
 

2 Backgrounds 
This thesis deals with problems that involve two fields, nonlinear dynamics and 
electrochemistry. In this chapter, the backgrounds from both fields necessary to 
understand the thesis are briefly summarized. 
 

2.1 Activator-inhibitor systems, oscillations and 
Turing structures 
Nonlinear dynamics deals with the temporal evolution of systems that are 
described by nonlinear rate laws. If the rate laws contain certain dependencies, 
these systems may exhibit the spontaneous formation of order, such as temporal 
oscillations or spatial patterns [1, 29, 32, 33]. In many cases, and in particular in 
the electrochemical systems considered here, the models belong to the class of 
activator-inhibitor systems, which possess one specific but widespread type of 
nonlinear dependences. Consider a system whose dynamics is described by two 
variables and . This system is an activator-inhibitor system, if the activator u  
catalyzes its own production (autocatalysis) and activates the formation of the 
inhibitor v , while  inhibits the formation of (Fig. 2.1). 

u v

v u
 
 

 
 
Figure 2.1: Schematic representation of the interactions in an  activator-inhibitor system. 
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Neglecting space for a moment, activator-inhibitor systems can be written in the 
general form: 

),( vuf
dt
du

= ,        (2.1a) 

),( vug
dt
dv

= ,        (2.1b) 

whereby , , and0/ >∂∂ uf 0/ <∂∂ vf 0/ >∂∂ ug , 0/ <∂∂ vg . The first two inequalities 

result from the requirement that the activator catalyzes its own production but is 
consumed by the inhibitor, whereas the last two inequalities take care that the 
formation of the inhibitor is stimulated by the activator but not by the inhibitor 
itself (i.e., it is not produced autocatalytically). Detailed studies on activator-
inhibitor systems can be found in the book by J. D. Murray [34]. 
 
If the characteristic time of the activator is much shorter than the one of the 
inhibitor, activator-inhibitor systems exhibit oscillations.  This can be seen easiest 
if we consider a specific activator system:  
 

 ( ) bvauuau
dt
du

+−−++−= 23 1 ,     (2.2a) 

 dvcu
dt
dv

−= ,        (2.2b) 

 
where 0 < a < 1, b, c and d are constants, whereby c and d are positive. The null 
clines of f(u, v) and g(u, v) are the set of points (u, v) in the u, v plane that satisfy 
f(u, v) = 0 or g(u, v) = 0, respectively (Fig. 2.2).  
 
When crossing a null cline, the corresponding function (f or g) changes sign. 
Furthermore, the intersection of the two null clines is a stationary state, S. With 
this in mind, we can illustrate why an activator-inhibitor system possesses 
oscillatory solutions if typical changes of the activator occur on a shorter time 
scale than those of the inhibitor. Consider the situation depicted in Fig. 2.2. 
Suppose, the system is in the steady state and a small fluctuation occurs such that 
it increases u slightly. For this state, f > 0 and g > 0. If f >> g (i.e., the characteristic 
time of a change of u is much larger than one of v), u will further increase rapidly, 
until it reaches the f null cline. Once on the f null cline, v slowly increases, the 
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system thereby staying on the f null cline, until we come to the maximum of f, 
where a further small increase of v takes the system to values where f < 0. Again, 
since changes in f are much faster than those of g, u will decrease rapidly, until 
the system again reaches a branch on the f null cline that is, this time, the branch 
at low values of u. On this branch, g < 0, and hence v decreases, until the 
minimum of the f null cline is reached. A further decrease of v brings the system 
again in a region in which f > 0, and thus a fast change of u drives the system 
back to the outer branch of the f null cline where the scenario repeats: v again 
increases, until the maximum of the null cline is reached, and the system again 
undergoes a transition to the low u branch of the f null cline and so on. The 
system is oscillatory. In much the same way, it can be shown that the system will 
rest on the stationary state S if typical changes of v are faster than those of u.  
 
 

 
 
Figure 2.2: Null clines for the above model in Eq. (2.2) with b in a certain value range (the solid 
straight line is the v null cline, the polynomial solid curve the u null cline, their intersection is 
the steady state of the system). The steady state can be unstable upon perturbation, and limit 
cycle periodic solutions are possible (dashed line). 
 
 
Thus, we can summarize that an activator-inhibitor system with a fast activator 
dynamics possesses oscillatory solutions, whereas oscillations do not exist if the 
inhibitor dynamics is faster than the activator dynamics. However, also in this 
case, the system might undergo an instability if it is spatially extended and 
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further conditions are fulfilled. This fact was first realized by Alan Turing, long 
before the concept of activator-inhibitor systems described above was developed. 
 
