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1. Introduction 
____________________________________________________________________________ 

The cellular RNA levels are determined by RNA synthesis5, or transcription, RNA 

processing6 and RNA decay7,8. RNA synthesis rates regulate how much of the RNA is 

transcribed in a given system whereas, the rates of RNA decay control for how long the 

transcripts will be present in the system. All these steps are highly regulated and some are 

coupled to each other, kinetically or mechanistically9–11, providing substantial flexibility for 

gene expression adaptation to alterations in the environmental conditions.  

 The intermediate step, RNA processing, occurs co-transcriptionally12 and involves several 

biochemical steps necessary for the maturation of the primary transcripts. First, the 5’ methyl 

guanosine cap is added on the 5´ end of the precursor messenger (pre-mRNA)13. Second, most 

of the pre-mRNAs contain introns − sequences with no protein coding potential − that must be 

excised during mRNA maturation through a process called splicing14,15 (Box 1). Finally, once 

transcription through the gene is complete, the pre-mRNA is cleaved and  polyadenylated16 to 

generate its mature 3´end. The biogenesis of microRNA (miRNAs) (Box 2) is also part of a 

distinct RNA processing pathway. The sequence of the primary microRNA (pri-miRNA) 

promotes the formation of the secondary hairpin loop that is further processed to a mature 

miRNA17,18. The contribution of RNA processing in gene expression as well as the importance 

of the processing kinetics has only recently received attention due to the lack of proper tools for 

sufficient analysis. 

 Next-generation sequencing of total RNA (RNA-seq) allows to study the outcome of RNA 

processing at a given time point on a whole-transcriptome level19. Whole cell total RNA 

represents mostly the mature processed transcripts that are more stable and highly abundant, 

while the transcripts with high RNA decay rates are not detected. Therefore, detecting gene 

expression changes caused by treatment, virus infection or alterations in the environmental 

conditions using total RNA quantification can be misleading20. Furthermore, the majority of the 

sequencing reads in RNA-seq are associated with exons derived from highly expressed and 

stable transcripts, whereas only a small percentage of the sequencing reads cover intronic sites 

that are mostly associated with long and slowly processed introns21. Thus, steady-state RNA-seq 

alone provides incomplete information regarding the kinetics of RNA splicing and processing.  

To surmount the limitations of whole cell total RNA-seq, a diverse range of methods have 

been used to measure the kinetics of RNA processing.  In eukaryotic cells the RNA synthesis 

and processing are confined in distinct subcellular compartments. Thus, enriching for RNA 

molecules that are found in the cytoplasmic, nucleoplasmic and chromatin-associated 

compartments prior to RNA-seq, enables the analysis of distinct steps in the lifetime of 

individual RNA molecules22,23. Previous studies using cell fractionation methods showed that 

pre-mRNAs and pri-miRNAs are co-purified with salt, detergent and urea-resistant pellet, while 
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the soluble nuclear extract contains spliced and processed transcripts24–26. A study from our lab 

showed that endogenous Microprocessor activity can be determined using RNA sequencing18. 

Cellular fractionation protocol23 was used to isolate the nuclei and chromatin associated RNA 

enriching for the pri-miRNA transcripts. The Microprocessor cleavage signature was identified 

and the MicroProcessing Index (MPI) was defined as a measure for processing efficiency. The 

MPI is considering the expression levels of pri-miRNA that are reflected by the sequencing 

reads adjacent to the pre-miRNA and the read density of the precursor region. Significant 

depletion of read density at the pre-miRNA region generates negative MPI and corresponds to 

Box 1 | RNA splicing 

_____________________________________________________________________ 

The beginning and the end of an intron is marked by 5΄ and 3΄ splice junctions (SJs) that contain consensus 

sequences100. In metazoas the SJs consensus sequences are poorly conserved with 5΄ SJ GURAGU and a 3΄ SJ 

YAG where R is a purine and Y is a pyrimidine14. During splicing these points undergo “cutting and sewing” in a 

form of two transesterification reactions that are executed by a large ribonucleoprotein complex called 

spliceosome101.The SJs together with the branch point sequence (BPS; YNYURAY, N is any nucleotide) located 

18-40 nucleotides upstream of the 3΄ SJ are recognized in the premRNA by small nuclear ribonucleoproteins 

(snRNPs). U1, U2, U4/U6 and U5 snRNPs are forming the major spliceosome102. In vitro studies on pre-mRNA 

splicing identified a two-step transesterification reaction. The first transesterification step, known as branching, is 

held by a nucleophilic attack by the 2΄OH group of the adenosine found in the BPS on the guanine nucleotide at 

5΄SJ forming a branched RNA intermediate known as intron lariat. This results in a free 5΄ exon and an intron 

lariat-3΄ exon intermediate. In the second transesterification reaction the 3΄OH-group of the 3΄nucleotide end of 

the 5΄ exon attacks the phosphate group of the 3΄exon producing the ligated spliced mRNA and the excised intron 

lariat. During splicing the spliceosome is responsible for the folding of introns to favor the splicing reactions, the 

correct recognition and pairing of the splicing sites. Each snRNP consist of a snRNA (two in the case of U4/U6) 

and a variable number of specific proteins. Additionally, the U1, U2, U4 and U5 contain seven Sm proteins that 

together form an extremely stable Sm core of each snRNP103. Splicing is comprised by three reoccurring steps. 

First, the reactive groups on premRNA are recognized multiple times by trans-factors RNA or proteins to ensure 

the precision of the splicing reaction. Second, the RNA-RNA interactions and many functionally important 

interactions occurring within the spliceosome are mainly weak yet, are stabilized by a combination of multiple 

interactions that allows flexibility and dynamic regulation of splicing. Third, during the spliceosome assembly 

and later catalytic activation many RNP binding partners follow a stepwise mechanism of rearrangements. The 

first spliceosome assembly called complex E, starts from the U1 snRNP interaction with the 5΄ intron through 

base pairing interactions. Serine-arginine-rich (SR) proteins together with proteins of U1snRNP stabilize this 

step. In addition, SF1/BBP protein binds to the BPS while U2 auxiliary factor (U2AF) comprised by two subunits 

of 65 kDa (U2AF65) and 35 kDa (U2AF35) to the polypyrimidine track residing downstream of BPS. U2AF65 is 

in contact with SF1/BBP while U2AF35 binds the AG consensus of the 3΄SJ. The next step is the formation of 

complex A with U2snRNP binding to BPS through base pairing interactions. SF1/BBP binding with BPS and 

U2AF65 is hand over to the U2-associated protein p14 and SF3b155 respectively104. After A complex formation, 

U4/U6 and U5 snRNPs are recruited as preassembled tri-snRNP in a reaction catalyzed by DExD/H helicase 

Prp28 forming complex B. The spliceosome is still catalytically inactive and to become eligible to facilitate the 

first transesterification reaction U1 and U4 need to be destabilized or released from the complex. U6 snRNA is 

free to engage U2snRNA and the premRNA105,106. Several U4, U6 and U5 protein partners are also released 

through the activation process whereas the spliceosome complex B* undergoes the first catalytic step generating 

C complex that contains free exon 1 and the intron–exon 2 lariat intermediate. On this stage the 5΄SJ is positioned 

by U6snRNA through base pairing interactions with the conserved ACAGAG region of U6snRNA. The BSP is 

paired with the conserved sequence GUAGUA of U2snRNA. In addition, U5snRNA interacts with both of the 

exons and contributes to the positioning for the catalysis. Complex C undergoes additional ATP-dependent 

rearrangements before the second catalytic step107. The U2-specific SF3b14a/p14 protein and U5-specific Prp8 

protein are directly at or near the spliceosome’s active site and are important for the progression of the 

catalysis108. After the second catalytic step the spliceosome dissociates releasing U2, U5 and U6snRNPs to be 

recycled for other rounds of splicing and the mRNA is released. The release of the splice product from the 

spliceosome is catalyzed by the DExD/H helicase Prp22109 
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efficiently processed pri-miRNAs, whereas positive MPI values correspond to inefficiently 

processed pri-miRNAs. This study showed that the processing efficiency is highly variable 

among canonical pri-miRNAs and a major determinant for the expression levels of individual 

mature miRNAs. However, the processing efficiency of pri-miRNAs in steady-state chromatin-

associated RNA is not dependent on the expression level of the pri-miRNA. Several features, 

such as sequence-motifs around the precursor pre-miRNA hairpin in the pri-miRNA transcript 

and in the hairpin loop have been shown to be involved in processing efficiency in mammals. 

These sequence features include the UG at the position -14 and -13 at the basal stem, the GC(-

13) 13nt upstream of the pre-miRNA18, the apical loop GUG motifs and CNNC at the positions 

16 -1817.  The variations in pri-miRNA sequence composition are responsible for fine tuning 

miRNA expression levels. 

 RNA-seq analysis from chromatin bound-transcripts showed that many of them are 

accumulated on chromatin and are already processed. In addition, many ncRNAs such as 

snoRNAs and lncRNAs can be found in chromatin due to their role in transcription regulation 

and processing27. Hence, cell fractionation is a method to enrich chromatin-associated 

transcripts regardless of their age. While steady state chromatin-associated RNA sequencing 

approach provides insights into the average processing efficiency of steady-state pri-miRNA 

associated to chromatin, it cannot address the dynamics of this process.  

RNA labelling is another innovative biochemical method used to capture, isolate and 

follow the processing of the newly transcribed RNA in vivo. Nucleoside uridine analogs such as 

4-thiouridine (4sU)28,29, 5-ethylnyluridine (EU) and 5’bromo-uridine (BrU)30,31 are able to 

incorporate in to the newly transcribed RNA in living cells. These analogues can be added to the 

cell media enter the cell membrane and get incorporated into the pool of nucleotide phosphates 

Box 2 | miRNA biogenesis 

_________________________________________________________________________ 

MicroRNAs (miRNAs) are small non-coding RNAs in 22nt length long that act in the cytoplasm to direct post-

transcriptional repression. RNA pol II transcribes the primary miRNA (pri-mRNA); long transcripts that are also 

capped and polyadenylated. The sequence of the pri-miRNA promotes the formation of the secondary hairpin 

loop structure that is recognized by Microprocessor, a protein complex containing an RNaseIII enzyme Drosha 

and its cofactor DGCR8/pasha. Drosha recognizes the double-strand RNA-single-strand RNA junction formed at 

the hairpin base and serves as a ruler by measuring 11 bp from basal ssRNA-dsRNA junction110. Two DGR8 

proteins bind the stem and apical elements to ensure efficient and accurate processing110. Alternative cleavage of 

Drosha leads to the production of isomirs that differ in length and sequence111. The pre-miRNA product of the 

first-step cleavage is a hairpin of ~70nt nucleotides. The 2-nucleotide overhang of the hairpin at the 3´ end is 

recognized by Exportin 5 that transports the pre-miRNA hairpin to the cytoplasm. There, Dicer binds the pre-

miRNA hairpin through the 5´ phosphate, 3´ overhang and loop structure112.  Dicer also acts as a molecular ruler 

that cleaves pre-miRNAs yielding a mature- miRNA duplex with another typical 2 nt 3´ overhang. Alternative 

cleavage by Dicer may also leads to isomirs113. Finally, one strand of the mature miRNA, the “guide” strand 

RNA is loaded into AGO whereas the passenger strand is discarded. The strand RNA with the less stable 5´ end 

will become the guide RNA114.miRNAs recognize their mRNA targets via base-pair complementarity. The 

position 2-7nt of the mature miRNA is called the seed and is the most essential for target recognition115. The 

miRNA target sites are residing within the 3´ UTR of mRNAs that possess strong complementarity to the seed 

region. The AGO-miRNA binding to the target mRNA 3´UTR leads to gene silencing through translation 

repression and mRNA decay116 
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by means of the ribonucleoside salvage pathway32, and further get diffused into the nucleus 

(without going through additional transfection techniques such as electroporation or 

lipofection). After short pulse incubation the cells can be lysed, total RNA is extracted and 

depending on the uridine analog the labelled RNA can be isolated.  

4sU is rapidly taken up by cells and has minimal adverse effects on gene expression, RNA 

decay, protein stability and cell viability. The newly transcribed RNA (4sU-labelled RNA) is 

thiol-specifically biotinylated generating a disulphide bond with biotin and 4sU. The total RNA 

can be separated into labelled and unlabelled RNA with high purity using streptavidin-coated 

magnetic beads. A reducing reagent is then added to the beads to cleave the disulphide bond 

releasing the newly transcribed RNA. 4sU is a labelling analogue used efficiently in many 

studies however, it has been shown that prolonged incubation with 4sU reduced cell growth33. 

EU is similarly incorporated into the nascent RNA and the EU-labelled RNA is separated from 

total RNA by biotinylating of EU in copper-catalysed cycloaddition reaction (often referred to 

as click chemistry) followed by purification on streptavidin magnetic beads. However, 

prolonged incubation of cells with 4sU or EU causes inhibition of cell growth. BrU on the other 

hand, does not cause harmful effects compared to the rest uridine analogues34. BrU is 

incorporated into the cells, converted to BrUTP; similar to 4sUTP, and the nascent RNA is 

labeled by BrU. The BrU-labelled RNA can be isolated using anti-Bromodeoxyuridine (BrdU) 

antibody via simple immunoprecipitation. The BrU-RNAs do not cause misincorporation by 

reverse transcriptase and can be used as templates for further quantitative analysis and deep 

sequencing35. Additionally, in order to study the RNA splicing after the BrU-pulse the BrU can 

be removed with several washes and replaced with excess of uridine containing media. Then 

cells can be lysed at different time points and RNA splicing can be followed by analyzing the 

sequencing reads across the borders of exons and introns36. The analysis can provide 

information regarding RNA transcription and any RNA processing that took place during the  

Figure 1: Schematic representation depicting features contributing to RNA splicing kinetics. 

Distance from TSS and TES, Intron length, SJ score, GC content, ESEs ESSs, and synthesis rates.  
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labelling period. Moreover, incorporating the chasing time points in to the analysis, allows to 

study the fate of the nascent RNA over time and RNA processing30. 

The combination of ultra-short and progressive 4sU labelling time points starting from 5 

minutes to 60 minutes allowed to study the kinetics of RNA processing, in particular RNA 

splicing and alternative splicing (Box 3)36,37. In particular, this method enabled the identification 

of distinct intron classes with different splicing kinetics. Interestingly, each intron class of 

distinct splicing kinetics was characterised by specific intron length, gene length, splice site 

strength, distance from transcription start site, distance from transcription end site, presence of 

ESEs and/or ESSs, synthesis rates, and GC content (Figure 1). The fast-spliced introns were 

mostly characterised by low GC content, strong splice sites score, higher distance from TSS and 

TES, high levels of ESEs and low levels of  ESSs in their upstream and downstream exons36. 

The slow processed introns show higher synthesis rates, have longer sequence and have a higher 

probability to be alternative spliced36.  

The dynamic interactions of the splicing regulatory factors with the spliceosome ultimately 

regulate the decision of constitutive or alternative splicing38,39. However, since splicing of most 

introns occurs co-transcriptionally9–11,40, factors that regulate transcription also affect constitutive 

and  alternative splicing41. The regulation of splicing and the final splicing product derives from 

a combination of RNA Binding Proteins (RBPs) presence, recruitment to their underlying 

sequence and the interactive environment. Direct competition or cooperative recruitments of 

RBPs as well as modulations of the RNA local secondary structure are means of interactions that 

govern the splicing regulation. Altogether, the information in the pre-mRNA sequence and how 

it is interpreted by RBPs is ruled by the so-called “splicing code”. Deciphering the splicing code 

Box 3 | Alternative splicing 

__________________________________________________________________________ 

Studies using RNA-seq discovered numerous alternative isoforms of mammalian transcripts indicating that 

most multi-exon genes are alternatively spliced 117. Alternative splicing allows the production of more than one 

unique mRNA from a single gene117. mRNAs generated from alternative splicing could differ in their UTRs 

and/or coding sequence. Events such as, exon skipping (removal of specific exons), exon inclusion (a choice 

between mutually exclusive exons), the choice of alternative splice sites and intron retention contribute to the 

final outcome of transcript diversity as well as protein complexity. Nearly 95% of human genes have been 

estimated to undergo alternative splicing19 and approximately 37% 118 of the ~ 20,000 human protein-coding 

genes produce multiple protein isoforms. The spliceosome is capable to catalyze both constitutive and alternative 

splicing reactions and the decision is controlled mainly from the spliceosome assembly on the pre-mRNA. 

Human introns are on average ~5kb in length and contain many sequences that resemble the authentic consensus 

splice sites. However, the pseudo-exons are rarely spliced suggesting that the exon- intron definition is not only 

defined by the main consensus splicing sequences but also from other additional splicing regulatory elements 

(SREs)119. According to the location and function the SREs are classified as exonic splicing enhancers (ESEs), 

intronic splicing enhancers (ISEs), exonic splicing silencers (ESSs) or intronic splicing silencers (ISSs). Trans-

acting protein splicing factors are recruited to the SREs and promote or hinder different steps during splicing 

reaction such as early and intermediate steps of the spliceosome assembly120. Constitutive spliced exons are 

enriched in ESEs that recruit members of the as Ser/Arg-rich (SR) protein family each of which facilitate the 

spliceosome assembly. More specifically, SR proteins interact with ESEs to form a barrier and to ensure the 

correct recognition of 5’ and 3’ order preventing prevents exon skipping121. On the other hand, various 

heterogeneous nuclear ribonucleoproteins (hnRNPs) typically recognize ESSs and inhibit splicing. In both cases 

U2 and U1 snRNPs are affected from SRs or hnRNPs presence. The activity of SRs and hnRNPs is context 

specific since SRs could also inhibit splicing when are bound to ISS and similarly hnRNPs can promote splicing 

when are bound to ISEs122. In addition, these two protein families exhibit antagonistic effects on splice site 

recognition with a well characterized example SR protein ASF/SF2 and hnRNP A1123  
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is a necessary step to tackle the biological complexity of the splicing regulation and the splicing-

caused diseases. This PhD thesis conducted extended research to investigate the role of N6-

Methyladenosine (m6A), an RNA modification involved in many RNA processes42–48, in splicing 

kinetics.  

 

 Insights into m6A RNA methylation 

_______________________________________________________ 

All major biological macromolecules including DNA, RNA, proteins and lipids are being 

subjected to enzyme-catalyzed covalent modifications, following their synthesis, that are 

important for their structure, function and stability49. Modified nucleotides in RNA have been 

studied since the 1960s with N6-Methyladenosine (m6A)1, 5-methylcytidine (m5C)2, and 

pseudouridine (Ψ)3 to be the first identified in rRNAs, tRNAs and snRNAs. To date, more than 

100 distinct RNA modifications have been identified within each of the four RNA 

nucleosides50. The multitude of  RNA modifications constitute the 'Epitranscriptome'45 and our 

understanding of this additional regulatory layer of biology resting between DNA and proteins, 

is still in its infancy. 

m6A is a methylation on the nitrogen 6 position of adenosine and is the most abundant 

internal mRNA modification43,45,51. It is deposited by methyltransferase complex with 

methyltransferase-like 3 (METTL3)52 as the main catalytical domain and can be removed by 

demethylases such as the Fat mass and obesity-associated (FTO)53 and AlkB homolog 5 

(ALKBH5)54 (Box 4). Since the early 70s m6A has been estimated to be one per 700-800 

nucleotides and is deposited preferentially within G (m6A) C or A (m6A) C sequence motifs55. 

However, only a portion of these motifs in the transcriptome bear detectable methylation55,56. 

The development of N6-methyladenosine–sequencing (see m6A-Seq) encouraged transcriptome 

wide m6A-mapping studies on the mRNA and/or total RNA level extracted from different 

organisms and tissues. These studies located m6A in at least 8,000 transcripts with a consistent 

m6A peak distribution on coding sequences in long exons, in the 5´UTRs and near stop 

codons43,51 . 

m6A can alter the RNA structure modulating the accessibility of RNA binding factors to 

their RNA sequence57. Although m6A does not change the hydrogen-bonding donors and 

acceptors on the base, the energetics of A•U pair are affected. N6-Methyladenosine in solution 

exists in two isomeric forms, in syn-orientation and in anti-orientation with a preference in syn 

orientation (Figure 2). In the syn-orientation the methyl group is located on the N1 side of the 

base and disrupts Watson-Crick base pairing. In the anti-orientation form the methyl group is on 

the N7 side of the base and the Watson-Crick base pairing is unhindered. However, the anti-

conformation elicits an energetic penalty due to the steric clash between the methyl group and 

N7 that leads to destabilization of m6A•U pairs in comparison to A•U pairs (Figure 2). 
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Thermodynamic measurements revealed that m6A found in duplexes causes a destabilization of 

0.5–1.7 kcal/mol. However, m6A in unpaired positions stacks more strongly than A stabilizing 

the single stranded locations58. In agreement, cellular RNAs show decreased base pairing 

around m6A sites as well as structural transition from paired to unpaired in the proximity of 

m6A modifications 

Figure 2: Conformation and structure of m6A in RNA. 

