
  

5 Pattern formation during periodate 
reduction on a Au(111) film electrode 
in the presence of camphor 

5.1 Introduction 
In chapter 4 it was demonstrated that the Au(111)/camphor, IO4

- system 
possesses an  S-shaped current–potential curve. The present chapter deals with 
pattern formation studies in this system, whereby the focus is on the 
experimental confirmation of the existence of Turing structures in S-NDR 
systems as theoretically predicted [28]. Since the theoretical studies predict 
characteristic changes of global quantities as a function of the resistivity of the 
electrolyte, which manifets itself also in CVs, we discuss in section 5.1.1 the cyclic 
voltammetry in different base electrolyte concentrations and rationalize the 
observed changes. In section 5.1.2, spatially resolved measurements under 
various experimental conditions are presented, which are compared with the 
theoretical predictions in section 5.2.  
 

5.2 Results 

5.2.1 Global dynamics 

The qualitative appearance of the cyclic voltammograms depended strongly on 
the conductivity of the electrolyte.  
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Figure 5.1: Cyclic voltammograms of the Au/camphor, IO4

– system for different concentrations of 
the supporting electrolyte. Electrode: rectangular Au film (30× 8 cm2). Electrolyte : 5 mM 
camphor, 2 mM NaIO4 and (a) 32 mM NaClO4, (b) and (c)  1 mM NaClO4. 
 
 
A CV that is typical for medium and high conductivity of the electrolyte is 
shown in Fig. 5.1a. Its characteristic features are two regions of the applied 
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voltage with a hysteresis. One occurs around -0.7 V vs. Hg/Hg2SO4 and is 
labeled II in the figure. With an approximate width of 50 mV, it is rather small. 
This bistable region is exactly the S-region we are interested in. Due to the finite 
scan rate of the voltage, the S-region is slightly distorted, and the transitions 
between the stationary states are not as sharp as in a ‘quasi-stationary’ 
experiment. As discussed in section 4.2.3, it is closely linked to the two-
dimensional phase transition of the camphor phase between the condensed and 
the gas-like phases. The second hysteresis, which is bordered by the transitions 
III and IV between a high current and a passive state and vice versa, also results 

from a phase transition, which goes along with the replacement of IO4
- by 

camphor. As for region II, it is the signature of a bistability, which is observed for 
zero scan rate. Connecting the ends of the low and high current branches, which 
are indicated by A and B in Fig. 5.1a, it becomes apparent that the current–
voltage characteristic traces out the form of a ‘Z’. Thus, the CV exhibits an S-type 
bistability in the negative potential region and a Z-type bistability at more 
positive potentials. 
 
Fig. 5.1b shows a CV in a more extended voltage interval for a system with a 
lower electrolyte conductivity than that of Fig. 5.1a, but otherwise identical 
concentrations. Clearly, in this case, just one though very broad hysteresis, 
extending over nearly 500 mV, exists. This broad hysteresis remains also for zero 
scan rate, confirming that the system is bistable. In contrast, the small loop that 
can be seen around the negative turning point is a kinetic phenomenon. The 
bistability is of the Z-type. A comparison of the two CVs of Figs. 5.1a and 5.1b 
suggests that the two distinct bistable regions of Fig. 5.1a have merged: The 
branch at positive potentials is clearly coincident with the active branch of the ‘Z’. 
The transition from this branch is, however, going to a state with a current 
density of about 50 µA/cm2, a level that coincides with the value of the high-
current branch of the S-type hysteresis in Fig.5.1a, rather than with the one of the 
passive branch of the original ‘Z’. When going into positive direction from the 
negative turning point, the current density monotonically decreases from the 
high-density value of the ‘original ‘S’ to the low density value. Any sign of the S-
type bistability has disappeared at the lower conductivity.  
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That the S-type bistability can also not be recovered when restricting the external 
voltage to values negative to the transition point from the passive to the active 
branch is shown in Fig. 5.1c. At these negative potentials, the CV is single-valued, 
the current density increasing with increasing overpotential. Any sign of a 
dynamic instability is absent. Moreover, apparently it is possible to stabilize the 
system at current densities that lie between the two stable branches of the S-
bistability (and also the Z-bistability) and are thus inaccessible at high 
conductivities.  
 
