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group Lübeck Interdisciplinary Platform for Genome Analytics for their advice and

discussions during lunch time.

For biostatistical advice at the beginning of my doctorate I wish to present my

special thanks to Dr. Christina Willenborg.

This dissertation would not have been possible without technical and administrative

support. Hence, I would like to thank the system administrators Dirk Laggin of

the Institute for Neuro- and Bioinformatics as well as Frank Rühlemann and Gu-
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Abstract

Background: Periodontitis (PD) is a bacterially induced disease of the oral cavity

and, in the long term, can lead to tooth loss due to the inflammatory degradation

of the alveolar bone. For the severe forms of PD, there is a prevalence rate of 11%

worldwide, making it one of the most common inflammatory diseases. Aggressive

periodontitis (AgP) is an early (< 35 years) and particularly severe clinical form

of PD, whereas chronic periodontitis (CP) usually has a slow and more moderate

course. The estimated heritability of PD is 50%. Twin studies and examples where

individuals share the same environment and lifestyle yet have different risk for dis-

ease, illustrate the strong influence of hereditary factors on the pathogenesis of PD.

Several randomized clinical trials have demonstrated a relationship between PD and

coronary artery disease (CAD), with an epidemiological relationship between the two

disease to be independent of smoking as a common risk factor. CAD is a complex

disease of the arteries with a strong inflammatory component. Plaque formation in

the arteries can impair the blood supply, which can trigger a heart attack.

Status quo: Previous studies have identified genetic risk variants at several loci

in the human genome that predispose to PD. The gene locus GLT6D1 is associated

with AgP at genome-wide significance. Furthermore, common genetic risk variants

of PD and CAD were identified for the gene sites ANRIL, Plasminogen and VAMP3.

However, the known genetic risk factors explain only a small fraction of the heri-

tability of PD. Indeed the underlying genetic risk factors remain largely unknown.

Methods & Results: The identification of yet unknown genetic risk factors can

significantly contribute to a better understanding of the causes and molecular mech-

anisms of PD as well as the genetic and molecular relationship to CAD and to the

improvement of diagnosis and treatment of PD. In my thesis, I carried out genome-

wide association studies and meta-analyses with the aim of systematically identifying

further risk genes. I had access to the, to date, world’s largest AgP sample with

851 cases and 6,580 controls of Dutch and German descents. In addition, I used

a non-genotyped AgP sample with 220 cases and 560 controls of Turkish descent

which were used to confirm single genetic variants. For CP samples I had a total

of 4,244 cases and 3,328 controls of German and European-American descent which

were also taken into account. I could identify new risk variants of PD that either

reached genome-wide significance levels (P < 5 × 10−8) or could be independently

validated. These variants are located proximal to the genes DEFA1A3, SIGLEC5,

LOC107964137, MTND1P5, VAMP8, PF4/PPBP/CXCL5, IL37. In silico func-



tional characterization of these loci points to specific processes that play a role in

wound healing and in bacterial immune defense. A pleiotropic variant at VAMP8

also increases susceptibility to CAD and suggests a possible molecular mechanism

underlying the epidemiological link between PD and CAD. The results confirm that

the relationship between PD and CAD cannot be explained solely by shared lifestyle

factors. However, the SNP-gene relationships shown in this work require further ex-

perimental studies.



Zusammenfassung

Hintergrund: Parodontitis (PD) ist eine bakteriell induzierte Erkrankung der

Mundhöhle und kann durch den entzündungsbedingten Abbau des Alveolarknochens

langfristig zum Zahnverlust führen. PD zählt mit einer Prävalenzrate von 11%

weltweit für die schweren Formen zu den häufigsten Entzündungskrankheiten. Ag-

gressive PD (AgP) ist ein sehr früh (< 35 Jahre) auftretendes und besonders

schwer verlaufendes Krankheitsbild der PD, chronische Parodontitis (CP) hinge-

gen hat einen langsamen moderateren Verlauf. PD hat eine geschätzte Erblichkeit

von 50%. Zwillingsstudien und Beispiele von Personen, die innerhalb dersel-

ben Umwelt mit einem gleichen Lebensstil leben, aber ein sehr unterschiedliches

Krankheitsrisiko haben, verdeutlichen den starken Einfluss erblicher Faktoren auf

die Pathogenese der PD. Ein Zusammenhang zwischen dem Vorliegen einer PD und

einer koronaren Herzkrankheit (KHK) konnte in mehreren randomisierten klinis-

chen Studien nachgewiesen werden und zeigt, dass der epidemiologische Zusam-

menhang zwischen beiden Erkrankungen unabhängig vom gemeinsamen Risikofak-

tor Rauchen ist. Die KHK ist eine komplexe Erkrankung der Arterien, mit einer

starken Entzündungskomponente. Durch Plaquebildung in den Arterien kann die

Blutversorgung beeinträchtigt werden, wodurch ein Herzinfarkt ausgelöst werden

kann.

Status quo: In vorangegangenen Studien konnten bereits Einzelnukleotid-

Polymorphismen (SNPs) an mehreren Genorten im humanen Genom identifiziert

werden, die für die PD prädisponieren. Der Gen-Lokus GLT6D1 ist mit genomweiter

Signifikanz mit AgP assoziert. Außerdem wurden gemeinsame genetische Risikovari-

anten der PD und der KHK für die Genorte ANRIL, Plasminogen und VAMP3 iden-

tifziert. Die bekannten genetischen Risiko-Loci erklären jedoch nur einen kleinen Teil

der Heritabilität der PD. Tatsächlich sind die der PD zugrunde liegenden genetischen

Risikofaktoren jedoch noch weitgehend unbekannt.

Vorgehen & Ergebnisse: Die Identifikation noch unbekannter genetischer

Risikofaktoren kann wesentlich dazu beitragen, die Ursachen und molekularen Mech-

anismen der PD sowie den genetischen und molekularen Zusammenhange zwis-

chen PD und KHK besser zu verstehen und die Diagnose und Therapie von PD

zu verbessern. In der vorliegenden Arbeit wurden genomweite Assoziationsstu-

dien und Meta-Analysen durchgeführt, mit dem Ziel, systematisch weitere Risiko-

gene zu identifizieren. Dazu wurde das aktuell weltweit größte AgP-Sample mit

851 Fällen und 6.580 Kontrollen mit niederländischen und deutschen Teilnehmern



verwendet. Zudem wurde ein für die Bestätigung einzelner genetischer Varianten

ein nicht-genotypisiertes AgP-Sample mit 220 Fällen und 560 Kontrollen türkischer

Herkunft hinzugenommen. Mit insgesamt 4.244 Fällen und 3.328 Kontrollen standen

außerdem CP-Samples deutschen und europäisch-amerikanischen Ursprungs zur

Verfügung. Es konnten neue Risikovarianten der PD identifiziert werden, die

genomweites Signifkanzniveau (P < 5 × 10−8) erreichen oder unabhänigig vali-

diert werden. Diese Varianten befinden sich proximal zu den Genen DEFA1A3,

SIGLEC5, LOC107964137, MTND1P5, VAMP8, PF4/PPBP/CXCL5, IL37. Die

funktionelle In Silico-Charakterisierung dieser Loci weist auf spezifische Prozesse

hin, die in der Wundheilung sowie in der bakteriellen Immunabwehr eine Rolle spie-

len. Eine pleiotrope Variante bei VAMP8 erhöht außerdem die Anfälligkeit für KHK

und weist auf einen möglichen molekularen Mechanismus hin, der dem epidemiol-

ogische Zusammenhang der PD und KHK zugrunde liegen kann. Die Ergebnisse

bestätigen, dass der Zusammenhang von PD und KHK nicht ausschließlich durch

geteilte Lifestyle-Faktoren zu erklären ist. Die in dieser Arbeit aufgezeigten SNP-

Gen-Beziehungen erfordern jedoch weitergehende experimentelle Studien.
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Chapter 1

Introduction

The oral cavity forms the entrance to the gastrointestinal tract and offers excellent

conditions for microorganisms due to the high humidity, the constant temperature

and the continuous food supply. The food is seized, crushed and ground by the

teeth. The area that joins teeth and gingival tissue is particularly susceptible to

pathogens and a particular challenge for the body’s immune system. This is also

illustrated by the coinciding development of adaptive immunity and teeth in early

jawed vertebrates during evolution [1, Chapter 15] [2, 3]. The healthy oral cavity

is inhabited by a very complex and species-rich community. It is assumed that for

oral inflammatory diseases these pathogens reflect a dysbiosis of the microflora, i.e.

by a state of disequilibrium in the community of oral microbes (reviewed in [4]). As

a result, the immune system triggers an inflammatory reaction which can become

chronic if no homeostasis occurs. As a consequence, the inflammatory substances can

extensively and irreversibly damage the patient’s supporting tissue of the teeth, the

periodontium, a pathological process that is known as the oral disease periodontitis

(PD) (Figure 1.1).

PD is among the common inflammatory diseases, with an estimated heritability of

50% [5]. It affects human populations with a worldwide prevalence rate of 11% in

adults with aged 30 years and older for the severe forms [6] and is the major cause

of tooth loss in adults above 40 years [7]. Since PD is painless, the inflammation

usually persists long-term making it common for PD to have reached advanced

degrees of severity before it’s diagnosed and eventually treated (Figure 1.2). Since

the inflammation can affect large areas of the oral mucosa, it can pose a substantial

strain for the immune system. Apart from the personal implications, PD also can

be a substantial burden of public health care [8].

1
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Figure 1.1: Healthy and diseased periodontium. Periodontitis is a common
inflammatory disease of the supporting tissue of the teeth in the oral cavity. The oral
cavity, equipped with special set of tools such as teeth and salivary glands, represents
the first step in the digestive system. It is a warm and unsterile space offering a perfect
conditions for microbes which, in a healthy cavity, form a well-balanced and necessary
microflora environment. A dybiosis of the microflora, i.e. through external factors like
smoking or oral hygiene, can trigger an inflammation of the gingiva that can lead to an
early PD (Early PD). If equilibrium of the microflora is no longer restored, it may lead
to the irreversible degradation of the supporting tissue of the teeth including resorption
of alveolar bone (Advanced PD). The dental images were provided by the Department
of Periodontology and Synoptic Dentistry at the Charité - University Berlin.
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Figure 1.2: Inflammatory burden of periodontitis patients. In periodontitis,
the inflammation of the oral mucosa can reach a large extent and be a strong personal
burden for the patients. (Left) The oral inflamed area of a female PD patient with
50 years of age corresponds to 34.6cm2, covering 90% of the total epithelial surface
(38.3cm2). The inflamed area was estimated using the periodontal inflamed surface area
(PISA) method which takes the clinical parameters clinical attachment level, recessions
and bleeding on probing into account [9]. (Right) Putting the entire inflammable area
together, it covers large parts of an adult male hand palm. The dental images were
provided by the Department of Periodontology and Synoptic Dentistry at the Charité
- University Berlin.

