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Abstract 

Background:  Nano-sized vesicles, so called extracellular vesicles (EVs), from regenerative cardiac cells represent a 
promising new therapeutic approach to treat cardiovascular diseases. However, it is not yet sufficiently understood 
how cardiac-derived EVs facilitate their protective effects. Therefore, we investigated the immune modulating capa-
bilities of EVs from human cardiac-derived adherent proliferating (CardAP) cells, which are a unique cell type with 
proven cardioprotective features.

Results:  Differential centrifugation was used to isolate EVs from conditioned medium of unstimulated or cytokine-
stimulated (IFNγ, TNFα, IL-1β) CardAP cells. The derived EVs exhibited typical EV-enriched proteins, such as tetraspa-
nins, and diameters mostly of exosomes (< 100 nm). The cytokine stimulation caused CardAP cells to release smaller 
EVs with a lower integrin ß1 surface expression, while the concentration between both CardAP-EV variants was unaf-
fected. An exposure of either CardAP-EV variant to unstimulated human peripheral blood mononuclear cells (PBMCs) 
did not induce any T cell proliferation, which indicates a general low immunogenicity. In order to evaluate immune 
modulating properties, PBMC cultures were stimulated with either Phytohemagglutin or anti-CD3. The treatment of 
those PBMC cultures with either CardAP-EV variant led to a significant reduction of T cell proliferation, pro-inflamma-
tory cytokine release (IFNγ, TNFα) and increased levels of active TGFβ. Further investigations identified CD14+ cells as 
major recipient cell subset of CardAP–EVs. This interaction caused a significant lower surface expression of HLA-DR, 
CD86, and increased expression levels of CD206 and PD-L1. Additionally, EV-primed CD14+ cells released significantly 
more IL-1RA. Notably, CardAP-EVs failed to modulate anti-CD3 triggered T cell proliferation and pro-inflammatory 
cytokine release in monocultures of purified CD3+ T cells. Subsequently, the immunosuppressive feature of CardAP-
EVs was restored when anti-CD3 stimulated purified CD3+ T cells were co-cultured with EV-primed CD14+ cells. 
Beside attenuated T cell proliferation, those cultures also exhibited a significant increased proportion of regulatory T 
cells.

Conclusions:  CardAP-EVs have useful characteristics that could contribute to enhanced regeneration in damaged 
cardiac tissue by limiting unwanted inflammatory processes. It was shown that the priming of CD14+ immune cells 
by CardAP-EVs towards a regulatory type is an essential step to attenuate significantly T cell proliferation and pro-
inflammatory cytokine release in vitro.
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Background
Cardiovascular diseases (CVD) are the leading cause of 
death worldwide [1] and deteriorate considerably the 
quality of many patient’s life. To enhance prognosis and 
wellbeing of patients, a variety of cells were evaluated 
for their therapeutic potential in experimental and clini-
cal studies, like cardiosphere-derived cells, cardiac pro-
genitor cells, and mesenchymal stromal (MSC) cells from 
bone marrow, adipose tissue and other sources [2–8]. 
Another unique cardiac cell type are the human cardiac-
derived adherent proliferating (CardAP) cells, which 
are generated by outgrowth cultures of endomyocardial 
biopsies [9]. In a set of in vitro assays, it could be shown 
that CardAP cells are pro-angiogenic, anti-apoptotic and 
capable to modulate immune responses [10–12]. Fur-
thermore, their administration improved significantly 
heart functions and impaired immune responses in vivo 
[12, 13]. Beside these beneficial effects, CardAP cells 
also have additional advantages in comparison to other 
regenerative cell types. Firstly, the heart already primes 
CardAP cells. Histone modifications of cardiac-specific 
genes were shown to be different between murine car-
diac-derived cells and murine bone marrow MSCs, which 
was correlated to an higher potential for cardiomyogen-
esis of cardiac than non-cardiac cells [14]. Secondly, Car-
dAP cells are predominantly negative for the membrane 
glycoprotein CD90 [9]. It was shown in a retrospective 
analysis of a clinical trial that the therapeutic benefit of 
applied cardiosphere-derived cells was negatively corre-
lated to the expression of CD90 [15]. Thus, CardAP cells 
appear very useful for a therapeutic approach to treat 
CVD patients.

Initially, the observed beneficial effects of the different 
regenerative cell types were proposed to be facilitated 
by cell differentiation and integration into the damaged 
heart [16–18]. However, this mechanism could not be 
verified as studies failed to show a sufficient retention of 
therapeutically applied cells in the myocardium [16, 19]. 
Instead, improved heart functions were induced in the 
absence of cells, when just their conditioned medium was 
applied in animal myocardial infarction models [20–22]. 
Subsequently, investigations focused on the released fac-
tors from regenerative cells.

Next to growth factors, cytokines and other proteins, 
nano-sized extracellular vesicles (EVs) were identified. 
These lipid bilayer structures can be discriminated in 
three subsets by their diameter and biogenesis. Apop-
totic bodies (> 1  µm) and microvesicles (1– .1  µm) are 

released by buddying from the cell membrane, whereas 
exosomes (< .1 µm) originate from intracellularly located 
multivesicular bodies that fuse to the plasma membrane 
before they are released into the extracellular space. All 
three EV types act as potent intercellular communica-
tors by delivering proteins, lipids, RNA and other mol-
ecules to a recipient cell [23–29]. Indeed, several studies 
showed that EVs derived from different cardiac cell types, 
like cardiomyocytes, endothelial cells, cardiac fibroblasts 
or cardiac progenitor cells, are able to mediate protec-
tive and regenerative effects in injured heart tissue [26, 
28–32]. These studies mainly focused on the potential of 
cardiac-derived EVs to improve heart function by anti-
fibrotic, anti-apoptotic, pro-angiogenic and proliferation-
inducing effects. All these observed beneficial effects 
contribute to the opinion that EVs are a very promising 
therapeutic tool and could eventually replace cellular 
therapies by application of allogeneic or autologous EVs 
to CVD patients. For an allogeneic approach, however, 
it would be necessary to evaluate their immunogenicity 
to guarantee their future safe usage in humans. Unfor-
tunately, the interaction between the immune system 
and cardiac-derived EVs has rarely been studied. Fur-
thermore, the ability to limit pro-inflammatory immune 
responses by immunomodulation can dramatically con-
tribute to the therapeutic success, because lasting inflam-
mation in the heart tissue has opposing effects on the 
regenerative process [33].

Data already available for EVs from regenerative non-
cardiac cells illustrate that these EVs are actually capable 
of combining low immunogenicity with immune modu-
lating features. This includes in vitro observations like the 
suppression of induced T cell proliferation and cytokine 
release [34–37] as well as the induction of regulatory 
T cells [37, 38] by applied EVs from human or murine 
MSCs isolated from the bone marrow or umbilical cord. 
In a murine graft-versus-host-disease model, it could be 
demonstrated that human embryonic stem cell-derived 
MSC-EVs alleviated disease symptoms, which was attrib-
uted to an induced generation of regulatory CD4+ T cells 
by allogeneic antigen presenting cells [39].