 (A) Syn methyl orientation is favored over anti when the base is unpaired due to the 

unfavoured steric clash between the methyl group and N7. (B) Multiple pairing configurations 

are possible for m6A paired opposite U. The anti/anti structure has been found in an RNA 

duplex; the methyl group is spring-loaded into the high-energy anti conformation, trapped there 

by pairing with U and surrounding duplex structure. The green highlighted structure is the 

favoured and found structure 58 
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Box 4 | m6A writers and erasers 

_____________________________________________________________________ 

Early studies discovered a large protein complex responsible for m6A methylation that is comprised by 

three components of 30, 200, 875 kDa124. Further analysis revealed that the 200-kDa component contains the S-

adenosylmethionine-binding site on a 70-kDa subunit (The catalytic component was detected by its ability to 

crosslink to [3H]-SAM).  S-adenosynlmethionine (SAM), the enzymatic cofactor that participates in most of the 

methylation reactions in the cell. The 70-kDa subunit called MT-A70 or METTL3 is able to catalyze the transfer 

of a methyl group from the donor substrate S-adenosyl methionine (SAM) to the adenine nucleobases in acceptor 

RNA substrates124. Phylogenetic analysis of METTL3 family identified that METTL14 shares 43% identity with 

METTL3 and is highly conserved in mammals52. Crystal structures of METTL3/METTL14 as the ability to 

methylate RNA substrates125. The interaction of METTL14 with METTL3 complex revealed that METTL14 

mainly functions as a structural scaffold and only METTL3 results in substantial higher methyltransferase 

activity than METTL3 alone. Proteome wide interaction analysis showed METTL14 and METTL3 form a 

complex that is regulated by the association of a WTAP, a pre-mRNA splicing regulator52. WTAP does not have 

a methyltransferase activity however, its presence is necessary for the localization of METTL3 and METTL14 in 

the nuclear speckles. Depletion of WTAP leads to substantial loss of m6A formation on mRNA51. 

Immunoprecipitation-mass spectrometry (IP-MS) was used to identify KIAA1429 (also known as vir-like m6A 

methyltransferase associated or VIRMA) an additional interaction partner of methyltransferase complex that is 

important to mediate the full activity of the complex51. Depletion of  KIAA1429 causes loss of m6A in human 

cell lines as well as Drosophila S2R+ cells51,71.RBM15 and its paralog RBM15B are two additional components 

of the methyltransferase complex. Both of the proteins interact with METTL3 in a WTAP dependent manner and 

knockdown experiments showed a significant reduction of m6A on mRNA level. These findings were also 

supported by studies in Drosophila where a homolog of RBM15, Spenito (Nito) is shown to be important for the 

m6A deposition in flies71,72. METTL16 is the only methyltransferase identified to methylate mRNAs encoding 

the SAM-synthetase MAT2A at 3´UTR. When the SAM cellular levels are depleted MAT2A mRNA is 

stabilized. METTL16 has been suggested to control mRNA stability of MAT2A and the SAM depended MAT2A 

expression96. The vertebrate conserved hairpin (hp1) loop structure found in the 3´UTR of MAT2A mRNA is the 

substrate for the METTL16. Under high concentrations of SAM METTL16 is able to methylate MAT2A mRNA 

leading to its degradation. Fine tuning MAT2A expression through m6A modification may contribute to the 

flexibility and precision of SAM-depended processes. According to the human protein atlas all the five proteins 

are expressed in all the human tissues126. An important finding was the identification of m6A demethylases that 

could be endogenously expressed. Fat-mass and obesity-associated protein (FTO) belongs to the non-heme 

Fe(II)- and α-KG-dependent dioxygenase AlkB family proteins and can catalyse the Fe(II)- and 2OG-dependent 

demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, 

formaldehyde, and carbon dioxide127. Subsequent studies showed that FTO could also demethylate 3-

methyluracil (3mU) in single stranded RNAs that can be found on rRNAs128. Further in vitro studies identified 

FTO demethylation activity can also be applied on m6A residues in RNA. In fact, FTO oxidize N6-

methyladenosine to generate N6-hydroxymethyladenosine as an intermediate modification, and N6-

formyladenosine as a further oxidized product oxidize. These two chemical products have ~3h half-life times in 

aqueous solution under physiological conditions and are found in human cells and mouse tissues129. 

Overexpression of FTO in Hela cells reduced m6A levels on polyA enriched RNA  to ~18% whereas FTO 

knockdown increased m6A levels to ~23%53. FTO is localized in the nucleus and cytoplasm and according to 

FTO-iCLIP data FTO targets are mostly intronic regions with no specificity for the m6A sequence motif 42. FTO 

is highly expressed in the brain and widely expressed in all adult and fetal tissues130 . Soon after FTO discovery a 

second mammalian demethylase was identified from the same protein family, called α‑ketoglutarate‑dependent 

dioxygenase alkB homologue 5 (ALKBH5). Both in vitro and in vivo ALKBH5 has the ability to catalyze the 

removal of the m6A modification on nuclear RNA29. ALKBH5 demethylates preferentially single stranded 

substrates DNA or RNA and similar to FTO, is able to recognize m6A modification on non-consensus sites 30. 

ALKBH5 is enriched in the nucleus, is predominately expressed in testis and has relatively low expression levels 

in other tissues54. Knock down experiments increased m6A levels on mRNA by ~9% whereas ~50-fold 

overexpression of ALKBH5 lead to ~29% of m6A level reduction. The subtle changes on m6A level, similarly to 

FTO, indicate that both demethylases target specific m6A residues on mRNA level. m6A has been characterized 

as a “conformational marker” that regulates the conformational changes of the modified RNA that serves as the 

substrate for the demethylases. Thus m6A its self in different sequence environment profoundly impacts the 

interaction with m6A –recognizing proteins such as ALKBH5 and FTO131. 
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m6A readers mediating m6A function in RNA processing 

____________________________________________________________ 

 The protein factors that mediate the outcomes of m6A on RNAs are important to 

understand the biological role of m6A. m6A modification can be “read” in different forms such 

as by direct recognition from a binding pocket of YTH-domain proteins 59 or indirect 

recognition through a structural change that is caused by the modification57.  In addition, 

hydrophobic modifications such as m6A induce solvation penalty in water and their interaction 

to hydrophobic protein side-chain residues can reduce the solvation penalty (Figure 3). SFSF 

and HNRNP proteins have no modification-specific binding domain however; they selectively 

bind adjacent to m6A residues60.   

The YTH domain is comprised ~ 145 amino acids that fold in to a distinct module with an 

aromatic cage of three tryptophan residues engaging the methyl group of m6A. The aromatic 

rings of the two of the three Trps that bind two m6A are almost parallel to each other where 

m6A adenine moiety is sandwiched by them. Mutations of the aromatic cage residues reduce 

significantly the binding of YTH-domain proteins to m6A RNA probes in vitro60.    

Initial in-vitro pulldown experiments with m6A modified RNA baits identified the 

YTHDF2 and YTHDF3 as m6A binding proteins61.  YTH domain proteins can be divided based 

on their sequence to three major classes DC1; DC2 and the DF family comprising nearly three 

identical paralogs DF1, DF2 and DF3. The three DF proteins and DC2 are primarily 

cytoplasmic while DC1 is located in the nucleus62,63. DF proteins have similar structure and 

contain two domains; a C-terminally located YTH domain and a large low-complexity domain 

containing Glutamine (Q), Asparagine (N) and Proline (P) residues. Low–complexity domains 

are regions of protein sequences with biased amino acid composition, flexible enough to bind 

several different targets64. On the other hand, DC1 contains an YTH domain and multiple 

Figure 3: m6A interaction with m6A readers 

(A) m6A readers such as YTH-domain proteins bind to the m6A directly and selectively lead the 

transcripts to distinct RNA pathways. (B) m6A alters the secondary structure of mRNA, exposing or 

masking potential RNA-binding motifs. (C) m6A introduces a hydrophobic chemical group. The 

hydrophobic amino acid chains or low complexity regions of proteins associate with m6A and reduce the 

solvation penalty. 
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nuclear localization elements and an SH2 domain. YTHDC2 is an RNA-induced ATPase with a 

3΄ to 5΄ RNA helicase activity and it  is found in the nucleus and in the cytoplasm65.   

In the cytosol, YTHDF1 and YTHDF3 act cooperatively to promote ribosome loading of 

their m6A methylated mRNA targets66,67. More specifically YTHDF1 interacts with ribosomal 

subunits and translation initiation factors complex 3 (elF3) promoting translations of YTHDF1 

bound transcripts66. On the other hand, YTHDF2 decreases the mRNA stability of its m6A 

mRNA targets and promotes degradation by recruiting CCR4-NOT deadenylase complex68. 

Over all the YTHDFs proteins have more than 50% common m6A mRNA targets and can 

interact with each other with an RNA independent manner. YTHDF3 seems to interact first with 

m6A mRNA targets and functions as a hub for partitioning its common targets with YTHDF1 

and YTHDF2. YTHDF3 might contribute to RNA specificity while YTHDF1 and YTHDF2 

contribute to RNA binding affinity. In this way the targeted methylated transcripts have 

enhanced translation efficiency and a fast degradation rate in a highly regulated environment 

controlled by the YTHDF proteins67.  

The nuclear m6A reader YTHDC1 promotes exon inclusion in targeted mRNAs through 

the recruitment of the splicing factor SRSF3. In the meantime, SRSF10, another splicing factor 

that promotes the opposite effect, exon exclusion, is competed away by the YTHDC1/SRSF3 

complex. Additionally, YTHDC1 promotes SRSF3 localization to the nuclear speckles while 

repelling SRSF10. Thus, m6A and the stoichiometry of YTHDC1/SRSF3 and SRSF10 regulate 

the final outcome of  their target mRNAs69. Independently from its role in splicing, YTHDC1 

mediates export of methylated mRNA from nucleus to the cytoplasm through SRSF3 and the 

nuclear mRNA export receptor (NXF1). SRSF3 has a lack of biochemical selectivity for m6A in 

vitro yet, its interaction with YTHDC1 and NXF1 couple’s m6A selectivity to in nuclear 

export70. In Drosophila, YT521-B the homologue of YTHDC1, regulates many splicing events 

of targeted methylated transcripts. More specifically, YT521-B binds to m6A residues in the 

Sex lethal mRNA and regulates sex determination by repressing the inclusion of the male-

specific exon of the transcript71. YTHDC1 also, promotes the epigenetic silencing effects of 

XIST, a non-coding RNA important for the silencing of genes on one X chromosome in female 

cells72. XIST m6A residues are essential for the gene silencing effect on X chromosome through 

YTHDC1 that interacts with multiple epigenetic regulators72. YTHDC2 m6A reader is essential 

for male and female fertility in mice for maintaining transcripts essential for early meiotic 

progression37. Furthermore, YTHDC2 enhances the translation efficiency and mRNA 

degradation of its targeted methylated transcripts 42. In addition, YTHDC2 was found to recruit 

the 5ʹ to 3ʹ exoribonuclease XRN1 suggesting a mechanism to destabilize its mRNA targets73.   

Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) is a nuclear reader of 

m6A and binds to RGm6AC sites on nuclear RNAs in vivo and in vitro74. HNRNPA2B1 

regulates alternative splicing of exons in a set of transcripts in a similar manner as METTL374. 
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In addition, HNRNPA2B1 is responsible for the nuclear processing of a subset of miRNAs 

whose maturation is dependent on METTL3 activity74. More specifically, depletion of 

HNRNPA2B1 or METTL3 leads to accumulation of pri-miRNA transcripts in the nucleus. 

HNRNPA2B1 recognizes and binds methylated pri-miRNA transcripts interacts with DGCR8 

by protein-protein interaction and facilitates their processing74.  

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein is a member of a large 

ubiquitously expressed family that bind nascent RNA transcripts affecting pre-mRNA stability, 

splicing, nuclear export and translation. HNRNPC preferentially binds single stranded U-tracks 

(five or more contiguous uridines). M6A modification found within 50 residues away of 

HNRNPC binding site can alter the local RNA structure enhancing the accessibility of 

HNRNPC binding. The mechanism where m6A regulates the binding of RNA binding proteins 

via structural changes is called m6A-switch57. Most of the m6A switches for HNRNPC protein 

are found within intron regions of coding and non-coding RNAs. In coding RNAs the m6A-

switches are located within long exons near stop codons and in the 3’UTR, following m6A 

known topology of mRNA. The gene expression of more than five thousand genes is co-

regulated by the methyltransferase complex and HNRNPC. Furthermore, the splicing of more 

than 200 genes with multiple m6A-switched sites is co regulated from the methyltransferase 

complex and HNRNPC57.  

Heterogeneous nuclear ribonucleoprotein G (HNRNPG) is another m6A reader that uses a 

low-complexity region to recognize an RNA binding motif exposed by m6A modification75. 

The RNA binding motif of HNRNPG is a purine rich region that overlaps with the m6A 

consensus sequence. More than thirteen thousand m6A sites are bound by HNRNPG with more 

than fifty per cent residing in introns. Knock down experiments of HNRNPG and METTL3 or 

METTL14 led to similar gene expression changes as well as alternative splicing events75.  

m6A detection and mapping methods 
_____________________________________________________________________________ 

The first method used to detect base modifications was a combination of chemical or 

enzymatic digestion, radiolabeling and thin-layer chromatography76. Later, this method evolved 

into liquid chromatography coupled to mass spectrometry (LC-MS/MS), that nowadays is used 

to identify RNA modifications and to determine their global abundance77. LC-MS/MS is an 

extremely sensitive and accurate tool able to determine the amount of RNA modifications in the 

range of femtomole. To obtain such high sensitivity it is necessary to relate the sample signals 

with absolute amount of the modification such as spike-in measurements, or internal standards. 

Dynamic multiple reaction monitoring (DMRM) and neutral loss scan (NLS) are the two mainly 

modes used in LC-MS/MS77. DMRM method can be performed by a triple quadrupole mass 

analyzer where multiple precursor ions are chosen by adjusted mass-to-charge ratios and 
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fragmented in the collision cell. The ion products are then detected and the corresponding 

modified nucleosides are rendered in a mass spectrum. DMRM has reduced chemical 

background and it allows the quantification of different nucleosides at the same time. NLS 

allows the analysis of novel modified nucleosides however, the sensitivity is lower than DMRM 

method. The main disadvantage of LC-MS/MS is the inability to provide sequence-level 

information since the RNA is digested into single nucleotides or nucleosides which are then 

subjected for further analysis. 

To gain more information regarding the location of m6A sites, m6A-Seq is applied using 

RNA purified from various tissues or cell lines43,45. Total RNA or mRNA is chemically 

fragmented into ~100nt length and used as input for immunoprecipitation using an anti-m6A 

affinity purified antibody. The methylated RNA fragments are enriched over the randomly 

fragmented transcriptome and subjected to high-throughput sequencing to determine the identity 

of the methylated fragments. The randomly fragmented input is also sequenced and the m6A 

sites are identified using a peak-detection algorithm that finds the relative enrichment of 

methylated fragments over input. m6A-Seq identifies 200nt regions in the transcriptome were 

m6A site could be found. The peak summit is assumed to be in close proximity with the actual 

methylated site43. The limiting factor of m6A-Seq is the resolution since it does not provide 

single nucleotide information. In order to increase the resolution level and at the same time 

validate the m6A sites de novo motif search is applied. m6A motif should have a positional 

enrichment near the m6A peak summits over negative peak regions which are randomly 

generated genomic intervals. Nevertheless, single nucleotide resolution methods can be used for 

higher resolution on the m6A sites. 

Site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and 

thin-layer chromatography (SCARLET) determines the exact location of the m6A residue and 

its modification fraction in single nucleotide resolution for a specific mRNA or long ncRNA78. 

The method starts from total RNA or mRNA isolation and RNase H cleavage guided by a 

complementary 2′-OMe/2′-H chimeric oligonucleotide leading to site specific cleavage 5΄ to the 

candidate site. The point of digestion is radiolabeled with 32P and the 32P-labeled RNA fragment 

is splint-ligated to a 116-nucleotide single-stranded DNA oligonucleotide using DNA ligase78. 

RNAseTI/A treatment is used to completely digest all the RNA, whereas the 32P-labeled 

candidate fragment remains intact. The DNA-32P-labeled candidate is analysed on a denaturing 

gel, excised and digested with nuclease P1 to produce mononucleotides containing 5′ phosphate. 

Finally, thin-layer chromatography is applied to determine the m6A modification status.  

m6A individual-nucleotide-resolution crosslinking and immunoprecipitation (miCLIP) is a 

method that enables single nucleotide resolution mapping of m6A on a transcriptome scale79. 

miCLIP is based on the property of certain m6A antibodies to crosslinked to m6A containing 

RNA fragments and cause a reverse transcriptase-induced mutation or truncation. miCLIP 
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follows the same steps as m6A Seq with an intermediated step of UV crosslink after the 

addition of the m6A antibody. After the elution a proteinase K treatment is followed and the 

m6A RNA fragments are subjected for sequencing. Finally, the mutation sites or C to T 

transitions at position +1 relative to A detected by sequencing are used to find where m6A 

residues are located in the transcriptome after bioinformatic analysis79.  

All the above-mentioned methods to identify m6A lack stoichiometry information and are 

insensitive to the proportion of methylated transcript or sites. m6A-level and isoform-

characterization sequencing (m6A-LAIC-seq80) is a quantitative approach for assessing the 

methylation status on a whole-transcriptome scale. Total RNA or mRNA is subjected to 

immunoprecipitation without prior fragmentation. The eluted methylated transcripts together 

with the supernatant non-methylated transcripts are separated. External RNA Controls 

Consortium (ERCC) spike ins are added to each fraction before sequencing. The m6A levels of 

a gene can be quantified using the ERCC-normalizes RNA abundances in different pools. 

 

 

 

 

 

 

 

 

 

 

 

 Aim 1 | Studying pri-miRNA processing kinetics 

_____________________________________________________________________ 

To address the dynamics of the pri-miRNA processing we established a pulse-chase approach 

that allow us to capture an earlier RNA processing stage than chromatin-associated RNA and 

followed its processing during a 1-h chase. With this we were able to study the pri-miRNAs 

processing kinetics in high resolution through time. Partial results of the presented work have 

been published in3,4 

 

Aim 2 | Nascent m6A role in splicing kinetics 

__________________________________________________________________________ 

In order to expand “the splicing code” and study the role of m6A in splicing kinetics we needed 

to use a technic that could identify m6A deposition on nascent RNA. All the existing technics 

mentioned above are not able to capture nascent RNA or to identify the nascent m6A 

deposition. Thus, two novel techniques have been developed to capture the nascent m6A 

deposition and at the same time follow the RNA processing kinetics. Partial results of the 

presented work have been published in2. 
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2. Materials and Methods 

______________________________________________________________________ 

Lab Equipment 

______________________________________________________________________ 

Cell culture dish 100 x 20mm, 150 x 25mm 

Laminar flow hood 

Cell culture incubator 

Refrigerated microcentrifuge 

1.5 ml Protein LoBind tubes 

1.5 ml DNA Lobind tubes 

5ml Eppendorf tubes 

Refrigerated Eppendorf 1.5 ml shaker 

Agilent 2100 Bioanalyzer  

Qybit ® Fluorometer 

Dynal magnetic separation rack 

Tube Rotator 

Illumina HiSeq 2500 

_____________________________________________________________________________ 

 Chemicals     Supplier, catalog number 

_____________________________________________________________________________ 

Opti-MEMTM I Reduced Serum Medium  Thermo Fisher Scientific, 31985062 

 (-)-5-Bromouridine    Santa Cruz Biotechnology, CAS 957-75-5 

Uridine      Sigma-Aldrich, U3750-25G 

 anti-BrU purified     BD Pharmingen, 555627 

TRIzol Reagent     Thermo Fisher Scientific, 5596-01 

GlycoBlue™      Thermo Fisher Scientific, AM9515 

Tris-HCl, pH 7.5    Alfa Aesal, N25B905 

Igepal CA-6300     Sigma-Aldrich, I8896-100ML 

BSA, acetylated (20 mg/mL)   Thermo Fisher Scientific, AM2614 

Ethanol      Merck, 1.009.832.500 

3M sodium acetate (pH 5.2)   Thermo Fisher Scientific, AM9740 

SUPERase• In™ RNase Inhibitor  Thermo Fisher Scientific, AM2696 

PBS, pH 7.4      Thermo Fisher Scientific, 10010056 

anti-m6A polyclonal antibody   Synaptic Systems, 202 003 

N6-methyl-ATP    TriLink, N-1013 

C11H15N5O7PNa    Sigma-Aldrich, M2780 

Chroroform      Merck, 1.02445.2500 
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Isoamyl alcohol     Serva, 39557.02 

Isopropanol      Merck, 1.09634.2500 

DMEM,     Thermo Fisher Scientific, 11965092 

Fetal Bovine Serum     Thermo Fisher Scientific, 10500064 

Protein G/A Dynabeads    Thermo Fisher Scientific, 10004D/ 10002D 

Distilled water      Thermo Fisher Scientific, 10977049 

EDTA pH 8,0 (0,5 M)    AppliChem GmbH, A3145,1000 

NaCl      Sigma-Aldrich, S3014-1KG 

ZnCl2      Sigma-Aldrich, 96468 

anti-METTL3 Polyclonal antibody  Proteintech, 15073-1-AP 

ERCC RNA Spike-In Mix   Thermo Fisher Scientific, 4456740 

_____________________________________________________________________________ 

Kits      Supplier, catalog number 

_____________________________________________________________________________ 

GoScript Reverse Transcriptase   Promega, A5003 

GoTaq qPCR Master mix   Promega, A6001 

Qubit® RNA HS Assay Kit   Thermo Fisher Scientific, Q32852 

Agilent RNA 6000 Pico kit    Agilent, 5067-1513 

HiPerFect Transfection Reagent   Qiagen, 301704 

T7 RNA Polymerase    Thermo Fisher Scientific, 18033019 

TruSeq Stranded mRNA Library Preparation Illumina, 20020594 

SuperSignal West DURA Extended Duration Thermo Fisher Scientific, 10445345  

____________________________________________________________________________ 

SiRNAs      Integrated Device Technology, Inc. (IDT)  

____________________________________________________________________________ 

NAME siRNA Target Sequence 5’→3’ 

Mettl3-1 5’-ACUGCUCUUUCCUUAAUA 

5’-AAACAUGUAUUAAGGAAA 

Mettl3-2 5’-CCAACAGUCCACUAAGGA 

5’-CUGUUGUUCCUUAGUGGA 

Mettl3-3 5’-AGGCAAGGAACAAUCCAU 

5’-UUCAACAAUGGAUUGUUC 

Mettl3-4 5’-AGCCAAGGAACAAUCCAU 

5’-UUCAACAAUGGAUUGUUC 

Control NCI IDT controls 
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Methods: 

_______________________________________________________________________ 
 

“Cell culture and BrU-chase Seq. 