Long-term smoking, excess dietary fat and diabetes contribute to the microbial shift

of the oral microbiota, which is considered to trigger the inflammatory reaction,

and the overall risk of PD. The inflammation leads to gingival bleeding, gingival

pocket formation, and to the resorption of alveolar bone which withdraws from the

site of inflammation, a process that can lead to tooth loss. These steps are unique

in the pathogenesis of complex diseases, because the oral cavity is the only part of

the human organism where, in an intricate microbial environment of microbes, soft

tissues such as the gingival mucosa dynamically interact with hard tissues like teeth

and skeletal bone.

However, the precise molecular mechanisms that drive the individual steps in the

pathogenesis of PD are currently unknown. Moreover, unraveling the genetic archi-

tecture of PD may help to understand the molecular mechanisms that underlie the

disease risk.
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1.1 Manifestations of periodontitis

PD is classified into the widespread form of chronic periodontitis (CP) and the rare

and much more severe form of aggressive periodontitis (AgP). AgP has a prevalence

of <0.1% globally [10]. CP primarily affects adults and its prevalence increases with

age [11, 12], whereas AgP is characterized by an early age of onset, affecting mainly

adolescents or young adults [13, 14]. CP and AgP have a similar aetiology and

histopathology and can be considered as parts of the same disease spectrum (Figure

1.3). AgP has a stronger and better-established heritable component [15–17]. It is

considered that genetic factors play a stronger role in disease onset and progression

of AgP, because of the usually very young age of onset, implying the absence of

other risk factors like long-term smoking or diabetes, and often concomitant with

the absence of plaque.

Figure 1.3: Manifestations of periodontitis. Periodontitis can be classified into
the early-onset and very severe form of aggressive periodontitis, and the late-onset
and less severe form of chronic periodontitis. Generally, early-onset forms of complex
diseases are thought to be determined by genetic factors to a larger extent.

The extent and severity of PD is determined by measuring different parameters of

the periodontium [18]. The probing pocket depth of the gap between the gums

and teeth is measured by sliding a dental probe under the gum line next to the

teeth (Figure 1.4). The clinical attachment loss tells, how strong the teeth are

attached to periodontium by periodontal ligament fibers. It is derived by measuring

the distance from the cemento-enamel junction to the base of the pocket. Since

in PD the inflammation can occur in a repetitive manner with periods of reduced

inflammation, the pocket depth can vary and influence both probing depth and

clinical attachment loss. The loss of alveolar bone is measured using dental X-rays.

Finally, the overall number of affected teeth are also a crucial parameter.

However, no consistent thresholds for parameters describing the state of the peri-

odontium have been used so far. Accordingly, no universally accepted definition of

periodontitis exists. Also, no disease-specific biomarkers have been discovered. Con-

sequently, the differentiation between chronic and aggressive periodontitis remains
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Figure 1.4: Probing pocket depth. (Left) Schematics of a tooth with healthy
gingiva on the left and advanced periodontitis on the right side which is indicated by
secluded gingiva and loss of alvolar bone [18]. (Right) Gap between gums and tooth in
which a steel narrow-diameter probe is passed to measure the pocket depth.

unclear.

Recently in 2018, a new classification scheme for PD has been released which will

replace the definitions of AgP and CP by a multidimensional staging and grading

system [19] (reviewed in [20]). Since the new classification scheme was released after

I conducted the analyses in this thesis, it is not further considered in the following.

1.2 Shared epidemiology of PD and other diseases

Recurrent and persistent inflammations caused by bacteria are also recognized as

continually renewing reservoirs for the systemic spread of bacterial antigens, cy-

tokines, and other pro-inflammatory mediators and may bring a burden onto the

rest of the body [21]. Accordingly, researchers have hypothesized the etiologic role

of PD in the pathogenesis of various systemic illnesses like diabetes mellitus (re-

viewed in [22]), osteoporosis (reviewed in [23]) and cardiovascular disease (CVD)

[24], bridging the once-wide gap between medicine and dentistry.

Diabetes mellitus Diabetes mellitus is a complex metabolic disease characterized

by hyperglycaemia due to defects in insulin metabolism. The World Health Orga-

nization (WHO)1 ranks diabetes as the seventh leading cause of death worldwide

in 2013. There is strong evidence of a bi-directional causation between diabetes

and PD. It has been shown that inflammation promotes the development of in-

sulin resistance by pro-inflammatory mediators like TNFα, IL6, IL1 and interferons

[25, 26]. A mouse model of diet-induced obesity, in which the inhibition of TNFα

1http://www.who.int

http://www.who.int
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prevents the onset of obesity-associated insulin resistance, illustrates the effect of

pro-inflammatory factors on the pathogenesis of diabetes [27]. Pro-inflammatory

mediators have increased expression levels in periodontal inflammation [28–30]. Con-

versely, the finding that periodontitis in patients with diabetes is not only more

frequent but also more severe than in healthy people, indicates a causative role of

diabates on PD (reviewed in [31, 32]). Several hypthoses exist describing this role,

however they remain controversial, since none have been confirmed. A mechanism

that proposes a direct causality of diabetes on periodontitis may act through the

effects of advanced glycation end products (AGEs) which are formed to an accel-

erated degree in diabetic tissues due to chronic hyperglycemia. AGEs can bind

to special plasma membrane localized receptors for AGEs (RAGEs), which are ex-

pressed on different cells, e.g. on macrophages. Macrophages are then transformed

into hyperreactive cells that produce pro-inflammatory cytokines, which can drive

hyperinflammatory responses, vascular modifications and altered healing, contribut-

ing to the development of periodontitis [33]. To-date, there are 73 known genetic

risk loci that reach with genome-wide significance (P < 5×10−8) for type 2 diabetes

[34].

Osteoporosis Osteoporosis is a systemic skeletal disorder that is characterized by

a decrease in bone density as a result of the degradation of bone tissue in excess

of the build-up during natural bone remodeling increasing the risk of fractures [35].

Osteoporosis has prevalence of 10% in the US adult population aged 50 years and

older [36].

Osteoporis shows commonalities with PD (reviewed in [23]). For both diseases,

excessive bone resorption is a central feature. Moreover, PD and osteoporosis share

the risk factor smoking. However, a causal relationship between osteoporosis and

PD has not been established yet.

Coronary artery disease According to the WHO, CVD is the most frequent

cause of death globally. CVD describes a class of disorders of the heart and blood

vessels, with coronary artery disease (CAD) being the most common. CAD is the

manifestation of atherosclerosis in the coronary arteries supplying the heart mus-

cle, also known as myocardium, with oxygen and nutrients (reviewed in [37]). Its

pathogenesis comprises of chronic inflammation of the arterial wall caused by an

unbalanced lipid metabolism and a maladjusted immune response. Due to the dis-

turbed balance of lipid accumulation, immune reactions and their release, plaque

forms, which leads to a thickening of the arterial wall. This may result into reduced
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blood flow inside the arteries affecting the supply and eventually lead to myocardial

infarction. Thus, analoguous to PD, CAD has a strong inflammatory component

(reviewed in [38]). An association between CAD and PD was reported in several

clinical and observational studies (reviewed in [39]). Because of the high prevalence

of CAD and PD and the high mortality of CAD, this association is potentially of

public health importance. Recent evidence indicates that the observed association

between CAD and PD is independent of smoking [39] and obesity [40]. However,

it could be explained in part by other shared risk factors like diabetes and age.

Unlike diabetes and PD, little is known about the presence of a causal relationship

of CAD and PD. One indication that PD may play a direct causal role in CAD is

the discovery of oral commensial bacteria in artheroslerotic plaque of CAD patients

[41] (reviewed in [42]). It is believed that this is the result of an arterial infection

by oral bacteria that were able to enter the bloodstream in large quantities due to

inflammation of the periodontium. However, the exact mechanisms underpinning

this relationship remains unclear. In this context, the knowledge of shared genetic

risk variants could substantially contribute to the understanding of the mechanisms

that underlie the epidemiological associations.

Due to the high mortality of CAD and the demographic development especially

in western countries, there is a special research interest in this disease. For this

reason, CAD already has a well-established genetic basis. Large consortia such as

the “Coronary ARtery DIsease Genome wide Replication and Meta-analysis plus The

Coronary Artery Disease Genetics”2 (CARDIoGRAMplusC4D) have been founded,

pooling patient cohorts into large meta-analyses. With the help of such large sample

sizes, 163 genetic risk variants of genome-wide significance (P < 5× 10−8) for CAD

could be discovered so far (reviewed in [43]), including risk variants with very low

effect sizes (i.e. Odds Radio [OR] < 1.05, Figure 1.5).

1.3 Known genetic risk factors of PD

Earlier studies identified a single nucleotide polymorphism (SNP) within the gene

GLT6D1 to be associated with AgP at a genome-wide significance level [44], which

was later replicated in a sub-Saharan population from Sudan [45].

Further analyses demonstrated a shared risk locus of AgP and CAD at PLG (plas-

minogen) [46, 47] and a shared risk locus of AgP and CAD at ANRIL (CDKN2B-

AS1) [48–52]. In addition, evidence for a shared association of a rare genetic variant

2http://www.cardiogramplusc4d.org/

http://www.cardiogramplusc4d.org/


8 CHAPTER 1. INTRODUCTION

Figure 1.5: Frequency distribution of the effect sizes (odds ratio) of 163
known CAD risk variants. Number of variants increases with lower effect sizes.
Minimum: 1.03; 1st quartile: 1.04; mean: 1.07; 3rd quartile: 1.073; maximum: 1.51;
Variant information was taken from [43].

at VAMP3 with AgP and CAD was observed [53]. VAMP3 is located in a chromo-

somal region that was earlier described to be associated with increased colonization

of oral periodontal pathogens [54].

The PLG locus was identified as shared risk variant of AgP and CP [55]. GWAS

that focused on CP only, suggested various risk variants but have failed to give clear

statistical evidence for association [16, 54, 56–63]. This may be partly due to the

high heterogeneity of CP but probably mostly relates to the limited statistical power

of these GWAS.

The evidence of a systemic link between PD and both diabetes and osteoporosis has

not yet been established at the genetic level so far.