Lowering the conductivity implies that the ‘IR’ drop through the electrolyte is 
larger; to adjust a certain state, characterized by the electrode potential, DLφ , and 

the current density, i, an external voltage U has to be applied, i.e., IR larger than 

DLφ , where R is the cell resistance: U = DLφ + IR. Let us consider how the larger 

‘IR’ drop changes the CV in the S- and Z-region. First consider the S-region (Fig. 
5.2a). The potential drop through the electrolyte is large for large current 
densities, i.e., on the active branch of the ’S’. Thus, to establish a state on this 
branch, a considerably higher external voltage has to be applied. In constrast, the 
‘IR’ correction on the low-current density branch is negligible. As a consequence, 
in a cyclic voltammogram the two branches are pulled apart at low conductivity, 
and thus the bistable region is converted to a monostable, single-valued region at 
sufficiently high resistivity. Note that in this case also current densities that lie on 
the sandwiched, unstable branch of the ‘S’ are accessible. The branch is 
apparently stabilized. Thus, the single-valued curve in the restricted voltage 
range CV displayed in Fig. 5.1c solely results from an S-shaped current  electrode 
potential characteristics and the IR drop through the electrolyte.  
 
In the ‘Z’-region, things are exactly opposite (Fig. 5.2b). The larger IR drop at 
higher current densities leads to a broader hysteresis, thus enlarging the bistable 
region. In Fig. 5.1b the conductivity is so low that the active branch of the Z 
reaches values, at which it coexists with the active branch of the ‘S’; as a 
consequence, the CV displays only one bistable region, with the stretched ‘S’ 
being part of the passive branch. 
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Figure 5.2: Schematic illustrations of the conductivity effect: (a) An ‘S’ shaped current–double 
layer potential curve is changed to single-valued current–external potential curve for a large 
enough electrolyte resistance, i.e., a sufficiently low conductivity. (b), In the case of a ‘Z’ shaped 
current–double layer potential curve, in a CV  the bistable region becomes the broader the lower 
the conductivity.  
 

5.2.2 Spatially resolved measurements: SPI studies 

a) Small disk electrode 

 
The studies on pattern formation were first carried out with the smaller disk 
electrodes which had a diameter of 6 mm. The initial search for patterns was 
carried out during potential scans. Thereby it turned out that whenever the 
conductivity was so small that the current–voltage curve was single-valued, a 
spot-like region appeared in the voltage region which corresponded to 
intermediate current densities that are not accessible at high conductivity. A 
typical experiment is shown in Fig. 5.3 and Fig. 5.4. 
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Figure 5.3: Current–potential curve in the S region. Scan rate: 50 mV/s, 5 mM camphor, 10 mM 
NaIO4.  The region between A and B corresponds to the potential interval in which the SPR 
images shown in Fig. 5.4 were recorded. 
 
 
Fig. 5.3 shows a current-voltage scan with a scan rate of 50 mV/s, Fig. 5.4 the SPI 
images that were recorded between the points marked by A and B in Fig. 5.3. 
Point A corresponds to a state on the active branch of the i/ DLφ  curve. Clearly, at 

this state the electrode is homogeneous. Furthermore, from SPRA measurements 
(cf. Fig. 4.9) we know that in the active state the electrode is practically camphor 
free. Thus, the initial blue image in Fig. 5.4 corresponds to a homogeneous, bare 
electrode surface. In the second image, a faint reddish-green region appears. This 
image was recorded at an external voltage of U = -0.925 V, i.e., slightly positive to 
the minimum of the i/U curve, and thus the corresponding i/ DLφ value lies on 

the sandwiched state (cf. Fig. 5.2a).  
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Figure 5.4: The sequence of images observed during the anodic potential scan in the S region      
(-0.945 V, -0.718 V) corresponding to the curve between A and B in Fig. 5.3.  
 