In 1952, Turing proposed a pioneering idea in order to understand 
morphogenesis [35], “…although it (remark: Turing refers here to the spatially 
extended system) may originally be quite homogeneous, it may later develop a 
pattern or structure….”.  In this article Turing investigates a chemical reaction 
mechanism, in which two species are involved that we would nowadays classify 
as an activator-inhibitor mechanism. He demonstrated that this mechanism can 
generate stationary structures or patterns from a homogeneous initial state if one 
of the species (the inhibitor) diffuses faster than the other one (the activator). 
Thus, the graphical representation of an activator-inhibitor system as given in Fig. 
2.1 can be extended to that one in Fig. 2.3.  
 
 

 
 

 
Figure 2.3: Schematic representation of the interactions in an  activator-inhibitor system and a 
fast diffusing inhibitor. 
 
The general form of an activator-inhibitor model in a spatially extended domain 
thus reads: 
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where is still the activator (u 0/ >∂∂ ug ) and v  the inhibitor ( ). If 

≥ , the system will eventually turn to a uniform steady state. However, if 

< , stationary concentration patterns may eventually form spontaneously. 

Such patterns are also called Turing structures or Turing patterns.  

0/ <∂∂ vf

uD
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The mechanism, by which an activator-inhibitor kinetics coupled to diffusion 
generates Turing structures, is illustrated in Fig. 2.4. In Fig. 2.4a, a local 
fluctuation of the activator (solid curve) occurs while the system is initially in a 
homogeneous steady state. Because of the autocatalytic kinetic of u, the small 
fluctuation initiates the further growth of the activator, which also activates the 
production of the inhibitor and thus leads to a local increase in the concentration 
of the inhibitor (Fig. 2.4b). The higher local concentrations of both activator and 
inhibitor also induce lateral diffusion fluxes (Fig. 2.4c). Since the inhibitor 
diffuses faster than the activator, it soon reaches regions in which the activator 
concentration is not yet increased. In this region the high inhibitor concentration 
keeps the activator concentration low; hence, the slow flux of the activator into 
this region cannot initiate the autocatalytic formation of u. As a result, a ‘spot’ of 
high activator concentration forms that is surrounded by a cloud of increased 
inhibitor concentration. Thus, the final state shown in Fig. 2.4d remains 
stationary.  
 
While this picture is a helpful visualization of how Turing structures develop, it 
lacks one important feature of Turing patterns. A Turing pattern does not consist 
of an individual ‘spot’ but of a ‘series of spots’ which possess a defined distance. 
This is because a Turing pattern has a defined wavelength. The wavelength is 
completely defined by the kinetic parameters of the model and independent of 
the physical dimension of the system [8]. 
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Figure 2.4: Evolution of a stationary structure in an activator-inhibitor system, in which  the 
inhibitor diffuses faster than the activator. After [36]. 
 

2.2 Nonlinear dynamics of electrochemical systems  
Electrochemical systems exhibiting instabilities often behave like activator-
inhibitor systems [15], whereby the electrode potential is an essential variable. It 
takes on the role either of the activator or of the inhibitor. In the following we 
shortly review the basic equation describing the dynamics of the electrode 
potential in a homogeneous situation, discuss under which conditions the 
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electrode kinetics supports instabilities and consider the transport processes 
lateral to the electrode. The interplay of these transport processes and the 
dynamics of the uniform system determines the type of patterns which form at 
the electrode/electrolyte interface.  
 

2.2.1 Electrochemical double layer and evolution equation of the 
electrode potential  

In electrochemistry, the interface between the electrode and the electrolyte is 
decisive for the kinetics of any electrochemical reaction. An important 
contribution on the nature of the interface goes back to Helmholtz (around 1870) 
and is known today as the Helmholtz model. Helmholtz regarded the interface 
between the electrode and the electrolyte as a parallel plate condenser of 
molecular dimension (also called double layer). Later, this model was 
continuously refined to fit experimental results. The current picture of the double 
layer structure and its corresponding potential distribution in front of the 
electrode are schematically depicted in Fig. 2.5.  
 
