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Summary

Gene expression regulation is a multi-layered process and genetic variation can mod-
ulate expression levels at various stages, for example by changing the activity of
regulatory DNA elements or via nonsense mutations. One layer of regulation for
which the genome-wide genetic effects have not been fully assessed yet is transla-
tional regulation. The main objective of this thesis is to elucidate the role of genetic
variants on transcriptional and translational levels of gene expression. We therefore
perform a combinatorial RNA-Seq, Ribo-Seq and genotyping approach to liver and
heart tissue of a rat genetic disease model system for spontaneous hypertension and
metabolic disease.
We use the well-established HxB/BxH rat recombinant inbred (RI) panel that con-
sists of 30 lines that have been derived from a reciprocal cross of the spontaneously
hypertensive rat (SHR.Ola) and the normotensive Brown Norway rat (BN.Lx/Cub).
The RI lines, which have been previously comprehensively described on multiple lev-
els, enable us to perform quantitative trait loci (QTL) mapping in order to link causal
genetic variants to quantitative differences in both transcription and translation.
We identify local and distant associations on the transcriptional (eQTL) and the
translational (riboQTL) level in each tissue. The majority of detected associations
occurred between SNPs and genes that are in close proximity to each other and
are termed local QTL. However, we also detect genetic variants that affect gene ex-
pression levels over longer distances, termed distant associations. In this thesis, we
assessed both types of QTL in detail in order to explain the mechanistic and genetic
basis of these QTL. Interestingly, we observe 17 genes regulated by a single distant
riboQTL on chromosome 3. To follow-up this finding, we performed an independent
RNA-Seq and Ribo-Seq experiment in 2 congenic rat strains that differ specifically
in this riboQTL region. The differential expression analysis on both layers of regula-
tion reproduces the results and suggests that the chromosome 3 locus is in control of
translation of many additional genes.
In hypertensive hearts, we observe global translatome changes that appear protein-
length dependent. Translation rates of long proteins are downregulated and shorter
proteins, including many ribosomal subunits, tend to be upregulated. As this phe-
notype is absent from the liver, we hypothesize that the chromosome 3 locus hosts a
genetic variant responsible for a cardiac-specific state of translational stress in strained
hearts.
These data provide insight into the genetic effects on multiple layers of gene expres-
sion regulation and show that translational regulation is an important mediator of
molecular phenotypes in complex diseases.



Zusammenfassung

Die Regulation der Genexpression ist ein vielschichtiger Prozess, welcher auf ver-
schiedenen Ebenen von genetischen Varianten modifiziert werden kann. Beispiele
sind Mutationen, die die Aktivität von regulatorischen DNA-Elementen verändern
oder die zu einem Aminosäureaustausch führen. Die genetische Regulation der Trans-
lation wurde bisher noch nicht genomweit untersucht. Das Ziel dieser Doktorarbeit
ist es, die Rolle genetischer Varianten in der Genexpression auf Transkriptions- und
Translationsebene zu verstehen. Dafür haben wir eine Kombination aus RNA-Seq,
Ribo-Seq und Genotypisierung in der Leber und im linken Ventrikel durchgeführt.
Für diese Studie wird das Rattenmodell der rekombinanten Inzuchtlinie HxB/BxH
benutzt, bestehend aus 30 Rattenstämmen, welche durch wechselseitige Kreuzung
eines Rattenmodells für spontan entwickelten Bluthochdruck (SHR.Ola) und einem
Modell mit normalem Blutdruck (BN.Lx/Cub), generiert wurde. Diese Inzuchtlinie
erlaubt es uns, Regionen eines quantitativen Merkmals (quantitative trait loci (QTL))
zu bestimmen, um kausale genetische Varianten mit quantitativen Unterschieden, wie
zum Beispiel Transkriptions- und Translationslevel, zu assoziieren.
Auf transkriptionaler (eQTL) und translationaler (riboQTL) Ebene haben wir in bei-
den Geweben hunderte von Assoziationen identifiziert. Die meisten Assoziationen
wurden in Genen gefunden, die in der Nähe der assoziierten genetischen Variante
liegen und als lokale QTL bezeichnet werden. Allerdings haben wir ebenfalls genetis-
che Varianten gefunden, die Gene über weite Distanzen beeinflussen, diese werden
entfernte QTL genannt. In dieser Arbeit werden beide QTL-Arten im Detail unter-
sucht, um deren Mechanismen und genetische Grundlagen zu verstehen.
Interessanterweise, haben wir 17 Gene gefunden, die von einem einzigen, entfernt
liegenden riboQTL auf Chromosom 3 reguliert werden. Um diese Beobachtung näher
zu untersuchen, haben wir ein unabhängiges RNA-Seq und Ribo-Seq Experiment in
zwei kongenen Rattenstämmen durchgeführt, die sich spezifisch in der Region des
entfernten riboQTL unterscheiden. Die differentielle Genexpressionsanalyse dieser
kongenen Ratten auf beiden Ebenen konnte die Ergebnisse reproduzieren und vali-
dieren. Dies deutet darauf hin, dass die Region auf Chromosom 3 in der Lage ist, die
Translation vieler anderer Gene zu kontrollieren. Wir beobachten, dass globale Verän-
derungen des Translatoms in hypertrophen Herzen mit der Länge des translatierten
Proteins korrelieren. Das Translationslevel von langen Proteinen scheint herunterreg-
uliert zu sein und das von kurzen Protein hochreguliert.
Dieser Datensatz liefert Einblicke in die Rolle genetischer Varianten auf zwei Ebe-
nen der Genexpressionsregulation und zeigt, dass die Regulation der Translation ein
wichtiger Mediator vom molekularen Phänotypen zu einer komplexen Krankheit ist.
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1 Introduction

1.1 Genetic research

The aim of genetic researchers is to elucidate the role of heritable factors shaping a
phenotype, which is a trait or characteristic of an organism that can be observed or
measured. Those phenotypes can be physiological traits, such as size, age and hair
colour; or molecular traits like transcription or translation levels of a gene. Phenotypic
variation can be caused by variable expression of genes, the influence of environmental
factors or the combination of both. The intent is to understand the genetic impact
on the phenotype by linking these factors to molecular mechanism.
As many human diseases are known to have a genetic component, the understanding
of molecular mechanism shaping a disease phenotype is very important, because these
insights can guide the development of therapies and disease marker screens. On the
other hand it allows to study the basis of molecular disease processes.
In molecular genetics the term heritable traits corresponds to genes in the genome.
Diploid organism, such as animal, plants and human have two variants of each gene,
that are also called alleles and they are building the basis of genetic diversity. An
allele can be homozygous, if both alleles are the same or heterozygous with respect
to the gene, if the alleles are different. Sometimes these different alleles change the
phenotypic traits, but most genetic variations result in little or no observable differ-
ence in the expression of a gene.
Eukaryotic gene expression regulation ranges from accessibility or structure of the
chromatin to transcription factors that can bind to specific DNA sequences close to
the gene in order to promote or repress the transcription into pre-mRNA. The pre-
mRNA is processed into the mature mRNA after splicing, capping and polyadeny-
lation, which enables the mRNA to be exported from the nucleus to the cytoplasm,
where each mRNA has a certain lifetime that determines how many proteins can
be made from this mRNA. Next, the mRNA is translated into a polypeptide chain

1



1 Introduction

and subsequently further processed in order to create a functional protein (see Figure
1.1.1).

Figure 1.1.1: Schematic of gene expression

This shows that gene expression is a multi-layered process and it can be regulated at
almost every layer by genetic variants. In this work, we therefore study the role of
genetic variants at two layers of gene expression regulation, transcription and trans-
lation, in order to understand how genes can be regulated at different or even at
multiple stages. We make use of molecular genetic tools to perform genetic mapping
of quantitative trait loci (QTL), which are genetic loci that alter the expression of a
gene.

1.2 Linking genetics to quantitative traits

Complex traits are shaped by genetic loci that cause a quantitative alteration on a
physiological or molecular phenotype; and are called quantitative trait loci (QTL).
Each genomic locus carries one or multiple genetic variants that can be linked to the
abundance of a certain expression level. QTL that describe transcriptional changes
are called eQTL, those that describe translational changes are riboQTL and protein
changes are often abbreviated as pQTL.
A significantly associated QTL is a genetic variant that segregates a population into
two groups of animals or humans carrying a specific genotype pattern matching the
abundance of a gene. This is depicted schematically in Figure 1.2.1 on the example
of a SNP changing the translation levels of a gene (riboQTL).

2



1 Introduction

Figure 1.2.1: Schematic of a gene regulated by a riboQTL

QTL can be further defined by their location with respect to the gene that is altered.
The genetic variant can either be located in close proximity to the gene (local QTL)
or the variant is more distantly located with respect to the gene (distant QTL). Local
QTL can act in cis, which means that the gene expression is modulated in an allele-
specific manner, or in trans, via additional factors. In order to distinguish between
local cis and trans QTL, an allele-specific expression analysis of heterozygous variants
can be performed, where an observed imbalance suggests a cis-regulatory expression
change.
Local QTL can be either coding variations, which are variants located in the cod-
ing sequence of a gene, that lead to amino acid changes, premature stop codons or
splice defects that ultimately result in a non-functional protein. On the other hand
regulatory variants can cause an expression change by affecting regulatory sequences.
Distant QTL affect the expression of a gene through intermediate factors over longer
distances. If the expression of multiple genes is altered by a single variant located
elsewhere in the genome this variant forms a distant QTL cluster (Figure 1.2.2). The
distance between the genetic locus and the affected gene is ranging from 10 kilobases
(kb) in yeast to several megabases (Mb) in human in order to be defined as a distant
association.
The first genome-wide eQTL mapping was carried out by Brem et al. in 2002 compar-
ing the mRNA abundance of all expressed genes among a recombinant panel derived
from two yeast strains [1]. eQTL mapping enables us to understand how the informa-
tion encoded on the DNA level is translated to a certain phenotype or even a disease
condition via molecular pathways and gene expression modulation. Since then, many
eQTL studies have been published including eQTL mapping in mammalian hearts. In
this thesis, a combined eQTL-riboQTL mapping approach in mammalian heart and
liver tissue is presented. This enables us for the first time to understand the differ-

3



1 Introduction

Figure 1.2.2: Different types of QTL: a) local QTL, b) distant QTL and c) distant
QTL cluster

ences in regulation between transcription and translation caused by genetic variants.
Adding translation as a second layer of gene expression regulation allows us to study
an intermediate phenotype between the transcriptome and the proteome that ulti-
mately lead to the observed phenotype. To date only few eQTL studies and no
riboQTL involve mammalian hearts and only two were performed on human heart
tissue [2, 3].

1.2.1 Studying the role of genetic variants in gene expression

regulation

Translation can be regulated by genetic variants via various different mechanisms.
Variants can either affect the transcription and/or translation of a single mRNA, a
subset of mRNAs or change the transcriptional/translational landscape of all mRNAs.
Transcriptional regulation can be modulated directly by variants changing a cis-
regulatory element of an affected gene, as for example the promotor, enhancer, tran-
scription start-site (TSS) or splice-site of the gene. Furthermore, eQTL can change
the transcription levels that affect the expression of a gene in trans and over longer
distances via intermediary factors, such as transcription or splice factors.
Translational gene expression changes can be forwarded from the transcriptional level
with or without additional translational regulation. Local riboQTL can be explained
by changes in regulatory sequences, such as internal ribosomal entry sites (IRES) or
binding sites for translational regulators like RNA binding proteins (RBPs) and mi-
croRNAs (miRNAs). Coding variants can change translation levels by newly created

4



1 Introduction

or removed upstream open reading frames (uORFs) that affect the translation levels
of the main open reading frame (mORF) or by truncating variants that lead to the
translation of a shorter version of the protein. Global changes are often caused by
activation or repression of components of the translational machinery through the
action of trans-acting proteins that bind to the cis-elements of the regulated genes
(Figure: 1.2.3).

Figure 1.2.3: Schematic of different translational regulators that might explain local
riboQTL. uORF - upstream open reading frame, IRES - internal riboso-
mal entry site, miRNA - micro RNA.

Trans-acting molecules, such as miRNAs and RBPs, can lead to changes in transla-
tion rates by binding to the mRNA and blocking the translation initiation site for
ribosomes or stabilise the mRNA. miRNAs are known translational regulators that
can stimulate the degradation of their target mRNA. A direct inhibition of transla-
tion by blocking ribosomal entry sites or prevention of the ribosome moving along the
mRNA was previously described as a mechanism how miRNAs affect translation of
their target mRNAs [4, 5]. Additionally, miRNAs have been shown to affect nascent
peptide turnover [4], by e.g. promoting the translation of uORFs.
The translation of uORFs can lead to a decrease of translation of the mainORF
(mORF) by competing ribosomes [6–8]. There are two classes of uORFs that have
been described in the literature [9]. Those uORFs that are independent of the mORF
and located in the 5’ UTR of the gene (Figure 1.2.4 a), and overlapping uORFs, which
initiate in the 5’ UTR and overlap the coding region of the gene (Figure 1.2.4 b).
Even though overlapping uORFs are in a different frame than the mORF, it is more
difficult to qualitatively and quantitatively assess them. The role of uORFs in disease
is not clear to date. On the one hand, it was described that mutations in uORFs play
a role in various diseases including cardiac disease [7], on the other hand Chew et al.
claim that not all uORFs are able to efficiently repress the translation of the mORF
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[8].
Another class of translational regulator are RBPs, which are involved in many regu-
latory processes during gene expression ranging from RNA processing to translation.
There are thousands of known RBPs in humans [10]. RBPs that are part of the
translation machinery and result in global changes are for example initiation or elon-
gation factors. Another class of RBPs are ribosomal proteins that have the potential
to change the composition of the ribosome. A third class of RBPs bind and regulate
their target genes specifically and cause expression changes of their targets [11].

Figure 1.2.4: Schematic of independent and overlapping uORFs. a) Independent
uORFs are located upstream of the mORF and do not overlap with
it. b) Overlapping uORFs also start upstream of the mORF but overlap
with it, with translation occurring in a different reading frame.

Even though the structure and function of the ribosome has been studied in great de-
tail, we still lack knowledge about the regulation of translation [12]. The combination
of transcription and translation levels, serve as a good proxy for the synthesis rate
of a protein [13–15]. Especially in biosynthetically active cells (e.g. cardiomyocytes,
monocytes, fibroblasts), protein synthesis accounts for a large proportion of the en-
ergy budget of the cell [16], which makes it particularly important to understand the
molecular mechanism that shape the phenotype. In order to study the two layers of
gene expression regulation, we measure the transcriptome levels by RNA-Sequencing
(RNA-Seq) and the translatome levels by Ribosome-Sequencing (Ribo-Seq).
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1.2.2 Quantifying genetic information in mammalian tissue

samples

RNA-Seq is a next-generation sequencing approach to generate high quality tran-
scriptome data on a genome-wide scale. In order to achieve this massive parallel
sequencing of cDNA libraries, cells are lysed, total RNA is extracted and selected for
polyadenylation. The polyadenylated (polyA) transcripts are enriched, fragmented
and synthesized into cDNA libraries, followed by an amplification of the final library
by a polymerase chain reaction (PCR). Ultimately, the libraries are sequenced to
reveal a quantitative measure of RNAs in a biological sample at a given time point
(Figure: 1.2.5) [17].

Figure 1.2.5: Schematic of RNA-Seq and Ribo-Seq protocol

RNA-Seq allows identification of various changes in the transcriptome, ranging from
gene splicing and genetic variants to changes of gene expression over time, under dif-
ferent conditions/treatments or different genetic backgrounds [18–20]. Additionally,
RNA-Seq data can be used to generate a new transcriptome assembly for species
without a reference or to improve incomplete reference transcriptomes [21]. This ap-
proach can be applied to different types of RNAs, such as polyadenylated (polyA)
mRNA, total RNA, microRNA or ribosome protected mRNA fragments with only
minor changes to the protocol for library preparation.
Sequencing ribosome protected mRNA fragments on a genome-wide scale is called
Ribo-Seq or ribosome profiling. Ribo-Seq allows to quantify the number of ribosomes
that are actively translating mRNA into proteins and experimentally annotate the
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coding regions of a gene. Ribo-Seq was the first global, in vivo approach to mea-
sure translation rates in a comparable way to RNA-Seq described by Ingolia et al.
in 2009 in yeast [22]. The protocol of Ribo-Seq is similar to the RNA-Seq protocol,
but the first crucial step is to fix the ribosomes on the RNA. This step is followed
by a nuclease digestion step that removes the RNA which is not protected by the
ribosome. Subsequently, ribosomes are removed by adding proteases. The remain-
ing mRNA fragments, also called ribosome footprints, are reverse transcribed and
sequenced similarly to RNA-Seq (Figure: 1.2.5).
The ribosome harbours three binding sites for tRNAs: i) the A-site, which is the first
binding site of the ribosome where the incoming aminoacyl-tRNA bind; ii) the P-site
that links the tRNA to the growing peptide chain and iii) the E-site which is the site
where the tRNA is released as depicted in Figure 1.2.6.

Figure 1.2.6: Three ribosomal binding sites: A-site - Binding site for aminoacyl-tRNA,
P-site - Binding site for peptidyl-tRNA and E-site - tRNA release site.
During active translation the ribosome moves in a 3nt-periodic manner
(codon-wise), which allows to infer the reading frame of the ribosome.