Furthermore, it was shown that human bone marrow-
derived MSC-EVs were able to influence antigen pre-
senting cells, like monocyte-derived macrophages in 
a lung injury model [40] or dendritic cells in  vitro [41]. 
Additionally, it could be demonstrated that human adi-
pose tissue-derived MSC-EVs preferably bind to human 
monocytes in  vitro and induced the apoptosis of the 
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pro–inflammatory CD14+CD16+ subset, which led to 
their decreased proportion in the myeloid compartment 
[42].

To gain a better understanding regarding the effects 
and mechanisms of EVs from regenerative cardiac cells, 
we evaluated their impact on clinically relevant inflam-
matory immune responses by a set of in  vitro assays. 
Therefore, we isolated EVs from the conditioned medium 
of cardioprotective CardAP cells cultured in the presence 
or absence of pro-inflammatory cytokines. This cytokine 
stimulation was applied to enhance anticipated immune 
modulating effects, since non-cardiac EVs were shown to 
profit from such a stimulation [34, 43]. Also the immune 
modulating effects of CardAP cells were only observed in 
pro-inflammatory milieus [11–13].

Our in vitro results indicate that unstimulated as well 
as cytokine stimulated CardAP-EVs have a generally 
low immunogenicity and the therapeutic potential for 
enhancing cardiac tissue regeneration by limiting unde-
sirable pro-inflammatory immune cell activation.

Results
CardAP cells release altered EVs upon cytokine stimulation
CardAP-EVs were isolated by a stepwise centrifugation 
of the conditioned media (Fig.  1a), which was derived 
under either an unstimulated or a pro-inflammatory 
cytokine stimulation condition (INFγ, TNFα, IL-1β). 
Indeed, CardAP cells express receptors for the three 
cytokines and the culturing with cytokines for 20 h sta-
tistically enhanced the expression of immunologically 
relevant markers on the surface of CardAP cells, such as 
vascular cell adhesion protein-1 (CD106), programmed 
death ligand 1 and 2 (PD-L1/2) and intercellular adhesion 
molecule-1 (CD54), while their spindle-shaped morphol-
ogy and typical mesenchymal markers were unaffected 
(Additional file 1: Figure S1).

Neither the EV protein amount released by 1 × 106 
CardAP cells as determined by BCA assay (Fig.  1b) nor 
the particle concentration of EVs released by 1 × 106 Car-
dAP cells as determined by NTA (Fig. 1c) was influenced 
by the cytokine stimulation. Both CardAP-EV variants 

exhibited also typical sphere-like shapes in sizes ranging 
from 21 to 295 nm as observed by TEM (Fig. 1d). Quan-
titative analysis of the determined diameters demon-
strated an asymmetrical distribution (Fig. 1e), while most 
vesicles from both variants (at least 82%) were smaller 
than 100  nm. Unstimulated EVs (median = 73.80  nm) 
appeared to be larger in their median diameter in com-
parison to cytokine stimulated EVs (median = 67.14 nm), 
(Fig.  1e). This difference between the median diameters 
of both CardAP-EV variants was further verified by NTA 
(Additional file  1: Figure S2). Typical EV markers, like 
Ecto-5′-nucleotidase (CD73), integrin ß1 (CD29) and the 
tetraspanins CD9, CD81 and CD63, were detected on 
isolated CardAP-EVs by flow cytometry (Fig. 1f ). Unstim-
ulated CardAP-EVs showed a statistically enriched level 
of CD29 in comparison to cytokine stimulated EVs. 
Immunological markers, such as HLA-ABC, HLA-DR, 
CD106 and PD-L1, were not or at very low levels detect-
able (Fig. 1f ).

CD73 and CD29 were also detected on both CardAP-
EV variants from three different CardAP donors by a 
liquid chromatograph/electron spray ionisation mass 
spectrometry (LC/ESI–MS) approach. In total 186 pro-
teins were identified and their interaction as well as 
functional enrichment in biological processes or cellu-
lar compartment was analysed by using String Network 
Database (Fig. 2a, Additional file 1: Table S1). Generally, 
most proteins (156/186) could be assigned to the extra-
cellular exosome compartment, like heat shock proteins, 
integrins or enzymes (e.g. GAPDH). Additionally, Car-
dAP-EVs exhibited proteins that are involved in biologi-
cal processes, such as angiogenesis (e.g. heparan sulfate 
proteoglycan 2, neuropillin), wound healing (endoglin, 
annexin5) or immune system processes (annexin 1, galec-
tin 1). Comparative analysis of the determined expo-
nentially modified protein abundance index (emPAI) 
between all three CardAP donors reveals that several 
proteins were identified in all samples, like CD73, while 
others seem to be donor-specific (Fig. 2b). Furthermore, 
proteins were exclusively identified for cytokine stimu-
lated EVs, such as TNFα inducible protein and dipeptidyl 

(See figure on next page.)
Fig. 1  Inflammatory cues change the phenotype of CardAP-EVs. a The differential ultracentrifugation protocol is shown to isolate EVs from the 
conditioned medium under unstimulated (EVs) or cytokine stimulated conditions (EVs(cyt)). b EV protein amount released from 1 × 106 CardAP 
cells is presented as median with interquartile range (n = 10–21; six different CardAP donors). c Particle concentration of EVs released by 1 × 106 
CardAP cells is presented as median with interquartile range (n = 6; three different CardAP donors). d Representative transmission electron 
microscopy (TEM) images (upper row) with an enlarged region (white square) of interest (lower row) are displayed for both EV variants; scale 
bars represent 200 nm. e The diameter distribution as observed by TEM is shown for both EV variants of one CardAP donor. f Flow cytometric 
analyses are presented as median with interquartile range of normalized geometrical mean fluorescence intensities (normalized MFI calculated as 
ratio of stained to unstained) for tetraspanins (CD9, CD81, CD63), immunological relevant markers (CD54, PD-L1, CD106, HLA-ABC, HLA-DR) and 
mesenchymal markers (CD29, CD73, CD44, CD90) (n = 5–16; at least three different CardAP donors). Mann–Whitney U-test; ***p < .001, **p < .01, 
*p < .05
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peptidase 4, or on unstimulated EVs, like Ras-related 
protein Rab-34 or tyrosine-protein kinase Yes (Fig. 2b).

CardAP‑EVs attenuate pro‑inflammatory immune 
responses in PBMC cultures
In vitro immune assays are an important initial tool to 
evaluate future therapies for their immunogenicity and 
immune modulating capabilities [44, 45]. For that pur-
pose, we isolated human PBMCs from healthy donors 
and treated them with one of either EV variant, PBS or 
they were left untreated in the absence or presence of 
different T cell stimuli (Fig. 3a).