 
The yellow color indicates that some camphor adsorbed on the electrode. The 
fact that the color does not change homogeneously over the entire electrode 
indicates that the camphor film starts to grow locally. The spot becomes more 
pronounced and grows as the voltage is scanned further into the positive region, 
until the camphor film covers homogeneously the entire electrode surface at 
point B.  
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The interesting question is whether the inhomogeneous growth of the condensed 
camphor phase is a transient phenomenon or whether the spot-like structure 
remains stationary when the voltage is kept constant. Because the contrast of the 
images was rather low, the profile of the laser beam had a Gaussian intensity 
distribution and was also somewhat disturbed by unavoidable refraction 
patterns. Since (even though the beam was passed through the coherence 
scrambler) the coherence could not be destroyed completely (cf. section 3.1.3), it 
was not possible to obtain a sufficient contrast when a series of images was 
recorded at constant voltage. To circumvent this problem, the voltage was 
stepped from a value on the active branch, i.e., from a completely homogeneous 
state, into the region in which the spots were observed during the scan 
experiments. In this way, it was ensured that the series of images recorded 
exhibited an evolution, and the succession of images could be processed as 
described in section 3.1.3. In these experiments, the spots attained a characteristic 
size which was constant for the rest of the experiment, suggesting that in fact a 
stationary structure formed. Note, however, that due to the experimental 
constraints, the observation time was limited, so that these experiments did not 
allow to make statements about the long-term stability of the spots.  
 
Further hints that the structured states are indeed stable were obtained from 
experiments, in which the potential was sinusoidally forced. We hold the 
potential in the most cathodic region (-1.060 V) first, then jump the potential into 
the ‘S’ region (-0.801 V) as well as apply an external sinusoidal potential signal 
between the WE and RE. The sinusoidal potential is of 1.0 Hz frequency and 70 
mV amplitude. The potential program and the corresponding response current 
as well as the average light intensity recorded by SPI are shown in Fig. 5.5. 
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Figure 5.5: Time series of potential (c), current (b) and average light intensity in SPI (a) before 
and after (t = 243) jumping the potential to -0.801 V as well as adding an external sinusoidal 
potential signal (frequency 1.0 Hz, amplitude 70 mV). 
 
 
We can see from Fig. 5.5 that the potential jump practically does not give rise to a 
sharp transition due to the limitation of the potentiostat. In our case, the potential 
change rate is about 200 mV/s during the potential jump. After the addition of 
the external sinusoidal potential signal, the potential between WE and CE, the 
current density on WE and the average light intensity were all modulated by the 
external potential perturbation and gave out the corresponding responses. 
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Although the average light density on Fig. 5.5 did not reveal regular oscillations 
as the potential and current density curves did, we could still see that it 
responded to the potential perturbation in the same period, though with a certain 
small delay. 
 

 
 
Figure 5.6: Perturbation effect by sinusoid potential signal (1.00 Hz in frequency and 70 mV in 
amplitude). 
 
 
From the image series recorded by SPI in Fig 5.6, we observed the spatial 
patterns modulated by the external sinusoidal potential perturbation.  
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The size of the spots oscillated with the same frequency as the applied potential. 
This is a strong hint that at more negative potentials smaller spots are more 
stable than at more positive potentials, suggesting again that stationary spots 
indeed exist along the sandwiched branch of the ‘S’ at low conductivity. 
 
According to the above mentioned theoretical predictions, Turing structures 
should exist in the parameter region in which the stationary spots were observed. 
Turing structures are stationary patterns which possess an intrinsic wavelength. 
Obviously, as long as only one spot is observed, it is not possible to determine a 
wavelength. For this reason, experiments were carried out with larger electrodes. 
 
b. Rectangular Au(111) film electrode 
 
When employing rectangular film electrodes of 30 × 8 mm2, indeed, stationary 
structures with a different number of spots were observed, depending on the 
composition of the electrolyte. Examples of experiments in which one, two or 
three spots were obtained are displayed in Fig. 5.7a-c. The individual images 
within one series correspond to different values of the applied external voltage, 
each series being obtained at different concentrations of supporting electrolyte 
(NaClO4) and/or periodate. In the case of two and three spots, it is possible to 
assign a wavelength to the patterns. Obviously, the wavelength depends on the 
system’s parameters, as it is the characteristic for Turing patterns.  
 