HEK293 cells were cultured in DMEM growth-medium supplemented with 10% Fetal Bovine 

Serum (FBS) under normal growth conditions (37°C and 5% CO2). The day before bromouridine 

(BrU) labelling ~2.0 x 10^6 cells were seeded in 100 mm plates with 10ml media, one plate for 

each time point. Cells were 70-80% confluent before the addition bromouridine (BrU). BrU (-5-

Bromouridine cat.no. CAS 957-75-5 Santa Cruz Biotechnology) was added to a final 

concentration of 2 mM to the media and cells were incubated at normal growth conditions for 15 

minutes (pulse). Cells were washed thrice in PBS and either collected directly (0 minutes chase 

time point) or chased in conditional media supplemented with 20 mM uridine (Sigma cat.no 

U3750-25G) for 15, 30 and 60 minutes. RNA was purified using TRIzol following manufacturer’s 

instructions. In this step we followed the protocol of (Paulsen et al., 2013) with some 

modifications. 35ul of anti of anti-mouse IgG magnetic Dynabeads (Invitrogen) were transferred 

to a 1.5ml microfuge Protein Low binding tube and washed 3 times with BrU-IP 1X buffer (0.1% 

BSA in RNAse free PBS). After the final wash, the beads were resuspended with BrU-IP 1X 

buffer supplemented with SUPERase• In™ RNase Inhibitor 1:2000 together with BrdU antibody 

(5μg of antibody per 100 μg RNA). Antibody-beads mixture was incubated for 1hour at room 

temperature with gentle rotation following 3 washes with 1X BrU-IP. 150 μg RNA was used for 

each BrU-IP and heated up for 4 minutes at 65°C prior to IP. The same amount of unlabeled total 

RNA was used as a negative control. 5X BrU-IP (0.5% BSA 5X PBS supplemented with 

SUPERase• In™ RNase Inhibitor 1:2000) was added to the RNA to have a final concertation of 

1X. RNA-antibody-beads mixture was incubated for 90 minutes at room temperature with gentle 

rotation in a final volume of 800 μl. The beads were washed thrice with 800 μl 1X BrU-IP at room 

temperature. For all wash steps, with the exception of the elution step, the beads were washed for 

5 min rotating then placed on a magnetic rack and the wash buffers were discarded.  At the last 

wash the Protein low binding tubes were replaced with DNA LoBind tubes.  For elution 200 μl 

of Elution buffer (0.1% BSA and 25 mM bromouridine in PBS) were added directly on the beads 

and the tubes were incubated for 60 minutes with continuous shaking (1100 rpm) at 4 °C. The 

supernatant (eluate w/o beads) was transferred to a new tube and RNA was precipitated by adding 

1/10 volumes of 3M sodium acetate (pH 5.2) and 3-4 volumes of 100% ethanol. RNA was allowed 

to precipitate at −80 °C overnight. RNA pellet was washed twice with 75% ethanol and 

resuspended in RNase-free water. RNA quality was analyzed using Agilent 2100 Bioanalyzer 

with an Agilent RNA 6000 Pico kit according to the manufacturer’s instructions.  
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Filtering and annotation of miRNAs 

microRNAs used in the analysis were filtered to include only high-confidence microRNAs 

showing absence of other non-coding RNA species in the region; folding of the pre-miRNA into 

a hairpin; and homogenous reads in small-RNA sequencing data for both the 5’ and 3’ mature 

miRNA. We required conservation of the hairpin structure in orthologous members of the gene 

family for conserved microRNAs (as defined in mirBase) including mouse or other mammals and 

conservation of the seed in more than 50 per cent of the orthologous genes. The miRNAs used is 

from (4) and includes 229 miRNAs; 138 classified as broadly conserved; 52 classified as weakly 

conserved; and 39 as non-conserved. We determined the exact Microprocessor cleavage sites 

using the annotation of the 5p and 3p miRNA strands from miRBase and mapped them onto the 

sequence of the pre-miRNA. 

 

TNT-seq 

For one TNT-seq sample ~ 25 150mm plates were used for BrU labelling. RNA was metabolically 

labelled with BrU for 15 minutes and RNA was isolated as described above. RNA concentration 

was adjusted to 2μg/μl with nuclease free water. 18 μl of RNA was added to thin-walled 200µl 

PCR tube following addition of 2 μl of 10X fragmentation mixture (containing 800 µl of RNase-

free water, 100 µl of 1M Tris-HCl pH 7.4 and 100 µl 1M of ZnCl2). After vortex and quick 

spinning, the tubes were incubated in 94 °C for 3.5 minutes in a preheated thermal cycler block 

with the heated lid closed. Tubes were quickly removed from the thermocycler and placed on ice 

following addition of 2 µl of 0.5 M EDTA. After vortex and quick spin the RNA was collected 

in a tube to continue with for RNA precipitation using 1/10 volumes of 3 M sodium acetate (pH 

5.2), 3-4 volumes of 100% ethanol. RNA was allowed to precipitate at −80 °C overnight. The 

following day tubes were centrifuged at full speed for 30 minutes at 4 °C. RNA pellet was washed 

twice with 75% ethanol and resuspended in 400-500 μl of RNase-free water. Validation of post 

fragmentation size (~100 nt) distribution was analyzed using Agilent 2,100 Bioanalyzer with an 

Agilent RNA 6,000 Pico kit according to the manufacturer’s instructions. 400 μg-600 μg 

fragmented BrU labeled total RNA was used for each BrU-IP. BrU-RNA isolation was performed 

as described above. The BrU-IP recovery was approximately 0.09-0.16% of input. 4.5 μg of BrU 

fragmented RNA was used as input for the m6A immunoprecipitation. 35 μl of Dynabeads® 

Protein A (Invitrogen) per sample was transferred to a 1.5 ml microfuge Protein LoBind tube and 

washed 3 times with 1X m6A-IP (500 mM NaCl, 0.1% NP-40, 10 mM Tris-HCl, pH 7.5). After 

final wash the beads were resuspend in 800 μl 1X m6A-IP buffer supplemented with SUPERase• 

In™ RNase Inhibitor 1:1000.  1μg of affinity purified anti-m6A polyclonal antibody (Synaptic 

Systems) per 2.5 μg BrU-RNA was added to the beads and incubated for 60 minutes at room 

temperature with gentle rotation. As a negative control, we used Dynabeads® Protein A magnetic 

beads bound to an irrelevant IgG. Beads were washed 3 times with m6A-IP 1X buffer for 5 min 
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on the rotator.  5 μg of BrU Fragmented RNA was used as input. RNA was heated up for 4 minutes 

at 65°C. 5X m6A-IP buffer (50 mM Tris-HCl, 750 mM NaCl and 0.5% (vol/vol) Igepal CA-6300 

supplemented with SUPERase• In™ RNase Inhibitor) was added to have the RNA in 1X m6A-

IP buffer. RNA-antibody-beads mixture was incubated for 2h at 4°C with gentle rotation in a final 

volume of 0.8ml in Protein low binding tubes. Three washing steps followed using m6A-IP 1X 

buffer (1st and 2nd wash) and high salt m6A-IP buffer (500 mM NaCl, 0.1% Igepal CA-6,300, 10 

mM Tris-HCl, pH 7.5) (3rd wash). For all wash steps, with the exception of the elution step, the 

beads were washed for 5 min then placed on a magnet and the wash buffers were discarded. At 

the last wash the Protein low binding tubes were replaced with DNA LoBind tubes. For elution 

80 μl of Elution buffer (1X m6A-IP buffer + 6.7 mM m6A nucleotides) were added directly on 

the beads and the tubes were incubated for 1hour with continuous shaking (1100rpm) at 4 °C. The 

beads were spin down and the supernatant was transferred to a clean tube. After the second round 

of elution the eluted RNA was precipitated using ethanol precipitation as described above. RNA 

pellet was resuspended in 15 μl RNase-free water and using Qubit® RNA HS Assay Kit we 

measured the RNA concentration following manufacturer’s instructions. 

 

qTNTchase-seq, qPCR, RT-PCR. 

RNA was metabolically labelled with BrU for 15 minutes and chased for 30 minutes as described 

above. RNA was purified using TRIzol following manufacturer’s instructions. 200 ug total BrU 

labeled RNA was used as Input for the BrU-RNA isolation. After the elution step (200 μl of 0.1% 

BSA and 25mM bromouridine in PBS) we added 50ul of 5X m6A-IP buffer.  4 μg (1μg ab per 

500ng RNA) m6A ab were coupled to 40ul Dynabeads® Protein A as described above, 

resuspended in 550 μl m6A-IP 1X buffer and added to the RNA mixture. RNA-antibody-beads 

mixture was incubated for 60 minutes at room temperature with gentle rotation. The supernatant 

was kept and RNA was isolated with TRIzol. The beads were washed 3 times for 5 minutes at RT 

(twice with low salt m6A-IP 1X buffer and last wash high salt m6A-IP 1X buffer). We eluted the 

RNA captured by m6A ab by competition as described in TNT-Seq section. cDNA synthesis was 

performed using the same amount of RNA (10-20 ng) from all fractions (Input BrU-RNA 0 min, 

Input BrU-RNA 30 minutes chase, Supernatant m6A-neg 0h, Supernatant m6A-neg 30 min chase, 

IP m6A-positive 0 min, IP m6A-positive 30 min chase). RT-PCR was performed using Q5 Hot 

Start High-Fidelity DNA Polymerase New England Biolabs with initial denaturation 98 °C 30s, 

then 32 cycles of 98 °C 10 s, 58 °C 20 s and 72 °C 55 s and final extension 72 °C 2 minutes. PCR 

products were resolved on agarose gel. Spike-in controls were in vitro transcribed using T7 RNA 

Polymerase Invitrogen following manufactures instructions.  For the methylated transcripts N6-

methyl-ATP (tri-link) was used in a ratio 4:1 to ATP in the in vitro transcription reaction. GFP 

and Luciferase sequences were used as template for the RNA transcription. For each qTNTchase-

seq sample before m6A IP, in vitro–transcribed transcripts with and without m6A modification 
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were mixed into the samples as spike-in controls at the indicated percentage of m6A-modified to 

m6A-unmodified transcript (Molinie et al., 2016).  For all samples after BrU-IP but before m6A-

IP we added 2.5x107 copies from each spike included: 0% GFP, and 20% luciferase. For the 

sequencing; Post- qTNTchase seq 1 μl of 1:2000 dilution of the universal ERCC spike-in control 

A (Invitrogen) was added to each fraction. 

 

SiRNA transfection 

HEK293 cells were transfected with four different siRNAs targeting METTL3 transcript (see 

Supplemetary table 1) using HiPerFect Transfection Reagent from QIAGEN. In brief, reverse 

transfection was performed using 1 x 106 cells for a single 100mm plate. Cells were seeded in a 

final 4ml final volume of media without antibiotics. 12ul of transfection reagent together with 

siRNAs (25nM final concertation) were incubated at room temperature in 1ml Opti-MEMTM I 

Reduced Serum Media after mixing for 20 minutes.  The transfection complexes were added 

dropwise into the plate. 16 hours after transfection 5 ml of cell culture media were added to each 

plate. 24 hours after the transfection we performed a second round of transfection using the same 

amount of transfection reagent and siRNAs as the first round. 40 hours after the first transfection 

5 ml of cell culture media were added to each plate. We analyzed knock down efficiency with 

western blot (anti-METTL3 Polyclonal antibody, protein tech Catalog.number: 15073-1-AP) and 

continued with BrU-Chase Seq 72 hours after the first round of transfection. The experiment was 

performed in duplicates.  

 

Transcript m6A level and splicing index 

The m6A level per transcript from the qTNTchase-seq experiment were calculated as described 

in (Molinie et al., 2016). The ratio of the RNA abundance for each transcript between the eluate 

and the supernatant was represented by the ratio of the overlapping strand-specific RNA read 

counts normalized to the ratio of the reads of the ERCC RNAs. We used the log2-transformed 

read counts of ERCC RNAs to fit a linear regression model, computing the eluate ERCC reads as 

a function of the supernatant ERCC reads with a coefficient of 1(not shown). The log2 ratio 

between ERCC eluate counts and supernatant counts was indicated by the intercept of the 

regression formula. Only the ERCC RNAs with at least 100 read counts were used in this pipeline.  

M6A level = E/(E+S*2^intercept). Eluate read counts (E), supernatant read counts (S), and the 

intercept of ERCC regression (intercept). We assessed the splicing efficiency per transcript as the 

ratio of the overlapping strand-specific split reads (extracted by using bedtools coverage –s –F 

1.0) to all (split + non-split) reads covering the transcript. 
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Quantitative real-time PCR 

RNA was reverse transcribed using the Goscript reverse transcription Promega A500. cDNA was 

quantified on an 7900HT Fast real time PCR system (Applied Biosystems) using the Go Taq 

qPCR Master Mix  Promega (A6001). The PCR was carried out using a standard protocol with 

melting curve. Primers for unspliced RNA transcripts were design to span exon – intron 5’ splice 

junction and exon – exon boundaries for spliced RNA transcripts. Splicing efficiency (SE) was 

determined by the ration of   2^-CTspliced / (2^-CTspliced+2^-CTunspliced) for each timepoint. SED was 

determined by the ration of   SED = 1/ ((1- SE0 min) * (1- SE60 min)) 

 

RNA sequencing and data analysis  

For the BrU-Chase Seq, the library preparation was performed using the TrueSeq Stranded Total 

RNA Kit (Illumina). Sequencing was performed on an Illumina HiSeq 2500 instrument to obtain 

around 200M reads per sample. For the TNT-Seq, 100 ng of Input BrU-labeled fragmented RNA 

and 100 ng of TNT-IP eluate RNA were subjected to library preparation following the TruSeq 

Stranded mRNA Library Preparation Kit instructions with some modifications. The protocol 

started from the first strand synthesis step and 3X Clean-NA-Beads beads volume was used for 

the buffer exchange to include shorter RNA fragments. Mapping of strand-specific reads to 

GRC37 genome assembly (hg19) was done using STAR (Dobin et al., 2013) and only uniquely 

mapped reads were kept for further downstream analyses. To extract read coverage per nucleotide 

position across the genome the strand-specific bed files were sorted by chromosome and start 

coordinate and converted into wig files with bedtools genomecov using –scale to normalize for 

library size. To assess the genome-wide correlation of the m6A signal from replicates, the ratio 

of normalized read counts per nucleotide position of IP to Eluate, rendering the m6A signal, was 

converted to bigWig using wigToBigWig (UCSC) and then bigWigCorrelate (UCSC) was used. 

To extract the m6A signal per nucleotide position in given intervals, the depth at each nucleotide 

position of the examined intervals (e.g. within +/- 500 bp windows around anchor points) was 

extracted using bedtools coverage –d –s from the m6A Input and the respective m6A IP, and then 

the ratio m6A IP/Input multiplied by (total number of mapped reads in the Input/ total number of 

mapped reads in the IP) was calculated. Then the average m6A signal was extracted at each 

nucleotide position from all examined entries. 

 

m6A peak calling 

We called m6A peaks based on a previously published pipeline (Ke et al., 2015; Ke et al., 2017). 

We first divided the genome into 20 bp non-overlapping bins with bedtools windowMaker and 

extracted the strand-specific read coverage from m6A Input and IP for all bins using bedtools 

coverageBed –s. Fisher’s exact test p-value was extracted from the matrix (bin Input read counts, 

bin IP read counts, total number of mapped reads in the Input, total number of mapped reads in 
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the IP) and adjusted by the Benjamini and Hochberg method to determine the false discovery rate 

(FDR). Only windows with a p-adjusted < 0.05 in all three replicates and fold enrichment (score) 

minimum four in at least two out of the three replicates were kept as significant. Adjacent 

significant bins were merged using bedtools mergeBed into broader peaks (finally 95 % of the 

peaks were in the range 20-100 nt long). In the case of broad peaks, the peak summit is the 

midpoint of the 20 nt window with the maximum score, or the midpoint of the interval of merged 

adjacent bins sharing same maximum score within the same peak. In a few cases, a broad peak 

was assigned more than one summits if it contained non-adjacent windows sharing the same 

maximum score, finally yielding 58102 m6A peaks and 58311 peak summits. Custom scripts 

were written in awk programming language.  

 

De novo motif search 

De novo motif search was run using HOMER (Heinz et al., 2010) within +/-150 nt intervals 

around the peak summit of 5651 best scoring exonic m6A peaks (minimum fold enrichment 20) 

and the same number of top best intronic peaks. Control sequences were generated from the 

respective input sequences with the scrambleFasta.pl script. Then, de novo motif search was run 

with ‘findsMotifs.pl input_sequences.fa fasta –basic –rna –len 6,7,8 –fasta 

scrambled_sequences’. The results were inspected in terms of enrichment, significance and the 

presence of common consensus sequences, with the four motifs displayed in Figure S1B being 

the most represented. Those were used to scan the input sequences for the presence of match 

occurrences using the ‘dna-pattern’ search tool from the RSAT suite (Medina-Rivera et al., 2015) 

with parameters ‘search given strand only, prevent overlapping matches, origin-start, return 

flanking nucleotide positions 2’. Motif search was also performed in the same number of random 

genomic intervals as a control, generated with bedtools (–length 300 –number 5651). The matches 

were aligned and the logo was generated with WebLogo3 (Crooks et al., 2004) . 

 

Splicing kinetics and predictive models 

To assess splicing efficiency we extracted the splicing index value Ѳ ψ  as in (Mukherjee et al., 

2017) . Ѳ equals to the ratio of the split reads mapping to the 5’ and 3’ SJ of an intron divided to 

the sum of split plus non-split reads (schematic representation in Figure 7A). The Ѳ value 

(representing Splicing Efficiency, SE) was extracted from all pulse-chase time points, for 13,532 

introns with at least five reads coverage in both 5’ and 3’ SJ, and used in k-means clustering with 

k = 3 to call three groups of distinct splicing efficiency (fast, medium and slow) (Figure 7E). The 

Splicing Efficiency Dynamics metric was calculated as SED = 1/ ((1.001- Ѳ 0 min) * (1.001- Ѳ 

60 min)) (plotted in the log scale for the three groups in Figure 7D). To assess constitutive versus 

alternative splicing we extracted the ψ value as in (Mukherjee et al., 2017) . ψ is the ratio of 

constitutive split reads assigned to a given intron’s 5’ and 3’ SJ to all split reads (i.e. split reads 
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from the given intron 5’ SJ to any downstream 3’SJ and from the intron’s 3’ SJ to any upstream 

5’ SJ, as depicted in Figure 7A). Therefore, ψ is in the range 0 to 1 with 1 meaning 100 % 

constitutive splicing. We then used the ψ value extracted from the pulse-chase time point 60 min 

(closer to steady-state) to perform k-means clustering with k = 2 and define two clusters of 

introns, constitutive (n = 11836, minimum ψ 0.5294) and alternative (n = 1696, maximum ψ 

0.5278). In the case of introns classified as alternative spliced (ψ < 0.5278) upstream or 

downstream exon skipping takes place. The following features were used in logistic and linear 

regression models to predict splicing efficiency kinetics and alternative versus constitutive 

splicing: The 5’ and 3’ splice site underlying sequence scores extracted using MaxEntScan 

(http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html); distance of the 5’ SJ to the 

annotated transcript first start site (TSS) and of the 3’ SJ to the last end site (TES); expression 

calculated as coverage (reads per kb) from the m6A Input RNA-seq (15 min BrU pulse) for the 

whole transcript interval where the intron belongs to; intron length; intron overall m6A signal 

extracted as the strand-specific m6A IP read coverage divided to m6A Input read coverage, 

normalized by (total number of mapped m6A Input reads * total number of mapped m6A IP 

reads); m6A signal calculated the same way at the 5’ SJ 100 nt exonic boundary, 5’ SJ 100 nt 

intronic boundary, 3’ SJ 100 nt exonic boundary and 3’ SJ 100 nt intronic boundary.  

To predict fast versus slow or alternative versus constitutive splicing, logistic regression was 

performed with R function glm (family = binomial) (all parameters apart from the sequence scores 

were first log scale transformed and all were then standardized). To evaluate the fitting of the 

model and assess discrimination, the Receiver Operating Characteristic Curve (ROC) and the area 

under the curve (AUC) were calculated with the R package ROCR (Sing et al., 2005). Linear 

regression to predict splicing efficiency using the continuous value ψ (in the range 0 to 1) was 

performed with R function lm().  