Both CardAP-EV variants exhibited a generally low 
immunogenicity, as a 5-day exposure of unstimulated 
PBMCs to each EV variant did not induce any T cell pro-
liferation (Additional file 1: Figure S3). On the other hand, 
the treatment with either CardAP-EV variant signifi-
cantly reduced the CD4+ and CD8+ T cell proliferation in 
PBMC cultures stimulated with either Phytohemagglutin 

(PHA) (Fig. 3b, c) or anti-CD3 (Fig. 3d, e) in comparison 
to the respective PBS control. Interestingly, the CD4+ and 
CD8+ T cell proliferation was even greater diminished in 
PHA stimulated PBMC cultures treated with cytokine 
stimulated CardAP-EVs (median .85 CD4+; median .94 
CD8+) than with unstimulated CardAP-EVs (median .90 
CD4+, median .96 CD8+). A similar trend was detcted in 
anti-CD3 stimulated PBMCs. The treatment with either 
EV variant also contributed towards a less pro-inflam-
matory cytokine profile under PHA stimulation (Fig. 4a) 
or anti-CD3 stimulation (Fig. 4b), as observed by signifi-
cant lower IFNγ as well as TNFα levels and a higher level 
of active TGFβ. The IL-17a release in PHA stimulated 
PBMCs and IL-1ß in anti-CD3 stimulated PBMCs were 
reduced by trend upon CardAP-EV treatment (Addi-
tional file 1: Figure S4). Additionally, IL–10 was increased 
in PBMC cultures treated with cytokine  stimulated 
CardAP-EVs by trend under PHA stimulation (Fig.  4a) 
and statistically significant under anti-CD3 stimulation 
(Fig. 4b) in comparison to the respective PBS controls.
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Fig. 3  CardAP-EVs diminish PHA and anti-CD3 induced T cell proliferation in PBMC cultures. 3x105 CFSE-labelled PBMCs were stimulated with PHA 
or anti-CD3, treated with either unstimulated (EVs) or cytokine stimulated (EVs(cyt)) EVs, PBS in equal volume of the EVs (PBS) or left untreated and 
analysed after 3–5 days by flow cytometry. T cell proliferation frequencies were normalized to the untreated control. a The general immune assay 
design is shown. b, d Representative flow cytometric plots display the frequencies of proliferated CD4+ and CD8+ T cells in PHA stimulated PBMCs 
(b) or in in anti-CD3 stimulated PBMCs (d). The normalized proliferation of CD4+ (left) and CD8+ (right) T cells in PHA stimulated PBMCs (c) or in 
anti-CD3 stimulated PBMCs (e) is presented for the treatment with either CardAP-EV variant and PBS as median with interquartile range (PHA n = 11; 
four different CardAP donors; five different PBMC donors) (anti-CD3 n = 9; four different CardAP donors; five different PBMC donors). Friedman Test 
with Dunn’s multiple comparison test: ***p < .001, **p < .01, *p < .05 or Wilcoxon matched-pairs signed rank test; ###p < .001, ##p < .01, #p < .05
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CardAP‑EVs primarily target CD14+ cells and induce 
a regulatory phenotype
To unravel the recipient cell of CardAP-EVs, total PBMC 
cultures were treated with fluorescently labelled Car-
dAP-EVs (DiD+EVs) for 24  h. Flow cytometric analysis 
clearly illustrated that DiD+EVs were primarily interact-
ing with CD14+ cells (96.6% DiD+ cells) rather than with 
CD14− immune cells (2.8% DiD+ cells) (Fig.  5b), which 
we could also verify by the co-localization of both sig-
nals (Fig. 5a). After 3 days, the frequency of CD14+ cells 
was significantly increased in unstimulated PBMC cul-
tures treated with either CardAP-EV variant (Fig.  5c) 
respectively to the PBS controls. Furthermore, the phe-
notype of EV-primed CD14+ cells changed dramatically. 
Both CardAP-EV variants (Fig.  5d) raised significantly 
the surface expression levels of PD-L1 and significantly 
lowered the expression levels of HLA-DR and CD86 in 
comparison to the PBS controls. Also CardAP-EVs sig-
nificantly enhanced the surface expression levels of the 
macrophage mannose receptor 1 (CD206). Notably, the 
expression of PD–L1 was significantly more enhanced by 
cytokine  stimulated CardAP-EVs in comparison to the 
unstimulated counterpart.

EV‑primed CD14+ cells are necessary to suppress immune 
responses
The question arouse whether EV-primed CD14+ cells 
are playing a role in the previously described immune 
suppressive effects in PBMC cultures. Therefore, we 
adjusted the assay by using purified CD3+ T cells and 
CD14+ monocytes, generated by MACS sorting, instead 
of PBMCs. The purified CD3+ T cells were stimulated 
with anti-CD3 for 3 days and either cultured with EV-
primed CD14+ cells or treated with CardAP-EV corre-
sponding controls (Fig. 6a). Anti-CD3 induced CD4+ or 
CD8+ T cell proliferation was not affected in isolated 
CD3+ T cell cultures treated with either CardAP-EV 
variant in respect to the PBS-control (Fig. 6b). In con-
trast, combination of purified CD3+ T cells with EV-
primed CD14+ cells resulted in a significant reduction 
of CD4+ as well as CD8+ T cell proliferation (Fig. 6c). 
Likewise, no changes in the amount of released IFNγ or 
TNFα were detected in the purified CD3+ T cells cul-
ture setting (Fig.  7a), while significant lower levels of 
pro-inflammatory IFNγ were detected in co-cultures 
of CD3+ T cells with EV-primed CD14+ cells (Fig. 7b). 

Fig. 4  CardAP-EVs attenuate the PHA and anti-CD3 induced pro-inflammatory cytokine release in PBMC cultures. 3x105 CFSE-labelled PBMCs were 
stimulated with PHA or anti-CD3 antibody and treated with either unstimulated (EVs) or cytokine stimulated (EVs(cyt)) EVs, PBS in equal volume of 
the EVs (PBS) or left untreated and analysed after 3–5 days. The cytokines of the supernatants were analysed by ELISA (IFNγ, active TGFβ) or Multiplex 
(IL-10, TNFα). Concentrations for all tested cytokines are presented for PHA stimulated PBMC cultures (a) or anti-CD3 stimulated PBMC cultures (b) 
as median with interquartile range (PHA n = 6–7, five different CardAP donors, five different PBMC donors) (anti-CD3 n = 8; four different CardAP 
donors, four different PBMC donors). Friedman Test with Dunn´s multiple comparison test: ***p < .001, **p < .01, *p < .05 or Wilcoxon matched-pairs 
signed rank test; ###p < .001, ##p < .01, #p < .05
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TNFα was significantly reduced by CD14+ cells primed 
by cytokine stimulated CardAP-EVs and a similar effect 
is visible by trend for CD14+ cells treated with unstim-
ulated CardAP EVs prior to the co-culture with T cells 
(Fig. 7b). Interestingly, the IL-10 level was found to be 

significantly reduced in co-cultures with CD14+ cells 
that were primed by cytokine stimulated CardAP-EVs, 
whereas active TGFß was detectable on very low lev-
els (Fig. 7b). Nevertheless, the frequency of regulatory 
T cells (CD4+CD127−CD25+Foxp3+) was significantly 