In Fig. 2.5a, the metal plate has surface excess charge. In front of the metal, the 
solvent molecules (water) and fully solvated ions of opposite charge are attracted 
to the metal surface by electrostatic forces (the fully solvated ions are called non-
specifically adsorbed ions). The plane through the center of the non-specifically 
adsorbed ions and parallel to the metal surface is called the outer Helmholtz 
plane (OHP). The distance between the OHP and the metal surface is about 0.3 
nm, which is the approximate radius of the fully solvated ions. Some ions (e.g., 
anions, particularly halide ions) may slip off part of their solvation shells and 
form a chemical bond with the metal surface. Such ions are called specifically 
adsorbed ions. The plane through the center of these specifically adsorbed ions 
and parallel to the metal surface is called the inner Helmholtz plane (IHP). 
Beyond the OHP, some counter charges from the electrolyte are incorporated in 
the double layer for charge compensation.  
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Figure 2.5: (a) Schematic diagram of the metal/electrolyte interface. (b) Potential drop across the 
interface in the case of non-specific (¯¯) and specific (- - -) ion adsorption. (c) Schematic diagram 
of a two-electrode electrochemical cell. After Kolb [37].  

 
 
The potential drop in the double layer in the case of non-specific (solid line) and 
specific (dashed line) ion adsorption is shown in Fig. 2.5b. mφ , sφ and 2φ are 

potentials inside the metal, in the electrolyte, and at the OHP x , respectively. 2
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The potential drop in the double layer in the case of non-specific ion adsorption 
is assumed to be linear, while in the case of specific ion adsorption, it decreases 
(the metal with positive excess surface charge) faster and has an overshooting 
feature.  
 
In Fig. 2.5c, a two-electrode electrochemical cell is shown. The cell is driven by an 
external voltage E . Normally, besides these two electrodes (one is the working 
electrode (WE) and the other one the counter electrode (CE)), a reference 
electrode (RE), which has a constant potential drop, is employed in an 
electrochemical experiment in order to have a better control over the potential of 
the WE, which is in many experiments the quantity of interest. 
 
To mathematically describe the temporal evolution of the potential drop across 
the double layer during an electrochemical experiment, it is helpful to use an 
equivalent electric circuit of the electrochemical cell [13, 38, 39]. The 
electrochemical interface can be modeled by a parallel connection of a capacitor 
with capacitance C  and a general faradaic impedance ( , associated with 

charge transfer between reactants and the electrode). The electrolyte can be 
described as an ohmic resistor connected in series to this interfacial circuit. 
Across both, the interface and the electrolyte between the WE and the RE, there is 
a constant voltage U (which in an electrochemical experiment is realized by 
means of a potentiostat). If we denote the potential drop across the double layer 

by 

reacZ

DLφ , the potential drop across the electrolyte between the WE and the RE then 

becomes IR = U - DLφ , where I is the total current and R the electrolyte resistance 

(Fig. 2.6). 
 
Applying Kirchhoff’s law to the equivalent circuit, we obtain the following 
evolution equation for the double layer potential: 
 

RA
Uuj

dt
dC DL

DLreac
DL φ−

+φ−=
φ ),(      (2.4) 

 
where C is the specific double layer capacitance,  the faradaic current density 

which depends in general on 
reacj

DLφ  and often also at least on one other variable u 
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(such as a reactant concentration). The term on the left is the capacitive current 
density, and the last term on the right represents the migration current density 
passing through the electrolyte, whereby R is the resistance between the WE and 
the RE and A the electrode area.  
 

 

 

Figure 2.6: Equivalent circuit of an electrochemical cell. (C: capacitance of the double layer, Zreac: 

faradaic impedance; R: uncompensated electrolyte resistance; U: externally applied voltage; DLφ : 

potential drop across the double layer, in the text also called interfacial potential or double layer 
potential. ) After [15].  
 

2.2.2 NDR and instabilities in electrochemical systems  

In electrochemical systems a dynamic instability is in most cases associated with 
a negative differential resistance (NDR) of the current-potential characteristics, 
Ireac( DLφ ) [12, 13]. NDRs leading to an N-shaped current-potential characteristics 

(N-NDR type system) are quite widespread and may develop owing to three 
causes [12, 13, 15, 40]: First, an adsorbate (or ‘poison’) might block surface sites 
for an electrochemical reaction at high overpotentials. The smaller number of 
‘free’ surface sites then leads to a decrease of the reaction current with increasing 
overpotential. Second, the reaction might be catalyzed by an adsorbate which 
desorbs from the electrode with increasing overpotential. Third, for anions which 
are reduced or cations which are oxidized, electrostatic ‘double layer effects’ 
might lead to a smaller concentration of the electroactive species with increasing 
overpotential. 
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Fig. 2.7 shows different current-potential characteristics together with the so-
called load line, which can be obtained from the total current through the cell 
and is given by the following relation: 
 

RRURUI DLDL ///)( φφ −=−= .     (2.5) 

 
Note that the load line has a negative slope because of the negative sign in front 
of the last item in Eq. (2.5). 
 