Ribo-Seq captures on average 30 nucleotides (nt) footprint reads that can be mapped
to the original mRNA to define the exact location of the ribosome. This allows the
position of the P-sites of the reads to be estimated, enabling the periodic movement
of the translating ribosome to be inferred.
In addition to quantifying the translation rates of known protein-coding genes, Ribo-
Seq enables the identification of novel translated short open reading frames (sORFs),
such as genes that have been previously annotated to be non-coding and ORFs that
are located in the 5’ and 3’ untranslated region (UTR) of the gene, upstream and
downstream open reading frames (uORFs and dORFs).
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1.3 QTL mapping in a model system for

hypertension and metabolic syndrome

In this work we study the impact of genetic variants on transcriptional and transla-
tional regulation in the BxH/HxB recombinant inbred panel (RI panel), which was de-
rived by crossing the parental strains, a disease model for hypertension and metabolic
syndrome, the Spontaneously Hypertensive rat (SHR.Ola) and a normotensive con-
trol strain Brown Norway rat (BN.Lx/Cub). We make use of this model system for
a complex human disease, to gain insights into the molecular mechanism that shape
the disease phenotype. The use of animal models to study human diseases has several
advantages, such as the ability to control for environmental factors. This allows to
study gene expression differences that are caused to a large degree by genetic vari-
ation between two strains. For studying cardiovascular diseases the rat is the most
commonly used model organism [23].

1.3.1 Phenotype of the parental strains SHR.Ola and

BN.Lx/Cub

SHR.Ola combines genetic components of two diseases leading to cardiac hypertro-
phy - hypertension and the metabolic syndrome. The SHR strain was created by
Okamoto et al. in 1963, by selective outbreeding of Wistar-Kyoto (WKY) rats with
high blood pressure [24]. The SHR inbred line served as a model to study the genetic
components of multiple diseases.
SHR rats develop hypertension at an age of 5-6 weeks with a systolic blood pres-
sure (SBP) of 180-200mmHg. First characteristics of cardiovascular diseases, such as
cardiac hypertrophy, can be observed at an age of 10-12 months. In addition to hyper-
tension the SHR animals show typical features of metabolic syndrome with increased
visceral adiposity, insulin resistance and abnormal lipid and glucose metabolism. [25].
In order to study these two disease components, we assess the gene expression in two
disease relevant tissues, namely heart and liver. Analysing gene expression changes
in the heart can help to understand molecular changes due to high blood pressure
and beginning cardiac hypertrophy. As described before the metabolic syndrome is
mainly straining the liver and we want to observe first changes on the molecular level
that contribute to the metabolic changes in liver.
The BN.Lx/Cub, here abbreviated by BN.Lx, represents a normotensive control strain
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and is a congenic rat strain derived by introducing the mutant Lx gene of the poly-
dactylous rat onto the BN background. Polydactylous syndrome leads to malforma-
tions of the hindlimb. As this locus does not play a role in heart disease, we can
use this strain as a control. The BN reference strain is known to be susceptible to
respiratory inflammation and to the development of mercury-induced autoimmunity
[26]. The BN genome is divergent from most other rat strains and so it was used to
encode the rat reference genome. The BN and BN.Lx/Cub rat differ at about 102,000
SNPs, 627,000 indels and 13,000 structural variants whereas SHR.Ola differs at 3.6
million SNPs and 343,243 indels from the reference genome [27].

1.3.2 Role of transcriptional and translational regulation in

SHR

In the past, gene expression differences between SHR.Ola and BN.Lx/Cub have been
studied comprehensively [28–32], including the Hübner lab, that show extensive trans-
lational regulation by performing differential expression analysis on RNA-Seq and
Ribo-Seq data of the two strains BN.Lx/Cub and SHR.Ola [32].
The findings from Schäfer et al. illustrate that gene expression regulation cannot be
explained by transcriptional regulation alone (Figure 1.3.1). Up to this point, tran-
scription levels have been the most studied layer of gene expression to understand
regulation. Schäfer at al. state that additional 40% of differentially expressed genes
were picked up by adding translational information.
Figure 1.3.2 shows the enrichment of differentially transcribed and translated genes
for known pathways that play a role in hypertension and metabolic syndrome. They
identified a number of differential genes involved in fatty acid metabolism as well as in
hypertrophic cardiomyopathy. Adding Ribo-Seq information enables to observe the
enrichment in two cardiac pathways that would have been missed otherwise, which
suggests that besides transcriptional regulation also translational regulation is shap-
ing the SHR phenotype.
In order to understand the genetic components of these translational changes observed
in the two parental strains, we use the rat RI panel to perform QTL mapping in the
same two tissues on the transcriptional and translational level.

10



1 Introduction

Figure 1.3.1: Transcriptional and translational regulation in the SHR heart and liver:
a) RNA-Seq fold change (FC) FC(SHR/BN) vs. Ribo-Seq FC (SHR/BN)
shows the extent of translational regulation by grouping genes based on
whether they show a significant difference on the RNA and Ribo-Seq
level (black), only on the RNA level (blue) or only on the Ribo-Seq
level (red). The slopes that have been assessed by standardised major
axis estimations show that the blue and the red line deviate from the
black line that follows the diagonal. b) Number and percentages of genes
that have been detected for the three categories RNAonly, Riboonly and
RNA+Ribo in heart and liver. (Taken from [32])

Figure 1.3.2: Translational and transcriptional regulation in SHR of genes in a) fatty
acid metabolism and b) Hypertrophic Cardiomyopathy. Arrows in the
boxes indicate whether a gene is up- or down-regulated in the SHR com-
pared to BN. (Taken from [32])
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1.3.3 Recombinant inbred panel

The rat recombinant inbred (RI) panel, which consists of 30 fully inbred animals, was
used to elucidate the role of genetic variants on gene expression regulation in a heart
disease context.
In detail, the RI strains have been generated by crossing BN.Lx and SHR.Ola resulting
in recombined F2 animals (Figure 1.3.3). Independent segregation and recombination
of homologous chromosomes lead to unique combinations of maternal and paternal
genes in each F2 strain. Next, randomly selected F2 animals were inbred by brother
sister mating over 80 generations. Gender reciprocal crossing was performed to gen-
erate a second set that only differs in the source of mitochondrial DNA and the Y
chromosomes. HxB abbreviated strains are derived by crossing female SHR.Ola and
male BN.Lx rats and BxH by crossing male SHR.Ola and female BN.Lx [33] (Figure
1.3.3).

Figure 1.3.3: Breeding scheme of rat recombinant inbred panel that was derived from
the two parental strains Bn.Lx/Cub and SHR.Ola by 80 generations of
brother and sister mating.

All animals are homozygous for the BN.Lx/Cub or SHR.Ola allele at every position
in the genome. Animal models of segregating populations derived by crossing two
phenotypically contrasting inbred lines, are well suited to carry out association studies
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in order to link genetic variants and molecular traits such as gene abundance. Their
lower complexity compared to human genomes and their reduced dimensionality of
the different data collected, enables to derive associations that act locally, but also
distant associations with smaller sample sizes than those that would be necessary to
perform a genome-wide QTL mapping study in a human cohort.
In the past, various labs, including the Hübner lab used the RI panel to study the
genetic component of numerous cellular-level and whole-animal traits. In 2005, one
of the first multi-tissue eQTL analyses was carried out using the RI panel [34]. The
authors first assessed all differentially expressed genes in the parental strains BN.Lx
and SHR.Ola in fat and kidney tissue and compared those results with eQTL findings
of the RI panel in the same tissues. Thousands of commonly and specifically regulated
genes in fat and kidney have been identified. In general, the authors observed that
distant associations tend to be more tissue specific than local ones.
In 2014, Rintisch et al. published an integrative approach combining eQTL mapping
in heart and liver with genetic variants linking to histone modifications (histoneQTLs)
in order to describe the impact of histone modifications on gene expression regulation
[35]. Rintisch et al. were able to build models that can be used to predict gene
expression based on the genetic variant and the histone level. Additionally, the RI
panel has been used to study the genetic impact on whole genome phenotypes, such
as blood pressure, cardiac mass and lipid levels and to identify a variety of disease
genes [32, 34, 36–42].
In summary this shows, that the RI panel provides the perfect framework to study
the genetic basis of translationally regulated genes observed by Schäfer et al. [32].

1.4 Motivation to perform eQTL and riboQTL

mapping in the rat RI panel

The aim of this project is to identify genetic variants that drive transcriptional and/or
translational changes in rats that suffer from the metabolic syndrome and spontaneous
hypertension (Figure 1.4.1).
To reach that goal we performed a combinatorial Ribo-Seq, RNA-Seq and genotyping
approach in liver and left-ventricular tissue of 30 animals belonging to the HxB/BxH
recombinant inbred (RI) panel. Because each of these 30 RI lines is a fully inbred
genomic mosaic of the two parental strains BN.Lx/Cub and SHR.Ola, we are able
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to perform quantitative trait loci (QTL) mapping to link causal genetic variants to
quantitative differences in transcription and translation.

Figure 1.4.1: Project overview - we performed a combinatorial RNA-Seq, Ribo-Seq
and genotyping approach to liver and left-ventricular tissue of the rat RI
panel and the two founder strains BN.Lx/Cub and SHR.Ola in order to
perform genome-wide eQTL and riboQTL mapping.

Currently little is known about translational control by genetic variants. Since the
first protein QTL analysis was performed in 1994 on a limited number of 74 genes in
maize [43], just a small number of pQTL studies on incomplete sets of proteins have
been performed. Genome-wide protein QTL studies are at the moment not feasible,
because the assessment of the protein levels in a genome-wide scale is very labori-
ous and due to the wide dynamic range of proteins, particularly in the heart, very
challenging. Even the largest mass spectrometry dataset in the heart from Doll et
al. 2017 comprising 16 human heart regions and 4 cardiac cell types can only assess
protein levels of roughly 6000 genes [44].
RNA-Seq and Ribo-Seq data are read count based quantitative measures of gene ex-
pression and can therefore be studied in a comparable way. Ribo-Seq experiments
enable to study an additional layer of gene expression regulation that is closer to
protein levels and ultimately to the physiological phenotype. As we get genome-wide
measures of translation rates, we can understand post-transcriptional changes that
are potentially forwarded onto the protein level. Ribo-Seq data can serve as a good
proxy for protein levels allowing to obtain a better understanding of genetics in dis-
ease.
There are many advantages of studying the rat RI panel as a model for hyperten-
sion and metabolic disease compared to studying human patients that suffer from
essential hypertension and the metabolic syndrome. Disease relevant mutations are
difficult to study in human as they are usually rare and only detectable in very large
cohorts, whereas in the rat RI panel every variant in present in approximately 15
lines and in a homozygous form. Additionally, patients with cardiovascular diseases
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often suffer from other diseases at the same time, take different medications or other
environmental factors are present, that contribute to the molecular phenotype. In
the rat RI panel, the rats are all fed, raised and treated the same way which reduces
confounding factors to a minimum and allows us to map the molecular traits that
contribute to disease. The rat in comparison to other animal models resembles the
genetic and phenotypic features of humans very well and is described as one of the
best models for studying cardiometabolic diseases. Due to their size, measuring of
cardiac phenotypes and deriving tissue is more feasible compared to mice [45].
We therefore, generated RNA-Seq and Ribo-Seq data in all 30 rat RI lines of two tis-
sues - left ventricle and liver - in order to study the genetic impact on the metabolic
syndrome and hypertension.
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2.1 RNA-Seq and Ribo-Seq data of the rat

recombinant inbred panel in left ventricle and

liver

The main dataset consists of RNA-Seq and Ribo-Seq data generated from liver and
left-ventricular tissue in the 30 recombinant inbred lines that form the RI panel.
Thirty male animals, each representing one RI strain, have been sacrificed at the age
of 6 weeks and left ventricles (LV) and livers have been collected and immediately
frozen. The animals were fed with a normal diet and housed under normal conditions
in the Institute of Physiology, Academy of Sciences of the Czech Republic, Prague and
provided by Michal Pravenec. RNA-Seq (according to TruSeq Stranded Total RNA
and mRNA protocol) and Ribo-Seq (according to the TruSeq Ribo Profile protocol)
was performed as described in [32]. Genotype information was derived using the
Affymetrix RATDIV SNP Array of the HxB/BxH rat RI panel with >500K high
quality markers as described in [46]. The RATDIV array includes in total 805,399
SNPs selected based on available sequence data for 13 rat strains (SHR, SD, SHRSP,
SS, WKY, GK, F344, SR, BB, FHH, LEW, PVG, DA). This allows the determination
of all genetic differences between the two founder rats BN.Lx and SHR.Ola, and
therefore all combinations of the RI panel are covered in the SNP Array.
Ribo-Seq and RNA-Seq cDNA libraries have been sequenced on an Illumina HiSeq
2000 platform. For RNA-Seq we derive 2x101bp reads using a stranded, paired-end
approach and for Ribo-Seq we observe shorter single-end (1x50bp) reads according to
the protocol. The average RNA integrity number (RIN) of all samples is above 9.1,
which indicates high quality of the RNA that was used for sequencing (Figure: 2.1.1).
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Figure 2.1.1: RNA integrity number (RIN) of all 30 RI lines in left ventricle and liver.
The average RIN is at 9.11 and the lowest RIN at 8.3.

Additional quality measures, as for example the sequencing depth, sequencing quality
and library complexity are discussed in detail in the chapter: 4.1.
The RI panel contains 2,957 different local combinations of the BN.Lx and SHR.Ola
genomes. Each individual strain is homozygous at every locus across the whole
genome for either the BN.Lx or the SHR.Ola genotype. The individual strains rep-
resent 15 replicates at each locus, which gives sufficient power for QTL mapping.
Nevertheless, QTLs that can be identified in these studies span large chromosomal
regions of sizes up to several Mb (average size of an SDP is 0.75Mb), leaving the
underlying genes and mechanisms unknown. Additional fine-mapping of the QTL
region is usually necessary to pinpoint the causal gene and variant as many genes can
be located in the associated loci that are equally likely to be implicated in disease.

2.2 RNA-Seq and Ribo-Seq data of congenic rats

and EndoG knock-out mice in left ventricle

A recent publication discovered endonuclease G (EndoG) as a driver for cardiac hy-
pertrophy and mitochondrial function in the heart by using systems approaches com-
bining QTL mapping and differential expression analysis in two congenic rat strains
of this region [47]. This QTL region is located on chromosome 3 and overlaps the gene
EndoG. The SHR.Ola rat carries a frameshift insertion of 37nt in the first exon of this
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gene that leads to the absence of the EndoG protein. McDermott et al. showed that
EndoG is a determinant of cardiac hypertrophy and mitochondrial function. Addi-
tionally, this region is implicated a changed heart weight without changed the blood
pressure [47] .
The two congenic rat strains (Figure 2.2.1) have been derived by a selective breed-
ing regimen, which was employed to integrate segments of BN.Crl (Charles River
Laboratories) chromosome 3 onto an SHR.Ola background.

Figure 2.2.1: Illustration of the two rat congenic lines with association result of map-
ping the traits HW (heart weight) and LVM (left-ventricular mass) cor-
rected for body mass of the animal to the previously described cardiac
mass QTL on chromosome 3 in the BN.Lx and SHR.Ola F2 offspring.
The red dashed lines indicate the limits of the refined QTL (modified
from [47]).

The two congenic strains are called SHR.BN-(3L) and SHR.BN-(3S). The SHR.BN-
(3L) has a 60Mb segment of BN.Crl introgressed onto SHR.Ola chromosome 3, while
the SHR.BN-(3S) contains a 49Mb segment of BN.Crl. All other genomic loci are
homozygous for SHR.Ola alleles.
In Figure 2.2.1 the cardiac mass locus on chromosome 3 including the association
results of two additional relevant cardiac phenotype traits are shown, namely heart
weight (HW) and left-ventricular mass (LVM) corrected for body weight (BW) and
blood pressure. The dashed red lines indicate the boundaries of the blood-pressure
independent heart weight QTL. To confirm these findings, McDermott et al. per-
formed a comparative analysis using the two congenic strains, which narrows down
the QTL to 11Mbp by exclusion and confirmed the blood pressure independent effect
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on the mass difference regulated by this locus.
Additionally, the authors generated a knock-out mouse that has been derived by ge-
netic disruption of the EndoG gene, which leads to the absence of the EndoG protein
in these mice [47]. In a comparative analysis of C57BL/6 wild-type and C57BL/6
EndoG-/- mice they showed that EndoG drives the cardiac mass differences without
changing the blood pressure.
The second dataset consists of these two congenic strains and the knock-out mouse
model. For the study described in this thesis, we use both models as an independent
validation dataset, for a distant riboQTL, that we identify in the RI panel and that
is largely overlapping the cardiac mass QTL (described in chapter 4.5.2). The two
congenic strains and the knock-out mouse model allow us to fine-map this locus and
help to understand whether EndoG is driving the translational changes we observe.
RNA-Seq and Ribo-Seq was generated from five male replicates of each strain in the
same way as for the RI panel. In accordance with the RI panel samples, the ani-
mals were sacrificed at an age of 6 weeks and left ventricles were collected and frozen
immediately.
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3.1 General pre-processing and quality control steps

for RNA-Seq and Ribo-Seq data

In the following paragraph, our pre-processing pipeline for RNA-Seq and Ribo-Seq
data is described. The pre-processing starts by demultiplexing the raw sequencing
reads using bcl2fastq to convert bcl files derived from the Illumina HiSeq 2000 plat-
form into fastq files. This step is followed by removing the sequencing adapters from
fastq files of the RNA-Seq and Ribo-Seq data. At the same time, we remove RNA
species, which are different from mRNA and trim the RNA-Seq data to the same
length as the Ribo-Seq reads. Both datasets are aligned against the reference genome
using Tophat2 [48] and bam files for each sample are produced. Bam files are binary
files that contain sequence alignment data. These bam files are used to quantify the
data and to perform quality control and the identification of all translated genes.
After pre-processing the data, we perform QTL mapping and differential expression
analysis. This pipeline is summarised in Figure 3.1.1 and the rationale for the selected
approach is described in the following paragraph.
Both sequencing approaches share many characteristics, such as their purpose to de-
rive read-based quantitative measures of gene expression. Nevertheless, there are
differences between the derived data. RNA-Seq reads normally span 75-100bp, while
Ribo-Seq reads are limited to the footprint size of the ribosome, which are mainly
29bp. To circumvent an imbalance in shorter read length resulting in better alignment
rates [49], we trim the RNA-Seq reads to 29bp allowing for a comparable alignment
(as previously described in [32]). Thus, only similar challenges for both datasets in
regard to repetitive sequences or overlapping genes remain. The following code com-
bines all fastq files sequenced on different lanes and in a paired-end manner to one
merged file in order to next remove the adapter using fastx_clipper and trim the
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reads to 29bp using fastx_trimmer.