While each sequence of images displayed in Fig. 5.4 was obtained during a slow 
potential scan, much care was taken to confirm that the patterns remain 
stationary at a given value of the applied voltage. The protocol employed to 
ensure the stationarity of the structures is shown in Fig. 5.8. First, a sequence of 
images was recorded during a voltage scan. The scan was stopped at some value 
within the pattern forming region. Then the system was kept at this value for at 
least 5 minutes. Finally, another sequence of images was recorded, starting at this 
value of the externally applied voltage and sweeping the voltage either into the 
cathodic or the anodic direction. Only when the final image of the first series and 
the first image of the last series did not show apparent differences, the pattern 
was classified as a stationary pattern.  
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(a) 

 
(b) 
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( c) 

 
Figure 5.7: Patterns emerging in different electrolyte compositions (scan rate 50 mV/s). (a) 5 mM 
camphor, 0.5 mM NaClO4, 0.5 mM NaIO4. (b) 5 mM camphor, 1 mM NaClO4, 1 mM NaIO4; (c) 
5 mM camphor, 0 mM NaClO4, 1 mM NaIO4. 
 

 
 

Figure 5.8: Test for the stationarity of observed patterns in the ‘S’-region.  The voltage was 
scanned to the desired value, where it was kept constant for 5 minutes. After this time the voltage 
scan was reversed. Images were taken during the forward scan and the initial ‘holding time’ (first 
series) and at the last phase of the holding time and during the reverse scan (electrode: Au(111) 
film (30 mm×8 mm)). 
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Stationary patterns were obtained—independent of the periodate concentration 
—whenever the total conductivity was low enough such that the CV exhibited a 
single-valued curve. The existence region of stationary patterns in the parameter 
plane spanned by the external voltage and the resistivity of the electrolyte is 
shown in Fig. 5.9. It is V-shaped and opens towards larger resistivity and larger 
overvoltage. Bistable behavior existed only for an electrolyte resistivity below the 
tip of the ‘V’. 
 
 
 

 
 
 

Figure 5.9: Existence region of the patterns in the electrolyte resistance vs. external voltage plane 
(from the experimental results). The electrolyte resistance, σ/1 , was calculated from the ionic 

concentrations ci according to σ =
FD
RT

 
 

 
 ni

2 ci( )
i

∑ ; F: Faraday's constant, D: 10-5 cm2/s, R: gas 

constant, T: absolute temperature, ni: charge number of the ionic species i, ci: concentration of the 

ionic species; i: Na+, IO4
-, ClO4

-. Electrolytes: 5 mM camphor, 0.5 mM NaIO4, x mM NaClO4. 
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Figure 5.10: Waves in different regions: (a) region II; (b) region IV; (c) region III. The common 
conditions are: 5 mM camphor, 1 mM NaIO4, 32 mM NaClO4 , scan rate 50 mV/s. 
 
A transition from the active to the passive branch of the ‘S’ within the bistable 
region is shown in Fig. 5.10a. Again the transition did not occur homogeneously 
over the entire electrode. Instead, the condensed camphor layer nucleated close 
to one of the smaller sides of the rectangular electrode and spread fast to the 
edges of this side, then to propagate as a plane wave from one end to the other 
one. Such a propagating wave or traveling front is characteristic for transitions in 
the bistable regime. In our context, it is noteworthy that these fronts in the 
bistable region never nucleated at the positions at which the ‘low current spots’ 
occurred for lower conductivity. This is another confirmation that the position of 
the spots is not determined by defects on the electrode.  
 
