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GENERAL INTRODUCTION 

 

Community-level research 

Biodiversity and ecosystem functions are nowadays catch phrases and their importance for 

us humans is generally accepted. How they should be maintained is less clear and scientists only 

agree on the fact that more research is needed to answer this question. Particularly under the aspect 

of human-induced environmental changes, the future development of biodiversity and ecosystem 

functions is little predictable (Loreau et al. 2001). It has been demonstrated that environmental 

change and biodiversity loss affect ecosystem functioning interactively and that interactions can be 

multifaceted (Pires et al. 2018). The problem is that these interactive effects take place on the 

community level and that it is normally logistically impossible to include every part of a community in 

a research study. Community-level research has recently been recognized to be the next step to 

better predict the effects of environmental changes on biodiversity and ecosystem functions (Suding 

et al. 2008; Reiss et al. 2009). The use of new model ecosystems such as phytotelmata (i.e. plant-held 

waters) or ponds make whole-community approaches possible (Srivastava et al. 2004; Meester et al. 

2005). In this thesis we used aquatic microfauna communities living in the leaf axils of bromeliad 

plants to study the processes that structure communities and how the communities are affected by 

environmental changes. 

 

The bromeliad system 

Some species of the Neotropical family Bromeliaceae form water-retaining tanks with their 

leaves (Kitching 2000). Bromeliads can accumulate several litres of rainfall and stemflow water 

(Cogliatti-Carvalho et al. 2010) divided into small pools between the leaf axils. These water 

compartments are occupied by a variety of organisms (Picado 1913). Small bacteria, fungi, algae, 

protozoa, rotifers, nematodes, crustaceans as well as insects and frogs spend part of their life stages 

or even their entire life span in the bromeliad tank (Kitching 2000). Besides, many taxa from the 

surrounding environment use the bromeliad water as drinking reservoir or prey on the inhabitants 

(Bicca-Marques 1992; Romero and Srivastava 2010). This micro-ecosystem in the bromeliads is 

mainly based on allochthonous leaf litter input as resource base for the inherent food web (Farjalla 

et al. 2016). The leaf litter is decomposed by detrivores such as bacteria, ciliates, oligochaetes and 

insect larvae (e.g. chironomids) (Santos et al. 2009; Weisse 2017; Goffredi et al. 2011). The 

detrivorous organisms are preyed upon by bigger organisms, e.g. mosquito larvae filter free-

swimming protozoa such as ciliates from the water (Addicott 1974) and predatory insect larvae (e.g. 
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damselfly larvae) prey upon smaller insect larvae (Srivastava and Bell 2009). This results in a multi-

trophic aquatic food web in a micro-ecosystem with distinct spatial borders making bromeliads the 

perfect model ecosystem to study whole communities in their natural environment (Srivastava et al. 

2004). One of the first detailed studies of the bromeliad-inhabiting fauna was done by Picado (1913). 

Since then the system has gained attention. However, the investigation of microfauna living in 

bromeliads has started only recently (Petermann et al. 2015; Kratina et al. 2017; Carrias et al. 2001; 

Foissner et al. 2003) with the former focus being on macrofauna such as insect larvae (Srivastava 

2006; Richardson 1999). 

  

Microfauna 

The term microfauna in this study refers to protists such as diatoms, flagellates, ciliates and 

amoeba as well as rotifers and micro-crustaceans inhabiting the bromeliad tanks. Though they 

perform basic ecosystem functions in the bromeliad ecosystem, e.g. decomposition and nutrient 

cycling, very little is known about them and the processes that structure their communities. Many 

studies from other systems suggest that microfauna communities respond differently to 

environmental changes than macrofauna communities (Finlay et al. 2004). So, how are we going to 

predict the effect of environmental changes on natural communities if we are missing information of 

an important trophic level? This thesis aims to narrow the knowledge gap and suggests further 

research ideas to provide additional information necessary for the implementation of microfauna 

communities in the assessment of ecosystem health, because ‘landscapes are healthy when […] the 

key ecological components are preserved, e.g. […] microfauna […]’ (Rapport et al. 1998). 

 

Study area and sampling 

In total, we carried out three field surveys along different types of environmental gradients. 

Based on the suitability of the field sites, the field survey along the canopy cover gradient was carried 

out in Brazil and the other two field surveys along gradients of elevation and height were carried out 

in Costa Rica. The field site in Brazil was Cardoso Island (25°03’S, 48°53’W) situated at the south coast 

of Sao Paulo State, Brazil, where bromeliads grew abundant on ground level in restinga rainforest 

(Fig. 1A). In Costa Rica we worked in three different field sites within the Área de Conservación 

Guanacaste, which were characterized by secondary and primary rainforests, particularly cloud 

forests in higher elevations (Fig 1B). We took samples along elevational gradients near the field 

stations ‘Pitilla’ (N 10°59.374’, W 85°25.583’) (Fig 1B+C), ‘Cacao’ (N 10°56.009’, W 85°27.787’) and 

‘Santa Maria’ (N 10°48.060’, W 85°19.681’). The survey along the height gradient and a field 
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experiment took place in the vicinity of the field station ‘Pitilla’. All field surveys and the field 

experiment were carried out during the wet seasons (2013-2015). In all approaches we measured a 

variety of environmental factors depending on the research question in each study (e.g. 

measurement of oxygen saturation and pH in Costa Rica: Fig 1D). Our experimental setup used 

bromeliad plants in their natural environment as containers of experimentally transplanted 

microfauna communities (Fig 1E). Bromeliads high up in the canopy were sampled by use of the 

single-rope climbing technique (Fig 1F). Microscopic analyses of microfauna communities were all 

done at 400 x magnification (Fig 1G). 

 

Thesis outline 

The central topic of this thesis was to investigate community structuring processes in a 

bromeliad-inhabiting microfauna community and to determine what happens to these communities 

if their environment changes. This study was carried out with the fast environmental changes in mind 

that are momentarily caused by us humans, e.g. climate change, habitat destruction etc., and which 

will undoubtedly affect and already are affecting biodiversity and ecosystem functioning. This 

contemporary environmental challenge requires a profound understanding of the processes involved 

to prevent further biodiversity loss and to develop effective conservation strategies. Here, we 

studied community structure along several types of environmental gradients to get an overview of 

the effect of changes in different environmental factors. 

In chapter 1 we investigate microfauna community structure along a canopy cover gradient. 

This survey focusses on difference in sun-exposure and how this (directly or indirectly) affects 

microfauna structure. We suggest that bromeliads with higher sun-exposure provide less stable and 

therefore lower-quality habitats. We hypothesize that community similarity decreases with 

environmental distance and that beta diversity will change according to shifts in the relative 

importance of stochastic versus deterministic community structuring processes. 

In chapter 2 we present the results of a community transplantation experiment along an 

elevational gradient under natural conditions. The aim of the experimental approach was to 

disentangle effects of environment and trophic interactions on microfauna community structure. We 

used a full-factorial experimental design to particularly address potential interactions (e.g. between 

trophic interactions such as resource competition and predation or between environmental change 

and trophic interactions).  
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Figure 1: A - Sun-exposed bromeliads in restinga rainforest on Cardoso Island, Brazil. B – Cloud forest at 

mountain Orosilito (field site ‘Pitilla’), Costa Rica. C – Field site Pitilla and surrounding area in Costa Rica. D – 

Measurement of abiotic environmental parameters (oxygen saturation and pH) in tank bromeliads in Costa 

Rica. E – Bromeliad as vessel for experimental tubes of a transplantation experiment. F – Single-rope 

climbing technique to sample canopy bromeliads. G – Selected microfauna organisms inhabiting bromeliads 

in Costa Rica. Scale bar: 100 µm. Copyright by Pablo A. P. Antiqueira (A) and Annika Busse (B-G). 
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In chapter 3 we compare the microfauna communities of canopy and understory bromeliads. 

Following up on the canopy cover gradient in chapter 1, we assume that environmental conditions 

change along a height gradient in forest ecosystems based on increasing sun-exposure with 

increasing height. This comparison was meant to question the exclusive use of understory 

bromeliads in many bromeliad-related studies. 

In chapter 4 we explore the elevational gradients of three different mountains in terms of 

naturally occurring patterns in microfauna community structure. This chapter adds information on 

regional scale to the findings in chapter 2 by providing evidence for the generalizability of community 

structure patterns found in the field. 

In the end follows a general discussion which summarizes the results in a broader context 

including suggestions for future research questions and applications. 
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Abstract 

The mechanisms which structure communities have been the focus of a large body of 

research. Here, we address the question if habitat characteristics describing habitat quality may drive 

changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our 

system, changes in canopy cover along an environmental gradient may affect resource availability, 

disturbance in form of daily water temperature fluctuations and predation, and thus may lead to 

changes in community structure of bromeliad microfauna through differences in habitat quality along 

this gradient. Indeed, we observed distinct changes in microfauna community composition along the 

environmental gradient explained by changes in the extent of daily water temperature fluctuations. 

We found beta diversity to be higher under low habitat quality (low canopy cover) than under high 

habitat quality (high canopy cover), which could potentially be explained by a higher relative 

importance of stochastic processes under low habitat quality. We also partitioned beta diversity into 

turnover and nestedness components and we found a nested pattern of beta diversity along the 

environmental gradient, with communities from the lower-quality habitat being nested subsets of 

communities from the higher-quality habitat. However, this pattern resulted from an increase in 

microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-

environment relationships our results contribute to the mechanistic understanding of community 

dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics 

representing habitat quality in structuring communities, and suggest that this information may help 

to improve conservation practices of small freshwater ecosystems.  

 

Introduction  

Detailed information about an ecosystem and its structuring processes is crucial for 

development of effective and sustainable conservation strategies for biodiversity maintenance 

(Heywood, ed. 1995). Especially freshwater ecosystems, which hold a high proportion of species, are 

experiencing unprecedented declines in biodiversity (Dudgeon et al. 2006) and are in need of 

suitable conservation measures (Kalinkat et al. 2017). Earlier studies have shown that parameters like 

disturbances (Cowell et al. 1987), toxic substances (Hanazato 1998) and spatial connectivity (Jackson 

et al. 2001) can potentially affect freshwater community composition. Also, several likely drivers of 

species diversity, e.g. elevation (Richardson et al. 2000) and acidity (Fryer 1980), and their 

abundances, e.g. resource availability (Naeem 1990) and predation (Sanders and Wickham 1993), 

have been identified. More recently, it has been noted that for effective conservation the 
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distribution of biodiversity in space has to be taken into account (Socolar et al. 2016). Therefore, the 

drivers of differences in community composition along spatial or environmental gradients have come 

into the focus of ecological research (Al-Shami et al. 2013; Brendonck et al. 2015; Shade et al. 2008; 

Tonkin et al. 2016).  

In general, community similarity is assumed to decrease with larger environmental or spatial 

distances between communities (Anderson et al. 2011). The magnitude of differences in community 

composition is commonly measured as beta diversity (Anderson et al. 2011; Tuomisto 2010a, 2010b; 

Whittaker 1960). For example, high beta diversity indicates large differences in composition among 

local communities within a habitat. Previous research demonstrated that beta diversity can depend 

on a number of different processes. For example, it can be reduced by strong competitive exclusion 

(Segre et al. 2014), i.e. conditions where deterministic processes dominate. Beta diversity can also be 

increased in case of dispersal limitation (Martiny et al. 2011; Wang et al. 2016) or when high rates of 

random extinction and immigration events led to distinct demographic stochasticity (Arellano and 

Halffter 2003; Segre et al. 2014). Thus, changes in beta diversity seem to be observed when different 

types of community-structuring processes change in their relative importance, with a high relative 

importance of deterministic processes potentially leading to smaller beta diversity and vice versa 

(Chase et al. 2009; Johnston et al. 2016). 

The current knowledge of the conditions under which deterministic versus stochastic 

processes dominate in their relative importance and affect beta diversity is still ambiguous. For 

example, harsh environmental conditions, i.e. low habitat quality, may, on the one hand, reduce beta 

diversity due to strong environmental filtering (Chase 2007) or, on the other hand, increase beta 

diversity due to dispersal limitation (Jacobsen and Dangles 2012). It has been long known that 

environmental harshness (or habitat quality) is a key factor in driving community composition by 

affecting assembly and maintenance processes (Chase 2007; Peckarsky 1983). However, the 

contradictory evidence described above indicates that the ecological mechanisms governing the 

natural patterns of beta diversity remain to be explained. Here, we provide further insights into beta 

diversity disparities by conducting the first study on drivers of microfauna beta diversity in small 

freshwater bodies along a habitat quality gradient. 

We use freshwater microhabitats found in tank bromeliads. These natural microcosms 

constitute useful model systems for testing various questions in ecology because they are relatively 

small and easily sampled micro-ecosystems with clear boundaries that can be measured in their 

entirety (Blaustein and Schwartz 2001; Richardson et al. 2000; Srivastava et al. 2004). Bromeliad-

inhabiting communities are per definition metacommunities which “are linked by dispersal of 

multiple potentially interacting species” (Leibold et al. 2004) and are therefore especially suitable to 
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address research questions related to patterns of community composition along spatial or 

environmental gradients. Moreover, bromeliads can occur in high densities (Kitching 2000; Williams 

1987) which allows for many replicates under comparable environmental conditions. The pools 

between the leaf axils of water-collecting tank bromeliads are typically colonized by a variety of 

aquatic organisms. They comprise many different taxa of protists, small metazoans and insect larvae 

which form a food web based on decomposing leaf litter that falls from the canopy in the tank 

(Petermann et al. 2015; Srivastava 2006).  

We investigate bromeliads along a canopy cover gradient in restinga forest in Brazil. Strong 

but variable impacts of canopy cover on bromeliad-inhabiting microfauna and invertebrate 

communities have been observed in former studies (Kratina et al. 2017; Rangel et al. 2016; Serramo 

Lopez and Iglesias Rios 2001). With our study we aim to identify the canopy-cover related factors 

that affect bromeliad-inhabiting microfauna communities. The more open sites have lower densities 

of trees and thus, the bromeliads are exposed to direct sunlight. The more forested sites have a 

higher density of trees and thus, constitute a more shaded habitat for the bromeliads, thereby 

potentially providing higher resource amounts for the bromeliad microfauna in terms of greater leaf 

litter input (Farjalla et al. 2016; de Omena).  The addition of these resources has experimentally been 

shown to favour flagellates and ciliates over algae and amoebae and thus may lead to a shift in 

community composition (Petermann et al. 2015).  

Another likely difference between the bromeliads along the canopy cover gradient, which 

results from the degree of exposedness to the sun, is the daily variation in water temperature. Daily 

fluctuations in water temperature are expected to decrease with increasing canopy cover and could 

potentially affect microfauna richness (Kratina et al. 2017). It has been shown that temperature 

fluctuations in general and their strength in particular can affect species coexistence and thus 

diversity (Jiang and Morin 2007; Montagnes and Weisse 2000). As a further difference between 

communities of different canopy cover, the abundance of protist-feeding mosquito larvae is known 

to be much higher in sun-exposed bromeliads than in shaded bromeliads (P.A.P. Antiqueira & G.Q. 

Romero unpublished data). This predation by unselective filter-feeders might also influence 

community composition, e.g. through predator-mediated coexistence (Holt 1984).  

In short, bromeliad microcosms may vary along the canopy cover gradient in three major 

aspects (Fig 1). First, an increase in canopy cover leads to an increase in resource availability. Second, 

an increase in canopy cover leads to a decrease in solar radiation and thus to less pronounced daily 

temperature fluctuations. Third, an increase in canopy cover is accompanied by a decrease in 

predation pressure. Thus, an increase in canopy cover is accompanied by a number of favourable 

circumstances (e.g. sufficient resource availability, more constant environmental conditions and less 
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predation) which result in less environmental stress and more advantages for the bromeliad-

inhabiting microfauna. Hence, the canopy cover gradient likely constitutes a gradient of habitat 

quality for bromeliad-inhabiting microfauna communities with harsher conditions (lower habitat 

quality) in more sun-exposed sites and more benign conditions (higher habitat quality) in more 

forested sites. We use this habitat-quality gradient to study how habitat characteristics may affect 

community structure, specifically alpha diversity, community composition, beta diversity (Fig 1) and 

the beta-diversity components nestedness and turnover.  

We hypothesize that: 

1) Community composition of bromeliad-inhabiting microfauna decreases in similarity with 

increasing environmental distance along the canopy cover gradient. These differences in 

community composition are driven by environmental variables that are directly or indirectly 

related to canopy cover. 

2) Beta diversity of bromeliad microfauna changes along the canopy cover gradient due to 

differences in habitat quality. Whether beta diversity increases or decreases with increasing 

habitat quality, i.e. with increasing canopy cover, may depend on the relative importance of 

different types of coexistence processes (i.e. stochastic versus deterministic processes). 

Thus, we formulate two contrasting expectations (see also Fig 1). 

a. Beta diversity increases with increasing habitat quality, suggesting strong 

environmental filtering in the harsher environment and higher dispersal limitation in 

the more benign environment.  

b. Beta diversity decreases with increasing habitat quality, suggesting higher 

demographic stochasticity and/or dispersal limitation in the harsher environment 

and stronger competitive exclusion in the more benign environment. 

 

Methods 

Study site and system 

Samples were taken on Cardoso Island at the south coast of Sao Paulo State, Brazil (25° 03’S, 

48°53’W), in September 2013 at the beginning of the wet season. Cardoso island is characterized by 

mean annual temperatures between 20 and 22°C and mean annual rainfall of 2250 mm (Pessenda et 

al. 2012). Relative humidity is over 66% in spring (= sampling season of our study) in restinga habitats 

(Manoel and Mota 2012). Our study was carried out in the northern part of the island within an area 
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of 4.5 km extension. The study site was situated in restinga rainforest, a type of Atlantic rainforest on 

coastal dunes (Rizzini 1997). On Cardoso Island, restinga rainforest show different vegetation and 

abiotic conditions along a canopy cover gradient. Less forested restinga (i.e. more sun-exposed 

habitats for bromeliads and their microfauna communities) and more forested restinga (i.e. more 

shaded habitats for bromeliads and their microfauna communities). In the less forested habitat, 

shrub vegetation (maximum 4 m high) is distributed in patches containing lianas with sun-exposed 

areas between these patches. In the more forested habitat trees range from 6 to 8 m height and may 

form a relatively continuous canopy cover. Bromeliad density was higher in the more forested 

restinga (personal observation). 

Microfauna communities were sampled from water-filled leaf axils of these bromeliad plants. 

Plant-held waters are commonly referred to as phytotelmata, of which bromeliads constitute only 

one possible type (Kitching 2000). Tank bromeliads occur almost exclusively in the Neotropics 

growing on ground level or as epiphytes on branches or trunks. Their funnel-shaped leaf morphology 

with numerous leaf compartments captures water from above (i.e. rainwater or stem flow) and 

falling leaf litter from the canopy. Aquatic decomposers such as protozoa and nematodes break 

down the leaf litter and make the nutrients available for other organisms in the leaf compartment 

pool and the bromeliad plant. Furthermore, decomposers are prey to various predators within the 

tank, including larger protozoa, rotifers and insect larvae. This study focuses on microfauna 

communities including organisms of the size class 5-200 µm such as protozoa (including flagellates, 

ciliates and amoebae) and rotifers. Bromeliad tanks can occur in high densities in the tropical 

rainforest holding up to 50,000 L water/hectare (Williams 2006). As such, bromeliad tanks constitute 

valuable freshwater habitats in the tropics, and may provide important ecological functions, amongst 

others by being the main breeding ground for semiaquatic insects. Interspecific interactions are not 

confined to the aquatic bromeliad tank but include the surrounding terrestrial environment because 

bromeliads provide drinking water reservoirs and preying grounds for many species (Bicca-Marques 

1992; Cestari and Pizo 2008; Nadkarni and Matelson 1989). Last but not least, bromeliad microcosms 

can contain endemic species which are highly adapted to the phytotelm environment thus enhancing 

species diversity by providing ecological niches (Dunthorn et al. 2012; Foissner et al. 2003). Apart 

from their ecological importance, bromeliads provide valuable model systems for community 

research and questions related to the metacommunity concept. 
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Experimental design 

In a stratified random sampling design including four different sites with more sun-exposed 

or more forested restinga rainforest we selected 78 tank bromeliads of the species Quesnelia 

arvensis Mez. (Bromeliaceae) growing on ground level. We collected similar-sized bromeliads (total 

water volume, mean ± SE: 1386 ± 106 mL) to reduce the effect of habitat size on the studied 

communities.  

Sampling 

Portable digital thermometer data loggers (Thermochron® iButton® device - DS1921G) were 

added to all bromeliads prior to sampling to register the water temperature variation of each 

bromeliad. From these recorded temperature data three different temperature measurements were 

calculated: average water temperature, maximum water temperature and coefficient of variation of 

water temperature (calculated for a time frame of 23 hours). The three variables were strongly 

correlated (Pearson’s correlation: p ≤ 0.001 for all correlation pairs). To avoid multicollinearity in our 

analyses, we chose one of the three variables for further analyses: the coefficient of variation, which 

we considered to be the most representative temperature measurement. The canopy cover was 

determined for each bromeliad by analysing canopy photos with the program ImageJ (Schneider et 

al. 2012). Furthermore, during sampling a set of parameters, representing potentially important 

abiotic and biotic environmental drivers of microfauna community composition, were measured for 

each bromeliad. First, the number of water-filled bromeliad leaf compartments was counted and 

bromeliad diameter [cm] and vertical height [cm] were measured. Dissolved oxygen concentration 

[%] and pH were measured in the field using a multiparameter handheld meter (cyberscan PD 650, 

Oaklon®). Furthermore, a water sample was collected to analyze turbidity [NTU = nephelometric 

turbidity unit], chlorophyll a concentration [µg/L], carbon dissolved organic matter (CDOM) [ppb] and 

ammonium concentration [µM] using a handheld fluorometer (AquaFluor®). Afterwards, to survey 

the microfauna, a 1 mL water sample per bromeliad was taken from a leaf compartment halfway 

between the central and outermost leaf compartments and fixed with Lugol’s solution. Microfauna 

were counted as morphotypes for 50 µL of each sample using light microscopy (400 x 

magnifications). Moreover, the abundance of mosquito larvae per bromeliad was counted in a 

sample of 17-100mL water (depending on the available volume; mean +/- SE: 80 +/- 2 mL) and the 

number of mosquitos/100mL was calculated. Total water volume was determined for each bromeliad 

by extracting all the water.  
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The study did not involve endangered or protected species. Sampling was carried out under 

permit 23689-1 issued by Instituto Chico Mendes de Conservação da Biodiversidade. 