 

 

Figure 2.7: Schematic diagram on the principle of the origin of instabilities. 

 
 
Let us assume that the system’s dynamics is described by the evolution equation 
of DLφ  alone (Eq. (2.4)), which implies that all quantities, such as the coverage of 

the electrode surface by an adsorbate or the concentration of a reacting species in 
the reaction plane, adjust rapidly to a change in DLφ . Then, an intersection 

between the current-potential characteristics and the load line denotes a 
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stationary state of the system. The stability of this steady state can be analyzed by 
linear stability analysis. As demonstrated in [12], the stationary state is stable, 
whenever the current-potential characteristics possesses a positive slope, but 
may become unstable, if the steady state lies on a branch of I( DLφ ) with a negative 

slope, i.e., when the I - DLφ  characteristics possesses a negative differential 

characteristics. This can be illustrated easily: Suppose that the system is in a 
stationary state and that DLφ  is slightly perturbed towards more positive values. 

If the I -reac DLφ curve has a positive slope at the stationary state (positive 

differential resistance), as in Fig. 2.7a, then the slightly larger value of the 
electrode potential also leads to a larger current, . Since reacI DLφ =U - IR and U is 

constant (potentiostatic condition), the potentiostat will take care that DLφ  

decreases again, i.e., the fluctuation is damped and the steady state is stable. 
According to the same argumentation, one arrives at the conclusion that if the  

-reacI DLφ curve has a negative slope (negative differential resistance (NDR)), the 

stationary state will be unstable for a sufficiently large electrolyte resistance.  

reac DLI φ
 
The - curve depicted in Fig. 2.7b possesses the shape of an ‘N’, whereby 

the differential resistance of the middle branch is negative. Electrochemical 
systems with such a characteristics are called N-NDR systems. Still, for the 
situation shown, the stationary state is stable, since the load line intersects the 
current-potential curve on a branch with a positive slope.  
 
As illustrated in Fig. 2.7c for a low electrolyte conductivity (manifesting itself in a 
small slope of the load line), an N-NDR system may possess three steady states at 
a given set of parameters. The two outer steady states are on positive sloped 
branches of the I -reac DLφ curve and are consequently stable. The middle steady 

state is in the NDR region and is unstable. The system is thus bistable.  
 
As discussed above, perturbations of DLφ  from a steady state on the unstable 

(negative differential resistance) branch are enhanced. Formally, we can interpret 
this positive feedback as an autocatalysis. Often, in N-NDR systems there is a 
second variable which varies on a time scale that is slower than the one of the 
electrode dynamics. Thus, to describe the dynamics of these systems, a second 
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coupled evolution equation has to be considered to describe the dynamics of 
these systems completely. If there is a negative feedback between this second 
variable and DLφ , the electrochemical system behaves exactly like an activator-

inhibitor system. In the simplest realization of an electrochemical activator-
inhibitor system, the system possesses an N-shaped I- DLφ characteristics and the 

transport of the electroactive species is partially mass transport limited. Denoting 
the concentration of the electroactive species by u, the dynamics of such a system 
is described by the following two coupled equations [12]. 

−=

u
δ
2

DLφ
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UnFuk
dt

dC DL
DL

DL φ−
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φ )( ,     (2.6a) 

 ( uuDk
dt
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δ
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where δ  is the diffusion layer thickness, D the diffusion coefficient of the 
electroactive species and ub its bulk concentration.  Furthermore, it has been 
assumed that the reaction current is proportional to u and k( DLφ ) has an N-

shaped characteristic. The two terms on the left hand side in Eq. (2.6b) describe 
the consumption of the electroactive species by the reaction current and its 
replenishment by diffusion, respectively. How the interaction of the electrode 
potential and the concentration of the electroactive species lead to oscillations is 
depicted in Fig. 2.8.  
 
The depicted N-shaped I- DLφ characteristic corresponds to infinitely fast transport. 

