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Uncovering The Role of Oxygen 
in Ni-Fe(OxHy) Electrocatalysts 
using In situ Soft X-ray Absorption 
Spectroscopy during the Oxygen 
Evolution Reaction
Dorian Drevon1, Mikaela Görlin   2, Petko Chernev2, Lifei Xi1, Holger Dau   2 & 
Kathrin M. Lange1,3

In-situ X-ray absorption spectroscopy (XAS) at the oxygen K-edge was used to investigate the role of 
oxygen during the oxygen evolution reaction (OER) in an electrodeposited Ni-Fe(OxHy) electrocatalyst 
in alkaline pH. We show the rise of a pre-peak feature at 529 eV in the O K-edge spectra, correlated to 
the appearance of a shoulder at the Ni L3-edge and formation of oxidized Ni3+/4+-O. Then, for the first 
time, we track the spectral changes in a dynamic fashion in both the soft and hard X-ray regimes during 
cyclic voltammetry (in situ CV-XAS) to obtain a fine-tuned resolution of the potential-related changes. 
The pre-peak feature at the O K-edge likely signifies formation of an electron deficient oxygen site. The 
electrophilic oxygen species appears and disappears reversibly in correlation with the Ni2+ ↔ Ni3+/4+ 
process, and persists during OER catalysis as long the metal is oxidized. Our study provides new insight 
into OER electrocatalysis: Before onset of the O-O bond formation step, the catalytic oxyhydroxide has 
accumulated electron deficiencies by both, oxidation of transition metal ions and formation of partially 
oxidized oxygen sites.

Reducing global carbon emissions will require efficient catalysts for use in solar-to-fuel conversion processes, 
where electrochemical water oxidation is the key to approach zero emissions1. For this, understanding the fun-
damental processes of the oxygen evolution reaction (OER, 4OH− → O2 + 2H2O + 4e−) from a mechanistic 
perspective is an important sub-goal for the design of highly efficient and functional electrocatalysts2,3. Ni-Fe 
oxyhydroxide (OxHy) electrocatalysts are currently the most active catalysts, and catalyze OER in alkaline media 
at low overpotentials with high O2 efficiency and turnover rates4–17. Combining Ni and Fe leads to an excessive 
increase in the catalytic activity, coincident with changes at the redox-active metal center, witnessing the elec-
tronic interaction between Ni and Fe sites7,18. The complexity of this interaction includes a modulation of the 
metal redox activity, which complicates the interpretation of the factors that scales with the OER activity. This 
have resulted in a controversy regarding the catalytically active structural and electronic state in mixed Ni-Fe 
catalysts7,14,18,19.

Friebel et al.14 presented in operando XAS investigations in combination with DFT + U calculations of mixed 
electrodeposited Ni-Fe catalysts with different compositions, which concluded that OER proceeds at lowest over-
potential at Fe-sites embedded in the Ni(OOH) lattice. This study demonstrated in agreement with other studies 
that the active metal redox states can be described as Ni3+/4+-Fe3+ 10,20,21, however, according to work from us and 
other groups OER can also proceed on low-valent Ni2+ sites15,19. The same discussions have been held for the 
Fe-site where both Fe3+ 14,20 and Fe4+ sites19,21 have been observed. More recently, spectral fingerprints of Fe6+ 
sites were observed in a spectroscopic study in non-aqueous solvent by Hunter et al.22. This reveals an intriguing 
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complexity of the catalytic system that may mask the true origin of the activity enhancement in binary Ni-Fe 
centers. Burke et al.23 recently presented a study with Fe-spiked KOH electrolyte that revealed two distinct cata-
lytic sites, where the “highly-active” sites were proposed to be located at “edge” or “defect sites” since the activity 
was unrelated to long-term modulations of the bulk. The presence of “fast” and “slow” sites in Ni-Fe catalysts 
was also recently observed in a scanning electrochemical microscopy study by Ahn et al.24. The nature of the 
OER mechanism in alkaline electrolyte is not yet fully understood and has so far been rather simplified. The 
OER overpotential is assumed to be restricted by scaling relations between surface bound OER intermediates 
(O*, OH*, OOH*) that includes four proton-coupled electron transfer (PCET) steps resulting in high overpo-
tential25. The presence of “active oxygen” species has recently been emphasized, where a non-concerted step has 
been proposed to occur in the mechanistic pathway by Koper and coworkers20,26,27. To entangle the role of the 
oxygen as a plausible redox-active site in Ni-Fe catalysts, further spectroscopic investigations would be required. 
X-ray spectroscopic investigations have so far principally been limited to the metal K-edges of the Ni and the Fe 
metal7,14,18, where studies involving in situ soft X-ray at the O K-edge of Ni-Fe catalysts is still lacking. This may 
provide useful information on the interaction and orbital mixing between the metal 3d and oxygen 2p sites28–30. In 
the only study known to us of a similar system, Yoshida et al. presented an in situ soft XAS study of an electrodep-
osited nickel-borate catalyst (Ni-Bi) in near neutral pH conditions, where changes in the O K-edge spectra were 
observed as a reversible peak near 529 eV, related to formation of Ni+3.6 in edge-sharing NiO6 octahedra31. Using 
in situ ambient pressure XPS, Ali-Löytty et al.32 investigated the O K-edge of an electrodeposited Ni-Fe catalyst, 
however corresponding changes around the O K pre-edge region was absent in this study.