Figure 3.1.1: Pipeline for pre-processing and quality control of the RNA-Seq and Ribo-
Seq data. Ranging from clipping the adapter sequences over the TopHat
Alignment to the reference genome to the identification of all translated
genes and ultimately to perform QTL mapping.

Unix Code:

1 cat <sample >. f a s t q . gz > <sample>_merged . f a s t q . gz

3 zcat <sample>_ merged . f a s t q . gz | \
f a s tx_c l i ppe r −a AGATCGGAAGAGCACACGTCT − l 20 −c −n | \

5 fastx_trimmer −f 1 −z −o <sample>_merged_trimmed . f a s t q . gz
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Parameters:

1 f a s t x_c l i ppe r :
−a − adapter sequence

3 − l − minimal l ength
−c − d i s ca rd non−c l i pped sequences

5 −n − keep sequences with unknown nuc l e o t i d e s

7 fastx_trimmer :
−f − f i r s t base to keep

9 −z − output compressed as gz ip f i l e
−o − output f i l e

Ribo-Seq data tend to include RNA species in addition to mRNA. Sequencing of
ribosomal RNA (rRNA) fragments resulting from the nuclease-treatment step of Ribo-
Seq reduces the sequencing space, especially in conditions where global translation
levels are low. To remove reads arising from non-mRNA sources, we align the Ribo-
Seq data, as well as the RNA-Seq data, to known abundant sequences from these
RNA species: transfer RNA (tRNA), mitochondrial RNA (mtRNA) and ribosomal
RNA (rRNA), using Bowtie2 [50]. The abundant sequences were downloaded from
the following resources:

• ribosomal RNA from IGenomes (Illumina) - providing fasta sequences of all
rRNAs

• mitochondrial RNA from Ensembl - providing fasta sequences of all mitochon-
drial DNAs [51]

• transfer RNA from the GtRNAdb from UCSC - providing whole genome scans
for tRNAs [52, 53]

The RNA-Seq and the Ribo-Seq data are filtered by aligning the trimmed and cleaned
fastq files against a merged file of all abundant sequences using the following script.
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Unix Code:

cat tRNAs . f a rRNA. fa MT. fa > rn6_contaminants . f a
2

bowtie2−bu i ld −f rn6_contaminants . f a rn6_cont_index
4

bowtie2 −p 2 −x rn6_cont_index −L 20 \
6 −−un−gz <sample>_trimmed_clean . f a s t q . gz \

−U <sample>_merged_trimmed . f a s t q . gz \
8 −S <sample>_removed_sequences . sam

Parameters:

bowtie2 :
2 −f − input f a s t a f i l e
−p − number o f threads

4 −x − genome o f abundant RNA sequences
−L − l ength o f seed sub s t r i n g s

6 −−un_gz − output gez ipped
−U − f i l e with unpaired reads ( input )

8 −S − a l i gned sequences in sam format ( reads a l i g n i n g aga in s t abundant
genome )

For sequencing alignment, we use Tophat2 [48], which is a widely used alignment
tool that allows for spliced reads, which is important to map RNA-Seq and Ribo-Seq
data. In order to obtain all existing splice junctions, we first align the full-length
2x101nt RNA-seq data against the Ensembl rat reference genome (Rattus Norvegicus
Ens82). In a second alignment step, the 29mer reads of both datasets are mapped
using the splice junction information gathered from the alignment of the full-length
RNA-Seq reads. Establishing all splice junctions allows for the accurate alignment of
short reads that are split across exons. This is done by the following command.

Unix Code:

tophat2 −−num−threads 6 −−p r e f i l t e r −mul t i h i t s
2 −−read−mismatches 2 −−read−ed i t−d i s t 2

−−read−r e a l i gn−ed i t−d i s t 0 −−tmp−d i r <tmp−dir>
4 −o <outdir> −G −−raw−juncs <junc s_ f i l e s >

<genome annotation> <bowtie_index_genome>
6 <forward_reads> <reverse_reads>
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Parameters:

−−num−threads − number o f threads
2 −−p r e f i l t e r −mul t i h i t s − reads that map to mul t ip l e p o s i t i o n s are removed
−−read−mismatches − number o f a l lowed mismatches per read

4 −−read−( r e a l i g n )−ed i t−d i s t − maximum read ( r e a l i g n ) ed i t d i s t ance
−−tmp−d i r − temporary d i r e c t o r y

6 −o − output d i r e c t o r y
−G − GTF− f i l e

8 −raw−juncs − j unc t i on f i l e from f u l l −l ength mapping

The quantification of aligned reads was carried out using HTSeq [54] with default
parameters. As Ribo-Seq reads only map to the coding part of the gene, we decided
to only quantify reads mapping to the coding DNA sequence (CDS) of the genes to
make RNA-Seq and Ribo-Seq data more comparable.
Next, the RNA-Seq and Ribo-Seq count data was normalised using the median-of-
ratios normalization method in a joint manner for both datasets. This method is
implemented in the function estimateSizeFactors in the R package DESeq2 [55]. The
basic idea for this normalization procedure is to fit the RNA-Seq and Ribo-Seq data
to a negative binomial (NB) distribution with dispersions α and means µ. The read
counts Kgid for gene g in sample i and dataset d can be described as [56]:

Kgid ∼ NB(µgid, αgid, ) (3.1)

After fitting the count data to the NB distribution, the scaling factor si can be
determined by:

si = median
Kgid

(Πm
v=1Kgid)1/m

, where m describes the number of samples (3.2)

This joint normalization was previously described by the developers from the XTAIL,
which is a R package to perform genome-wide differential translation analysis [56].
This tool cannot be used directly for our purpose of performing riboQTL mapping,
because it does not offer sample-wise normalised counts. But, we can make use of
the general idea to performing joint normalization to make RNA-Seq and Ribo-Seq
data more comparable. This way both count matrices follow the same distribution,
which is important for evaluating gene expression differences that are present on both
layers or only on one, but also to be able to calculate the translational efficiency - a
measure of how efficiently an mRNA molecule is translated into a protein.
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R Code:

Normalize_rna_ribo_together = function (mrna , rp f )
2 {

poo l_s izeFactor <− es t imateS izeFactor sForMatr ix ( cbind (mrna , rp f ) )
4 mrna_sizeFactor <− poo l_s izeFactor [ 1 : nco l (mrna) ]

rp f_s i z eFacto r <− poo l_s izeFactor [ ( nco l (mrna) +1: nco l (mrna)+nco l (
rp f ) ) ]

6 }

There are various approaches described in the literature, how to assess the transla-
tional efficiency (TE) from RNA-Seq and Ribo-Seq levels [22, 56, 57]. Ingolia et al.
suggest taking the ratio of Ribo-Seq reads over RNA-Seq reads [22]:

TE =
Ribo-Seq
RNA-Seq

. (3.3)

For differential expression analysis comparing two strains with multiple replicates this
approach works well, but in the case of QTL mapping it leads to higher variance lev-
els, because noise is introduced twice - on the RNA-Seq and on the Ribo-Seq level.
Meanwhile, various tools have been published to derive the mean TE and to perform
differential TE analysis by comparing two different conditions/strains. Two widely
used approaches are RiboDiff [57] and XTAIL [56], both based on DESeq2, that are
taking the variability across replicates into account to properly define the transla-
tional efficiency and perform differential testing. For QTL mapping these tools are
not applicable as values for each sample are required rather than average values per
group.
In this project, the translational efficiency is derived by regressing the RNA-Seq effect
from the Ribo-Seq levels using a linear model. This allows to derive residuals for each
sample - gene pair. This measure for translational regulation can be used for QTL
mapping as a separate trait. Subsequently, TE refers to the residuals of the linear
model.

R Code:

Trans l a t i ona l E f f i c i e n c y =
2 r e s i d ( lm( normalized_ribo_read_counts ∼

normalized_rna_read_counts ) )
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3.2 Identification of actively translated genes by

inferring periodicity using RiboTaper

The scope of this thesis is to study translational regulation. Therefore, we need to de-
fine all actively translated genes. To identify all translated genes from Ribo-Seq data,
we need to assess the 3-nt periodicity, which can be done by assessing the P-site tracks
for each gene in all the three possible reading frames and evaluating their periodicity.
There are different approaches, how to transform the quantitative P-site tracks into
their periodic components. Schuster et al. described an transformation that is called
a periodogram [58], which gives an estimate of the spectral density through Fourier
transformation. A second approach is based on the multitaper method [59], where
prior to Fourier transformation, different smoothing windows are used to derive a less
noisy signal. Both approaches are based on transforming the quantitative data into
their spectrum of fixed periodic components. We decided to use the tool RiboTaper
[60], which it is based on the multitaper approach that gives a less noisy represen-
tation of the periodicity. For RiboTaper, F-values get extracted from the coefficient
vector representing the contribution of each frequency component, that are closest
to 3-nt periodicity. Next, p-values are calculated from the F-statistic using 2 and
2k-2 degrees of freedom, where k is the number of tapers used [60]. The RiboTaper
algorithm is summarized in Figure 3.2.1.
We perform a two-step RiboTaper approach. First, RiboTaper is run on each sample
separately using only the optimum read lengths and frames. Those parameters were
determined for each sample by counting the number of reads showing a specific read
length and inferring the periodicity by assessing the P-site distribution in a meta gene
plot. This allows us to identify all open reading frames for each sample.
In a second step, the aligned Ribo-Seq reads are pooled for each tissue using samtools
[61, 62] and RiboTaper is run on the merged dataset. Merging samples on the one
hand allows to increase the power to detect translated genes, on the other hand it
enables to filter the results based on shared detection of ORFs across samples.
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Figure 3.2.1: RiboTaper workflow: 1) The P-sites of each read are determined in the
aligned data files, 2) the P-site tracks are tested for 3-nt periodicity
using the multitaper method for all three possible frames. 3) via Fourier
transformation the original signal is transformed into the fixed periodic
component and evaluated as such, 4) after filtering and quality control
steps the output from RiboTaper defines the set of translated genes that
are used for further analysis.

All detected ORFs are filtered by the following criteria:

• Detected as translated in at least 10 samples

• RNA-Seq expression cutoff of mean (RPKM) ≥ 1

• Categorized as:

– ORFs_ccds (ORFs that overlap the canonical CDS) or

– nonccds_coding_ORFs (ORFs that match a protein-coding gene but not
the canonical CDS) or

– ncORFS (non-coding ORFs)

• For lncRNAs the ORF should not overlap an annotated CDS on the same strand

In addition to define genes as translated, RiboTaper provides information on inde-
pendent and overlapping uORFs. Independent uORFs are defined in the RiboTaper
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output, whereas overlapping uORFs need to be derived from the output by filtering
as following:

• the ORF starts in the 5’UTR and overlaps the annotated CDS of the same
transcript

• the uORF must not be in the same frame as the mORF and so the resulting
peptide should be non-overlapping

• mORF is transcribed with a mean RPKM ≥ 1

• ORF was detected in at least 10 samples

3.3 Generating a genotype map of the rat RI panel

for QTL mapping

The genotypes used for this study are based on the Affymetrix RATDIV SNP Array
with >500k high quality markers [46]. The original 25-mer Affymetrix probes have
been remapped to the latest Ensembl rat genome (Rnor6.0) as described in [46] using
BLAST [63]. The wild type or variant probe was required to map uniquely within
the entire genome.
Single nucleotide polymorphisms (SNPs) in the HxB/BxH RI panel form blocks of
identical segregation patterns, where each SNP within such a block has the exact
same association strength with the trait. We collapse these blocks into 2,957 strain
distribution patterns (SDPs) to improve the power of the QTL mapping. An SDP is
defined as a genomic region, where the distribution of BN.Lx and SHR.Ola alleles is
not changing. If the genotype pattern across the 30 strains changes, a new SDP is
defined (Figure 3.3.1).
Some SDPs occur more than once in the genome. Those SDPs have been simplified
to globally uniquely occurring SDPs (n = 1,835). We preserve the information to be
able to link all local SDPs to global SDPs.
Prior, to QTL mapping, we filter for putative misannotation under the hypothesis
that an annotation error occurred when a single SDP is surrounded by two SDPs
showing exactly the same genotype pattern. Applying this filter leads to a total
number of 1,685 SDPs used for QTL mapping.
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Figure 3.3.1: Schematic explaining the definition of strain distribution patterns
(SDPs) - SNPs that show an identical segregation pattern are grouped
together as a SDP.

3.4 Assessing genetic effects on gene expression by

QTL mapping

We perform quantitative trait loci (QTL) mapping using two different approaches to
understand the impact of genetic variants on gene expression regulation. The most
frequently used model to perform QTL mapping is a simple linear regression model.
In the following linear model, Y correspond to the observed gene expression level and
X to the genotype pattern of a particular SNP, which describes the predictor variable.

Y = α + βX + ε, where ε ∼ i.i.d.N(0, σ2). (3.4)

The association for each gene-SNP pair is determined assuming that the relation is
linear. The genotypes of a SNP are encoded by 0 for homozygous reference,1 for
heterozygous and 2 for homozygous alternative allele. In order to solve this linear
regression model a number of variables need to be determined first to determine the
test statistic, which could be of different nature according to the quantitative trait
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that is tested and ultimately the p-value is calculated. The linear model needs to
be solved for each gene-SNP pair, which is computationally demanding. In the past
many tools have been developed to decrease the computational burden to perform
genome-wide QTL mapping.
We use two different approaches to derive QTL, which have been developed to allow
for fast processing. The first approach is based on the identification of associations
in a pairwise manner by testing each gene-genotype pair separately. Whereas, the
second approach uses hierarchical clustering of genes to identify shared regulation of
multiple genes or of different experiments, tissues or conditions.

3.4.1 Pairwise association testing using MatrixEQTL

The first QTL mapping strategy is based on the R package MatrixEQTL that was
developed by Shabalin et al. in 2012 [64]. This method is a state of the art approach
for performing QTL mapping on large datasets, as it offers flexible input options and
fast processing.
In each MatrixEQTL run a correlation matrix of genotype (s) and gene expression
patterns (g) across all samples is calculated. Shabalin et al. [64] states that each test
statistics can be described by the sample correlation equation:

r = cor(g, s). (3.5)

The absolute value of the sample correlation is chosen as a test statistic to determine
significant gene-SNP associations. In order to simplify the calculations the genotype
and gene expression variables are standardised to have zero mean and unit sum of
squares, which results in

rgs = cor(s, g) =

∑
(si − s̄)(gi − ḡ)√∑

(si − s̄)2
∑

(gi − ḡ)2
=
∑

sigi = 〈s, g〉. (3.6)

Here, 〈s, g〉 describes the inner product between the vectors s and g (taken from
[64]). Each row in the genotype matrix S contain the measurements of each SNP
across samples and each row of the gene expression matrix G contains the values for
a single gene across samples. The columns, here the different samples, match in both
matrices and therefore a matrix of all gene-SNP pair correlations can be determined
a in one large matrix multiplication G ∗ ST . To allow for fast processing even with
large genotype and/or gene expression matrices, the linear regression model is solved
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in blocks of 10,000 x 10,000 entries (Figure 3.4.1) [64].

