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Abstract	

Understanding	 the	meaning	of	words	 and	 its	 relationship	with	 the	outside	world	 involves	

higher	cognitive	processes	unique	of	the	human	brain.	Despite	many	decades	of	research	on	

the	 neural	 substrates	 of	 semantic	 processing,	 a	 consensus	 about	 the	 functions	 and	

components	of	the	semantic	system	has	not	been	reached	among	cognitive	neuroscientists.	

This	 issue	 is	mainly	 influenced	by	 two	 sets	 of	 neurocognitive	 empirical	 findings	 that	 have	

shown	(i)	the	existence	of	several	regions	acting	as	’semantic	hubs’,	where	the	meaning	of	

all	types	of	words	is	processed	and	(ii)	the	presence	of	other	cortical	regions	specialised	for	

the	 processing	 of	 specific	 semantic	 word	 categories,	 such	 as	 animals,	 tools,	 or	 actions.	

Further	 evidence	 on	 semantic	 meaning	 processing	 comes	 from	 neuroimaging	 and	

transcranial	 magnetic	 stimulation	 studies	 in	 visually	 deprived	 population	 that	 acquires	

semantic	 knowledge	 through	 non-sensory	 modalities.	 These	 studies	 have	 documented	

massive	 neural	 changes	 in	 the	 visual	 system	 that	 is	 in	 turn	 recruited	 for	 linguistic	 and	

semantic	 processing.	 On	 this	 basis,	 this	 dissertation	 investigates	 the	 neurobiological	

mechanism	 that	 enables	 humans	 to	 acquire,	 store	 and	 processes	 linguistics	 meaning	 by	

means	 of	 a	 neurobiologically	 constrained	 neural	 network	 and	 offers	 an	 answer	 to	 the	

following	hotly	debated	questions:	Why	both	semantic	hubs	and	modality-specific	 regions	

are	 involved	 in	 semantic	meaning	processing	 in	 the	brain?	Which	 biological	 principles	 are	

critical	 for	 the	emergence	of	 semantics	at	 the	microstructural	neural	 level	and	how	 is	 the	

semantic	system	implemented	under	deprived	conditions,	in	particular	in	congenitally	blind	

people?	

First,	 a	 neural	 network	 model	 closely	 replicating	 the	 anatomical	 and	 physiological	

features	of	the	human	cortex	was	designed.	At	the	micro	level,	the	network	was	composed	

of	15,000	artificial	neurons;	at	 the	 large-scale	 level,	 there	were	12	areas	 representing	 the	

frontal,	 temporal,	 and	 occipital	 lobes	 relevant	 for	 linguistic	 and	 semantic	 processing.	 The	

connectivity	 structure	 linking	 the	 different	 cortical	 areas	 was	 purely	 based	 on	

neuroanatomical	evidence.	Two	models	were	used,	each	simulating	the	same	set	of	cortical	

regions	but	at	different	level	of	details:	one	adopted	a	simple	connectivity	structure	with	a	

mean-field	approach	(i.e.	graded-response	neurons),	and	the	other	used	a	 fully	connected	

model	with	adaptation-based	spiking	cells.	Second,	the	networks	were	used	to	simulate	the	

process	of	learning	semantic	relationships	between	word-forms,	specific	object	perceptions,	
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and	motor	movements	of	the	own	body	in	deprived	and	undeprived	visual	condition.	As	a	

result	 of	 Hebbian	 correlated	 learning,	 distributed	 word-related	 cell	 assembly	 circuits	

spontaneously	 emerged	 across	 the	 different	 cortical	 semantic	 areas	 exhibiting	 different	

topographical	 distribution.	 Third,	 the	 network	 was	 reactivated	 with	 the	 learned	 auditory	

patterns	 (simulating	word	 recognition	processes)	 to	 investigate	 the	 temporal	 dynamics	 of	

cortical	semantic	activation	and	compare	them	with	real	brain	responses.		

In	 summary,	 the	 findings	 of	 the	 present	 work	 demonstrate	 that	meaningful	 linguistic	

units	are	 represented	 in	 the	brain	 in	 the	 form	of	 cell	 assemblies	 that	are	distributed	over	

both	 semantic	 hubs	 and	 category-specific	 regions	 spontaneously	 emerged	 through	 the	

mutual	 interaction	 of	 a	 single	 set	 of	 biological	 mechanisms	 acting	 within	 specific	

neuroanatomical	 structures.	 These	 biological	 principles	 acting	 together	 also	 offer	 an	

explanation	of	 the	mechanisms	underlying	massive	neural	changes	 in	 the	visual	cortex	 for	

language	 processing	 caused	 by	 blindness.	 The	 present	 work	 is	 a	 first	 step	 in	 better	

understanding	the	building	blocks	of	language	and	semantic	processing	in	sighted	and	blind	

populations	 by	 translating	 biological	 principles	 that	 govern	 human	 cognition	 into	 precise	

mathematical	neural	networks	of	the	human	brain.				
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Zusammenfassung	

Um	die	Bedeutung	von	Wörtern	und	 ihre	Beziehung	zur	Außenwelt	 zu	verstehen,	müssen	

die	kognitiven	Prozesse	betrachtet	werden,	die	einzigartig	für	das	menschliche	Gehirn	sind.	

Trotz	 jahrzehntelanger	 Forschungen	 an	 den	 neuronalen	 Substraten	 der	 semantischen	

Verarbeitung	im	menschlichen	Gehirn	wurde	bisher	kein	Konsens	über	die	Funktionen	und	

Komponenten	des	semantischen	Systems	in	den	kognitiven	Neurowissenschaftlern	erreicht.	

Dieses	 Problem	 gründet	 darin,	 dass	 neurokognitive	 empirische	 Studien	 zumeist	 zu	 zwei	

Endergebnissen	kamen:	 (i)	der	Existenz	von	mehrere	Regionen,	die	als	 ‘semantische	Hubs’	

fungieren,	 in	 denen	 die	 Bedeutung	 aller	 Wortarten	 verarbeitet	 wird,	 und	 (ii)	 dem	

Vorhandensein	 weiterer	 kortikaler	 Regionen,	 die	 auf	 die	 Verarbeitung	 spezifischer	

semantischer	 Kategorien	wie	 Tiere,	Werkzeuge	oder	Aktionswörtern	 spezialisiert	 sind.	 Ein	

weiterer	 Beweis	 für	 die	 Verarbeitung	 semantischer	 Bedeutungen	 lässt	 sich	 aus	

Bildgebungsstudien	 und	 Studien	 mit	 transkranialer	 Magnetstimulation	 an	 visuell	

benachteiligten	 Probanden	 entnehmen,	 die	 die	 linguistische	 Bedeutung	 nicht	 durch	

sensorische	 Modalitäten	 erwerben.	 Diese	 Studien	 konnten	 massive	 neuronale	

Veränderungen	 im	visuellen	System	dokumentieren,	die	wiederum	für	die	sprachliche	und	

semantische	 Verarbeitung	 verwendet	 werden.	 Die	 vorliegende	 Dissertation	 untersucht	

mittels	 eines	 biologischen	 neuronalen	 Netzwerkes	 jene	 kognitiven	 Prozesse,	 die	 es	

Menschen	 ermöglichen,	 linguistische	 Bedeutungen	 in	 der	 täglichen	 Kommunikation	 zu	

erfassen,	 zu	 speichern	 und	 zu	 verarbeiten.	 Sie	 schlägt	 Antworten	 auf	 die	 folgenden	

neurowissenschaftlich	heiß	diskutierten	Fragen	vor:	Warum	sind	sowohl	semantische	Hubs	

als	 auch	 modalitätsspezifische	 Regionen	 relevant	 für	 die	 sprachliche	 und	 semantische	

Informationsverarbeitung	 im	 Gehirn?	 Welche	 biologischen	 Prinzipien	 sind	 von	

entscheidender	 Bedeutung	 für	 die	 Entstehung	 von	 Semantik	 auf	 mikrostruktureller	

neuronaler	Ebene?	Und	Wie	ist	das	semantische	System	unter	benachteiligten	Bedingungen	

repräsentiert?	

Zunächst	 wurde	 ein	 neuronales	 Netzwerkmodell	 implementiert,	 das	 die	 anatomischen	

und	 physiologischen	 Merkmale	 des	 menschlichen	 Kortex	 präzise	 widerspiegelt.	 Auf	 der	

Mikroebene	 besteht	 das	 Netzwerkmodel	 aus	 15.000	 künstlichen	 Neuronen,	 auf	 der	

Großebene	 aus	 12	 Arealen	 der	 Frontal-,	 Temporal-	 und	 Okzipitallappen,	 die	 für	 die	

sprachliche	und	semantische	Verarbeitung	relevant	sind.	Die	Verbindungsstruktur	zwischen	
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den	 verschiedenen	 kortikalen	 Arealen	wurde	 rein	 auf	 Grundlage	 von	 neuroanatomischen	

Befunden	 implementiert.	 Zwei	 Modelle	 wurden	 verwendet,	 die	 jeweils	 die	 gleichen	

kortikalen	 Regionen	 simulierten,	 allerdings	 in	 verschiedenen	 Varianten:	 Das	 erste	Modell	

ging	 von	 einer	 einfachen	 Konnektivitätsstruktur	 mit	 einem	 Mean-field	 Ansatz	 (graded-

response	 neurons)	 aus,	 während	 das	 zweite	 einen	 vollständig	 verbundenen	 Aufbau	 mit	

adaptionsbasierten	Spiking-Zellen	(Aktionspotential)	verwendete.	Anschließend	dienten	die	

neuronalen	 Netzwerke	 dazu,	 den	 Lernprozess	 der	 semantischen	 Verlinkung	 zwischen	

Wortformen,	 bestimmten	 Objektwahrnehmungen	 und	 motorischen	 Bewegungen	 des	

eigenen	Körpers	zu	simulieren,	sowohl	in	gesundem	als	auch	in	benachteiligtem	Sehzustand.	

Als	 Ergebnis	 des	 Hebbschen	 Korrelationslernens	 traten	 spontan	 verteilte	

Neuronenverbindungen	 (cell	 assemblies)	 in	 den	 verschiedenen	 kortikalen	 semantischen	

Bereichen	auf,	 die	unterschiedliche	 topografische	Verteilungen	 zeigten.	 Zuletzt	wurde	das	

Netzwerkmodell	 mit	 den	 erlernten	 auditorischen	 Mustern	 reaktiviert	

(Worterkennungsprozesse),	um	die	zeitliche	Dynamik	kortikaler	semantischer	Aktivierung	zu	

untersuchen	und	sie	mit	realen	Gehirnantworten	zu	vergleichen.	

Die	 vorliegende	 Arbeit	 kam	 zu	 folgenden	 Ergebnissen:	 Die	 neuronale	 Repräsentation	

linguistischer	 Bedeutung	 wird	 im	 Gehirn	 in	 Form	 von	 cell	 assemblies	 dargestellt,	 welche	

über	 semantische	Hubs	 und	modalitätsspezifische	Regionen	 verteilt	 sind.	Diese	 entstehen	

spontan	 durch	 die	 Interaktion	 einer	 Reihe	 von	 biologischen	Mechanismen,	 die	 innerhalb	

spezifischer	 neuroanatomischer	 Strukturen	 wirken.	 Das	 Zusammenwirken	 dieser	

biologischen	 Prinzipien	 bietet	 zusätzlich	 eine	 Erklärung	 für	 jene	 Faktoren,	 die	 für	 die	

massiven	neuronalen	Veränderungen	in	der	sprachlichen	und	semantischen	Netzwerke	bei	

Blindheit	 verantwortlich	 sind.	 Die	 in	 dieser	 Dissertation	 dokumentierten	 Studien	 sind	 ein	

erster	Schritt	in	Richtung	eines	besseren	Verständnisses	der	sprachlichen	und	semantischen	

Informationsverarbeitung	 bei	 sehenden	 und	 blinden	 Menschen,	 basierend	 auf	 einer	

Übersetzung	 der	 biologischen	 Prinzipien	 der	 menschlichen	 Kognition	 in	 präzise	

mathematische	neuronale	Netzwerke	des	menschlichen	Gehirns.	
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1. General	Introduction	

From	 the	 first	 year	 of	 life,	 information	 on	 the	 environment,	 everyday	 experiences,	

encounters	with	people,	and	factual	data	 is	acquired,	stored,	and	processed	 in	the	human	

brain.	Language	is	the	main	canal	to	disseminate	this	knowledge,	and	it	does	so	in	the	form	

of	strings	of	sounds	or	symbols	referring	to	entities	in	the	world.	The	mechanism	in	how	this	

knowledge	 is	 mapped	 into	 words	 (linguistic	 symbols)	 has	 concerned	 philosophers	 since	

Plato,	 Aristotle,	 and	 Frege,	 all	 of	 whom	 contributed	 important	 reflections	 on	 language	

structure,	 word	 meaning,	 and	 linguistic	 categories	 (for	 an	 overview,	 see	 Runes,	 1984).	

Although	 semantics	 has	 a	 long	 history	 in	 philosophy	 and	 linguistics,	 offering	 detailed	

theoretical	models	 on	 the	 understanding	 of	 linguistic	meaning,	 still	 little	 is	 known	on	 the	

neural	 basis	 of	 semantic	 knowledge	 processing	 in	 the	 human	 brain.	 Patients	 with	 an	

acquired	 brain	 injury	 to	 the	 relevant	 language	 and	 semantic	 regions	 develop	 severe	

language	impairments,	and	in	turn,	face	difficulties	in	everyday	skilled	actions,	ranging	from	

planning	 complex	 activities	 to	 basic	 actions	 such	 as	 drinking	 a	 cup	 of	 coffee	 (Bak	 and	

Chandran,	2012;	Damasio	et	al.,	1996;	Gainotti,	2010;	Kemmerer	et	al.,	2012;	Pulvermüller	

and	 Fadiga,	 2010).	Hence,	 it	 is	 essential	 to	 determine	 the	 putative	 neural	mechanisms	 of	

semantic	processing	in	the	human	brain	by	seeking	answers	to	the	following	long-standing	

debated	questions	in	cognitive	science	and	neuroscience:	

1) Where	is	the	cortical	locus	relevant	for	semantic	processing	in	the	human	brain?		

2) How	is	semantic	meaning	implemented	at	the	neural	circuit	level	and	which	are	the	
relevant	biological	mechanisms	behind	it?		

3) When	in	time	the	cortical	semantic	areas	first	emerge	during	meaning	processing?	

4) Why	and	how	semantic	representation	is	influenced	by	deprived	conditions,	such	as	
the	absence	of	visual	experience?	

This	chapter	provides	an	overview	of	the	different	philosophical	and	linguistic	semantic	

theories	 and	 on	 what	 we	 know	 from	 decades	 of	 research	 on	 the	 representation	 and	

processing	of	semantic	knowledge	in	the	brain.	It	also	introduces	the	specific	questions	that	

motivated	this	work.	The	 last	sections	of	 this	chapter	discuss	basic	modelling	assumptions	

and	 recent	 advances	 in	 neurocomputational	 models.	 It	 is	 revealed	 how	 realistic	 neural	

networks	of	the	cortex,	which	are	able	to	reproduce	temporal	and	spatial	aspects	of	brain	
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activity,	are	required	to	bridge	the	gap	between	semantic	theories,	brain	data,	and	cognitive	

semantic	behaviour.		

Semantic	theories	

What	is	the	meaning	of	the	words	‘run’,	‘dog’	or	‘house’?	Most	likely	a	person	will	point	out	

to	what	the	words	refer	in	the	real	world.	The	mapping	between	a	word	and	its	referent—

namely	how	words,	sign	and	symbols	convey	meaning—is	a	matter	of	longstanding	debate	

among	philosophers	and	 linguists.	A	basic	description	of	 the	 relationship	between	a	word	

and	its	referent	was	proposed	by	Saussure	(1959)	who	divided	the	sign	(defined	as	a	basic	

linguistic	unit)	into	two	focal	components:	the	signifier,	the	sound	pattern	(the	word-form)	

described	as	an	abstract	entity,	and	the	signified,	the	element	indicated	by	the	signifier.	For	

Saussure,	 what	 makes	 meaning	 is	 the	 mutual	 and	 close	 relationship	 between	 these	 two	

components	 that	 cannot	 be	 separated.	 In	 contrast	 to	 the	 dyadic	 relationship,	Ogden	 and	

Richards	(1923)	see	 language	 in	terms	of	a	triangle,	arguing	that	the	relationship	between	

the	 sign	 ‘dog’	 and	 its	 referent	 in	 the	 real	 world,	 is	 indirectly	 mediated	 by	 a	 mental	

representation	 (i.e.,	 thought).	Without	 the	 thought,	 the	mapping	between	a	word	and	 its	

referent	is	not	possible.	Although	this	position	has	found	many	critics	over	the	years	(see	for	

instance	Alston,	1964),	it	has	also	found	several	followers	proposing	slightly	different	triadic	

models	 (Jackendoff,	 1983;	 Lakoff,	 1988).	 Note	 that	 the	 principle	 of	 arbitrariness	 of	 a	

linguistic	 sign	 is	 not	 a	 novel	 one:	 Aristotle	 in	 the	 De	 Interpretatione	 has	 already	 argued	

against	 a	 direct	 connection	 between	 a	word	 and	 its	 signified	 (see,	 Ackrill,	 1963),	while	 in	

contrast,	 Plato	 in	 the	 Cratylus	 believed	 that	 words	 are	 correctly	 named	 because	 their	

meaning	 resides	 in	 the	direct	 relationship	with	 its	 referent	 in	 the	 real	world	 (see,	 Sedley,	

2003).	However,	all	these	positions	share	a	belief	that	both	aspects	of	meaning,	concept	and	

referent,	are	essential	for	the	correct	use	of	the	sign	in	real-world	interactions.		

The	science	of	words,	signs	and	symbols	has	not	always	 found	a	central	position	 in	the	

study	 of	 linguistics,	 which	 has	 focused	mainly	 on	 syntax	 and	 grammar.	 For	 instance,	 the	

most	 influential	 linguist,	 Noam	 Chomsky,	 sees	 the	 study	 of	 meaning	 as	 peripheral	 to	

linguistic	 investigations,	 arguing	 that	 language	 structure	 (syntax)	 is	 driven	by	mechanisms	

independent	 from	 meaning	 (Chomsky,	 1965).	 Based	 on	 Chomsky’s	 theory	 of	 generative	

grammar,	Katz	and	Fodor	(1963)	gave	some	space	to	semantics,	including	it	as	a	component	
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of	 the	generative	grammar	 theory.	The	authors	believed,	however,	 that	 the	meaning	of	a	

word	is	based	on	the	semantic	components	or	features	of	which	a	sign	is	composed.	‘As	a	

rule,	the	meaning	of	a	word	is	a	compositional	function	of	the	meanings	of	 its	parts	…’	(p.	

191,	 Katz	 and	 Fodor,	 1963).	 For	 example,	 the	word	 ‘dog’	 includes	 features	of	 +	 animal,	 +	

four	 legs,	 +	move,	but	not	 the	 feature	of	 a	human	being	 (–	human).	 Traditional	 cognitive	

semantic	 theories	 support	 the	 aforementioned	 compositionality	 theory,	 arguing	 that	 the	

meanings	 of	 signs	 and	 symbols	 are	 processed	 in	 a	 unique	 module	 in	 the	 human	 brain	

different	 from	other	 cognitive	processes	 (Fodor,	 1983,	 1975).	 In	particular,	 once	 syntactic	

and	 grammatical	 structures	 are	 set,	 the	 full	 understanding	 of	 signs,	words	 and	 sentences	

relies	on	domain	general	processes	far	from	sensorimotor	modules.	The	basis	of	this	theory	

is	on	the	restriction	of	information	flow	between	the	modules,	in	which	each	module	relies	

on	 information	 stored	 on	 its	 own	 having	 no	 access	 to	 information	 outside	 of	 it	 (Ellis	 and	

Young,	1988;	Fodor,	1983).	Similarly,	other	semantic	theories	assume	that	the	meaning	of	a	

word	is	stored	in	semantic	networks	based	on	the	relationships	between	linguistic	signs	in	a	

uniform	 format	 (Collins	 and	 Loftus,	 1975;	 Quillian,	 1969).	 Such	 approaches	 argue	 for	 an	

‘amodal	symbolic	system’	in	the	brain,	leaving	out	the	importance	of	perceptual	(or	motor)	

experience	in	the	real	world	(i.e.,	the	referential	context)	for	semantic	knowledge.		

However,	a	caveat	of	these	semantic	theories,	according	to	Harnad	(1990)	in	his	famous	

work	 ‘The	 Symbol	 Grounding	 Problem’,	 is	 best	 explained	 by	 the	 Chinese	 room	 thought	

experiment	(Searle,	1980).	If	a	native	English	speaker	without	knowing	Chinese	is	locked	in	a	

room	and	Chinese	symbols	are	given	referring	to	other	symbols	following	a	set	of	rules,	the	

person	in	question	will	not	understand	the	meanings	of	words	that	refer	to	other	symbols.	

This	 is	 because	 a	 circulatory	 system,	which	 continuously	 refers	 to	 other	 symbols,	 fails	 to	

explain	 how	 these	 words	 refer	 to	 things	 in	 the	 outside	 world.	 In	 other	 words,	 meaning	

cannot	be	 conveyed	on	 its	own	 in	a	purely	 symbolic	module.	Clearly	 there	 is	 the	need	 to	

relate	 words	 (the	 word-form,	 ‘dog’)	 to	 what	 they	 refer	 in	 the	 world	 (the	 animal,	 dog),	

namely	grounding	words	 in	 sensory	and	motor	experiences	 (Harnad,	1990).	Grounded	 (or	

embodied)	 theories	 suggest	 that	 the	 meaning	 of	 words	 is	 not	 processed	 in	 a	 unique	

semantic	module	but	grounded	in	action	and	perception	systems	of	the	human	brain	(e.g.,	

Barsalou,	 1999;	 Pulvermüller,	 1999a).	 Semantics	 is	 believed	 to	 be	 represented	 in	 a	

distributed	 modality-specific	 format,	 and	 that	 sensory	 and	 motor	 information	 is	 what	
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constitutes	 a	 concept.	 Once	 a	 basis	 of	 lexicon	 has	 been	 acquired	 through	 grounding	

mechanisms,	 it	 can	 posit	 the	 foundation	 for	 learning	 an	 ample	 vocabulary	 from	 linguistic	

descriptions	or	indirect	context,	where	the	combinatorial	power	of	language	plays	a	key	role	

(Cangelosi	et	al.,	2002;	Harnad,	2012,	1990;	Stramandinoli	et	al.,	2012a).		

Brain	representation	of	semantic	processing	

The	 debate	 between	 an	 amodal	 symbolic	 system	 and	 a	 grounded	 approach	 for	meaning	

processing	 in	 the	 human	 brain	 is	 still	 central.	 Over	 the	 past	 20	 years,	 neuroscience	

investigations	 have	measured	 various	 ways,	 in	 which	 semantic	 knowledge	 is	 constructed	

and	 processed	 in	 the	 brain,	 providing	 support	 for	 both	 amodal	 and	 modal	 grounded	

approaches	(for	a	review	see	Binder	and	Desai,	2011;	Pulvermüller,	2013).		

Recent	 amodal	 semantic	 approach	 postulate	 a	 symbolic	 representations	 of	 meaning	

processing	 in	 the	 anterior	 temporal	 lobe	 (ATL),	 functioning	 as	 an	 integration	 centre	

(semantic	hub),	where	the	meanings	of	all	types	of	signs	and	symbols	are	equally	processed	

(Leshinskaya	 and	 Caramazza,	 2016;	Mahon	 and	 Caramazza,	 2008;	 Patterson	 et	 al.,	 2007).	

One	of	the	central	pieces	of	evidence	for	the	presence	of	such	amodal	representation	comes	

from	patients	suffering	from	semantic	dementia	with	focal	brain	damage	in	the	ATL,	which	

showed	 a	 widespread	 loss	 of	 all	 types	 of	 conceptual	 knowledge	 (Hodges	 et	 al.,	 1992;	

Patterson	et	 al.,	 2007).	However,	 functional	 imaging	 studies	 (fMRI)	 have	documented	 the	

presence	 of	 other	 semantic	 hub	 regions	 for	 general	 semantic	 processing	 located	 in	 the	

anterior	 inferior	parietal	cortex	 (Binder	et	al.,	2009;	Binder	and	Desai,	2011;	Pulvermüller,	

2013)	 and	 the	 posterior	 inferior	 frontal	 cortex	 (Bookheimer,	 2002;	 Carota	 et	 al.,	 2017;	

Posner	 and	 Pavese,	 1998;	 Tate	 et	 al.,	 2014).	 Although,	 there	 are	 robust	 findings	 for	 the	

existence	 of	 abstract	 symbolic	 systems	 in	 the	 brain,	 why	 multiple	 regions	 having	 such	 a	

functional	role	is	present	in	the	human	brain	still	needs	to	be	clarified.	
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Figure	 1.1	 On	 the	 top,	 left	 perisylvian	 language	 area,	 semantic	 hubs	 and	 category-specific	 areas	
typically	activated	during	word	meaning	processing	 reported	 in	 the	 literature.	Bottom	panel:	 fMRI	
study	 documenting	 category-specific	 semantic	 activation	 of	 4	 different	 semantic	 word	 types	 and	
their	 cell	 assembly	 representation.	 Abbreviations:	 iFC,	 inferior	 frontal	 cortex;	 iPC,	 inferior	 parietal	
cortex;	 sTC,	 superior	 temporal	 cortex;	 m/iTC,	 middle/inferior	 temporal	 cortex;	 aTC,	 anterior	
temporal	cortex;	TP,	temporal	pole	(data	adapted	from	Pulvermüller,	2013).	
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On	 the	 other	 hand,	 modal	 grounded	 approach	 has	 been	 supported	 by	 an	 increasing	

amount	 of	 neurocognitive	 studies,	 highlighting	 the	 significance	 of	 action	 and	 perception	

systems	of	 the	 human	brain	 for	meaning	 processing.	 A	 number	 of	 empirical	 studies	 have	

focused	on	 the	 importance	of	 the	motor	cortex	 showing	 that	perceiving	an	action-related	

verb	 such	 as	 ‘run’,	 ‘grasp’,	 or	 ‘kiss’	 evokes	 activity	 in	 the	 motor	 and	 premotor	 cortices,	

intriguingly	 in	 a	 somatotopic	manner	 (Grisoni	 et	 al.,	 2017;	 Hauk	 and	 Pulvermüller,	 2004;	

Kemmerer,	2015;	Shtyrov	et	al.,	2004;	Vukovic	et	al.,	2017).	Likewise,	activity	 in	the	visual	

system	 for	 perceiving	 visually	 related	 words	 such	 as	 ‘sun’,	 ‘dog’,	 or	 ‘house’	 is	 more	

pronounced	(Chao	et	al.,	1999;	Kiefer,	2005;	Moseley	et	al.,	2013;	Pulvermüller	et	al.,	1999;	

Sim	and	Kiefer,	2005).	Such	grounded	representation	on	modality-specific	cortical	areas	has	

also	 been	 consistently	 documented	 for	 emotion,	 taste,	 smell,	 and	 colour	 words	 (e.g.	

Fernandino	et	al.,	2015;	Kemmerer,	2015;	Martin,	2016;	Pulvermüller,	1999;	Simmons	et	al.,	

2005).	An	explanation	of	modality-specific	cortical	activation	for	specific	semantic	categories	

(e.g.	 visually-related,	 animals,	 tools,	 or	 action-related)	 has	 been	 proposed	 based	 on	 the	

Hebbian	cell	assembly	(CA)	mechanism	(Hebb,	1949).	In	other	words,	the	mapping	between	

a	sign	and	 its	 reference	 in	 the	outside	world	would	 lead	to	the	 formation	of	neuronal	cell	

assemblies,	 distributed	 over	 perisylvian	 language	 networks	 and	 category-specific	

sensorimotor	circuits	by	means	of	Hebbian	synaptic	modifications	and	correlation	 learning	

(Fig.	1.1,	Pulvermüller,	2018,	2013,	2002,	1999).		

On	this	basis,	the	critical	question	posited	by	the	present	research	is	why	there	are	both	

semantic	 hubs	 and	modality-preferential	 cortical	 regions	 in	 the	 human	 brain?	 And	Which	

biological	principles	are	critical	for	the	emergence	of	semantics	at	the	microstructural	neural	

level?	

Newly	integrative	proposals	have	been	often	emphasized	by	different	theoretical	hydride	

models	 (Binder	 and	 Desai,	 2011;	 Damasio	 et	 al.,	 1996;	 Pulvermüller,	 2013;	 Ralph	 et	 al.,	

2017),	which	offered	explanations	for	the	presence	of	both	category-general	and	category-

specific	functions	for	semantic	knowledge	in	the	human	brain.	Lambon	Ralph	and	colleagues	

have	proposed	the	so-called	hub-and-spoke	model	of	semantic	cognition	(Ralph	et	al.,	2017)	

suggesting	 that	modality-specific	 spokes	 are	 linked	 to	 a	 single	 hub	 region	 situated	 in	 the	

anterior	 temporal	 lobe	 (ATL)	 where	 semantic	 information	 converge.	 Although	 this	model	
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explains	 some	 of	 the	 behavioural	 changes	 seen	 in	 semantic	 dementia	 patients,	 it	 leaves	

unexplained	the	presence	of	other	reported	semantic	hubs	and	their	functional	roles	during	

conceptualization.	 Interestingly,	 recent	 neurocognitive	 studies	 (Gainotti,	 2012;	 Shebani	 et	

al.,	 2017;	 Silveri	 et	 al.,	 2018)	 have	 reported	 category-specific	 semantic	 impartments	 in	

semantic	dementia	patients	with	a	pattern	of	atrophy	in	the	anterior	temporal	lobe,	which	

sit	less	well	with	a	general	category	semantic	processing	there	(Patterson	et	al.,	2007;	Ralph	

et	 al.,	 2017).	Although,	other	 theoretical	 proposals	have	 integrated	 the	 full	 set	of	 cortical	

areas	 (multimodal	 hubs	 and	 modality-specific	 regions)	 documented	 by	 empirical	 studies	

(Binder	 and	 Desai,	 2011;	 Pulvermüller,	 2013),	 a	 pure	 conceptual	 (or	 descriptive)	 model	

alone	 is	 not	 able	 to	 provide	 qualitative	 and	 quantitative	mechanistic	 explanations	 of	 the	

biological	 principles	 underlying	 word	 meaning	 processing.	 In	 particular,	 how	 the	 mutual	

interaction	of	neural	mechanisms	give	rise	to	the	extensive	reported	category-general	and	

category-specific	semantic	functions.	Likewise,	future	empirical	research	on	this	issue	might	

lead	 to	 offer	 additional	 traces	 of	 activity	 of	 the	 complex	 network	 underlying	 semantic	

processing	 without	 reaching	 the	 final	 goal	 of	 revealing	 the	 mechanism	 behind	 it.	 For	

instance,	a	recent	fMRI	study	(Huth	et	al.,	2016)	employing	a	novel	approach	of	voxel-wise	

modelling	associated	with	neural	encoding	have	produced	an	 interesting	atlas	of	semantic	

brain	 areas	 active	 during	 natural	 speech	 processing,	 nevertheless	 the	 underlying	 neural	

mechanisms	 and	 the	 functional	 role	 of	 the	 revealed	 cortical	 regions	 during	 meaning	

processing	were	left	unexplained	(for	discussion	see,	Barsalou,	2017).		

To	 bridge	 the	 gap	 between	 semantic	 theories	 and	 experimental	 brain	 data,	 biological-

constrained	 computational	models	 following	 precise	 neurobiological	 principles	 have	 been	

defined	to	be	necessary	to	clarify	the	putative	neural	mechanisms	underlying	language	and	

semantic	 processing,	 as	well	 as	making	 new	 testable	 and	 verifiable	 predictions	 (Barsalou,	

2017;	Breakspear,	2017;	Pezzulo	et	al.,	2013).	The	present	thesis	describes	such	a	model	and	

how	it	was	applied	to	simulate	word	meaning	acquisition,	storage,	and	processing,	in	turn,	

to	provide	a	unified	neurobiological	model	of	human	semantic	processing.		
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Semantic	processing	under	visually	deprived	condition	

Recent	 evidence	 of	 semantic	 processing,	 in	 particular	 on	 the	 association	 between	

perception,	 sensory,	 and	 meaning	 processing,	 comes	 from	 blind	 individuals	 who	 acquire	

their	vocabulary	exclusively	through	non-visual	inputs.	Loss	of	vision	from	an	early	age	has	

been	 shown	 to	 cause	 neural	 plastic	 changes	 in	 the	 visual	 system,	 affecting	 semantic	

representation	in	the	brain	(Amedi	et	al.,	2004,	2003;	Burton	et	al.,	2002;	Raz	et	al.,	2005;	

Struiksma	et	al.,	2011;	see	also	Burton	et	al.,	2003).	Lesion	and	functional	 imaging	studies	

have	documented	the	activation	of	visual	cortices	(including	the	V1	area)	in	blind	individuals	

during	 semantic	 retrieval	 in	 a	 verb	 production	 task	 (upon	 hearing	 the	 noun	 ‘cake’,	 they	

would	 produce	 ‘bake’)	 (Amedi	 et	 al.,	 2003;	 Burton,	 2002;	 Struiksma	 et	 al.,	 2011).	 This	

corresponds	to	similar	visual	cortical	areas	being	responsive	for	visual/object-related	word	

processing	in	sighted	people	(Chao	et	al.,	1999;	Kiefer,	2005;	Moseley	et	al.,	2013a;	Sim	and	

Kiefer,	 2005).	 Likewise,	 virtual	 disruption	 of	 the	 deprived	 primary	 visual	 area	 (V1)	 using	

transcranial	magnetic	stimulation	(TMS)	 leads	to	verb	production	 impairments	with	higher	

semantic	errors	in	blind,	but	not	in	sighted	individuals	(Amedi	et	al.,	2004).	An	explanation	

for	the	involvement	of	visual	areas	in	sighted	individuals	during	language	processing	is	best	

described	by	 the	grounding	perspective	of	 semantic	processing	described	above,	 in	which	

concepts	 with	 high	 visual	 features,	 such	 as	 ‘sun’,	 ‘dog’	 or	 ‘cup’,	 are	 grounded	 in	 areas	

relevant	 for	 the	 processing	 of	 sensory	 information	 (Barsalou	 et	 al.,	 2003;	 Harnad,	 1990;	

Pulvermüller,	2018a).	However,	this	grounding	mechanism	cannot	explain	why	the	deprived	

visual	cortex	 is	active	during	the	retrieval	and	generation	of	a	verb	that	typically	describes	

actions,	as	blind	people	are	unable	 to	visualise	 the	objects/actions	 that	are	used	to	speak	

about.	 Likewise,	 it	 is	 difficult	 to	 see	 how	 amodal	 symbolic	 approach	 can	 provide	 an	

explanation	 for	 the	 aforementioned	 plastic	 changes	 in	 the	 blind	 brain,	 as	 if	 semantic	

knowledge	is	processed	in	a	unique	abstract	brain	region	far	from	sensorimotor	regions,	 it	

should	be	so	for	both	blind	and	sighted	individuals.	Hence,	the	critical	questions	posit	by	the	

present	 research	work	 are	 as	 follow:	what	 are	 the	 critical	 factors	 for	 the	 takeover	 of	 the	

visual	 cortex	 for	 linguistic	 and	 semantic	 processing	 under	 visual	 deprivation?	 How	 its	

emerge	at	the	neural	circuit	level	in	the	human	brain?	

A	 possible	 explanation	 for	 the	 involvement	 of	 the	 visual	 cortex	 in	 blindness	 could	 be	

based	 on	 different	 anatomical	 projections	 between	 visual	 and	 the	 relevant	 language	
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regions,	however	a	number	of	diffusor	tensor	imaging	(DTI)	studies	have	failed	to	find	any	

increase	anatomical	connectivity	in	blind	compared	to	sighted	individuals	(Noppeney	et	al.,	

2005;	 Shimony	 et	 al.,	 2005;	 Shu	 et	 al.,	 2009a,	 2009b).	 While	 it	 is	 clear	 that	 the	 neural	

changes	caused	by	blindness	are	mediated	by	the	anatomical	 input	from	frontal,	temporal	

and	 parietal	 cortical	 regions	 (Bedny,	 2017),	 little	 is	 known	 how	 it	 affects	 specifically	 the	

neural	 changes	 in	 the	 deprived	 visual	 areas.	 Another	 possible	 explanation	 is	 that	 under	

sensory	 deprivation	 no	 competing	 inputs	 are	 present	 in	 early	 visual	 cortices	 during	

development,	hence	 leading	 to	 the	 functional	 recruitment	of	 such	areas	by	 the	 remaining	

modality,	 such	 as	 language,	 however,	 the	 neuromechanism	 principles	 guiding	 these	

processes	remain	debated	(Amedi	et	al.,	2017;	Bedny,	2017;	Heimler	et	al.,	2015).	Providing	

an	 answer	 to	 the	 aforementioned	 questions	 of	 the	 neural	 reorganization	 of	 the	 visual	

system	 functionally	 recruited	 for	 language	 and	 semantics	 in	 the	 absence	 of	 visual	

experience	 is	 a	 challenge	 of	 neurobiological	 models	 of	 the	 human	 brain.	 Importantly,	 it	

could	provide	further	critical	insights	in	how	semantic	knowledge	is	represented	in	the	brain	

under	 deprived	 conditions	 and	 in	 particular,	 could	 help	 in	 deciding	 how	 artificial	 retinas	

should	be	implanted	to	restore	sensory	loss.	

How	neurocomputational	models	can	help	

Computational	 models	 are	 precise	 mathematical	 models	 of	 artificial	 neurons	 used	 to	

simulate	and	investigate	the	dynamic	processes	behind	the	behaviour	of	complex	systems,	

such	 as	 language	 processing.	 Artificial	 neural	models	 of	 the	 cortex	 can	 serve	 a	 variety	 of	

purposes,	ranging	from	testing	hypotheses,	generating	specific	and	quantitative	predictions,	

to	replicating	(i.e.,	interpreting)	experimental	results.	A	simulation	obviously	cannot	replace	

experimental	 data,	 but	 they	 are	 useful	 tools	 to	 demonstrate	whether	 or	 not	 a	 proposed	

idea,	mechanism,	or	detailed	verbal	description	of	a	brain	function	is	valid.	Importantly,	to	

ensure	 the	 outputs	 and	 explanations	 of	 the	 model	 are	 biologically	 plausible,	 the	 neural	

architecture	 needs	 to	 mimic	 the	 well-known	 processes	 of	 the	 behaviour	 it	 is	 based	 on.	

Hence,	 neuroanatomical	 and	 neurophysiological	 details	 should	 be	 included	 in	 the	 neural	

architecture,	 as	 structural	 and	 functional	 network	 properties	 have	 been	 defined	 essential	

features	 for	modelling	higher-order	 cognitive	processes	 (Breakspear,	 2017;	O’Reilly,	 1998;	

Pezzulo	et	al.,	2013).		
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Traditional	 neural	 networks	 started	 to	 model	 single	 neurons	 to	 investigate	 the	 basic	

principle	 and	 dynamics	 of	 the	 human	 brain	 (e.g.,	McCulloch	 and	 Pitts,	 1943;	 Palm,	 1982;	

Willshaw	et	al.,	1969).	Although	modelling	at	the	single	level	is	important	to	understand	the	

communication	between	minimal	parts	of	the	cortex	(i.e.	neurons),	this	method	is	far	from	

understanding	higher	cognitive	functions	that	are	associated	with	widely	distributed	neural	

activation	 involving	numerous	cortical	and	subcortical	 regions	 (Bressler	and	Menon,	2010;	

Sporns	 et	 al.,	 2004).	 It	 is	 widely	 accepted	 that	 larger	 groups	 of	 interconnected	 neurons	

distributed	 across	 the	 cortex	 carry	 information	 underlying	 complex	 cognitive	 processes,	

especially	 in	the	domains	of	 language	processing,	visual	and	attention	(Bressler	and	Kelso,	

2001;	 Bressler,	 2002;	 Damasio	 and	 Damasio,	 1994;	 Jirsa,	 2004;	 McIntosh,	 2000).	 The	

network	 types	most	 used	 to	 simulate	 language	processing	 are	 the	 so-called	 connectionist	

models,	which	are	made	up	of	layers	of	connected	neurons	that	are	weighted	depending	on	

the	learning	rule.	These	models	are	inspired	and	derived	by	biological	systems,	such	as	the	

human	brain,	and	used	to	simulate	how	activity	propagates	across	interconnected	units	of	

neurons	 and	 in	 turn	 to	 investigate	 how	 cognition	 works	 at	 a	 mechanistic	 level.	

Computational	models	 also	 provide	 the	best	 paradigm	 for	 cognitive	 robotics	 and	 artificial	

intelligence	 that	 can	get	us	 closer	 to	understand	higher	 cognitive	 functions	of	 the	human	

brain	 in	 a	 fully	 situated	 environment,	 such	 as	 language	 processing	 and	 social	 interactions	

(Cangelosi,	2006;	Cangelosi	et	al.,	2010;	Sporns,	2007;	Stramandinoli	et	al.,	2012b).		

The	starting	point	of	neural	network	research	goes	back	to	1943	with	Warren	McCulloch	

and	Walter	 Pitts’s	 paper	 ‘A	 Logical	 Calculus	 of	 Ideas	 Immanent	 in	 Nervous	 Activity’	 that	

showed	 for	 the	 first	 time	how	a	neuron	 could	be	 implemented	as	 a	 simple	mathematical	

operation.	 Inspired	by	biological	neurons	that	either	generate	a	spike	(action	potential)	or	

remain	silent,	 the	activity	of	 the	artificial	 cells	 in	 the	network	was	defined	 in	binary	units,	

with	 the	 state	 of	 1	 for	 active	 and	 0	 for	 inactive.	 Each	 neuron	 was	 constructed	 with	 an	

internal	 threshold	that	defined	 its	state,	which	was	subjected	to	the	synaptic	modification	

with	other	cells	(McCulloch	and	Pitts,	1943).	Around	the	same	period,	Donald	Hebb	(1949)	

developed	 a	 theory	 of	 cognition	 and	 learning	 that	 is	 best	 summed	 up	 by	 his	 phrase,	

‘Neurons	 that	 fire	 together	 wire	 together’.	 He	 proposed	 that	 the	 mechanism	 for	 how	

communication	between	neurons	and	the	changing	of	synapses	between	them	is	based	on	a	

simple	form	of	associative	learning.	Specifically,	he	wrote	the	following:		
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‘When	an	axon	of	cell	A	is	near	enough	to	excite	B	and	repeatedly	or	persistently	takes	

part	in	firing	it,	some	growth	process	or	metabolic	change	takes	place	in	one	or	both	

cells	such	that	A’s	efficiency,	as	one	of	the	cells	firing	B,	is	increased’	(Hebb,	1949).	

This	 mechanism	 postulated	 by	 Hebb	 explains	 how,	 by	 means	 of	 correlated	 activity,	

repeatedly	co-activated	neurons	wire	 together,	 forming	 the	so-called	cell	assemblies	 (CA).	

The	 interconnected	 CA	 neurons	 have	 been	 assumed	 to	 represent	 the	 building	 blocks	 of	

cognitive	 functions,	 such	 as	 language	 and	 semantics,	 which	 is	 supported	 by	 extensive	

empirical	 studies	 positing	 the	 foundation	 of	 development,	 learning,	 and	 memory	 (e.g.,	

Braitenberg,	1978;	Palm	et	al.,	2014;	Pulvermüller,	1996).		

McCulloch	and	Pitts’s	contributions	and	Hebb’s	notion	of	synaptic	modification	provided	

the	 groundwork	 for	 computational	 models,	 which	 in	 the	 last	 decades	 have	 provided	

valuable	insight	into	‘how’	and	‘why’	the	brain	processes	language	in	a	particular	way	(e.g.	

Chen	et	al.,	2017;	Dell,	1986;	Elman,	1991;	Farah	and	McClelland,	1991;	Gaskell	et	al.,	1995;	

Joanisse	 and	 Seidenberg,	 1999;	 Norris,	 1994;	 Plaut	 and	 Gonnerman,	 2000;	 Plunkett	 and	

Marchman,	 1996;	 Rumelhart	 et	 al.,	 1986;	 Seidenberg	 and	McClelland,	 1989;	 Ueno	 et	 al.,	

2011).	Farah	and	McClelland	(1991)	implemented	the	first	connectionist	model	for	semantic	

processing,	which	consisted	of	two	layers	of	functional	and	visual	hidden	units	representing	

semantics	as	well	as	 two	 layers	of	 input	and	output	nodes.	The	network	was	 trained	with	

living	 and	 non-living	 things,	 which	 were	 generated	 as	 random	 patterns	 of	 activity.	 After	

training,	 the	 model	 was	 lesioned	 to	 each	 semantic	 unit,	 producing	 category–specific	

impairments	which	were	similarly	documented	in	neurophysiological	data	(e.g.,	Basso	et	al.,	

1988;	Miceli	et	al.,	1988).	Although	this	first	semantic	model	replicated	and	interpreted	the	

results	of	several	studies,	it	was	far	from	what	we	know	from	biology,	hence,	suffering	from	

a	 lack	of	neuroscientific	plausibility.	 Incorporating	biological	principles	of	 the	human	brain	

have	 been	 defined	 to	 be	 essential	 to	 model	 and	 understand	 human-specific	 cognitive	

functions	and	 their	 related	mechanisms	 (Breakspear,	2017;	Pezzulo	et	al.,	 2013).	Recently	

computational	 approaches	have	 indeed	 reached	a	higher	degree	of	 realism,	 incorporating	

fine	microstructural	and	 functional	details	of	millions	of	neurons	 (Izhikevich	and	Edelman,	

2008;	Markram	et	al.,	2011),	but	they	have	not	yet	addressed	specific	questions	about	the	

neurobiological	basis	of	 specific	 cognitive	 functions,	 such	as	 semantic	processing.	 Such	an	

approach	 believe	 that	 solely	 in	 implementing	 realistic	 neural	 architecture	will	 lead	 to	 the	
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spontaneous	 emergence	 of	 cognitive	 functions	 in	 the	 network.	 Other	 studies	 have	

addressed	 important	 aspects	 of	 language	 and	 semantic	 processing	 (e.g.,	 Christiansen	 and	

Chater,	 2001;	 Dell	 et	 al.,	 1999),	 but	 most	 did	 not	 attempt	 to	 mimic	 neurophysiological	

mechanisms,	 neuroanatomical	 structure,	 or	 realistic	 learning	 mechanisms.	 While	 recent	

simulation	studies	of	semantic	brain	processes	have	included	neuroanatomical	information	

(Chen	et	al.,	2017;	Guenther	et	al.,	2006;	Ueno	et	al.,	2011),	they	used	learning	mechanisms	

(i.e.,	 backpropagation),	 which	 have	 been	 argued	 to	 be	 implausible	 for	 cortical	 networks	

(Mazzoni	et	al.,	1991;	O’Reilly,	1998).	Hence,	in	order	to	advance	research	on	how	language	

and	 semantics	 are	 represented	 in	 the	 human	 brain,	 it	 is	 critical	 to	 implement	 precise	

mathematical	models	 that	mimic	 the	 properties	 and	 functions	 of	 the	 human	 brain	 based	

rigorously	on	biological	principles.	

Neurobiologically	constrained	neural	network	

In	 this	 study,	 we	 specifically	 designed	 a	 biologically	 constrained	model	 of	 semantic	 brain	

areas,	 mimicking	 realistic	 properties	 of	 the	 human	 cortex	 to	 reconcile	 the	 diverging	

experimental	evidence	of	semantic	processing	described	above.	These	properties	 included	

connectivity,	neurophysiology,	and	neuroanatomical	functions	and	structures.	At	the	micro	

level,	the	neural	network	implements	physiologically	artificial	neurons.	At	the	system	level,	

there	are	12	areas	of	relevance	for	language	and	semantic	processing	situated	in	the	frontal,	

temporal,	and	occipital	lobes.	We	mimicked	the	left	perisylvian	cortex	involved	in	processing	

spoken	 words	 and	 their	 corresponding	 auditory-phonological	 signals	 (Fadiga	 et	 al.,	 2002;	

Pulvermüller,	1999;	Pulvermüller	and	Fadiga,	2010;	Zatorre	et	al.,	1996).		

o The	 ‘auditory	 stream’:	 the	 primary	 auditory	 cortex	 (A1),	 auditory	 belt	 (AB),	 and	

modality-general	parabelt	areas	(PB).	

o The	‘articulatory	stream’:	the	inferior	part	of	the	primary	motor	cortex	(M1i),	inferior	

premotor	(PMi)	and	multimodal	prefrontal	motor	cortex	(PFi).	

An	 additional	 six	 areas	 outside	 the	 perisylvian	 cortex	 (extrasylvian	 system)	 modelled	

referential	 meaning-related	 information	 about	 visual	 object	 identity	 (Ungerleider	 and	

Haxby,	 1994),	 and	 about	 executable	manual	 actions	 (Deiber	 et	 al.,	 1991;	Dum	and	 Strick,	

2005,	2002;	Lu	et	al.,	1994):	
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o The	 ‘ventral	 visual	 stream’:	 the	 primary	 visual	 cortex	 (V1),	 temporo-occipital	 (TO),	

and	anterior	temporal	(AT)	areas.	

o The	 ‘dorsolateral	motor	stream’:	 lateral	primary	motor	 (M1L),	premotor	 (PML),	and	

prefrontal	(PFL)	cortices.	

The	 cortical	 connectivity	 structure	 between	 the	 areas	 closely	 reflects	 the	 existing	

neuroanatomical	studies	using	diffusion	tensor	and	diffusion-weighted	imaging	(DTI/DWI)	in	

humans	and	non-human	primates.	Table	3.2	 in	Chapter	3	summarises	the	evidence	of	 the	

studies	 reporting	 such	 connectivity	 between	 the	 areas	modelled	 in	 the	 network.	 Below	 a	

summary	 of	 the	 neurobiological	 principles	 based	 on	 brain	 data	 with	 which	 the	 neural	

network	model	was	constructed.	

Principle	1:	a	biologically	constrained	model	of	the	frontal,	temporal	and	occipital	lobes	with	

distributed	neurophysiological	dynamics	of	pyramidal	neurons	that	encode	information	and	

participate	in	multiple	representations	(Matthews,	2001);		

Principle	 2:	 synaptic	 modification	 by	 way	 of	 non-supervised	 Hebbian-type	 learning,	

including	 both	 long-term	 potentiation	 (LTP)	 and	 long-term	 depression	 (LTD,	 Artola	 and	

Singer,	1993)	critical	for	shaping	brain	functions	and	experience-depended	plasticity.		

Principle	3:	local	lateral	inhibition	and	area-specific	global	regulation	mechanisms	(local	and	

global	 inhibition)	 (Braitenberg,	 1978;	 Yuille	 and	 Geiger,	 2003)	 relevant	 for	 regulating	 the	

activity	among	neurons	and	for	the	refinement	of	neural	circuits	as	a	result	of	learning.		