Also the transitions between the different states in the ‘Z’ region were 
accompanied by fronts. A transition from the camphor covered state to the active 
state is displayed in Fig. 5.10b. This transition corresponds to transition III in Fig. 
5.2a. (Note that the small spots on the images are optical artifacts; they are 
neither related to self-organization phenomena nor to defects on the Au film.) 
Again, the front formed close to a smaller side of the rectangular electrode and 
propagated across it from one end to the other. As in the case of the active/ 
passive transition in the ‘S’-region, the fronts were broad and somewhat smeared 
out. This was different for the transitions from the active ‘Z’-state to the active 
‘S’-state (cf. transition IV in Fig. 5.2a). As can be seen in Fig. 5.10c, the interfaces 
connecting different phases represent sharp boundaries. Moreover, most 
strikingly, there are not two distinct phases as for the transitions discussed so far 
but three. Above we argued that in the periodate, camphor/Au(111) system the 
electrode is covered by a periodate adlayer in the positive potential region. At 
more negative potentials, the periodate adlayer is replaced by a condensed 
camphor film. At even more negative potentials, camphor desorbs leaving a 
nearly bare Au electrode (cf. Fig. 4.9). At high resistivity, as it was the case when 
Fig. 5.10c or Fig. 5.2a were recorded, we discussed that the transition from the 
active branch of the Z goes to the active branch of the S. In the transition region, 
however, the electrode potential varies monotonically from values, at which the 
periodate adlayer is stable, to values, at which the Au electrode is nearly 
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adsorbate free, and thus attaining also values at which camphor adsorbs in a 
condensed phase. The three different intensity levels seen during the transition in 
Fig. 5.10c can be attributed to the periodate covered phase (red), which is the 
metastable active state (first image), the camphor covered state (yellow) and the 
bare Au electrode (blue), which is the stable low-current state (last image). This 
front is thus one of the rare examples, in which the interfacial region contains a 
third phase. Finally, it should be noted that within the ‘Z’-region for none of the 
tested conditions stationary patterns could be found. All structures observed 
were transient phenomena.  
 

5.3 Discussion 

As discussed above, the camphor,periodate/Au(111) system possesses stationary 
patterns which for sufficiently large electrodes possess an intrinsic wavelength, 
i.e., a wavelength which depends only on the system’s parameters, such as rate 
constants, concentration of the reactive species or conductivity, but not the 
geometrical extensions of the electrode. These patterns exist exclusively around a 
state in the CV that is transformed in the unstable saddle point of an S-type 
bistability at higher conductivity.  Under all other conditions, the long term 
behavior was found to be homogeneous, while transitions in the bistable regions 
were accompanied by fronts. These are exactly the features that were 
theoretically predicted. Moreover, the theoretical analysis showed that the 
stationary patterns emerge due to local activation and long-range inhibition, as 
do Turing patterns, and can, in fact, be classified as Turing-type patterns [28]. 
The experimental results presented above thus represent the first example of 
electrochemical Turing patterns. In the following, the formation of the Turing 
patterns is rationalized, partly using theoretical results discussed in [28, 87]. 

Let us first consider the dynamics of the homogeneous (i.e., only time-dependent) 
system. If one starts with a camphor containing solution at a negative potential 
(e.g., close to the negative turning point), an increase of the potential to more 
positive values causes an increase of the equilibrium concentration of adsorbed 
camphor. The rise in coverage continues, until at a critical coverage, a first-order 
phase transition to a dense film with high camphor concentration takes place, 
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due to the operation of attractive interactions between the adsorbates. Thus, 
reduction of IO4

–  will be inhibited causing a decrease of the current density I. 
Under potentiostatic conditions, this inhibition prompts a shift of DLφ  toward 

more cathodic (i.e., negative) values. Camphor will now desorb more readily, 
and a negative feedback loop is created: Because the build-up of the camphor 
film is associated with a decrease of the current density for periodate reduction, 
the response of the system (through the double layer potential) limits the growth 
of the camphor film. Thus, our system represents an activator/inhibitor system, 
whereby the camphor coverage takes the role of the activator and the electrode 
potential of the inhibitor. That the dynamics of a system follows an 
activator/inhibitor-type dynamics is the first prerequisite for the existence of 
Turing patterns.  

A general model for description of the spatiotemporal self-organization in such 
systems may be written with two equations [28]. Eq. (5.1) extends the 
homogeneous (i.e., local) dynamics of the concentration θ of the activator 
( camphor coverage) as described by the function f( , φ DL) to spatial spreading 

via diffusion as characterized by the diffusion constant D:  

=̂ θ

 

 ( ) θφθθ 2,f  ∇+=
∂
∂ D

t DL  .                                                                        (5.1) 

 
Eq. (5.2) is the central expression for pattern formation in electrochemical 
systems, which follows from local charge balance [88]:  
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zt
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WE

,g  ,                              (5.2)  

 
where C is the specific double layer capacitance, σ  the specific conductivity of 
the electrolyte, which together with the geometric factor β determines the cell 

resistance per unit electrode area. U is the externally applied voltage, U DLφ− the 

electric potential in the electrolyte, and z the coordinate normal to the electrode. 
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In analogy to reaction–diffusion equations, the local dynamics of the 
electrochemical system is comprised in the function g( DLφ , θ ), and the second 

term on the right hand side of Eq. (5.2) is the counterpart to the diffusion term in 
Eq. (5.1); it represents spatial coupling between different locations on the 
electrode due to an inhomogeneous potential distribution. Diffusion is thus 
replaced by migration.  
 