In this study, we present the first in situ measurements in both the soft and the hard X-ray regimes under OER 
catalytic conditions at the O K-edge and the metal (Ni, Fe) L- and K- edges of an electrodeposited Ni-Fe(OxHy) 
oxygen evolution electrocatalyst in alkaline electrolyte. We discuss the involvement of the oxygen species in OER 
and we further correlate changes at the O K-edge in a dynamic fashion with changes occurring at the metal L- and 
K-edges during in situ CV cycling.

Experimental Section
Sample preparation.  The Ni-Fe films were cathodically electrodeposited from aqueous solution using 
ultrapure Milli-Q water (>18.2 MΩ cm) containing 9 mM Ni(SO4) × 6H2O (Sigma-Aldrich), 9 mM Fe(SO4) × 
7H2O (Sigma-Aldrich), and 25 mM (NH4)2SO4. The catalyst was electrodeposited on a 150 nm thick Si3N4 mem-
brane (Silson) coated with a 1 nm Ti adhesion layer and a 20 nm Au conductive top layer employed as working 
electrode. A cathodic current density of −250 mA/cm2 was applied for 5 s on a limited area of 2 × 2 mm, which 
was considered as the geometric surface area of the working electrode. The metal loading was determined by total 
reflection X-ray fluorescence spectroscopy (TXRF), using a benchtop S2 Picofox spectrometer (Bruker) with a Mo 
Kα source at 40 kV and a Si-drift detector. The metal loading on the electrodes was determined to 510 nmol/cm2  
of Ni and 275 nmol/cm2 of Fe (Ni:Fe = 65:35). The film thickness was estimated to 400 nm by assuming 0.125 µC/cm2  
per 1 nm33.

Scanning Electron Microscopy (SEM).  The morphology of the catalyst film deposited on the Si3N4/Ti/
Au was characterized using a LEO Gemini 1530 field emission scanning electron microscope (FESEM) at the 
Helmholtz Zentrum Berlin (HZB), of as-deposited catalysts and after the soft X-ray in situ OER characterization.

In situ X-ray absorption spectroscopy and electrochemical measurements.  In situ electrochem-
ical X-ray absorption measurements of the O K-edge and Ni, Fe L-edges were performed with a PEEK trans-
mission cell in transmission mode34, at the LiXEdrom 2.0 end-station at the U56-2 PGM2 beamline at BESSY II 
(HZB). The layout of the liquid cell used for the in situ measurements is illustrated in Fig. 1. Similar to previous 
work35, the thin layer of electrolyte is confined between two assembled Si3N4 membranes (100 nm). One of them 
is coated with 1 nm Ti, 20 nm Au and the Ni-Fe catalyst, which serves as working electrode. A Pt-wire was used 

Figure 1.  A schematic illustration of the soft X-ray transmission cell used in this study. The catalyst is deposited 
on the Au-coated silicon nitride membrane window closest to the photodiode. The electrolyte is confined 
between the two Si3N4 membranes. The GaAs photodiode measures the X-ray transmitted through the 
electrolyte and membranes.

https://doi.org/10.1038/s41598-018-37307-x


www.nature.com/scientificreports/

3Scientific Reports |          (2019) 9:1532  | https://doi.org/10.1038/s41598-018-37307-x

as counter electrode, and a leak-free Ag/AgCl (Ø = 1 mm) applied as reference electrode. The electrochemical 
measurements were controlled using a Bio-Logic SP-200 potentiostat. All electrode potentials are reported on the 
reversible hydrogen electrode scale (ERHE = 0.21 VAg/AgCl + 0.059 V × pH). The two He-chambers of the XAS cell 
(He-1 and He-2) were constantly purged during the measurements in order to maximize the X-ray transmission 
signal by removing air and water vapor. Applying He-pressure also allows to bend the two membranes so that 
the thickness of the electrolyte layer is reduced and thus the detrimental absorption of the soft X-ray at the O 
K-edge is decreased36. All measurements were carried out in 0.1 M KOH electrolyte pH 13. A syringe pump was 
used to keep a constant electrolyte flow of 4 µl/s. The resistance in the sXAS cell during the in situ measurements 
was estimated to ca 200 Ω. This pressure was varying with the He-pressure, whereas this was kept constant. The 
measurements are shown without iR-compensation.