Fig. 5  CardAP-EVs prime CD14+ monocytes in unstimulated PBMC cultures towards a regulatory CD14+ myeloid cell type. 1x106 PBMCs 
were treated with DiD-labelled CardAP-EVs for 24 h and analysed by microscopy or flow cytometry. a Representative images are illustrating 
co-localization (white arrows) of DiD+EVs (magenta) with CD14+ PBMCs (green) in total PBMCs (pseudo coloured white for DAPI) (n = 2; three 
different CardAP donors, two different PBMC donors). Scale bars represent 10 µm. b Representative histograms of the flow cytometric analysis are 
shown for CD14+ and CD14− immune cells (n = 2; three CardAP donors; two different PBMC donors). For the phenotypical analysis, 1x106 PBMCs 
were treated with unstimulated (EVs) or cytokine stimulated EVs (EVs(cyt)), PBS in equal volume of the EVs (PBS) or left untreated. After 3 days, 
cells were analysed by flow cytometry. c Frequencies of CD14+ cells in PBMCs are presented for cultures treated with PBS, EVs or EVs(cyt). d Flow 
cytometric surface expression data are presented as median with interquartile range of normalized geometrical mean fluorescence intensities 
(normalized MFI calculated as ratio of stained to unstained) for the immunological markers HLA-DR, CD86, PD-L1 and CD206 (n = 11; four CardAP 
donors, four PBMC donors). Friedman Test with Dunn´s multiple comparison test: ***p < .001, **p < .01, *p < .05 or Wilcoxon matched-pairs signed 
rank test; ###p < .001, ##p < .01, #p < .05
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enhanced in those co-cultures with EV-primed CD14+ 
cells in comparison to the control setting of PBS-
treated CD14+ cells (Fig.  8a, b). Analysis of super-
natants from 48  h primed CD14+ cells showed that 
interleukin 1 receptor antagonist (IL-1RA) has been 
significantly enhanced (Fig. 8c), while IL-1β, IFNγ and 
IL-10 were not detectable in those supernatants (data 
not shown).

Discussion
Cardiac-derived cells, like CardAP cells, demonstrated 
a great potential to treat CVD by pro-angiogenic, anti-
fibrotic, anti-apoptotic and immune modulating features 

[9–13, 46–48]. Over the last years, evidence accumulated 
that paracrine modulators, especially extracellular vesi-
cles, are key players of those regenerative effects [28, 49, 
50]. There is, however, just very few information available 
whether cardiac-derived EVs are able to liberate regen-
erative processes by limiting chronic inflammation in the 
cardiac tissue. Therefore, we investigated the capacity of 
unstimulated or pro-inflammatory stimulated CardAP-
EVs to modulate crucial immune responses in vitro.

We could show for the first time to our knowledge that 
cardiac–derived EVs are potent modulators of CD14+ 
monocytes by shifting their surface marker profile 
towards a rather immune regulatory one and that solely 

Fig. 6  CardAP-EVs diminish anti-CD3 induced T cell proliferation only in the presence of CD14+ cells. CD3+ and CD14+ cells were isolated by MACS 
and cultured unstimulated for 48 h. Here, CD14+ cells were additionally treated with either unstimulated (EVs) or cytokine stimulated (EVs(cyt)) EVs, 
PBS in equal volume of the EVs (PBS) or left untreated. Afterwards, CD14+ cells were co-cultured 1:5 with CD3+ cells and stimulated with anti-CD3. 
Additionally, a negative control was incorporated by treating anti-CD3 stimulated CD3+ cells with either CardAP-EV variant, PBS or left untreated. 
After 3 days, the cells were harvested and analysed by flow cytometry. T cell proliferation frequencies were normalized to the untreated control. a 
The general immune assay design is shown. Representative flow cytometric plots display the frequencies of proliferated CD4+ and CD8+ T cells in 
anti-CD3 stimulated monocultures of CD3+ cells (b, left) and anti-CD3 stimulated co-cultures of CD3+ cells with primed CD14+ cells (c, left). The 
normalized proliferation of CD4+ (upper graph) and CD8+ (lower graph) T cells in anti-CD3 stimulated monocultures of CD3+ cells (b, right) or in 
co-culture with primed CD14+ cells (c, right) is presented for the treatment with either CardAP-EV variant and PBS as median with interquartile 
range (monocultures n = 7; four different CardAP donors; five different PBMC donors) (co-cultures n = 5; four different CardAP donors; four different 
PBMC donors). Friedman Test with Dunn’s multiple comparison test: ***p < .001, **p < .01, *p < .05 or Wilcoxon matched-pairs signed rank test; 
###p < .001, ##p < .01, #p < .05
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the presence of EV-primed CD14+ cells is capable to 
attenuate adaptive T cell immune responses.

Both CardAP-EV variants demonstrated typical EV 
characteristics and a low immunogenic phenotype. 
The protein amount as well as the particle concentra-
tion of EVs released by 1 × 106 CardAP cells was com-
parable between both conditions. But their size and 
marker expression differed significantly. The major-
ity of CardAP-EVs exhibited dominantly diameter 
measures of exosomes, while cytokine  stimulated EVs 
showed a smaller median diameter. This observation 
has not been described yet and might be influenced by 
an altered composition of exosomes. Exosomes have 
been described to be a heterogeneous EV population, 
including their size and transported proteins [23, 51]. 
It is further corroborated by a significant lower CD29 
detection on cytokine  stimulated EVs as observed by 
flow cytometry. Furthermore, other proteins were 
exclusively detected under either cytokine stimulated 
condition (e.g. TNFα induced protein 3) or unstimu-
lated condition (e.g. Ras-related protein Rab-34) by LC/
ESI-MS. This observation has to be validated by analys-
ing a greater number of CardAP donors. The majority 
of identified proteins (156/186) could be assigned to 
the extracellular exosome compartment, which also 

included surface markers already detected by flow 
cytometry. These typical EV-enriched proteins, such as 
CD73, were detectable in comparable expression levels 
on both CardAP-EV variants. A low immunogenicity 
would be ensured by a very low HLA-ABC expression 
and the complete absence of HLA–DR, which both 
were not detectable by LC/EMI-MS. Indeed, this could 
be verified by an absence of any T cell proliferation 
response against the applied CardAP-EVs in PBMC cul-
tures. This is in accordance with recent studies, where 
any T cell proliferation was induced by human embry-
onic stem cell-derived MSC-EVs in mouse spleenocyte 
cultures [52] or by EVs from amniotic fluid stem cells 
in human PBMC cultures [53]. Importantly, we found 
that EVs interacted pre-dominantly with CD14+ cells 
in those PBMC cultures. So far, evidence is missing 
whether CardAP-EVs have been internalized. But we 
would argue that EVs are rather taken up by CD14+ 
cells due to their enhanced phagocytosis capability. 
Likewise, others described a preferred interaction of 
CD14+ cells with vesicles released by labelled human 
MSCs derived from the bone marrow in a trans-well 
culture system [43].

