memory usage
remains O(s) cells.

3.3.1 Relation Between Two Consecutive HVDs

To generate all (k + 1)-half-edges using k-half-edges, for some k = 1, . . . ,K, our high-
level idea is as follows: let e be a k-half-edge. By Property (II) of higher-order Voronoi
diagrams (refer to Chapter 2.3), the k-half-edge e lies inside a (k + 1)-cell C. We will
see that we can use e as a starting ray to report all (k + 1)-half-edges incident to C,
similar to Lemma 3.6. However, if we repeat this procedure for every k-half-edge that
lies inside a (k + 1)-cell, again by Property (II) of higher-order Voronoi diagrams, we
may report a (k+ 1)-half-edge Ω(k) times. This will lead to problems when we combine
the procedures for computing the Voronoi diagrams of different orders. To avoid this,
we do the following: we call a k-half-edge relevant if its head vertex lies on the boundary
of the (k + 1)-cell that contains it; see Figure 3.11 for an example.

e1

p1

p2
p3

p4

p5

p6
p7

C

e2e3

e4

e5

Figure 3.11: The diagram VDk(S) for k = 3 and S = {p1, . . . , p7}. The k-half-edges
e1, . . . , e5 lie in the (k + 1)-cell C defined by the sites {p2, p3, p5, p6}. The head vertex
of e1 does not lie on ∂C. Hence, e1 is not a relevant k-half-edge. On the other hand,
the head vertices of e2, e3, e4, e5 lie on ∂C, and thus, they are all relevant. None of the
opposite half-edges of e1, . . . , e5 is a relevant k-half-edge.
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e2 e3

e4
e5

C C C C

Figure 3.12: The relevant k-half-edges e2, e3, e4, e5 lying in the (k + 1)-cell C and the
(k + 1)-interval assigned to each of these k-half-edges.

For each (k + 1)-cell C, we partition the boundary of C into intervals of (k + 1)-
half-edges between two consecutive head vertices of relevant k-half-edges that lie inside
C. Each such (k + 1)-interval is assigned to the relevant k-half-edge of its clockwise
endpoint; see Figure 3.12. Note that by the k-interval containing e we refer to the
interval of k-half-edges (on the k-cell) that e belongs to, and this is different from the
(k + 1)-interval assigned to e.

Our algorithm goes through all k-half-edges. If the current k-half-edge e is not
relevant, the algorithm does nothing. Otherwise, it reports the half-edges of the (k+ 1)-
interval assigned to e. This ensures that every (k+1)-half-edge is reported exactly once.
The following lemma describes an algorithm that takes s different k-half-edges. For each
such k-half-edge e, the algorithm either determines that e is not relevant or finds the
first edge of the (k + 1)-interval assigned to e.

Lemma 3.8. Suppose we are given s different k-half-edges ek1, . . . , eks represented by the
k-subsets E1, . . . , Es of S. There is an algorithm that, for i = 1, . . . , s, either determines
that eki is not relevant, or finds ek+1

i , the first (k + 1)-half-edge of the (k + 1)-interval
assigned to eki . The algorithm takes total expected time O

(
n log s+nk 2O(log∗ k)) or total

deterministic time O(n log s+ nk log k) and uses O(sk2) cells of workspace.

Proof. Our algorithm proceeds analogously to Lemma 3.6. First, we inspect all k-half-
edges eki . By Property (III) of higher-order Voronoi Diagrams, if the head vertex v of
eki is an old k-vertex, then v is not a vertex of VDk+1(S), and it lies in the interior of a
(k+1)-cell, so eki is not relevant. Otherwise, v is a new k-vertex and an old (k+1)-vertex,
so it appears on the boundary of a (k + 1)-cell. In this case, we need to determine the
first (k+1)-half-edge of the (k+1)-interval assigned to eki . Let I be the set of all indices
i such that eki is relevant.

To determine the first (k + 1)-half-edge of each (k + 1)-interval, we process the sites
in S in batches of size sk. In each iteration, we pick a new batch Q of sk sites. Then, we
construct VDk+1(⋃

i∈I Ei ∪ Q
)

in O
(
sk log(sk) + sk2 2O(log∗ k)) expected time [Ram99]

or in O(sk log(sk) + sk2 log k) deterministic time [Cha00,CT16]. Note that
⋃
i∈I Ei ∪ Q

contains O(sk) sites, so the diagram VDk+1(⋃
i∈I Ei ∪ Q

)
has complexity O(sk2). By

construction, the head vertex of each eki with i ∈ I belongs to the resulting diagram,
and we can find each head vertex in O

(
log(sk2)

)
= O

(
log(sk)

)
time by using a point

location structure [BCvKO08].
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e2

f2

θ

C

Figure 3.13: The (k+ 1)-half-edge f2 is incident to the head vertex of e2 and lies to the
left of the directed line spanned by e2. Among all such edges, f2 makes the smallest
angle θ with e2.

Thus, we iterate over all batches, and for each eki , we determine the edge fk+1
i that

appears in one of the resulting diagrams such that (i) fk+1
i is incident to the head vertex

of eki ; (ii) fk+1
i is to the left of the directed line spanned by eki ; and (iii) among all

such edges, fk+1
i makes the smallest angle with eki ; see Figure 3.13. We need O(n/sk)

iterations to find fk+1
i for all eki .

Now, for each i ∈ I, the desired (k + 1)-half-edge ek+1
i is a subset of fk+1

i . This is
because, by Property (I) of higher-order Voronoi diagrams (refer to Chapter 2.3), there
is one site which is different in the second (k + 1)-cell incident to ek+1

i , and this site
exists in one of the batches. Thus, to find the other endpoint of ek+1

i , as in Lemma 3.6,
we perform a second scan over S in batches of sk sites. As before, for each batch Q,
we construct VDk+1(⋃

i∈I Ei ∪ Q
)

and we check, for each i ∈ I, where fk+1
i is cut-off

in the new diagram. After scanning all the sites of S, we have the desired endpoint of
ek+1
i . This is because the endpoint of ek+1

i is defined by one more site of S, and this site
exists in one of the batches. Finally, we orient ek+1

i such that the (k+ 1)-cell containing
eki lies to the left of it.

It follows that we can simultaneously process the given s edges of VDk(S) in O(n/sk)
iterations. Each of these iterations takes O

(
sk log(sk) + sk2 2O(log∗ k)) expected time or

O
(
sk log(sk) + sk2 log k

)
deterministic time. Thus, we get O

(
n log s+nk 2O(log∗ k)) total

expected time or O(n log s + nk log k) total deterministic time. Note that the term
n log(sk) is substituted by n log s, since n log(sk) = n log s + n log k, and since n log k
is dominated by nk in the total running time. In each iteration of the algorithm, we
have stored an intermediate Voronoi diagram of complexity O(sk2), in addition to some
constant amount of information per k-half-edge eki . Thus, the total space usage is O(sk2)
cells of workspace.

The algorithm from Lemma 3.8 is actually more general. If, instead of a k-half-
edge eki that lies inside a (k + 1)-cell C, we have a (k + 1)-half-edge ek+1

i that lies on
the boundary of C, the same method of processing S in batches of size sk allows us
to find the next (k + 1)-half-edge incident to C in counterclockwise order from ek+1

i .
Corollary 3.9 notes that these two kinds of edges can be handled simultaneously. See
Figure 3.14 for an illustration.
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e1

e2

e3

C C C
f1

f3

Figure 3.14: An illustration of Corollary 3.9. The (k+ 1)-half-edge f1 is the first edge in
the interval assigned to the relevant k-half-edges e1. The k-half-edge e2 is not relevant,
thus f2 is null. The (k + 1)-half-edge f3 is the counterclockwise successor of e3 on C.

Corollary 3.9. Let ei denote either a k-half-edge or a (k+1)-half-edge. Suppose we are
given s such half-edges e1, . . . , es. Then, in total O

(
n log s+ nk 2O(log∗ k)) expected time

or O(n log s+ nk log k) deterministic time and using O(sk2) cells of workspace, we can
find a sequence f1, . . . , fs of (k + 1)-half-edges such that, for each i = 1, . . . , s, we have

1. if ei is a relevant k-half-edge, then fi is the first (k + 1)-half-edge of the (k + 1)-
interval assigned to ei;

2. if ei is a k-half-edge that is not relevant, then fi is null;

3. if ei is a (k + 1)-half-edge adjacent to the (k + 1)-cell C, then fi is the counter-
clockwise successor of ei on C.5

3.3.2 The Recursive Procedure

In the following lemma, we assume that edges of VDk(S), for some k = 1, . . . ,K − 1,
are at hand, and we describe an algorithm which finds all the edges of VDk+1(S) by
iterative use of Corollary 3.9. We equip our algorithm with a procedure, similar to the
one in Chapter 3.2, that first distinguishes the big and the small (k + 1)-cells and then
reports the (k+ 1)-half-edges incident to each of these cells. This prevents spending too
much time on the (k + 1)-cells with many incident edges.

Lemma 3.10. Using two scans over all k-half-edges, we can report all (k+1)-half-edges
in batches of size at most 2s such that each (k+1)-half-edge is reported exactly once. This
takes O

(
n2k
s (log s + k 2O(log∗ k))

)
expected time or O

(
n2k
s (log s + k log k)

)
deterministic

time, using O(sk2) cells of workspace.

Proof. The algorithm consists of three phases analogous of the ones introduced in Chap-
ter 3.2: in the first phase, we aim at finding the big (k + 1)-cells. Let ei denote either a
k-half-edge or a (k+ 1)-half-edge. To find the big (k+ 1)-cells we keep s such half-edges
e1, . . . , es in memory. At the beginning of the first phase, e1, . . . , es are all k-half-edges.
In each iteration of the algorithm, we apply Corollary 3.9 to these half-edges, in order

5Note that fi is always the counterclockwise successor of ei, even if the containing (k+ 1)-intervals of
fi and ei are different. This occurs only when ei is the last (k + 1)-half-edge on a (k + 1)-interval of C.
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to obtain s new (k+ 1)-half-edges f1, . . . , fs. Now, for each i = 1, . . . , s, three cases can
apply: (i) fi is null, i.e., ei was not relevant. In the next iteration, we replace ei with
a fresh k-half-edge from the input; (ii)/(iii) fi is not null. Now we need to determine
whether fi is the last (k + 1)-half-edge of the (k + 1)-interval containing it. For this,
we check whether the head vertex of fi is an old (k + 1)-vertex. (ii) If fi is not the last
(k + 1)-half-edge of the (k + 1)-interval containing it, i.e., if its head vertex is a new
(k+ 1)-vertex, we set ei to fi for the next iteration. (iii) If fi is the last (k+ 1)-half-edge
of (k + 1)-interval containing it, we set ei to a fresh k-half-edge from the input. We
repeat this procedure until there are no fresh k-half-edges left to process.6

The remaining (k + 1)-half-edges in the working memory are incident to the big
(k + 1)-cells. For each such cell, we store the center of gravity of its defining sites in
an array Bk+1, sorted according to lexicographic order. We emphasize that in the first
phase, we do not report any (k + 1)-half-edge.

In the second phase, we repeat the same procedure as in the first phase, but now
that we know the big (k + 1)-cells, we can report the (k + 1)-edges. In order to avoid
repetitions, we only report (i) every (k+1)-half-edge incident to a small (k+1)-cell; and
(ii) the opposite direction of every (k + 1)-half-edge e incident to a small (k + 1)-cell, if
the (k + 1)-cell on the right of e is a big (k + 1)-cell. See Figure 3.15.

The conditions (i) and (ii) guarantee that the number of (k + 1)-half-edges that are
reported in each iteration is at most 2s. We use Bk+1 to identify if a cell C is a big cell,
by locating the center of gravity of the defining sites of C in Bk+1 with a binary search;
see below for details.

In the third phase, we report every (k+1)-half-edge e that is incident to a big (k+1)-
cell, while the (k + 1)-cell on the right of e is also a big (k + 1)-cell. Let {Bk+1} denote
the sites that define the big (k + 1)-cells. We construct VDk+1({Bk+1}) in the working
memory. Then, we go through the sites in S in batches of size sk, adding the sites of
each batch to VDk+1({Bk+1}). While doing this, as in the algorithm for Lemma 3.7, we
keep track of how the edges of VDk+1({Bk+1}) are cut by the corresponding cell in the
new diagrams. In the end, we report all (k + 1)-edges of VDk+1({Bk+1}) that are not
empty. By report, we mean report two (k + 1)-half-edges in opposing directions, which
is again at most 2s half-edges. As we explained in the algorithm in Lemma 3.7, these
(k + 1)-half-edges cover all the (k + 1)-half-edges whose left and right cells are both big
(k + 1)-cells.

Regarding the running time, the first and the second phase of the algorithm consist
of O(nk/s) applications of Corollary 3.9 which takes O

(
n2k
s (log s + k 2O(log∗ k))

)
total

expected time or O
(
n2k
s (log s+ k log k)

)
total deterministic time. Furthermore, creating

the array Bk+1 to represent the big cells takes O(sk + s log s) steps: we compute the
center of gravity of the defining sites for each big (k + 1)-cell in O(k) steps. Then we
sort these center points in lexicographic order in O(s log s) steps. A query in Bk+1 takes
O(k + log s) time: given a query (k + 1)-cell C, we compute the center of gravity for its

6 We actually repeat this procedure for one more iteration after there are no fresh k-half-edges left to
process. This extra iteration guarantees that there are no k-half-edges left in the working memory and
all of them have been removed or replaced by (k + 1)-half-edges.
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e1

e2

e3

e4

Figure 3.15: The VD3 for a set of sites and the big 3-cells (filled). In the second phase,
when the algorithm finds the half-edges e1 and e2, it reports these half-edges as well
as the opposite half-edge of (only) e2. The algorithm may also detect e3 and e4, while
it processes the big-cells partially. However, in such a case it reports neither them nor
their opposite half-edges. Note that in this phase e3 is reported exactly once, and it
occurs when the opposite half-edge of e3 is detected by the algorithm.

defining sites in O(k) time. Then we use binary-search in Bk+1 to find a big (k+ 1)-cell
with the same center of gravity. Aurenhammer [Aur90] showed that these centers are
pairwise distinct, so that a (k+1)-cell can be uniquely identified by the center of gravity
of its defining sites.7

The algorithm performs at most two queries in Bk+1 per (k+1)-half-edge, for a total
of O(nk) edges. Thus, the total time for the queries is O(nk2 + nk log s). In the third
phase of the algorithm, constructing a (k + 1)-order Voronoi diagram of O(sk) sites
takes O(sk log s + sk2 2O(log∗ k)) expected time or O(sk log s + sk2 log k) deterministic
time. We repeat it O(n/sk) times, which takes O

(
n log s + nk 2O(log∗ k)) expected time

or O(n log s+ nk log k) deterministic time in total.
Overall, the running time of the algorithm simplifies to O

(
n2k
s (log s + k 2O(log∗ k))

)
total expected time or O

(
n2k
s (log s + k log k)

)
total deterministic time. The algorithm

uses a workspace of O(sk2) cells for running Corollary 3.9, storing big (k+ 1)-cells, and
constructing Voronoi diagrams with O(sk) sites.

7To be precise, Aurenhammer [Aur90, Theorem 1] showed the following: take the standard lifting
of S onto the unit paraboloid and compute the center of gravity for each subset of k + 1 lifted points.
Call the resulting point set R. Then, the vertical projection of the lower convex hull of R is dual to
VDk+1(S). In particular, the vertices of the projection are the centers of gravity of the defining sites for
the cells of VDk+1(S). Therefore, they must be pairwise distinct; otherwise, they could not all appear
on the lower convex hull.
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3.3.3 Obtaining a Time-Space Trade-Off

In order to use Lemma 3.8 to compute half-edges of a higher order Voronoi diagram, we
need to have all the half-edges of the previous order Voronoi diagram at hand. However,
the space constraint does not allow us to store them. To resolve this problem, we find
the k-half-edges for all k = 1, . . . ,K simultaneously, as follows: for a parameter s′ (that
we will define later), we compute s′ different 1-edges and report every 1-edge as two
1-half-edges in opposing directions. Then, we apply Lemma 3.10 (with parameter s′) in
a pipelined fashion to obtain the k-half-edges for k = 2, . . . ,K. In each iteration, the
algorithm from Lemma 3.10 consumes at most s′ different k-half-edges from the previous
order and produces at most 2s′ new (k + 1)-half-edges to be used at the next order.