Figure 3.4.1: MatrixEQTL is based on generating a correlation matrix (G*ST) by
using multiplication of the gene expression matrix G and the transposed
genotype matrix S. Association tests are performed in blocks of 10,000
x 10,000. Figure adapted from Shabalin et al. [64]

MatrixEQTL offers a variety of parameters that can be used according to the aim
of the study and the nature of the dataset. Though MatrixEQTL allows the use of
covariates and abbreviated processing e.g. only detecting local associations or only
significant associations, we did not use any covariates and performed all tests to derive
p-values for each association. The grouping of non-unique SDPs, makes it necessary
to infer non-significant associations of neighbouring SDPs in order to identify the real
associated SDP in the genome. After the association testing, the position of those
SDPs that occur several times in the genome can be assigned to determine whether
a local or distant effect was observed. Our hypothesis is that real associations are
visible in neighbouring SDPs to a lower extent, as the changes of the genotype pat-
tern from one SDP to the next are normally rather small. Therefore, we examine all
associations of the surrounding SDPs to identify the origin of each QTL.
After assigning all SDPs to their genomic position, we group local and distant effects
separately and perform a Benjamini Hochberg correction [65] on each group of associ-
ations. This enables us to use different FDR cutoffs for local and distant QTLs based
on the p-value distribution within each group. In this study, we require distant QTL
to appear on a different chromosome than the affected gene, because some genotype
blocks are very large, so that it is difficult to define a general distance threshold be-
tween a gene and an SDPs in order to identify an association as distant.
We perform permutation testing to determine a significance threshold for each dataset
by deriving the distribution of test statistics under the null hypothesis that there is no
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association. We therefore randomly shuffle the samples in the gene expression matrix
and perform 10,000 runs of MatrixEQTL on the original genotype matrix. To speed
up the permutation testing, we remove genes from further permutation runs, if they
show 15 times more extreme associations than the most significant association in the
original MatrixEQTL run. A significant local association was defined as having an
empirical p-value ≤ 0.0015 (less or 15 times more extreme p-values in 10,000 permu-
tations) and FDR ≤ 0.1, and for distant associations the empirical p-value ≤ 0.0015
and FDR ≤ 0.2. We use a less stringent FDR cutoff for distant associations, because
the effect sizes of distant associations are smaller.

3.4.2 Hierarchical association testing using MT-Hess

The second approach, that was used to perform QTL mapping in this thesis is called
MT-Hess [66] and detects associations simultaneously in multiple datasets, such as
different tissues, cell-types or even different traits, e.g. RNA-Seq and Ribo-Seq.
The basic idea is that gene-SNP associations are derived for multiple conditions at
the same time by modelling a linear regression for each gene expression measurement
that is linked by a hierarchical model [66]:

Gk = Ak − SBk, N(In, Ek) (3.7)

where, G denotes a matrix containing all observed gene expression levels for gene k
and the matrix S describes the genotype matrix. Bk is a regression coefficient matrix,
where each entry (bkjl) relates a genotype of a SNP j, the expression level of a gene k
in condition l. The intercept Ak and the covariance matrix Ek for between-condition
are specific to each gene k [66]. The Hess pipeline can also be applied to a single con-
dition or tissue, with the aim to increase the power for detecting distant gene cluster,
e.g. shared regulation of one genetic variant on the gene expression of multiple genes.
The basis of the modelling approach is a Bayesian variable selection method that acts
on three levels at the same time. In the first step, the gene expression matrices of each
trait are transformed into sparse regression matrices on all genotype patterns. There-
fore, an additional binary matrix is introduced that summarises for all conditions,
whether an association between gene expression and genotype pattern was observed.
For a given gene k, we denote by yk the row binary vector for the regression coefficient
matrix B and the genotype matrix S. Conditionally, on the binary matrix the sparse
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regression for all genes is given by:

Gk = Ak − SykByk, N(In, Ek) (3.8)

In a next step, a multi-variate regression is performed jointly on all sparse regression
matrices for each gene to detect shared regulation across all traits. This provides
increased power for the detection of SDPs that regulate multiple traits of a gene.
In the last step, a multi-variate regression analysis is performed across all genes to
identify similarly regulated genes that share prior parameters. The multi-variate
regression analysis across all genes, enables the detection of gene cluster regulated by
the same genetic locus (Figure 3.4.2).

Figure 3.4.2: Illustration of the Bayesian variable selection of the Hess approach based
on a multi-variate regression based on sparse regression matrices

For MT-Hess all three steps are performed and for the Hess approach performed on
one condition only step 1 and 3 are performed. We use this approach first to identify
shared regulation between left-ventricular and liver tissue, and second to validate and
enhance the number of distantly regulated genes that have been identified by the
global QTL mapping using MatrixEQTL.
The output from both Hess approaches are marginal posterior probability of inclusion
(MPPI) matrices, which give an evidence measure for the association of a genotype
and a trait. To account for multiple testing, we calculated MPPI cutoffs that corre-
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spond to the FDR cutoffs 1%, 5% and 10% (Table 3.1). The selected algorithm to
calculate the FDR cutoffs is commonly used to control for hierarchical errors in QTL
studies [66].

Table 3.1: MPPI cutoffs for the different datasets and three different FDR cutoffs 1%,
5% and 10%.

3.5 Performing RBP motif enrichment in

translationally regulated genes

In order to assess the regulatory potential of RNA binding proteins (RBP) we pre-
dict putative targets among regulated genes using RBP binding motifs. We there-
fore, downloaded all known rat RBP binding motif matrices from the CISBP-RNA
database [67], an online library of RBPs and their motifs. The motif matrixM = Mw,α

is a position frequency matrix (PFM) and records how frequently a nucleotide α has
been observed at position w within the alignment.
In total, the database contains 189 distinct RBP motifs for the rat. We evaluate the
potential binding affinity for each RBP by using the Transcription Factor Affinity
Prediction (TRAP) algorithm that was published by Manke et al. in 2008 [68, 69].
This allows us to test for enrichment of all provided binding motifs in a set of se-
quences.
Manke et al [68] describes basic idea for determining the affinity of binding motif as
such: M = Mw,α is a Wx4 motif matrix of a known binding site, where w = (1...W )

are the positions in the motif and α describes the four possible nucleotides A, C,
G, T. The entries in the PFM describe the nucleotide counts, which can be used to
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match each motif against any other DNA sequence of width W. The position-specific
contributions to the mismatch energy can be described as:

εw =
1

λ
log

(
Mw,max

Mw,α

)
. (3.9)

The different affinities of a given binding motif are ranked for each sequence region
and tested for an enrichment in a set of sequences.
We adapt this approach in order to predict binding affinities for RBP motifs instead
of transcription factor motifs in all translated genes. First, we run TRAP on the
DNA sequences including all isoforms of every translated gene in random order to
define a background set. Next, we generate our search datasets based on the QTL
mapping results, ordered by the most significant association per gene. We test the
genes showing a translational regulation for an enrichment of RBP binding sites. For
distant associations, we additionally test whether the detected RBP is located in the
distant locus of association.
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4.1 Assessing the quality of gene expression

sequencing data

RNA-Seq as well as Ribo-Seq data is very dependent on the quality of the RNA,
the sequencing library preparation and sequencing depth. Therefore, the quality of
sequencing data can vary across datasets and this can impact the results of all down-
stream analyses.
In order to avoid differences in datasets due to varying data quality, we establish a
quality control pipeline (Chapter 3.1), that contains 7 analysis steps ranging from
assessing the read length distribution and periodicity of each Ribo-Seq sample, to
evaluating the complexity of each sequenced library and similarity across samples.
These different steps are described in more detail in the following paragraphs.

4.1.1 Determining Ribo-Seq specific parameters and removing

non-mRNA sequences

As ribosome footprints span roughly 28-29nt, the expected read length after removal
of sequencing adaptors peaks at this length. We assess the read length distribution
of each sample to estimate the quality of the Ribo-Seq experiments. Figure 4.1.1
depicts the pooled read length distribution of all 30 animals of the rat RI panel and
the majority of reads match the expected read length.
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Figure 4.1.1: Read length distribution of the Ribo-Seq data of 30 rat RI samples in
left ventricle and liver tissue. X-Axis shows the read length in base pairs
(bp), the y-axis shows the percentage of reads that have a specific length.

During library preparation of both sequencing protocols, a cleaning step that depletes
rRNA is performed, but this step is not removing all non-mRNA sequences. So, both
datasets are aligned against the abundant sequences to remove and quantify tRNA,
rRNA and mtRNA (as described in chapter 3.1). This allows us to only map and
quantify reads mapping to mRNA. The average percentages of rRNA, tRNA and
mtRNA in each dataset are summarised in Table 4.1 and the individual percentages
per sample are depicted in Figure 4.1.2.

Table 4.1: Average percentages of rRNA, tRNA and mtRNA in RNA-Seq and Ribo-Seq
data of both tissues

In left ventricle higher mtRNA levels are observed in both RNA-Seq and Ribo-Seq
data compared to liver. This was previously described by Mercer et al [70], who
show that mitochondrial transcript abundance is increased in tissues with high-energy
demands, such as heart and muscle. Furthermore, we observe high rRNA levels in
the liver Ribo-Seq data, as previously described by [32]. This reflects the actively
translating state of hepatocytes, which are metabolically very active and
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Figure 4.1.2: Percentage of reads mapping to specific RNA species in left-ventricular
tissue (top) and liver (bottom). The two left panels show the distri-
bution of reads in polyA RNA-Seq data and the right panels show this
accordingly in the Ribo-Seq data.

produce many proteins. In contrast, the left ventricular ribosomes are less actively
translating and as a result make less protein compared to liver.

4.1.2 Determination of 3-nt periodicity

One important quality measure of Ribo-Seq data is the number of reads that map
to the primary open reading frame. We determine the P-site of every read, which
corresponds to the 12th nucleotide, and map this position to the first 100nt of each
gene. The P-sites map to the first nucleotide of a codon triplet. This strategy allows
to observe the periodic nature of the ribosomes. The count data is not filtered for
periodic reads, but the percentage of periodic reads serves a quality measure for
each sample. For the identification of actively translated genes using RiboTaper, we
require 70% of the reads of a specific length to be in-frame, resulting in the inclusion
of the two most prominent read lengths (28nt and 29nt). Figure 4.1.3 shows a meta
periodicity plot of all RI samples per tissue.
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Figure 4.1.3: Ribo-Seq periodicity of left ventricle and liver samples matching the
read length 28nt and 29nt. On the x-axis the first 100nt of all translated
mRNAs are shown and on the y-axis the corresponding number of reads
in millions. The bar plot on the right of each periodicity plot illustrates
the percentage of reads falling into the 1st, 2nd or 3rd frame (0, +1, +2,
respectively). The high quality of the data can be observed by the large
percentage of reads that map to the primary open reading frame (frame
"0").

4.1.3 Alignment of sequencing libraries

Selecting the correct reference genome for the sequence alignment is a crucial step
for all following analyses. As each rat of the RI Panel is a mosaic of the two founder
strains: BN.Lx/Cub and SHR.Ola, the alignment rates might differ due to genetic
variability. The genome of BN.Lx is very similar to the BN reference genome, with
only about 102,000 SNPs [27]. On the other hand, the SHR differs at 3.6 million
SNPs from the reference genome [29]. The imbalance in genetic similarity towards
the reference genome might lead to mapping biases towards the BN.Lx samples.
To address this, we aligned RNA-Seq and Ribo-Seq data of the SHR parental animals
1) to the reference genome Rattus Norvegicus 6.0 (Rnor6.0) from Ensembl version 82
and 2) to a SNP-infused genome, where we used the reference genome as a basis and
inserted all known strain-specific SNPs.
We performed a differential expression analysis using DESeq2, in order to assess
the impact of genetic variants on the alignment. In left ventricle, we identified 68
differential genes in the RNA-Seq and 62 in the Ribo-Seq data. Similarly, we found
48 genes on the RNA-Seq and 37 on the Ribo-Seq level in liver using an FDR ≤
0.05. Applying a fold change cutoff of log2(±1.5), leads to the loss of all differentially
expressed genes in both tissues and datasets. As the number of differential genes is
very low, we decided to align the RI panel samples to the reference genome. We allow
two mismatches per 29mer read in order to account for SHR SNPs.
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As described in the introduction, Ribo-Seq reads only map to the coding region of the
gene whereas mRNA-Seq reads map to the entire mRNA transcript, thus including
the 5’ and 3’ untranslated regions. To be able to assess the extent of translational
regulation, we only quantify those reads that map to the annotated coding DNA
sequence (CDS) of the gene. If there is no CDS annotated, we count all reads that
map to the exons of each gene and merge these counts into a matrix.
In Figure 4.1.4 the number of sequenced reads is shown for each RI animal in the left
ventricle (upper panel) and liver (lower panel).

Figure 4.1.4: Alignment statistics of left ventricle and liver RNA-Seq and Ribo-Seq
data. The upper panels show the left ventricle statistics; left of RNA-
Seq and right Ribo-Seq. The lower panels show these numbers for liver
accordingly. Black bars represent the number of input reads, grey all
mapped reads, which are broken down into uniquely mapping and multi-
mapping reads in brown and orange. The green bars show the CDS
counts that enter the analysis.

Despite the total number of sequenced reads varying between the two sequencing
approaches, we get a similar number of uniquely aligned counts mapping to the coding
DNA sequence. On average, we observe in RNA-Seq LV 20.3 Mio. reads and Ribo-
Seq LV 27.8 Mio reads, RNA-Seq Liver 42.7 Mio. reads and Ribo-Seq Liver 41.5
Mio. reads. The library specific differences in depth can have biological or technical
reasons, but we account for them by applying a joint normalization strategy that is
described in chapter 3.1.
In the liver dataset, HxB01 occurs as an outlier in terms of library depth in the
RNA-Seq data. Experimental parameters such as the RIN value, which describes
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the RNA integrity number of sample HxB01 was comparable to other samples with
higher coverage (RIN: 8.9) and therefore the sample is considered for the analysis and
further investigated at later quality control steps.

4.1.4 Assessing the library complexity

The library complexity of RNA-Seq as well as Ribo-Seq data provides another measure
of quality. Low-complexity libraries contain a large number of sequenced reads that
correspond to the same gene. Experimentally, low complexity of sequencing libraries is
caused by over-amplification during polymerase chain reaction (PCR). Increasing the
sequencing depth would mainly gain redundant information. In order to evaluate the
complexity, a library complexity prediction using PRESEQ [71] is performed to all 4
datasets. PRESEQ defines complexity as the expected number of distinct molecules
that can be observed in each set of sequenced reads. In Figure 4.1.5, the library
complexity of all four datasets is illustrated. In general, the RNA-Seq and Ribo-Seq
library complexity plots look slightly different, which can be explained by different
sequencing depth of RNA-Seq compared to Ribo-Seq resulting in higher numbers
of uniquely mapping reads. The red line indicates the average depth at which the
data was sequenced and it confirms that none of the samples were sequenced to
saturation. Mapping biases caused by variable read length can be excluded, as the
RNA-Seq data was trimmed to 29mer reads and aligned similarly. All four datasets
are of high quality with a 71-87% ratio of uniquely mapping reads to the total number
of sequenced reads.
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Figure 4.1.5: Library complexity results of all 30 libraries in each experiment based
on extrapolation of the sequencing results. left ventricle datasets in
the upper panel; left RNA-Seq and right Ribo-Seq. Liver datasets in
the lower panel accordingly. The red vertical line indicates the average
sequencing depth of our samples.

4.1.5 Sample-to-sample correlation

In order to test the datasets for outliers, a pairwise Pearson correlation was calculated.
The mean sample correlation is required to show a Pearson’s r2 ≥ 0.85. All samples
meet the correlation requirements. Figure 4.1.6 summarises the cross sample Pearson
correlation of all datasets. In general, we observe a slightly better correlation across
the RNA-Seq samples compared to the Ribo-Seq data.
Interestingly, the RNA-Seq liver sample HxB01, which was observed as a putative
outlier in the alignment and count statistics, correlates very well with all other samples
of the same experiment. This suggests that this sample is of high and comparable
quality to the other samples despite that sample HxB01 has a lower sequencing depth.
The RI panel on average consists of 15 animals sharing the same genetic background
at every genomic locus, resulting in 15 replicates per SDP. The generation of RNA-
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Figure 4.1.6: Sample correlation using Pearson r2 of mRNA-Seq data. Red line indi-
cates the threshold r2 ≥ 0.85 to define outliers.

Seq and Ribo-Seq data of true biological replicates would easily upscale the setup to
hundreds of experiments. In order to estimate the technical variability across the 30
RI strains in a controlled setting, Ribo-Seq data of 3 additional biological replicates
of two RI strains was generated and compared. The Pearson correlation showed an
r2 > 0.98. This data of the biological replicates indicate that the data generation
is reproducible and we only expect little variability across samples due to technical
biases (Figure 4.1.7).
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Figure 4.1.7: Pearson Correlation analysis of 3 biological replicates in two RI strains
using Ribo-Seq of liver tissue. The numbers indicate the Pearson r2

and the scatterplots show the comparison of corresponding genes in two
different samples.

4.1.6 Determination of putative confounding factors

In comparative analyses, such as a differential expression analysis and QTL mapping,
accounting for putative confounding factors, such as date of library preparation, se-
quencing date, RIN score (RNA integrity number) and library concentration, but also
different laboratory technicians, can have large impact on the results. All datasets
have been tested for confounding factors as described in chapter 3.1. Besides the
small effect of the sequencing date in the liver RNA-Seq data, all tested technical
covariates revealed no significant impact on the data (Table 4.2).
The animals, that are described in this thesis, were treated and selected under very
controlled settings, including sex and age matching, identical housing and nutrition.
This taken together with the three biological replicates showing little technical vari-
ations across experiments, suggest that there are no major confounding factors that
need to be considered for the QTL mapping.
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Table 4.2: Resulting ANOVA p-values testing whether a technical factor has impact
on the data. We used the first principle component (PC1) that describes
50-80% of the variance in the data.