Statistical analysis 

Pairwise dissimilarities and singleton removal  

To detect the dissimilarity index best suited to describe our abundance-based data, we 

performed a preliminary rank index analysis (Faith et al. 1987) using the R package vegan (Oksanen 

et al. 2015). The Bray-Curtis dissimilarity index was identified as the most suitable and was used to 

obtain an abundance-based dissimilarity matrix for further analyses.  

We tested the effect of singleton removal by comparing non-metric multidimensional scaling 

ordinations (NMDS) with 20 random starts for data sets with and without singletons. Three different 

definitions of “singletons” were tested according to Poos and Jackson (Poos and Jackson 2012): 

singletons are defined as species that occur i) in only one site (in our case 3 morphospecies were 

removed), ii) in less than 5 % of sites (11 morphospecies were removed) and iii) in less than 10 % of 

sites (17 morphospecies were removed). Procrustes correlation analysis (999 permutations) was 

used to identify the significance of the congruence between the ordinations with singleton removal 

and the ordination on the complete data set. None of the three singleton removal strategies showed 

a significant difference for the community composition (Procrustes correlation coefficient > 0.95, p-

value < 0.001 for all three comparisons). Therefore, no singletons were removed prior to statistical 

analysis. 

Community composition and environment 

The environmental variables that we measured were tested for multicollinearity. Decisions to 

remove redundant predictors were based on a combination of correlation coefficients, cluster 

analysis and biological relevance. After reduction of redundant environmental variables all statistics 

were done using the following seven of the originally thirteen environmental variables: canopy cover, 

number of leaf compartments, coefficient of variation of water temperature, pH, turbidity, dissolved 

oxygen concentration and mosquito larvae abundance.  

To determine if community composition changes along the canopy cover gradient we 

calculated a distance decay plot. It tests for pairwise dissimilarities along an environmental gradient, 

whereby according to our hypothesis 1) an increase in the difference of canopy cover was expected 

to result in increasing Bray-Curtis dissimilarity values due to increasing differences in environmental 

conditions. This relationship was tested with a multiple regression on distance matrices (Legendre et 
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al. 2005; Lichstein 2007) (using the MRM function in the R package ecodist (Goslee and Urban 2007)) 

that is based on permutation tests of significance (999 permutations).  

To further investigate which of the canopy cover-related factors drive community 

composition in particular, we carried out a distance-based redundancy analysis (dbRDA), i.e. a 

constrained version of principal coordinates analysis (PCoA) (Legendre and Anderson 1999) using 

measured environmental variables that are related to canopy cover changes (for details on the 

relationship between environment variables and canopy cover see S1 Figure). The statistical 

significances of the overall model and single model terms were tested with permutation tests.  

Beta diversity  

There are many possibilities to measure beta diversity and none of these is perfect (Ricotta 

2010). To address the question if beta diversity depended on habitat quality we chose to use 

multivariate dispersion as a measure of beta diversity (Anderson et al. 2006). Because this analysis 

can only compare different levels of a categorical variable, we grouped the samples along our 

continuous canopy cover gradient into two groups (based on the median), the bromeliads in the 

more sun-exposed habitat, representing the low-quality (harsh) habitat, and the bromeliads in the 

more shaded habitat, representing the high-quality (benign) habitat. Each group contained 39 

bromeliads of the 78 measured in total. For each bromeliad we calculated beta diversity as distance 

to group centroid based on a Bray-Curtis dissimilarity matrix by using the R function “betadisper” (R 

package vegan (Oksanen et al. 2015)). The calculated distances to group centroid of the two habitats 

were then compared using a linear model. To correct for a high influence of alpha diversity on 

patterns in beta diversity, a Raup-Crick null model (Chase et al. 2011) was applied and the resulting 

matrix was used to calculate differences in beta diversity.  

When beta diversity is calculated using pairwise Sørensen dissimilarity, it can be partitioned 

into two components: turnover (replacement of species by other species in different sites) and 

nestedness (species loss or gain between sites) (Baselga et al. 2013; Baselga 2010). To identify if 

differences in community composition were mainly due to species turnover or nestedness, beta 

diversity was partitioned using the R package betapart (Baselga et al. 2013). To assess whether the 

results for the turnover and nestedness components were greater than expected by chance, we used 

a null model with 10000 permutations. The null matrix was constrained by the “r1”-method 

(Patterson and Atmar 1986) which maintains the row frequencies and uses column marginal 

frequencies as probabilities of selecting species. This method is based on z-scores with positive z 

values indicating a higher than expected contribution of the turnover or nestedness component. 
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To quantify the total degree of nestedness along the canopy cover gradient a NODF metric 

(nestedness measure based on overlap and decreasing fills) was applied (Almeida-Neto et al. 2008; 

Ulrich 2009). We used the nestedrank-function in the R package bipartite (Dormann et al. 2008) to 

calculate the nestedness rank of communities along the canopy cover gradient. A high rank indicates 

a more nested community. We used a linear model to test for the effect of canopy cover on 

nestedness rank. As nestedness is a result of species loss we also tested if alpha diversity changes 

along the canopy cover gradient using a linear model. Resulting from this, we repeated the first linear 

model, testing for the effect of canopy cover on nestedness rank with alpha diversity as a co-variable 

fitted before canopy cover, to differentiate between the effect of alpha diversity and canopy cover 

on nestedness rank.  

All statistical analyses were done in R version 3.0.2 (R Core Team 2013) using the packages 

vegan (Oksanen et al. 2015), betapart (Baselga et al. 2013), bipartite (Dormann et al. 2008) and 

ecodist (Goslee and Urban 2007). 

 

Results 

Abundance and alpha diversity 

A total of 35 morphotypes of microfauna were identified from our samples, including 

flagellates (15 morphotypes), ciliates (9 morphotypes), amoebae (4 morphotypes) and rotifers (7 

morphotypes). For a detailed description of morphotypes see S1 Table. On average, flagellates had 

the highest alpha diversity per bromeliad (2.5 morphotypes ± 0.2 SE/50 µl), followed by ciliates (2.0 

morphotypes ± 0.1 SE/50 µl), rotifers (1.5 morphotypes ± 0.1 SE/50 µl) and amoebae (0.6 

morphotypes ± 0.1 SE/50 µl). Flagellates also had the highest mean abundance (227 individuals ± 123 

SE/50 µL) followed by ciliates (40 individuals ± 8 SE/50 µL), rotifers (6 individuals ± 1 SE/50 µL) and 

amoebae (5 individuals ± 2 SE/50 µL). Alpha diversity significantly increased with higher canopy cover 

(Linear model: F1,76 = 7.8, p = 0.007, Fig 2). Alpha diversity was not significantly related to any other 

explanatory variable measured in this study. Log-transformed total microfauna abundance was not 

related to canopy cover (Linear model: F1,76 = 2.1613, p = 0.1455).  

Community composition and environment 

We investigated if a linear relationship existed between distance in environmental conditions 

(i.e. canopy cover) and the dissimilarity of communities measured using the Bray-Curtis index. We 
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found that with increasing differences in canopy cover bromeliad microfauna communities became 

more dissimilar (MRM: R² = 0.026, p = 0.001, Fig 3A). So, community composition changed gradually 

along the canopy cover gradient. To identify the environmental factors through which changes in 

canopy cover affected community composition a distance-based RDA was applied (dbRDA model: 

F70,6 = 1.5, p < 0.001, Fig 3B). The model returned daily fluctuations in water temperature 

(represented by the coefficient of variation of water temperature), the number of leaf compartments 

and pH as significant drivers of community composition while the other environmental variables did 

not show significant effects on community composition (Table 1). We also used raw abundance of 

mosquito larvae and total water volume per bromeliad as co-variables in the analysis. However, this 

did not change the results.  

Beta diversity 

Beta diversity, measured as distance to group centroid, was found to be higher in the sun-

exposed (harsh) habitat than in the shaded (benign) habitat (Linear model F1,76 = 10.1, p = 0.002, Fig 

4A). This means that communities in the sun-exposed habitat were less similar among each other 

than the communities in the shaded habitat. However, we repeated the comparison of beta diversity 

between the two habitats after applying  the Raup-Crick null model to the community matrix to 

correct for differences in alpha diversity (ANOVA, F1,76 = 0.1, p = 0.74, Fig 4B) and found that the 

significant difference in beta diversity can be explained exclusively by differences in alpha diversity.  

To identify the mechanisms that cause potential patterns in beta diversity, we partitioned 

beta diversity into its two components, turnover and nestedness. A null model analysis showed that 

the relative importance of nestedness was significantly higher than expected (Fig 5). To further 

investigate if canopy cover is related to the nestedness component a nestedness rank analysis was 

applied. Nestedness rank showed a significantly negative relationship with canopy cover (Linear 

model: F1,76 = 10.737, p = 0.0016). This indicates that communities became less nested with an 

increase in canopy cover. Using alpha diversity as a co-variable in the model showed that differences 

in alpha diversity explained the relationship of canopy cover and nestedness rank (Linear model, 

alpha diversity: F1,75 = 388.5, p < 2*10-16, canopy cover fitted after alpha diversity: F1,75 = 2.8, p = 

0.098).   
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Discussion 

The aim of this study was to investigate changes in bromeliad-inhabiting microfauna 

community composition and their community-structuring processes based on habitat characteristics 

along a canopy cover gradient. We found that community similarity declines with increasing 

environmental distance, thus supporting our first hypothesis. The amount of change in community 

composition, i.e. the beta diversity, differed along the canopy cover gradient, confirming our second 

hypothesis. The observed differences in beta diversity were linked to differences in alpha diversity. 

We related this finding to the change in habitat quality along the canopy cover gradient, which seems 

to lead to a change in the relative importance of different community assembly and maintenance 

processes.  

Community composition and environment 

We hypothesized that an increase in environmental distance would lead to an increase in 

microfauna community dissimilarity along a canopy cover gradient. We found this increase in 

dissimilarity along the canopy cover gradient and by using null model analyses we showed that these 

changes were not random. We further hypothesized this change to be driven by environmental 

variables that change along the canopy cover gradient. Despite the fact that pH, dissolved oxygen 

concentration, daily fluctuations in water temperature, turbidity, mosquito larvae density and 

number of bromeliad leaf compartments changed along the canopy cover gradient, only daily 

fluctuations in water temperature, pH and number of leaves affected microfauna community 

composition. As the effect of the latter two parameters was only marginal (see Table 1), we focus on 

explaining the impact of daily fluctuations in water temperature on microfauna communities in the 

subsequent paragraphs. It may just be mentioned here that plant architectural complexity (in our 

case number of leaf compartments) can be used as a proxy for habitat heterogeneity (Tews et al. 

2004) which is known to have potential effects on arthropod community composition in 

phytotelmata (Gonçalves-Souza et al. 2011; Naeem 1990) and that pH has been observed to affect 

only particular functional groups (e.g. amoeba) of bromeliad-inhabiting microfauna (Kratina et al. 

2017). We suspect that habitat heterogeneity is not as important for microfauna organisms as for 

arthropods because microfauna organisms cannot actively rotate among the leaf compartments and 

we assume that the effect of pH on microfauna community is marginal because only a small part of 

the community is affected by it. 

It has been previously observed that higher daily fluctuations in water temperature can be 

found in more sun-exposed bromeliads and it was suspected that this can possibly affect the survival 
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of inhabiting taxa (Laessle 1961). However, fluctuations in temperature are generally considered to 

be of minor importance to bromeliad-inhabiting species (Weisse et al. 2013a, 2013b). Reasons why 

the importance of daily temperature fluctuations has been neglected so far could be that many 

former studies on bromeliad-inhabiting fauna only investigated seasonal temperature changes and 

not daily temperature fluctuations (Marino et al. 2011; Mestre et al. 2001). Although we found a 

relatively high change in water temperature during the day for bromeliads exposed to direct sunlight 

(fluctuations up to 21°C), a recent work from Costa Rica suggests that local microfauna richness (i.e. 

alpha diversity) peaks at a relatively narrow range of temperatures (23-25°C) (Kratina et al. 2017). 

This indicates that the bromeliad freshwater habitat is especially challenging for thermally sensitive 

taxa and could explain the increase in alpha diversity with increasing canopy cover and the related 

decrease in temperature fluctuations. Besides, we suspect that daily water temperature fluctuations 

in bromeliad microcosms are even more pronounced in the dry season, when water volume is 

smaller due to higher evaporation and time of direct exposition to sunlight is longer due to cloudless 

skies. This means that effects of temperature fluctuations on microfauna communities observed in 

this study were potentially even more distinct if the samples would have been taken during the dry 

season.  

In general, freshwater ecosystems - especially the smaller ones - are considered particularly 

vulnerable to changes in climate (Woodward et al. 2010), meaning that a permanent increase in daily 

temperature fluctuations, e.g. by intensified weather conditions through climate change, could lead 

to a reduction in species richness in bromeliad micro-ecosystems due to an increase in 

environmental harshness as known from other studies (Marks et al. 2016; Staddon et al. 1998; 

Whittaker et al. 2001). A loss in species richness could have cascading effects throughout the food 

web and might also affect ecosystem functioning by loss of entire functional groups (Petchey et al. 

1999).  

Beta diversity 

We hypothesized that beta diversity, i.e. the magnitude of differences in community 

composition, of bromeliad-inhabiting microfauna changes along the canopy cover gradient, for 

example due to changes in the relative importance of different community-structuring processes 

with habitat quality (Fig 1). Indeed, we found a change from higher beta diversity in the harsher, 

more sun-exposed habitat to lower beta diversity in the benign, more shaded habitat, along with a 

contrasting pattern in alpha diversity. The application of the Raup-Crick null model demonstrated 

that the pattern in beta diversity was caused by changes in alpha diversity along the habitat quality 

gradient. The increase of microfauna alpha diversity with an increase in habitat quality caused a 
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distinct nestedness pattern in beta diversity. However, we could not determine the environmental 

variables that were responsible for the change in alpha diversity between habitats; none of our 

measured variables showed an effect on alpha diversity. 

We found that microfauna communities from the harsher habitat were nested subsets of 

communities from the more benign habitat. Increasing nestedness with declining habitat quality has 

been previously observed for birds (Fernández-Juricic 2002) and gastropods (Bloch et al. 2007; 

Hylander et al. 2005); to the best of our knowledge this is the first report of the pattern for 

microfauna. We found no indication that the nestedness pattern was caused by species loss from a 

particular microfauna group (flagellates, ciliates, amoebae, rotifers).  

While alpha diversity decreased with declining habitat quality, beta diversity simultaneously 

increased. This increase in beta diversity in harsher environmental conditions can possibly be 

explained by an increase in the relative importance of stochastic processes such as demographic 

stochasticity and dispersal limitation (Arellano and Halffter 2003; Chase and Myers 2011; Jacobsen 

and Dangles 2012).  

Based on the decline in alpha diversity with increased environmental harshness we suspect 

that our microfauna metacommunities were subject to source-sink dynamics (Holt 1984; Pulliam 

1988) with the benign habitat providing constant immigrants of microfauna to the harsher habitat. 

Stochastic immigration events from the benign to the harsh environment and random extinctions, 

e.g. through short-time droughts or a reduction in habitat size (i.e. water volume) caused by higher 

temperature fluctuations, would then account for the reduced alpha diversity and higher beta 

diversity in the harsher habitat. Additionally, higher dispersal limitation within the harsher habitat 

would add to explaining the less homogeneous distribution of species and thus the higher beta 

diversity. Higher dispersal limitation in the harsher habitat could be partly due to lower bromeliad 

density compared with the more benign habitat (personal observation).  

The higher dispersal limitation in the harsher habitat can possibly also be explained by the 

mode of dispersal. Microfauna organisms are passive dispersers either transported via wind or 

animals (Maguire, JR. 1963; Revill et al. 1967; Rogerson and Detwiler 1999; Schlichting, JR. and Sides 

1969). Wind dispersal requires the formation of cysts and the exposition of the cysts to wind by, for 

example, a complete desiccation of the bromeliad tank. However, not all microfauna species are 

capable of forming cysts and the bromeliads hardly ever dry up completely (personal observation). 

Therefore, the dispersal of microfauna cysts via wind is unlikely, especially over larger spatial scales 

(Foissner 2006; Horváth et al. 2016). On the other hand, dispersal of aquatic organisms via animal 

agents has been commonly observed (Serramo Lopez et al. 1999; Vanschoenwinkel et al. 2011). In 
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case of animal dispersal being the predominant dispersal mode, the confinement of animal activity to 

the more protected forested area could entail increasing dispersal limitation towards the exposed 

area, which would then explain its higher beta diversity. A possible increasing isolation of bromeliad 

tanks caused by higher dispersal limitation in the harsher, sun-exposed habitat (caused by a lower 

density of bromeliads and/or a lower activity of animals acting as dispersal agents) plus the lower 

alpha diversity in the harsher habitat are coherent with a finding by Chase and Myers (Chase and 

Myers 2011). They stated that isolation and low alpha diversity are accompanied by an increase in 

the relative importance of stochastic processes such as ecological drift, random extinctions and 

chance colonization. Thus, we could confirm prediction b) of our second hypothesis stating that beta 

diversity decreases with increasing habitat quality (Fig 1) in our system. However, Chase (2007) found 

the opposite with environmental harshness (in his case drought) favouring the relative importance of 

deterministic processes (in his case strong environmental filtering) over stochastic processes. We 

suspect that the identity of the investigated taxa plays a major role in determining which coexistence 

mechanisms operate because fundamental differences can be observed in the survival strategies 

(e.g. active or passive dispersal) of smaller versus larger organisms (Astorga et al. 2012; Farjalla et al. 

2012; Finlay et al. 2004; Nemergut et al. 2013). Such taxa-dependent difference in the relative 

importance of coexistence mechanisms add to the complexity of conservation strategies and 

highlight the importance of clear conservation aims and the awareness of potential side effects for 

other taxa. 

 

Conclusion 

With this study we could show that habitat characteristics describing habitat quality play an 

important role in structuring bromeliad-inhabiting microfauna communities, presumably through 

changes in the relative importance of stochastic versus deterministic processes. We observed that 

the extent of daily fluctuations in water temperature is a driving force of microfauna community 

composition and that a loss in alpha diversity with decreasing habitat quality leads to a nested 

pattern in beta diversity. This interlinking of alpha and beta diversity resulting in contrasting patterns 

in harsh versus benign habitats shows that community structure and community-structuring 

processes should be studied with attention to detail particularly when communities function as 

metacommunities. This is especially important when investigating communities with a conservation 

concern. So far, there is little effort in conserving microfauna (Cotterill et al. 2008; Esteban and Finlay 

2010). However, these organisms are definitely understudied, even though they provide 

fundamental ecosystem functions and are the base of the food web. Our analyses add to the 
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mechanistic understanding of community dynamics in an increasingly used model system and can 

thus contribute to future theoretical and empirical studies.  
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Figures and tables 

 

Figure 1: Contrasting predictions concerning the differences in beta diversity of bromeliad-inhabiting 

microfauna along a habitat quality gradient. At the top, the direction of canopy cover and canopy cover-

related factors is given along a habitat-quality gradient. At the bottom, hypothesized beta diversity differences, 

related processes and mechanisms are shown. According to our first prediction a) of our hypothesis 2), harsh 

environmental conditions (e.g. higher daily temperature fluctuations and low nutrient availability) result in low 

beta diversity due to selective extinctions driven by strong environmental filtering. In the more benign but also 

more forested habitat, trees and dense shrub vegetation may have an effect on microfauna community 

composition if dispersal of microfauna (or their cysts) is mainly wind-driven. According to the second prediction 

b) of our  hypothesis 2), dispersal limitation is stronger in the harsher habitat assuming that microfauna is 

primarily dispersed by animals (instead of wind) and that these are less active in the harsher, more exposed 

area. Furthermore, random extinction (e.g. through higher predation pressure by unselective filter-feeders) 

and immigration events are probably contributing to higher beta diversity in the harsh habitat while 

competitive exclusion might lower beta diversity in the benign habitat. 
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Figure 2: Mircofauna alpha diversity from bromeliads showing a positive linear relationship with canopy 

cover. Linear model: F1,76 = 7.8, p = 0.007. n = 78. Microfauna (including protozoa and small metazoa) were 

counted as morphotypes in 50 µL of Lugol-fixed water samples. 

 

Figure 3: Drivers of bromeliad-inhabiting microfauna community composition. A: Distance-decay plot 

depicting the effect of change in canopy cover on community dissimilarity of bromeliad-inhabiting microfauna. 

The continuous line results from multiple regressions on distance matrices (MRM: R² = 0.026, p = 0.001) to test 

for a linear relationship between change in canopy cover and community dissimilarity. B: Distance-based 

redundancy analysis of bromeliad-inhabiting microfauna communities illustrating the influence of canopy 
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cover-related factors. pH – pH, T – turbidity [NTU], M – mosquito larvae [per 100 mL], TF – daily water 

temperature fluctuations measured as coefficient of variation, DO – dissolved oxygen concentration [%], LC – 

number of leaf compartments per bromeliad. n = 77. Daily fluctuations in water temperature explained the 

highest proportion of total variation (dbRDA1, Table 1). 

 

Table 1: Results of a permutation test on the distance-based redundancy analysis of the effects of individual 

environmental variables on bromeliad-inhabiting microfauna communities. Variables with significant effects 

are highlighted in bold. 

 Df F P  

Number of leaf compartments 1 1.83 0.023 
Daily fluctuations in water temperature 1 2.23 0.003 
pH 1 1.85 0.013 
Turbidity [NTU] 1 1.25 0.187 
Dissolved oxygen concentration [%] 1 0.87 0.641 
Mosquito larvae [per 100 mL] 1 1.13 0.282 
Residuals 70   
    
Daily fluctuations in water temperature were measured as coefficient of variation. n = 77. Statistically significant effects are 

printed in bold. Df – degrees of freedom, F – F statistic indicating the variation between the group means, P – p value 

indicating the significance of the model parameters. 