 

CLIP data analysis 

We used CLIP data for SRF3 and SRSF10 from69(Xiao et al., 2016)(GEO GSE71096). To 

calculate the relative SRSF10/SRSF3 binding per nucleotide position, we used the ModeScore 

column from the GEO submitted PARalyzer output file, which is the score of the highest signal 

divided to the sum value (signal+backround) and ranges from 0.5 to 1. We first extracted the 

coverage for each SRSF per nucleotide position in the +/500 nt window around 5’ or 3’ SJ, or per 

bin for the length-binned introns (introns with length 1000-10000 nt, binned into 1000 non-

overlapping windows), by using bedtools coverage –s –d. Nucleotide positions with overlapping 

CLIP binding sites were assigned the cluster’s score (ModeScore column) whereas nucleotide 

positions with no CLIP data overlap were assigned a pseudo-score 0.1. We then computed the 

ratio SRFS10/SRSF3 per nucleotide position or per bin of all analyzed loci and the metagene 
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analysis extracting the average ratio SRFS10/SRSF3 per nucleotide position or per bin was run 

separately for each of the subgroups fast/medium/slow or constitutive/alternative. 

_____________________________________________________________________________ 

Primer Sequences   Integrated Device Technology, Inc. (IDT)   

_____________________________________________________________________________ 

NAME Sequence 

CDKN1B unspliced Forward AATAAGGAAGCGACCTGCAA 

CDKN1B unspliced Reverse atacgccgaaaagcaagcta 

CDKN1B spliced Forward AATAAGGAAGCGACCTGCAA 

CDKN1B spliced Reverse GGGGAACCGTCTGAAACAT 

LMAN2 unspliced Forward GTGACTGCGGATATAACTGACG 

LMAN2 unspliced Reverse ctcgccctcactcttcactc 

LMAN2 spliced Forward GTGACTGCGGATATAACTGACG 

LMAN2 spliced Reverse ATAGTGCTGCCCTGGAAGTC 

NASP unspliced Forward CATGGAGTCCACAGCCACT 

NASP unspliced Reverse tgccttaagctttccacagtc 

NASP spliced Forward CATGGAGTCCACAGCCACT 

NASP spliced Reverse GCAGATGTAGAAGGAGCAGGA 

ARF4 unspliced Forward CCTCCCTCTTCTCCCGACT 

ARF4 unspliced Reverse attgtggagaccctgccttt 

ARF4 spliced Forward CCTCCCTCTTCTCCCGACT 

ARF4 spliced Reverse TTGTCTTGCCAGCAGCATC 

C8orf33 Forward TAAGAAGAAAACGCGGAACAGG 

C8orf33 Reverse GGTGGGTTTCTGCCTCTTGA 

MSN unspliced Forward TCAAGAAGCTGAAGAGGCCA 

MSN unspliced Reverse agttcccataatcccagccc 

MSN spliced Reverse CTGTCAGCTCTGCCATTTCC 

SPTBN1 unspliced Forward CTGGATGAGCGAGCAGGAG 

SPTBN1 unspliced Reverse aagtgtgcccagggtttgaa 

SPTBN1 spliced Revers GCATAGTCCTCCACAGCTTGT 

NOL7 unspliced Forward TCCTGAAGGAGAAGAGGAAGC 

NOL7 unspliced Forward aattctccctgagccgagtt 

NOL7 spliced Forward AACGCTCCTGAAGGAGAAGA 

NOL7 spliced Reverse TCCAAAATAGTGTCTGGAAGGA 

Pri-let7a1/d/f1 Forward GCATTTGTTTATGGCCTGGA 

Pri-let7a1/d/f1 Forward CACCCCCATCCAGTGTACTT 

Pri-let7a1 unprocessed F ACACCCACCACTGGGAGATA 
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Pri-let7a1 unprocessed R GCCTGGATGCAGACTTTTCT 

Pri-miR221/2 Forward AGCAAAGAGAACACCAATCCTGT 

Pri--miR221/2 Reverse GTTCCAAGCTTTCCTCCCATGAT 

Pri-mir221 unprocessed F ACTTGCAAGCTGAACATCCA 

Pri-mir221 unprocessed R TGCCTAACGAACACAGAAATCT 

 

” published in ref.2–4. 
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3. Results   

_____________________________________________________________________________ 

3.1. Set-up of nascent RNA pulse-chase sequencing3,4 

RNA-seq provides an average view of RNA in the cell or in the respective purified 

subcellular compartment, reflecting a mixture of RNA of different age compared to the time of 

Figure 4: Set-up of nascent RNA pulse-chase sequencing 

(A) Workflow for RNA pulse-labeling with BrU and chase to follow nascent RNA. (B) Calibration curve for 5ug 

BrdU antibody. (C) Bioanalyser Results from BrU-RNA labelled for 30 minutes and 15 minutes. (D-G) Bioanalyzer 

results for BrU-Chase Seq time points 0, 15,30, 60 minutes. The indicated RNA fragmentation time is according to 

TruSeq Stranded mRNA library prep kit protocol 
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transcription. To follow RNA from transcription through processing, nascent RNA can be 

obtained by labelling actively transcribed RNA with a pulse of a modified nucleotide analogue 

that allows for subsequent purification.  

For this study we chose BrU analog to label nascent RNA not only because it does not 

affect cell growth, but also because it is a simple and a cost-effective technic; ideally suited for 

in vivo studies30. We established BrU-Chase Seq (Figure 4A) from ref.81 with some 

modifications that improved the quality of the BrU labelled RNA. First, we reduced the BrU 

pulse time to 15 minutes instead of 30 minutes. The 15 minutes labelling time was the fittest 

and earliest time point from a series of calibrating timepoints that gave enough nascent RNA as 

output for further experiments. We compared the Bioanalyser results from isolated BrU labelled 

RNA of 30 minutes versus 15 minutes pulse and observed that the length distribution of the two 

timepoints differ. More specifically, the majority of the nascent transcripts isolated from the 15 

minutes pulse are longer than 4000 nt whereas the majority of transcripts from 30 minutes pulse 

are approximately 2000 nt (Figure 4B). This implicates that within 30 minutes pulse, the 

isolated RNA is enriched in many transcripts that undergo processing. Second, we calibrated the 

amount of Total labelled RNA (Input) that is needed to saturate 5 μg of BrdU antibody and 

found that ~50 μg Total labelled RNA should be used per 5 μg BrdU antibody (Figure 4C). 

Third, we eluted the BrU labelled RNA bound to the antibody via BrU competition rather than 

heating for 10 minutes in 80 °C. In this way, we isolate only the RNA molecules that are bound 

to the BrdU-coupled beads and at the same time, we avoid any degradation of the RNA caused 

by high temperatures.  Fourth, the eluted BrU labelled RNA from all time points was subjected 

to Bioanalyser analysis for quality check. In addition, according to the Bioanalyzer results, 

RNA was fragmented during different incubation times at 94 °C (Figure 4D-G) prior to the 

library preparation. Finally, we subjected BrU labelled nascent RNA from all chased time points 

obtained from HEK293 cells to next-generation sequencing using an Illumina Hi-Seq 2500 to 

obtain around 200 M reads per sample. In our data we did not observe rRNA enrichment in the 

eluted BrU-labelled RNA (Figure 4D-G). Given that the rRNA synthesis and ribosome 

biogenesis are regulated to meet cells growth rate and proliferation and that the average 

doubling time of HEK293 is 24h, it is unlikely that within 15 minutes BrU pulse we could 

capture rRNA transcription82. (See Appendix: Metabolic Pulse-Chase RNA Labeling for pri-

miRNA Processing Dynamics Chapter published in3 for further details regarding the protocol). 

 

3.2. In vivo profiles of pri-miRNA processing dynamics from whole cells3 

 To further extend our previous findings18 on steady-state pri-miRNA processing efficiency 

we used nascent RNA obtained after a short (15 min) BrU pulse and subsequent chase for 0, 15, 

30 and 60 minutes (Samples 15, 30, 45 and 75 min after BrU, respectively) to follow the 

processing kinetics. We have previously reported a specific profile for steady-state chromatin-
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associated RNA around the site of pre-miRNA processing within the pri-miRNA transcript18 

(Figure 5A). Following the nascent RNA during the chase we could record the time-course of 

processing of pri-miRNAs in HEK293 cells. Interestingly, for the 38 pri-miRNAs (see appendix) 

where we observed a pronounced profile, we noticed different processing kinetics across pri-

miRNA transcripts, and within polycistronic pri-miRNAs. The profiles for miR-221, let-7a-1 are 

depicted in Figure 5B to represent the intermediate and fast processing kinetics.  The profile of 

miR-21 was chosen as a representative for not a pronounced processing profile. The processing 

efficiencies were analysed also using quantitative PCR (qPCR) of individual pri-miRNAs, as 

shown for miR-221, let-7a-1 and miR-21 in Figure 5C. As described in ref.18, we used primers 

spanning the processing site  and primers amplifying the total of pri-miRNA transcript (processed 

and unprocessed) to determine the relative amounts of unprocessed pri-miRNAs. 

Figure 5: In vivo profiles of pri-miRNAs processing dynamics from whole cells 

(A) Concept of processing signature in pri-miRNAs. Processing extent is calculated as the read-density in 

the pre-miRNA region compared to the flanking regions. Processing efficiency is calculated as (1 – 

processing extent). (B) Processing signatures in RNA-sequencing data from nascent RNA in pulse-chase 

experiment for pri-miR-221, pri-let-7a-1 and pri-miR-21. (C) Quantification by PCR of 

unprocessed/primary pri-miRNA for examples shown in c from two independent experiments. 
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3.3. Differential processing within polycistronic pri-miRNAs3 

 Many miRNAs are expressed from polycistronic pri-miRNAs and these miRNAs often 

belong to the same families and thus predicted to target the same mRNAs for translation 

regulation and target RNA degradation 83,84. Let-7a/f and miR-221/222  are prominent 

polycistronic pri-miRNAs with crucial roles in the development of cancer and cell cycle85. We 

found differential processing kinetics within both these polycistronic pri-miRNAs. The miR-

221/222 pri-miRNA is a 25kb long transcript (Figure 6A) encoding miR-221 and miR-222. 

While the two miRNAs are adjacent to each other, they exhibit very different processing 

kinetics (Figure 6B-C), demonstrating that processing kinetics, for the miR-221/222  cluster, 

are not defined by the primary transcript or its association to chromatin, as has recently been 

suggested86. The processing efficiency of miR-221 and miR-222 over time was quantified by 

qPCR shown in (Figure 6C). 

 

 

 

Figure 6: Differential processing within polycistronic pri-miRNAs 

(A) Overview of the genomic region and full pri-miRNA transcript. (B) Enlarged read-densities around 

pre-miRNAs for miR-221 and miR-222. (C-D) Quantification by PCR of unprocessed/primary pri-

miRNA for (C) miR-221 and miR-222. 
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3.4. In vivo profiles of pre-mRNA processing dynamics from whole cells2 

 To study the splicing kinetics of nascent RNA, we calculated the splicing index value 

Ѳ36(Figure 7A) and we determined the splicing efficiency across all time points for introns that 

had at least 5 reads coverage on both 5’ and 3’ SJ for all RNA sequencing libraries (four time 

points of BrU Chase-seq and the three Input samples for TNT-seq). Accordingly, we extracted 

the Ѳ value from 13,532 introns, ranging from 0 (unspliced) to 1 (fully spliced). We calculated 

the cumulative distribution of the splicing index for all four time points and steady-state 

chromatin-associated RNA18 and as expected, the BrU-Chase Seq 0 min, captured more unspliced 

pre-mRNAs than CA-RNA and rest of the BrU-Chase Seq time points (Figure 7B). 

Figure 7: In vivo profiles of pre-mRNA processing dynamics from whole cells. 

(A) Definition of Ѳ and ψ value. (B) Cumulative distribution of the SE index from chromatin-associated 

RNA-seq (Conrad et al., 2014), BrU-Chase Seq 0 min, 15 min, 30 min and 60 min. (C) Box plot 

representing the density of the SE index (θ value) distribution for introns grouped on the basis of 

differential splicing kinetics. (D) Boxplot showing distribution of the Splicing Efficiency Dynamics 

(SED) for the Fast, Medium and Slow processed intron groups. SED=1/((1.001-SE 0 min)*(1.001-SE 60 

min)) (E) Heatmap showing the k-means clustering results (with k = 3) of the splicing SE index (θ value) 

of the 13,532 filtered introns measured for the BrU-Chase time points. Introns are clustered into fast-, 

medium- and slow-processed. (F) UCSC genome-browser views of representative cases of introns from 

each of the three clustering groups. 
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Using k-means clustering with k = 3 we obtained three clusters of distinct splicing efficiency 

dynamics (SED) representing 4,882 fast, 5,702 medium, and 2,948 slowly processed introns 

(Figure 7C-E). The value of SED is calculated by SED=1/ ((1.001-SE 0 min) * (1.001-SE 60 

min)) and represents the splicing dynamics for each intron including the initial splicing efficiency 

(SE 0 min). Snapshots from the UCSC genome browser for three representative cases are shown 

in Figure 7F. 

 

3.5. Transient N-6-methyladensosine Transcriptome sequencing2 

 We developed TNT-seq, a technique to detect m6A on nascent RNA, enabling us to study 

the deposition of m6A on short-lived RNA processing intermediates. Concisely, we applied 

MeRIP-Seq43,45 on metabolically labeled transcripts that are produced within a 15 minutes 

window of active transcription (Figure 8A). Directly after a 15 minutes BrU-pulse, cells were 

collected and the isolated RNA was heat-fragmented to ~100 nt length. After calibration 

experiments, we chose 94°C for 3 minutes to succeed the desired fragment length (Figure 1B). 

The length of the RNA fragments was also verified with Agilent 2100 Bioanalyser shown in 

(Figure 8C). BrU-labeled RNA was subsequently eluted via BrU competition, to reduce 

background from contaminating unlabeled RNA, and the eluate was then subjected to 

immunoprecipitation with an m6A-specific antibody to enrich for methylated RNA fragments. 

The BrU-labeled nascent RNA (BrU-RNA Input) and the m6A enriched RNA fragments (BrU-

m6A-RNA IP eluate) were then subjected to deep sequencing to identify positions of m6A on 

nascent RNA (Figure 8A). We detected localized enrichment of m6A deposition at start and stop 

codons as well as at 5’ and 3’ SJs as a reproducible profile from independent replicates (Figure 

8D), suggesting a robust experimental pipeline (genome-wide m6A signal correlation = 0.58).  

 

3.6. TNT-seq reveals m6A deposition on newly transcribed RNA2 

m6A peaks were called using a published pipeline44. We show in Figure 9A that the majority 

of early m6A peaks (57 %) reside within intronic sequences, 22 % in coding sequences (CDS), 

5 % in 5’ UTRs and 9 % in 3’ UTRs. To compare m6A peak distribution in newly transcribed 

RNA with steady-state mRNA we reexamined MeRIP-Seq data from ref.3 and called m6A peaks 

using the same pipeline. The majority of steady-state mRNA m6A peaks reside in the CDS 

(52 %), 3’ UTR (28 %) and 5’ UTR (12 %), while only a minor fraction (4 %) is intronic (Figure 

9B). Nearly half of the CDS-associated nascent m6A peaks reside within 100 nt upstream of the 

5’ SJ and about one fifth are within 100 nt downstream of the 3’SJ (Figure 9A). For steady-state 

mRNA only 17 and 11 % of the CDS peaks are within the respective intervals, which could 
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suggest a transient functional role of early m6A deposition (Figure 9B). We normalized the 

number of m6A peaks to the length of the analyzed intervals and the respective input read 

coverage and find that the early m6A deposition is enriched within 100 nt of the 5’ SJ exonic 

boundary (Figure 9C-D). To validate the authenticity of m6A sites on nascent RNA we evaluated 

the presence of the DRACH m6A consensus motif by performing a de novo motif search with 

HOMER in the regions +/-150 nt around the peak summit of best scoring peaks (score > 20, n= 

5651) or in randomly generated 300 nt genomic intervals (See Methods under ‘De novo Motif 

Search’). This analysis showed a positional enrichment of a DGACH motif, around the m6A peak 

summits in particular for exonic peaks (Figure 9E). Furthermore, by de novo motif search we 

identified three additional motifs, sharing a SAG core, with a strong positional enrichment around 

the peak summit, especially for intronic peaks (Figure 9E). Then, we analyzed the positional 

distribution of m6A peak summits around 5’ SJs, 3’ SJs, and start- and stop-codon anchor points 

for both newly transcribed and steady-state mRNA (Figure 9F).  Early m6A peaks at and in close 

Figure 8: Transient N-6-methyladensosine Transcriptome sequencing 

 (A) Schematic representation of the TNT-seq protocol. (B) Agarose gel analysis of RNA fragments with 

different heat fragmentation conditions. (C) Bioanalyser Results of RNA fragmented for 3 minutes in 94 °C 

and before fragmentation-total RNA.  (D) Average m6A signal per nucleotide position around start and 

stop codons, 5´ and 3´ SJs for the two TNT-Seq replicates 
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proximity to splice junctions are relatively more compared to steady-state mRNA m6A peaks 

(Figure 9G-H), whereas around start- and stop-codons the picture is inversed (Figure 9F, I). This 

result led us to examine whether early m6A deposition in close proximity to SJs has a role in 

splicing of RNA. 
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3.7. m6A signatures separate distinct intron classes2 

To study how early m6A deposition varies with different processing efficiencies, we plotted 

the average m6A signal per nucleotide position around 5’ and 3’ SJ (Figure 10A, B, D, E) and 

within length-binned introns for the three groups (Figure 10C). To avoid the overlap of +/- 500nt 

from 5’ and 3’ SJ we analysed 6742 with length 1000-10000 nt and their adjacent 5´ and 3 ´SJ 

but also the average m6A signal of 5’ and 3’ SJ for all 13532 introns. Notably, we found that fast 

processed introns show greater m6A deposition at SJs with an overall positive relationship 

between m6A deposited at 5’ and 3’ SJ exonic boundaries and processing efficiency (Figure 10A, 

B, D, E). We reached the same conclusion also when we plotted the average frequency of m6A 

peak summits per nucleotide position (instead of the average m6A signal) for the three subgroups 

(Figure 10G-I). Contrary, slowly processed introns are associated with increased m6A deposition 

within the intron (Figure 10B, H). To address whether the position of an intron affects m6A 

signal and splicing efficiency we plotted the average m6A signal per nucleotide position around 

the 5’ and 3’ SJs of only the first and last introns (of transcripts with at least four exons). This 

analysis show that the observed effect is independent of the position of the intron (Figure 10K-

M). 

3.8. m6A deposition at nascent RNA predicts splicing efficiency dynamics2  

 To further investigate the role of early m6A sites in shaping the splicing efficiency dynamics 

we used several features in a logistic regression model fit to predict fast versus slowly processed 

introns (Figure 11A, B). We show that inclusion of the m6A signal at SJs as an additional 

parameter improves the predictive power of the model (Figure 11A), with the m6A contribution 

in predicting fast processing being comparable to other previously shown features36, such as the 

5’ and 3’ SJ sequence scores and distance to TSS/TES (Figure 11B). In contrast, the overall 

intronic internal m6A signal and intron length are significantly associated with slow processing 

(Figure 11B).  

 

Figure 9: TNT-seq reveals m6A deposition on newly transcribed RNA 

 m6A peak distribution in (A) newly transcribed RNA and (B) mRNA from51 . (C) Distribution of the 

normalized number of m6A peaks to the length of the analyzed intervals and (D) the respective input read 

coverage for TNT-seq and mRNA m6A-seq data51. (E) Number of motif occurrences (sum) at nucleotide 

positions around the m6A peak summit of the top scoring 5,651 exonic peaks, intronic peaks or random 

intervals. The line represents loess curve fitting (local polynomial regression) with the 95% confidence interval 

shaded grey. (F) Distribution (frequency) of the distance of m6A peak summits to the closest given anchor 

point, (E) Start codon; (G) 5΄SJ, (H) 3΄SJ and (I) Stop codon for nascent RNA (TNT-Seq) and mRNA (m6A-

Seq51). 
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Figure 10: m6A signatures separate distinct intron classes. 

Average m6A signal per nucleotide position in a +/- 500 nt window around (A, B) 5΄SJ and (D, E) 3΄SJ of the 

13532 filtered introns and for the 6742 introns with length 1000-10000 nt, for fast, medium and slow processed 

introns. (C) Average m6A signal per nucleotide position internally per bin for 6742 introns (with length 1000-

10000 nt), for fast, medium and slow processed introns. (F-H) Average frequency of m6A peak summits per 

nucleotide position in the window +/- 500 nt around (F) 5’ SJ, (H) 3’ SJ of all 13,532 filtered introns, and (G) 

per bin of 6722 introns 1000-10000 nt long, extracted separately for fast, medium, slow subgroups. The lines 

represent loess curve fitting (local polynomial regression) with the 95% confidence interval grey shaded. (K-M) 

Average m6A signal per nucleotide position around the 5’ and 3’ SJs of only the first and last introns. n = 

number of introns 
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3.9. Internal intronic m6A deposition associates with alternative splicing2. 

