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Abstract

In this thesis we study the mean curvature flow of entire graphs in Euclidean
space. From the work of Ecker and Huisken, we know that given some initial
growth condition at infinity, such graphs become self-similar under the
evolution and the convergence is exponentially fast in time.

In this work, we propose an alternative condition at infinity, motivated by
looking at the heat equation, and show that under mean curvature flow such
a growth condition is preserved for the height and gradient of the graph. For
the curvature we propose an analogous result to that of Ecker and Huisken,
by proving a spatial decay estimate with slightly stronger condition.

Our main result then says that under mean curvature flow and our condition,
the graph also becomes self similar, but slower than in the exponential case.

Zusammenfassung

In dieser Doktorarbeit wird der mittlere Krimmungsfluss von ganzen Graphen
im euklidischen Raum betrachtet. Ecker und Huisken zeigen, dass unter
gewissen Wachstumsbedingungen im Unendlichen, solche Graphen unter dem
Fluss selbst dhnlich werden, wobei die Konvergenz in der Zeit exponentiell
schnell ist.

Durch die Warmeleitungsgleichung motiviert, schlagen wir in dieser Arbeit
eine alternative Bedingung im Unendlichen vor und zeigen, dass solch eine
Wachstumsbedingung fiir die Hohe und den Gradienten unter dem mittleren
Kriimmungsfluss erhalten bleibt.

Unser Hauptresultat besagt, dass unter der alternativen Bedingung, der
Graph einer Losung des mittleren Kriimmungsflusses ebenfalls selbstdhnlich
wird, allerdings mit einer in der Zeit langsameren Konvergenzrate.
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Preface

Mean curvature flow simply stated is the evolution of a hypersurface in
its normal direction, with speed equal to the mean curvature at each
point. So for some initial surface Fy: M" — R"*1 we consider

oF . L
5 (P t) =H(pt) = —v) x
i=1

where v is the outward pointing unit normal at each point p of the surface
and x; are the principle curvatures at this point. This evolution has been
studied due to its connection with geometry and physics of interfaces [[5],
in particular the motion of grain boundaries in an annealing pure metal [Z].
This process is the gradient flow of the area functional

v n_ _ (712
SIMi| == [ AR dw,

t

and is a quasi-linear (weakly) parabolic partial differential equation evolving
the local embedding map of the hypersurface. When stated in the curvature
setting:

AL = Ay, AL+ ALAP,

where Aj; is the second fundamental form, it is described as a reaction-
diffusion system, with the reaction part (from a cubic in the curvature term)

causing the formation of singularities, and the diffusion from a Laplace-Beltrami

operator causing the singularities to be self-similar.

The investigation of mean curvature flow started around the late ’70s by
the work of Brakke [2] where he studied such flows on a more general class
of surfaces, called varifolds, in the geometric measure theory setting. His re-
sults when restricted to smooth hypersurfaces which encounter singularities
for the first time, and satisfy certain additional assumptions, state that these
hypersurfaces at the singular time are still smooth except for a lower dimen-
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sional set. In the class of hypersurfaces with positive mean curvaturef] the
beautiful result of Brian White gives the maximum size of the singular set as
one less than the dimension of the hypersurface, and this is optimal in view
of some special solutions.

These non-classical methods, those of geometric measure theory as well
as viscosity or level-set methods where developed to deal with the solution of
mean curvature flow after the formation of singularities at some time t = T,
when the maximal curvature

A(t) :=max/k2+ -+ k2 s c0ast— T,
My

and thus the classical differential geometric and partial differential equation
methods fail. In this work we will however not be concerned with the solu-
tions after the first singularity has occurred and thus remain in the classical
realm, even though the recent work of Huisken and Sinestrari uses the classi-
cal methods with “surgeries” to extend the flow beyond the singularity. Thus
we introduce the most simple case, that of curve shortening flow.

For the case of curves, Gage and Hamilton [B] proved that convex curves
evolving by mean curvature remain convex and shrink to a circular point.
Shortly afterwards, Grayson in his paper [9] completed the result by proving
that a nonconvex curve stays embedded and becomes convex in finite time
and that no singularity occurs during this process as shown in the snapshots
in the margin. Huisken later used a result which classifies all types of sin-
gularities of mean curvature flow in his paper [[2] to give a more intuitive
proof of Grayson’s result [[3]. Instead of controlling the shape of the curve at
each time, Huisken used a monotonicity formula for some isoperimetric ratio
to show that the curve becomes a round circle at the singularity, and in fact
this is the only embedded limiting case of a singularity.

Around the same time as Gage and Hamilton’s result for curves, Huisken
in his now classical paper [[I]] proved the corresponding result for surfaces,
namely that compact convex initial surfaces contract smoothly in finite time
and become spherical in the process. Oddly enough his proof does not work
for curves.fi The approach of the proof was inspired by Hamilton’s results [[L0],
since the evolution of certain curvature quantities turned out to be similar to
those Hamilton had when evolving the metric of a compact three-dimensional
manifold with positive Ricci curvature in the direction of the Ricci curvature,

i.e. via Ricci flow: 3

5¢8i = 2R

ijs

'Positive mean curvature holds by the maximum principle for the duration of the evolution
if it does for the initial hypersurface.

2Huisken’s proof shows that the asymptotic shape of the solution to mean curvature flow is
totally umbilic and the only such hypersurfaces are spheres.



to obtain a metric of constant curvature in the limit.

This connection of mean curvature flow with Hamilton’s Ricci flow has a
deeper reason. Like the mean curvature flow, the Ricci flow is also a reaction-
diffusion system of partial differential equations, albeit in an intrinsic set-
ting, and the reaction terms are quadratic in the Riemann tensor. Thus many
properties though different are analogous for Ricci flow and mean curvature
flow.

On the other hand we have the simple heat equation:

u(x, t) = Au(x,t) with u(x,0) = up(x),

and its properties, namely the rescaling property that if u(x,t) is a solution
then
up(x,t) = u(Ax,A*t), A >0 isalso a solution,

which gives us optimal estimates on the regularity of solutions; smoothing
property:

C’ﬂl
|ID™u|(x,t) < /2 sup|u/,
where if we only know the supremum of the solution is bounded, then the
derivatives of any order of the solution are bounded; and finally we have
Harnack type positivity properties:

otlogu > |Dlogu|2 - %,

saying that the solution cannot fall off too quickly. All these properties carry
over in some form to the mean curvature flow setting, giving us a rich source
of results.

It turns out that it is crucial to understand the properties of the self-
similar solutions which relates the properties of these flows to the geometry
of the space. The idea here is to find monotone quantities, non-increasing
in time, in these flows, by simply using integration by parts, such that these
quantities are constant precisely on the self-similar solutions. In the case of
mean curvature flow Huisken’s monotonicity formula [[Z] and its generalisa-
tion by Ecker and Huisken [€] as well as a local version by Ecker [4], yields
important information about the nature of singularities and other properties
of the flow. In the Ricci flow case, the famous Perelman’s entropy are such
monotone quantities, among others, that Perelman uses for his proof of the
Poincaré conjecture.

As we alluded to earlier, the surface forms a singularity at a point when
the maximal curvature tends to infinity as we approach some maximal time
t = T and we can classify this singularity according to the rate that the cur-
vature blows up. The natural growth rate suggested by the scaling symmetry

Xi
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(x,t) = (Ax, A%t) is

sup |A(t)| < C(T —1t)"1/2,
M"x[0,T)

If this rate holds for some constant C < oo, then the surface is said to have a
“Type 1” singularity, and if not we call the singularity a “Type 2”. The mono-
tonicity formula is useful in studying Type 1 singularities of mean curvature
flow. If we rescale our surface via the natural scaling we can show that as the
surface encounters a Type 1 singularity, it becomes self-similar. Angenent
and Veldazquez in their paper [[I]] construct solutions of mean curvature flow
that have Type 2 singularities by looking at rotationally symmetric surfaces
with non-generic neck pinches. The idea here is to use topological methods
in the analysis of singularities and obtain a complete asymptotic understand-
ing of the various kind of blow-ups via the method of matched asymptotic
expansions.

For the case of entire graphs, Ecker and Huisken in their paper [6] show
that such graphs become self-similar provided they were initially somewhat
well behaved at infinity. They show that indeed this behaviour at infinity is
necessary for asymptotic convergence, in view of a counter example which
does not converge asymptotically. Further they show using this condition
that the convergence is exponentially fast in time to an expanding self-similar
solution. Stavrou in his paper [[[€] proves asymptotic convergence using a
much weaker condition to thatin [g]. In their later paper Ecker and Huisken [[7]
used the local properties of mean curvature flow to obtain interior estimates,
to deduce the fact that if the initial graph was only Lipschitz continuous, then
it would have a smooth solution for all time under mean curvature flow, with-
out the need for any assumption on the growth and curvature of the graph
at infinity. This is surprising since such a result does not hold for the heat
equation, where one needs to give a condition at infinity for existence.

This work also deals with entire graphs as in the Ecker and Huisken set-
ting [6]. We being with Chapter 1, where we introduce the notations and basic
differential geometry to prove Huisken’s monotonicity formula, which we use
to prove a Weak Maximum principle we will need in the subsequent chapters.

We then motivate this work in Chapter 2, by looking at the Ecker and
Huisken condition at infinity:

()2 <1+ ¥, <o, 6>0,

where x is the position vector, v the outward unit normal and c3 some con-
stant, for the simple case of the heat equation. Since we have an explicit
solution for the heat equation, we show how for the case of cones as initial
data, this condition implies a convergence to an expanding self-similar solu-
tion in exponential time. We then propose an alternative condition to that of



Ecker and Huisken, namely:

1 2,2
<x,1/>2 < CW, ¢ < 00, 6>0,
log®(e + [x[?)

where u is the height above some hyperplane, and show that in this case, we
have polynomial in time convergence to the self-similar solution.

Our main result thus states that under mean curvature flow of graphs with
such a logarithmic condition at infinity, the rescaled solutions Ms converge
to a self-similar graph in polynomial time via the following estimate for some
0<y <2

I:I ~,~ 22 H ’ 2.2
sup X EINT (4 4 gy gy HLE )07
w, Ty log " My Tplog " m

where v is the gradient function, 0 < € < 6,0 < p < 1, and for some choice of
test functions #; and 7,. Note that this logarithmic condition is much weaker
than the Ecker and Huisken condition.

To begin with we show in Chapter 3, that the height of the graph if initially
in a logarithmic growth class, stays so during the duration of the evolution.
Similarly in Chapter 4 we derive a priori logarithmic estimates for the gradi-
ent of the graph.