Thus, if we have between s′ and 3s′ new k-half-edges available in a buffer, then we
can use them one by one whenever the algorithm for computing (k + 1)-half-edges in
Lemma 3.10 requires such a new k-half-edge. Whenever the size of the buffer falls below
s′, we run the algorithm for the previous order until the number of k-half-edges in the
buffer is again between s′ and 3s′. Applying this idea for all the orders k = 1, . . . ,K−1,
we need to store K−1 buffers, each containing up to 3s′ half-edges for the corresponding
diagram. Since a k-half-edge is represented by O(k) sites from S, the buffer for k-half-
edges requires O(s′k) cells of workspace. We call this the output buffer and we denote
it by Ok.

Furthermore, for each k, we need to store O(s′) half-edges that reflect the current
state of the corresponding algorithm. This requires O(s′k) cells of workspace. This is
called the private workspace and is denoted by Pk. Finally, for the algorithm that is
currently active, we need O(s′k2) cells of workspace to compute the Voronoi diagram of
order k for the next batch of O(s′k) sites from S (see Lemma 3.10). Since this workspace
is used by all the algorithms, it is called the common workspace and is denoted by C; see
Figure 3.16. More details follow.

Voro-k

Bk

S

Ok

Pk

C

Figure 3.16: The read-only array S contains the given set of sites. The processor Voro-k
computes VDk(S) with the help of the allocated buffers Pk,Bk,Ok and the common
workspace C. The direction of the arrows indicates reading from or writing to the
memory cells, for processor Voro-k.
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Theorem 3.11. Let S = {p1, . . . , pn} be a set of n planar point-sites in general position
that is stored in a read-only array. Let s be a parameter in {1, . . . , n} and K ∈ O(

√
s).

There is an algorithm that reports all the edges of VD1(S), . . . ,VDK(S) in expected time
O
(
n2K5

s (log s+K 2O(log∗K))
)

or in deterministic time O
(
n2K5

s (log s+K logK)
)
, using

a workspace of O(s) cells.

Proof. We compute the half-edges of VD1(S), . . . ,VDK(S) in a pipelined fashion. The
algorithm simulates having K processors, each one computing a Voronoi diagram of
different order. For k = 1, . . . ,K, let Voro-k be the processor in charge of computing
the Voronoi diagram of order k. We emphasize that the algorithm is sequential, but the
analogy of K processors helps our exposition. Set the parameter s′ = s/K2. The first
processor Voro-1 uses the algorithm of Theorem 3.7 with space parameter s′ to compute
the 1-half-edges. For k ≥ 2, the processor Voro-k runs the algorithm from Lemma 3.10
with space parameter s′ to compute the k-half-edges. Recall that Lemma 3.10 requires
O(s′k2) cells of workspace to compute the intermediate Voronoi diagrams of order k for
a set of O(s′k) sites. However, when Voro-k does not compute a diagram, it needs only
a state of O(s′k) cells of workspace.

Therefore, all the processors can share a common workspace C of size O(s′k). At
any point in time, C is used by a single processor Voro-k to compute edges of VDk(S),
for some k ∈ {1, . . . ,K}. For each processor Voro-k, the local state and the other
variables needed by the processor, i.e., the edges that are currently being processed by
the algorithm for computing VDk(S), are stored in a private workspace Pk. In addition,
Voro-k has an array Bk to store the big k-cells. Whenever an edge of VDk(S) would be
reported, the processor Voro-k instead inserts it into an output buffer Ok. Each of these
local arraysOk,Pk,Bk should be able to store O(s′) half-edges and cells of VDk(S). Since
we need O(k) sites to represent a k-half-edge or a k-cell, the total space requirement for
all processors is O(s′K2) = O(s). Note that our requirement that K = O(

√
s) is crucial

in ensuring that the space constraints are not exceeded.
We simulate the parallel execution of the processors with stages. For k = {1, . . . ,K},

the goal of each stage k is to report the k-half-edges and also to identify the big (k+ 1)-
cells. In stage 0 the goal is only to identify the big 1-cells. This is done by processor
Voro-1 which performs the first phase of Theorem 3.7 in order to find the O(s′) big cells
of VD1(S), and to store them in B1. Now we know the big 1-cells.

In stage 1, using the processor Voro-1, we perform the second phase and the third
phase of Theorem 3.7 to find and also report all the half-edges of VD1(S) in batches of
at most 2s′ half-edges.8 The processor Voro-1 stores the batches of the 1-half-edges in
the buffer O1. Whenever there are at least s′ half-edges in O1, we pause Voro-1 while
we store its state in P1, and we start Voro-2 to perform the first phase of Lemma 3.10
with the O1 as input. The processor Voro-2 takes a batch of s′ half-edges from O1,
stores them in P2, and then it processes them as long as there are at least s′ half-edges
in P2. Otherwise, it inserts a new batch of s′ half-edges from O1 into P2. Whenever
the buffer O1 falls below s′ half-edges, we stop running Voro-2 and instead we resume

8 Note that the 1-half-edges are the only edges reported in stage 1.
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Voro-K

BK

OK

PK

I

Voro-1

II-III

B1

S

O1 Voro-k

Bk

Ok Voro-(k + 1)

Bk+1

P1 Pk Pk+1

C

I II-III I II-III I II-III

Figure 3.17: For k′ = 1, . . . ,K, the processor Voro-k′ and its allocated memory cells
Pk′ , Ok′ , Bk′ as well as the common workspace C of all the processors are shown. The
direction of the arrows indicates reading from or writing to memory cells. The roman
number I, II and III on each processor Voro-k′ refer to the first, second, and third phase
of the algorithm run by Voro-k′. The figure shows the algorithm in stage k. The gray
boxes and arrows show the current inactive parts of the algorithm. In this stage, the
algorithm reads data from B1, . . . ,Bk and writes into Bk+1, and as a result, it reports
all the k-half-edges and it identifies all the big (k + 1)-cells.

Voro-1 until O1 has at least s′ half-edges. Then, we continue running Voro-2 with a
similar procedure until Voro-2 has consumed all 1-half-edges (this is the end of the
first phase of Lemma 3.10 for the processor Voro-2 and the end of the third phase of
Theorem 3.7 for the processor Voro-1). The current half-edges in P2 represent the big
cells of VD2(S), and we store them in B2. This concludes the description of stage 1, in
which the 1-half-edges are reported and the big 2-cells are identified.

In general, in stage k of the algorithm, we have identified the big cells B1, . . . ,Bk
of the first k diagrams, and we want to use Voro-(k + 1) to identify the big cells of
VDk+1(S). For this, all processors Voro-1, . . . ,Voro-k perform the second and the third
phase of Theorem 3.7 and Lemma 3.10 in a pipelined fashion to generate all half-edges
of VD1(S), . . . ,VDk(S), and to store them in the buffers O1, . . . ,Ok. Furthermore, the
processor Voro-(k+ 1) uses Ok as an input of the first phase of Lemma 3.10 to generate
Bk+1 for being used in the next stage; see Figure 3.17. Stage K is similar, but we do
not need to determine the big cells of order K + 1.

By running the K stages of the algorithm, we compute all the Voronoi half-edges
and add them to the corresponding output buffers. The edges are computed more than
once. Therefore, in order to make sure that they are written into the output memory
only once, we report them only the first time they are inserted into the output buffers.
For the half-edges of VDk(S), this happens in stage k of the algorithm. Thus, we can be
certain that every half-edge of each diagram VD1(S), . . . ,VDK(S) is reported exactly
once and in order of their containing diagrams. In other words, all the k-half-edges are
reported before all the (k + 1)-half-edges.
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Regarding the running time, in each stage k = 1, . . . ,K, we have to compute all
diagrams VD1(S), . . . ,VDk(S) using Lemma 3.10. This takes

k∑
k′=1

O
(n2k′

s′
(

log s′ + k′ 2O(log∗ k′))) = O
(n2k2

s′
(

log s′ + k 2O(log∗ k)))
expected time in stage k. The running time for stage 0 is negligible. The complete
algorithm takes

K∑
k=1

O
(n2k2

s′
(

log s′ + k 2O(log∗ k))) = O
(n2K3

s′
(

log s′ +K 2O(log∗K)))

expected time for all stages 1 to K. This is O
(
n2K5

s

(
log s+K 2O(log∗K))) expected time

in terms of s, since s′ = s/K2. The analysis for the deterministic running time is com-
pletely analogous, replacing the term 2O(log∗ k) by log k, which gives us the deterministic
time of O

(
n2K5

s (log s+K logK)
)
.
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In this chapter, we describe two s-workspace algorithms for computing the EMST for
a given set S of n point-sites in the plane, where the more advanced one runs in
O
(
(n3/s2) log s

)
time. Our main idea is to apply Kruskal’s MST algorithm on RNG(S),

using a compact representation of planar graphs, called an s-net, which allows us to
manipulate the component structure of RNG during the execution of the algorithm.

In Chapter 4.1, we describe an algorithm to compute the edges of RNG(S) (sorted
by length) using O(s) cells of workspace. In Chapter 4.2, we explain a simple time-
space trade-off for computing EMST(S). Finally, in Chapter 4.3, we introduce the s-net
structure, and we equip our algorithm with this tool in order to obtain a better time-
space trade-off for computing EMST(S).

4.1 Computing the Relative Neighborhood Graph

For the given set S = {p1, . . . , pn}, the first goal is to compute RNG(S) in the limited
workspace model. In this chapter, we explain our s-workspace algorithm for computing
edges of RNG(S) in an arbitrary order and then later in sorted order according to their
length. We produce edges of RNG(S) with a similar technique as the one that we have
used in the context of Voronoi diagrams in Chapter 3.

4.1.1 All the Incident Edges to Some Sites

In the following lemma, we explain how to compute all the edges of RNG(S) that are
incident to a batch of s sites of S using O(s) cells of workspace. Note that the same
technique cannot be used for computing all the edges of DT(S) that are incident to s
sites of S using only O(s) cells of workspace. This is due to the fact that the vertices in
DT(S) are not of bounded degree.

Lemma 4.1. Let S be a planar set of n point-sites in general position, stored in a read-
only array. Given a set V ⊆ S of s sites, we can compute for each u ∈ Q the at most six
neighbors of u in RNG(S) in total time O(n log s) and using O(s) cells of workspace.
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Proof. The algorithm has two phases. In the first phase, for each site in V , we find a
superset of its neighbors in RNG(S), and this superset has a size of at most six. In the
second phase, we check which of these candidates from the first phase are the actual
neighbors in RNG(S) of the sites in V .

The first phase proceeds in dn/se steps. In each step, we process a batch of s sites
of S = Q1 ∪ . . . ∪ Qdn/se, and we produce at most six candidates for each site of V to
be its neighbors in RNG(S). In the first step, we take the first batch Q1 ⊆ S of s sites,
and we compute RNG(V ∪ Q1). Because both V and Q1 have at most s sites, we can
do this in O(s log s) time using standard algorithms. For each u ∈ V , we remember the
at most six neighbors of u in RNG(V ∪Q1). Notice that for each pair u ∈ V, v ∈ Q1, if
the edge uv is not in RNG(V ∪Q1), then the lens of u and v is non-empty. Therefore,
there is a site in V ∪ Q1 that lies in the lens of u and v, and thus, it is a witness to
certify that uv is not an edge of RNG(S). Let N1 be the set containing all neighbors in
RNG(V ∪Q1) of all sites in V . Storing N1, the set of candidate neighbors requires O(s)
cells of workspace.

Then, in each step j = 2, . . . , O(n/s), we take the next batch Qj ⊆ S of s sites,
and we compute RNG(V ∪Qj ∪Nj−1) in O(s log s) time using O(s) cells of workspace.
For each u ∈ V , we store the set of at most six neighbors of u in this computed graph.
Additionally, we let Nj be the set containing all neighbors in RNG(V ∪Qj ∪Nj−1) of all
sites in V . Note that Nj , the set of candidate neighbors, consists of O(s) sites as each
site in V has a degree of at most six in the computed graph. At this step, we do not
need to store Nj−1 anymore.

After dn/se steps we are left with at most six candidate neighbors for each site in V .
As mentioned above, for a pair u ∈ V, v ∈ S, if v is not among the candidate neighbors
of u, then, at some point in the construction, there was a site witnessing that the lens
of u and v is non-empty. Therefore, only the sites which are in the set of candidate
neighbors can define edges of RNG(S). However, all the candidate neighbors are not
necessarily the neighbors in RNG(S) of sites in V . See Figure 4.1 for an example.

p1

p2

p3

p5

p4

Figure 4.1: For S = {p1, . . . , p5}, the set of neighbors of p1 in RNG(S) is {p2, p3}.
Consider that p3 and p4 are processed in some steps before p5. After processing p3 and
p4, the set of the candidate neighbors of p1 does not contain p4 because p3 lies in their
lens. This results in adding p5 to the candidate neighbors of p1 in one of the following
steps. Since p4 is the only witness site in the lens of p1 and p5, the site p5 will not be
removed from the set of candidate neighbors of p1 until the end of the first phase.
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p1

p2 p3

p5

p4

Figure 4.2: For a set of sites S and V = {p1, . . . , p5}, the neighbors in RNG(S) of all
the sites in V are generated.

In the second phase, to obtain the edges of RNG(S) incident to the sites in V , we
go again through the entire set S = Q1 ∪ . . . ∪ Qdn/se in batches of size s: in the first
step, we start with all the sites in V and their candidate neighbors in Ndn/se, and we
construct RNG(V ∪Q1 ∪Ndn/se). For each u ∈ V and for each candidate neighbor v of
u in Ndn/se, we check if v is still a neighbor of u in this computed graph. We remove
v from the set of candidate neighbors of u, if it does not pass this test. We denote the
trimmed set of candidate neighbors of all the sites in V by N ′1. By this procedure, the
candidate neighbors in Ndn/se for which there is a witness site in Q1 will not appear in
the updated set of candidate neighbors, N ′1.

Then, in each step j = 2, . . . , O(n/s), we construct the graph RNG(V ∪Q1 ∪N ′j−1).
Again, for each site u ∈ V , we remove its candidate neighbors in N ′j−1 if there is a
witness site in Q2 lying in their corresponding lens. We denote the trimmed set of the
candidate neighbors of all the sites in V by N ′j . In this step, we do not need to store
N ′j−1 anymore. After going through all the batches, the candidates that maintained the
empty-lens property throughout define the edges of RNG(S) incident to the sites in V ;
see Figure 4.2. Note that in all the steps, N ′j contains at most six candidate neighbors
incident to each site of V , and thus, its size is O(s) cells of workspace.

Since the algorithm takes O(s log s) time per step, and since the number of steps is
2× dn/se, the total running time of the algorithm is O(n log s). The space requirement
for storing the set of candidate neighbors as well as the intermediate RNGs are O(s)
cells of workspace.

4.1.2 Finding All the Edges of RNG

Through repeated application of Lemma 4.1, we can compute all the edges of RNG(S),
in some arbitrary order, using a workspace of O(s) cells.

Theorem 4.2. Suppose we are given a planar set of n point-sites S = {p1, . . . , pn} in
general position, stored in a read-only array. Let s be a parameter in {1, . . . , n}. We can
compute RNG(S) in total time O

(
(n2/s) log s

)
, using O(s) cells of workspace.
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Figure 4.3: The relative neighborhood graph for the set of sites S is generated by
producing all the incident edges in RNG(S) to every batch of s sites of S.

Proof. In the first step of the algorithm, we take the set V of the first s sites of S, and
we apply Lemma 4.1 on V to find all the neighbors in RNG(S) of all the sites in V .
Whenever we find a neighbor pj of a site pi in RNG(S), we report the edge pipj only
if i < j. This guarantees that the edge pipj of RNG(S) is reported only once. Then in
each of the following steps, we take the next batch of s sites of S and repeat the same
procedure. We continue this procedure until all the sites in S are processed, i.e., for
O(n/s) steps; see Figure 4.3.

