3D Schwerefeldmodellierung zur Erfassung des tiefen Untergrundes im Nordost-Deutschen Becken.

Dissertation

zur Erlangung des Grades eines Doktors der Naturwissenschaften im Fachbereich Geowissenschaften der Freien Universität Berlin

eingereicht von

Diplom-Physiker Jörg Kuder

31. Mai 2002

1. Gutachter: Prof. Dr. H.-J. Götze

2. Gutachter: Prof. Dr. V. Haak

Tag der Disputation: 08.07.2002

3D Schwerefeldmodellierung zur Erfassung des tiefen Untergrundes im Nordost-Deutschen Becken¹.

von

Jörg Kuder²

Zusammenfassung

Mit dem Ziel dreidimensionale Modelle des tiefen Untergrundes im Nordost- Deutschen Becken zu erstellen, wird das Schwere- und Magnetfeld im Bereich des Beckens mit folgenden Methoden untersucht:

- Powerspektralanalyse des Schwere- und Magnetfeldes zur Tiefenabschätzung und Eulerdekonvolution des Schwerefeldes
- Dreidimensionale Dichtemodellierungen

Die Interpretation und Integration aller verfügbaren geologischen und geophysikalischen Randbedingungen, aus Reflexions-, Weitwinkelseismik und Magnetotellurik, sowie den zur Verfügung stehenden Sedimentbeckenmodell und Datensätzen von Bohrungen, führt zu komplexen dreidimensionalen Dichtemodellen.

Im ersten Dichtemodell wird das im Becken dominante Schwerehoch von Pritzwalk durch einen High Density Body, welcher von einer Intrusion abstammen könnte, erzeugt. Im zweiten Modell wird das Hoch durch einen möglicherweise basischen bis ultrabasischen Manteldiapir verursacht.

Die in Diskussion stehende Existenz der Transeuropäischen Störungszone wird durch die Dichtemodellierung weder verneint noch bestätigt, da Modelle mit Strukturen die der Störungszone entsprechen, wie auch Modelle mit einen aus seismischen Ergebnissen postulierten Akkretionskeil, das gemessene Schwerefeld modellieren können.

Die Berechnung der durch die Modellkruste verursachten Auflast, unter Berücksichtigung einer kontinuierlichen Tiefe der Moho in ca. 31 km, weist auf ein isostatisches Verhalten des Untersuchungsgebietes nach Vening-Meinesz hin. Aus einem vereinfachenden Zweischichtmodell mit Einbeziehung der Subsurface Loads ergibt sich eine, für ein Gebiet mit aufliegender Beckenstruktur, große statische Rigidität des Untersuchungsgebietes von D = 3.2 E 24 Nm.

¹ Dissertation am Fachbereich Geowissenschaften der Freien Universität Berlin zur Erlangung des Grades eines Doktors der Naturwissenschaften. Tag der Dissputation: 08. Juli 2002, Gutachter: Prof. Dr. H.-J. Götze und Prof. Dr. V. Haak.

² Anschrift des Verfassers: Dipl. Physiker Jörg Kuder, Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, D-12249 Berlin.

Abstract

With the aim to create 3D models of the deeper underground structure, the gravity and magnetic fields of the North German Basin were investigated using the following methods:

- Depth estimations using power spectrum analysis of the gravity and magnetic field and Euler deconvolution of the gravity field
- Three-dimensional density modelling

Complex 3D density models were constructed on the basis of all available reflectionand wide-angle seismic data, magnetotelluric data, a geological model of the basin, and well data.

Two alternative density models are presented. The Pritzwalk gravity high, which is a dominant feature of the gravity field of the basin, was modelled as the result of a high density body. This high density body could represent an intrusion. In the second model, the source of the high is attributed to a mantle derived basic diapir.

The frequently-discussed question of whether or not the basin contains evidence for the Trans-European Fault Zone cannot be answered by gravity modelling. This is because the measured gravity field can be equally well matched by models including a faulting zone or by those that include an accretionary wedge, as postulated on the basis of seismic results.

Loads were calculated for a model with a constant Moho depth of 31 km. Isostatic analysis suggests that the basin exhibits Vening-Meinesz regional isostatic behaviour. A simplified two layer model that includes subsurface loads suggests that the basin has a high static flexural rigidity of D = 3.2 E 24 Nm.

Inhaltsverzeichnis

1		1						
2	Pote	Potentialmethoden						
	2.1	Direkte Interpretationsmethoden						
		2.1.1	Powerspektralanalyse	3				
		2.1.2	Dekonvolution	4				
	2.2	Indirel	kte Interpretationsmethoden	6				
		2.2.1	Dreidimensionale Dichtemodellierung	6				
3	Randbedingungen für die Modellerstellung							
	3.1	Geolog	gische Randbedingungen	11				
		3.1.1	Das Sedimentbecken	11				
		3.1.2	Zuordnung der Dichten im Sedimentbecken	13				
		3.1.3	Bohrungen	15				
		3.1.4	Präpermische Krustenstrukturen	16				
	3.2	Geoph	ysikalische Randbedingungen	17				
		3.2.1	Gravimetrie	18				
		3.2.2	Magnetik	19				
		3.2.3	Reflexionsseismische DEKORP-Profile BASIN 9601 und PQ2-9.1	21				
		3.2.4	Weitwinkelseismik entlang BASIN 9601	22				
		3.2.5	Seismische Geschwindigkeits-Dichte-Relationen	24				
		3.2.6	Magnetotellurik	30				
4	Pote	Potentialfeldanalyse 32						
	4.1	1 Powerspektrum des Schwerefeldes						
	 4.2 Powerspektrum des Magnetfeldes							
		4.3.1	Diskussion	39				

5	Vorwärtsmodellierung					
	5.1	Schwereeffekt des Sedimentbeckens				
	5.2	Model	l mit High Density Body (HDB)	48		
		5.2.1	Dichten und Wellengeschwindigkeiten im Modell mit HDB	53		
			Seismische Geschwindigkeits-Dichte-Relationen im Sedimentbecken	53		
			Seismische Geschwindigkeits-Dichte-Relationen in der Kruste	55		
		5.2.2	Ergebnisse des Modells mit HDB	57		
5.3 Modell mit Intrusion .		Model	l mit Intrusion	61		
		5.3.1	Dichten und Wellengeschwindigkeiten im Modell	64		
			Seismische Geschwindigkeits-Dichte-Relationen in der Kruste	66		
		5.3.2	Ergebnisse des Modells mit Intrusion	67		
5.4 Vergleich mit S		Vergle	ich mit Semlja- und KMgW-Profilen	71		
	5.5	Erweit	erung der Modelle	73		
6	Isostasie und Rigidität					
	6.1 Isostasie		ie	78		
	6.2	Rigidi	tät	82		
	6.3	Ergebr	nisse	91		
7	Zusammenfassung und Diskussion					
	7.1	Ausbli	ck	95		
Li	teratu	ırverzei	chnis	96		
	Abbildungsverzeichnis					
	Tabe	ellenverz	eichnis	106		
A	Anhang					
	A.1	Verwe	ndete Bohrungen zur Anpassung des Sedimentbeckens	107		
	A.2	Gesch	windigkeits-Dichte Wertepaare des Modells mit HDB und LDB	110		
	A.3	Verwe	ndete Abkürzungen	114		
	A.4	Danks	agung	116		