 Slow pre-mRNA processing has been linked with the occurrence of alternative splicing, i.e. 

exon-skipping36. We examined alternative versus constitutive splicing by extracting the intron-

centric ψ value as in ref.36 (Figure 12A). Our analysis further supports that alternative splicing 

events are significantly enriched in slowly processed introns (odds ratio 3.84, Fisher’s exact test 

p-value < 2.2e-16) (Figure 12A). We next asked whether intronic m6A deposition could affect 

alternative splicing. We show that intronic m6A peaks correlate with upstream or downstream 

exon-skipping about two times more often than expected by random chance (odds ratio 1.7, 

Fisher’s exact test p-value < 2.2e-16), indicating that internal intronic m6A deposition is 

significantly enriched in alternative splicing events. In agreement, we found that the average m6A 

signal is greater along alternative versus constitutively spliced introns (Figure 12C) and that the 

average m6A signal is greater at constitutive versus alternatively spliced SJ exonic boundaries 

(Figure 12B, 12D). In the prediction of alternative versus constitutive splicing shown in Figure 

12E, the overall intronic m6A, along with the physical characteristic of intron length, are 

significant contributors in determining alternative splicing. On the other hand, m6A at SJ exonic 

boundaries and strong splice site consensus sequences (SJ score) ensure constitutive splicing 

(Figure 12E). The inclusion of m6A signal once more improves the predictive power of the model 

Figure 11: m6A deposition at nascent RNA predicts splicing efficiency dynamics  

(A) Average receiver operating characteristics (ROC) curve for discrimination of fast versus slow introns 

including all characteristics and excluding m6A. The respective Area Under the Curve (AUC number) is 

indicated. (B) Contribution of each feature to the model fit of fast versus slow processing calculated as the 

coefficients from the binary logistic regression with the associated estimated significance (-log10 p-

value). The features with p-value <0.001 are colored red 
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fit of constitutive versus alternative splicing (Figure 12F), highlighting the impact of m6A 

deposition on nascent RNA in shaping splicing efficiency. 

 

 

 

 

Figure 12: Intronic m6A deposition associates with alternative splicing  

(A) Violin plots showing density of the distribution (with embedded box-and-whiskers plots) of θ value 

for introns classified as either constitutive or alternative spliced extracted from all pulse-chase time 

points. (B-D) Average m6A signal per nucleotide position in a +/- 500 nt window around (B) the 5’ SJ 

and (D) 3’ SJ, and per bin (C) of 6,742 introns with length 1,000-10,000 nt. The average m6A signal is 

extracted separately for the two subgroups, constitutive and alternative. The lines represent loess curve 

fitting (local polynomial regression) with the 95% confidence interval shaded grey. (E) The contribution 

of each feature to alternative versus constitutive splicing, calculated as the coefficients of the binary 

logistic regression fit with associated estimated significance (-log10 p-value). Features with p<0.001 are 

colored red. (F) Average ROC for the logistic regression prediction of the alternative versus constitutive 

splicing using all features, with and without m6A data. The respective AUC number is indicated. 
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3.10. qTNTchase-seq identifies m6A-marked fast-track RNAs2 

  We examined the direct impact of m6A modifications at the individual transcript level by 

developing and applying qTNTchase-seq (quantitative TNT pulse-chase sequencing). This 

method enabled us to clearly separate directly m6A-mediated from sequence specific effects on 

RNA processing. Here, labeled RNA was isolated at 0 and 30 min chase after a short BrU pulse 

and then, without prior fragmentation to maintain transcript level information and the m6A 

methylated transcripts were immunoprecipitated with an m6A-specific antibody (Figure 13A). 

Importantly, we kept the supernatant representing the m6A negative transcripts, and both the 

supernatant (m6A negative transcripts) and the eluate (m6A positive transcripts) from each time-

point were sequenced to obtain quantitative information. To validate that qTNTchase-seq can 

quantify m6A levels or stoichiometry, we mixed non-mammalian m6A-modified RNAs and 

unmodified RNAs generated in vitro, at ratios ranging from 0% for GFP and 20% for Luciferase 

(modified to unmodified). qPCR measurements prior to sequencing showed a quantitative 

Figure 13: qTNTchase-seq set up 

(A) Schematic description of the qTNTchase-seq method. (B) qPCR measurments of spike in GFP 

enrichment in the Inputs 0 min, 30min, Eluates (m6A pos 0 min, 30min,) and Supernatant (m6A neg 0 

min, 30min). (C) qTNTchase-seq quantifies m6A levels. Scatterplot comparing expected versus observed 

spike in % ratio of 0% GFP and 20% Luciferase. The spike ins were generated in vitro, with each 

transcript harboring m6A modifications mixed with unmodified counterparts at indicated ratios as spike-

ins before anti-m6A RIP. The error bars represent standard error (n=2). 
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agreement with the known stoichiometry (Figure 13B-C). We performed two biological 

replicates of qTNTchase-seq and calculated the m6A levels per transcript according to ref.80. On 

a transcriptome-wide scale we observe a strong concordance of m6A levels between the two 

biological replicates, irrespective if only the top 25% expressed transcripts or all transcripts with 

non-zero coverage are included in the analysis (for 0 minutes Pearson r = 0.89 p value < 2.2e-16 

and for 30 min Pearson r = 0.91 p value < 2.2e-16) (Figure 13D-E). When comparing m6A levels 

between 0 min and 30 min chase we did not observe any significant differences indicating that 

overall m6A modification levels on transcripts remain the same for at least ~45 minutes after 

transcription (Figure 14A). Then, we analysed splicing efficiency on the transcript level by 

extracting the transcript splicing index and compared this for methylated versus non-methylated 

transcripts at 0 min and 30 min separately. Within the pulse (0 min), corresponding to a 15-minute 

window of transcription, methylated transcripts show significantly higher splicing efficiency than 

non-methylated transcripts (Figure 14B), further supporting the role of the early m6A deposition 

in enhancing processing efficiency. In addition, by measuring the splicing efficiency dynamics 

(SED) at the transcript level from 0 to 30 minutes chase, we show that methylated transcripts 

Figure 14: qTNTchase-seq identifies m6A-marked fast-track RNAs 

(A) Density plot of the log2 ratio of the m6A levels per transcript measured at 30 minutes divided to 0 

minutes (all transcripts with non-zero coverage. (B) Box plot representing the overall SE of methylated 

(m6A positive) versus non-methylated (m6A negative) transcripts at time points 0 min and 30 min. (C) 

Violin plots showing distribution of the transcript SED in m6A positive and m6A negative fractions (two-

tailed Student’s t-test p-value < 2.2e-16). (D) Cumulative distribution of transcript SED differences 

between the methylated and unmethylated state (∆SED = SED m6A-positive – SED m6A-negative). (E) 

Box plot displaying SED per intron in m6A positive and m6A negative transcripts (two tailed paired t-test 

p-value < 2.2e-16). 
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show on average significantly greater processing than unmethylated transcripts (two tailed paired 

t-test p-value < 2.2e-16) (Figure 14C). Notably, processing is significantly enhanced for the same 

individual transcripts in the methylated compared to the unmethylated state; ~76% of the 

transcripts show gain of SED in the methylated versus unmethylated state revealing a direct and 

sequence independent role of m6A on processing kinetics (Figure 14D). Furthermore, we 

examined locally the splicing efficiency for the dataset of the 13,532 filtered introns. We found, 

that ~14% have significantly higher splicing efficiency in the m6A positive than in the m6A 

negative transcripts and show a 1.26 fold enrichment over random chance to possess an m6A peak 

in the 5’ SJ 250 nt exonic boundary (odds ratio 1.265, Fisher’s exact test p-value 0.0006745). In 

addition, individual intron loci show on average significantly higher SED in methylated versus 

non-methylated transcripts (two tailed paired t- test p-value < 2.2e-16) (Figure 14E). We then, 

analyzed the splicing kinetics of four candidate splice junctions that have at least one m6A peak 

(+/-250nt) by qPCR on qTNTchase-seq RNA. We calculated splicing efficiency as the ratio of 

the spliced signal over total (spliced + unspliced) signal. Notably, at time point 0 min, methylated 

transcripts show higher splicing efficiency compared to their unmethylated counterparts that share 

the same nucleotide sequence (Figure 15A-B). This result was recapitulated with RT-PCR 

analysis where the fragments corresponding to spliced and unspliced transcripts were analyzed 

on an agarose gel, showing the positive effect of m6A on RNA splicing (Figure 15C) 
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Figure 15: m6A-mediated effects on RNA processing is independent from the underlining sequence. 

(A) UCSC genome browser tracks of qTNTchase-seq data representing the transcript regions used for the RT-

qPCR analysis. Normalized read coverage (reads per million of total number of mapped reads) tracks for Input 

(blue), Supernatant m6A negative (grey), Eluate m6A positive (pink). The upper overlay track represents the 

TNT-seq with purple for Input and green for IP; black rectangles above represent the called m6A peaks. Below 

tracks for each sample are agarose gels depicting semi-quantitative PCR of Input, m6A positive and m6A 

negative samples for 0 min and 30 min. (B) qPCR analysis of the local intronic SE of methylated versus non-

methylated transcripts for 0 minutes and 30 min 
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3.11. Splicing factors coincide with m6A deposition2 

We sought to investigate the functionality of early m6A positive role in regulating RNA 

processing. For this we analyzed available CLIP-data for SRSF factors with a known role in 

splicing. We found that both SRSF3 and SRSF10 show a high probability to have a m6A peak 

summit in close proximity (< 250 nt) (Figure 16A-B), with SRSF10 showing relatively greater 

affinity (Figure 16C). Furthermore, the SAG core that we identified by de novo motif search in 

early m6A peaks (Figure 9) is similar to the SRSF binding site motifs87. In addition, both SRSF3 

and SFRF10 have been shown to bind near m6A. More specifically, while SRSF3 binding can be 

synergistically augmented through interaction with YTHDC1, SRSF10 can independently bind to 

m6A modified regions69. In agreement, we found that the ratio of SRSF10/SRSF3 binding is 

greater at the SJ exonic boundaries for fast processed introns, and internally along within slowly 

processed introns (Figure 16D-F), in agreement with the respective relative enrichment of early 

m6A deposition (Figure 10). Furthermore, the average ratio of SRSF10/SRSF3 binding clearly 

separates alternative and constitutive spliced introns (Figure 16 G-I), most prominently along 

length-binned introns (Figure 16H). This result is in agreement with a previous study suggesting 

that alternative splicing activity can be antagonistically regulated by SRSF10 versus SRSF3 

binding10. The above data support that early m6A deposition could play an early role in shaping 

the final outcome of alternative splicing activity via resolving the relative recruitment of various 

splicing factors with varying m6A affinities. 
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Figure 16: Splicing factors coincide with m6A deposition 

(A-C) Distribution of the interdistances of factor binding sites to closest m6A peak summit for (A) SRSF3 

(B) SRSF10 and (C) overlap. As a control, distance from the midpoint of the respectively same number of 

randomly generated genomic intervals is also plotted. (D-F) Distribution of the average ratio 

SRSF10/SRSF3 binding, extracted separately for the three subgroups fast/medium/slow per nucleotide 

position in the window +/-500 nt around the 5’SJ (D) and 3’SJ (F), or per bin (E) for 6,742 length-binned 

introns (with a length 1,000-10,000 nt). (G-I) Same analysis as in (D-F) but comparing the average 

SRSF10/SRSF3 ratio for the two subgroups constitutive versus alternative. 
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3.12. m6A effects are METTL3 dependent2 

To provide a direct link between RNA splicing kinetics and early m6A deposition at SJs we 

examined the splicing kinetics after METTL3 knock-down (60 min chase) (Figure 17A). We 

divided the intron dataset into three equal-size quantiles based on the m6A signal at 5’ and 3’SJ 

(5’ and 3’SJ 100 nt exonic intervals) and calculate the SED respectively. We plotted the log2 ratio 

of SED for METTL3 KD to Control for introns with low, medium and high m6A signal (Figure 

17B). For introns with high m6A signal on both 5’ and 3’SJ we notice a decreased SED upon 

METTL3 KD, for about half of the entries (log2 SED ratio METTL3 KD/Control <0) (Figure 

17B). For introns with medium and low m6A signal (log2 SED ratio METTL3 KD/Control > 0) 

we observe an increased SED (Figure 17B). The difference in the SED ratio (log2 METTL3 

KD/Control) of high m6A signal compared to low or medium is significant (t-test p-value < 2.2e-

16). Then, we focused on Fast processed introns and plotted the m6A signal (sum of 5’SJ and 

3’SJ 100 nt exonic area) for those that show reduced SED upon METTL3 KD versus the rest 

(Figure 17C). We found that the METTL3-affected introns have significantly higher m6A at the 

5’ and 3’SJ exonic boundaries. This confirms that the 5’ and 3’ SJ exonic methylation promotes 

Figure 17: Nascent m6A effects are METTL3-dependent 

(A) Western blot for METTL3 KD. (B) Log2 ratio of SED in METTL3 KD to Control for introns with low, 

medium and high m6A signal at both 5’ and 3’SJ (100 nt exonic area). (C) m6A signal at both 5’SJ and 

3’SJ (100 nt exonic area) for the Fast-processed introns that show reduced SED in the METTL3 KD 

condition versus the rest (two-tailed Student’s t-test p-value < 2.2e-16). (D) m6A signal at both 5’SJ and 

3’SJ (100 nt exonic area) for the Slow processed introns that show reduced SED in METTL3 KD condition 

versus the rest (two-tailed Student’s t-test p-value < 2.2e-16). (E-H) qPCR analysis of SED for (E-F) Fast 

(G) Medium and (H) Slow processed introns (n = 2 biological replicates, *p<0.05 and **p<0.01, two-tailed 

Student’s t-test) 
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fast splicing kinetics, as also shown by the logistic regression model fit (Figure 12). We observed 

the same but less pronounced tendency for the Slow processed introns (Figure 17D). Figures 

17E-H show qPCR analysis of SED for four candidates that are in agreement with the 

transcriptome-wide data. 

 

4. Discussion of the Thesis. 

____________________________________________________________ 

RNA is found everywhere in the cell; in different shapes, sizes, ages and most importantly 

RNA participates in a vast array of cellular events. At any given time, RNA transcripts can be 

found in different processing stages. As a consequence, studying the entire population of 

cellular RNA is extraordinarily complex. A way to tackle this complexity is to label, enrich and 

follow a population of RNA through time. Another way is to isolate a specific cellular 

compartment where most likely the nascent RNA will be found. In our study, we used a 

metabolic labelling pulse-chase approach to enrich for the nascent RNA transcribed within 15 

minutes of transcription. We show that the transcripts captured from this method are more 

nascent than cellular fractionation protocols23 (Figure 7b). BrU-Chase Seq is a method used by 

Paulsen et al.,30 to study the inflammation response in human cells. The inflammatory response 

in human fibroblast involves rapid and dramatic gene expression changes that could be captured 

by the BrU-Chase Seq method. Our questions revolved around RNA processing of pri-miRNA 

and pre-mRNA and to answer them we established an improved version of BrU-Chase Seq4. 

BrU-Chase Seq revealed the complexity of pri-miRNA processing with distinct processing 

dynamics. Given that the miRNA expression is directly related to the pri-miRNA processing 

rather than pri-miRNA expression18, it is important to understand which is the molecular 

mechanism that drives the different processing kinetics. Several protein co-factors may facilitate 

or inhibit the miRNA biogenesis either through the recruitment of Microprocessor to the pri-

miRNA transcripts86 or by inhibiting Microprocessors binding. Our method4 allowed us to 

detect the differential processing within polycistronic pri-miRNAs. More specifically, miR-221 

and miR-222 are derived from the same pri-miRNA gene however, miR-222 has faster 

processing than miR-221. The miR-221/222 cluster is characterised as oncogene and shares 

many targets such as p27 tumor suppressor85. On the other hand, miR-221 and miR-222 have 

also non-overlapping targets suggesting that processing kinetics could define the biological 

regulation that could modulate the levels of miRNAs against a specific target through-out the 

cell cycle. It would be interesting to study at a single RNA molecule level whether these 

miRNAs are processed from the same pri-miRNA transcript copy. Single RNA molecule 

analysis coupled to FRET technology (smFRET)88,89 should help answering this question. 

The second part of the thesis provides the first high-resolution view of the transient, 

nascent N-6-methyladenosine transcriptome2. We identify an enrichment of m6A deposition 
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near the 5’ SJs of nascent RNA transcripts and we find that early m6A deposition at SJs and 

within introns is associated with distinct RNA processing kinetics. A recent study from Ke et al. 

that was conducted in HeLa cells, reported that m6A is deposited mostly on chromatin-

associated pre-mRNAs (CA-RNAs) while observing an enrichment of m6A peaks in exonic 

regions44. In agreement with our results they show an enrichment of m6A signal near exon-

intron junction implicating that the m6A deposition occurs before splicing. However, they 

report higher m6A peak density in the last exons relative to the rest in all three cell fractions; 

CA-RNAs, nucleoplasmic RNA and cytoplasmic RNA fraction44. These results show that the 

m6A is deposited in most pre-mRNAs while being attached to chromatin, before the splicing is 

completed and that the m6A distribution remains the same during the mRNAs release from 

chromatin (nucleoplasmic RNAs) and after their nuclear export (cytoplasmic RNAs). The 

establishment of m6A-CLIP90 allowed more precise identification of m6A signal already within 

~50nt away from the SJs that rises almost double at ~100nt. TNT-seq provides a direct 

assessment of m6A on nascent RNA and shows that the majority of m6A peaks is found within 

intronic sequences consistent with METTL3-METTL14 PAR-CLIP data showing 29 %-34 % 

intronic binding sites52. However, after normalizing the number of m6A peaks to the length of 

the analysed intervals and the respective input read coverage, we found in agreement with Ke et 

al., that the early m6A deposition is enriched within 100 nt of the 5’ SJ exonic boundary. On the 

other hand, the earliest time point BrU-Chase Seq time point 0 min (15 minutes BrU labeling 

without chase) captured more nascent RNA transcripts than CA-RNA18. The protocol for cell 

fractionation includes multiple biochemical steps to purify chromatin together with the 

associated RNA. The protocol lasts more than 15 minutes and is carried out in 4° that does not 

exclude the possibility that the transcription and processing is on during the phase separation23. 

Thus, the intronic sites that TNT-seq detected could be potentially removed at a later stage or 

co-transcriptionally while transcripts are still associated with chromatin. One hypothesis could 

be that RNA transcripts associated with chromatin are more prone to be bound by demethylases 

such as FTO. FTO loss of function experiments coupled with CA-RNA m6A-CLIPs are needed 

to exclude the above hypothesis. A recent study contacted an extended research on FTO 

localization and its function in different cell lines identifying that in HeLa cells FTO is 

predominantly located in the cell nucleus while in HEK293 cells FTO is located both in the 

cytoplasm and cell nucleus91. In addition, FTO demethylation activity is more profound in HeLa 

cells in comparison with HEK 293 and 3T3-L1 cell lines. This indicates that differences in m6A 

distribution among different cell types are expected due to the different FTO localization and 

function 91.   

TNT-seq in conjunction with BrU pulse-chase reveals that the signature of early m6A 

deposition at splice junctions and within introns is associated with distinct RNA processing 

kinetics2. Interestingly, m6A position is a feature within many that improves the prediction power 
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of a logistic regression model fit contributing to fast or slow splicing (Figure 11). More 

specifically, the 5´and 3´ SJ 100nt m6A signal contributes to fast splicing in very similar way as 

the 5´ and 3´ SJs score. This means that the lack of strong sequence consensus at SJs of many 

introns may be compensated by the presence of m6A that could eventually attract splicing factors 

to exert their function. In other words, m6A could potentially act as a splicing enhancer of splicing 

inhibitor either from via attracting proteins or repelling them92. In addition, m6A presence 

changes the structure of RNA locally that could either reveal or hide protein binding sites93. Long 

introns together with intronic methylation contribute to slow processing and alternative splicing. 

More than 50% of the nascent m6A peaks are found in introns. This is not surprising since introns 

are much longer than exons and have relatively increased possibility to be bound by 

methyltransferases. Bartosovic et al.,42 showed that FTO, an m6A demethylase, binds mostly to 

introns, mediating m6A removal. FTO knockout causes alternative splicing events with a 

preference for exon-skipping, suggesting that demethylation of mRNA transcripts promotes exon-

inclusion under normal conditions42. Taken together, these findings suggest that intronic m6A 

marks that are not targeted or not yet removed by FTO mediate exon skipping while introns 

involved in constitutive splicing show no enrichment in the m6A signal and most probably are 

targets of FTO42. In mRNAs, m6A is enriched in the consensus DRACH motif; however not all 

DRACH motifs are methylated, indicating that the presence of the sequence motif alone is not 

enough to drive m6A deposition. FTO CLIP data show no significant enrichment of the DRACH 

motif42 leading us to hypothesize that early m6A intronic deposition is mostly in non-DRACH 

sequences where FTO can detect and eventually remove the m6A marks.  

Using de novo motif analysis, we identified three motifs sharing a SAG core with a higher 

positional enrichment compared to the consensus DRACH motif. Interestingly, the three novel de 

novo found motifs that are enriched in our m6A peaks resemble binding sites of SRSF splicing 

factors known as splicing enhancers or splicing inhibitors87. m6A position alone, or the altered 

RNA structure after m6A deposition could favor the binding of an SRSF splicing inhibitor and/or 

could repel the binding of an SRSF splicing enhancer and vice versa. On the other hand, if m6A 

favors the binding of both splicing inhibitors and splicing enhancers then the stoichiometry and 

binding affinity of each protein could play an important role for the final outcome. Recently, Xiao 

et al. demonstrated that the m6A reader YTHDC1 recruits SRSF3 while competing away SRSF10 

and binds to m6A sites promoting exon inclusion69. In the absence of YTHDC1 and SRSF3, 

SRSF10 has the availability to bind to free m6A sites independently, promoting exon skipping. 