Lemma 4.1 guarantees that all the reported edges belong to RNG(S) and all the
edges of RNG(S) are reported exactly once. Regarding the running time of the algo-
rithm, O(n/s) invocations of Lemma 4.1 take a total of O

(
(n2/s) log s

)
time. The space

requirement is immediate.

4.1.3 Edges of RNG in Sorted Order of Length

In the following lemma, we provide a technique, that is taken from the work of Chan and
Chen [CC07], to produce edges of RNG(S) in sorted order of length. A similar technique
will be used in Chapter 6 in the context of k-visibility regions. Note that having edges
of RNG(S) in sorted order is necessary only in the algorithm in Chapter 4.3, where we
introduce the s-net structure. More precisely, in order to update the s-net efficiently,
we must add the edges of RNG(S) one by one in their sorted order. Nevertheless,
this procedure is also exploited in our simple algorithm in Chapter 4.2 with the aim of
reporting edges of EMST(S) in their sorted order of length instead of an arbitrary order.

Lemma 4.3. Let S be a planar set of n point-sites in general position stored in a read-
only array. Let s ∈ {1, . . . , n} be a parameter. Let ER = e1, e2, . . . , em be the sequence
of edges in RNG(S) sorted by increasing length. Let i ≥ 1. Given ei−1 (or ⊥, if i = 1),
we can find the next s edges ei, . . . , ei+s−1 in ER using O

(
(n2/s) log s

)
time and O(s)

cells of workspace.1
1Naturally, if i+ s− 1 > m, we report the edges ei, . . . , em.
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Proof. The algorithm in Theorem 4.2 generates all the edges of RNG(S) in total time
O
(
(n2/s) log s

)
. As we have seen, each step of this algorithm produces a batch of O(s)

edges of RNG(S), using Lemma 4.1. Now after each step of this algorithm, instead of
reporting the edges, we select the edges ei, . . . , ei+s−1 among them, and we store these
edges in the workspace. This can be done with a trick by Chan and Chen [CC07].2
More precisely, when the algorithm produces O(s) new edges of RNG(S), we store the
edges that are longer than ei−1 in an array A of size O(s). Whenever A contains more
than 2s elements, we use a linear time selection procedure to remove all the edges of
rank larger than s [CLRS09]. This needs O(s) operations per step of the algorithm in
Theorem 4.2, giving a total of O(n) time for selecting the edges. In the end, we have
ei, . . . , ei+s−1 in A, albeit not in sorted order. Thus, we sort the final A in O(s log s)
time. The running time for selecting the edges and sorting them is dominated by the
time needed to compute all the edges of RNG(S). The space usage for generating the
edges and also for selecting and sorting them is bounded by O(s) cells of workspace.
Thus, the claim follows.

4.2 A Simple Time-Space Trade-Off for EMST

The algorithm in Theorem 4.2 for producing edges of RNG(S), together with the tech-
niques from the constant workspace algorithm by Asano et al. [AMRW11] for identifying
edges of EMST(S), leads to a simple time-space trade-off for computing EMST(S) that
we will explain in this chapter.

4.2.1 Structure of Face-Cycles

Recall that a partial relative neighborhood graph RNGi is represented as a collection of
face-cycles. Asano et al. [AMRW11] have observed that, to run Kruskal’s algorithm on
RNG(S), it suffices to know the structure of the face-cycles of RNGi, for i ∈ {1, . . . ,m}.
The following observation restates this idea.

Observation 4.4. Let i ∈ {1, . . . ,m}. The edge ei ∈ ER belongs to EMST(S) if and
only if there is no face-cycle F in RNGi such that both endpoints of ei lie on F .

Proof. Let u and v be the endpoints of ei. If there is a face-cycle F in RNGi that contains
both u and v, then ei clearly does not belong to EMST(S); see Figure 4.4a. Conversely,
suppose there is no face-cycle in RNGi containing both u and v. Thus, every two face-
cycles Fu and Fv such that u lies on Fu and v lies on Fv must be distinct. Therefore, Fu
and Fv must belong to two different connected components of RNGi. This is because,
if they were in the same component of RNGi, due to planarity of RNG(S), there would
be a face-cycle in RNGi that both u and v lie on, contradicting the distinctness of Fu
and Fv; see Figure 4.4b. This implies that ei is an edge of EMST(S).

2This technique will be explained in detail in Chapter 5.3.
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u

v

(a)

u

v

(b)

Figure 4.4: A schematic drawing of RNGi. (a) The edge uv 6∈ EMST(S) since there is a
face-cycle such that both u and v lie on it. (b) A counter-example for the case that no
face-cycle contains both u and v; however, u and v are in the same connected component
of RNGi. The edge uv contradicts the planarity of RNG(S).

Observation 4.4 tells us that we can identify edges of EMST(S) if we can determine
the face-cycles of each RNGi that contain the endpoints of ei, for i ∈ {1, . . . ,m}. To
accomplish this task, we use the next lemma to traverse the face-cycles.

Lemma 4.5. Let i, j ∈ {1, . . . ,m} and i > j. Suppose we are given the half-edges
−→ei ,−→ej ∈ ER as well as the at most six edges incident to the head of −→ej in RNG(S). Let
F be the face-cycle of RNGi that −→ej lies on. We can find the next half-edge of −→ej on F
in O(1) time using O(1) cells of workspace.

Proof. Let
−→
fj be the next half-edge of −→ej on F . Let w be the head of −→ej . By comparing

the length of the edges incident to w in RNG(S) with |ei|, we identify the incident half-
edges of w in RNGi, in O(1) time. Then, among them we pick the half-edge

−→
fj which

has the smallest clockwise angle with −→ej around w and has w as its tail. This takes O(1)
time using O(1) cells of workspace; see Figure 4.5.

w

−→ej
F

−→
fj

Figure 4.5: For i > j, a schematic drawing of a face-cycle F of RNGi, and −→ej on F with
the head vertex w, as well as the other edges of RNGi incident to w. The edge

−→
fj which

has the smallest clockwise angle with −→e is the next edge of −→ej on F .

Lemma 4.6. Let i, j ∈ {1, . . . ,m} and i ≤ j. Suppose we are given the half-edges
−→ei ,−→ej ∈ ER as well as the at most six edges incident to the head of −→ej in RNG(S). We
can find the predecessor and the successor of −→ej in RNGi in O(1) time and O(1) cells of
workspace.

56



4.2 A Simple Time-Space Trade-Off for EMST

Proof. Let −→pj be the predecessor and −→sj be the successor of −→ej in RNGi. Let w be the
head of −→ej . By comparing the length of the edges incident to w in RNG(S) with |ei|, we
identify the incident half-edges of w in RNGi in O(1) time. Then, among them we pick
the half-edge which has w as its head and makes the smallest counterclockwise angle
with −→ej around w. This is −→pj . Similarly, we pick the half-edge which has w as its tail
and makes the smallest clockwise angle with −→ej . This is −→sj . Finding −→pj and −→sj takes
O(1) time using O(1) cells of workspace; see Figure 4.6.

w
−→ej

−→sj

−→pj

Figure 4.6: For i ≤ j, a schematic drawing of RNGi (in black) and a half-edge −→ej with
the head w. The half-edge −→sj has the smallest clockwise angle with −→ej .

4.2.2 The Algorithm

From our observations so far, we can derive a simple time-space trade-off for computing
EMST(S). In Theorem 4.7, we simulate Kruskal’s algorithm on RNG(S). For this, we
take batches of s edges of RNG(S), and we report the edges of EMST(S) among them.
To determine whether an edge ei of RNG(S) is in EMST(S), we apply Observation 4.4,
i.e., we determine whether the endpoints of ei are on two distinct face-cycles of the
corresponding RNGi.

Theorem 4.7. Let S be a planar set of n point-sites in general position stored in a
read-only array. Let s ∈ {1, . . . , n} be a parameter. We can output all the edges of
EMST(S), in sorted order, in O

(
(n3/s) log s

)
time using O(s) cells of workspace.

Proof. Let ER = e1, . . . , em be the edges of RNG(S) sorted by length. In the first
iteration, we use Lemma 4.3 to find the batch e1, . . . , es of the first s edges in ER in
O
(
(n2/s) log s

)
time. For each edge ei, i ∈ {1, . . . , s}, we consider its both half-edges.

Then, we perform 2s parallel walks starting from the head vertex of each half-edge −→ei .
In the first step of the walks, using Lemma 4.1, we find the at most six incident edges
to the head of each half-edge −→ei . Then, using Lemma 4.6, we identify the predecessor
−→pi and the successor −→si of −→ei in RNGi (if they exist). By following the successor of each
half-edge, we perform one step of the walk for each half-edge of the batch in parallel.
Note that the walk that starts from the head of −→ei takes place in RNGi.

Next, in the second step of the parallel walks, we consider the head vertices of all
the successors −→si . First, we use Lemma 4.1 to find the at most six incident edges to the
head of each −→si . Then, applying Lemma 4.5, we find the next half-edge of −→si , and we
advance each half-edge along its face-cycle in RNGi as one step of the parallel walks.
We proceed the parallel walks by finding the next edge on the face-cycles in each step.
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−→ei

−→si

t

h −→pi

(a)

t

h

−→ei

−→si −→pi

(b)

Figure 4.7: A schematic drawing of RNGi and the half-edge −→ei with the head h and the
tail t. (a) The vertices h and t are on the same face-cycle of RNGi since by traversing
the face-cycle starting from −→si we encounter t. (b) The vertices h and t are on different
face-cycles of RNGi since by traversing the face-cycle starting from −→si we encounter −→pi ,
meaning that we will not reach t.

A walk that started from the head h of −→ei continues until it either encounters the
tail t of −→ei or until it arrives at −→pi . In the former case, we have found a face-cycle that
both endpoints of ei lie on and thus, by Observation 4.4, ei is not in EMST(S); see
Figure 4.7a. In the latter case, there is no face-cycle in RNGi that contains both h and
t. This is because, by definition of −→si and −→pi , all the incident edges of h in RNGi lie in
the counterclockwise cone from −→pi to −→si around h. Therefore, by planarity of RNGi, all
the face-cycles that contain h lie inside the face-cycle that starts with −→si and ends at −→pi .
Hence, none of those face-cycles encounters t and, by Observation 4.4, ei is an edge of
EMST(S); see Figure 4.7b. In this case, we report ei, and we also abort the walk which
was started from the opposite half-edge of −→ei . This prevents an edge of EMST(S) to be
reported twice.

In the next iteration of the algorithm, we again use Lemma 4.3 to find the next batch
of s edges in ER. Similarly, we perform 2s parallel walks for the half-edges in this batch,
in order to find the edges which belong to EMST(S).

Since there are O(n) half-edges in RNG(S), it takes O(n) steps in each iteration to
conclude all the walks, where each step of the walks takes O(n log s) time. It follows
that we can process a single batch of edges in O(n2 log s) time which dominates the
time needed for finding a batch of s edges of RNG(S). We have O(n/s) batches, so the
total running time of the algorithm is O

(
(n3/s) log s

)
. The algorithm uses O(s) cells of

workspace for finding and storing a batch of s edges as well as a constant number of cells
per edge to perform each walk.

Note that, in this algorithm, it is not essential to process edges of RNG(S) in sorted
order of length. Thus, we can simply apply Lemma 4.1 to produce edges of RNG(S).
However, by using Lemma 4.3 we are able to report edges of EMST(S) in sorted order
of length, although the total running time of the algorithm will not be affected.
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4.3 Improvement via a Compact Representation of RNGs

Theorem 4.7 is clearly not optimal: for the case of linear space s = n, we get a run-
ning time of O(n2 logn), although we know that it should take O(n logn) time to find
EMST(S). Can we do better? The bottleneck in Theorem 4.7 is the time needed to
perform the walks in the partial relative neighborhood graphs RNGi. In particular, such
a walk might take up to Ω(n) steps, leading to a running time of Ω(n2 log s) for process-
ing a single batch of s edges of RNG(S). To avoid this, we will maintain a compressed
representation of the partial relative neighborhood graphs that allows us to reduce the
number of steps in each walk to O(n/s).

4.3.1 The s-net Structure

Let i ∈ {1, . . . ,m}. An s-net N for RNGi is a collection of s half-edges, called net-edges,
in RNGi that has the following two properties: (i) each face-cycle in RNGi with at least
bn/sc + 1 half-edges contains at least one net-edge; and (ii) for any net-edge −→e ∈ N ,
let F be the face-cycle of RNGi that contains −→e . Then on F , between the head of −→e
and the tail of the next net-edge, there are at least bn/sc and at most 2bn/sc other
half-edges. Note that the next net-edge on F after −→e could possibly be −→e itself. In
particular, this implies that face-cycles with less than bn/sc edges contain no net-edges;
see Figure 4.8.

(a) (b) (c)

Figure 4.8: A schematic drawing of an s-net for RNGi. (a) A small face-cycle with no
net-edges. (b) a face-cycle with more than bn/sc and less than 2bn/sc half-edges which
contains one net-edge. (c) A big face-cycle with four net-edges.

The following observation records two important statements about s-nets.

Observation 4.8. Let i ∈ {1, . . . ,m}, and let N be an s-net for RNGi. Then,

(N1) N has O(s) half-edges;

(N2) let
−→
f be a half-edge of RNGi, and let F be the face-cycle that contains it. Then,

it takes at most 2bn/sc steps along F from the head of
−→
f until we encounter the

tail of either a net-edge or
−→
f itself.
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Proof. Property (ii) of the definition of an s-net implies that only face-cycles of RNGi

with at least bn/sc+ 1 half-edges contain net-edges. Furthermore, on these face-cycles,
we can uniquely charge Θ(n/s) half-edges to each net-edge, again by property (ii). Since
the face-cycles of RNGi have O(n) half-edges in total, we conclude the first statement
which says |N | = O(s).

For the second statement, we first note that if F contains less than 2bn/sc half-edges,
the claim holds trivially. Otherwise, by property (i), F contains at least one net-edge.
Now from property (ii) it is follows that there are at most 2bn/sc half-edges between
every two consecutive net-edges on F . Thus, in a walk on F starting from

−→
f , we reach

a net-edge in at most 2bn/sc steps.

Due to statement (N1 ) of Observation 4.8, an s-net can be stored in O(s) cells
of workspace. This makes the concept of s-net useful in our s-workspace algorithm.
Therefore, we can exploit the s-net in order to speed up the processing of a single batch.
The next lemma shows how this is done.

Lemma 4.9. Let i ∈ {1, . . . ,m}. Suppose we are given Ei,s = ei, . . . , ei+s−1, a batch of
s edges in ER. Furthermore, we have an s-net N for RNGi in our workspace. Then, we
can determine which edges from Ei,s belong to EMST(S) in O

(
(n2/s) log s

)
time using

O(s) cells of workspace.

Proof. Let H be a set of half-edges, which contains all net-edges from N , as well as,
for each batch-edge ej ∈ Ei,s, the successor of the two half-edges of ej in RNGi; see
Figure 4.9. By definition, we have |H| = O(s), and thus, it takes O(n log s) time to
compute H. This is done by using Lemma 4.1 for finding the incident edges of the head
of each ej and Lemma 4.6 for identifying the successors of each ej .

Figure 4.9: A schematic drawing of RNGi with a batch of edges in ER (dashed red
segments). The directed segments represents the half-edges in H. The net-edges are in
green and the successors of the batch edges are in black.

Now starting from the half-edges in H, we perform parallel walks through the face-
cycles of RNGi, one walk per each half-edge, and each such a walk proceeds until it
encounters the tail of a half-edge in H (including the starting half-edge itself). In each
step of these walks, we use Lemma 4.1 and Lemma 4.5 to find the next half-edges on the
face-cycles in O(n log s) time, and then we check whether these new half-edges belong
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Figure 4.10: The auxiliary graph G is shown. The edge set of G contains the net-edges
(in green), the successors of batch-edges (in black), and the compressed edges (beige
paths).

to H in O(s log s) time. Because H contains the net-edges of N , by statement (N2 ) of
Observation 4.8, each walk finishes after O(n/s) steps, and thus, the total time for this
procedure is O

(
(n2/s) log s

)
.

