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1  | INTRODUC TION

Lipoxygenases (LOXs) form a heterogeneous family of fatty acid 
dioxygenases (Haeggstrom & Funk, 2011), which frequently occur 
in higher plants (Andreou & Feussner, 2009) and mammals (Kuhn, 

Banthiya, & Leyen, 2015) but have also been detected in lower 
organisms (Anterola et al., 2009; Hansen et al., 2013; Horn et al., 
2015; Mortimer, Järving, Brash, Samel, & Järving, 2006; Yuan et al., 
2014). In mammals, LOXs have been implicated in cell differentia‐
tion and maturation (Brash, Yu, Boeglin, & Schneider, 2007; Krieg 
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Abstract
Lipoxygenases are lipid peroxidizing enzymes, which frequently occur in higher 
plants and mammals. These enzymes are also expressed in lower multicellular organ‐
isms but here they are not widely distributed. In bacteria, lipoxygenases rarely occur 
and evaluation of the currently available bacterial genomes suggested that <0.5% of 
all sequenced bacterial species carry putative lipoxygenase genes. We recently re‐
screened the public bacterial genome databases for lipoxygenase‐like sequences and 
identified two novel lipoxygenase isoforms (MF‐LOX1 and MF‐LOX2) in the halotoler‐
ant Myxococcus fulvus. Both enzymes share a low degree of amino acid conservation 
with well‐characterized eukaryotic lipoxygenase isoforms but they involve the cata‐
lytically essential iron cluster. Here, we cloned the MF‐LOX1 cDNA, expressed the 
corresponding enzyme as N‐terminal hexa‐his‐tag fusion protein, purified the recom‐
binant enzyme to electrophoretic homogeneity, and characterized it with respect to 
its protein‐chemical and enzymatic properties. We found that M. fulvus expresses a 
catalytically active intracellular lipoxygenase that converts arachidonic acid and 
other polyunsaturated fatty acids enantioselectively to the corresponding n‐9 hy‐
droperoxy derivatives. The enzyme prefers C20‐ and C22‐polyenoic fatty acids but 
does not exhibit significant membrane oxygenase activity. The possible biological 
relevance of MF‐LOX1 will be discussed in the context of the suggested concepts of 
other bacterial lipoxygenases.
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& Furstenberger, 2014; Rapoport & Schewe, 1986; van Leyen, 
Duvoisin, Engelhardt, & Wiedmann, 1998) but also play important 
roles in human pathologies (Ackermann, Hofheinz, Zaiss, & Kronke, 
2017; Chen, Sheller, Johnson, & Funk, 1994; Colakoglu, Tuncer, & 
Banerjee, 2018; Eckl et al., 2009; Haeggstrom & Funk, 2011; Harats 
et al., 2005; Kronke et al., 2009; Kuhn et al., 2015). In bacteria, 
LOXs have also been detected but here they occur at much lower 
frequency. A systematic search for putative LOX genes in the bac‐
terial genomic sequences database (2013) revealed that the 3,700 
deposited bacterial genomes (2013) involved 38 putative LOX genes 
(Hansen et al., 2013). Since certain bacterial species possess more 
than one LOX gene, it was concluded that <1% all bacterial spe‐
cies carry LOX genes. A more stringent search carried out in 2015 
suggested that among the 13,000 bacterial genomes sequenced at 
this time some 60 species involved putative LOX genes (Horn et al., 
2015). Although the vast majority of these potential bacterial LOXs 
has not been characterized, it was concluded that the presence of 
these enzymes may not be essential for bacterial life (Horn et al., 
2015).