We found that CardAP-EVs treatment changed 
CD14+ cells towards a regulatory phenotype by 

Fig. 7  CardAP-EVs attenuate anti-CD3 induced pro-inflammatory cytokine release only in the presence of CD14+ cells. CD3+ and CD14+ 
cells were isolated by MACS and cultured unstimulated for 48 h. Here, CD14+ cells were additionally treated with either unstimulated (EVs) or 
cytokine stimulated (EVs(cyt)) EVs, PBS in equal volume of the EVs (PBS) or left untreated. After 2 days, CD14+ cells were co-cultured 1:5 with CD3+ 
cells and stimulated with anti-CD3. As a negative control, anti-CD3 stimulated T cells were treated with either CardAP-EV variant, PBS or left 
untreated. After 3 days, the supernatants were collected and cytokine concentrations were analysed by ELISA (IFNγ, active TGFβ) or Multiplex (IL-10, 
TNFα). Concentrations for all tested cytokines are presented for anti-CD3 stimulated monoculture of CD3+ cells (a) or co-cultures of CD3+ cells with 
CD14+ cells (b) as median with interquartile range (co-culture n = 6, five different CardAP donors, five different PBMC donors) (monoculture n = 8; 
four different CardAP donors, four different PBMC donors). Friedman Test with Dunn´s multiple comparison test: ***p < .001, **p < .01, *p < .05 or 
Wilcoxon matched-pairs signed rank test; ###p < .001, ##p < .01, #p < .05
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expressing lower levels of HLA-DR, CD86 and 
enhanced levels of PD-L1 and CD206. Studies from 
other groups show similar changes of these cell´s phe-
notype upon phagocytosis of human umbilical cord 
MSCs [54] or treatment with EVs from glioma stem 
cells [55] or human adipose tissue-derived MSCs [42, 
56]. Dam et  al. for example, observed the down-regu-
lation of HLA-DR and CD86 on isolated monocytes 
after co-culturing with human CPCs. Interestingly, 
this effect was facilitated independently of any IFNγ 
pre-treatment of CPCs [48], which is in accordance to 
our results. Also Lo Sicco et  al. demonstrated a simi-
lar phenotype, including significantly increased CD206 
and reduced CD86 levels on the surface of isolated 

macrophages after exposure to human adipose tissue-
derived MSC-EVs. Moreover, their application in a 
cardio-toxin  induced injury mouse model enhanced 
regeneration of the skeletal muscle, which was attrib-
uted to the increased detection of M2-type macrophage 
markers [56]. While de Witte et al. inhibited the adher-
ence of monocytes, we assume that in our study CD14+ 
blood monocytes had already differentiated into mac-
rophages as visible by their treatment-independent 
adherence [54]. The observed changes of surface mol-
ecules on CD14+ cells primed by CardAP-EVs would 
support a partial shift towards the anti-inflammatory 
M2-type macrophage. It would be further fostered 
by the increased release of IL-1RA of purified CD14+ 
cells treated with either CardAP-EV variant, while 
the pro-inflammatory cytokines IL-1ß and IFNγ were 
not detectable. IL-1RA antagonises IL-1β signalling 
and thereby suppresses immune responses, which is 
a known mechanism used by M2-type macrophages 
[57] or even by murine bone marrow-derived MSCs 
to induce M2 polarization [58]. In general, the polari-
zation of M2-type macrophages would be beneficial 
for a potential CardAP-EV product, since the induced 
macrophages release anti-inflammatory cytokines, 
chemokines and growth factors [59], which may 
enhance myocardial repair [60, 61]. The detected 
increase of the M2-type marker CD206, however, might 
imply either beneficial effects, like an inflammation-
resolving function [62], or detrimental effects by induc-
ing fibrosis [63].

So far, the mechanisms are not yet clear how the EV 
treatment leads to the detected alterations on CD14+ 
cells, like the down-regulation of HLA-DR. It can be 
speculated that tetraspanins are involved, since they are 
well-known players in antigen-presentation and internal-
ization of HLA-DR [64]. But also the delivery of micro-
RNAs by CardAP-EVs might have an effect on these 
cells, because specific microRNAs are playing a role in 
the process of macrophage polarization towards M1/
M2-type [65]. Several studies confirmed the capacity of 
EVs from regenerative cells to deliver RNA molecules 
[29, 66, 67]. It has to be investigated which microRNAs 
CardAP-EVs do deliver and whether they differ between 
unstimulated and cytokine  stimulated conditions. We 
assume a reduced antigen-presenting feature of CD14+ 
cells exposed to CardAP-EVs within triggered immune 
cell cultures, since we observed a down-regulation of 
HLA-DR and CD86. Indeed, we found that mitogen and 
antibody induced T cell proliferation was significantly 
reduced in EV-treated PMBC cultures respectively to 
controls. EV-mediated effects on T cell proliferation 
are controversially discussed, as results were obtained 
for diminished [35, 68] or unaffected [43, 69] T cell 

Fig. 8  CardAP-EVs increase the frequency of regulatory T cells in 
anti-CD3 induced co-cultures of CD3+ cells with primed CD14+ 
cells. CD3+ and CD14+ cells were isolated by MACS and cultured 
unstimulated for 48 h. Here, CD14+ cells were additionally treated 
with either unstimulated (EVs) or cytokine stimulated (EVs(cyt)) 
EVs, PBS in equal volume of the EVs (PBS) or left untreated. 
Afterwards, CD14+ cells were co-cultured 1:5 with CD3+ cells and 
stimulated with anti-CD3. After 3 days, the cells were harvested 
and analysed by flow cytometry. a Representative flow cytometric 
plots (Foxp3 vs CD25) display the frequencies of regulatory T cells 
(CD4+CD197−CD25+Foxp3+) in anti-CD3 stimulated co-cultures of 
CD3+ cells and CD14+ cells primed with PBS (left), EVs (middle) and 
EVs(cyt) (right). b Quantitative analysis of regulatory T cell frequency 
is shown as median with interquartile range for the treatment with 
either CardAP-EV variant and PBS (n = 6; four different CardAP donors; 
four different PBMC donors). c Concentration of released IL-1RA by 
CD14+ cells after 2-days treatment with either CardAP EV variant or 
PBS is shown as median with interquartile range (n = 6, four different 
CardAP donors, four different PBMC donors). Friedman Test with 
Dunn´s multiple comparison test: ***p < .001, **p < .01, *p < .05 or 
Wilcoxon matched-pairs signed rank test; ###p < .001, ##p < .01, #p < .05
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proliferation by EVs from glioma stem cells or MSCs 
from bone marrow or umbilical cord. This might reflect 
the heterogeneity within study design, such as different 
EV isolation methods or differences in the conducted 
immunomodulation assays. In our study, the priming of 
CD14+ myeloid cells by CardAP-EVs was essential, since 
immune responses were not modulated in their absence. 
Subsequently, no EV mediated inhibition of T cell prolif-
eration was detectable when solely anti-CD3 stimulated 
purified CD3+ T cells were used in the immunomodu-
lation experiment. In presence of CD14+ cells, as seen 
in the experimental setup with EV-primed CD14+ cells 
combined with purified CD3+ T cells, the EV-mediated 
suppression of T cell proliferation could be restored as 
we initially observed in whole PMBC cultures. This dis-
crepancy between whole PBMC and purified CD3+ T 
cell cultures was also described for murine immune 
cells treated with murine bone marrow-derived MSC-
EVs [37]. Additionally, we observed that the profile of 
released cytokines was not altered in cultures of purified 
T cells, while combined and EV-treated cultures of iso-
lated CD14+ with CD3+ cells as well as EV-treated total 
PBMCs displayed reduced pro-inflammatory cytokine 
levels (IFNγ, TNFα). The reduction of pro-inflammatory 
cytokines is in line with other publications, showing less 
release of IFNγ, TNFα, IL-1β or IL-17 even in the absence 
of inhibiting effects on the T cell proliferation [38, 43, 52, 
69]. Furthermore, PBMC cultures displayed enriched lev-
els of active TGFβ after treatment with both EV variants, 
which emphasizes the reduced inflammatory response 
towards the applied cues. Other cytokines that confirm 
this observation are indicated, such as reduced IL-17 
or IL-1ß levels while solely cytokine  stimulated EVs 
increased level of IL-10. This anti-inflammatory cytokine 
was accelerated in previous studies, including treatment 
with EVs from human bone marrow-derived MSCs or 
glioma stem cells as well as our own studies from CardAP 
cells in the in vivo models [12, 38, 55].