 

 

Figure 4: Beta diversity, measured as distance to group centroid, of bromeliad-inhabiting microfauna in two 

qualitatively distinct habitats. Habitat quality is defined based on canopy cover-related differences in 

predation pressure, temperature fluctuations and resource availability, which make the sun-exposed side an 
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assumingly harsher habitat for microfauna than the shaded side. Beta diversity is significantly different when 

using a Bray-Curtis dissimilarity matrix (A, linear model, F1,76 = 10.1, p = 0.002). The significant difference is lost 

when using a Raup-Crick null model to correct for differences in alpha diversity (B, linear model, F1,76 = 0.1, p = 

0.74). n = 78. 

 

 

 

Figure 5: Total beta diversity (Sørensen) and partitioning into turnover and nestedness components for 

bromeliad microfauna communities. This analysis is based on presence-absence data. Z-scores result from 

10000 simulated null model communities using the “r1”-method in the R package vegan. A positive z-score 

indicates that the value is higher than expected by chance. Whether z-scores are significantly different from 

zero is indicated with asterisks. ***p < 0.001. Values given with each bar show raw Sørensen, turnover and 

nestedness metrics. n = 78. Partitioning of beta diversity revealed that beta diversity in bromeliad microfauna 

communities is due to nestedness and not turnover. 
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Supporting information 

S1 Figure: Relationships between the measured environmental variables in bromeliad species Quesnelia 

arvensis Mez. growing on Ilha do Cardoso, Brazil. Significant correlations (significance level = 0.05) are 

highlighted by colours. The colour legend indicates Pearson correlation coefficients.  All measured variables are 

negatively related to canopy cover. CC – canopy cover [%], LC – number of leaf compartments per bromeliad, 

Temp – coefficient of variation of water temperature (calculated for a time frame of 23 hours), pH – pH, Turb – 

turbidity [NTU = nephelometric turbidity unit], DO – dissolved oxygen concentration [%], M – mosquito larva 

abundance [per 100 mL].  
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S1 Table: Microfauna found in the bromeliad species Quesnelia arvensis Mez. growing in high canopy cover 

(shaded) environments and low canopy cover (open) environments on Ilha do Cardoso, Brazil.  Morphotypes 

of microfauna with main morphological characteristics and their occurrence in open or shaded bromeliads are 

presented. H – heterotrophic nanoflagellates, C – ciliates, A – amoebae, R – rotifers. Approximate length and 

width are noted to give an idea about the size class and proportions. 
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Abstract  

Transplantation experiments are a useful method to identify responses of organisms to 

environmental change. However, they are typically restricted to single or few species. Our 

experiment was carried out using entire bromeliad-inhabiting microfauna communities which were 

transplanted along an elevational gradient, simulating environmental change acting on the 

communities. Additionally, we manipulated trophic interactions, i.e. resource availability and 

predator presence, thus combining abiotic and biotic effects in a full-factorial experimental design. 

Using this experiment, we found a strong signal of original elevation in microfauna community 

structure (abundance, evenness, functional composition) with a shift from amoeba-dominated to 

flagellate-dominated communities with increasing original elevation. Surprisingly, the transplantation 

of communities along the elevational gradient did not affect community structure, indicating strong 

priority effects. Predation decreased microfauna abundance and increased microfauna evenness, 

specifically in higher original elevation and high resource levels.  

In summary, our results show that microfauna communities in bromeliads are primarily 

shaped by priority effects and predator presence. However, interacting effects (between predator 

presence and resource availability, as well as between predator presence and original elevation) 

highlight the usefulness of studies with full-factorial experimental designs to understand community-

structuring processes. Bromeliads and other micro-ecosystems provide convenient study systems for 

community level approaches that could be used in future studies concerning the effects of 

environmental change (e.g. climate change) on community structure.   

 

Introduction 

Human impact on the natural environment is constantly increasing and has reached even the 

most remote places on earth (Goudie 2013). Landscape structure, water quality and climate are 

affected by humans in a speed formerly unknown (Steffen et al. 2006). Species differ in their ability 

to cope with these changes (Khaliq et al. 2014; Garcia-Robledo et al. 2016) and this difference may 

lead directly or indirectly to alterations in the structure of natural communities through changes in 

species richness and relative abundances (Brauns 2009; Levitan 1992; Feld and Hering 2007; Littler 

and Murray 1975; Peres 2000). As changes in community structure can have far-reaching 

consequences, e.g. through the reduction in ecologically important ecosystem processes (Hillebrand 

et al. 2007; Tilman et al. 1997), it is important to improve our understanding of the mechanisms that 
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structure natural communities, in order to better predict and counteract the consequences of 

anthropogenic changes.  

Community structure may depend on environmental conditions (e.g. Meehan et al. 2013; 

McIntyre et al. 2001). Some taxa are very sensitive to environmental change and their presence and 

abundance are in fact used as indicators of this change (e.g. Bongers and Ferris 1999; Kushlan 1993). 

Apart from environmental drivers, trophic interactions are considered to be of major importance in 

shaping communities (Elton 1927). Depending on the system, communities may be more top-down 

(predator) or bottom-up (resource) controlled (Hillebrand et al. 2007). Environment, competition or 

predation have often been studied in isolation, but some studies suggest that there are interacting 

effects. For example, trade-offs between resistance to abiotic stress and competitive ability 

(Liancourt et al. 2005) have been observed, as well as interactive effects of resource competition and 

predation (Martin 1988; Ricklefs and O'Rourke 1975; Caswell 1978; Schmidt and Whelan 1998). 

Similar to abiotic conditions, trophic interactions may change between habitats or along 

environmental gradients. For example, an increase in CO2 level has been shown to lead to shifts in 

plants’ competitive ability (Lau et al. 2010) or predation pressure may differ between different 

elevations (Roslin et al. 2017). In sum, partly interacting effects likely operate and jointly shape 

community structure, acting upon species richness and relative abundances. However, holistic 

approaches investigating entire communities under changing conditions are still rare, partly because 

experimental manipulations are difficult due to the complexity of ecological systems. Phytotelmata, 

i.e. plant-held waters such as in pitcher plants and bromeliads, constitute relatively simple micro-

ecosystems and are therefore ideal model systems for whole-community studies. They also provide 

convenient units that can be used to study changing environmental conditions by transplanting 

entire communities and to manipulate trophic interactions in field experiments (Hardwick and 

Giberson 1996; Srivastava et al. 2004). Here, we use bromeliad-inhabiting microfauna communities, 

transplant them along a natural environmental gradient and manipulate bottom-up and top-down 

trophic interactions  to study how changes in abiotic and biotic variables and their interacting effects 

structure natural communities.  

Bromeliads are funnel-shaped plants with small rainwater-filled pools between their leaf 

axils, which are populated by aquatic micro-organisms such as diatoms, flagellates, ciliates, amoeba, 

rotifers and micro-crustaceans. Detrivorous organisms (e.g. many protozoa), feeding on 

allochthonous leaf litter, constitute the basic trophic level, on which higher trophic levels prey (e.g. 

mosquito larvae, thus constituting protozoa predators) (Kitching 2000). Insect communities have long 

been the main focus of bromeliad research (Frank and Lounibos 2009; Kitching 2000; Petermann et 

al. 2015a; Srivastava 2006) and only few recent studies have focussed on understanding the role of 
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protozoa and other microfauna in the system (Busse et al. 2018; Carrias et al. 2012; Kratina et al. 

2017; Petermann et al. 2015b). Microfauna communities inhabiting bromeliad plants are relatively 

easy to manipulate, and are expected to respond fast to changes in abiotic and biotic conditions 

because of relatively short generation times (Srivastava et al. 2004). This makes them well suited for 

transplantation experiments, in our case along an elevational gradient. Transplantation experiments 

along elevational gradients have been used to answer questions related to environmental change 

(Nooten and Hughes 2017) because many factors differ naturally along elevational gradients 

(Lomolino 2001). Temperature, for example, decreases with increasing elevation, and thus, 

elevational gradients have been used as  natural experiments to study larger-scale effects, for 

example of climate change (Malhi et al. 2010). A decrease in vegetation density with increasing 

elevation, as is typically the case on mountain slopes, results in increased light availability for 

bromeliad-inhabiting communities (Ediriweera et al. 2008) and reduced leaf litter input (i.e. reduced 

resource availability for bromeliad-inhabiting communities) towards the mountain top (Richardson 

1999). Also, it has been observed that abundance of mosquito larvae, which function as a predator 

on microfauna, decreases with elevation (Eisen et al. 2008). Previous studies have investigated 

certain effects on the community structure in phytotelmata separately, concluding that different 

abiotic factors, such as hydrological period (Buosi et al. 2015), exposition to sun (Carrias et al. 2012; 

Lopez and Rios 2001) and water temperature (Kratina et al. 2017), as well as resource concentration 

(Petermann et al. 2015b) and predation (Kitching 2000; Addicott 1974) can affect species richness 

and/or (relative) abundance. We combined the elevational change of environmental conditions, 

resource availability and predator presence in a field experiment, in which all three factors were 

crossed in a full-factorial design. We transplanted bromeliad-inhabiting microfauna between 

bromeliads along an elevational gradient to study the effect of changing environmental conditions. In 

addition, we manipulated resource availability by altering the amount of available detritus and 

manipulated predator presence by adding or removing mosquito larvae. This study aims to 

investigate how changes in abiotic and biotic variables affect community structure and especially, to 

highlight interacting effects. Specifically, we aim to investigate if a) changes in environmental 

conditions, simulated by microfauna transplantation along an elevational gradient, affect the 

community structure of bromeliad-inhabiting microfauna, if b) bottom-up (resource) or top-down 

(predator) effects or an interaction of these influence the community structure of bromeliad-

inhabiting microfauna, or if c) interacting effects between environmental (i.e. elevational) change 

and trophic interactions (i.e. resource competition and predation) control the community structure 

of bromeliad-inhabiting microfauna. 
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Material and Methods 

Study site 

We carried out a field experiment in the wet season from July to September 2015 along an 

elevational gradient of 666 m to 1174 m a.s.l. on Orosilito mountain (N 10°59.374', W 85°25.583') in 

the Área de Conservación Guanacaste (www.acguanacaste.ac.cr), Costa Rica. During the seven weeks 

of the experiment mean daily precipitation was 15.7 ± 2.3 (mean ± SE) mm and total precipitation 

amounted to 787.1 mm at 700 m a.s.l. in the study area. Maximum daily temperatures during the 

experiment ranged from 23°C to 28°C with a mean of 25 ± 0.2 °C at 700 m a.s.l. Minimum daily 

temperatures during the experiment ranged from 19°C to 22°C with a mean of 21 ± 0.1 °C at 700 m 

a.s.l. Along the elevational gradient the vegetation changed from secondary rainforest at lower 

elevations to primary cloud forest at higher elevations. Communities inhabiting bromeliads of the 

genus Guzmania Ruiz & Pav. were studied which occurred along the entire elevational gradient. The 

elevational minimum in our study was determined by the limit of natural forest and bromeliad 

occurrence (agricultural land such as orange and cattle ranches cover lower elevations) and the 

elevational maximum was determined by the mountain’s maximum accessible elevation. 

Bromeliad system 

Guzmania Ruiz & Pav. bromeliads grow epiphytically or on ground level and form water-

collecting containers with their leaves. Additionally to rain and stem-flow water the tanks collect 

falling leaf litter which is decomposed in the tank, amongst others by protozoa. The bromeliad plant 

benefits from the unicellular inhabitants which provide nutrients through decomposition which the 

plant absorbs via the leaves (Leroy et al. 2015). The detritus provides the base for a complex food 

web consisting of a variety of aquatic organisms, including diatoms, flagellates, ciliates, amoeba, 

rotifers, micro-crustaceans and insect larvae (Petermann et al. 2015b). Unselective, filter-feeding 

mosquito larvae are predators of phytotelm microfauna and thus may affect their abundance and 

diversity (Addicott 1974). 

General experimental design 

Our community transplantation experiment was set up to test how changes in environmental 

variables along the elevational gradient, resource availability, predation and their respective 

interactions affect microfauna community structure using a full-factorial design (Fig 1). The 

experiment was carried out in 15 mL Falcon test tubes that were inserted into outer bromeliad leaf 

compartments situated around the centre leaf compartment in similar distances (Fig 2 A & B). 

Microfauna communities to be added to the test tubes were collected in 30 mL of water as a 
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composite sample from all leaf compartments of each bromeliad. Each test tube contained 3.5 mL of 

microfauna culture which was filtered (mesh size: 300 µm) beforehand to exclude predatory insect 

larvae and detritus particles. To allow for different development trajectories of the communities, we 

filled them up to 7 mL with bottled water, simulating the average natural water volume of single 

outer leaf compartments in the area (7.4 ± 1.2 mL, n=30). The tubes were covered with a 300 µm 

mesh-size net to prevent additional detritus input, insect oviposition or other disturbances (e.g. 

drinking animals) during the experiment, but which still allowed for exchange of air and the input of 

rain water. Due to input of rainwater the tubes filled up to maximum volume (~17 mL) during the 

experiment and overflowing was observed occasionally. Overflowing events regularly occur in natural 

bromeliad leaf compartments and inhabiting organisms are known to adapt their behaviour to avoid 

being swept out of the bromeliad during rain (Koenraadt and Harrington 2008). Input of water from 

surrounding bromeliad leaf compartments into the tubes, and thus input of microfauna from 

neighbouring leaf compartments, was prevented by positioning the tubes with their rim above the 

maximum water line (Fig 2 B). 

Environmental change simulated by microfauna community transplantation along an elevational 

gradient 

The transplantation experiment was carried out along an elevational gradient to simulate 

changes in environmental conditions, such as temperature and light availability. Transplantation of 

microfauna communities took place between bromeliad pairs from the lower to the upper half of the 

elevational gradient and vice versa. A total of 20 bromeliads (Guzmania sp.) with a similar 

morphology and size were chosen along the elevational gradient. Each bromeliad received eight 

treatment tubes (Fig. 2C).  Thereof, four were ‘control’ treatments, in which microfauna communities 

were positioned within the same bromeliad they were originally sampled from. The other four were 

‘transplanted’ treatments, in which microfauna communities were moved to another bromeliad up 

or down the elevational gradient. Hereby, one half of all transplantations took place between 

bromeliad pairs located at a higher (~450 m) elevational distance from one another and the other 

half of transplantations took place between bromeliad pairs of lower (~150 m) elevational distance 

from one another to provide a range of magnitude of environmental change.  

Trophic interactions under experimentally manipulated resource availability and predator presence 

Resources added to sampling tubes were obtained from a homogenized mixture of detritus 

sampled along the elevational gradient to exclude the effect of resource quality. Detritus was 

sterilized by drying at approximately 60°C to constant weight before manually mixing and crushing 

into approx. 0.5 cm pieces. Previous field survey data (Busse unpublished data) showed that resource 
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availability in bromeliads was about 0.02 g detritus/mL at lower elevations and 0.006 g detritus/mL 

at higher elevations, potentially due to elevational differences in canopy cover. Thus, experimental 

tubes in bromeliads received a high resource concentration or a low resource concentration as 

experimental treatment (Fig 1) in addition to the small pieces and dissolved organic compounds that 

passed through the filter. Additional resource input during experimental duration was prevented by 

covering the Falcon tubes with a mesh (300 µm mesh size). 

Mosquito larvae collected from bromeliads in the field were used as predators. A treatment 

with ‘predators added’ contained at total of three mosquito larvae per initial 7 mL. Naturally 

occurring mosquito densities can vary strongly depending e.g. on habitat (Ngai et al. 2008), 

bromeliad capacity (Gilbert et al. 2008) or time of year (Addicott 1974). The experimental mosquito 

density chosen for this experiment lies within the ranges observed for Costa Rican bromeliads 

(Gilbert et al. 2008) and other phytotelmata (Addicott 1974). The three mosquito larvae used per test 

tube consisted of one individual of Anopheles sp., one Culex sp. and one Wyeomyia sp. These three 

mosquito genera are the most common ones in the experimental area (Ngai et al. 2008). Species of 

the genera Culex and Anopheles were observed to filter-feed in the upper part of the water pool, 

while species of the genus Wyeomyia mostly filter-feed on the ground surface of the pool (Gilbert et 

al. 2008). We observed no differences in feeding mode on species level within the genera (personal 

observation), therefore, identification of mosquito larvae to genus level was considered sufficient to 

cover different feeding types in the same proportions in the experimental communities. Each test 

tube initially received two small (early developmental stage, 1st instar, Wyeomyia and 

Anopheles/Culex) and one large (late developmental stage, 3rd instar, Anopheles/Culex) mosquito 

larvae. Mosquito presence was visually controlled on a weekly basis. Dead, missing or pupated 

mosquito larvae were replaced with individuals from the respective genus to keep predator densities 

constant during the time of experiment. Additional mosquito oviposition during experimental 

duration was prevented by covering the Falcon tubes with a mesh (300 µm mesh size). 

Sampling 

On the day of experimental setup we took measurements of oxygen saturation [%], pH and 

water temperature [°C] in one exemplary, natural leaf compartment per bromeliad. We recorded the 

location of the bromeliad as height above ground [m]. Additionally, we used a Quantum sensor to 

measure photosynthetic active radiation (PAR [µmol/m²s] at five points per bromeliad (center of 

bromeliad, north, east, south and west of center, above the bromeliad). By averaging five light 

measurements we accounted for small-scale differences in canopy cover. At the end of the 

experiment 1 mL water samples were taken from all test tubes. All water samples were fixed with 

Lugol’s solution. 
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Permission for field work and sampling was granted by Sistema Nacional de Áreas de 

Conservación (SINAC) and Ministerio del Ambiente y Energía (MINAE) in Costa Rica (permit no. ACG-

PI-030-2014 and ACG-PI-046-2015).  

Identification and counting 

Microfauna (i.e. diatoms, flagellates, ciliates, amoeba, rotifers and micro-crustaceans) were 

counted as morphotypes (see list and pictures, S1) by processing subsamples of 50 µL of each water 

sample using light microscopy (400x magnification) and using and adding to a photographic key 

developed by previous projects (Kratina et al. 2017; Petermann et al. 2015b). 

Data analysis 

We used linear mixed effects models (LMMs) with microfauna treatment (i.e. ‘control’ versus 

‘transplanted’) nested within bromeliad identity as random effects to analyse the effects of original 

elevation, experimental elevation, resource availability, predation and the respective interactions on 

abundance, species richness and evenness of the microfauna community. Original elevation 

represents information on environmental conditions before the start of the transplantation 

experiment. Experimental elevation represents information on environmental conditions during the 

experiment. Comparing effects of original and experimental elevations allows the assessment of the 

importance of environmental variables versus priority effects. 

Abundance data were log-transformed prior to analyses to achieve normality and 

homoscedasticity. Evenness was calculated as Pielou’s J = H’/H’max (Pielou 1966), with                           

H’ = -          (Shannon index), with    being the proportion of species i, and H’max = ln S, with S 

being the total number of species. The species richness and evenness models were additionally run 

with log-transformed abundance data included as explanatory variable to exclude patterns that were 

simply due to differences in abundance. We calculated the ratio of the two most frequent taxonomic 

groups (amoebae/flagellates), using log-transformed abundance data, to identify shifts in dominance 

patterns between those two groups. 

To analyse the influence of environmental parameters (i.e. water temperature [°C], 

photosynthetic active radiation [µmol/m²s], height above ground [m], pH and oxygen saturation [%], 

for extreme/average values and effect of elevational gradient see S2) on microfauna abundance and 

evenness, we used linear mixed effects models with microfauna treatment nested in bromeliad 

identity as random effects on a subset (i.e. only elevational control treatments without predators but 

with both resource treatments, see results section) of the available data.   
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All statistical analyses were done in R version 3.4.2 (R Core Team 2017) using the following 

packages: lme4 (Bates et al. 2015), nlme (Pinheiro et al. 2017), shape (Soetaert 2018) and vegan 

(Oksanen et al. 2017). 

 

Results 

We identified a total of 32 morphospecies of microfauna, including one diatom 

morphospecies, six flagellate morphospecies, four ciliate morphospecies, 18 testate amoeba 

morphospecies, two rotifer morphospecies and one micro-crustacean morphospecies (see S1). Total 

abundances varied greatly between samples (S3). This was primarily due to differences in the 

presence or absence of flagellates, which dominated a community in terms of abundance when they 

were present. Species richness ranged from 1 to 13 morphospecies per 50 µL sample, with an 

average of 6 ± 0.2 morphospecies per sample and was mostly driven by a high diversity of amoeba 

species (S3). While amoebae and flagellates were the most ubiquitous groups, each group occurring 

in over 85 % of our samples, flagellates dominated the abundance and amoeba the richness of the 

communities. Crustaceans and rotifers were less common occurring in roughly 30-50% of samples, 

and ciliates and diatoms were the rarest taxa occurring in less than 30 % of samples (S3).  

Microfauna abundance showed an elevational pattern increasing with original elevation (Tab 

1, Fig 3A). This pattern remained strong for control communities, i.e. communities that were 

transplanted in their original elevation (Fig 3B). For communities transplanted to other elevations the 

elevational pattern was reversed (Fig 3C) indicating that the effect of original elevation was 

maintained even after many generations of being in the new location.  

The patterns of original elevation in abundance, as well as the inverted patterns in evenness, 

were stronger in communities without predators (Fig 3, S4) revealing an interacting effect between 

the effect of original elevation and predator presence. While predator presence had a strong 

negative effect on abundance (Tab 1, Fig 4), resource availability showed a positive effect (Tab 1). 

The effect of resource availability became more prominent when predators were absent, showing 

the strong interaction between these two effects (Tab 1, Fig 4). Predator presence decreased 

microfauna abundance particularly in resource-rich habitats (Fig 4). Microfauna evenness was 

significantly increased by predator presence (S5). Though resource-predator interactions were shown 

to significantly affect microfauna community structure, no three-way interaction between 

environment, resource availability and predation was observed (Tab 1). 
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Flagellates and amoebae were expected to be particularly important in driving community 

structure patterns due to their frequent presence in samples (S3). Thus, we investigated the ratio of 

amoeba/flagellate abundance along the elevational gradient to detect shifts in dominance between 

these two functional groups. Amoeba/flagellate ratios showed a clear pattern along the original 

elevational gradient (Fig 5A), demonstrating the shift from amoeba dominated communities at lower 

elevations to flagellate-dominated communities at higher elevations. This elevational pattern in 

dominance remained strong for the control communities and was reversed for the communities 

transplanted to different elevations (Fig 5B+C) with the pattern of original elevation maintained in 

the communities after transplanting. Of the measured environmental variables that changed along 

the elevational gradient none had a strong effect on microfauna abundance or evenness (Tab 2). 