For the shorttime existence of the solution of entire graphs, we use the re-
sult of Ecker and Huisken [[/], however in Chapter 5, by restricting to the case
of linear growth, we show longtime existence for Lipschitz initial data, which
was done by Ecker and Huisken in their paper [g]. We however then prove a
logarithmic spatial decay estimate for the curvature and all its derivatives
and show this behaviour is maintained during the evolution.

In Chapter 6, we study the behaviour of the solution as time tends to in-
finity and show that under our logarithmic assumption the graphs become
self-similar, and in fact this convergence is polynomial in time. Unlike the An-
genent and Velazquez method of using spectral analysis to obtain the rate of
convergence for self-similarly contracting solutions of mean curvature flow,
we use only the Maximum principle together with test functions to obtain
our result.

Acknowledgements

I am eternally grateful for the love, guidance and patience of my supervisor
and teacher Klaus Ecker without whom none of this would be remotely possi-
ble. I would also like to thank my teachers in particular Maria Athanassenas,
Gerhard Huisken and Marty Ross for their enthusiasm.

xiii



Xiv

At Monash University I would like to thank all my teachers in particu-
lar Neil Cameron, Alan Pryde and John Stillwell. I was lucky enough to spend
some time at the Mathematics institute of Tiibingen University and would like
to thank Gerhard Huisken and his group for their hospitality. At the Mathe-
matics institute of the University of Freiburg, I would like to thank Ernst
Kuwert and his group, in particular Miles Simon, for his encouragement. At
the ETH Zurich I would like thank Michael Struwe and Tom Ilmanen for their
seminars. At the ANU I would like to thank Neil Trudinger and the group of
Ben Andrews. At the Max Planck Institute for Gravitational Physics (AEI), I
would like to thank once again Gerhard Huisken and his wonderful group
and the Numerical Relativity group of Ed Seidel and in particular the Cactus
group with Gabrielle Allen. At the Zuse Institute Berlin (ZIB), I would like to
thank Hans-Christian Hege and his group especially Malte Westerhoff, Detlev
Stalling and Hartmut Schirmacher. Finally at the FU I would like to thank
all the past and present members of the Geometric Analysis group of Klaus
Ecker in particular Oliver Schniirer and the group of Bernold Fiedler for their
support and help.

I would like to thank my parents and family for their love and support.
I appreciate my father Asif Rasul’s encouragement and hope it inspires the
little ones to also pursue studies. I am thankful of my sister Samira Rasul,
brothers Zaeem Burq, Saqib Rasul, and Shoaib Burq, the kids Cosmo and Ella,
and last but not least Aleks Herzog for their love. I am appreciative of the
fact that during my studies I did not see my family, grandparents, uncles,
aunts and cousins for a long time, but they were always on my mind as I am
sure I was on theirs.

I am thankful to my friends and colleagues in particular at Monash I would
like to thank Ashley Crouch, Robert De Rozario, Amanda Karakas, Matthew
Fitzgerald, Daniel Nicolaides, Robin Humble, Maria Lugaro, Todd Lane, Selena
Ng, Andreas Aigner and Iman Poernomo. At Tiibingen I would like to thank
Oliver Stoll and Ralf Rigger. At the AEI I would like to thank Tom Goodale,
Michael Russell, Jason Novotny, Kelly Davis, Ian Kelley, Oliver Wehrens and
Andreas Donath. At the ZIB I would like to thank Felix Hupfeld and Brygg
Ullmer. At FU I would like to thank Josh Bode, Mark Aarons, Julie Clutterbuck,
John Buckland, James McCoy, Paul Appelby, Adrian Hammerschmidt, Felix
Jachan and Ananda Lahiri . At Visage Imaging I would like to thank Wolfgang
Holler, Robert Brandt, Sebastian Schuberth, Ralf Kubis and Morgan Leborgne.
I would also like to thank David Roman and Joachim Pudelski for their en-
couragement.

Finally, I would like to thank my spiritual teacher Ustad A. A. Rehman
and spiritual master Hadhrat Maulana Abd’ur Rashid al-Hamedi al-Siddiqui
al-Garangiyahwi (r) for their affectionate guidance in the complex path of
spiritual discipline.



Chapter 1

Introduction

e fix our notations and present some definitions and then present some
W properties of mean curvature flow which we will use in the subsequent
chapters. Since we study a geometric flow we will start with an introduction
to some basic differential geometric facts. Much of this material is covered
in detail in the book by Ecker [5]].

1.1 Notations

We will study hypersurfaces in R"*1, denoted by M which are smooth and
properly embedded, contained in some open set U C R"*1. We denote such
a surface by a map from an open set M" C R" by F: M" — R"*! and write
F(M") = M.

At every point p € M", the coordinate tangent vectors 0;F(p) := 0F/dp;
fori = 1,...,n, form a basis of the tangent space TyM at x = F(p), The
metric on M is then given by g;; = o;F - ajP and then the area element of M
is the root of the determinant of the metric:

V8 = /det[g;].

1.2 Geometry of surfaces

The tangential gradient of a function on our surface h: M — R is

VM = ¢'9;hd;F

M is properly
embedded if

F 1K) Cc M"is
compact for a
compact set
Kcu.

The inverse metric
is just the inverse
matrix of g;; and is
given by

g7 =gt
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Here 1";‘4 are the
Christoffel
symbols

rf = g"(9igi +
981 — 918ij) /2.

The divergence
also makes sense
for a smooth
vector field

X: M — R
which is not
necessarily
tangent to M. In
this case

diVM X =

Note than H is
now an inward
pointing vector.

and the covariant derivative of a smooth tangent vector X = X'9;,F on M is
VM = 9;x7 + T/, X,
The trace of covariant derivative tensor X on M is called the tangential di-
vergence of X and is denoted by
1
V8

and the Laplace-Beltrami operator of i on M is then the divergence of the
tangential gradient of & and is written as

divy X = VMX' = —0;(/38"X;)

1 .
Aph = divy VME = —0;(,/3¢"70;h).
\/g 1 \/gg ]

Note that v the choice of unit normal to our hypersurface M satisfies

v- E),-F =0

on M for 1 <i < n and we define the second fundamental form of M as
Aij = aii/ . 8]F = —V- 818]P
The Weingarten map, which maps tangent vectors to tangent vectors, is
i ik

Aj =& Ay
and its n eigenvalues «1, ..., %, are called the principal curvatures of M. The
mean curvature is then defined as

H = ZKi = gl]Al‘]‘ = g”aiv . E)]F = diVM v,
i=1

and the mean curvature vector of M is
H = —Huv.

In the absence of coordinate systems we can still define derivatives of
functions and vector fields on hypersurfaces M by projecting them from
R"*! onto the tangent space of M. For a x € M we thus define the projection
operator pr. Rt — T, M by

Prom(w) = w — (v(x) - w)v(x).
Then for a suitably smooth function h: U — R, the tangential gradient of &
is
VMp = pTXM(Dh(x)) = Dh(x) —v(x) - Dh(x)v(x)
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where Dh(x) is the gradient of & in R"! and x € M. Similarly for a suit-
ably differentiable vector field X: U — R"*1, the tangential divergence with
respect to M is defined as

divy X(x) = divgen X(x) —v(x) - D) X (x)
where D, X(x) is the derivative in the v(x) direction, given by

X,

X

v(x).

1<i,j<n+1

Dv(x)X(x) =

Finally, the Laplace-Beltrami of a suitable /, given by Ayh = divy; VM,
is
Aph = divyy Dh+ H - Dh = Aguiith — D*h(v,v) + H - Dh (1.1)

where D?h(v,v) := v- D,Dh is the second derivative of / in the normal di-
rection.

If our hypersurface has no boundary M = & or the vector field X has
compact support the divergence theorem is:

/ divMX:—/ H-X.
M M

Thus for a test function ¢ € C(z)(]R”“) this implies that

Ozi/MdivMD¢+FI~D¢:/MAM¢.

1.3 Mean curvature flow

We denote a smooth family of embeddings from an open subset M" of R”
by Fr = F(-,t): M" — R"t1 with F(M") = M, for t € I, where I an open
interval of R.

We say that this family of hypersurfaces moves by mean curvature flow if

Aclassical

g(Pr t) = H(F(p,t)) (1.2)  solution to mean
¢ M diel curvature flow,
orp e and t € [. where a sphere
We also have the fact that shrinks to a point

in finite time.

—Hv = —(divyv)v = §79,0jF = AyF
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Actually we have
shown that (T2 is
equivalent to (T.3)
up to tangential
diffeomorphisms.

so that we can write ([.2) as

oF
j(p,t) — AymF(p,t) =0.

We will consider hypersurfaces which are entire graphs of the form M; =
graphu(-,t) for u(-,t): R” — R and t € I. In other words the last compo-
nent of the map F(-,t) of M; can be expressed as a function of the first n
components and we can write

E(p.t) = (E(p.t),u(E(p,1),1).

If we denote by Du the derivative of u with respect to £ = l:"(p,t), then the
upward unit normal vector is given by

(=Du,1)
v/1+ |Dulf?

and the mean curvature of the graph is

CH—div [ Pv
V14 Dul? )"
Now since R .
OF _(9F du | oF
ot  \ ot’ ot ot
we have by ([22)
oF

5
which gives us the partial differential equation for mean curvature flow of a
graph given by u(F(p,t),f):

u Du
o _ ./ 24 [ HH
5 1+ |Du| le< - u|2>. (1.3)

In [B] the authors have proved long time existence and uniqueness of
a solution to ([Z3) provided the initial data u(-,0) = ug(-) grows at most
linearly. Of particular interest are the asymptotic properties of solutions to
mean curvature flow. Huisken has shown that convex closed hypersurfaces
asymptotically converge to spheres [[I]]. Ecker and Huisken have shown in
the case of entire graphs and under some condition on the growth of the
initial hypersurface and some condition near infinity, the solution becomes
asymptotically self-similar.

v=—-H
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1.4 Self-similar expanding solutions

A self-similar or homothetic solution to mean curvature flow is one which
moves by scaling and is given by the general form

M; = A(t) My, (1.4)

for a given time #; and a positive A(f) which needs to be specified. We can
then specify the ansatz, for a family of embeddings F(-,¢): M" — R"H,
namely:

F(q,t) = A()F(q, t1)

which satisfies the evolution equation

oF o
(5r0n) =G The grimreaper”
or translating
soliton solution of
mean curvature
flow.

for g € M". This says that up to tangential diffeomorphisms, the motion
described by F is equivalent to its normal motion along the mean curvature
vector given by F.