The question arises: how do EV-primed CD14+ cells 
contribute to the reduced immune response? We specu-
late that beside the reduction of antigen presentation, 
other direct cell–cell-interactions can play a role. The 
engulfing of PD-1 on the surface of T cells with upregu-
lated PD-L1 on the EV-primed CD14+ cells can lead to 
the inhibition of T cell proliferation and their apoptosis 
[70]. Also phosphatidylserine might be involved, as its 
exposure on vesicles released by polymorph nuclear cells 
was shown to inhibit the differentiation of monocyte-
derived dendritic cells and thereby attenuating T cell 
proliferation [71]. Additionally, paracrine mechanisms 
can limit immune responses, like the detected increased 
release of IL-1RA, but also other cytokines, chemokines 
or EVs from CD14+ cells themselves influence the 

outcome of the immune response [72]. Also, it cannot be 
ruled out that EV-primed CD14+ cells may affect other 
immune cells than T cells. Likewise, we observed an infe-
rior interaction with the CD14− immune cell subpopula-
tions, therefore we cannot rule out that CardAP-EVs can 
influence other immune cells directly, as human bone 
marrow-derived MSC-EVs were shown to influence B 
cells in purified immune cell cultures [43].

Interestingly, we observed in the MS-analysis of our 
CardAP-EVs that galectin-1 and several proteins from the 
annexin family were present. They are known to be mod-
ulators of immune responses by binding of galectin-1 to 
CD69 and imitating a signal cascade which promotes 
regulatory T cell development [73]. After interaction with 
macrophages, annexin 1 further promotes a M2-type 
macrophage polarization [74, 75]. In combined cultures 
of purified CD14+ and CD3+ cells an increased frequency 
of regulatory T cells was detected. The administration of 
human or murine bone marrow-derived MSC-EVs has 
been previously shown to enhance regulatory T cells [38, 
52, 69], which happened for EVs of embryonic stem cell-
derived MSCs in a monocyte-dependent mode of action 
[52]. The ability of CardAP-EVs to enhance the propor-
tion of regulatory T cells is supported by the presented 
data, showing increased amounts of active TGFβ in PHA 
and anti-CD3 stimulated PBMC cultures and increased 
IL-10 levels in anti-CD3 PBMCs treated with cytokine 
stimulated CardAP-EVs. Although IL-10 was decreased 
in co-cultures of CD3+ cells with CD14+ cells, we found 
that EV-treated CD14+ cells already secreted IL-1RA 
before adding them to the co-cultures, which is able to 
induce regulatory T cell development [40]. Supportively, 
it was shown in vivo that the application of CardAP cells 
was also increasing the number of regulatory T cells [13].

Based on the discovered immunomodulatory CardAP-
EV effects in our study a potential clinical application 
would be feasible. This might include cardiac diseases like 
myocardial infarction, ischemic heart diseases, heart fail-
ure and atherosclerosis. Moreover, modulation of adverse 
immune processes could be dampened via the observed 
shift of CD14+ cells into a pro-regenerative phenotype 
and the enhanced induction of regulatory T cells in 
selected autoimmune diseases, such as diabetes or arthri-
tis. However, further studies are needed to determine the 
nature of delivered active molecules, like microRNAs. 
Furthermore, we exclusively focused on the in-depth 
characterization of EVs from CardAP cells and in par-
ticular the influence of a clinical relevant inflammatory 
environment. A direct comparison with EVs from other 
immune modulatory active cells, like cardiac or non-
cardiac MSCs, as well as cells with any known immune 
modulating activity was not performed, but would be 
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very interesting to be considered in future studies to dis-
tinguish between broad and specific mechanisms.

Conclusions
We found that CardAP-EVs exhibit a low immunogenicity 
and a capability to lower significantly pro-inflammatory 
immune responses in  vitro. The present study provides 
the first evidence that the priming of CD14+ cells by car-
diac-derived EVs in PBMC cultures is an essential require-
ment to facilitate their immune modulating features, 
as detected by attenuated T cell proliferation and pro-
inflammatory cytokine release (summarized in Fig.  9). 
Overall, these findings would support an allogeneic 
approach of CardAP-EVs to improve cardiac regeneration.

Methods
An expanded version is available in the additional mate-
rial online.

Isolation of CardAP‑EVs
Isolation of EVs was performed by differential centrifuga-
tion of conditioned medium adopted from the described 

method by Théry et al. [27]. Shortly, cryopreserved Car-
dAP cells, which were derived by an outgrowth culture 
from endomyocardial biopsies as previously described 
[9], were thawed and cultured in IDH medium containing 
10% ultracentrifuged human serum (ucIDH), which was 
prepared by centrifuging IDH medium supplemented 
with 50% human serum (German Red Cross, Berlin, Ger-
many) for 24 h at 100,000×g (L7-55 ultracentrifuge with 
SW-32 Ti buckets; all from Beckman coulter, Palo Alto, 
CA, USA).