Next, we build an auxiliary undirected graph G as follows: the vertices of G are the
endpoints of the half-edges in H and the endpoints of the half-edges of Ei,s. Furthermore,
G contains undirected edges for all the half-edges in H and additional compressed edges,
that represent the outcomes of the walks: if a walk started from the head h of a half-
edge in H and ended at the tail t of a half-edge in H, we add an edge from h to t in
G, and we label it with the number of steps that were needed for the walk, i.e., the
number of half-edges between h and t on that face-cycle. Thus, G contains H-edges, and
compressed edges; see Figure 4.10. Clearly, after all the walks have been terminated, we
can construct G in O(s) time, using O(s) cells of workspace.

The auxiliary graph G is actually a representation of the face-cycles in RNGi. Thus,
by adding the batch-edges of Ei,s one by one into G, it can represent the next partial
relative neighborhood graphs, up to RNGi+s. Hence, we can use G to identify which
of the batch-edges of Ei,s belong to EMST(S). This is done by applying Kruskal’s
algorithm on G as follows: we determine the connected components of G in O(s) time
using depth-first search. Then, we insert the batch-edges into G, one after another, in
sorted order. As we do this, we keep track of how the connected components of G change,
using a union-find data structure [CLRS09]. Whenever a new batch-edge connects two
distinct connected components of G, we output it as an edge of EMST(S). Otherwise, we
do nothing; see Figure 4.11. Note that even though G may have a lot more components
than RNGi, the algorithm is still correct because of Observation 4.4.

This execution of Kruskal’s algorithm and updating the structure of connected
components of G takes O(s log s) time which is dominated by the running time of
O
(
(n2/s) log s

)
to perform the parallel walks. The space requirement for construct-

ing and storing the set H and the graph G as well as the updated versions of G is a total
of O(s) cells of workspace.
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Figure 4.11: The batch-edges of Ei,s (in red) have been added to the auxiliary graph G.

4.3.2 Maintaining the s-net

Now that we have described how to use an s-net for RNGi in order to process the edges
ei, . . . , ei+s of ER, we need to explain how to maintain the s-net during the algorithm,
i.e., construct an s-net for RNGi+s after processing the edges ei, . . . , ei+s. The algorithm
in the following lemma computes an s-net for RNGi+s, provided that we have an s-net for
RNGi as well as the graphG described in the proof of Lemma 4.9, for each i ∈ {1, . . . ,m}.

Lemma 4.10. Let i ∈ {1, . . . ,m}, and suppose we have the graph G derived from RNGi

as above, such that all batch-edges have been inserted into G. Then, we can compute an
s-net N for RNGi+s in time O

(
(n2/s) log s

)
, using O(s) cells of workspace.

Proof. By construction, all big face-cycles of RNGi+s, which are the face-cycles with at
least bn/sc + 1 half-edges, appear as faces in G. Thus, by walking along all faces in
G, and taking into account the labels of the compressed edges, we can determine these
big face-cycles in O(s) time. The big face-cycles are represented through sequences of
H-edges, compressed edges, and batch-edges. For each such sequence, we determine
the positions of the half-edges for the new s-net N , by spreading the half-edges equally
at minimum distance bn/sc and maximum distance 2bn/sc along the sequence, again
taking the labels of the compressed edges into account. Since the compressed edges have
length O(n/s), for each of them, we create at most O(1) new net-edges. Now that we
have determined the positions of the new net-edges on the face-cycles of RNGi+s, we
perform O(s) parallel walks in RNGi+s to actually find them. Using Lemma 4.1 and
Lemma 4.5, this takes O

(
(n2/s) log s

)
time. See Figure 4.12.

8

56

4

(a)
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4 3

(b)

Figure 4.12: (a) A schematic drawing of a face-cycle in G and (b) distributing the new
net-edges (in green) on this face-cycle with almost equal distances.
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4.3 Improvement via a Compact Representation of RNGs

We now have all the ingredients for our main result that provides a smooth trade-off
between the cubic-time algorithm in constant workspace and the classical O(n logn)-time
algorithm with O(n) cells of workspace. The following theorem presents this algorithm.

Theorem 4.11. Let S be a planar set of n point-sites in general position stored in a read-
only array. Let s ∈ {1, . . . , n} be a parameter. We can report all the edges of EMST(S),
in sorted order of length, in O

(
(n3/s2) log s

)
time using O(s) cells of workspace.

Proof. This follows immediately from our lemmas: applying Lemma 4.3, we produce a
batch of s edges of RNG(S) in sorted order of length. Then, among them, we report
the edges of EMST(S), using Lemma 4.3. Finally, we maintain the s-net structure to be
used for the next batch of s edges of RNG(S), by Lemma 4.10. All these steps are done
in O

(
(n2/s) log s

)
time using O(s) cells of workspace. Since RNG(S) has O(n) edges, we

need to process O(n/s) batches of edges of RNG(S), leading to an s-workspace algorithm
with total running time of O

(
(n3/s2) log s

)
.

For our algorithm, it suffices to update the s-net every time that a new batch is
considered. It is, however, possible to maintain the s-net and the auxiliary graph G
through insertions of single edges. This allows us to handle graphs constructed incre-
mentally and maintain their compact representation using O(s) workspace cells. We
believe this is of independent interest and can be used by other algorithms for planar
graphs in the limited-workspace model.
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Preliminaries and
Background on Polygonal Domains

In this chapter, we introduce basic notations and preliminaries on geometric problems in
the limited workspace model that deal with polygonal domains. We also present some
tools that will be exploited later. Our focus will be on visibility type problems, and we
investigate different notions in this family. First, we provide some basic definitions.

Definitions. A polygon is called simple if there is no pair of non-consecutive edges
sharing a point. The boundary of a simple polygon is a simple closed polygonal chain;
see Figure 5.1a. A polygonal domain P with h ≥ 0 holes and n vertices is a connected
and closed subset of R2 with h holes, whose boundary consists of h+ 1 pairwise disjoint
simple closed polygonal chains of n line segments in total. One of the simple closed
polygonal chains is the outer boundary, and the others form the h holes. The interior
induced by a hole boundary and the exterior of the outer boundary are not contained
in P . We also refer to it as a polygon with h holes; see Figure 5.1b.

(a) (b)

Figure 5.1: (a) A simple polygon. (b) A polygon with h = 5 holes.

We assume that the input polygon P with h holes is given as a sequence of n vertices
in counterclockwise order (i) along ∂P , if h = 0, or in other words, if P is a simple
polygon; and (ii) along the outer boundary of P followed by the boundaries of the holes,
one by one, in no particular order.
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5. Preliminaries and Background on Polygonal Domains

5.1 Visibility Region

Visibility problems have played a major role in computational geometry for a long time;
see [Gho07] for an overview. In the following, two of the simplest problems in this family
are introduced.

Definition. Let P be a simple polygon with n vertices and let q, p ∈ P be two points
in P . The point p is visible from q if and only if the line segment pq has no proper
intersection with the boundary ∂P of P ; however, it may touch ∂P ; see Figure 5.2a.
The visibility region of the point q in P is the set of all points in P that are visible from
q, and it is denoted by V (P, q); see Figure 5.2b.

p P

q
p′

(a)

P

q

(b)

Figure 5.2: A simple polygon P and the point q ∈ P . (a) From q, the point p ∈ P is
visible but p′ ∈ P is not. (b) The visibility region of q in P is shown (in green).

A vertex of P is reflex if its inner angle is bigger than π. A reflex vertex v of P
is called reflex with respect to q if both incident edges to v lie on the same side of the
line through q and v. We can observe that the reflex vertices with respect to q are the
vertices where important changes may occur in the visibility region of q. More precisely,
∂V (P, q) contains some chains on ∂P and some line segments in the interior of P whose
endpoints lie on ∂P and it actually connects the endpoints of the chains. Such a line
segment is called a chord. Each chord on ∂V (P, q) is characterized as a specific segment
on the line through q and a reflex vertex of P with respect to q. Moreover, that reflex
vertex is one endpoint of the chord; see Figure 5.3. Since q is fixed, we simply refer to
the reflex vertices with respect to q as reflex vertices.

v1

v2

v3

q

P

Figure 5.3: Among the three reflex vertices v1, v2, v3 of P , only v2 and v3 are reflex with
respect to q, and among them, only v3 is visible from q. Thus, v3 creates a chord which
belongs to ∂V (P, q). The chord is shown in red.
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5.1 Visibility Region

The problem of computing, (i.e., reporting the edges of) the visibility region of a
given point in a given simple polygon with n vertices can be solved in O(n) time and
O(n) space, using a classic algorithm [JS87].

Another notion in this area is called weak visibility region, and it is defined as follows:
given a simple polygon P and an edge e of P , the weak visibility region of e in P is the
set of all the points in P that are visible from at least one point on e; see Figure 5.4.
The algorithms for computing the weak visibility region normally find the visible part
of each edge of P from e. This is known as edge-to edge visibility. In the classic model,
Avis et al. [AGT86] described an O(n)-time algorithm to compute the visible part of one
edge from another which uses Ω(n) cells of workspace. Thus, the best known algorithm
for computing the weak visibility region of an edge in a simple polygon using at least
Ω(n) cells of workspace has a running time of O(n2) [AGT86].

e

P

Figure 5.4: For a simple polygon P and an edge e ∈ P , the weak-visibility region of e in
P is shown in green.

Constant Workspace Algorithms. Barba et al. [BKLS14] presented a constant
workspace algorithm that reports the visibility region of a point q in a simple polygon
P , in O(nr̄) time, where r̄ is the number of reflex vertices of P (with respect to q)
that are visible from q. Their algorithm scans ∂P in counterclockwise order, and it
reports the maximal visible subchains of ∂P . More precisely, the algorithm first finds
a visible vertex vstart of P in O(n) time. Then it performs a walk on ∂P from vstart in
counterclockwise direction, until it reaches the next reflex vertex vvis that is visible from
q. They also find the first intersection point of ∂P with the ray qvvis from q, which is
called the shadow of vvis. This step of the algorithm takes O(n) time and O(1) cells of
workspace.

To proceed to the next step, they observed that the end vertex of the maximal
counterclockwise visible chain starting at vstart is either vvis or its shadow. In each
case, the next maximal visible chain starts at the other of the two vertices (vvis or its
shadow). Thus, by identifying the shadow of vvis, we find a maximal visible chain and
a new starting point; see Figure 5.5. This takes O(n) time using only O(1) cells of
workspace. The number of iterations is equal to the number of reflex vertices that are
visible from q, thus it is r̄. This gives an algorithm with O(nr̄) running time and O(1)
cells of workspace. They also extend their algorithm to a time-space trade-off; more
details follow below.
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5. Preliminaries and Background on Polygonal Domains

vstart

vvis

vshadow

q

P

Figure 5.5: The visible chain starting at vstart ends at the next counterclockwise visible
reflex vertex vvis. The next chain starts with vshadow which is the shadow of vvis and
ends at the shadow of the next counterclockwise visible reflex vertex.

For the weak visibility problem, Abrahamsen developed a constant workspace algo-
rithm that computes the weak visibility region of an edge e of a simple polygon P with
n vertices [Abr13]. This algorithm first considers the edge-to-edge visibility between e
and any other edge of P . More precisely, for each edge e′ of P such that e 6= e′, the
algorithm computes the visible part of e′ from e in O(n) time; see Figure 5.6. This leads
to an O(nm) time algorithm for finding the weak visibility region of e inside P using a
constant number of cells of workspace, where m denotes the size of the resulting weak
visibility region. And that m is at most n. This result also gives an O(n2) time algo-
rithm for computing a minimum-link-path between two points in a simple polygon with
n vertices that uses only O(1) cells of workspace. The minimum-link-path is defined as
a polygonal path inside the polygon that has the minimum number of segments.

e

e′

P

Figure 5.6: For the edges e and e′ of the simple polygon P , the visible part of e′ from e
is shown as a green segment.

Time-Space Trade-Offs. For computing the visibility region of a given point q in a
given simple polygon P , Barba et al. [BKLS14] provided a time-space trade-off. Their
method is recursive, and it uses their constant workspace algorithm as the base. In
each step of the recursion, the algorithm splits a chain on ∂P into two subchains, such
that each subchain contains roughly half of the visible reflex vertices of the original
chain. This results in an s-workspace algorithm, for s ∈ {1, . . . , O(log r)}, that runs in
O(nr/2s + n log2 r) total deterministic time or in O(nr/2s + n log r) total randomized
expected time. Here, r is the number of reflex vertices in P with respect to q.
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5.2 k -Visibility Region

Only slightly later, a superset of the authors [BKL+15] gave an improved algorithm
for the visibility problem that runs faster for specific combinations of r, s, and n. In
fact, Barba et al. [BKL+15] discovered a much more general method for obtaining time-
space trade-offs for a wide class of geometric algorithms that they classify as stack-based
algorithms. Intuitively, a deterministic incremental algorithm is stack-based if its main
data structure takes the form of a stack. In addition to the algorithm for computing
the visibility region [JS87], classic examples from this category include the algorithms
for computing the convex hull of a simple polygon by Lee [Lee83] or for triangulating a
monotone polygon by Garey et al. [GJPT78]. Other applications in graphs of bounded
treewidth are also known [BCR+15].

The general trade-off is obtained by using a compressed stack that explicitly stores
only a subset of the stack that is needed during the computation and that recomputes
the remaining parts of the stack as they are needed. Some delicate work goes into
balancing the space required for the partial stack and the time needed for reconstructing
the other parts. The upshot of applying this technique is as follows: given a stack-based
algorithm that on input size n runs in O(n) time and uses a stack with O(n) cells, one
can obtain an algorithm that uses s cells of workspace and runs in O(n2 logn/2s) time
for s = o(logn), and in n1+O(1/ log s) time for s ≥ logn.1 An experimental evaluation of
the framework was conducted by Baffier et al. [BDK18].

5.2 k -Visibility Region

A natural extension of the concept of visibility is captured as k-visibility.

Definition. Let P be a simple polygon with n vertices and q be a point in P . Let
k ∈ {0, . . . , n− 1}. A point p in the plane is k-visible from q if and only if the segment
pq properly intersects ∂P at most k times. Note that the touching points of pq with ∂P ,
and particularly p and q, do not count toward the number of intersections; see Figure 5.7.

p

P

q

p′

p′′

Figure 5.7: A simple polygon P and a point q ∈ P are shown. The two points p and p′

are 2-visible from q. However, the point p′′ is not 2-visible from q since the line segment
qp′ intersects ∂P in four points.

1The actual trade-off is more nuanced, but we simplified the bound to make it more digestible for the
casual reader. More details can be found in the original paper [BKL+15].
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5. Preliminaries and Background on Polygonal Domains

The k-visibility region of a point q in P which we denote by Vk(P, q) is defined as
the set of all points in P that are k-visible from q. For k = 0, this notion corresponds to
the classic visibility concept in simple polygons, as in Chapter 5.1. Thus, if we interpret
∂P as the walls of a building, the 0-visible region of q is the set of points that q can
see directly, without seeing through the walls. If we consider 2-visibility, we allow the
segment to leave (and re-enter) P once, and so on; see Figure 5.8. Since each of the n
edges of P can be counted as at most one wall that blocks the visibility of q in any fixed
direction, for k = n− 1, all the points in P are k-visible from q. Therefore, there is no
reason to consider k > n− 1.

P

q

Figure 5.8: The 2-visibility region of a point q in a simple polygon P is shown in green.

While the 0-visibility region of a point in a simple polygon is always connected, the
k-visibility region may have several components. The problem of computing Vk(P, q)
deals with reporting all the edges of all the components of Vk(P, q). The boundary
∂Vk(P, q) consists of pieces of ∂P , i.e, sub-segments of some of the edges of P , and also
chords in P that connect two such pieces. We will explain more about the geometry of
these chords in the next chapter.

Without loss of generality, we assume that k is even: if k is odd, we can instead
compute Vk−1(P, q), which is the same as Vk(P, q). This is because, for odd k, all the
k-visible points from q that are not (k−1)-visible, lie outside of the polygon P , and thus
by definition, do not belong to the k-visibility region of q in P ; see Figure 5.9.