The first bacterial LOX was discovered in 1973 in the oppor‐
tunistic human pathogen Pseudomonas aeruginosa (Shimahara & 
Hashixume, 1973). This protein (PA‐LOX) was later on characterized 
as secreted arachidonic acid 15‐lipoxygenating enzyme (Banthiya et 
al., 2016; Garreta et al., 2013; Lu et al., 2013; Vance, Hong, Gronert, 
Serhan, & Mekalanos, 2004; Vidal‐Mas, Busquets, & Manresa, 
2005). The crystal structure of PA‐LOX was solved at a molecular 
resolution of 1.4 Å (Banthiya et al., 2016; Garreta et al., 2013) and it 
differed from other pro‐ and eukaryotic LOX isoforms in two major 
aspects: (a) While the polypeptide chains of most eukaryotic LOX are 
folded into a two‐domain structure consisting of small N‐terminal β‐
barrel domain and large helical catalytic domain (Choi, Chon, Kim, & 
Shin, 2008; Eek et al., 2012; Gilbert et al., 2011; Gillmor, Villasenor, 
Fletterick, Sigal, & Browner, 1997; Minor et al., 1996; Neau et al., 
2009), the PA‐LOX polypeptide folds into a single domain structure 
(Banthiya et al., 2016; Garreta et al., 2013). (b) Recombinant PA‐LOX 
involves a bifurcated substrate‐binding pocket consisting of two hy‐
drophobic cavities and a joining lobby. These internal cavities harbor 
a phosphatidylethanolamine molecule. The subcavity containing the 
sn1 fatty acid of the endogenous ligand involves the catalytic non‐
heme iron (Banthiya et al., 2016; Garreta et al., 2013). More recently, 
the crystal structure of a LOX isoforms from Cyanothece sp. PCC 
8801 was also solved (Newie et al., 2016). The biological activities 
of bacterial LOX have not been explored in detail. PA‐LOX has been 
implicated in pathogen–host interaction (Garreta et al., 2013) and in 
biofilm formation (Deschamps et al., 2016). More recently, the en‐
zyme has been suggested as pathogenicity factor because of its ca‐
pability of oxidizing membrane lipids of eukaryotic cells (Aldrovandi 
et al., 2018). A similar membrane lipid oxygenase activity has been 
suggested for a LOX isoforms from Cyanothece sp. PCC 8801 (Newie 
et al., 2016).

We recently rescreened the NCBI bacterial genome database 
and identified previously described LOX sequences in Myxococcus 
xanthus (WP_011551853.1, WP_011551854.1). The protein, which 

is encoded by the WP_011551853.1 gene, was identified as acidic 
LOX isoforms (Qian et al., 2017) and recombinant expression of 
the WP_011551854.1 gene also led to a catalytically active en‐
zyme (An, Hong, & Oh, 2018). In addition, our database search 
identified two putative LOX genes in the genome of M. fulvus 
(WP_046712474.1 and SEU34910.1), which have not been char‐
acterized so far. To explore whether the WP_046712474.1 gene 
encodes for a functional LOX, we expressed the correspond‐
ing enzyme in different pro‐ and eukaryotic expression systems 
and characterized the recombinant protein with respect to its 
protein‐chemical and enzymatic properties. Our results indicate 
that M. fulvus expresses an arachidonic acid 12S‐lipoxygenating 
LOX isoform (MF‐LOX1), which only shares a low degree (20%) 
of amino acid identity with a recently characterized LOX isoform 
from M. xanthus (An et al., 2018) and with other pro‐ and eukary‐
otic LOX isoforms.

2  | RESULTS

2.1 | Database search and identification of putative 
LOX genes in the genome of M. fulvus

Lipoxygenases (ALOX isoforms) rarely occur in prokaryotes but 
in M. xanthus two functional ALOX genes (WP_011551854.1 and 
WP_011551853.1) have recently been identified (An et al., 2018; 
Qian et al., 2017). In Myxococcus fulvus (M. fulvus), which differs 
from M. xanthus with respect to structural and functional char‐
acteristics, no LOX isoforms have been described so far. When 
we searched the NCBI bacterial genome database for potential 
ALOX sequences, we detected two potential ALOX sequences 
(WP_046712474.1 and SEU34910.1) in M. fulvus. WP_046712474.1 
encodes for a 676 amino acid protein (designated MF‐LOX1 in 
this paper), which involves two functional iron ligand clusters 
(C1 [His376 + His372] and C2 [His549 + Asn553]), which are es‐
sential for true ALOX sequences. The SEU34910.1 gene encodes 
for a 689 amino acid protein (designated MF‐LOX2 in this paper), 
which also involves two iron ligand clusters. The two proteins 
only share a low degree of amino acid identity (21.4%) and, thus, 
should exhibit different functionality. Amino acid alignments of 
these M. fulvus LOX (MF‐LOX1, MF‐LOX2) with the two M. xan‐
thus enzymes (MX‐LOX1 and MX‐LOX2) indicated that MF‐LOX1 
(WP_046712474.1) shares a low degree (19.7%) of amino acid iden‐
tity with the well‐characterized MX‐LOX2 (WP_011551854.1). 
Although the iron clusters are conserved in the two sequences 
(Figure 1), the degree of overall similarity is limited. The degree of 
amino acid identity of MF‐LOX1 discovered here with the poorly 
characterized M. xanthus LOX (MX‐LOX1) is 86%. A similar degree 
of amino acid identity (85%) is shared between different mamma‐
lian ALOX15 orthologs (men vs. mouse, mouse vs. rats, rats vs. 
men, men vs. pigs etc.). Thus, it might be speculated that MF‐LOX1 
(WP_046712474.1) and MX‐LOX1 (WP_011551854.1) also repre‐
sent enzyme orthologs in two different Myxococcus species.
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2.2 | Recombinant expression of MF‐LOX1 in E. coli