We found an effect of predator presence on species richness while none of the other 

parameters had an effect (Tab 1). However, log-transformed abundance used as co-variable in the 

model explained almost all of the variation in species richness between samples (S6) showing that 

predation affected microfauna richness via differences in total abundance. When considering only 

the remaining variation after accounting for abundance, species richness was slightly negatively 

affected by resource availability (S6).  

 

Discussion 

In this study we aimed to identify the interacting effects of environmental change and 

trophic interactions on microfauna community structure in bromeliads. We found a strong effect of 

original elevation on community structure (abundance, evenness, functional composition) with a 

shift from amoeba-dominated to flagellate-dominated communities with increasing original 

elevation. The transplantation of communities along the elevational gradient did not affect 

community structure, indicating strong priority effects. Furthermore, predation played a major role 

in structuring communities by decreasing microfauna abundance and increasing microfauna 

evenness, specifically in higher original elevation and high resource levels.  

Environmental niches versus priority effects 

We found that the structure of microfauna communities in bromeliads changed along the 

elevational (i.e. environmental) gradient. We found an increasing abundance and decreasing 

evenness of microfauna communities with increasing elevation. No changes in species richness were 

found along the elevational gradient. For many other taxa patterns in species richness along 

elevational gradients have been observed; most common are declines in richness with increasing 
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elevation or unimodal patterns (Sanders and Rahbek 2012). Microfauna organisms, however, show 

fundamental differences from macrofauna such as higher migration rates, lower extinction rates and 

lower relative number of endemics (Finlay et al. 2004). These differences seem to result in the 

absence of elevational patterns on the microscopic scale shown previously (e.g. bacteria: Fierer et al. 

2011, fungi and protists: Shen et al. 2014). Another reason for the lack of an effect of elevation on 

species richness in our study could have been a lower taxonomic resolution due to our 

morphospecies approach, which could be resolved by studies using genetic information in the future.  

Community changes in our study were mostly attributed to differences in abundance. 

Abundance patterns along elevational gradients in previous studies varied greatly between taxa 

groups, as well as with the length of the elevational gradient and due to other reasons (see for 

example Hodkinson 2005; Kumar et al. 2009; Samson et al. 1997; Torre and Arrizabalaga 2009). In 

our study system abundance increased with increasing elevation. This change in total abundance in 

bromeliad microfauna can mainly be attributed to changes in flagellates abundance. Flagellates were 

the most abundant group that dominated the bromeliad microfauna communities with individual 

numbers that were one to two orders of magnitude higher than of the other groups. The second 

most abundant group and the most species rich group were amoeba. Flagellates and amoebae were 

also the most frequently occurring groups (i.e. presence-absence). This dominance of the two groups 

had been observed before in bromeliad microfauna communities (Petermann et al. 2015b), 

especially in shaded habitats (Carrias et al. 2012). We discovered shifting dominance patterns 

between amoeba-dominated communities at lower elevations to flagellate-dominated communities 

at higher elevations. A potential reason for this shift could be habitat stability, for example in terms 

of water volume. High elevation environments are potentially more stable because they are located 

in the cloud forest and are constantly wet while lower elevation bromeliads may dry up repeatedly 

during the dry season (personal observation). Some amoeba species are known to outcompete 

flagellates after rewetting due to faster recovery rates (Geisen et al. 2014) and could thus be the 

more dominant group in lower elevations at the beginning of the wet season when our experiment 

was conducted. Distinct effects of hydrological periods in structuring parts of bromeliad inhabiting 

communities have been observed previously (Buosi et al. 2015).  

Unexpectedly, changes in environment by transplanting communities to opposing elevations 

resulted in a reversal of the elevational effect on abundance, evenness and dominance patterns, thus 

indicating strong priority effects. Our experiment was designed to be able to compare patterns in 

community structure related to original elevation with patterns of transplanted experimental 

elevation to provide evidence of either the effect of environmental niches or priority effects on 

communities. Thus, if the elevational pattern of community structure that we found had remained 
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the same after transplanting the communities, this would have indicated that environmental niches 

are important drivers of community structure and similar communities assemble under similar 

environmental conditions. In contrast, a reversed elevational pattern in community structure 

indicates that priority effects are at work and that the amount of environmental change was still 

within the tolerance range of the involved species. Microfauna organisms are able to tolerate a 

broad range of environmental conditions which enables the species first to arrive to use up most of 

the available resources, thus preventing other species from establishing a population (= niche-

preemption, Fukami 2015). The experimental duration of seven weeks (which equals approximately 

20-300 generations of different protozoa taxa (Berninger et al. 1991; Dehority 1998; Schönborn 

1986; Weisse et al. 2013)) was considered long enough for the microfauna communities to be able to 

reassemble as a response to new environmental conditions (Kinnison and Hairston 2007). However, 

in bacteria and yeast metacommunities priority effects have been observed to persist over multiple 

generations (Toju et al. 2018). For bromeliad-inhabiting metacommunities that live in seasonally 

unstable habitats (i.e. changes in water volume) the duration of seven weeks might not be long 

enough to assess the full impact of environmental change versus priority effects across different 

seasonal periods. It seems that the communities can cope with shorter disturbances within the 

natural range of possible changes. In this case, priority effects apparently strongly influence 

community structure. A longer exposition to a certain set of environmental variables may 

deterministically drive community assembly and lead to spatial patterns in community structure for 

example along elevational gradients if  environmental conditions remain more or less constant over 

longer periods (including constant disturbance regimes). Under the aspect of environmental change 

single weather anomalies will probably not affect bromeliad microfauna, but repeated changes, for 

example longer dry seasons, could result in lasting changes in the structure of bromeliad microfauna 

communities. 

Trophic interactions 

Resource availability and predator presence showed interacting effects on community 

structure in our field experiment. As expected, high resource levels increased abundance and 

decreased evenness in accordance with the literature (Petermann et al. 2015b). The presence of 

predators, here unselective filter-feeding mosquitoes, decreased the abundance of microfauna and 

thus contributed to more even communities. By increasing evenness predation has a stabilizing effect 

on community structure, as also shown by other studies (Wilsey and Polley 2002; Wittebolle et al. 

2009). In our study, especially predator presence played a major role in structuring the bromeliad-

inhabiting microfauna communities, presumably due to the comparatively high predator density. A 

previous study with bromeliad microfauna found no predator effect, likely also because predator and 
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resource effect were not crossed (Petermann et al. 2015b). Studies in pitcher plants concluded that 

both processes are important but that bottom-up processes dominate (Hoekman 2007) or that both 

processes differ in their effect, with resource-limitation being applicable to all parts of a community 

while predation targets a limited set of groups (Kneitel and Miller 2002). Resource availability and 

predator presence can vary strongly even within one bromeliad (personal observation). For example, 

a community in an older leaf compartment that has accumulated much debris will not be resource 

limited and this environment will provide sufficient nutrients for abundant microfauna growth, while 

a neighbouring leaf compartment may be harbouring a number of mosquito larvae that keep the 

microfauna less abundant by constant predation. These resource-predator dynamics are potentially 

not only spatially but also temporally variable, as resource input and insect oviposition are distinct 

events that can lead to very different conditions in a leaf compartment within few days. This 

increases the complexity of the interaction between bottom-up and top-down control in bromeliads, 

as demonstrated for other freshwater systems (Taylor et al. 2015), highlighting the need for further 

studies on this topic, especially with a high temporal and spatial resolution. 

Interacting effects of environment and trophic interactions 

We found interacting effects between the effect of elevation and predator presence on 

microfauna abundance. Generally, few studies investigate interacting effects between the 

environment and predator presence (but see Chalcraft and Andrews 1999, 1999; Hoekman 2010) 

because such studies require an extensive and laborious experimental design. Smaller communities 

such as in bromeliads, however, are particularly suited for investigating this type of question. The 

relative importance of predation on protists has been observed to decrease with decreasing 

temperature (Hoekman 2010), i.e. we would have expected a weaker effect of predation at higher 

elevations. The opposite was true in our experiment. Predation kept microfauna at a generally low 

abundance with a more even species assemblage along the entire elevational gradient. Thus, 

predators prevented the few species that are best suited for the environmental conditions from 

dominating the communities. Our results demonstrate that hidden interacting effects are potentially 

key to predicting community responses to changing environmental conditions. 

 

Conclusion 

Our results show that both, environmental niches and priority effects may be important as 

drivers of microfauna communities, potentially depending on the temporal scale of the study. 

Trophic interactions, i.e. resource availability and predation, may jointly and interactively drive 
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community structure, likely with high spatial and temporal dynamics in the bromeliad system. 

Elevational patterns of microfauna abundance were only visible in the absence of predators, 

revealing hidden interacting effects between environment and trophic interactions in the bromeliad 

system and highlighting the usefulness of complex full-factorial experiments to investigate drivers of 

community structure.   

We show that bromeliads, and likely other phytotelm systems, provide convenient model 

systems for community-level transplantation experiments along environmental gradients, which can 

be used to help predict effects of environmental change on communities. The use of such model 

systems will likely become more important in the future to investigate and predict the consequences 

of anthropogenic environmental change, such as for example climate change, on entire communities. 

In addition, our results may contribute to the effective protection of bromeliad and other phytotelm 

systems in the future. 
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Figures and tables 

 

Figure 1: Experimental design of microfauna transplantation experiment along an elevational gradient on 

Orosilito mountain (Costa Rica) ranging from 666-1174 m a.s.l. Transplantation to experimental elevation, 

resource availability and predation were crossed experimental treatments in a full-factorial design resulting in 

eight experimental 15 mL Falcon tubes per bromeliad. Microfauna communities were transplanted between 

ten bromeliad pairs (upper to lower mountain and vice versa). Detritus was added to experimental tubes as the 

sole resource for microfauna communities, using two experimental levels: low resource availability and high 

resource availability. The predator treatment consisted of three filter-feeding mosquito larvae per test tube. 

Control tubes of the predator treatment did not contain any mosquitoes. 
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Figure 2: A – Bromeliad in the field and B – Close-up on mesh-covered experimental tubes in which the 

microfauna communities were kept during the experiment. Mesh size: 300 µm. C – Visualization of the full-

factorial experimental design with eight treatments per bromeliad. Control treatments transplanted to same 

elevation are highlighted in blue and transplanted treatments that were moved to new elevations are 

highlighted in red. Resource concentration and predator presence are depicted using leaf and mosquito larva 

symbols, respectively. 
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Table 1: Results of linear mixed effects model (LMM) analysis for bromeliad-inhabiting microfauna abundance 

(log-transformed), species richness and evenness with microfauna treatment (i.e. ‘control’ versus 

‘transplanted’) nested within bromeliad identity as random effects. Data were obtained from a transplantation 

experiment along an elevational gradient on Orosilito mountain (Costa Rica) ranging from 666-1174 m a.s.l. 

Transplantation, resource availability and predation were crossed in a full-factorial experimental design 

resulting in eight treatment tubes per bromeliad. Microfauna communities were transplanted in 15 mL Falcon 

tubes between ten bromeliad pairs (upper to lower mountain and vice versa). Detritus dry weight was added to 

experimental tubes as sole resource for microfauna communities, using two experimental levels: ‘low’ versus 

‘high’. The predator treatment used three filter-feeding mosquito larvae per test tube. Significant p values (p  ≤  

0.05) are printed in bold. ↑ - Positive relationship. ↓ - Negative relationship. n = 160. For the calculation of 

evenness one outlier sample with only one individual was excluded. 



numDF denDF F-value p-value denDF F-value p-value denDF F-value p-value

Transplanted elevation 1 18 0.5809 0.4558 18 0.0163 0.8999 18 2.4553 0.1345

Original elevation 1 18 27.1544 0.0001↑ 18 32.041 <.0001↓ 18 0.8525 0.3681

Resource 1 108 7.2757 0.0081↑ 107 6.1362 0.0148↓ 108 0.4372 0.5099

Predator 1 108 70.9016 <.0001↓ 107 37.944 <.0001↑ 108 17.3183 0.0001↓

Transplanted elevation:Original elevation 1 18 0.0227 0.882 18 0.05 0.8256 18 0.9591 0.3404

Transplanted elevation:Resource 1 108 1.9836 0.1619 107 0.3014 0.5842 108 0.1694 0.6815

Original elevation:Resource 1 108 1.1492 0.2861 107 0.5484 0.4606 108 1.6238 0.2053

Transplanted elevation:Predator 1 108 2.0942 0.1508 107 0.4323 0.5123 108 0.1168 0.7332

Original elevation:Predator 1 108 11.2711 0.0011 107 6.4035 0.0128 108 0.3823 0.5377

Resource:Predator 1 108 14.1469 0.0003 107 6.5004 0.0122 108 2.3007 0.1322

Transplanted elevation:Original elevation:Resource 1 108 0.2882 0.5925 107 0.3425 0.5596 108 0.2122 0.646

Transplanted elevation:Original elevation:Predator 1 108 0.4942 0.4836 107 0.1764 0.6753 108 0.3954 0.5308

Transplanted elevation:Resource:Predator 1 108 0.0422 0.8377 107 0.0671 0.7962 108 1.0621 0.305

Original elevation:Resource:Predator 1 108 0.3366 0.563 107 0.0686 0.7939 108 0.0174 0.8953

Transplanted elevation:Original elevation:Resource:Predator 1 108 1.3088 0.2551 107 2.5683 0.112 108 0.4121 0.5223

Abundance Evenness Species richness



 

 

Figure 3: Results of the transplantation experiment demonstrating a strong positive effect of original elevation 

on total abundance [per 50 µL] of bromeliad-inhabiting microfauna (A). The effect of experimental elevation (B 

+ C) is shown separately for communities transplanted to their original elevation, i.e. controls (B), and 

communities transplanted to opposing elevations (C). Communities subject to predation by mosquito larvae on 

microfauna abundance (P+) are shown as dotted line and cross symbols. Communities without predators (P-) 

are shown as straight line and dots. Duration of experiment: 7 weeks. n = 160. 
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Figure 4: The effect of resource availability and predator presence on the total abundance [per 50 µl] of 

bromeliad-inhabiting microfauna. Resources increase microfauna abundance, but only in the absence of 

predators. R+: experimental communities with addition of high amount of detritus, R-: experimental 

communities with addition of low amount of detritus. P+: predator present P-: predator absent. No main effect 

of resource availability on microfauna abundance was observed (Tab 1). Predator presence significantly 

decreased microfauna abundance (Tab 1), especially in resource-rich habitats (Tab 1, sig. interaction between 

resource addition and predator presence).  
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Figure 5: Relation of amoeba abundance (log-transformed) to flagellate abundance (log-transformed) [per 50 

µL] in bromeliad-inhabiting microfauna communities along the original elevational gradient (A) and along the 

elevational gradient during the experiment (B+C), separated by communities transplanted to their original 

elevation, i.e. controls (B), and communities transplanted to the opposite mountain half (C). Elevational 

patterns of flagellate and amoeba relative abundance are mirrored after seven weeks of transplantation so that 

the effect of original elevation is maintained even after 7 weeks of the experiment. n = 160. 

 

Table 2: Results of linear mixed effects model (LMM) analysis for bromeliad-inhabiting microfauna abundance 

(log-transformed) and evenness testing the effect of environmental variables, with microfauna treatment (i.e. 

‘control’ versus ‘transplanted’) nested within bromeliad identity treated as random effects. This analysis 

includes only control communities (i.e. samples that were transplanted within their original elevation) and 

samples without predators to investigate which environmental factors shaped the original community 

structure. n=40. 

   

Abundance Evenness 

  numDF denDF F-value p-value F-value p-value 

Water temperature [°C] 1 14 0.32696 0.5765 1.32344 0.2692 

PAR [µmol/m²s] 1 14 0.59546 0.4531 0.00012 0.9913 

Height above ground [m] 1 14 1.21477 0.289 0.00005 0.9943 

pH 1 14 2.52833 0.1341 0.17086 0.6856 

Oxygen saturation [%] 1 14 4.8256 0.0454 ↑ 0.07732 0.785 

 



CHAPTER 2 

73 
 

Supplement 

 

S1: List of all 32 bromeliad-inhabiting morphospecies found in our field experiment in Guanacaste with 

representative picture, Costa Rica. Scale bar: 100 µm. 

Morphospecies  Photo  

Diatom 1 

 

Flagellate 1 

 

Flagellate 2 

 

Flagellate 3 

 

Flagellate 4 

 

Flagellate 5 

 

Flagellate 6 

 

Ciliate 1 
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Ciliate 2 

 

Ciliate 3 

 

Ciliate 4 

 

Amoeba 1 

 

Amoeba 2 

 

Amoeba 3 

 

Amoeba 4 

 

Amoeba 5 
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Amoeba 6 

 

Amoeba 7 

 

Amoeba 8 

 

Amoeba 9 

 

Amoeba 10 
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Amoeba 11 

 

Amoeba 12 

 

Amoeba 13 

 

Amoeba 14 
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Amoeba 15 

 

Amoeba 16 

 

Amoeba 17 

 

Amoeba 18 

 

Rotifer 1 
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Rotifer 2 

 

Crustacean 1 
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S2: Ranges and mean values of measured environmental variables and effects of elevation on these variables in 

20 bromeliads along an elevational gradient in Guanacaste, Costa Rica. Measurements of oxygen saturation 

[%], pH and water temperature [°C] were taken in one exemplary natural leaf compartment per bromeliad at 

the start of the experiment. Photosynthetic active radiation (PAR [µmol/m²s]) was measured at five points 

above each bromeliad.↑ - positive effect of elevation, ↓ - negative effect of elevation based on a linear 

regression analysis. ** p < 0.01, *** p < 0.001. 

 

Water temperature [°C]  

↓  

*** 

PAR [µmol/m²s] 

↑  

*** 

Height above ground [m] 

↑  

** 

pH 

↓ 

*** 

Oxygen saturation [%] 

↑  

*** 

Minimum 19.2 0 0 3.1 1.9 

Mean 21.7 19.9 1 4.4 43.4 

Maximum 23.9 124.6 3.2 5.9 102.3 

SE 0.1 2.6 0.1 0.1 2.5 

 

 

S3: Abundance, richness and frequency of functional groups in bromeliad-inhabiting microfauna per 50 µL 

sample. Flagellates clearly dominated the communities in terms of abundance and amoeba in terms of 

richness. No. of samples: 160. 

 
                      Abundance                                                Species richness 

 

  

Range 

per 

sample 

Mean ±SE 

per  

sample 

Average relative 

abundance   

± SE [%] 

Range 

per 

sample 

Mean ±SE 

per 

sample 

Average relative 

species richness 

 ± SE [%] 

Frequency 

[%] 

Total 1-6020  260 ± 56 

 

1-13 6 ± 0 

 

  

Diatoms  0-11 1 ± 0 1 ± 0  0-1 0 ± 0 3 ± 1 21 

Flagellates 0-5989 247 ± 56 60 ± 3  0-5 2 ± 0 29 ± 2 86 

Ciliates 0-36 2 ± 0 3 ± 1  0-2 0 ± 0 4 ± 1 23 

Amoebae 0-101 9 ± 1 27 ± 2  0-8 3 ± 0 48 ± 2 91 

Rotifers 0-17 1 ± 0 5 ± 1  0-2 0 ± 0 7 ± 1 34 

Micro-crustaceans 0-15 1 ± 0 4 ± 1  0-1 0 ± 0 9 ± 1 49 
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S4: Results of the transplantation experiment demonstrating a strong negative effect of original elevation on 

evenness of bromeliad-inhabiting microfauna (A). The effect of experimental elevation (B + C) is shown 

separately for communities transplanted to their original elevation, i.e. controls (B), and communities 

transplanted to opposing elevations (C). Predation by mosquito larvae on microfauna evenness (P+) is shown as 

dotted line and cross symbols. Absence of predators (P-) is shown as straight line and dots. Duration of 

experiment: 7 weeks. n = 160. 
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S5: The effect of resource availability and predator presence on the evenness of bromeliad-inhabiting 

microfauna. Resources decrease microfauna evenness, but only in the absence of predators. R+: experimental 

communities with addition of high amount of detritus, R-: experimental communities with addition of low 

amount of detritus. P+: predator present P-: predator absent. Predator presence significantly increased 

microfauna evenness.  
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S6: Results of linear mixed effects model (LMM) analysis for bromeliad-inhabiting microfauna evenness and 

species richness with microfauna treatment (i.e. ‘control’ versus ‘transplanted’) nested within bromeliad 

identity treated as random effects. Log-transformed abundance data were included as co-variable in these 

models (in contrast to the models in Tab. 1 in the main document) to distinguish direct effects of explanatory 

variables on evenness and species richness from effects via abundance. Data were obtained from a 

transplantation experiment along an elevational gradient on Orosilito mountain (Costa Rica) ranging from 666-

1174 m a.s.l. Transplantation, resource availability and predation were crossed in a full-factorial experimental 

design resulting in eight treatment tubes per bromeliad. Microfauna communities were transplanted in 15 mL 

Falcon tubes between ten bromeliad pairs (upper to lower mountain and vice versa). Detritus dry weight was 

added to experimental tubes as sole resource for microfauna communities, using two experimental levels: ‘low’ 

versus ‘high’. The predator treatment used three filter-feeding mosquito larvae per test tube. Significant p 

values (p  ≤  0.05) are printed in bold. ↑ - Positive relationship. ↓ - Negative relationship. n = 160. For the 

calculation of evenness one outlier sample with only one individual was excluded. 