P

q

(a)

P

q

p

(b)

Figure 5.9: A simple polygon P and a point q ∈ P . (a) The 2-visibility region of q in P
is shown in green. (b) The 3-visibility region of q in P is shown in green. The point p
is 3-visible from q but it is not in the 3-visibility region of q in P .
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5.2 k -Visibility Region

We fix a coordinate system with origin q. For θ ∈ [0, 2π), r(θ) denotes the ray that
emanates from q and has a counterclockwise angle of θ with the x-axis. We require
that the input is in weak general position, i.e., there is no θ ∈ [0, 2π) such that r(θ)
goes through two distinct vertices of P . An edge of P that intersects r(θ) is called
an intersecting edge of r(θ). Moreover, the edge list of r(θ) is defined as the list of
intersecting edges of r(θ) that are sorted according to their intersection with r(θ) in
increasing distance from q. The jth element of this list is denoted by ej(θ). We also
say that ej(θ) has rank j in the edge list of r(θ), or simply has rank j on r(θ); see
Figure 5.10.

x-axis

r(θ)

θ

e1

e5
e4e3e2

e6
e7

q

P

Figure 5.10: The ray r(θ) from q in the polygon P is shown. The edges e1, . . . , e7
intersect r(θ) such that, for i ∈ {1, . . . , 7}, the edge ei has rank i in the edge list of r(θ),
and thus, it represents ei(θ).

The angle of a vertex v of P refers to the angle θ ∈ [0, 2π) at which the ray r(θ)
encounters v. Suppose r(θ) stabs a vertex v of P . From the viewpoint q, the vertex v
is a critical vertex if its incident edges lie on the same side of r(θ), and v is non-critical
otherwise. We can check in O(1) time whether a given vertex of P is critical. We use c
to denote the number of critical vertices in P from the viewpoint q. Let v be a critical
vertex. We call v a start vertex if both incident edges of v lie counterclockwise of the
ray rθ; otherwise, we call v an end vertex; see Figure 5.11.

q

P

r(θ1)

r(θ2)

r(θ3)

v1

v2

v3

Figure 5.11: From the viewpoint q in the polygon P , the vertices v1 and v2 are two of
the critical vertices of P , and v3 is one of the non-critical vertices. Furthermore, v1 is
an end vertex, and v2 is a start vertex.
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5. Preliminaries and Background on Polygonal Domains

A chain is defined as a sequence of edges of P (in clockwise or counterclockwise order
along ∂P ) that starts at a start vertex and ends at an end vertex and contains no other
critical vertices. Note that every ray r(θ), for θ ∈ [0, 2π), intersects each chain at most
once. Thus, the chain list of r(θ) is defined similarly as the edge list: the list of the
chains that intersect r(θ) in the sorted order of their intersections with r(θ) form q; see
Figure 5.12 for an illustration.

v1

v2

v3
v4

q

P

Figure 5.12: From the viewpoint q in the polygon P , the vertices v1 and v2 are start
vertices, and v3 and v4 are end vertices. ∂P is partitioned into 4 disjoint chains, namely,
the clockwise chain v1v3 (in brown), the counterclockwise chain v1v4 (in green), the
clockwise chain v2v4 (in brown), and the counterclockwise chain v2v3 (in green).

Previous Results. After the classic visibility problems, the concept of 1-visibility first
appeared in a work by Dean et al. [DLS88] as far back as 1988. In the related superman
problem [MS94], we are given two polygons P and G such that G ⊆ P , and a point
p ∈ P \G. The goal is to find the minimum number of edges in P that need to be made
opaque in order to make G invisible from p.

The general k-visibility, for k > 1, is more recent. Since 2009, this variant of vis-
ibility has been explored more widely due to its relevance in wireless networks. In
particular, it models the coverage areas of wireless devices whose radio signals can
penetrate up to k walls [AFMFP+09, FMVU09]. This makes the problem particu-
larly interesting for the limited workspace model, since these wireless devices are typ-
ically equipped with only a small amount of memory for computational tasks and
may need to determine their coverage region using the few resources at their disposal.
The notion of k-visibility has been also considered in the context of art-gallery-style
questions [BBB+13, EGS07, FHP09, O’R12] and in the definition of certain geometric
graphs [DEG+05,FM08,HVW07].

Bajuelos et al. [BCHPM12] presented an algorithm for a slightly different notion of
k-visibility. They consider all k-visible points in the plane and not just the points inside
the polygon. Their algorithm computes the region of the plane that is k-visible from q
in the presence of a simple polygon P with n vertices. In this setting, the k-visibility
region is connected; see Figure 5.13.

74



5.2 k -Visibility Region

P

q

(a)

P

q

(b)

Figure 5.13: A simple polygon P and the point q ∈ P . (a) The region of the points in
the plane which are k-visible from q (by the definition in [BCHPM12]) is shown in green.
(b) The k-visibility region of q in P (by the definition in this thesis) is shown in green.

The algorithm by Bajuelos et al. finds the intersecting edges of P with all the rays
from q through the vertices of P . Then, for each ray, it determines the rank of each
of its intersecting edges. This takes a total of O(n2) time and O(n2) space. Next, the
algorithm reports the edge with rank k on each ray, and it also identifies and reports the
connecting chords. The algorithm runs in O(n2) time using O(n2) cells of workspace.

Time-Space Trade-offs. We provide the first time-space trade-offs for the problem of
computing the k-visibility region of a given point q in a given polygon P . Our algorithm
uses O(s) cells of workspace, where s may range from 1 to n, and it reports the edges
of ∂Vk(P, q) in some arbitrary order in O

(
(k + c)n/s+ n log s

)
deterministic time, or in

a slightly faster O
(
cn/s+ c log s+ min{dk/sen, n log logs n}) randomized expected time.

Here, 1 ≤ c ≤ n is the number of critical vertices of P . Our approach requires a careful
analysis of the combinatorics of the k-visible region of p in P , and it makes use of known
time-space trade-offs for the k-selection problem [CMR14]; more details follow.

We generalize this result for polygons with holes and for sets of non-crossing line
segments. More specifically, we show that in a polygon P with h holes, we can report
the k-visibility region of a point q ∈ P in O(cn/s + c log s + min{dk/sen, n log logs n})
expected time using O(s) cells of workspace. Furthermore, in an arrangement of n
pairwise non-crossing line segments, reporting the k-visibility region of a point q takes
O(n2/s+n log s) deterministic time [BBB+18]. More details are provided in Chapter 6.

Regarding the slightly different variant of k-visibility which was defined by Bajue-
los et al. [BCHPM12], we believe that our ideas are also applicable for this notion, and
they lead to an improvement of their result. More precisely, the algorithm of Bajue-
los et al. [BCHPM12] essentially first computes a complete arrangement of quadratic
size that encodes the whole visibility information and then extracts the k-visible region
from this arrangement. Our algorithms, on the other hand, use a plane sweep so that
only the relevant parts of this arrangement are considered. Thus, when O(n) cells of
workspace are available, we achieve a running time of O(n logn).
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5. Preliminaries and Background on Polygonal Domains

Since the 0-visibility and the k-visibility region for k > 0 have different properties,
there seems to be no straightforward way to generalize the approach for computing
the 0-visibility region by Barba et al. [BKLS14] to our setting. Actually, none of their
crucial observations for the 0-visibility region are extensible for the k-visibility region.
Furthermore, their idea of processing the vertices in their order along the boundary
of the polygon entails performing a selection step for each critical vertex. In contrast,
our method processes the vertices in the order of their occurrence in an angular sweep
giving us the advantage to perform the selection step only for some critical vertices and
to update the results for the other ones.

5.3 Sorting

In our algorithms in the next chapter, we need to identify the contiguous batches of
vertices in angular order. To do this efficiently, we will use a procedure that is taken
from the work of Chan and Chen [CC07]. The next lemma explains this prodecure; see
the second paragraph in the proof of Theorem 2.1 in [CC07].

Lemma 5.1. Suppose we are given a read-only array A with n pairwise distinct elements
from a totally ordered universe, and an element x ∈ A. Let s be a given parameter in
{1, . . . , n}. We can find the set of the first s elements in A that follow x when they are
sorted in O(n) time using a workspace of size 2s elements of the universe.

Proof. Let A>x be the subsequence of A that contains exactly the elements in A that
are larger than x. The algorithm makes a single and sequential pass over A and selects
the elements in A>x by single comparisons. This takes a total of O(n) time. During this
pass, every batch of s elements of A>x is being processed in one step. The first step is as
follows: the algorithm inserts the first 2s elements of A>x into the workspace (without
sorting them). Then, it selects the median M of these 2s elements in O(s) time and
space, using the classic median finding procedure. Knowing the value of the median,
the algorithm removes from the workspace the elements that are larger than M , again
in O(s) time. Thus, only s elements remain.

In the next step, the algorithm inserts the next batch of s elements from A>x into
the workspace. It again finds the median M of the resulting 2s elements and removes
those elements that are larger than M . The algorithm repeats the latter step until all
the elements of A>x have been processed. Clearly, at the end of each step, the s smallest
elements of A>x among the ones that have been seen so far reside in the workspace.
Consequently, when the pass over all the elements of A is accomplished, the remaining
s elements in the workspace are the desired ones.

The number of steps in the algorithm is O(n/s), and each step takes O(s) time;
moreover, the overhead time for selecting the elements of A>x is O(n). Thus, the total
running time of the algorithm is O(n). By construction, only a workspace of size 2s
elements of the universe is needed.
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5.4 Selection

5.4 Selection

The following lemma describes how to efficiently select an element with a given rank from
an unsorted list in the limited workspace model. This will be applied in our algorithms
in the next chapter to select the edges with rank k in the edge list of the rays.

Lemma 5.2. Suppose we are given a read-only array A with n pairwise distinct elements
from a totally ordered universe, and a number k ∈ {1, . . . , n}. Let s be a given parameter
in {1, . . . , n}. We can find the kth smallest element in A in O

(
dk/sen

)
time using a

workspace of size 2s elements of the universe.

Proof. The algorithm applies Lemma 5.1 to find consequtive batches of s elements of
A in their sorted order, until it reaches the dk/seth batch, which is actually the batch
containing the kth smallest element in A. Then the algorithm selects the kth smallest
element of A from that batch.

More precisely, the algorithm proceeds as follows: in the first step, by applying
Lemma 5.1, it finds the first batch of s smallest elements in A, and it stores them in the
workspace.2 Then, if k ≤ s, the algorithm selects the kth smallest element among the
elements that reside in the workspace and halts. This takes O(s) time using the classic
selection procedure. If k > s, the algorithm finds the largest element x in the workspace
in O(s) time, and it continues with the next steps.

In each step i ∈ {2, . . . , dk/se}, using the largest element from the previsous step as
the input element x in Lemma 5.1, the algorithm finds the set of s smallest elements
following x among the elements of A. This is the ith batch of s elements in the sorted
sequence of elements of A. The algorithm inserts this set into the workspace. In step
i < dk/se, it selects the largest element among the elements in the workspace, and it
continues to the next step. In step i = dk/se, the algorithm selects the (k− (i−1)×s)th

smallest element in the workspace in O(s) time. This element is the desired kth smallest
element in A.

Since the number of steps is dk/se, and since each step takes O(n) time, the total
running time of the algorithm is O

(
dk/sen

)
, and it uses only a workspace of size 2s

elements of the universe.

In addition to our simple algorithm in Lemma 5.2, there are several other results
on selection in the read-only model; see Table 1 of [CMR14]. In particular, there are
O(n log logs n) expected time randomized algorithms for selection using O(s) cells of
workspace in the limited workspace model [Cha10, MR96]. Depending on the values of
k, s, and n, we will choose one of the latter randomized algorithms or the deterministic
algorithm that we gave in Lemma 5.2. In conclusion, in the limited workspace model the
running time of selection using O(s) cells of workspace, which we denote by Tselection(s),
is O

(
min{dk/sen, n log logs n}

)
expected time.

2Note that to identify the set of s smallest elements in A, the input element x in Lemma 5.1 is not
needed.
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In this chapter, we investigate the problem of computing the k-visibility region of a
given point q inside a given simple polygon P . We present an s-workspace algorithm
for this problem which runs in O

(
(k + c)n/s + c log s

)
total deterministic time or in

O
(
cn/s+c log s+min{dk/sen, n log logs n}

)
total expected time. We also generalize this

result for polygons with holes and for sets of non-crossing line segments.
In Chapter 6.1, we clarify the geometry of the k-visibility region via identifying the

pieces that form ∂Vk(P, q). In Chapter 6.2, we provide a constant workspace algorithm
for computing Vk(P, q). Then, in Chapter 6.3, we extend our constant workspace algo-
rithm to time-space trade-offs for this problem. We provide two algorithms, of which
the first one is simple and provides a better understanding of the more involved latter
one. In the second algorithm, by optimizing the data structures, we achieve a better
time-space trade-off for computing the visibility region of a point in a polygon. Finally,
in Chapter 6.4, we show how to modify our algorithm in order to compute the k-visibility
region of a point in any polygonal domain.

6.1 Geometry of the k-visibility region

Recall that r(θ) denotes the ray that is originated from q and makes an angle of θ with
the x-axis. Suppose we continuously increase θ from 0 to 2π such that r(θ) performs an
angular sweep. The edge list of r(θ) only changes when r(θ) encounters a vertex v of P .
This change only involves the two edges incident to v.

At a non-critical vertex v, the edge list of r(θ) is updated by replacing the incident
edge of v, which lies clockwise of r(θ), with the other incident edge, that lies counter-
clockwise of r(θ). The other edges and their order in the edge list do not change. At a
critical vertex v, the edge list of r(θ) is updated by inserting or removing both incident
edges of v, depending on whether v is a start vertex or an end vertex, respectively. The
other edges and their order in the edge list are not affected; see Figure 6.1.

Note that, for the chain lists of r(θ), the situation is almost similar. The only
difference is that the chain list of r(θ) only changes when r(θ) encounters a critical
vertex. In other words, by definition of the chain, if r(θ) encounters a non-critical vertex
v, the chain list of r(θ) and particularly the chain containing v will not be affected.
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v1

v2v3

q

P

e1 e2
e3

e4

e5

e6

r(θ1)

r(θ2)

r(θ3)

r(θ4)

r(θ5)

Figure 6.1: An illustration of the changes in the edge list in a counterclockwise rotation
of a ray from q. For r(θ1) the edge list is e1, e2, e3. The edge list for r(θ2) does not
differ. The ray r(θ3) lies counterclockwise of the non-critical vertex v1, and its edge list
is e1, e4, e3. For r(θ4) the edge list is e1, which is obtained by removing the two incident
edges of the end vertex v2 from the list. For r(θ5) the edge list is e1, e5, e6, which is
obtained by adding the two incident edges of the start vertex v3 to the list.

If the ray r(θ) stabs a vertex v of P , we define the edge (chain) list of r(θ) to be the
edge (chain) list of (i) the ray r(θ + ε), if v is a start vertex; (ii) the ray r(θ − ε), if v is
an end vertex; (iii) the ray r(θ − ε), if v is a non-critical vertex; in all cases for a small
enough ε > 0. By (i) and (ii) we conclude that, if r(θ) stabs any critical vertex v, then
both incident edges of v are in the edge list of r(θ). See Figure 6.2 for an illustration.

q v r(θ)

v
(a)

(b)
r(θ − ε)

r(θ + ε)

q r(θ)
r(θ − ε)

r(θ + ε)

e1 e2 e3 e4 e5

e1 e2 e3 e4 e5

Figure 6.2: A schematic drawing of the edge list of r(θ) from q through the critical
vertex v in a simple polygon. The edge list of r(θ) in both (a) and (b) is e1, e2, e3, e4, e5,
which is equal to the edge list of r(θ + ε) in figure (a) and r(θ + ε) in figure (b).