Principle	 4:	 a	 sparse,	 random,	 and	 initially	weak	 connectivity	 implemented	 locally	with	 a	

neighbourhood	 bias	 towards	 nearby	 links	 typically	 found	 pervasively	 in	 the	 cortex	

(Braitenberg	and	Schüz,	1998;	Kaas,	1997);	

Principle	 5:	 between-area	 connectivity	 based	 on	 neurophysiological	 principles	 and	

motivated	 by	 neuroanatomical	 evidence	 using	 diffusion	 tensor	 and	 diffusion-weighted	

imaging	(DTI/DWI)	in	humans	and	non-human	primates	(e.g.,	Rilling	et	al.,	2011;	Thiebaut	de	

Schotten	et	al.,	2012)	that	sets	the	basis	for	the	spreading	of	activity	between	the	cortical	

areas	during	learning;		
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Principle	 6:	 constant	 presence	 of	 uniform,	 uncorrelated	 white	 noise	 in	 all	 neurons	

mimicking	 the	 spontaneous	 activity	 (baseline	 firing)	 of	 real	 neurons	 during	 all	 phases	 of	

learning	 and	 retrieval	 with	 additional	 noise	 added	 to	 the	 stimulus	 patterns	 to	 simulate	

realistic	noisy	input	conditions	during	retrieval	(Rolls	and	Deco,	2010).	Noise	in	the	brain	has	

been	 defined	 a	 key	 component	 for	 neural	 communication	 (in	 particular	 for	 oscillatory	

fluctuation	and	neural	variability)	and	in	turn	for	the	nervous	system	function	(Faisal	et	al.,	

2008).		

The	 aforementioned	 biological	 principles	 provided	 the	 basic	 set	 of	 constraints	 for	 the	

computational	 model	 that	 was	 used	 to	 simulate	 aspects	 of	 language	 acquisition	 and	

semantics	in	the	action	and	perception	system	of	the	human	brain	under	visually	deprived	

and	undeprived	 conditions.	Here,	we	 simulated	associative	word	 learning	between	object	

words	 and	 their	 referent	 objects	 present	 in	 the	 environment	 (Vouloumanos	 and	Werker,	

2009)	as	well	as	between	action	words	and	 the	performance	of	 their	 semantically-related	

actions	 (Tomasello	 and	 Kruger,	 1992).	 To	 induce	 CA	 formation	 through	Hebbian	 learning,	

the	 network	 was	 stimulated	 via	 co-activation	 of	 specific	 sets	 of	 ‘cells’	 (D’Esposito,	 2007;	

Fuster,	2003)	 in	 the	primary	articulatory	motor	and	auditory	cortex,	along	with	grounding	

referential-semantic	neurons	(primary	visual	area	for	object	words	and	primary	motor	area	

for	action	words).	The	model	also	implements	‘anti-Hebb	learning’,	defined	as	‘cells	out	of	

sync,	delink’	 (Artola	and	Singer,	1993;	Bienenstock	et	al.,	1982;	O’Reilly,	1998).	These	two	

mechanisms,	 biologically	 described	 as	 long-term	 potentiation	 (LTP)	 and	 long-term	

depression	 (LTD),	 have	been	defined	 as	 fundamental	 principles	 for	 brain	 functions,	which	

shape	the	brain	and	cognition	throughout	the	entire	 life	of	a	human	being	(e.g.,	Tsumoto,	

1992).	 This	 dissertation	 describes	 two	 versions	 of	 the	 same	 neural	 network	 model:	 one	

model	 adopted	 a	 ‘mean-field’	 approach	 by	 using	 graded-response	 neurons	 (Chapter	 2),	

whereas	 the	 other	 implemented	 ‘leaky	 integrate-and-fire	 neurons’	 simulating	 realistic	

spiking	neurons	(Chapter	3).	The	details	of	single-neuron	properties,	the	synaptic	plasticity	

rule,	and	single-area	model	structure	are	described	in	their	respective	chapters.	
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Overview	of	the	present	work	

One	of	the	controversial	topics	in	the	neuroscience	of	language	is	the	functional	role	of	the	

various	cortical	areas	(semantic	hubs	and	modality-preferential	areas)	that	are	active	during	

meaning	 processing.	 Chapter	 2	 focuses	 on	 answering	why	 the	 human	 brain	 uses	 such	 a	

complex	system	of	hubs	and	modality-preferential	areas	 for	meaning	processing,	and	how	

they	emerge	at	the	circuit	level	by	means	of	a	neurobiologically	constrained	neural	network.	

Additionally,	it	provides	a	precise	activation	time	course	(simulating	EEG/MEG	activation)	of	

the	 semantic	 brain	 areas	modelled	 in	 the	 network	 by	 offering	 novel	 predictions	 for	word	

meaning	processing	in	the	human	brain.		

Building	 upon	 previous	 mean-field	 neural-network	 models	 presented	 in	 Chapter	 2,	

Chapter	3	describes	a	more	sophisticated	and	realistic	model	of	the	cortex.	Specifically,	we	

added	 critical	 neurobiological	 constraints	 by	 introducing	 realistic	 spiking	 neurons,	

biologically	 plausible	 non-supervised	 learning	 mechanisms,	 and	 a	 more	 complex	 set	 of	

connectivity	structures	based	on	neuroanatomical	studies.	It	is	agreed	upon	neuroscientists	

that	 there	 is	 the	 need	 to	 build	 more	 detailed	 and	 realistic	 neurocomputational	 models,	

which	are	essential	 in	obtaining	a	better	understanding	 (based	on	biological	principles)	of	

brain	functions,	such	as	semantic	and	language	processing	in	the	human	brain.		

Relevant	contributions	to	linguistic	and	semantic	processing	come	from	language	studies	

of	congenitally	blind	people,	reporting	neural	organisation	of	the	distributed	lexico-semantic	

network	 in	 the	 visual	 regions	 compared	 to	 sighted	 individuals.	 Little	 is	 known	 about	 the	

hotly	debated	questions	of	why	 and	how	 this	 functional	 reorganisation	 takes	place	at	 the	

cellular	 and	 synaptic	 level.	 Chapter	 4	 focuses	 on	 offering	 a	 novel	 explanation	 for	 these	

unresolved	 questions	 by	 simulating	 word	meaning	 acquisition	 in	 visually	 deprived	 and	 in	

underpived	control	conditions.			

The	general	aim	of	this	study	is	to	biological	explain	and	reconcile	the	diverging	evidence	

of	 semantic	 hubs	 and	 modality-preferential	 regions	 active	 during	 semantic	 knowledge	

processing	in	the	human	brain	and	to	explore	the	factors	underlying	the	neural	organization	

in	visual	cortical	regions	caused	by	blindness.	To	this	end,	we	simulated	the	acquisition	and	

storage	 of	 different	 concepts	 used	 to	 speak	 about	 objects	 and	 actions	 on	 healthy	 and	

visually	 deprived	 populations	 by	means	 of	 a	 biologically	 constrained	 neural	 network.	 This	
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work	is	built	on	the	hypothesis	that	a	set	of	neurobiological	principles	acting	within	specific	

neuroanatomical	 structures	 and	 functions	 are	 the	 key	 foundation	 for	 understanding	 the	

mechanisms	underlying	word	meaning	processing	in	the	human	brain.		
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2. Brain	connections	of	words,	perceptions	and	actions:	A	

neurobiological	model	of	spatio-temporal	semantic	activation	

in	the	human	cortex	
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Abstract	

Neuroimaging	and	patient	studies	show	that	different	areas	of	cortex	respectively	specialize	

for	 general	 and	 selective,	 or	 category-specific,	 semantic	 processing.	 Why	 are	 there	 both	

semantic	hubs	and	category-specificity,	and	how	come	that	they	emerge	in	different	cortical	

regions?	Can	the	activation	time-course	of	these	areas	be	predicted	and	explained	by	brain-

like	 network	 models?	 In	 this	 present	 work,	 we	 extend	 a	 neurocomputational	 model	 of	

human	cortical	function	to	simulate	the	time-course	of	cortical	processes	of	understanding	

meaningful	concrete	words.	The	model	 implements	frontal	and	temporal	cortical	areas	for	

language,	perception,	and	action	along	with	their	connectivity.	 It	uses	Hebbian	 learning	to	

semantically	 ground	 words	 in	 aspects	 of	 their	 referential	 object-	 and	 action-related	

meaning.	 Compared	 with	 earlier	 proposals,	 the	 present	 model	 incorporates	 additional	

neuroanatomical	 links	supported	by	connectivity	studies	and	downscaled	synaptic	weights	

in	order	to	control	for	functional	between-area	differences	purely	due	to	the	number	of	in-	

or	output	links	of	an	area.	We	show	that	learning	of	semantic	relationships	between	words	

and	the	objects	and	actions	these	symbols	are	used	to	speak	about	leads	to	the	formation	of	

distributed	 circuits,	 which	 all	 include	 neuronal	 material	 in	 connector	 hub	 areas	 bridging	

between	sensory	and	motor	cortical	systems.	Therefore,	these	connector	hub	areas	acquire	

a	 role	 as	 semantic	 hubs.	 By	differentially	 reaching	 into	motor	or	 visual	 areas,	 the	 cortical	

distributions	of	the	emergent	‘semantic	circuits’	reflect	aspects	of	the	represented	symbols’	

meaning,	 thus	 explaining	 category-specificity.	 The	 improved	 connectivity	 structure	 of	 our	

model	entails	a	degree	of	category-specificity	even	in	the	‘semantic	hubs’	of	the	model.	The	

relative	time-course	of	activation	of	these	areas	is	typically	fast	and	near-simultaneous,	with	

semantic	 hubs	 central	 to	 the	 network	 structure	 activating	 before	 modality-preferential	

areas	carrying	semantic	information.	
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Introduction	

The	 human	 brain	 is	 able	 to	 acquire	 and	 store	 knowledge	 about	 people,	 facts,	 objects,	

actions,	and	culture	through	experiences	in	everyday	life.	Much	of	this	knowledge	comes	in	

units,	as	‘conceptual’	or	‘semantic	representations’,	and	carries	symbolic	linguistic	labels	in	

language,	whereby	the	relationships	between	word-forms	and	semantic	meaning	appears	as	

arbitrary.	When	 semantic	 functions	 are	damaged,	 serious	 consequences	 in	 daily	 cognitive	

activity	can	arise,	being	manifest	as	impairments	of	language	and	verbal	communication	and	

in	some	cases	extending	to	domains	such	as	planning,	object	recognition,	or	goal	directed	

action	 such	 as	 drinking	 a	 glass	 of	 water	 (Bak	 and	 Chandran,	 2012;	 Damasio	 et	 al.,	 1996;	

Gainotti,	2010;	Kemmerer	et	al.,	2012;	Pulvermüller	and	Fadiga,	2010).	Given	the	centrality	

of	semantics	in	human	life,	it	is	crucial	to	understand	the	neural	mechanisms	underlying	the	

nature	of	semantic	knowledge	in	the	brain,	which,	despite	decades	of	research,	is	still	one	of	

the	most	controversial	issues	among	cognitive	neuroscientists,	who	propose	quite	diverging	

perspectives	on	this	issue.	

One	view	puts	forth	that	one	or	more	area(s)	is/are	active	during	meaning	processing	in	

the	 brain,	which	 appear	 to	 function	 as	 general	 convergence	 zones	 or	 semantic	 hubs	 and	

process	the	meaning	of	all	types	of	signs	and	symbols.	‘Semantic	hubs’	have	been	proposed	

to	be	situated	in	the	frontal,	temporal	and	parietal	cortices,	especially	 in	the	 left	 language	

dominant	hemisphere	(Bookheimer,	2002;	Patterson	et	al.,	2007;	Price,	2000;	Pulvermüller,	

2013).	For	example,	evidence	 for	a	multimodal	 semantic	hub	 in	anterior-inferior	 temporal	

cortex	 comes	 from	 patients	 suffering	 from	 semantic	 dementia,	 because	 damage	 in	 this	

region	seems	to	be	the	best	predictor	of	their	semantic	deficit	(Mion	et	al.,	2010).	Although	

there	 is	 strong	 evidence	 for	 semantic	 hub	 areas,	 that	 is,	 for	 cortical	 regions	 which	 are	

generally	important	for	meaning	processing,	an	explanation	of	why	several	regions	seem	to	

play	a	role	as	semantic	hubs	and,	especially,	why	they	are	localised	in	their	specific	cortical	

areas,	is	necessary.		

A	 second	 important	 observation	 is	 that	 some	 additional	 cortical	 areas	 contribute	 to	

semantic	 processing	 in	 a	 more	 selective	 fashion,	 being	 particularly	 relevant	 for	 specific	

semantic	categories,	such	as	words	typically	used	to	speak	about	animals,	tools,	or	actions	

and	their	related	concepts.	Some	evidence	also	indicates	that	when	recognising	a	word	such	
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as	 run,	activity	 in	motor	 cortex,	 and	 even	more	 specifically	 in	 leg-motor	 cortex,	 emerges,	

whereas,	when	hearing	an	object-	 and	visually-related	word	 such	as	 sun,	 activity	 in	 visual	

areas	is	relatively	more	pronounced	(Boulenger	et	al.,	2009;	Damasio	et	al.,	1996;	Gainotti,	

2010;	Hauk	et	al.,	 2004;	Pulvermüller	et	al.,	 2009).	 Support	 for	 category-specific	 semantic	

processes	is	provided	by	a	number	of	neurocognitive	empirical	studies	that	have	focused	on	

the	 importance	 of	 the	 motor	 and	 premotor	 cortex	 during	 conceptual	 processing,	

demonstrating	 for	 example	 that	 perceiving	 action	words	 and	 sentences	 evokes	 activity	 in	

motor	 and	 premotor	 cortices	 (Boulenger	 et	 al.,	 2009;	 Hauk	 et	 al.,	 2004,	 2008;	 Hauk	 and	

Pulvermüller,	 2004;	 Pulvermüller,	 1999,	 2001;	 Rüschemeyer	 et	 al.,	 2007;	 Shtyrov	 et	 al.,	

2004).	Furthermore,	activation	in	the	premotor	and	motor	cortex	is	so	fine	grained	that	we	

can	differentiate	semantic	subcategories	of	action-related	words	somatotopically	(Grisoni	et	

al.,	 2016;	Hauk	 et	 al.,	 2004;	Hauk	 and	 Pulvermüller,	 2004).	 Category-specific	 effects	 have	

also	been	seen	in	the	visual	areas,	especially	 in	the	ventral	temporal-occipital	areas,	when	

visually-related	 words	 are	 being	 processed	 (e.g.	 animal,	 colour	 or	 object-related	 words)	

(Chao	 et	 al.,	 1999;	 Kiefer,	 2005;	 Sim	 and	 Kiefer,	 2005).	 Importantly,	 category-specific	

semantic	effects	are	also	documented	in	the	lesion	literature,	where	sometimes	rather	small	

lesions	 in	 modality-preferential	 areas	 can	 selectively	 impair	 the	 processing	 of	 specific	

semantic	 categories	 (Dreyer	 et	 al.,	 2015;	 Hernández	 et	 al.,	 2008).	 A	 neurobiological	

explanation	 of	 category-specificity	 has	 been	 proposed,	 which	 relates	 the	 differential	

activation	 patterns	 and	 lesion	 signatures	 to	 the	 functional	 level	 of	 cortical	 circuits	 with	

different	distributions	across	areas.	Accordingly,	widely	distributed	cortical	circuits	for	word-

forms	 carried	 by	 neuronal	 assemblies	 in	 the	 perisylvian	 language	 areas	 are	 linked	 with	

neuronal	 ensembles	 storing	 semantic	 information.	 These	 semantic	 circuits	 reach	 into	

modality-preferential	motor	and/or	sensory	areas	depending	on	whether	the	perceptual	or	

action-related	 information	 is	 relevant	 for	 grounding	 the	meaning	 of	 the	words	 (Barsalou,	

2008;	Martin,	2007;	Pulvermüller	and	Fadiga,	2010;	Pulvermüller	et	al.,	2005;	Pulvermüller,	

2001).	 The	 different	 distribution	 of	 the	 semantic	 circuits	 across	 the	 cortex,	 therefore,	

explains	aspects	of	category-specificity.	Notably,	some	studies	reported	that	both	category-

general	 and	 category-specific	 semantic	 activation	 in	 the	 brain	 has	 been	 found	 to	 emerge	

rather	fast,	i.e.	within	~200	ms	after	a	meaningful	symbol	can	be	recognized	(Hoenig	et	al.,	

2008;	Penolazzi	et	al.,	2007;	Pulvermüller	et	al.,	2005b,	2004,	2000;	Shtyrov	et	al.,	2014).	For	

example,	 Moseley	 et	 al.	 (2013)	 recorded	 brain	 signals	 using	 magnetoencephalography	
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(MEG)	and	found	different	responses	for	action-related,	object-related	and	abstract	written	

words	 already	 at	 150	ms	 after	 their	 onset,	 with	 gradually	 stronger	 activations	 for	 the	

action/object	 items	 in	 motor/visual	 regions,	 respectively.	 An	 explanation	 of	 category-

specificity	 has	 been	 offered	 in	 terms	 of	 neurobiological	 principles.	 However,	 in	 order	 to	

integrate	theory	and	data	about	semantic	hubs	with	established	knowledge	about	category-

specificity,	 it	 is	necessary	to	develop	formal	models	of	cortical	structure	and	function	that	

explain	the	presence	of	both.	

An	 effort	 towards	 such	 explanation	was	 recently	made	by	Garagnani	 and	 Pulvermüller	

(2016),	 who	 used	 a	 network	 implementation	 of	 cortical	 areas	 and	 their	 connectivity	 to	

mimic	 the	 function	 of	 the	 perisylvian	 language	 cortex,	 in	 particular	 inferior	 frontal	 and	

superior	 temporal	 cortex,	 along	with	 general	 visual	 and	motor	 areas	 function	 in	 order	 to	

simulate	 the	 binding	 of	 phonological/lexical	 and	 semantic	 information.	 Using	 Hebbian	

mechanisms	 for	synaptic	modification,	 this	model	was	used	to	simulate	 the	emergence	of	

neuronal	 circuits	 that	 process	 information	 about	word-forms	 and	 their	 related	 action-	 vs.	

object-related	meanings.	However,	the	model	used	a	simplified	connectivity	structure,	and	

was	applied	to	make	predictions	about	magnitude	and	topography	of	brain	activation,	but	

not	its	time	course.	Here,	we	improve	on	this	earlier	architecture	by	incorporating	additional	

cortico-cortical	 connections	 documented	 by	 neuroanatomical	 studies.	 This	

neuroanatomically	more	appropriate	model	was	used,	as	 in	 the	earlier	 version,	 to	predict	

the	 cortical	 distribution	 of	 the	memory	 circuits	 for	words	with	 object-	 and	 action-related	

meaning.	However,	 this	 type	of	model	can	be	used	to	predict	not	only	where	 in	 the	brain	

linguistic	and	semantic	brain	activity	occurs,	but	also	when	these	processes	take	place,	i.e.,	

the	 time	 course	 of	 such	 activation.	 Although	 the	 spatio-temporal	 dimension	 was	 already	

present	 in	 the	 previous	 network	 architecture	 (Garagnani	 and	 Pulvermüller,	 2016),	 we	

provide	here,	for	the	first	time,	a	precise	activation	time	course	analysis	of	different	areas	of	

the	 network.	 Furthermore,	 the	 previous	 model	 included	 connector	 hub	 areas,	 which	

exhibited	 increased	 numbers	 of	 links	 compared	with	 other	 areas.	 To	make	 sure	 that	 the	

specific	 activation	 signatures	 that	we	 observed	 there	 –	 in	 particular,	 the	 generally	 strong	

activation	 seen	 in	 connector	hub	areas	–	were	not	 just	 a	 result	 of	 an	 increased	weighted	

sum	of	incoming	and	outgoing	synaptic	connections	to	and	from	neighbouring	areas	(‘more	

and	stronger	links,	more	semantics’),	an	in-degree	normalization	across	areas	was	used	here	
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to	balance	 the	overall	 input	across	areas	and	emphasise	 the	 role	of	network	 topology	 (or	

connection	 structure)	 as	 a	 factor	 influencing	 circuit	 topographies	 (or	 cell	 assembly	

distributions).		

To	investigate	word	meaning	processing	in	the	human	brain,	we	used	a	neural	network	

model	 implementing	 realistic	 anatomical	 and	 physiological	 features	 of	 the	 human	 cortex.	

The	model	 simulates	 primary	 and	 secondary	 sensorimotor	 areas	 in	 frontal,	 temporal	 and	

occipital	cortex	along	with	‘connector	hub’	areas	interfacing	between	different	sensory	and	

motor	systems	(Garagnani	et	al.,	2009,	2008,	Garagnani	and	Pulvermüller,	2016,	2013,	2011;	

Pulvermüller	 and	 Garagnani,	 2014).	 The	 short	 and	 long	 distance	 connections	 between	

model	areas	are	based	on	existing	neuroanatomical	evidence.	Functionally,	the	model	takes	

advantage	of	realistic	Hebbian	learning	mechanisms	(Hebb,	1949).	The	network	was	trained	

with	 repeatedly	 presented	 specific	 sensorimotor	 patterns	 coding	 for	 the	 articulatory	 and	

acoustic	 phonological	 structure	 of	 single	 words	 and	 some	 of	 their	 action-	 or	 perception-

related	 semantic	 features.	 As	 a	 result	 of	 learning	 and	 area/connectivity	 structure,	

distributed	 ‘semantic	 circuits’	 emerged	 in	 the	 network,	 spanning	 different	 areas.	

Importantly,	the	topographies	of	these	circuits	showed	similarities	and	differences	between	

semantic	types	(action	vs.	object	words),	which	can	be	related	to	the	semantic	information	

stored.	 We	 document	 circuit	 distributions	 and	 their	 dynamic	 activation	 and	 discuss	 the	

results	in	the	context	of	specific	model	features,	existing	experimental	evidence,	and	novel	

predictions	for	future	research.		
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Materials	and	Methods			

We	 applied	 a	 neurobiologically	 grounded	 computational	 model	 replicating	 structure	 and	

functional	properties	of	the	human	cortex	to	investigate	the	neural	mechanisms	underlying	

word	meaning	acquisition	and	processing	in	the	perception	and	action	systems	of	the	mind	

and	 brain.	 The	model’s	 architecture	mimics	 the	 left	 perisylvian	 cortex	 involved	 in	 spoken	

word	 processing,	 corresponding	 to	 articulatory	 and	 acoustic	 phonological	 word-forms	

(Fadiga	 et	 al.,	 2002;	 Fry,	 1966;	 Pulvermüller,	 1992,	 1999;	 Pulvermüller	 and	 Fadiga,	 2010;	

Zatorre	et	al.,	1996),	areas	outside	the	perisylvian	cortex	involved	in	processing	visual	object	

identity	(Ungerleider	and	Haxby,	1994),	and	the	execution	of	manual	actions	(Deiber	et	al.,	

1991;	Dum	and	Strick,	2005,	2002;	Lu	et	al.,	1994).	The	model	mimics	a	range	of	biologically	

realistic	properties	of	the	human	cortex	including	the	following	features:	

1. Area	 structure:	 12	 cortical	 areas	 were	 modelled,	 including	 modality-preferential	

sensory	 and	 motor	 ones	 as	 well	 as	 connector	 hub	 areas	 interlinking	 sensory	 and	

motor	systems.	

2. Between-area	 connectivity:	 different	 areas	were	 linked	 based	 on	 neuroanatomical	

principles	 and	 data,	 realising	 sparse,	 random,	 initially	 weak	 and	 topographic	

connectivity.	

3. Within-area	 connectivity:	 similarly	 sparse,	 random	 and	 initially	 weak	 connectivity	

was	 implemented	 locally,	 along	 with	 a	 neighbourhood	 bias	 towards	 local	 links	

(Braitenberg	and	Schüz,	1998;	Kaas,	1997).	

4.	 	 Local	 lateral	 inhibition	 and	 area-specific	 global	 regulation	 mechanisms	 (local	 and	

global	inhibition)	(Braitenberg,	1978;	Palm	et	al.,	2014;	Yuille	and	Geiger,	2003).	

5.		 Synaptic	 modification	 by	 way	 of	 Hebbian	 type	 learning,	 including	 both	 long-term	

potentiation	and	depression	(LTP,	LTD)	(Artola	and	Singer,	1993).		

6.		 Neurophysiological	dynamics	of	single	cells	including	temporal	summation	of	inputs,	

nonlinear	 transformation	 of	 membrane	 potentials	 into	 neuronal	 outputs,	 and	

adaptation	(Matthews,	2001).	
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7.		 Constant	 presence	 of	 uniform	 uncorrelated	 white	 noise	 in	 all	 neurons	 during	 all	

phases	of	learning	and	retrieval,	and	additional	noise	added	to	the	stimulus	patterns	

to	mimic	realistic	noisy	input	conditions	during	retrieval	(Rolls	and	Deco,	2010).	

Word	 learning	 processes	 in	 the	 model	 are	 based	 entirely	 on	 mechanisms	 of	 Hebbian	

plasticity,	often	summarized	by	the	phrase	‘cells	that	fire	together,	wire	together’,	although	

the	learning	rule	applied	(see	above	and	Appendix	2A)	implements	‘anti-Hebb’	learning	too,	

colloquially	described	by	the	phrase	‘cells	out	of	sync	delink’	(for	discussion,	see	Garagnani	

et	 al.,	 2009).	 Accordingly,	 within	 a	 network	 of	 interconnected	 neurons,	 repeatedly	 and	

consistently	co-active	sub-populations	of	cells	strengthen	their	connections,	forming	the	so	

called	 cell	 assemblies	 (CAs)	 (Hebb,	 1949).	 According	 to	 Hebb	 (1949),	 assemblies	 can	 be	

considered	 functional	 units	 in	 the	 brain	 representing	 the	 building	 blocks	 of	 cognitive	

functions,	 including	language	(Braitenberg,	1978;	Palm	et	al.,	2014;	Pulvermüller,	1996).	 In	

principle,	the	emerging	neuronal	assemblies	can	be	 local,	that	is,	restricted	to	a	small	area	

or	even	cortical	 column	of	a	 fraction	of	a	cubic	millimetre	or,	alternatively,	be	spread	out	

across	wide	cortical	regions,	and	it	 is	not	clear	a	priori	whether	a	given	network	and	input	

pattern	leads	to	the	formation	of	local	or	distributed	circuits.	Different	cortical	distributions,	

or	 topographies,	 of	 cell	 assemblies	 have	 been	 postulated	 for	 symbols	 with	 different	

meaning.	 Standard	 postulates	 are	 that	 words	 related	 to	 actions	 include	 neurons	 in	 the	

motor	cortex	–	which	control	the	movements	a	word	such	as	run	is	typically	used	to	speak	

about	–	while	words	referring	to	objects	(such	as	sun)	will	include	neurons	in	areas	along	the	

ventral	visual	stream	of	object	processing	(Huyck	and	Passmore,	2013;	Pulvermüller,	1999;	

Pulvermüller	 and	 Preissl,	 1991).	 Previous	 simulation	 studies	 have	 already	 shown	 the	

formation	of	distributed	neuronal	assemblies	exhibiting	differential	cortical	distributions	as	

a	result	of	repeated	concomitant	presentation	of	activation	patterns	and	Hebbian	plasticity	

mechanism	 (Garagnani	 et	 al.,	 2009,	 2008,	Garagnani	 and	Pulvermüller,	 2016,	 2013,	 2011;	

Wennekers	et	al.,	2006).	
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Model	architecture	

The	model	consists	of	12	cortical	areas	of	artificial	neurons	with	area-intrinsic	connections	

and	mutual	connections	between	them.	In	the	left	perisylvian	language	cortex,	we	identify	

six	 cortical	 areas	 divided	 into	 two	 sub-systems:	 auditory	 and	 articulatory	 systems	 (areas	

highlighted	in	blue	and	red	in	Fig.	1.	A).	The	auditory	system	includes	the	primary	auditory	

cortex	 (A1),	 auditory	 belt	 (AB),	 and	parabelt	 areas	 (PB)	 -	whereas	 the	 articulatory	 system	

includes	the	primary	articulatory	motor	cortex	(inferior	part	of	primary	motor	cortex,	M1i),	

inferior	premotor	 (PMi)	and	prefrontal	motor	cortex	 (PFi).	 Six	additional	areas	outside	 the	

perisylvian	 cortex	 (which	we	 call	 ‘extrasylvian’)	were	 included	 to	model	 the	 ventral	 visual	

stream	 and	 dorsolateral	 motor	 system	 (green	 and	 yellow	 highlighted	 areas).	 The	 ventral	

visual	 system	 is	 relevant	 for	 processing	 visual	 object	 identity	 and	 includes,	 apart	 from	

primary	visual	cortex	(V1),	temporo-occipital	(TO)	and	anterior-temporal	(AT)	areas.	Finally,	

the	 motor	 system	 which,	 for	 example,	 is	 relevant	 for	 the	 execution	 of	 manual	 actions,	

includes	 the	 dorsolateral	 fronto-central	 motor	 (M1L),	 premotor	 (PML),	 and	 prefrontal	

cortices	 (PFL).	 Each	model	 area	 consists	of	 two	 layers	of	25	 x	25	excitatory	and	 inhibitory	

artificial	neurons	(e-	and	i-cells)	(see	Fig.	2.1.	C).	Each	e-cell	represents	a	cluster	of	excitatory	

pyramidal	 cells,	 and	 the	 underlying	 i-cell	 models	 represent	 the	 cluster	 of	 inhibitory	

interneurons,	 situated	 within	 the	 same	 cortical	 column	 (Eggert	 and	 van	 Hemmen,	 2000;	

Wilson	 and	 Cowan,	 1972).	 As	 it	 is	 typical	 for	 the	 mammalian	 cortex,	 the	 connectivity	

between	 and	 within	 model	 areas	 is	 sparse,	 patchy	 and	 topographic	 (Amir	 et	 al.,	 1993;	

Braitenberg	and	Schüz,	1998;	Gilbert	and	Wiesel,	1983).	To	regulate	and	control	activity	 in	

the	 network,	 local	 and	 area-specific	 inhibition	 is	 implemented	 (Bibbig	 et	 al.,	 1995;	 Palm,	

1982;	Wennekers	et	al.,	2006).	Details	of	the	model	functions	and	of	the	Hebbian	learning	

mechanism	 (including	 LTD	 and	 LTP)	 are	 summarized	 in	 previous	 works	 (Garagnani	 et	 al.,	

2009,	 2008,	 Garagnani	 and	 Pulvermüller,	 2016,	 2013,	 2011).	 For	 completeness,	 we	

recapitulate	them	in	Appendix	2A.	
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Figure	2.1.	Model	of	lexical	and	semantic	mechanisms:	The	12	cortical	areas	modeled	(A),	their	global	
connectivity	 architecture	 (B),	 and	 aspects	 of	 the	 micro-structure	 of	 their	 connectivity	 (C)	 are	
illustrated.	 (A)	 Six	 perisylvian	 (i)	 and	 six	 extrasylvian	 (ii)	 model	 areas	 are	 shown,	 each	 including	 a	
dorsolateral	(frontal)	and	a	ventral	(temporal)	part:	(i)	perisylvian	cortex	include	an	articulatory	system	
(red	 colors),	 including	 inferior-prefrontal	 (PFi),	 premotor	 (PMi)	 and	 primary	motor	 cortex	 (M1i)	 and	
auditory	 system	 (areas	 in	 blue),	 including	 auditory	 parabelt	 (PB),	 auditory	 belt	 (AB)	 and	 primary	
auditory	 cortex	 (A1).	 These	 areas	 can	 store	 correlations	 between	 neuronal	 activations	 carrying	
articulatory-phonological	 and	 corresponding	 acoustic-phonological	 information,	 for	 example	 when	
phonemes,	 syllables	 and	 spoken	 word-forms	 are	 being	 articulated	 (activity	 in	 M1i)	 and	 acoustic	
features	of	these	spoken	words	are	simultaneously	perceived	(stimulation	of	primary	auditory	cortex,	
A1).	(ii)	Extrasylvian	areas	include	a	motor	system	(yellow	to	brown),	including	dorsolateral	prefrontal	
(PFL),	premotor	(PML)	and	primary	motor	cortex	(M1L)	and	a	‘what’	visual	stream	of	object	processing	
(green),	including	anterior-temporal	(AT),	temporo-occipital	(TO)	and	early	visual	areas	(V1).	Together	
with	 the	 perisylvian	 areas,	 these	 extrasylvian	 areas	 can	 store	 correlations	 between	 neuronal	
activations	carrying	semantic	information,	for	example	when	words	are	used	(activity	in	all	perisylvian	
areas)	to	speak	about	objects	present	in	the	environment	(activity	in	V1,	TO,	AT)	or	about	actions	that	
the	 individual	 engages	 in	 (activity	 in	 M1L,	 PML,	 PFL).	 Numbers	 indicate	 Brodmann	 Areas	 (BAs).	 (B)	
Schematic	 illustration	of	all	12	model	areas	and	the	known	between-area	connections	 implemented.	
The	 colours	 indicate	 correspondence	 between	 cortical	 and	 model	 areas.	 (C)	 Micro-connectivity	
structure	 of	 one	 of	 the	 7,500	 single	 excitatory	 neural	 elements	modelled	 (labeled	 ‘e’).	Within-area	
excitatory	 links	 (in	 grey)	 to	 and	 from	 ‘cell’	 e	 are	 limited	 to	 a	 local	 (19x19)	neighbourhood	of	neural	
elements	 (light-grey	 area).	 Lateral	 inhibition	 between	 e	 and	 neighbouring	 excitatory	 elements	 is	
realized	 as	 follows:	 the	 underlying	 cell	 ‘i’	 inhibits	 e	 in	 proportion	 to	 the	 total	 excitatory	 input	 it	
receives	from	the	5x5	neighbourhood	(dark-purple	shaded	area);	by	means	of	analogous	connections	
(not	depicted),	e	 inhibits	all	of	 its	neighbours.	Each	pair	 (e,i)	of	model	 cells	 is	 taken	 to	 represent	an	
entire	cluster	or	column	(grey	matter	under	approximately	0.25	mm2	of	cortical	surface)	of	pyramidal	
cells	and	the	inhibitory	interneurons	therein.	



	
	

	
	

41	

Neuroanatomical	 and	 imaging	 studies	 have	 demonstrated	 the	 existence	 of	 next-

neighbour	 between-area	 connectivity,	 which	 functionally	 binds	 adjacent	 cortical	 areas	

together	 (Pandya	and	Yeterian,	1985;	Young	et	al.,	1995,	1994).	These	 functional	 links	are	

modelled	within	 each	 triple	 of	 areas	 forming	 the	 four	 domain-specific	 sub-systems	 in	 the	

model	(see	black	arrows	Fig.	2.1.	B).	In	the	perisylvian	system,	next-neighbour	connections	

between	 locally	 adjacent	 areas	 are	 implemented	within	 the	 auditory	 sub-system	 (A1,	 AB,	

PB)	(Kaas	and	Hackett,	2000;	Pandya,	1995;	Rauschecker	and	Tian,	2000),	as	well	as	within	

the	articulatory	(PFi,	PMi,	M1i)	sub-system	(Pandya	and	Yeterian,	1985;	Young	et	al.,	1995).	

Similarly,	 local	 next	 neighbour	 links	 are	 also	 realised	 in	 the	 extrasylvian	 system,	 between	

adjacent	 ventral	 visual	 (V1,	 TO,	 AT)	 (Bressler	 et	 al.,	 1993;	 Distler	 et	 al.,	 1993),	 and	

dorsolateral	motor	areas	(PFL,	PML,	M1L)	(Arikuni	et	al.,	1988;	Dum	and	Strick,	2005,	2002;	

Lu	et	al.,	1994;	Pandya	and	Yeterian,	1985;	Rizzolatti,	G.	Luppino,	2001).	

Long	distance	cortico-cortical	 links	between	sub-systems	 (see	purple	arrows	Fig.	2.1.	B)	

are	 realised	 between	 all	 pairs	 of	 multimodal	 hub	 areas	 (PB,	 PFi,	 AT	 and	 PFL).	 This	 is	

motivated	 by	 evidence	 for	 neuroanatomical	 connections	 between	 inferior	 prefrontal	 (PFi)	

and	auditory	parabelt	(PB)	areas,	carried	by	the	arcuate	and	the	uncinated	fascicles	(Catani	

et	al.,	2005;	Makris	and	Pandya,	2009;	Meyer	et	al.,	1999;	Parker	et	al.,	2005;	Paus	et	al.,	

2001;	 Rilling	 et	 al.,	 2008;	 Romanski	 et	 al.,	 1999b)	 and,	 in	 the	 extrasylvian	 system	

connections	 between	 anterior-temporal	 (AT)	 and	 lateral	 prefrontal	 (PFL)	 areas,	 carried	 by	

the	uncinate	fascicle	(Bauer	and	Jones,	1976;	Chafee	and	Goldman-Rakic,	2000;	Eacott	and	

Gaffan,	 1992;	 Fuster	 et	 al.,	 1985;	 Parker,	 1998;	 Ungerleider	 et	 al.,	 1989;	Webster	 et	 al.,	

1994).	The	peri-	and	extrasylvian	systems	are	also	linked	by	means	of	long	distance	cortico-

cortical	 connections	 across	 the	 central	 hub	 areas;	 likewise	 parabelt	 (PB)	 and	 lateral	

prefrontal	 cortex	 (PFL)	 are	 reciprocally	 connected	 (Pandya	and	Barnes,	 1987;	Romanski	 et	

al.,	1999b,	1999a)	as	well	as	the	anterior/middle-temporal	(AT)	and	inferior	prefrontal	(PFi)	

areas	(Pandya	and	Barnes,	1987;	Petrides	and	Pandya,	2009;	Rilling,	2014;	Romanski,	2007;	

Ungerleider	et	al.,	1989;	Webster	et	al.,	1994).	A	recent	simulation	study	adopting	a	similar	

network	 architecture	 did	 not	 implement	 connections	 between	 inferior	 and	 superior	

prefrontal	 or	 between	 auditory	 parabelt	 and	 anterior	 temporal	 cortex	 (Garagnani	 and	

Pulvermüller,	 2016).	 We	 added	 both	 links	 because	 of	 the	 evidence	 for	 reciprocal	

connectivity	 between	 anterior-temporal	 (AT)	 and	 parabelt	 (PB)	 areas	 (Gierhan,	 2013)	 and	
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between	inferior	and	lateral	prefrontal	(PFi,	PFL)	areas	(Yeterian	et	al.,	2012).	This	also	led	to	

a	more	symmetric	network	structure.	The	asymmetries	in	the	earlier	network	may	account	

for	 some	 of	 its	 functional	 properties,	 which,	 as	 we	 discuss	 below,	 were	 not	 seen	 in	 the	

present	network	based	on	a	(slightly)	more	realistic	structure	(see	Discussion).		

The	 previous	 study	 (Garagnani	 and	 Pulvermüller,	 2016)	 found	 that	 semantic	 circuits	

included	a	massively	enhanced	number	of	neurons	 in	connector	hub	areas	compared	with	

primary	 or	 secondary	 areas,	 which	 was	 seen	 as	 an	 explanation	 of	 semantic	 hub	 status.	

However,	there	are	different	mechanisms	that	could	underlie	the	observation:	One	way	to	

explain	it	is	by	way	of	topological	network	structure,	especially	the	fact	that	‘connector	hub’	

areas	 hold	 a	 central	 role	 in	 interlinking	 sub-systems.	 At	 the	 same	 time,	 and	 partly	

independent	 from	 their	 role	 as	 connector	 hubs,	 the	 same	 areas	 are	 also	 the	 targets	 and	

origins	 of	 an	 increased	 number	 of	 connections	 to	 other	 areas	 (i.e.	 a	 higher	 ‘degree’	 of	

connectivity).	In	the	case	of	our	present	model,	2	between-area	connections	exist	for	most	

areas	 (primary	 ones	 have	 input	 plus	 1	 connection),	 but	 connector	 hubs	 have	 4	 of	 them,	

thereby	 entailing	 larger	 amounts	 of	 activation	 reaching	 these	 areas	 when	 activity	 waves	

spread	through	the	network	from	its	different	ends	during	learning.	Any	specific	functional	

properties	 of	 hub	 areas,	 including	 their	 great	 involvement	 in	 carrying	 semantic	 circuit	

members,	 may	 therefore,	 result	 either	 from	 network	 topology,	 or	 from	 number	 of	 area	

input	connections	from	other	areas,	or	from	both.	 If	 it	 is	 just	the	number	of	 inputs	to	and	

thus	amount	of	activation	 in	an	area	–	their	 ‘in-degree’	–	that	 is	 relevant	 for	an	 increased	

importance	 in	 semantics,	 the	 explanation	 of	 semantic	 hubs	may	 trivially	 be	 based	on	 the	

formula	 ‘what	 activates	 most,	 is	 most	 relevant	 for	 cognition’.	 However,	 an	 explanation	

based	on	network	topology	and	connectivity	structure	per	se	becomes	plausible	 if	general	

semantic	relevance	can	be	documented	for	hubs	that	have	an	overall	 input	comparable	to	

that	 of	 other	 areas.	 Therefore,	 we	 normalized	 the	 overall	 amount	 of	 input	 of	 all	 (equal-

sized)	areas	by	dividing	the	contribution	of	all	long-distance	connections	(all	links	among	the	

‘rich	 club’	 of	 connector	 hubs,	 central	 quadruplet	 in	 Fig.	 2.1.	 B)	 by	 3.	 After	 this	 in-degree	

normalization	 (which	 in	 the	 present	 symmetric	 architecture	 also	 implies	 out-degree	

normalization),	each	of	the	12	areas	receives	two	equal	quantities	of	 inputs	(either	1*1	or	

3*1/3),	 one	 from	 the	 left	 and	 one	 from	 the	 right	 side	 of	 the	 model.	 This	 procedure	

preserved	differences	in	topology	while	normalising	for	amount	of	input	activation	per	area.	
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Simulations	

The	 simulations	 were	 carried	 out	 in	 two	 steps.	 After	 learning	 the	 semantic	 relationships	

between	 articulatory	 and	 acoustic	 information	 about	 the	 word-form	 (perisylvian	 activity	

patterns	 in	M1i	and	A1)	and	 ‘grounding’	action	or	object	 information	 (extrasylvian	activity	

pattern	 either	 in	 M1L	 or	 in	 V1)	 (section	 2.2.1),	 the	 network	 was	 used	 to	 simulate	 the	

neurophysiological	correlates	of	word	recognition	and	understanding	(section	2.2.2).		

Learning	phase		

The	network	architecture	described	above	(Fig.	2.1.	B)	was	 initialized	at	random	before	

the	 learning	 phase	 began	 (see	 appendix	 2A):	 12	 different,	 randomly	 initialized	 networks	

were	created,	each	with	12	different	sets	of	sensorimotor	patterns	representing	object-	and	

action-related	words.	These	‘word-learning	patterns’	represented	six	object-related	and	six	

action-related	words.	 Each	 pattern	 consisted	 of	 a	 fixed	 set	 of	 19	 cells	 chosen	 at	 random	

from	the	25	x	25	cells	of	an	area	(ca.	3%	of	the	cells)	which	were	simultaneously	presented	

to	the	primary	areas	of	 the	network.	At	 the	 linguistic	and	semantic	 levels,	 the	cells	 in	M1i	

and	 A1	 represented	 articulatory	 and	 acoustic	 phonetic	 features	 and	 their	 values	 (e.g.,	

[+labial])	and	those	in	M1L	and	V1	action-related	and	visually-related	semantic	features	plus	

values	of	the	words	(e.g.,	[+LEG	ACTION],	[+ROUND	SHAPE]).	Each	word	in	our	training	set	

was	 grounded	 in	 input	 to	 three	 of	 the	 four	 primary	 areas	 of	 the	 model:	 apart	 from	

perisylvian	 A1	 and	M1i	 activity,	 object-related	words	 received	 concordant	 visual	 (V1)	 and	

action	words	 lateral	motor	area	(M1i)	grounding	activity.	This	mimics	a	typical	situation	of	

object-related	 word	 learning,	 whereby	 the	 word	 is	 uttered	 while	 the	 referent	 object	 is	

present	 (Vouloumanos	 and	 Werker,	 2009)	 or	 the	 relevant	 action	 is	 being	 performed	

(Tomasello	 and	 Kruger,	 1992).	Note	 that	white	 noise	was	 always	 present	 and	 overlaid	 all	

learning	patterns	(in	addition	to	that	already	present	in	all	areas	of	the	network).	This	was	

implemented	 to	 account	 for	 variability	 of	 perceptions	 and	 actions	 of	 the	 same	 type.	 The	

model	 was	 set	 up	 to	 learn	 the	 correlation	 between	 word	 and	 referential	 semantic	

information;	 the	 critical	 question	 was	 which	 type	 of	 representations	 develops	 in	 the	

network	as	a	consequence	of	learning.	

Each	word-learning	pattern	of	3	x	19	activated	cells	(57	cells	in	total)	was	simultaneously	

presented	 to	 the	 respective	primary	areas	 for	3000	 times.	 Some	 trial-to-trial	 variability	of	



	
	

	
	

44	

patterns	was	due	to	noise	overlay	(see	below).	The	number	of	presentation	was	chosen	on	

the	basis	of	previous	simulations	(Garagnani	and	Pulvermüller,	2016).	While	three	primary	

areas	were	directly	activated	by	each	learning	pattern,	the	fourth	non-relevant	area	(M1i	for	

object-	 and	 V1	 for	 action-related	 words)	 received	 additional	 variable	 noise	 input,	 i.e.	 a	

further	 pattern,	 consisting	 of	 19	 randomly	 chosen	 cells	 that	 changed	 inconsistently	 over	

learning	episodes,	was	presented	 to	 the	 respective	primary	areas.	This	was	done	 to	make	

sure	that	the	correlation	of	the	word-form	activity	in	the	perisylvian	cortex	with	that	of	the	

semantic	 information	was	high	 in	one	modality	 for	action	and	object	words	 in	motor	and	

visual	systems,	but	 low	in	the	non-relevant	one.	A	learning	trial	 involved	presentation	of	a	

word	pattern	for	16	time-steps,	followed	by	a	period	during	which	no	input	(inter	stimulus	

interval	 -	 ISIs)	was	given.	The	next	 stimulus	was	presented	 to	 the	network	only	when	 the	

global	 inhibition	 of	 the	 PFi	 and	 PB	 areas	 decreased	 below	 a	 specific	 fixed	 threshold;	 this	

allowed	 the	 activity	 in	 the	 network	 to	 return	 to	 a	 predefined	 baseline	 value,	 so	 as	 to	

minimize	 the	 possibility	 of	 one	 trial	 affecting	 the	 next	 one.	 During	 each	 ISIs,	 only	 the	

inherent	baseline	noise	(simulating	spontaneous	neuronal	firing)	was	present	in	the	neural-

network.		

Cell	assembly	definition	

During	the	 learning	phase,	we	noticed	the	gradual	 formation	of	cell	assembly	circuits	with	

different	 assemblies	 responding	 to	 different	 input	 patterns.	 After	 3000	 presentations	 in	

which	 three	 of	 the	 four	 sub-systems	were	 co-activated	 by	 stimulating	 specific	 neurons	 in	

their	respective	primary	cortex,	distributed	neuronal	circuits	spontaneously	emerged	within	

the	 network	 areas,	 linking	 up	 word-form	 in	 the	 perisylvian	 language	 areas	 (auditory	 and	

articulatory	 sub-systems)	with	 referential-semantic	 information	 in	 the	 sensorimotor	 areas	

(visual	and	motor	sub-systems)	(this	is	further	explained	in	section	3.1).		

To	identify	and	quantify	the	neurons	forming	the	12	CA	circuits	across	the	network	areas,	

we	computed	the	average	firing	rate	of	each	excitatory	cell	(7500	e-cells)	over	the	15	time-

steps	 subsequent	 to	 a	 single	 presentation	 of	 the	 learned	 sensorimotor	 patterns	 (no	

semantic	input	was	provided	in	the	primary	areas	of	the	extrasylvian	system).	An	e-cell	was	

defined	as	a	member	of	a	given	CA	circuits,	only	 if	 its	time-averaged	rate	(output	value	or	

‘firing	rate’)	reached	a	threshold		θ	which	was	area-	and	cell-assembly	specific,	and	defined	
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as	a	fraction	γ	of	the	maximal	single-cell’s	time-averaged	response	in	that	area	to	pattern	w.	

More	formally,		

θ	=	θA(w)	=	γ	 	

where	 	is	the	estimated	time-averaged	response	of	cell	x	to	word	pattern	w	(see	Eq.	

(A4.1)	 in	Appendix	2A)	and	γ∈[0,1]	 is	a	constant	(we	used	γ	=	0.5	on	the	basis	of	previous	

simulation	results,	see	Garagnani	et	al.,	2009,	2008).	This	was	computed	for	each	of	the	12	

trained	networks	and	the	number	of	CA	cells	per	area	was	averaged	over	the	six	object-	and	

six	 action-related	 words.	 CA	 distributions	 across	 areas	 were	 analysed	 statistically	 as	

described	in	section	2.3.		

Neurophysiological	word	recognition	simulations		

After	training,	we	used	the	network	to	simulate	the	process	of	perceiving,	recognizing	and	

understanding	 object-	 and	 action-related	 words	 and	 the	 neurophysiological	 mechanisms	

underlying	 these	 processes.	 To	 this	 end,	 each	 ‘testing	 trial’	 started	with	 primary	 auditory	

area	 (A1)	 stimulation	 using	 only	 the	 A1	 component	 of	 the	 learning	 pattern	 of	 one	 learnt	

‘word’.	Stimulation	was	for	2	time-steps,	 followed	by	50	time-steps	during	which	no	 input	

was	provided	and	another	10	used	as	a	baseline	for	the	subsequent	trial.	To	ensure	that	all	

testing	 trials	 started	 from	 analogous	 baselines,	 network	 activity	 was	 reset	 before	 the	

baseline.	In	order	to	obtain	better	signal-to-noise	ratios,	each	of	the	auditory	patterns	was	

presented	in	12	different	testing	trials.	Results	for	each	CA	were	obtained	by	averaging	the	

12	‘trials’	of	its	sensorimotor	pattern	presentation.	

During	 word	 recognition,	 we	 recorded	 the	 area-specific	 ‘within-cell	 assemblies	 (CA)	

activity’	per	simulation	time-step	during	the	10	time-steps	preceding	the	stimulus	onset	and	

the	50	time-steps	following	offset.	The	within-CA	activity	was	computed	as	the	sum	of	the	

output	values	(cumulative	firing	rates,	CFRs)	of	the	emerging	CA	cells	in	each	area	produced	

by	stimulation	of	area	A1	as	a	function	of	time.	By	‘CA	cells’,	we	mean	here	the	cells	forming	

the	 CA	 (as	 defined	 in	 Sec.	 2.2.2	 above);	 through	 Hebbian	 learning,	 these	 cells	 become	

strongly	 and	 reciprocally	 connected,	 forming	 the	 CA	 circuits.	 After	 this,	we	 identified	 the	

‘peak	amplitude’	as	the	maximum	value	reached	by	the	CA’s	cumulative	firing	rates	during	

wAx
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the	 50	 post-stimulus	 time-steps,	 and	 the	 ‘peak	 delay’,	 the	 latency	 of	 the	 peak	 upon	

stimulation.	 These	 values	were	 computed	 for	 each	 of	 the	 12	 learned	 networks,	 averaged	

over	 the	 two	word-types	 and	 across	 network	 areas:	 results	 were	 submitted	 to	 statistical	

analysis	as	described	below.	