Using the fact that the mean curvature scales like 1/A(t) we have from
the above evolution equation:

N(DE(q, )" = ﬁﬁ(ﬁw b))

from which we see that

=
Il

A2(£) = 2A(HA/ (1)

S

is independent of ¢. Setting the condition A(t;) = 1 from our ansatz we obtain
the following positive solution to our ODE:

A(t) = \/1+a(t—1t) (1.5)

for t satisfying 1 +a(t — ;) > 0. Thus setting x = F(q,t) for x € M", we
have from our ansatz F(q,t;) = x/A(t), which when substituted into the
above equation gives:

DCXJ‘

H(x) = m

—

for 1+ a(t —t1) > 0, describing expanding homothetic solutions for « > 0 and
contracting homothetic solutions for a < 0.
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The solution of
mean curvature
flow with a cone as
initial data.

1.4.1 Self-similar solutions in the graph setting

In the graph setting expanding homothetic solutions to (I[.3)) arise quite nat-
urally as solutions “coming out of a cone” i.e. when the initial surface My is
a cone. Suppose that if u( is a cone with vertex at 0 then we can write:

uo(Ap) = Auo(p)
forall A > 0 and p € R". Now if we define

1
ug (p) = X”O()\P)
for A > 0, then .
uM(p,t) = Xu()\p, A2t)
solves ([:3) with the initial condition u (p,0) = u} (Ap)/A = uy(p) for A > 0.

By the uniqueness of solutions at least in the class of functions with at most
linear growth, we get that

u(p,t) = %u()\p,/\%)
and setting A = 1/+/t in the above gives
4
u(p,t) = Vtu —-—,1].
() = Viu (L21)

Differentiate both sides with respect to t we get:
ou 1 4, P 1. 30 4
— =t “—,1)— =t Du(—=,1) - p.
5 =5t ) P Du( )
Since we know from ([23) that ou/dt = —+/1 + |Du|?H, we conclude that:
1
H+ —-F-v=
Tyt v=0
which corresponds to « = 1 and t; = 1 in ([5)). Therefore for all p € M; the
identity
1
H+-F-v=0
+ 5 v
holds.

This together with the initial condition lim;_,o M; = M, implies that every
M; is asymptotic to the initial cone as |p| — oo for p € M; in the sense

lim 1Pt —uo(p)| _
|pl—o0 Pl

for every t > 0.
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1.5 Integral form of mean curvature flow

We can also study the equation ([.2) in the integral setting. This method of
using energy estimates provide us with the most important tools in under-
standing the formation of singularities and their asymptotics. These tools
where first established for (I[22) by Huisken and also generalised by Huisken
and Ecker in their work.

To begin with we will need to show how the area element evolves as the
surface flows by its mean curvature. Recall that:

dut(p) = \/detgij(p, t) dpmn (p)

where dyp is the volume form on the parameter manifold M" and the metric
at (p,t) is
gij(p,t) = 0iF(p,t) - 9;F(p, ).
Then we use the fact that the coordinate derivatives of F(p,t) commute

to calculate:
atgl']' = ZataiF . 8]1? = zaiatl: . ajF

Next we use the evolution equation o;F = —Hv, and v being the normal
implies v~8jF =0forl<j<mntoget
atgl']' = Zai(—Hv) a]F = —ZHE)iv . 8]F = —ZHAZ‘]'
and also - -
g’ = 2HAY.
The derivative of g := det[g;;], the determinate of a matrix [g;], is 0rg =
trace([gij] ~10¢[g;j])g or d:g = g8"/d;gij and so the area element evolves by:

o3 =—H>/g=—|HPVg
which proves the following lemma:

Lemma 1.1 (Evolution of Area Element). The area element of a solution (M) c|

of (I-2) satisfies the equation
a . = 2
adﬂt = —|H["du:

forallt € I.

The fact that we consider smooth, properly embedded solutions of mean
curvature flow implies that the n-dimensional Hausdorff measure on the fam-
ily of surfaces satisfies

Hn(Mt N K) < o0
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for all K cC R"*! and for all + € I. This is needed for us to integrate test
functions on R"*! which have compact support over M;. Another assump-
tion in view of the divergence theorem is that our family of solutions has no
boundary inside the set in which we integrate over them. With this in mind
and by using the chain-rule and the above lemma, we can state the integral
form of mean curvature flow as:

Proposition 1.1 (Mean Curvature Flow in Integral Form). For any smooth,
properly embedded family of solutions (M) of (Z2) in an open subset U C
R"H1, the following holds

4
dt Jm,

forallt € I and ¢ € C}(U).

— [ . _ 192
o= [, A Dy—Ifl

Similarly for time dependent test functions ¢ € C! (U x I), we can specify
that ¢(-,+) € C5(U) and ¢ (-,t) € CJ(U) for all t € I. This implies then that
the time derivative ¢ is integrable on M; and by the divergence theorem we
have fMt Ap,¢ = 0 for all t € I. This together with the above equations then
give us the following given the assumptions on our test function:

Proposition 1.2 (Time-Dependent Test Function). A smooth, properly embed-
ded solution (My);er of (T2) in U C R satisfies

i — di’_ 7124 — ai’ & 152
dt/M[(Pi/Mt dt [HI%¢ = M, at+H D¢ — H["¢

which due to the Divergence Theorem gives:

i [ Yy — |H|?¢ = 4 _1g12
ﬁ/Mt(P_ /Mt o = divm Do = |H¢ = /Mf <dt iAMf) ¢~ [HI%¢,

given test function ¢ defined above.

1.5.1  Monotonicity formula

The monotonicity formula which was proved by Huisken describes the be-
haviour of the integral of the “backward heat-kernel” over our surface M;. We
can define backward heat-kernel centered at the origin as

_ 1 |x[?
D(x,t) = Wexp (41?)

for x € R™*! and t > 0 and its translate for some fixed x; € R"*! and time
to > t, as:

B (08) = B30t t) = L e (=P
(xo to) VX B) = A X0 B 0) = gy g a2 P Ty — 1y )
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Geometrically we can see that as f approached tf(, the kernel is scaled and
concentrates at the point xy. The monotonicity formula then says that un-
der mean curvature flow the area of the hypersurface near any point in non-
increasing on any scale. It is in fact strictly decreasing, unless the hypersur-
face is homothetically contracting about this point.

Theorem 1.1 (Huisken’s Monotonicity Formula). If M; is a surface satisfying
(I2) fort < tgy, then we have

d o
t Ju, Poaso == [,

Proof. The proof uses the fact that ® is an extrinsically defined function of
M, in which case the total derivative of ® along M; equals:

1 2
H _ v CD(xOrtO)
D

D (1y,t9) dit-

xg,t0)

d® 9

— =—_+Dd-H
ar oot

and the Laplace-Beltrami given by ([[.1]). Thus if we assume we are at the origin
(x0,t0) = (0,0) we have the following pointwise result:

(;t o+ AM,) PO = aaif +divy, D® +2H - V4,

where we use the fact that since H is a normal vector to M;, then
H-D®=H -V'o.

Completing the square then gives us:

d 0D . |VL<I>|2
(dt_'—A)q) = iﬁ—leMth)‘FT
2
1
—|H - Vq) @ + |H|*®.
Next we calculate from the definition of ®:
oo |V 0 9 DD - v|?
j‘i‘leMt D¢+T = g _AH{VI‘F] d-D ¢(V,V)+T
= 0,
since
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and the remaining two terms using D® = x®/(2t) similarly gives —®/(2t).
Thus

2
€
v cp| D, (1.6)

(;t - AMt> ®— |HP® = — |ﬁ -

and in the case of compact M;, by Proposition [[.Z we are done. In the general
case we use Theorem [Z given below, with f =1 to obtain the result. O

Theorem 1.2 (Weighted Monotonicity Formula). Suppose (M;);c; is a family
of solutions to (I_2), and that f is a sufficiently smooth (possibly time-dependent)
function defined on (M;);cy, such that all integrals are finite and integration
by parts is permitted, i.e.

[ (A1 1551+ IDF+ DDy < o0

for all times t € I witht < ty and fixed point (xg,tg) € R"*2. Then for these
times we have:

d r d
& /Mt fQ(XO,to) = /Mt (dt - AMt) f -

Proof. We consider a time-dependent compactly supported test function ¢.
From Proposition [[.Z we have

d _ d(p —10
=@ —/ +4>dt |2y

/ cb(;t AMt)4>+ <<d +AMf>cI>—|H|2q>>¢

where we have used the integration by parts formula

2

L Vie,
H— (x0,t0) f (D(xo,to)'

¢(x0rt0>

In view of ([.6) we have:

it by @0 = o o (G ) o~

Now we proceed as in [[4] and choose ¢ = xr where

2
Dg.

1
H _ V ¢(x[]/t())

qD(XO/tU)

XBr < XR < XByr~
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XBy being the characteristic function for the ball B and
R|Dxg| + R*|D*xr| < Co.

We therefore have

d
(i)

Since we assumed that fMtCIJ < oo we can therefore let R — oo and use
the standard converge theorems for integrals to conclude the Monotonicity
formula when M; is not compact.

To prove the general case we use ¢ = fxr and proceed in the same way
as above. O

0
— ‘ (E)t — A]R,IH) xR + DZ)(R(V,U)

C(n,Co)
< R2 XByr\Bg*

1.6 Weak Maximum principle

In order to prove estimates for different geometric quantities, we will need
to use the following weak maximum principle which we will prove using the
monotonicity formula of the previous section. We will use the the maximum
principle in cases where our test function is extrinsically defined, in which
case we can express a

h(p,t) = f(x,t) where x = F(p,t).

Here h: M" x [t1,t0) — R and f: U x [t1,tp) — R and U is an open set
in R"*! containing the family of surfaces M;. The maximum principle then
states:

Proposition 1.3 (Weak Maximum Principle). For (Mt)te(tl,to)’ a family of so-
lutions to (I22), suppose f: U X [t1,ty) — R is sufficiently smooth fort > t1,
continuous on M" x [t1, tg] and satisfies the inequality

d R
(dt —AMJ f<a vy,

for some vector fieldd: M" x [ty,ty) — R which is well-defined in the sense
ay = Supr[tl,tU)W < 0. Then

sup f < sup f
M;

t

for all t € [t1, to].

11
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Proof. Let k = sup), f and define fy := max(f —k,0). Then from our as-
1
sumption on f, we have

(;t - AMt> = 2k (;t - Am) fe =2V fil?
< 2fid- Vi = 2|Vl
By Young’s inequality and our assumption on the vector field 7 we obtain
(45— 0w ) f2 < 332
We now use Theorem [ with f = sz to obtain the inequality
& pedusia [ pedu
dt Jm, 27 Im

which implies that fi is constant in time {. But initially at t = t1, f; = 0 so we
have that f; = 0, which gives us our result. O



Chapter 2

Comparison with the Heat
Equation

Since we have an explicit form for the solution of the heat equation, we use
it to calculate the rate of convergence of rescaled solutions for different
assumptions on the growth rate of conic initial data.