Now, we consider the concept of k-visibility for the elements of the chain list. The
argument is similar for the edge list. By definition, for any θ ∈ [0, 2π), only the first k+1
elements in the chain list of r(θ) are k-visible from q in the direction θ. While increasing
θ, the chains that are k-visible in direction θ do not change unless r(θ) encounters a
critical vertex v. At that moment the k-visible chains from q are affected only if v is
k-visible, which is equivalent to: v does not lie after ek+1(θ) on r(θ); or at least one of
the incident chains to v is among the first k + 1 elements in the chain list of r(θ); or
both incident chains to v are among the first k + 2 elements; see Figure 6.3. The next
lemma shows that in this case a segment on r(θ) may occur on ∂Vk(P, q).
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(a)

(b)

(c)

r(θ)

r(θ)

r(θ)

e7(θ)

q

q

q

e7(θ)

e7(θ)

v

v

v

P

P

P

Figure 6.3: A schematic drawing of the edge list of r(θ) from q through a critical vertex
v in a simple polygon P . For k = 6, the green regions in P are k-visible from q, and the
edge e7(θ) represents ek+1(θ). (a) The critical vertex v lies after e7(θ) on r(θ), thus, it
does not affect the list of 6-visible edges in direction θ. (b) One of the two incident edges
to v is among the first k + 1 elements in the edge list of v. Thus, the lists of k-visible
edges differ before and after r(θ). (c) Both incident edges of v are k-visible in direction
θ, thus, it affects the list of k-visible edges on r(θ).

Lemma 6.1. Let θ ∈ [0, 2π) such that r(θ) stabs a k-visible end or start vertex v. Then,
the segment on r(θ) between ek+2(θ) and ek+3(θ) is an edge of Vk(P, q), provided that
these two edges exist.

Proof. Let v be a k-visible end vertex and e1 and e2 be the two edges incident to v. We
consider the differences between the edge lists of r(θ− ε) and r(θ+ ε) for a small ε > 0.

The edge list of r(θ − ε) contains e1 and e2. However, right after we encounter r(θ),
the edges e1 and e2 will not exist any longer in the edge list of r(θ + ε). Since v is
k-visible from q, the edges e1 and e2 are among the first k + 2 entries in the edge list of
r(θ), which is equal to the edge list of r(θ− ε). Therefore, after removing e1 and e2, the
edge with rank k + 3 on r(θ − ε) will have rank k + 1 on r(θ + ε). This means that on
the ray r(θ+ ε) the k-visibility region of q extends to the edge ek+3(θ− ε) = ek+1(θ+ ε);
however, on the ray r(θ − ε) it extends only to ek+1(θ − ε); see Figure 6.4.

We conclude that the points that lie between ek+1(θ) and ek+3(θ) are k-visible from
q, if and only if they lie counterclockwise of r(θ). However, among those points, only the
ones between ek+2(θ) and ek+3(θ) are in P , since we assume that k is even. Therefore,
on r(θ) the segment between ek+2(θ) and ek+3(θ) belongs to ∂Vk(P, q). The situation
for a k-visible start vertex v is symmetric.
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(a)

(b) r(θ)

r(θ)

e5(θ + ε)

e7(θ − ε)

e7(θ + ε)

e5(θ − ε)

e5(θ − ε)

e5(θ + ε)

q

q

v

P

P

v
r(θ + ε)

r(θ − ε)

r(θ + ε)

r(θ − ε)

Figure 6.4: A schematic drawing of the ray r(θ) from q through a critical vertex v in a
simple polygon P . For k = 4, the green regions in P are k-visible from q. (a) v is an end
vertex. The k-visibility region on r(θ − ε) extends to e5(θ − ε) and on r(θ + ε) extends
to e5(θ+ ε) which is e7(θ− ε). (b) v is a start vertex. The k-visibility region on r(θ− ε)
extends to e5(θ − ε), which is e7(θ + ε), and on r(θ + ε) extends to e5(θ + ε).

Lemma 6.1 leads to the following definition: let θ ∈ [0, 2π) such that r(θ) stabs a
k-visible end or start vertex v. The segment on r(θ) between ek+2(θ) and ek+3(θ), if
these edges exist, is called the window of r(θ); see Figure 6.5.

(a)

(b) r(θ)

r(θ)

q

q e7(θ)

v

v

P

P

e6(θ)

e7(θ)e6(θ)

Figure 6.5: A schematic drawing of the ray r(θ) from q through a critical vertex v in a
simple polygon P . For k = 4, the green regions in P are k-visible from q. (a) v is an
end vertex. (b) v is a start vertex. In both (a) and (b) the segment r(θ) between e6(θ)
and e7(θ) is the window of r(θ) and belongs to ∂Vk(P, q).

Observation 6.2. The k-visibility region Vk(P, q) has O(n) vertices.

Proof. The boundary ∂Vk(P, q) consists of subchains of ∂P and of windows. Thus, a
vertex of Vk(P, q) is either a vertex of P or an endpoint of a window. Since each critical
vertex causes at most one window, since each window has two endpoints, and since there
are at most n critical vertices, the total number of vertices of Vk(P, q) is O(n).
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6.2 A Constant Workspace Algorithm for Vk(P, q)

In this chapter, we present an algorithm that computes Vk(P, q) for the given point q
in the simple polygon P , whose vertices are given along its boundary and stored in a
read-only array, using only constant cells of workspace.

If the input polygon P has no critical vertex, there is no window, and Vk(P, q) = P .
This can be checked in O(n) time by a simple scan through the input. Thus, we assume
that P has at least one critical vertex v0. Again, v0 can be found in O(n) time with a
single scan. We choose our coordinate system such that q is the origin and v0 lies on
the positive x-axis. We number the critical vertices of P as v0, v1, . . . , vc−1 in the order
that the ray r(θ) encounters them as θ increases. Let θi be the angle for vi. We simplify
our notation and write r(i) instead of r(θi), and we denote by ej(i) the edge which has
rank j on r(i). We also use w(i) to refer to the window on r(i).

The main idea of our algorithm is as follows: first we find ek+1(i) on each ray r(i).
Then we report all the intersecting edges of r(i) that lie before ek+1(i) on r(i). Moreover,
we identify the window w(i) and we report it. The main key to efficiently find ek+1(i)
on a ray r(i) is to use the edge ek+1(i− 1). This is possible due to the properties of the
k-visibility region. The following theorem provides this algorithm.

Theorem 6.3. Suppose we are given a simple polygon P with n vertices, stored in a
read-only array, and a point q in P . Let k be a parameter in {0, . . . , n − 1}. We can
report the k-visibility region of q in P in O(kn+ cn) time using O(1) cells of workspace,
where c is the number of critical vertices of P with respect to q.

Proof. In step 0, we start with the ray r(0), and we perform a simple selection sub-
routine to find the intersecting edge on r(0) with rank k as follows: we scan the input
k + 1 times, and in each scan of P , we find the next intersecting edge of r(0) until
ek+1(0). The running time of this selection subroutine that uses O(1) cells of workspace
is Tselection(1) = O(kn).

By comparing the position of ek+1(0) and v0 on r(0), we determine if v0 is k-visible.
If so, we report the window w(0) (if it exists), as given by Lemma 6.1. Since w(0) is
defined by ek+2(0) and ek+3(0), we can find w(0) in two more scans over the input using
the edge ek+1(0)

Next in step 1, we find v1 by a single scan of the input polygon P . Then, we determine
ek+1(1) in O(n) time by using ek+1(0) as a starting point: we know that if v0 is an end
vertex, the two incident chains of v0 disappear in the chain list of r(1). Furthermore, if
v1 is a start vertex, the two incident chains of v1 appear in the chain list of r(1). All
the other chains are not affected, and they intersect r(0) and r(1) in the same order.
Using this, we first find the edge e′ that has rank k + 1 on the ray r(θ0 + ε) just after
r(0). Depending on the type and position of v0, the edge e′ is either ek+1(0) or ek+3(0),
and it can be found in O(n) time. Then, by scanning ∂P starting from e′, we find the
edge e′′ on the chain of e′ that intersects the ray r(θ1−ε) just before r(1), again in O(n)
time. Depending on the type and position of v1, the edge e′′ is either ek+1(1) or ek+3(1).
Thus, we can find ek+1(1) using e′′ in O(n) time; see Figure 6.6.
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(a)

r(0)

q
P

v0

v1 r(1)

(c)

r(0)

q
P

v0

r(1)

(b) q
P

v0

(d) q
P

e5(0)

e′
e′′

v1

e′

e5(1)

r(0)

r(1)

r(0)

r(1)

e5(0)

v0

e5(0)

e5(1)

v1

e5(1)
e5(1)

e′

e′′

e5(0)

e′
v1

e′′e′′

Figure 6.6: For the two consecutive rays r(0) and r(1) through the end or start vertices
v0 and v1, respectively; four cases of going from r(0) to r(1) are shown. For k = 4 the
green regions in P are k-visible from q . The edge e′ has rank k+1 on the ray e5(θ0 + ε),
and the chain of e′ intersects r(θ1− ε) at the edge e′′. (a) Using e5(0) we find e′ = e7(0).
Then, by walking on the chain containing e′, we find e′′ which is the desired edge e5(1).
(b) Using e5(0) we find e′ = e7(0). Then, by walking on the chain containing e′, we find
e′′ which is e7(1). Then using e7(1) we find e5(1). (c) The edge e′ = e5(0). By walking
on the chain containing e′, we find e′′ which is the desired edge e5(1). (d) The edge
e′ = e5(0). By walking on the chain containing e′, we find e′′ which is e7(1). Then using
e7(1) we find e5(1).

After finding ek+1(1), we compare its position with v1. If v1 is k-visible, we report
the window of r(1) in O(n) time, as described above. Finally, by scanning ∂P , we report
the subchains of ∂Vk(P, q) which lie in the counterclockwise cone(0, 1) between r(0) and
r(1). More precisely, we walk along ∂P in counterclockwise direction. Whenever we
enter cone(0, 1) by intersecting r(0) or r(1), we check whether the intersection occurs at
or before ek+1(0) or ek+1(1), respectively. If so, we report the subchain of ∂P until we
leave cone(0, 1) again.

In each step i ∈ {2, . . . , c − 1}, we repeat the same procedure as in step 1: we use
ek+1(i−1) to identify ek+1(i) in O(n) time. Now having ek+1(i), by a single scan of ∂P ,
we find the window w(i) (if it exist) and we report it. Furthermore, we report all the
k-visible subchains of ∂P which lie in cone(i − 1, i), by comparing the position of the
subchains with ek+1(i− 1) and ek+1(i), in O(n) time.1 See Algorithm 6.1.

Regarding the running time, the selection subroutine in step 0 takes O(kn) time.
After that, each step i ∈ {1, . . . , c − 1} takes O(n) time. Thus, the total running time
of the algorithm is O(kn + cn). By construction, the algorithm uses only O(1) cells of
workspace. Thus, the claim follows.

1Here and in the following algorithms, if there are less than k + 1 intersecting edges on r(i − 1), we
store the last intersecting edge together with its rank. We use this edge instead of ek+1(i − 1) to find
ek+1(i) or to find the last intersecting edge of r(i) with its rank.
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Algorithm 6.1: Computing Vk(P, q) using O(1) cells of workspace
input: Simple polygon P , point q ∈ P , k ∈ N
output: The boundary of the k-visibility region of q in P , ∂Vk(P, q)

1 if P has no critical vertex then
2 return ∂P
3 v0 ← a critical vertex of P
4 Find ek+1(0) using selection subroutine
5 if v0 lies on or before ek+1(0) on r(0) then
6 Find and report the window w(0) (if it exists)
7 i← 1
8 repeat
9 vi ← the next counterclockwise critical vertex after vi−1

10 Find ek+1(i) using ek+1(i− 1)
11 if vi lies on or before ek+1(i) on r(i) then
12 Find and report the window w(i) (if it exists)
13 Report the subchains of ∂Vk(P, q) which lie in cone(i− 1, i)
14 i← i+ 1
15 until vi = v1

6.3 Time-Space Trade-Offs for Vk(P, q)

In this chapter, we assume that we have O(s) cells of workspace at our disposal. We show
how to exploit this additional workspace to improve the running time for computing the
k-visibility region of q in a simple polygon P . We describe two algorithms. The first
algorithm is simpler, and it is meant to illustrate the main idea behind the trade-off.
Our main contribution is in the second algorithm, which is a bit more complicated but
achieves a better running time.

In the first algorithm, we process all the vertices of P in angular order in contiguous
batches of size s. In each iteration, we find the next batch of s vertices, and using
the edge list of the last processed vertex, we construct a data structure that serves us
identifying the windows of the batch. Using the windows, we report the subchains of
∂Vk(P, q) that lie between the first and the last ray of the batch.2

In the second algorithm, we improve the running time by skipping the non-critical
vertices. Specifically, in each iteration, we find the next batch of s contiguous critical
vertices in angular order. Then, as before, we construct a data structure for finding the
windows and the k-visible subchains of ∂P . However, in this algorithm, we need a more
involved approach in order to maintain the data structure.

2We emphasize that ∂Vk(P, q) is not necessarily reported in order, but we ensure that the union of
the reported line segments constitutes the boundary of the k-visibility region.
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6.3.1 Processing All the Vertices of the Polygon

Suppose we are given a vertex v0 of P , as well as the edge ek+1(0) with rank k+1 on the
ray r(0) from q through v0. Let v1, . . . , vs be the sorted list of s vertices of P that follows
v0 in a counterclockwise angular sweep around q. Let r(1), . . . , r(s) be the rays from q
through the vertices v1, . . . , vs, respectively. Let cone(0, s) be the counterclockwise cone
between r(0) and r(s). The next lemma shows how to exploit the edge ek+1(0) in order
to find the subchains of ∂Vk(P, q) that lie in cone(0, s).

First, we fix our terminology. For an edge e of P , the 0s-segment of e is the subseg-
ment of e that lies in cone(0, s). Since the k-visibility along ∂P changes only at window
endpoints, the k-visibility along a 0s-segment does not change unless an endpoint of a
window lies on it. In other words, if a 0s-segment does not contain an endpoint of a
window, then either the whole 0s-segment is k-visible from q or the whole 0s-segment
is not k-visible. We will use this to report the k-visible subchains of ∂P that lie in
cone(0, s), more details follow.

Lemma 6.4. Suppose we are given a vertex v0 of the simple polygon P , as well as the
edge ek+1(0) with rank k + 1 on the ray r(0) from q. We can report the subchains of
∂Vk(P, q) that lie in cone(0, s) in O(n+ s log s) time using O(s) cells of workspace.

Proof. We consider the angles of the vertices of P as the elements of the input array
and the angle of v0 as the element x in Lemma 5.1. We apply Lemma 5.1 to find, in
O(n) time, the batch of s vertices with the s smallest angles after v0. We store these
vertices in the workspace in their sorted order, this takes an additional O(s log s) time for
sorting. Let V[1,s] = v1, . . . , vs denote the sequence of these vertices in the sorted order.
Furthermore, let r(1), . . . , r(s) denote the rays from q through the vertices v1, . . . , vs,
respectively.

Next, we again apply Lemma 5.1, four times, in order to find the at most 4s + 1
intersecting edges with ranks in {k + 1− 2s, . . . , k + 1 + 2s} on r(0). To do this, while
scanning edges of P , we consider all the edges that intersect r(0) as the elements of the
input array in Lemma 5.1. The distance of q to the intersection points of the edges with
r(0) is the value of these elements. Lemma 5.1 can be applied because we have ek+1(0)
at hand, which plays the role of x in the lemma. We insert the edges with ranks in
{k+1−2s, . . . , k+1+2s} on r(0) into a balanced binary search tree T , sorted according
to their ranks. This takes O(n+ s log s) time.

r(0)
q

ek+1(i)
2s 2s

Figure 6.7: For the ray r(0) from q, the edges of P that intersects r(0) are shown. Among
them the edges with rank in {k + 1 − 2s, . . . , k + 1 + 2s} are marked. These edges are
the elements of T in sorted order by their rank on r(0).
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The chains that contain the edges in T are candidates for having rank k + 1 on
the next s rays r(1), . . . , r(s). This is because, as we have seen in Chapter 6.2 (see
Figure 6.6), if ek+1(i) belongs to the edge list of r(i − 1), in this edge list, there is at
most one edge between ek+1(i − 1) and the edge of ek+1(i). Therefore, by induction,
if the chain containing ek+1(i) appears in the chain list of r(0), then in this chain list,
there are at most 2i−1 chains between ek+1(0) and the chain of ek+1(i). Thus, T covers
all the intersecting chains of r(0) that can possibly be the rank k + 1 chain on one of
the next s rays.