4.2 Characterising and comparing translated genes

in rat left ventricle and liver

Quantification tools such as HTSeq [54] provide read counts for every gene listed in
a provided annotation file. Further filtering of the gene set by a certain expression
level is important for the following analyses. An expression cutoff for RNA-Seq data is
applied to define the set of genes that is expressed in a specific sample to avoid dealing
with lowly expressed genes. For this dataset, we first apply an expression threshold of
mean(RPKM) ≥ 1 for every gene. RPKM is the abbreviation for reads per kilobase
of transcript per million mapped reads and this is a standard way to normalise RNA-
Seq data taking the library-size and gene-length into account, in order to make values
comparable across genes and samples.
This filtering step provides us with a set of 11,858 transcribed left ventricle genes and
10,362 genes in liver. Figure 4.2.1 shows the distribution of all RPKM values across
the 30 animals in left ventricle and liver, respectively.

The light grey bars show all measured genes and the overlapping dark grey bars show
the RPKM distribution of the genes that passed the filtering criterion. Some individ-
ual values are below 1, as the mean RPKM was used.
The aim of this thesis is to study genes that are translated in the two tissues of in-
terest. To define all actively translated genes, the 3nt periodicity in our data inferred
by the tool RiboTaper to define actively translated genes. Additionally, RiboTaper
enables the identification of novel translation events, such as genes that have been pre-
viously defined as non-coding (lincRNAs, antisense RNAs and processed transcripts)
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Figure 4.2.1: The histogram illustrates the count distribution of all measured genes in
light grey and the overlaying dark grey bars highlight the count distri-
bution of the expressed genes that have mean(RPKM) ≥ 1.

or small open reading frames in untranslated regions (uORFs and dORFs).
The combination of filtering for transcribed and translated genes defines the subse-
quently used gene set for left ventricle and liver, resulting in 9,336 liver genes and
10,531 genes in the left ventricle. The vast majority (8,622 genes) are found to be ex-
pressed in both datasets (Figure 4.2.2 a). In total, we identify 98 translated lncRNAs
in the rat liver and left ventricle, 42 of them are left ventricle-specific and 24 liver-
specific (Figure 4.2.2 b).

Figure 4.2.2: Number of shared genes in left ventricle and liver. a) shows all genes
and b) zooms into the potentially translated lncRNAs.
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The lncRNAs include 46 lincRNAs, 1 antisense gene and 27 processed transcripts in
the left ventricle and 38 lincRNAs, no antisense RNAs and 19 processed transcripts
in liver.
Among the 10,531 genes expressed in the left ventricle, we observe 10,457 protein-
coding, 74 lncRNAs, 24 pseudogenes and one snoRNA to be translated in our data.
Of the 9,336 genes expressed in the liver, 9,279 are protein-coding, 57 are translated
lncRNA and 16 are categorised as pseudogenes (Figure 4.2.3).

Figure 4.2.3: Genes with RiboTaper evidence are categorised by gene biotype, which
are used for further analyses.

For further analysis, we used these two sets of genes that are found to be translated.
Furthermore, the similarity of the jointly normalised RNA-Seq and Ribo-Seq data
was evaluated by Pearson correlation as described in chapter 3.1. In both tissues, we
observe Pearson r of nearly 0.9, which indicates that both datasets are well normalised
and can be treated as comparable for the following analyses (Figure 4.2.4).
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Figure 4.2.4: Pearson correlation of polyA RNA-Seq vs. Ribo-Seq on filtered and
jointly normalised and log transformed counts as described in 3.1.

4.3 Identification of gene expression quantitative

trait loci (QTL)

In order to identify genes that are regulated on the transcriptional and translational
level with a genetic basis, quantitative trait loci (QTL) mapping is performed. In
this thesis two QTL mapping approaches have been used: a) MatrixEQTL to per-
form pairwise QTL mapping of gene-SDP pairs and b) MT-Hess to identify common
regulation of different datasets of a group of genes that goes beyond pairwise com-
parisons.
The resulting number of associated genes derived by pairwise comparisons is sum-
marised in table 4.3. In left-ventricular tissue, we identify 2,385 genes showing a

Table 4.3: Number of genes that have been detected to be significantly associated to at
least one SDP in the individual MatrixEQTL runs per tissue. The groups
are not exclusive to each other.

significant association on the transcriptional level (eQTL) and 1,146 genes on the
translational level (riboQTL), in liver 1,278 genes show an eQTL and 1,270 a ribo-
QTL, using an FDR of 0.05 for local and 0.1 for distant associations.
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Local associations are strongly enriched (Table 4.4) compared to distant associations,
which can be explained by lower power to detect distant associations, but also by the
stringent criterion to define associations as being distant.

Table 4.4: Results of Fisher’s Exact test evaluating the enrichment of significant local
associations compared to distant associations.

Permutation testing on each dataset for local and distant associations separately is
performed in order to identify true positive hits and to filter for false positives. QTL
mapping on 10,000 permutations for all traits vs. all genotype patterns is carried
out by shuffling the labels of the samples in the genotype matrix and keeping the
order in the gene expression matrix. This destroys the association of gene expression
and genotype pattern. Based on the number of permutation tests that are performed
and the observation of more extreme p-values for a certain gene, we can calculate an
empirical p-value for each gene-SDP pair.

Empirical p-value =
number of more extreme p-values

number of permutations
(4.1)

The permutation testing allows us to generate a reliable set of genes that are regu-
lated by genetic variants. These genes can be grouped by the location of the gene in
relation to the genetic variant. The significance threshold used for defining regulated
genes are FDRlocal ≤ 0.1, FDRdistant ≤ 0.2 and an empirical p-value ≤ 0.0015, which
results from less than 15 more extreme associations per gene in 10,000 permutations.
Furthermore, the setup of the experiment allows the classification of regulated genes
by their level of gene expression that is affected by the genetic variant. By over-
lapping the different groups of eQTL and riboQTL, genes which show a change on
the transcriptional and translational level can be identified, subsequently defined as
eQTL+riboQTL. Genes only showing a significant change on the transcriptional level
that is absent on the translational level are called eQTL, and genes where the gene
expression change only occurs on the translational level are called riboQTL (Table
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4.5).
This categorisation results in hundreds of local eQTL and riboQTL in both tissues.
In left ventricle and liver we observe that genes, that show both a transcriptionally
and translationally changed gene expression pattern, overlap to a large extent. This
suggests that gene expression regulation which initiates on the transcriptional level
is often forwarded to the translational level. In the left ventricle, multiple distant
associations especially enriched on the translational level are found, whereas in liver
no distant riboQTL are observed.

Table 4.5: Grouped QTL results after permutations

In conclusion, the study design allows to classify the associated genes based on three
different criteria: 1) positional relation between associated variant and gene, 2) the
layer of regulation that shows a gene expression change, and 3) the tissue in which
the association was detected. The following sections will describe these classifications
in more detail.

4.3.1 Local and distant associations

First we classify the QTL results based on the positional relation between associated
variant and gene. Figure 4.3.1 illustrates this positional relation between gene loci
and SDP loci in a genome-wide plot of all gene-SDP pairs showing the significant
associations in left ventricle and liver.
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Figure 4.3.1: Genome-wide association plot of left ventricle and liver QTL mapping.
Red circles represent eQTL and blue riboQTL. Local associations are
visualised by dots along the diagonal and distant associations by off-
diagonal dots. Genes that are regulated by the same SDP on both layers
of regulation are shown by two overlaying circles.
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As expected for QTL analysis, we observe a strong enrichment of associations along
the diagonal which represent local associations, whereas the off-diagonal dots show
the distant associations. In this figure the eQTL and riboQTL are depicted in one
graph to show where associations occur on both layers of regulation. Additionally to
the spurious off-diagonal dots, we also observe vertical stretches of associations, that
represent SDPs that regulate multiple genes. The two vertical blue lines in the upper
figure (left ventricle) represent distant associations that are purely driven by trans-
lational changes. Those distant riboQTL cluster will be further discussed in chapter
4.4.4.
Overall, hundreds of local associations have been identified in left ventricle and liver.
The vast majority of all local QTL are located in a 10Mb window around the tran-
scription start site (TSS) of the regulated genes. The relation between distance and
strength of association is similar across tissues and layer of regulation (Figure 4.3.2).

Figure 4.3.2: Distance of significantly associated SDP to the TSS of the associated
gene. This plot is limited to associations on the same chromosome.
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4.3.2 Disentangling transcriptional and translational regulation

- Performing translational efficiency QTL (teQTL)

mapping

The full repertoire of translational regulation includes more than only changes that
purely occur on the translational level. Also changes that initiate on the transcrip-
tional level and are absent on the translational level, as well as transcriptional differ-
ences that are enhanced on the translational level, describe translational regulation.
By only defining translational regulation in genes that only show a riboQTL, we
would miss many genes that are regulated translationally. This means that simply
classifying genes based on their presence/absence of eQTLs and/or riboQTLs is not
sufficient to understand the regulatory potential of genetic variants on translation.
Therefore, the translational efficiency (TE) is calculated and used as an additional
quantitative trait using the same parameters as before. The translational efficiency
allows to correct Ribo-Seq counts for the RNA-Seq effects. Using this approach and
applying permutation testing as described before results in 71 local and 68 distant
associations in the left ventricle and 88 local and 7 distant teQTLs in liver. The same
significance cutoffs FDRlocal ≤ 0.1, FDRdistant ≤ 0.2 and empirical p-value ≤ 0.0015
have been used in order to define significant teQTLs (Figure 4.3.3).

Figure 4.3.3: Overlaps of local QTL in left ventricle and liver

By overlapping the teQTL and riboQTL results, we are able to identify genes that
are regulated on the translational layer only. In the left ventricle data, 9 genes show
the same QTL for translation levels and translational efficiency. Among these 9 genes
(Lama4, Mlec, Lrp1, Lamb1, Ost4, Agrn, Hspg2, Scarf1 and B4galt1 ), 5 genes are
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regulated by the same SDP on chromosome 3, which will be further discussed in chap-
ter 4.5. Mlec, Ost4 and Scarf1 are regulated by different SDPs in close proximity on
chromosome 8. This putative trans cluster will be further discussed in chapter 4.4.4.
In liver we do not observe any genes that are regulated purely on the translational
level, indicated by having a teQTL and a riboQTL pointing to the same locus and
genes.

4.3.3 Tissue comparison of genetically regulated genes

The total number of genes that are expressed in left ventricle and liver according to
our transcription and translation thresholds are 8,266 genes, which means that the
vast majority of the genes is expressed in both tissues. We detect 1,909 genes that
are only expressed in left ventricle but not in liver, and 714 genes in liver specifically.
In order to understand the role of translational regulation shaping a disease phenotype
in more detail, it is important to study the role of genetic variants in different tissues
as shown by the Genotype-Tissue Expression (GTEx) Project [72]. The experimental
setup enables us to define genes that are only expressed in one of the two tissues
and to identify tissue-specific regulation in these genes. Shared regulation in the two
tissues can be studied by overlapping the results from pairwise association mapping
or by using a joint QTL analysis performed with MT-Hess.
Among the 8,622 genes we identified common regulation in 126 genes on RNA-Seq
level that are locally associated to the same SDP in both tissues. 81 genes carry a
common local riboQTL and 20 genes a local teQTL using the pairwise association
testing approach (Figure 4.3.4).

Figure 4.3.4: Overlap of genes that are expressed in both tissues and have a shared
local QTL
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The results suggest that common regulation mostly initiates on the transcriptional
level and is often forwarded to the translational level. The low number of genes that
also show a teQTL in both tissues can be explained on the one hand by lower effect
sizes of TE that are caused by a smaller dynamic range. But on the other hand it
suggests that regulation initiating on the translational level is more tissue-specific
than transcriptional regulation.
Only one gene is distantly regulated in both tissues, the transmembrane and coiled-
coil domain family 2 (Tmcc2 ) gene, which is located on chromosome 13 and regulated
by an SDP on chromosome 1. Figure 4.3.5 shows two overlaying Manhattan plots,
one for left ventricle in red and one in green for liver. The y-axis shows the strength
of the associations and the x-axis the genomic location of each SDP. The black box
shows the genomic location of Tmcc2. The overlay illustrates that the gene does not
show any additional associations locally or distantly in either of the two tissues. So,
the gene expression regulation is shared between both tissue and specifically regulated
by a distant locus on chromosome 1.

Figure 4.3.5: Manhattan plot of Tmcc2 illustrating the distant eQTL on chromosome
1. The association results in the left ventricle are depicted in red and
orange and the results in liver are light and dark green.
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Tmcc2 shows an up-regulation on the transcriptional level in animals carrying the
SHR genotype at the distant QTL. The translation levels of Tmcc2 are showing no
significant difference between the two genotype alleles, which suggests translational
buffering (Figure 4.3.6).

Figure 4.3.6: Gene expression of Tmcc2 separated by shared distant eQTL in left
ventricle and liver.

In order to enhance these findings of shared regulation across tissues, we perform a
joint QTL mapping analysis of left ventricle and liver using the MT-Hess approach.
Interestingly, no shared eQTL are observed in the two tissues. Timp1, which is lo-
cated on the X chromosome, shows a comparable expression pattern in both tissues
resulting in a riboQTL.
The fact that we cannot find shared gene expression regulation across the two tissues
can have various explainations. In order to reduce the amount of false positive associ-
ations, very stringent cutoffs are chosen, which could result in missing those associa-
tions with smaller effect sizes across tissues. Langley et al published 158 trans-eQTL
cluster across seven tissues in the rat RI panel [39] using a similar QTL mapping ap-
proach. Only 13 out of these trans eQTL cluster have been identified in at least two
tissues. This suggests on the one hand that adding information of additional tissues
might increase the power to detect shared regulation, but on the other hand that even
having seven tissues only results in a small number of genes regulated across tissues
over longer distances.
These results require careful interpretation, as the absence of a significant association
cannot prove tissue-specific regulation. In order to derive tissue-specific regulation
that only occurs in one of the two tissue, we assess the effect sizes of each gene-
SDP pair and calculate the ratio of the effect sizes. A gene-SDP pair is defined as
tissue-specific, if it only shows a significant association in one of the tissues and if
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the absolute ratio of effect sizes is 10 times more extreme in one or the other tissue
(±3.322 on a log2 scale; Figure 4.3.7 a).
The absolute ratio of effect sizes is defined as abs(effect size left ventricleS,G / effect
size liverS,G) for each SDP (S) - gene (G) pair.
We identify 88 genes showing left ventricle-specific local eQTL and 54 liver-specific
genes with a local eQTL (Figure 4.3.7 b). On the translational level, we observe 38
locally regulated genes in left ventricle and 66 in liver. The majority of associations
that act over longer distances have been observed in the left ventricle including 5
genes on the transcriptional and 16 on the translational level. 3 liver-specific genes
have been identified to show a distant eQTL.

Figure 4.3.7: a) Example distribution of absolute beta ratios on a log2 scale for every
SDP-gene pair that is showing local eQTL in liver and/or left ventricle.
The grey bars represent the selected gene-SDP pairs that show an 1/10
≤ absolute beta ratio ≥ 10. b) Corresponding classification of gene-SDP
pairs as being liver- (green) or left ventricle-specific (red) associations
exemplary on the local eQTL results.

In summary, we identify 16-25% tissue-specific regulation among local eQTL and
riboQTL and 20-45% of genes that are regulated in a tissue-specific manner over
longer distances. Even though this approach is very stringent, it allows the separation
of genes just missing the significance threshold from those that indeed show tissue
specific regulation.
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4.4 Studying different mechanisms that regulate

translation

As previously pointed out, genetic variants can be coding or non-coding in order to
affect translation levels of a gene. The following paragraph describes known mecha-
nisms of translational regulation. Genetic variants that change the coding sequence
can for example remove or create a start or stop codon or change the reading frame
of a protein. Non-coding variants occur outside the coding DNA sequence of a gene
and change translation rates e.g. by disrupting or newly creating binding sites of
miRNA or RBPs. Furthermore, variants can change an IRES or an uORF resulting
in a translational regulation.

4.4.1 Identifying causal variants in local QTL

Causal variants define genetic alterations that have a consequence on the protein se-
quence of a gene, e.g. they result in a stop gain or stop loss, change the reading frame
(frameshift) or the amino acid sequence (missense) of a gene. In order to identify
these variants, we predict their effects with the Variant Effect Predictor (VEP) tool
from Ensembl [73]. This can guide the identification of causal variants in local QTL.
Therefore, first all SNPs located in the range of the associated local SDPs are iden-
tified and the consequences of each variant are predicted. This allows us to link
putative consequences to the detected local QTL.
VEP predicts a damaging effect of two genetic variants on the corresponding associ-
ated proteins, which both show an eQTL and a riboQTL in liver. Additionally, we
find 39 variants that have a predicted amino acid change with moderate impact on
the amino acid sequence of the gene. In order to evaluate the impact of the missense
variants, we annotate them with a protein function prediction tool that is applicable
to rat - the scale-invariant feature transform (SIFT) [74] score (Table 4.6). Among
those 39 only 6 variants are predicted to be deleterious missense mutations. The two
examples with a predicted damaging effect will be further discussed in the following
paragraph. They include a stop gain mutation in Ces2e that leads to a premature
stop codon in exon 10, and a variant in an essential splice site of Mst1 at the donor
site of exon 6.
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Table 4.6: Variant effect prediction results of all local associations that either have
high impact or moderate impact on the gene that is regulated.