This is also supported by a previous study from Ajiro et al., 2016 showing that SRSF3 knockdown 

in U2OS cells causes exon skipping events87. When we calculated the average SRSF10/SRSF3 

ratio per nucleotide position for the three subgroups fast, medium, slow and constitutive versus 

alternatively spliced transcripts we observed a similar distribution and profile to the m6A signal, 

confirming the competitive binding of SRSF10 versus SRSF3 to m6A regions. 
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A key method in our study was qTNTchase-seq that enabled us to directly compare the 

processing of individual transcripts in the methylated versus unmethylated state. Our results 

show that on transcript level m6A directly controls splicing kinetics irrespectively of the 

underlying transcript sequence. A gene can be transcribed several times generating transcripts 

with identical sequence (transcript copies). We show that transcript copies can have different 

methylation levels. We cannot exclude the possibility that within the transcript copies m6A can 

be found in different positions. With TNT-seq we identified the positions that the transcripts 

could potentially be methylated, within methylated transcript copies though, some of the 

potential sites could be methylated or not. Furthermore, our analysis on the splicing kinetics for 

each individual transcript is the average of the splicing kinetics from all the transcripts produced 

from the same gene. Different RNA molecules with identical sequences could have different 

methylation status and if they are methylated then the position of the m6A can be also different. 

It still remains unknown what drives the methyltransferase complex to RNA substrate selection 

and further investigation is necessary to answer this key question. m6A could potentially 

facilitate as a labelling signal that could be recognized by m6A reader proteins to sort 

methylated transcripts into a fast-track processing. In a next step the position of m6A together 

with the presence of splicing inhibitors or enhancers direct the kinetics of the introns within a 

transcript.  

qTNTchase-seq enabled us to have a genome-wide quantitative measurement of how many 

transcripts copies of a particular gene are m6A modified (m6A level) of nascent RNA ( BrU-

Chase seq 0 min) and also 30 minutes chased nascent RNA (BrU-Chase Seq 30 min).  The m6A 

levels at 0 time point as well as 30 minutes chase follow almost the same normal distribution 

implicating that the overall m6A modification levels on transcripts remain the same for at least 

~45 minutes after transcription. This finding does not exclude that demethylation occurs within 

the ~45 minutes since even if a transcript is demethylated but leaves only one m6A modification 

it would be pulled down and end up in the eluate contributing to the reads that increase the 

assessed transcript m6A level. qTNTchase-seq (as well as the previously published method80 of 

Molinie et al., 2016) does not employ an initial RNA fragmentation step, hence this approach 

allows for quantitative measurement of the m6A-methylated transcripts per gene; however, it 

does not provide the precise positional information about where exactly the m6A modification 

is deposited along the transcript. Furthermore, we were not able to draw any conclusions 

regarding different m6A levels (i.e. high, medium and low m6A level, representing the 

differential relative fraction of methylated transcript copies versus non-methylated transcript 

copies within each cluster) and splicing efficiency. The splicing efficiency is measured either 

locally per splicing junction, or at transcript level. High m6A level at transcript level can 

inevitably also include transcripts that are methylated within the introns, which in turn 

correlates with slow processing. qTNTchase-seq does not distinguish whether the transcripts are 
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methylated within the introns or at SJs. Thus, within the methylated transcripts one could find 

all three cases of processing. 

Our analysis proposes a role of m6A in splicing that contradicts the finding of Ke et al., 

suggesting no role for m6A in splicing44. Ke et al., examined the RNA splicing profiles in steady 

state poly-A isolated RNA in control and METTL3 knock-out ESC mouse cells and found that 

all m6A-containing constitutive exons were spliced quantitatively the same in both conditions. In 

our functional analysis in HEK293 cells we identified a significant difference of the METTL3 

knock down effect between the highly methylated SJs from compare to low and medium. Even 

though we observed an overall increase of SED upon METTL3 knock down, when focusing on 

the fast-processed introns we identified that only highly methylated ones showed significantly 

decreased SED. The slow-processed introns did not show any effect upon METTL3 knock down 

suggesting that another methyltrasferase is responsible for the intronic methylation of slow 

processed genes, or that m6A has relatively low impact on slow processing kinetics. METTL16 

is a promising candidate to test since its m6A marks do not occur within the DGACH sequence 

motif and they are rather found in introns94.  

The lack of a method to deplete m6A alone and not the methyltransferase make it difficult 

to conclude whether the effects upon METTL3 depletion are m6A driven.  METTL3 physically 

interacts with RNA pol II and it has been proposed that transcription rates influence the 

engagement of the methyltransferase complex with slow transcription or RNA pol II pausing to 

increase the probability of METTL3 binding46. The crosstalk between slow or paused RNA pol 

II and METTL3 engagement could explain the overall splicing efficiency increase independent 

from m6A presence. Further investigation on the role of METTL3 and m6A on transcription 

elongation rates and pausing are needed to draw legitimate conclusions. 

Our findings are in the same line with a previous study that describes m6A methylation as a 

mark for selective nuclear processing providing evidence for an m6A dependent mRNA 

metabolism59. Roundtree et al, showed that the knock-down of YTHDC1, results in defective 

nuclear export of target mRNAs, and does so in an m6A-dependent, splicing-independent 

manner59. This agrees with the tight biochemical coupling of mRNA splicing and export, that is 

reflected by the dual roles observed for similar adaptor proteins, particularly those of the SRSFs 

family. One of the pioneered studies in 2012 from Dominissini et al., had already observed a 

relationship with alternative splicing events and m6A deposition43. Recently, two studies71,95 in 

Drosophila melanogaster revealed methylation-dependent changes in splicing modulating sex 

determination. Mettl16 was found to methylate the 3´UTR of MAT2A leading to the splicing of 

retained introns and production of more MAT2A96. In spermatogenic cells in murine testes 

Alkbh5 knock-out enhanced splicing events97. Our findings moved a step forward our 

understanding of the RNA splicing code, coupling RNA methylation with the direction and 

kinetics of splicing. 
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5. Conclusions-Outlook 

____________________________________________________________  

 We are still far from fully understanding the “epitranscriptome code”. Many other RNA 

modifications could contribute to the regulation of RNA processing, thus different combinations 

of RNA modifications could drive the final outcome.  Our study shows that the crucial role of 

m6A on splicing efficiency dynamics as well as on alternative splicing is positional dependent. 

m6A deposited in intronic regions sorts transcripts to a slow-track processing pathway and is 

associated with alternative splicing while, m6A found in splice-junction exonic boundaries, sorts 

transcripts to a fast-track processing pathway and constitutive splicing 

The technological advances have been beneficial in biological studies aiming to elucidate 

the complexity of cellular RNA. However, future experiments are needed to further our 

understanding in RNA modifications and RNA processing. It has been shown that METTL3 

methylates pri-miRNAs, facilitating the recognition and processing by DGCR8. METTL3 

depletion resulted in global reduction of mature miRNAs and a concomitant accumulation of 

unprocessed pri-miRNAs98. However, TNT-Seq did not detect any m6A peaks on the 38 pri-

miRNAs that we studied. It would be interesting to perform an additional analysis to correlate 

the pri-miRNA processing efficiency in the methylated and unmethylated state transcriptome-

wide using qTNT-chase Seq data.  

Furthermore, it is necessary to identify the underlying mechanism driving the fast track 

RNA splicing. Many m6A readers could be the proteins factors behind this mechanism. YTH-

protein family, HNRNPG, HNRNPC and splicing factors SRSFs are potential candidates that 

could be functionally tested via siRNAs or auxin-inducible degradation system following 

qTNT-chase Seq.  Recently, a method was developed called RNA interactome using click 

chemistry (RICK) that can be used to capture proteins bound to nascent RNA99. Combining our 

nascent RNA m6A data set together with RICK on m6A depleted conditions we could identify 

new m6A readers that bind specifically on nascent RNA with high affinity on m6A.  

We are still far from understanding the m6A role on single molecule RNAs. With the 

establishment of TNT-Seq we identified possible m6A locations on nascent transcripts. 

However, is not clear whether all the transcript copies acquire m6A on the identified locations. 

Single molecule m6A detection techniques are needed to be developed in order to dig deeper 

into m6A role on single RNA molecules.  

The field is still in the early stage of discoveries. It remains a mystery how the selectivity, 

both at the transcript level and at specific modification sites, is achieved, and how this is coupled 

with transcriptional events. In addition, we still do not know how effector proteins, m6A readers, 

are regulated. Importantly, beyond simple cell lines, we have to dive into complex in vivo 

biological systems and further reveal functional relevance, as well as the potential implications 
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for human diseases. Our knowledge of this field is a continuously evolving process and new 

discoveries, mechanistic investigations, and in-depth discussions will further broaden our views. 

 

6. Summary in English and German 

____________________________________________________ 

 The current thesis studies the RNA processing dynamics in a high-resolution time scale 

manner. The method used, called BrU Chase Seq (described in detail in ref.4) , determined the 

processing kinetics of pri-miRNAs within intact cells over time using a pulse-chase approach to 

obtain nascent RNA within a 1-hour window after transcription. Further analysis showed that pri-

miRNAs exhibit different processing kinetics ranging from fast over intermediate to slow 

processing. In addition, polycistronic pri-miRNAs show differential processing. The first part of 

the thesis is part a study published in3. 

The second part of the thesis describes for the first time the role of m6A RNA modification 

impact on RNA splicing kinetics. Two techniques have been developed namely TNT-Seq and 

qTNT-Chase Seq. These techniques provide the first time-resolved high-resolution assessment of 

m6A on nascent RNA transcripts and unveil its importance for the control of RNA splicing 

kinetics. More specifically, the early co-transcriptional m6A deposition near splice junctions 

promotes fast splicing, while m6A modifications in introns are associated with long, slowly 

processed introns and alternative splicing events. In conclusion, the early m6A deposition 

specifies the fate of transcripts regarding splicing kinetics and alternative splicing. The second 

part of the thesis was published in2. 

Die vorliegende Arbeit untersucht die RNA-Prozessierungsdynamik auf einer 

hochaufgelösten Zeitskala. Durch die verwendete Methode, der sogenannten BrU Chase Seq 

(detailliert in ref.4 beschrieben), konnte die Prozessierungskinetik von pri-miRNAs in intakten 

Zellen in ihrem Zeitverlauf unter Verwendung eines Puls-Chase-Ansatzes, um innerhalb eines 1-

stündigen Zeitraumes nach der Transkription nascest RNA zu erhalten bestimmt werden. Weitere 

Analysen zeigten, dass pri-miRNAs unterschiedliche Prozesskinetiken aufweisen, von schnell 

über intermediär bis langsam. Darüber hinaus zeigen polycistronische Pri-miRNAs eine 

differentielle Prozessierung. Der erste Teil dieser Arbeit ist Teil einer in 3 veröffentlichten Studie. 

Der zweite Teil dieser Arbeit beschreibt zum ersten Mal die Rolle der m6A-RNA-

Modifikation für die Kinetik der RNA-Splicing Es wurden zwei Techniken entwickelt, die TNT-

Seq und die qTNT-Chase Seq. Diese Techniken bieten die erste zeitaufgelöste Bewertung von 

m6A an aufkommenden RNA-Transkripten mit hoher Auflösung und zeigen deren Bedeutung für 

die Kontrolle der RNA-Splicing-Kinetik auf. Genauer gesagt, die frühe co-transkriptionelle m6A-

Anlagerung in der Nähe von Spleißverbindungen fördert ein schnelles Spleißen, während m6A-

Modifikationen in Intronsmit langen, langsam verarbeiteten Introns und alternativen 

Spleißereignissen verbunden sind. Zusammenfassend lässt sich sagen, dass die frühe Anlagerung 
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von m6A das Schicksal von Transkripten in Bezug auf die Kinetik von Spleißen und alternatives 

Spleißen bestimmt. Der zweite Teil der Dissertation wurde in2 veröffentlicht. 
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SUMMARY

Splicing efficiency varies among transcripts, and
tight control of splicing kinetics is crucial for coordi-
nated gene expression. N-6-methyladenosine (m6A)
is the most abundant RNA modification and is
involved in regulation of RNA biogenesis and func-
tion. The impact ofm6A on regulation of RNA splicing
kinetics is unknown. Here, we provide a time-
resolved high-resolution assessment of m6A on
nascent RNA transcripts and unveil its importance
for the control of RNA splicing kinetics. We find that
early co-transcriptional m6A deposition near splice
junctions promotes fast splicing, while m6A modifi-
cations in introns are associated with long, slowly
processed introns and alternative splicing events.
In conclusion, we show that early m6A deposition
specifies the fate of transcripts regarding splicing ki-
netics and alternative splicing.

INTRODUCTION

The RNA nucleotide code is supplemented by more than a hun-

dred chemical modifications, greatly extending the functionality

and information content of RNA (Fu et al., 2014; Harcourt et al.,

2017). N-6-methyladenosine (m6A) is deposited by a protein

complex consisting of the methyltransferase-like 3 and 14

(METTL3 and METTL14), Wilms’ tumor 1-associating protein

(WTAP), and the Virilizer homolog (KIAA1429) (Liu et al., 2014;

Ping et al., 2014; Schwartz et al., 2014). Early studies have

demonstrated that adenosine methylation frequently occurs

within a subset of RRA*CH consensus sites (R, purine; A*, meth-

ylatable A; H, non-guanine base) (Narayan and Rottman, 1988).

Fat mass and obesity associated (FTO) and AlkB homolog 5

(ALKBH5) are m6A demethylases, adding dynamics to the func-

tion of m6A in RNA biogenesis (Jia et al., 2011; Zheng et al.,

2013). m6A is involved in a number of RNA processes, including

splicing, RNA degradation, and translation (Bartosovic et al.,

2017; Dominissini et al., 2012; Ke et al., 2017; Meyer et al.,

2015; Slobodin et al., 2017; Wang et al., 2014; Xiao et al.,

2016). These pathways are mediated in part by members of

the YTH-domain protein family calledm6A readers, which recog-

nize and bind specifically to sequences marked with m6A (Xiao

et al., 2016; Xu et al., 2014). The presence of m6A can affect

the RNA structure and increase the accessibility of the adjacent

RNA sequence for the heterogeneous nuclear ribonucleopro-

teins HNRNPG and HNRNPC, with an effect on splicing (Liu

et al., 2015, 2017). Because of the challenging nature of

addressing the impact of m6A on splicing at the mature RNA

level, the direct role of m6A on splicing dynamics has not

been investigated so far. Here, using TNT-seq (transient N-6-

methyladenosine transcriptome sequencing) and qTNTchase-

seq (quantitative TNT pulse-chase sequencing), we show that

m6A modifications deposited early and co-transcriptionally

near splice junctions (SJs) positively affect RNA splicing kinetics.

Furthermore, we show that intronic m6A deposition is connected

with slow processing kinetics and alternative splicing events.

Our results strongly support a scenario where nascent m6A

deposition is functionally involved in regulating splicing effi-

ciency (SE) and alternative splicing.

RESULTS

TNT-Seq Reveals m6A Deposition on Newly
Transcribed RNA
We developed TNT-seq to identify and study m6A on nascent

RNA. In brief, bromouridine (BrU)-labeled RNAwas isolated, frag-

mented, and purified with a BrU-specific antibody. Subsequently,

m6A methylated fragments were isolated using an m6A-specific

antibody.The labeledRNA (BrU-RNA input) and them6A-enriched

RNA fragments (BrU-m6A-RNA IP eluate) were sequenced

to identify positions of m6A on nascent RNA (Figure S1A). We

find enrichment of m6A around start and stop codons as well as

at 50 and 30 SJs reproducibly across independent replicates

(Figure S1B), demonstrating a robust experimental pipeline

(genome-wide m6A signal correlation = 0.58). The majority

(57%) of earlym6Apeaks (Experimental Procedures) residewithin

introns, whereas 22% reside in coding sequences (CDSs), 5%are

in 50 UTRs, and 9% are in 30 UTRs (Figure S1C). To compare m6A

peak distribution in newly transcribed RNA with steady-state

mRNA, we reanalyzed published m6A-sequencing (m6A-seq)

Cell Reports 23, 3429–3437, June 19, 2018 ª 2018 The Author(s). 3429
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data (Schwartz et al., 2014) and calledm6A peaks using the same

pipeline. The majority of steady-state mRNAm6A peaks reside in

theCDS (52%), 30 UTR(28%),and50 UTR (12%),whileonlyaminor

fraction (4%) is intronic (FigureS1D). Almost half of theCDS-asso-

ciated nascent m6A peaks reside within 100 nt upstream of the

50 SJ, and approximately one-fifth are within 100 nt downstream

of the 30 SJ (Figure S1C). For steady-state mRNA, only 17% and

11%of theCDSpeaksarewithin the respective intervals, suggest-

ing a transient functional roleof earlym6Adeposition (FigureS1D).

By normalizing the number of m6A peaks to the length of the

analyzed intervals and the respective input read coverage, we

find that the early m6A deposition is enriched within 100 nt of the

50 SJ exonic boundary (Figure 1A). To validate the earlym6A sites,

weassessed thepresenceof them6AconsensusDRACHmotif by

performing de novomotif search with HOMER (Heinz et al., 2010)

in the regions ±150 nt around the peak summit of the top scoring

peaks (score >20, n = 5,651) or in randomly generated 300-nt

genomic intervals.WefindaDGACHmotifwithapositional enrich-

ment around the peak summit, in particular for exonic peaks (Fig-

ure 1B). We also identify three additional motifs sharing an SAG

core,with a strongpositional enrichment around the peak summit,

especially for intronic peaks (Figure 1B). Early m6A deposition is

predominant at and in close proximity to SJs (Figures 1C and

1D). In contrast, the picture is inversed around start and stop co-

dons, with a relatively greater number of peaks in steady-state

mRNA (Figures 1E and 1F). This finding led us to examinewhether

early m6A deposition in close proximity to SJs has an impact on

splicing of RNA.
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Figure 1. TNT-Seq Reveals m6A Deposition on Newly Transcribed RNA

(A) Distribution of the normalized number of m6A peaks to the length of the analyzed intervals and the respective input read coverage for TNT-seq and mRNA

m6A-seq data.

(B) Number of motif occurrences (sum) at nucleotide positions around the m6A peak summit of the top scoring 5,651 exonic peaks, intronic peaks, or random

intervals. The line represents loess curve fitting (local polynomial regression), with the 95% confidence interval shaded gray.

(C–F) Distribution (frequency) of the distance of m6A peak summits to the closest given anchor point 50 SJ (C), 30 SJ (D), start codon (E), and stop codon (F) for

nascent RNA (TNT-seq) and mRNA (m6A-seq; Schwartz et al., 2014).

See also Figure S1.
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m6A Signatures Separate Distinct Intron Classes
To determine the splicing kinetics of newly transcribed RNA, we

used BrU-Chase Seq as described previously (Louloupi et al.,

2017; Paulsen et al., 2013). Cells were labeled with a 15-min

BrU pulse and chased for 0, 15, 30, and 60 min, followed by

RNA purification. To determine SE across all time points, we

calculated the splicing index value q (Mukherjee et al., 2017)

(Figure 2A), yielding 13,532 introns with an extracted q value

ranging from 0 (unspliced) to 1 (fully spliced). The degree of

splicing at 0 min, representing nascent RNA, is lower compared

to steady-state chromatin-associated RNA (Conrad et al.,

2014), indicating that nascent pre-mRNA is more efficiently

captured by our approach than by chromatin fractionation (Fig-

ure 2B). Using k-means clustering, we called three clusters of

distinct SE dynamics (SED; Experimental Procedures) repre-

senting 4,882 fast-, 5,702 medium-, and 2,948 slow-processed

introns (Figures 2C–2F). Three representative cases are de-

picted in Figure 2E. We plotted the average m6A signal per

nucleotide position around 50 and 30 SJs (Figures 2G–2H) and

within length-binned introns for the three groups (Figure S2B).

Strikingly, we find that fast-processed introns show greater

m6A deposition at SJs, with an overall positive relationship be-

tween m6A deposited at 50 and 30 SJ exonic boundaries and

processing efficiency (Figures 2G–2J and Figures S2A–S2C).

By plotting the average frequency of m6A peak summits per

nucleotide position (instead of the average m6A signal) for the

three subgroups, we reach the same conclusion (Figures

S2D–S2F). In contrast, slowly processed introns are associated

with increased m6A deposition within the intron (Figures S2B

and S2E). To address whether the position of an intron affects

m6A signal and SE, we looked at the average m6A signal per

nucleotide position around the 50 and 30 SJs of only the first

and last introns (of transcripts with at least four exons), showing

that the effect is independent of the position of the intron

(Figures S2G–S2J).

m6A Deposition at Nascent RNA Predicts SED
To further investigate the impact of m6A deposition on nascent

RNA in shaping the SED, we used a logistic regression model

fit to predict fast- versus slow-processed introns (Figures 2I

and 2J). We find that inclusion of the m6A at SJs as an additional

parameter improves thepredictive power of themodel (Figure 2I),

with the m6A contribution in predicting fast processing being

comparable to other previously shown features, such as the 50

and 30 SJ sequence scores and distance to transcription

start site (TSS) and transcription end site (TES) (Figure 2J) (Mu-

kherjee et al., 2017). Intron length and internal m6A signal are

significantly associated with slow processing (Figure 2J). To

complement this analysis, we applied linear regression to predict

SED as a continuous value (Figure S3). Again, introducing the

m6A at SJs improves the correlation between predicted and

measured SED (Figures S3A–S3C), further confirming the impact

of early m6A deposition on RNA processing.