 

 

 

 

 

 

 

 

 

numDF denDF F-value p-value denDF F-value p-value

log(Abundance) 1 106 468.032 <.0001↓ 107 75.185 <.0001↑

Transplanted elevation 1 18 2.0117 0.1732 18 2.9822 0.1013

Original elevation 1 18 6.9117 0.017↓ 18 2.9814 0.1013

Resource 1 106 0.1337 0.7154 107 4.6092 0.0341↓

Predator 1 106 0.0094 0.9229 107 0.0903 0.7644

Transplanted elevation:Original elevation 1 18 0.0455 0.8335 18 0.8448 0.3702

Transplanted elevation:Resource 1 106 0.247 0.6202 107 1.4423 0.2324

Original elevation:Resource 1 106 0.2352 0.6287 107 0.7766 0.3802

Transplanted elevation:Predator 1 106 0.1381 0.7109 107 0.1365 0.7125

Original elevation:Predator 1 106 0.0634 0.8017 107 1.1868 0.2784

Resource:Predator 1 106 0.1225 0.7271 107 0.112 0.7385

Transplanted elevation:Original elevation:Resource 1 106 0.0001 0.9923 107 0.0515 0.8209

Transplanted elevation:Original elevation:Predator 1 106 0.006 0.9382 107 1.2073 0.2743

Transplanted elevation:Resource:Predator 1 106 0.1767 0.675 107 1.1096 0.2945

Original elevation:Resource:Predator 1 106 0.0033 0.9545 107 0.2206 0.6395

Transplanted elevation:Original elevation:Resource:Predator 1 106 2.0643 0.1537 107 0.0089 0.9248

Evenness Species richness
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Abstract 

Three-dimensional sampling in forest ecosystems has previously revealed vertical 

stratification patterns in terrestrial community structure. We used single-rope climbing techniques to 

investigate if vertical patterns exist in community structure of bromeliad-inhabiting macro- and 

microfauna in a tropical rainforest in Costa Rica. We found that neither macro- nor microfauna 

communities changed with height above ground. Instead, macrofauna community structure was 

driven by other environmental factors such as water volume, number of leaves, canopy openness 

and water temperature. Microfauna community structure was not affected by any of the 

environmental variables measured, suggesting that seasonal variability, priority effects or trophic 

interactions (e.g. predation) might be more important in structuring of microfauna communities.  

Our results justify the use of logistically less challenging samples from bromeliads in the forest 

understory in future studies using the increasingly important bromeliad model system. 

 

Introduction 

Dimensionality of space is known to be an important factor for trophic interactions and thus 

a potential driver of species coexistence (Pawar et al. 2012). The assumption that in terrestrial 

ecosystems species interactions mostly take place on a 2D level while in aquatic ecosystems an 

additional vertical dimension exists has led to lively discussions on the differences in trophic 

structures between terrestrial and aquatic ecosystems (Hairston and Hairston 1993; Carr et al. 2003; 

Shurin et al. 2006). However, the separation of ecosystems into the categories ‘terrestrial’ and 

‘aquatic’ has not proven useful (Chase 2000) and the third dimension was soon incorporated into 

terrestrial ecosystems as well (Drăguţ et al. 2010; Rutten et al. 2015). A pronounced vertical 

structuring is particularly visible in forest ecosystems (Terborgh and Estes 2013). Forest canopies are 

still vastly understudied parts of the forest ecosystem due to their difficult accessibility (Lowman 

2000), but canopy science has recently gained much interest because first studies have shown that 

especially the upper forest parts are hotspots of biodiversity (Nakamura et al. 2017).  

Bromeliad plants, growing in tropical rain forests of South and Central America, can be found 

on ground level as well as high up in the canopy (Zotz 2016). The leaves form water-holding tanks 

and host a diverse community of aquatic micro-organisms such as flagellates, ciliates and amoeba, 

small crustaceans and rotifers and macro-organisms such as insect larvae. These organisms 

decompose the accumulating leaf litter or prey on smaller organisms in the tank (Picado 1913). Due 

to the bromeliad system’s replicability, their tank-inhabiting communities are the ideal study system 

to investigate questions in community ecology (Srivastava et al. 2004). The numerous studies that 
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have been conducted on bromeliad-inhabiting communities mostly used easily accessible plants on 

or near ground level. However, the majority of the bromeliads actually grow higher up in the canopy 

(Isaza et al. 2004). The natural occurrence of bromeliads in canopy and understory makes the third 

dimension one of the potentially important factors for community structuring processes because a 

number of environmental variables change along the height gradient (Ulyshen 2011; Petter et al. 

2016). In the understory the accumulated leaf area index (i.e. canopy cover) is higher leading to 

reduced light availability (Castro 2000), lower temperatures (Fowells 1948) and an increased amount 

of dead organic matter falling to the ground (i.e. available nutrients) (Castro 2000; Rangel et al. 

2015). These environmental differences along the height gradient can affect bromeliad morphology, 

for example tank volume which is a measure of habitat size for the inhabiting organisms, or the 

number of leaves, a measure of the heterogeneity of their habitat (Cavallero et al. 2011; Benzing 

2000), both of which are known to be an important driver of bromeliad community structure 

(Armbruster et al. 2002). Another possibility is that environmental differences between canopy and 

understory affect the habitat quality, e.g. more sun-exposed bromeliads in the canopy will likely have 

stronger daily temperature fluctuations, which has been observed to be an important driver of 

microfauna community composition and beta diversity (Busse et al. 2018).  

Here, we conducted a field study to investigate whether there are differences between 

bromeliad-inhabiting communities on the ground (in the forest understory) and in different heights 

from the ground and to identify the environmental variables that might drive these differences in 

bromeliad community structure. Any differences would then render the exclusive study of 

understory bromeliads inappropriate to address the full spectrum of bromeliad communities.  

 

Methods 

Study Site 

Field work was carried out in secondary rainforest around the field station ‘Pitilla’ (N 

10°59.374', W 85°25.583', 700 m a.s.l.) in the natural reserve Área de Conservación Guanacaste 

located in north-western Costa Rica. Samples were taken during the wet season in the years 2000 

and 2015. In 2015, detailed measurements of meteorological data were taken: mean daily 

precipitation was 15.7 ± 2.3 (mean ± SE) mm, total precipitation during the sampling stay amounted 

to 787.1 mm, maximum daily temperatures ranged from 23°C to 28°C with a mean of 25 ± 0.2 (mean 

± SE) °C and minimum daily temperatures ranged from 19°C to 22°C with a mean of 21 ± 0.1 (mean ± 

SE) °C.  

 



CHAPTER 3 

86 
 

Sampling 
 

We sampled bromeliad pairs, i.e. one bromeliad from the canopy (> 10 m above ground) and 

one bromeliad from the understory (< 5 m above ground), from around or on twenty-one trees. 

Understory bromeliads where sampled within a 15 m radius from the canopy bromeliad tree. To 

assess canopy bromeliads we used single-rope climbing techniques. Bromeliads of the 

morphologically similar genera Guzmania and Werauhia with approximately the same diameter (65 ± 

4 cm/ mean ± SE) and water volume (114 ± 26 mL/mean ± SE) were chosen. Diameter [cm] 

(maximum distance of relaxed leaf tips), total number of leaves and height above ground [m] were 

recorded for each bromeliad. Oxygen saturation [%] (only for 2015 data) and water temperature [°C] 

(only for 2015 data) were measured using an IntelliCal oxygen electrode (LDO) by HachLange in an 

exemplary outer water compartment. Light availability (only for 2015 data) was determined via 

pictures of the canopy above the plant using a camera with a fish-eye lense (Rollei Actioncam S50) to 

estimate canopy openness [canopy openness or gap fraction in %] using ImageJ PlugIn Hemisperical 

2.0.  

For microfauna sampling (only for 2015 data) water samples from an outer, water containing 

leaf compartment were taken per bromeliad and fixed with Lugol’s solution. The water volume of the 

sampled leaf compartment was identified by extracting all water with a pipette after sampling. The 

remaining water volume of the total bromeliad was identified using the same method. All extracted 

water was transported to the research station Detritus (only for 2015 data) was extracted from the 

bromeliad and bagged. With all sampling done, the bromeliad was carefully removed from the tree 

or ground and transported back to the field station in a plastic bag. There, the macro-organisms 

remaining in the plant were collected by removing leaf after leaf (2000) or washed out using a high 

pressure hose (2015) and the bromeliad transportation bag was visually scanned for individuals. 

Subsequently, macrofauna individuals were collected from the all water and detritus and stored in 

70%-ethanol.  

 
Counting 

Macrofauna (i.e. insect larvae) were identified and measured using a stereomicroscope and 

classified into functional groups following and adding to a previously developed key 

(http://www.zoology.ubc.ca/~srivast/pitilla/, for new morphospecies see S1). Microfauna (i.e. 

diatoms, flagellates, ciliates, amoeba, rotifers and micro-crustaceans) were counted as morphotypes 

(see S2) by processing subsamples of 50 µL of each water sample using light microscopy (400x 

magnification) and using and adding to a photographic key developed in previous projects (Busse et 

al. 2018). 

http://www.zoology.ubc.ca/~srivast/pitilla/
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Permission for field work and sampling was granted by Sistema Nacional de Áreas de 

Conservación (SINAC) and Ministerio del Ambiente y Energía (MINAE) in Costa Rica (permit no. ACG-

PI-046-2015).  

Statistics 

For the combined macrofauna data set with samples from 2000 and 2015 the effect of total 

water volume [mL], number of leaves [per bromeliad] and height above ground [m] on community 

structure (abundance, species richness, community composition) was tested. Differences in 

abundance and species richness were tested using linear regression models. Abundance data were 

log-transformed to achieve normality and homoscedasticity. Species richness models include 

abundance as co-variable fitted before the environmental variables. Differences in community 

composition were tested using PERMANOVA and visualized using non-metric multidimensional 

scaling (NMDS). For the analyses of community composition species-by-site matrices were Hellinger-

transformed to exclude patterns that were simply due to differences in abundance (Legendre and 

Gallagher 2001). For macrofauna and microfauna data from 2015, community structure was analyzed 

the same way but including additional environmental variables which were not available for the data 

from 2000, i.e. canopy openness [% light pixel], water temperature [°C], oxygen saturation [%] and 

detritus dry weight [g]. Measures of water volume and detritus dry weight refer to the whole 

bromeliad for macrofauna and to the leaf compartment for microfauna since this is the relevant 

habitat size for these organisms. The number of leaf compartments as a variable is only considered 

for macrofauna analyses because microfauna cannot actively move between the leaf axils.  

All statistical analyses were done in R (R Core Team 2017) using the package vegan (Oksanen 

et al. 2017). 

 

Results 

A total of 60 macrofauna species were identified, of which 50 were Diptera, 4 Coleoptera, 3 

Oligochaeta, 1 Platyhelminthes, 1 Hirudinea and 1 Odonata. The species identified in the two 

different data sets from 2000 and 2015 showed some overlap with 19 species found in both years. 12 

species were exclusively found in the year 2000 and 29 in the year 2015. A total of 28 microfauna 

morphospecies were differentiated (data only available for 2015), of which 2 were flagellates, 4 

ciliates, 19 amoebae, 1 crustacean and 2 rotifers. 
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Community structure 

Total abundance and species richness of neither macro- nor microfauna differed significantly 

between canopy and understory bromeliads (Fig 1). Macro- and microfauna community composition 

did not differ significantly between canopy and understory bromeliads (Fig 2). Beta diversity 

(measured as distance to centroid) did not differ significantly between canopy and understory for 

neither macrofauna (F1,40 = 0.730, p = 0.398) nor microfauna (F1,20 = 0.731, p = 0.403). 

Environment 

The environmental variables measured showed no differences between canopy and 

understory except for canopy openness which was significantly higher in the canopy than in the 

understory (S3).   

To identify the environmental variables which drive community structure in bromeliads we 

analysed the combined macrofauna data sets from the years 2000 and 2015 using the environmental 

variables which were measured in both years, i.e. total water volume [mL], number of leaves 

[1/bromeliad] and height above ground [m]. Neither total water volume nor number of leaves 

changed with height above ground (S3). Total water volume as a measure of habitat size, was of 

major importance for community structure, affecting abundance, species richness and community 

composition (Tab 1), with higher abundance and higher (abundance-controlled) species richness in 

bromeliads with larger water volumes. Additionally, the number of leaves per bromeliad as a 

measure of habitat heterogeneity played a minor role for abundance and species richness (Tab 1) 

with higher numbers of leaves resulting in higher abundance and species richness. Height above 

ground did not explain any variance in community structure when fitted last (or first) in the models 

(Tab 1, Tab 2, latter results not shown). 

As data on more environmental variables (i.e. canopy openness, water temperature, oxygen 

saturation and detritus dry weight additionally to total water volume, number of leaves and height 

above ground) and on microfauna were available for 2015, we conducted an additional analysis for 

2015 only, test the effects of the additional variables. Macrofauna abundance was affected by 

canopy openness (Tab 2) in addition to the effect of water volume which was also found in the 

combined data set (Tab 1 + 2). The removal of canopy openness from the model due to 

autocorrelation with height above ground did not result in a significant effect of the latter (results 

not shown). The number of leaves per bromeliad did not have a significant effect on macrofauna 

abundance in contrast to the result from the analysis of the combined data set (Tab 1 + 2). 

Macrofauna species richness was affected by water temperature (Tab 2) in addition to effects of 

water volume and number of leaves which was also found in the combined data set (Tab 1 + 2). No 
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measured environmental variable was found to affect macrofauna community composition here (Tab 

2) in contrast to the effect of water volume on community composition found for the combined data 

set (Tab 1). None of the measured environmental variables affected the structure of the microfauna 

community (Tab 2). Height above ground was not found to affect either macro- or microfauna 

community structure (Tab 1 + 2). 

 

Discussion 

The aim of our study was to investigate potential differences between canopy and 

understory in the structure of bromeliad-inhabiting communities. We found no indication that the 

community structure of either macro- or microfauna changes with height above ground. This result is 

contrary to our expectations. In literature numerous examples exist showing the forest canopy to 

harbour different communities than the forest understory, for example in butterflies (DeVries et al. 

1997; Schulze et al. 2001), ants (Longino and Nadkarni 1990) and arthropods in general (Ulyshen 

2011). However, this pattern did not apply to bromeliad-inhabiting macro- and microfauna.  

One reason for the absence of community structure differences could be the lack of 

pronounced environmental differences between canopy and understory in our study system (see S3). 

Contrary to former canopy-understory comparisons we investigated discrete habitats, i.e. the 

bromeliads. Bromeliad water conditions have previously been observed to remain the same 

regardless of height above ground (Jocque and Kolby 2012) which is supported by our data. While 

previous findings of differences resulted from changes in habitat structure (e.g. MacArthur and 

MacArthur 1961), the complexity and structure of the bromeliad units remained unchanged between 

canopy and understory. It is possible that bromeliads at the highest canopy level which are 

completely exposed to the sky (and unfortunately, inaccessible to rope-climbing assisted sampling) 

show more pronounced differences in environmental conditions and do hold different communities. 

This could be investigated via crane work at suitable sites. In our study, only canopy openness 

changed along the height gradient (see S3) and could have explained differences in community 

structure between canopy and understory. Macrofauna abundance increased with canopy openness, 

but the removal of canopy openness from the model did not result in a significant effect of height 

above ground (results not shown), showing that canopy openness cannot be a main driver of any 

height effect on macrofauna abundance. We identified several other environmental variables which 

did not change with height to play an important part in structuring bromeliad-inhabiting macrofauna 

communities. First of all, total water volume as a measure of habitat size played a major role in 

structuring bromeliad macrofauna communities as it was positively related to abundance and species 
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richness. Higher macrofauna abundance and richness in bromeliads with greater water volume were 

formerly observed by Dézerald et al. (2014), suggesting that some species, e.g. open water species 

such as culicids, need large water volumes. Not only water volume but also other morphological 

aspects of the bromeliad, such as the number of leaves per bromeliad as a measure of habitat 

heterogeneity may shape community structure (Armbruster et al. 2002). We found indeed that the 

number of leaves per bromeliad affects species richness and marginally also the abundance of 

bromeliad-inhabiting macrofauna. Bromeliads are compartmentalized and only some of the species 

such as larger (predatory) taxa, for example damselfly and mosquito larvae (Srivastava and Bell 2009; 

Frank et al. 1984), can actively move between the leaf compartments. A higher habitat complexity 

achieved by a greater number of leaf compartments has been shown to reduce predator efficiency 

(Srivastava 2006) which may result in higher species richness (Freestone et al. 2011). Another factor 

that influenced species richness in our study was water temperature. Higher water temperature 

decreased macrofauna richness. The significant effect of water temperature on microfauna richness 

in bromeliads has been formerly observed (Kratina et al. 2017; Petermann et al. 2015), though it 

remains unclear if this effect is direct or indirect. Either less species have their tolerance range in 

higher temperatures or higher water temperatures result in less favourable water conditions (e.g. 

reduced oxygen saturation, increased acidity (Jocque and Kolby 2012)). The aspect of water 

temperature is particularly important in the dry season. Bromeliads with higher water temperature 

are more prone to evaporation, which in the worst case leads to drought during the dry season 

making survival for species without duration stages or good dispersal abilities impossible (Williams 

1987, 1996). Seasonality has been shown various times to play an important role in structuring 

bromeliad communities (Mondragón-Chaparro and Cruz-Ruiz 2008; Castaño-Meneses 2016; Buosi et 

al. 2015). Differences in bromeliad community structure between canopy and understory can even 

be reversed over different seasons of the year (Mestre et al. 2001) demonstrating that (seasonal) 

changes of environmental conditions need to be taken into account when planning sampling events.  

Microfauna community structure was not affected by any of the environmental variables 

measured in this study. Previous studies showed that microfauna is susceptible to changes in 

environmental conditions such as daily temperature fluctuations (Busse et al. 2018) and therefore 

also affected by seasonality (Nolte et al. 2010). Though many microfauna species have duration 

stages to bridge undesirable (e.g. acidic) water conditions or to survive drought events, they might 

still be affected via cascading trophic effects due to changes in predation pressure over different 

seasons. As stated earlier we assume that the exposed canopy bromeliads are more prone to 

evaporation in the dry season, which means that drought-sensitive predators (such as mosquito 

larvae which act as predators of microfauna) are more likely to suffer from habitat loss in canopy 

bromeliads than in understory bromeliads. This would lead to a vertical stratification of predation 



CHAPTER 3 

91 
 

pressure in the dry season, and this difference in predation pressure could potentially influence 

microfauna communities as shown previously in bromeliads (Busse et al. submitted, see chapter 2). 

Therefore, sampling during the dry season, instead of during the wet season as we did, might lead to 

a different result regarding the similarity of canopy and understory community structure. The lack of 

difference between communities at different heights may also partly be a result of a potentially 

lower taxonomic resolution of our morphospecies approach as differences may be subtle, for 

example a turnover of closely related species as shown previously in ants (Longino and Nadkarni 

1990). 

Our findings suggest that the sampling of ground bromeliads only may represent an 

adequate method to assess their community structure. The logistically more laborious canopy 

sampling does not seem to provide additional information here. It remains to be tested if this finding 

is consistent at other sampling sites where differences in the environment between canopy and 

understory may be larger. Primary rain forests, for example, are more strongly structured than 

secondary rainforests (Barlow et al. 2007; Casas et al. 2016; Ulyshen 2011) and could thus provide a 

stronger gradient in environmental conditions which might shift community structure along the 

height gradient.  
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Figures and tables 

 

Figure 1: Comparison of total abundance and species richness of macro- and microfauna per 50 µL water 

sample between canopy and understory bromeliads. The difference between canopy and understory was not 

significant in any of the cases (i.e. all p>0.05).  

 

 

Figure 2: Difference in bromeliad-inhabiting macro- (A) and microfauna (B) communities between canopy and 

understory. PERMANOVA results: A (macrofauna): n = 42 , F1,40 = 1.3, p = 0.230. B (microfauna): n = 22 ,  F 1,20 = 

1.1, p = 0.278.  
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Table 1: Results from analyses testing the effect of environmental variables on community structure of 

bromeliad-inhabiting macrofauna using combined data sets from 2000 and 2015. n = 42. Abundance (log 

transformed) and species richness were analysed using linear regression analyses. Community composition was 

analysed using PERMANOVA (number of permutations: 999) with Hellinger-transformed species-by-site 

matrices. ↑ - positive relationship, ↓ - negative relationship. 

 Log(Abundance) Df F value   P value 

Total water volume [mL] 1 9.187   0.004↑ 

Number of leaves [1/bromeliad] 1 8.998 
 

0.005↑ 

Height above ground [m] 1 0.058   0.811 

Residuals 38 
   

      Species richness Df F value   P value 

log(abundance/50 µL) 1 63.065   <0.001↑ 

Total water volume [mL] 1 46.110 
 

<0.001↑ 
Number of leaves 
[1/bromeliad] 1 6.270   0.017↑ 

Height above ground [m] 1 0.094 
 

0.761 

Residuals 37       

      Community composition Df F.Model R2 P value 

Total water volume [mL] 1 2.837 0.066 0.016 
Number of leaves 
[1/bromeliad] 1 1.001 0.023 0.393 

Height above ground [m] 1 1.406 0.033 0.163 

Residuals 38 0.879 
  Total 41       

 

 

 

Table 2: Results from analyses testing the effect of further environmental variables on community structure of 

bromeliad-inhabiting macro- and microfauna. Macrofauna was analysed on bromeliad level and microfauna on 

leaf compartment level (one exemplary leaf per bromeliad). Canopy openness was estimated from pictures 

taken with a fish-eye lense using ImageJ PlugIn Hemisperical 2.0 to determine the percentage of light pixels. 

Data are from 2015 only because these environmental variables were not measured in 2000. N = 22 (for 

microfauna 21 due to one missing data point on detritus in one compartment). Abundance (log-transformed) 

and species richness were analysed using linear regression analyses. Community composition was analysed 

using PERMANOVA (number of permutations: 999) with Hellinger-transformed species-by-site matrices. ↑ - 

positive relationship, ↓ - negative relationship. 