The slit width was set to 50 µm to obtain a spectral resolution of 200 meV at an energy of 535 eV. The cell was 
located out of focus by 50 cm as described in our previous reports35. The He pressure inside the cell was kept con-
stant at 6 kPa during the in situ measurements. Photons were collected using a GaAs photodiode (Hamamatsu 
G1127). The current was measured using a 6514 Keithley electrometer with 2 nA range sensitivity. Every spec-
trum was averaged on three consecutives scans and were normalized to the current produced by the beam hitting 
the refocusing mirror before the sample. At the O K-edge the spectra were calibrated using the pre-edge of water 
at 535 eV37–40 and normalized to the the NEXAFS region above 570 eV. In order to reveal the contribution of the 
different electronic states present in the sample, we decomposed the O K-edge spectrum in its spectral compo-
nents using multi-peak fitting in Matlab, similar to the procedure followed by Guo et al.41. For more details, see 
Supporting Information. The Ni and Fe L-edges were calibrated using the L3 peaks of NiO at 852 eV42 and that 
of Fe2O3 at 708.5 eV43. A linear background was subtracted and the intensities were normalized to the maximum 
intensity of the L3 edge. To avoid radition damage, we significantly reduced the exposition of the catalyst to X-ray 
by selecting an experimental geometry where the incoming photons are attenuated by the electrolyte solution 
before hitting the catalyst sample. In order to ensure the reproducebility of the measurements, 3 repetitions were 
carried out for each configuration.

In situ XAS in the hard X-ray regime at the Ni and Fe K-edges were carried out at the KMC-3 beamline 
(BESSY II, HZB). A silicon (111) double-crystal monochromator was used for selecting a fixed X-ray excitation 
energy. The electrochemical cell was made of PTFE, and the Ni-Fe catalyst electrodeposited on Au-coated glassy 
carbon working electrodes (area 0.2 cm2). A Pt-mesh was used as counter electrode, and a leak free Ag/AgCl 
filled with 3 M KCl as reference electrode. The resistance in the cell was estimated to ca 30 Ω. The sample was 
placed 45 °C to the incoming X-ray beam using back-side illumination, and the fluoresence monitored using a 
scintillation detector. The amplified signal was recorded with a Bio-Logic SP-200 potentiostat. For more details, 
see reference44.

Cyclic Voltammetry during X-ray absorption spectroscopy.  Cyclic voltammetry-X-ray absorption 
measurements (CV-XAS) was performed at the U56-2 PGM2 and KMC-3 beamlines for the sXAS (O K and Ni, 
Fe L) and for the hard XAS (Ni, Fe K), respectively. The energy of the beam was set to a constant value of 854.1 eV 
for the Ni L, 529 eV for O K, 842 eV for Ni K, and 726 eV, and for Fe K-edges. The scan-rate was set to 5 mV/s 
or 10 mV/s while the Keithley signal was recorded with an analog-to-digital (AD) converter using the provided 
EC-lab software from Bio-Logic. The photons were collected with a photodiode and the resulting current was 
read from the output of the Keithley. The shown CV curves is an average of at least 16 individual CV cycles 
between ~1–1.7 V vs RHE.

Results and Discussion
Electrochemical Properties and Surface Morphologies.  An electrodeposited Ni-Fe oxyhydroxide 
(OxHy) catalyst was investigated for the oxygen evolution reaction using in situ X-ray absorption spectroscopy 
in the soft and hard X-ray regimes. SEM characterization showed that the Si3N4/Ti/Au electrode substrate was 
decorated with platelet-like sheets, with a structure similar to the ones reported for other electrodeposited Ni-Fe 
oxyhydroxide catalysts (see Supporting Information Figure S1a)19,45,46. The Ni-Fe samples examined after the 
XAS investigations (after OER characterization) showed similar structure as the freshly as-deposited catalyst (see 
Fig. 1b). Total reflection X-ray fluorescence spectroscopy (TXRF) confirmed that the catalyst had a Fe-content of 
35 atomic %. Measurements of an empty electrode substrate in comparison to the substrate with the electrodep-
osited Ni65Fe35 catalyst confirmed a negligible OER activity of the bare glassy carbon substrate, confirming that 
the OER activity originates from the Ni65Fe35 electrocatalyst (see Figure S2).

In-situ X-ray absorption spectroscopy at the nickel and iron L- and K-edges.  The Ni65Fe35 catalyst 
was investigated using soft X-ray (sXAS) at the Ni and Fe L-edges at several electrode potentials. The applied 
potential was increased by steps of 0.05 V into the OER region. For 3d transition metals, sXAS at the metal L-edge 
directly measures the unoccupied TM-3d states through dipole-allowed 2p-to-3d transitions.