The key element for spontaneous spatial symmetry breaking in an activator–
inhibitor system is the ratio of the characteristic rates of the transport processes 
associated with the activator and inhibitor variables. This rate determines the 
effective ranges of the respective influence. For the sake of simplicity, consider a 
onedimensional (1D) electrode of length L. Then, the ratio of the rate of migration 
and diffusion is given by a dimensionless constant d ∝  (L σ  )/ (D C) L,  and C 
are readily accessible. Taking 10

σ
-5 cm2/s as an upper boundary for D and typical 

values for the other three parameters, d results to be on the order of 103 to 104. 
Thus, the potential spreads by far faster than the coverage does. This is exactly 
the situation that leads to a destabilization of the homogeneous state and thus to 
the formation of patterns. For a 1D electrode with periodic boundary conditions, 
model Eqs. 5.1 and 5.2 possess stationary periodic solutions [28]. They bifurcate 
from the homogeneous state, and their wavelength depends solely on the rate 
constants of the model (and not on the size of the electrode as one might 
conjecture because it enters the parameter d [28]. Thus, the patterns have all of 
the characteristics of Turing patterns. Plotting the location of the calculated 
Turingtype instability in the σ -1/U parameter plane, a similar V-shaped region 
(Fig. 5.11) is obtained as in the experiment (Fig. 5.9) (despite the different 
electrode geometry).  
 
The fact that the experimental results match nearly 1:1 the theoretical predictions 
is not only a strong support that the observed stationary structures are indeed 
Turing structures. It also presents evidence that electrochemical Turing 
structures indeed exist in all electrochemical systems that possess an S-shaped 
current–potential curve. This realization is especially important since in the 
pattern forming region the global signal (e.g., the current–voltage curve) does not 
exhibit any sign of a dynamic instability.  
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Figure 5.15: Existence region of the patterns in the electrolyte resistance vs. external voltage 
plane. Theoretical diagram: The diagram was calculated with the dimensionless version of Eqs. 

(5.1) and (5.2) 
∂θ
∂ t

= µ f θ,φDL( )+
∂2θ
∂x2  , 
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θ,φDL( )= κ 1−θ( )eφDL +

d
β

, where 

, g( ) ( ) θφ θθφθ 025.04.2025.0 2

e5.0e1,f ++− −−= DL
DL U −φDL( ), 

µ = 25, κ  = 10, β  = 10. z = -1 is the boundary between electrolyte and electrode. 
∂ φ
∂ z

 was 

obtained from the solution of Laplace's equation φ∆  = 0, subject to periodic boundary conditions 

in x (parallel to the one-dimensional electrode), and to ( ) 00,, ==ztxφ , ( ) 01,, φφ =−=ztx , 

  U=φDL x( )+ φ x( ) z=−1 . (Laplace's equation governs the potential distribution in the electrolyte. 

The electrolyte was assumed to be two-dimensional, z = 0 being the end of the domain opposite to 
the WE.) The physical quantity 1/σ was recalculated from d = (Lσ)/ (2π DC) with L = 1 cm, 
D = 10-5 cm2/s, C = 10 µ F/ cm2. U is given with respect to the point of zero charge. 
 
 

5.4 Summary 
Experimental stationary patterns with an intrinsic wavelength were presented in 
a system which possesses an S-type bistability.  The patterns existed in parameter 
regions in which the S was stretched to a single-valued current–external potential 
characteristics. A comparison with existing theoretical predictions confirmed that 
the observed patterns are Turing-type structures.  
 
Thus, it could be verified that a new kind of Turing-type structures can arise in 
electrochemical systems with a certain current–potential characteristics. This 
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finding may open prospects toward the tailoring of patterned electrodes. 
Furthermore, it remains to be examined whether the same mechanism is 
responsible for some structure formation phenomena in a biological environment, 
where potential gradients exist. 
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