2.1 Simplest case

When n = 1, the equation ([3)) is just
Jdu Au

—_ =", 2.1
ot 1+ Du? (2.1)
and its linearization is just the heat equation
Jdu
— =A 2.2
5 u, (2.2)

with the initial data given by u(p,0) = ug(p). The solution of (Z2) for a
u € C? is given by:

—(p— z)z/4t dz.

u(p,t) F /

If we define g = (z — p)/\/éﬂ then we get

u(p, t) f/ uo(p + qv/4t)e™7 dg.

13
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Rescaling the solution parabolically, i.e.

Py, 1) = u(p,t) y= P 7 = log V2t,

vt ' V2t
then gives
)
@y, 7) f/ ("v+av2)) e dg.

Notice that the solution coming out of the cone uy(y) = |y| is given by
1 2
)= [ g Ay
) = 7= Jplv+Havate ™ dg

which at time t = 1/2 it is independent of t and so is equal to

u(y,1/2) = / [y+qv2le™" dg = d2(y) := lim &(y,7).
Thus we call ®*(-) the self-similar solution to the heat equation coming out
of this cone uy(y) = |y|.
If we now stipulate how our initial data ug(p) converges to its tangent
cone at infinity, then we can calculate the rate at which the solutions to the
heat equation become self-similar as t — oo.

2.2 Ecker and Huisken condition

In their paper [B], Ecker and Huisken consider an initial surface which grows
linearly and has bounded curvature. In the simplified case when n = 1 we
can write our initial surface as xo = (p, uo(p)). The unit normal is then given
by

1+ (up)?

The linear growth condition is then

vg = (vg,e2) 1 = /14 (u 0)? <

for some fixed constant c; > 1. The bounded curvature then implies that the
second derivative of ug is bounded too.
In addition Ecker and Huisken require that their initial surface satisfy the
following estimate
(x0,v0)* < c3(1+ |x|?)'™°
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for some constant ¢z < oo and J > 0. We write this condition in terms of ug
to get

|pugy — uo|? 3

T4 (up)? = (14 p2+ud)o1
Note that the linear growth condition implies

[pug — ol _ |pug — uol? 3 _.C
2 T 14 (up)? T (14 p2+ud)tt T p22

which is just the following, after we divide both sides by p2

|pug — uo| C
2 < ot

Note that the left hand side is just the derivative of uy/p, so we have
du(p)| . C
which finally gives us the Ecker and Huisken condition:

lim H0(r) Mo(P)‘ < %
r—oo p p

2.3 Rate of convergence to self-similar solutions

If the initial data uo(p) is a cone tangent to the standard cone at infinity, then
it satisfies all the assumptions of the previous section if

ug(p) _1‘ < C
p ~Ipl°

X ‘5, for

some § > 0. This then implies that
luo(p) — [pl| < Clp|"~?

which we use to get:

©(y,7) — V()| = ("t av2) e 7 dg = [y qvale 7 dg

vk

e
7/}R|y+Q\/§|1ﬂseiq2 dq = Ce*(ir

IN

(" (v +av2)) —le"(y +qv2)l| e dg

IN

15
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Thus we see that the convergence to the self-similar solution coming out
of the cone is exponential—at least in the linear case of the heat equation.
Now if we assume our initial data satisfies for some § > 0 a condition of

the form
uo(p) _1’ < g ,
p log®[p|
which implies that
C
uolp) — pl] < 17
log’|p|

and we see that

@7 - 0% W)l < = [ (¢ +avD) ~ ey +gvD)l|e 7 dg
< £ Iytqﬁl 7 dg
VT IR T +log’ly + 42|
< Cct°.

In other words we have a slower (TJ) rather than exponential, rate of conver-
gence to a self-similar solution.

We can thus reverse the above process to recover the condition analogous
to that of Ecker and Huisken so that we have a slower convergence to self-
similar solutions in this simplified case. Doing this gives that:

pl?

2
X0, V)" < c3—
< > log’|xo |2

for some § > 0.

16



Chapter 3

Height Estimate

e wish to show in this chapter that any initial smooth graph with bounded
W gradient that satisfies the logarithmic convergence to its tangent cone
at infinity, stays in such a class under mean curvature flow.

We define the height of M; with respect to the hyperplane R” x {0} by

u(p,t) = (x(p,t) ens1)

In particular we have the following lemma, since x(p, t) is the solution to
mean curvature flow and so
d
——=A|Ju=0.

Lemma 3.1. The function (x,t) given by
n(x,t) =1+ |x|?> —u® + 2n+ m)t
satisfies
(zjt - A> 7 =2|Vul®>+m,
for some constant m.

Proof. Since
d 2 _
(dt - A) (|x|*+2nt) =0

d 2 _ 2
(dt_A)u = —2|Vul%,

we have the implied result. O

and

17
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We have, by the Chain-rule for the Heat operator, for two twice differen-
tiable functions f: R — R and 77: R” — R, the composite f(#) satisfies

<;t - A) fn) = f'(n) (d - A) = ")Vl

where f’ denotes the derivative of f. We use this fact together with the Product-
rule for the Heat operator:

(d—A)fg f(—A)ngg(jt—A)f—ZVf-Vg

for a twice differentiable function g: R — IR, to prove the following lemma:

Lemma 3.2. For any power 6 and two twice differentiable functions f: R — R
andn: R" — R, the composite f°(1) satisfies

(d_A>f‘5( ) = &f1 (Z—A)f(n)—é( — D2 (f)?Vn[?
=86 —1)f° ()|

Proof. By using the above product rule repeatedly and direct calculation we
have that:

(-0)r = s(G-a)rtert(G-a)s-2vstovy
= f(f(G-a) e (G-n) foavs 2wy
+ 1(2 A)f—ZVf“Vf
;5}“(21 )
S2(14 244 (0 1) AP

which gives the result since Z‘S 11 =4(6— 1)/2. O
Thus we have for our particular #, and general f,
(5-8) £ = o F@VaEm) - oL TP
— (8 =1) 2 ()%,
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and

(5 =8) o) = o @l +m) = o Ty

=06 =) f*2(f) 2P|V — 2| Vul?
— 457 Hf'uVu - V.

We use this to prove the following lemma:

Lemma 3.3. For any power ¢ and two twice differentiable functions functions
f:R—=Randn: R" — R we have:

i 2f5() 4 — 12_ =1 ( g1 ul2 2 m) — £ 2
(5-8) (L0 -rw) = (5 -1)or (F@val+m - r19f)
- (% 1) s -0 v
U)
) 2 g0
—zf|w2—”17];(zW|2+m)
P gy s 25
2— ;7 V|~ +26——— ’7 f|V17|

0—1 )
4" vy +4%w V.
Ui Ul
Proof. To begin with we use the previous lemma to calculate:

d 1 o4 IV 2[VuP4m |V
(df A)" - (dt A)" 2 »o "2 2 o

Thus we have the following:

d u2 _ 1 d 2 2 d -1
(Ga)y = o (Ga)eee(Ga)
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VRS

==

[

>
N—
VRS
q\ﬁ,\,

[

—_
N———

=,

I [l
7 N\ VR
|5 =[5
[ [
—_ —_
N———
VS
T =

|

>
N——

=,

+

=X,
N
SO

|

>
N———
=5,

Ul
2 d fzS d
- 6, J (% 2

Ul ><dt A)f+17<dt A)u
+ u?f° (jt - A) nt—2fvy . vu?

2

u
—2V=—.Vf°

7 f

which when expanded gives us the result. O

3.1 Logarithmic growth

Now we would like to study M;, a smooth solution to ([2), which grows
logarithmically. We would like to show that that height u(-,t) satisfies the
same logarithmic growth estimates as u(+,0). Note in particular that the non-
negative function |x\2 — u? measures distance in the hyperplane orthogonal
to e,41. Our proposition then states:

Proposition 3.1. If for some negative constant —oo < cg < 0 and positive
power 6 > 1, the inequality

M2 Co

-1<
e+ |x|2 —u? = log’(e + |x]2 — u?)

is satisfied on My, then for all t > 0,

Mz Co

*1 S ’
e+‘x‘2fuz+(2n+m)t 10g5(6+|x‘27u2+(2n+m)t)

and a positive constant m > 4(6 — 1).

Proof idea. The proof involves calculating the evolution of

u? 5
—-1]1 2_ 20 ;
<e+|x|2—”2+(2n+m)t )Og (e + |x|* — u? + (2n + m)t)
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and then using the Weak Maximum Principle to obtain the result. In the cal-
culation below, we will abuse our notations and denote # also by the term
with the exponential e,

n(x,t) = e+ |x|> — u* + (2n + m)t,
as the constant does not affect the prior calculations.

Thus when we have for our particular case

1 1

f(y) =log(n),  f'(n) =y f (,7):_172

then the above lemma gives:

(oma) (52 rt0) = (5o (22 58

(¥ PRV Ay
(,7 1)5(5 L v

') 2 g6
2f—|Vu\2— L QIVuf 4+ m)
"

—2”f IV |2+25”f V2

fz) 1 fz)
Using Young’s inequality we obtain:

) 0 26
4”i7éw-v;7‘ §2{7|Vu|2+2u’7];]V17]2. (3.1)

Also note that in terms of a local orthonormal frame {e; }1<;<, on M we have
viu = vi<xl en+1> = <€1‘, en+1>
which implies that

i)

X
Vin =2|x| < 2] (x,ens1)(ei eni1) = 2(ei, x — (X, ep11)€n11)

so that:
|V77|2 = 42 X, €;) xen+l><eifen+l>)2

42 X, 002 = 2(x, ent1)(ei, eny1) (X, €5) + (x,€011) (€j, €011)7)

4 (|x|2 — (1, %) = 2(x e 1)+ 12(1 = (v,e0:1)?) )
4y. (3.2)

IN

21
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Also by the first derivative test for an extrema, we have at such a point
V(u*f° /5 — f°) = 0. This expands out to give:

2 0 ) 2 £6-1
. ( ) s, )>:2usu+5uf2Vﬂ
n Ui
2f§v;7 B (sfé—lvn
"> n
which we rearrange to get:
u? 5—1 ) 2 2 £6-2 2
26 i V|2~ J;z vu-vy = -2t 11|2V'7| DY i\ |

IN

o2V o2V
282 4257
U U
_— (3.3)

The last inequality above comes if we assume that initially

u2

n
which is preserved during mean curvature flow as shown by the following
adaption of Proposition 2.2 of Ecker and Huisken in [(]:

<1

Proposition 3.2 (A priori Height Estimate). If for some cy < oo, the inequality
2
u

- <C

T+ [xP—u2 ="
is satisfied on My, then for allt > 0, and some constant m > 0,

2

U
< Co.
T+ =2+ 2nt+m)t ~ °
Proof. We calculate the evolution equation
d 2 2 2 2
( - A> o Vel L @IVu +m) - 2u2%
dt U oo U
yg Y Ve

772

By Young’s inequality we have:

2 2
VP a1V

’4uV77~Vu i
U n

,72
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which then implies that

d 2 2
( - A) =<2 @IVulP+m) <o.
dt 1 i
Therefore by the Weak Maximum Principle (Proposition [.3) the result fol-
lows. O

We are now ready to prove our proposition, namely if M; is a smooth
solution of mean curvature flow and if initially My converges to its tangent
cone logarithmically, then such a rate is preserved during the evolution. In
other words the solutions remain in the same growth class they started in.