The in situ sXAS spectra at the Ni L-edges are shown in Fig. 2a. The electrochemical activity during the meas-
urement is shown in the Supporting Information Figure S3. The overall spectral line shape consists of features in 
two regions, L3-edge around 852 eV (features A and B) and L2–edge around 870 eV (features C and D), resulting 
from the core- hole spin-orbital-coupling split. The fine splitting in both L3 and L2 is due to the crystal field 
effect from local ligand environment47,48. Those features result from dipole transitions from the 2p core level of 
the metal to empty states taking atomic multiplet effects into account which are sensitive to the electronic and 
oxidation state of the metal, and to the local geometry47. Upon increasing the potential from 0.98 V to 1.53 V vs. 
RHE, the amplitude of feature B is intensified. When the potential is reversed the amplitude of feature B drops 
down to its initial value. The intensity ratio of the double-peak features in the Ni L3 region (at 852 and 854.1 eV) 
fingerprints the oxidation state of the Ni atoms in the catalyst49,50. Our measurements do not support formation 
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of Ni4+ due to the absence of a shift in the position of the enhanced feature B, i.e. the 2nd shoulder of the L3 dou-
blet feature. However, the rise of feature B during OER conditions reveals the presence of Ni species in oxidation 
state +3, showing that the Ni65Fe25 catalyst oxidized from Ni2+ → Ni3+ 51. This observation is in accordance with 
previous reports of oxidation states obtained from Ni K-edge measurements of mixed Ni-Fe catalysts during OER 
catalytic potential7,14,50.

In Fig. 2b, the Fe L-edges are shown, with the L3-edge peak around 707 eV (features A’ and B’) and the L2-edge 
peak around 720 eV (features C’ and D’). In contrast to the Ni L-edge, there is no observed potential depend-
ence of the spectral features on the Fe L-edge, hence our measurements are compatible with Fe+3 both during 
non-catalytic and OER catalytic potential. This observation is in agreement with previous studies at the metal 
K-edge of Ni-Fe catalysts7,14. Oxidation states of Fe4+ or higher have on the other hand been reported during 
OER18,20,21. We cannot rule out that a small fraction of surface related Fe atoms may enter a higher oxidation 
state in our catalysts, however if the Fe atoms that changes oxidation state are a minority in number (for example 
appear at edge or defect sites) they may not be possible to resolve in these measurements. It is also possible that 
the Fe species formed during OER are too reactive to be observed under the current reaction conditions, in line 
with previous discussions regarding the reactivity and equilibrium states of intermediates occurring in the cata-
lytic cycle7,22.

To support our observations at the metal L-edges, we performed in situ XAS measurements in the hard X-ray 
regime at the Ni and Fe K-edges, where the spectral fingerprints are well known and oxidation states can be 
extracted from the edge positions. These measurements showed that the Ni oxidation process begin at 1.48 V vs. 
RHE, seen as an edge shift to higher energies (see Figure S4a). The Fe K-edge on the other hand did not undergo a 
pronounced edge shift, however a small visible change in the white line intensity occurred at electrode potentials 
above the threshold of Ni oxidation, in accordance with other work on Ni-Fe catalysts during in situ conditions 
(see Figure S4b)7,9,14,21. It has been discussed whether this corresponds to an oxidation state change at the Fe site 
or a change in the geometry as a response to the oxidation state increase at the Ni site during OER9,14,21. In accord-
ance with these studies, the changes we observe in the white line intensity may indicate that a small fraction of Fe 
atoms enters a higher oxidation state in our mixed Ni-Fe catalyst.

The Ni K-edge showed an edge shift of +1.2 eV at the highest measured potential, which corresponds to an 
oxidation state increase of 0.7 units, determined using calibration curves with known reference compounds7. 
This is in agreement with the transition from Ni2+ to Ni3+, hence confirming the observations at the Ni L-edge. 
From the Ni K pre-edge, contributions from a metallic phase was evident in our Ni65Fe35 catalyst, which was also 
reported in a recent study of a similar electrodeposited Ni-Fe catalyst9. Using linear combination of reference 
compounds, we could correct for this metallic contribution (see Figure S5a,b). The oxidation state increase of the 
pure oxide phase (after subtraction of the metallic phase) was estimated to 1.1 units, so slightly higher oxidation 
state than without corrections for the metallic contribution. This is still compatible with Ni3+, however we cannot 
exclude that a fraction of the Ni atoms enters an oxidation state higher than +3. Therefore, we conclude that the 
Ni atoms in our Ni65Fe35 catalyst do not reach “full” oxidation with Ni in oxidation state between +3 and +47,14. 

Figure 2.  In Situ XAS of electrodeposited Ni-Fe catalyst at (a) the Ni L-edge and (b) Fe L-edge. Potential 
values are in V vs RHE, where “rev” means “reverse” direction when stepping from higher to lower electrode 
potentials, and “OCP” stands for open circuit potential. The measurements were carried out in 0.1 M KOH, and 
the potentials are reported on the RHE scale.
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We also noticed that on the reverse scan a portion of the Ni atoms needed a longer time to relax back to the initial 
reduced Ni2+ ground state, also observed in previous studies20,52.

In situ soft X-ray absorption spectroscopy at the O K-edge.  X-ray absorption spectroscopy at the O 
K-edge was used to probe the local bonding and symmetry properties of the X-ray excited oxygen atom. The O1s 
spectra of the electrodeposited Ni-Fe catalyst under applied potential are shown in Fig. 3a. The O K-edge spectra 
can be divided into three distinct regions. The high-energy region above 540 eV corresponding to the extended 
X-ray absorption fine structure. The spectra presented here were normalized to the intensity in this region.