Now, we process a vertex of P per step. In step 0, we check if v0 is a k-visible critical
vertex, i.e., whether it is a critical vertex with respect to q and does not occur after the
edge ek+1(0) on r(0). If so, we report the window w(0) which is defined by ek+2(0) and
ek+3(0) (if they exist).

In step 1, we go to the next vertex v1, and we update T depending on the types of
v0 and v1: if v0 is a non-critical vertex, we may need to exchange one incident edge of
v0 with another in T ; if v0 is an end vertex, we may need to remove its incident edges
from T (if one of the incident edges has rank k + 1, we need to remember its position
in T ); and if v1 is a start vertex, we may need to insert its incident edges into T . In all
other cases, no action is necessary. The insertion and/or deletion is performed only for
the edges whose ranks on r(1) are between the smallest and the largest rank in T (with
respect to r(1)). Since only constantly many edges have to be inserted or deleted from T ,
the update of T takes O(log s) time. Afterwards, we can find ek+1(1) using the position
of ek+1(0) or its neighbors in T , as explained in Theorem 6.3. If v1 is a k-visible critical
vertex, we find the window w(1) (if it exists). This is done in O(1) time by taking the
next two entries in T after ek+1(1). See Figure 6.8 for an illustration.

r(0)

r(1)

r(2)

r(3)r(s)

v1

v2

. . .

vs

v0

e3(1)

v3
e3(3)

e3(2)

e3(0)q

P

Figure 6.8: A schematic drawing of the 2-visibility region of q in a simple polygon P .
A vertex v0 of P and the first batch v1, . . . , vs of s vertices following v0 sorted by their
angles are shown. Assume T contains 4s+ 1 intersecting edges of r(0). The edge e3(1)
is the second neighbor to the right of e3(0) in T because v0 is an end vertex and v1 is
non-critical. The edge e2(3), which is inserted in T before processing v2, is the second
neighbor to the left of e1(3) in T . The edge e2(3) is exchanged with e3(3) after processing
v3 because v3 is a non-critical vertex.
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In each step i = 2, . . . , s, we repeat the same procedure as in step 1: first, based on
the types of vi−1 and vi, we update T . Then, using T and the edge ek+1(i− 1) from the
previous step, we determine the edge ek+1(i). After that we determine if vi is k-visible
or not, and if so, using T we find and report the window w(i) (if it exists). Whenever we
find a window, we insert its endpoints into a balanced binary search tree W . This takes
O(log s) time per window. The endpoints of windows in W are sorted according to their
counterclockwise order along ∂P . Furthermore, we store in the workspace the sequence
E = e0(k + 1), . . . , es(k + 1) of edges with rank k + 1 on r(0), . . . , r(s), respectively.

For reporting the k-visible subchains of ∂P that lie in cone(0, s), the counterclockwise
cone between r(0) and r(s), we use W and E: we can walk along ∂P and, simultaneously,
along the window endpoints in W . For each edge e of P , we check if the endpoints of the
0s-segment of e are k-visible or not. Using E, this can be done in O(1) time. Moreover,
with the help of the parallel traversal of W , we find the window endpoints that lie on
e. This takes O(|we|) time, where |we| is the number of window endpoints on e. With
this information, we can report the k-visible subsegments of the 0s-segment of e. Since
there are O(n) window endpoints by Observation 6.2, and since we check each window
endpoint once, it follows that we need O(n) time to report the k-visible subchains of ∂P
that lie in cone(0, s); see Figure 6.9

The first part of the algorithm takes O(n+ s log s) time to find the sorted sequence
of the vertices V[1,s] and the sorted list of the candidate intersecting edges T . After that,
the algorithm processes the vertices in V[1,s] in s steps, where each step takes O(log s)
time, making it a total of O(s log s) time. The time for constructing W is also O(s log s)
since there are at most s + 1 windows on the rays r(0), . . . , r(s). Finally, reporting the
k-visible subchains of ∂P in cone(0, s) using W and E takes O(n) time. Overall, the
running time of the algorithm is O(n+ s log s). The space requirement for storing V[1,s],
T , W and E is O(s) cells of workspace.

r(s)

vs

q

P

r(0)
v0

s1

s2

s3s4

w1

w2

w3

r(1)

r(2)

v1v2

Figure 6.9: A schematic drawing of the 2-visibility region in cone(0, s). Assume W
contains the endpoints of the windows w1, w2, w3 sorted on ∂P . On a counterclockwise
walk on the 0s-segment s1, the sub-segment of s1 before encountering the endpoint of w1
is non-visible and after that is k-visible. The k-visibility along s2 does not change, since
there is no window endpoint on it. For s3, we start with a k-visible sub-segment until we
reach an endpoint of w2 and then the rest of s3 is non-visible. Both endpoints of s4 are
non-visible and there is no window endpoint on it. Thus, s4 is completely non-visible.
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6.3 Time-Space Trade-Offs for Vk(P, q)

The algorithm in Lemma 6.4 demonstrates that having a relevant sub-sequence of
the edge list of a ray accelerates finding the rank k + 1 edge on the following rays. We
extend this idea for all the rays from q through the vertices of P . To do this, we process
the rays in batches of size s using Lemma 6.4. The following theorem explains the details
of our algorithm.

Theorem 6.5. Suppose we are given a simple polygon P with n vertices, stored in a
read-only array, and a point q ∈ P . Let k ∈ {0, . . . , n − 1} and s ∈ {1, . . . , n} be two
parameters. We can report the k-visibility region of q in P in O(n2/s + n log s) time
using O(s) cells of workspace.

Proof. We take a vertex v0 of P . We choose our coordinate system such that q is the
origin and such that v0 lies on the positive x-axis. Let v1, . . . , vn−1 be the sequence of
vertices of P sorted by their angle, and let r(1), . . . , r(n− 1) be the rays from q through
the vertices v1, . . . , vn−1, respectively.

We use Lemma 5.2 to select the edge with rank k + 1 on the ray r(0). To do this,
we consider all the edges of P as the input elements; however, we filter the edges that
intersect r(0). The distance of their intersection point to q is the value of each of these
elements. Thus, we can select the intersecting edge of r(0) which has the (k+1)-smallest
distance to q in O(dk/se) time using O(s) cells of workspace. This edge has rank k + 1
on r(0), and thus, it is ek+1(0). Recall that if there are less than k+ 1 intersecting edges
on r(0), we store the last intersecting edge together with its rank, and this edge will be
used instead of ek+1(0).3

Now, using v0 and ek+1(0), we apply Lemma 6.4 to find and process the batch of the
s vertices v1, . . . , vs following v0, as well as to report the subchains of ∂Vk(P, q) that lie
in cone(0, s). At the end of this procedure, we also have the edge with rank k+ 1 on the
ray r(s) at hand.4 Thus, in the next iteration, we similarly use vs and ek+1(s) to apply
Lemma 6.4 for processing the next batch of s vertices after vs. This also reports the
subchains of Vk(P, q) that lie in cone(s, 2s), which is the counterclockwise cone between
r(s) and r(2s).

We repeat this procedure for bn/sc iterations, and in each iteration, we consider the
next batch of s vertices of P until all the vertices are processed. If n is not divisible
by s, the last batch wraps around, taking the indices modulo n, but we report only the
part of ∂Vk(P, q) before the ray r(n) = r(0); see Algorithm 6.2.

Overall, it takes O(n + s log s) time to process a batch of s vertices of P . Due to
number of vertices of P , we have O(n/s) batches. Moreover, for the ray r(0), we run
the selection subroutine using O(s) cells of workspace whose running time is dominated
by the other terms. Thus, the total running time of the algorithm is O(n2/s+ n log s).
The space requirement is immediate.

3The same comment applies to the other rays.
4However, the search tree T cannot be used to process the edges of the next batch. This is because

T does not necessarily contain any adjacent neighbor of es(k + 1) in the edge list of r(s).
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Algorithm 6.2: Computing Vk(P, q) using O(s) cells of workspace
input: Simple polygon P , point q ∈ P , 0 ≤ k < n, 1 ≤ s ≤ n
output: The boundary of k-visibility region of q in P , ∂Vk(P, q)

1 v0 ← a vertex of P
2 E ← 〈ek+1(0)〉 [by Lemma 5.2]
3 T , W ← an empty balanced binary search tree
4 i← 0
5 repeat
6 vi+1, . . . , vi+s ← vertices following vi in angular order [by Lemma 5.1]
7 T ← at most 4s+ 1 edges with rank in {k + 1− 2s, . . . , k + 1 + 2s} on r(i)
8 for j = i to i+ s− 1 do
9 if vj lies on or before ek+1(j) on r(j) then

10 Report the window of r(j) (if it exists) [using T ]
11 Insert the endpoints of the window into W [sorted by position on ∂P ]
12 Update T according to the types of vj and vj+1
13 Append ek+1(j + 1) to E [find it using ek+1(j) and T ]
14 Report subchains of ∂Vk(P, q) in cone(i,min{i+ s, n}) [using W and E]
15 i← i+ s

16 until i ≥ n

6.3.2 Processing Only the Critical Vertices of the Polygon

In this algorithm, as before, we process the vertices of P in batches; however, here we
focus only on the critical vertices. This is reasonable since there is no window on the
rays through non-critical vertices; therefore, we do not need to find the edge of rank
k + 1 on those rays.

Furthermore, the new algorithm maintains the chain list of the current ray through
a critical vertex, instead of its edge list, i.e., for each such a chain, the data structure
contains some edge on that chain as its reference, and not necessarily the edge that
intersects the ray. The reason for working with the chain list is that updating the whole
edge list is time consuming. More precisely, there are possibly non-critical vertices that
lie between two consecutive rays, and such non-critical vertices change the edge list of
those rays but do not affect on the chain list. Therefore, these changes do not need to
be reflected in the new data structure, unless we need the specific edge that intersects a
ray, and in this case, we find that edge by walking along its corresponding chain.

Let v0, . . . , vc−1 denote the sequence of critical vertices of P that are sorted by their
angle, where c is the number of critical vertices of P with respect to q ∈ P . Let
r(0), . . . , r(c−1) be the rays from q through the critical vertices v0, . . . , vc−1, respectively.
The following lemma explains how to process a batch of s consecutive critical vertices
v1, . . . , vs, provided that the edge with rank k + 1 on r(0) is given. The algorithm in
this lemma also reports the subchains of ∂Vk(P, q) that lie in cone(0, s), which is the
counterclockwise cone between the rays r(0) and r(s).
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6.3 Time-Space Trade-Offs for Vk(P, q)

Lemma 6.6. Suppose we are given a critical vertex v0 of a simple polygon P , as well
as the edge ek+1(0) with rank k+ 1 on the ray r(0) from q. We can report the subchains
of ∂Vk(P, q) that lie in cone(0, s) in O(n+ s log s) time using O(s) cells of workspace.

Proof. Consider the angle of the critical vertices of P as the input elements in Lemma 5.1.
Using this lemma and a traditional sorting algorithm, we compute V[1,s] = v1, . . . , vs,
the list of s critical vertices of P after v0, sorted according to their angle. This takes
O(n+ s log s) time and O(s) cells of workspace.

Next, we use Lemma 5.1 with the intersecting edges of r(0) as the elements of the
input array and the edge ek+1(0) as the element x. We find the at most 4s+1 intersecting
edges of r(0) with rank in {k+1−2s, . . . , k+1+2s}, and we insert them into a balanced
binary search tree T , ordered according to their rank on r(0). This takes O(n+ s log s)
time and O(s) cells of workspace.

Then, as in the algorithm of Lemma 6.4, we process one critical vertex in each step.
In step 0, we use ek+1(0) and T to find and report w(0) (if it exists). In step 1, we
update T according to the types of v0 and v1, so that it contains the chain list of r(1).
This is done as follows: if v0 is an end vertex, and if its incident edges are in T , we
remove those edges from T ; and if v1 is a start vertex, we insert the two incident edges
(chains) of v1 into T , if their ranks on r(1) are in the interval of the ranks of the chains
in T . For finding the rank of the chains of v1 on r(1), using a binary search, we compare
the positions of those chains and the elements of T on r(1). Whenever a comparison
needs to be performed with respect to an edge e in T , we check whether e intersects r1.
If not, we walk along the chain of e until we find such an edge; see Figure 6.11. Thus,
it takes O(log s + n′1) time to update T , where n′1 denotes the number of non-critical
vertices that are traversed to find the correct edges for comparisons during the update
operations.

v1

. . .

vs

v2

e5(0) r(0)

r(1)
r(2)r(s)

v0
q

P

e1(0)

e4(0)

Figure 6.10: A schematic drawing of the 2-visibility region of q in a simple polygon P .
A critical vertex v0 and the first batch v1, . . . , vs of s critical vertices following v0 sorted
by their angles are shown. Assume T contains 4s+ 1 intersection edges of v0. The edges
e4(0) and e5(0), in contrast to e1(0), do not intersect r(1). While inserting the chains of
the start vertex v1 into T , if a comparison involving e4(0) or e5(0) needs to be performed,
we first walk along the chain of those edges to find the edge that intersects r(1).
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Now, T contains at most 4s + 1 intersecting chains of r(1). To find ek+1(1), we
walk along either the chain of ek+1(0) or its neighbors in T , as we have explained in
Theorem 6.3. By having ek+1(1) and T , we find and report the window w(1) (if it
exists). This is done again by following the chains that define w(1) if the corresponding
edge of those chains in T does not intersect r(1) yet. Finding ek+1(1) and w(1) takes
O(n′′1) time, where n′′1 is the number of non-critical vertices that are traversed.

In step i = {2, . . . , c − 1}, we repeat the same procedure as in step 1. We update
T regarding the edges that are incident to the critical vertices vi−1 and vi. The only
difference is that, if vi−1 is an end vertex, checking whether its chains are in T , and
identifying their corresponding elements in T are not as straightforward as in step 1.
The problem occurs due to the fact that we do not know which edge of each chain
has been stored as its reference in T . To resolve this problem, for any chain in T , we
additionally store another edge of the chain which is called the guide edge and which is
defined as follows: for a chain C that intersects r(0), the edge on C that intersects r(0)
is a type 1 guide edge; and for a chain C that has been inserted into T in one of the
steps 2, . . . , i− 1, the first edge of C is a type 2 guide edge.

We store the type 1 guide edges in a list G1 sorted according to their rank on r(0),
i.e., we copy the sorted elements of T in step 0 into G1. The type 2 guide edges are stored
in another list G2 sorted according to the step in which they have been inserted into T ,
i.e., the angle of the start vertex of the chain. Therefore, in each step that new edges
are inserted into T , those edges will also be added to G2 in O(1) time. Furthermore, the
elements in G1 and G2 have cross-pointers to their corresponding chains in T .

To find the corresponding elements of the chains of an end vertex vi−1 in T , we walk
backward on those chains, until we either find an edge that intersects r(0) (a type 1 guide
edge), or we stop at the first edge of that chain (a type 2 guide edge). See Figure 6.11
for an illustration. Then, by a binary search in G1 or G2 in O(log s) time, and using

v1

. . .

vs v2

r(0)

r(1)

r(2)r(s)

v0q

P

e4(0)

Figure 6.11: A schematic drawing of k = 2-visibility region of q in a simple polygon P .
A critical vertex v0 and the first batch v1, . . . , vs of s critical vertices following v0 sorted
by their angles are shown. Assume T contains 4s+1 intersection edges of v0. To remove
the incident chains of the end vertex v2, we need to find the corresponding elements to
its chains in T . By a backward walk along its chains, we find a type 2 guide edge that
is incident to v1 and a type 1 guide edge that is e4(0).
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6.3 Time-Space Trade-Offs for Vk(P, q)

the cross-pointer to the elements in T , we identify the corresponding elements of chains
of vi−1 in T . Therefore, we remove them from T and also G1 or G2, in O(log s) time.
Now, T contains the chain list of vi and can be used to find ek+1(i) with the help of
ek+1(i− 1). Finally, we report the window w(i) (if it exist), as in step 1.