Proof of Proposition B_1. By using the inequalities (BI)) and (B-3) we obtain
from the evolution equation for some positive power J, the following inequal-
ity at the maximum point:

d ) <u2 > 5 ( u2> 51 <2|Vu|2+m |V17|2>
Z oA [ =-1 < —5(1-= +
<dt 1 f 1 / Ul n?

5(6—1) (1 ”2> o
+ — - A
n) pE
26
—”17{ Q2|Vul? + m).

Note that since u2/17 — 1 by our initial assumption is negative, the only pos-
itive term we have in the above inequality is

u2> 6—2 ) ( u2>f§—2
S6-1)(1— =)= |Vn?<46(6-1)(1-— | L—,
( )( v ,72\ | (6-1) 7 )

since by (8-2) |V#|? < 457. Now we will choose a positive constant m so that
we can control this term. In particular we see that m must be chosen so that

(-2) 5 (o

Thus since f(7) > loge = 1, if we choose m > 4(§ — 1), we can drop this
remaining negative term to obtain

(G-0)(5-)r e

Therefore once again by the Weak Maximum Principle in Proposition [[.3], the
result we need is obtained. O

23
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Chapter 4

Gradient Function Estimates

In this chapter we wish to show that our family of surfaces M; remains a
graph for all times. We thus need to estimate v - ¢, .1 from below or equiv-

alently the term
1
v= =/1+ |Dul?,

V-ent1

defined as the gradient function, from above.
We recall from Appendix A that

d 2
(dt—A>1/—|A| v,

which we use to prove the following lemma from [6]:

Lemma 4.1. The quantity v satisfies the evolution equation
d VMiy|2
( — A> v=—|A]%v oIVl
v
Proof. We have that
d 2 -1
——A)(v-e = |Al|“v ™,
(F-58) e =14

which gives us the result

M |2
<d_A>v:_|A|2U_2|Vv|
dt v

by using Lemma B.2. O

25
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An immediate corollary of the above lemma in view of the Maximum Prin-
ciple is that

Corollary 4.1. If v is bounded at time t = 0, it remains bounded by the same
constant.

We have form the work of Ecker and Huisken the following proposition
Proposition 4.1. If for some constantcy < oo, p > 0,
v <o (1+|x]2—u?)P
at time t = 0, then for t > 0 the inequality holds
v(x,t) < (1 + |x|? = u® + (2n + m)t)p

holds for some positive constant m > 0.

Proof. Setting
n(x,t) =14 |x|? —u® 4+ 2n 4+ m)t,

we compute from the previous lemmas:

d d d
_ —-P _ —-p P _
(dt A>v;7 U<dt A)n +7 (dt A>v

_ZVU.;/]_p
= —plp+1)|VyPoy P72 = 2p(|Vul* + m)on P~
_ Vol? e
— APy szp +2py P Vo - V.

The last term we estimate via Young’s inequality as

[Vo|?
onP

1
[2py ™7 Vo V| <2 4 o p? Vi Poy TP,

which gives us for positive p and m

d
(dt - A> op = —p(5+ )|V Poy 72— 2p(|Vul + myoy P!
—|APPoy~?
< 0
and the conclusion follows by the Maximum Principle. O

Indeed we can also derive logarithmic estimates for v similar to those
derived in the previous section for the height. More precisely we have that
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Proposition 4.2. If for come constant ¢c; < oo, and § > 0,
v < clog’ (e + |x|> — u?)
at time t = 0, then fort > 0 the inequality
v < c1log’(e + |x|> — u® + 2nt)
holds.

Proof. We have from the previous lemma for m = 0 that:

d _ e a -5
(dt A)vlog n = log U(dt A>v+v<dt A>log i

—2Vlog %y - Vo
2 16 Vol s log 'y o o
= —|A|"vlog °y _ZT log™" 7y —25UT|VZJ|
lo —0—1 lo —0-2
—50M|V17|2—6(5+1)v%|v;7|2

7
-1
+251°g17’7v17 . Vo.

Now we estimate

—0—1 2
251‘"517’7%7 ol <2V

5. 1o log™* "y 2
s A e V|

and the result follows after we drop all the remaining negative terms because
of the positive § > 0. O
Proposition 4.3. If for some negative constant —oo < ¢c1 <0, anddé > 1,

v < 1
e+ |x|2 —u? ~ log’(e + |x[2 — u2)

at time t = 0, then fort > 0 the inequality

v(x,t) o
2,2 -1l
e+ |x|? — u? 4 2nt log® (e + |x|2 — u2 + 2nt)

holds.

27



28

CHAPTER 4. GRADIENT FUNCTION ESTIMATES

Proof. From the previous lemmas we have that

d v 1/d d 1
2y = (a)ere (@),

—2Vy 1 Vo
2 2 2 2
_ _IAPv Vol Va9
Ui o 7 Ui
+ 25772V - Vo,
which because of Young’s inequality
- Vol? Vi |?
2 . < |
|27V - Vo| <2 7o +2v e
gives us
2 2
(3-2) (5 =~ -
dt U 1 "’
Similarly

d 5, _ og’ 'y 2, Jlog’ 'y 2
(dt A)logq-Zé . Va2 45108 1 =~

log’
51 gy,
2
Therefore we have the following evolution equation
d ) (v ) 5 (v ) log Ty 2
— —=A ——=1])lo < 20— Vu
( T v g ” ” [V
+0 < —1) log"~ ’7|v 2
U 2
fg((sfl) (Ul) log 77|V |2
n n?
—2Vlog’n - VE,
n
and at an extrema we have
\Y (U - 1) log’n =0,
Ui
which after expanding and re-arranging gives us:

log® 2y v
262 <” ) log’ 2y V2 = —2Viog’ - V2.
v 2 |V g1V,
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Substituting this into our evolution equation above and noting also that by
our initial assumption on the constant c¢; begin negative, and the fact that
log‘s 1 > 1, we have that initially

G-
n

which by the above proposition remains so during the course of the evo-
lution, we therefore obtain after dropping the obvious negative terms the
following

. C 1) 2 l:g ; 2

where the last term is also negative for § > 0. Thus using the Maximum
principle we obtain our result. O
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Chapter 5

Curvature Estimates

ere we present the work of Ecker and Huisken, which guarantee’s long-
time existence of a solution to mean curvature flow, for which it is cru-
cial to obtain a priori bounds for the second fundamental form on M;.
We shall only look at the case of linear growth by assuming that for some
fixed constant ¢; > 1, the inequality

v< (5.1)

holds everywhere initially on My, and by the result in the previous chapter,
hence holds for all time ¢t > 0.

Lemma 5.1. The curvature satisfies the inequality

d 2.2 1 2.2
A < _2°-Vo-V .
< ; A) |A| [ 2 0 (‘A| (Y )

Proof. We have the evolution equation
d
(dt — A) |A]2 = —2|VA]2 4+ 2|A]* < =2|V|A|]> +2|A%,
where we have used Kato’s inequality |V|A[|?> < |[VA[?. We also have

(d - A) 02 = —2|A|** — 6|V,
dt

and finally,

2V|A]2-Vo? = V|A|? - Vo? + 40| A|V|A| - Vo,

31



5.1. HIGHER DERIVATIVES OF THE CURVATURE CHAPTER 5. CURVATURE ESTIMATES

32

which we can re-write in terms of V(| A|?v?) since
V(|A]*0?) = |A]PVY? + 0*V|AJ?
which after re-arranging gives
1 1
VIAP-Vo* = Vo V(|A[*%?) — = |V A
v v
1 1
= 2-Vu-V(|A[*?) — —2|V02|2|A|2.
v v

Therefore we have by Young’s inequality

1 1
2V|A|? - Vo2 2-Vo- V(|APP?) — ?|V02‘2‘A‘2 + 40| A|V|A| - Vo

2%% V(|AP?) — 4Vo2|A]? + 40| A| V| A| - Vo

z%w V(| AP?) — 6| Vo |A]2 — 2|V A2,

v

This then gives us that

d 2,2
(dt A) |A|“v

q q
2% 2 A 2
0 (dt A>|A| +14] (dt A)v
—2V|AJ]? - Vo?

< —Z%VZ%V(’AFUZ),

as stated in the lemma. O

An immediate corollary in view of the above lemma is an a priori estimate
for solutions of mean curvature flow with bounded gradient and bounded
curvature, together with the fact that

1
=|Vo| < |Alv,
v
which implies that the vector given by @ = —20~ Vv is bounded. The exact

statement of the corollary is given by:

Corollary 5.1. If M; is a smooth solution of (I.2) with bounded gradient and
bounded curvature on each M;, then there is the a priori estimate

sup|A|*v? < sup|A[*0?.
M; My
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5.1 Higher derivatives of the curvature

Following the work of Huisken, we wish to use the uniform estimates on | A|?
to estimate all derivatives of A in terms of their initial data.
To begin with we have the following theorem of Huisken from [[L'1]:

Theorem 5.1. For any m we have an equation

(d—A>|va|2 < C(nm) Y |V'A||V/A||VFA||IV™A|
dt =
i+j+k=m
72|Vm+1A|2
< Cu(1+|V™AP) — 2|V LA,

where C,, depends on n, m, and on upper bounds for |A|?,...,| V" 1AJ2.

Note the last inequality comes from the applying Young’s inequality to
the expression

C(n,m) Y. |V'A||V/A||VFA||IV™A],
i+j+k=m

which shows that the dependency on the lower order derivatives is polyno-
mial.

The proof follows as in Hamilton’s paper [L0], where we use the notation
S x T for any linear combination of tensors formed by contraction on S and
T by g. The covariant derivative involves the Christoffel symbols, and we
observe that the time derivative of the Christoffel symbols Fj.k is given by

) 1 .
CRVES 5811 (Vjatgkz + Vioigji — Vzatgjk>
= —g (Vj(HAkl) + Vi(Hhy) — Vz(HAjk)>
= AxVA,
since the evolution equation of g is given by 6tgl~]~ = —2HAij.