 



CHAPTER 3 

97 
 

 Log-transformed abundance 

 MACROFAUNA  MICROFAUNA 

 Df F value P value  Df F value P value 

Canopy openness [%] 1 10.052 0.007↑  1 0.585 0.457 

Total water volume [mL] 1 4.740 0.047↑  1 0.606 0.449 

Number of leaves 

[1/bromeliad] 
1 4.439 0.054  - - - 

Water temperature [°C] 1 0.013 0.912  1 0.008 0.930 

Oxygen saturationn [%] 1 0.011 0.918  1 0.029 0.867 

Detritus dry weight [g] 1 0.056 0.816  1 0.245 0.629 

Height above ground [m] 1 0.425 0.525  1 1.280 0.277 

Residuals 14    14   

 Species richness 

 MACROFAUNA  MICROFAUNA 

 Df F value P value  Df F value P value 

log(abundance/50 µL) 1 154.079 <0.001↑  1 2.281 0.155 

Canopy openness [%] 1 0.281 0.605  1 1.155 0.302 

Total water volume [mL] 1 59.251 <0.001↑  1 0.235 0.636 

Number of leaves 

[1/bromeliad] 
1 21.677 <0.001↑  - - - 

Water temperature [°C] 1 21.838 <0.001↓  1 0.583 0.459 

Oxygen saturationn [%] 1 0.483 0.499  1 1.056 0.323 

Detritus dry weight [g] 1 0.089 0.770  1 0.614 0.447 

Height above ground [m] 1 0.013 0.912  1 1.831 0.199 

Residuals 13    13   
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Community composition 

 MACROFAUNA  MICROFAUNA 

 Df F Model R² P value  Df F Model R² P value 

Canopy openness [%] 1 1.1778 0.056 0.284  1 0.677 0.038 0.646 

Total water volume [mL] 1 1.156 0.056 0.325  1 0.209 0.012 0.977 

Number of leaves 

[1/bromeliad] 
1 0.560 0.027 0.880  - - - - 

Water temperature [°C] 1 0.944 0.045 0.499  1 0.313 0.018 0.931 

Oxygen saturationn [%] 1 0.721 0.035 0.727  1 0.458 0.026 0.847 

Detritus dry weight [g] 1 0.514 0.025 0.903  1 1.250 0.070 0.316 

Height above ground [m] 1 1.755 0.084 0.063  1 0.965 0.054 0.41 

Residuals 14 0.672    14 0.783   

Total 21     20    

 

Supplement 

S1: List of three additionally found bromeliad-inhabiting invertebrate morphospecies from a field survey along 

a height gradient in Guanacaste (Costa Rica) with representative drawings and annotations by Jeremias j. 

Schoreisz. Previously described morphospecies can be found under: http://www.zoology.ubc.ca/~srivast/ 

pitilla/ 
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S2: List of all 28 bromeliad-inhabiting microfauna morphospecies found in a field survey along a height gradient 

in Guanacaste with representative picture, Costa Rica. Scale bar without annotation: 100 µm. Names are based 

on previous keys. 

Morphospecies  Photo  

Flagellate 1 

 
Flagellate 3 

 
Ciliate 1 

 
Ciliate 2 

 
Ciliate 3 

 
Ciliate 6 

 
Amoeba 1 

 
Amoeba 2 
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Amoeba 3 

 
Amoeba 4 

 
Amoeba 5 

 
Amoeba 6 

 
Amoeba 7 

 
Amoeba 8 

 
Amoeba 9 
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Amoeba 10 

 
Amoeba 11 

 
Amoeba 13 

 
Amoeba 14 
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Amoeba 15 

 
Amoeba 16 

 
Amoeba 17 

 
Amoeba 18 

 
Amoeba 33 

 
Amoeba 34 
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Rotifer 1 

 
Rotifer 2 

 
Crustacean 1 
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S3: Comparison of environmental parameters in bromeliads between canopy and understory. Only canopy 

openness differed significantly between canopy and understory (F1,20 = 8.169, p = 0.00972). c – canopy, u – 

understory. 
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Abstract 

Microfauna communities have often been suggested to respond differently to environmental 

changes than macrofauna communities. To detect patterns in microfauna community structure along 

environmental gradients, we studied microfauna communities in bromeliads along elevational 

gradients. We assumed that abiotic variables such as light availability, temperature, pH, oxygen 

saturation, compartment water volume and resource availability would show consistent patterns 

along different elevational gradients in the study region (Guanacaste, Costa Rica) which would lead 

to similar patterns in microfauna community structure. We further assumed beta diversity of 

microfauna communities to be positively related to elevation based on a decline in resource 

availability with increasing elevation. We found environmental conditions to differ strongly between 

the three studied elevational gradients. Linear patterns in microfauna community structure occurred 

in only one of the three field sites and were related to changes in oxygen saturation. Beta diversity 

showed contrasting or no patterns along the elevational gradients. In the one case in which beta 

diversity increased with higher elevation as expected, the pattern resulted from changes in water 

temperature and not resource availability as we suggested. We conclude that the variability of 

environmental conditions between elevational gradients is higher than generally assumed making 

generalizations of community structure and beta diversity patterns difficult. 

 

Introduction 

Over the last decades the anthropogenic influence on natural systems has increased 

considerably (Butchart et al. 2010). Changes in environmental variables due to anthropogenic 

activities have been observed to lead to changes in community composition (Anderson and Piatt 

1999; Schimel and Gulledge 1998). This restructuring of communities can be accompanied by 

changes in ecological processes and functions (Chin et al. 1999; Schimel and Gulledge 1998). 

Consequences such as alterations in ecological processes and functions resulting from changes in 

environmental conditions and community structure are many times little predictable due to the 

complexity of natural ecosystems. Different scenarios of environmental change have been 

investigated with the aim to predict the implications of shifting environmental factors, e.g. 

temperature (Chin et al. 1999), climate (Anderson and Piatt 1999; Schimel and Gulledge 1998), 

disturbance regime (Schimel and Gulledge 1998) and nutrient availability (Armitage et al. 2005). 

Particularly well suited for these studies are naturally occurring gradients of environmental factors 

that allow us to assess the effects of a changing environment under natural conditions. Commonly 

used gradients are habitat gradients (habitat size (Wellborn et al. 1996), habitat type (Schlosser 
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1982)), latitudinal gradients (Connolly and Roughgarden 1998), gradients of physical factors such as 

oxygen (Lüdemann et al. 2000) and temperature (Rodeghiero and Cescatti 2005) or resource 

availability gradients (Richardson et al. 2000). In this study, we chose an elevational gradient because 

it likely comprises gradients of a number of ecologically important variables. With increasing 

elevation both temperature (Rodeghiero and Cescatti 2005) and plant cover (Gutierrez et al. 1998) 

have been shown to decrease. As plant cover is reduced canopy openness increases with elevation 

((Homeier et al. 2010); decreasing leaf area index: (Kitayama and Aiba 2002)). This may result in 

higher light availability and lower resource input for decomposition processes.  

Previous investigations of community composition parameters such as species richness and 

abundance showed variable patterns along elevational gradients. Earlier theories regarding these 

parameters assumed a linear decline with increasing elevation which was indeed observed in several 

studies (crustacean zooplankton species number: Rautio 1998, vascular plant richness: Grytnes 2003, 

aquatic plant richness: Jones et al. 2003, tree diversity: Homeier et al. 2010, bee abundance: Hoiss et 

al. 2012). However, species richness and abundance do not always decline monotonically in field 

studies (Richardson et al. 2000; Chaves-Campos 2004). Unimodal patterns with a peak at mid-

elevation were found numerous times (grassland and forest species richness: Wang et al. 2003, 

vascular plant richness: Grytnes 2003, frog species richness: Fu et al. 2006, relative abundance of 

ants: Samson et al. 1997). In some studies even the opposite of the initial assumption was found and 

species richness and abundance increased with increasing elevation (plant species richness: Gutierrez 

et al. 1998, moth diversity: Brehm et al. 2003, relative abundance of bacteria: Siles and Margesin 

2016, abundance of paper wasps: Kumar et al. 2009). These controversial observations might be the 

result of different driving factors. Many of these investigations focus on animal and plant species. 

However, the ecologically highly important microorganisms (Arrigo 2005; Finlay et al. 1987; 

Rosenberg et al. 2007) have been strongly neglected. Some studies indicate that microfauna 

community structure might exhibit patterns that are different from macrofauna communities (Fierer 

et al. 2011) which could be based on differences in fundamental characteristics such as rates of 

migration (Finlay et al. 2004). Nowadays, microfauna communities are increasingly used in ecology to 

answer questions regarding community-structuring processes (Srivastava et al. 2004). Based on their 

importance for ecosystems and as model systems, we chose microfauna communities for this study 

aiming to investigate the mechanisms through which changes in environmental conditions might 

affect community structure.  

We used aquatic microfauna communities from tank-forming bromeliad plants to investigate 

the effects of changing environmental conditions on community structure. Bromeliads 

(Bromeliaceae) are herbaceous, perennial epiphytes that occur in the warm temperate to tropical 
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regions of the Neotropics (Kitching 2000). Tank bromeliads form phytotelmata, i.e. plant-held waters 

(Kitching 2001), with their leaf axils (Greeney 2001). In these small water compartments organic 

matter accumulates in form of leaf litter from the forest canopy and is decomposed by detrivorous 

organisms living in the bromeliad tank. The decomposed material is used by the bromeliad itself as a 

nutrient source and also provides the basis for the food web of the aquatic community living in the 

small water pools. These food webs consist of bacteria, fungi, algae, protozoans, small metazoans 

such as rotifers and crustaceans, as well as detrivorous, filter-feeding and predatory insects. 

Bromeliads can contain inhabitants of numerous taxa (Greeney 2001; Maguire 1971) and thus 

comprise a great part of the aquatic non-fluvial biodiversity in the Neotropics (Carrias et al. 2014; 

Frank and Lounibos 2009). Therefore, these small water bodies are of great ecological importance, 

especially because bromeliad plants can occur at very high densities (Kitching 2000). An advantage of 

the bromeliad micro-ecosystem is that it is less complex and thus more easily comprehensible 

(Kitching 2001) than whole forest or lake ecosystems, which makes it the perfect model system for 

the study of community structure (Srivastava 2006).  

Previously, mostly invertebrates were investigated in bromeliads (Frank and Lounibos 2009; 

Lounibos et al. 2003), but recently, the interest has shifted to the microorganisms (Carrias et al. 

2012; Dunthorn et al. 2012). Here, we studied single-celled protozoa as well as small metazoa like 

rotifers and crustaceans. While some invertebrates, e.g. most insect species, spend only their 

juvenile stage in the bromeliad waters (Montero et al. 2010; Srivastava 2006), microorganisms spend 

their entire life-time (except for the period of dispersal) in the bromeliad micro-ecosystem. They also 

have shorter generation times and therefore respond more rapidly to environmental changes (Berger 

et al. 1997). Elevational changes in the bromeliad macrofauna community were already observed, 

whereby abundance declined linearly with elevation while species richness showed a mid-elevation 

peak (Richardson et al. 2000). Literature suggests that changes in microfauna community structure 

could be similar (Astorga et al. 2012) or completely distinct compared to the patterns found for 

macrofauna organisms (Finlay et al. 2004; Fierer et al. 2011). A number of environmental factors 

have been demonstrated to drive microfauna community structure in bromeliads or other systems. 

For example, bromeliad-inhabiting microfauna communities have been found to be strongly resource 

controlled (Petermann et al. 2015). An increase in resource input was observed to lead to an increase 

in species abundance, a decrease in species richness, a shift in community composition and an 

increase in between-community variation (Petermann et al. 2015). Light availability and related 

temperature changes were shown to affect community composition of bromeliad microfauna 

communities (Busse et al. 2018). Habitat size, in this study represented by compartment water 

volume of the bromeliad, is a known driver of abundance (Marino et al. 2011; Araújo et al. 2007) and 
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we expect compartment volume to increase with elevation due to morphological changes in 

bromeliad plants that are exposed to more light (Males 2016). Chemical components like oxygen 

saturation and pH are known to affect microfauna community structure (Louca et al. 2017; Moser 

and Weisse 2011). Oxygen saturation will likely increase with elevation due to increased light 

availability and thus higher oxygen-producing algae biomass (Brouard et al. 2011). For pH we assume 

a decrease with higher elevation based on lower resource availability and thus fewer decomposition 

processes that would make the water more alkaline (Deano and Robinson 1985; Noble et al. 1996). 

With this study we investigate how variable these environmental factors are along and between 

elevational gradients and how they jointly act on microfauna community structure. 

With this study we aim to detect if there is an elevational pattern in microfauna community 

structure and if it can be related to changing environmental factors. We measured temperature, 

compartment water volume, oxygen saturation, pH, light and resource availability hypothesizing 

them to change with elevation and therefore to be potential driving forces of community structure. 

We hypothesize that: 

1. Abiotic variables in bromeliads (e.g. light availability, temperature, pH, oxygen saturation, 

compartment water volume and resource availability) change along elevational gradients 

(hypothesized direction depicted in Fig 1) leading to changes in community structure. 

2. Resource availability is the major driver of changes in microfauna community structure, 

resulting in lower beta-diversity (between-community dissimilarity) with lower resources, 

i.e. at higher elevation.  

 

Methods 

Study area 

The field survey was carried out in the Área de Conservación Guanacaste in northwestern 

Costa Rica in the beginning of the wet season in 2014. We sampled elevational transects on the 

volcanoes Orosilito (hereafter referred to as Pitilla based on the name of the field station, N 

10°59.374’, W 85°25.583’), Cacao (N 10°56.009’, W 85°27.787’) and Santa Maria (N 10°48.060’, W 

85°19.681’). The elevational transects in Cacao (1173-1524 m a.s.l.) and Santa Maria (1536-1906 m 

a.s.l.) are characterized by primary rainforest while the transect in Pitilla (683-1179 m a.s.l.) is 

characterized by secondary rainforest in lower elevations and primary rainforest in higher elevations. 

During the sampling period average minimum air temperature was 20.5 °C and average maximum air 

temperature was 24.4°C at field site Pitilla. Precipitation amounted to a total of 1044 mm in Pitilla 

during the sampling period. We suspect average air temperatures in the other two field sites to have 



CHAPTER 4 

112 
 

been lower according to the higher elevation and total precipitation to have been similar due to 

constant rain fall during the wet season in all three field sites. The length of each gradient was 

determined by the natural occurrence of the bromeliad plants in the respective field site.  

Sampling  

Samples were taken from bromeliads (nPitilla = 25, nCacao = 22, nSanta Maria = 23) of similar size 

belonging to the morphologically congruent genera Guzmania and Vriesea. Bromeliad characteristics 

and abiotic environmental conditions were recorded in form of measurements of photosynthetic 

active radiation (PAR) [µmol/m²s], compartment water volume [mL], water temperature [°C], oxygen 

saturation [%], pH and detritus dry weight [g]. PAR was measured with a Quantum sensor at five 

different points per bromeliad (center of bromeliad, north, east, south and west of center, above the 

bromeliad). By taking average values of five PAR measurements per bromeliad we accounted for 

small-scale differences in canopy cover.  Measurements of the other five abiotic variables were taken 

in an exemplary outer leaf compartment that was also used for microfauna sampling. To determine 

detritus dry weight all leaf litter was extracted from the investigated leaf compartment and dried at 

approximately 60 °C till constant weight. Microfauna samples were taken by extracting 1 mL of a 

water-containing outer leaf compartment after mixing with a pipette. Microfauna samples were fixed 

with Lugol’s solution. 

Permission for field work and sampling was granted by Sistema Nacional de Áreas de 

Conservacón (SINAC) and Ministerio del Ambiente y Energía (MINAE) in Costa Rica (permit number: 

ACG-PI-030-2014). 

Identification and counting 

Microfauna (i.e. diatoms, flagellates, ciliates, amoebae, rotifers and crustaceans) were 

counted as morphotypes (see list and pictures S1) by processing subsamples of 50 µL of each water 

sample using light microscopy (400x magnification) and using and adding to a photographic key 

developed by previous projects (Busse et al. 2018; Kratina et al. 2017; Petermann et al. 2015). 

Diurnal dynamics in abiotic variables 

To determine how variable the abiotic characteristics of bromeliad water bodies are, we 

measured oxygen saturation, pH, water temperature and photosynthetic active radiation from 

sunrise to sunset (5 am to 6 pm local Costa Rican time). These measurements of daily environmental 

variability were done three times (3rd June/22th July/11th August 2014). Each time we measured in the 

same three bromeliads located near the field station Pitilla, of which one was entirely exposed to the 

sun, one was half-shaded and one was shaded (S2). Measurement procedures were the same as 
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described above and were applied to three different leaf compartments per bromeliad 

(center/middle/outer leaf compartment). The measurements took place every hour. Weather 

conditions were noted throughout the day (categories: sunny, cloudy, rainy) to account for 

precipitation events and changes in cloud cover.  

Statistics 

We used linear regression analyses to detect environmental changes and changes in 

abundance and species richness along the elevational gradients. Abundance data were log-

transformed prior to analyses to achieve normality and homoscedasticity. We calculated the ratio of 

the two most frequent taxonomic groups (amoeba/flagellates), using log-transformed abundnce 

data, to identify shifts in dominance patterns between those two groups. Differences in community 

composition between the three field sites were analyzed using PERMANOVA (number of 

permutations = 999). We compared evenness values between the three field sites using linear 

models. Thereby, evenness was calculated as Pielou’s J = H’/H’max (Pielou 1969), with                            

H’ = -          (Shannon index), with    being the proportion of species i, and H’max = ln S, with S 

being the total number of species.  

To detect the effect of environmental variables on abundance and species richness we 

carried out stepwise linear regression models. To investigate the effects of environmental variables 

on community composition we used distance-based redundancy analysis (dbRDA), i.e. a constrained 

version of principal coordinates analysis (PCoA) (Legendre and Anderson 1999).  

Beta diversity can be measured in many different ways, of which none are perfect and their 

use depends on the objectives of the respective study (Ricotta 2010). Here, we used beta diversity 

measured as distance to group centroid (Anderson et al. 2006) to make a general comparison of beta 

diversity between field sites. Based on our hypothesis 1) a change in abiotic variables along the 

elevational gradient leads to changes in community structure. This means Bray-Curtis dissimilarity 

values representing differences in community composition should increase with an increase in 

elevational distance. To determine if beta diversity increases with elevational distance, i.e. if 

community composition changes along the elevational gradient, we calculated distance decay plots 

based on Bray-Curtis dissimilarities. We tested this relationship with a multiple regression on 

distance matrices (Legendre et al. 2005; Lichstein 2007) using the ‘MRM’ function in the R package 

‘ecodist’ (Goslee and Urban 2007). Based on our hypothesis 2) beta diversity increases with resource 

availability and decreases with elevation. We assessed the beta diversity along the environmental 

gradients by calculating pair-wise Bray-Curtis dissimilarities between neighbouring bromeliads along 

the resource and elevational gradients and tested the relationships with linear regression models. 
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All statistical analyses were done in R version 3.4.2 (R Core Team 2017) using the following 

packages: vegan (Oksanen J. et al. 2017), vioplot (Adler 2005) and ecodist (Goslee and Urban 2007).  

 

Results 

Variability in abiotic variables along the elevational gradient and in diurnal dynamics 

The abiotic variables considered in this study were photosynthetic active radiation [µmol/ 

m²s], water temperature [°C], pH, oxygen saturation [%], compartment water volume [mL] and 

resource availability [g detritus dry weight]. We found few changes of environmental variables along 

the elevational gradients and these effects differed between field sites. Along the elevation gradient 

near Pitilla station water temperature and pH decreased with increasing elevation (Fig 2D, G). Along 

the gradient near Cacao water temperature decreased and oxygen saturation increased with 

increasing elevation (Fig 2E, K). None of the environmental variables showed any elevational pattern 

in Santa Maria (Fig 2C, F, I, L, O, R).  

Diurnal fluctuations in weather conditions were measured from sunrise to sunset on three 

exemplary days, of which one was on average sunnier, one was characterized by rain and the third 

was mostly cloudy (S3) at field site Pitilla. Air temperature and PAR fluctuations were highest on the 

sunniest day (S3 A) and lowest on the most rainy day (S3 B) showing that daily fluctuations in 

environmental conditions can strongly depend on daily weather conditions.   

Oxygen saturation and water temperature fluctuated during the course of the day (Fig 3 + 4) 

whereas pH stayed mostly constant (data not shown). Water temperature fluctuation was higher in 

the more sun-exposed bromeliads (Fig 3 1-6) and followed a similar daily pattern in all bromeliads 

and all leaf compartments (Fig 3). Oxygen saturation fluctuated more irregularly during the course of 

the day and fluctuations varied between leaf compartments within bromeliad plants (Fig 4).  

Community structure 

In total, 58 microfauna morphospecies were distinguished, including 9 diatoms, 10 

flagellates, 7 ciliates, 29 amoeba, 2 rotifers and 1 crustacean (for photographic morphospecies key 

see S1). The majority of the morphospecies occurred in all three field sites, only few morphospecies 

were restricted to one field site (Fig 5). 

Flagellates and amoeba were the most frequently occuring groups in the samples (Tab 1). 

Flagellates were the most abundant group and amoeba the most species rich group in all three field 

sites (Tab 1). Average relative abundances in Pitilla and Cacao were more clearly dominated by 
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flagllates with a mean amoeba/flagellate abundance ratio of 0.58, while in Santa Maria amoebae 

increase in average relative abundance compared to flagellates, shifting the mean amoeba/flagellate 

ratio to 0.95 (Tab 1, S4). Elevational patterns of abundance and species richness were only observed 

in Cacao, were both declined with increasing elevation (Fig 6B + E). Community composition was 

different between the three field sites (PERMANOVA, number of permutations: 999, F2,67 = 1.768,      

p < 0.05). Changes in community composition along the elevational gradient were only observed in 

Cacao (Fig 7B). No differences in beta diversity (measured as distance to group centroid) and 

evenness of the communities were observed between the different field sites (data not shown). 

Effect of environment on community structure 

Stepwise linear regression analyses revealed significant negative effects of oxygen saturation 

on abundance in Cacao (F1,20 = 32.4, p < 0.001) and Santa Maria (F1,20 = 4.6, p < 0.05). We further 

detected significant negative effects of compartment water volume on species richness in Pitilla   

(F1,23 = 5.3, p < 0.05) and of oxygen saturation on species richness in Cacao (F1,19 = 8.2, p < 0.01).  

Oxygen saturation completely accounted for the elevational patterns in abundance and species 

richness in Cacao, and elevation had no additional effect (based on a comparison of two linear 

models with oxygen saturation and elevation as well as only elevation as predictors, data not shown). 

Distance-based redundancy analysis revealed a significant effect of oxygen saturation on community 

composition only in Cacao (F1,20 = 4.0, p = 0.001).  

Beta diversity along the elevational gradients 

Beta diversity did not change along the elevational gradient in Pitilla, decreased with 

elevation in Cacao and increased with elevation in Santa Maria (Fig  8A-C). In our pairwise approach, 

data are not independent as each data point (except the first and the last) is used twice (i.e. pairwise 

calculation between 1-2, 2-3, etc.). Therefore, we ran the analysis with each data point being used 

only once (i.e. pairwise calculation between 1-2, 3-4, etc.) which produced the same results (data not 

shown). Beta diversity showed no linear changes with changing resources (Fig 8D-F). We tested if the 

other measured environmental variables had an effect on beta diversity and found that beta diversity 

in Cacao increased with higher water temperatures (F1,19 = 11.0, p < 0.01).  