Intronic m6A Deposition Associates with Alternative
Splicing
We assessed alternative versus constitutive splicing (by extract-

ing the c value), as slow pre-mRNA processing has been shown

to favor the occurrence of alternative splicing (Mukherjee et al.,

2017) (Figure 2A). Alternative splicing events are significantly en-

riched in slow processed introns (odds ratio, 3.84; Fisher’s exact

test p value < 2.2e-16) (Figure 3A). Additionally, intronic m6A

peaks are associated with upstream or downstream exon skip-

ping approximately two times more often than expected by

random chance (odds ratio, 1.7; Fisher’s exact test p value <

2.2e-16), suggesting that intronic m6A deposition is involved in

alternative splicing. In concurrence, the average m6A signal is

greater along alternative versus constitutively spliced introns

and the average m6A signal is greater at constitutive versus

alternatively spliced SJ exonic boundaries (Figures 3B–3D).

The overall intronic m6A, along with the intron length, are signif-

icant contributors in determining alternative splicing (Figure 3E).

In contrast, m6A at SJ exonic boundaries and strong splice site

consensus sequences (SJ score) ensure constitutive splicing

(Figure 3E). Inclusion of m6A improves the predictive power of

the model fit of constitutive versus alternative splicing

(Figure 3F).

Splicing Factors Coincide with m6A Deposition
To investigate how m6A functionality in splicing is mediated, we

analyzed available crosslinking immunoprecipitation sequencing

(CLIP-seq) data for SRSF factors with an established role in

splicing (Xiao et al., 2016). We find that both SRSF3 and

SRSF10 show a high probability to have an m6A peak summit

in close proximity (<250 nt) (Figures S4A and S4B), with

SRSF10 showing relatively greater affinity (Figure S4C). The

SAGmotif core that we identify in early m6A peaks is reminiscent

of the SRSF binding site motifs (Ajiro et al., 2016; Xiao et al.,

2016). In addition, both SRSF3 and SFRF10 have been shown

to bind near m6A, and while SRSF3 binding is augmented

through interaction with YTHDC1, SRSF10 can bind indepen-

dently to m6A modified regions (Xiao et al., 2016). In agreement

with this observation, we find that the ratio of SRSF10/SRSF3

binding is greater at the SJ exonic boundaries for fast-processed

introns and internally along within slow-processed introns (Fig-

ures S4D–S4F), in concordance with the respective relative

enrichment of early m6A deposition (Figures 2G, 2H, and S2).

The average ratio of SRSF10/SRSF3 binding clearly separates

alternative and constitutive spliced introns (Figures S4G–S4I),

most prominently along length-binned introns (Figure S4H).

This result is in agreement with the observation that alternative

splicing can be antagonistically regulated by SRSF10 versus

SRSF3 binding (Xiao et al., 2016). These results suggest that

m6A could play a role in shaping the final outcome of splicing

through the recruitment of splicing factors with varying m6A

affinities.

qTNTchase-Seq Identifies m6A-Marked Fast-Track
RNAs
To separate direct m6A-mediated effects on RNA processing

from sequence specific ones, we used qTNTchase-seq. Here,

BrU-labeled RNA was isolated at 0 and 30 min chase and m6A

transcripts were isolated with an m6A-specific antibody without

fragmentation. Both supernatant (m6A negative transcripts) and

eluate (m6A positive transcripts) were sequenced for each time

point to obtain quantitative information, and we calculated the
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Figure 2. m6A Deposition at Nascent RNA Determines SED

(A) Definition of q and c value.

(B) Cumulative distribution of the SE index from chromatin-associated RNA-seq (Conrad et al., 2014), BrU-Chase Seq (0, 15, 30, and 60 min).

(C) Violin plot representing the density of the SE index (q value) distribution with embedded box and whisker plots for introns grouped on the basis of differential

splicing kinetics.

(D) Heatmap showing the k-means clustering results (with k = 3) of the splicing SE index (q value) of the 13,532 filtered introns measured for the BrU-Chase time

points. Introns are clustered into fast, medium, and slow processed.

(E) UCSC genome browser views of representative cases of introns from each of the three clustering groups.

(F) Boxplot showing distribution of the SED for the fast-, medium-, and slow-processed intron groups.

(G and H) Average m6A signal per nucleotide position in a ±500-nt window around 50 SJs (G) and 30 SJs (H) of the filtered introns.

(I) Average receiver-operating characteristic (ROC) curve for discrimination of fast versus slow introns, including all characteristics and excluding m6A. The

respective area under the curve (AUC number) is indicated.

(J) Contribution of each feature to themodel fit of fast versus slow processing calculated as the coefficients from the binary logistic regression with the associated

estimated significance (�log10 p value). The features with p value < 0.001 are colored red.

See also Figures S2–S4.
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m6A level per transcript (Molinie et al., 2016). On a transcrip-

tome-wide scale, we observe a strong concordance of m6A

levels between biological replicates, both for the top 25% ex-

pressed transcripts and for all transcripts with non-zero

coverage (0 min: Pearson r = 0.89, p value < 2.2e-16; 30 min:

Pearson r = 0.91, p value < 2.2e-16). The m6A levels do not

significantly differ between 0 and 30 min chase, indicating that

the overall m6A modification levels of transcripts remain the

same for at least �45 min after transcription (not shown). To

follow SE, we extracted the transcript splicing index from m6A-

positive and m6A-negative transcripts at 0 and 30 min chase.

Within the pulse, corresponding to a 15-minwindow of transcrip-

tion, m6A-positive transcripts show significantly higher SE than

m6A-negative transcripts (Figure 4A). In addition, by measuring

SED at the transcript level, we find that the m6A-positive tran-

scripts show significantly greater processing than their m6A-

negative counterparts (two tailed paired t test p value < 2.2e-

16) (Figure 4B). Importantly, processing appears significantly

enhanced for the m6A fraction of individual transcripts; �76%

show gain of SED in the m6A fraction, revealing a direct and

sequence-independent impact of m6A on processing kinetics

(Figure 4C). We further examined the SE locally for the 13,532
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Figure 3. Intronic m6A Deposition Associates with Alternative Splicing

(A) Violin plots showing density of the distribution (with embedded box-and-whiskers plots) of q value for introns classified as either constitutive or alternative

spliced extracted from all pulse-chase time points.

(B–D) Average m6A signal per nucleotide position in a ±500-nt window around the 50 SJ (B) and 30 SJ (D) and per bin (C) of 6,742 introns with length 1,000–10,000

nt. The average m6A signal is extracted separately for the two subgroups (constitutive and alternative). The lines represent LOESS curve fitting (local polynomial

regression), with the 95% confidence interval shaded gray.

(E) The contribution of each feature to alternative versus constitutive splicing, calculated as the coefficients of the binary logistic regression fit with associated

estimated significance (�log10 p value). Features with p < 0.001 are colored red.

(F) Average ROC for the logistic regression prediction of the alternative versus constitutive splicing using all features, with and without m6A data. The respective

AUC number is indicated.

See also Figure S4.
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filtered introns.We find that�14%have significantly higher SE in

the m6A-positive transcripts and show a 1.26-fold enrichment

over random chance to have an m6A peak in the 50 SJ 250-nt

exonic boundary (odds ratio, 1.265; Fisher’s exact test p value =

0.0006745). In addition, individual intron loci show on average

significantly higher SED in the m6A-positive versus m6A-nega-

tive transcripts (two-tailed paired t test p value < 2.2e-16)

(Figure 4D).

We used qPCR to analyze the splicing kinetics of four candi-

date SJs that have at least one m6A peak (±250 nt). Strikingly,

at time point 0, m6A-positive transcripts show higher SE than

the m6A-negative transcripts (Figures 4E and 4F). We confirmed

this result with semiquantitative PCR (Figures 4G and 4H).

Nascent m6A Effects Are METTL3 Dependent
To provide a direct link between RNA splicing kinetics and m6A

deposition at SJs, we assessed the splicing kinetics after

METTL3 knockdown (METTL3 KD) (60 min chase) (Figure 4I).

The intron dataset was divided into three equal-size quantiles

based on the m6A signal at 50 and 30 SJs (50 and 30 SJ 100-nt

exonic intervals), and the SED was calculated. We plotted the

log2 ratio of SED for METTL3 KD to control for introns with

low, medium, and high m6A signal (Figure 4J). For introns with

high m6A signal on both 50 and 30 SJs, we observe a decreased

SED upon METTL3 KD for approximately half of the entries (log2

SED ratio METTL3 KD/control < 0) (Figure 4J). For introns

with low and medium m6A signal (log2 SED ratio METTL3 KD/

control > 0), we observe an increased SED (Figure 4J). The differ-

ence in the SED ratio (log2 METTL3 KD/control) of high m6A

signal compared to low or medium is significant for both com-

parisons (t test p value < 2.2e-16). We then focused on fast-pro-

cessed introns and plotted them6A signal (sum of 50 SJ and 30 SJ
100-nt exonic area) for those that show reduced SED upon

METTL3 KD versus the rest (Figure 4K). We find that the

METTL3-affected introns have significantly higher m6A at the

50 and 30 SJ exonic boundaries. This verifies that the 50 and 30

SJ exonic methylation promotes fast splicing kinetics, as also

shown by the logistic regression model fit (Figure 2J). We see

the same but less pronounced tendency for the slow-processed

introns (Figure 4L). qPCR analysis of SED for four candidates

confirms the transcriptome-wide data (Figures 4M–4P).

DISCUSSION

We identify an enrichment of m6A deposition near the 50 SJs of

nascent RNA transcripts, andwe show that early m6A deposition

is associated with distinct RNA processing kinetics. Most impor-

tantly, we compare the processing of individual m6A-positive

transcripts versus their m6A-negative counterparts, demon-

strating that m6A directly controls splicing kinetics irrespectively

of the underlying transcript sequence. Our findings suggest that

m6A serves as a labeling signal that could be recognized bym6A

reader proteins to destine methylated transcripts for specific

splicing kinetics. This is in agreement with a study describing

m6A methylation as a mark for selective nuclear processing,

providing evidence for an m6A-dependent mRNA metabolism

(Roundtree et al., 2017).

Our findings furthermore reveal that intronic m6A peaks are

enriched in introns involved in alternative splicing. The m6A de-

methylase FTO binds mostly to introns and mediate removal of

m6A. Knockout of FTO causes alternative splicing events with

a preference for exon skipping, suggesting that demethylation

of mRNA transcripts promotes exon inclusion under normal con-

ditions (Bartosovic et al., 2017). Taken together, these findings

suggest that intronic m6A marks that are not targeted or not

yet removed by FTO mediate exon skipping, while introns

involved in constitutive splicing show no enrichment in the

m6A signal and most probably are targets of FTO (Bartosovic

et al., 2017). In mRNAs, m6A is enriched in the consensus

DRACH motif; however, not all DRACH motifs are methylated,

indicating that the presence of the sequence motif alone is not

enough to drive m6A deposition. FTO CLIP data show no signif-

icant enrichment of the DRACH motif (Bartosovic et al., 2017),

leading us to hypothesize that early intronic m6A deposition is

mostly in non-DRACH sequences where FTO can detect and

eventually remove the m6A marks.

Recently, the m6A reader YTHDC1 was shown to recruit

SRSF3 while competing away SRSF10. YTHDC1 binds m6A

sites and promote exon inclusion (Xiao et al., 2016). In the

absence of YTHDC1 and SRSF3, SRSF10 has the availability

to bind to free m6A sites independently, promoting exon skip-

ping. SRSF3 knockdown in U2OS cells has also been shown

to cause exon-skipping events (Ajiro et al., 2016). Using de

Figure 4. qTNTchase-Seq Identifies m6A-Marked Fast-Track RNAs

(A) Boxplot representing the overall SE of methylated (m6A positive) versus non-methylated (m6A negative) transcripts at time points 0 and 30 min.

(B) Violin plots showing distribution of the transcript SED in m6A-positive and m6A-negative fractions (two-tailed Student’s t test p value < 2.2e-16).

(C) Cumulative distribution of transcript SED differences between the methylated and unmethylated state (DSED = SED m6A positive � SED m6A negative).

(D) Boxplot displaying SED per intron in m6A-positive and m6A-negative transcripts (two-tailed paired t test p value < 2.2e-16).

(E and F) qPCR analysis of the local intronic SE of methylated versus non-methylated transcripts for 0 min (E) and 30 min (F).

(G and H) UCSC genome browser tracks of qTNTchase-seq data for LMAN2 (G) and C8orf33 (H) representing the transcript regions used for the qRT-PCR

analysis. Normalized read coverage (reads per million of total number of mapped reads) tracks for input (blue), supernatant m6A negative (gray), and eluate m6A

positive (pink). The upper overlay track represents the TNT-seq with purple for input and green for IP; black rectangles above represent the called m6A peaks.

Below tracks for each sample are agarose gels depicting semiquantitative PCR of input, m6A-positive, and m6A-negative samples for 0 and 30 min.

(I) Western blot for METTL3 KD.

(J) Log2 ratio of SED in METTL3 KD to control for introns with low, medium, and high m6A signal at both 50 and 30 SJs (100-nt exonic area).

(K) m6A signal at both 50 SJs and 30 SJs (100 nt exonic area) for the fast-processed introns that show reduced SED in the METTL3 KD condition versus the rest

(two-tailed Student’s t test p value < 2.2e-16).

(L) m6A signal at both 50 SJs and 30 SJs (100 nt exonic area) for the slow-processed introns that show reduced SED in the METTL3 KD condition versus the rest

(two-tailed Student’s t test p value < 2.2e-16).

(M–P) qPCR analysis of SED for fast- (M and N), medium- (O), and slow-processed (P) introns (error bars show SD, n = 2 biological replicates (*p < 0.05 and **p <

0.01, two-tailed Student’s t test).
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novomotif analysis, we identify three additional motifs sharing a

SAG core reminiscent of the SRSF binding site consensus, sug-

gesting that m6A could be involved in recruiting splicing factors

to control SE and alternative splicing.

The lack of strong consensus sequences at SJs of many in-

trons may be compensated by the presence of m6A that could

eventually attract splicing factors to exert their function. Our

study shows that the crucial role of m6A on SED as well as on

alternative splicing is position dependent. m6A deposited in in-

tronic regions sort transcripts to a slow-track processing

pathway and is associated with alternative splicing while m6A

deposited at exonic boundaries of SJs sort transcripts to a

fast-track processing pathway and constitutive splicing.

EXPERIMENTAL PROCEDURES

Cell Culture and BrU-Chase Sequencing

HEK293 cells were cultured in DMEMgrowthmedium supplementedwith 10%

fetal bovine serum (FBS) under normal growth conditions (37�C and 5% CO2).

Cells were 70%–80% confluent before addition of BrU. BrU (�5-bromouridine,

Santa Cruz Biotechnology catalog number CAS 957-75-5) was added to a final

concentration of 2 mM to the medium and cells were incubated at normal

growth conditions for 15 min. Cells were washed three times in PBS and either

collected directly or chased in conditional medium supplemented with 20 mM

uridine (Sigma catalog number U3750-25G) for 15, 30, and 60 min. RNA was

purified using TRIzol following the manufacturer’s instructions.

TNT-Seq

For one TNT-seq sample,�25 150-mmplates were used for BrU labeling. RNA

was labeled and isolated as described above. RNA concentration was

adjusted to 2 mg/mL with nuclease-free water. 18 mL RNA was added to a

thin-walled 200-ml PCR tube following the addition of 2 mL 10X fragmentation

mixture (100 mM Tris-HCl [pH 7.4] and 100 mM ZnCl2 in nuclease-free water).

Distribution of post-fragmentation size (�100 nt) was analyzed using an Agilent

2100 Bioanalyzer with an Agilent RNA 6000 Pico kit according to the manufac-

turer’s instructions. 400–600 mg fragmented BrU-labeled total RNA was used

for each BrU immunoprecipitation (IP). BrU-RNA isolation was performed as

described above. 5 mg BrU fragmented RNA was used as input for the m6A-

IP buffer. An RNA-antibody-beads mixture was incubated for 2 hr at 4�C
with gentle rotation in a final volume of 0.8 mL in protein low-binding tubes.

Three washing steps were performed with 1X m6A-IPbuffer (1st and 2nd

wash) and high-salt m6A-IP buffer (500 mM NaCl, 0.1% Igepal CA-6300,

10 mM Tris-HCl [pH 7.5]) (3rd wash). At the last wash, the protein low-binding

tubes were replaced with DNA LoBind tubes. For elution, 80 mL elution buffer

(1X m6A-IP buffer + 6.7 mM m6A nucleotides) was added directly on the

beads, and the tubes were incubated for 1 hr with continuous shaking

(1,100 rpm) at 4�C. After the second round of elution, RNAwas ethanol precip-

itated and resuspended in 15 mL RNase-free water, and the RNA concentration

was measured using the Qubit RNA HS Assay Kit as per the manufacturer’s

instructions.

siRNA Transfection

HEK293 cells were transfected with four different siRNAs targeting METTL3

transcript (Table S1) using HiPerFect Transfection Reagent from QIAGEN. In

brief, reverse transfection was performed using 1 3 106 cells for a single

100-mmplate. Cells were seeded in a final 4mL volume ofmediumwithout an-

tibiotics. 12 mL transfection reagent together with siRNAs (25 nM final concen-

tration) was incubated at room temperature (RT) in 1 mL Opti-MEM I Reduced

Serum Medium after mixing for 20 min. The transfection complexes were

added drop-wise into the plate. 16 hr after transfection, 5 mL cell culture me-

dium was added to each plate. A second transfection was performed 24 hr af-

ter the first transfection. After 40 hr, 5 mL cell culture medium was added to

each plate. Knockdown efficiency was analyzed with western blot (anti-

METTL3 polyclonal antibody; Protein Tech catalog number 15073-1-AP).

BrU-Chase Seq samples were prepared 72 hr after the first transfection. The

experiments were performed in duplicate.

RNA Sequencing and Data Analysis

For the BrU- Chase Seq, the library preparation was done using the TrueSeq

Stranded Total RNA Kit (Illumina). Sequencing was performed on an Illumina

HiSeq 2500 instrument to obtain �200 million reads per sample. For the

TNT-Seq, 100 ng of Input BrU-labeled fragmented RNA and 100 ng of TNT-

IP eluate RNA were subjected to library preparation following the TruSeq

Stranded mRNA Library Preparation Kit instructions with some modifications.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the BrU-chase-seq, TNT-seq, qTNTchase-seq,
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Supplemental Experimental Procedures 

Cell culture and BrU-chase Seq. 

HEK293 cells were cultured in DMEM growth-medium supplemented with 10% Fetal Bovine 

Serum (FBS) under normal growth conditions (37°C and 5% CO2). The day before 

bromouridine (BrU) labelling ~2.0 x 10^6 cells were seeded in 100 mm plates with 10ml 

media, one plate for each time point. Cells were 70-80% confluent before the addition 

bromouridine (BrU). BrU (-5-Bromouridine cat.no. CAS 957-75-5 Santa Cruz 

Biotechnology) was added to a final concentration of 2 mM to the media and cells were 

incubated at normal growth conditions for 15 min (pulse). Cells were washed three times in 

PBS and either collected directly (0 min chase time point) or chased in conditional media 

supplemented with 20 mM uridine (Sigma cat.no U3750-25G) for 15, 30 and 60 min. RNA 

was purified using TRIzol following manufacturer’s instructions.  

In the next step we followed the protocol of (Paulsen et al., 2013) with some modifications. 

40ul of anti of anti-mouse IgG magnetic Dynabeads (Invitrogen) were transferred to a 1.5ml 

microfuge Protein Low binding tube and washed 3 times with BrU-IP 1X buffer (0.1% BSA 

in RNAse free PBS). After the final wash, the beads were resuspended in BrU-IP 1X buffer 

supplemented with SUPERase• In™ RNase Inhibitor 1:2000 together with BrdU antibody 

(5μg of antibody per 100 μg RNA). Antibody-beads mixture was incubated for 1 hour at room 

temperature with gentle rotation following 3 washes with 1X BrU-IP. 150 μg RNA was used 

for each BrU-IP and heated up for 4 min at 65°C prior to IP. The same amount of unlabeled 

total RNA was used as a negative control. 5X BrU-IP (0.5% BSA 5X PBS supplemented with 

SUPERase• In™ RNase Inhibitor 1:2000) was added to the RNA to a final concertation of 

1X. RNA-antibody-beads mixture was incubated for 90 min at room temperature with gentle 

rotation in a final volume of 800 ul. The beads were washed three times with 800 ul 1X BrU-

IP at room temperature. For all wash steps, with the exception of the elution step, the beads 

were washed for 5 min rotating then placed on a magnetic rack and the wash buffers were 

77



discarded. At the last wash the Protein low binding tubes were replaced with DNA LoBind 

tubes. For elution 200 ul of Elution buffer (0.1% BSA and 25 mM bromouridine in PBS) were 

added directly on the beads and the tubes were incubated for 60 min with continuous shaking 

(1100 rpm) at 4 °C. The supernatant (eluate w/o beads) was transferred to a new tube and 

RNA was precipitated by adding 1/10 volumes of 3M sodium acetate (pH 5.2) and 3-4 

volumes of 100% ethanol. RNA was allowed to precipitate at −80 °C overnight. RNA pellet 

was washed twice with 75% ethanol and resuspended in RNase-free water. RNA quality was 

analyzed using Agilent 2100 Bioanalyzer with an Agilent RNA 6000 Pico kit according to the 

manufacturer’s instructions.  