1.4 General methods

1.4.1 Genome-wide association studies

A genome-wide association study is a research study in which a genome-wide set of

small genetic variants, mainly SNPs, is systematically investigated for associations

with a phenotype in a sample of unrelated individuals (reviewed in [64–66]). This

kind of study became popular in the mid-2000s, when advances in genotyping array

technologies allowed to type hundreds of thousands of human SNPs in a single
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experiment and at comparably low costs.

The large number of SNPs detected by genotyping arrays still represents only a

fraction of all the variation that is caused by SNPs in the human genome. How-

ever, the fact that many SNPs are linked with each other (also known as linkage

disequilibrium [LD], described in more detail in chapter 1.4.4 on page 14) in hu-

man populations allows to explain a large amount of common genetic variation. For

example, 500,000 SNPs are required to completely capture common variation (i.e.

minor allele frequency [MAF] > 5%) in Utah Residents with Northern and Western

European ancestry (CEU) [67].

The amount of SNPs that are tested in a GWAS increases the number of false-

positives and thus the false-positive (type 1) error α. Therefore, adjusting for multi-

ple testing plays a crucial role in GWAS and usually, Bonferroni correction is applied

to control the family-wise error rate. This is done by adjusting the significance level

α to α/n where n represents the number of tests. Putative association signals can be

confirmed by replicating it in an independent study [68]. Then, the significance level

of the replication has to be adjusted by the number of replicated variants. Alter-

natively, a meta-analysis (described in subsection 1.4.2 on page 12) of two or more

independent studies and the application of the genome-wide significance threshold

to the pooled P -value is also considered as validation method [69, 70]. A P -value

below 5 × 10−8 is generally accepted as being genome-wide significant [70, 71]. In

terms of Bonferroni correction, this threshold corresponds to 1 million independent

SNPs given a unadjusted significance level of α = 0.05 [72].

Depending on whether the phenotype is binary such as disease phenotypes like CAD

or PD or quantitative such as body height, logistic or generalized linear regression

models can be used to model the relation between a genetic variant and the phe-

notype. A simple linear regression model of a SNP Xi and a phenotype Yi can

be formulated as Yi = β0 + β1Xi where i = 1...n and n represents the number of

samples. In other words, a straight line is placed through the data points that best

describes the relationship between the variables X and Y . In this two dimensional

example, β0 represents the intercept on the y axis and β1 the slope of the line. The

beta coefficient of a SNP represents its effect size and the signs provide information

on the direction of action. When the phenotype is binary, the response variable

Y are either 0 or 1. The prediction of Y can be seen as probabilities in [0, 1]:

Yi = P (Yi = 1) = β0 +β1Xi. To estimate the probability for a linear combination of

independent variables, the linear function has to be adapted by applying the logit

function onto Y : logit(P (Yi = 1)) = ln(P (Yi = 1)/(1 − P (Yi = 1))) = β0 + β1Xi.



10 CHAPTER 1. INTRODUCTION

The logit is the natural logarithm of the chance (Odds = P (Yi = 1)/(1−P (Yi = 1))

that Yi = 1 and equivalent to a linear function of the independent variables. In

logistic regression, there is a direct relationship between beta coefficients and odds

ratios, which allows to transform beta coefficients into odds ratios (OR = exp(β))

and vice versa (β = ln(OR)). For both model types, a P -value for the association

level of a SNP can be computed from the beta estimate β̂, which corresponds to β1

in the previous example, and its standard error SE(β̂) by using the Wald statistic,

i.e. by calculating 2 × Φ(−|β̂|/SE(β̂)), where Φ denotes the distribution function

for the normal distribution.

Single genetic variants such as SNPs can be modeled in different ways. In the

additive model which is the standard model, the number of alternative alleles (A)

is counted for each SNP. In a diploid genome, this results either in 2 (AA), 1 (AB)

or 0 (BB) with B stating the reference allele. Other genetic models are recessive (1

[AA], 0 [AB], 0 [BB]), dominant (1 [AA], 1 [AB], 0 [AB]).

The statistical power or sensitivity of a GWAS study, i.e. the probability of correctly

rejecting the null hypothesis (H0: no association between SNP and phenotype), de-

pends on the false-negative (type 2) error β (power= 1 − β), the sample size, the

genetic model, risk allele frequencies and effect sizes. Since the characteristics about

the causal variants are unknown prior to a GWAS, minimum thresholds for fre-

quencies and effect sizes are calculated such that SNPs with these attributes can

be detected with reasonable power. For one-stage GWAS, the statistical power for

case-control studies can be calculated using the Genetic Association Study (GAS)

Power Calculator3. Estimates of genetic effects of newly found associations tend to

be upwardly biased owed to a phenomenon which is known as the “winner’s curse”

[73]. The “winner’s curse” describes a phenomenon in which winners in competing

auctions tend to pay more for an item than its actual value. In relation to GWAS,

this means that genetic variants with an effect size for which the study is underpow-

ered, it can only be detected, if the real effect size is overestimated. Overestimated

effect sizes can result in replication sample sizes being selected too small and in a

replication failure, i.e. producing a false negative result. The “winner’s curse” can

also occur in GWAS meta-analyses, when the inter-sample heterogeneity is too high.

Genotypes require extensive quality control (QC), before a GWAS analysis can be

performed. QC steps include updating of SNP identifiers and their genetic position,

allele strand flipping and reference/alternative allele swapping, all based on a pre-

selected reference genome build. Moreover, a sex check based on the genotypes can

3http://csg.sph.umich.edu/abecasis/gas power calculator/index.html

http://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html
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help to identify possible phenotyping errors or mistaken identities. Outliers in the

population structure can be identified and removed using principal component anal-

yses (PCR) or multidimensional scaling (MDS). Identity-by-descent and identity-

by-state analyses allow for detecting cryptic relatedness. Additionaly, several filters

(SNP callrate, sample callrate, minor allele frequency, Hardy-Weinberg-equilibrium,

heterozygosity) can be applied to further improve the quality of the variant and

sample set. PLINK 1.904 is a software program offering a wide range of tools to

perform QC on genotypes [74].

Association estimates can be biased by unknown and known confounding factors like

population admixture, gender or lifestyle factor such as smoking for PD. The amount

of population admixture is measured by PCR or MDS. The effect of these factors

on GWAS results is assessed by the genomic inflation factor (λ) [75]. Lambda is

defined as the ratio of the median observed test statistic across all tested SNPs to the

expected median test statistic. The expected median test statistic for a chi-squared

(χ2) test with one degree of freedom is approximately 0.456. A λ > 1 indicates a

bias through confounding factors. Then, genomic control can be applied to adjust

the test statistics such that λadjusted = 1 by dividing each test statistic with the

original λ [76]. Known confounding factors can also be considered in the regression

model by adding as additional independent variable beside the genetic variable.

Due the beforementioned large extent of LD in human populations, identified as-

sociations often cannot be broken down to a single causal SNP but to a haplotype

block harboring multiple highly correlated/linked SNPs. Moreover, approximately

90% of the identified SNPs are located in noncoding DNA regions, further analyses

are required to identify the specific casual genes [77]. The prioritization of genes by

means of published biological datasets (see subsection 1.4.4 on page 14) is used to

illuminate causality.

GWAS have been very successfull in identifying associations of common variants

with complex diseases and traits and helped substantially to understand underlying

(patho-)mechanisms [78]. As an example of it’s relevance in translational processes,

it has been shown that the proportion of drug mechanisms with drug targets that are

supported by genetic associations, significantly increases along the drug development

pipeline and the chances for drug approval [79].

4https://www.cog-genomics.org/plink2

https://www.cog-genomics.org/plink2
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1.4.2 Meta-analysis of GWAS results

The results of multiple independent GWAS on the same phenotype can be combined

in a meta-analysis to increase statistical power and reduce false-positive findings

(reviewed in [68, 80]). Meta-analyses can use the SNP-specific summary statistics

and do not rely on individual-level genotype data.

The most powerful meta-analysis model for detecting associations is the fixed effects

model (FEM). It assumes that the true effect size of an association is the same

in all studies, implying a low inter-study heterogeneity. Therefore, this model is

not appropriate anymore, if the heterogeneity is too high. Instead, the far less

powerful random effects model (REM) can be used which specifically accounts for

heterogeneity.

Several sources of heterogeneity exist such as differing population structures and

phenotype definitions across the studies. While different population structures can

be handled by adjusting for principal components of the population structure, har-

monization of different phenotype definitions is often not possible.

The Cochran’s Q statistic and the heterogeneity index I2 can be used to measure

the level of heterogeneity (reviewed in [81]). Q is the weighted sum of squared

differences between individual study effects and the pooled effect resulting from

the meta-analysis. When using an inverse variance study weighting in the models

above, the weights represent the inverse variance of each individual study. It follows

a X2 distribution with the number of studies minus 1 degrees of freedom (df) (H0:

no heterogeneity). I2 is calculated as I2 = 100% × (Q − df)/Q and describes the

percentage of variation that can be attributed to heterogeneity. Values exceeding

0.5 indicate a moderate to high heterogeneity.

One important step prior to a meta-analysis is to harmonize the datasets, for example

by making sure that all studies are on the same reference build and to have clarity

which is the effect allele (allele to which the effect refers) and non-effect allele for

each specific dataset.

1.4.3 Genotype imputation

The imputation of genotypes is a technique in which the genotypes, which had not

directly been genotyped, are predicted from genotypes that were directly assayed

using genotyping arrays (reviewed in [82, 83]). This technique works by finding

shared haplotype blocks between the study sample and a reference haplotype panel.
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Since the reference contains very densely genotyped samples, it can then be used

to derive missing genotypes in the study sample. Pre-phasing, i.e. the separation

of estimating the haplotypes of the study sample and deriving missing or untyped

genotypes in shared haplotype blocks into two steps, can reduce the computational

costs dramatically [84].

Imputation with pre-phasing is the most popular method. Two commonly used

software frameworks for this method are MaCH [85] plus Minimac [86] and ShapeIt

v2 [87] plus Impute2 [84, 88], whereby the first is for pre-phasing and the second for

imputation.

Haplotype references panels are provided by three consortia. The HapMap3 panel

provided by The International HapMap Project5 includes 1.6 million common small

variants (i.e. SNPs and Indels) in 1,184 individuals from 11 populations [89]. The

1000 Genomes Phase 3 panel by The 1000 Genomes Project6 contains 80 million

small variants in 2,504 individuals from 27 populations [90–92]. The third reference

panel from the The Haplotype Reference Consortium7 includes 40 million small vari-

ants in 38,821 individuals with predominantly European ancestry [93]. It combines

genotype data from 20 cohorts including the 1000 Genomes cohort and was created

to increase imputation accuracy for rare variants down to a frequency of 0.1%.