For slower transport, the concentration of the reactant in front of the electrode 
decreases, and it decreases the more, the larger the current. At the beginning of 
an experiment the concentration of the reactant in front of the electrode is equal 
to the bulk concentration. Now, suppose that initially a potential close to the 
maximum of the I- DLφ  characteristics is adjusted, e.g., ,1 in Fig. 2.8. Then the 

system would attain the state ( DLφ ,1, I1). However, the consumption of the 

reactant would initially be larger than the replenishment by transport; the 
concentration, and, thus, the current would therefore decrease slowly. Thus, the 
potential drop through the electrolyte becomes smaller for the lower current, and 
consequently the potentiostat causes an increase of DLφ . If in this way DLφ  is 
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driven to values, at which the I/ DLφ characteristic possesses an NDR, then DLφ  is 

‘produced autocatalytically’, as discussed above, until it reaches values on the 
outer branch which again possesses a positive differential resistance. On this 
branch, the current is, however, much smaller, and the concentration of the 
electroactive species increases again at this low reaction rate. Accordingly, the 
current increases slowly, and the potential decreases again. In this way, the 
system is driven back to the NDR branch, where in turn, the decrease in DLφ  

continues self-enhanced, until a situation similar to our initial situation 
establishes and the cycle starts anew. The described mechanism is exactly the 
mechanism that leads to oscillations during periodate reduction, whose spatial 
pattern formation is further investigated in chapter 6. At this point we conclude 
that N-NDR systems may behave like activator-inhibitor systems, whereby the 
electrode potential takes on the role of the activator and a chemical species the 
role of the inhibitor. Since in most situations the characteristic time associated 
with temporal changes of the electrode potential is faster than the one associated 
with those of the concentration (or coverage) of the relevant chemical species, N-
NDR systems typically exhibit oscillatory dynamics.  
 
 

 
 

Figure 2.8: Illustration of how oscillations occur in N-NDR systems as a result of the interaction 
of electrode potential and concentration in the case of the slow transport of the reacting species. 
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There is another type of electrochemical systems, in which the electrode potential 
acts like an inhibitor variable and a chemical species takes the role of the 
activator. The most important class of these systems is associated with an ‘S-
shaped’ current–potential curve, as depicted in Fig. 2.7. In this case, the S 
necessarily arises due to an autocatalytic mechanism of a chemical species, and, 
for steady states on the sandwiched ‘NDR’ branch, the electrode potential acts 
stabilizing [36, 41]. Since the characteristic time of changes in DLφ is shorter than 

the one of changes in the concentration of a chemical species, it can be deduced 
that S-NDR systems do not oscillate easily, and in fact, so far no oscillations were 
observed in S-NDR systems. Nevertheless, also S-NDR systems are predicted to 
exhibit interesting self-organization phenomena, and these are patterns in space 
and not in time. This can be anticipated if we look at spatial transport processes 
lateral to the electrode surface. If we assume that the dynamics of an S-NDR 
system is captured by two variables, the electrode potential and the 
concentration of an electroactive species in the reaction plane or the coverage of 
an adsorbate, then a general local fluctuation will lead to gradients parallel to the 
electrode in the electrode potential and in the concentration (or coverage). The 
first gradient causes migration currents to flow parallel to the electrode surface, 
whereas the second one induces lateral diffusion fluxes (or surface diffusion of 
adsorbates). Hence, the general spatially extended S-NDR system is governed by 
the following set of equations:  
 

uDuf
t
u

uDL
2),( ∇+φ=
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∂ ,      (2.7a) 
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whereby the functions f and g determine the homogeneous dynamics of the 
system and have the typical properties of rate equations of activator-inhibitor 
systems. Since the term defining the lateral migration currents (the migration 
cross currents) is complicated and would require the discussion of the 
mathematical description of the potential distribution in the electrolyte, we 
refrain here from giving an explicit formula.  
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If we compare this set of equations with the general activator-inhibitor equations 
in extended systems (Eqs. (2.3)), we see that in Eq. (2.7) the basic difference is the 
transport process associated with the inhibitor, which is migration instead of 
diffusion. With the objective to investigate the possibility of the formation of 
Turing structures in electrochemical systems, Mazouz et al. [28] conducted a 
theoretical study, in which they showed that the characteristic rate, with which a 
local perturbation in DLφ  spreads, is much faster than the one, in which a 

perturbation of a chemical variable spreads. Furthermore, they showed that 
owing to this fast transport process of the inhibitor variable, electrochemical 
systems with an S-shaped current–potential curve may easily undergo a Turing-
type instability resulting in a stationary potential and concentration pattern. The 
experimental verification of this prediction was a major task in this thesis and is 
discussed in chapters 4 and 5.  
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