The low energy region between 525 eV and 534 eV is the region of main interest in this work and a detailed 
view is presented in Fig. 3b,c. This low energy region typically originates from electronic transitions from the O1s 
shell to transition metal 3d orbitals hybridized with oxygen 2p orbitals28,48,53–55. Four peaks could be distinguished 
at 529 eV, 529.9 eV, 531.2 eV and 532.5 eV. We assign these to the transitions from O(1 s) to O(2p) orbitals mixed 
with Ni(3d)t2g, Fe(3d)t2g, O(π*) of O2 gas, and Fe(3d)eg, respectively28,56,57. The peak positions were determined 
with Gaussian multi-peak fitting (see Figure S6a–f, Tables S1–S2 for fit parameters, and Table S3 for literature 
peak assignment). A reference spectrum of the O K-edge for O2 gas is shown in Figure S7. Spectral intensities 
between 534 eV and 540 eV result from near edge transitions of the water molecule, specifically at 535 eV, and at 
the main- and post-edge at 537.5 eV and 542 eV, respectively. Note, that main- and post-edge features are satu-
rated. The observed intensity variations of main- and post-edge do not correlate with the applied potential but 

Figure 3.  In situ XAS O k-edge spectra of electrodeposited Ni-Fe catalyst measured at various applied 
potentials. Potential values are given vs RHE., where “rev” means the reverse direction from higher to 
lower potentials. (b) O K-edge prefeature region at 1.18 V and (c) at 1.78 V vs RHE. Blue dots represent the 
experimental points, colored dashed lines the fit components of the multi-peak fitting and solid color lines the 
fit data model. The peak at 529 eV is the O1s-O(2p)/Ni(t2g) transition and appears at OER potential due to the 
increase in oxidation state of Ni. The measurements were carried out in 0.1 M KOH. (d) Schematic illustration 
showing the correlation between the changes at the O K-edge at 529 eV and the Ni L-edge at 854.1 eV; a partial 
donation of the higher electron density on the oxygen site (Oδ−) to the Ni metal site (O → Ni charge transfer).
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increase with measurement time (see Figure S6e,f). These changes may also be influenced by slow variations in 
the He pressure of the sXAS transmission cell, which can cause changes in the electrolyte layer thickness between 
the two assembled Si3N4 membranes. Similar changes of the pre-peak to main-peak ratio were observed for a 
transmission cell by Schreck et al.40, who correlated this to inhomogeneity of the liquid layer.

At increased electrode potential we observe a rise of a new pre-peak feature at 529 eV, which appears at 1.48 V 
and disappears reversibly at reductive potentials (see Figure 3a and S6a). We note that this peak is coincident 
with the oxidation of Ni2+ → Ni3+ as seen in both the Ni L and K edges. In accordance with previous studies, we 
correlate the 529 eV feature to the hybridization between O(2p) and Ni(3d)t2g orbitals, t2g being the 3d orbital 
with lowest energy in the frame of molecular orbital theory for an octahedral complex28,41,48,54,56. The other new 
feature located right above this peak, more specifically at 529.9 eV, is assigned to interactions between the O(2p) 
and hybridized Fe(3d) orbitals. This peak showed a much smaller change with the applied electrode potential in 
comparison to the 529 eV peak. This implies that Fe undergoes a smaller modulation, which supports the obser-
vations at the Fe K- edge where only a small change was observed in the white line intensity. This shows that a 
small modification at the Fe site is likely, however much smaller in comparison to the changes at the Ni site.

A similar pre-peak at 529 eV was reported in a soft XAS study of a Ni-Bi catalyst in borate buffer (near neutral 
pH) by Yoshida et al.31, and was assigned to bridging oxygen atoms coordinated to oxidized Ni+3/+4. This was 
explained by the oxide oxygens (O) connected to oxidized Ni(OOH) which gives rise to a O K-edge peak at lower 
energies in comparison to hydroxide oxygens (-OH)31. This pre-peak feature is indeed present in the powder ref-
erence compound LiNiO2, where Ni is in oxidation state +3 (see Figure S8). In work from other groups on metal 
oxides, the rise of a pre-peak at such low energies has been given alternative explanations. In work by Suntivich 
et al.28 a pre-peak in the O K-edge spectra was observed in perovskite OER catalysts. This was explained as an 
increase in hybridization between 3(d) and O(2p) states, which could cause injection/extraction of electrons from 
oxygen to the metal site (Ni3+-O2− → Ni(3-δ)+ − O(2-δ)−), which was correlated to a more efficient OER activity, see 
Fig. 3d28. In work by Cho et al.58 Ni vacancies in NiO increased the formal charge on nearby atoms, which was 
proposed to favor charge transfer from O → Ni to stabilize a Ni2+-O− complex56,58. It is therefore possible that a 
charge redistribution occurs in concomitance with the oxidation of Ni2+ to Ni3+. In previous in situ XAS studies 
by us we have shown that Fe-dopants in mixed Ni-Fe catalysts lowers the average oxidation state of Ni atoms 
during OER15. This was correlated to a significant decrease in structural order based on the FT-EXAFS ampli-
tudes, which could indicate a higher number of defects. If such vacancies facilitate O → Ni charge-transfer, it may 
explain the observed stabilization of low-valent Ni2+ sites in mixed Ni-Fe catalysts.