CardAP cells were grown in ucIDH to a confluence of 
about 80% and washed twice with phosphate-buffered 
saline (PBS; Biochrom). Afterwards, cells were either 
stimulated with 10 ng/mL of human tumor necrosis fac-
tor α (TNFα), human interferon-γ (IFNγ) and interleukin 
1β (IL-1β; all purchased from Miltenyi Biotec, Bergisch 
Gladbach, Germany) or unstimulated in serumfree IDH 
medium. After 20  h under 37  °C and 5% CO2, the con-
ditioned medium was collected and the supernatant 
was stepwise centrifuged at 300×g for 10  min, 2000×g 
for 20  min, 12,000×g for 45  min and at 100,000×g for 
165  min (Allegra® X-15R centrifuge and L7-55 ultra-
centrifuge with SW-32 Ti buckets; all from Beckman 
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Fig. 9  Hypothesized model of the immunomodulatory effects by CardAP-EVs. CardAP cells release EVs under unstimulated or cytokine 
stimulation (CardAPstim). Isolated EVs interact mainly with the CD14+ monocyte subset (Mo), leading to an enhanced CD14+ frequency and a 
changed phenotype marked by a reduced expression of HLA-DR and CD86, but enhanced expression of CD206 and PD-L1. We showed that the 
development of such a CD14+ regulatory myeloid cell subset is mediating the observed attenuated T cell immune responses
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coulter). Then, the received EV pellet was washed with 
.1  µm filtered PBS by repetition of the last ultracen-
trifugation step. At the end, the received EV pellet was 
resuspended in 500 µL .1 µm filtered PBS, transferred to 
low-binding tubes (Sarstedt, Nümbrecht, Germany) and 
stored at − 80  °C till further usage. CardAP-EVs have 
been isolated from six different donors in passage three 
to seven.

Size and concentration determination of CardAP‑EVs
CardAP-EVs were positive-negatively stained [27] and 
morphologically evaluated by transmission electron 
microscopy (TEM) at the EM facility of the Charité-
Universitätsmedizin Berlin. Briefly, 20 µL of EVs were 
placed for 20 min on formavor-carbon coated copper EM 
grids (Electron Microscopy Sciences, Hatfield, PA, USA). 
Afterwards, following steps were performed: 20 min 
in 2% paraformaldehyde (Roth, Karlsruhe, Germany), 
5  min in 1% glutaralaldehyde (Sigma Aldrich, St. Louis, 
MO, USA), several washing steps with water and 10 min 
in freshly prepared 4% uranylacetate 2% methylcellulose 
(both from Sigma-Aldrich) solution. Samples were ana-
lysed by the transmission electron microscope Zeiss Leo 
906 (Carl Zeiss Microscopy GmbH, Jena, Germany) run 
with ImageSP Viewer software version 1.2.7.11 (SYS-
PROG, Minsk, Belarus). For each isolation condition, at 
least 12 individual pictures were accessed for the diam-
eter of EVs by ImageSP Viewer and analysed for their 
diameter distribution respectively. The concentration 
and size distribution of EVs was analysed by nanoparticle 
tracking analysis (NTA). Here samples were measured at 
ZetaView® (Particle Metrix, Meerbusch, Germany) with 
the camera level 14 and according manufacture’s man-
ual. The particle concentration of EVs/1 × 106 CardAP 
cells was calculated. Furthermore, the protein content 
was determined by Pierce™ BCA protein assay (Thermo 
Scientific, Rockford, IL, USA) according to the user 
manual. Briefly, 25µL of standards or samples were incu-
bated together with freshly prepared working solution 
for 30  min at 60  °C in 96-well plates (Costar® Corning 
Incorporated, NY, USA). Afterwards, the absorbance was 
measured at 570 nm with a plate-reader (Mithras LB 940 
and MikroWin Version 4.41 software, both from Berthold 
Technologies, Bad Wildbad, Germany). The amount of 
EV protein/1 × 106 CardAP cells was calculated.

Surface marker expression analysis of cells and EVs by flow 
cytometry
The expression of surface markers on cells was inves-
tigated by staining with multicolour panels of human-
specific fluorescence labelled antibodies according to the 

method previously described [76] and measured by flow 
cytometry. Three different antibody panels were used to 
stain immune cells. PHA stimulated and unstimulated 
PBMCs were stained with following human-specific 
antibodies: CD8-PE (1:200) (Miltenyi Biotec), CD14-
APCCy7 (1:50), CD19-V450 (1:1000), CD3-PerCPCy5.5 
(1:100) (BD Biosciences, San Jose, CA, USA), CD4-APC 
(1:100), CD56–PacificBlue™ (1:50) (BioLegend) and a via-
bility marker in the V510 channel (1:100; LIVE/DEAD® 
Fixable Aqua Dead Cell Stain Kit; Invitrogen/Thermo 
Fisher Scientific, Eugene, OR, USA). To evaluate the 
phenotype of CD14+ cells in PBMC cultures, collected 
PBMCs were stained with human-specific antibodies: 
CD86-PE (1:100), PD-L1-PerCPCy5.5 (1:50), HLA-DR-
PECy7 (1:1000), CD206-APC (1:100), CD14-APCCy7 
(1:50) and V510 viability marker. PBMCs and isolated T 
cells stimulated with anti-CD3 were stained with human-
specific antibodies: CD19-V450 (1:1000), CD14-APCCy7 
(1:50) (BD Bioscience), CD8 PECy7 (1:50), CD4-Per-
CPCy5.5 (1:75), CD56-PacificBlue™ (1:50) (BioLegend) 
and the V510 viability marker. Afterwards the cells were 
washed in FACS buffer, fixed in .5% PFA-supplemented 
FACS buffer and stored in the dark at 4  °C until meas-
urement using the BD FACS-Canto II (BD Biosciences). 
Intracellular staining of Foxp3 was performed according 
the manual of Foxp3/Transcription Factor Staining Buffer 
Set (Invitrogen by Thermo Fisher Scientivic, Carlsbad, 
CA, USA). Firstly, cells were labelled on their surface as 
described above. Secondly, the cells were permeabilized 
and followed by an intracellular staining with anti-human 
Foxp3 AlexaFluor488 (1:400; BD Biosciences).

In contrast to cells, EVs were bound to 4 µm aldehyde/
sulphate beads (Molecular Probes®, Life Technologies, 
Eugene, OR, USA) prior to staining. Therefore, 2  µg of 
EV-protein was incubated with 15 µL of beads in PBS for 
1 h at room temperature. After a washing step, the beads 
were stained with the following human-specific antibod-
ies: CD90-APC (1:50), CD44-PECy7 (1:100), CD73-APC 
(1:50), CD29-PE (1:200), CD63-PE (1:1000), CD81-FITC 
(1:1000), CD9-FITC (1:1000), CD106-PE (1:100), PD-
L1-PerCPCy5.5 (1:50), CD54-APC (1:50), HLA-ABC-
FITC (1:100) and HLA-DR-APC (1:50; all purchased 
from BioLegend, San Diego, CA, USA). Finally, samples 
were washed, fixed in .5% PFA-supplemented FACS 
buffer as described above and stored at 4 °C until meas-
urement on a MACSQuant (Miltenyi Biotec).