By definition, a stop gain mutation leads to a premature stop codon that often results
in a nonsense mediated decay (NMD) unless it occurs in the same exon as the canon-
ical stop. NMD is a process that is present in all eukaryotic cells, which eliminates
RNA transcripts that contain premature stop codons. During mRNA processing the
exon-junction complex binds to each exon-exon junction and this complex normally
gets removed by the ribosome in the first round of translation. If there is a premature
stop codon and the ribosome does not reach the exon-junction complex it will retain
at the mRNA. This activates the NMD pathway via up-frameshift proteins (UPF),
which initiate the degradation of the mRNA [75, 76].
The degradation of the mRNA carrying the mutated allele often reduces the mRNA
as well as the translation levels. Sometimes the wild type allele can compensate for
the degradation of the mutant allele, which leads to unchanged transcription and
translation levels of the gene. By assessing the allele specific expression of a gene, a
shift in allele ratios from heterozygous to homozygous transcription can be observed.
The observed stop gain mutation is occurring in the 10th of 13 exons in the gene
carboxylesterase 2E (Ces2e). We observe that the stop mutation in animals carrying
the SHR genotype correspond to a down-regulation on the transcriptional and trans-
lational level (Figure 4.4.1), which can be explained by partial NMD. In line with
this hypothesis, we observe decreased levels on both layers of gene expression in the
samples that carry the premature stop.
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Figure 4.4.1: a) Expression levels of Ces2e on the RNA-Seq and Ribo-Seq separated
by local QTL. b) Schematic of induced non-sense mediated decay by
presence of pre-mature stop codon.

The second example is the macrophage stimulating gene 1 (Mst1 ), which carries a
variant in an essential splice-site and shows reduced gene expression in animals that
have a loss of the splice donor site (Figure 4.4.2. a). Similar to Cse2e this gene is
only expressed in the liver data. According to the human gene expression data of
the Genotype-Tissue Expression (GTEx) Project [72] Mst1 is liver-specific across 53
human tissues (Figure 4.4.2 b).
We performed a targeted splicing analysis on this gene based on the SDP that carries
the splice donor variant. Figure 4.4.2 c shows the percentage of spliced-in (PSI) reads
per exon, which is the ratio of reads that are matching the exon and those that span
the exon [77]. The PSI analysis is not showing significant differences between animals
that carry the BN or the SHR genotype at this locus.
The splice site mutation occurs at the donor site of exon 6, which leads to lower levels
ofMst1 in both RNA-Seq and Ribo-Seq. The additional down-regulation on the Ribo-
Seq level indicates an additional translational regulation. The disrupted essential
splice-site likely leads to intron retention of intron 6 that activates the non-sense
mediated decay machinery ultimately degrading the mRNA that was not properly
spliced.
Both examples illustrate that understanding the exact mechanism of how genetic
variants regulate gene expression is very challenging, even when potentially damaging
variants in the QTL region are known. It is likely that the described two variants
in Ces2e and Mst1 cause the reduced expression levels, but there can be additional
genetic effects which have not been considered here.
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Figure 4.4.2: a) shows the gene expression levels in the animals that carry the BN
allele and those that carry the SHR allele in the SDP that was sig-
nificantly associated to the gene expression levels of Mst1. b) RNA-
Seq gene expression of Mst1 across 53 human tissues according to
the Genotype-Tissue Expression (GTEx) Project. c) This PSI plot
shows the splicing results. The lower panel represents a delta PSI plot
mean(PSISHR)−mean(PSIBN ).

4.4.2 Understanding the contribution of uORFs to

translational regulation

Upstream ORFs (uORFs), which are short ORFs that are located in the 5’ untrans-
lated region (5’UTR) of a gene, are known translational regulators. There are two
different types of uORFs, one that starts and ends upstream of the CDS of a gene and
one that starts upstream of the gene and overlaps with the mainORF (mORF). Both
types of uORFs have the capability to decrease the translation rates of the mORF by
competing for translating ribosomes (Figure 1.2.4).
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The general idea is that uORF translation levels and mORF translation levels are
anti-correlated, so that high uORF translation rates lead to low mORF translation
rates and vice versa, as illustrated in Figure 4.4.3 [6].

Figure 4.4.3: Translational regulation by uORFs a) The uORF is translated to a high
extent and leads to lower translation levels of the mORF because the
ribosomes dissociate at the stop codon of the uORF. The transcription
levels of uORF and mORF are similar. b) The uORF is not translated,
which results in increased translation levels of the mORF compared to
the uORF while the transcription level of the gene is unchanged

To see whether this assumption can be validated in our data, we first use the tool
RiboTaper to identify all uORFs in left ventricle and liver according to our data. We
classify two types of ORFs as uORFs: independent uORFs, which are positioned up-
stream and fully separated from the mORF, and overlapping uORFs, which initiate
translation upstream of the mORF in a different reading frame and only terminate
downstream of the mORF translation initiation site (TIS). The independent uORFs
can be easily filtered from the RiboTaper output, as they are pre-classified as uORF.
The overlapping uORFs can be derived by filtering the output as following: the ORF
has to start in the 5’UTR and overlap the annotated CDS of the same transcript. The
uORF should not be in the same frame as the mORF and so the predicted resulting
peptide should show no homology with the canonical ORF.
We identify a total of 795 uORFs (in 690 genes) that are independent and 330 over-
lapping uORFs (in 326 genes) in the left ventricle. In liver we obtain 929 independent
(in 849 genes) and 330 overlapping uORFs (in 327 genes). Approximately, one third
of the genes that have any type of uORF are shared between left ventricle and liver
as depicted in Figure 4.4.4.
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Figure 4.4.4: Venn diagram showing the number of detected uORFs in left ventricle
and liver

We observe a higher number of detected uORFs in the liver data, which indicates
that translational regulation in hepatic tissue is mostly mediated locally. This would
explain the lower number of distant riboQTL and teQTL in the liver.
In order to assess possible translational regulation caused by uORFs two different ap-
proaches have been used. First, we calculate Spearman’s correlation of every uORF-
mORF pair using the uORF Ribo-Seq levels and mORF translational efficiency. The
Ribo-Seq coverage of each uORF was normalised by its length and library depth to
make it comparable to the TE of the mORF.
The hypothesis is that increased translation rates of the uORF results in a decreased
translational efficiency of the mORF, shown by an anti-correlation of the uORF-
mORF pair. Surprisingly, the majority of uORF-mORF pairs do not show any cor-
relation rather than a positive or negative correlation, see Figure 4.4.5.
In left ventricle, we observe 8 uORF-mORF pairs that show a negative Spearman’s
rho ≤ -0.5 (Wipi2, Dexi, Papola, Rb1cc1, Brd3, Tox4, Ext1 and Rfwd2 ) and 4 in
liver (Gprc5c, Yeats4, Tlr3 and Icam2 ). Icam2 shows the strongest anti-correlation
with a Spearman’s rho of -0.64.

63



4 Results

Figure 4.4.5: Beeswarm plot showing the Spearman correlation of all uORF-mORF
pairs in both tissues on the x-axis. In red are uORF-mORF pairs with
Spearman’s rho ≤ -0.5 highlighted.

In Figure 4.4.6 two examples that show a significant anti-correlation of the uORF
and their mORF translation are depicted.
The result of this analysis suggests that uORFs have a moderate but measurable
impact on the efficiency of mORF translation even though for the majority of cases
we do not observe an anti-correlation.

Figure 4.4.6: Two examples of anti-correlated uORF and mORF translation.

To investigate this further, we applied a second approach. QTL for the translation
rates of uORFs have been assessed and the resulting uORF riboQTL have been over-
lapped with those observed in the mORF. Only local associations have been com-
puted, as the assessment of distant QTL is not necessary, because distant genetic
variants influencing the translation rates of uORFs are not expected.
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In total, 46 uORF riboQTL in 26 genes in the left ventricle and 18 uORF riboQTL
in 13 genes in liver have been detected. Overlapping these uORF riboQTL on a gene
level with the mORF riboQTL or teQTL results in five genes carrying a uORF ri-
boQTL in the left ventricle (Rtel1, Vwa7 and RGD1306001 in overlapping uORFs
and Adamts12 and Gpr22 in independent uORFs). Rtel1 and Adamts12 additionally
show a local teQTL.
In liver, five genes with a local riboQTL for the mORF and the uORF are observed.
Pvrl1 shows the associations with an independent uORF and additionally four over-
lapping uORFs have been linked to genetics (Rtel1, Evc, Mocos and Lrrc45 ). Ex-
emplary, the expression levels of Rtel1 in left ventricle are shown in Figure 4.4.7
separated by the local genotype that has been associated to both the uORF and the
mORF.
These data suggest that not all uORFs regulate the translation rates of the mORFs
via its abundance as previously observed by Chew et al. [8]. The regulation of mORF
translation seems to correlate with the presence of a uORF, which might be explained
by the resulting peptide that interferes with the translation of the mORF.

Figure 4.4.7: mORF and uORF expression of Rtel1 separated by local genotype of the
gene. The SHR genotype leads to a decrease translation of the mORF
and an increased translation of the uORF.
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4.4.3 Studying RBP binding affinities in order to understand

their ability to alter translation levels

Another group of potential translational regulators are RNA binding proteins (RBP),
which are proteins that bind RNA and carry structural motifs to bind to their target
genes in order to regulate gene expression in various ways. RBPs are known to play a
role in mRNA stabilisation, transport and localisation, but RBPs also regulate splic-
ing and polyadenylation [78].
RBPs can recognise their targets via two mechanisms: 1) by the geometry and shape
of the target gene [10] and 2) by a specific RNA motif that is located within the gene
body of the target gene [11]. We predict the affinity of RBPs to all translationally
regulated genes showing a local QTL. Hereby, we specifically focus on the role of
genetic variants. A genetic variant can alter the gene expression levels of the RBP
directly, which can lead to higher or lower levels of binding the target gene. Moreover,
a variant can be located at the target site changing the binding motif of the RBP and
act locally in close proximity to the target gene.
In the different QTL sets, we observed a slight enrichment of genes harbouring a
putative RBP binding site in genes showing a local teQTL (Table 4.7). In left ven-
tricle, we find 23 genes with a local teQTL and a predicted RBP binding site, which
results in a significant enrichment (Fisher’s exact test p-value 1.03e-46) suggesting
that purely translationally regulated genes might be modulated to a large proportion
by local variants that change the mRNA (e.g. motif or structure) of their target gene
so that the RBP can no longer bind.

Table 4.7: Amount of transcriptionally and translationally regulated genes harbouring
predicted RBP binding sites compared to the total number of transcription-
ally and translationally regulated genes.

Besides the cis-regulatory role of RBPs, they have can change the translation levels
of their targets over longer distances. To study these effects, we overlap distant QTL
regions with a list of known RBPs in the rat based on the CISBP-RNA database.
We find 8 RBPs in distant QTL regions that are contained in the database. In order
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to understand, whether these RBPs are in charge of regulating the translation levels
of the associated genes, we performed a target prediction for RBPs with a known
binding motif in the CISBP-RNA database. Binding affinities have been calculated
for all translated genes in order to identify their targets. None of the 6 RBPs show a
local QTL on either level of regulation. Unfortunately, the predicted binding targets
do not overlap the genes with a distant riboQTL and/or teQTL (Table 4.8).

Table 4.8: Distant teQTL that harbour RBPs listed in the CISBP-RNA database and
have a binding motif including the associated genes with those teQTL. Re-
sults of target prediction did not overlap the associated genes.

Even though, we were not able to draw conclusions about a specific relation between
translational QTLs and RBPs due to the limited number of RBP binding motifs that
are known for the rat, the data suggest that RBPs play a role in translational regula-
tion, which was observed by the enrichment of RBP targets among the translationally
regulated genes.

4.4.4 Assessing distantly regulated cluster of genes

Multiple genes linking to a single QTL form a distantly regulated QTL cluster. In
this study, we call QTL with at least 3 associated genes over longer distances a distant
QTL cluster. In total, 11 cluster have been observed in liver and left ventricle. The
majority of cluster are detected in left ventricle and mostly on the translational level,
i.e. a riboQTL and/or a teQTL.
In Table 4.9 all distant cluster are listed with the corresponding SDP ID indicating the
location of the QTL (e.g. "SDPG_03000054231" describes a locus on chromosome
3 starting at 54,231bp), all associated genes and the type of association found to be
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significant for the group of genes.

Table 4.9: List of all distant cluster with at least 3 genes being associated to the SDP.

We further grouped distant QTL cluster, that fulfil the following criteria in order to
increase the resolution:

• Neighbouring SDP

• large overlap in number of regulated genes
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• same layer of regulation

• similar strain distribution pattern (≤ 2 differences)

We observe two groups of QTL that show an overlap in regulated genes, one on
chromosome 3 and one on chromosome 8. Three out of four cluster identified on
chromosome 3 were grouped based on the above mentioned criteria. These three
cluster largely overlap in their group of regulated genes and mode of regulation.
Additionally, the SDPs differ only marginally from each other (Figure 4.4.8). The
three QTL are treated as one cluster subsequently.

Figure 4.4.8: Strain distribution pattern of the SDPs SDPG_03003960268,
SDPG_03006314843 and SDPG_03009805651 that form the dis-
tant cluster on chromosome 3. Each dot represents the genotype - BN
in black and SHR in red in the three SDPs across all RI lines.

The QTL cluster on chromosome 8 only show a very marginal overlap in regulated
genes and different strain distribution patterns (Figure 4.4.9), so they are not merged
for further analyses.
For all seven cluster, a Gene Ontology (GO) enrichment analysis using g:profiler [79]
was applied in order to understand their common function or involvement in similar
pathways. All expressed genes in left ventricle and liver respectively have been used
as background set in order to test for enrichment of GO terms, Kyoto Encyclopaedia
of Genes and Genomes (KEGG) pathways and binding sites for miRNAs and tran-
scription factors (TF) . This results in a significant enrichment for two translationally
regulated cluster, located on chromosome 3 and 8.
In total, 17 genes are regulated by the chromosome 3 locus and have been tested
for enrichment. The most enriched term is "basement membrane" accompanied by
other terms related to the extracellular matrix. Three regulated genes are linked
to extracellular matrix receptor interaction (Laminin alpha 4, Laminin beta 1 and
Agrin). Additionally, 7 genes are associated to calcium ion binding. Both terms can
be linked to heart disease and therefore might be of high relevance for shaping the
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SHR phenotype (Table 4.10).

Figure 4.4.9: Strain distribution pattern of the SDPs SDPG_08059217527,
SDPG_08052253560 and SDPG_08051402844 that are located on
chromosome 8 and regulate a number of genes on the translational level.
Each dot represents the genotype - BN in black and SHR in red in the
three SDPs across all RI lines.

Table 4.10: Results from g:profiler - testing for enriched terms for all 17 genes that are
regulated by distant cluster that is located on chromosome 3.

Of the three cluster on chromosome 8, only "SDPG_08051402844", associated with
12 genes, show a significant GO enrichment. The GO enrichment suggests a role in
aggresome assembly based on the 2/12 genes (Dlgap1 and Trim37 ).
All distant associations are visualised in a circos plot (Figure 4.4.10), which shows
the genomic positions of SDPs and genes on the outer circle and the associations as
connecting lines in the middle.
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The distant QTL that have been identified on at least one of the three layers, RNA-
Seq, Ribo-Seq and translational efficiency are displayed. By definition, distant asso-
ciations occur between SDPs and genes located on different chromosomes. We can
see an enrichment of connections initiating on chromosome 3 and 8 that represent
the distant cluster described above. The following chapter focusses on the distant
riboQTL, which is located on chromosome 3 (depicted in green), to further assess
biological mechanisms and validate initial findings.

Figure 4.4.10: Circos plot of all distant cluster in the left ventricle. All 17 genes that
show either a distant riboQTL or a distant teQTL for the cluster on
chromosome 3 are highlighted in green.
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4.5 Investigating the translational regulation of

extracellular matrix production by a QTL on

chromosome 3

The global eQTL and riboQTL mapping in the rat RI panel identified an approxi-
mately 7Mb large locus on chromosome 3 that seems to affect the translation levels
of a number of genes located elsewhere in the genome. In total 17 genes have been
linked to this locus purely on the translational level.
Figure 4.5.1 shows exemplarily six genes that illustrate the comparable association
patterns across the detected genes.