 

Discussion 

Our results demonstrate that there are differences in how environmental conditions change 

along elevational gradients. Cacao was the only field site in which linear elevational changes in 

community structure were observed, mostly caused by the strong elevational pattern of oxygen 
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saturation, which was identified as major driving force. Contrary to our expectations resource 

availability did not change with elevation and did not affect microfauna community structure or beta 

diversity. Beta diversity showed variable patterns along the elevational gradients. In the case were 

beta diversity significantly declined with elevation, showing that communities become more similar 

towards the mountain top as we expected, the pattern was based on changes in water temperature. 

Change in environmental variables along the elevational gradient and their effect on community 

structure 

Only three (pH, water temperature and oxygen saturation) of the six measured 

environmental variables changed significantly with elevation and not in a consistent manner at all 

three field sites. The orientation of the sampled elevational transect (i.e. Pitilla: northern, Cacao: 

western, Santa Maria: southern) accompanied by differences in vegetation could potentially explain 

differences in environmental patterns. The age of the forests (Pitilla partly secondary forest, Cacao 

and Santa Maria exclusively primary forest) could also further explain transect differences. Though 

we sampled the complete transects of bromeliad occurrence in the respective field sites, it is also 

possible that the length of the environmental gradients was insufficient to render strong enough 

environmental changes.  

The only community structure patterns along elevation were found in Cacao based on 

differences in oxygen saturation, even though Pitilla exhibited environmental changes (pH and water 

temperature) along the elevational gradient as well. Water temperature has formerly been observed 

to affect microfauna communities in bromeliads potentially due to narrow thermal niches of the 

inhabiting organisms (Kratina et al. 2017). The temperature range measured during our study in 

Pitilla fits the thermal optimum range described in Kratina et al. (2017) which means the 

temperature change in our study was probably not large enough to provoke changes in community 

structure. Also daily fluctuations in temperature, which were formerly observed to affect microfauna 

community structure in bromeliads (Busse et al. 2018), were probably not large enough in our study 

to affect community structure due to the fact that all sampling took place in bromeliads with low 

sun-exposure. pH expectedly decreased with elevation in Pitilla but did not result in community 

structure changes. The decrease in pH with elevation might be due to differences in leaf litter quality 

(Tóth et al. 2011), which we did not measure. pH has been observed to show interacting effects with 

temperature in affecting microfauna (Moser and Weisse 2011). As temperature did not show a 

sufficient degree of change in Pitilla and as pH did not change during the course of the day like 

oxygen saturation and water temperature did, this might also explain the lack of a community 

response to pH. Pitilla did not show changes in oxygen saturation which was the major driving force 

of community structure changes in Cacao.  
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Oxygen saturation is an important environmental factor not only for microfauna organisms 

(Fenchel 2012) but also for microbial communities (Louca et al. 2017) and mosquito larvae 

(Silberbush et al. 2015), thus affecting several trophic levels in the bromeliad tank. The susceptibility 

to changes in oxygen saturation of different levels of the bromeliad food web could be an 

explanation why this environmental factor was the sole predictor of elevational changes in 

community structure along the elevational gradient in Cacao. The mechanisms (direct/indirect 

effects) by which changes in oxygen saturation affect microfauna community structure remain to be 

investigated. Potentially, the irregularity of daily fluctuations in oxygen saturation we observed could 

play a role in the importance of this environmental factor for community structure. Assuming that 

oxygen saturation in the leaf compartments is driven by primary production, the existence and 

abundance of autotroph organisms such as algae as well as exposition to direct sunlight could lead to 

community differences between the leaf compartments within one bromeliad. Presumably, leaf 

compartments that are more regularly exposed to sunlight (e.g. center leaf compartments are 

presumably more sun-exposed than outer leaf compartments) might have a higher abundance of 

autotroph algae and can thus exhibit faster and stronger changes in oxygen saturation, leading to 

rapid changes between anaerobic and aerobic conditions in the water. Assuming differences in 

canopy cover along the elevational gradient, future studies could investigate if daily fluctuations in 

oxygen saturation are higher in the more sun-exposed higher elevations. 

Beta diversity along the elevational gradient 

The expected decrease in beta diversity with elevation was only observed in one of three 

field sites. The driving force behind this change in beta diversity was not a change in resource 

availability as expected but a change in water temperature. An increase in beta diversity of 

bromeliad microfauna communities with increasing temperature has been observed before by Busse 

et al. (2018), with daily temperature fluctuations as possible cause of changes in beta diversity. 

Though we measured temperatures at only one point in the day along the elevational gradient, we 

assume that daily temperature fluctuations were stronger at lower elevations than at higher 

elevations which make our findings consistent with those of Busse et al. (2018). These results do not 

exclude resource availability as a potential underlying cause because the effect of resource 

availability might be an interactive one with temperature. Even though detritus dry weight was 

consistent along the elevational gradient, the availability of the resources could have been different. 

If higher temperatures at the lower elevations cause higher metabolic rates and thus faster resource 

decomposition, then fewer resources would be available at lower elevations. The higher competition 

pressure at lower elevation would favor stochastic competitive assemblies (Tilman 2004) and could 

thus explain a higher beta diversity at lower elevational sites. The question remains why this pattern 
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in beta diversity was only found in one of the three field sites. The opposing beta diversity trend 

observed in Santa Maria could not be explained by any of the environmental variables measured 

leaving us to suggest that further environmental variables such as daily fluctuations in oxygen 

saturation and leaf litter quality or other community-structuring processes such as dispersal and 

priority effects should be considered in future studies.  

 

Conclusion 

Our results demonstrate that environmental conditions on the regional scale can be so 

diverse that no general pattern for microfauna community structure along elevational gradients can 

be described. A change in key environmental factors such as oxygen saturation or water temperature 

is required for local patterns in microfauna community structure and beta diversity. The elevational 

patterns we found were particular to one of three studied field sites and stressed the importance of 

big data sets to identify generalizable patterns in ecology.  
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Figures and tables 

 

 

 

 

Figure 1: Expected change of selected environmental variables along elevational gradients. Habitat size refers 

to compartment water volume in the bromeliad plant. Light availability refers to photosynthetic active 

radiation. Resources are measured as detritus dry weight. 
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Figure 2: Selected environmental variables in bromeliad tank ecosystems measured along three elevational 

gradients in Costa Rica. In field site Santa Maria an outlier of photosynthetic active radiation (PAR) at 1562 m 

with 1019 µmol/m
2
s was excluded from visualization. 
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Figure 3: Daily fluctuations in water temperature [°C] in bromeliad leaf compartments. Daily water 

temperature fluctuations increase with higher sun-exposure and sunnier weather conditions but show a similar 

pattern independent of bromeliad and leaf compartment.  
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Figure 4: Daily fluctuations in oxygen saturation [%] in bromeliad leaf compartments. Daily fluctuations in 

oxygen saturation vary inconsistently between leaf compartments. More sun-exposed bromeliads tend to have 

stronger daily fluctuations in oxygen saturation.  
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Figure 5: Venn diagram of microfauna morphospecies in Costa Rican bromeliads in three different field sites. 

Santa Maria had more species that solely occur there, but generally strong overlap in species identities 

emerged. 

 

Table 1: Abundance, richness and frequency of functional groups in bromeliad-inhabiting microfauna per 50 µL 

sample in three different field sites in Costa Rica. Flagellates dominated the communities’ abundance and 

amoebae the richness.  

ALL 

n = 70 Abundance Species richness  

  
Range per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 

abundance  
± SE [%] 

Range 
per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 
species 
richness 
 ± SE [%] 

Frequency [%] 

Total 4-4349 284 ± 89 
 

3-20 10 ± 1 
 

  

Diatoms  0-207 5 ± 3 3 ± 1  0-8 1 ± 0 6 ± 1 39 

Flagellates 0-4328  228 ± 86 44 ± 4  0-6 2 ± 0 18 ± 2 77 

Ciliates 0-97 8 ± 2 10 ± 2  0-4 1 ± 0 9 ± 1 56 

Amoebae 0-798 37 ± 12 32 ± 3  0-14 5 ± 0 52 ± 2 99 

Rotifers 0-13 2 ± 0 4 ± 1  0-2 1 ± 0 9 ± 1 66 

Crustaceans 0-25 3 ± 1 6 ± 1  0-1 1 ± 0 7 ± 1 63 
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PITILLA 

n = 25 Abundance Species richness  

  
Range per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 

abundance  
± SE [%] 

Range 
per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 
species 
richness 
 ± SE [%] 

Frequency [%] 

Total 7-1633  223 ± 78  3-20 11 ± 1    

Diatoms  0-207 12 ± 8 5 ± 2  0-8 1 ± 0 11 ± 3 60 

Flagellates 0-1601 134 ± 65 43 ± 7  0-4 2 ± 0 17 ± 2 84 

Ciliates 0-84 8 ± 4 7 ± 3  0-3 1 ± 0 7 ± 2 48 

Amoebae 2-798 60 ± 32 31 ± 6 0-12 5 ± 1 48 ± 3 100 

Rotifers 0-13 3 ± 1 6 ± 2  0-2 1 ± 0 10 ± 2 72 

Crustaceans 0-25 5 ± 1 7 ± 3  0-1 1 ± 0 8 ± 2 68 

        

CACAO 

n = 22 Abundance Species richness  

  
Range per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 

abundance  
± SE [%] 

Range 
per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 
species 
richness 
 ± SE [%] 

Frequency [%] 

Total 21-4349  505 ± 258  6-17 11 ± 1    

Diatoms  0-5 1 ± 0 1 ± 1  0-2 0 ± 0 3 ± 1 32 

Flagellates 0-4328 462 ± 254 50 ± 8  0-6 2 ± 0 21 ± 3 82 

Ciliates 0-97 11 ± 5 14 ± 5  0-3 1 ± 0 10 ± 2 64 

Amoebae 5-176 29 ± 8 29 ± 5  3-11 6 ± 0 52 ± 2 100 

Rotifers 0-5 2 ± 0 3 ± 1  0-2 1 ± 0 8 ± 1 68 

Crustaceans 0-7 2 ± 0 3 ± 1  0-1 1 ± 0 6 ± 1 64 

        

SANTA MARIA 

n = 23 Abundance Species richness  

  
Range per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 

abundance  
± SE [%] 

Range 
per 

sample 

Mean ±SE 
per 

sample 

Average 
relative 
species 
richness 
 ± SE [%] 

Frequency [%] 

Total 4-1314  139 ± 60  3-18 9 ± 1    

Diatoms  0-33 2 ± 1 3 ± 2  0-5 0 ± 0 3 ± 1 22 

Flagellates 0-1265 107 ± 58 39 ± 8  0-3 1 ± 0 16 ± 4 65 

Ciliates 0-51 6 ± 2 10 ± 4  0-4 1 ± 0 11 ± 3 57 

Amoebae 0-167 20 ± 7 37 ± 6  0-14 5 ± 1 55 ± 5 96 

Rotifers 0-7 2 ± 0 5 ± 2  0-2 1 ± 0 8 ± 2 57 

Crustaceans 0-17 3 ± 1 6 ± 2  0-1 1 ± 0 7 ± 2 57 
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Figure 6: Patterns of log-transformed abundance and species richness of bromeliad-inhabiting microfauna 

along three elevational gradients in Costa Rica. Significant relationships between log(abundance) and species 

richness and elevation were observed only in Cacao. Sample volume: 50 µL. Sample sizes: Pitilla = 25, Cacao = 

22, Santa Maria = 23. 

 

 

Figure 7: Distance-decay plots representing changes in community dissimilarity of bromeliad-inhabiting 

microfauna along changes in elevation [m a.s.l.] in three different field sites in Costa Rica. A significnat change 

in community composition emerges only in the field site Cacao (multiple regression on distance matrices: R
2 

= 

0.1, F1,229 = 33.0, p = 0.001).  
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Figure 8: Beta diversity (measured as pairwise Bray-Curtis dissimilarity) of bromeliad-inhabiting microfauna 

along gradients of resource availability [g detritus dry weight] and elevation [m a.s.l] (mean values between 

bromeliad pairs next to each other along the respective gradient). Beta diversity did not change along the 

resource gradient and showed opposing or no patterns along the elevational gradient. 
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Supplement 

 

S1: List of all 58 bromeliad-inhabiting microfauna morphospecies found in a field survey along three elevational 

transects in Guanacaste with representative picture, Costa Rica. Scale bar without annotation: 100 µm. Names 

are based on previous keys. 

Morphospecies  Photo  

Diatom 1 

 
Diatom 2 

 

 
Diatom 3 

 

 
Diatom 4 

 

 
Diatom 5 
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Diatom 6 
 

 
Diatom 7 

 
Diatom 8 

 

 
Diatom 9 

 

 
Flagellate 1 

 
Flagellate 2 

 
Flagellate 3 

 
Flagellate 4 

 
Flagellate 5 

 
Flagellate 6 
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Flagellate 7 

 
Flagellate 8 

 
Flagellate 9 

 
Flagellate 10 

 
Ciliate 1 

 
Ciliate 2 

 
Ciliate 3 

 
Ciliate 4 
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Ciliate 5 

 
Ciliate 6 

 
Ciliate 7 

 
Amoeba 1 

 
Amoeba 2 

 
Amoeba 3 

 
Amoeba 4 
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Amoeba 5 

 
Amoeba 6 

 
Amoeba 7 

 
Amoeba 8 

 
Amoeba 9 
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Amoeba 10 

 
Amoeba 12 

 
Amoeba 14 

 
Amoeba 15 

 
Amoeba 16 

 



CHAPTER 4 

138 
 

Amoeba 18 

 
Amoeba 19 

 
Amoeba 20 

 
Amoeba 21 

 
Amoeba 22 

 
Amoeba 23 
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Amoeba 24 

 
Amoeba 25 

 
Amoeba 26 

 
Amoeba 27 

 
Amoeba 28 

 
Amoeba 29 
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Amoeba 30 

 
Amoeba 31 

 
Amoeba 32 

 
Rotifer 1 

 
Rotifer 2 
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Crustacean 1 

 

 
 

 

S2: Bromeliads used for daily measurements of fluctuations in environmental variables and their characteristics 

at field site Pitilla, Costa Rica. 

 Location Elevation 

[m] 

Bromeliad 

species 

Diameter (relaxed 

leaf tips) [cm] 

Light characteristic 

Bromeliad 1 N 10°59.359'  

W 85°25.569' 

681 Vriesea 

sanguinolenta 

65.0 Sun-exposed 

Bromeliad 2 N 10°59.360'  

W 85°25.568' 

689 Vriesea 

sanguinolenta 

67.3 Half-shaded 

Bromeliad 3 N 10°59.338'  

W 85°25.574' 

690 Vriesea 

sanguinolenta 

83.2 Shaded 
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S3: Weather conditions over the course of three measurement days at field site Pitilla, Costa Rica. 

Measurements of air temperature [°C] and photosynthetic active raditaion (PAR) [µmol/m²s] were taken three 

times per hour from sunrise to sunset. At each measurement weather condition was generalized as one of four 

categories (i.e. night, cloudy, raining and sunny) showing that 3
rd

 June 2014 (A) is a relatively sunny day, 

compared to the more rainy 22th July 2014 (B) and the cloudy 11th August 2014 (C). The differences in the days 

weather conditions result in differences in the daily fluctuations in air temperature and PAR.  
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S4: Ratio of log-transformed amoebae abundance and log-transformed flagellate abundance (per 50 µL) for 

bromeliad-inhabiting microfauna communities in three different field sites. While communities in the field sites 

Pitilla and Cacao were mostly flagellate-dominated, in Santa Maria amoebae were higher in average relative 

abundance compared to flagellates shifting the communities slightly towards amoeba-domination. Sample 

volume: 50 µL. Sample sizes: Pitilla = 25, Cacao = 22, Santa Maria = 23. 
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GENERAL DISCUSSION 

 

The central topic of this thesis was the investigation of mechanisms and consequences of 

change in aquatic microfauna communities. We used a combination of observational and 

experimental approaches to study how habitat characteristics affect community structure by 

investigating several different types of environmental gradients. Changing environmental conditions 

along a canopy cover gradient led to changes in community structure (chapter 1) while changes in 

height above ground (chapter 3) did not result in sufficient environmental differences to affect 

community structure. Environmental changes along elevational gradients turned out to be variable 

between field sites, resulting in community structure patterns only when key environmental factors 

changed sufficiently with elevation (chapter 4). The transplantation of communities along an 

elevational gradient did not cause an adaptation of communities (chapter 2) supposedly due to 

insufficient environmental change in the field site of the experiment (chapter 4). If environmental 

change is not strong enough priority effects and predator presence appear to be the driving forces in 

structuring communities (chapter 2). The relative importance of stochastic processes like priority 

effects is likely to change depending on habitat quality (chapter 1) while the importance of 

environmental change might, apart from being related to the strength of the change, be additionally 

related to the time scale on which change occurs (chapter 1), e.g. daily fluctuations versus seasonal 

changes. We also observed interactive effects between environment and species interactions, i.e. 

predation, (chapter 2) and a strong variability in environmental conditions between field sites 

(chapter 4) leaving much room for exploration in future studies. This following discussion aims to 

connect all these findings with one another and to discuss how environmental changes will likely 

affect bromeliad-inhabiting communities and the surrounding ecosystems and what could be the 

next steps to improve our understanding of micro-ecosystems and their importance.  

Why we should study micro-ecosystems 

The micro-ecosystems found in bromeliad tanks have been previously stated to be perfect 

model systems to address questions in ecology on community level under realistic natural conditions 

(Srivastava et al. 2004). We could confirm their suitability for the described purpose (all chapters) 

and found them particularly recommendable for community-level transplantation experiments under 

natural conditions (chapter 2). Transplantation experiments of whole communities under natural 

conditions have, to our knowledge, so far only been done with microbial communities (e.g. Bell 2010; 

Øvreås 2000). We carried out the first transplantation of complete microfauna communities under 

natural conditions (chapter 2). Contrary to the common assumption that resource availability is a 

major driver in bromeliad microfauna community (Petermann et al. 2015; Carrias et al. 2012) we 
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found that complex interactions between different species interactions (i.e. resource availability : 

predator presence) as well as between environment and species interactions (i.e. environment : 

predator presence) are driving forces of community structure (chapter 2). We suggest that the 

relative importance of resource availability versus predator presence is variable in time depending on 

the more limiting factor (i.e. resource concentration versus predator density). The interaction 

between environment and predator presence highlights the need for full-factorial experimental 

designs to detect patterns that are otherwise missed (e.g. likely in Petermann et al. 2015). Such 

intricate procedures as full-factorial experimental designs are only feasible in small ecosystems, 

which means that we should focus our future endeavours on them. Bromeliads are not the only 

available micro-ecosystems. Small temporary water habitats can also be found in others plants (e.g. 

bamboo nodes, tree holes, etc.) or in rock crevices (Williams 1987). These so-called phyto- and 

lithotelmata occur worldwide (Kitching 2000; Jocque et al. 2010) and have been shown to be of 

importance for almost all ecosystems as described in the following example for bromeliads. 

Bromeliads can occur in high densities providing up to 50,000 L/ha of freshwater (Fish 1983). They 

provide drinking reservoirs (Bicca-Marques 1992), breeding (Frank and Lounibos 2009; Krügel et al. 

1995) and feeding habitats (food source can be the community in the bromeliad: Romero and 

Srivastava 2010, or the bromeliad leaves: Renton 2006; Schmidt and Zotz 2000) and contain a variety 

of organisms living permanently between the leaf axils (Picado 1913, see morphospecies keys in 

chapters 2-4). Thus, bromeliads contribute animal and plant biomass that is of relevance to the 

surrounding food web (Romero and Srivastava 2010; Renton 2006; Schmidt and Zotz 2000) and  

biodiversity (Foissner et al. 2003). Microfauna living in bromeliads also add important ecological 

functions such as nutrient cycling to the ecosystem (Leroy et al. 2016). Cocoa pollinators, e.g. biting 

flies of the genus Forcipomyia, breed in bromeliad tanks giving them an additional economic value 

(Winder 1978). Other crops such as oranges were also observed to benefit from the bromeliads 

because these provide breeding habitats for predators that reduce herbivory on the orange trees 

(Hammill et al. 2014). Temporary waters that occur in high densities such as bromeliads can even 

have climatic effects and contribute to the resistance of the surrounding forest to climate change 

(Benzing 1998). This demonstrates that bromeliads are not only useful model systems but also 

important components of functioning ecosystems and that the better understanding of the 

bromeliad micro-ecosystem is therefore of undeniable importance for conservation and economic 

reasons.  

Why we should study microfauna 

Microfauna are one of the oldest living organisms on Earth (Lipps 1993) but they are 

normally an understudied ‘black box’ because it was always assumed that ‘everything is everywhere’ 
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(Beijerinck 1913) and no further investigation was needed as to the driving environmental variables 

of their communities. However, recent studies demonstrate that this assumption is not true (La Katz 

et al. 2005; Foissner 2006; Nolte et al. 2010; Weisse et al. 2011) and that microfauna can even be 

endemic to special habitats like bromeliads (Foissner et al. 2003). We could show that community 

structure of bromeliad-inhabiting microfauna does change along environmental gradients if the 

environmental change of driving factors is large enough, leading to distinct community compositions 

on small local scales (chapter 1 + 4). Knowing that microfauna respond to environmental changes 

makes them valuable bioindicators for an early detection of altered environmental conditions (e.g. in 

biological wastewater treatment: Madoni 2011, or in conservation sites: Radhakrishnan and 

Jayaprakas 2015) because they respond more rapidly to environmental change than macrofauna due 

to shorter generation times (Berger et al. 1997). Considering the importance of the ecological 

functions provided by microfauna, e.g. key roles in fluxes of energy and matter such as nutrient 

cycling (Leroy et al. 2016) and being prey for higher trophic levels (Gifford 1991), it seems adequate 

to pay them more attention. Cotterill et al. (2007) go even so far in their argument as to request 

microfauna to be included in conservation strategies. We showed that habitat quality is very 

important for microfauna (chapter 1) making them potentially susceptible to habitat quality loss by 

human-induced changes which stresses the need for microfauna protection. 