To explore whether the MF‐LOX1 gene (WP_046712474.1) encode 
for a functional ALOX isoform, we expressed the corresponding 
enzyme as N‐terminal his‐tag fusion protein in Escherichia coli, 
purified the recombinant protein by affinity chromatography on 
Ni‐agarose, and characterized it with respect to its protein‐chemi‐
cal and enzymatic properties. When E. coli cells were transformed 
with the recombinant expression plasmid, they express a his‐tag 
fusion protein, which migrates in SDS‐PAGE in the molecular 
weight range of 80 kDa (Figure 2a). No immunoreactive protein 
was observed when bacteria were transformed with an empty 

plasmid. To confirm the expression of a functional enzyme ALOX, 
activity assays were carried out (Figure 2b). The RP‐HPLC chroma‐
tograms and the UV spectrum of the major oxygenation product 
indicate the formation of a conjugated diene during the incubation 
period and this product comigrated with an authentic standard of 
12‐HETE (lower trace). This compound was not detected in control 
incubations (no enzyme). Since 12‐ and 8‐HETE are not well sepa‐
rated under our chromatographic conditions, additional SP‐HPLC 
was carried out to resolve the two product isomers. Here, the 
major oxygenation product comigrated with 12‐HETE (data not 
shown). For more comprehensive characterization, we purified the 
recombinant enzyme by affinity chromatography on a Ni‐agarose 

F I G U R E  1   Dual amino acid alignment of Myxococcus fulvus LOX1 (MF‐LOX1, WP_046712474.1) and M. xanthus LOX2 (WP011551854.1). 
The putative iron ligands are framed in green, and the sequence determinants of the reaction specificity are color coded as follows: yellow—
Coffa determinant, blue—Borngraber 1 determinant, red—Sloane determinants
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column. As indicated in Figure 2c, the his‐tag fusion protein was 
bound at the affinity matrix and was recovered by eluting the 
column with increasing amounts of imidazole. The bulk of the re‐
combinant protein was eluted in fractions 2, 3, and 4. To quantify 
the degree of purity of the final enzyme preparation, Coomassie 
staining of an SDS‐PAGE was carried out and densitometric evalu‐
ation suggested that the enzyme was >95% pure (Figure 2d). The 
expression yield, the degree of purity, and the catalytic activities 
of the final enzyme preparations are summarized in Table 1.

2.3 | Recombinant expression of MF‐LOX1 in a 
eukaryotic expression system

Evaluation of our activity assays suggested that the specific activ‐
ity of the expressed MF‐LOX1 was considerably lower than that 
of P. aeruginosa (PA‐LOX) enzyme used in control incubations. To 

test whether the enzyme is more efficiently expressed in eukary‐
otic overexpression systems, we cloned the coding sequence into 
the pFastBac HT‐B expression vector and expressed the enzyme 

F I G U R E  2   Bacterial expression and 
purification of recombinant Myxococcus 
fulvus LOX1 (MF‐LOX1). MF‐LOX1 was 
expressed as N‐terminal hexa‐his‐tag 
fusion protein in Escherichia coli. (a) 
Immunoblotting: Bacteria were lyzed 
by sonication and cell debris was 
removed. Aliquots of the bacterial lysis 
supernatant were applied to SDS‐PAGE, 
the separated proteins were transferred 
to a nitrocellulose membrane, and the 
membrane was probed with an anti‐his‐
tag antibody. Left lane: E. coli transformed 
with empty plasmid. Right lane: E. coli 
transformed with recombinant plasmid. 
(b) LOX‐activity assay (RP‐HPLC): In 
vitro activity assays were carried out as 
described in Experimental Procedures, 
and the reaction products were analyzed 
by RP‐HPLC. Retention times of authentic 
standards are indicated. A nonenzyme 
(NE) incubation (PBS instead of the 
bacterial lysate supernatant) was carried 
out as negative control. (c) Protein 
purification: Affinity chromatography 
of the recombinant hexa‐his‐tag fusion 
protein on Ni‐agarose was carried out and 
aliquots of the different elution fractions 
were analyzed by immunoblotting. (d) 
Degree of purity of the final enzyme 
preparation: MF‐LOX1 expressed in 
bacterial cells was purified by affinity 
chromatography. The active fractions 2, 
3, and 4 were pooled as shown in panel 
c, desalted and an aliquot was applied to 
SDS‐PAGE