Statistical	analysis		

Statistics	 were	 performed	 on	 the	 six	 object-	 and	 six	 action-related	 words	 learnt	 by	 one	

network	and	across	the	12	different	network	instances.	To	statistically	test	for	the	presence	

of	 significant	differences	 in	 the	 topographical	CA	distribution	and	activation	dynamics,	we	

performed	 repeated-measures	 Analyses	 of	 Variance	 (ANOVAs).	 A	 4-way	 ANOVA	 was	 run	

with	 factors	WordType	 (two	 levels:	Object	 vs.	Action),	 PeriExtra	 (two	 levels:	Perisylvian	 =	

{A1,	 AB,	 PB,	 M1i,	 PMi,	 PFi},	 Extrasylvian	 cortex	 =	 {V1,	 TO,	 AT,	 M1L,	 PML,	 PFL}),	

TemporalFrontal	 (TempFront)	 (2	 levels:	 temporal	areas	=	 {A1,	AB,	PB,	V1,	TO,	AT},	 frontal	

areas	={M1L,	PML,	PFL,	M1i,	PMi,	PFi})	and	Areas	(three	levels:	Primary	=	{A1,	V1,	M1L,	M1i},	

Secondary	=	{TO,	AB,	PML,	PMi}	and	Central	=	{PB,	AT,	PFL,	PFi}	areas).	We	further	performed	

a	second	statistical	analysis	on	the	data	of	the	two	systems	separately,	six	perisylvian	and	six	

extrasylvian	 areas	 with	 factors	 ‘WordType’,	 ‘TempFront’,	 ‘Areas’,	 as	 described	 above.	

Analysis	was	 performed	 on	 3	 different	 sets	 of	 data:	 (i)	 on	 CA	 cells	 distributions	 emerged	

from	 word	 acquisition,	 on	 the	 (ii)	 peak	 amplitudes,	 and	 (iii)	 peak	 delays	 during	 word	

recognition	 simulations.	 Finally,	 we	 performed	 Bonferroni-corrected	 planned	 comparison	

tests	 (24	 comparisons,	 corrected	 critical	 p	 <	 .0020)	 to	 further	 explore	 the	 significant	

differences	in	CA	cells	distributions	and	peak	delay	data	across	the	four	sub-system	areas.		
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Data	analysis	&	Results	

Learned	CA	topographies	for	object-	and	action-related	words		

Fig.	2.2	illustrates	six	of	the	twelve	CA-cell	distributions	for	object-	(A)	and	action-related	(B)	

words,	 as	 they	 spontaneously	 emerged	 during	 simulated	 word	 learning	 (the	 other	 CAs	

produced	 similar	 results).	 Each	 set	of	12	 squares	 is	 a	 snapshot	of	 the	CA	distribution	of	a	

specific	word	across	the	network,	and	each	white	pixel	in	the	squares	represents	a	cell.	

The	 emerging	 CA	 circuits	 are	 spread	 out	 to	 the	 same	 degree	 across	 the	 perisylvian	

language	areas	for	object-	and	action-related	words,	whereas	motor	and	visual	areas	of	the	

extrasylvian	cortex	seem	to	exhibit	different	CA	cell	distributions.	These	distributions	indeed	

appear	to	show	a	double	dissociation.	Object-related	words	extend	more	into	the	visual	(V1,	

TO)	areas,	whereas	they	extend	only	minimally	into	the	extrasylvian	motor	(PML,	M1L)	areas;	

the	reverse	pattern	emerges	for	the	action-related	words.	

Fig.	 2.3	 illustrates	 the	distribution	of	 the	CA	 circuits,	 given	 as	 the	number	 of	 CA	 cells	 per	

areas	averaged	across	12	trained	networks,	for	object-	(light	grey)	and	action-related	words	

(dark	grey).	The	extrasylvian	system	involved	in	processing	visual-object	identity	and	motor	

action	seems	to	exhibit	a	double	dissociation	between	the	two	word	types,	as	already	noted	

above	 and	 in	 Fig.	 2.2.	 The	 perisylvian	 language	 cortices	 seem	 to	 show	 no	 significant	

differences	 between	 the	 circuits	 for	 the	 two	word	 types.	 Note	 also	 that	 there	 is	 a	 larger	

number	of	CA	cells	in	the	multimodal	hub	areas	(PB,	PFi,	AT,	and	PFL)	than	in	the	secondary	

areas	 (AB,	 PMi,	 TO,	 PML),	where	 there	 are	more	 cells	 than	 in	primary	 areas	 (A1,	M1i,	V1,	

M1L).	 This	 appears	 independent	 of	 whether	 an	 object-	 or	 action-related	 word	 is	

represented.	
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Figure	2.2.	Distributions	of	cell-assemblies	(CAs)	emerging	in	the	12	area	network	during	simulation	of	
word	learning	in	the	semantic	context	of	visual	(A)	and	action	(B)	perceptions.	Results	of	one	typical	
instantiation	of	the	model	in	Fig.	1	are	shown,	using	the	same	area	labels.	Each	set	of	12	squares	(in	
black)	illustrates	the	distribution	of	‘cells’	of	one	specific	CA	across	the	12	network	areas.	Each	white	
pixel	 in	 a	 square	 indexes	 one	CA	 cell.	 CAs	 for	 object-related	words	 extend	 into	 higher	 and	primary	
visual	cortex	(V1,	TO,	but	not	M1L),	linking	information	about	spoken	word-forms	(perisylvian	pattern)	
with	information	from	the	visual	modality	(neural	pattern	in	V1).	Network	correlates	of	action-related	
words	extend	into	lateral	motor	cortex	(M1L,	PML,	but	not	V1),	thus	semantically	grounding	words	in	
information	about	actions.	For	convenience,	the	area	structure	of	the	network	is	repeated	at	the	top.	
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Figure	2.3.	Average	distributions	of	CAs	emerging	in	12	instantiations	of	the	12	area	network	
architecture	during	simulation	of	word	learning	in	the	semantic	context	of	actions	and	visual	
perceptions.	Bars	 show	average	numbers	of	CA	neurons	per	area	for	object-	(dark	grey)	and	
action-related	 (light	 grey)	 word	 representations;	 error	 bars	 show	 standard	 errors	 over	
networks.	(A)	Data	from	the	six	perisylvian	areas	whose	cells	can	be	seen	as	circuit	correlates	
of	spoken	word-forms	do	not	show	category-specific	effects.	(B)	The	extrasylvian	areas	whose	
cells	 can	 be	 seen	 as	 circuit	 correlates	 of	 word	 meaning	 show	 a	 double	 dissociation,	 with	
relatively	more	 strongly	 developed	CAs	 for	 object-	 than	 for	 action-related	words	 in	 primary	
and	 secondary	 visual	 areas	 (V1,	 TO),	 but	 stronger	 CAs	 for	 action-related	 than	 for	 object-
related	 words	 in	 dorsolateral	 primary	 motor	 and	 pre-motor	 cortices	 (PML,	 M1L).	 Asterisks	
indicate	that,	within	a	given	area,	the	number	of	CA	neurons	significantly	differed	between	the	
circuits	 of	 action	 and	 object	 words	 (Bonferroni-corrected	 planned	 comparison	 tests,	 24	
comparisons;	critical	threshold	p	<	.0020).	
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The	observations	described	above	were	confirmed	by	the	4-way	ANOVA.	A	main	effect	of	

Areas	 (F2,24	 =	 1226.424,	 p	 <	 .0001)	 emerged,	 which	 confirms	 that	 the	 CA	 cell	 densities	

differed	across	areas,	with	CA	cell	densities	being	higher	in	hub	than	in	secondary	areas	(p	<	

.0001),	and	higher	 in	secondary	than	 in	primary	areas	(p	<	 .0001).	 In	addition,	we	found	a	

significant	interaction	between	the	factors	WordType,	PeriExtra,	TempFront	and	Areas	(F2,24	

=	130.795,	p	<	.0001),	indicating	that	the	distributions	of	the	two	types	of	word-related	CA	

circuits	 across	 the	 network	 differed.	 Because	 the	 interaction	 also	 demonstrates	 that	 CA-

distribution	differed	between	perisylvian	and	extrasylvian	systems,	we	ran	further	statistical	

analyses	on	the	data	from	the	two	systems	separately,	now	using	3-way	ANOVAs.	We	found	

a	main	 effect	 of	 Areas	 for	 both	 perisylvian	 (F2,24	 =	 2091.116,	 p	 <	 .0001)	 and	 extrasylvian	

systems	(F2,24	=	3959.92,	p	<	.0001),	as	revealed	by	the	4-way	ANOVA	analysis.	As	expected,	

the	perisylvian	system	did	not	show	any	significant	differences	between	CA	distributions	of	

the	two	word	types	across	the	6	areas	(F2,24	=	0.38,	p	=	0.68).	 In	contrast,	 the	extrasylvian	

system	 revealed	 a	 highly	 significant	 interaction	of	 all	 three	 factors	WordType,	 TempFront	

and	Areas	 (F2,24	=	156.555,	p	<	 .0001),	confirming	the	word	category	differences	 in	 the	CA	

topographies	and	local	cell-density	distributions	across	visual,	motor	and	multimodal	areas	

as	 suggested	by	Fig.	2.2	and	2.3.	 To	 further	 investigate	 the	differences	between	CA	 types	

across	 the	 network,	 we	 ran	 Bonferroni-corrected	 planned	 comparison	 tests	 (24	

comparisons,	corrected	critical	p	<	.0020);	these	confirmed	the	presence	of	a	larger	number	

of	CA	cells	in	visual	(V1,	TO	and	AT)	than	in	motor	(M1L,	PML,	and	PFL)	areas	for	object-	(p	<	

.001),	 and	 the	 opposite	 for	 action-related	words	 (p	 <	 .001).	 Post-hoc	 analysis	 of	 the	 data	

from	 the	 connector	 hubs	 (AT,	 PFL)	 also	 showed	 a	 significant	 difference	 between	 the	 two	

word	types	there,	i.e.	stronger	action-related	word	CA	cell	densities	in	PFL	compared	to	AT	

(p	 <.0001),	 and	 the	 opposite	 for	 object-related	 words	 (p	 <.001).	 Differences	 in	 CA-cell	

densities	between	word	types	and	pairs	of	areas	in	the	semantic	systems	were	all	significant	

(p	 <	 .002),	 as	 described	 in	 Fig.	 2.2.	 In	 contrast,	 no	 significant	 differences	 emerged	 in	 the	

perisylvian	system	(p	>.87).	
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Neurophysiological	word	recognition	results		

To	 obtain	 a	 simulation	 of	 spoken	 word	 recognition	 and	 comprehension	 processes,	 we	

analysed	the	time-course	of	the	network’s	response	to	presentation	of	the	learned	auditory	

word-form	patterns	 to	 area	 A1.	 To	 this	 end,	we	 computed	 the	 sum	of	 all	 CA	 cell	 activity	

values	(quantified	as	the	cumulative	firing	rates,	CFRs,	see	Sec.	2.2.3)	as	a	function	of	time	

across	 the	 entire	 network	 or	 for	 specific	 areas.	 Activation	 time	 courses	 showed	 an	 initial	

‘ignition’	of	CA	circuits,	a	strong	activation,	which	peaked	at	time-step	~	16	and	included	a	

majority	of	the	circuits’	neurons	(Fig.	2.4).	Replicating,	in	part,	the	structural	distributions	of	

semantic	circuits	depicted	in	Fig.	2.3,	both	types	of	circuits	were	similarly	spread	out	across	

all	perisylvian	areas	of	 the	model;	by	contrast,	differences	between	semantic	circuit	 types	

were	present	in	extrasylvian	cortex:	object-related	words	(blue	pixels)	elicited	activation	in	

the	visual	system	and	less	in	the	motor	system,	while	the	reverse	happened	for	the	action-

related	words	 (red	 pixels).	 Note	 also	 the	 low	 degree	 of	 overlap	 between	 CAs	 of	 the	 two	

different	word	types	(yellow	pixels)	for	these	two	specific	CAs	instances.		
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Figure	2.4.	Activation	spreading	in	the	12	area	network	showing	the	simulated	recognition	of	object-	
(blue	pixels)	and	action-related	 (red	pixels)	words.	 Yellow	pixels	 illustrate	 the	overlap	between	 the	
two	word-related	CAs.	Network	responses	to	stimulation	of	A1	with	the	‘auditory’	patterns	of	two	of	
the	 learned	 words;	 each	 set	 of	 12	 ‘squares’	 depicts	 a	 selected	 snapshot	 of	 the	 entire	 network’s	
activity	 (as	 in	 Fig.	 2).	 Cell	 activity	 levels	 are	 indicated	 by	 brightness	 of	 pixels;	 snapshot	 numbers	
indicate	simulation	time-steps	of	the	network	output.	See	main	text	for	details.	
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Figure	2.5.	Bar	plots	illustrating	the	amount	of	activity	-	‘peak	amplitude’	(left	hand	side)	and	the	
activation	time-	course	–	‘peak	delay’	(right	hand	side)	of	auditory	and	articulatory	(A)	and	visual	
and	motor	(B)	areas	for	object-	and	action-related	words	during	auditory	word	recognition.		
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In	 extrasylvian	 areas,	 maximal	 area-specific	 activation	 levels	 significantly	 differed	

between	the	circuits	carrying	the	two	semantic	word-types.	A	significant	double	dissociation	

showed	 that	 circuits	 for	 object-related	 words	 produced	 higher	 amplitude	 in	 the	 visual	

(cumulative	 firing	 rates	 (CFRs)	=	9.10)	sub-system	than	 in	 the	 lateral	 (hand)	motor	system	

(CFRs	=	5.23),	and,	vice	versa,	action-related	words	activated	the	lateral	motor	system	(CFRs	

=	8.38)	more	strongly	than	the	visual	system	(CFRs	=	4.86,	see	Fig.	2.5.	B	–	Bar	plot	left-hand	

side).	As	 visual	 inspection	 indicates,	 the	auditory	and	articulatory	motor	 sub-systems	 (see	

Fig.	2.5.	A	–	Bar	plot	left-hand	side)	did	not	show	any	differences	in	activity	levels	between	

semantic	word	types.	Furthermore,	comparing	activity	levels	between	areas	of	the	network	

(see	Fig.	 2.6.	A-B	&	2.7.A-B),	multimodal	hub	areas	 (AT,	PFL,	PB,	PFi)	 seemed	 to	 show	 the	

strongest	 activation	 dynamics	 (CFRs	 ~	 15)	 in	 comparison	with	 secondary	 (CFRs	 ~	 10)	 and	

primary	areas	(CFRs	~	5).		

The	 statistical	 analyses	 of	 the	 dynamic	 functional	 activation	 of	 the	 circuits	 confirmed	

these	observations,	which	are	 in	 line	with	 the	CA-distribution	 results	described	 in	 Section	

3.1.	In	particular,	the	4-way	ANOVA	performed	on	peak	activation	levels	per	area	and	word	

type	 revealed	 a	main	 effect	 of	 Areas	 (F2,22	 =	 630.246,	p	 <	 .001),	 again	with	maximal	 CA	

activation	 in	 ‘central’	 connector	 hub	 areas.	 In	 addition,	 a	 significant	 interaction	of	 factors	

WordType,	PeriExtra,	TempFront	and	Areas	(F2,22	=	137,433,	p	<	.001)	emerged,	confirming	

different	activation	 levels	between	word	type	circuits	across	the	network’s	areas.	Because	

of	 the	 differences	 between	 the	 peri-	 and	 the	 extrasylvian	 systems,	we	 also	 ran	 a	 second	

statistical	 analysis	 on	 each	 of	 the	 two	 systems	 separately.	 The	 3-way	 ANOVA	 revealed	 a	

main	effect	of	Areas	on	both	perisylvian	(F2,22	=	667.146,	p	<	.001)	and	extrasylvian	(F2,22	=	

268.1345,	 p	 <	 .001)	 systems.	Whereas	 the	 perisylvian	 areas	 did	 not	 show	 any	 significant	

differences	 in	 peak	 amplitude	 between	 the	 two	 circuit	 types	 (F1,11	 =	 0.	 98,	 p	 =.76),	 the	

extrasylvian	 system	 revealed	 significant	 interactions	 of	 factors	WordType,	 and	 TempFront	

(F1,11	=	518.7315,	p	<	.001),	and	of	WordType,	TempFront	and	Areas	(F2,22	=	109.3367,	p	<	

.001),	 showing	 different	 activation	 dynamics	 across	 the	 extrasylvian	 areas	 between	 the	

circuits	of	the	two	word	categories	(Fig.	2.5	–	left-hand	side).	
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Area-specific	activation	time-course	–	peak	delay	results	

Fig.	 2.6	 and	2.7	 delineate	 the	 area-specific	 activation	 time	 courses	 of	 semantic	 circuits	 of	

object-	(A)	and	action-related	words	(B)	across	the	network.	The	activation	in	different	areas	

peaked	at	different	times	and	showed	different	maximal	amplitudes.	The	schematic	brains	

at	the	top	of	each	panel	illustrate	the	area-specific	peak	delay	and	the	boxplots	indicate	the	

latency	 of	 maximal	 activation	 together	 with	 their	 standard	 errors	 (boxes)	 and	 standard	

deviations	(whiskers).	

The	activation	time-courses	in	the	perisylvian	language	areas	exhibited	a	similar,	cascade-

like	 time-course	 for	both	object-	and	action-related	CA	circuits	 (see	Fig.	2.6	A-B).	Area	A1	

peaked	 at	 an	 early	 time	 (2	 time-steps)	 after	 stimulus	 onset	 because	 it	was	 driven	 by	 the	

sensorimotor	pattern	presented	there.	The	auditory-belt	(AB)	area	peaked	at	~	6	time-steps,	

and	shortly	 followed	by	 the	parabelt	 (PB	~	7)	and	 inferior	prefrontal	 (PFi	~	10)	areas,	and	

finally	 the	premotor	 (PMi	~	12)	and	primary	motor	 (M1i	~	13)	areas.	This	 time-course	was	

the	same	for	both	circuit	types.	By	contrast,	the	extrasylvian	semantic	system	(Fig.	2.7	A-B)	

seemed	 to	 exhibit	 different	 temporal	 activation	 patterns	 for	 the	 two	 types	 of	 semantic	

circuits.	The	extrasylvian	connector	hub	areas	(PFL,	AT)	peak	activated	at	similar	latencies	as	

the	 perisylvian	 hubs	 (PFi,	 PB)	 central	 to	 the	 network	 structure	 (12-13	 time-steps).	

Interestingly,	the	multimodal	prefrontal	area	(PFL)	revealed	a	similar	activation	dynamics	(~	

13	simulation	time-steps)	for	both	word	types,	whereas	the	anterior-temporal	hub	area	(AT)	

peaked	1	 time-step	earlier	 for	 action-related	words	 (~	12)	 than	 for	object-related	ones	 (~	

13).	 Massive	 activation	 time-course	 differences	 were	 apparently	 present	 in	 non-central	

extrasylvian	areas,	i.e.	in	the	primary	and	secondary	visual	and	dorsolateral	motor	areas	of	

the	network.	Object-related	words	 activated	 their	 lateral	 premotor	 and	 temporo-occipital	

area	shortly	after	the	connector	hubs	(PML	~	15,	TO	~	15),	closely	followed	by	the	primary	

visual	 (V1	 ~	 16)	 area.	 In	 contrast,	 the	 circuits	 underpinning	 action-related	 words	 first	

activated	the	lateral	premotor	(PML)	area	(~	15),	closely	followed	by	temporo-occipital	(TO)	

and	 lateral	 primary	 motor	 (M1L)	 areas	 (~	 16).	 Both	 object-	 and	 action-related	 words	

activated	the	primary	areas	of	the	relevant	system	approximate	~	15	time-steps	after	word	

onset	and	at	the	end	of	the	activation	cascade.	As	visible	in	Fig.	2.7.	A-B,	different	activation	

dynamics	 can	be	observed	 for	object-	 and	action-related	words	 in	 the	 secondary	areas	of	

the	 non-relevant	 system	 (PML	 for	 object-related	words	 and	 TO	 for	 action-related	words).	
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However,	we	note	that	the	activation	peaks	were	quite	flat	 in	these	cases,	thus	 leading	to	

some	variance	in	latencies.		
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Figure	2.6	&	2.7	Spatio	temporal	activation	patterns	in	the	network:	All	curves	(bottom	part	of	each	
panel)	 illustrate	area-specific	activation	dynamics	plotted	against	 time	during	 the	neurophysiological	
word	recognition	processes	(time	is	in	simulation	time	steps).	Fig	2.6	shows	simulation	results	for	the	
six	perisylvian	model	areas	and	Fig	2.7	shows	them	for	the	six	extrasylvian	areas.	Brain	schematics	(at	
the	 top	of	each	panel)	highlight	 the	cortical	 locations	of	 the	areas	 for	each	specific	activation	curve	
and	peak.	Two	or	more	areas	are	plotted	 into	the	same	brain	schematic	 if	there	were	no	significant	
delay	 differences	 between	 their	 peak	 activations	 (Bonferroni-corrected	 for	 24	 comparisons;	 critical	
threshold	p	 <	 .0020).	 The	 latency	 of	maximal	 activation	 together	with	 standard	 errors	 (boxes)	 and	
standard	 deviations	 (whiskers)	 are	 illustrated	 by	 a	 given	 boxplot.	 The	 small	 horizontal	 segment	
indicates	 stimulus	 onset	 and	 offset.	 Averages	 and	 statistics	 are	 calculated	 across	 12	 different	
networks.	
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To	 confirm	 these	 observations	 about	 the	 activation	 time-course	 across	 areas	 for	 the	

different	word-related	CAs,	we	ran	the	same	4-way	ANOVA	as	in	the	previous	sections,	but	

not	using	peak	activation	latencies.	The	statistical	analysis	revealed	a	significant	interaction	

of	 factors	WordType,	PeriExtra,	TempFront	and	Areas	 (F2,22	=	3615.08,	p	 <	 .0001),	which	

confirms	 the	 different	 area-specific	 activation	 time-courses	 between	 the	 two	 word	 type	

circuits.	Once	again,	the	perisylvian	cortex	showed	no	significant	differences	between	circuit	

types	across	the	six	areas	(F2,22	=	0.4,	p	=	.68).	The	extrasylvian	cortex	revealed	a	significant	

interaction	 of	 the	 factors	WordType,	 TempFront	 and	 Areas	 (F2,22	 =	 4791.15,	p	 <	 .0001),	

which	confirms	a	different	activation	time-course	of	 the	extrasylvian	areas	 for	object-	and	

action-related	words,	as	described	above.	

We	 further	 ran	 a	 Bonferroni-corrected	 planned-comparison	 test	 (24	 comparisons,	

corrected	p	<	 .0020)	to	 investigate	the	possible	difference	 in	temporal	activation	between	

the	 two	word-types	across	 the	neural-network.	 Similar	 activation	 time-course	 for	 the	 two	

word	types/circuits	were	found	across	the	network	areas,	except	for	the	temporo-occipital	

(TO,	p	=	0.001)	and	the	anterior-temporal	(AT,	p	=	0.0002)	visual	areas.	Activation	times	for	

each	 word/circuit	 type	 showed	 no	 significant	 differences	 between	 the	 extrasylvian	

connector	 hub	 areas	 (AT,	 PFL:	p	 >	 0.0080),	 which,	 however,	 activated	 significantly	 earlier	

than	 the	 modality-preferential	 ones	 (p	 <	 0.001).	 Intriguingly,	 comparisons	 between	

modality-preferential	 cortices	showed	significant	differences,	expect	between	TO	and	PML	

(p	 =	0.66)	 for	object-related	word	circuits	and	between	TO	and	M1L	 (p	 =	0.77)	 for	action-

related	 ones.	 In	 the	 perisylvian	 language	 cortex,	 all	 comparisons	 between	 area-peak	

activation	 times	 showed	 significant	 differences	 (p	 <	 0.001)	 (see	 Fig.	 2.6	 &	 2.7,	 i.e.	

brain/boxplot).	

For	 putative	 comparison	 of	 model	 data	 with	 experimental	 data	 (see	 also	 Discussion	

below),	 a	 further	 analysis	 of	 the	 activation	 dynamics	 was	 performed.	 Activation	 to	 both	

word	 types	 across	 sub-systems	unfolded	 symmetrically	 in	 the	perisylvian	 and	extrasylvian	

cortex	 (‘Motor’-then-‘Visual’	 vs.	 ‘Visual’-then-‘Motor’	 –	 	 see	 Fig.	 2.5.,	 	 right-hand	 side).	

These	observations	were	fully	confirmed	by	the	2-way	ANOVA	run	on	the	data	of	the	two	

systems	 separately	 (i.e.	 peri-	 and	 extra-sylvian	 systems),	with	 factors	WordType	 (2	 levels:	

object	vs.	action)	and	TempFront	(2	levels:	temporal	areas	vs.	frontal	areas).	The	statistical	

analysis	 showed	a	 significant	 interaction	of	WordType	and	TempFront	 (F1,11	=	24.52,	p	 <	
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.0004;	action	words,	dorsal	motor	sub-system:	25	simulation	time-steps,	ventral	visual	sub-

system:	 24.37,	 object	 words,	 dorsal	 motor	 sub-system:	 24.14,	 ventral	 visual	 sub-system:	

25.27)	in	the	extrasylvian	systems,	confirming	the	symmetrical	time-course	of	activation	of	

the	two	word	types,	with	no	differences	in	the	perisylvian	language	cortex	(F1,11	=	0.6,	p	<	

0.46.).	Notably,	the	significant	interaction	was	due	to	slower	average	activation	times	in	the	

relatively	more	relevant	semantic	system	(dorsal	action	sub-system	for	action	words,	ventral	

visual	sub-system	for	object	words)	compared	with	the	less	relevant	sub-systems,	a	feature	

due	to	the	absence	of	(slow)	activation	in	the	respective	primary	areas	(see	Fig.	2.5.).	

Discussion	

A	 neurocomputational	model	 implementing	 a	 range	 of	 cortical	 areas	 in	 frontal,	 temporal	

and	 occipital	 lobes	 along	 with	 main	 features	 of	 their	 connectivity	 structure	 and	

neurophysiologically	 realistic	 learning	 mechanisms	 offers	 an	 explanation	 of	 known	 facts	

about	the	cortical	basis	of	meaning	processing,	in	particular,	the	fact	that	some	areas	serve	

a	general	role	in	semantic	processing,	whereas	others	primarily	take	a	category-specific	role.	

When	 the	 model	 was	 used	 to	 mimic	 semantic	 grounding	 of	 word-forms	 in	 action	 and	

perceptual	 information	 in	 motor	 and	 visual	 cortex,	 distributed	 neuronal	 assemblies	

developed,	which	 functioned	 as	 ‘semantic	 circuits’	 insofar	 as	 they	 interlinked	 information	

about	 word-form	 and	 meaning.	 Intriguingly,	 these	 semantic	 circuits	 showed	 different	

distributions	across	extrasylvian	modality-preferential	areas,	as	already	found	in	a	previous	

simulation	study	(Garagnani	and	Pulvermüller,	2016).	This	replicates	the	category-specificity	

of	 action	 and	 object	 words,	 which,	 in	 a	 range	 of	 neuroimaging	 studies,	 more	 strongly	

activated	dorsolateral	motor	and	ventral-stream	visual	areas,	respectively.	In	contrast	to	the	

category-specific	 behaviour	of	modality-preferential	 areas	outside	 the	perisylvian	domain,	

substantial	 amounts	 of	 neuronal	 machinery	 in	 connector	 hub	 areas	 in	 prefrontal	 and	

anterior	temporal	cortex	were	involved	to	similar	degrees	 in	both	kinds	of	cell	assemblies,	

consistent	 with	 a	 role	 of	 these	 connector	 hubs	 as	 ‘semantic	 hubs’.	 As	 in-degree	

normalisation	 was	 used	 in	 the	 present	 simulations,	 we	 argue	 below	 that	 this	 functional	

segregation	 into	 general	 and	 category-specific	 semantic	 areas	 resulted	 from	 connectivity	

structure	 and	 especially	 the	 high	 ‘degree’	 of	 connector	 hubs,	 rather	 than	 from	 overall	

strength	of	the	input.	In	fact,	in	contrast	to	earlier	work	(Garagnani	and	Pulvermüller,	2016),	
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area	 function	only	gradually	changed	 from	category-specificity	 towards	a	category-general	

role,	with	even	connector	hubs	exhibiting	a	degree	of	category-specificity,	a	feature	which	

may	be	due,	 in	part,	 to	 the	 inclusion	of	additional	connections	based	on	neuroanatomical	

evidence	–	we	return	to	this	 issue	below.	Finally,	the	novel	analysis	of	the	time	courses	of	

activation	 indicated	 that	 in	 word	 recognition	 and	 comprehension,	 auditory	 areas	 are	

(trivially)	activated	first,	closely	followed	by	connector	hub	and	modality-preferential	frontal	

and	 temporal	areas.	Another	 intriguing	observation	was	 that	 the	extrasylvian	sub-systems	

carrying	 category-specific	 semantic	 information	 about	 a	 given	 word	 type	 (i.e.,	 the	

dorsolateral	motor	sub-system	for	action	words	and	the	ventral	visual	sub-system	for	object	

words)	showed	a	tendency	toward	delayed	activation	relative	to	the	other	areas.	Moreover,	

a	direct	 comparison	of	 the	activation	dynamics	of	 the	model	with	 real	 cortical	 activations	

observed	 during	 spoken	word	 processing	 exhibit	 a	 degree	 of	 consistency	 (see	 section	 4.2	

Fig.	 2.8).	 Below	 we	 discuss	 these	 findings	 in	 light	 of	 empirical	 data,	 previous	

neurocomputational	 work,	 and	 future	 research.	 It	 needs	 also	 to	 be	 emphasized	 that	 the	

present	 model	 testes,	 and	 demonstrates	 the	 validity	 of	 a	 neurobiological	 theory	 of	

language,	which	claims	that	semantic	content	is	stored	in	the	brain	by	distribution	of	the	cell	

assembly	 circuits	 (CAs)	 spread	 out	 across	 cortical	 areas,	 and	 that	 the	 specific	 cortical	

distribution	(topography)	of	these	circuits	across	the	network	reflects	semantic	information,	

in	 particular,	 semantic	 category-specificity	 (see,	 for	 example,	 Pulvermüller,	 1999).	 The	

semantic	models	most	popular	at	present	still	stipulate	semantic	hubs	as	the	main	seat	of	

conceptual	and	semantic	processing	without	providing	neurobiological	explanations	for	such	

hubs,	 nor	 for	 their	 specific	 cortical	 locations.	 A	 purely	 verbal	 description	 of	 a	 distributed	

semantic	circuits	theory	–	in	terms	of	‘what	fires	together	must	also	bind	together’	–	would	

already	provide	some	plausibility,	but	one	might	still	object	that	a	working	model	of	relevant	

cortical	 areas	 might	 give	 rise	 to	 entirely	 different	 mechanisms,	 for	 example	 to	 the	

emergence	of	local	semantic	processing	in	a	single	‘interface	system’	rather	than	distributed	

circuits	 that	 bind	 semantic	 information.	 Similarly,	 even	 if	 one	 is	 inclined	 to	 accept	 that	

distributed	 circuits	 reach	 into	 specific	 sensory	 and/or	 motor	 cortices,	 it	 would	 still	 be	

unclear	 –	 solely	 on	 the	 basis	 of	 a	 logical	 argument	 -	 whether	 such	 ‘category-specific’	

distribution	 is	 restricted	 to	primary	 areas,	 should	 include	primary	 and	 secondary	ones,	 or	

whether	semantic	specificity	-	as	indicated	by	the	present	results	-	reaches	the	highest	level	
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of	connection	hubs,	which,	as	most	models	postulate,	are	category-general	and	relevant	for	

all	semantic	categories	to	the	same	degree.	

Semantic	 hubs	 vs.	 category-specificity	 in	 the	 human	 brain:	 explaining	 both	 by	 a	

neuromechanistic	circuit-level	model		

Diverging	theories	of	semantic	representation	have	been	proposed	to	explain	the	extensive	

empirical	 findings	 about	 the	 brain	 basis	 of	 meaning	 processing	 revealed	 by	

neuropsychological	and	neurophysiological/imaging	studies	in	patients	and	healthy	subjects.	

As	 mentioned	 in	 the	 introduction,	 cognitive	 neuroscience	 has	 posited	 the	 existence	 of	

several	 convergence	 areas	 or	 ‘semantic	 hubs’	 that	 enable	 associating	 different	 aspects	 of	

conceptual	 and	 semantic	 knowledge.	 These	 areas	 have	 been	 located	 in	 the	 inferior	 and	

dorsolateral	 prefrontal,	 inferior	 parietal,	 superior	 temporal	 and	 anterior	 ventral	 temporal	

cortex,	 and	 postulated	 to	 equally	 process	 the	meaning	 of	 all	 types	 of	 signs	 and	 symbols	

(Bookheimer,	 2002;	 McCrory	 et	 al.,	 2000;	 Patterson	 et	 al.,	 2007;	 Pulvermüller,	 2013).	 A	

complementary	position	emphasizes	the	 importance	of	other	cortical	regions	for	semantic	

processing	 which	 are	 particularly	 relevant	 for	 specific	 word	 types	 related	 to	 specific	

semantic	 categories,	 such	 as	 animals,	 tools	 or	 actions.	 A	 range	 of	 relevant	 neuroimaging	

studies	 have	 shown	 the	 relevance	 of	 the	 motor	 cortex	 during	 conceptual	 processing	 of	

action-related	words	(Dreyer	et	al.,	2015;	Grisoni	et	al.,	2016;	Hauk	et	al.,	2004;	Hauk	and	

Pulvermüller,	 2004;	 Shtyrov	 et	 al.,	 2014)	 and	 of	 the	 sensory	 cortex	 during	 conceptual	

processing	of	visually	related	words	(e.g.	colours,	animals	or	object-related	words)	(Damasio	

et	al.,	1996;	Tranel	et	al.,	1997).	Furthermore,	recent	neurophysiological	studies	(EEG-MEG)	

show	early	(<200	ms)	and	automaticity	brain	activation	reflecting	semantic	differences	(e.g.,	

Moseley	 et	 al.,	 2013;	 Pulvermüller	 et	 al.,	 2005b).	 This	 evidence,	 which	 we	 discussed	

extensively	in	the	introduction	above,	is	consistent	with	the	claim	that	semantic	processing	

is	distributed	across,	and	divided	up	between,	category-general	hubs	and	category-specific	

areas.	The	frequently	emphasized	need	for	an	 integrative	explanation	of	both	general	and	

semantic	areas	along	with	their	location	(Binder	and	Desai,	2011;	Pulvermüller,	2013)	is	now	

being	answered	by	results	from	the	network	simulations	we	report	here.		

The	explanation	of	hubs	and	 category-specificity	 requires	 reference	 to	an	 intermediate	

level	 of	 computational	 simulation	 of	 neuronal	 circuits	which	 bind	 together	 specific	word-
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forms	 and	 their	 semantic,	 meaning-related	 features	 (Pulvermüller	 et	 al.,	 2014a).	 The	

formation	of	these	semantic	circuits	results	from	(i)	the	correlation	structure	of	‘grounding’	

sensorimotor	semantic	 information	and	co-occurring	word-forms,	 (ii)	 the	neurobiologically	

realistic	 learning	 and	 therefore	 mapping	 of	 the	 correlations	 on	 neuronal	 connection	

strengths	 and	 (iii)	 the	 structural	 information	 immanent	 to	 the	 neuroanatomy	 of	 cortical	

areas	 and	 their	 connectivity.	As	 these	 circuits	map	 sensorimotor	 correlations,	 they	bridge	

between	 those	 neurons	 in	 sensory	 and	 motor	 areas	 where	 information	 –	 and	 thus	

correlated	activation	–	is	present	during	learning.	This	leads	to	category-specificity	of	circuit	

topographies,	with	action	words	such	as	 ‘run’	yielding	cell	assemblies	reaching	 into	motor	

systems	 and	object	words	 such	 as	 ‘sun’	 being	 implemented	 as	 circuits	 strongly	 linking	up	

with	 neurons	 in	 visual	 cortices	 (Kiefer	 et	 al.,	 2008;	 Pulvermüller,	 2013).	 These	 distributed	

word-related	CA	circuits	did	not	extend	into	the	non-relevant	sub-systems	(M1L	for	object-	

and	 V1	 for	 action-related	 words)	 because	 neural	 activity	 of	 these	 areas	 presented	 a	 low	

degree	 of	 correlation.	 This	 is	 because	 during	 training	 these	 areas	 were	 stimulated	 with	

random	 patterns	 that	 changed	 in	 every	 learning	 episode	 (see	 Materials	 and	 Methods).	

Consequently,	 following	 the	 correlation	 based	 learning	 rule,	 object-related	 CA	 circuits	

exhibited	a	larger	density	in	the	visual	(V1,	TO,	AT)	than	in	the	motor	areas	(M1L,	PML,	PFL)	

and	vice	versa	for	action-related	words	(Fig.	2.3).		

It	 should	 be	 clarified	 here	 that	 the	 presence	 of	 a	 random-noise	 pattern	 to	 the	 non-

relevant	sub-systems	was	necessary	to	prevent	the	extensions	of	the	semantic	circuits	into	

motor	 areas	 for	 object-related	 and	 visual	 areas	 for	 action-related	 words.	 In	 fact,	 in	 an	

additional	 set	 of	 word	 learning	 simulations,	 network	 training	 without	 the	 random	 noise	

pattern	being	present	in	the	non-relevant	sub-systems	failed	to	produce	a	category-specific	

distribution.	This	observation	further	documents	the	 important	 function	of	neuronal	noise	

in	 the	 brain	 and	 in	 brain-like	 networks	 (Doursat	 and	 Bienenstock,	 2006),	 which	 prevents	

excessive	 CA	 growth.	 We	 conclude	 that	 noise	 in	 primary	 areas	 is	 critical	 for	 obtaining	

semantic	cortical	circuits	with	category-specific	signatures.	In	essence,	as	it	 is	 important	to	

learn	that	the	word	‘run’	relates	to	certain	motor	patterns,	it	is	likewise	important	to	learn	

that	 variable	 visual	 inputs	 (‘noise’)	 typically	 occur	 during	 running	 so	 that	 specific	 visual	

features	are	de-correlated	from	the	word-form.	We	note	that	under	deprived	conditions,	for	

example	 in	 blind	 language	 learners,	 this	 type	 of	 de-correlating	 sensory-related	 noise	 is	
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missing	 in	 the	deprived	primary	 cortex.	Resultant	CA	growth	 into	 the	 ventral	 stream	may	

explain	why	blind	individuals	activate	visual	areas	in	linguistic	and	semantic	processing	(see	

Bedny	et	al.,	2011;	Neville	and	Bavelier,	2002).	

In	order	 to	connect	 information	about	actions	and	perceptions	available	 in	 the	primary	

cortices,	activity	must	run	through	connector	hub	areas.	Therefore,	neurons	in	multimodal	

cortices	are	 included	 in	all	 types	of	semantic	circuits	 to	a	similar	degree.	This	explains	 the	

existence	 and	 cortical	 location	 of	 semantic	 hubs	 in	 inferior	 and	 dorsolateral	 prefrontal	

cortex	and	in	anterior	and	superior	temporal	cortex.	Our	model	did	not	include	areas	of	the	

parietal	 cortex,	 but	 if	 it	 did,	 it	 is	 foreseeable	 that	 the	 same	 localisation	mechanisms	will	

apply	 to	 the	 additional	 lobar	 system	 so	 that	 an	 additional	 ‘semantic	 hub’	 in	 posterior	

parietal	 cortex	 (posterior	 supramarginal	gyrus,	 intraparietal	 sulcus	and	angular	gyri)	might	

emerge.	 A	 new	 finding	 of	 the	 present	 work	 is	 the	 emergence	 of	 a	 degree	 of	 category-

specificity	also	in	extrasylvian	hub	areas.	Earlier	simulations	by	Garagnani	and	Pulvermüller	

(2016)	had	found	no	category	differences	in	any	of	the	hub	areas.	This	may	have	been	due,	

in	 part,	 to	 the	 reduced	 input	 to	 extrasylvian	 hub	 areas	 implicated	 by	 the	 absence	 of	

connections	 between	 ventral	 and	 dorsolateral	 prefrontal	 cortex	 and	 likewise	 between	

anterior	 inferior	 and	 posterior	 superior	 temporal	 cortex.	 As	 these	 connections	 have	

meanwhile	been	documented	by	anatomical	studies	(Gierhan,	2013;	Yeterian	et	al.,	2012),	

they	were	included	in	the	present	simulations	and	a	small	but	significant	degree	of	category-

specificity	in	these	hub	areas	was	the	consequence.	

A	 fruitful	 target	 for	 future	 research	 will	 be	 to	 investigate	 the	 possibility	 of	 category-

specific	 semantic	 deficits	 after	 lesions	 in	 anterior	 temporal	 and	 dorsolateral	 prefrontal	

cortex.	In	this	context,	a	closer	look	at	patients	in	early	stages	of	semantic	dementia	may	be	

crucial,	because	 these	patients	 sometimes	 show	 lesions	 restricted	 to	anterior	and	 inferior	

temporal	areas	 (Patterson	et	al.,	2007).	Some	work	 in	 this	 field	suggests	no	differences	 in	

processing	different	semantic	categories	(Lambon	Ralph	et	al.,	2007),	but	other	studies	have	

reported	some	differences,	for	example	between	colour-	and	form-related	words	(Gainotti,	

2012;	Pulvermüller	et	al.,	2010).	Stroke-	and	encephalitis-induced	lesions	of	the	multimodal	

parts	of	 the	 left	 temporal	 lobe	 (corresponding	 to	area	AT	 in	 the	network)	have	also	been	

found	 to	 cause	 category-specific	word	 processing	 deficits	 for	 animals,	 persons,	 and	 living	

things	 (Damasio	 et	 al.,	 1996;	 Gainotti,	 2012;	 Hernández	 et	 al.,	 2008;	 Pulvermüller	 et	 al.,	
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2010).	 Thus,	 it	 seems	 that	 there	 is	 at	 least	 some	 evidence	 for	 category-specificity	 in	 the	

extrasylvian	anterior-temporal	connector	hubs.	Only	 future	research	can	validate	or	 falsify	

the	model’s	prediction	about	a	slight	but	significant	category	difference	between	object	and	

action-related	words	after	focal	anterior-temporal	and	dorsolateral	prefrontal	damage.	

There	 is	 quite	 a	 bit	 of	 debate	 about	 the	 prominence	 of	 different	 areas	 for	 semantic	

processing.	 Some	 approaches	 hold	 that	 true	 semantic	 processing	 is	 only	 present	 in	 the	

multimodal	 hubs,	 and	 modality-preferential	 areas	 only	 serve	 an	 optional,	 ‘enriching’	 or	

‘colouring’	function	(Mahon	and	Caramazza,	2008).	Although	the	network	model	we	present	

here	offers	no	 justification	 for	such	a	view	–	because	all	parts	of	 the	distributed	semantic	

circuits	contribute	to	their	function	and	there	is	no	basis	for	excluding	circuit	parts	when	it	

comes	to	 function	–	the	model	offers	an	explanation	of	why	some	areas	across	which	the	

circuits	are	distributed	are	functionally	more	important	than	others.	Factors	which	come	in	

here	 are	 the	 general	 location	 of	 an	 area’s	 neurons	 with	 respect	 to	 the	 network’s	

connectivity	structure	(topology)	–	with	gradually	more	functional	contributions	of	‘central’	

areas	 than	 ‘peripheral’	 ones	 –	 and,	 importantly,	 the	 relative	 CA	 neuron	 density	 a	 circuit	

shows	across	areas.	In	this	context,	the	generally	observed	main	effects	of	the	level	of	area,	

with	relatively	more	CA	neurons	in	secondary	than	primary	and	also	much	more	neurons	in	

connector	hub	areas	than	in	secondary	ones,	is	of	critical	importance.	In	the	previous	study	

(Garagnani	 and	 Pulvermüller,	 2016),	 it	 was	 not	 entirely	 clear	 whether	 the	 relatively	 high	

number	of	CA	neurons	(and	thus	circuit	neuron	densities)	in	connector	hub	areas	was	due	to	

the	 stronger	 input	 these	 areas	 generally	 received	 (higher	 ‘in-degree’)	 or	 to	 the	 network	

topology,	 or	 both.	 Here,	 we	 performed	 in-degree	 normalization	 (see	Methods)	 and	 thus	

excluded	the	sheer	amount	of	activity	entering	an	area	as	explanatory	factor.	In	spite	of	in-

degree	normalization	across	sub-systems,	which	ensured	that	all	network	areas	received	(on	

average)	equal	quantities	of	inputs,	circuit	cell	density	was	still	higher	in	the	connector	hub	

areas	 in	 the	 centre	 of	 the	 network	 architecture,	 where	 phonological	 and	 semantic	 word	

circuits	converge.	This	result	is	consistent	with	the	statement	that	network	topology	plays	a	

major	 role	 in	 determining	 the	 prominence	 of	 connector	 hubs	 for	 general	 semantic	

processing.	However,	we	note	that	 larger	circuit	densities	 in	the	‘centre’	of	networks	have	

also	 been	observed	with	 next	 neighbour	 between-area	 connections	 only,	 suggesting	 that,	
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apart	from	its	‘degree’	and	resultant	hub	status	as	such,	the	‘centrality’	of	an	area	within	the	

network	is	a	relevant	factor	(Garagnani	et	al.,	2008).		

In	 sum,	 the	 present	 neural	 network	 simulations	 exhibit	 the	 spontaneous	 formation	 of	

semantic	 CA	 circuits	 distributed	 over	 modality-preferential	 and	 ‘higher’	 multimodal	

convergence	 areas	 and	 mechanistically	 explain	 the	 emergence	 in	 the	 cortex	 of	 both	

category-specific	 and	 general	 semantic	 processes.	 In	 addition,	 the	 use	 of	 a	more	 realistic	

architecture	leads	to	the	presence	of	moderate	category-specificity	in	connector	hub	areas	

outside	 the	 perisylvian	 region.	 The	 spontaneous	 formation	 of	 these	 semantic	 circuits	 is	

based	 on,	 and	 explained	 by,	 well-documented	 learning	 mechanisms	 of	 Hebbian	 synaptic	

plasticity	and	cortical	area	and	connectivity	structure.	These	simulation	results	explain	why	

modality-preferential	 areas	 are	 activated	 relatively	 more	 strongly	 by	 specific	 semantic	

categories	 and	why	 the	 connector	 areas	become	 semantic	hubs	and	 to	a	degree	 similarly	

great,	relevance	for	processing	all	kinds	of	meanings.		

Neurophysiological	mechanisms	underlying	word	recognition	and	understanding:	

simulating	the	time-course	of	semantic	activation	

The	 semantic	 circuits	 that	 had	 formed	 as	 a	 consequence	 of	 correlation	 learning	 were	

reactivated	 from	 the	 acoustic	 phonological	 end	 to	 simulate	 the	 area-specific	 cortical	

activation	dynamics	of	spoken	word	understanding	and	to	provide	a	functional	estimate	of	

category-general	 and	 -specific	 semantic	 activation	 strength,	 topography,	 and	 timing.	

Comparison	 of	 maximum	 circuit	 activity	 levels	 per	 area	 and	 word	 type	 revealed	 a	

dissociation	similar	to	that	found	in	the	structural	analysis	of	circuit	topographies	reported	

above.	In	particular,	object-related	words	activated	the	visual	system	(V1,	TO)	more	strongly	

than	 the	 motor	 system	 (M1L,	 PML)	 and,	 for	 action-related	 words,	 motor	 system	 peak	

activation	 was	 relatively	 stronger	 (Fig.	 2.5	 B	 –	 left-hand	 side).	 As	 before,	 the	 perisylvian	

auditory	and	articulatory	sub-systems	did	not	show	any	significant	difference	 in	amplitude	

between	word-types	(see	Fig.	2.5.	A	–	left-hand	side).	Stronger	activation	in	the	connector	

hubs	(AT,	PFL,	PB,	PFi)	than	in	secondary	(TO,	AB,	PML,	PMi)	areas,	and	stronger	activation	in	

secondary	 than	 in	 primary	 (A1,	 V1,	 M1L,	 M1i)	 areas,	 was	 found.	 The	 word-category	

dissociation	 and	 the	 different	 activity	 levels	 predicted	 during	 simulated	 word-recognition	

processes	is	a	direct	consequence	of	the	distinct	cortical	topographies	of	object-	and	action-
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related	semantic	circuits,	which	emerged	in	the	model	during	 learning,	with	more	CA	cells	

leading	to	correspondingly	more	activity	during	CA	circuit	ignition.		

The	area-specific	activation	time-course	of	the	multi-area	network	 illustrated	 in	Fig.	2.6	

and	2.7	(Brain	and	boxplot	upper	part)	showed	similar	activation	dynamics	for	object-	and	

action-related	 words.	 For	 both	 word	 types,	 the	 perisylvian	 language	 system	 exhibited	 a	

cascade	 of	 activations	 whose	 peaks	 unfold	 (in	 a	 sequential	 manner)	 over	 a	 period	 of	

approximately	12	simulation	time-steps.	Activation	was	first	present	in	the	primary	auditory	

areas	 A1,	 driven	 by	 the	 external	 stimulus,	 and	 then	 spread	 across	 the	 perisylvian	 areas,	

terminating	 in	 the	 primary	 articulatory	 areas	 (M1i).	 In	 contrast,	 activation	 in	 the	

sensorimotor	 semantic	 areas	 is	 near-simultaneous,	 with	 all	 peaks	 concentrated	 within	 a	

period	of	just	5	simulation	time-steps	(hub	areas	activate	first,	regardless	of	word	type).	The	

‘near-simultaneous’	 effect	 of	 the	 CA	 cells	 activation	 processes	 in	 sensorimotor	 areas	 is	

caused	by	the	rich	neuroanatomical	connections	of	the	convergence	hub	areas,	which	 link	

together	the	different	modality-preferential	cortices.	Therefore,	upon	reaching	the	language	

hubs	 (PB-PFi),	 activity	 leads	 to	 the	 simultaneous	 ‘ignition’	 of	 the	 CA	 cells	 present	 in	 the	

anterior-temporal	(AT)	and	dorsolateral	prefrontal	(PFL)	hub	cortices,	which,	in	turn,	quickly	

activate	 the	 modality-preferential	 CAs.	 Thus,	 the	 inherent	 connectivity	 structure	 of	 the	

model	 leads	 to	 a	near-simultaneous	 activation	of	 the	most	 richly	 connected	hub	areas	 as	

compared	 to	 the	 primary	 and	 secondary	 cortices.	 The	multimodal	 hubs	 can	 be	 seen	 as	 a	

‘crossroad’	where	information	from	different	modality-preferential	systems	converges;	after	

full	ignition,	CA	activity	gradually	disappears	in	the	multi-area	network	(see	Fig.	2.4),	ending	

in	 the	 modality-preferential	 areas	 –	 i.e.	 primary	 hand-motor	 area	 (M1L)	 for	 action-,	 and	

primary	 visual	 cortex	 (V1)	 for	 object-related	 words.	 In	 other	 words,	 the	 modality-

preferential	cortices	(for	object	words	V1	and	TO	areas	and	for	action	words	M1L	and	PML	

areas)	activate	after	all	other	areas.	Hence,	on	the	basis	of	the	activation	dynamics	exhibited	

by	 the	 present	 model,	 we	 would	 predict	 that	 during	 semantic	 information	 retrieval,	

activation	 should	 spread	 in	 a	 cascade-like	 fashion	 across	 the	 perisylvian	 language	 areas;	

sensorimotor	areas	should	then	activate	near-simultaneously,	with	semantic	hubs	activating	

before	the	modality-preferential	areas,	where	additional	semantic	information	is	held.			