We also note the similarity between our pre-peak and a peak reported by Pfeifer et al.59–61 in a series of in situ 
O K-edge and combined DFT studies of IrO2. They assigned a pre-peak at 529 eV to formation of oxygen in for-
mal oxidation state −1. The nature of these O1− species was experimentally confirmed to be highly electrophilic 
and hence likely to facilitate nucleophilic attack61. According to their DFT theoretical O K-edge spectra of IrO2, 
neither stable peroxide (O-O) nor superoxo (O-O−) species are likely to be represent the pre-peak at such low 
excitation energies as 529 eV60. The nature of the oxygens species related to the pre-peak was therefore thought 
to be singly adsorbed oxygen (O-CUS) at undercoordinated sites (µ1-O or µ2-O), which is only feasible at edge or 
defect sites in Ni-Fe oxyhydroxides. In a recent experimental study by Burke Stevens et al.1 of Ni-Fe catalysts pre-
pared by spiking the electrolyte with Fe3+ ions, observations support that edge or defect sites are more reactive 
towards OER. Koper and coworkers discussed formation of “active oxygen” of superoxo character (Ni-OO−) 
during OER in NiOOH catalysts seen as a band between 950–1150 cm−1 in surface enhanced Raman spectros-
copy, which was rising in correlation to the nickel oxidation to Ni3+-O(H)26,27. Based on this, a non-concerted 
proton-coupled electron transfer (PCET) step was included in the OER mechanism. In previous studies by us we 
also noticed a deviation from ideal Nernstian behavior of the nickel oxido redox couple in Ni-Fe catalysts, which 
we explained as a two proton-one electron transfer step22. This is in contradiction to the DFT study presented 
earlier by Friebel et al.14, where Fe was found to have the lowest overpotential and thus proposed as the active site, 
however, radicals were not discussed in the context.

Whether our observed oxygen species are formed at Ni or Fe sites is not possible to discriminate, however 
the largest change in metal oxidation state is observed at Ni sites. Formation of oxygen of radical character on 
the other hand would not force a change in the metal valency, whereby we cannot conclusively verify the site of 
formation. In addition, if species are formed at undercoordinated sites such as edge and defect sites it would be a 
minority of the total number of sites in our Ni65Fe35 catalyst.

In situ cyclic-voltammetry - X-ray absorption at O K-edge Ni L-edge.  In order to fine-tune the 
changes observed in the XAS spectra with the OER activity in a dynamic fashion in our electrodeposited Ni65Fe35 
catalyst, the XAS transmission signal was monitored during CV cycling at the O K, Ni L, and Ni K edges at a fixed 
beam energy. The Keithley signal was recorded via an analog-to-digital converter read directly by the Bio-Logic 
potentiostat software (see Fig. 4a). In the soft XAS regime, the energy was fixed either at the O K pre-peak energy 
at 529 eV or at 854.1 eV for the L-edge feature, since both these peaks were seen to change reversibly as a response 
to applied electrode potential. These were assigned to the hybridization of O(2p)-Ni(3d)eg at the O K-edge and 
the Ni L3 shoulder reflecting formation of Ni3+, respectively. At the Ni K-edge, the energy was fixed at the rising 
main edge (8346 eV) and at the Fe K-edge slightly above the main edge at the white-line intensity (7130 eV) where 
the largest change were visible.