TA B L E  1   Expression and purification efficiency of Myxococcus 
fulvus LOX1 (MF‐LOX1)

Parameter
Escherichia coli 
(n = 3)

Sf9 cells 
(n = 1)

Yield (mg/L culture fluid) 118.2 ± 17.3 92

Degree of purity (%) >95 >95

Specific activity (s−1) (3.1 ± 1.2) x 10−2 2.6 x 10−2

Note. MF‐LOX1 was expressed as N‐terminal hexa‐his‐tag fusion protein 
in E. coli and in Sf9 cells as described in Experimental Procedures. After 
affinity chromatography on Ni‐agarose, the catalytically active fractions 
were pooled and the readout parameters given in the table were deter‐
mined (with EPA as substrate)
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in Sf9 cells. Western blot analyses indicated that the recombinant 
enzyme is expressed (Figure 3a) and activity assays (Figure 3c) con‐
firmed this conclusion. Here again, conjugated dienes that cochro‐
matographed in RP‐HPLC with an authentic standard of 12S‐HETE 
were formed during the incubation period but these products were 
absent in control incubations. The enzyme could also be purified by 
affinity chromatography on Ni‐agarose (Figure 3b) and the final en‐
zyme preparations exhibited a high (>95%) degree of electrophoretic 
homogeneity. The expression yield, the degree of purity, and the 
catalytic activities of the final enzyme preparations are summarized 
in Table 1.

The specific activity of the MF‐LOX1 preparation from SF9 cells 
was also low and comparison with the enzyme expressed in E. coli 
did not reveal major differences. For improvement, we attempted to 
overexpress the protein in HEK293 cells employing human ALOX15 
as positive control. Although human ALOX15 was well expressed, 
comparative activity assays did not reveal any evidence for expres‐
sion of MF‐LOX1. In fact, using the lysis supernatant of transfected 
HEK293 cells as enzyme source, we observed dominant formation of 
15‐HETE for the human enzyme. In contrast, no 12‐HETE formation 
was observed when the lysis supernatant of MF‐LOX1 transfected 
HEK293 cells was employed (data not shown).

2.4 | Protein‐chemical characterization of MF‐LOX1

The theoretical molecular weight calculated from the amino acid 
sequence of our MF‐LOX1 construct including the hexa‐his tag 
and the linker peptide was 79.800 Da. From SDS‐PAGE of the 
purified enzyme, a molecular weight of 90.3 kDa was concluded 
(Figure 4b). Isoelectric focusing (Figure 4a) indicated several pro‐
tein bands migrating in the pH region between 5.1 and 6.5 and 
these data suggest a structural microheterogeneity of our final en‐
zyme preparation. Nevertheless, an IP in the pH region between 
6.1 and 6.5 is consistent with the theoretical IP of 5.8, which was 
deduced from the amino acid composition. Because of technical 
reasons, the N‐terminal amino acid sequence of the recombinant 
protein was elongated by 32 amino acids when compared with the 
native protein. The final sequence reads: Met‐Gly‐Ser‐Ser‐HIS‐
HIS‐HIS‐HIS‐HIS‐HIS‐Ser‐Ser‐Gly‐Leu‐Val‐Pro‐Arg‐Gly‐Ser‐His‐
Met‐Ala‐Ser‐Met‐Tre‐Gly‐Ala‐Asn‐Gly‐Ser‐Gly‐Ser‐Met‐Thr. The 
bolded Met constitutes the starting methionine of the native pro‐
tein and the italized capital letters represent the hexa‐his tag. The 
length of the additional N‐terminal peptide (32 additional amino 
acids), which includes the hexa‐his‐tag sequence, is mainly re‐
lated to our cloning strategy and to the localization of the HindIII 