In	a	recent	simulation	study	(McNorgan	et	al.,	2011),	on	the	basis	of	within-	and	cross-

modality	 feature-	 and	 concept-relatedness	 judgment	 data	 the	 authors	 argue	 that	 ‘deep’	
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models	of	semantic	grounding	(i.e.,	which	involve	several	processing	steps	between	sensory,	

and	 between	 sensory	 and	 motor	 components)	 are	 necessary	 to	 explain	 their	 results.	

Because	our	model	is	neuroanatomically	realistic	and,	as	such,	it	incorporates	indirect	multi-

step	 links	 between	 modality-preferential	 sensorimotor	 regions,	 it	 can	 be	 considered	 a	

neurobiologically	 motivated	 ‘deep’	 semantic	 model	 in	 the	 sense	 of	 McNorgan	 et	 al.	

Therefore,	we	 conjecture	 that	 it	might	 also	be	 compatible	with	 their	 results,	 although,	 as	

our	 present	 focus	 was	 on	 modelling	 neurophysiological	 mechanisms,	 we	 have	 not	

attempted	 to	 replicate	 the	 outcome	 of	 their	 specific	 simulations.Experimental	 studies	

analysing	 the	 latency	of	 semantic	processes	 in	 language	perception	 suggest	 that	 semantic	

information	 provided	 by	 words	 is	 already	 retrieved	 within	 ~200	 ms	 after	 stimulus	

presentation	 (Brown	 and	 Lehmann,	 1979;	 Hauk	 et	 al.,	 2008;	 Preissl	 et	 al.,	 1995;	

Pulvermüller,	 1999).	 Moreover,	 recent	 MEG-EEG	 recordings	 have	 shown	 that	 different	

semantic	categories	(visually	presented)	activated	different	cortical	areas	within	~150	ms;	at	

this	 point	 in	 time,	 action	 words	 activated	 mostly	 the	 motor	 system	 and	 object	 words	

activated	the	visual	system	(Moseley	et	al.,	2013).	However,	these	neuroimaging	techniques	

with	high	temporal	resolution	(such	as	MEG	and	EEG)	do	not	offer	a	sufficiently	high	spatial	

resolution	 to	 detect	 fine-grained	 differences	 between	 multimodal	 semantic	 hubs	 and	

modality-preferential	 areas	 implemented	 in	 the	 neural	 network	 (for	 example,	 between	

premotor	and	prefrontal	areas).	Therefore,	we	further	investigated	the	activation	dynamics	

of	 the	 four	 sub-systems,	 i.e.	 auditory,	 articulatory,	 visual	 and	 motor	 sub-systems	

implemented	in	the	model,	and	compared	their	respective	average	activation	time	courses	

with	each	other	and	with	real	cortical	activations	observed	during	spoken	word	processing.		



	
	

	
	

68	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	 2.8.	Comparison	 of	 real	 and	 simulated	 brain	 activations	 elicited	 by	 specific	 semantic	word	
categories.	(A)	Time	course	of	activation	of	cortical	areas	elicited	by	passive	presentation	of	spoken	
action	 words	 and	 determined	 using	 magnetoencephalography	 (MEG)	 and	 distributed	 source	
localizations.	 Action	 words	 elicited	 sequential	 but	 near-simultaneous	 activations	 in	 left	 superior	
temporal,	 inferior	frontal	and	superior	central	cortex.	The	average	latency	of	maximal	activation	in	
the	 four	 ROIs	 is	 reported	 together	 with	 the	 standard	 errors	 (boxes;	 bars	 indicate	 1.96	 SE,	 data	
adapted	 from	Pulvermüller	 et	 al.,	 2005b).	 The	boxplots	 in	panels	B	&	C	 illustrate	 results	 from	 the	
corresponding	simulated	activation	time-courses.	The	point	in	time	at	which	stimulus-evoked	activity	
is	 peaking	 in	 each	 of	 the	 modelled	 four	 sub-systems	 (auditory,	 articulatory,	 visual	 and	 motor	
systems)	 is	 plotted	 against	 time	 given	 in	 simulation	 time-steps.	 Boxes	 give	 standard	 errors	 and	
whiskers	 standard	 deviations.	 The	 average	 was	 computed	 across	 the	 12	 different	 networks	 and	
calculated	 separately	 for	 (B)	 Action	 and	 (C)	Object-related	words.	Notice	 that	 the	 respective	 non-
relevant	sub-systems	(Visual	for	action-	and	motor	for	object-related	words)	are	not	illustrated	here,	
as	the	activation	levels	are	relatively	low.		
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Fig.	 2.8	 reports	 results	 from	a	Magnetoencephalography	 (MEG)	 study	 investigating	 the	

temporal	 activation	dynamics	evoked	by	action-related	words	 (Pulvermüller	et	 al.,	 2005b)	

and	relates	them	to	the	activation	time	courses	obtained	from	our	model	after	stimulating	

area	 A1	 with	 the	 ‘acoustic	 patterns’	 of	 action-	 and	 object-related	 ‘words’.	 Although	 the	

alignment	of	simulation	time-steps	and	real	time	is	always	to	a	degree	tentative,	the	near-

simultaneous	 but	 still	 fast-cascading	 activation	 from	 superior	 temporal	 to	 inferior	 frontal	

and	finally	dorsal	action-related	areas	exhibited	by	the	cortical	sources	estimated	from	the	

MEG	recordings	is	paralleled	by	the	model	results.	Note,	however,	that	the	delay	between	

superior	temporal	and	inferior	frontal	activations	is	relatively	longer	in	the	simulations	than	

in	the	MEG	sources,	thus	also	indicating	a	discrepancy.	For	relating	simulation	results	more	

directly	to	empirical	data,	it	might	be	advantageous	to	perform	analogous	semantic	learning	

experiments	in	healthy	subjects	and	then	compare	the	brain	and	network	responses	of	the	

processing	of	the	learnt	items	(see	also	below).	

In	 sum,	 the	model	 shows	a	 ‘near-simultaneous’	 activation	 time-course	of	 the	 semantic	

areas;	 the	 semantic	 hubs,	 anterior-temporal	 (AT)	 and	 dorsolateral	 prefrontal	 areas	 (PFL),	

activate	 first,	 and	 are	 then	 followed	by	 the	modality-preferential	 areas	 carrying	 category-

specific	 semantic	 information.	 The	 perisylvian	 language	 areas	 exhibited	 a	 cascade	 of	

activations,	 with	 no	 word	 type	 effects.	 Most	 of	 the	 empirical	 studies	 about	 semantic	

processing	 performed	 in	 the	 past	 used	 words	 from	 real	 natural	 language,	 making	 it	

impossible	 to	 control	 the	way	 these	words	 have	 been	 learned,	 or	 to	 isolate	 the	 relevant	

semantic	 features	 from	 the	 many	 other	 putatively	 confounding	 psycholinguistic	 and	

psychological	 features	 distinguishing	 the	 different	 lexical	 classes	 between	 each	 other	

(Kemmerer,	2014;	Pulvermüller,	1999;	Vigliocco	et	al.,	2011).	A	well-designed	word	learning	

experiment	 employing	 neuroimaging	 methods	 with	 high	 spatial	 and	 temporal	 resolution	

(EEG/MEG	 and	 fMRI)	 is	 needed	 to	 test	 the	 validity	 of	 the	 present	 model’s	 results	 and	

predictions,	 and	 identify	where	 the	 neural	 correlates	 of	 novel	 object-	 and	 action-related	

words	 emerge	 in	 the	 brain,	 and	 at	which	 point	 in	 time	 of	 the	 recognition	 process	 their	

activation	occurs.		
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Summary	and	Conclusions		

Current	 neurosemantic	 theories	 still	 diverge	 about	 the	 role	 of	 category-specific	 and	

category-general	semantic	mechanisms	and	about	the	contribution	of	modality-preferential	

and	 multimodal	 (‘amodal’)	 brain	 systems	 in	 semantic	 processing	 (Barsalou,	 2008;	

Bookheimer,	 2002;	 Devlin	 et	 al.,	 2003;	 Gallese	 and	 Lakoff,	 2005;	Martin	 and	 Chao,	 2001;	

Patterson	 et	 al.,	 2007;	 Pulvermüller,	 2005;	 Warrington	 and	 McCarthy,	 1987).	 Here	 we	

applied	a	neural-network	model	replicating	anatomical	and	physiological	features	of	a	range	

of	cortical	areas	 including	sensorimotor,	multimodal	and	 language	areas	to	 investigate	the	

neurobiological	mechanisms	underlying	conceptual	semantic	grounding	of	words	in	action-	

and	 object-related	 information.	 The	 word	 learning	 simulations	 documented	 the	

spontaneous	 emergence	 of	 word/symbol-specific,	 tightly	 interconnected	 cell	 assemblies	

within	the	 larger	networks,	each	binding	articulatory-acoustic	word-forms	to	sensorimotor	

semantic	 information.	 Due	 to	 network	 structure,	 connectivity,	 and	 Hebbian	 associative	

learning,	which	maps	neuronal	correlations,	the	emerging	‘semantic	circuits’	for	object-	and	

action-related	words	exhibited	category-specificity	primarily	in	modality-preferential	areas;	

the	 ‘higher’	multimodal	 connector	 hub	 areas	 central	 to	 the	 network	 architecture	 showed	

only	moderate	 category-specificity	 (Fig.	 2.3	 and	 2.4).	 Due	 to	 their	 central	 position	 in	 the	

model	architecture,	connector	hubs	showed	highest	cell	densities	of	both	types	of	semantic	

circuits,	therefore	acting	as	‘semantic	hubs’.	Word	category	dissociations	were	confirmed	by	

the	 reactivation	 of	 the	 cell	 assembly	 circuits	 during	 simulated	 word	 recognition	 and	

comprehension	 processes.	 The	 model’s	 results,	 which	 can	 be	 compared	 with	 real	

experimental	data	(see	Fig.	2.8),	predict	a	symmetrical	temporal	activation	for	object-	and	

action-related	words,	with	the	semantic	hub	areas	activating	first	and	modality-preferential	

ones	slightly	later	(Fig.	2.6	and	2.7).	Interestingly,	extrasylvian	systems	relevant	for	semantic	

processing	 of	 a	 given	 word	 category	 activated	 with	 a	 delay	 upon	 the	 relevant	 system,	

whereby	 strong	 dorsal	 motor	 systems	 activation	 were	 preceded	 by	 weak	 ventral	 visual	

system	activation	to	action	words,	while	strong	ventral	visual	activations	 to	objects	words	

were	preceded	by	weak	dorsal	motor	processes	(Fig.	2.5).	This	observation	(prediction)	also	

calls	 for	 future	 experimental	 testing.	 The	 present	 simulations	 demonstrate	 that	 realistic	

neurocomputational	models	can	elucidate	aspects	of	semantic	processing	in	the	cortex	and	

integrate	findings	from	neuroimaging	studies.	In	sum,	the	model	illustrates	the	spontaneous	
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emergence	of	both	category-specific	and	general	 semantic	hub	areas	and,	on	 the	basis	of	

well-established	 neuroscience	 principles,	 offers	 a	 mechanistic	 explanation	 of	 where	 and	

when	meaning	is	processed	in	the	brain.	

Appendix	2A	–	Full	model	specification		

Each	of	the	12	simulated	areas	 (see	Fig.	2.1.B)	was	 implemented	as	two	 layers	of	artificial	

neuron-like	 elements	 (‘cells’),	 625	 excitatory	 and	 625	 inhibitory,	 thus	 resulting	 in	 15,000	

cells	 in	 total.	 Each	 excitatory	 cell	 ‘e’	 can	 be	 considered	 the	 network	 equivalent	 of	 a	 local	

cluster,	 or	 column,	 of	 approximately	 25,000	 real	 excitatory	 cortical	 neurons,	 that	 is	

pyramidal	 cells,	 while	 its	 twin	 inhibitory	 cell	 ‘i’	 (see	 Fig.	 2.1.C)	 models	 the	 cluster	 of	

inhibitory	interneurons	situated	within	the	same	cortical	column	(Eggert	and	van	Hemmen,	

2000;	Wilson	and	Cowan,	1972).	The	activity	state	of	each	cell	e	 is	uniquely	defined	by	 its	

membrane	 potential	 V(e,t),	 representing	 the	 average	 of	 the	 sum	 of	 all	 (excitatory	 and	

inhibitory)	 postsynaptic	 potentials	 acting	 upon	 neural	 pool	 (cluster)	 e	 at	 time	 t,	 and	

governed	by	the	following	equation:	

			

	

where	VIn	 (e,t)	 is	 the	 net	 input	 to	 cell	 e	 at	 time	 t	 (sum	 of	 all	 inhibitory	 and	 excitatory	

postsynaptic	 potentials	 –	 I/EPSPs;	 inhibitory	 synapses	 are	 given	 a	 negative	 sign	 –	 plus	 a	

constant	baseline	value	Vb),	τ	 is	the	membrane’s	time	constant,	k1,	k2	are	scaling	constants	

and	η(·,t) is	a	white	noise	process	with	uniform	distribution	over	[-0.5,0.5].	Note	that	noise	

is	 an	 inherent	 property	 of	 each	 model	 cell,	 intended	 to	 mimic	 the	 spontaneous	 activity	

(baseline	 firing)	 of	 real	 neurons.	 Therefore,	 noise	 was	 constantly	 present	 in	 all	 areas,	 in	

equal	amounts	(inhibitory	cells	have	k2=0,	i.e.,	the	noise	is	generated	just	by	the	excitatory	

cells,	for	simplicity).	

Cells	produce	a	graded	response	that	represents	the	average	firing	rate	of	the	neuronal	

cluster;	in	particular,	the	output	(transformation	function)	of	an	excitatory	cell	e	at	time	t	is:	
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In ητ ++−=⋅ (A1) 

1         otherwise  

0          if V(e,t)≤ φ 

(A2) O(e,t) = (V(e,t)− ϕ )  if 0 < (V(e,t)− ϕ ) ≤ 1   
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O(e,t)	represents	the	average	(graded)	firing	rate	(number	of	action	potentials	per	time	

unit)	of	cluster	e	at	time	t;	 it	 is	a	piecewise-linear	sigmoid	function	of	the	cell’s	membrane	

potential	V(e,t),	clipped	into	the	range	[0,	1]	and	with	slope	1	between	the	lower	and	upper	

thresholds	 ϕ and ϕ +1.	 The	 output	 O(i,t)	 of	 inhibitory	 cell	 i	 is	 0	 if	 V(i,t)<0,	 and	 V(i,t)	

otherwise.	In	excitatory	cells,	the	value	of	the	threshold	ϕ	in	Eq.	(A2)	varies	in	time,	tracking	

the	recent	mean	activity	of	the	cell	so	as	to	implement	neuronal	adaptation	(Kandel	et	al.,	

2000).	 Thus,	 stronger	 activity	 leads	 to	 a	higher	 threshold	 in	 subsequent	 time-steps.	More	

precisely,	

ϕ (e, t) = α ·ω(e,t)  

where	 ω(e,t) is	 the	 time-average	 of	 cell	 e’s	 recent	 output	 and	 α	 is	 the	 ‘adaptation	

strength’	 (see	 below	 for	 the	 exact	 parameter	 values	 used	 in	 the	 simulations).	 For	 an	

excitatory	 cell	e,	 the	 approximate	 time-average	ω(e,t) of	 its	 output	O(e,t)	 is	 estimated	by	

integrating	the	linear	differential	equation	Eq.	(A4.1)	below	with	time	constant	τA,	assuming	

initial	average	ω(e,0)=0: 

	

	

Local	(lateral)	 inhibitory	connections	(see	Fig.	2.1.C)	and	area-specific	inhibition	are	also	

implemented,	 realising,	 respectively,	 local	 and	 global	 competition	 mechanisms	 (Duncan,	

2006,	1996)	and	preventing	activation	from	falling	into	non-physiological	states	(Braitenberg	

and	Schüz,	1998).	More	formally,	in	Eq.	(A1)	the	input	VIn(e,t)	to	each	excitatory	cell	of	the	

same	area	includes	an	area-specific	(‘global’)	inhibition	term	kS · ωS(e,t), which	is	subtracted	

from	the	total	sum	of	the	I/EPSPs	postsynaptic	potentials	VIn	in	input	to	the	cell,	with	ωS(e,t) 

defined	by:	

	

	

	

The	low-pass	dynamics	of	the	cells	(Eq.	(A1),	(A2),	(A4.1-2))	are	integrated	using	the	Euler	

scheme	with	step	size	Δt,	where	Δt	=	0.5	ms.	

Excitatory	links	within	and	between	(possibly	non-adjacent)	model	areas	are	established	

at	 random	 and	 limited	 to	 a	 local	 (topographic)	 neighbourhood;	 weights	 are	 initialised	 at	

pattern,	 in	the	range	[0,	0.1].	The	probability	of	a	synapse	to	be	created	between	any	two	
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cells	 falls	 off	 with	 their	 distance	 (Braitenberg	 and	 Schüz,	 1998)	 according	 to	 a	 Gaussian	

function	 clipped	 to	 0	 outside	 the	 chosen	 neighbourhood	 (a	 square	 of	 size	 n	 =19	 for	

excitatory	 and	 n=5	 for	 inhibitory	 cell	 projections).	 This	 produces	 a	 sparse,	 patchy	 and	

topographic	 connectivity,	 as	 typically	 found	 in	 the	mammalian	 cortex	 (Amir	 et	 al.,	 1993;	

Braitenberg	and	Schüz,	1998;	Douglas	and	Martin,	2004;	Kaas,	1997).		

The	 Hebbian	 learning	 mechanism	 implemented	 simulates	 well-documented	 synaptic	

plasticity	phenomena	of	long-term	potentiation	(LTP)	and	depression	(LTD),	as	implemented	

by	Artola,	Bröcher	and	Singer	(Artola	et	al.,	1990;	Artola	and	Singer,	1993).	This	rule,	which	

covers	both	 ‘true’	Hebbian	co-occurrence	 (‘what	 fires	 together	wires	 together’)	as	well	 as	

decorralative	 ‘anti-Hebb’	 (‘neurons	 out	 of	 sync	 delink’)	 plasticity,	 provides	 a	 realistic	

approximation	of	known	experience-dependent	neuronal	plasticity	and	learning	(Finnie	and	

Nader,	 2012;	 Friedman	and	Donoghue,	2009;	Malenka	and	Bear,	 2004).	 In	 the	model,	we	

discretized	 the	 continuous	 range	 of	 possible	 synaptic	 efficacy	 changes	 into	 two	 possible	

levels,	+Δw and −Δw	(with	Δw<<1	and	fixed).	Following	Artola	et	al.,	we	defined	as	‘active’	

any	link	from	an	excitatory	cell	x	such	that	the	output	O(x,t)	of	cell	x	at	time	t	is	larger	than	

θpre, where θpre∈]0,1] 	 is	 an	 arbitrary	 threshold	 representing	 the	 minimum	 level	 of	

presynaptic	 activity	 required	 for	 LTP	 (or	 LTD)	 to	 occur.	 Thus,	 given	 any	 two	 cells	 x	 and	 y	

connected	by	a	 synaptic	 link	with	weight	wt(x,y),	 the	new	weight	wt+1(x,y)	 is	 calculated	as	

follows:	

	

	

	

	

	

	

	

	

	

	

	

	

	

wt(x,y)       (no change)  otherwise  

(A5) wt+1(x,y) = 

wt(x,y)+Δw   (LTP) if O(x,t)≥ θpre and V(y,t) ≥ θ+           

wt(x,y)−Δw   (LTD) if O(x,t)≥ θpre and θ− ≤ V(y,t) < θ+   
wt(x,y)−Δw   (LTD) if O(x,t)< θpre and  V(y,t) ≥ θ+ 
LTD)  
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Table	2.1.	Parameter	values	used	during	the	simulations	

Eq.	(A1)		 Time	constant	(excitatory	cells):	 	 τ=2.5	(simulation	time-steps)		

		 	 	Time	constant	(inhibitory	cells):		 	 τ	=5	(simulation	time-steps)	

		 	 	Scaling	factor:		 	 	 	 k1=0.01	

				 	Baseline	potential		 	 	 	 Vb=0		

				 	Noise	scaling	factor	 	 	 	 k2=27·√48	

					 Global	inhibition	during	training		 	 kS=95	

				 (during	word	recognition:			 	 	 kS=75)	

Eq.	(A3)			 Adaptation:		 	 	 	 	 α=0.01	

Eq.	(A4.1-2)	 Time-average	constant	for	CA	definition:	 τz =3	(simulation	time-steps)	

		 (time	constant	for	adaptation	mechanism:	 τA=15)	

Global	inhibition	time	constant:		 	 τS=12	(simulation	time-steps)	

Eq.	(A5)		 Postsynaptic	potential	thresholds	for	LTP/LTD:		

		 	 	 	 	θ−=0.15	

			 	 	 	 	 	 	 θ+=0.15	

Presynaptic	output	activity	required	for	any	synaptic	change:		

			 	 	 	 	 	 	 θpre=0.05	
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3. A	Neurobiologically	Constrained	Cortex	Model	of	Semantic	

Grounding	With	Spiking	Neurons	and	Brain-Like	Connectivity	
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Abstract	

One	of	the	most	controversial	debates	in	cognitive	neuroscience	concerns	the	cortical	locus	

of	semantic	knowledge	and	processing	in	the	human	brain.	Experimental	data	revealed	the	

existence	of	various	cortical	regions	relevant	for	meaning	processing,	ranging	from	semantic	

hubs	 to	 modality	 sensorimotor	 areas,	 involved	 in	 the	 processing	 of	 specific	 conceptual	

categories.	Why	 and	how	 the	 brain	 uses	 such	 complex	 organization	 for	 conceptualization	

can	 be	 investigated	 using	 biologically	 constrained	 neurocomputational	 models.	 Here,	 we	

improve	 pre-existing	 neurocomputational	 models	 of	 semantics	 by	 incorporating	 spiking	

neurons	 and	 a	 rich	 connectivity	 structure	 between	 the	model	 ‘areas’	 to	mimic	 important	

features	 of	 the	 underlying	 neural	 substrate.	 Semantic	 learning	 and	 symbol	 grounding	 in	

action	and	perception	were	simulated	by	associative	learning	between	co-activated	neuron	

populations	 in	frontal,	temporal	and	occipital	areas.	As	a	result	of	Hebbian	 learning	of	the	

correlation	 structure	 of	 symbol,	 perception	 and	 action	 information,	 distributed	 cell	

assembly	 circuits	emerged	across	 various	 cortices	of	 the	network.	 These	 semantic	 circuits	

showed	category-specific	 topographical	distributions,	 reaching	 into	motor	and	visual	areas	

for	 action-	 and	 visually-related	words,	 respectively.	All	 types	of	 semantic	 circuits	 included	

large	numbers	of	neurons	in	multimodal	connector	hub	areas,	which	is	explained	by	cortical	

connectivity	 structure	 and	 the	 resultant	 convergence	 of	 phonological	 and	 semantic	

information	 on	 these	 zones.	 Importantly,	 these	 semantic	 hub	 areas	 exhibited	 some	

category-specificity,	 which	 was	 less	 pronounced	 than	 that	 observed	 in	 primary	 and	

secondary	modality-preferential	cortices.	The	present	neurocomputational	model	integrates	

seemingly	 divergent	 experimental	 results	 about	 conceptualization	 and	 explains	 both	

semantic	hubs	and	category-specific	areas	as	an	emergent	process	causally	determined	by	

two	 major	 factors:	 neuroanatomical	 connectivity	 structure	 and	 correlated	 neuronal	

activation	during	language	learning.	
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Introduction		

Although	 the	 brain	mechanisms	 of	meaning	 processing	 have	 been	 investigated	 for	many	

years,	 cognitive	neuroscientists	have	not	 reached	a	consensus	about	 the	 function	and	 the	

organizational	 principles	 of	 semantic	 knowledge.	 A	 range	 of	 neuroimaging	 and	

neuropsychological	 patient	 studies	 suggest	 a	 contribution	 of	 several	 cortical	 areas	 to	

semantic	processing,	but	the	precise	role	of	each	of	them	is	still	subject	to	debate.	Cognitive	

and	neuroscientists	have	suggested	that	the	meaning	of	all	words	are	equally	processed	and	

stored	 in	 a	 central	 ‘symbolic	 system’	 cortically	 located	 in	 a	 ‘semantic	 hub’.	 However,	

‘semantic	 hubs’	 have	 been	 proposed	 in	 different	 cortical	 regions,	 including	 the	 anterior-

inferior-temporal	 lobe	 (Patterson	 et	 al.,	 2007;	 Ralph	 et	 al.,	 2017),	 the	 anterior-inferior-

parietal	 (Binder	 et	 al.,	 2009;	 Binder	 and	 Desai,	 2011)	 and	 the	 posterior-inferior-frontal	

cortex	 (Bookheimer,	 2002;	 Carota	 et	 al.,	 2017;	 Posner	 and	 Pavese,	 1998;	 Schomers	 and	

Pulvermüller,	 2016;	 Tate	 et	 al.,	 2014).	 Whereas	 it	 is	 possible,	 in	 principle,	 that	 several	

semantic	 hubs	 co-exist,	 some	 researchers	 postulated	 the	 need	 for	 bringing	 together	 all	

semantic	information	into	one	focal	area	and	consequently	reject	the	existence	of	multiple	

semantic	hubs	(Patterson	et	al.,	2007;	Ralph	et	al.,	2017).	Furthermore,	and	over	and	above	

semantic	 hubs	 generally	 contributing	 to	 all	 types	 of	 semantics,	 the	 phenomenon	 of	

category-specific	 semantic	 processing	 has	 long	 been	 in	 focus	 (McCarthy	 and	Warrington,	

1988;	 Shallice,	 1988):	 modality-preferential	 cortices,	 including	 visual,	 auditory,	 olfactory,	

gustatory,	 somatosensory	 and	 motor	 regions,	 have	 been	 shown	 to	 differentially	 activate	

when	 specific	 semantic	 types	 are	 processed,	 for	 example	 animal	 vs.	 tool	 nouns	 or	 verbs	

typically	used	to	speak	about	different	 types	of	actions	 (Chao	et	al.,	1999;	Damasio	et	al.,	

1996;	Grisoni	et	al.,	2016;	Hauk	et	al.,	2004;	Kemmerer	et	al.,	2012;	Vukovic	et	al.,	2017).	

Also	studies	of	patients	with	 lesions	 in	modality-specific	regions	revealed	category-specific	

semantic	deficits	 (Damasio	et	al.,	1996;	Dreyer	et	al.,	2015;	Gainotti,	2010;	Neininger	and	

Pulvermüller,	2003;	Trumpp	et	al.,	2013;	Warrington	and	Mccarthy,	1983)	which	can	not	be	

explained	 by	 symbolic	 systems	 accounts	 presuming	 category-general	 semantic	 hubs.	

Likewise,	 these	 findings	 challenge	 proposals	 that	 see	 the	 semantic	 processing	 role	 of	

sensorimotor	 areas	 as	 optional,	 ancillary	 or	 epiphenomenal	 and	 deny	 them	 a	 genuine	

semantic	 conceptual	 function	 (Caramazza	 et	 al.,	 2014;	 Machery,	 2007;	 Mahon	 and	

Caramazza,	 2008).	 The	 evidence	 for	 multiple	 hubs	 and	 modality-specific	 areas	 for	
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conceptual-semantic	knowledge	is	difficult	to	reconcile	within	most	current	neurobiological	

models	of	symbol	processing.	

To	incorporate	the	diverging	semantic	theories	and	data	from	healthy	and	patient	studies	

described	above,	it	is	necessary	to	build	sophisticated	models	of	relevant	cortical	areas	that	

are	 biologically	 constrained	 by	 mimicking	 relevant	 features	 of	 brain	 function	 and	

connectivity.	 Ideally,	 such	 brain-constrained	 models	 may	 predict	 and	 offer	 mechanistic	

explanations	for	semantic	processing	in	the	human	brain.	Potentially,	such	modeling	efforts	

can	 confirm	 a	 given	 theoretical	 framework,	 for	 example	 the	 existence	 of	 distributed	

semantic	circuits	 spread	out	across	 several	 semantic	hubs	and	modality-preferential	areas	

or,	 as	 an	 alternative,	 the	 existence	 of	 a	 single	 focal	 ‘semantic	 hub’.	 Based	 on	 previous	

integrative	 proposals	 (Damasio,	 1989;	 Pulvermüller,	 2013),	 we	 hypothesize	 that	 semantic	

category-specific	 and	 category-general	 behaviours	 of	 different	 cortical	 areas	 are	 a	 direct	

consequence	of	the	neuroanatomical	connectivity	between	the	areas	involved	and	learning	

experiences	 that	 are	 essential	 for	 grounding	 concepts	 in	 knowledge	 about	 objects	 and	

actions.	 Here,	we	 attempt	 to	 address	 this	 theoretical	 hypothesis	with	 a	 neurobiologically	

constrained	 spiking	model	 of	 the	 cortex	 that	 in	 order	 to	 integrate	 data	 from	healthy	 and	

patient	studies	described	above.		

Recent	 simulations	 of	 cortical	 function	 and	 learning	 incorporating	 fine	microstructural	

and	physiological	details	of	millions	of	neurons	(Izhikevich	and	Edelman,	2008;	Markram	et	

al.,	 2011)	 have	 not	 yet	 addressed	 specific	 questions	 about	 the	 neurobiological	 basis	 of	

specific	 cognitive	 functions	 such	 as	 semantic	 processing.	 Previous	 connectionist	 models	

have	made	significant	progress	 in	explaining	 language	and	semantic	processing	 (Dell	et	al.	

1999;	Plaut	and	Gonnerman	2000;	Christiansen	and	Chater	2001),	but	most	of	them	do	not	

attempt	 to	 replicate	 realistic	 properties	 of	 the	 human	 brain.	 Although	 recent	 simulation	

studies	 included	 neuroanatomical	 information	 to	 model	 semantic	 processing,	 they	 have	

used	 learning	 mechanism	 (i.e.	 back-propagation	 -	 Chen	 et	 al.,	 2017;	 Ueno	 et	 al.,	 2011),	

which	 were	 argued	 to	 be	 biologically	 implausible	 (Mazzoni	 et	 al.,	 1991;	 O’Reilly,	 1998).	

Furthermore,	 these	 studies	 have	 incorporated	 just	 one	 semantic	 hub	 area	 in	 the	 anterior	

temporal	 lobe,	 whereas	 other	 evidence	 summarized	 above	 are	 not	 addressed.	 A	 recent	

modelling	 effort	 incorporates	 neuroanatomical	 structure	 and	 connectivity	 into	models	 of	

semantic	 processing	 (Garagnani	 and	 Pulvermüller,	 2016).	 By	 meticulously	 mimicking	 the	
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general	 parcellation	 of	 cortex	 into	 areas,	 their	 long-range	 cortico-cortical	 connections,	

features	of	 local	 connectivity	within	cortical	areas,	 local	and	global	 inhibitory	mechanisms	

regulating	 cortical	 activity,	 and	 realistic	 neurobiological	 learning	 mechanisms,	 a	 stepwise	

approximation	 to	 response	 properties	 of	 real	 brain-internal	 networks	 could	 be	 achieved.	

Still,	these	previous	implementation	study	has	fallen	short	of	implementing	the	complexity	

of	cortico-cortical	connectivity	and	the	activation	dynamics	of	spiking	cortical	neurons.	

Building	 upon	 these	 previous	 efforts	 with	 graded-response	 neural-network	 models	

(Garagnani	 and	 Pulvermüller,	 2016),	 we	 here	 set	 out	 to	 model	 the	 brain’s	 semantic	

mechanisms	using	a	mathematically	precise	model	of	multiple	cortical	areas,	incorporating	

spiking	neurons,	biologically	plausible	non-supervised	learning	mechanisms	and	connectivity	

structure	based	on	neuroanatomical	studies.	The	network	was	used	to	simulate	associative	

word	 learning	 by	 linking	 word-forms	 with	 their	 semantically-related	 object	 and	 action	

representations.	The	present	biologically	constrained	model	bridges	the	gap	between	neural	

mechanisms	and	conceptual	brain	functions,	offering	a	biological	account	of	how	aspects	of	

word	meaning	are	acquired,	stored,	and	processed	in	the	brain.		

Methods	and	Materials		

General	features	of	the	model		

We	implemented	a	neurobiologically	constrained	model	replicating	cortical	areas	of	fronto-

temporo-occipital	 lobes	and	 their	 connectivity	 to	 shed	 light	on	 the	mechanism	underlying	

semantic	processing	grounded	 in	action	and	perception.	We	created	a	neural	architecture	

with	15,000	representative	neurons	for	simulating	activity	in	twelve	cortical	areas	in	the	left	

language-dominant	 hemisphere	 (see	 Fig	 3.1A).	 These	 ‘areas’	 represented	 three	 levels	 of	

processing	–	primary,	 secondary	and	higher-association	cortex	–	 in	 four	modality-systems:	

(motor)	 frontal	 superior-lateral	 hand-motor,	 (articulatory)	 inferior	 face-motor,	 (auditory)	

superior-temporal	and	(visual)	inferior-temporo-occipital	system.	Two	of	these,	the	auditory	

and	 articulatory	 systems	 (areas	 highlighted	 in	 blue	 and	 red,	 Fig	 3.1A)	 are	 in	 perisylvian	

language	 cortex	 and	 appear	 most	 relevant	 for	 language	 processing	 (Fadiga	 et	 al.,	 2002;	

Pulvermüller,	 1999;	 Pulvermüller	 and	 Fadiga,	 2010;	 Zatorre	 et	 al.,	 1996).	 The	motor	 and	

visual	 system	 (yellow	 and	 green	 highlighted	 areas)	 are	 outside	 the	 perisylvian	 language	
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cortex	 (called	 ‘extrasylvian’	 in	 the	 present	work)	 and	 involved	 in	 processing	 visual	 object	

processing	(Ungerleider	and	Haxby,	1994),	and	the	execution	of	manual	actions		(Deiber	et	

al.,	1991;	Dum	and	Strick,	2005,	2002;	Lu	et	al.,	1994).		

	

	

Figure	 3.1.	 (A)	 Structure	 and	 connectivity	 of	 12	 frontal,	 temporal	 and	 occipital	 cortical	 areas	
relevant	 for	 learning	 the	 meaning	 of	 words	 related	 to	 actions.	 Perisylvian	 cortex	 comprises	 an	
inferior-frontal	 articulatory-phonological	 system	 (red	 colours),	 including	 primary	 motor	 cortex	
(M1i),	premotor	(PMi)	and	inferior-prefrontal	(PFi),	and	a	superior-temporal	acoustic-phonological	
system	 (areas	 in	 blue),	 including	 auditory	 parabelt	 (PB),	 auditory	 belt	 (AB)	and	primary	 auditory	
cortex	 (A1).	 Extrasylvian	 areas	 comprise	 a	 lateral	 dorsal	 hand-motor	 system	 (yellow	 to	 brown),	
including	 lateral	 prefrontal	 (PFL),	 premotor	 (PML)	 and	 primary	 motor	 cortex	 (M1L),	 and	 a	 visual	
‘what’	 stream	 of	 object	 processing	 (green),	 including	 anterior-temporal	 (AT),	 temporo-occipital	
(TO)	 and	 early	 visual	 areas	 (V1).	When	 learning	words	 in	 the	 context	 of	 perceived	objects	 or	 to	
actions,	both	peri-	and	extrasylvian	systems	are	involved.	Numbers	indicate	Brodmann	Areas	(BAs)	
and	 the	 arrows	 (black,	 purple	 and	 blue)	 represent	 long	 distance	 cortico-cortical	 connections	 as	
documented	by	neuroanatomical	studies.	(B)	Schematic	global	area	and	connectivity	structure	of	
the	implemented	model.	The	colours	indicate	correspondence	between	cortical	and	model	areas.	
(C)	Micro-connectivity	 structure	 of	 one	of	 the	 7,500	 single	 excitatory	 neural	 elements	modelled	
(labelled	‘e’).	Within-area	excitatory	links	(in	grey)	to	and	from	cell	e	are	limited	to	a	local	(19x19)	
neighbourhood	of	neural	elements	(light-grey	area).	Lateral	inhibition	between	e	and	neighbouring	
excitatory	elements	is	realised	as	follows:	the	underlying	cell	i	inhibits	e	in	proportion	to	the	total	
excitatory	 input	 it	 receives	 from	the	5x5	neighbourhood	 (dark-purple	shaded	area);	by	means	of	
analogous	 connections	 (not	 depicted),	 e	 inhibits	 all	 of	 its	 neighbours.	 Adapted	 from	 (Garagnani	
and	Pulvermüller,	2013).	
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The	model	replicates	a	range	of	 important	anatomical	and	physiological	 features	of	the	

human	 brain	 (e.g.,	 Garagnani	 et	 al.,	 2017,	 2008;	 Tomasello	 et	 al.,	 2017).	 As	 follow	 a	

summary	of	the	six	neurobiological	principles	incorporated	in	the	neural	network	model:	

(i) Neurophysiological	 dynamics	 of	 spiking	 pyramidal	 cells	 including	 temporal	

summation	 of	 inputs,	 threshold-based	 spiking,	 nonlinear	 transformation	 of	

membrane	 potentials	 into	 neuronal	 outputs,	 and	 adaptation	 (Connors	 et	 al.,	

1982;	Matthews,	2001);		

(ii) Synaptic	 modification	 by	 way	 of	 Hebbian-type	 learning,	 including	 the	 two	

biological	mechanisms	of	 long-term	potentiation	(LTP)	and	long-term	depression	

(LTD)	(Artola	and	Singer,	1993);	

(iii) Area-specific	global	regulation	mechanisms	and	local	lateral	inhibition	(global	and	

local	inhibition)	(Braitenberg,	1978;	Yuille	and	Geiger,	2003);		

 

(iv) within-area	 connectivity:	 a	 sparse,	 random	 and	 initially	 weak	 connectivity	 was	

implemented	 locally,	 along	 with	 a	 neighbourhood	 bias	 towards	 close-by	 links	

(Braitenberg	and	Schüz,	1998;	Kaas,	1997);		

(v) between-area	connectivity	based	on	neurophysiological	principles	and	motivated	

by	neuroanatomical	evidence;	and		

(vi) uncorrelated	white	noise	was	constant	present	in	all	neurons	during	all	stages	of	

learning	 and	 retrieval	 with	 additional	 noise	 added	 to	 the	 stimulus	 patterns	 to	

mimic	uncorrelated	input	conditions	(Rolls	and	Deco,	2010).	

Note	 that	 the	 connectivity	 structure	 implemented	 in	 the	 network	 reflects	 existing	

anatomical	 pathways	 between	 corresponding	 cortical	 areas	 of	 the	 cortex	 revealed	 by	

neuroanatomical	studies	using	diffusion	tensor	and	diffusion-weighted	imaging	(DTI/DWI)	in	

humans	and	non-human	primates	(Table	3.2,	Rilling	et	al.,	2011;	Thiebaut	de	Schotten	et	al.,	

2012).	 A	 detailed	 description	 of	 the	 single-neuron	properties,	 synaptic	 plasticity	 rule,	 and	

single-area	model	 structure	 is	provided	next,	 followed	by	details	of	 the	network	anatomy	

and	connectivity	structure.	
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Structure	and	function	of	the	spiking	model	

Each	 of	 the	 12	 simulated	 areas	 is	 implemented	 as	 two	 layers	 of	 artificial	 neuron-like	

elements	 (‘cells’),	 625	 excitatory	 and	625	 inhibitory,	 thus	 resulting	 in	 15,000	 cells	 in	 total	

(see	Fig.	 3.2b-c).	 Each	excitatory	 cell	 ‘e’	 consists	of	 a	 leaky	 integrate-and-fire	neuron	with	

adaptation	and	simulates	a	single	pyramidal	cell	representative	of	excitatory	spiking	activity	

in	 a	 cortical	 micro-column,	 while	 its	 twin	 inhibitory	 cell	 ‘i’	 is	 a	 graded-response	 cell	

simulating	the	average	inhibitory	response	of	the	cluster	of	interneurons	situated	in	a	local	

neighbourhood	 (Eggert	 and	 van	 Hemmen,	 2000;	Wilson	 and	 Cowan,	 1972).	 The	 state	 of	

each	cell	x	 is	uniquely	defined	by	 its	membrane	potential	V(x,t),	specified	by	the	following	

equation:	

			

	

where	 VIn	 (x,t)	 is	 the	 net	 input	 acting	 upon	 cell	 x	 at	 time	 t	 (sum	 of	 all	 inhibitory	 and	

excitatory	postsynaptic	potentials	–	I/EPSPs;	inhibitory	synapses	are	given	a	negative	sign),	τ	

is	 the	 membrane’s	 time	 constant,	 k1,	 k2	 are	 scaling	 values	 (see	 below	 for	 the	 specific	

parameter	values	used	in	the	simulations)	and	η(·,t)	 is	a	white	noise	process	with	uniform	

distribution	 over	 [-0.5,0.5].	 Note	 that	 noise	 is	 an	 inherent	 property	 of	 each	 model	 cell,	

intended	 to	 mimic	 the	 spontaneous	 activity	 (baseline	 firing)	 of	 real	 neurons.	 Therefore,	

noise	was	constantly	present	in	all	areas,	 in	equal	amounts	(inhibitory	cells	have	k2=0,	 i.e.,	

the	noise	is	generated	by	the	excitatory	cells	in	the	model	for	convenience).	

The	output	(or	transformation	function)	ϕ	of	an	excitatory	cell	e	is	defined	as	follows:		

	

	

Thus,	an	excitatory	cell	e	spikes	(=1)	whenever	 its	membrane	potential	V(e,t)	overcomes	a	

fixed	 threshold	 thresh	 by	 the	 quantity	 αω.(e,t)	 (where	 α	 is	 a	 constant	 and	ω	 is	 defined	

below).	 Inhibitory	 cells	 are	 graded	 response	 neurons	 as	 they	 intend	 to	 represent	 the	

average	impact	of	a	cluster	of	local	interneurons;	the	output	ϕ(i,t)	of	an	inhibitory	neuron	i	

is	0	if	V(i,t)<0	and	V(i,t)	otherwise.		

0     otherwise  

1      if   (V(e,t) ˗ α ω (e, t)) >  thresh 
(B2) ϕ(e,t) = 

(B1) τ ⋅
dV (x, t)
dt

= −V (x, t)+ k1(VIn (x, t)+ k2η(x, t))
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To	simulate	neuronal	adaptation(Kandel	et	al.,	2000),	function	ω(·,t)	 is	defined	so	as	to	

track	 the	 cell’s	most	 recent	 firing	 rate	 activity.	More	 precisely,	 the	 amount	 of	 adaptation	

ω(e,t)	of	cell	e	at	time	t	is	defined	by:	

	

	

where	 	is	the	‘adaptation’	time	constant.	The	solution	ω(e,t)	of	Eq.	(B3.1)	is	the	low-

pass-filtered	output	ϕ	of	cell	e,	which	provides	an	estimate	of	the	cell’s	most	recent	firing-

rate	 history.	 A	 cell’s	 average	 firing	 activity	 is	 also	 used	 to	 specify	 the	 network’s	 Hebbian	

plasticity	 rule	 (see	 Eq.	 (B4)	 below);	 in	 this	 context,	 the	 (estimated)	 instantaneous	 mean	

firing	rate	ωE(e,t)	of	an	excitatory	neuron	e	is	defined	as:	

	

	

Local	(lateral)	 inhibitory	connections	(see	Fig.	3.2c)	and	area-specific	 inhibition	are	also	

implemented,	 realising,	 respectively,	 local	 and	 global	 competition	 mechanisms(Duncan,	

2006,	1996).	More	precisely,	in	Eq.	(B1)	the	input	VIn(x,t)	to	each	excitatory	cell	of	the	same	

area	 includes	 an	 area-specific	 (‘global’)	 inhibition	 term	 kG.ωG(e,t)	 (with	 kG	 a	 constant	 and	

ωG(e,t)	defined	below)	subtracted	from	the	total	I/EPSPs	postsynaptic	potentials	VIn	in	input	

to	the	cell;	this	regulatory	mechanism	ensures	that	area	(and	network)	activity	is	maintained	

within	physiological	levels	(Braitenberg	and	Schüz,	1998):	

	

	

Excitatory	links	within	and	between	(possibly	non-adjacent)	model	areas	are	established	

at	 random	 and	 limited	 to	 a	 local	 (topographic)	 neighbourhood;	 weights	 are	 initialised	 at	

random,	in	the	range	[0,	0.1].	The	probability	of	a	synapse	to	be	created	between	any	two	

cells	 falls	 off	 with	 their	 distance	 (Braitenberg	 and	 Schüz,	 1998)	 according	 to	 a	 Gaussian	

function	clipped	to	0	outside	the	chosen	neighbourhood	(a	square	of	size	n=19	for	excitatory	

and	 n=5	 for	 inhibitory	 cell	 projections).	 This	 produces	 a	 sparse,	 patchy	 and	 topographic	

connectivity,	as	typically	found	in	the	mammalian	cortex	(Amir	et	al.,	1993;	Braitenberg	and	

Schüz,	1998;	Douglas	and	Martin,	2004;	Kaas,	1997).		
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The	 Hebbian	 learning	 mechanism	 implemented	 simulates	 well-documented	 synaptic	

plasticity	phenomena	of	long-term	potentiation	(LTP)	and	depression	(LTD),	as	implemented	

by	 Artola,	 Bröcher	 and	 Singer	 (Artola	 et	 al.,	 1990;	 Artola	 and	 Singer,	 1993).	 This	 rule	

provides	a	realistic	approximation	of	known	experience-dependent	neuronal	plasticity	and	

learning	(Finnie	and	Nader,	2012;	Malenka	and	Bear,	2004;	Rioult-Pedotti	et	al.,	2000),	and	

includes	both	(homo-	and	hetero-synaptic,	or	associative)	LTP,	as	well	as	homo-	and	hetero-

synaptic	LTD.	In	the	model,	we	discretized	the	continuous	range	of	possible	synaptic	efficacy	

changes	into	two	possible	levels,	+Δ	and	−	Δ	(with	Δ<<1	and	fixed).	Following	Artola	et	al.,	

we	defined	as	 ‘active’	 any	 (axonal)	 projection	of	 excitatory	 cell	e	 such	 that	 the	estimated	

firing	 rate	ωE(e,t)	 of	 cell	 e	 at	 time	 t	 (see	 Eq.	 (B3.2))	 is	 above	θpre,	 where	θpre∈[0,1]	 is	 an	

arbitrary	threshold	representing	the	minimum	level	of	presynaptic	activity	required	for	LTP	

to	 occur.	 Thus,	 given	 a	 pre-synaptic	 cell	 i	 making	 contact	 onto	 a	 post-synaptic	 cell	 j,	 the	

change	Δw(i,j)	inefficacy	of	the	(excitatory-to-excitatory)	link	from	i	to	j	is	defined	as	follows:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

0         otherwise  

(B4) Δw(i,j) = 

+Δ   if ω.E(i,t)≥ θpre and V(j,t) ≥ θ+         (LTP)          

−Δ  if ω .E(i,t)≥ θpre and θ− ≤ V(j,t) < θ+  (homosynaptic LTD)
  
−Δ   if ω .E(i,t)< θpre and  V(j,t) ≥ θ+        (heterosynaptic LTD)  
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The	values	in	table	3.1	describes	the	parameters	used	during	word	learning	simulation	in	

the	network,	which	were	chosen	on	the	basis	of	previous	simulations	(e.g.,	Garagnani	et	al.,	

2009,	 2007;	 Garagnani	 and	 Pulvermüller,	 2011;	 Schomers	 et	 al.,	 2017;	 Tomasello	 et	 al.,	

2017).	

Table	3.1	Parameter	values	used	during	simulations	

Eq.(B1)			 Time	constant	(excitatory	cells)	 τ	=	2.5	(simulation	time-steps)		

Time	constant	(inhibitory	cells)		 τ		=	5	(simulation	time-steps)	

		 Total	input	rescaling	factor	 	 k1	=	0.01	

Noise	amplitude	 	 	 k2=	5·√(24/Δt)	

Global	inhibition	strength		 	 kG=	0.60	

Eq.	(B2)		 Spiking	threshold	 	 	 thresh	=	0.18	

Adaptation	strength	 	 	 α=	7.0	

Eq.(B3.1)	 Adaptation	time	constant		 	 τADAPT	=	10	(time	steps)	

Eq.(B3.2)	 Rate-estimate	time	constant			 τFavg	=	30	(time	steps)	

Eq.(B3.3)		 Global	inhibition	time	constant		 τGLOB	=	12	(time	steps)	

Eq.(B4)		 Postsynaptic	membrane	potential	thresholds:		

θ+=0.15	

θ–=0.14	

Presynaptic	output	activity	required	for	LTP:		

θpre=0.05	

Learning	rate		 	 	 	 Δ	=	0.0008	
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Simulated	brain	areas	and	their	connectivity	structure		

The	 spiking	 model	 mimics	 12	 different	 cortical	 areas	 with	 area-intrinsic	 connections	 and	

mutual	 connections	 between	 them.	 Six	 areas	 were	 modelled	 for	 the	 left-perisylvian	

language	cortex	including	the	primary	auditory	cortex	(A1),	auditory	belt	(AB),	and	modality-

general	 parabelt	 areas	 (PB)	 constituting	 the	 auditory	 system,	 and	 the	 inferior	 part	 of	

primary	 motor	 cortex	 (M1i),	 inferior	 premotor	 (PMi)	 and	 multimodal	 prefrontal	 motor	

cortex	 (PFi)	 representing	 the	 articulatory	 system	 (i.e.	 inferior	 face-motor	 areas).	

Additionally,	six	extrasylvian	areas	were	modelled	 including	the	primary	visual	cortex	(V1),	

temporo-occipital	 (TO)	and	anterior-temporal	areas	 (AT)	 for	 the	ventral	 visual	 system	and	

the	dorsolateral	 fronto-central	motor	 (M1L),	 premotor	 (PML),	 and	prefrontal	 cortices	 (PFL)	

for	the	motor	system.	