Consequences of a changing environment 

At first glance our results depict microfauna communities as very resistant to environmental 

changes because they seem to have relatively broad environmental niches (chapter 2-4). Does this 

mean that climate change will not affect microfauna communities in bromeliads? No, because the 

temporary scale of environmental fluctuations may play a role (chapter 1) and complex interactive 

effects are involved in structuring microfauna communities (chapter 2). Bromeliads naturally occur in 

South and Central America (Kitching 2000), areas for which the climate change prognosis is an 

increase in temperature (Salazar et al. 2007; Reyer et al. 2017). Higher average temperatures imply 

higher daily temperature fluctuations which we have identified as important driver of microfauna 

community composition (chapter 1). Climate change could also indirectly affect microfauna 

community structure due to changes in species interactions (Tylianakis et al. 2008). Resource 

competition could be altered if decomposing macrofauna decrease due to higher water 

temperatures (Rosa 2017) or predation pressure could be increased by higher temperatures due to 

increased predatory metabolic rates as shown for protozoa-mosquito relationships in pitcher plants 

(Hoekman 2010). We observed that microfauna communities reached lower abundances if predators 

were present (chapter 2). Hence, one could jump to the conclusion that decreased microfauna 

abundances by higher predation rates would result in lower nutrient cycling rates. However, the 
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opposite has been observed in the bromeliad system because the presence of predators accelerates 

nutrient cycling processes (Ngai and Srivastava 2006) highlighting again the complex interactions that 

need to be considered to fully understand community-level processes. So, even if microfauna are not 

necessarily affected directly by small climatic changes, the indirect effects based on species 

interactions are still not entirely predictable. Indirect effects of climate change could also come in the 

form of habitat loss. Anjos and Toledo (2018) demonstrate in their study that South American forest 

ecosystems will be prone to change into savanna or grassland ecosystems under climate change. This 

loss of canopy cover would result in lower quality habitats leading to an impoverishment of 

bromeliad communities (chapter 1) with potential loss of ecological functions.  

Suggestions for applications and future research 

The most obvious application of our results is the confirmation of the validity of taking 

ground samples as we found no significant differences in canopy and understory community 

structure (chapter 3). This does not mean that canopy bromeliads should be completely ignored. 

Probably, many interactions with the surrounding environment only take place between canopy 

bromeliads and exclusive canopy inhabitants, e.g. obligate canopy-dwelling earthworms (Fragoso and 

Rojas-Fernández 1996) or herpetofauna (McCracken and Forstner 2014). But with regard to 

microfauna community structure the sampling of bromeliads in only the understory is justified and 

thus our results reduce the logistic effort of future studies.  

Bromeliads are breeding ground for many organisms (Picado 1913), amongst others for 

disease-carrying mosquitoes (Pittendrigh 1948). Mosquito larvae filter microfauna prey from the 

water or from the surface (Wotton et al. 1997; Eisenberg et al. 2000). Testate amoebae are 

assumedly less adequate prey for mosquito larvae as they are protected by a silica shell (Wheelis 

2008). We observed that microfauna communities can shift from flagellate-dominance to amoeba-

dominance (chapter 2). It would be interesting to survey if amoeba-dominated communities are less 

suited for mosquito larvae development and if this could affect mosquito densities in some way. If 

this is the case, knowledge about community-structuring processes in bromeliads could be applied to 

manage the dispersal of disease-carrying mosquitoes. 

We brought up the issue of time-scale dependence of environmental influences on 

community structure (chapter 1). Though the range of temperature changes along an elevational 

gradient is similar to the dimension of change of daily temperature fluctuations, it is particularly the 

daily fluctuations that seem to influence the community structure (chapter 1 + 2). Further steps 

should be the experimental analyses of how daily fluctuations affect coexistence of microfauna 

species. Do stronger daily fluctuations promote coexistence of species if they perform distinct heat 
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stress mechanisms, e.g. resting stages versus inactivity? Literature also gives evidence that long-term 

fluctuations such as seasonality can affect microfauna community composition (Buosi et al. 2015; 

Mondragón-Chaparro and Cruz-Ruiz 2008). A very ambitious but nevertheless interesting laboratory 

experiment could combine the effects of short- and long-term temperature fluctuations in a full-

factorial experimental design to disentangle the underlying processes that structure communities 

and the relative importance of these processes. For example, does the turnover rate of different taxa 

groups differ along gradients of changing environmental conditions? Do facilitation processes play a 

role? How important is resource competition for species of the same or different functional groups 

under different levels of heat stress (e.g. flagellates, ciliates, amoebae)?  

Genetic approaches have shown that bromeliad-inhabiting communities are more diverse 

than typically observed in the morphotype approaches (Rodriguez-Nuñez et al. 2018). We believe 

that the taxonomic resolution might be a restrictive factor in predicting community changes, because 

closely related species can show very different behaviour (Longino and Nadkarni 1990). The fact that  

some ciliates are endemic to bromeliads (Foissner et al. 2003) indicates a high specialisation to the 

bromeliad environment and supports the need for a taxonomic resolution on species level in future 

studies. A further step therefore is the taxonomic exploration of the bromeliad-inhabiting community 

to really assess biodiversity. These identifications should combine genetic approaches with 

morphological and behavioural studies. Behavioural studies could target questions like cannibalism. 

The successful implementation of automated counting software like bemovi (Pennekamp et al. 2015) 

could be used to assess traits like swimming speed and food searching trajectories to observe if these 

traits change under altered resource competition and/or predation levels. 

The issue of microfauna conservation has been considered previously (Cotterill et al. 2008) 

and might become increasingly important in the future. We have shown that the loss of habitat 

quality, e.g. through higher daily temperature fluctuations as will locally take place under climate 

change, impoverishes microfauna communities (chapter 1). Will this affect microfauna in other 

freshwater and soil ecosystems in the same way? What would this mean for wastewater clearance 

and soil health, for drinking water availability and productivity of agricultural land? Though not 

‘everything is everywhere’ it is undoubtedly true that microfauna perform essential functions in all 

ecosystems without which those systems would collapse. I therefore recommend to seriously 

consider microfauna in conservation strategies and that more research should be done as to how this 

could be realized. 
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General conclusion 

The research papers combined in this thesis reveal the big knowledge gap that still remains 

with regard to some of the most important organisms within the ecosystems. Microfauna have been 

here several billions years ago (Arato 2010) and have endured a lot of environmental changes. 

Though we could show that they seem relatively unsusceptible to small environmental changes, they 

will not be unaffected by the human-induced alterations taking place at an unprecedented speed 

that are momentarily occurring on our planet. Many indirect effects will change microfauna 

community structure and might alter important processes in regard to energy and matter fluxes on 

the ecosystem level. The results of this thesis are an addition to the already existing calls to recognize 

the importance of microfauna organisms and to act accordingly in form of further research in this 

area and to apply the results in conservation strategies.  
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SUMMARY 

 

Anthropogenic influences on the natural environment are increasingly observed and we only 

start to comprehend how this will affect biodiversity and ecosystem functioning in the long run. This 

question is challenging because scientific approaches normally investigate only small parts of a 

community, focussing on particular taxa or the effect of a restricted number of environmental 

variables. The predictive power of these studies is questionable because reality is a lot more complex 

and direct as well as indirect interactions can lead to unexpected outcomes. Whole community 

approaches under natural environmental conditions are logistically impracticable in most ecosystems 

due to the sheer impossibility of sampling, for example, an entire forest. Phytotelma, such as 

bromeliads, provide an ideal solution for this dilemma. These small temporary water bodies contain 

communities of manageable sizes that can be easily sampled in naturally replicated micro-

ecosystems. Most of the previous bromeliad studies have investigated the macrofauna living in 

bromeliads. Microfauna have been mostly neglected and therefore little is known about their 

community structure. Microfauna organisms - including flagellates, ciliates, amoeba, rotifers and 

crustaceans - are the part of the bromeliad-inhabiting communities that this dissertation focusses on. 

We used a community-level approach to explore community-structuring processes in bromeliad 

microfauna with the aim to better predict potential effects of environmental changes on biodiversity 

and ecosystem functioning.  

In a field survey along a canopy cover gradient (chapter 1) we investigated the effect of 

differences in sun-exposure in a restinga rainforest on microfauna community structure. We found 

strong differences in the environmental conditions which resulted in changes of habitat quality along 

the canopy cover gradient. This was shown to affect the community structure and beta diversity of 

bromeliad-inhabiting microfauna via differences in daily temperature fluctuations. With regard to the 

expected temperature increase through climate change, this result shows that it is not necessarily 

the direct effect of higher average temperatures that proposes a threat to natural communities but 

that indirect effects of climate change such as repeated short-time fluctuations in environmental 

conditions may decrease a habitat’s quality, and thus, lead to a loss of biodiversity and potentially 

ecological functions. 

To disentangle the effects of environmental change and trophic interactions on microfauna 

community structure we carried out a community-transplantation experiment along an elevational 

gradient (chapter 2). We used a full-factorial experimental design to particularly address potential 

interactions between environmental change and trophic interactions. The results showed that 

bromeliad-inhabiting microfauna communities are also shaped by predator presence and priority 
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effects. Interacting effects played an important role in structuring communities, suggesting that we 

need to broaden our scientific approaches to fully understand the relationships in natural 

ecosystems and better predict consequences of human-induced changes.  

Though bromeliad plants grow mainly epiphytic, most bromeliad-related studies, including 

our field survey (chapter 1) and our field experiment (chapter 2), sample exclusively in the 

understory. Based on the assumption that sun-exposure increased with increasing height and thus 

leads to changed environmental conditions, we carried out a field survey sampling understory and 

canopy bromeliads using single-rope climbing techniques (chapter 3). The comparison of microfauna 

community structure in understory and canopy bromeliads revealed that no change in community 

structure occurs along the height gradient. This justifies the former bromeliad community 

approaches with exclusively understory samples. 

Finally, we conducted a field survey along three elevational gradients to determine if 

bromeliad-inhabiting communities change in a generalizable pattern along natural environmental 

gradients (chapter 4). There was no clear pattern detectable that would allow us to filter out driving 

environmental factors for community structure in bromeliads on regional scale. The lack of a clear 

environmental driver of community structure was probably at least partly due to the lack of 

environmental differences along two of the three gradients.  

We conclude from our results that microfauna communities are subject to complex 

interactions and that it is therefore important to use full-factorial approaches in future studies to 

disentangle the effects of potential drivers of community structure. So far, we could show that daily 

temperature fluctuations, predator presence, priority effects and oxygen saturation can play key 

roles in shaping microfauna communities, but we emphasize that these are strongly dependent on 

the surrounding environment making general predictions difficult. Human-induced environmental 

alterations such as climate change are likely to affect bromeliad-inhabiting microfauna communities 

via indirect effects which might result in alterations of important processes in regard to energy and 

matter fluxes on the ecosystem level. Based upon these results we recommend the integration of 

microfauna communities into conservation strategies. 
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ZUSAMMENFASSUNG 

 

Anthropogene Einflüsse auf unsere Umwelt werden zunehmend beobachtet und wir 

beginnen gerade erst zu verstehen wie sich diese langfristig auf die Biodiversität und die 

Ökosystemfunktionen auswirken werden. Die Erforschung dieses Sachverhaltes stellt deshalb eine 

Herausforderung dar, weil wissenschaftliche Studien normalerweise nur kleine Teile einer 

Gemeinschaft untersuchen, da sie sich auf bestimmte Taxa oder eine begrenzte Auswahl an 

Umweltvariablen konzentrieren. Die Vorhersagekraft dieser Studien ist fragwürdig, weil die Realität 

komplexer ist und sowohl direkte als auch indirekte Interaktionen zu unerwarteten Ergebnissen 

führen können. Forschungsansätze, die gesamte ökologische Gemeinschaften in ihrem natürlichen 

Umfeld erforschen, sind aus logistischer Sicht in den meisten Ökosystemen wenig praktikabel, da es 

z.B. unmöglich ist einen gesamten Wald zu beproben. Mit Phytotelmen wie den Bromelien kann man 

dieses Problem lösen. Diese temporären Kleinstgewässer beinhalten Gemeinschaften von 

überschaubarer Größe, welche leicht in den auf natürliche Weise replizierten Mikroökosystemen 

beprobt werden können. Die meisten der vorangegangenen Bromelienstudien haben die in den 

Bromelien lebenden Macrofauna-Organismen erforscht. Die Mikrofauna-Organismen wurden 

meistens vernachlässigt, weshalb wenig über die Zusammensetzung ihrer Gemeinschaften bekannt 

ist. Mikrofauna-Organismen – inklusive Flagellaten, Ciliaten, Amöben, Rotatorien und Kleinstkrebsen 

– sind der Teil der in den Bromelien lebenden Gemeinschaft, auf den sich diese Dissertation 

konzentriert. Wir verwenden einen gemeinschafts-basierten Ansatz, um die für die Mikrofauna-

Gemeinschaft relevanten Prozesse zu untersuchen, mit dem Ziel, potentielle Auswirkungen von 

Umweltveränderungen auf Biodiversität und Ökosystemfunktionen besser hervorsagen zu können. 

In einer Felderhebung entlang eines Kronenschluss-Gradienten (Kapitel 1) haben wir den 

Effekt von unterschiedlichen Sonnenexpositionen in einem „Restinga“-Wald auf die 

Zusammensetzung der Mikrofauna-Gemeinschaft untersucht. Wir haben starke Unterschiede in den 

Umweltverhältnissen festgestellt, welche die Habitatqualität entlang des Kronenschluss-Gradienten 

veränderten. Dies hat sich aufgrund täglicher Temperaturschwankungen auf die Zusammensetzung 

und die Betadiversität der Mikrofauna-Gemeinschaften in den Bromelien ausgewirkt. Bedenkt man 

die erwarteten Temperaturerhöhungen im Rahmen des Klimawandels verdeutlichen diese 

Ergebnisse, dass nicht notwendigerweise die höheren Temperaturmittelwerte eine Gefahr für 

natürliche Gemeinschaften darstellen, sondern dass indirekte Effekte wie z.B. kurzzeitige 

Schwankungen der Umweltbedingungen die Habitatqualität herabsetzen können und so zu einem 

Verlust von Biodiversität und vielleicht sogar von Ökosystemfunktionen führen können.  
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Um die Einflüsse von Umweltfaktoren und trophischen Interaktionen auf die 

Zusammensetzung von Mikrofauna-Gemeinschaften zu entflechten, haben wir die Gemeinschaften 

entlang eines Höhengradienten im Rahmen eines Experimentes verpflanzt (Kapitel 2). Wir haben ein 

experimentelles Design mit vollständiger Behandlungskombination gewählt, um gezielt potentielle 

Interaktionen zwischen Umweltparametern und trophischen Interaktionen untersuchen zu können. 

Die Ergebnisse zeigen, dass die Anwesenheit von Prädatoren und Prioritätseffekten (engl. priority 

effects) für Mikrofauna-Gemeinschaften in Bromelien eine entscheidende Rolle spielen. 

Interaktionen waren ebenfalls von Bedeutung. Dies suggeriert, dass wissenschaftliche 

Untersuchungen breiter angelegt werden müssen, um Zusammenhänge in Ökosystemen besser zu 

verstehen und die Konsequenzen anthropogen verursachter Umweltveränderungen besser 

hervorsagen zu können. 

Obwohl Bromelien meisten epiphytisch wachsen, beproben die meisten Bromelienstudien, 

inklusive unserer Felderhebung (Kapitel 1) und unseres Feldexperiments (Kapitel 2), nur Bromelien 

im Unterholz. Ausgehend von der Annahme, dass die Sonnenexposition mit zunehmender Höhe am 

Baum zunimmt und damit Veränderungen der Umweltbedingungen einhergehen, haben wir mit der 

Seilklettertechnik Unterholz- und Kronendachbromelien beprobt (Kapitel 3). Der Vergleich der 

Mikrofauna-Gemeinschaften zwischen den Unterholz- und Kronendachbromelien ergab keine 

signifikanten Unterschiede in der Gemeinschaftszusammensetzung entlang des Höhengradienten. 

Dies rechtfertigt die vorangegangenen Studien, welche ausschließlich Unterholzbromelien beprobt 

haben. 

Abschließend haben wir Feldproben entlang von drei Höhengradienten genommen, um zu 

untersuchen, ob sich Veränderungen in den Gemeinschaftszusammensetzungen der 

Bromelienbewohner entlang von Umweltgradienten verallgemeinern lassen (Kapitel 4). Wir konnten 

keine allgemeinen Trends feststellen, anhand welcher wir auf regionaler Ebene allgemein gültige 

Umweltwirkungsfaktoren für die Zusammensetzung von Bromeliengemeinschaften hätten ableiten 

können. Das Fehlen eines allgemein gültigen Umweltwirkungsfaktors für die Zusammensetzung der 

Gemeinschaften kann unter anderem womöglich auf das Fehlen klarer Umweltgradienten auf zwei 

der drei Beprobungsstandorte zurückgeführt werden. 

Basierend auf unseren Ergebnissen schlussfolgern wir, dass in Mikrofauna-Gemeinschaften 

komplexe Interaktionen wirken und dass daher die Verwendung von experimentellen Designs mit 

vollständiger Behandlungskombination in zukünftigen Studien wichtig ist, um die potentiellen Effekte  

auf die Zusammensetzung der Gemeinschaften zu entwirren. Wir konnten bis jetzt zeigen, dass 

tägliche Temperaturschwankungen, die Anwesenheit von Prädatoren, Prioritätseffekte und die 

Sauerstoffsättigung eine wichtige Rolle für die Zusammensetzung der Mikrofauna-Gemeinschaften 
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spielen können, aber wir betonen, dass diese stark von der umgebenden Umwelt abhängen und dass 

allgemeine Vorhersagen daher schwierig sind. Von Menschen verursachte Veränderungen der 

Umwelt, wie z.B. der Klimawandel, werden über indirekte Effekte vermutlich die Mikrofauna-

Gemeinschaften in den Bromelien beeinflussen, was zu einer Veränderung von wichtigen Prozessen 

im Bereich der Energie- und Materieflüsse auf der Ökosystemebene führen kann. Basierend auf 

unseren Ergebnissen empfehlen wir Mikrofauna-Gemeinschaften in Schutzstrategien zu integrieren. 

  



  



CONTRIBUTIONS TO THE PUBLICATIONS 

 

Busse AB, Antiqueira PAP, Neutzling AS, Wolf AM, Romero GQ, Petermann JS (2018). Different in the 

dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad 

microfauna. PLoS ONE, 13 (2): e0191426.  

Own contributions:  

GQR and JSP did the conceptualization. PAPA, ASN and AMW did the sampling. AB and JSP 

did the formal analysis and interpreted the data. AB wrote the first draft; all authors read and 

edited the manuscript. 

Busse AB, Schoreisz JJ, Petermann JS (submitted to OIKOS, 29th July 2018). Predators and priority 

effects shape microfauna communities in a community transplantation experiment along an 

elevational gradient.  

Own contributions:  

AB and JSP designed the experiment. AB and JJS performed the experiment. AB and JSP did 

the formal analysis and interpreted the data. AB wrote the first draft; all authors read and 

edited the manuscript. 

Busse AB, Schoreisz JJ, Wallner L, Srivastava DS, Petermann JS (in preparation). Micro- and 

macrofauna communities in bromeliad phytotelmata are similar in forest canopy and understory. 

Own contributions:  

AB, JJS and DSS did the sampling. JJS, LW and DSS identified the organisms. AB and JSP did 

the formal analysis and interpreted the data. AB wrote the first draft; all authors read and 

edited the manuscript. 

Busse AB, Adler Yañez MA, Petermann JS (in preparation). Variability in environmental conditions 

between elevational gradients leads to diverse patterns in microfauna community structure and beta 

diversity. 

Own contributions:  

AB and MAAY did the sampling. AB identified the organisms. AB and JSP did the formal 

analysis and interpreted the data. AB wrote the first draft; all authors read and edited the 

manuscript. 





ACKNOWLEDGEMENTS 

 

First of all, special thanks to my supervisor Jana for being so inspiring. Every time I came to your 

office with numerous problems on my mind, you believed they could be solved and always send me 

off bursting with motivation. Also, thank you for always having the time to read manuscripts and look 

at statistics even if I send them on short notice. It has been fun to work with you and I hope we will 

work together on more projects in the future. 

Second, I would like to say thank you to Jonathan for agreeing to be my second supervisor. Without 

you I could not have continued in the graduate program at the FU, so I highly appreciate your time 

and effort.  

Marcia and Jerry, many thanks to you both for being excellent field companions. I could not have 

wished for better company when spending three months in a remote place doing dangerous work. 

You made the collection of the data presented here possible and I will always remember our field 

work time as one of the best times of my life. 

Furthermore, I would like to say thanks to all the people in Costa Rica who supported this study. 

Thank you, Roger, for giving us the sampling permits and logistic support. Special thanks to the 

gusaneros from Pitilla Calixto, Petrona, Fredy and Manuel for looking after us and always being so 

nice. Also thank you to the rangers from Santa Maria. Thank you to Ernesto and the mariposario crew 

for bringing us food when we most needed it and for being so entertaining company. 

Thank you, Julia, Elisa, Philipp and Ilse for spending so many hours in the lab and for putting so much 

effort into the lab experiments. We will make them work someday… 

Oksana, special thanks to you for being the best office company ever. I really miss our 

procrastination talks and our sky-diving. We should do both again. 

Special thanks to Renate, Sebastian, Josue, Sabine, Thomas Weisse and Wilhelm Foissner who helped 

me with the identification of those tiny protist species and gave me valuable advice for sampling and 

fixation or provided laboratory cultures. 

Thank you to all the student helpers involved in this thesis. You guys were so numerous that I lost 

count but without you all those data would not exist. Thanks to all your hard work Sophie, Martin, 

Juline, Assja, Rene, Vanessa, Luisa, Tobias, Alex, Michi, Claire and Anna. 



Thanks to our collaborators from Brazil. You were very patient with me and always very nice even 

though I made you wait so long till the paper was finally out.  

Thank you to the Deutsche Forschungsgemeinschaft (DFG) for funding. 

Finally, I would like to thank my parents for letting me study ecology even though ‘there is no money 

in that’. It might be true, but it’s nevertheless the most fun job in the world and I would choose it 

again. Thank you for always supporting me and believing in me.   



Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten. 

 