As in Hamilton, we have the following lemma:

Lemma 5.2. If S and T are tensors satisfying the evolution equation

d
——=AN)S=T,
(@2)
then the covariant derivative VS satisfies an equation of the form

<§t_A> VS=VT+AxVAxS+AxAxVS.
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Proof. In view of the time derivative of the Christoffel symbol, we have that

d d
since
Ao i _ Ay 4ok
EVZS = EE)ZS +Erik5
N O P
= azdts +Fikdt5 +S dtrik
d .
= V=S +AxVAxS.
dt
Substituting the evolution of S then gives us:
d
EVSzVASnLVT—i-A*VA*S.

Finally interchanging the derivatives
VAS =AVS+AxAxVS+A*xVA=%*S,
and this completes the proof. O
Following exactly like in Hamilton, we thus have the following theorem

Theorem 5.2. The m-th covariant derivative V" |A| of the second fundamen-
tal form satisfies an evolution equation of the form

(dA) VA= Y ViAxVIAxVFA.
it L
i+j+k=m

Proof. 1If m = 0 we have that

d 2
(dt — A) Ajj = |A] Ajj
which gives us the explicit form of the cubic term. We proceed by induction

on m, using the previous lemma. This gives

d

EV’”“A = AV"TIA+ AxAxV"TIA+ AxVAxV"A

+v( Y ViA*VfA*VkA>,
i+j+k=m

and the result follows by the distributive rule for the covariant derivative. O
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As a corollary we thus have the following result also from Hamilton:

Corollary 5.2. For any m we have an evolution equation
d
— = A)|[V"AP = —2|V"TAP
dt
+ Y ViAxVIAxVFAxVTA
i+j+k=m
Proof. From the previous theorem we have that
d
dt

4

maA2 m
VAP = 2(v"A, -

V"A)+AxV"AxV"A,

where the extra term comes from the variation of the g/ defining the norm
|-|?. The Laplace-Beltrami operator also gives

AIV™A|2 =2(V™A,AV™A) +2|V" A2

which then gives:

<;t - A) IV"AI2 = 2(V"A, (jt - A) V™A) = 2|V LA

+AxV"AxV"A,
and the result follows. O

We can now follow exactly as in Huisken’s paper [I2], to show that all
higher derivatives of the curvature on M; are bounded, by using the uniform
estimate on |A|? and Theorem 1], we have the following proposition:
Proposition 5.1. If M; is a smooth solution to ([[-3) such that v, |A|*, |[VA|?,
V'”A|2 are bounded on each M;, then we have for all t > 0 the a priori

estimate:

sup| V" A| < C(m)
M

where C(m) depends on m, n, c| the gradient bound, and supM0|VfA| for0 <
j<m.

Proof. We know by Corollary 5.1] that result holds for m = 0. So we proceed
by induction on m. Suppose we have the result for m — 1. Then there is a
constant B, depending on m, n, Cy, and M such that

<;t - A) VA2 < B(14 |[V™AJ?).
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Now we add enough of the evolution equation of |[V""1A|? to control the
right hand side. By Theorem [5.1] we have that

d
(5 —8) (7"4R + BIV"14P) < ~BIT"4P + B,
where B depends on B and C(j) for 0 < j < m — 1. Since [V" 1 A|? is already
bounded, this inequality implies that |V’"A|2 can be estimated uniformly in
t by a constant depending on its initial data and on B and Bj. O

5.2 Longtime existence

To derive existence of a longtime solution for Lipschitz initial data, we will
first need the following estimates interior in time for the curvature and all
its derivatives, as done by the work of Ecker and Huisken.

Proposition 5.2. Let M; be a smooth solution of ([.3) with bounded gradient,
v < ¢1. Then for each m > 0 there is a constant C(m) depending on ¢y, n, and

m such that
tm+1|va|2 < C(m)

holds uniformly on M;.
Proof. For the case m = 0 we compute from the results above, the evolution

equation

<Z—A) (Q2tAP? + %) < —%vUV(zﬂAsz)—6|Vv|2

IN

290 V(21|AP?) ~ 4|V oP
= —%VU -V (2t|A*0? +0?).
By the maximum principle we thus have that the estimate
2t|A)P0? + 0% < C%

holds uniformly on M;. We now proceed by induction on m. We have that for
arbitrary power [ > 0 the estimate:

(i—A) (HUVIAR) < (1+ DEVIAR — 2841 vt A2
+C(n, DI Y VA VIA||VFA| V! A
i+j+k=I
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Suppose the result holds for m — 1, then we can estimate the last term as

tl+1 Z |VZA||v]A||va||le| < Ctl+1 Z t*i/Z*j/2*l|va||le|

i+j+k=I i+j+k=I
< CH2Y VRA|VIA|
k<l
< cY #vkap,
k<l

where the constant C = C(n,l,¢7). Then we obtain for I < m the estimate

(;lt _ A) (tl+1|le|2) S _2t1+1|vl+1A|2 +Cztk|va‘2
k<l

We can therefore choose a constant kq big enough so that

(d—A> (F"HYVAPR + Rt VTTAR) < C YD HRIVRAR — 2kt v A
dt =
+C Y #vkap
k<m-—1
< C Y VAR
k<m-—1

We then proceed similarly choosing constants k», k3, ..., k; such that

m . .
(;t _ A) <tm+l|va|2 + Zkitm+l_l|vm_1A|2> < C|A|2.
i=1

The last term we can control by using the evolution equation of v and se-
lecting a constant k,,.1 big enough such that:

m . .
<;t — A) (t’"“W*”AF + Y It AR 4 kavz) <0.
i=1

The result then follows from the Maximum principle. O

Using the above proposition, Ecker and Huisken obtain the existence of a
longtime solution for Lipschitz initial data:

Theorem 5.3. If the initial hypersurface My is Lipschitz continuous and sat-
isfies

supv < ¢y,

My
then the mean curvature flow problem ([.3) has a longtime solution for allt > 0
and satisfies a priori estimates in Corollary and Proposition [5.2.

5.3. SPATIAL DECAY
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5.3 Spatial decay

After obtaining decay estimates in time we are now able to show also that ini-
tial spatial decay behaviour is preserved during the course of the evolution.
If we consider scaled solutions (ME)SE(OJ), where

where we may choose p = 1, then the second fundamental form of (Mg)
given by A, satisfies a scaling property which we obtain by setting x = py

and t = p%s. We then have for x € M; and y € M that
V" Ap ()P = PV A,

so that the statements
V™ Ap(y)* < ca(m)

fory € M{ N By, s € (3/4,1) and

[V"A(x)]? <

for x € M; N B, o, t € (3/4p% p?) are equivalent. In view of this we propose
the following proposition which satisfies the correct scaling of the second
fundamental form:

Proposition 5.3. Let M; be a smooth solution of (I.2), satisfying v < c1, and
the additional assumption

logé(m—l—l)(e + |x|2)
(e =Pyt

IV™A? < cp(m)
attimet =0,m > 0andd > 0. Then for allt > 0
2
log®("+1) <e+ (\/|x|2 +2nt — \/E) )
2 m—+1
<e—|— (\/|x|2 +2nt — \/E) )

where B = B(c1) > 0 and Cy, = Cp(n,m,c1,¢2(0),...,ca(m)).

V" A|? < Cp
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Proof idea. Let ¢ = |A|>0?f(n) + Lv? where f() is an arbitrary non-negative
function and L > 0 to be determined later. For the case m = 0 we thus have:

(5-8)s = fon () 1aPe+1af? (5 -4) i)
_2Vf(p) - V(I ARR) + L (;t _ A) 2

W50 v(iapR) +ape2 (5 - 8) S0
2 f(n) - V(|AP?) ~ 2L(| AP ~3|Vo]?).

IN

Note that we have
Vg = f(n)V(|AP0?) + |A?*V () + 20LVo,

so that we if we multiply both sides by —2(Vv)/v we end up with:
2
—EVZ) -Vg = —2£Vv -V(|AP*?) —2|APvVo - Vf —4L|Vo|%
Similarly multiplying both sides by —2(Vf)/ f gives:

20 Ve — —avr.v(lale?) — 2V A2 — a1 Py
fo Vg =—2Vf V(A?) -2 7 Al 4LV Vf.

Substituting the above equations into the estimate thus gives

(£-2)s = —2(Z+3) vgriape (2vr-vos Zyvgp

+ (jt —A) f—ZL) +4LJ§W-Vf—2L|Vv|2.

By Young’s inequality we have that

‘4L Vo- Vf’ <2L |Vf\2+2L|Vv|2

f

and we estimate the vector 20~ Vo using the inequality v=!|Vo| < |A|v, and
from the Proposmon for the long-time existence for the case m = 0 and the
fact C(0) = c2/2. This together then implies that

2 2
vaVfgcl\ﬂvn

5.3. SPATIAL DECAY
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Thus we finally have the estimate

(£-8)s = 2(5+3) - veriaps <c1ﬂ|w +IVsF

(4 f—2L +2LU—2|Vf|2 (5.2)
dt f? ' '
Now we define

n(x,t>=e+(m—m)z

where B > 0 will be chosen later. Recall that we have the inequality (B-2)
[Vi|? < 4y

and also in view of the fact that (d/dt — A)(|x|? + 2nt) = 0 we have

(5-s)n = ={yirmi- ) (30 o

2
+B— €(|x|2+2nt)

-2 ‘V«/|x!2—|—2nt

| 2

\V4 2
(\/ |X|2 + 2nt — \/E) 2(|X||2 _|:C|2nt)3/2
v |x[2[?
- 2(||x|23i|— gnt) oy %""2 +2nt)

2(|x|? + 2nt) 2(|x|? 4 2nt)3/2

v|x?|?
B z(||x|2x+ gnt) Ay B+ 20

< B- §(|x|2+2nt). (5.3)

Proof of Proposition 5-3. As stated above, for the case m = 0if ¢ = |A|>0?f (1) +
Lv?, where f(5) is an arbitrary non-negative function and L > 0 to be deter-
mined later, we have the evolution equation of g given by (5.2). Now we define

n(x,t) ’ logy — 9 " 6(1+6 —logn)
x b)) = , ==, =
fln(x 1)) log® 17(x, 1) ) log®*1y ) nlog®*2y
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and for some B > 0 to be chosen later and 7(x, t) whose evolution equation
is given by (5.3).