Incorporating the predicted in silico genotypes together with the typed genotypes in

a subsequent GWAS has several advantages. It can increase the number of SNPs to

be tested for association and boost association signals at causal loci. Additionally,

the larger number of association signals allows to resolve or fine-map causal variants

more precisely. Moreover, when combining multiple GWAS of different genotyping

arrays in a meta-analysis, genotype imputation can increase the amount of overlap-

ping genotypes and improve the results as described. Also, genotype imputation has

the ability to detect and correct for genotyping errors.

Recently, two imputation webservers were released, moving the computationally

expensive imputation procedure to the cloud: the European Sanger Imputation

Service8 and the Michigan Imputation Server9 which represents the US counterpart

[93, 94].

5https://www.genome.gov/10001688/international-hapmap-project/
6http://www.internationalgenome.org/
7http://www.haplotype-reference-consortium.org/
8https://imputation.sanger.ac.uk
9https://imputationserver.sph.umich.edu

https://www.genome.gov/10001688/international-hapmap-project/
http://www.internationalgenome.org/
http://www.haplotype-reference-consortium.org/
https://imputation.sanger.ac.uk
https://imputationserver.sph.umich.edu
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1.4.4 In silico annotation of genetic variants

Linkage disequilibrium Linkage equilibrium refers to a random association of

alleles at two loci whereas linkage disequilibrium (LD) referes to non-random as-

sociation of the same [95]. Several factors influence LD, including recombination,

mutation, genetic drift and founder effect [96, 97].

Given markers A and B with alleles A1, A2, B1, B2, allele frequencies pA1, pA2,

pB1 and pB2 and pairwise allele frequencies pA1B1, pA2B2, pA2B1 and pA1B2, the co-

efficient for linkage disequilbrium D is calculated as D = pA1B1pA2B2− pA2B1pA1B2.

The strength of association is often indicated as the standardized disequilbrium D-

prime (D′) ranges between −1 and +1 [98]. D′ = D/Dmax if D is positive, otherwise

D′ = D/Dmin (Dmax = min(pA1pB2, pA2pB1); Dmin = max(−pA1pB1,−pA2pB2)).

Another measure of LD is the correlation coefficient r which is calculated as

r = D/
√
pA1pA2pB1pB2. D

′ provides information on historic recombination events,

whereas r2 provides information on the correlation of two markers and is the mea-

sure of interest for GWAS. If r2 = 1, then A and B are in perfect LD and have

exactly the same MAF. If |D′| = 1, then A and B are said to be in complete LD.

In GWAS, LD is calculated for pairs of SNPs using genotype data. Since LD struc-

ture varies between different populations, it is necessary to use LD information based

on an appropriate population. LD information can be calculated with PLINK 1.9

[74].

eQTL Expression quantitative trait loci (eQTLs) are genomic regions containing

genetic variants which influence the expression of one or more genes (reviewed in

[99]). Since most of GWAS associations are common variants in non-coding regions,

it is not conclusive which gene is affected by them. EQTLs can help to relate these

variants with genes and to reveal the underlying biological mechanisms.

Similar to GWAS analyses, in eQTL analyses SNPs are associated with phenotypes,

i.e. the expression of genes. However, in GWAS analyses usually SNP associations

with only one phenotype is investigated at the same time, whereas in eQTL anal-

yses the expressions of multiple genes are taken into account. This results in a

higher number of statistical tests and requires a stronger adjustment for multiple

testing. Supposing an analysis of 1 million SNPs and 20,000 genes, the genome-

wide significance level for an eQTL is 2.5 × 10−12 = 0.05/1, 000, 000/20, 000 when

applying Bonferroni correction for a nominal significance level of 0.05, compared to

a significance level of 5× 10−8 for GWAS.
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eQTLs are classified according to the relative sites to the genes they influence and

according to their mode of action. The mode of action of an eQTL with regard to

a target gene are either cis, if it affects the expression of the target directly, e.g. by

modifying a transcription factor binding site, or trans, by affecting another gene that

has regulatory effects on the target gene. Since mode of action is usually unknown

prior to the functional characterization of an association, the mode of action is

usually estimated by the distance between eQTL and target gene. However, the cis

mode can also be present for more distant eQTLs and similarly, the trans mode can

also be present for eQTLs in proximity to the target gene.

Just like RNA levels, other processes along the gene expression cascade can be

studied in this way as well, including DNA methylation, histone modification, tran-

scription factor binding, active transcription, translation and protein levels.

Several public databases exist for eQTL data: the Genotype-Tissue Expression

project (GTEx) Portal [100], Haploreg (Ward2016), GRASP [101], GEUVADIS

[102], SCAN [103], seeQTL [104], Blood eQTL Browser [105], ExSNP [106] and

BRAINEAC [107]. Moreover, the database pGWAS [108] contains QTL data on

protein abundance (pQTL).

TAD Topologically associated domains (TADs) are local chromatin interaction

domains, i.e. genomic regions defined by interactome boundaries. TADs represent

spatial compartments and are a omnipresent structural feature in the genome [109,

110]. Physical interactions occur more frequently inside a TAD than interactions

across TADs. They are cell-type independent and highly conserved.

TAD information can be generated from all-versus-all (also known as Hi-C) chro-

mosome conformation capture experiments. HI-C is an unbiased method to detect

chromatin interactions by cross-linking, ligation of spatially adjacent chromatin seg-

ments and subsequent high-throughput sequencing of the purified DNA. Then, the

interaction frequency between specific chromosomal loci can be determined by quan-

tifying the ligation products. The term all-versus-all refers to the characteristic of

a Hi-C experiment to test all possible pairwise interactions between segments are

tested.

CADD The combined annotation dependent depletion (CADD) score is used

to assess the relative deleteriousness of small genetic variants in coding and non-

coding regions [111]. It combines 63 annotations including conservation metrics,



16 CHAPTER 1. INTRODUCTION

regulatory information like regions of deoxyribonuclease (DNase) hypersensitiv-

ity or transcription factor binding, splicing isoform information like distance to

exon-intron boundaries or expression levels and protein-level scores into a variant-

by-annotation matrix. After training multiple models on observed and simu-

lated variants by using machine learning techniques, an average of the mod-

els was used to derive a “C-score”. The C-score was then transformed into a

Phred-scaled score (“CADD score”) between 1 to 99 by applying the formula

−10 × log10(variant rank/number of variants) to the list of variants sorted by

their C-score. Accordingly, a CADD score ≥ 10 indicates that the variant belongs

to the 10% most deleterious substitutions in the human genome, a score ≥ 20 indi-

cates that the variant belongs to the 1% most deleterious substitutions.

GWAS Catalog The National Human Genome Research Institute (NHGRI)-

European Bioinformatics Institute (EBI) Catalog of published genome-wide associa-

tion studies (also known as GWAS Catalog) 10 is the most comprehensive resource of

published SNP-trait/disease associations [78]. It was founded in 2008 by the NHGRI

and since then the number of associations increased to multiple tens of thousands of

associations. It is updated on a weekly basis by extracting and curating associations

from publications.

10https://www.ebi.ac.uk/gwas/

https://www.ebi.ac.uk/gwas/


Chapter 2

Aims of the Thesis

There is strong evidence that onset and progression of the inflammatory oral disease

periodontitis (PD) is significantly influenced by genetic factors, which are still largely

unknown [112, 113]. The main goal of this thesis is the identification of novel human

genetic factors predisposing to PD. To accomplish this, I utilized human case-control

samples of severe forms of PD, including the worldwide largest sample of the most

severe and early-onset form aggressive periodontitis (AgP) and the more moderate

and slower progressing but widespread form chronic periodontitis (CP).

The specific aims of this thesis are:

1. preparation and refinement of recently generated genotype and phenotype data

of the before mentioned AgP case-control sample

2. identification of novel common genetic risk factors for AgP

3. identification of novel common genetic risk factors for PD using all available

AgP and CP samples

4. identification of novel shared genetic risk factors for PD and coronary artery

disease (CAD)

5. prioritization of candidate causal genes in the identified loci and to identify or

confirm molecular pathways that are involved in PD

The identification of PD genetic factors could significantly contribute to identify-

ing the causes, to improve the understanding of the underlying mechanisms and

eventually, to improve diagnosis and therapy.
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Chapter 3

Manuscripts

3.1 A genome-wide association study identifies nu-
cleotide variants at SIGLEC5 and DEFA1A3 as risk
loci for periodontitis

Authors: Munz M, Willenborg C, Richter GM, Jockel-Schneider Y, Graetz

C, Staufenbiel I, Wellmann J, Berger K, Krone B, Hoffmann P,

van der Velde N, Uitterlinden AG, de Groot LCPGM, Sawalha A,

Direskeneli H, Saruhan-Direskeneli G, Guzeldemir-Akcakanat E,

Keceli G, Laudes M, Noack B, Teumer A, Holtfreter B, Kocher T,

Eickholz P, Meyle J, Doerfer C, Bruckmann C, Lieb W, Franke

A, Schreiber S, Nohutcu RM, Erdmann J, Loos BG, Jepsen S,

Dommisch H, Schaefer A

Year: 2017

Journal: Human Molecular Genetics

PMID: 28449029

doi: 10.1093/hmg/ddx151

Supplements: https://academic.oup.com/hmg/article/26/13/2577/3755421

3.1.1 Outline

I conducted a GWAS using German (Ger) and Dutch (NL) case-control samples of

aggressive periodontitis (AgP) comprising 851 cases and 6,580 controls after qual-

ity control (Figure 3.1). Sixteen lead SNPs of the discovery stage passed the

pre-defined selection criteria (PAgP < 10−5, PAgP < PAgP−Ger, PAgP < PAgP−NL,

PAgP < 10−3 for proxy SNPs [r2 > 0.8]) and were validated in a German sample

of severe forms of chronic periodontitis (CP) comprising 993 cases and 1,419 con-

trols. Of the sixteen SNPs, two SNPs and their proxy SNPs were not found in the

19

https://www.ncbi.nlm.nih.gov/pubmed/28449029
https://doi.org/10.1093/hmg/ddx151
https://academic.oup.com/hmg/article/26/13/2577/3755421#supplementary-data
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validation sample. Of the remaining 14 SNPs, two SNPs at SIGLEC5 (sialic acid

binding Ig-like lectin 5) on chromosome (chr) 19q13.41 and a chromosomal region

downstream of the DEFA1A3 locus (defensin alpha 1-3) on chr8p23.1, showed nom-

inal significant association (P < 0.05) with CP. At DEFA1A3, an additional SNP

in low linkage disequilibrium (LD, r2 = 0.28) with the lead SNP, showed nominal

association with CP. Subsequently, the SNPs were replicated in a Turkish sample

of AgP comprising of 223 cases and 564 controls. In the replication stage, the three

SNPs at SIGLEC5 and DEFA1A3 showed consistent effect directions with the previ-

ous stages, however none of them could be successfully replicated and only the lead

SNP at SLC1A3 reached nominal significance. In the pooled analysis combining

discovery, validation, replication samples, three SNPs reached genome-wide signifi-

cance: rs4284742-G at SIGLEC5 (P = 1.09×10−8, OR = 1.34, 95%CI = 1.21–1.48);

rs2738058-T at DEFA1A3 (P = 5.48× 10−10, OR = 1.28, 95%CI = 1.18–1.38); and

rs2978951-A at DEFA1A3 ( P = 2.06× 108, OR = 1.25, 95%CI = 1.16–1.35).