Figure 4.5.1: Overlay of six individual manhattan plots illustrate the strength of as-
sociation of six example genes that have been linked to the chromosome
3 locus. The manhatten plots are color-coded based on the genes that
show the associations. The genomic locus of the SDP is plotted on the
x-axis and the strength of association as negative log10 p-value on the
y-axis. Each dot represents a single gene-SDP pair. The FDR for this
experiment is at a p-value cutoff of 1.9e-06 and represents an FDR ≤
0.1.
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A strong association to the distant riboQTL on chromosome 3 and no additional
effects from other SDPs are consistently observed in these genes. On the RNA-Seq
level, these genes show no association, which indicates that the effect only initiates on
the translational level and therefore is this effect is mainly translationally driven. To
validate this finding the riboQTL and teQTL results have been overlapped resulting
in the detection of 5 out of 9 genes associated to Ribo-Seq levels and the translational
efficiency. Additionally, the TE levels of 8 genes have been found to link to this locus.
The expression levels of all 17 associated genes are depicted in Figure 4.5.2.
Here, the 30 RI animals are separated by genotype at the QTL and abbreviated as
RNA_/Ribo_/TE_BN corresponding to the expression levels of animals carrying
the BN allele and RNA_/Ribo_/TE_SHR for the SHR allele. The transcription
levels do not show a significant difference between animals of different genotype at
SDPG_03003960268, whereas a clear difference on the translation levels is observed.
All associated genes except of Striatin 3 (Strn3 ) show reduced translation levels in
animals carrying the SHR genotype.
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Figure 4.5.2: Expression levels of all 17 genes that are translationally regulated by the
chromosome 3 cluster separated by genotype of SDPG_03003960268.
Nominal p-values shown in figure. If the association was not significant
according to the thresholds FDR ≤ 0.2 and empirical p-value ≤ 0.0015
it is indicated accordingly.

This common regulation and the strong enrichment for genes linking to the GO Terms
"extracellular matrix" and "calcium ion binding" indicate a common regulatory mech-
anism. There are no associations of these genes observed in liver, which suggests that
the observed mechanism is specific for the left ventricle and therefore might be rele-
vant for heart disease.
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4.5.1 Using MT-Hess to gain a greater understanding of the

distantly regulated genes

The pairwise QTL mapping approach is quite stringent and only picks up gene-SDP
pairs with sufficient effect sizes. In order to get a more complete list of genes that
are translationally regulated by the chromosome 3 locus, a grouped QTL mapping
approach is used to increase power specifically for shared regulation. We use the MT-
Hess approach in a single tissue mode to identify groups of genes that show common
regulation patterns. Figure 4.5.3 compares the results from MatrixEQTL and MT-
Hess in left ventricle.

Figure 4.5.3: MatrixEQTL and MT-Hess results in left ventricle

To assess the significant associations determined by MT-Hess, we pick comparable
FDR cutoffs as for the MatrixEQTL results. For local associations require a FDR ≤
0.05, which corresponds to a MPPI (marginal posterior probability of inclusion)≤ 0.74
in Ribo-Seq and 0.76 in RNA-Seq, distant associations have a cutoff that correspond
to an FDR ≤ 0.1, which is a MPPI ≤ 0.59 and 0.61 in Ribo-Seq and RNA-Seq,
respectively. Figure 4.5.3 illustrates the strength of MT-Hess in the identification of
distant associations. As local associations are mostly specific to the gene in close
proximity, MT-Hess cannot make use of shared patterns and therefore only a small
number of local associations are found by MT-Hess.
The strength of MT-Hess is the detection of large gene cluster regulated by the same
genetic locus. Additionally, to the 17 genes identified by MatrixEQTL, 45 additional
genes, purely regulated on the translational level by the SDP on chromosome 3, have
been found. Performing a GO enrichment analysis on this set of genes resulted in a
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strong enrichment for extracellular matrix genes with a total of 16 ECM genes (p-
value: 7.61e-11, see Figure 4.5.4).

Figure 4.5.4: Top 20 GO-Terms and KEGG pathways enriched in the 45 genes asso-
ciated with SDPG_03003960268. The figure shows a strong enrichment
for extracellular matrix protein-related terms

Figure 4.5.5 shows the components of the extracellular matrix that have been found
to be translationally regulated either by MatrixEQTL alone (n=2), by MT-Hess alone
(n=12) or by both approaches (n=4) in a simplified schematic.
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Figure 4.5.5: Schematic of extracellular matrix proteins highlighting the genes that
have been identified to be translationally regulated by the distant ribo-
QTL cluster on chromosome 3. All genes that have been associated in
the MatrixEQTL or MT-Hess run are highlighted in red. Those that
have been found in the initial run using MatrixEQTL are indicated with
an asterisk.
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4.5.2 Zooming into the regulatory locus for translational

regulation on chromosome 3

The regulatory locus for translational regulation of a number of ECM genes spans a
locus on chromosome 3 from 3.96Mb to 10.94Mb including 65 genes that are translated
in the rat left ventricle. We performed a variant effect prediction using VEP from
Ensembl on all SNPs located in this locus resulting in missense mutations in 20
genes. The majority of missense mutations are predicted to be tolerated, 7 genes
show a deleterious missense mutation that might have an impact on the transcription
or translation levels of these genes (Table 4.11).

Table 4.11: Variant effect prediction for genes that are located in the QTL region on
chromosome 3 and carry a deleterious missense mutation.

Furthermore, the Granthan score [80] is added for each missense variant, in order to
estimate how evolutionarily distant the reference and variant amino acids are. All
7 genes show a Granthan score below 100, which means that the effect is unlikely
having an effect on the gene.
Besides assessing the genetic differences of genes in the regulators locus, we also
assessed regulatory candidates based their known function or other features. For
example, the gene EGF-like domain-containing protein 7 (Egfl7 ) carries a G-to-A
mutation corresponding to a substitution of a glycine to glutamic acid, which could
affect the stability or three-dimensional conformation of the gene. Perhaps this is
altering its ability to bind other genes. Egfl7 carries an EMI domain, which is a
small cysteine-rich protein domain of around 75 amino acids that is often present in
ECM proteins. Known interaction partners of Egfl7 also include Notch-class proteins,
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which have been found to be regulated by the chromosome 3 locus. Therefore, Egfl7
might have the ability to regulate the translation levels of other ECM genes and is a
good candidate gene.
Additionally, the locus contains other candidate regulators, such as the RNA binding
proteins Fubp3, Rexo4 and Ddx3. To date their target genes are unknown and there-
fore experimental follow-up would be required to understand their potential role in
translational regulation of these genes.
To narrow down the list of potential regulator genes, literature research pointed to a
previously described rat phenotype QTL for cardiac hypertrophy that overlaps part
of the 7Mb large riboQTL [34, 47]. Figure 4.5.6 displays the overlapping region of
all three QTL and the genes that are located in this region. As remodelling of the
ECM is one characteristic often described in hypertension and cardiac hypertrophy,
this smaller QTL region could also contain the causal gene regulating ECM protein
translation.

Figure 4.5.6: The distant riboQTL/teQTL on chromosome 3 overlaps with two cardiac
phenotype QTL

In order to validate the cardiac phenotype QTL two congenic rat strains have been
generated including the riboQTL locus. RNA-Seq and Ribo-Seq data was generated
and used as an independent validation dataset for the distant riboQTL cluster.
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4.5.3 Independent validation of distant trans cluster using rat

congenic strains

The two congenic rat strains have been derived by a selective breeding regimen that
was employed to integrate segments of the BN genome onto an SHR background [47].
They have have differently sized BN insertions on the SHR background. The strain
carrying the longer fragment of BN is called SHR.BN-(3L) and the shorter SHR.BN-
(3S). The two strains differ genomically in 11Mb. This locus almost completely
overlaps the distant riboQTL that we detected in the RI panel.
In order to ascertain whether the two congenic strains show the same expression
pattern that was observed in the RI panel, a differential expression analysis on RNA-
Seq and Ribo-Seq using DESeq2 was performed [55] resulting in 924 differentially
transcribed and 912 differentially translated genes. 716 of the 912 genes are located
on a different chromosome than the QTL and do not show differential expression on
the RNA-Seq level. Among those 716 genes, 44 genes are associated to the ECM
resulting in a GO enrichment p-value of 2.04e-08 (Figure 4.5.7).

Figure 4.5.7: GO enrichment results from testing 716 genes that are purely regulated
on the translational level and not located on chromosome 3. The en-
richment is depicted as bars representing the p-value on the x-axis with
the bars coloured according to GO category; biological process (green),
cellular component (orange) and molecular function (blue). Addition-
ally, the GO terms are further classified into "Ribosome-", "ECM-"
and "Vesicle"-associated GO Terms, which represent the three main GO
groups we observed for these genes.
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Of the ECM genes that have been linked by QTL mapping using MatrixEQTL and
MT-Hess to the distant cluster, 12 genes replicate in the congenic rat strains. In Fig-
ure 4.5.8, 6 example ECM genes are shown to illustrate the concordant observations
in the RI panel (separated by genotype at the riboQTL) and the two congenic strains
that show the BN.Lx genotype at this locus or the SHR genotype.

Figure 4.5.8: Expression plots of 6 ECM genes in RI panel (orange) and congenic rats
(green). We see concordant down-regulation in animals carrying the
SHR genotype in the RI panel and the congenic rat strains.

In both experiments, no differences at the RNA-Seq level are observed, but a signif-
icant decrease in translation. This data enables us to validate the distant riboQTL
cluster in the congenic rats.
The GO Enrichment analysis not only shows a strong enrichment for ECM genes
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but also shows an enrichment for various ribosome and vesicle associated GO terms
(Figure 4.5.7).
Both datasets, the RI panel and the congenic strains show mainly a down-regulation
in translation of the ECM genes in animals carrying the SHR genotype at the riboQTL
locus. Therefore, we next assessed the direction of translational regulation in all three
GO Term groups in order to understand whether these genes show similar expression
patterns. We plot the log2 fold changes of SHR.BN-(3S)/SHR.BN-(3L), which cor-
responds to SHR/BN.Lx for this locus. All RNA-Seq and Ribo-Seq fold changes are
calculated and ordered by the Ribo-Seq fold changes from small to large, in order
analyse the differentially translated genes for patterns according to the different GO
terms groups (Figure 4.5.9).

Figure 4.5.9: Log2 fold change plots of 716 genes that are purely regulated on the
translational level and not located on chromosome 3 on RNA-Seq and
Ribo-Seq data. The upper panel shows which genes are associated with
the three GO term groups described above.

On the top of the figure, genes that have been linked to the three GO term groups
"Vesicle", "Ribosome" and "ECM" are highlighted. Ribosome-associated genes seem
to be mainly up-regulated in SHR.BN-(3S) congenic strains and ECM-associated
genes are mainly down-regulated, whereas vesicle genes do not show a specific pat-
tern of translational regulation. The two up-regulated ECM genes are Superoxide
dismutase (Sod1 ) and the Fibroblast Growth Factor 1 (Fgf1 ) are both known to have
cardio-protective effects upon over-expression [81, 82]. The 42 down-regulated ECM
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genes include well-known heart disease examples such as Lama2 and Mmp2.
All genes that have been associated with the ribosome show an up-regulation of trans-
lation, without a significant change on the RNA-Seq level.
ECM genes tend to be rather large, conversely, ribosomal genes, which include mainly
60S ribosomal subunit proteins (RPL) and 40S ribosomal subunit proteins (RPS),
are small. In order to understand the putative relation between up-regulation of
small proteins and down-regulation of large proteins, we assessed correlation of CDS-
length and fold changes by applying the standardised major axis approach [83] (Figure
4.5.10).

Figure 4.5.10: RNA-Seq and Ribo-Seq fold changes of congenic strains carrying the
SHR genotype over those that carry the BN genotype plotted against
the CDS-length of each gene. The r2 was determined by standardised
major axis estimations. The red line indicates the regression line on
the Ribo-Seq plot. The blue line indicates the FC = 1 and the dashed
green lines indicated the fold change cutoffs for significance.

No correlation has been observed between CDS-length and RNA-Seq fold changes,
but on the Ribo-Seq level a slight correlation between fold change and the length of
the coding sequence of a gene is seen. This suggests that the identified riboQTL is
not only a regulator for the translation of extracellular matrix genes, but rather a
global regulator for translational regulation resulting in increased translation of small
proteins and reduced translation of large proteins upon disease.
In Figure 4.5.10 we see one dot that shows a strong down-regulation on the RNA-Seq
and Ribo-Seq level, which corresponds to the gene endonuclease G (EndoG), a gene
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that is located directly in the distant riboQTL locus. This gene was previously shown
to be a regulator for blood pressure independent hypertrophy [47] and mitochondrial
function. The SHR.BN-(3S) carries a frame shift mutation in EndoG that leads to
low expression rates of EndoG in this congenic rat strain. The lack of EndoG in the
animals carrying the SHR genotype, which affects mitochondrial function and there-
fore might lead to lower rates of GTP and ATP, could explain the lower translation
rates of long proteins and up-regulation of small proteins that need less energy for
translation.
In order to make sure that this effect is not just a general pattern that corresponds to
the way how Ribo-seq compares to CDS-length, we additionally investigated different
loci in the left ventricle as well as in liver in the rat RI panel. We were not able to
see a length specific regulation of translation except of this locus on chromosome 3
(Figure 4.5.11).

Figure 4.5.11: RNA-Seq and Ribo-Seq fold changes of the RI lines carrying the SHR
genotype over the ones carrying the BN genotype at the distant cluster
on chromosome 3 plotted against the CDS-length of each gene for left
ventricle (left) and liver (right). The R2 was determined by standard-
ised major axis estimations. The blue line indicates the FC = 1 and
the dashed green lines indicated the fold change cutoffs for significance.
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The fold changes of the RI lines carrying the SHR genotype over the ones carrying
the BN genotype at the distant cluster on chromosome 3 are plotted against the
CDS-length of the corresponding genes. In left-ventricular Ribo-Seq data we observe
a slight correlation between CDS-length and FC, whereas in the left ventricle RNA-
Seq as well as in the RNA-Seq and Ribo-Seq of the hepatic tissue, we do not see
any correlation. This suggests a very specific response on the translation levels of
left-ventricular tissue.

4.5.4 Studying the impact of a EndoG knock-out in a mouse

model

In order to test the hypothesis that EndoG is responsible for the translational phe-
notype observed in the heart, RNA-Seq and Ribo-Seq data have been generated from
the EndoG knock-out mice and all differentially expressed genes in C57BL/6 wild
type versus C57BL/6 EndoG-/- mice have been derived.
In total, 38 genes are differentially translated and 1,133 genes differentially tran-
scribed. None of the 17 previously identified genes, described in chapter 4.5, that
have been linked to the chromosome 3 locus in the RI panel and the congenics, were
found to be differentially expressed.
To check whether the effect sizes in mice are smaller and whether a translational down-
regulation of example ECM genes is observed, the gene expression of those genes was
assessed. In general, no decrease in C57BL/6 EndoG-/- mice on the translational
level was detected (Figure 4.5.12).

In the congenics, as well as in the RI panel (discussed in chapter 5.3) we observe
a correlation between CDS-length and Ribo-Seq fold change, which suggests general
decrease of translation in long proteins and an increase in shorter proteins. Even
though the ECM genes do not show significant changes on the translational level, the
relationship between CDS-length and the RNA-Seq and Ribo-Seq fold change was
tested for correlation. No correlation between Ribo-Seq fold change and the length
of the transcript was observed (Figure 4.5.13).
The results based on the RNA-Seq and Ribo-Seq data of the EndoG knock-out mouse
seem to contradict our hypothesis of EndoG playing a role in regulating the translation
of ECM genes. But the EndoG knock-out mouse might simply not be suitable for
picking up global translation changes as a disease response, because the mice were
neither stressed nor sick and EndoG might affect translational regulation only as a
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response to stress. This hypothesis will be further discussed in chapter 5.4

Figure 4.5.12: Expression plots of 6 ECM genes in the C57BL/6 wild type versus
C57BL/6 EndoG-/- mice. The RNA-Seq data is shown on the left
and Ribo-Seq data on the right in log2 transformed normalised counts.
None show a significant shift in wild type vs. knock-out.

Figure 4.5.13: RNA-Seq and Ribo-Seq fold changes of C57BL/6 wild type versus
C57BL/6 EndoG-/- mice plotted against the CDS-length of each gene.
The r2 was determined by standardised major axis estimations. The
blue line indicates the FC = 1 and the dashed green lines indicated the
fold change cutoffs for significance.
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5.1 Identification of prominent cardiac and hepatic

genes regulated by genetic variants

In this thesis I presented a QTL mapping approach on two layers of gene expression,
namely transcription and translation, in the rat RI panel that resulted in hundreds
of local associations in left ventricle and liver on both levels. Additionally, we also
identified a number of genes of which the gene expression is altered by genetic variants
that act over longer distances. In 2014, Rintisch et al. [35] carried out a similar
eQTL mapping study in left-ventricular and liver tissue of the rat RI panel. Despite
differences in experimental design, such as the use of single-end, unstranded RNA-
Seq data and a lower resolution (20k SNP) genotype map in the Rintisch et al study,
eQTL mapping results correspond for approximately 50% in left ventricle (148 out of
301 genes) and 40% in liver (83 genes out of 209), with the most strongly regulated
genes identified independently by both approaches. Examples are the previously
reported genetically regulated cardiac and hepatic genes Cyp17a1 [84] and Endog
[47], which, in addition to a local eQTL, also show a forwarded expression change on
the translational level in our data. These results reassure us that our data and QTL
mapping strategy are solid and capable of producing reproducible findings, which
indicates we can confidently apply the same strategy for studying genetic effects on
translational regulation.