 

TNT-seq 

For one TNT-seq sample ~25 150 mm plates were used for BrU labelling. RNA was 

metabolically labelled with BrU for 15 min and RNA was isolated as described above. RNA 

concentration was adjusted to 2 μg/ul with nuclease free water. 18 ul of RNA was added to 

thin-walled 200µl PCR tube following addition of 2 ul of 10X fragmentation mixture 

(containing 800 µl of RNase-free water, 100 µl of 1M Tris-HCl pH 7.4 and 100 µl 1M of 

ZnCl2). After vortex and quick spinning the tubes were incubated in 94 °C for 3.5 min in a 

preheated thermal cycler block with the heated lid closed. Tubes were quickly removed from 

the thermocycler and placed on ice following addition of 2 µl of 0.5 M EDTA. After vortex 

and quick spin the RNA was collected in a tube to continue with for RNA precipitation using 

1/10 volumes of 3 M sodium acetate (pH 5.2), 3-4 volumes of 100% ethanol. RNA was 

allowed to precipitate at −80 °C overnight. The following day tubes were centrifuged at full 

speed for 30 min at 4 °C. RNA pellet was washed twice with 75% ethanol and resuspended in 

400-500 ul of RNase-free water. Validation of post fragmentation size (~100 nt) distribution 

was analyzed using Agilent 2100 Bioanalyzer with an Agilent RNA 6000 Pico kit according 

to the manufacturer’s instructions. 400-600 ug fragmented BrU labeled total RNA was used 
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for each BrU-IP. BrU-RNA isolation was performed as described above. The BrU-IP 

recovery was approximately 0.09-0.16% of input. 4.5 ug of BrU fragmented RNA was used 

as input for the m6A immunoprecipitation. 40 ul of Dynabeads® Protein A  (Invitrogen) per 

sample was transferred to a 1.5 ml microfuge Protein LoBind tube and washed 3 times with 

1X m6A-IP (500 mM NaCl, 0.1% NP-40, 10 mM Tris-HCl, pH 7.5). After final wash the 

beads were resuspended in 800 ul 1X m6A-IP buffer supplemented with SUPERase• In™ 

RNase Inhibitor 1:1000. 1ug of affinity purified anti-m6A polyclonal antibody (Synaptic 

Systems) per 2.5 ug BrU-RNA was added to the beads and incubated for 60 min at room 

temperature with gentle rotation. As a negative control, we used Dynabeads® Protein A 

magnetic beads bound to an irrelevant IgG. Beads were washed 3 times with m6A-IP 1X 

buffer for 5 min on the rotator. 5 ug of BrU Fragmented RNA was used as input. RNA was 

heated up for 4 min at 65 °C. 5X m6A-IP buffer (50 mM Tris-HCl, 750 mM NaCl and 0.5% 

(vol/vol) Igepal CA-6300 supplemented with SUPERase• In™ RNase Inhibitor) was added to 

have the RNA in 1X m6A-IP buffer. RNA-antibody-beads mixture was incubated for 2 hours 

at 4°C with gentle rotation in a final volume of 0.8ml in Protein low binding tubes. Three 

washing steps followed using m6A-IP 1X buffer (1
st
 and 2

nd
 wash) and high salt m6A-IP 

buffer (500 mM NaCl, 0.1% Igepal CA-6300, 10 mM Tris-HCl, pH 7.5) (3
rd 

wash). For all 

wash steps, with the exception of the elution step, the beads were washed for 5 min then 

placed on a magnet and the wash buffers were discarded. At the last wash the Protein low 

binding tubes were replaced with DNA LoBind tubes. For elution 80 ul of Elution buffer (1X 

m6A-IP buffer + 6.7 mM m6A nucleotides) were added directly on the beads and the tubes 

were incubated for 1 hour with continuous shaking (1100 rpm) at 4 °C. The beads were spun 

down and the supernatant was transferred to a clean tube. After the second round of elution 

the eluted RNA was precipitated using ethanol precipitation as described above. RNA pellet 

was resuspended in 15 ul RNase-free water and using Qubit® RNA HS Assay Kit we 

measured the RNA concentration following manufacturer’s instructions. 
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qTNTchase-seq, qPCR, RT-PCR. 

RNA was metabolically labelled with BrU for 15 min and chased for 30 min as described 

above. RNA was purified using TRIzol following manufacturer’s instructions. 200 ug total 

BrU labeled RNA was used as Input for the BrU-RNA isolation. After the elution step (200 ul 

of 0.1% BSA and 25mM bromouridine in PBS) we added 50 ul of 5X m6A-IP buffer. 4 ug 

(1 ug ab per 500 ng RNA) m6A ab were coupled to 40 ul Dynabeads® Protein A as described 

above, resuspended in 550 ul m6A-IP 1X buffer and added to the RNA mixture. RNA-

antibody-beads mixture was incubated for 60 min at room temperature with gentle rotation. 

The supernatant was kept and RNA was isolated with TRIzol. The beads were washed 3 times 

for 5 min at RT (twice with low salt m6A-IP 1X buffer and last wash high salt m6A-IP 1X 

buffer). We eluted the RNA captured by m6A antibody by competition as described in TNT-

Seq section. cDNA synthesis was performed using the same amount of RNA (10-20 ng) from 

all fractions (Input BrU-RNA 0 min, Input BrU-RNA 30 min chase, Supernatant m6A-

negative 0 min, Supernatant m6A-negative 30 min chase, IP m6A-positive 0 min, IP m6A-

positive 30 min chase). RT-PCR was performed using Q5 Hot Start High-Fidelity DNA 

Polymerase New England Biolabs with initial denaturation 98 °C 30s, then 32 cycles of 98 °C 

10 s, 58 °C 20 s and 72 °C 55 s and final extension 72 °C 2 min. PCR products were resolved 

on agarose gel. Spike-in controls were in vitro transcribed using T7 RNA Polymerase 

Invitrogen following manufactures instructions. For the methylated transcripts N6-methyl-

ATP (TriLink) was used in a ratio 4:1 to ATP in the in vitro transcription reaction. GFP and 

Luciferase sequences were used as template for the RNA transcription. For each qTNTchase-

seq sample before m6A IP, in vitro–transcribed transcripts with and without m
6
A 

modification were mixed into the samples as spike-in controls at the indicated percentage of 

m6A-modified to m6A-unmodified transcript (Molinie et al., 2016). For all samples after 

BrU-IP but before m6A-IP we added 2.5x10
7
 copies from each spike including: 0% GFP and 
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20% luciferase. Before the library preparation for sequencing, 1 ul of 1:2000 dilution of the 

universal ERCC spike-in control A (Invitrogen) was added to each fraction (100 ng). 

 

siRNA transfection 

HEK293 cells were transfected with four different siRNAs targeting METTL3 transcript (see 

Supplemetary Table 1) using HiPerFect Transfection Reagent from QIAGEN. In brief, 

reverse transfection was performed using 1 x 10
6
 cells for a single 100 mm plate. Cells were 

seeded in a final 4 ml final volume of media without antibiotics. 12 ul of transfection reagent 

together with siRNAs (25 nM final concentration) were incubated at room temperature in 

1 ml Opti-MEM
TM

 I Reduced Serum Media after mixing for 20 min. The transfection 

complexes were added dropwise into the plate. 16 hours after transfection 5 ml of cell culture 

media were added to each plate. 24 hours after the first transfection we performed a second hit 

using the same amount of transfection reagent and siRNAs as the first round. 40 hours after 

the first transfection 5 ml of cell culture media were added to each plate. We analyzed knock 

down efficiency with western blot (anti-METTL3 Polyclonal antibody, protein tech 

Catalog.number: 15073-1-AP) and continued with BrU-Chase Seq 72 hours after the first hit. 

The experiment was performed in duplicates. 

 

Transcript m6A-level and splicing index 

The m6A level per transcript from the qTNTchase-seq experiment were calculated as 

described in (Molinie et al., 2016). The ratio of the RNA abundance for each transcript 

between the eluate and the supernatant was represented by the ratio of the overlapping strand-

specific RNA read counts normalized to the ratio of the reads of the ERCC RNAs. We used 

the log2-transformed read counts of ERCC RNAs to fit a linear regression model, computing 

the eluate ERCC reads as a function of the supernatant ERCC reads with a coefficient of 1 

(not shown). The log2 ratio between ERCC eluate counts and supernatant counts was 
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indicated by the intercept of the regression formula. Only the ERCC RNAs with at least 100 

read counts were used in this pipeline.  

M6A level = E/(E+S*2^intercept) 

Eluate read counts (E), supernatant read counts (S), and the intercept of ERCC regression 

(intercept) 

We assessed the splicing efficiency per transcript as the ratio of the overlapping strand-

specific split reads (extracted by using bedtools coverage –s –F 1.0) to all (split + non-split) 

reads covering the transcript. 

 

Quantitative real-time PCR 

RNA was reverse transcribed using the GoScript reverse transcription Promega A500. cDNA 

was quantified on an 7900HT Fast real time PCR system (Applied Biosystems) using the Go 

Taq qPCR Master Mix Promega (A6001). The PCR was carried out using a standard protocol 

with melting curve. Primers for unspliced RNA transcripts were design to span exon – intron 

5’ splice junction and exon – exon boundaries for spliced RNA transcripts. Splicing efficiency 

(SE) was determined by the ration of 2^-CTspliced / (2^-CTspliced+2^-CTunspliced) for each 

timepoint. SED was determined by the ration of SED = 1/ ((1- SE0 min) * (1- SE60 min)) 

 

RNA sequencing and data analysis  

For the BrU-Chase Seq, the library preparation was performed using the TrueSeq Stranded 

Total RNA Kit (Illumina). Sequencing was performed on an Illumina HiSeq 2500 instrument 

to obtain around 200M reads per sample. For the TNT-Seq, 100 ng of Input BrU-labeled 

fragmented RNA and 100 ng of TNT-IP eluate RNA were subjected to library preparation 

following the TruSeq Stranded mRNA Library Preparation Kit instructions with some 

modifications. The protocol started from the first strand synthesis step and 3X Clean-NA-

Beads beads volume was used for the buffer exchange to include shorter RNA fragments. 
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Mapping of strand-specific reads to GRC37 genome assembly (hg19) was done using STAR 

(Dobin et al., 2013) and only uniquely mapped reads were kept for further downstream 

analyses. To extract read coverage per nucleotide position across the genome the strand-

specific bed files were sorted by chromosome and start coordinate and converted into wig 

files with bedtools genomecov using –scale to normalize for library size. To assess the 

genome-wide correlation of the m6A signal from replicates, the ratio of normalized read 

counts per nucleotide position of IP to Eluate, rendering the m6A signal, was converted to 

bigWig using wigToBigWig (UCSC) and then bigWigCorrelate (UCSC) was used. To extract 

the m6A signal per nucleotide position in given intervals, the depth at each nucleotide 

position of the examined intervals (e.g. within +/- 500 bp windows around anchor points) was 

extracted using bedtools coverage –d –s from the m6A Input and the respective m6A IP, and 

then the ratio m6A IP/Input multiplied by (total number of mapped reads in the Input/ total 

number of mapped reads in the IP) was calculated. Then the average m6A signal was 

extracted at each nucleotide position from all examined entries. 

 

m6A peak calling 

We called m6A peaks based on a previously published pipeline (Ke et al., 2015; Ke et al., 

2017). We first divided the genome into 20 bp non-overlapping bins with bedtools 

windowMaker and extracted the strand-specific read coverage from m6A Input and IP for all 

bins using bedtools coverageBed –s. Fisher’s exact test p-value was extracted from the matrix 

(bin Input read counts, bin IP read counts, total number of mapped reads in the Input, total 

number of mapped reads in the IP) and adjusted by the Benjamini and Hochberg method to 

determine the false discovery rate (FDR). Only windows with a p-adjusted < 0.05 in all three 

replicates and fold enrichment (score) minimum four in at least two out of the three replicates 

were kept as significant. Adjacent significant bins were merged using bedtools mergeBed into 

broader peaks (finally 95 % of the peaks were in the range 20-100 nt long). In the case of 
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broad peaks, the peak summit is the midpoint of the 20 nt window with the maximum score, 

or the midpoint of the interval of merged adjacent bins sharing same maximum score within 

the same peak. In a few cases, a broad peak was assigned more than one summits if it 

contained non-adjacent windows sharing the same maximum score, finally yielding 58102 

m6A peaks and 58311 peak summits. Custom scripts were written in awk programming 

language.  

 

De novo motif search 

De novo motif search was run using HOMER (Heinz et al., 2010) within +/-150 nt intervals 

around the peak summit of 5651 best scoring exonic m6A peaks (minimum fold enrichment 

20) and the same number of top best intronic peaks. Control sequences were generated from 

the respective input sequences with the scrambleFasta.pl script. Then, de novo motif search 

was run with ‘findsMotifs.pl input_sequences.fa fasta –basic –rna –len 6,7,8 –fasta 

scrambled_sequences’. The results were inspected in terms of enrichment, significance and 

the presence of common consensus sequences, with the four motifs displayed in Figure 1B 

being the most represented. Those were used to scan the input sequences for the presence of 

match occurrences using the ‘dna-pattern’ search tool from the RSAT suite (Medina-Rivera et 

al., 2015) with parameters ‘search given strand only, prevent overlapping matches, origin-

start, return flanking nucleotide positions 2’. Motif search was also performed in the same 

number of random genomic intervals as a control, generated with bedtools (–length 300 –

number 5651). The matches were aligned and the logo was generated with WebLogo3 

(Crooks et al., 2004) . 

 

Splicing kinetics and predictive models 

To assess splicing efficiency we extracted the splicing index value as in (Mukherjee et al., 

2017).  equals to the ratio of the split reads mapping to the 5’ and 3’ SJ of an intron divided 
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to the sum of split plus non-split reads (schematic representation in Figure 2A). The  value 

(representing Splicing Efficiency, SE) was extracted from all pulse-chase time points, for 

13,532 introns with at least five reads coverage at both 5’ and 3’ SJ, and used in k-means 

clustering with k = 3 to call three groups of distinct splicing efficiency (fast, medium and 

slow) (Supplementary Figure 2B). The Splicing Efficiency Dynamics metric was calculated 

as SED = 1/ ((1.001-  0 min) * (1.001-  60 min)) (plotted in the log scale for the three 

groups in Figure 2F). To assess constitutive versus alternative splicing we extracted the  

value as in (Mukherjee et al., 2017).  is the ratio of constitutive split reads assigned to a 

given intron’s 5’ and 3’ SJ to all split reads (i.e. split reads from the given intron 5’ SJ to any 

downstream 3’SJ and from the intron’s 3’ SJ to any upstream 5’ SJ, as depicted in Figure 2A). 

Therefore  is in the range 0 to 1 with 1 meaning 100 % constitutive splicing. We then used 

the  value extracted from the pulse-chase time point 60 min (closer to steady-state) to 

perform k-means clustering with k = 2 and define two clusters of introns, constitutive (n = 

11836, minimum  0.5294) and alternative (n = 1696, maximum  0.5278). In the case of 

introns classified as alternative spliced ( < 0.5278) upstream or downstream exon skipping 

takes place.  

The following features were used in logistic and linear regression models to predict splicing 

efficiency kinetics and alternative versus constitutive splicing: 

The 5’ and 3’ splice site underlying sequence scores extracted using MaxEntScan 

(http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html); distance of the 5’ SJ to 

the annotated transcript first start site (TSS) and of the 3’ SJ to the last end site (TES); 

expression calculated as coverage (reads per kb) from the m6A Input RNA-seq (15 min BrU 

pulse) for the whole transcript interval where the intron belongs to; intron length; intron 

overall m6A signal extracted as the strand-specific m6A IP read coverage divided to m6A 

Input read coverage, normalized by (total number of mapped m6A Input reads * total number 
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of mapped m6A IP reads); m6A signal calculated the same way at the 5’ SJ 100 nt exonic 

boundary, 5’ SJ 100 nt intronic boundary, 3’ SJ 100 nt exonic boundary and 3’ SJ 100 nt 

intronic boundary.  

To predict fast versus slow or alternative versus constitutive splicing, logistic regression was 

performed with R function glm (family = binomial) (all parameters apart from the sequence 

scores were first log scale transformed and all were then standardized). To evaluate the fitting 

of the model and assess discrimination, the Receiver Operating Characteristic Curve (ROC) 

and the area under the curve (AUC) were calculated with the R package ROCR (Sing et al., 

2005). Linear regression to predict splicing efficiency using the continuous value  (in the 

range 0 to 1) was performed with R function lm().  

 

CLIP data analysis 

We used CLIP data for SRF3 and SRSF10 from (Xiao et al., 2016)(GEO GSE71096). To 

calculate the relative SRSF10/SRSF3 binding per nucleotide position, we used the ModeScore 

column from the GEO submitted PARalyzer output file, which is the score of the highest 

signal divided to the sum value (signal+backround) and ranges from 0.5 to 1. We first 

extracted the coverage for each SRSF per nucleotide position in the +/-500 nt window around 

5’ or 3’ SJ, or per bin for the length-binned introns (introns with length 1000-10,000 nt, 

binned into 1000 non-overlapping windows), by using bedtools coverage –s –d. Nucleotide 

positions with overlapping CLIP binding sites were assigned the cluster’s score (ModeScore 

column) whereas nucleotide positions with no CLIP data overlap were assigned a pseudo-

score 0.1. We then computed the ratio SRFS10/SRSF3 per nucleotide position or per bin of 

all analyzed loci and the metagene analysis extracting the average ratio SRFS10/SRSF3 per 

nucleotide position or per bin was run separately for each of the subgroups fast/medium/slow 

or constitutive/alternative. 

 

86



Table 1: Primer Sequences. All the primers and siRNAs where purchased from 

Integrated DNA Technology, Inc. (IDT)  
 

RT-PCR and qPCR primers 

NAME Sequence 

CDKN1B unspliced Forward AATAAGGAAGCGACCTGCAA 

CDKN1B unspliced Reverse atacgccgaaaagcaagcta 

CDKN1B spliced Forward AATAAGGAAGCGACCTGCAA 

CDKN1B spliced Reverse GGGGAACCGTCTGAAACAT 

LMAN2 unspliced Forward GTGACTGCGGATATAACTGACG 

LMAN2 unspliced Reverse ctcgccctcactcttcactc 

LMAN2 spliced Forward GTGACTGCGGATATAACTGACG 

LMAN2 spliced Reverse ATAGTGCTGCCCTGGAAGTC 

NASP unspliced Forward CATGGAGTCCACAGCCACT 

NASP unspliced Reverse tgccttaagctttccacagtc 

NASP spliced Forward CATGGAGTCCACAGCCACT 

NASP spliced Reverse GCAGATGTAGAAGGAGCAGGA 

ARF4 unspliced Forward CCTCCCTCTTCTCCCGACT 

ARF4 unspliced Reverse attgtggagaccctgccttt 

ARF4 spliced Forward CCTCCCTCTTCTCCCGACT 

ARF4 spliced Reverse TTGTCTTGCCAGCAGCATC 

C8orf33 Forward TAAGAAGAAAACGCGGAACAGG 

C8orf33 Reverse GGTGGGTTTCTGCCTCTTGA 

MSN unspliced Forward TCAAGAAGCTGAAGAGGCCA 

MSN unspliced Reverse agttcccataatcccagccc 

MSN spliced Reverse CTGTCAGCTCTGCCATTTCC 
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SPTBN1 unspliced Forward CTGGATGAGCGAGCAGGAG 

SPTBN1 unspliced Reverse aagtgtgcccagggtttgaa 

SPTBN1 spliced Revers GCATAGTCCTCCACAGCTTGT 

NOL7 unspliced Forward TCCTGAAGGAGAAGAGGAAGC 

NOL7 unspliced Forward aattctccctgagccgagtt 

NOL7 spliced Forward AACGCTCCTGAAGGAGAAGA 

NOL7 spliced Reverse TCCAAAATAGTGTCTGGAAGGA 

 
 
 
NAME siRNA Target Sequence 5’→3’ 

Mettl3-1 5’-ACUGCUCUUUCCUUAAUA 

5’-AAACAUGUAUUAAGGAAA 

Mettl3-2 5’-CCAACAGUCCACUAAGGA 

5’-CUGUUGUUCCUUAGUGGA 

Mettl3-3 5’-AGGCAAGGAACAAUCCAU 

5’-UUCAACAAUGGAUUGUUC 

Mettl3-4 5’-AGCCAAGGAACAAUCCAU 

5’-UUCAACAAUGGAUUGUUC 
Control NCI  IDT controls 
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Figure S3; Related to Figure 2:Prediction of SED in a linear regression model
(A-C) Prediction of Splicing Efficiency Dynamics (SED) (as a continuous value) from (A) all features excluding 
m6A data (B) including m6A data using linear regression. The line indicates the linear regression fit between
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5’SJ, for the three groups. (F) Boxplots depicting the distribution of the m6A signal in the 100 nt exonic window 
boundary adjacent to the 3’SJ, for the three groups.
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Figure S4; Related to Figure 2 and 3: Splicing factors coincide with m6A deposition 
(A-C) Distribution of the interdistances of factor binding sites to closest m6A peak summit for (A) SRSF3
(B) SRSF10 and (C) overlap. As a control, distance from the midpoint of the respectively same number of 
randomly generated genomic intervals is also plotted.  (D-F) Distribution of the average ratio SRSF10/SRSF3 
binding, extracted separately for the three subgroups fast/medium/slow per nucleotide position in the window
 +/-500 nt around the 5’SJ (D) and 3’SJ (F), or per bin (E) for 6,742 length-binned introns (with a length 
1,000-10,000 nt). (G-I) Same analysis as in (D-F) but comparing the average SRSF10/SRSF3 ratio for the two 
subgroups constitutive versus alternative.
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