The	 network’s	 connectivity	 structure	 reflects	 relevant	 features	 of	 cortical	 connectivity	

between	 corresponding	 areas	 of	 the	 cortex.	 These	 were	 modelled	 between	 neighbour	

cortical	areas	within	each	of	the	4	‘streams’	(see	black	arrows	Fig.	3.1	a-b)	and	between	all	

pairs	 of	multimodal	 areas	 (PB,	 PFi,	 AT	 and	 PFL)	 through	 the	 long	 distance	 cortico-cortical	

connections	(purple	arrows).	Additionally,	non-adjacent	‘jumping’	links	were	included	within	

the	superior	or	inferior	temporal	and	superior	or	inferior	frontal	cortices	(blue	arrows).	The	

neuroanatomical	 evidence	 motivated	 by	 studies	 using	 diffusion	 tensor	 and	 diffusion-

weighted	imaging	(DTI/DWI)	in	humans	and	non-humans	primates	are	reported	in	table	3.2	

and	described	in	previous	study	(Garagnani	et	al.,	2017).	
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Table	3.2	Connectivity	structure	of	the	modelled	cortical	areas	

Between-area	connectivity	(black	arrows)	

Modelled	Areas	 References	

Perisylvian	system		

A1,	AB,	PB	 (Kaas	and	Hackett,	2000;	Pandya,	1995;	Rauschecker	and	Tian,	2000)	

PFi,	PMi,	M1i	 (Pandya	and	Yeterian,	1985;	Young	et	al.,	1995)	

Extrasylvian	system	

V1,	TO,	AT	 (Bressler	et	al.,	1993;	Distler	et	al.,	1993)	

PFL,	PML,	M1L	 (Arikuni	et	al.,	1988;	Dum	and	Strick,	2005,	2002;	Lu	et	al.,	1994;	

Pandya	and	Yeterian,	1985;	Rizzolatti,	G.	Luppino,	2001)	

Between	system	

AT,	PB	 (Gierhan,	2013)	

PFi,	PFL	 (Yeterian	et	al.,	2012)	

Long	distance	cortico-cortical	connections	(purple	arrows)	

Perisylvian	system	

PFi	,	PB	 (Catani	et	al.,	2005;	Makris	and	Pandya,	2009;	Meyer	et	al.,	1999;	

Parker	et	al.,	2005;	Paus	et	al.,	2001;	Rilling	et	al.,	2008;	Romanski	et	

al.,	1999b)	

Extrasylvian	system	

AT,	PFL	 (Bauer	and	Jones,	1976;	Chafee	and	Goldman-Rakic,	2000;	Eacott	and	

Gaffan,	1992;	Fuster	et	al.,	1985;	Parker,	1998;	Ungerleider	et	al.,	
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1989;	Webster	et	al.,	1994)	

Between	system	

PB,	PFL	 (Pandya	and	Barnes,	1987;	Romanski	et	al.,	1999b,	1999a)	

AT,	PFi	 (Pandya	and	Barnes,	1987;	Petrides	and	Pandya,	2009;	Rilling,	2014;	

Romanski,	2007;	Ungerleider	et	al.,	1989;	Webster	et	al.,	1994)	

High-order	‘jumping’	links	(blue	arrows)	

Perisylvian	system	(Rilling	et	al.,	2011,	2008;	Rilling	and	Van	Den	Heuvel,	2018;	Thiebaut	de	

Schotten	et	al.,	2012)	

A1,	PB	 (Pandya	and	Yeterian,	1985;	Young	et	al.,	1994)	

PB,	PMi	 (Rilling	et	al.,	2008;	Saur	et	al.,	2008)	

AB,	PFi	 (Kaas	and	Hackett,	2000;	Petrides	and	Pandya,	2009;	Rauschecker	and	

Scott,	2009;	Romanski	et	al.,	1999a)	

PFi,	M1i	 (Deacon,	1992;	Guye	et	al.,	2003;	Young	et	al.,	1995)	

Extrasylvian	system	(see	also	Thiebaut	de	Schotten	et	al.,	2012)	

V1,	AT		 (Catani	et	al.,	2003;	Wakana	et	al.,	2004)	

AT,	PML	 (Bauer	and	Fuster,	1978;	Chafee	and	Goldman-Rakic,	2000;	Fuster	et	

al.,	1985;	Pandya	and	Barnes,	1987;	Seltzer	and	Pandya,	1989)	

TO,	PFL	 (Bauer	and	Jones,	1976;	Fuster	et	al.,	1985;	Fuster	and	Jervey,	1981;	

Makris	and	Pandya,	2009;	Seltzer	and	Pandya,	1989)	

PFL,	M1L	 (Deacon,	1992;	Guye	et	al.,	2003;	Young	et	al.,	1995)	

	



	
	

	
	

89	

Simulating	word	acquisition			

Prior	 to	 network	 training,	 all	 synaptic	 links	 (between-	 and	within-areas)	 connecting	 single	

cells	were	established	at	random	(see	Methods	section	under	‘Structure	and	function	of	the	

spiking	 model’).	 Based	 on	 Hebbian	 (Hebb	 1949)	 learning	 principles,	 word-meaning	

acquisition	was	simulated	under	the	impact	of	repeated	sensorimotor	pattern	presentations	

(D’Esposito,	2007;	Fuster,	2003)	to	the	primary	areas	of	the	network	(see	Fig	3.2),	as	follows:	

Each	 network	 instance	 used	 twelve	 distinct	 sets	 of	 sensorimotor	 neural	 patterns	

representing	six	action-	and	six	object-related	words.	Each	pattern	consisted	of	a	fixed	set	of	

19	 cells	 chosen	 at	 random	 within	 the	 25	 x	 25	 cells	 of	 an	 area	 (ca.	 3%	 of	 the	 cells)	 and	

simultaneously	activated	in	one	of	the	primary	areas	of	the	network.	The	learning	of	object-	

and	 action-related	 words	 were	 grounded	 in	 sensorimotor	 information	 presented	 to	 the	

primary	cortices	of	the	model:	besides	perisylvian	auditory	A1	and	articulatory	M1i	activity,	

object-related	 words	 received	 concordant	 visual	 (V1)	 and,	 similarly,	 action-related	 words	

received	lateral	motor	area	(M1L)	grounding	activity.	Note	that	white	(so-called	‘contextual’)	

noise	 was	 continuously	 presented	 to	 all	 primary	 areas	 of	 the	 network,	 and	 thus	

superimposed	 on	 all	 learning	 patterns.	 This	 partly	 accounted	 for	 the	 variability	 of	

perceptions	 and	 actions	 of	 the	 same	 type.	 To	 sum	 up,	 the	 network	 was	 set	 up	 to	 learn	

correlations	between	word	and	 referential	 semantic	 information	 in	 action	and	perception	

and	to	investigate	which	type	of	representations	(i.e.	cell	assemblies)	would	develop	in	the	

model	 as	 a	 result	 of	 learning	 and	 cortical	 structure.	 Note	 that	 similar	 approaches	 to	

simulating	 spontaneous	 emergence	 of	 associations	 between	 articulatory	 and	 acoustic-

phonetic	neural	patterns	have	been	used	in	other	computational	studies	(e.g.,	Guenther	et	

al.,	2006;	Westermann	and	Miranda,	2004),	although	these	previous	works	did	not	attempt	

to	model	semantic	processes	(i.e.,	word	meaning	acquisition).	

Sensorimotor	 neural	 patterns	 in	 the	 arrangement	 of	 3	 x	 19	 cells,	 were	 presented	 for	

3000	 times	 to	 the	 relevant	 primary	 regions	 (this	 number	 was	 chosen	 on	 the	 basis	 of	

previous	 simulations	 obtained	with	 a	 six	 area	model,	 showing	 that	 no	 substantial	 change	

between	1000	and	2000	 learning	steps	was	 revealed,	Garagnani	et	al.,	2009;	Schomers	et	

al.,	2017).	A	word	pattern	was	presented	for	16	simulation	time	steps,	followed	by	a	period	

during	 which	 no	 input	 (interstimulus	 interval	 –	 ISI)	 was	 given.	 The	 next	 learning	 step	

(pattern	presentation)	occurred	only	when	the	global	inhibition	of	PFi	and	PB	areas	reduced	
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below	a	 specific	 fixed	 threshold	allowing	 the	activity	 to	 return	 to	a	baseline	value	 so	 that	

one	 trial	 is	 not	 affecting	 the	 next	 one.	 Only	 the	 inherent	 baseline	 noise	 (simulating	

spontaneous	 neuronal	 firing)	 and	 ‘contextual’	 noise	 were	 present	 in	 the	 neural	 network	

during	each	ISI.		

After	 learning,	 following	 a	 procedure	 which	 has	 become	 standard	 in	 our	 simulation	

studies	 (Garagnani	 et	 al.,	 2008,	 2007;	Garagnani	 and	Pulvermüller,	 2016;	 Schomers	et	 al.,	

2017;	 Tomasello	 et	 al.,	 2017),	 we	 identified	 and	 quantified	 the	 neurons	 forming	 the	 12	

distributed	CA	circuits	that	emerged	across	the	network	areas	during	object	and	action	word	

production.	 For	 simulating	 ‘word	 production’	 in	 the	 network,	 the	 motor	 and	 auditory	

neurons	of	each	word-form	in	areas	M1	and	A1	were	activated	together	for	15	time-steps.	

Separate	analyses	were	performed	for	object	recognition	and	action	execution,	which	was	

simulated	by	activating	the	corresponding	stimulation	pattern	in	visual	or	motor	cortex	(V1	

or	 M1)	 thought	 to	 represent	 the	 object-related	 or	 action-related	 schemas	 semantically	

linked	to	the	word-forms.	During	this	period,	we	computed	and	displayed	the	average	firing	

rate	of	each	excitatory	cell	(7500	e-cells,	cell’s	responses).	

As	 an	 estimate	 of	 a	 cell’s	 average	 firing-rate	 here	we	 used	 the	 value	ωE(e,t)	 from	 Eq.	

(B3.2),	integrated	with	time-constant	𝜏!"#$=	5.	An	e-cell	was	then	taken	to	be	a	member	of	

a	 given	 CA	 circuit	 only	 if	 its	 time-averaged	 rate	 (output	 value	 or	 ‘firing	 rate’)	 reached	 a	

threshold	θ	which	was	area-	and	cell-assembly	specific,	and	defined	as	a	 fraction	γ	of	 the	

maximal	single-cell’s	time-averaged	response	in	that	area	to	pattern	w.	More	formally,		

θ	=	θA(w)	=	γ	𝑚𝑎𝑥
!∈!

𝑂(𝑥, 𝑡)!	

where	𝑂(𝑥, 𝑡)!	is	the	estimated	time-averaged	response	of	cell	x	to	word	pattern	w	(see	in	

Method	 section	 under	 ‘Structure	 and	 function	 of	 the	 spiking	 model’)	 and	 γ∈[0,1]	 is	 a	

constant	(we	used	γ	=	0.5	on	the	basis	of	previous	simulation	results,	see	Garagnani	et	al.	

2008;	Garagnani	et	al.	2009;	Tomasello	et	al.	2017).	This	was	computed	for	each	of	the	12	

trained	network	instances,	averaging	the	number	of	CA	cells	per	area	over	the	6	object-	and	

6	action-related	words.		

To	 statistically	 test	 for	 the	 presence	 of	 significant	 differences	 in	 the	 topographical	 CA	

distribution	 across	 the	 twelve	 network	 areas,	 for	 each	 network	 instance	we	 performed	 a	

repeated-measures	 Analyses	 of	 Variance	 (ANOVA).	 A	 4-way	 ANOVA	was	 run	with	 factors	
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WordType	 (two	 levels:	Object	 vs.	Action),	 PeriExtra	 (two	 levels:	Perisylvian	 =	 {A1,	 AB,	 PB,	

M1i,	 PMi,	 PFi},	 Extrasylvian	 cortex	 =	 {V1,	 TO,	 AT,	 M1L,	 PML,	 PFL}),	 TemporalFrontal	

(TempFront)	(2	 levels:	temporal	areas	=	{A1,	AB,	PB,	V1,	TO,	AT},	frontal	areas={M1L,	PML,	

PFL,	M1i,	PMi,	PFi})	and	Areas	(three	levels:	Primary	=	{A1,	V1,	M1L,	M1i},	Secondary	=	{TO,	

AB,	 PML,	 PMi}	 and	 Central	 =	 {PB,	 AT,	 PFL,	 PFi}	 areas).	 Finally,	 we	 further	 run	 a	 second	

statistical	analysis	on	the	data	of	the	6	perisylvian	and	6	extrasylvian	areas	separately	with	

factors	‘WordType’,	‘TempFront’,	‘Areas’,	as	described	above.		

Results	

Word	learning	results	

Twelve	different	 instances	of	spiking	networks	were	initialized	at	random	having	the	same	

architecture	as	described	above	(Fig	3.1.B),	providing	analogues	of	12	human	subjects	 in	a	

word	learning	experiment.	Word-meaning	acquisition	was	then	simulated	under	the	impact	

of	repeated	sensorimotor	pattern	presentations,	in	the	3	of	the	4	sub-systems	(see	Fig	3.2),	

by	 co-activating	 specific	 neurons	 in	 their	 respective	 primary	 cortex.	 The	 cells	 activated	 in	

M1i	and	A1	represented	articulatory	and	acoustic-phonetic	features	by	which	spoken	words	

are	typically	characterized,	while	those	presented	to	V1	and	M1L	simulated	visually-related	

and	 action-related	 semantic	 features.	 This	 simulates	 associative	 learning	of	 object-related	

word,	whereby	the	word	is	uttered	while	the	referent	object	is	present	(Vouloumanos	and	

Werker,	2009)	or	the	related	action	is	being	performed	(Tomasello	and	Kruger,	1992).	While	

each	learning	pattern	directly	activated	three	primary	areas,	the	fourth	unrelated	area	(M1i	

for	 object-	 and	 V1	 for	 action-related	 words)	 received	 further	 uncorrelated	 noise	 pattern	

input	 that	 changed	 inconsistently	 over	 learning	 episodes.	 This	 aimed	at	 ensuring	 that	 the	

correlation	between	word-form	activity	in	perisylvian	cortex	and	semantic	information	was	

high	in	one	modality	(for	action	/object	words,	in	motor	and	visual	systems	respectively)	but	

low	in	the	non-relevant	one.		

Cell	 assemblies	 gradually	 emerged	 as	 a	 consequence	 of	 learning	 with	 different	

assemblies	 responding	 to	different	 input	patterns.	These	neural	 circuits	 spanned	different	

areas,	 linking	up	word-forms	 in	the	auditory	and	articulatory	sub-systems	with	referential-

semantic	information	in	the	visual	and	motor	sub-systems.	Fig	3.2	illustrates	6	of	the	12	CA-
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distributions	 emerging	 across	 the	 novel	 spiking	 network	 along	 with	 the	 sensorimotor	

pattern	 presented	 as	 input	 during	 learning.	 Each	 set	 of	 12	 squares	 is	 a	 snapshot	 of	 a	

distributed	word-related	CA	circuit	across	the	network	areas;	3	for	object-related	words	(A)	

and	3	for	action-related	(B)	words	of	one	network	 instance	(the	other	simulated	networks	

exhibited	similar	results).	Each	white	pixel	in	the	squares	represents	an	active	cell	of	the	CA.	
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Figure	3.2.	Distributions	of	cell-assemblies	(CAs)	emerging	in	the	12	area	network	during	simulation	
of	word	learning	in	the	semantic	context	of	visual	perception	(A)	and	action	execution	(B).	Results	of	
one	typical	instantiation	of	the	model	in	Fig	1b	are	shown,	using	the	same	area	labels.	Each	set	of	12	
squares	(in	black)	 illustrates	one	specific	network	area,	with	white	dots	 indexing	 the	distribution	of	
CA	neurons	across	the	12	network	areas	as	a	result	of	sensorimotor	pattern	presentation	in	3	of	the	4	
primary	areas.	The	perisylvian	cortex	was	always	stimulated,	which	mimics	the	learning	of	a	spoken	
word	 form	 characterised	 by	 articulatory-acoustic	 features,	 while	 object	 words	 (A)	 received	
concordant	 stimulation	 to	 visual	 area	 (V1)	 and	 action	 words	 (B)	 to	motor	 area	 (M1i).	 Note	 that	 a	
random	pattern	simulating	realistic	noise	 input,	changing	in	every	 learning	phase,	was	presented	to	
the	non-relevant	system	(see	Methods	section).	As	a	consequence	of	learning,	CA	circuits	emerged	in	
the	 network	which	 extends	 into	higher	 and	 primary	 visual	 cortex	 (V1,	 TO,	 but	 not	M1L)	 for	 object	
words.	In	contrast,	network	correlates	of	action-related	words	extend	into	lateral	motor	cortex	(M1L,	
PML,	but	not	V1),	thus	semantically	grounding	words	in	information	about	actions.	For	convenience,	
the	area	structure	of	the	network	is	repeated	at	the	top.	
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The	CA	circuits	in	Fig	3.2	show	roughly	the	same	spread	across	the	perisylvian	areas	for	

object	 and	 action-related	 words.	 By	 contrast,	 the	 visual	 and	 motor	 sub-systems	 of	 the	

extrasylvian	 cortex	 appear	 to	 show	 a	 different	 pattern	 of	 CA	 cell	 distribution,	 namely	 a	

double	 dissociation,	 i.e.	 object-related	words	 seemed	 to	 extend	more	 to	 the	 visual	 areas	

(V1,	TO)	and	less	to	the	motor	areas	(PML,	M1L)	and	vice	versa	for	action-related	words.	

Figure	3.3	illustrates	examples	of	CA	circuit	activation	(i.e.	each	white	pixel	represents	a	

spike)	 after	 the	 training	 has	 been	 undertaken.	 The	 network	 was	 confronted	 with	 the	

acoustic	 component	 (input	 pattern	 in	 primary	 auditory	 area)	 representing	 the	 auditory	

word-forms	of	the	learned	(A)	object-	and	action-related	(B)	words,	which	in	turn	caused	the	

‘ignition’	 of	 the	 whole	 CA	 circuit	 for	 that	 specific	 word-pattern.	 The	 snapshot	 numbers	

indicate	simulation	time-steps	of	the	network	activity.	Similarly,	as	in	the	distribution	of	the	

emerging	 CA	 circuits	 illustrated	 in	 Fig	 3.2,	 action-	 and	 object-related	 word	 recognition	

exhibited	 a	 semantic	 category-specific	 spreading	 of	 activity	 in	 the	 modality-preferential	

areas,	 which	 is	 near	 simultaneous	 (i.e.	 synchronous	 spikes)	 binding	 information	 from	

phonological	 (articulatory-acoustic)	 and	 semantic	 information.	 Interestingly,	 the	 re-

activation	of	 the	word-related	cell	assemblies	across	 the	cortical	areas	exhibit	 the	distinct	

consecutive	neuronal	and	cognitive	processes;	the	stimulation	phase	(time	steps	1-2),	which	

corresponds	to	word	perception	(orange	pixel),	 the	full	activation	or	 ‘ignition’	phase	(time	

steps	 5-8),	 the	 correlate	 of	 word	 comprehension	 (magenta	 pixel),	 and	 the	 reverberant	

maintenance	of	activity	 (time	steps	12-14),	which	underpins	verbal	working	memory	(blue	

pixels).	

The	bar	graph	 in	Fig	3.4	 reports	 the	topographical	distribution	of	 the	CA	circuits	across	

the	network	areas	averaged	over	12	networks.	Different	panels	show	results	from	the	word	

production	(A)	and	object	and	action	recognition	(B)	 ‘experiments’.	 In	each	panel,	average	

numbers	 of	 cell	 assembly	 neurons	 (plus	 standard	 errors)	 are	 shown	 for	 each	 area,	 with	

extrasylvian	areas	displayed	at	the	top	and	perisylvian	ones	at	the	bottom.	Intriguingly,	the	

extrasylvian	 areas	 show	 a	 different	 CA	 distribution	 between	 the	 two	 word-type	 circuits,	

while	the	perisylvian	language	areas	seem	not	to	show	any	word-category	differences.		
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Figure	3.3.	Activation	spreading	in	the	12	area	network	showing	the	simulated	recognition	of	object-	
and	 action-related	 words	 (see	 CA	 #6	 and	 CA	 #10	 in	 Fig	 2,	 respectively).	 Network	 responses	 to	
stimulation	of	A1	with	the	‘auditory’	patterns	of	 two	of	the	 learned	words;	similar	to	Fig	2,	the	12	
network	 areas	 are	 represented	 as	 12	 squares,	 but,	 in	 this	 case,	 selected	 snapshots	 of	 network’s	
activity	are	shown.	The	re-activation	process	comes	in	different	consecutive	neuronal	and	cognitive	
phases,	 the	 stimulation	 phase,	 which	 corresponds	 to	 word	 perception	 (orange	 pixel),	 the	 full	
activation	 or	 ‘ignition’	 phase,	 the	 correlate	 of	 word	 comprehension	 (magenta	 pixel),	 and	 the	
reverberant	maintenance	 of	 activity,	 which	 underpins	 verbal	 working	 memory	 (blue	 pixels).	 Each	
coloured	pixel	 indicates	 one	 spike	 of	 the	CA	 circuit	 at	 a	 given	 time	 step.	At	 the	 top,	 the	 12	 brain	
areas	modelled	are	shown.	
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Figure	 3.4.	 Mean	 numbers	 of	 cell	 assembly	 neurons	 in	 different	 model	 areas	 after	 simulating	 the	
learning	of	action-	(light	grey)	and	object-related	words	(dark	grey)	during	word	production	(A)	and	
object	and	action	recognition	(B);	error	bars	show	standard	errors	over	networks.	(A)	Simulated	word	
production	 (simultaneous	presentation	 of	 articulatory-auditory	 patterns	 in	A1	 and	M1i	 areas)	 after	
word	 meaning	 acquisition.	 The	 extrasylvian	 areas	 (upper	 part)	 whose	 cells	 can	 be	 seen	 as	 circuit	
correlates	of	word	meaning	show	a	double	dissociation,	with	relatively	more	strongly	developed	CAs	
for	object-	than	for	action-related	words	in	primary	and	secondary	visual	areas	(V1,	TO),	but	stronger	
CAs	 for	 action-related	 than	 for	 object-related	 words	 in	 dorsolateral	 primary	 motor	 and	 pre-motor	
cortices	(PML,	M1L).	Also,	the	semantic	hub	areas	(PFi,	AT)	showed	a	degree	of	dissociation	between	
the	two	word	types.	Data	 from	the	perisylvian	cortex	 (lower	part),	namely	articulatory	and	auditory	
areas,	 whose	 cells	 can	 be	 seen	 as	 circuit	 correlates	 of	 spoken	 word-forms	 do	 not	 show	 category-
specific	effects.	Brain	areas	and	their	connectivity	structure	are	also	illustrated.	The	shaded	areas,	but	
not	the	coloured	boxes,	 indicate	 location	in	the	cortex.	 	(B)	Simulated	object	and	action	recognition	
(alternated	presentation	of	sensorimotor	patterns	in	visual	(for	object)	and	in	motor	areas	(for	action	
words)).	The	present	simulation	exhibits	similar	results	to	the	word	production	simulation.	The	small	
horizontal	 segment	 indicates	 the	stimulus	 input	presentation.	Asterisks	 indicate	 that,	within	a	given	
area,	 the	number	 of	 CA	 cells	 significantly	 differed	between	 the	 circuits	 of	 action	 and	 object	words	
(Bonferroni-corrected	planned	comparison	tests).	
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Furthermore,	independently	of	whether	an	object	or	action-related	word	is	represented,	

the	word	learning	results	showed	higher	density	of	CA	cells	in	the	connector	hubs	(PB,	PFi,	

AT	and	PFL)	than	in	the	secondary	(AB,	PMi,	TO,	PML)	and	primary	areas	(A1,	M1i,	V1,	M1L).	

Similar	results	were	revealed	for	both	word	production	and	action	and	object	recognition,	

which	 is	 in	 line	with	 the	differential	 CA	 topographies	 already	noted	 above	 and	 in	 Fig	 3.2.	

However,	there	were	minor	differences	in	the	estimated	cell	assembly	topographies,	as	the	

relatively	 larger	 number	 of	 CA	 cells	 in	 the	 primary	 areas	 of	 the	 extrasylvian	 system	were	

obtained	 for	 object	 and	 action	 recognition	 compared	 to	 word	 production,	 which	 was	

(trivially)	due	to	the	stimulus	presentation	there.		

The	 4-way	 repeated	 measurement	 ANOVA	 (with	 factors	 WordType,	 PeriExtra,	

TemporalFrontal	 and	 Areas)	 performed	 on	 the	 word	 production	 data	 from	 all	 of	 the	 12	

network	 areas	 fully	 confirmed	 the	 empirical	 and	 visual	 observation	 described	 above.	 A	

highly	 significant	 interaction	 emerged	 with	 factors	 WordType,	 PeriExtra,	 TempFront	 and	

Areas	(F2,22	=	14.012,	p	<	.0002),	revealing	different	CA	circuits	across	the	12	area	network	

between	 object-	 and	 action-related	 words.	 A	 main	 effect	 of	 Areas	 (F2,22	 =	 265.721,	 p	 <	

.0001),	 indicating	 the	 different	 CA	 cell	 densities	 distributed	 across	 the	 network	 as	 noted	

above,	namely	higher	CA	cells	 in	hubs	than	in	secondary	regions	(p	<	.0001),	and	higher	in	

secondary	 than	 in	primary	cortices	 (p	<	 .0001).	We	separately	 ran	a	3-way	ANOVA	on	 the	

data	 from	 the	 two	 systems,	 because	 of	 the	 significant	 interaction	 between	 peri-	 and	

extrasylvian	 areas.	 As	 expected,	 the	 extrasylvian	 system	 revealed	 a	 highly	 significant	

interaction	 of	 all	 3	 factors	 WordType,	 TempFront	 and	 Areas	 (F2,22	 =	 53.11,	 p	 <	 .0001),	

confirming	 the	 word	 category	 dissociation	 in	 the	 CA	 topographies	 and	 local	 cell-density	

distributions	across	the	extrasylvian	regions	as	suggested	by	Figs	3.2	and	3.3.	No	significant	

differences	 between	 CA	 distributions	 of	 the	 2	 word	 types	 were	 found	 in	 the	 perisylvian	

areas	(F2,22	=	0.067,	p	=	.93).	

	We	 further	 ran	 Bonferroni-corrected	 planned	 comparison	 tests	 (12	 comparisons,	

corrected	critical	p	<	.0042)	to	investigate	the	differences	between	CA	types	that	emerged	

after	learning.	Differences	in	CA-cell	densities	between	word	types	and	pairs	of	areas	in	the	

semantic	 systems	 were	 all	 significant	 (p	 <	 .0001),	 confirming	 the	 presence	 of	 a	 higher	

neuron-density	in	visual	(V1,	TO	and	AT)	than	in	motor	(M1L,	PML	and	PFL)	areas	for	object-

related	words	(p	<	.0001),	and	the	opposite	for	action-related	words	(p	<	.0001).	Analysis	of	
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the	connector	hubs	(AT,	PFL)	also	showed	a	significant	difference	between	the	2	word	types	

there,	 i.e.	stronger	action-related	word	CA	cell	densities	 in	PFL	compared	to	AT	(p	<.0001),	

and	 the	 opposite	 for	 object-related	 words	 (p	 <.0001).	 As	 observed	 above,	 no	 significant	

differences	emerged	in	the	perisylvian	areas	(p	=	.029)	between	the	word	types.	We	further	

run	the	same	statistical	analysis	on	the	object	and	action	recognition	data,	which	revealed	

similar	 results	 as	 the	word	production	 simulation,	 i.e.	 double	dissociation	between	action	

and	 object-related	 words	 in	 the	 extrasylvian	 system	 (F2,22	 =	 467.321,	 p	 <	 .0001)	 with	 no	

significant	difference	in	perisylvian	cortex	(F2,22	=	0.060,	p	<	.91).			

Discussion	

We	 investigated	 the	 neural	 mechanisms	 underlying	 word	 learning	 in	 a	 biologically	

constrained	 spiking	 model	 replicating	 connectivity	 and	 cortical	 features	 of	 the	 frontal,	

temporal	 and	 occipital	 areas	 to	 simulate	 aspects	 of	 semantic	 grounding	 in	 action	 and	

perception.	The	present	neural-network	showed	

i. emergence	of	neuron	circuits	distributed	across	primary,	secondary	and	multimodal	

areas,	as	a	result	of	simulating	the	grounding	of	word-forms	in	their	semantically-

related	objects	and	actions	(Fig	3.2).	We	call	these	‘semantic	circuits’,	because	they	

interlink	articulatory-acoustic	word-from	information	with	referential	semantic	

representation	coded	in	motor	and	visual	areas;	

ii. re-activation	of	the	word-related	circuits	during	word	recognition	exhibited	the	

distinct	consecutive	neuronal	and	cognitive	processes	of	word	perception,	word	

understanding	and	working	memory	(Fig	3.3);	

iii. higher	neuron	densities	of	the	semantic	circuits	and	prolonged	activity	in	the	

multimodal	areas,	where	all	semantic	and	phonological	information	first	converges;	

iv. pronounced	semantic	category-specificity	primarily	in	the	modality-preferential	

areas	and	moderate	specificity	also	in	multimodal	areas	for	both	word	production	

and	object	and	action	recognition	(Fig	3.4	A-B).	

The	present	 simulations	offer	 a	 neurobiological	 explanation	of	 a	wide	 range	of	 recent	

experimental	 results	 about	word	meaning	 processing	 and	make	 critical	 predictions	 about	

the	functional	role	of	multimodal-association	hubs,	secondary	and	primary	cortical	regions	
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in	language	and	semantic	processing.	Below,	we	provide	a	detailed	discussion	of	the	models	

and	their	results	in	light	of	previous	empirical	evidence,	current	semantic	brain	theories	and	

its	novel	critical	predictions.		

Semantic	brain	processes:	data	and	models	

Accumulating	 evidence	 emphasises	 the	 relevance	 of	 several	 cortical	 regions	 for	 semantic	

processing,	 including	 inferior-frontal,	 superior-	 and	 anterior-temporal	 multimodal	 areas	

(Binder	et	al.,	2009;	Patterson	et	al.,	2007;	Pulvermüller,	2013),	which	are	apparently	to	be	

relevant	 for	 all	 types	 of	 semantic	 processing,	 and	 modality-preferential	 areas,	 which	

seemingly	 take	 a	 category-specific	 role	 in	 semantics	 (Barsalou,	 2008;	 Binder	 and	 Desai,	

2011;	 Pulvermüller,	 2013).	 Of	 great	 relevance	 in	 the	 current	 discussion	 about	 semantic	

grounding	 and	 ‘embodiment’	 is	 the	 contribution	 of	 modality-preferential	 areas	 including	

primary	 and	 secondary	 cortices,	 for	 example,	 the	 motor	 and	 premotor	 cortex,	 or	 the	

primary	 and	 other	 ‘early’	 visual	 area	 in	 semantic	 processing.	 These	 areas,	 which	 had	

classically	 been	 seen	 as	 ‘perceptual’	 or	 ‘motor’	 in	 their	 function,	 seem	 to	 partake	 in	 and	

contribute	to	semantic	processing,	as	a	range	of	previous	experimental	studies	showed.	The	

present	results	fit	the	postulate	of	semantic	grounding	(Harnad,	1990)	that,	in	order	to	know	

the	meaning	of	a	symbol,	it	is	necessary	to	relate	it	to	real	world	entities,	for	example,	the	

word	‘grasp’	to	grasping	actions	and	the	word	‘house’	to	the	typical	visual	shape	of	houses.	

Grounding	 in	 this	 sense	needs	 to	be	 implemented	 in	 semantic	 representations	 that	 reach	

into	motor	 and	 sensory	 systems.	Our	 simulations	 applying	brain	 constrained	modelling	 at	

different	levels	demonstrate	grounding	in	this	very	sense,	hence	fitting	(and	explaining)	the	

experimental	results	mentioned	above.			

Some	 attempts	 to	 integrate	 both	 category-general	 and	 category-specific	 semantic	

mechanisms	 into	 one	 theoretical	 framework	 have	 been	 proposed.	 The	 ‘hub-and-spoke’	

model	postulates	one	single	semantic	hub	in	anterior-inferior-temporal	lobe	with	category-

specific	 spokes	 mainly	 in	 posterior	 brain	 areas	 (Ralph	 et	 al.,	 2017).	 This	 model	 explains	

crucial	features	of	semantic	dementia,	but	is	inconsistent	with	hub-like	properties	of	other	

multimodal	areas	(see	introduction)	and,	in	addition,	does	not	address	the	motor	system’s	

role	 in	 category-specific	 processing	 (Vukovic	 et	 al.,	 2017),	 along	 with	 some	 fine-grained	

differences	in	the	ability	to	process	specific	semantic	categories	which	result	from	different	
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types	of	dementias	 (Shebani	et	al.,	2017).	Neurocomputational	 studies	 (Chen	et	al.,	2017;	

Ueno	 et	 al.,	 2011)	 have	 investigated	 aspects	 of	 the	 hub-and-spoke	 model.	 However,	 as	

mentioned	 in	the	 introduction,	Chen	and	colleagues	did	not	 include	all	 the	brain	areas	for	

which	 experimental	 studies	 show	 a	 critical	 role	 in	 general	 semantic	 processing	 and	 they	

used	learning	mechanism	(i.e.	back-propagation	-	Chen	et	al.,	2017;	Ueno	et	al.,	2011)	which	

were	criticized	as	implausible	for	cortical	networks	(Mazzoni	et	al.,	1991;	O’Reilly,	1998).	

A	 claim	 about	multiple	 semantic	 hubs	 has	 been	made,	 in	 association	 with	 that	 about	

category-specific	 areas	 (Binder	 and	 Desai,	 2011;	 Pulvermüller,	 2013).	 However,	 formal	

neural-networks	 that	could	act	as	a	 foundation	of	a	 theory	of	semantic	brain	mechanisms	

did	so	far	not	reach	the	level	of	sophisticated	neurobiologically	constrained	modelling	with	

spiking	 neurons,	 realistic	 connectivity	 and	 learning.	 Earlier	 attempts	 were	 made	 using	 a	

preliminary	 version	 of	 the	 present	 architecture	 adopting	 non-spiking	 neurons	 (Garagnani	

and	Pulvermüller,	2016;	Tomasello	et	al.,	2017).	These	previous	models	already	suggest	an	

explanation	 of	 category-general	 and	 category-specific	 semantic	 processing,	 but	 their	

conclusions	were	more	 limited	by	 their	 less	 accurate	modelling	of	neurophysiological	 and	

neuroanatomical	features	of	the	cortex.		

Novel	contribution:	increased	brain-constraints	

Here,	we	added	important	neurobiological	constraints,	 introducing	leaky	integrate-and-fire	

neurons	that	transform	their	summed	input	non-linearly	into	discrete	output	in	the	form	of	

spikes.	Similarly	to	biological	neurons,	functional	interaction	within	the	present	model	was	

based	 on	 discrete	 spikes,	whereas	 previous	mean-field	 networks	 used	 continuous	 activity	

functions	 (i.e.	 graded-response	 neurons),	 a	 less	 realistic	 implementation.	 Using	 graded-

response	neurons	makes	it	easier	to	build	distributed	neural	circuits	across	multiple	areas	as	

a	 result	of	action-perception	 learning	 since	 this	 type	of	neuron	 retains	an	 increased	 firing	

rate	 for	more	 extended	 periods.	 It	was,	 therefore,	 crucial	 to	 investigate	 the	 possibility	 of	

distributed	 circuit	 formation	 with	 spiking	 neurons,	 which	 show	 an	 activation	 (action	

potential)	for	a	short	moment	and	then	go	silent	again.	

Compared	 with	 earlier	 studies,	 the	 present	 network	 included	 a	 more	 realistic	 set	 of	

cortico-cortical	 fibre	 tracts,	 adding	 second-next	 area	 connections	 or	 ‘jumping	 links’	 (blue	

arrows	 Fig	 3.1.A-B)	 indicated	 by	 DTI/DWI	 studies.	 A	 recent	 neurocomputational	 study	
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(Schomers	et	al.,	2017)	showed	that	these	jumping	links	are	instrumental	for	building	verbal	

short-term	memory,	a	capacity	crucial	for	human	language	learning.	Furthermore,	previous	

exploratory	 implementation	of	 ‘jumping	 links’	 in	an	extended	 semantic	network	of	mean-

field	(non-spiking/gradually	active)	neuronal	elements	suggested	a	degree	of	over-activation	

in	 case	 of	 implementation	 of	 the	 rich	 set	 of	 cortico-cortical	 connections,	 thus	 preventing	

precise	 simulation	of	more	 realistic	 connectivity.	 The	use	of	 spiking	neuronal	 cells,	whose	

action	potentials	 only	 last	 for	 1	 simulation	 time-step	 and	 therefore	produced	 less	 activity	

overall	 compared	 with	 the	 graded-neuron	 network,	 opened	 the	 possibility	 to	 include	

additional	connection	pathways	documented	by	recent	research	without	running	into	over-

activation	problems.	On	the	other	hand,	spiking-neuron	networks	with	just	next	neighbour	

connections	between	areas	(thus	omitting	the	‘jumping’	links)	ran	into	an	under-activation	

problem,	precisely	because	of	the	same	feature	(i.e.	that	spiking	neurons	lose	their	activity	

immediately).	 Thus,	 only	 the	 combined	 improvement	 of	 neuroanatomical	 (jumping	

connections)	 and	 neurophysiological	 (spiking)	 realism	 led	 to	 a	 functional	 network,	 which	

largely	 confirms	conclusions	 formerly	proposed	on	 the	basis	of	 less	 realistic	architectures.	

Incorporating	 significant	 biological	 detail	 into	 networks	 may	 be	 essential	 for	 obtaining	 a	

better	understanding	of	 the	complex	cortical	mechanisms	underlying	semantic	processing.	

Indeed,	 recent	 modelling	 results	 suggest	 that	 large-scale	 synchronous	 spiking	 within	 cell	

assembly	circuits,	also	observed	here,	may	be	important	for	the	binding	of	form	to	meaning	

during	word	learning	and	comprehension	(Garagnani	et	al.,	2017).	

In	summary,	the	comparison	of	less	and	more	biologically	constrained	networks	showed	

that	improving	the	degree	of	realism	does	not	always	help.	Moving	from	graded-response	to	

spiking	neurons	alone	renders	an	underactive	network	with	little	perspective	on	modelling	

semantic	cognition,	as	the	addition	of	a	more	detailed,	elaborate	and	realistic	connectivity	

structure	on	its	own	produces	an	overactive	and	thus,	once	again,	dysfunctional	networks.	

Only	 the	 parallel	 improvement	 on	 structural	 (anatomical)	 and	 functional	 (physiological)	

dimensions,	 that	 is,	adding	 jumping	 links	and	spiking	neurons,	 led	to	a	 functional	network	

once	again,	which	could	confirm	results	from	the	earlier	simulations	obtained	from	the	next-

neighbour-connectivity	and	mean-field	network,	but	provides	a	simulation	at	a	more	brain-

constrained	and	therefore	more	realistic	level.	
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Emergence	of	distributed	symbolic	circuits	

The	present	model	imitates	elementary	processes	of	semantic	learning,	where	word-forms	

are	 presented	 in	 the	 context	 of	 object	 (Vouloumanos	 and	 Werker,	 2009)	 or	 action	

information	 (Tomasello	 and	 Kruger,	 1992).	 In	 our	model,	 the	 co-occurrence	 of	 objects	 or	

actions	with	word-forms	was	implemented	as	correlated	neuronal	activation	patterns	in	the	

model’s	primary	articulatory	 (M1i)	 and	auditory	 (A1)	 along	with	either	dorsolateral	motor	

(M1L)	or	visual	cortex	(V1).	The	first	significant	finding	of	this	study	is	that	such	information	

about	 the	 semantic	 grounding	 of	 symbols	 can	 be	 mapped	 reliably	 onto	 biologically	

constrained	 associative	 networks.	 Each	 pattern	 representing	 the	 pairing	 of	 one	 specific	

symbol	 and	 one	 specific	 action	 or	 object	 led	 to	 the	 formation	 of	 a	 distributed	 circuit	 of	

spiking	 neurons	 spread	 out	 across	 several	 areas	 of	 the	 architecture.	 Each	 of	 these	

distributed	 circuits	 acted	 as	 a	 coherent	 functional	 unit,	 with	 its	 interlinked	 neurons	 in	

sensory,	 motor	 and	 multimodal	 areas	 activating	 together.	 The	 formation	 of	 each	 circuit	

required	the	spreading	of	activity	across	 the	network	and	the	selective	strengthening	of	a	

significant	 number	 of	 partaking	 neurons.	 Such	 strengthening	 was	 substantial	 enough	 so	

that,	after	 learning,	 ‘auditory	 input’	was	sufficient	 to	revive	the	entire	circuit,	 including	 its	

articulatory	and	semantic	components.	By	comparing	the	mean-field	next-neighbour	model	

with	the	jumping-links	spiking	model,	massive	differences	were	revealed	in	the	dynamics	of	

cell	assemblies	activations	during	auditory	word	recognition	(Fig.	3.3).	Whereas	the	mean-

field	model	showed	cascade	activation	dynamics	 (with	serial	onset	of	activations	and	only	

partly	overlapping	activity	of	the	hub	areas	AT,	PFL),	the	full-fledged	three-phase	dynamics	

with	perception	(activation	of	auditory	areas),	ignition	(near-simultaneous	activation	of	cell	

assembly	neurons	dispersed	across	wide	cortical	areas)	and	working	memory	(reverberation	

of	activity	in	part	of	the	cell	assembly)	was	only	present	in	the	spiking	and	fully	connected	

model.	 Intriguingly,	 after	 ignition,	 activity	 retreats	 from	modality-preferential	 areas	 (time	

step	12,	Fig.	3.3)	to	hub	areas	(time	step	14),	which	predicts	an	‘anterior	shift’	from	visual	

and	 motor	 areas	 to	 adjacent-anterior	 connector	 hub	 regions	 in	 temporal	 and	 prefrontal	

cortex	during	working	memory	(see	also	Fuster,	2009;	Pulvermüller,	2018;	Pulvermüller	and	

Garagnani,	2014).		

Although	the	 formation	of	each	circuit	was	driven	by	correlated	 information	 in	sensory	

and	 motor	 areas,	 a	 widely	 distributed	 circuits	 with	 many	 neurons	 in	 multimodal	
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convergence	zones	got	active.	The	involvement	of	neurons	in	multimodal	areas	is	explained	

by	long-distance	connectivity	structure,	in	particular	by	the	absence	of	direct	long-distance	

connections	 between	 sensory	 and	 motor	 areas;	 to	 bind	 information	 across	 modalities,	

activity	must	travel	 through	connector	hub	areas	(also	called	convergence	zones,	Damasio	

1989),	bridging	between	sensorimotor	cortices.	It	is	important	to	emphasize,	however,	that	

while	 the	 presence	 of	 connector	 hubs	 in	 the	 model	 is	 a	 (neuroanatomically	 motivated)	

structural	 feature,	 the	 result	 that	 the	 learned	 action	 and	 object	word	 circuits	 reach	both	

extrasylvian	connector	hubs	AT	and	PFL	–	hence	forming	semantic	hubs	–	is	not	trivial,	and	

could	not	be	a	priori	predicted1.	 In	other	words,	while	the	presence	of	connector	hubs	is	a	

structural	feature	of	the	model,	the	formation	of	semantic	hubs	is	not,	and	constitutes	one	

of	its	crucial	emergent	properties.	

The	 spontaneous	 formation	 of	 internal	 semantic	 circuits	 spanning	 the	 entire	 spiking	

neural	 network	 is	 a	 direct	 consequence	 of	 neurobiological	 principles	 modelled	 in	 the	

architecture	that	are	known	to	govern	the	human	brain.	As	discussed	below,	the	activation	

of	 the	 learned	 distributed	 circuits	 explains	 relevant	 ‘semantic	 area	 activations’	 seen	 in	

neuroimaging	 experiments	 (for	 further	 discussion,	 see	Garagnani	 and	 Pulvermüller,	 2016;	

Tomasello	et	al.,	2017).	

Explaining	multiple	semantic	hubs	

Not	only	did	our	model	 firmly	bind	neurons	 in	multimodal	areas	 to	sensorimotor	neurons	

involved	 in	 semantic	 processing,	 but,	 within	 each	 circuit,	 the	 proportion	 of	 these	

multimodal-area	 neurons	 was	 even	 greater	 than	 the	 percentage	 of	 circuit	 neurons	 in	

primary	 and	 secondary	 areas.	 On	 first	 view,	 this	 appears	 as	 surprising,	 because,	 during	

pattern	 presentation,	 sensory	 and	 motor	 neurons	 were	 directly	 stimulated	 together,	

whereas	multimodal	areas	were	activated	only	indirectly,	by	activity	spreading	from	primary	

areas.	 However,	 the	multimodal	 areas	 occupy	 a	 central	 location	 in	 the	 network	 topology	

because	 they	 bridge	 between	 sensory	 and	 motor	 areas,	 and	 therefore	 receive	 near-

simultaneous	 convergent	 input	 from	different	 (here,	 three)	 systems	during	 learning.	 Such	

convergence	 also	 takes	 advantage	 of	 the	 higher	 ’degree’	 of	 connectivity	 characterising	

                                                
1	Note	that	the	linkage	of	a	perisylvian	word	circuit	with	semantic	information	coming	from	the	visual	(or	
motor)	system	does	not	necessarily	have	to	go	through	connector	hub	PFL	(or	AT).			
2	LTD	and	LTP	are	induced	by	the	order	and	temporal	interval	between	pre-	and	postsynaptic	spikes	(for	more	
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multimodal	areas	and	of	their	resultant	role	as	‘connector	hubs’,	for	which	a	special	role	in	

cognition	has	previously	been	proposed	(Van	den	Heuvel	and	Sporns,	2013).	The	cumulative	

effect	 of	 correlated	 inputs	 through	 several	 pathways	 converging	 on	 multimodal	 hubs	

accounts	 for	 their	 higher	 neuron-densities	 and	 their	 resultant	 major	 contribution	 to	

semantic	 circuit	 function.	 Thus,	 given	 that	 large	 fractions	 of	 the	 neurons	 of	 all	 semantic	

circuits	 were	 located	 in	 connector	 hubs,	 the	model	 explains	 the	 prominent	 role	 of	 these	

connector	regions	in	general	semantic	processing,	which	is	due	to	the	both	well-known	pre-

existing	 neuroanatomical	 connectivity	 and	 the	 correlated	 neuronal	 activity	 during	 word	

learning.	

Crucially,	the	model	implicates	and	explains	not	only	one,	but	at	least	four	experimentally	

observed	 ‘semantic	 hub’	 areas.	 One	 of	 these	 is	 in	 anterior-temporal	 lobe,	 providing	 a	

theoretical	 foundation	 for	 the	critical	postulate	of	 the	hub-and-spoke	model	 (Patterson	et	

al.,	 2007).	 Other	 semantic	 hubs	 are	 in	 superior-temporal-parabelt	 and	 in	 inferior-	 and	

dorsolateral-prefrontal	 cortex,	 where	 other	 models	 postulate	 sites	 of	 general	 semantic	

processing	(Bookheimer,	2002;	Carota	et	al.,	2017;	Posner	and	Pavese,	1998;	Schomers	and	

Pulvermüller,	 2016;	 Tate	 et	 al.,	 2014).	 Our	 model,	 therefore,	 fits	 (and	 explains)	 data	

indicating	the	presence	of	frontal	and	temporal	semantic	hub	areas,	thus	reconciling	extant	

experimental	 evidence	 for	 a	 range	 of	 regions	 generally	 involved	 in	 conceptual	 processing	

(for	reviews,	see	Kiefer	and	Pulvermüller,	2012;	Pulvermüller,	2013).		

Explaining	category-specificity	

We	modelled	the	learning	and	processing	of	two	different	semantic	categories:	object-	and	

action-related	 words.	 The	 formation	 of	 semantic	 circuits	 was	 driven	 by	 sensorimotor	

pattern	information,	involving	visual	cortex	activity	for	object	words	and	hand-motor	cortex	

activity	 for	 action	 words.	 The	 respective	 other	 input	 system	 was	 activated	 with	 random	

noise	 to	 model	 the	 variable	 action	 output	 (visual	 input)	 in	 the	 context	 of	 specific	 visual	

objects	 (actions).	 Such	 uncorrelated	 noisy	 activity	 counters	 the	 spontaneous	 extension	 of	

neuron	 circuits	 towards	 inactive	 areas	 (Doursat	 and	 Bienenstock,	 2006).	 Notably,	 as	 a	

consequence	 of	 the	 differential	 sensorimotor	 activation	 patterns,	 different	 circuit	

topographies	 developed	 across	 the	 areas	 for	 both	 word	 production	 and	 action	 or	 object	

recognition:	 circuits	 storing	 action-related	 information	 reached	 into	 the	 motor	 cortices	
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(M1L-PML)	 but	 not	 or	 less	 into	 visual	 areas	 (V1-TO),	 and	 vice	 versa	 for	 object	 words.	

Semantic	 circuits	 with	 different	 cortical	 topographies,	 which	 are	 a	 result	 of	 correlated	

neuronal	 activity	 in	 different	 sensorimotor	 areas	 during	 language	 learning,	 can	 therefore	

explain	 the	 emergence	 of	 category-specific	 semantic	 contributions	 of	 different	 cortical	

areas.		

We	 take	 this	 observation	 as	 a	 proof-of-concept	 that	 the	 present	 type	 of	 spiking	 and	

jumping	 network	 is	 capable	 of	 spontaneously	 developing	 semantic-category	 specificity	

replicating	 a	 number	 of	 studies	 revealing	 neuroimaging	 and	 neuropsychological	

dissociations	 between	 action	 verbs	 and	 object	 nouns	 or	 between	 nouns	 sub-categories	

related	 to	 animals	 and	 tools	 (Damasio	 and	 Tranel,	 1993;	 Kemmerer,	 2015;	Martin,	 2007;	

Martin	 et	 al.,	 1996;	 Moseley	 and	 Pulvermüller,	 2014).	 Interestingly,	 some	 category	

specificity	was	 revealed	 in	 the	 semantic	hubs,	 although	 it	was	 less	pronounced	compared	

with	 primary	 and	 secondary	 areas.	 This	 area	 category-specific	 activation	predicted	by	 the	

model	(Fig	3.4)	seems	to	be	of	graded	nature,	with	stronger	category	effect	in	the	primary	

areas	 than	 in	 secondary	 areas	 and	 stronger	 in	 the	 secondary	 than	 in	 the	 hub	 areas	 and	

awaits	 experimental	 validations.	 The	 moderate	 category	 specificity	 predicted	 in	 the	

semantic	hub	areas	is	 in	line	with	recent	evidence	that	semantic	dementia	patients	due	to	

anterior-temporal	 lesion	 show	 category-specific	 semantic	 impairments	 (Gainotti,	 2012;	

Pulvermüller	 et	 al.,	 2010;	 Shebani	 et	 al.,	 2017),	 which	 sits	 less	 well	 with	 the	 suggested	

general-semantic	function	across	all	semantic	types	(Patterson	et	al.,	2007).		