While processing the batch, we insert all ek+1(i), 0 ≤ i ≤ s, into E. Also, whenever
we find and report a window, we insert its endpoints, sorted according to their counter-
clockwise order along ∂P , into a balanced binary search tree W , in O(log s) time. After
processing all the vertices of the batch, we use W and E to report the part of ∂Vk(P, q)
between r(0) and r(s), as in Lemma 6.4. The only difference is that now we keep track
of the visibility of the whole chains between r(0) and r(s) instead of individual edges.
As before, this takes O(n) time.

Overall, processing the changes in T takes O(n′ + s log s) total time, where n′ is the
number of non-critical vertices that lie in cone(0, s). This is dominated by the time
O(n + s log s) that is needed to find V[0,s] and T . The space required is O(s) cells of
workspace. Thus, the claim follows.

In contrast to the algorithm in Lemma 6.4, that processes a cone with s vertices of
P , the algorithm in Lemma 6.6 processes a cone that contains s critical vertices, and
possibly an unlimited number of non-critical vertices. By cleverly dealing with the effects
of the non-critical vertices, it obtains the same running time. Therefore, if we plug in
this new lemma in our main algorithm, we will achieve a better time-space trade-off.
The following theorem shows how this is done.

Theorem 6.7. Suppose we are given a simple polygon P with n vertices, stored in a
read-only array, and a point q ∈ P . Let k ∈ {0, . . . , n − 1} and s ∈ {1, . . . , n} be
two parameters. We can report the k-visibility region of q in P in total expected time
O
(
cn/s + c log s + min{dk/sen, n log logs n}

)
using O(s) cells of workspace. Here, c is

the number of critical vertices of P with respect to q.

Proof. As in Chapter 6.2, if P has no critical vertex, then Vk(P, q) = P . This can be
checked in O(n) time by a simple scan through the input. Thus, we let v0 be some
critical vertex, and we choose our coordinate system such that q is the origin and such
that v0 lies on the positive x-axis.

Similar to Theorem 6.5, we find ek+1(0) using the selection subroutine (with O(s)
cells of workspace) that we have introduced in Chapter 5.4. Now, we apply Lemma 6.6
to process the first batch of s critical vertices in angular order. In each of the subsequent
iterations, we again apply Lemma 6.6 to process the next batch of s critical vertices,
until all the critical vertices are processed; see Algorithm 6.3.

Since in each iteration s distinct critical vertices of P are processed, the number of
iterations is O(c/s). By Lemma 6.6, each iteration takes O(n + s log s) time. Thus,
we get a total of O(cn/s + c log s) time, in addition to Tselection(s) for selecting ek+1(0)
at the beginning of the algorithm. Depending on the value of n, s and k, we take a
selection subroutine which gives us the best running time; see Chapter 5.4. Overall, the
running time of the algorithm is O(cn/s + c log s + dk/sen) total deterministic time or
O(cn/s+ c log s+ n log logs n) total expected time. Thus, the claim follows.
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Algorithm 6.3: Computing ∂Vk(P, q) using O(s) cells of workspace
input: Simple polygon P , point q ∈ P , 0 ≤ k < n, 1 ≤ s ≤ n
output: The boundary of k-visibility region of q in P , ∂Vk(P, q)

1 v0 ← a critical vertex of P
2 E ← 〈ek+1(0)〉 [by Lemma 5.2]
3 T,W ← an empty balanced binary search tree
4 G1, G2 ← 〈〉
5 i← 0
6 repeat
7 vi+1, . . . , vi+s ← critical vertices following vi in angular order [by Lemma 5.1]
8 T ← at most 4s+ 1 edges with rank in {k + 1− 2s, . . . , k + 1 + 2s} on r(i)
9 G1 ← the sorted elements of T

10 for j = i to i+ s− 1 do
11 if vj lies on or before ek+1(j) on r(j) then
12 Report the window of r(j) (if it exists) [using T ]
13 Insert the endpoints of the window into W [sorted by position on ∂P ]
14 if vj is an end vertex then
15 Find the guide edges of chains of vj [by walking along the chains]
16 if the guide edges exist in G1 or G2 then
17 Use their cross-pointers to find the corresponding elements in T
18 Remove those corresponding elements from T and G1 or G2
19 if vj+1 is a start vertex then
20 repeat
21 Take the next edge e of T [in a binary search fashion]
22 if e does not intersect r(j + 1) then
23 Walk along the chain of e to find e′ that intersects r(j + 1)
24 Exchange e with e′ in T

25 Compare the position of e with vj+1 on r(j + 1)
26 until rank of the chains of vj+1 on r(j + 1) are determined
27 if the rank of the chains of vj+1 are valid for T then
28 Insert the chains of vj+1 into T according to their rank on r(j + 1)
29 Append the chains of vj+1 to G2
30 Find ek+1(j + 1) by walking along ek+1(j) or its neighbors in T
31 Append ek+1(j + 1) to E
32 Report subchains of ∂Vk(P, q) in cone(i,min{i+ s, n}) [using W and E]
33 i← i+ s

34 until i ≥ n
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6.4 Variants and Extensions

Our results can be extended in several ways, for example: computing the k-visibility
region of a point q inside a polygon P , where P may have h ≥ 0 holes; and computing
the k-visibility region of a point q in a planar arrangement of n non-crossing segments
inside a bounding box.5 In other words, computing the k-visible sub-segments of a
planar set S of n non-crossing segments, from a point q.

Concerning the first extension, all the arguments in the algorithms for simple poly-
gons also hold for the polygons with holes The only noteworthy issue is the use of ∂P
to report the k-visible subchains of ∂P in each cone. In the case of polygons with holes,
after walking on the outer part of ∂P , we walk on the boundaries of the holes one by
one and we apply the same procedures for them. If there is no window on the boundary
of a hole, then it is either completely k-visible or completely non-k-visible. For such a
hole, we check if it is k-visible and, if so, we report it completely; see Figure 6.12. This
leads to the following corollary.

P

q

Figure 6.12: For a polygon P with 3 holes and the point q ∈ P the 2-visibility region of
q in P is shown in green.

Corollary 6.8. Suppose we are given a polygon P with h ≥ 0 holes and n vertices,
stored in a read-only array, and a point q ∈ P . Let k ∈ {0, . . . , n−1} and s ∈ {1, . . . , n}
be two parameters. We can report the k-visibility region of q in P in total expected time
O
(
cn/s + c log s + min{dk/sen, n log logs n}

)
using O(s) cells of workspace. Here, c is

the number of critical vertices of P with respect to q.

Concerning the second problem, for a planar arrangement of n non-crossing segments
inside a bounding box, the output consists of the k-visible parts of the segments. All
the segments endpoints are critical vertices and should be processed. In the parts of the
algorithm where a walk on the boundary is needed, a sequential scan of the input leads
to similar results. Similarly, there may be some segments with no window endpoints.
For these, we only need to check visibility of an endpoint to decide whether they are
completely k-visible or completely non-k-visible; see Figure 6.13. This leads to the
following corollary.

5The bounding box is only for bounding the k-visibility region.
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q

S

Figure 6.13: For a set of line segments S in a bounding box, the 2-visible subsets of
segments in S are marked in green.

Corollary 6.9. Suppose we are given a set S of n non-crossing planar segments in
a bounding box B that is stored in a read-only array, as well as a point q ∈ B. Let
k ∈ {0, . . . , n − 1} and s ∈ {1, . . . , n} be two parameters. We can report the k-visible
subsets of segments in S from q in O(n2/s+n log s) total deterministic time using O(s)
cells of workspace.
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Conclusions

In this thesis, we have considered algorithms that use a workspace of small size propor-
tional to the size of the read-only input. This kind of algorithms does not only provide
an interesting trade-off between running time and memory needed, but it is also very
useful in portable devices where hardware constraints are present. We have particularly
focused on three geometric problems in the limited workspace model, an area that has
become more popular during the last decade.

The algorithms that we have presented are typically deterministic, but there are also
results that use randomization. Randomized algorithms in the limited workspace model
may use an unlimited stream of random bits. However, these bits cannot be accessed
arbitrarily, i.e., if the algorithm wishes to revisit previous random bits, it needs to store
them in its workspace.1

In the preceding chapters, we have seen several approaches to deal with the space
constraints as well as many different techniques to exploit the additional workspace and
obtain a time-space trade-off. However, we believe that these results are only a few
steps in this direction, and that other novel techniques are needed to achieve efficient
time-space trade-offs for many other interesting geometric problems.

Voronoi diagrams. We have obtained a non-trivial time-space trade-off for computing
the family of higher-order Voronoi diagrams of order 1 to K, for K ∈ O(

√
s), as well

as, the nearest site Voronoi diagram and the farthest site Voronoi diagram. For the
nearest site Voronoi diagram and the farthest site Voronoi diagram, our running times
come close to the sorting lower bound. More precisely, Beame shows that the time-space
product for sorting is Ω(n2) [Bea91]. Although improvement by a logarithmic factor
may be possible, the gap between upper and lower bounds is very small.

There is a much larger gap for general higher-order Voronoi diagrams. In fact, we are
not aware of any lower bounds (beyond the sorting lower bound). In particular, it would
be interesting to have a bound in terms of the order of the diagram. It seems likely that
at least Ω(n2K2/s) steps are needed to find the family of all Voronoi diagrams of order
up to K for a given n-point set using s cells of workspace.

1Refer to Goldreich’s book [Gol08] for further discussion of randomness in the presence of space
restrictions.
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Thus, a natural question for further research is to better understand the nature of
the trade-off. Even for constant workspace, it does not seem clear how to significantly
improve the naive running time of O(n4K) that can be obtained by computing the whole
arrangement and considering each k ∈ {1, . . . ,K} individually. Another open problem
concerns the problem of computing a diagram of a given order without computing the
diagrams of lower order. Our results also raise the question of how can we compute
Voronoi diagrams of order larger than

√
s when s cells of workspace are available?

Euclidean minimum spanning trees. As the main tool in our algorithm, we have
carefully selected a dense set of s edges of the graph, called an s-net, for which we
have remembered their face incidences. Due to the density property of this s-net, we
have quickly found the face of the graph that any given edge lies on. The s-net has
been designed to speed up the implementation of Kruskal’s EMST algorithm on planar
graphs using limited workspace. Nevertheless, this structure is of independent interest
as it provides a compact way to represent planar graphs that can be exploited by other
algorithms. We hope that this would inspire the further reseach, and that the s-net
structure will be applied to wider range of problems.

Althought the optimality of the O(n3)-time algorithm using O(1) cells of workspace
by Asano et al. [AMRW11] has not been proven, it seems unlikely to have an o(n3)
time algorithm that computes EMST using O(1) cells of workspace. Since our time-
space trade-off provides a smooth transition between the O(n3)-time algorithm with
constant cells of workspace and the optimal O(n logn)-time algorithm with O(n) cells
of workspace, it is plausible that our algorithm is near optimal. However, this is still an
open problem.

Visibility regions. We have proposed time-space trade-offs for a class of k-visibility
problems in the limited workspace model. In our algorithms, we have used some prop-
erties of the k-visibility region in order to restrict the search for all the k-visible edges
in an edge list to one specific ranked edge and also to identify that specific ranked edge
on each ray using the result for the previous ray.

As we have mentioned in Chapter 5, our approach is also applicable to the slightly
different definition of k-visibility region used by Bajuelos et al. [BCHPM12] and it pro-
vides time-space trade-offs in this setting, too. Moreover, our techniques can be used
to improve their result, achieving O(n logn) running time if O(n) cells of workspace are
available.

We leave it as an open question whether the presented algorithms are optimal. Also,
it would be interesting to see whether there exists an output sensitive algorithm whose
running time depends on the number of windows in the k-visibility region, instead of
the critical vertices in the input polygon.
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[BIK+02] Hervé Brönnimann, John Iacono, Jyrki Katajainen, Pat Morin, Jason Mor-
rison, and Godfried T. Toussaint. In-place planar convex hull algorithms. In
Proc. 5th Latin American Symp. Theoretical Inf. (LATIN), pages 494–507,
2002.

[BJ00] Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with
optimal query time. In Proc. 7th Scand. Symp. Work. Alg. Theory (SWAT),
pages 57–70, 2000.

[BJ02] Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In
Proc. 43rd FOCS, pages 617–626, 2002.

[BKL+15] Luis Barba, Matias Korman, Stefan Langerman, Kunihiko Sadakane, and
Rodrigo I. Silveira. Space-time trade-offs for stack-based algorithms. Algo-
rithmica, 72(4):1097–1129, 2015.

[BKLS14] Luis Barba, Matias Korman, Stefan Langerman, and Rodrigo I. Silveira.
Computing a visibility polygon using few variables. Comput. Geom. Theory
Appl., 47(9):918–926, 2014.

101



Bibliography

[BKM18a] Bahareh Banyassady, Matias Korman, and Wolfgang Mulzer. Computa-
tional geometry column 67. ACM SIGACT News, 49(2):77–94, 2018.

[BKM+18b] Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van
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[Sze87] Róbert Szelepcsényi. The method of forcing for nondeterministic automata.
Bulletin of the EATCS, 33:96–99, 1987.

[Tou80] Godfried T. Toussaint. The relative neighbourhood graph of a finite planar
set. Pattern Recognition, 12(4):261–268, 1980.

105
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Zusammenfassung

Der Speicherplatzbedarf ist seit den Anfängen des Algorithmenentwurfs von Inter-
esse. Die erhöhte Verfügbarkeit von Geräten mit begrenztem Speicherplatz oder be-
grenzter Stromversorgung – wie Smartphones, Drohnen oder kleine Sensoren – sowie die
Verbreitung neuer Speichermedien, bei denen der Schreibzugriff vergleichsweise langsam
ist und negative Auswirkungen auf die Lebensdauer haben kann – wie beispielsweise
Flash-Laufwerken – haben zu erneuter Aufmerksamkeit für dieses Thema geführt. In
der Folge hat der Entwurf von Algorithmen für das Limited Workspace Model (Modell
mit begrenztem Arbeitsspeicher) in den letzten zehn Jahren einen signifikanten Anstieg
an Popularität in der algorithmischen Geometrie erfahren.

In diesem Setting haben wir in der Regel eine große Menge an Daten, die verarbeitet
werden müssen. Obwohl wir auf die Daten beliebig oft und in beliebiger Weise zugreifen
können, ist der Schreibzugriff auf den Hauptspeicher begrenzt und/oder langsam. Zwis-
chenergebnisse werden daher nur in einem kleineren, übergeordneten Speicher (z. B.
CPU-Register) abgelegt. Da die Anwendungsbereiche der oben genannten Geräte – Sen-
soren, Smartphones und Drohnen – oft mit einer großen Menge an geografischen (d. h.,
geometrischen) Daten umgehen, ist dieses Szenario aus Sicht der algorithmischen Ge-
ometrie besonders interessant.

Motiviert durch diese Überlegungen haben wir geometrische Probleme im Limited
Workspace Model untersucht. In diesem Modell befindet sich die Eingabe der Größe n
in einem schreibgeschützten Speicher, ein Algorithmus kann einen Arbeitsspeicher der
Größe s = {1, . . . , n} verwenden, um die Zwischendaten während der Ausführung zu
lesen und zu schreiben. Die Ausgabe sendet er an einen lesegeschützten Stream. Ziel ist
es, Algorithmen zu entwickeln, deren Laufzeit mit zunehmender Verfügbarkeit an Ar-
beitsspeicher abnimmt, was einen Time-Space Trade-Off (Laufzeit-Speicher-Abwägung)
darstellt.

In dieser Arbeit betrachten wir drei grundlegende geometrische Probleme, nämlich
die Berechnung verschiedener Arten von Voronoi-Diagrammen einer Punktmenge in der
Ebene, die Berechnung des euklidischen minimalen Spannbaums einer ebenen Punkt-
menge und die Bestimmung der k-Sichtbarkeitsregion (k-visibility region) eines Punkts
innerhalb eines polygonalen Gebiets. Mit mehreren innovativen Techniken entwickeln
wir entweder die ersten Time-Space Trade-Offs für diese Probleme oder verbessern die
bisherigen Ergebnisse.
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