F I G U R E  3   Eukaryotic expression of recombinant Myxococcus fulvus LOX1 (MF‐LOX1). MF‐LOX1 was expressed as N‐terminal hexa‐
his‐tag fusion protein in Sf9 cells as described in Experimental Procedures. (a) Immunoblotting: Sf9 cells infected with the recombinant 
baculovirus were lyzed by repeated sonication and cell debris was removed by centrifugation. Aliquots of the cell lysis supernatant were 
applied to SDS‐PAGE, separated proteins were transferred to a nitrocellulose membrane, and the membrane was probed with an anti‐
his‐tag antibody. Left lane: Lysis supernatant of uninfected Sf9 cells. Right lane: Lysis supernatant of Sf9 cells infected with recombinant 
baculovirus. (b) Affinity chromatography of MF‐LOX1 expressed in Sf9 cells: MF‐LOX1 was expressed in Sf9 cells and was purified by affinity 
chromatography on a Ni‐agarose column as described in Experimental Procedures. Aliquots of the different elution fractions were analyzed 
by SDS‐PAGE and stained with Coomassie blue. (c) LOX‐activity assay (RP‐HPLC): In vitro activity assays were carried out as described in 
Experimental Procedures using aliquots of the Sf9 cell lysate supernatant as enzyme source. The reaction products were analyzed by RP‐
HPLC and a nonenzyme incubation (‐LOX, PBS instead of Sf9 cell lysate supernatant) was carried out as negative control
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recognition sequence within the multicloning site of the expres‐
sion vector.

All LOX isoforms characterized so far involve either iron or man‐
ganese as catalytically active transition metal (Ivanov et al., 2010; 
Wennman, Karkehabadi, & Oliw, 2014). To explore whether MF‐
LOX1 carries manganese or iron as catalytically active constituent, 
we quantified the content of these transition metals in our purified 
enzyme preparation by atomic absorption spectroscopy. For this 
purpose, the enzyme preparation was desalted and aliquots of the 
desalting buffer were used for control measurements. We found that 
the manganese content of the enzyme preparation was lower than 
in the desalting buffer and these data suggest that MF‐LOX1 does 
not involve manganese. Quantification of the iron content yielded 
significantly higher iron levels than in the desalting buffer (Table 2), 
but calculation of the iron load suggested that only 5.6% of wild‐
type MF‐LOX1 expressed in E. coli carried an iron ion. Unfortunately, 
all attempts to improve the iron load (iron supplementation of the 
fermentation sample, mutagenesis studies of the iron ligands, in 
vitro iron incorporation into the purified protein after incorporation 
experiments) were not successful. To exclude the possibility that 
MF‐LOX1 involves other transition metals as catalytically essential 

constituent, we next determined the copper and zinc concentrations 
in our enzyme preparation. However, both transition metals were 
below the detection limits. When we quantified the iron content 
of the Phe424Ile+Ile425Met double mutant, we observed a four‐
fold higher iron load. This observation is quite interesting since this 
double mutant exhibited a 4.7‐fold higher specific activity (Table 4). 
Thus, the major reason for the low catalytic activity of recombinant 
MF‐LOX1 (Table 1) is its low iron load. The mechanistic basis for the 
unusually low iron load of MF‐LOX1 remains unclear but possible 
scenarios are discussed later on in the manuscript.

2.5 | Enzymatic characterization of MF‐LOX1

To explore the substrate specificity of recombinant MF‐LOX1, we 
tested several omega‐6 (linoleic acid, gamma‐linolenic acid, arachi‐
donic acid) and omega‐3 (alpha‐linolenic acid, eicosapentaenoic acid, 
docosahexaenoic acid) polyenoic fatty acids as substrate. Here, we 
found that MF‐LOX1 most effectively oxygenated eicosapentaenoic 
acid (Figure 5e). Docosahexaenoic acid, arachidonic acid, and alpha‐li‐
nolenic were also well oxygenated. In contrast, no oxygenation prod‐
ucts were detected when gamma‐linolenic acid and linoleic acid were 