5.2 Tissue-specific regulation in left ventricle and

liver

All tissues in an organism share common regulation and processes, but they also differ
in their gene expression patterns, which suggests that tissue specificity can be derived
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by different regulatory programs across tissues ([85]). Sonawane et al. observed that
regulatory genes, such as transcription factors, are more likely to show similar expres-
sion across tissues whereas their target genes tend to be more tissue specific.
If we apply this hypothesis to translational regulation, it would mean that the gene
expression of translational regulators like RBPs is more often shared across tissues,
compared to their target genes. We do not observe a significant enrichment of tran-
scription factors among shared eQTL or RBPs in shared riboQTLs in our data. Nev-
ertheless, we observe 13 RBPs among the 85 genes that share translational regulation
across tissues that can be attributed to local genetic variants (Fisher’s exact p-value
= 0.51). This suggests that translational regulation of RBPs might not be genetically
regulated to a high extent or that one would need to include more tissues in order
to identify common expression of regulatory nodes, such as transcription factors and
RBPs.
We make two additional observations about tissue-specificity according to our data
that might be transferable to other species and tissues. We see that shared regula-
tion across tissues observed on the translation basis is mostly already initiated on
the transcriptional level, which means that expression changes that are commonly
regulated evolve on the transcriptional layer rather than on the translational layer.
On the other hand we see that especially distantly regulated genes are often only
detected in one tissue, which could be explained by a smaller effect size in one of the
tissue, that make it more difficult to detect the distant QTL in both tissues.
Even by using MT:Hess, which is meant to gain power for the detection of shared
regulation across tissues, we do not identify common regulation over longer distances.
In a previous study on eQTL mapping in the rat RI panel across seven tissues, 13
distant eQTL clusters that are shared across at least two out of seven tissue have
been reported [39]. This low number indicates that even by using more data, it seems
as if there is only limited common regulation across longer distances.

5.3 Length-dependent translational regulation

Ribosome profiling is still a relatively new technique that has not been fully assessed
in terms of technical biases caused by the protocol or during processing of the data.
We were able to show the reproducibility of the findings by replicating the initial
identification of 17 ECM genes regulated by the chromosome 3 locus in an independent
Ribo-Seq experiment in two rat congenic strains that only differ genomically by this
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locus. Also, we do not observe the down-regulation of long and up-regulation of short
proteins in liver, which indicates a very specific response in the left ventricle. We
checked different loci in the left ventricle as well as in liver and we were not able to
see a length specific regulation of translation except of this locus on chromosome 3
(Figure 4.5.11).
In left-ventricular Ribo-Seq data we observed a slight correlation between CDS-length
and FC, whereas in the left ventricle RNA-Seq as well as in the RNA-Seq and Ribo-
Seq of the hepatic tissue, we do not see any correlation. This suggests a very specific
response on the translation levels of left-ventricular tissue.
It is possible that the up-regulation of small proteins is caused by a normalization
bias in the data, which results from the down-regulation of large proteins, i.e. fewer
reads that map to large genes in the total sequencing library. As a consequence, these
reads are equally distributed elsewhere in the genome. In the end this small increase
of reads might have an effect on all other genes that is most prominent on short genes,
which is observed as an up-regulation of these genes specifically.

5.4 Identification of a potential regulator of the

translational landscape in the heart

We identified a genomic locus on chromosome 3 of 7 Mb size, which harbours 65 genes
expressed in the rat heart, that might regulate a number of other genes purely on
the translational level. Both the riboQTL and teQTL mapping on the rat RI panel
and the differential translation analysis in the rat congenic strains suggested a more
general effect on translational regulation. The findings from the congenic strains in-
dicate that instead of the identification of a master regulator for the translation of
extracellular matrix proteins only, it seems as if we identified a genomic locus that
has an effect on the translation levels of genes in general. So it could be that we are
rather searching for a regulator of another pathway that has the ability to change the
translational landscape as a secondary effect.
The protein Endonuclease G (EndoG) is one among the 65 expressed genes in the
riboQTL locus and has a high potential for being involved in the translational regula-
tion in the heart. EndoG is an enzyme localised in the mitochondrial intermembrane
space bound to Hsp70 (Heat shock protein 70) and CHIP (E3 ligase C terminus of
Hsc-70 interacting protein). Under oxidative stress EndoG gets released and translo-
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cated to the nucleus and initiates DNA and proteasomal degradation. EndoG was
previously described to play a role in ageing, cancer and neuronal diseases [86]. Al-
tered expression levels of this gene might increase or decrease DNA degradation [86].
EndoG is an important enzyme in the maintenance of normal tissue homeostasis,
which was shown by its role in the mitochondrial death pathway and the cardiac
myocyte apoptosis pathway [87]. In the rat RI panel, the locus on chromosome 3
was previously linked to hypertension-independent hypertrophy and the authors were
able to identify EndoG as the causal gene by testing the same congenic rat strains
and knock-out mice as described in this thesis [47]. The question is now whether the
effect that we observe on the translational landscape is also driven by EndoG itself,
by the phenotype that is caused by the absence of EndoG in the animals carrying the
SHR genotype, or whether it is completely unrelated to EndoG.
The first hypothesis is that the absence of EndoG leads to a global change of trans-
lational regulation. EndoG is mostly located in mitochondria, which are known for
their function in producing and providing energy of the cell. If EndoG is not present
it can no longer fulfil its role in maintaining the normal tissue homeostasis. This
means that the energy metabolism of the cell might get disturbed and this might
lead to ER-stress as a consequence of lower energy capacity than demands. A global
change in the translational program of a cell that prefers to produce small proteins
that need less energy for proper folding is possible. Additionally, the chances that
small proteins do not properly fold are lower and this helps to avoid an accumulation
of unfolded or misfolded proteins. An additional accumulation of unfolded proteins
would again result in ER-stress. Considering EndoG as the causal gene for the trans-
lational change would suggest that the absence of EndoG leads to an accumulation
of misfolded proteins, as they can no longer be cleaved and degraded by EndoG. The
unfolded protein response (UPR) would get activated, which leads to a transcriptional
and translational reprogramming of the whole cell in order to ensure gene expression of
specific proteins that help to maintain the homeostasis. There are two main pathways
that regulate the unfolded protein response, which are PERK/eIF2α/ATF4 signalling
and mTOR signalling. The mammalian target of rapamycin, (mTOR) is a kinase that
acts as a main activator for cell growth and proliferation. But it also plays a big role
in translational regulation as a response to ER-stress. MTOR signalling gets acti-
vated by growth factor signalling and by the sufficient supply of nutrients (e.g. amino
acids and glucose) and energy, which leads to an up-regulation in translation prolifer-
ation and ribosome production. Factors such as insufficient energy supplies, ER-stress
and DNA damage lead to an inhibition of mTOR signalling that down-regulate pro-
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cesses such as translation and ribosome production. In the SHR rat, where the lack
of EndoG that is important to maintain the homeostasis of protein production and
supply of energy and nutrients by degrading unfolded proteins, mTOR signalling is
very likely in the inhibited state. This would lead to a general down-regulation of
translation and ribosome biogenesis [88], whereas in our data we observe a specific
down-regulation of large proteins and an up-regulation of small proteins.
If the observed effect is caused by UPR, it might be caused by the transcriptional and
translational control network of PERK/eIF2α/ATF4 signalling rather than mTOR
signalling. This pathway is known to repress global translation and at the same time
translational up-regulation of specific mRNAs that are involved in UPR gene expres-
sion regulation. Upon UPR, PERK phosphorylates the translation initiation factor
eIF2α, which leads to reduced amount of GTP bound eIF2. Overall, this decreases
the levels of translation initiation, which can be determined, for example, by polysome
profiling as a reduction of large polysome chains coinciding with increased levels of
translating monosomes [89]. This response to ER-stress might explain why we ob-
serve an up-regulation of smaller proteins compared to a down-regulation of larger
ones. The effect on small proteins changing the translation program from polyso-
mal translation to monosomal translation might simply not have the same impact
on translational efficiency as on large proteins, where the number of ribosomes that
could translate an mRNA in parallel is simply much higher due to space capacity
(Figure 5.4.1).
Another possibility is that the translational response that we are observing is a sec-
ondary effect from the blood pressure independent increase of the heart weight that
was described for this locus by McDermott et al., in both the RI panel as well as the
congenic rat strains. Elevated heart weight that is observed without hypertension is
often observed accompanying diseases such as obesity, type 2 diabetes and was shown
to be associated with mitochondrial dysfunction and lipotoxicity [47].
The main changes in the heart during cardiac hypertrophy are an abnormal thicken-
ing of the heart muscle that is caused by increased size of cardiomyocytes, but also
by the remodelling of other cardiac muscle components such as the ECM (increased
fibrosis). It could very well be that a very early response to the hypertrophy is accom-
panied by ER-stress. The initiation of the remodelling of the ECM leads to a switch
in protein production of specific ECM components that cause as an intermediate state
an imbalance between the demand and capacity of protein load. One has to keep in
mind that these animals are only 6 weeks old and do not show extreme phenotypes
yet, so an early response to the cardiac growth would make sense. As a result of the
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Figure 5.4.1: Schematic illustrating the two hypotheses for how EndoG might play a
role in the global change in translation observed in the SHR genotype
rats in the chromosome 3 QTL region. The first hypothesis describes
how EndoG might be regulating the translational program in the SHR
genotype due to a lack of the protein. The second hypothesis is based
on the assumption that the translational change observed in the ani-
mals carrying the SHR genotype is a secondary effect due to the cardiac
hypertrophy that is induced by the lack of EndoG.

imbalance caused by the ECM remodelling, the protein synthesis is reduced and the
expression of specific proteins is up-regulated in order to increase the capacity for the
protein income. This would fit quite well with the increased translation levels of ribo-
somal proteins and down-regulation of larger proteins. This would suggest that the
hypertrophy that is caused by EndoG induces ER-stress by the high protein demand
during remodelling of the ECM. And the change on the translational landscape that
we observe is an early response on the ER-stress in order to treat the imbalance in
protein production.
The fact that we do not see a translational response in the EndoG knock-out mice
could either be explained by a rat specific translational regulation that is not con-
served across rodents or it could also mean that the translational change can only
be observed if there is an additional stimuli such as cardiac hypertrophy or cardiac
stress at the same time. This would strengthen the hypothesis that the translational
program we are seeing is a secondary response to the disease. On the other hand
it could also mean that animals carrying the EndoG mutation cannot cope with the
extra stress caused by the disease. In order to be able to prove this we would need
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to induce either ER-stress by known agents or we would need to induce cardiac hy-
pertrophy for example by a transverse aortic constriction (TAC) in these mice. A
TAC mouse is an experimental model for blood-pressure overload-induced cardiac
hypertrophy. Combined with the EndoG knock-out this should show a similar effect
as observed in the rats if this hypothesis is true (Figure 5.4.1).
A third possibility could be that the translational response is an effect that is com-
pletely independent from EndoG, but caused by another gene located in the same
locus. After a thorough literature search on all expressed genes that are located in
the chromosome 3 locus, we did not find an obvious candidate gene that could act
as global translational regulator, but there are a number of interesting genes in there
such as RNA-binding proteins, miRNAs and other ECM components. The difficulty
is to identify the causal gene without any prior knowledge on possible relations. In
general, the QTL regions tend to be rather large, not only in the rat RI panel but
also in other studies; it is challenging to identify the causal gene that affects gene
expression or whole body phenotypes. QTL regions often include many genes and
SNPs, in the case of the chromosome 3 locus, there are 65 expressed genes and over
12.000 SNPs. If there were genes in the same locus with a local QTL of the same SDP,
they would make it a good candidate for further assessment. However, many genes
can be affected in a non-quantitative way, which means that they do not have to be
differentially expressed to have a quantitative impact on target genes. For example,
they may carry a missense mutation that reduces affinity of a protein’s RNA binding
site for target genes, or a mutation in any position that only affects gene function
and not gene quantity.

5.5 Summarising remarks and future steps

This thesis summarises the bioinformatic analysis of a project that aims to understand
the role of genetic variants in gene expression regulation in heart and liver in a heart
disease context. The QTL mapping analysis resulted in a number of good candidates
for functional follow-up in order to translate the finding to human diseases.
The most promising finding is the riboQTL locus on chromosome 3 that seems to
affect the translational regulation of all other genes, specifically in the heart. In the
discussion, I discussed possible mechanisms of how the global translational changes
could arise. The next steps for this project will include multiple experimental val-
idations in order to identify the causal gene and the mechanism behind the global
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modulation of gene expression.
We already started some experiments to validate the translational effect that was
observed with Ribo-Seq. We performed q-PCR to show that there is no effect on the
transcriptional level and western blot experiments to show the effect on the transla-
tional level in the two rat congenic strains. Instead of conventional western blotting,
we also performed western blots using the automated western blotting machine WES,
which is supposed to make the results more reproducible and allow the quantitative
assessment of the protein concentration. Thus far, we have not been able to validate
the difference in gene translation on the protein level using either of these two tech-
niques. This could be explained by insufficient sensitivity to detect the small changes
of translation rates (Ribo-Seq fold changes < 2-fold).
To follow-up whether we see an effect of the global translational regulation on the
protein level using a different technique than western blotting, we performed a mass
spectrometry experiment on the two congenic strains (on a QExactivePlus machine
with a long gradient (6 hours) on monolithic column). In general, it is rather diffi-
cult to perform mass spectrometry on heart tissue, because of the high complexity
and wide dynamic range of protein abundance. Heart tissue is known to have high-
abundance proteins that make it harder to detect and measure proteins with lower
abundance. This should not play a big role for looking at ECM proteins as those have
a decent abundance, but smaller less abundant proteins such as ribosomal subunits
might be missed. We were not able to validate a global change on protein levels
using mass spectrometry. This suggests that the changes on the translational level
are either not forwarded to the protein level, because the imbalance is compensated
post-translationally or mass spectrometry does not have the resolution to make small
changes like this visible.
In a next step, we are planning to perform polysome profiling on the two congenic rat
strains and generate RNA-Seq data of the different fractions. This would allow us to
prove our hypothesis that translational regulation is modulated due to lower rates of
translation initiation that results in higher levels of translation by monosomes rather
than by polysomes. The pilot experiment for the polysome profiling was already per-
formed and we could observe a clear difference of the polysome profile between the
two congenic strains. We will next perform RNA-Seq on the fractions of the polysome
profiling in order to understand whether longer proteins and shorter proteins end up
in different fractions or if polysomal translation is very specific to proteins that are
involved in the untranslated protein response.
After validating that the global change on translation can be seen with different ap-
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proaches than Ribo-Seq, we want to identify the causal gene and genetic variant that
drives the gene expression change. In order to figure out whether EndoG might be the
causal gene, we could for example perform Ribo-Seq on animals carrying an EndoG
rescue in the SHR.Ola background. Animals like this have been previously generated,
but the EndoG rescue only works with low efficiency, which means that the levels of
EndoG are still not comparable to wild type BN.Lx expression of the gene. As I men-
tioned before, we also tested an EndoG knock-out mouse model, that did not show
any difference on the translational level. If the hypothesis that UPR only occurs as
a secondary effect to the cardiac hypertrophy, it could be that we need to challenge
the mice with agents that lead to ER-stress or perform a TAC experiment in order
to induce cardiac hypertrophy.
If the experiments suggest that not EndoG, but one of the other 64 genes that are
located in the chromosome 3 locus are causing the translational regulation it will
be more difficult to pinpoint the causal gene. Fine-mapping of the QTL region by
generating sub-strains could enable us to identify the global translational regulator.
Besides following-up on the translational trans cluster, this thesis opens up many
opportunities for new projects, e.g. the elucidation of the exact mechanisms of local
riboQTL regulation by for instance uORFs and the effects of different splice isoforms
on translational efficiency.
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Abbreviations

ATP Adenosine-5’-triphosphate.

BN Brown Norway with polydactyly-luxate.

bp base pair.

CDS coding DNA sequence.

ECM extracellular matrix.

eQTL expression QTL (trait - RNA-Seq coverage).

FC fold change.

FDR false discovery rate.

GTP Guanosine-5’-triphosphate.

IRES internal ribosomal entry site.

kb kilo base pairs (1,000 bp).

lncRNA long non-coding RNA (including antisense genes, long intergenic non-coding
genes and processed transcripts).

LV left ventricle.

Mb mega base pairs (1,000,000 bp).

miRNA micro RNA.

mORF main ORF.
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Abbreviations

mRNA messenger RNA.

mtRNA mitochondrial RNA.

NMD nonsense mediated decay.

nt nucleotide.

ORF open reading frame.

PFM position frequency matrix format.

pQTL protein QTL.

q-PCR quantitative polymerase chain reaction.

QTL quantitative trait loci.

RBP RNA binding protein.

RI recombinant inbred.

riboQTL ribosome profiling QTL (trait - Ribo-Seq coverage).

RIN RNA integrity number.

Rnor rattus norvegicus.

RPKM Reads per Kilobase of transcript, per Million mapped reads.

RPL large ribosomal subunit protein.

RPS small ribosomal subunit protein.

rRNA ribosomal RNA.

SBP systolic blood pressure.

SDP strain distribution pattern.

SHR Spontaneously hypertensive rat.

SNP single nucleotide polymorphism.

sORF short/small open reading frame.
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Abbreviations

TAC Transverse aortic constriction.

TE translational efficiency.

teQTL translational efficiency QTL (trait - residuals of the lm(Ribo RNA)).

TRAP Transcription factor affinity prediction.

tRNA transfer RNA.

TSS transcription start site.

uORF upstream open reading frame.

UPR Unfolded protein response.

UTR untranslated region.
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