Figure 3.1: Aggressive periodontitis GWAS analysis pipeline. The GWAS
analysis pipeline is subdivided into discovery, validation and replication steps. (Grey
text) Of the three SNPs that were taken into replication, none could be replicated.
However sample pooling resulted into genome-wide significant associations for all three
SNPs in two loci (red text). AgP: aggressive periodontitis; CP: chronic periodontitis;
Ger: German; NL: Dutch; Tur: Turkish;

Further analysis of the 17 distinct haplotype blocks (16 plus one additional at

DEFA1A3) suggested an association with AgP for expression quantitative trait loci

(eQTLs) indicating regulatory effects for various SNPs. The lead SNP at SIGLEC5

showed an effect on the transcription level of SIGLEC5 with P = 7.7 × 10−14 in

blood, indicating SIGLEC5 to be the affected gene of this association. SIGLEC5 is

expressed in various myeloid immune cells and classified as an inhibitory receptor

with the potential to mediate tyrosine phosphatases SHP-1/-2 dependent signaling.

It is a member of the human CD33-related siglecs and is broadly expressed in var-

ious myeloid cells of the innate immune system and in B cells. Experimental data
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showed, that SIGLEC5 efficiently inhibits calcium fluxing, which is mediated by

FCER1G, one of the sixteen loci that passed are pre-assigned selection criteria in

the discovery stage. The lead SNP at FCER1G also shows an effect on the expres-

sion of FCER1G with P = 9.16× 10−16 in blood. At DEFA1A3, two proxy SNPs of

the lead SNP show eQTL effects on DEFA4 with P = 3.9×10−5 and P = 1.7×10−3

in blood. Alpha defensins are antimicrobial peptides with expression in neutrophils

and mucosal surfaces and a role in phagocyte-mediated host defense.

Taken together, this study identifies the first shared genetic risk loci of AgP and

CP with genome-wide significance and highlights the role of innate and adaptive

immunity in the etiology of periodontitis. Further, the genes FCER1G and SLC1A3

are suggested as promising candidates for future association studies in larger case-

control samples.

3.1.2 Contribution

In my role as bioinformatician, I took over the in silico work including the creation

of an analysis plan and the statistical analyses. The work started with viewing the

available datasets and defining an appropriate analysis strategy. Then, I performed

the pre-imputation quality control (QC), the genotype imputation and the post-

imputation QC of the aggressive periodontitis samples. Subsequently, I collected

data of the other case-control samples and ran harmonization procedures in order

to analyze all the data together. Finally, I applied statistical measures and tests by

using state-of-the-art GWAS methods to generate and interpret the results.

All this work also involved the implementation of a QC and analysis pipeline and

the programming of multiple scripts for data integration purposes, calculation of

statistics and visualizations. The data integration step also included the fetching and

preparation of annotations from the public domain. In addition, data management

tasks including storage and handling of large datasets as well as the execution of the

pipeline on a computing cluster which was also done by myself.

After the results were generated, I wrote the first version of the manuscript and sub-

mitted it to the respective journal. Subsequently, I answered the reviewer comments

in a rebuttal. For both the manuscript and rebuttal I got support by my supervisor

Arne Schäfer regarding specific questions on the phenotype of periodontitis.

Other authors that are listed on this manuscript were principal investigators or

contributed to the work by establishing the included case-control samples, reviewing

the manuscript or giving significant input in discussions.
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3.2 Meta-analysis of genome-wide association studies of
aggressive and chronic periodontitis identifies two
novel risk loci

Authors: Munz M, Richter GM, Loos BG, Jepsen S, Divaris K, Offen-

bacher S, Teumer A, Holtfreter B, Kocher T, Bruckmann C, Jockel-

Schneider Y, Graetz C, Ahmad I, Staufenbiel I, van der Velde N,

Uitterlinden AG, de Groot LCPGM, Wellmann J, Berger Klaus,

Krone B, Hoffmann P, Laudes M, Lieb W, Franke A, Erdmann J,

Dommisch H, Schaefer AS

Year: 2018

Journal: European Journal of Human Genetics

PMID: 30218097

doi: 10.1038/s41431-018-0265-5

Supplements: https://www.nature.com/articles/s41431-018-0265-5

3.2.1 Outline

To obtain novel insights into the shared genetic etiology and the underlying molec-

ular mechanisms of the early-onset and more severe form aggressive periodontitis

(AgP) and the late-onset and less severe from chronic periodontitis (CP), I performed

a explorative and a validation meta-analysis by using genome-wide association stud-

ies of both phenotypes (Figure 3.2). I included two German (Ger) and Dutch (NL)

samples of AgP (AgP-Ger: 680 cases and 3,973 controls; AgP-NL: 171 cases and

2,607 controls), a German sample of CP (CP-Ger: 993 cases and 1,419) and two

European American (EA) samples having a severe (sev) and moderate (mod) form

of CP (958 CP-sev cases, 2,293 CP-mod cases, 1,909 controls).

By default, I applied the fixed effects model. However, for variants with a high degree

of heterogeneity, i.e. a P-value of Cochran’s Q P (Q) < 0.05 and a heterogeneity

index I2 > 0.5, I applied the random effects model instead. Genetic variants with

P < 10−6 in the meta-analysis were considered as suggestively associated with PD,

variants with P < 5× 10−8 were considered as genome-wide significant.

Four variants passed the selection criteria for suggestive association. One of them

reached genome-wide significance at intronic of the long intergenic non-coding RNA

LOC107984137 on chromosome (chr) 16, downstream of the gene SHISA9 (Shisa

family member 9; rs729876-T, P = 9.77−9, OR = 1.24, 95%CI = [1.15 − 1.34]).

The function of LOC107984137 is not known yet, however suggestive expression

https://www.ncbi.nlm.nih.gov/pubmed/30218097
https://doi.org/10.1038/s41431-018-0265-5
https://www.nature.com/articles/s41431-018-0265-5#Sec18
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Figure 3.2: Periodontitis meta-analysis pipeline. The pipeline subdivides into
an explorative and a validation meta-analysis. (Grey text) The pipeline was re-run
again without the smallest sample AgP-NL. (Red text) Two loci reached genome-wide
significance. AgP: aggressive periodontitis; CP: chronic periodontitis; Ger: German;
NL: Dutch; EA: European-American; mod: moderate; sev: severe;

quantitative loci (eQTL) data indicated tissue specific effects on the expression of

the genes HOXC10 (Homeobox C10) in blood monocytes and ZC3H7A (zinc finger

CCCH-type containing 7A) and MYH11 (myosin, heavy chain 11) in the brain. Ex-

perimental work suggests that the chimeric protein β/MYH11 inhibits the function

of RUNX1 (runt-related transcript factor 1) which plays a role hematopoiesis and

bone formation.

Small cohorts such as the Dutch AgP case cohort are generally impaired by random

depletion as well as enrichment of risk alleles due to chance effects and can have

strong effects on the results, especially if the control sample is large, as is the case

with our study. After excluding the Dutch AgP sample, two more variants passed

the selection criteria, one variant reached genome-wide significance with P = 3.69×
10−9 (rs16870060-G, OR = 1.36, 95%CI = [1.23 − 1.51]) and is located within

the pseudogene MTND1P5 on chr8, 13kb downstream of the protein-coding gene

ATP6V1C1 (ATPase H+ transporting V1 subunit C1). eQTL data indicated no

cis-effect of variants on these genes, but suggest trans-effects on ARHGEF28 (Rho

guanine nucleotide exchange factor 28) in the liver and on ORM1 (Orosomucoid 1) in

monocytes. ORM1 encodes a key acute phase plasma protein, which is increased due

to acute inflammation. Moreover, ORM1 was experimentally shown to interact with

PAI-1 (plasminogen activator inhibitor-1) and the binding of PAI-1 to ORM1 results

in significant stabilization of its inhibitory activity toward plasminogen activators.

PLG (Plasminogen) was previously found to be associated with PD and likewise,

this locus was among the six associated loci with P < 10−6 for the lead SNP.
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This study identified novel risk loci of periodontitis, adding to the shared genetic

basis of AgP and CP.

3.2.2 Contribution

In my role as bioinformatician, I took over the in silico work including the creation

of an analyses plan and the statistical analyses. The work started with viewing the

available datasets and defining an appropriate analysis strategy. Then, I collected

the datasets of the included case-control samples and ran harmonization procedures

in order to analyze all the data together in meta-analyses. For samples with overlap-

ping control cohorts I reviewed the literature for methods to account for this issue.

Finally, I applied statistical measures and tests by using state-of-the-art GWAS and

meta-analysis methods to generate and interpret the results.

All this work also involved the implementation of a QC and analysis pipeline and

the programming of multiple scripts for data integration purposes, calculation of

statistics and visualizations. The data integration step also included the fetching and

preparation of annotations from the public domain. In addition, data management

tasks including storage and handling of large datasets as well as the execution of the

pipeline on a computing cluster which was also done by myself.

After the results were generated, I wrote the first version of the manuscript and sub-

mitted it to the respective journal. Subsequently, I answered the reviewer comments

in a rebuttal. For both the manuscript and rebuttal I got support by my supervisor

Arne Schäfer regarding specific questions on the phenotype of periodontitis.