It	 needs	 to	 be	 emphasized	 that	most	 previous	 studies	 on	 semantics	 have	 investigated	

action	 and	object	words	 taken	 from	natural	 languages,	 focusing	mostly	 on	 the	noun-verb	

distinction,	 which	 makes	 it	 difficult	 to	 control	 for	 all	 psycholinguistic	 proprieties	 and	

especially,	when	 these	words	were	 acquired	 (e.g.	Moseley	 and	 Pulvermüller	 2014).	 If	 we	

take	our	present	simulations	as	models	of	concrete	action	verb	vs	object	noun	processing,	

there	 is	 a	 good	 fit	with	 the	 data,	 as	 these	 semantically	 and	 lexically	 different	word	 types	

tend	to	differentially	activate	motor	regions	or	ventral	visual	areas	respectively	(Damasio	et	

al.,	1996;	Martin,	2007;	Martin	et	al.,	1996;	Moseley	et	al.,	2013;	Pulvermüller	et	al.,	2014b,	

1999;	Vigliocco	et	al.,	2004).	However,	note	that	the	 ‘action’	and	 ‘object	words’	simulated	

here	capture	the	differential	action-	and	object-relatedness	of	many	verbs	and	nouns,	but	

not	the	lack	of	such	semantic	differences	seen	between	abstract	verbs/nouns	and	certainly	
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not	the	combinatorial,	or	distributional	differences	between	word	categories,	which	result	

from	 their	 differential	 placements	 in	 specific	 grammatical	 contexts.	 Hence,	 for	 directly	

comparing	 the	 predictions	 of	 the	 present	 simulations	 to	 empirical	 data,	 it	 will	 be	

advantageous	 to	 perform	 analogous	 learning	 experiments	 and	 brain	 imaging	 studies	 to	

investigate	where	 in	the	brain	the	neural	signatures	of	novel	object	and	action	words	first	

emerge.	Nevertheless,	the	present	simulation	demonstrate	the	validity	of	a	neurobiological	

theory	of	language	processing	(see	Introduction,	and	Damasio,	1989;	Pulvermüller,	2013),	in	

which	 the	 mutual	 interaction	 of	 a	 set	 of	 neurobiological	 principles	 at	 work	 within	

anatomically-realistic	 structures	 and	 Hebbian	 learning	 are	 sufficient	 for	 explaining	 the	

emergence	of	semantic	hubs	and	category	specificity	in	the	human	brain.		

It	may	be	worthwhile	 to	point	 to	additional	 limitations	of	 the	present	work	along	with	

possible	extensons	in	the	future.	When	an	infant	learns	a	new	action	word	(e.g.,	‘grasp’),	by	

hearing	 a	 novel	 word-form	 while	 performing	 the	 related	 action	 towards	 an	 object,	

concurrent	activity	might	be	present	not	 just	 in	 the	perisylvian	 language	areas	and	motor	

cortices,	 but	 also	 in	 the	 visual	 occipital-parietal	 ‘where’	 stream	 (Mishkin	 et	 al.,	 1983;	

Mishkin	and	Ungerleider,	1982),	which	was	not	implemented	here.		Therefore,	an	important	

extension	 of	 the	 present	model	would	 be	 to	 include	 parietal	 areas	 and	 the	 dorsal	 visual-

where	 stream.	 Inclusion	 of	 left	 parietal	 areas	 would	 also	 be	 strongly	 motivated	

experimentally,	 as	 they	 are	 well	 known	 to	 play	 a	 role	 in	 general	 language	 processing	

(Pulvermüller	 and	 Fadiga,	 2010)	 and	 also	 in	 category-specific	 processing	 of	 prepositions,	

number	 and	 tool	 words	 (Binder	 and	 Desai,	 2011;	 Dehaene,	 1995;	 Shebani	 et	 al.,	 2017;	

Tschentscher	 et	 al.,	 2012).	 Further	 model	 extensions	 should	 address	 other	 forms	 of	

language	learning.	Here	we	investigate	but	one	aspect	of	word	meaning	acquisition,	namely	

associative	 learning	between	a	word	and	 its	 referents,	which	 represents	only	a	very	basic	

step	of	 semantic	 learning.	To	capture	other	 types	of	 semantic	 learning,	 the	emergence	of	

semantic	 knowledge	 from	variable	 contexts	needs	 to	be	 covered	along	with	 the	 semantic	

grounding	 of	 words	 learned	 from	 texts,	 where	 semantic	 links	 may	 be	 explained	 by	 co-

activation	 of	 linguistic	 representations.	 Future	 work	 may	 address	 with	 realistic	 neuronal	

networks	how,	based	on	a	kernel	of	early	acquired	words	semantically	grounded	in	referent	

object	and	action	contexts,	the	co-occurrence	of	words	in	texts	can	lead	to	the	formation	of	

novel	 semantic	 circuits	 and	 semantic	 representations	 (Harnad,	 2011;	 Stramandinoli	 et	 al.,	
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2012b).	 Furthermore,	 future	 simulations	 should	 extend	 the	 present	work	 by	 investigating	

how	combinatorial	grammatical	binding	between	pre-learnt	and	whole-form-stored	 lexical	

units	 emerges	 from	correlated	 activity	 in	 co-activated	neuronal	 circuits	 (see	Pulvermüller,	

2010).		

Still,	 already	 in	 its	 current	 form,	 the	 present	 computational	 model	 makes	 critical	

predictions	(some	of	which	we	spelled	out	in	detail	in	discussion	above)	about	how	meaning	

is	acquired,	processed	and	stored	in	the	human	brain.	Compared	with	earlier	similar	work,	

the	spiking-and-jumping	neural	network	developed	in	this	work	is	based	on	a	wider	range	of	

biological	principles	and	features	of	the	human	brain,	such	as	neurophysiological	dynamics	

of	 spiking	 pyramidal	 cells,	 synaptic	modification	 by	way	 of	 Hebbian	 learning,	 local	 lateral	

inhibition	and	area-specific	global	regulation	mechanisms,	uncorrelated	white	noise	present	

in	 all	 neurons	during	 learning,	 brain-like	 connectivity	 structure	based	on	neuroanatomical	

evidence.	Therefore,	the	present	model	provides	a	sophisticated	mechanistic	explanation	of	

the	differential	involvement	of	semantic	cortical	regions.		

Conclusion	

We	used	a	biologically	constrained	neurocomputational	model	mimicking	cortical	 features	

and	 connectivity	 of	 frontal,	 temporal	 and	 occipital	 cortices	 to	 simulate	 the	 brain	

mechanisms	 of	 word	 meaning	 acquisition.	 Extending	 our	 earlier	 work	 (Garagnani	 and	

Pulvermüller,	 2016;	 Tomasello	 et	 al.,	 2017)	 by	 introducing,	 for	 the	 first	 time,	 spiking	

neuronal	cells	in	a	neuroanatomical	constrained	model	with	brain	like	connectivity,	we	show	

that	Hebbian	associative	learning	and	connectivity	together	are	sufficient	to	account	for	the	

emergence	of	general	semantic	areas	(‘semantic	hubs’),	as	well	as	specific	contributions	of	

others	 modality-preferential	 ones	 to	 the	 processing	 of	 specific	 semantic	 categories.	 The	

present	 simulation	 results	 show	 that	 neurobiologically	 constrained	networks	 can	 fruitfully	

contribute	to	bridging	the	gap	between	cellular-level	mechanisms,	behaviour	and	cognition	

by	integrating	brain	theory	with	experimental	data.		
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4. Visual	cortex	recruitment	during	language	processing	in	blind	

individuals	is	explained	by	Hebbian	learning	
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Abstract	

In	 blind	 people,	 the	 visual	 cortex	 takes	 on	 higher	 cognitive	 functions,	 including	 language.	

Why	this	functional	organisation	mechanistically	emerges	at	the	neuronal	circuit	level	is	still	

unclear.	Here,	we	use	a	biologically	 constrained	network	model	 implementing	 features	of	

anatomical	 structure,	 neurophysiological	 function	 and	 connectivity	 of	 fronto-temporal-

occipital	 areas	 to	 simulate	word-meaning	 acquisition	 in	 visually	 deprived	 and	 undeprived	

brains.	We	 observed	 that,	 only	 under	 visual	 deprivation,	 distributed	 word-related	 neural	

circuits	‘grew	into’	the	deprived	visual	areas,	which	therefore	adopted	a	linguistic-semantic	

role.	Three	factors	are	crucial	for	explaining	this	deprivation-related	growth:	changes	in	the	

network’s	activity	balance	brought	about	by	the	absence	of	uncorrelated	sensory	input,	the	

connectivity	 structure	 of	 the	 network,	 and	 Hebbian	 correlation	 learning.	 In	 addition,	 the	

blind	 model	 revealed	 long-lasting	 spiking	 neural	 activity	 compared	 to	 the	 sighted	 model	

during	word	recognition,	which	 is	a	neural	correlate	of	enhanced	verbal	working	memory.	

The	present	neurocomputational	model	offers	a	neurobiological	account	for	neural	changes	

followed	by	 sensory	deprivation,	 thus	 closing	 the	 gap	between	 cellular-level	mechanisms,	

system-level	linguistic	and	semantic	function.	
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Introduction	

The	 classical	 model	 of	 the	 neurobiology	 of	 language,	 based	 on	 brain	 lesion	 data	 (Broca,	

1861;	Wernicke,	1874),	proposed	a	left-lateralized	linguistic	network	of	the	fronto-temporal	

regions	 located	 around	 the	 perisylvian	 fissure	 (Lichtheim,	 1885).	 However,	 recent	

neuroimaging	studies,	as	well	as	patient	data,	reported	a	more	detailed	cortical	organization	

of	 the	 language	areas,	 showing	 that	brain	areas	outside	 the	 classical	perisylvian	 cortex	as	

well	 relevantly	 contribute	 to	 the	 processing	 of	meaningful	 symbols	 and	 language	 (Binder	

and	 Desai,	 2011;	 Pulvermüller,	 2013;	 Pulvermüller	 and	 Fadiga,	 2010).	 A	 range	 of	 cortical	

areas	have	been	documented	to	be	differentially	involved,	depending	on	the	semantic	type	

of	 symbols	 or	 larger	 meaningful	 constructions	 (Chao	 et	 al.,	 1999;	 Damasio	 et	 al.,	 1996;	

Dreyer	et	al.,	2015;	Grisoni	et	al.,	2016;	Hauk	et	al.,	2004;	Kemmerer,	2015;	Moseley	et	al.,	

2013;	 Vukovic	 et	 al.,	 2017).	 For	 example,	 Moseley	 et	 al.	 (2013),	 reported	 enhanced	

neuromagnetic	 (MEG)	 responses	 for	 action	 words	 in	 the	 fronto-central	 areas,	 including	

motor	 regions,	 and	 for	 object-related	 words	 in	 the	 visual	 temporo-occipital	 areas,	

respectively.	 This	 and	 similar	 observations	 support	 neurobiological	 language	 models	

postulating	that	linguistic	and	semantic	processes	are	carried	by	neuron	circuits	distributed	

across	 the	 perisylvian	 language	 regions	 as	 well	 as	 modality-preferential	 and	 multimodal	

areas	 in	 ‘extra-sylvian’	 space	 (Garagnani	 and	 Pulvermüller,	 2016;	 Pulvermüller,	 1999;	

Pulvermüller	and	Fadiga,	2010;	Tomasello	et	al.,	2017,	2018).		

A	 range	 of	 studies	 reported	 that	 the	 distributed	 language	 network	 shows	 striking	

capabilities	 to	 re-organize	 and	 adapt	 to	 focal	 lesions	 or	 sensory	 deprivation	 (Chen	 et	 al.,	

2002;	Keck	et	al.,	2008;	Neville	and	Bavelier,	1998).	Compared	with	healthy	individuals,	blind	

people’s	 language	 processing	 in	 the	 so-called	 verb	 generation	 task	 leads	 to	 relatively	

stronger	activation	of	visual	areas	in	occipital	cortex	(Amedi	et	al.,	2004,	2003,	Burton,	2003,	

2002;	 Raz	 et	 al.,	 2005;	 Struiksma	 et	 al.,	 2011).	 Several	 brain	 imaging	 studies	 showed	

activation	 of	 the	 primary	 visual	 (V1)	 and	 higher	 extra-striate	 visual	 cortices	 when	

congenitally	blind	individuals	were	required	to	generate	semantically	related	verbs	to	heard	

nouns	(Amedi	et	al.,	2003;	Burton,	2002;	Struiksma	et	al.,	2011)	 (see	Fig.	4.1).	 In	contrast,	

sighted	 subjects	 showed	 activation	 of	 the	 typical	 language	 regions	 (e.g.,	 Broca’s	 and	

Wernicke’s	 areas)	 and	motor	areas,	but	no	or	 significantly	 less	 visual	 area	activation	 than	

blind	 individuals	(Burton,	2002;	Struiksma	et	al.,	2011).	Similar	differences	 in	V1	activation	
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have	also	been	 reported	 for	 single	word	 (Burton,	2003;	Burton	et	al.,	2012)	and	sentence	

processing	 tasks	 (Bedny	 et	 al.,	 2011;	 Röder	 et	 al.,	 2002),	 which	 imply	 semantic	

understanding	 (Burton,	 2003;	 Burton	 et	 al.,	 2012;	 Röder	 et	 al.,	 2002).	 Furthermore,	

congenitally	blind	people	with	relatively	stronger	V1	activity	in	the	processing	of	meaningful	

language	were	 reported	 to	 show	better	 verbal	working	memory	 (Amedi	 et	 al.,	 2003)	 and	

generally	 enhanced	 verbal	 abilities	 compared	 to	 sighted	 individuals	 (Amedi	 et	 al.,	 2003;	

Occelli	 et	 al.,	 2017;	 Pasqualotto	 et	 al.,	 2013;	Withagen	 et	 al.,	 2013).	 Although	 one	might	

argue	 that	 visual	 responses	 in	 blind	 individuals	 are	 epiphenomenal	 with	 no	 functional	

relevance	for	language	processing,	a	study	inducing	temporary	virtual	lesions	of	the	primary	

visual	area	(V1)	using	transcranial	magnetic	stimulation	(TMS)	during	a	verb	generation	task	

has	 shown	 an	 increase	 in	 semantic	 (but	 not	 phonological)	 errors	 in	 blind	 individuals.	 In	

contrast,	sighted	control	subjects	showed	a	similar	behavioural	change	only	when	TMS	was	

applied	to	the	left	prefrontal	cortex	(lPFC)	(Amedi	et	al.,	2004).	These	results	demonstrate	

that,	 in	 congenitally	 blind	 subjects,	 visual	 cortices	 respond	 in	 a	 similar	 way	 as	 classic	

language	 regions	 (Bedny	 et	 al.,	 2011)	 and	 are	 functionally	 relevant	 for	 language	 and	

semantic	processing.	
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Figure	 4.1.	 fMRI	 activation	 patterns	 between	 blind	 and	 sighted	 groups.	 (a)	 Activation	 of	 the	
primary	and	higher	extra-striate	visual	areas	(V1)	when	blind	people	recall	words	from	memory	or	
generate	 verbs	 from	nouns	 compared	 to	 the	 sighted	 individuals	 (data	 adapted	 from	Amedi	 et	 al.,	
2003).	Green	star	indicates	the	stimulated	cortical	area	(V1)	delivered	with	rTMS	causing	substantial	
semantic	 errors	 during	 the	 verb	 generation	 task	 (data	 adapted	 from	 Amedi	 et	 al.,	 2004).	 (b)	
Perceptual	 signal	 change	 in	 the	 left	 primary	 visual	 area	 between	 blind	 and	 sighted	 control	
populations	during	meaningful	sentence	comprehension	and	backwards	speech	(data	adapted	from	
Bedny	et	al.,	2011,	this	figure	 is	not	covered	by	the	CC	BY	licence.	[Credits	to	National	Academy	of	
Science].	All	rights	reserved,	used	with	permission).	
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Undeprived	 healthy	 individuals	 may	 also	 activate	 their	 visual	 areas	 in	 language	

processing,	but	this	is	specific	to	words	and	sentences	with	a	strong	semantic	relationship	to	

visual	information,	for	example	words	like	‘cow’	or	‘tower’,	which	have	visually	perceivable	

referents	(Chao	et	al.,	1999;	Kiefer,	2005;	Moseley	et	al.,	2013;	Pulvermüller	et	al.,	1999;	Sim	

and	Kiefer,	2005).	Associative	learning	can	explain	this	category-specific	semantic	activation	

in	 the	 human	 brain:	 Because	 symbols	 with	 ‘visual	 semantics’	 frequently	 co-occur	 with	

visually	 perceived	 referent	 objects	 during	 learning	 (Vouloumanos	 and	Werker,	 2009),	 the	

correlated	neuronal	activations	are	mapped	at	the	neuronal	level.	However,	such	stimulus-

driven	 correlation	 is	 obviously	 impossible	 in	 congenitally	 blind	 subjects.	 Therefore,	 the	

generally	 robust	 visual	 cortex	 activations	 during	 language	 processing	 and	 the	 associated	

relevance	of	visual	areas	for	general	language	processing	in	the	blind	appear	as	a	mystery.		

Why	 is	the	visual	cortex	generally	relevant	 in	 language	processing	 in	congenitally	blind	

individuals,	 and	why	would	 a	 role	 of	 visual	 areas	 in	 sighted	 subjects,	 if	 present	 at	 all,	 be	

restricted	to	only	specific	semantic	categories?		

It	 is	 unlikely	 that	 congenitally	 blind	 and	 undeprived	 human	 subjects	 differ	 in	 the	

neuroanatomical	 connections	 interlinking	 visual	 areas	 and	 language	 regions,	 as	 diffusion	

tensor	imaging	(DTI)	studies	do	not	consistently	demonstrate	such	differences	(Noppeney	et	

al.,	2005;	Shimony	et	al.,	2005;	Shu	et	al.,	2009a,	2009b).	However,	at	the	functional	level,	

there	 is	 evidence	 for	 relatively	 stronger	 functional	 connectivity	 (estimated	 from	 fMRI)	

between	 visual	 and	 frontoparietal	 language	 regions	 in	 blind	 people	 (Bedny	 et	 al.,	 2011;	

Burton	 et	 al.,	 2014;	 Butt	 et	 al.,	 2013;	 Striem-Amit	 et	 al.,	 2015).	 Therefore,	 the	 critical	

question	 to	 answer	 is	 how,	 given	 the	 absence	 of	 differences	 in	 anatomical	 long-range	

connectivity,	it	is	possible	that	visual	cortex	function	changes	in	congenitally	blind	people.	It	

has	been	suggested	that	the	lack	of	competing	inputs	to	the	deprived	cortical	areas	during	

development	 may	 be	 critical;	 this	 would	 leave	 the	 blind’s	 visual	 cortices	 available	 for	

recruitment	 for	 language	 processing	 (Bedny,	 2017).	 However,	 the	 neural	 mechanisms	

determining	 such	 takeover	 remain	 to	 be	 specified.	 Here,	 we	 hypothesise	 that	 general	

neurobiological	mechanisms	and	principles	can	explain	the	functional	changes	in	the	visual	

cortex,	and	we	aim	at	isolating	the	factors	that	drive	such	plastic	change.		

To	test	this	hypothesis,	we	applied	a	neurobiologically	constrained	model	implementing	

properties	 of	 fronto-temporo-occipital	 areas	 and	 their	 connectivity	 in	 an	 attempt	 to	
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simulate	 features	 of	 language	 acquisition	 in	 undeprived	 (i.e.	 sighted)	 and	 deprived	 (i.e.	

congenitally	 blind)	 human	 subjects.	 The	 models	 were	 given	 information	 for	 learning	 the	

referential	relationships	between	individual	verbal	symbols	and	the	actions	and	objects	they	

are	 typically	 used	 to	 communicate	 about.	 By	 comparing	 (congenitally)	 ‘blind’	 and	

‘undeprived’	 models,	 we	 aimed	 to	 shed	 light	 on	 the	 neural	 language	 mechanisms	

consequent	to	sensory	deprivation.	

Results	

General	model	architecture		

At	the	micro	level,	the	neural-network	implements	physiologically	realistic	spiking	neurons,	

and	 at	 the	 system	 level,	 twelve	 areas	 of	 relevance	 for	 language	 and	 semantic	 processing	

situated	in	the	frontal,	the	temporal	and	the	occipital	lobes	(see	Fig.	4.2a).	The	implemented	

area-intrinsic,	 as	 well	 as	 between-area,	 connectivity	 was	 guided	 by	 prior	 neuroscience	

evidence	(Rilling	et	al.,	2011;	Thiebaut	de	Schotten	et	al.,	2012).	Six	of	the	areas	were	in	the	

left-perisylvian	 cortex	 [superior	 temporal	 Brodmann	 areas	 (BAs)	 41,	 42,	 22	 and	 inferior	

frontal	 areas,	 BAs	 44,	 45/6,	 4],	 which	 is	 known	 to	 be	 most	 crucial	 for	 spoken	 language	

processing	(Fadiga	et	al.,	2002;	Pulvermüller,	1999;	Pulvermüller	and	Fadiga,	2010;	Zatorre	

et	al.,	1996).	

• The	model’s	 ‘auditory	 stream’	 includes	 the	 primary	 auditory	 cortex	 (A1),	 auditory	

belt	(AB),	and	modality-general	parabelt	areas	(PB),	and		

• its	 ‘articulatory	 stream’	 comprises	 the	 inferior	 part	 of	 primary	motor	 cortex	 (M1i),	

inferior	premotor	(PMi)	and	multimodal	prefrontal	motor	cortex	(PFi).		

An	additional	six	extrasylvian	areas	modelled	referential	meaning-related	information	about	

visual	object	identity	(Ungerleider	and	Haxby,	1994),	and	about	executable	manual	actions	

(Deiber	et	al.,	1991;	Dum	and	Strick,	2005,	2002;	Lu	et	al.,	1994).		

• The	‘ventral	visual	stream’	includes	the	primary	visual	cortex	(V1),	temporo-occipital	

(TO)	and	anterior-temporal	areas	(AT)	and		

• the	 ‘dorsolateral	 motor	 stream’	 the	 corresponding	 lateral	 primary	 motor	 (M1L),	

premotor	(PML),	and	prefrontal	cortices	(PFL).		
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For	clarity,	we	will	mark	area	 labels	by	an	asterisk	when	speaking	about	model	areas	(e.g.	

*V1),	 whereas	 the	 conventional	 labels	 are	 used	 for	 the	 areas	 in	 the	 cortex	 (V1).	 Single-

neuron	properties,	synaptic	plasticity	rule,	and	single-area	model	structure	are	specified	in	

more	 detail	 in	 the	 Methods	 section	 under	 ‘Structure	 and	 function	 of	 the	 spiking	 neuron	

model’	and	in	previous	publications	(Garagnani	et	al.,	2017;	Tomasello	et	al.,	2018).		

	

	

Figure	 4.2.	 (a)	 Structure	 and	 connectivity	 of	 12	 frontal,	 temporal	 and	 occipital	 cortical	 areas	
relevant	 for	 learning	 the	meaning	 of	words	 related	 to	 actions.	Perisylvian	 cortex	 comprises	 an	
inferior-frontal	 articulatory-phonological	 system	 (red	 colours),	 and	 the	 extrasylvian	 areas	
comprise	 a	 lateral	 dorsal	 hand-motor	 system	 (yellow	 to	 brown)	 and	 a	 visual	 “what”	 stream	 of	
object	processing	(green).		Numbers	indicate	Brodmann	Areas	(BAs)	and	the	arrows	(black,	purple	
and	 blue)	 represent	 long	 distance	 cortico-cortical	 connections	 as	 documented	 by	
neuroanatomical	 studies.	 (b)	 Schematic	 global	 area	 and	 connectivity	 structure	 of	 the	
implemented	model.	The	colours	indicate	correspondence	between	cortical	and	model	areas.	(c)	
Micro-connectivity	 structure	 of	 one	 of	 the	 7,500	 single	 excitatory	 neural	 elements	 modelled	
(labelled	‘e’).	Within-area	excitatory	links	(in	grey)	to	and	from	cell	e	are	limited	to	a	local	(19x19)	
neighbourhood	 of	 neural	 elements	 (light-grey	 area).	 Lateral	 inhibition	 between	 e	 and	
neighbouring	 excitatory	 elements	 is	 realised	 as	 follows:	 the	 underlying	 cell	 i	 inhibits	 e	 in	
proportion	 to	 the	 total	 excitatory	 input	 it	 receives	 from	 the	 5x5	 neighbourhood	 (dark-purple	
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Briefly,	 the	 following	 biological,	 anatomical	 and	 physiological	 features	 of	 the	 cerebral	

cortex	were	replicated	in	the	model:		

(i) neurophysiological	 dynamics	 of	 spiking	 pyramidal	 cells	 including	 temporal	

summation	 of	 inputs,	 threshold-based	 spiking,	 and	 adaptation(Connors	 et	 al.,	

1982;	Matthews,	2001);		

(ii) synaptic	modification	by	way	of	Hebbian-type	learning,	 including	both	long-term	

potentiation	and	depression	(LTP,	LTD)	(Artola	and	Singer,	1993);		

(iii) local	 lateral	 inhibition	and	area-specific	regulation	mechanisms	(called	‘local	and	

global	control’	below)	(Braitenberg,	1978;	Yuille	and	Geiger,	2003);		

(iv) within-area	 connectivity:	 a	 sparse,	 random	 and	 initially	 weak	 connectivity	 was	

implemented	 locally,	 along	 with	 a	 neighborhood	 bias	 towards	 close-by	 links	

(Braitenberg	and	Schüz,	1998;	Kaas,	1997);		

(v) between-area	connectivity	based	on	neurophysiological	principles	and	motivated	

by	neuroanatomical	evidence	further	explained	below;	and		

(vi) presence	 of	 ongoing	 uniform	uncorrelated	white	 noise	 in	 all	 neurons	 during	 all	

phases	of	learning	and	retrieval	(Rolls	and	Deco,	2010),	and	additional	static	noise	

added	 to	 the	 stimulus	 patterns	 to	mimic	 realistic	 variability	 of	 input	 conditions	

during	learning	and	retrieval.	

The	network´s	connectivity	structure	reflects	existing	anatomical	pathways	revealed	by	

neuroanatomical	 studies	 using	 diffusion	 tensor	 and	 diffusion-weighted	 imaging	 (DTI/DWI)	

(Rilling	 et	 al.,	 2011;	 Thiebaut	 de	 Schotten	 et	 al.,	 2012).	 These	 were	 modelled	 between	

adjacent	 cortical	 areas	within	 each	 of	 the	 4	 ‘streams’	 (see	 black	 arrows	 Fig.	 4.2	 a-b)	 and	

between	 all	 pairs	 of	 multimodal	 areas	 (PB,	 PFi,	 AT	 and	 PFL)	 through	 the	 long	 distance	

cortico-cortical	connections	(purple	arrows).	Additionally,	non-adjacent	‘jumping’	links	were	

implemented	 within	 the	 superior	 or	 inferior	 temporal	 and	 superior	 or	 inferior	 frontal	

cortices	 (blue	 arrows).	 Detailed	 descriptions	 of	 the	 connectivity	 structure	 and	 the	

neuroanatomical	 evidence	 reporting	 such	 links	 are	 documented	 in	 the	 Methods	 section	

under	‘The	model’s	connectivity	structure’.	
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Word	learning	results	

Thirteen	different	 instances	of	 ‘sighted’	and	 ‘blind’	model	networks	 (in	 total	26	networks)	

were	initialised	having	the	same	architecture	as	described	above	(Fig.	4.2b),	but	each	with	

randomly	 generated	 synaptic	 connections.	 These	model	 instances	 were	 used	 to	 simulate	

plastic	changes	in	normal-sighted	and	congenitally	blind	humans	during	word	learning.	We	

mimic	 associative	 learning	 between	 word-forms	 used	 to	 speak	 about	 objects	 and	 their	

referent	 objects	 present	 in	 the	 environment	 as	 well	 as	 between	 action	 words	 and	 the	

performance	of	their	semantically-related	actions,	as	it	is	well-documented	in	the	literature	

on	 language	 learning	 (Tomasello	 and	 Kruger,	 1992;	 Vouloumanos	 and	 Werker,	 2009).	

Although	other	forms	of	semantic	learning	(e.g.,	from	texts	or	by	definition)	also	play	a	role	

in	meaning	acquisition,	we	focus	on	the	direct	semantic	grounding	of	words	 in	object	and	

action	 knowledge,	 because	 it	 is	 both	 prominent	 in	 early	 language	 learning	 and	 a	

precondition	 for	 other	 forms	 of	 semantic	 learning	 (Harnad,	 1990;	 Vincent-Lamarre	 et	 al.,	

2016).	 In	 the	 sighted	model	 simulations,	 object-	 and	 action-related	word	 acquisition	was	

grounded	in	sensorimotor	information	presented	to	the	primary	areas	of	the	model:	object-

related	word	learning	was	driven	by	perisylvian	activity	in	A1	and	M1i	and	concordant	visual	

(V1)	activity	patterns;	similarly,	action-related	word	learning	was	driven	by	semantic	activity	

in	 the	 lateral	 motor	 area	 (M1L)	 along	 with	 perisylvian	 activity	 (Fig.	 4.3).	 The	 fourth	 non-

relevant	 area	 (M1i	for	 object-	 and	 V1	 for	 action-related	 words)	 received	 an	 uncorrelated	

input	pattern	that	was	changing	in	every	learning	step.	This	aimed	to	mimic	variable	input	

patterns	uncorrelated	with	word-form,	 reflecting,	 for	example,	 the	many	different	objects	

that	 can	 be	 grasped	 -	 and	 visually	 perceived	 -	 during	 the	 acquisition	 of	 the	 meaning	 of	

‘grasp’,	or	the	different	motor	inputs	that	might	occur	during	the	learning	of	novel	concrete	

(object)	 words.	 In	 contrast,	 the	 congenitally	 blind	 models	 were	 trained	 with	 the	 same	

parameters	but	without	any	visual	experience	during	the	entire	learning	processes	(i.e.,	no	

correlated	or	uncorrelated	input	to	V1*).			

Learning	 the	 association	 of	word-forms	 in	 perisylvian	 language	 areas	with	 the	 related	

referential	semantic	information	in	the	extrasylvian	system	in	sighted	and	congenitally	blind	

models	led	to	the	formation	of	ensembles	of	strongly	interconnected	neurons,	the	so-called	

‘cell	assemblies’	 (CA)	once	envisaged	by	Hebb	(1949).	These	were	scattered	across	several	

areas	of	 the	multi-area	networks.	After	 the	 learning	had	been	completed,	 the	CA	neurons	
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were	 identified	 by	 simulating	 ‘word	 production’	 processes	 by	 presenting	 the	 auditory-

articulatory	word-form	patterns	in	the	primary	perisylvian	areas	(see	Method	section	‘Data	

processing	and	statistical	analysis’	for	more	details).	Fig.	4.3	illustrates	distributions	for	CAs	

underpinning	 2	 object-	 and	 2	 action-related	 words	 learned	 under	 undeprived	 (turquoise	

pixels)	 and	 deprived	 conditions	 (magenta	 pixels;	 other	 simulated	 networks	 led	 to	 similar	

topographies).		
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Figure	 4.3	 Distributions	 of	 cell-assemblies	 (CAs)	 emerging	 in	 the	 12	 areas	 network	 during	
simulation	 of	 action	 (a)	 and	 object	 (b)	 word	 learning	 under	 normal	 (sighted)	 and	 deprived	
conditions.	Each	set	of	12	squares	(in	black)	 illustrates	one	specific	network	area,	with	coloured	
pixels	 indexing	 the	 distribution	 of	 CA	 neurons	 across	 the	 12	 network	 areas	 as	 a	 result	 of	
sensorimotor	pattern	presentations.	The	perisylvian	cortex	was	always	stimulated,	which	mimics	
the	learning	of	a	spoken	word	 form	characterised	by	articulatory-acoustic	features,	while	action	
words	received	concordant	stimulation	to	the	motor	area	(M1i),	object	words	were	grounded	to	
visual	 areas	 (V1).	 The	 symbol	 “U”	 indicates	 the	 uncorrelated	 pattern	 presentation	 simulating	
variable	sensory	or	motor	input	typically	occurring	during	word	learning	(see	Methods	section	for	
more	detail).	The	blind	model	was	trained	in	the	same	way,	but	without	any	visual	 input	during	
the	entire	learning	phase.	
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Visual	inspection	of	the	results	suggested	that	the	two	types	of	word-related	circuits	did	

not	differ	 in	distribution	across	the	perisylvian	part	of	the	networks.	Likewise,	sighted	and	

blind	 model	 architectures	 produced	 similar	 perisylvian	 CA	 topographies	 (Fig.	 3).	 This	

observation	was	confirmed	by	counts	of	CA	neurons	per	area	(see	bar	plots	in	Fig.	4)	and	by	

statistical	results	failing	to	support	a	difference	in	perisylvian	CA	distributions	between	word	

or	network	types.	In	contrast,	the	extrasylvian	regions	of	the	sighted	model	revealed	a	clear	

double	dissociation	between	the	two	word	types.	CAs	carrying	object-related	words	seemed	

to	 extend	more	 into	 the	 visual	 areas	 (V1,	 TO)	 and	 less	 into	 the	motor	 areas	 (PML,	M1L),	

whereas	action-related	words	showed	the	opposite	pattern.	Intriguingly,	the	CA	circuits	for	

action-related	 symbols	 in	 the	blind	model	not	only	 reached	 into	 the	motor	 cortices	 (PML,	

M1L)	-	to	a	similar	degree	as	in	the	sighted	model	-	but	also	extended	into	the	visual	areas,	

including	higher	order	and	primary	visual	 regions	 (TO,	V1).	The	blind	model’s	object-word	

CA	circuits	also	 reached	the	visual	 system,	although	no	 (correlated	or	uncorrelated)	visual	

input	pattern	had	been	presented	during	learning.		

The	bar	plots	in	Fig.	4.4	shows	the	number	of	CA	neurons	of	action-	(a)	and	object-word	

(b)	circuits	situated	in	extrasylvian	and	perisylvian	systems	for	sighted	(turquoise)	and	blind	

(magenta)	models.	Visual	 illustration	of	 the	word-related	CA	circuits	between	 sighted	and	

blind	models	in	the	extrasylvian	system	(see	bar	plots	in	Fig.	4.4),	shows	a	higher	CA	circuit	

density	 in	 the	 primary	 visual	 area	 (V1)	 for	 action	 related	 words	 under	 the	 deprived	

condition,	which	is	consistent	with	the	range	of	studies	mentioned	in	the	introduction	about	

language	processing	in	congenitally	blind	people.	In	contrast,	object-related	words	seem	to	

differ	 in	 all	 the	 areas	 of	 the	 extrasylvian	 system,	 i.e.,	 they	 reveal	 a	 lower	 density	 of	 CA	

circuits	under	deprived	condition.		
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Figure	4.4	Mean	numbers	of	cell	assembly	neurons	 in	 the	different	cortical	areas	of	 the	sighted	
(turquoise	bars)	and	blind	models	(magenta	bars)	after	simulating	the	learning	of	action-	(a)	and	
object-related	words	(b)	during	word	production;	error	bars	show	standard	errors	over	networks.	
Data	 of	 the	 extrasylvian	 system	 are	 shown	 above	 and	 the	 one	 of	 the	 perisylvian	 cortex	 below.	
Asterisks	indicate	that,	within	a	given	area,	the	number	of	CA	cells	significantly	differed	between	
the	 sigthed	 and	blind	model	 for	 the	 two	word	 types	 (Bonferroni-corrected	planned	 comparison	
tests,	6	comparisons;	critical	threshold	p<.0083).	
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Fig.	4.5	illustrates	the	correlates	of	action	word	recognition	in	sighted	and	blind	models	

after	 training.	 The	 re-activation	 was	 simulated	 by	 presenting	 the	 auditory	 patterns	 of	

previously	learned	word-forms	to	the	primary	auditory	area	(*A1,	Fig.	4.5).	Similar	to	the	CA	

structure	 illustrated	 in	 Fig.	 4.3,	 action-related	words	 in	 the	 blind	model	 showed	 a	 higher	

density	 of	 CA	 cells	 in	 motor	 and	 deprived	 visual	 areas	 compared	 to	 the	 sighted	 one.	

Intriguingly,	 the	 blind	 model	 revealed	 a	 prolonged	 activation	 time	 course	 (CA	 Ignition)	

compared	 to	 the	 sighted	 model.	 In	 this	 particular	 example,	 the	 different	 neuronal	 and	

cognitive	correlates	of	word	perception	(stimulation),	word	understanding	(full	ignition)	and	

memory	 trace	 (reverberation)	 lasted	more	 than	 25	 percent	 longer	 in	 the	 blind	model	 as	

compared	to	the	sighted	one.		
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Figure	 4.5.	 Activation	 spreading	 in	 the	 12	 area	 network	 during	 simulated	 action	 word	
recognition.	Network	responses	to	stimulation	of	A1	with	the	‘auditory’	patterns	of	the	learned	
words	(CA	#11	in	Fig.	3,	respectively);	the	12	network	areas	are	represented	as	12	squares,	but,	
in	 this	 case,	 selected	 snapshots	 of	 network’s	 activity	 are	 shown	 (as	 in	 Fig.	 3)	 with	 numbers	
indicating	the	simulation	time-steps.	Each	pixel	represents	one	spike	of	the	CA	circuit	for	sighted	
(turquoise	pixel)	and	blind	people	 (magenta	pixels).	Notice	 the	prolonged	spiking	 activation	of	
the	blind	model	compared	to	the	sighted	one.	See	main	text	for	details.		
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The	 observations	 described	 above	were	 confirmed	 by	 a	 3-way	 repeated	measurement	

ANOVA	with	the	factors	Model,	WordType	and	Area,	which	revealed	a	main	effect	of	Model	

(F2,24	=	11.91,	p	=	.0047,	ηp2	=	.49)	and	a	significant	interaction	between	all	three	factors	(F2,24	

=	13.32,	ε	=	.43,	p	<	.00001,	ηp2	=	.52).	Consistent	results	were	revealed	by	the	5-way	ANOVA	

breaking	down	the	areas	into	cortical	streams,	which	showed	a	significant	5-way	interaction	

between	Model,	WordType,	PeriExtra,	 TemporalFrontal	 and	Area	 (F2,24	 =	 7.45,	 ε	 =	 .83	p	=	

.0054,	ηp2	=	.38).	To	further	investigate	this	complex	effect,	the	interaction	was	broken	down	

into	component	analyses	(4-	and	3-way	ANOVAs),	as	specified	below.	

First,	we	performed	separate	ANOVAs	on	the	peri-	and	extrasylvian	systems.	A	significant	

interaction	was	 found	 in	 the	 extrasylvian	 system	 involving	 the	 factors	Model,	WordType,	

TemporalFrontal	and	Area	(F2,24	=	21.46,	ε	=	.82,	p	<	.0001,	ηp2	=	.65),	while,	as	expected,	no	

significant	differences	were	revealed	in	the	perisylvian	system	(F2,24	=	0.389,	p	=	.68).	3-way	

ANOVAs	 investigating	 performance	 on	 the	 two	 word	 categories	 separately	 showed	

significant	interactions	of	the	factors	Model,	TemporalFrontal	and	Area	for	both	action	(F2,24	

=	21.46,	ε	=	.73,	p	<	.0001,		ηp2	=	.64)	and	object	(F2,24	=	14.99,	ε	=	.80,	p	<	.0001,	ηp2	=	.55)	

words.	 The	 Bonferroni-corrected	 planned	 comparison	 tests	 (6	 comparisons,	 corrected	

critical	 p	 <	 .0083)	 confirmed	 the	 observation	 of	 the	 higher	 density	 of	 action-related	 CA	

circuits	 in	 the	 blind	 compared	 to	 the	 sighted	 model	 in	 the	 primary	 visual	 area	 (V1,	 p	 <	

.0001),	 whereas,	 for	 object-related	 word	 CAs,	 a	 relatively	 lower	 neuron	 density	 was	

revealed	 in	 the	primary	 visual	 (V1),	 temporo	occipital	 (TO),	 anterior	 temporo	 (AT),	 lateral	

prefrontal	(PFL)	and	lateral	premotor	(PML,	p	<	.0001)	areas	(Fig.	4).			

To	 contrast	 the	 different	 distributions	 of	 CA	 neurons	 across	 areas	 within	 each	 model	

separately,	 we	 ran	 another	 set	 of	 4-way	 ANOVAs	 with	 the	 factors	 WordType,	 PeriExtra,	

TemporalFrontal	 and	 Area	 for	 the	 two	 models	 separately.	 The	 sighted	 model	 showed	 a	

significant	interaction	between	WordType	and	Area	(F2,24	=	19.07,	ε	=	.41,	p	<.001,	ηp2	=	.72)	

and	a	 significant	 interaction	 involving	all	 four	 factors	 (F2,24	 =	19.07,	 ε	=	 .41,	p	<.001,	ηp2	 =	

.62),	 which	 confirms	 differences	 in	 CA	 distributions	 between	 the	 two	 word	 types.	

Additionally,	a	main	effect	of	Area	(F2,22	=	747.838,	ε	=	.98,	p	<	.0001,	ηp2	=	.98)	was	found,	

indicating	the	different	CA	cell	densities	distributed	across	the	multi-area	network,	namely	

higher	CA	densities	 in	hubs	 than	 in	 secondary	areas	 (p	<	 .0001),	and	 in	 secondary	 than	 in	

primary	areas	(p	<	.0001).	To	determine	whether	differential	CA	distributions	were	present	

in	peri-		or	extrasylvian	systems,	we	separately	ran	further	3-way	ANOVAs.	The	extrasylvian	
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system	 showed	 a	 highly	 significant	 interaction	 of	 the	 factors	WordType,	 TemporalFrontal	

and	Area	 (F2,24	=	78.3,	ε	=	 .91,	p	<	 .0001,	ηp2	=	 .86),	confirming	the	distinct	word	category	

distribution	over	the	motor,	visual	and	hub	areas.	The	perisylvian	regions	did	not	show	any	

significant	distributional	differences	between	the	two	word	types	(F2,24	=	0.46,	p	=	.63).	

The	blind	model	showed	a	2-way	interaction	involving	WordType	and	Area	(F2,24	=	19.07,	

ε	 =	 .43,	p	<.001,	ηp2	 =	 .63),	 but	 the	4-way	 interaction	of	 the	 factors	WordType,	PeriExtra,	

TemporalFrontal	and	Area	was	only	marginally	significant	(F2,22	=	3.47,	ε	=	.95	p	=	.054).	The	

additional	 statistical	 analysis	 performed	 separately	 on	 the	 two	 systems	 showed	 similar	

results	as	in	the	sighted	model,	supporting	distributional	differences	of	CA	topographies	in	

extrasylvian	(F2,24	=	13.0,	ε	=	.88,	p	=	.0003,	ηp2	=	.51)	but	not	perisylvian	(F2,24	=	0.14,	p	=	.86)	

space.	 Bonferroni-corrected	 planned	 comparison	 tests	 assessed	 the	 presence	 of	

distributional	 differences	 between	 word	 types	 in	 the	 blind	 model	 area	 by	 area	 (6	

comparisons,	corrected	critical	p	<	.0083).	This	analysis	revealed	higher	neuron	densities	for	

action-	 compared	 to	 object-related	 words	 in	 the	 dorsal	 motor	 stream,	 i.e.	 in	 lateral	

prefrontal	 (PFL	p	<	 .0001),	 premotor	 (PML	 p	<	 .0001)	 and	 primary	motor	 cortex	 (M1L	p	<	

.0001),	and,	surprisingly,	also	in	the	ventral	visual	stream,	anterior-temporal	(AT,	p	<	.0001),	

temporo-occipital	(TO,	p	=	.0027)	and	primary	visual	(V1,	p	=	.0048)	areas.	

In	 summary,	 our	 neurobiologically	 constrained	 model	 of	 human	 cortex	 applied	 to	

simulate	 aspects	 of	 early	 word	 learning	 in	 congenitally	 blind	 and	 undeprived	 human	

individuals	 revealed	 the	 following	 results:	Whereas	 in	 the	 undeprived	 case,	 contingencies	

between	 word-forms	 and	 actions	 or	 perceptions	 were	 mapped	 in	 the	 network	 by	

establishing	tightly	interconnected	neuronal	assemblies	distributed	across	linguistic,	ventral	

visual	 and	 dorsal	 motor	 streams,	 similar	 semantic	mapping	 was	 only	 possible	 for	 action-

related	symbols	in	the	blind	model.	Compared	with	the	circuits	for	action-related	words	in	

the	 undeprived	 case,	 ‘blind	 networks’	 showed	 an	 unexpected	 extension	 of	 these	 circuits	

into	 visual	 areas,	 with	 significantly	 higher	 neuron	 densities	 in	 primary	 (*V1)	 and	 higher	

visual	cortices.	Circuits	of	object-related	words	showed	relatively	reduced	neuron	densities	

in	both	extrasylvian	streams.	
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Discussion		

Activation	of	ventral	stream	visual	cortex	has	been	reported	in	healthy	sighted	subjects	for	

the	processing	of	 object-	 and	 visually-related	words	 specifically	 (Chao	et	 al.,	 1999;	 Kiefer,	

2005;	 Sim	 and	 Kiefer,	 2005),	 but	 not	 or	 significantly	 less	 in	 action	 verb	 and	 tool	 word	

processing.	 In	 contrast,	 congenitally	 blind	 people	 were	 shown	 to	 activate	 visual	 areas,	

including	the	primary	visual	cortex,	 in	semantic	retrieval	during	verb	generation	(Amedi	et	

al.,	 2004,	 2003;	 Burton,	 2002;	 Raz	 et	 al.,	 2005;	 Struiksma	 et	 al.,	 2011),	 single	 word	

comprehension	(Burton,	2003;	Burton	et	al.,	2012)	and	sentence	processing	tasks	(Bedny	et	

al.,	 2011;	 Röder	 et	 al.,	 2002).	 Involvement	 of	 visual	 cortices	 in	 the	 healthy	 brain	 can	 be	

explained	by	 their	 role	 in	grounding	symbolic	meaning	 in	visual	perception	of	objects	and	

their	 features	 (McCarthy	 and	 Warrington,	 1988;	 Pulvermüller,	 2001;	 Pulvermüller	 and	

Fadiga,	 2010).	 However,	 under	 sensory	 deprivation,	 it	 is	 impossible	 that	 the	 correlation	

between	visual	and	 linguistic	 information	 leads	to	the	strengthening	of	neuronal	 links	 into	

visual	streams	because	blind	people	lack	such	modality-specific	grounding	information.		

Here,	we	show	that	a	spiking	neural	network	constrained	by	cortical	neuroanatomy	and	

function	 and	 obeying	 well-established	 neuroscience	 principles	 can	 simulate	 the	 known	

visual	 cortex	 recruitment	 in	 both	 sighted	 and	 blind	 individuals	 during	 word	 meaning	

acquisition.	The	neuromechanistic	explanatory	account	that	we	wish	to	offer	based	on	these	

network	simulations	builds	upon	two	mechanisms:	

First,	CA	circuits	grow	spontaneously:	 in	a	network	with	random	connectivity	between	

spontaneously	active	neurons,	a	neuron	firing	above	the	 level	of	 its	connected	neighbours	

will	 strengthen	 its	 links	 to	 some	 of	 these	 neighbours,	 therefore	 giving	 rise	 to	 the	

spontaneous	 emergence	 of	 a	 relatively	more	 strongly	 connected	 set	 of	 neurons	 (Doursat	

and	 Bienenstock,	 2006).	 We	 call	 this	 process,	 which	 is	 explained	 by	 correlation	 learning	

between	 co-active	 neurons,	 ‘Doursat-Bienenstock	 expansion’	 or	 DB-expansion.	 If	 such	

expansion	happens	at	the	level	of	 large	neuronal	assemblies,	these	circuits	will	 ‘grow	into’	

adjacent	 and	 connected	 areas	 (Garagnani	 and	Pulvermüller,	 2016;	 Tomasello	 et	 al.,	 2018,	

2017).		

Second,	noise	suppresses	spontaneous	CA	circuit	growth:	stimulus-	and	action-induced	

uncorrelated	activity	in	the	extrasylvian	streams	of	the	network	is	critical	for	preventing	the	

expansion	of	CA	circuits	into	these	streams.	In	this	sense,	it	is	the	variability	of	visual	inputs	
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in	processing	action-related	symbols	that	guarantees	variable	activation	in	the	visual	stream	

and	 therefore	 neural	 activity	 uncorrelated	 to	 these	 symbolic-linguistic	 activations.	 For	

instance,	when	learning	the	meaning	of	an	action	word	such	as	‘run’	while	performing	the	

corresponding	 action	 (Tomasello	 and	 Kruger,	 1992),	 the	 variable	 sensory	 information	

perceived	during	 running	can	be	seen	as	variable	uncorrelated	 input,	which	works	against	

DB	expansion	into	the	ventral	visual	stream.		

Our	 present	 simulations	 suggest	 that	 it	 is	 the	 absence	 of	 uncorrelated	 input	 to	 the	

ventral	visual	 stream	 in	 the	blind	network	and	brain	 that	 is	necessary	 for	DB-expansion	of	

action-word-related	CA	circuits.	In	essence,	as	observed	in	previous	simulations	(Garagnani	

and	 Pulvermüller,	 2016;	 Tomasello	 et	 al.,	 2018,	 2017),	 the	 uncorrelated	 visual	 input	 is	

crucial	 for	preventing	DB-expansion	of	action-word-related	circuits	 into	visual	areas	of	 the	

undeprived	brain.	

We	 propose	 that	 the	 strong	 activation	 of	 primary	 visual	 areas	 in	 language	 processing	

observed	in	congenitally	blind	people	is	explained	by	DB-expansion	of	CA	circuits	described	

above.	 The	 relatively	weaker	 visual	 activation	 in	 language	 processing	 in	 healthy	 people	 is	

explained	 by	 noise-related	 CA	 growth	 suppression.	 As	 mentioned	 in	 the	 Introduction,	

neuroimaging	studies	documented	relatively	stronger	activation	of	 the	primary	visual	area	

(fMRI	 activity	 in	V1)	 in	blind	 than	 in	undeprived	 individuals	when	generating	 semantically	

related	 verbs	 to	 given	 nouns	 (Amedi	 et	 al.,	 2003;	 Burton,	 2002;	 Struiksma	 et	 al.,	 2011).	