All flow cytometry data were analysed with FlowJo 
10.2. software (FlowJo™, LLC, RO, USA). In Additional 
file 1: Figure S5, the gating strategies for measuring T cell 
proliferation in PBMC and isolated T cell cultures as well 
as measuring surface proteins of EVs are shown.
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Mass spectrometry of CardAP‑EVs
The protein composition of CardAP-EVs was analysed 
by liquid chromatography/electron spray ionization 
mass spectrometry (LC/ESI–MS) as described previ-
ously [77]. Therefore, CardAP-EVs from three different 
donors derived either under unstimulated or cytokine 
stimulation were transferred to amico filters (10kDA cut 
off, Merck, Darmstadt, Germany) followed by an over-
night digestion with Trypsin (12  µg trypsin in 50  mM 
ammonium bicarbonate; Promega, Madison; WI USA) 
at 37  °C. Peptide samples were extracted with .1% trif-
luoroacetic acid (Fluka, St. Louis, USA) and measured by 
UPLC (Dionex Ultimate 3000, ThermoFisher, Waltham, 
MA, USA) ESI-QTOF mass spectrometer (Impact II, 
bruker daltonics, Billerica, MA, USA). The obtained mass 
spectra were analysed by searching the SwissProt data-
base (human 553474 sequences, 198069095 residues, 
Cambridgeshire, UK) with MASCOT software (version 
number 2.2, Matrix Sience, Boston, MA, USA). The fol-
lowing parameters were set for analysis: (i) taxonomy: 
Homo sapiens (Human) (20175 sequences); (ii) proteo-
lytic enzyme: trypsin; (iii) maximum of accepted missed 
cleavages: 1; (iv) mass value: monoisotopic; (v) peptide 
mass tolerance 10  ppm; (vi) fragment mass tolerance: 
.05  Da; and vii) variable modifications: oxidation. Iden-
tified proteins were considered for further analysis if 
scores corresponded to p < .05 and if at least two donors 
showed at least one detected peptide. Networks of pro-
tein interactions were visualized with the help of String 
database (version 10.5 http://strin​g-db.org) as connecting 
line. They were considered just for high confidence inter-
action (.77) of active interaction sources by experiments, 
databases, co-expression and co-occurrences.

Immune cell isolation and purification
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from healthy blood donors by using a Biocoll gradi-
ent as described previously [76]. T cells (CD3+ cells) and 
monocytes (CD14+ cells) were enriched from the PBMCs 
by magnetic activated cell sorting (MACS). Here, PBMCs 
were incubated with human-specific CD3 or CD14 
MicroBeads and isolated according to the manufacturer’s 
protocol with LS Columns (all from Miltenyi Biotec). The 
purity of separated cells ranged between 98.0 and 99.6% 
as determined by flow cytometry.

Immune cell proliferation assay
PBMCs or isolated T cells were analysed in a carboxy-
fluorescein succinimidyl ester (CFSE)-based prolif-
eration assay. Therefore, cells were labelled with 5  mM 
CFSE (Molecular Probes®, Life Technologies) in PBS for 
3  min and washed twice in complete RPMI (Biochrom) 
medium containing 10% ultracentrifuged human serum, 

1% penicillin/streptomycin and 1% l-glutamine (Gibco® 
Life Technologies). In 96-well plates (costar®, Corning 
Incorporated) 3 × 105 labelled PBMCs were seeded per 
well and applied either to 12.5 ng/mL of anti-CD3 anti-
body (OKT3; Janssen-Cilag, Neuss, Germany), .5  µg/
mL phytohemagglutin (PHA, Sigma Aldrich, St. Louis, 
MO, USA) or left unstimulated. Unstimulated and anti-
CD3 stimulated immune cells were treated with 12  µg/
mL cytokine-stimulated or unstimulated EVs, while PHA 
stimulated PBMCs just received 6 µg/mL of EVs respec-
tively. As controls, immune cells were treated with PBS 
in equal volume as EVs or left untreated. For the co-cul-
ture of isolated T cells and CD14+ cells, the CD14+ cells 
were 48 h prior to the assay treated with either CardAP-
EV variant, PBS or left untreated. Afterwards, the cells 
were co-cultured with isolated T cells in a 1 to 5 ratio 
and treated with anti-CD3 as previously described. After 
three or 5 days, supernatants and immune cells were col-
lected for further analysis.

Detection of cytokines in immune cell cultures
Supernatants were analysed for IFNγ and active TGFβ 
using an enzyme-linked immunosorbent assay (ELISA; 
ELISA MAX™ Deluxe; BioLegend) according to the man-
ufacturer’s protocol. Samples were measured at 450  nm 
and 570 nm on a plate reader (Mithras LB 940 and Mik-
roWin Version 4.41 software, both from Berthold Tech-
nologies). The cytokines TNFα, IL-1β, IL-17a and IL-10, 
as well as the soluble receptor, IL-1RA, were evaluated 
using a multiplex bead-based assay (LEGENDplex™, Bio-
Legend) according to the manufacturer’s protocol. Mul-
tiplex samples were measured by flow cytometry at a BD 
FACS-Canto II (BD Biosciences) and analysed with LEG-
ENDplex™ version 7.1 (VigeneTech Inc, Carlisle, MA, 
USA).

Determination of recipient cells for CardAP‑EVs
EVs were labelled with 6 µL Vybrant® DiD (Invitro-
gen™, Molecular Probes, Eugene, OR, USA) in 6 mL PBS 
for 10 min on ice prior to the final EV isolation step. A 
negative control (DiD− control) without any EVs was 
processed in the same manner. After the centrifugation, 
both samples were reconstituted in 500 µL 0.1 µm filtered 
PBS and stored at − 80  °C. 5 × 105 unlabelled PBMCs 
were treated with 12  µg DiD+EVs or equal volume of 
DiD− control for 24  h at 37  °C. Afterwards, cells either 
were harvested for flow cytometric analysis as previously 
described or analysed by microscopy. Here, cells were 
washed with PBS, fixed with 4% PFA in PBS and labelled 
with human-specific CD14 APCCy7 antibody (BD Bio-
sciences) and 4′,6-diamidino-2-phenylindole (DAPI; 
Molecular Probes®, Life Technologies). After two wash-
ing steps, cells were examined in 20× magnification with 

http://string-db.org
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the help of an AxioObserver microscope running AxioVi-
sion software (both from Carl Zeiss Microscopy GmbH).

Statistical analysis
All data are shown as median with interquartile range. 
Statistical differences were determined either for two 
groups using Mann–Whitney nonparametric t-tests or 
Wilcoxon matched-pairs signed rank test for paired sam-
ples. More than two groups were tested by a Friedman’s 
Test with Dunn´s Post Test for paired nonparametric 
samples. Results were considered significant with *p < .05, 
**p < .01, ***p < .001. Statistical analysis was performed 
using GraphPad Prism 6.0 software (GraphPad Software 
Inc, San Diego, CA, USA).
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Additional file 1. Additional figures and table.
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