During the CV cycling, the absorption both at the O K (529 eV) and the Ni L (851.1 eV) peaks in the soft 
XAS regime were strongly correlated and followed nearly identical behavior (see Fig. 4a). Both peaks started to 
rise at the same potential (~1.40 V vs. RHE), which is at pre-catalytic potentials. Both traces steadily grow on the 
anodic scan and into the OER region, and continue to grow as the potential sweep is reversed until the potential 
reached the onset of the metal reduction wave. The O K and Ni L3 peaks then decline in correlation with the 
metal reduction towards the end of the CV scan. When the potential is reversed to the initial value of 0.98 V, 
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the two signals are almost decayed back to the background levels. Evident from these measurements is that the 
pre-edge feature at the O K-edge is closely related to the changes at the Ni L3-edge peak. Hence, the Ni2+ → Ni3+ 
oxidation and the appearance of the O K pre-edge peak at 529 eV appear as two entangled processes and occur at 
electrode potentials prior to the onset of OER and hence prior to O-O bond coupling. This was further confirmed 
in the corresponding CV-XAS measurements at the Ni and Fe K-edges, where the oxidation state change of Ni 
and the modulation in white-line intensity of Fe were followed in a similar fashion (see Figs 4b and S9). These 
measurements confirmed that the oxidation state changes at Ni K edge and the changes in white line intensity at 
the Fe K edge are as well two closely related processes. Hence, the O K pre-edge peak at 529 eV, the oxidation of 
Ni2+ → Ni3+/4+, and the changes at the Fe K-edge are all correlated, and occurs at pre-catalytic potentials, which 
was also confirmed in steady-state measurements (see Fig. 4c). The correlation between the oxidation at the Ni K 
and Fe K edge was recently demonstrated in a study by González-Flores et al.9, where it was clear that these two 
processes set off prior to the onset of OER. We also take notice of the “hysteresis” with respect to the oxidized 
nickel seen by Yoshida et al.31, which reflects the peak separation between the oxidation/reduction peak visible in 
the CVs, where the reduction is more difficult than the oxidation. In our steady-state measurements it was evident 
that the reduction of Ni centers was slow, however if an additional waiting time of 15 min was added at the end of 
the measurements at 0.98 V significantly more Ni centers had relaxed (see Fig. 4c). Differences between the hard 
and soft X-ray regimes are therefore certain influenced by the time held at each potential.

In the previous soft XAS study by Yoshida et al.31 a Ni-Bi catalyst in 0.1 M potassium borate solution, the O 
K- pre-peak at 528.7 eV appeared at 0.7 V vs. Ag/AgCl (estimated by us to ~1.45 V vs. RHE assuming pH 9.2), 
coincident with the onset of the catalytic current. The corresponding Ni L- spectrum was not recorded at this 
potential, however, detection of Ni4+ was confirmed at 1.0 V vs. Ag/AgCl (~1.75 V vs. RHE) from measurements 
at the Ni K-edge31. Therefore, it is not possible to draw conclusions regarding the correlation between the metal 
oxidation and the onset of the O K edge pre-peak in their measurements. Interestingly, in the studies of IrO2 by 
Pfeifer et al.59–61, the theoretical simulations of the spectra concluded that the pre-peak at 529 eV assigned to O1− 
existed only at coordinatively unsaturated sites such as µ1-O and µ2-O sites, however protonated forms of these 

Figure 4.  In situ XAS measurements of the Ni65Fe35(OxHy) catalyst in 0.1 M KOH (a) Soft XAS absorption 
intensities at the Ni L- and O K-edge at fixed beam energy while CV cycling between 0.98–1.68 V vs. RHE at a 
scan-rate of 5 mV/s. The X-ray absorption for the O K-edges was measured at 529 eV (red curve), and for the 
Ni L-edge at 854.1 eV (blue curve). The arrows indicate the scan direction. (b) The Ni K-edge shift at a fixed 
beam energy (8346 eV for Ni K and 7140 eV for Fe K, right axis) while CV cycling at 5 mV/s (left axis). The edge 
shift is reported as delta-eV where the baseline level was the edge position at 1.0 V vs. RHE. (c) Steady-state 
measurements showing the extracted peak areas under the corresponding O K peak (red) and Ni L peaks (blue, 
orange), and the edge shift at the K-edge (delta eV, green). The current density is shown on the left axis. The 
closed red, blue and black dots represent the anodic scan, the respective open dots the cathodic scan. For the Ni 
K-edge the cathodic scan runs above the anodic one and both are shown in green dots, and the open green dot 
is after an additional waiting time of 15 min at the end of the measurement. The Ni L peak was scaled to the O K 
peak for simplicity.
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(µ1-OH and µ2-OH) or in-plane µ3-O in rutile type IrO2 were not compatible with a pre-peak at such low ener-
gies60. In our electrodeposited Ni65Fe35(OxHy) catalyst, the “bulk” of the oxyhydroxide layers is mainly composed 
of µ3-O(H) sites, whereas “edge” or “defect” sites would contain such µ1-O and µ2-O in the oxidized form. With 
regard to recent studies showing that edge or defect sites may be more reactive towards OER23,24, we speculate 
that the 529 eV peak reflects a more reactive site located at such undercoordinated sites. This would also require 
that the oxidation of Ni2+ → Ni3+/4+ happen prior to the onset of OER, which we observe. This would be in line 
with the picture presented by Yoshida et al.31 from the O K-edge measurements, where it was proposed that only 
surface species in NiOOH participate in OER.

What can be concluded from our soft XAS measurements –that adds new information for interpretation of 
the reaction intermediates occurring in the OER catalytic cycle - is that these O species appear and disappear in 
concomitance with the metal oxidation and reduction (Ni2+ ↔ Ni3+/4). Supported by work from other groups, this 
may be a more reactive O site that is electron deficient (partially oxidized) and of more radical character (denoted 
as O−2+δ), see proposed mechanistic scheme in Fig. 5.