Consistently,	 a	 study	 employing	 transcranial	 magnetic	 stimulation	 (TMS)	 in	 the	 primary	

visual	 area	 reported	 impairments	 in	 the	 verb	 generation	 task	 in	 blind	 but	 not	 in	 sighted	

individuals	(Amedi	et	al.,	2004).	The	verb	generation	task	implies	the	activation	of	multiple	

CA	 circuits	 for	 verbs,	most	 of	which	 are	 action-related	 (Moseley	 and	Pulvermüller,	 2014),	

and	this	engages	the	ventral	visual	system	more	in	blind	people	than	in	undeprived	control	

subjects.	 Stronger	 V1	 activation	 in	 blind	 than	 in	 sighted	 people	 has	 also	 been	 reported	

during	 sentence	 processing	 (see	 Fig.	 4.1),	 which	 likely	 included	 action-related	 words	 too	

(Bedny	 et	 al.,	 2011;	 Röder	 et	 al.,	 2002).	 Therefore,	 the	 aforementioned	 fMRI	 and	 TMS	

results	are	consistent	with	the	predictions	of	the	present	simulations,	in	which	the	modelled	

primary	visual	area	(*V1)	becomes	more	actively	involved	in	the	processing	of	action-related	

meaningful	symbols	and	complex	utterances	including	such	symbols	(Fig.	4.1	&	4.3).	These	

results	represent	a	significant	advance	in	the	debate	about	the	mechanisms	underlying	the	

neural	changes	in	the	visual	cortex:	evidence	indicates	that	such	cortical	areas	can	take	over	
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a	 particular	 function	 depending	 on	 input	 information	 received	 during	 the	 developmental	

period	(Bedny,	2017);	On	the	basis	of	our	results,	it	is	precisely	the	lack	of	informative	input	

to	visual	cortex	that	drives	the	Hebbian	synaptic	modifications	and	consequent	extension	of	

linguistic	 representations	 into	 visual	 cortex	 seen	 in	 congenitally	 blind	 individuals.	 The	

underlying	mechanisms	 are	 consistent	with	 general	 neurobiological	 plasticity	mechanisms	

documented	 in	 other	 deprived	 sensory	 systems	 (Buonomano	 and	 Merzenich,	 1998;	

Merzenich	et	al.,	1984)	and,	even	though	a	higher	cognitive	function,	language,	is	involved,	

the	explanation	rests	on	the	same	neuroscience	principles.	

Intriguingly,	 the	 present	 neurobiologically	 constrained	 ‘blind’	 neural	 network	 was	 not	

only	able	to	reproduce	the	visual	cortex	recruitment	in	the	blind	but	also	showed	prolonged	

spiking	 neural	 activity	 for	 action-related	 words	 during	 word	 recognition	 simulations	 (Fig.	

4.5).	Sustained	neural	activity	is	a	neural	correlate	of	working	memory	(Baddeley	and	Hitch,	

1974;	 Leavitt	 et	 al.,	 2017),	 which,	 in	 the	 present	 study,	 persisted	 longer	 in	 the	 blind	

compared	 to	 the	 sighted	model.	 This	 phenomenon	 in	 the	 network	 is	 consistent	with	 the	

observation	 of	 enhanced	 verbal	 working	 memory	 ability	 in	 congenitally	 blind	 individuals	

compared	to	control	sighted	population	during	working	memory	performance	(Amedi	et	al.,	

2003;	 Occelli	 et	 al.,	 2017;	 Pasqualotto	 et	 al.,	 2013;	 Withagen	 et	 al.,	 2013).	 Note,	

furthermore,	that	during	the	reverberation	phase,	activity	retreats	from	modality-specific	to	

the	modality	general	association	cortices	 in	frontal	and	temporal	cortex	(*AT,	*PF)	 in	both	

sighted	(time	steps	12-14)	and	blind	models	(time	steps	17-19).	This	is	consistent	with,	and	

provides	 an	 explanation	 for,	 the	 so-called	 ‘anterior	 shift’	 of	 cortical	 activation	 from	

sensorimotor	 cortices	 to	 temporal	 and	 prefrontal	 connector	 hub	 regions	 during	 working	

memory	(Fuster,	1998;	Leavitt	et	al.,	2017;	Pulvermüller	and	Garagnani,	2014;	Tomasello	et	

al.,	2018).		

In	 the	 present	 simulation	 of	 undeprived	 referential-semantic	 learning,	 CA	 circuits	

emerged	 spontaneously	 across	 the	 fronto-temporo-occipital	 areas	 of	 the	 spiking	 neural	

network	 linking	 word-form	 in	 the	 perisylvian	 cortex	 with	 semantic	 information	 about	

referent	objects	and	actions	in	the	extrasylvian	system.	The	learning	of	object-	and	action-

related	 words	 was	 grounded	 in	 correlated	 sensorimotor	 information	 presented	 in	 the	

primary	 cortices	 of	 the	 architecture:	 besides	 perisylvian	 *A1	 and	 *M1i	 activity,	 object-

related	words	received	concordant	visual	(*V1)	and,	similarly,	action-related	words	received	

lateral	motor	 area	 (*M1L)	 grounding	 activity.	 Because	of	 noise	 suppression	of	 CA	 growth,	
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the	fourth	‘non-relevant’	input	area	(*M1i	for	object-	and	*V1	for	action-related	words)	was	

not	 left	 void	 of	 any	 sensory	 input,	 but	 instead	 processed	 uncorrelated	 (‘suppressing’)	

information	 and	 neuronal	 activation	 patterns.	 As	 reported	 by	 the	 present	 and	 previous	

simulations,	 noise-suppression	 of	 CA	 growth	 becomes	 relevant	 in	 the	 undeprived	 brain’s	

formation	 of	 category-specificity	 of	 circuit	 topographies	 with	 action-related	 word	 circuits	

reaching	 into	the	motor	cortices	(*M1L-*PML),	but	not	or	 less	 into	visual	areas	(*V1,	*TO),	

and	vice	versa	for	object	words	(Garagnani	and	Pulvermüller,	2016;	Tomasello	et	al.,	2018,	

2017).	Here	we	 replicated	 these	previous	 results	with	 a	 spiking	neural	 network	 and	went	

one	 step	 further	 by	 systematically	 investigating	 the	 consequences	 of	not	 presenting	 such	

uncorrelated	 noise	 patterns	 to	 the	 model’s	 primary	 visual	 cortex	 during	 action-word	

learning.	This	was	meant	to	specifically	simulate	a	learning	situation	in	which	the	meaning	of	

such	action	words	is	acquired	in	the	absence	of	any	visual	input	(i.e.,	in	blindness).		

The	current	observations	and	their	possible	explanation	in	terms	of	DB-expansion	of	CA	

circuits	 and	noise-related	 suppression	of	 such	 growth	 suggest	 that	 these	mechanisms	 are	

more	broadly	 applicable	 to	 cases	of	 sensory	deprivation.	 Similar	 to	blind	 individuals,	 deaf	

individuals	activate	their	deprived	auditory	cortex	in	processing	visual	stimuli	(Finney	et	al.,	

2001)	and	in	the	processing	of	visually	presented	units	of	their	native	language,	typically	a	

manual	signing	system	(Petitto	et	al.,	2000).	Some	of	these	results	had	previously	been	used	

to	 strongly	 argue	 for	 an	 inborn	 mechanism	 linking	 abstract	 (but	 not	 acoustic	 or	 other	

sensory	or	motor)	 features	of	 language	to	specific	brain	parts.	Our	present	work	offers	an	

alternative	 explanation	 based	 on	 established	 neurobiological	 mechanisms	 (see	 Results,	

points	(i)	–	(v)	–	(vi)).	

For	 object-related	words,	 simulation	 results	 indicate	 a	 generally	 reduced	 relevance	 of	

extrasylvian	 areas	 in	 blind	 people	 –	 both	 compared	 with	 action	 words	 in	 the	 same	

population	and	compared	with	the	same	word	type	in	the	healthy	undeprived	(see	Fig.	5.4).	

This	 suggests	 reduced	 grounded	 semantic	 knowledge	 in	 blind	 people,	 at	 least	 for	 some	

specific	 word	 types	 requiring	 visual	 knowledge	 for	 complete	 acquisition	 of	 their	 related	

concepts.	For	the	semantics	of	colour	terms,	such	partially	deficient	semantic	knowledge	in	

the	blind	has	been	supported	by	experimental	studies	 (Connolly	et	al.,	2007;	Shepard	and	

Cooper,	 1992),	 although	 other	 work	 reported	 comparable	 semantic	 similarity	 ratings	

(Marmor,	1978).	However,	for	other	object-related	words,	it	is	less	plausible	that	substantial	

differences	 in	 semantic	 knowledge	 are	 present	 between	 congenitally	 blind	 and	 sighted	
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infants.	 It	 is	 known	 that,	when	 blind	 people	 learn	words	 for	 objects,	 they	 naturally	 draw	

more	on	manual	exploration	and	touch	than	undeprived	individuals.	In	her	seminal	studies,	

Gleitman	noted,	for	example,	that,	when	a	blindfolded	undeprived	child	is	advised	to	‘look	

up’,	 it	would	 raise	 its	head,	whereas	 a	blind	one	would	explore	 the	 space	above	 its	head	

with	the	hands	(Gleitman,	1990).	This	and	similar	observations	suggest	that,	for	a	range	of	

words	typically	grounded	in	visual	experience,	congenitally	blind	individuals	use	tactile	and	

motor	knowledge	in	the	semantic	grounding	process.	This	difference	in	stimulation	modality	

implies	a	degree	of	 similarity	between	semantic	grounding	processes	of	object	and	action	

words	 in	 the	 blind.	 On	 the	 other	 hand,	 this	 difference	 in	 modality	 also	 implies	 that	

congenitally	blind	people	can	use	similar	grounding	information	for	object	words	as	healthy	

subjects,	 although	 this	 same	 (or	 very	 similar)	 information	 is	 provided	 through	 a	 different	

channel.	 This	 is	 particularly	 the	 case	 if	 information	 about	 the	 form	 or	 shape	 of	 referent	

objects	 is	 acquired	 through	 vision	 or	 tactile	 exploration.	 	 Future	 experimental	 works	 and	

simulation	studies	are	still	needed	to	explore	more	closely	the	learning	of	different	subtypes	

of	 visually-related	 words	 in	 blind	 brains	 and	 networks	 taking	 into	 account,	 in	 particular,	

information	 in	 the	 tactile	 modality.	 Instead	 of	 aiming	 at	 capturing	 such	 fine-grained	

differences	 in	 semantic	 grounding,	 our	 present	 study	 specifically	 addressed	 the	 effect	 of	

sensory	 deprivation	 and	 the	 consequent	 conquering	 of	 visual	 cortex	 by	 linguistic	 and	

semantic	processes.		

We	 wish	 to	 conclude	 by	 pointing	 to	 further	 obvious	 limitations	 of	 the	 present	 work.	

First,	we	simulated	semantic	learning	in	a	‘grounding’	context,	where	words	are	co-present	

with	 actions	 and	 objects.	 Useful	 next	 steps	 in	 the	 modelling	 effort	 shall	 focus	 on	 the	

acquisition	 of	 novel	word	meaning	 in	 the	 context	 of	 already	 grounded	meaningful	words	

(Pulvermüller,	 2010;	 Pulvermüller	 and	 Knoblauch,	 2009)	 and	 on	 the	 learning	 of	 word	

sequences	 and	 whole	 constructions	 along	 with	 their	 semantics.	 With	 regard	 to	 blind	

individuals,	 we	 have	 restricted	 our	 scope	 to	 congenitally	 blind	 subjects,	 because	 they	

provide	 the	clearest	 case	of	deprivation.	The	more	complex	 situation	of	 later	deprivation,	

where	normal	 learning	 takes	place	 first	and	deprivation	kicks	 in	at	a	 later	 stage,	may	also	

provide	 a	 basis	 for	 fruitful	 future	 simulations.	 We	 note	 that	 there	 are	 some	 important	

differences	 in	 reorganisation	processes	between	congenitally,	early	and	 late	blind	persons	

(Burton,	 2002;	 Kujala	 et	 al.,	 1997;	 Voss	 et	 al.,	 2008),	which	may	 be	 attributed	 to	 altered	

learning	histories	 and	possibly	 also	 to	 altered	neural	 substrates	 and	plasticity	 at	 different	
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developmental	stages.	 In	spite	of	 its	 focus	on	only	one	type	of	semantic	 learning	and	only	

the	most	typical	type	of	visual	sensory	deprivation,	our	model	offers	a	novel	neurobiological	

explanation	of	the	linguistic	takeover	of	visual	cortex.	

In	 sum,	 the	 present	 study	 aimed	 to	 simulate	 the	 effect	 of	 visual	 deprivation	 on	 the	

neuronal	mechanisms	of	semantic	and	language	processing	in	sighted	and	congenitally	blind	

people	by	means	of	a	neurobiological	constrained	neural	network	of	the	frontal,	 temporal	

and	occipital	lobes.	Specifically,	we	focus	on	the	mechanisms	responsible	for	the	activation	

of	 the	 deprived	 areas	 during	 semantic	 processing	 consistently	 reported	 by	 a	 number	 of	

experimental	studies	described	above,	and	show	that	the	interaction	of	three	main	factors	

may	 lead	 to	 the	 takeover	 of	 visual	 cortex	 for	 linguistic	 and	 semantic	 processing:	 (i)	 the	

changes	in	the	balance	of	activity	related	to	the	absence	of	uncorrelated	sensory	input,	(ii)	

constrained	 neuroanatomical	 connectivity	 and	 (iii)	 Hebbian	 correlation	 learning.	

Mechanisms	 of	 DB-expansion	 (resulting	 from	 (ii)-(iii))	 are	 crucial	 for	 visual	 cortex	

recruitment	in	the	blind,	and	those	of	‘noise’-related	prevention	of	such	expansion	for	the	

category-specific	nature	of	semantic	circuits	in	healthy	individuals.	The	present	architecture	

explains	 action-related	word	 processing	 in	 both	 dorsal	motor	 and	 deprived	 ventral	 visual	

streams.	 Here	 we	 bridge	 the	 gap	 between	 neural	 mechanisms	 and	 conceptual	 brain	

functions,	offering	a	biological	account	of	visual	cortex	reorganization	following	sensory	loss	

from	birth	and	its	functional	recruitment	for	language	and	semantic	processing.	
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Methods	

Structure	and	function	of	the	spiking	neuron	model	

Each	 of	 the	 12	 simulated	 areas	 is	 implemented	 as	 two	 layers	 of	 artificial	 neuron-like	

elements	 (‘cells’),	 625	 excitatory	 and	625	 inhibitory,	 thus	 resulting	 in	 15,000	 cells	 in	 total	

(see	Fig.	 4.2b-c).	 Each	excitatory	 cell	 ‘e’	 consists	of	 a	 leaky	 integrate-and-fire	neuron	with	

adaptation	and	simulates	a	single	pyramidal	cell	representative	of	excitatory	spiking	activity	

in	 a	 cortical	 micro-column,	 while	 its	 twin	 inhibitory	 cell	 ‘i’	 is	 a	 graded-response	 cell	

simulating	the	average	inhibitory	response	of	the	cluster	of	interneurons	situated	in	a	local	

neighbourhood	 (Eggert	 and	 van	 Hemmen,	 2000;	Wilson	 and	 Cowan,	 1972).	 The	 state	 of	

each	cell	x	 is	uniquely	defined	by	 its	membrane	potential	V(x,t),	specified	by	the	following	

equation:	

			

	

where	 VIn	 (x,t)	 is	 the	 net	 input	 acting	 upon	 cell	 x	 at	 time	 t	 (sum	 of	 all	 inhibitory	 and	

excitatory	postsynaptic	potentials	–	I/EPSPs;	inhibitory	synapses	are	given	a	negative	sign),	τ	

is	 the	 membrane’s	 time	 constant,	 k1,	 k2	 are	 scaling	 values	 (see	 below	 for	 the	 specific	

parameter	values	used	in	the	simulations)	and	η(·,t)	 is	a	white	noise	process	with	uniform	

distribution	 over	 [-0.5,0.5].	 Note	 that	 noise	 is	 an	 inherent	 property	 of	 each	 model	 cell,	

intended	 to	 mimic	 the	 spontaneous	 activity	 (baseline	 firing)	 of	 real	 neurons.	 Therefore,	

noise	was	constantly	present	in	all	areas,	 in	equal	amounts	(inhibitory	cells	have	k2=0,	 i.e.,	

the	noise	is	generated	by	the	excitatory	cells	in	the	model	for	convenience).	

The	output	(or	transformation	function)	ϕ	of	an	excitatory	cell	e	is	defined	as	follows:		

	

	

Thus,	an	excitatory	cell	e	spikes	(=1)	whenever	 its	membrane	potential	V(e,t)	overcomes	a	

fixed	 threshold	 thresh	 by	 the	 quantity	 αω.(e,t)	 (where	 α	 is	 a	 constant	 and	ω	 is	 defined	

below).	 Inhibitory	 cells	 are	 graded	 response	 neurons	 as	 they	 intend	 to	 represent	 the	

0     otherwise  

1      if   (V(e,t) ˗ α ω (e, t)) >  thresh 
(2) ϕ(e,t) = 

(1) τ ⋅
dV (x, t)
dt

= −V (x, t)+ k1(VIn (x, t)+ k2η(x, t))
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average	impact	of	a	cluster	of	local	interneurons;	the	output	ϕ(i,t)	of	an	inhibitory	neuron	i	

is	0	if	V(i,t)<0	and	V(i,t)	otherwise.		

To	simulate	neuronal	adaptation	(Kandel	et	al.,	2000),	function	ω(·,t)	is	defined	so	as	to	

track	 the	 cell’s	most	 recent	 firing	 rate	 activity.	More	 precisely,	 the	 amount	 of	 adaptation	

ω(e,t)	of	cell	e	at	time	t	is	defined	by:	

	

	

where	 	 is	the	 ‘adaptation’	time	constant.	The	solution	ω(e,t)	of	Eq.	 (3.1)	 is	the	 low-

pass-filtered	output	ϕ	of	cell	e,	which	provides	an	estimate	of	the	cell’s	most	recent	firing-

rate	 history.	 A	 cell’s	 average	 firing	 activity	 is	 also	 used	 to	 specify	 the	 network’s	 Hebbian	

plasticity	 rule	 (see	 Eq.	 (B4)	 below);	 in	 this	 context,	 the	 (estimated)	 instantaneous	 mean	

firing	rate	ωE(e,t)	of	an	excitatory	neuron	e	is	defined	as:	

	

	

Local	(lateral)	 inhibitory	connections	(see	Fig.	4.2c)	and	area-specific	 inhibition	are	also	

implemented,	 realising,	 respectively,	 local	 and	 global	 competition	 mechanisms(Duncan,	

2006,	1996).	More	precisely,	in	Eq.	(1)	the	input	VIn(x,t)	to	each	excitatory	cell	of	the	same	

area	 includes	 an	 area-specific	 (‘global’)	 inhibition	 term	 kG.ωG(e,t)	 (with	 kG	 a	 constant	 and	

ωG(e,t)	defined	below)	subtracted	from	the	total	I/EPSPs	postsynaptic	potentials	VIn	in	input	

to	the	cell;	this	regulatory	mechanism	ensures	that	area	(and	network)	activity	is	maintained	

within	physiological	levels(Braitenberg	and	Schüz,	1998):	

	

	

Excitatory	links	within	and	between	(possibly	non-adjacent)	model	areas	are	established	

at	 random	 and	 limited	 to	 a	 local	 (topographic)	 neighbourhood;	 weights	 are	 initialised	 at	

random,	in	the	range	[0,	0.1].	The	probability	of	a	synapse	to	be	created	between	any	two	

cells	 falls	 off	 with	 their	 distance	 (Braitenberg	 and	 Schüz,	 1998)	 according	 to	 a	 Gaussian	

function	clipped	to	0	outside	the	chosen	neighbourhood	(a	square	of	size	n=19	for	excitatory	

and	 n=5	 for	 inhibitory	 cell	 projections).	 This	 produces	 a	 sparse,	 patchy	 and	 topographic	

ADAPTτ

(3.1) 

(3.2) 

∑
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connectivity,	as	typically	found	in	the	mammalian	cortex	(Amir	et	al.,	1993;	Braitenberg	and	

Schüz,	1998;	Douglas	and	Martin,	2004;	Kaas,	1997).		

The	 Hebbian	 learning	 mechanism	 implemented	 simulates	 well-documented	 synaptic	

plasticity	phenomena	of	long-term	potentiation	(LTP)	and	depression	(LTD),	as	implemented	

by	 Artola,	 Bröcher	 and	 Singer	 (Artola	 et	 al.,	 1990;	 Artola	 and	 Singer,	 1993).	 This	 rule	

provides	a	realistic	approximation	of	known	experience-dependent	neuronal	plasticity	and	

learning	(Finnie	and	Nader,	2012;	Malenka	and	Bear,	2004;	Rioult-Pedotti	et	al.,	2000),	and	

includes	both	(homo-	and	hetero-synaptic,	or	associative)	LTP,	as	well	as	homo-	and	hetero-

synaptic	LTD.	In	the	model,	we	discretized	the	continuous	range	of	possible	synaptic	efficacy	

changes	into	two	possible	levels,	+Δ	and	−	Δ	(with	Δ<<1	and	fixed).	Following	Artola	et	al.,	

we	defined	as	 ‘active’	 any	 (axonal)	 projection	of	 excitatory	 cell	e	 such	 that	 the	estimated	

firing	 rate	ωE(e,t)	 of	 cell	 e	 at	 time	 t	 (see	 Eq.	 (3.2))	 is	 above	 θpre,	 where	 θpre∈[0,1]	 is	 an	

arbitrary	threshold	representing	the	minimum	level	of	presynaptic	activity	required	for	LTP	

to	 occur.	 Thus,	 given	 a	 pre-synaptic	 cell	 i	 making	 contact	 onto	 a	 post-synaptic	 cell	 j,	 the	

change	Δw(i,j)	inefficacy	of	the	(excitatory-to-excitatory)	link	from	i	to	j	is	defined	as	follows:	

	

	

	

	

	

	

	

 
 
 
 
 

0         otherwise  

(4) Δw(i,j) = 

+Δ   if ω.E(i,t)≥ θpre and V(j,t) ≥ θ+         (LTP)          

−Δ  if ω .E(i,t)≥ θpre and θ− ≤ V(j,t) < θ+  (homosynaptic LTD)
  
−Δ   if ω .E(i,t)< θpre and  V(j,t) ≥ θ+        (heterosynaptic LTD)  
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Table	4.1	Parameter	values	used	during	simulations	

Eq.(B1)			 Time	constant	(excitatory	cells)	 τ	=	2.5	(simulation	time-steps)		

Time	constant	(inhibitory	cells)		 τ		=	5	(simulation	time-steps)	

		 Total	input	rescaling	factor	 	 k1	=	0.01	

Noise	amplitude	 	 	 k2=	1·√(24/Δt)	

Global	inhibition	strength		 	 kG=	0.60	

Eq.	(B2)		 Spiking	threshold	 	 	 thresh	=	0.18	

Adaptation	strength	 	 	 α=	7.0	

Eq.(B3.1)	 Adaptation	time	constant		 	 τADAPT	=	10	(time	steps)	

Eq.(B3.2)	 Rate-estimate	time	constant			 τFavg	=	30	(time	steps)	

Eq.(B3.3)		 Global	inhibition	time	constant		 τGLOB	=	12	(time	steps)	

Eq.(B4)		 Postsynaptic	membrane	potential	thresholds:		

θ+=0.15	

θ–=0.14	

Presynaptic	output	activity	required	for	LTP:		

θpre=0.05	

Learning	rate		 	 	 	 Δ	=	0.0008	
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The	model’s	connectivity	structure	

The	between-area	connectivity	binds	adjacent	cortical	areas	together	(Pandya	and	Yeterian,	

1985;	 Young	 et	 al.,	 1995,	 1994).	 In	 the	 perisylvian	 system,	 next-neighbour	 connections	

between	cortically	adjacent	areas	are	 implemented	within	 the	auditory	 (A1,	AB,	PB)	 (Kaas	

and	 Hackett,	 2000;	 Pandya,	 1995;	 Rauschecker	 and	 Tian,	 2000),	 as	 well	 as	 within	 the	

articulatory	 (PFi,	 PMi,	M1i)	 sub-systems	 (Pandya	 and	 Yeterian,	 1985;	 Young	 et	 al.,	 1995).	

Similarly,	 local	 next	 neighbour	 links	 are	 also	 realised	 in	 the	 extrasylvian	 system,	 between	

adjacent	 ventral	 visual	 (V1,	 TO,	 AT)	 (Bressler	 et	 al.,	 1993;	 Distler	 et	 al.,	 1993),	 and	

dorsolateral	motor	areas	(PFL,	PML,	M1L)	(Arikuni	et	al.,	1988;	Dum	and	Strick,	2005,	2002;	

Lu	 et	 al.,	 1994;	 Pandya	 and	 Yeterian,	 1985;	 Rizzolatti,	 G.	 Luppino,	 2001).	 Furthermore,	

reciprocal	links	also	exist	between	anterior-temporal	(AT)	and	parabelt	(PB)	areas	(Gierhan,	

2013)	and	inferior	and	lateral	prefrontal	(PFi,	PFL)	areas	(Yeterian	et	al.,	2012).		

The	 long	distance	cortico-cortical	connections	 implemented	reciprocally	link	all	pairs	of	

multimodal	hub	areas	(PB,	PFi,	AT	and	PFL)	of	the	four	sub-systems,	modelling	documented	

anatomical	connections	between	inferior	pre-frontal	(PFi)	and	auditory	parabelt	(PB)	(Catani	

et	al.,	2005;	Makris	and	Pandya,	2009;	Meyer	et	al.,	1999;	Parker	et	al.,	2005;	Paus	et	al.,	

2001;	Rilling	et	al.,	2008;	Romanski	et	al.,	1999b)	and	between	anterior-temporal	(AT)	and	

lateral	prefrontal	(PFL)	areas,	realised	by	the	arcuate	and	the	uncinated	fascicles	(Bauer	and	

Jones,	1976;	Chafee	and	Goldman-Rakic,	2000;	Eacott	and	Gaffan,	1992;	Fuster	et	al.,	1985;	

Parker,	 1998;	 Ungerleider	 et	 al.,	 1989;	 Webster	 et	 al.,	 1994).	 The	 peri-	 and	 extrasylvian	

systems	 are	 also	 linked	 by	means	 of	 long	 distance	 cortico-cortical	 connections	 across	 the	

central	hub	areas;	 likewise	parabelt	(PB)	and	lateral	prefrontal	cortex	(PFL)	are	reciprocally	

connected	 (Pandya	 and	 Barnes,	 1987;	 Romanski	 et	 al.,	 1999b,	 1999a)	 as	 well	 as	 the	

anterior/middle-temporal	(AT)	and	inferior	prefrontal	(PFi)	areas	(Pandya	and	Barnes,	1987;	

Petrides	and	Pandya,	2009;	Rilling,	2014;	Romanski,	2007;	Ungerleider	et	al.,	1989;	Webster	

et	al.,	1994).		

The	present	neural	spiking	network	implemented	additional	high-order	‘jumping’	links,	

which	skip	one	intermediate	area	(blue	arrows	Fig.	4.2b),	documented	by	a	range	of	recent	

neuroanatomical	and	diffusion	tensor	and	diffusion-weighted	imaging	(DTI/DWI)	studies	 in	

humans	and	non-human	primates.	These	links	exist	within	(auditory)	superior	temporal	and	
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(articulatory)	 inferior	 frontal	 cortex	 of	 the	 perisylvian	 cortex,	 that	 is	 amongst:	 primary	

auditory	(A1)	-	parabelt	(PB)	areas	(Pandya	and	Yeterian,	1985;	Young	et	al.,	1994),	parabelt	

(PB)	-	inferior	premotor	(PMi)	areas	(Saur	et	al.,	2008),	auditory	belt	(AB)	-	inferior	prefrontal	

(PFi)	(Kaas	and	Hackett,	2000;	Rauschecker	and	Scott,	2009;	Romanski	et	al.,	1999a)	and	as	

well	 inferior	prefrontal	(PFi)	-	primary	motor	(M1i)	areas	(Deacon,	1992;	Guye	et	al.,	2003;	

Young	et	al.,	1995).	Additional	evidence	for	the	presence	of	high-order	jumping	links	within	

the	perisylvian	system	are	well-documented	also	in	DTI/DWI	studies	in	humans	(Rilling	et	al.,	

2011;	Thiebaut	de	Schotten	et	al.,	2012).	The	ventral	visual	and	the	dorsolateral	motor	sub-

systems	of	 the	extrasylvian	 cortex	were	also	endowed	with	 jumping	 links,	 similarly	 to	 the	

perisylvian	cortices	listed	above.	In	particular,	primary	visual	(V1)	area	is	reciprocally	linked	

to	anterior-temporo	(AT)	area	(Catani	et	al.,	2003;	Wakana	et	al.,	2004),	as	well	as	anterior-

temporo	 (AT)	 and	 dorsolateral	 premotor	 (PML)	 area,	 as	 documented	 by	 both	 anatomical	

(Pandya	 and	 Barnes,	 1987;	 Seltzer	 and	 Pandya,	 1989)	 and	 monkey	 studies	 (Bauer	 and	

Fuster,	1978;	Chafee	and	Goldman-Rakic,	2000;	Fuster	et	al.,	1985).	Additional	jumping	links	

were	implemented	between	temporo-occipital	(TO)	and	dorsolateral	prefrontal	areas	(PFL),	

as	 supported	 by	 evidence	 from	 anatomical	 studies	 in	 humans	 (Makris	 and	 Pandya,	 2009)	

and	monkeys	 (Bauer	and	Jones,	1976;	Fuster	et	al.,	1985;	Fuster	and	Jervey,	1981;	Seltzer	

and	 Pandya,	 1989),	 and	 between	 dorsolateral	 prefrontal	 (PFL)	 and	 dorsolateral	 premotor	

(M1L)	areas	(Deacon,	1992;	Guye	et	al.,	2003;	Young	et	al.,	1995).	Further	neuroanatomical	

DTI	 studies	 also	 showed	 connections	 within	 the	 extrasylvian	 system	 as	 described	 above	

(Thiebaut	de	Schotten	et	al.,	2012).	Notice	 that	 the	connectivity	 structure	of	both	sighted	

and	 blind	 models	 was	 kept	 the	 same,	 as	 a	 number	 of	 DTI	 studies	 have	 shown	 similar	

anatomical	connectivity	structure	between	sighted	and	blind	populations	(Noppeney	et	al.,	

2005;	Shimony	et	al.,	2005;	Shu	et	al.,	2009a,	2009b).	

Simulating	word	learning	

Prior	to	the	training,	each	network	was	initialised	with	all	the	synaptic	links	(between-	and	

within-areas)	 connecting	 single	 cells	 established	 at	 random	 (see	 Methods	 section	 under	

‘Structure	and	function	of	the	spiking	neuron	model’).	Similar	to	previous	simulation	studies	

(Garagnani	 et	 al.,	 2017;	Garagnani	 and	 Pulvermüller,	 2016;	 Tomasello	 et	 al.,	 2018,	 2017),	

word-meaning	acquisition	was	then	simulated	under	the	 impact	of	repeated	sensorimotor	
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pattern	presentations	to	the	primary	areas	of	the	network.	Each	network	instance	used	12	

different	sets	of	sensorimotor	word	patterns	representing	six	object-	and	six	action-related	

words.	Each	pattern	consisted	of	a	fixed	set	of	19	cells	chosen	at	random	within	the	25	x	25	

cells	of	an	area	(ca.	3%	of	the	cells).	Note	that	additional	white	(so-called	‘contextual’)	noise	

was	continuously	presented	to	all	primary	areas	of	the	network,	and	thus	superimposed	on	

all	learning	patterns.	This	partly	accounted	for	a	degree	of	variability	during	word	meaning	

acquisition	of	the	two	word-types.		

Word-related	 sensorimotor	 patterns	 were	 presented	 3000	 times	 (previous	 simulations	

using	a	six	area	model	showed	no	substantial	change	in	the	relevant	primary	areas	between	

1000	and	10000	learning	steps	(Garagnani	et	al.,	2009;	Schomers	et	al.,	2017))	as	described	

above.	 A	 trial	 started	 with	 a	 word	 pattern	 presentation	 for	 16	 simulation	 time	 steps,	

followed	by	a	period	during	which	no	input	(interstimulus	interval	–	ISI)	was	given.	The	next	

word	pattern	(learning	step)	was	presented	to	the	network	only	when	the	global	inhibition	

of	the	PFi	and	PB	areas	decreased	below	a	specific	fixed	threshold;	this	allowed	the	activity	

to	return	to	a	baseline	value,	so	as	to	minimise	the	possibility	of	one	trial	affecting	the	next	

one.	 Only	 the	 inherent	 baseline	 noise	 (simulating	 spontaneous	 neuronal	 firing)	 and	

‘contextual’	noise	were	present	in	the	neural-network	during	each	ISI.		

Data	processing	and	statistical	analysis		

Cell	 assemblies,	 which	 are	 strongly	 interconnected	 networks	 of	 neurons,	 spontaneously	

emerged	 during	 word	 learning	 simulation.	 After	 learning,	 the	 word-form	 neurons	 in	 the	

primary	 perisylvian	 auditory-articulatory	 areas	 (A1,	M1i)	 simulating	 the	 ‘word	 production’	

were	 activated	 for	 15	 simulation	 time-steps	 to	 identify	 and	quantify	 the	neurons	 forming	

the	12	distributed	CA	circuits	that	emerged	across	the	network	areas.	During	this	period,	we	

computed	and	displayed	 the	average	 firing	 rate	of	each	excitatory	cell	 (7500	e-cells,	 cell’s	

responses).	

As	 an	 estimate	 of	 a	 cell’s	 average	 firing-rate	 here	we	 used	 the	 value	ωE(e,t)	 from	 Eq.	

(B3.2),	integrated	with	time-constant	𝜏!"#$=	5.	An	e-cell	was	then	taken	to	be	a	member	of	

a	 given	 CA	 circuit	 only	 if	 its	 time-averaged	 rate	 (output	 value	 or	 ‘firing	 rate’)	 reached	 a	

threshold	θ	which	was	area-	and	 input-pattern	specific,	and	defined	as	a	 fraction	γ	of	 the	

maximal	single-cell’s	time-averaged	response	in	that	area	to	pattern	w.	More	formally,	
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θ	=	θA(w)	=	γ	𝑚𝑎𝑥
!∈!

𝑂(𝑥, 𝑡)!	

where	𝑂(𝑥, 𝑡)!	is	the	estimated	time-averaged	response	of	cell	x	to	word	pattern	w	(see	Eq.	

[B3.3]	in	Methods	section	under	‘Structure	and	function	of	the	spiking	model’)	and	γ∈[0,1]	is	

a	 constant	 (we	 used	 γ	 =	 0.5	 on	 the	 basis	 of	 previous	 simulation	 results	 Garagnani	 et	 al.,	

2009,	2008;	Tomasello	et	al.,	2017).	This	was	computed	for	each	of	the	13	trained	network	

instances,	averaging	the	number	of	CA	cells	per	area	over	the	6	object-	and	6	action-related	

words.		

To	 investigate	 the	 presence	 of	 significant	 statistical	 differences	 between	 sighted	 and	

blind	 neural	 network	 models,	 we	 performed	 an	 initial	 statistical	 analysis	 including	 both	

neural	network	models.	To	this	end,	a	3-way	ANOVA	was	run	with	factors	Model	(two	levels:	

Sighted	vs.	Blind),	WordType	(two	levels:	Object	vs.	Action)	and	Area	(12	levels:	Perisylvian	=	

{A1,	AB,	PB,	M1i,	PMi,	PFi},	Extrasylvian	cortex	=	{V1,	TO,	AT,	M1L,	PML,	PFL}).	Additionally,	to	

further	investigate	difference	of	the	modelled	cortical	regions	between	the	two	models	a	5-

way	 ANOVA	 was	 run	 with	 factors	 Model	 (two	 levels:	 Sighted	 vs.	 Blind),	 WordType	 (two	

levels:	Object	 vs.	 Action),	 PeriExtra	 (two	 levels:	 Perisylvian	 =	 {A1,	 AB,	 PB,	 M1i,	 PMi,	 PFi},	

Extrasylvian	 cortex	=	 {V1,	TO,	AT,	M1L,	PML,	PFL}),	 TemporalFrontal	 (TempFront)	 (2	 levels:	

temporal	areas	=	{A1,	AB,	PB,	V1,	TO,	AT},	frontal	areas={M1L,	PML,	PFL,	M1i,	PMi,	PFi})	and	

Area	(three	levels:	Primary	=	{A1,	V1,	M1L,	M1i},	Secondary	=	{TO,	AB,	PML,	PMi}	and	Central	

=	{PB,	AT,	PFL,	PFi}	areas).	Subsequently,	each	system,	6	peri-	and	6	extrasylvian	areas,	were	

investigated	separately	with	factors	‘Model’,	‘WordType’,	‘TempFront’	and	‘Area’.	The	same	

statistical	analysis,	but	this	time	omitting	‘WordType’	as	a	factor	was	additionally	performed	

to	disentangle	the	different	CA	distribution	of	action-	and	object-related	words	between	the	

two	models.		

A	second	level	of	analysis	was	run	on	each	Model	(blind	and	sighted)	separately,	first	with	a	

2-way	 ANOVA	 with	 factors	 ‘WordType’	 and	 ‘Area’	 and	 a	 4-way	 ANOVA	 with	 factors	

‘WordType’,	 ‘PeriExtra’,	 ‘TempFront’	and	 ‘Area’	and	subsequently,	with	3-way	ANOVA	 	on	

each	system	within	the	sighted	and	blind	model,	peri-	and	extrasylvian	systems,	separately.	

Corrected	p-values	along	with	epsilon	(ε)	values	are	reported	throughout.	Partial	eta-square	

(ηp2	)	values	are	also	stated,	which	is	defined	as	an	index	of	effect	size	(0.01-0.06	small,	0.06-

0.14	medium	and	>0.14	large,	Cohen,	1988)	
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5. General	Discussion	

Summary	of	results	and	main	contributions	

Chapter	2	

Current	 semantic	 theories	 still	 diverge	on	 the	nature	of	 semantic	 processing	 in	 the	brain.	

Why	do	specific	parts	of	 the	brain	specialise	 in	processing	meaning,	and	why	are	some	of	

the	brain’s	semantic	processes	category-specific	to	semantics	types	such	as	animals,	tools	or	

actions?	We	applied	a	neurocomputational	model	replicating	anatomical	and	physiological	

features	 of	 a	 range	 of	 cortical	 areas	 relevant	 for	 language	 and	 semantic	 processing	 to	

simulate	(i)	the	learning	of	semantic	relationships	between	word-forms	and	specific	object	

perceptions	 and	 motor	 movements	 of	 the	 own	 body	 and	 (ii)	 the	 neurophysiological	

responses	to	perception	of	learned	object	and	action	words.			

The	model	showed	spontaneous	emergence	of	stimulus-specific,	tightly	interlinked	CAs,	

connecting	 the	 processing	 of	 word-form	 information	 with	 that	 of	 sensorimotor	 semantic	

information.	These	simulations	(i)	explain	the	presence	of	category-specificity	in	the	cortical	

distribution	 of	 word-related	 circuits,	 with	 highly-connected	 hub	 areas	 exhibiting	 an	 only	

moderate	 category	 specificity,	 and	 (ii)	 predict	 a	 symmetric	 activation	 time-course	 in	 the	

sensorimotor	systems	for	both	object-	and	action-related	word	recognition,	with	analogous	

temporal	 dynamics	 in	 the	 hub	 areas.	 These	 results	 account	 for	 the	 presence	 of	 both	

category-specific	 and	 general	 semantic	 hub	 areas	 in	 the	 human	 brain,	 which	 is	 a	 direct	

consequence	 of	 the	 mutual	 interaction	 of	 network	 structure,	 connectivity,	 and	 Hebbian	

plasticity.	Here	we	offer	a	mechanistic	account	of	when	and	where	 semantic	knowledge	 is	

processed	in	the	human	brain	by	reconciling	the	diverging	neurocognitive	empirical	studies.		

Chapter	3	

Previous	 computational	 models	 of	 semantic	 processing	 have	 failed	 to	 implement	 precise	

mathematical	 neural	 architectures	 of	 the	 human	 brain,	 mostly	 using	 basic	 neuron	 (non-

spiking)	 model	 and	 incorporating	 only	 a	 set	 of	 connectivity	 structure	 revealed	 by	

neuroanatomical	 studies.	 Here,	 we	 improved	 the	 realism	 of	 the	 previous	 computational	

mean-field	architecture	presented	in	Chapter	2,	by	adding	important	biological	constraints;		
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(i) adaptation-based	 spiking	 cells	 (versions	 of	 leaky	 integrate-and-fire	 neurons),	

each	thought	to	represent	a	single	pyramidal	neuron,	and		

(ii) a	more	realistic	connectivity	structure	based	on	prior	neuroanatomical	evidence.		

The	spiking	neural	network	confirmed	the	conclusions	of	previous	simulations	achieved	

with	basic	mean-field	model	by	exhibiting	a	category-specificity	in	the	cortical	distribution	of	

word-related	 circuits.	 The	high-degree	 connection	hub	 areas	 that	 bind	 information	 across	

different	 modalities	 showed	 the	 involvement	 in	 all	 types	 of	 semantic	 processing.	 After	

training,	 the	 network	was	 re-activated	with	 the	 learnt	 auditory	 pattern	 to	 simulate	word	

recognition	 processes	 exhibiting	 the	 different	 cognitive	 processes	 of	 word	 perception,	

comprehension,	and	verbal	working	memory.	The	spiking	model	showed	an	‘anterior	shift’	

from	 sensorimotor	 areas	 to	 frontal,	 temporal	 regions	 during	 working	 memory	

(reverberation	time)	that	were	not	present	in	previous	basic	mean-field	models.	The	present	

findings	demonstrate	that	biologically	computational	models	at	different	level	of	details	can	

consistently	explain	semantic	processing	in	the	human	brain.		

Chapter	4	

Studies	investigating	language	processing	in	congenitally	blind	people	have	shown	that	the	

deprived	visual	areas	are	 functionally	 recruited	by	other	modalities,	 such	as	 language	and	

semantic	 processing.	 What	 are	 the	 consequences	 of	 the	 neural	 circuits	 changes	

representing	language	processing	in	the	visual	system	deprived	from	visual	input?	How	does	

it	 emerge	 at	 the	 cellular/synaptic	 level?	Here	we	 applied	 a	 spiking	 neural	 network	 of	 the	

fronto-temporal-occipital	 lobes	 to	 simulate	word	meaning	acquisition	 in	 sighted	and	blind	

population,	 in	order	to	move	forward	the	debate	of	neurobiological	factors	underlying	the	

functional	changes	in	the	visual	cortex.		

Equipped	 with	 correlation-based	 Hebbian	 learning,	 both	 sighted	 and	 blind	 models	

showed	 the	 spontaneous	 emergence	 of	 CAs	 across	 the	 network,	 binding	 word-form	

information	to	that	of	sensorimotor	semantic	information.	Nevertheless,	we	observed	that	

only	 under	 visual	 deprivation,	 distributed	 word-related	 neural	 circuits	 extended	 into	 the	

deprived	 visual	 areas,	 which	 therefore	 adopted	 a	 semantic	 and	 linguistic	 role.	 Two	

mechanisms	 are	 the	 consequences	 of	 the	 visual	 area’s	 recruitment	 under	 sensory	

deprivation:	 (i)	 the	 ‘Doursat-Bienenstock’	 expansion,	which	 gives	 rise	 to	 the	 formation	 of	
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strongly	connected	assemblies	of	cells	extending	into	adjacent	regions	and	(ii)	the	changes	

in	 the	 network’s	 activity	 balance	 brought	 about	 by	 the	 absence	 of	 uncorrelated	 sensory	

input.	The	mutual	interaction	of	these	two	mechanisms	offers	an	explanation	for	the	neural	

plastic	changes	in	the	blind	brain	for	word	meaning	processing.	

General	aims	&	scope	

The	present	work	aims	to	investigate	the	neurobiological	mechanisms	underlying	language	

and	semantic	processing	in	the	human	brain.	One	of	the	primary	objectives	was	to	shed	light	

on	the	functional	cortical	organisation	of	the	semantic	system	and,	in	turn,	to	reconcile	the	

diverging	semantic	theories	and	experimental	evidence	of	the	various	cortical	contributions	

(semantic	hubs	vs	modality-preferential	areas)	for	meaning	processing.	Notably,	we	seek	to	

answer	 the	 hotly	 debated	 questions	 of	 why	 specific	 parts	 of	 the	 brain	 specialise	 in	

processing	meaning	and	why	 some	of	the	brain’s	semantic	processes	are	category-specific	

to	 semantic	 types	 such	 as	 animals,	 tools,	 or	 actions.	 Additionally,	 we	 investigated	 the	

precise	activation	time	course	of	semantic	processing	by	seeking	an	answer	at	which	point	in	

time	the	activation	of	the	modelled	semantic	brain	areas	first	emerges	and	compare	it	with	

MEG	activation	responses.	A	second	central	objective	of	the	present	work	was	to	investigate	

the	 mechanisms	 of	 why	 and	 how	 the	 distributed	 language	 network	 adapts	 to	 and	

reorganises	 itself	 by	 visual	 deprivation,	 as	 documented	 in	 neurocognitive	 studies	 of	

language	processing	in	congenitally	blind	people.			

We	 show	 how	 a	 set	 of	 biological	 mechanisms	 acting	 within	 specific	 neuroanatomical	

structures	 is	 sufficient	 to	 provide	 a	 direct	 and	 straightforward	 explanation	 for	 the	

unresolved	 questions	 mentioned	 above.	 The	 present	 work	 applied	 a	 neurobiologically	

constrained	model	of	the	human	cortical	function	at	different	levels	of	detail	to	investigate	

the	 components	 of	 the	 semantic	 knowledge	 system	 in	 the	 human	 brain.	 The	 network	

replicates	the	structure	and	connectivity	of	frontal,	temporal	and	occipital	areas	to	simulate	

the	emergence	of	neural	circuits	underpinning	information	about	object-	and	action-related	

words	 under	 deprived	 and	 undeprived	 conditions.	 The	 neural	 network	 was	 capable	 to	

replicate	 and	 reconcile	 the	 diverging	 neuroimaging	 data	 of	 semantic	 processing	 and	 to	

mimic	 the	processes	of	neural	plastic	 change	 in	 the	visual	 system	caused	by	blindness	 for	

linguistic	and	semantic	processing.	This	research	work	offers	a	neurobiological	explanation	

for	 the	 diverging	 neurocognitive	 evidence	 of	 multiple	 semantic	 hubs	 and	 modality-
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preferential	 cortical	 regions	 for	meaning	 processing	 of	 different	 linguistic	word	 types	 and	

how	 semantic	 processing	 is	 instantiated	 in	 visually	 deprived	 populations.	 The	 simulation	

results	 described	 in	 detail	 in	 the	 present	 dissertation	 are	 in	 line	 with	 modal	 grounding	

approach	for	word	meaning	processing,	in	particular	showing	that	words	are	represented	by	

CA	distributed	in	multimodal	semantic	hubs	and	modality-preferential	sensorimotor	regions	

of	 the	 human	 brain,	 speaking	 against	 a	 pure	 amodal	 symbolic	 system	 for	 semantic	

knowledge	 processing.	 Here,	 we	 bridge	 the	 gap	 between	 cellular-level	 mechanisms	 and	

system-level	language	function	in	sighted	and	blind	people.	

Semantic	 knowledge:	 Semantic	 theories,	 experimental	 data	 and	 computational	

models		

It	 is	 widely	 accepted	 that	 the	 main	 neurobiological	 mechanism	 for	 learning	 depends	 on	

Hebbian	plasticity	mechanisms	 (Hebb,	 1949),	which,	 along	with	 correlation	 learning,	 have	

been	defined	the	basic	neuroscience	principles	for	language	acquisition	(see	in	Introduction	

section	under	‘How	biological	computational	models	can	help’).	During	learning,	the	flow	of	

activity	 within	 a	 network	 circuit	 in	 the	 brain	 leads	 to	 microscopic	 chemical	 changes	 in	

synapses	 between	 neurons	 (i.e.,	 strengthening,	 LTP	 and	 weakening,	 LTD,	 the	 connection	

points),	which	sets	the	foundation	for	how	words,	symbols,	and	knowledge	of	the	outside	

world	 are	 encoded	 and	 stored	 in	 the	 human	 brain.	 The	 computational	 neural	 network	

presented	here	 is	 governed	by	 these	biological	 learning	mechanisms,	which	were	used	 to	

simulate	 associative	 word	 learning,	 a	 foundational	 mechanism	 for	 lexical	 acquisition.	 In	

particular,	 the	 network	 simulates	 referential	 association	 between	 a	 word-form	 and	 its	

referent	 in	the	context	of	object	 information,	 (e.g.,	saying	the	word	 ‘dog’	while	the	dog	 is	

physically	present,	Vouloumanos	and	Werker,	2009)	or	action	information	(e.g.,	saying	the	

word	‘grasp’	while	performing	the	related	action	movement,	Tomasello	and	Kruger,	1992).	

Although	 the	 model	 is	 only	 ‘fed’	 in	 with	 information,	 the	 Hebbian	 correlation	 principle	

implemented	in	the	network	 is	not	only	biologically	plausible	but	also	ecologically	valid,	 in	

the	 sense	 that	 it	 relies	 solely	 on	 the	 input	 given	 to	 the	 network.	Neither	 supervision	 nor	

specific	 tasks	 are	needed	 for	 learning,	 in	 contrast	 to	 the	backpropagation	 learning	 rule	 (a	

supervised	 learning	mechanism)	 used	 by	 recent	 computational	 semantic	models	 (Chen	 et	

al.,	 2017;	 Ueno	 et	 al.,	 2011),	 defined	 as	 biologically	 implausible	 (Mazzoni	 et	 al.,	 1991;	
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O’Reilly,	 1998).	 Hence,	 the	 impact	 of	 repeated	 sensorimotor	 pattern	 presentations	 in	 the	

primary	 articulatory	 (M1i)	 and	 auditory	 (A1)	 perisylvian	 systems	 along	 with	 either	

dorsolateral	motor	(M1L)	or	visual	(V1)	cortices	(simulating	semantic	grounding)	leads	to	the	

spontaneous	emergence	of	word-related	circuits	of	concrete	object	or	action	words	linking	

auditory-articulatory	information	(i.e.,	word-form)	with	its	semantic	referential	information	

in	action	and	perception	systems.		

The	cortico-cortical	 connectivity	 structure	 implemented	between	 the	brain	 regions	sets	

the	basis	for	such	learning	by	enabling	the	spreading	of	activity	through	the	network	areas	

and,	 in	turn,	the	strengthening	of	synapses	between	cells	and	the	formation	of	assemblies	

of	neurons.	Here	we	closely	replicated	the	existing	between-area,	 long	distance,	and	high-

order	 jumping	pathways	between	the	corresponding	areas	of	 the	cortex	 (Chapter	3,	Table	

3.1).	 The	 mutual	 interaction	 of	 the	 correlated	 Hebbian	 learning	 mechanism	 and	 the	

connectivity	 structure	 between	 the	 cortical	 areas	 led	 to	 the	 formation	 of	 neural	 circuits,	

binding	word-form	and	semantic	information	together.	Each	of	these	distributed	CA	circuits	

acted	as	a	single	functional	unit,	distributed	across	primary,	secondary,	and	multimodal	hub	

areas	of	the	fronto-temporal-occipital	lobes.		