F I G U R E  4  Protein‐chemical characteristics of MF‐LOX1. MF‐LOX1 was expressed as N‐terminal hexa‐his‐tag fusion protein in 
Escherichia coli as described in Experimental Procedures. (a) Native isoelectric point: An aliquot of the pooled Ni‐agarose fractions was 
applied to isoelectric focusing together with IP standards and from the relative migration distances the native IP of recombinant enzyme 
preparation was determined as 5.9. This value is in fair agreement with the theoretical IP calculated on the basis of the amino acid 
composition (5.8). (b) Apparent molecular weight: An aliquot of the pooled Ni‐agarose fractions was applied to SDS‐PAGE together with 
molecular weight standards and from the relative migration distances the experimental molecular weight of the recombinant enzyme 
preparation was determined as 90 kDa. This value is in fair agreement with the theoretical molecular weight calculated on the basis of the 
amino acid composition (80 kDa)

Parameter
Iron concentration 
(µmol/L)

Protein concentration 
(µmol/L) Iron load (%)

Wild‐type 0.750 13.44 5.6

SL (Phe424lle + Ile425Met) 0.835 3.838 22

Note. MF‐LOX1 and Phe424Ile + Ile425Met mutant were expressed as N‐terminal hexa‐his‐tag fu‐
sion protein in Escherichia coli as described in Experimental Procedures. Aliquots of the pooled Ni‐
agarose fractions (Figure 2d) were used for quantification of the iron content

TA B L E  2   Iron content of pure 
recombinant MF‐LOX1 and its mutant
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F I G U R E  5  Substrate specificity of the MF‐LOX1 and enantioselectivity of product formation. MF‐LOX1 was expressed as N‐terminal 
hexa‐his‐tag fusion protein in Escherichia coli. Aliquots of the pooled Ni‐agarose fractions (Figure 1c) were employed for activity assays 
(see Experimental Procedures) with different fatty acids as substrates. The reaction products were analyzed by RP‐HPLC recording the 
absorbance at 235 nm. Authentic standards of 12‐HEPE, 14‐HDHA, and 12‐HETE were prepared using recombinant human ALOX12 
(Kutzner et al., 2017). (a) Product pattern of EPA oxygenation, (b) product pattern of DHA oxygenation, (c) product pattern of AA 
oxygenation, (d) product pattern of ALA oxygenation, (e) substrate specificity: The conjugated dienes formed during the incubation period 
were quantified and the product formation from EPA was set 100%. (f) Analysis of the enantiomer composition of the major oxygenation 
products formed by MF‐LOX1 from C20 and C22‐polyenoic fatty acids. The enantiomer composition was determined by chiral phase LC‐MS 
(see Experimental Procedures). (g) Analysis of 12‐HETE enantiomer composition formed by the Ala410Gly mutant
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used as substrate. To identify the chemical structure of the reaction 
products, we compared in RP‐HPLC the reaction products formed by 
MF‐LOX1 with those of human recombinant ALOX15. Here, we found 
that the major oxygenation product of EPA oxygenation (Figure 5a) 
comigrated with the minor oxygenation product formed from this 
fatty acid by the human enzyme, which is 12‐HEPA (Kutzner et al., 
2017). Similarly, the major oxygenation product formed from DHA 
and AA by MF‐LOX1 (Figure 5b,c) cochromatographed in RP‐HPLC 
with the minor oxygenation products formed from these substrates 
(14‐HDHA, 12‐HETE) by the human enzyme (Kutzner et al., 2017). 
ALA was oxygenated by MF‐LOX1 (Figure 5d) and human ALOX15 
to an identical major oxygenation product (13‐HOTrE).

TA B L E  3   Enantiomer composition of major conjugated dienes 
formed from EPA (12‐HEPE), DHA (14‐HDHA), and AA (12‐HETE)

Metabolite S (%) R (%)

12‐HEPE 97.5 2.5

14‐HDHA 95 5

12‐HETE 95 5

Note. MF‐LOX1 was expressed as N‐terminal hexa‐his‐tag fusion protein 
in Escherichia coli as described in Experimental Procedures. Aliquots of 
the pooled Ni‐agarose fractions (Figure 2d) were used for activity assays. 
The major conjugated dienes formed were isolated by RP‐HPLC and 
separation of the enantiomers was carried out by chiral phase LC/MS 
(see Experimental Procedures)