Other authors that are listed on this manuscript were principal investigators or

contributed to the work by establishing the included case-control samples, reviewing

the manuscript or giving significant input in discussions.
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3.3.1 Outline

Evidence for a shared genetic basis of association between coronary artery disease

(CAD) and periodontitis exists. In this study, we aimed to identify novel genetic

risk factors that are shared between CAD and PD, in order to improve the current

pathogenic understanding of both diseases and highlight possible common biolog-

ical underpinnings. I performed a GWAS meta-analysis by using a CAD meta-

analysis dataset (60,801 cases vs 123,504 controls) from the “Coronary Artery Dis-

ease Genome-wide Replication and Meta-analysis plus The Coronary Artery Dis-

ease” (CARDIoGRAMplusC4D) consortium and multiple GWAS datasets for AgP

and CP (Figure 3.3). More precisely, I included two German (Ger) and Dutch

(NL) samples of AgP (AgP-Ger: 680 cases and 3,973 controls; AgP-NL: 171 cases

and 2,607 controls), a German sample of CP (CP-Ger: 993 cases and 1,419) and

two European American (EA) samples having a severe (sev) and moderate (mod)

form of CP (958 CP-sev cases, 2,293 CP-mod cases, 1,909 controls).

By default, I applied the fixed effects model. However, for variants with a high degree

of heterogeneity, i.e. a P-value of Cochran’s Q P (Q) < 0.05 and a heterogeneity

index I2 > 0.5, I applied a random effects model instead.

In the discovery stage, I used a German AgP sample and the CARDIoGRAM-

plusC4D CAD meta-analysis dataset. Apart of the already known shared risk

locus at chromosome 9p21.3 (CDKN2B-AS1 [CDKN2B antisense RNA 1]), two

https://www.ncbi.nlm.nih.gov/pubmed/30209331
https://doi.org/10.1038/s41598-018-31980-8
https://www.nature.com/articles/s41598-018-31980-8#Sec15
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Figure 3.3: Meta-analysis pipeline of periodontitis and coronary artery dis-
ease The pipeline subdivides into an explorative and a validation meta-analysis.(Red
text) One locus remained significant in the validation step after correcting for multiple
testing. AgP: aggressive periodontitis; CP: chronic periodontitis; Ger: German; NL:
Dutch; EA: European-American; mod: moderate; sev: severe;

other SNPs at the known CAD risk loci ADAMTS7 (ADAM metallopeptidase

with thrombospondin type 1 motif 7; SNP rs11634042) and VAMP8 (Vesicle as-

sociated membrane protein 8; SNP rs1561198) passed the pre-assigned selection

criteria (PAgP−Ger < 0.05; PCAD < 5× 10−8; concordant effect direction) and were

replicated in an independent GWAS meta-analysis dataset of PD (4,415 cases vs

5,935 controls). Here, only SNP rs1561198 showed a nominal significant associa-

tion (PDReplication: P = 0.008, OR = 1.09, 95%CI = [1.02 − 1.16]) and could

be successfully replicated after adjusting for multiple testing. In the pooled analy-

sis of PD, the association P -value for this SNP refined to P = 0.0002 (OR = 1.11,

95%CI = [1.05−1.17]). For the associated haplotype block, allele specific cis-effects

on VAMP8 expression were reported. This finding complements results of a previous

report addressing the shared molecular mechanisms of both diseases. In this study,

a transcriptome-wide shRNA knock-down approach demonstrated that CDKN2B-

AS1 and VAMP3 expression is correlated on the RNA and protein level, and a rare

variant upstream of VAMP3 (SNP rs17030881) was suggested to be associated with

AgP and CAD. This variant as well as another previously reported shared risk loci

at PLG (SNP rs4252120) were not re-discovered in this analysis, because they did

not pass the pre-defined criterion PCAD < 5×10−8. VAMP3 and VAMP8 threshold

membrane trafficking in platelets plays an important role in thrombosis and wound

healing, processes with established relevance for the etiology of CAD and PD.

Our data adds to the shared genetic basis of CAD and PD and indicates that the

observed association of the two disease conditions cannot be solely explained by

shared environmental risk factors. We conclude that the molecular pathway shared

by CAD and PD involves VAMP8 function, which has a role in membrane vesicular
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trafficking, and is manipulated by pathogens to corrupt host immune defense.

3.3.2 Contribution

I took over the in silico work including the creation of an analyses plan and the sta-

tistical analyses. The work started with viewing the available datasets and defining

an appropriate analysis strategy. Then, I collected the datasets of the included case-

control samples and ran harmonization procedures in order to analyze all the data

together in meta-analyses. For samples with overlapping control cohorts I reviewed

the literature for methods to account for this issue. Finally, I applied statistical

measures and tests by using state-of-the-art GWAS and meta-analysis methods to

generate and interpret the results.

All this work also involved the implementation of a QC and analysis pipeline and

the programming of multiple scripts for data integration purposes, calculation of

statistics and visualizations. The data integration step also included the fetching and

preparation of annotations from the public domain. In addition, data management

tasks including storage and handling of large datasets as well as the execution of the

pipeline on a computing cluster which was also done by myself.

After the results were generated, I wrote the manuscript and submitted it to the

respective journal. Subsequently, I answered the reviewer comments in a rebuttal.

For both the manuscript and rebuttal I got support by my supervisor Arne Schäfer

regarding specific questions on the phenotype of periodontitis.

Other authors that are listed on this manuscript were principal investigators or

contributed to the work by establishing the included case-control samples, reviewing

the manuscript or giving significant input in discussions.
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3.4.1 Outline

Sample sizes are a major limiting factor in the identification of new susceptibility loci

in genome-wide association studies. Especially for periodontitis, there is a general

scarcity of high-quality phenotype-genotype samples. To overcome this issue, we

developed a two stage approach. First, we took advantage of QTL and mRNA data

from mice infected with periodontal pathogens to identify promising candidate loci.

Then, we ran a candidate gene study on the corresponding human orthologues, by

using human GWAS samples of aggressive and chronic periodontitis.

More specifically, the mouse line BALB/cJ which is susceptible for human periodon-

tal pathogens and line A/J which is resistant for the same pathogens, were crossed.

Samples of the F2 generation were then used to run a quantitative trait loci (QTL)

data on alveolar bone loss upon infection with periodontal pathogens. Moreover,

mRNA sequencing using the Illumina HiSeq platform was applied on four suscepti-

ble and four resistant samples of the F2 generation. The sequencing data was then

used to run a differential expression analysis.

Differentially expressed genes (DEGs) resulted from the software tools for differen-

tial expression analysis Cuffdiff and DESeq, 251 and 316 DEGs respectively and

passed the pre-defined filtering criteria (Fragments per kilobase transcript per mil-

lion mapped reads [FPKM] > 0 in both conditions, false discovery rate [FDR] < 0.1).

DEGs, that occurred in both sets and that were located nearby a QTL, were selected

as candidates. The intersection of the DEGs and the QTL data resulted in four loci

at the murine genes Ugt2a1, Pf4, Sult1d1, and Stoml3 which were then mapped

to the human orthologous protein-coding genes UGT2A1, PF4, STOML3 and the

https://www.ncbi.nlm.nih.gov/pubmed/28467728
https://doi.org/10.1177/0022034517706311
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pseudogene SULT1D1.

The loci of the four human orthologous genes +/- 200 kilobases were analyzed

for putative variant phenotype associations in three GWAS case-control samples.

In the aggressive periodontitis sample of German and Dutch descent, variants at

PF/PPBP/CXCL5 (SNP rs1595009: P = 1.3 × 10−4, odds ratio [OR]= 1.32, 95%

confidence interval [CI]= 1.15−1.52) and UGT2A1-SULT1D1P (SNP rs146712414,

P = 9.1 × 10−5, OR = 1.34, 95%CI = 1.16 − 1.56) showed an association with

P < 10−3. These two variants were validated in a European-American sample of

moderate chronic periodontitis (1,961 cases, 1,864 controls). Only SNP rs1595009

remained nominally significant (P = 0.03, OR = 1.45, 95%CI = 1.01−1.29). Lastly,

we replicated this SNP in a German sample of chronic periodontitis (399 cases, 1,633

controls). In this sample, the SNP couldn’t be replicated (i.e. P > 0.05) in the ad-

ditive genetic model. However, when using the recessive model the SNP showed a

significant association of P = 0.03 (OR = 1.75, 95%CI = 1.06−2.90). The combined

association estimates of all three GWAS samples were P = 2.9 × 10−5 (OR = 1.2,

95%CI = 1.1 − 1.3). The PF/PPBP/CXCL5 locus is shared by different disease

phenotypes including inflammatory bowel disease.

According to the GTEx (Gene Tissue Expression Project) and the Haploreg

database, SNP rs1595009 has eQTL effects on PF4V1 (platelet factor 4 variant 1;

P = 3.9× 10−10) and CXCL5 (chemokine [C-X-C motif] ligand 5; P = 6.5× 10−6)

in blood. The identified eQTLs do not exactly correspond with the murine DEG

Pf4, although the chemokine gene PF4V1 gene is paralogous to PF4 and shares its

antiangiogenic and anticoagulant effects. In general, eQTLs are tissue-specific and

one reason could be the differing tissues. The reported human eQTL effects were

derived from human blood, whereas the DEGs were derived from murine gingival

tissues. eQTL data from human gingiva do not currently exist. In addition, eQTL

effects could differ between humans and mice.

In this work, we identified a new susceptibility locus for periodontitis at

PF/PPBP/CXCL5. Moreover, by incorporating a mouse model in our search for

new susceptibility loci in humans, we provide an efficient approach to identify and

prioritize loci that are likely to be missed by traditional GWAS.

3.4.2 Contribution

After the work with the mouse model (mRNA sequencing, QTL analysis, differ-

ential expression analysis) was finished by collaborators, I received the filtered set
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of differentially expressed mouse genes. I mapped them to the corresponding or-

thologous gene in human. After determinating the genetic regions in the human

genome, I extracted the relevant SNP data from the summary statistics of the three

utilized GWAS samples and ran the candidate gene study (step 1: hypothesis gen-

eration; step 2: validation; step 3: replication) and the eQTL analysis. Moreover,

I contributed to the conception, study design, drafted and critically revised the

manuscript.
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3.5.1 Outline

Cytokine levels in the gingival crevicular fluid (GCF) reflects the microbial activation

of the host’s immune response in the periodontal tissue. IL1B is a member of the

interleukin-1 (IL1) cytokine family and is a known GCF biomarker for periodontal

disease progression. Twin-studies have shown, that an estimated 86% of the variance

of the IL1B levels can be explained by the underlying genetic architecture, meaning

that the IL1B secretion is highly heritable.

To find out how GCF IL1B levels are genetically controlled, a GWAS was performed

for this continuous phenotype using 4,910 European-Americans of the dental “The

Atherosclerosis Risk in Communities” (ARIC) dataset. Linear regression with an

additive genetic model and the covariates age, sex, examination center, and ancestry

were used to discover putative associations for 656,292 high-quality genotyped SNPs.