The	 emerged	 neural	 circuits	 exhibited	 a	 category-specific	 topographical	 distribution,	

reaching	into	motor	and	visual	areas	for	action-	and	visually-related	words,	respectively.	The	

formation	of	such	topographical	distribution	was	not	only	due	to	the	mutual	interaction	of	

the	 learning	 mechanism	 and	 the	 connectivity	 structure	 but	 also	 for	 the	 presence	 of	

uncorrelated	input	patterns	in	the	fourth	non-relevant	areas	(V1	for	action	words	and	M1L	

for	 object	 words).	 This	 was	 intended	 to	 simulate	 variable	 sensory	 or	 motor	 information,	

typically	occurring	during	the	learning	of	object	or	action	words—for	example,	think	about	

the	different	ways	an	object	can	be	grasped	or	the	variable	sensory	input	during	an	action	

performance.	In	this	way,	the	correlation	mapping	of	word-forms	in	the	perisylvian	language	

areas	with	 that	 of	 semantic	 information	 (in	 visual	 and	 action	 systems)	was	 higher	 in	 one	

modality	(for	object	or	action	words)	but	lower	in	the	non-relevant	regions.	The	presence	of	

an	uncorrelated	pattern	played	an	essential	 role	 in	preventing	 the	excessive	CA	extension	

(Doursat	and	Bienenstock,	2006)	in	the	non-relevant	areas	and,	crucially,	for	the	emergence	

of	category-specific	CA	distribution.	In	other	words,	constantly	activated	CAs	during	learning	

cause	the	strengthening	of	some	synapses	and	the	weakening	of	others;	in	turn,	some	cells	
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are	more	strongly	linked	to	a	CA	than	to	others.	If	the	network	is	continuously	stimulated,	

CAs	 spontaneously	 grow	 into	 connected	 adjacent	 cortical	 areas	 taking	 over	 the	 entire	

network,	 unless	 uncorrelated	 variable	 patterns	 block	 their	 extension.	 This	 self-organized	

growth	 principle	 has	 been	 postulated	 as	 an	 important	 basis	 of	 learning	 and	 neural	

development	(Doursat	and	Bienenstock,	2006).	Hence,	the	joint	 interaction	of	connectivity	

structure	with	 the	biological	mechanisms	of	 LTP	and	 LTD	 in	 strengthening	and	weakening	

the	connections	between	cells	(i.e.,	Hebbian	plasticity)	and	the	aforementioned	CA	growth	

principle	with	the	presence	of	uncorrelated	input	lead	to	the	formation	of	category-specific	

semantic	activation,	 consistent	with	a	wealth	of	brain	data	 from	neurophysiology,	patient	

and	neuroimaging	studies	(Damasio	et	al.,	1996;	Martin,	2007;	Martin	et	al.,	1996;	Moseley	

et	al.,	2013;	Pulvermüller	et	al.,	2014b,	1999;	Vigliocco	et	al.,	2004).	

The	 multimodal	 connector	 hubs	 central	 in	 the	 neural	 architecture	 showed	 a	 higher	

density	of	CA	 circuits	 compared	 to	primary	and	 secondary	 regions	of	 the	network.	 This	 is	

due	to	their	higher	degree	of	connections	and	their	strategic	position	between	sensory	and	

motor	areas,	which	are	thought	to	play	a	role	in	linking	multiple	pieces	of	information	across	

different	modalities	(Braitenberg	and	Schüz,	1998;	Damasio,	1989;	Sporns	et	al.,	2007;	Van	

den	Heuvel	and	Sporns,	2013).	 Intriguingly,	 these	hub	regions	become	the	 loci	 for	general	

semantic	processing,	functioning	as	a	semantic	hub,	as	the	same	degree	of	CA	cells	for	both	

semantic	 categories	 (action	 and	object	words)	 emerged	 there.	 This	 is	mainly	 due	 to	 their	

role	 in	 linking	 the	 distinct	 modality-preferential	 regions	 together,	 in	 which	 during	 word	

learning,	 correlated	 neural	 activity	 needs	 to	 flow	 through	 the	 connectors	 to	 reach	 the	

modality-preferential	 areas.	 In	 contrast	 to	 the	 hub-and-spoke	 model	 (Ralph	 et	 al.,	 2017)	

mentioned	 in	 the	 introduction,	which	explains	 the	presence	of	a	single	hub	 located	 in	 the	

anterior	 temporal	 lobe	(ATL),	 the	present	simulations	are	able	to	explain	the	spontaneous	

emergence	of	four	different	semantic	hub	areas	reported	by	experimental	data	on	semantic	

processing:	 the	anterior	 inferior	temporal	 lobe,	which	many	neuroscientists	still	believe	to	

be	the	only	brain	 locus	for	meaning	processing	(Patterson	et	al.,	2007;	Ralph	et	al.,	2017),	

the	 superior	 temporal	 parabelt,	 the	 inferior	 and	 lateral	 prefrontal	 cortex	 (Bookheimer,	

2002;	 Carota	 et	 al.,	 2017;	 Posner	 and	 Pavese,	 1998;	 Tate	 et	 al.,	 2014).	 Intriguingly,	 the	

model	 predicts	 a	 moderate	 category-specificity	 in	 the	 semantic	 hub	 areas	 (AT	 and	 PFL)	

compared	 to	primary	 and	 secondary	 areas.	 This	 is	 in	 line	with	 recent	patient	 studies	 that	
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revealed	category-specific	 impairments	after	 lesions	 in	 the	mentioned	semantic	hub	areas	

(Gainotti,	2012;	Pulvermüller	et	al.,	2010;	Shebani	et	al.,	2017;	Silveri	et	al.,	2018),	which	is	

in	 contrast	 to	 the	 general	 semantic	 impairment	 previously	 postulated	 (Patterson	 et	 al.,	

2007).	Specifically,	 lesions	 in	multimodal	parts	of	 the	 left	 temporal	 lobe	(corresponding	to	

area	AT	in	the	network)	have	been	found	to	cause	category-specific	word	processing	deficits	

for	animals,	people,	and	other	living	things	(Damasio	et	al.,	1996;	Gainotti,	2012;	Hernández	

et	al.,	 2008;	Pulvermüller	et	al.,	 2010).	However,	 in	order	 to	properly	 test	 the	predictions	

made	 by	 the	 model,	 especially	 for	 the	 category-specificity	 of	 object-	 and	 action-related	

words	 in	 the	 anterior-temporal	 and	 dorsolateral	 prefrontal	 hub	 areas,	 a	 well-designed	

experiment	employing	Transcranial	Magnetic	Stimulation	(TMS),	producing	virtual	lesions	in	

healthy	 subjects,	 could	 further	 investigate	 the	 possibility	 of	 category-specific	 semantic	

deficits	in	AT	and	PFL	areas.	Note	that	further	semantic	hubs	have	been	also	reported	in	the	

parietal	 lobe,	 in	 particular,	 in	 the	 anterior	 inferior	 parietal	 area	 and	 inferior	 frontal	 gyrus	

(Binder	and	Desai,	2011)	 for	general	meaning	processing	 (Pulvermüller	and	Fadiga,	2010),	

and	 also	 for	 category-specific	 activation	 of	 numbers	 and	 propositions	 (Dehaene,	 1995;	

Shebani	et	al.,	2017;	Tschentscher	et	al.,	2012),	which	were	not	implemented	in	the	present	

model.	Hence,	an	important	step	will	be	to	incorporate	peri-	and	extrasylvian	parietal	areas,	

extending	the	architecture	to	a	total	of	18	modelled	cortical	areas.	Although	the	extension	

of	the	present	architecture	to	such	a	sophisticated	model	will	lead	to	additional	insights,	the	

possibility	exists	that	the	parietal	cortex	duplicates	some	of	the	action-related	processes	in	

the	frontal	lobe.	

The	present	model	demonstrates	 that	while	modality-preferential	areas	are	 involved	 in	

and	of	functional	relevance	for	the	processing	of	word	meaning,	the	connector	hub	areas,	

which	 exhibited	 a	 similar	 degree	 of	 neurons	 for	 all	 semantic	 categories,	 acquired	 the	

function	of	 a	 semantic	hub	 for	 general	meaning	processing	 (Damasio	and	Damasio,	 1994;	

Pulvermüller,	 2013).	 Hence,	 the	 present	 simulation	 results	 demonstrate	 that	 conceptual	

knowledge	 is	not	processed	uniquely	 in	an	amodal	 symbolic	 system	 (e.g.,	Ellis	and	Young,	

1988;	Fodor,	1983),	but	in	part	grounded	in	the	real	world,	which	is	a	necessary	requirement	

for	establishing	the	semantic	link	between	word-form	and	its	referent	and	the	formation	of	

distributed	CA	(see	also,	Harnad,	1990;	Pulvermüller,	1999b).	Cortical	regions	functioning	as	

domain	general	semantic	processing	are	also	an	indispensable	part	of	the	semantic	system	
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having	 a	 specific	 functional	 role,	 namely	 to	 link	 the	 different	 modality-preferential	

sensorimotor	 information	 together.	 Once	words	 based	 on	 the	 described	mechanisms	 are	

acquired,	 they	 posit	 the	 basis	 for	 learning	 the	 meaning	 of	 novel	 words	 through	

combinatorial	 principles	 (e.g.,	 from	 textbooks,	 see	 for	 more	 details	 Harnad,	 2011;	

Stramandinoli	et	al.,	2012,	and	conclusion	section).	Intriguingly,	as	predicted	by	the	present	

simulations,	the	brain	 loci	where	combinatorial	mechanisms	might	act,	seems	to	be	 in	the	

semantic	hub	regions,	since	these	regions	exhibited	higher	neuronal	material	than	primary	

and	secondary	areas.		

In	summary,	the	present	simulation	work	shows	that	word	meaning	is	represented	in	the	

brain	by	 cell	 assemblies	 spread	out	 in	 a	wide	number	of	 cortical	 areas,	 showing	different	

functional	 roles	 for	 semantic	processing	as	described	above,	 speaking	against	 for	a	purely	

amodal	 semantic	 representation	 in	 the	 human	 brain.	 Furthermore,	 the	 formation	 of	

distributed	CA	 is	 the	 result	of	 the	 semantic	mapping	between	words	and	 the	objects	 and	

actions	 (referential	 semantic	 information)	 that	 are	 used	 to	 speak	 about	 by	 means	 of	

correlation	 learning	 and	 Hebbian	 synaptic	 plasticity.	 The	 present	 computational	 model	

offers	 a	 biological	 explanation	 of	 language	 and	 semantic	 processing	 in	 the	 human	 brain	

based	 on	 three	 neurobiological	 mechanisms	 acting	 together:	 network	 structure,	

neuroanatomical	connectivity,	and	Hebbian	associative	learning.		

Improved	biological	constrains		

Neural	networks	have	become	useful	 tools	 that	have	been	applied	successfully	 in	a	broad	

range	 of	 higher	 cognitive	 processes,	 have	 provided	 a	 better	 understanding	 of	 neural	

functions	 and	predicted	 the	outcome	of	 new	evidence	 that	was	 impossible	 to	 investigate	

with	conventional	techniques.	Recently,	neuroscientists	have	successfully	managed	to	build	

large-scale	 neural	 networks	 in	 conjunction	 with	 neuroscience	 techniques	 in	 order	 to	

combine	 experimental	 results,	 brain	 theories	 and	 neurocomputational	 predictions	 (e.g.	

linking	 neural	 circuits	 with	 functional	 systems)	 as	 well	 as	 deepen	 their	 understanding	 of	

language	 learning	 processing	 in	 the	 human	 cortex.	 However,	 as	 mentioned	 in	 the	

introduction,	most	of	these	neural	networks	did	not	attempt	to	replicate	the	neuroanatomy	

of	 the	 regions	 in	 question	 (M	 H	 Christiansen	 and	 Chater,	 2001;	 Dell	 et	 al.,	 1999;	 Elman,	

1996;	Plaut	and	Gonnerman,	2000;	Plunkett,	1997),	and	if	some	biological	constraints	where	
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included	(i.e.,	connectivity	structure,	Chen	et	al.,	2017;	Guenther	et	al.,	2006;	Husain	et	al.,	

2004;	 Ueno	 et	 al.,	 2011),	 they	 have	 not	 applied	 learning	 mechanisms	 that	 mimic	 well-

documented	neurophysiological	phenomena	(Braitenberg	and	Schüz,	1998;	Mazzoni	et	al.,	

1991;	O’Reilly,	1998).	Although	Chen	et	al.	(2017)	and	Ueno	et	al.	(2011)	have	implemented	

a	 semantic	 model	 based	 on	 the	 hub-and-spoke	 theoretical	 approach	 incorporating	 brain	

constrained	connectivity	structure,	they	included	just	one	area,	the	anterior	temporal	lobe	

(ATL),	of	 the	multiple	 semantic	hubs	 revealed	by	 recent	experimental	 studies	 (Binder	and	

Desai,	 2011;	Pulvermüller,	2013),	 as	already	mentioned	previously.	Moreover,	Ueno	et	al.	

(2011)	 have	 set	 the	 cortical	 locus	 of	 semantics	 in	 the	 ATL	 area	 a	 priori,	 rather	 than	

explaining	 it	 based	 on	 neuroscientific	 principles.	 ‘…	 we	 implemented	 the	 vATL	 semantic	

system	alone.	Specifically,	 it	was	set	to	generate	semantic	outputs	for	comprehension	and	

provided	 the	 semantic	 input	 for	 speaking/naming’	 (p.	 393,	 Ueno	 et	 al.,	 2011).	 Such	 an	

approach	does	not	provide	any	 insights	 into	 the	brain	 loci	of	word	meaning	processing	 in	

the	brain.	Hence,	 it	 is	essential	to	building	neurobiologically	realistic	models,	which	closely	

mimic	neuroanatomical	 structures	 and	neurophysiological	 characteristics	 of	 the	 cortex,	 to	

investigate	the	biological	principles	that	governs	the	neural	system	of	the	human	brain	(i.e.,	

Hebbian	 learning,	 neural	 plasticity,	 associative	 learning,	 adaptations,	 self-organization	

behaviour),	 and	 importantly	 that	 the	 functional	 cortical	 role	 of	 the	 different	 linguistic	

functions	(phonological,	syntactical	and	semantic)	are	not	set	a	priori	(e.g.,	Dell	et	al.,	1999;	

Ueno	et	al.,	2011).		

This	 was	 successfully	 applied	 in	 the	 present	 research	 in	 the	 domain	 of	 language	

processing	and	word	meaning	acquisition	in	the	brain	by	implementing	two	variants	of	the	

same	 neuronal	 architecture,	 simulating	 the	 same	 set	 of	 fronto-temporal-occipital	 cortical	

areas	at	two	different	levels	of	biological	detail.		

(i) One	version	adopted	a	mean-field	 approach,	 in	which	 the	 activity	of	 each	 graded-

response	 neuron	 represented	 the	 average	 activity	 of	 a	 cluster	 of	 cortical	 neurons	

(i.e,	 communication	 between	 neurons	 are	 based	 on	 continues	 firing	 rate	 value,	

Eggert	 and	 van	 Hemmen,	 2000)	 and	 included	 only	 a	 subset	 of	 the	 cortico-cortical	

connections	known	to	exist	between	the	modelled	areas	(Fig.	5.1A).		

(ii) A	second	variant	building	upon	the	mean-field	model	used	adaptation-based	spiking	

cells	(versions	of	leaky	integrate-and-fire	neurons)	each	thought	to	represent	a	single	
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pyramidal	 neuron	 (Matthews,	 2001)	 and	 a	 more	 complex	 brain-like	 connectivity	

structure	based	on	neuroanatomical	evidence	(Fig.	5.1B).	

	

	

	

	

	

	

	

	

Figure	5.1.	Average	distributions	of	CAs	emerging	in	both	mean-field	model	(A)	and	spiking	model	(B)	
during	 simulation	of	word	 learning	 in	 the	 semantic	context	 of	 actions	and	 visual	 perceptions.	 Bars	
show	average	numbers	of	CA	neurons	per	area.	Both	models	show	category-specificity	in	the	cortical	
distribution	of	word-related	 circuits,	 and	high-degree	connection	hub	areas	central	 to	 the	network	
architecture	 exhibit	 all	 types	 of	 semantic	 processing	 with	 moderate	 category	 specificity.	 Asterisks	
indicate	that,	within	a	given	area,	the	number	of	CA	cells	significantly	differed	between	the	circuits	of	
action	and	object	words	(Bonferroni-corrected	planned	comparison	tests).	
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Improving	the	biological	realism	of	the	neural	model	was	motivated	by	the	fact	that	some	of	

the	conclusions	revealed	by	the	simple	mean-field	network	might	be	due	to	the	basic	neural	

behaviour	or/and	the	simplified	connectivity	structure.	For	instance,	the	formation	of	neural	

circuits	 within	 the	mean-field	 neural	 network	 is	 facilitated	 by	 the	 higher	 and	 continuous	

firing	 rate	 of	 the	 neurons	 during	 learning,	 which	 in	 the	 case	 of	 spiking	 neurons	 is	 much	

lower.	 Secondly,	 by	 implementing	 the	 full	 set	 of	 connectivity	 know	 to	 exist	 between	 the	

modelled	cortical	areas	 in	 the	basic	mean-field	model	 lead	 to	an	over-activation	problem,	

hence	 limiting	the	possibility	to	create	more	sophisticated	cortex	model.	Therefore,	 it	was	

essential	for	obtaining	a	better	understanding	of	higher	cognitive	functions,	such	language	

and	semantic	processing,	to	implement	more	sophisticated	and	realistic	neural	architecture,	

which	is	agreed	upon	(Breakspear,	2017;	Pezzulo	et	al.,	2013).		

Neurons	 within	 the	 improved	 neural	 architecture	 interact	 now	 primarily	 with	 action	

potential	 (i.e.,	 spikes)	 to	 encode	 neuronal	 information,	 similarly	 documented	 in	 realistic	

biological	neurons	in	the	nervous	systems	of	humans.	A	recent	simulation	work	done	by	us	

has	 shown	 the	 importance	of	 synchronous	oscillatory	 spiking	 activity	within	 cell	 assembly	

circuits	 for	 the	binding	of	phonological	and	semantic	 information	 (Garagnani	et	al.,	2017).	

Besides,	 the	 model	 incorporates	 now	 high-order	 ‘jumping’	 links	 within	 perisylvian	 and	

extrasylvian	systems,	which	have	been	defined	essential	for	the	formation	of	verbal	working	

memory	(Schomers	et	al.,	2017).	Interestingly,	the	improved	spiking	model	revealed	similar	

results	 as	 the	 mean-field	 architecture	 on	 the	 distribution	 of	 CA	 cells	 (see	 Fig.	 5.1).	 Both	

models	 consistently	 show	 that	 verbal	 utterances	 (word-forms)	 encoded	 in	 the	 perisylvian	

language	areas	are	thus	linked	with	the	semantically-related	action	and	object	information	

manifested	in	motor	and	visual	cortices,	with	multimodal	hub	regions	processing	of	all	types	

of	 words.	 The	 lexico-semantic	 circuits	 distributed	 across	 the	 network	 regions	 showing	

different	 functional	 role	 emerged	 spontaneously	 as	 a	 result	 of	 learning,	 in	 contrast	 to	

previous	connectionist	models	that	have	set	the	cortical	locus	of	linguistic	functions	a	priory	

(e.g.,	 Dell	 et	 al.,	 1999;	 Ueno	 et	 al.,	 2011).	 Here	 we	 explain	 by	 means	 of	 a	 biologically	

constrained	 model	 at	 different	 levels	 of	 detail	 why	 and	 how	 some	 areas	 are	 more	

specialised	 in	 general	 semantic	 meaning	 processing,	 and	 others	 are	 more	 sensitive	 to	

specific	semantic	categories.		
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Apart	from	reproducing	similar	CA	distributions	in	the	spiking	model,	several	interesting	

differences	have	been	observed	between	the	two	neural	models.	For	instance,	the	presence	

of	the	jumping	links	in	the	spiking	model	leads	to	a	higher	density	of	CA	cells	for	object-	and	

action-related	words	to	the	secondary	non-relevant	areas	(TO	for	action	and	PML	for	object	

words)	 compared	 to	 the	mean-field	model	 (Fig.	 5.1).	 Note	 also	 the	 CA	 size	 (the	 average	

number	of	CAs	across	the	network	areas	as	a	result	of	learning)	is	approximately	50%	less	in	

the	 spiking	 neural	 architecture	 (CA=~75	 cells	 on	 average)	 than	 in	 the	 mean-field	 model	

(CA=~163	 cells	 on	 average).	 This	 suggests	 a	 better	 memory	 performance	 of	 the	 spiking	

model,	as	more	cells	are	available	for	acquiring	a	larger	number	of	lexicons.	Interestingly,	by	

visual	 observation,	 the	 spiking	model	 shows	 an	 explosion-like	 activation	 during	 the	 initial	

learning	phase	(not	present	 in	the	mean-field	model),	which	seems	to	be	related	to	a	first	

period	of	synaptic	elimination	(or	the	so-called	‘pruning’	phase)	that	subsequently	facilitates	

the	 rendering	 of	 the	 remaining	 synaptic	 circuits	 that	 are	 frequently	 activated.	 This	

experience-dependent	 plasticity,	 similarly	 reported	 during	 early	 stages	 of	 the	

developmental	period	 in	 infants,	has	been	defined	crucial	 for	 the	 fine-tuning	of	 functional	

networks,	 such	 as	 for	 language	 and	 general	 brain	 development	 (e.g.,	 Blakemore	 and	

Choudhury,	 2006).	 Further	 simulations	 could	 explore	 more	 closely	 the	 Hebbian	 plasticity	

behaviours	 and	 their	 synaptic	modifications	 (LTP	and	 LTD	mechanisms)	between	pre-	 and	

postsynaptic	spiking	cell	during	learning,	which	might	show	a	synaptic	transmission	similarly	

induced	 by	 the	 novel	 spike-timing-dependent	 plasticity2	 paradigma.	 Apart	 from	 this,	

intriguing	 differences	 have	 also	 been	 revealed	 during	 the	 neurophysiological	 word	

recognition	and	comprehension	processes	described	 in	detail	below.	 Importantly,	 it	needs	

to	 be	 emphasized	 that	 only	 the	 combined	 improvement	 of	 neuroanatomical	 and	

neurophysiological	 (spiking)	 realism	 lead	 to	 a	 functional	 neural	 network	 with	 the	

spontaneous	emergence	of	word-related	circuits	during	learning.	Additional	simulations	by	

omitting	the	jumping	links	from	the	network	lead	to	an	under-activation	problem	(i.e.,	low	

neural	firing).	Hence,	the	jumping	links	in	the	spiking	model	played	an	important	role	for	the	

spreading	 of	 spiking	 activity	 during	 word	 learning,	 in	 turn,	 for	 the	 formation	 of	 cell	

assemblies.		

                                                
2	LTD	and	LTP	are	induced	by	the	order	and	temporal	interval	between	pre-	and	postsynaptic	spikes	(for	more	
details	see	Dan	and	Poo,	2004).	
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Neurophysiological	responses	underlying	word	recognition	

The	neural	network	model	not	only	 firmly	 replicated	 the	diverging	experimental	data	and	

offered	 a	 unified	 explanatory	 account	 for	 the	 emergence	 of	 both	 category-specific	 and	

general	 semantic	 processing,	 but	 it	 also	 made	 precise	 and	 crucial	 predictions	 on	 the	

activation	time	course	of	the	implemented	cortical	areas	of	the	model.	In	other	words,	the	

model	was	able	to	predict	not	only	where	in	the	brain	semantic	processing	emerge,	but	also	

when	in	time	these	processes	take	place.	Here	we	applied	the	model	to	simulate	EEG/MEG	

responses	 of	 the	 learnt	 object	 and	 action	 words	 during	 auditory	 word	 recognition.	 The	

primary	 auditory	 (A1)	 area	 of	 the	 model	 was	 stimulated	 with	 the	 learned	 acoustic	

component	of	the	word-related	CA	circuits,	which	in	turn	lead	to	the	full	CA	ignition.	Apart	

from	 reproducing	 the	 topographical	 distribution	 of	words	with	 object-	 and	 action-related	

meaning	in	the	action	and	perception	system,	similarly	documented	in	a	recent	MEG	study	

(Moseley	 et	 al.,	 2013),	 the	 neural	 network	 predicted	 a	 serial	 activation	 of	 the	 perisylvian	

cortices	 with	 overlapping	 activation	 of	 the	 hub	 regions	 (AT	 and	 PFL),	 followed	 by	 the	

modality-preferential	 areas.	 By	 directly	 comparing	 the	 neurophysiological	 simulation	

responses	with	brain	data	(Fig.	2.8,	Pulvermüller	et	al.,	2005),	we	observed	a	great	degree	of	

consistency	with	the	time	course	activation	from	superior	temporal	to	inferior	frontal	areas	

and	finally	dorsal	action-	or	visually-related	regions.		

Notice	 that	 a	 systematic	 activation	 time	 course	 analysis	was	 performed	only	with	 the	

mean-field	model	 approach	 (Chapter	2).	 Further	 simulation	 studies	 should	 investigate	 the	

neurophysiological	 responses	 underlying	 word	 recognition	 of	 the	 more	 biological	

constrained	spiking	model	with	brain-like	connectivity	 (Chapter	3).	Nevertheless,	by	visual	

observation	 of	 the	 CA	 dynamics	 between	 the	 simple	 mean-field	 model	 and	 the	 fully	

connected	 spiking	model	 (Fig.	2.4	and	Fig.	3.3),	massive	differences	 in	 the	activation	 time	

courses	were	identified.	As	mentioned	above,	the	mean-field	model	exhibited	more	a	serial	

activation	 dynamics	 in	 the	 primary	 and	 secondary	 areas	 with	 overlapping	 hub	 regions	

activation,	while	the	spiking	model	seems	to	shows	a	more	simultaneous/cascade	activation	

of	 the	 whole	 set	 of	 semantic	 brain	 areas	 implemented;	 ~	 15	 simulation	 time-steps	 from	

perception	 to	 reverberation	 instead	 of	 the	 ~	 35	 time-steps	 exhibited	 by	 the	 mean-field	

model.	Interestingly,	the	spiking	model	exhibited	the	presence	of	the	three-phase	cognitive	

processes	of	perception,	 full	 ignition,	and	working	memory.	After	full	 ignition,	reverberant	
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activity	is	maintained	in	the	semantic	hub	areas	of	the	model,	which	is	a	consequence	of	the	

higher	degree	of	CA	cells	emerged	there	during	learning.	These	neural/cognitive	processes	

of	word	recognition,	defined	as	the	primary	stages	of	human	memory	processing,	predicts	

an	‘anterior	shift’	from	sensorimotor	areas	to	adjacent	semantic	hub	regions	contributing	to	

working	memory	(e.g.,	Fuster,	2009;	Pulvermüller,	2018;	Pulvermüller	and	Garagnani,	2014)	

that	was	not	present	in	the	mean-field	architecture.		

In	 summary,	 the	 present	 simulation	 offers	 a	 mechanistic	 explanation	 of	 the	 current	

dispute	 over	 the	 different	 semantic	 theories	 of	 amodal	 symbolic	 system	 or	 grounded	

approach	 for	 meaning	 processing	 and	 in	 particular	 on	 the	 cortical	 locus	 of	 the	 semantic	

system	 in	 the	 brain.	 In	 particular,	 based	 on	 correlation	 learning,	 neuroanatomical	 and	

connectivity	 structure,	 the	neural	 network	model	 showed	 the	 spontaneous	 emergence	of	

neural	circuits	 in	primary,	 secondary,	and	multimodal	hub	areas—	regions	observed	 to	be	

active	 in	 a	 range	 of	 experimental	 studies	 about	 semantic	 processing.	 These	 results	 were	

consistently	 provided	 by	 a	 basic	 computational	 model	 using	 a	 mean-field	 approach	 and	

simple	 connectivity	 structures	 (Chapter	 2)	 as	well	 as	 a	more	 realistic	model	 of	 the	 cortex	

using	 adaptation-based	 spiking	 cells	 and	 brain-like	 connectivity	 (Chapter	 3).	 Furthermore,	

the	 reactivation	 of	 word-related	 circuits	 provided	 novel	 predictions	 on	 the	 temporal	

dynamics	 of	 the	 cortical	 areas	 of	 the	 model,	 which	 could	 be	 used	 to	 guide	 future	

experimental	work	in	the	field.	

Visual	system	recruitment	for	language	processing	following	sensory	loss	

The	intrinsic	interaction	of	realistic	neurophysiological	learning	mechanisms,	connectivity	

and	 neuroanatomy	 structure	 are	 able	 not	 only	 to	 explain	 conceptual	 encoding	 and	

processing	 in	 the	 human	brain	 (described	 above)	 but	 can	 also	 reproduce	 and	 explain	 the	

mechanisms	 underlying	 neural	 plastic	 change	 of	 the	 language	 system	 that	 takes	 place	 in	

congenitally	 blind	 people.	 A	 substantial	 number	 of	 neurocognitive	 studies	 in	 blind	

individuals	 have	 shown	 the	 recruitment	 of	 the	 visual	 system	 for	 semantic	 processing,	 in	

particular	for	verb	generation	tasks	(Amedi	et	al.,	2004,	2003,	Burton,	2003,	2002;	Raz	et	al.,	

2005;	Struiksma	et	al.,	2011),	single	word	(Burton,	2003;	Burton	et	al.,	2012)	and	sentence	

processing	(Bedny	et	al.,	2011;	Röder	et	al.,	2002).			
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In	 this	 research	 work,	 we	 applied	 a	 neurobiologically	 constrained	 model	 of	 spiking	

neurons	in	human	cortical	function	(introduced	in	Chapter	3)	to	describe	the	putative	neural	

mechanisms	underlying	word	learning	at	the	cellular/synaptic	level	under	visually	deprived	

condition.	 As	 in	 previous	 simulations,	 object-	 and	 action-related	 word	 learning	 were	

simulated	under	the	impact	of	repeated	sensorimotor	patterns	in	the	primary	areas	of	the	

model	 but	without	 sensory	 experience.	 This	was	meant	 to	 simulate	 learning	 situations	 of	

word	 meaning	 acquisition	 in	 the	 absence	 of	 any	 visual	 input	 (i.e.,	 blindness).	 As	 a	

consequence	 of	 Hebbian	 plasticity,	 distributed	 CA	 circuits	 spontaneously	 emerged	 across	

the	 network	 areas	 linking	 word-form	 data	 with	 semantic	 information.	 Intriguingly,	 by	

comparing	 blind	 and	 sighted	 models,	 only	 in	 the	 deprived	 architecture,	 neurons	 of	 the	

deprived	 visual	 areas	 (V1)	 were	 recruited	 for	 linguistic	 and	 semantic	 processing.	 In	

particular,	 the	 blind	 models	 produced	 word-related	 neuronal	 circuits	 extending	 into	 the	

visual	 cortex	 for	 all	 semantic	 categories	 (more	 action-	 than	 object-related	 circuits).	 In	

particular,	the	visual	cortices	(to	which	no	input	was	given	during	the	entire	learning	phase),	

exhibited	a	similar	dissociation	between	the	two	word	types,	as	in	the	motor	system,	with	

higher	density	of	CAs	 for	action	compared	to	object	words	 in	 the	primary	 (V1),	 secondary	

(TO)	and	central	(AT)	areas	of	the	visual	cortex.	Whereas	in	the	undeprived	simulations,	only	

words	denoting	visual	entities	grew	 into	 the	visual	domain	 (see	Fig	5.2).	These	 simulation	

results	are	in	line	with	the	range	of	neuroimaging	and	TMS	studies	on	blind	people	that	have	

documented	the	functional	involvement	of	the	visual	cortex	(including	V1)	during	semantic	

retrieval	in	a	verb	generation	task	(Amedi	et	al.,	2004,	2003,	Burton,	2003,	2002;	Raz	et	al.,	

2005;	Struiksma	et	al.,	2011).	

	

	

	

	

	

	

	



	
	

	
	

155	

	

	

	

Figure	5.2	Mean	numbers	of	cell	assembly	neurons	in	the	extrasylvian	areas	after	simulating	the	
learning	of	action-	(light	grey)	and	object-related	words	 (dark	grey)	during	word	production	 in	
blind	 (A)	 and	 sighted	 (B)	 models;	 error	 bars	 show	 standard	 errors	 over	 networks.	 Simulated	
word	 production	 (simultaneous	 presentation	 of	 articulatory-auditory	 patterns	 in	 A1	 and	 M1i	
areas)	after	word	meaning	acquisition.	The	blind	model	(A)	shows	higher	density	of	CA	cells	for	
both	word	types	(especially	for	action	words)	in	the	primary	visual	system	(V1),	which	was	never	
stimulated	during	learning,	while	higher	number	of	CA	cells	in	the	visual	regions	were	found	only	
for	object	related	words	in	the	sighted	model	(B).	Asterisks	indicate	that,	within	a	given	area,	the	
number	 of	 CA	 cells	 significantly	 differed	 between	 the	 circuits	 of	 action	 and	 object	 words	
(Bonferroni-corrected	planned	comparison	tests,	6	comparisons;	critical	threshold	p<.0084).	
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The	 first	 significant	 finding	 of	 this	 work	 is	 that	 the	 biologically	 constrained	 spiking	

network	 is	 able	 to	 replicate	 the	 experimental	 evidence	 for	 the	 visual	 area’s	 recruitment	

under	 sensory	 deprivation	 for	 language	 and	 semantic	 processing.	 However,	 as	 often	

mentioned	in	this	dissertation,	the	advantage	of	applying	neural	networks	is	the	ability	not	

only	 to	 replicate	 experimental	 data	 but	 also	 to	 understand	 the	 mechanisms	 and	 their	

interactions	behind	complex	cognitive	functions.	Specifically,	for	the	present	work,	it	allows	

us	to	consider	why	and	how	neural	organisation	emerges	in	the	brain	as	a	consequence	of	

blindness.	Apart	from	the	spontaneous	emergence	of	CA	circuits	across	the	network	areas	

based	 on	 the	 mutual	 interaction	 of	 Hebbian	 plasticity	 and	 connectivity	 structure,	 the	

observed	 ‘CA	overgrowth’	 into	 the	deprived	visual	areas	 is	 the	direct	consequence	of	 two	

biological	principles/mechanisms	acting	together:	

(i) The	‘Doursat-Bienenstock´	expansion:	A	neurobiological	mechanisms	that	give	rise	to	

the	 formation	 of	 strongly	 connected	 assemblies	 of	 cells	 extending	 into	

adjacent/connected	cortical	areas	(Doursat	and	Bienenstock,	2006).	In	other	words,	

neurons	 repeatedly	and	constantly	activated	 tend	 to	 strengthen	 their	 connections,	

forming	 the	 so-called	CAs	by	means	of	Hebbian	 learning	mechanism	 (Hebb,	1949),	

and	if	continuously	stimulated,	they	tend	to	extend	into	linked	cortical	regions	of	the	

brain,	which	has	been	defined	as	a	principle	of	self-organization.		

(ii) The	 absence	 of	 uncorrelated	 neural	 input	 to	 the	 deprived	 regions,	 which	 under	

healthy	 conditions	 is	 critical	 for	 blocking	 the	 excessive	 neural	 extensions	 and	

importantly,	 for	 the	 formation	 of	 semantic	 neural	 circuits	 with	 category-specific	

signatures.	

Here,	we	propose	 that	by	means	of	 these	 two	aforementioned	mechanisms	acting	within	

specific	 neuroanatomical	 structures	 can	 explain	 the	 relatively	 stronger	 activation	 of	 the	

visual	system	in	blind	individuals.	In	particular,	the	changes	in	activity	balance	is	due	to	the	

absence	of	uncorrelated	input	 in	areas	typically	receiving	sensorimotor	 information,	which	

enables	 the	 spontaneous	 extension	 of	 CAs	 into	 the	 deprived	 areas	 and	 in	 turn,	 to	 the	

functional	 recruitment	 for	 language	 and	 semantic	 processing.	 Interestingly,	 the	 additional	

neural	recruitment	 in	the	deprived	visual	system	in	the	blind	model	exhibited	a	prolonged	

neural	 activation	 during	 auditory	 word	 recognition	 processes	 compared	 to	 the	 sighted	

(control)	model	 (Fig.	4.5).	Sustained	activity	has	been	often	related	to	neural	correlates	of	
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working	memory	(Baddeley	and	Hitch,	1974;	Leavitt	et	al.,	2017),	in	which	the	longer	spiking	

neural	 activation	 of	 the	 blind	 model	 can	 be	 seen	 as	 a	 sign	 for	 better	 working	 memory	

compared	 to	 the	sighted	populations,	 consistent	with	a	number	of	neurocognitive	 studies	

(Amedi	 et	 al.,	 2003;	Occelli	 et	 al.,	 2017;	 Pasqualotto	 et	 al.,	 2013;	Withagen	 et	 al.,	 2013).	

Also,	the	present	word	recognition	simulations	of	blind	individuals	revealed	an	anterior	shift	

during	 reverberation	 activity	 from	 sensorimotor	 to	 frontal,	 temporal	 hub	 regions	 (Fuster,	

1998;	 Leavitt	 et	 al.,	 2017;	 Pulvermüller	 and	 Garagnani,	 2014)	 as	 already	 documented	 in	

previous	simulations	(Tomasello	et	al.,	2018).		

In	contrast,	under	normal	(i.e.,	sighted)	conditions,	uncorrelated	input	plays	a	vital	role	in	

preventing	CA	growth	 into	such	areas	 (Doursat	and	Bienenstock,	2006)	and	 is	an	essential	

element	for	the	formation	of	CA	circuits	with	category-specific	distributions	(see	Chapters	2	

&	3).	The	present	computational	work	offers	a	novel	biological	explanation	 for	 the	neural	

changes	following	visual	deprivation	reported	by	numerous	empirical	studies,	and	it	makes	

critical	predictions	on	the	role	of	the	primary	visual	areas	(V1)	during	semantic	processing	in	

blind	 people.	 The	 present	 results	 go	 one	 step	 further	 in	 the	 debate	 (Amedi	 et	 al.,	 2017;	

Bedny,	2017;	Heimler	et	al.,	2015)	about	the	mechanisms	behind	the	neural	changes	in	the	

visual	 cortex,	 in	 which	 cortical	 areas	 can	 take	 over	 a	 particular	 function	 depending	 on	

information	inputs	received	during	the	developmental	period	and/or	because	of	the	lack	of	

competing	 inputs	 in	 deprived	 cortices.	 Here,	 we	 add	 that	 it	 is	 exactly	 the	 absence	 of	

informative	 (uncorrelated)	 input	 to	 the	 visual	 cortex	 that	 drives	 the	 Hebbian	 synaptic	

competitions	 (the	 strengthening	 or	 the	 weakening	 between	 connected	 cells)	 and	

consequent	of	 the	Doursat-Bienenstock	CA	extension	of	 linguistic	 representations	 into	the	

blind	visual	cortices.	

Conclusions,	limitations	and	future	perspectives	

The	present	thesis	applied	a	neurobiologically	constrained	model	with	anatomical	structure,	

neurophysiological	function,	and	connectivity	of	the	fronto-tempo-occipital	lobes	in	order	to	

investigate	 how	 word	 meaning	 is	 acquired,	 stored,	 and	 processed	 in	 sighted	 and	 blind	

populations.	The	findings	of	the	present	work	support	the	hypothesis	that	neural	correlates	

of	 semantic	 word	 types	 are	 represented	 in	 the	 brain	 by	 distributed	 CAs	 across	 both	

multimodal	hub	areas	for	general	semantic	processing	and	modality-preferential	regions	for	

category-specific	 semantic	 processing.	 This	 study	 shows	 how	 by	 means	 of	 a	 single	
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neurobiologically	 constrained	neural	model	 can	elucidate	how,	when	 and	where	 semantic	

knowledge	 is	 acquired,	 processed,	 and	 stored	 in	 the	 human	 brain	 and	 how	 semantic	

meaning	is	implemented	at	the	cellular/synaptic	level	under	deprived	conditions.	Below	is	a	

summary	of	the	original	contributions	derived	from	the	present	research	work:		

(i) Two	 variants	 of	 a	 neurobiological	model	mimicking	 different	 cortical	 areas	 of	 the	

human	brain	to	simulate	word	meaning	acquisition	in	action	and	perception	system.	

Chapter	 2	 introduces	 a	 mean-field	 model	 with	 a	 simple	 cortical	 connectivity	

structure,	and	Chapter	3	describes	a	 fully	connected	network	with	realistic	spiking	

neurons.	

(ii) Based	 on	 neuroanatomical	 principles	 and	 Hebbian	 plasticity,	 both	 models	

consistently	 provide	 the	 same	 explanation	 for	 the	 nature	 of	 semantic	 processing,	

offering	 a	 solution	 to	 the	 debate	 on	 the	 functional	 role	 of	 semantic	 hubs	 and	

category-specific	cortical	regions	during	meaning	processing.	

(iii) A	precise	time	course	activation	is	offered	(simulating	EEG/MEG	activation,	Chapter	

2)	during	auditory	word	 recognition,	which	predicts	a	near	 simultaneous	semantic	

cortical	activation	of	the	two	learnt	word	types,	comparable	with	experimental	data.		

(iv) A	neuromechanistic	explanation	at	the	neural	level	of	how	and	why	the	visual	cortex	

is	 functionally	recruited	for	 linguistic	and	semantic	processing	 in	congenitally	blind	

people	is	offered	(Chapter	4);	

It	 is	 important	to	emphasize	that	the	experimental	studies	mentioned	in	the	present	work	

used	 natural	 language	 focusing	 on	 the	 action	 verb	 and	 object	 noun	 distinctions,	 which	

makes	 it	difficult	to	control	how	and	when	these	words	have	been	acquired	and	to	match	

for	all	the	different	psycholinguistic	components	between	words	of	different	lexical	classes	

(for	discussion	see,	Moseley	and	Pulvermüller	2014).	Hence,	to	test	the	predictions	and	the	

validity	 of	 the	 neural	 network	 architecture,	 it	 might	 be	 essential	 to	 perform	 analogous	

learning	 experiments	 using	 fMRI	 or	 EEG/MEG	 techniques	 with	 high	 spatial	 and	 temporal	

resolutions.	However,	 in	overall	 the	present	 computational	model	 (i)	 offers	 a	mechanistic	

explanation	 of	 how	word	meaning	 is	 acquired,	 stored	 and	 processed	 in	 the	 human	 brain	

(i.e.,	the	formation	of	word	circuits	in	the	brain)	by	reconciling	the	diverging	neurocognitive	

empirical	evidence;	(ii)	provides	a	number	of	strong	predictions,	which	can	be	easily	tested	
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(for	 instance,	 the	 anterior	 shift	 in	 frontal	 and	 temporal	 lobes	 for	 working	 memory,	 the	

amount	 of	 activity	 expected	 to	 be	 observed	 in	 sensorimotor	 cortices	 during	 word	

comprehension	is	larger	in	hubs/secondary	areas	than	in	primary	areas,	a	prolonged	neural	

activity	 during	word	 recognition	 in	 the	 blind	 compared	 to	 the	 sighted	model);	 and	 (iii)	 is	

based	 on	 a	 small	 number	 of	 assumptions,	 all	 strongly	 grounded	 in	 well-documented	

neurophysiological	principles	and	existing	knowledge	of	brain	neuroanatomy.	

However,	 like	any	other	neural	networks,	 the	model	 is	 simplified	 in	a	number	of	ways.	

For	instance,	at	the	microstructural	level,	the	model	does	not	include	different	ion	channels,	

glial	cells	or	neurotransmitters	that	are	present	in	the	cortex;	at	the	macrostructural	 level,	

distinct	connectivity	density	of	the	different	cortical	links	between	the	network	areas	were	

not	incorporated.	As	already	mentioned	above,	cortical	regions	of	the	parietal	lobe	relevant	

for	semantic	processing	(e.g.,	Binder	and	Desai,	2011)	are	missing	 in	the	present	model,	a	

valuable	addition	will	be	to	include	those	areas	in	the	model	to	further	investigate	the	brain	

loci	 of	 meaning	 processing.	 Another	 simplification	 is	 that	 the	 learning	 of	 a	 word	 in	 the	

model	requires	hundreds	of	neural	pattern	stimulations.	 It	 is	well	known	that	humans	are	

able	 to	 learn	 novel	words	 by	 being	 exposed	 only	 one	 or	 a	 few	 times	 (so-called	 one-shot	

learning).	It	also	exhibits	the	learning	of	a	small	number	of	words;	humans	are	able	to	store	

more	than	3,000	words.		

Additionally,	 the	 present	 research	work	 focused	 only	 on	 one	 type	 of	word	 learning,	 in	

which	the	meaning	of	words	are	directly	grounded	in	action	and	perception	systems	of	the	

human	brain.	However,	as	already	mentioned	in	the	present	work,	many	words	are	learned	

from	textbooks	or	sentence	context	 (i.e.,	acquired	from	indirect	referential	meaning).	This	

type	 of	 word	 learning	 could	 be	 simulated	 by	 the	 simultaneous	 co-activation	 of	 previous	

emerged	CA	circuits	of	word-form	and	its	referent	by	means	of	combinatorial	mechanisms	

(see	e.g.,	Harnad,	2011;	Stramandinoli	et	al.,	2012),	which	plays	an	important	role	in	lexical	

acquisition.	 Similarly,	 also	 sentence	processing	 could	be	 simulated,	 in	particular,	 once	 the	

model	 has	 learned	 the	 meaning	 of	 an	 initial	 lexicon,	 as	 described	 in	 this	 dissertation,	

associative	links	between	already-learned	linguistic	representations	may	develop,	due	to	co-

activation	 of	 existing	word	 circuits	 (e.g.,	 Pulvermüller,	 2010;	 Pulvermüller	 and	 Knoblauch,	

2009).	Because	all	words	include	numerous	cells	in	the	perisylvian	hub	regions	(showing	also	

prolonged	 activation),	 it	 might	 be	 that	 the	 binding	 between	word-related	 circuits	 is	 best	
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mapped	in	these	regions.	In	this	way,	combinatorial	mechanisms,	for	instance,	of	adjectives-

nouns,	verb-nouns	or	phrases	that	are	more	complex,	could	be	simulated	and	investigated	

in	 the	different	 cortical	 areas	 of	 the	model.	Moreover,	 an	 important	 direction	 for	 further	

works	would	be	to	simulate	referential	 learning	of	different	categories	of	object	or	action-

related	words	(e.g.,	Hauk	et	al.,	2004).	For	instance,	in	order	to	simulate	the	learning	of	an	

action	word,	 such	as	 ‘lick’,	whose	 referential	meaning	 is	 related	 to	articulators,	 firstly	 the	

model	should	be	modified	so	that	the	patterns	of	motor	semantics	can	also	occur	within	the	

inferior,	articulatory,	motor	areas.	Within	the	mouth	representation	space	of	the	model,	for	

example,	 the	 cell	 groups	 controlling	 the	 ‘licking’	 motion	 and	 those	 controlling	 the	

articulation	of	 the	word-form	‘lick’	should	 lie	close	to	each	other	 (and	possibly	overlap)	 in	

the	 same	 inferior	motor	 areas.	 In	 this	 way,	 the	 brain	 loci	 of	 different	 types	 of	 action	 or	

object	words	can	be	further	investigated.	

A	 challenge	 of	 the	 present	 simulations	 work	would	 be	 to	 explain	 how	 the	 learning	 of	

abstract	words	and	their	brain	 loci	could	be	 investigated	within	the	computational	model.	

While	 amodal	 symbolic	 system	does	not	 give	 a	 special	 status	 to	 abstract	meaning,	modal	

grounded	 approaches	 face	 the	 difficulties	 to	 explain	 how	 this	 type	 of	 meanings	 are	

grounded	 in	 sensorimotor	 regions	 of	 the	 brain	 (e.g.,	 Mahon	 and	 Caramazza,	 2008).	 The	

problem	 resides	 on	 the	 fact	 that	 while	 concrete	 words	 refer	 to	 a	 narrow	 set	 of	 objects,	

scene	or	actions	 in	the	real	world,	 the	mapping	of	abstract	words	with	their	sensorimotor	

information	 is	 not	 so	 straightforward.	 For	 instance,	 the	word	 ‘beauty’	 can	 refer	 to	many	

different	 entities,	 having	 a	 1-to-many	 mapping	 with	 different	 physical	 elements	 of	 the	

external	world.	Exactly	such	variability	creates	a	problem	in	explaining	the	semantic	link	of	

abstract	words.	However,	a	 solution	 to	 this	problem	has	been	proposed	based	on	 the	so-

called	 family	 resemblance	 theory	 (Wittgenstein,	 1953),	 in	 which	 the	meaning	 of	 abstract	

words	 might	 be	 constitute	 by	 partially	 overlapping	 neural	 sets	 shared	 among	 concrete	

words	in	the	sensorimotor	regions	(Pulvermüller,	2018b,	see	Fig.	2).	For	example,	the	neural	

representation	of	the	word	‘beauty’	would	partially	share	its	neuronal	representation	with	

all	 the	 concrete	 instances	 that	 have	 the	 characteristic	 of	 beauty,	 for	 example,	 blue	 eyes,	

panorama,	or	sunset.	These	mechanisms	behind	abstract	word	meaning	acquisitions	could	

be	 simulated	 by	 indirectly	 grounding	 abstract	words	 in	 action	 and	 perception	 systems	 by	

associating	 them	 (with	 a	 degree	 of	 neural	 overlap)	 to	 previous	 sets	 of	 learned	 concrete	



	
	

	
	

161	

words	(Della	Rosa	et	al.,	2010;	Stramandinoli	et	al.,	2012a).	Hence	these	mechanisms	would	

be	sufficient	enough	for	the	formation	of	cell	assemblies	linking	word-form	to	its	semantic	

meaning	in	overlapping	neural	representations	in	modality-preferential	cortical	areas.		

Although	the	neural	network	model	can	be	 improved	 in	a	number	of	ways,	and	further	

interesting	simulation	work	can	be	conceived,	the	neural	architecture	in	the	present	form	is	

fully	biologically	constrained	and	it	was	sufficient	enough	to	make	critical	predictions	on	the	

cortical	 locus	 of	 semantic	 processing	 by	 reconciling	 the	 diverging	 semantic	 theories	 and	

experimental	data	by	means	of	a	 single	neurocomputational	model.	 The	present	 research	

work	 provides	 a	 first	 step	 towards	 a	 better	 understanding	 of	 the	 biological	 mechanisms	

underlying	language	and	semantic	processing	at	the	cortical-circuit	level	of	the	human	brain	

under	 deprived	 and	 undeprived	 conditions.	 We	 believe	 that	 such	 an	 approach	 using	

biologically	 constrained	 computational	 models	 which	 follow	 precise	 neurobiological	

principles	 can	 also	 be	 used	 to	 provide	 neurobiological	 explanations	 for	 distinct	 cognitive	

functions	apart	from	language	and	semantics.	
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Appendix	B	–	Erklärung	

Hiermit	versichere	ich,	dass	ich	die	vorgelegene	Arbeit	selbständig	verfasst	habe	und	keine	

anderen	an	die	angegebenen	Hilfsmittel	verwendet	habe.	Die	Arbeit	ist	in	keinem	früheren	

Promotionsverfahren	angenommen	oder	abgelehnt	worden.	
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