We therefore consider this as an additional step in the mechanistic cycle that occurs at potentials prior to 
the onset of OER. In the first metal oxidation step in the OER cycle, coordination of a hydroxyl group (-OH) is 
shown. There is a possibility that a species of radical character is formed already in this step (-OH∙)2,62,63, which 
would not require an increase in formal oxidation state of the metal. Since the O species we observe are likely to 
be in its deprotonated form60, the formation of this species is more probable to follow after the 2nd metal oxidation 
step which includes a deprotonation. This step occurs prior to the O-O bond coupling. We cannot distinguish 
whether the observed O species are located at Fe or Ni sites, however we have reasons to believe that they are 
closely associated with Ni sites owing to the large modulation seen at those sites according to our XAS data. 
Whether our observed O K species are distinct to the “active oxygen” species detected in Raman spectroscopic 
studies by Koper and coworkers26,27 or to the “negatively charged oxygen” ligands generated at Fe-centers, as 
proposed by us in previous work based on a non-Nernstian behavior of the redox couple is not entirely clear but 
not excluded20. Those changes as well all occurred in concomitance with the Ni2+ → Ni3+/4+ redox transition. This 
work hence demonstrates that all spectroscopic changes are well correlated with the metal oxidation state changes 
in the investigated Ni-Fe(OxHy) catalyst and occurs at pre-catalytic potentials. These all represents an equilibrium 
state well observed at room temperature conditions. It should be kept in mind that Fe ions may impact on the rate 
constants in the catalytic cycle of Ni-Fe catalysts. This may in turn introduce changes in the observed equilibrium 
states7. It was recently demonstrated by Goddard and coworkers in a theoretical study where Fe substitution in 
Ni(OOH) drastically changed the rate determining step, and thereby shifted the Ni4+ resting state in Ni(OOH) 
to a more reduced Ni3+ resting state in Ni-Fe(OOH). In recent work by Gray and coworkers it was shown that 
nonaqueous electrolyte may allow for spectroscopic detection of a broader range of metal oxidation states, where 
Fe atoms were observed to transit via a highly oxidized Fe6+ state in the OER catalytic cycle22.

As conclusion, the signature at ~529 eV in the O K spectra may indicate formation of partly electron deficient 
oxygen sites (O−2+δ) related to the formation of oxidized Ni3+/4+, and persist throughout OER catalytic as long as 
oxidized metal species prevail. This means that prior to the O-O bond formation step, the Ni-Fe(OxHy) catalyst 

Figure 5.  Mechanistic scheme summarizing the metal oxidation observed in our in situ XAS measurements 
of the Ni65Fe35(OxHy) catalyst. The resting state (non-catalytic potential) is observed between 1.0–1.4 V vs. 
RHE. Above this potential (>1.4 V) the oxidation of Ni2+ to Ni3+/4+ occurs. An oxidation state lower than 
+4 is usually observed both in Ni(OOH) and in mixed Ni-Fe(OxHy) catalysts. In the 1st metal oxidation step 
(shown in green), a discharge of an OH− group takes place, which adsorbs to a vacant site and increases the 
oxidation state by one unit. In this step a radical species may instead be formed (-OH∙) which would not result 
in a metal oxdation state increase (this is not shown in our cycle however may happen at both Fe and Ni sites). 
In the 2nd metal oxidation step, Ni is further oxidized to Ni4+. However, if there is a consecuetive step where 
charge re-distribution occurs from O 2p → Ni 3d, the average metal oxidation state is lowered (Ni+4-δ), and as a 
consequence the oxygen oxidation state is increased (O−2+δ). This step according to our O K-edge data is a stable 
state and is strongly correlated to the metal oxidation step, and occurs prior to O-O bond formation.
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has accumulated electron deficiencies. The true nature and role of these electropositive oxygen sites in the OER 
mechanism would need further in-depth investigations.

Conclusions
In summary, we have demonstrated that in situ XAS in the soft and hard X-ray regimes can deliver in-depth 
information on the role of the oxygen in an electrodeposited Ni65Fe35(OxHy) catalyst during oxygen evolution 
conditions. By scrutinizing a feature seen at the O K-edge, we conclude that the appearance of a pre-peak at 
529 eV occurs concomitant with changes at Ni L-edge peak 854.1 eV and Ni K and Fe K-edges, corresponding 
to the process formation of oxidized Ni3+/4+. By combining CV cycling and in situ sXAS, we further retrieve a 
more fine-tuned potential dependence of these entangled processes. We confirm that the O K pre-peak and the 
Ni oxidation occurs at pre-catalytic potentials prioir to O-O bond formation, and persists during OER catalysis as 
long as there is oxidized nickel. The pre-peak feature implies increased hybridization between O(2p) and Ni3(d) 
states, which has been proposed to induce charge transfer from O → Ni. This gives rise to an electron deficient 
oxygen site, which fits with previous assignment of the pre-peak at 529 eV to O1−. These sites are likely to arise 
from undercoordinated µ1-O and µ2-O sites, which are found at “edge” or “defect” sites of the oxyhydroxide layers. 
These sites may play an important role in the OER activity.

Data Availability Statement
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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