Thus we begin by estimating the terms in (5.2) by first calculating the
evolution of f(7):

(5-5) fo

d _5 s [(4d
17<dt—A)log 7 +log 17<dt—A)17
—2Vy-Vieg %y
= —dlog? 1y a —Aln— é|V17|210 -1y

55 +1 o s (d
—(,7)|V77|210g *721 + log "n(dt—A>v

+2:;|V17|210g“5‘1 1

B 5 s (d
= (i) (o)

S4+1\ |[Vil2 s
+0 (1 — ) lo
log e 1

< (;t—A)17+45§45+/3—\/€(x|2+2nt),

where we use the inequality (B-2) |V#|? < 47 and the fact that log# > 1. The
next term we estimate is:

2 f 2 2 f 2
CIVF? = 25| Vy? 420 —L——| V7|
7 fl ,72! | FlogZy !
f 2
— 45 v
WSlogﬂl ul
< 8i+852%g8(1+52/e2),
U 1> log” 1

which also gives us that
v? v?
2L |Vf|* < 8(1+62/e*) L.
f f
Finally we estimate

5
IVf| < |Vny|log ™y — 5|V17| log° "'y < V| < 24/|x|2 +2nt +2\/Bt,

5.3. SPATIAL DECAY
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which we use to get

2 2 2
Cl\/;|Vf < Cl\/]v’ﬂ <20 ;(|x|2+2”t)+201\/ﬁ'

We therefore have the final estimate for ¢ by substituting the above esti-
mates into (5.2):

(i—A)g < 2 <VUZJ+fo> Vg + A2 (2c1\/E+/3+45

+8(1+0%/e?) ~2L) - A 2nt Jtrz’” (VB-2v2er) |APe?

2
2,2 v
+8(1+6%/e )Lf—(n)

b-Vg+|AP? (251\/2[5 +B+45+8(1+0%/e%) — 2L)

IN

UZ
fn)’

for some large enough B = B(c1), where we define

+8(1+462/¢*)L

If we now choose L large depending on 8, c; and J, and define k = supy, & +
9(1+ 52/62)LC%, we obtain

< c¢; once again. Now let gy =
, we obtain the result using the

where we have used the estimate v(
max(g — k,0), and since g - (g — k)
Maximum Principle with g7.

For the case m = 1, we compute as in the previous proposition the evolu-
tion

x,t)

(5-0)1vaRR0) = 72 (5 -8) VAR + VAR (5 -8) £
—2Vf2.V|VAP?
c(n) | APIV AP () ~ 202 AR ()

IN

2

logn — o

+8<g;7+1> V2 VA]? +2|V2A 22,
log" " 5
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Since by (B-2) |Vy|?> < 457 and |A|>f() < Cp (recall that v < 1) we estimate

(i - A) VAP () < e(n,5,C0) VAP ().

Similarly we derive

d
(4 —8) 1ARF) < ~IV AR + cl,0,Co)| AP
Also recall that for v > 1 one has

d 2 2
— _ < —

so that if we choose large enough positive constants K and L depending on
n, 6 and Cy we have that

(4 —8) (VAR + KIARF () + L) <o

The proposition for m = 1 then follows from the Maximum Principle. We
iterate over m similarly to prove the general statement. O

5.3. SPATIAL DECAY
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Chapter 6

Asymptotic behaviour

n this chapter we study the behaviour of our surfaces as the time t goes
to infinity. Through out this chapter we will assume certain conditions on
our initial hypersurface. We will state these assumptions before we use them

below.

As our initial graph evolves under mean curvature flow, it will move off

to infinity with speed proportional to 1/+/t, so studying their global shape
as time goes to infinity will give us no insight, unless we rescale the surfaces

back and prevent them from diverging to infinity.
We therefore define the following rescaling:

F(1)
V241

where the new time variable is given by

F(s) =

s = %log(Zt +1)

for 0 < s < oo. The rescaled mean curvature flow then becomes

with the same initial condition

Now for the rescaled surfaces denoted by M; = F(-,s)(M) we have the

following result:

45
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Theorem 6.1. Suppose M satisfies the linear growth condition (5.1) and has
bounded curvature. If in addition it satisfies

1+ |x> —u?

2
x, ) <e—m—
v log’ (e + |x|2)

(6.2)

for some constant ¢ < oo and some power § > 0 then the solutions M; of the
rescaled mean curvature flow (6.1) converge as s — oo to a limiting surface
M which is self-similar, i.e. it satisfies
Ft=H.
Before we prove this we show that the up to a time dependent factor, the
condition (6.2) is preserved for all time.

Lemma 6.1. Suppose our initial graph M has bounded gradient and curva-

ture and we have ) 5
” 1+ x| —u

log’ (e + [x[2)

for some constant ¢ < oo and positive 5 > 0, then for allt > 0, M; also satisfies

{x,v)

1 2 —u? 4 2nt
(x,v)? < c(t +§|x| Wt on :
log’ (e + |x|? + 2nt)

Proof. Let f = (x,v), then we have

(F-8) 7 = 271AR - anf -2V s
C(f2+1) —2|Vf>

IN

Also if we define
m=e+|x>+2nt and 1y =1+ |x|* —u? +2nt

then by the product-rule for the Heat operator,

d ; Vil*, s Vinl* s
(dt—A) log’y; = 5#10@ 1171—(5(5—1)%1055‘5 2
m m

1 5—1\ |V
5 1 - | 7721| log‘s m
ogm log m A

< 4(5( ! 5_1>1log5171§C10g‘5171,

logm  log2yi ) M
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where we have used the inequality |V#;|?> < 4#; and denoted all constants
which depend on the curvature bound and ¢ by C. Similarly we have

2 2
<d_A),7 _ IVl v
dt ’72 ’72
so that
d f? 1 <d ) ) 2(01 ) 1 , o1
——A)|— = —(—=-—-A + — —A)——-2Vf°-V—
(dt >172 2 \dt P\ 172 f 12
C v 2 2
12 2 ’72 ’72

+ 41{2Vf -V

Vu
< Sipan-2pBE < o,
3 ’7
where we have used Young’s inequality
2 |V772\
’72

2
VIR L o
72

412Vf~vnz <2
3

Therefore since ;751 log‘s 71 < ¢, some constant ¢ > 0 we have:

d f? _f d f?
<dt_ )og m = m(—A)log ’71+log ’71<dt >;72

v Gy
2V Vlog® m
2

I Jog? v Vlog
C log® 11 +1 2V Vlog® 1.
2 12

IN

Now we calculate

2 5—1
ovE Tloghy = 25uw Vi — 46018 Mg gy
2 77177 mm2
and once again by Young’s inequality we can estimate the first term by

2 2
< f—log m (462 Vi [? n |V7722|
2 73 log? m U

2]og’ !
2(5f7g 5 L V- Vi
mn;

INA
(@)
S
P
o
OQ@
=
-
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since |V#1|? < 41 and similarly |V7,|? < 4#,. Thus dropping the negative
term gives us the following estimate:

d f:Z fz
— —A I <C 1 1
(dt ) ’7 og M < og m+
which by the Maximum Principle implies the result that we require. O

In order to prove the theorem we will need to know the evolution equation
of a test-function in the rescaled case. The test function we use will have the
following general form

where

7

log’ (77
(J?,S) — Og~§]771)
U
for some positive powers § > 0 and p > 0 to be specified later.
The heat operator of g is

(5-8) 59 =) (55 ~B) 8055 + K005,

and since
d - _ 1 d - 5 - s. (d <\ 1
<ds_A)g( s) = 7l (ds A) log® 771 + log® 71 (ds A) 77
—ZVIOg 171(171)
o—1 ~ ~ 12
v o
— s T ( )771 5(6 7' Nzﬂ};;' log” 21
772 112
log® 7j <\ Viiy|? N
-p fﬁl (—A) 2= plp %bg&m
> )]

— 2V log’ 7j; - Vi, !
we get the following:

Proposition 6.1. For twice differentiable functions ij;(%,s) and ij2(X,s) and
continuous h(s), such that

5(2,5) = g% 5)h(s) = 2 Ty
772
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for some positive powers 6 > 0 and p > 0, we have

d 2\ ., . 0 d L\ 6 Vil
— < — — R LR ol
<ds A) p(x.s) 0 <ds A> n (5(2 b P

log 771 i3 log” 1
p (d ~>~ |Viia|?
—p P (Z—A) ot pp—1) 2L
P (ds T+ plp—1) 7’
+H(s)g(%,s).

Proof. The crucial ingredient of the proof comes from expanding the term

—2hSV10 0 7 -V~7p=2(5 %V~ 'V~,
(s)Vlog" 71 - Vi, Piatogn V- Vi
which by Peter-Paul’s inequality gives:
~ 512 512
‘2(5p~ P VﬁyVﬁz‘ <o VL5, 1o V] 5
iz log b 2 fitlog™ i

Therefore since

d -\ R (d ~)~ IVinl*
S _A)pxs) = oL (= —A)qj—o(0-1) 1L
(ds ) p(x,s) ¥ 71 ( )ﬁ%10g2 ﬁlp

6 (d 5\ . Vii|* .
rL (- 8) T plp+ )R W (29
2

-2V log‘s i1 - V@,
2

we obtain our result by using the above estimate. O

6.1 Proof of Theorem

The result of the Theorem will follow from the following estimate for some
0<y <2

< (14s) Tsup (H+ {xv))7o” (x,v))*?

su
My 775 log™“ 1

(H + (x,7))%0?
v, 75 log ¢
where 0 < € < J,0 < p <1, and for some choice of test functions 7; and #53.
Note that this implies polynomial convergence on compact subsets, instead
of exponentially fast convergence, obtained in regard to the corresponding
estimate of Ecker and Huisken.

We will make use of the following lemma from Ecker and Huisken [B]:
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Lemma 6.2. The normalised quantity H + (%,7) satisfies the evolution equa-
tion
d <\ - o pe ~ o
(% 8) (E+ (59) = (AP = 1)(# -+ (5,0)).
Proof. To begin with note that H = ¢~!(t)H and (%,7) = ¢(t)(x,v) where
P(t) = 1/+/2t + 1 is the rescaling factor. As in Appendix B, we therefore say

that H is of “degree” —1 and (x,v) is of “degree” 1. This together with the
evolution equations

d — AR d — AR _
(dt —A> H=|A]"H and (dt A) (x,v) = |A|*(x,v) — 2H,

and Lemma B-1] for calculating rescaled evolution equations gives us

7N
| =
|
@
N———
—~
T
+
=
<1
~
N—
Il
BN
T
—
T
_|_
—
=
=
SN—
|
N
T
+
T
|
—
=
=

Il
_—
hS
o
|
—_
S~—
—~
T
+
—
=
<
~
\\_/

which is the result we want. O

Similarly we have

(d _ A) R = 2| AR — 6|V3[?
ds

which gives us the following inequality for f2 = (H + (%,7))?9?

d ~ 2 2 1_ . 2
— < — —2_ . .
(ds A)f 2f 25VU Vf

Multiplying this with a test function §(%,s) we derive

&~

(;SA)f?p(f,s) < 2f2p2§Vz7.Vf2+f2(
—2Vp-Vf2

)5

Note that since V(f2p) = pV 2 + f2Vp, we can write
- ~ ~ 2
—2§st Vfr-2Vp-Vf2 = 2 (V;’ + Vﬁp) V(f%p) +2%Vﬁ Vo

2
+zg|vm%
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so that we end up with
(L-8)fpes) < —2fp+r (L&)l vop
- ds [y
. 2
—2 <vvv vpf’) V(£2p) +2%Vﬁ-Vﬁ. 6.3)

Proof of Theorem [6_]. When we set h(s) = (1+ )7 for some positive vy, then
we have that:

W(s) = 712h(s),

thus giving us the following estimate for the evolution of ¢ via Proposition B.1]

“log mlog i
y Viia|?
*zkﬁ (A)nzﬂ?(pl)?f'p
2 2
Yo .
+1+sp'

Now define #; and 7}, as
1 =e+alf> and 7o =1+ B|F|* -

for some positive constants « and  to be determined later. We have that
since both |x|2 and u? are of “degree” 2, together with the fact that

d 2 _ d 2
(dt_A> |x|*=—-2n  and (dt A)u = =2|Vu|%,

the heat operator of 7j; is given by:
(c‘lis - A) i = —2a(|%> 4+ n),
and that of 7j; by:
d
(ds — A) o = —2B(|%|> +n) +2B(|Vi|* + i?).