72 SNPs passed the genome-wide significant level (P < 5 × 10−8) and revealed a

quantitative trait locus (QTL) at IL37 within the IL1 gene cluster. IL37 plays a

role in the inhibition of the innate immune response and inflammatory reactions.

The IL1 gene cluster was closely examined by contrasting quartiles of the GCF

IL1B level distribution by using logistic regression. In this analysis, it was shown

that elevated IL1B levels (3rd vs. 1rd and 2nd quartiles) are mainly associated with

variants at IL1B, whereas high IL1B levels (4th vs. 1rd, 2nd and 3rd quartiles)

are mainly associated with variants at IL37. At IL37, two haplotype blocks in

low LD (r2 = 0.23) showed association, tagged by the missense variants rs3811046

(P = 3.3× 10−22) and rs2708943 (P = 4.2× 10−7). Prediction of mRNA structure

https://www.ncbi.nlm.nih.gov/pubmed/30206230
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of IL37 using the “Predict a Secondary Structure Web Server” indicated that both

wildtype and alternative allele of rs3811046 result in similar secondary structure.

On the other hand, alternative alleles for SNP rs2708943 or both SNPs rs3811046

and rs2708943 together, resulted in a structure which significantly differs from the

wildtype.

The associations of SNP rs3811046 with high levels of IL1B were replicated in an

independent cohort of 143 subjects. Genotypes and GCF levels were measured by

using pyrosequencing and multiplex immunoassay, respectively. The comparison

of the wildtype genotype and the genotype consisting of two alternative alleles for

SNP rs3811046 showed a statistically significant elevation level of IL-1β for the latter

genotype which is concordant with the GWAS results. This could also be shown for

dendritic cells. An analogous comparison of SNP rs3811046 regarding the elevation

level of IL8, one of six other mediators of the innate immune response, that were

also tested in the replication step, was also statistically significant. Moreover, SNP

rs3811046 showed associations with aggressive periodontitis (OR = 1.12, 95%CI =

[1.01−1.26]), severe chronic periodontitis (OR = 1.5, 95%CI = [1.12−2.00]) and 10-

year incident tooth loss (≥ 3 teeth, relative risk [RR]= 1.33, 95%CI = [1.09−1.62]).

In follow-up analyses, IL37 and the two identified genetic variants were functionally

characterized in several assays. Relative expression of five IL37 splicing isoforms

were assessed in inflamed human gingival tissue from PD patients by quantifying

mRNA levels using real time polymerase chain reaction (qPCR). IL37b, the isoform

which leads to the longest amino acid (aa) sequence (218aa) was found to be pre-

dominantly expressed. Moreover, isoform IL37b was significantly higher expressed

in PD subjects than in a control sample.

In vivo effects of recombinant human wildtype IL37b (WT rhIL37b) were investi-

gated in a murine periodontitis model. Comparison of IL1B level in gingival tissue

in a group of intraperitoneal injected mature WT rhIL37b and a control group by

qPCR and immunohistochemistry showed a significant decrease of mRNA and pro-

tein level. On the basis of this, rhIL37b might suppress IL1B production in inflamed

gingival tissue.

Protein and mRNA levels were measured for WT IL37b and the two missense SNPs

in human embryonic kidney (HEK293T) cells that were transfected with correspond-

ing plasmids using qPCR and Western blotting. Protein levels were lower for the

single and combined SNPs than for WT. mRNA levels were much higher for WT and

rs3811046 than for rs2708943 and both SNPs combined suggesting an impairment
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of the mRNA by rs2708943 or a combination of rs3811046 and rs2708943 which re-

sults into reduced protein synthesis. HEK293T were co-transfected with caspase-1

to investigate the effects of rs3811046 on the cleavage of the pro form of IL37b. The

results of this analysis suggested that rs3811046 leads to aberrant production and

secretion of IL37.

The work reveals a genome-wide significant association between SNP rs3811046 at

IL37 IL1B levels in the gingival crevicular fluid. SNP rs3811046 leads to an impaired

production and cleavage of IL37 which in turn increases the expression of IL1B.

Further, this variant can be significantly associated with aggressive and chronic pe-

riodontitis. A second variant at IL37, SNP rs2708943, dramatically reduces mRNA

expression of IL37.

3.5.2 Contribution

I validated the association of SNP rs3811046 at IL37 with the phenotype “gingival

crevicular fluid IL-1β levels” that was discovered in the first part of the manuscript,

in the German and Dutch case-control samples of aggressive periodontitis. This

involved the extraction of the corresponding genotypes from the overall genotype

files, the testing for association and the combination of the results in the German

and Dutch samples in a subsequent meta-analysis. Finally, I summarized my results

as well as materials and methods I used to be included in the manuscript.





Chapter 4

Discussion

In my work, I aimed to elucidate the human genetic risk factors of periodontitis

(PD) to enhance the current etiological concept and to provide new therapeutic

targets for the prevention and treatment of PD. I used three approaches to identify

novel risk loci for PD. In my first approach (chapter 3.1 on page 19), I exploited

the unique characteristics of the rare and very severe phenotype of aggressive peri-

odontitis (AgP), which is supposed to be determined by genetic factors to a stronger

degree compared to less severe forms of PD. To this end I used a German and a

Dutch AgP sample (851 cases, 6,580 controls) in the discovery stage. The resulting

variants were then validated in a German chronic periodontitis (CP) sample (993

cases, 1,419 controls) and replicated in a Turkish AgP sample (223 cases, 564 con-

trols). The CP sample was selected for validation to complement the small Turkish

sample and the lack of other AgP samples. I was able to identify novel genetic risk

loci at SIGLEC5 (Sialic acid binding Ig-like lectin 5) on chromosome (chr) 19q13.41

and at DEFA1A3 (Defensin alpha 1 and alpha 3) on chr8p23.1. Both discovery loci

could not be confirmed in the individual CP and Turkish AgP samples, but reached

but reached genome-wide significance after pooling them together, providing solid

statistical evidence for the relevance of these loci in the etiology of PD.

In the second approach (chapter 3.2 on page 35), I pooled all available genome-

wide association scans of severe forms of periodontitis, i.e. samples of AgP and

CP, in a meta-analysis to maximize the statistical power. This comprised alto-

gether of 5,095 cases and 9,908 controls, and resulted in two genome-wide associated

loci at MTND1P5 (Mitochondrially encoded NADH:ubiquinone oxidoreductase core

subunit 1 pseudogene 5) on chr8q22.3 and at the long intergenic non-coding RNA

LOC107984137 on chr16.

For my third approach (chapter 3.3 on page 51), I sought to explore the shared

genetic basis of PD and coronary artery disease (CAD) by identifying known CAD

97
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loci that also show an association with PD. In the discovery step, I compared a large

CAD meta-analysis sample comprising of 60,801 cases and 123,504 controls and the

aforementioned German AgP sample for overlapping loci. Subsequently, the variants

with the best shared association were validated in the aforementioned Dutch AgP

sample and multiple CP samples (4,415 cases and 5,935 controls). An association at

VAMP8 (Vesicle associated membrane protein 8) on chr2p11.2 could be successfully

replicated after correcting for multiple testing.

Moreover, I contributed to two other projects that aimed to identify new risk factors

for PD. The first project (chapter 3.4 on page 65) consisted of a RNA sequencing

based differential expression analysis in mice regarding the susceptibility to infection

with oral bacterial pathogens, and a subsequent candidate gene study of the differ-

entially expressed orthologous genes in human using GWAS data of the German

AgP sample and a European-American (EA) CP sample (1,961 cases and 1,864 con-

trols). This project identified an association of the gene cluster PF4 (platelet factor

4)/PPBP (pro-platelet basic protein)/CXCL5 (C-X-C motif chemokine ligand 5) on

chr4q13.3 with PD.

The second project (chapter 3.5 on page 77) consisted of a GWAS regarding

IL1B (Interleukin 1 beta) expression in gingival crevicular fluid in an EA sample

(n = 4910) and a validation with CP samples and the German and Dutch AgP

samples. This project revealed a novel PD association at IL37 (Interleukin 37) on

chr2q14.1.

My three approaches identified multiple new risk loci and suggest causal haplotype

blocks which are proxied by their corresponding top variants. By virtue of the linkage

disequilibrium structure in the human genome, a haplotype block is generally defined

by tens to hundreds of closely correlated variants. Accordingly, the top variants of

the novel PD risk loci are also tighlty linked to multiple other variants. Therefore,

further analyses should be carried out to identify the putative causative variant(s)

underlying the associations at these loci. Commonly used methods include in silico

prediction tools, fine-mapping of disease-associated regions followed by experimental

validation [114]. To unravel a true causative variant from other putative causal

variants in a fine-mapping approach, very large sample sizes are needed. Moreover,

experimental validation can include complex experimental designs. However, a more

relevant biological question is to assign the causal gene(s) to every GWAS locus.

Similarly to the causative variants, a risk locus can also harbor multiple causal

genes. Pinpointing these and translating the identified genetic variants into disease

mechanisms and are essential for improving diagnosis and therapy. For this reason,

I have focused my post-GWAS analyses on the prioritization of candidate genes.
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Similarly to the identification of a risk variant, the identification of a causal gene

is not straight forward. The closest gene to the lead variant, i.e. the variant with

the lowest P -value, is not always the causal gene [115]. This can be explained by

the chromatin looping, through which DNA sequences such as regulatory enhancer

elements harboring a causal variant and gene promotors, can be spacially placed very

close to each other, thus enabling interactions of more distant DNA elements [116].

Hence, to prioritize candidate causal genes, I combined genome-wide knowledge by

integrating multiple datasets of the public domain including scientific publication as

well as information on topological associated domains and expression quantitative

trait loci.

My integrated dataset findings suggested multiple candidate causal genes in cis and

trans of the corresponding risk harboring haplotype blocks. These genes are involved

in innate and adaptive immunity (SIGLEC5, DEFA1A3, ORM1 (Orosomucoid 1)

on chr 9q32, VAMP8), wound healing (ORM1, VAMP8), hematopoiesis (MYH11

(Myosin, heavy chain 11, smooth muscle) on chr16p13.11, RUNX1 (Runt-related

transcription factor 1) on chr21q22.12, VAMP8) and bone homeostasis (SIGLEC5,

MYH11, RUNX1). The importance of these molecular mechanisms in the etiology

of PD is also supported by putative but not yet validated risk loci, that suggested

an association with our analyses (FCER1G [Fc fragment of IgE, high affinity I,

receptor for; gamma polypeptide] on chr 1q23.3, SLC1A3 [Solute carrier family 1,

member 3] on chr5p13.2) and is reflected in the pathogenesis of AgP and CP which

is characterized by severe inflammation, eventually leading to extensive resorption

of the alveolar bone. Especially in the case of AgP, the inflammation is often not

accompanied by obvious signs of a particular pathogenic burden such as increased

oral plaque or reddening and swelling of the gums, which could reflect an aberrant

reactivity of the immune system to yet unknown triggers or intolerance to resident

oral bacteria.

