Abbildungsverzeichnis

1	Triangulierung der dreidimensionalen Modellgeometrie	7
2	Bouguerschwere des Nordostdeutschen Beckens mit eingezeichneter Lage von Randbe- dingungen	9
3	Magnetik des Nordostdeutschen Beckens mit eingezeichneter Lage von Randbedingungen	10
4	Lage des Nordostdeutschen Beckens (NEDB) mit tektonischen Systemen	12
5	Bohrung Schwaan 1/1976 im Sedimentbeckenmodell	15
6	Gemessene Bougueranomalie des Nordostdeutsches Becken	18
7	Gemessene magnetische Totalintensität	20
8	Seismisches Linedrawing des BASIN 9601 Profils	21
9	Interpretation der kombinierten Seismikprofilen BASIN 9601 und PQ2-009.1	22
10	Seismisches Linedrawing des BASIN 9601 Profils mit integrierten 1-dimensionalen Geschwindigkeits - Tiefenfunktionen	23
11	V_p - Tiefenverteilung	24
12	Geschwindigkeits-Dichte-Relationen berechnet aus den V_p Werten der Weitwinkelseismik	28
13	Druck- und tiefenabhängigen Geschwindigkeits-Dichte-Relationen berechnet aus V_p Werten der Weitwinkelseismik	29
14	Lage der Magnetotellurik-Messpunkte	30
15	Magnetotellurisches Krustenstrukturmodell	31
16	Schweregitter für die Powerspektralanalyse des Pritzwalker Schwerehochs	32
17	Powerspektralanalyse der Schwere im Gebiet des Pritzwalker Hochs	33
18	Wertegitter der Magnetik für die Powerspektralanalyse	34
19	Eulerdekonvolution der Bouguerschwere mit einem Strukturindex SI = -3 und den Such- fenstergrößen W= 15, 3	36
20	Histogramme der Tiefenhäufigkeitsverteilung der Schwerepunktquellen	37
21	Eulerdekonvolutionen der Bougueranomalie, mit W = 5 und SI = $-1, -2$	38
22	Histogramme der Tiefenhäufigkeitsverteilung der Schwerepunktquellen, mit $W = 5$ und $SI = -1, -2$	39
23	Eulerdekonvolution des Untersuchungsgebietes mit SI -3 und W = 5 $\dots \dots \dots \dots$	40
24	Histogramm der Tiefenhäufigkeitsverteilung der Schwerepunktquellen	41

ABBILDUNGSVERZEICHNIS

25	Lage des Untersuchungsgebietes und Einteilung der Modellierebenen	43
26	Schwereeffekt des Sedimentbeckens	45
27	Schwereeffekt des Sedimentbeckens	46
28	Differenzfeld des berechneten Schwerefeldes des Sedimentbeckens und der gemessenen Bouguerschwere	47
29	Krustenstrukturen entlang des BASIN 9601 Profil	48
30	Schnitt des Modelles mit High Density Body und Interpretation des Linedrawing des BASIN 9601 Profil	49
31	Das HDB Modell mit den Lösungen der Eulerdekonvolution	51
32	Modellschnitt (HDB) mit Weitwinkelseismik	53
33	Dichte-Wellengeschwindigkeits-Wertepaare des Modells mit HDB und Akkretionskeil .	54
34	Dichte-Wellengeschwindigkeits-Relationen des Modells mit HDB und Akkretionskeil	56
35	Druckabhängige Dichte-Wellengeschwindigkeits-Relationen des Modells mit HDB und Akkretionskeil	57
36	Berechnete Schwere des Modells mit High Density Body	59
37	Berechnete Residualschwere des Modells mit High Density Body	60
38	Schnitt des Modells mit Intrusion und Akkretionskeil	62
39	Schnitt des Modells mit Intrusion und Weitwinkelseismik	63
40	Modell mit Intrusion und den Lösungen der Eulerdekonvolution	64
41	Dichte-Wellengeschwindigkeits-Wertepaare des Modells mit Intrusion und LDB	65
42	Dichte-Wellengeschwindigkeits-Relation des Modells mit Intrusion	66
43	Druckabhänige Dichte-Wellengeschwindigkeits-Relation des Modells mit Intrusion	67
44	Berechnete Schwere des Modells mit Intrusion	68
45	Residualschwere des Modells mit Intrusion	69
46	Gegenüberstellung der KMgW- und Semlja-Profile und den Weitwinkelseismikprofilen im Modell mit High Density Body	72
47	Gegenüberstellung der KMgW- und Semlja-Profile und den Weitwinkelseismikprofilen im Modell mit Intrusion	73
48	Nördliche Erweiterung des Modells mit High Density Body und Akkretionskeil	74
49	Nördliche Erweiterung des Modells mit Intrusion und Akkretionskeil	75
50	Nördliche Erweiterung des Modells mit Intrusion und Low Density Body	76

ABBILDUNGSVERZEICHNIS

51	Prinzip der Bestimmung der Auflasten eines Dichtemodells	79
52	Relative Loadberechnung des Schweremodells mit High Density Body (HDB)	80
53	Relative Berechnung des Schweremodells mit Intrusion	81
54	Ablaufdiagramm zur Bestimmung der Rigidität D	82
55	Berechnete Dichteverteilung der Kruste des Schweremodells mit Intrusion für das Zwei- schichtmodell	84
56	Histogramm der Dichteverteilung des Zweischichtmodells für das Schweremodell mit Intrusion	85
57	Pseudotopografie des Zweischichtmodells für das Schweremodell mit Intrusion	86
58	Aus der Pseudotopografie berechnete Mohotiefe des Modell mit Intrusion, mit D = 1E20 Nm	87
59	Rigiditätsberechnung für das Schweremodell mit Intrusion	88
60	Aus der Pseudotopografie berechnete Mohotiefe für das Schweremodell mit Intrusion, mit D = 3.20007E24 Nm	89
61	Rigiditätsberechnung für das Schweremodell mit High Density Body (HDB)	90
62	Auflistung der Bohrungen an die das Sedimentbeckenmodell angepasst wurde	107
63	Bohrungen: Schichtfolge Unterkreide bis Mirow Formation	108
64	Bohrungen: Schichtfolge Parchim Formation bis Ordovizium	109
65	Dichte-Wellengeschwindigkeits Wertepaare des Modells mit High Density Body	110
66	Dichte-Wellengeschwindigkeits-Relationen für das Modell mit HDB und LDB	111
67	Druckabhängige Dichte-Wellengeschwindigkeits-Relationen für das Modell mit HDB und LDB	111
68	Geschwindigkeits-Dichte Wertepaare des Modells mit Intrusion und Akkretionskeil	112
69	Geschwindigkeits-Dichte-Relation des Modells mit Intrusion und Akkretionskeil	113
70	Druckabhängige Geschwindigkeits-Dichte-Relation des Modells mit Intrusion und Ak- kretionskeil	113