This then implies the following estimate for0 < p < 1,0 < e < é,and s > 0:

(5-8)p < 2(pp— s ) G4m0
[Vin|? 51

2 ;7% log2 i 1+s
1 |Vl
272 log? iy

P

o+ 0,
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where we have chosen 8 such that B < ex/plog#; so that we can drop first
term in the above inequality and that € — €2/2 <1/2fore > 0.
Moreover we obtain from the estimates

Vi[> <4daij and  |Vipl* < 4Bip,
the following estimates:
4 A)p<(a+7)p
ds P> Y)o,

and

\% \Y
|vp~| < < |1771| + | 772)
71 log 2

2(ev/a+py/B)p < 2Vea(Ve+ /p)p.

IN

which then gives
2J;2|Vp|2 < 8ea(ve + /p)*f?p,
and together with the estimate |V3|/3 < |A|3 < ¢1¢(0) also gives:
Z%ZVP‘ V3 < c(eq,c(0),n)Vea(ve+ /o) f*p
Thus we finally have after substituting the above estimate into (6.3)):
(£-8)Fp < @-9(P0+ (a+r+cVam(Ve+ v
+ 8ea(v/e+/p)2 ~2) f2p

s
4 f’).
5P

Choosing «, B, and 7 suitably small depending on €, p and c, we see that:

where

Q)
N
Y
<
S}

(4-3)fo<a-viFp)

foralls > 0. Lemma 6.1 ensures that f2§ vanishes at infinity which enables us
to apply the parabolic maximum principle to conclude that fzp is uniformly
bounded by its initial data.

Finally we use the result of Stavrou [[€] to conclude uniform convergence
to self-similar solutions, since our assumption is stronger than his. O



Appendix A

Derivation of Equations

n this chapter we wish to investigate the equation for mean curvature flow
I and derive some results which we will need.

Recall that for a properly embedded map F: Q — R"*1, where Q c R",
the coordinate tangent vectors are denoted by 9;F(p) and they form a basis
of the tangent space TyM at x = F(p) at every p € (). The metric on M is
then defined by g;;.

The Riemann curvature tensor of M is defined by

VMVMX - VIVMX = R X

where X is a tangent vector field on M and the Hessian operator VIMV/M is
defined as
MgM ._ gMgM _ oM
Vi V]» = Vr,» VT], Vvéfq
where 14, ..., T, are the basis of a local orthonormal frame. The Riemann ten-
M _ M M _ M
sor has the property that Rijkl = _Rjikl and Rijkl = _Rklij’ and the Gauss
equations express this tensor in terms of the second fundamental form of M
by:
RM = Aj Ay — AyA;
ijkl ik4ijl il 44jk-

The Codazzi equations then says that the 3-tensor of covariant derivatives of
the second fundamental form given by VMA = {VZMAjk} is totally symmet-
ric.

In the case of tensor fields, we denote the covariant derivatives, Hessian,
and Laplacian operator analogously to the vector fields case. For instance in
an orthonormal frame 1, ..., T4, we denote the component of VfVIV;VIA with

respect to T; by VIMV]MAH.
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A1 Preliminary Results

To begin with, we wish to calculate the Laplacian of the mean curvature,
Laplacian of the second fundamental form and its squared norm and finally
the Laplacian of the unit normal vector field. Recall that the mean curvature
and the square of the second fundamental form are given by

H=Al=¢A; and |A]? = AlAl = glgMazA;.

By working in a local orthonormal frame we can simply use the lower in-
dices only, and we also use subscripts to denote derivatives where there use
will be clear from the context of the computation. For example the Riemann
curvature tensor can then be written as

Xije — Xij := v,&vj‘ﬂxi — VJMV,IYXi = R,ﬁf,lxl = X Ryjji
by the symmetry of the Riemann tensor. Similarly
Akt — Ajik = VIV A = VIVMAG = ARy + ARl
Now by the Codazzi equations we have
AmAij = Ajje = Aikjke = Akijks
which by the above identity for the second fundamental form gives
AmAij = Agikj + Ak Ry + Ami Ry
Once again by the Codazzi equations and Gauss equation we get
AmAij = Axkij + Ak (AmjAik — Ak Aij) + Ami(Amj Ak — Ak Axj)
= Hj— |APA;j + HAx Ay,
which is referred to as Simons’ identity in its standard notation

AvAy = VMVVH - |APA; + HAAS.

Contracting the Simons’ identity with A7 = g”‘gﬂAkl then gives us the for-
mula

1 . ,
EAM\A\Z = ATVMVMH + |[VMAP + HA; A AY — A%,

where [VMA|? is the squared norm of the tensor {VkMAi]-}.
In order to calculate the Laplacian of the vector field v, it is more con-
venient to work with geodesic normal coordinates on M, i.e. the metric is
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gij = ¢;j and the tangential component of 9;0;F, at a point x = F(p) € M
where we compute, is (aiajF)T = 0. Recall we have from the definition of the

second fundamental form, A;; = —0;0;F - v, that d;v = d;v9;F - 9;F = A;;d;F.

The Codazzi equations are simply BiAij = Bini. Thus pointwise we have
0;0jv = 0;(A;jo;F) = 9;A;jo;F + A;j0;0;F = 0;A;;0;F — AjjAjjv
from the Codazzi identity and definition. Thus we get:
Ayv = —|APPv + VMH,

which is referred to as the Jacobi field equation.

A.2 Metric and curvature

We will need to derive the time derivatives of the geometric quantities whose
Laplacian we calculated in the previous section. This together with the Lapla-
cian will then all us to calculate the Heat operator of various expressions,
which we will need in our study.

Recall that if our manifold satisfies ([.2) then the metric evolves as

digij = —2HA;j,
the inverse metric by contracting the above equation with gif gives
0:g"l = 2HA,
and the area element /g, then satisfies

93 = —H2 g = —|APVS.

To calculate the derivative of the second fundamental form Aij, we once
again do the calculation in geodesic normal coordinates, i.e. g;; = d;j and

(9;0,;F)T = 0 at the point x = F(p,t) € M. Since A;; = —9;0,F - v we get
atA,«]- = —at(aia]‘F . 1/) = —aiajatF V= 818]«1-" . atll,

but since by d;v is tangential, the last term drops out. We use the evolution
equation (7)) to get:

atAi]' = 818]H + Hala]U V= E)ZBJH - HaiV . 8]1/
Since at the point x = F(p, t) in normal coordinates, VIMtVIM’H = a,-ajH, we

have:
dA;j =V v]MfH — HAAJ.
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To Calculate the deviate of the normal field v we use the fact that J;v is a
tangential field in view of the fact that v is a unit vector. We can then write
d:v in terms of the the tangent vectors BjF to obtain

atV = gijatv . a]FalF = —gijl/ : 8](—H1/)8,F = g’JBJHalF,

where we have used the identity v - 9;F = 0, the product rule and the evolu-
tion equation ([22). By definition the last term is the tangential gradient of H
denoted by

atl/ = VMtH

A.3 Heat operator of terms
We are now ready to calculate the Heat operator for the geometric terms we
are interested in. By combining the results of the previous two sections we
have in particular for H = g A;;
(3 — Ay, ) H = H| A%
Contracting the evolution equation of A;; with Al we obtain
| A2 = 24TV M vj”fH +2HA AFAY,
which combined with the Laplacian of |A|> gives us
(3 — Apg, ) |AP> = 2|AF — 2| VM A2,
The evolution of the unit normal v is thus

(at — AMt)V = |A|21/.



Appendix B

Rescaled mean curvature flow

n order to study the asymptotic behaviour of M; as t gets larger, we will
I need to rescale the surface by keeping some geometric quantity fixed, for
example the total area of the surfaces or the total enclosed volume. We do
this by multiplying the solution F of ([.2) for each time 0 < t < oo with a
positive constant

such that y
F(s) = ¢(t)F(t)
where we have introduce a new time variable 0 < s < oo given by

s(t) = %1og(2t+ 1),

such that
ds

I
dt ¥
The various geometric quantities then scale like
gij=0F - o;F =y, Aj=vAy, H=y 'H |AP =y ?AP,

etc. and the rescaled evolution equation for F is given by

dF  ,dF  ,dy L, dF
R il e S AT
= —Hv-F. (B.1)

To calculate the evolution of the rescaled area element we note that

03 = g“gifasg",y,
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thus giving us

. = o o B A B _ . oF _
aS\/§:\/§g]3iasF~8jF:\/§d1vMsg:_\/§(H2+n)_

For other evolution equations we can use the following lemma to compute
the rescaled evolution.

Lemma B.1. Suppose the expressions P and Q, formed from g and A, satisfy

ap

— = £AP
dt +QI

and P has “degree” n, i.e. P = Y*P. Then Q has degree x — 2 and

Proof. The proof follows from calculating

db w_ndP

il “r a—3 1/
0= 2T gy
— :l:ll]ﬂt—zAp_'_lth—ZQ_“llJaP
+AP+ Q —ab,
where we have used the fact that ¢/ (t) = —p>(t). O

Using this lemma, we can then convert unchanged many results to the
rescaled setting. For example a corollary to the above lemma and the Mono-
tonicity Theorem of Huisken is that:

Corollary B.1. If the surfaces M; satisfy the rescaled evolution equation (B-1),

then we have
d -
sl ddii. = —
ds /MS fs /Ms

for d = P~ "®, the rescaled backward heat kernel, given by

viel
—Hi — 5 'éd%,

. % — %o|?

D(X — %) = exp <—2> .
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