It should be noted that the PD phenotypes of the sampels that were used in this

thesis, are based on different definitions and classifications. For example, the AgP

samples consisted of cases with inclusion critera ≥ 2 affected teeth with ≥ 30% bone

loss and a population representative control cohort; or in the German CP sample

where cases and controls were defined by contrasting subjects within the first versus

the third tertile of proportion of proximal sites with attachment loss (AL) ≥ 4mm.

However, heterogeneity of PD phenotype definition is not unusual because there

doesn’t exist single general accepted classification for PD, yet. This indicates that

no existing definition gives a complete description of the full spectrum of phenotypes.

We consider that the various PD manifestations are part of a large range of similar



100 CHAPTER 4. DISCUSSION

conditions that are attributed to the effects of different combinations of genetic

variants and environmental factors. In this view, AgP which is the most severe

and early-onset form of PD, would be affected to a higher degree by genetic risk

factors, whereas CP, which is characterized by a late age of disease-onset, would be

affected to a lower degree by genetic risk factors, but would be affected stronger

by the accumulating negative effects of environmental factors and ageing. Yet,

both forms essentially differ in the speed of progression and we were aware, that

increased phenotype-heterogeneity could diminish the gain of statistical power from

larger sample sizes by diluting the average genetic effects [117]. However, since AgP

and CP do not differ in the clinical picture of alveolar bone loss, we rated the gain

of statistical power to identify shared genetic risk factors as being superior. We

think, that PD is best defined by percentage of alveolar bone loss in response to

periodontal inflammatory processes. Moreover, during the last decade, the available

samples were constructed independently. Consequently, we combined samples of

both PD forms and different phenotype definitions in my analyses.

Apart of the novel risk loci, my analyses also provided the opportunity to confirm the

previously identified GWAS risk loci for PD VAMP3, ANRIL (CDKN2B antisense

RNA 1) on chr9p21.3, GLT6D1 (Glycosyltransferase 6 domain containing 1) on

chr9q34.3, PLG (Plasminogen-like B1) and PF4/PPBP/CXCL5. However, it must

be noted that the samples that were used for detecting these loci are not independent

from the samples I used in my work. Indeed, there is an overlap of up to 32%

of the cases and 54% of the controls in the pooled PD sample. Regarding the

AgP samples, either subsets (approximatelly 50% of the cases) or the complete

samples were used in these previous studies. The confirmation of the loci VAMP3

was not possible, because the corresponding association signal belonged to a rare

haplotype block with a minor allele frequency (MAF) < 5%. However, all my

analyses were restricted to common variants with a MAF > 5% due to statistical

power considerations. Variants that did not pass this threshold were filtered out

before testing for association. Moreover, a common variant at VAMP3 which was

previously identified using subjects of the European-American CP sample, a sample

which was included in my second and third approach, couldn’t be identified either.

A possible reason could be that the common variant was previously found to be

associated with periodontal microbiota instead of PD [54]. In the discovery of my

first approach, all the remaining associations reached at least nominal significance

(P ≤ 0.5) in German AgP, but none of the loci were among the suggestive association

at the significance level P < 5×10−5. The preceding identification of the association

at ANRIL, which has the largest effect size among all known PD associations, was
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carried out using a recessive genetic model. However, in all my analyses I applied

the additive model which, on the one side, is more generic, but on the other side, as a

matter of course, is less powerful to detect risk factors with a recessive nature than a

recessive model. In addition, although the ANRIL locus reached nominal significance

in the German AgP sample, the overall effect in AgP is strongly diminished by

the Dutch AgP sample, because the effect allele is enriched in the cases only for

the heterozygous genotype and thus compensates for the overall effect. The loci

GLT6D1 and PLG did also not show up in the first approach, either because of

stochastic variability of the allele distribution or due to lack of statistical power. In

the second approach, the PLG locus occurred in the top list of associated variant and

confirms this locus as a shared risk factor of AgP and CP. ANRIL and GLT6D1 were

not in the list of suggestive loci, underlining that these loci harbor AgP risk only

and a lack of statistical power in my first approach. In my third approach ANRIL

re-appeared as top hit in the discovery. The locus at PLG, which was the second

known shared risk locus of CAD and PD, didn’t come up which could be attributed

to the lack of statistical power as well. The PF4/PPBP/CXCL5 gene cluster was

also not present in the list of suggestive association signals in all three approaches.

It was previously identified in a candidate gene study, which included an additional

CP sample in the replication stage that was only genotyped for the specific region of

the PF4/PPBP/CXCL5 cluster. Thus, the non-presence might be due to statistical

power issues. Still, this gene cluster re-appeared as a risk locus in the candidate

gene study, which was performed in one of the two projects I contributed to.

The new findings in this work underline the shared genetic basis between AgP and

CP. This may point to a high genetic correlation between AgP and CP and indicate

that they are indeed sub-phenotypes belonging to the spectrum of a single disease.

SNP-based methods exist to measure the extent of the shared genetic basis across

the whole genome by estimating the genetic correlation [118, 119]. However, they

require large sample sizes to deliver meaningful results. For example the tool LD

Hub 1 recommends to use sample sizes with > 5000 patients, which exceeds the

size of the AgP size by more than fivefold. In addition, genome-wide summary

statistics were not available to us for all samples (German CP samples, Turkish AgP).

Thus, serious future study attempts should be postponed, when larger sample sizes

are available. The same applies for heritability estimations and the confirmation

of the assumption that AgP is more heritable than CP. Yet, it should be noted

that a greater heritability is observed for many early-onset phenotypes compared

to late onset phenotypes in numerous diseases and traits, e.g. diabetes, myocardial

1http://ldsc.broadinstitute.org/ldhub/

http://ldsc.broadinstitute.org/ldhub/
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infarction and obesity.

The results of the presented analyses more than doubled the number of validated PD

risk loci from five to eleven loci which could be considered as low in comparison to

other complex inflammatory diseases. For example, 143 risk loci are already known

for type 2 diabetes [34] and even more (n = 163) are known for CAD (reviewed

in [43]). But even for these diseases the proportion of heritability that can be

explained by the validated risk loci is small. This issue is also referred to as the

“missing heritability” problem which could be attributed, inter alia, to the high

false-negative rate due to lack of statistical power and to genetic interations, which

creates a “phantom heritability” [120]. To identify further risk variants, new studies

with even larger sample sizes are required. Such larger samples sizes are needed

because the effect of yet unknown risk variants decreases with the number of risk

variants identified, requiring more power to detect them. To-date, the locus with the

lowest effect size for CAD is at CETP (Cholesteryl ester transfer protein, plasma)

on chr16q13 showing an Odds Ratio (OR) of 1.03 for SNP rs1800775 [121]. This

study comprises more than 70,000 cases and 120,000 controls. In comparison, the

risk variant of PD with the lowest effect size is at VAMP8 with OR of 1.11 for

SNP rs1561198. Interestingly, the lower the OR gets for which studies are carried

out with adequate sample sizes, the more new risk variants are identified, until a

plateau phase is reached [66].

If this also applies for other diseases, it means, that a lot more loci contribute to

the risk of a complex disease than previously expected. In line with this, Boyle et

al. published a paper that prompted discussion, suggesting that nearly all genes

contribute to a disease condition, i.e. also genes that are not of direct relevance to

a disease, refering to it as the “omnigenic” model [122]. According to the model,

most of the genes are contributing indirectly to a disease and show relatively small

effect sizes. These genes are classified as being “peripheral” and are thought to

show a large amount of pleitropy. By contrast, genes, that play a more direct role

in a disease harbor rare disease-specific variants with relatively large effects sizes.

Hence, those genes are classified “core” genes. The inolvement of a large number of

genes in a complex disease seems to be generally accepted by the scientific commu-

nity. Large numbers of variants have already been adopted in polygenic risk score

calculations (PRS) and proven to be superior to the classical PRS comprising only

known and validated risk variants [123]. However, the concept of only a few “core”

genes contributing to a disease is critically discussed [124], because large exome or

genome sequencing studies yet failed to confirm this for common diseases [125–127].

Wray et al. hypothesize that differing phenotypes between common variant and rare
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variant associated traits or diseases may be a possible explanation why these studies

have failed confirmation. In other words, to identify rare variants with large effect

sizes, a division into sub-phenotypes would be required, e.g. by the stratification

of samples into lethality, severity, age-of-onset, etc. On the other hand, common

diseases are actually uncommon in a population, i.e. most people are healthy. This

indicates an inherent robustness in the biological system which is why an etiology

of many core genes cannot be excluded. This means an indistinguishability between

peripheral and core genes. A disease that impacts only a small fraction of the pop-

ulation with a genetic architecture of many risk loci with similar effect sizes could

then be explained by a high non-linear relationship between probability of a disease

and burden of risk alleles, implying that polygenic disease is non-additive on the

disease scale but rather caused by interacting genetic effects.

In conclusion, with the GWAS approches presented in this thesis, I identified and

validated five novel susceptibility loci for PD by combined analyses of multiple case-

control samples of AgP and CP and a large CAD sample. Four of these are associated

at genome-wide significance level, providing statistical evidence for the relevance of

these loci in the disease etiology. The fifth locus represents a novel shared risk locus

between PD and CAD. Moreover, I contributed to a project in which an additional

risk locus was found for a PD-related phenotype and validated for both AgP and

PD. The suggested candidate causal genes highlight mechanisms in inflammation

and bone metabolism to be important features in the etiology of PD. To validate

the candidate genes and to identify the causative variants, further functional analyses

are required. Furthermore, we could replicate some of the previously reported loci.

It is likely that statistical power limitations kept us from replicating all relevant

signals and finding more true positive signals. Larger samples are needed to fully

validate all the signals that were suggested by our analyses and to identify further

risk variants. As a supplement to future works, studies on rare, extreme phenotypes

in families could be conducted. In my thesis, the analyses of rare variants as well

as the X chromosome were not included. With the new X chromosome imputation

feature available on the Sanger Imputation Server2 and increasing sample sizes, a

consideration of these dimensions might be worthwile in further investigations to

enhance the understanding of PD. Until then, other approaches such as compound

heterozygosity [128] analyses could be promising alternative enabling the increase

of power at constant sample sizes.

2https://imputation.sanger.ac.uk

https://imputation.sanger.ac.uk
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