F I G U R E  6  Kinetic properties of MF‐LOX1. MF‐LOX1 was expressed as N‐terminal hexa‐his‐tag fusion protein in Escherichia coli. Aliquots 
of the pooled Ni‐agarose fractions (Figure 2d) were used to determine basic kinetic properties of the enzyme. (a) Fatty acid substrate 
affinity: Aliquots of the enzyme preparation were incubated for 1 min with different concentrations of EPA and the amounts of conjugated 
dienes formed (RP‐HPLC) were used to construct Michaelis–Menten diagram. (b) Oxygen affinity: Different volumes of anaerobic (argon 
flushed) PBS were mixed with different volumes of oxygen saturated (oxygen flushed) PBS. After addition of a partially anaerobized 
methanolic EPA solution (160 µM final concentration), the reaction was started by the addition of 50 µl partially anaerobized enzyme 
solution. After a 1‐min incubation period, the formed conjugated dienes were quantified by RP‐HPLC. The experimental raw data were fitted 
to the Michaelis–Menten equation to extract the Km‐value. (c) pH dependence: The reaction buffer was prepared by mixing equal volumes 
of 10 mM phosphate and 10 mM borate solutions adjusting the different pH values by the addition of different volumes of 1 M NaOH or 
1 M HCl. The amounts of conjugated dienes formed during a 1‐min incubation period (RP‐HPLC) were quantified to establish the pH profile. 
(d) Temperature dependence: Activity assays (see Experimental Procedures) were carried out at different reaction temperatures and the 
amounts of conjugated dienes formed (RP‐HPLC) were quantified as readout parameter
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To define the degree of optical purity of the major oxygenation 
products, we carried out chiral phase LC‐MS and the corresponding 
chromatograms are shown in Figure 5f. For this purpose, the chro‐
matograms were followed at m/z 319 (12‐HETE), 317 (12‐HEPE), and 
343 (14‐HDHA). It can be seen that for all of these major oxygen‐
ation products, the S‐isomer prevails and that the corresponding 
R‐enantiomers are only formed in small amounts. Exact quantifica‐
tion of the S/R ratio is given in Table 3. Taken together, these data 
indicate a high degree of stereo‐chemical control of the oxygenase 
reaction.

To obtain more detailed information on the reaction kinetic of 
MF‐LOX1, we quantified its substrate affinity using eicosapentae‐
noic acid as model substrate. From Figure 6a, it can be seen that 
the enzyme follows Michaelis–Menten kinetics and a Km‐value 
of about 70 µM was determined. This value is in the same range 
(50 µM) as determined for the arachidonic acid oxygenase activity 
of P. aeruginosa LOX (Banthiya et al., 2016) under comparable exper‐
imental conditions (lack of any detergents). However, more detailed 
inspection of the Michaelis–Menten diagram (Figure 6a) suggested 
substrate inhibition of the enzyme at higher substrate concentra‐
tions (150, 200 µM). When we excluded the activity data measured 
at these substrate concentrations from our kinetic modeling, we 
obtained a Km‐value of 427 µM. This constant was considerably 
higher than the corresponding value obtained when these reaction 
rates were included in Km determination. Under Vmax conditions 
(eicosapentaenoic acid as substrate), a molecular turnover rate of 
(3.1 ± 1.2) x 10−2/s was determined. This value is more than two or‐
ders of magnitude lower than the turnover rate determined for lin‐
oleic acid oxygenation by human ALOX15 (Ivanov, Kuhn, & Heydeck, 
2015) and four orders of magnitude lower than that of the PA‐LOX 
(Banthiya et al., 2016). The molecular basis for the low specific activ‐
ity of MF‐LOX1 remains unclear but the low iron load of the recom‐
binant enzyme may contribute.

For several LOX isoforms, it has been shown that oxygen 
enters the active site via preformed or dynamic oxygen chan‐
nels (Knapp, Seebeck, & Klinman, 2001; Saam, Ivanov, Walther, 
Holzhutter, & Kuhn, 2007; Xu, Mueser, Marnett, & Funk, 2012). 
The oxygen affinities of different LOX isoforms are rather high 
and oxygen Km values in the lower micromolar range have been 
reported (Egmond, Brunori, & Fasella, 1976; Juranek, Suzuki, & 
Yamamoto, 1999; Knapp & Klinman, 2003; Ludwig et al., 1987). 
On the other hand, wild‐type P. aeruginosa LOX has a Km for ox‐
ygen of about 0.4 mM indicating that under normoxic conditions 
this enzyme does not work at substrate saturation (Kalms et al., 
2017). To estimate the oxygen affinity of MF‐LOX1, we performed 
activity assays at different oxygen concentrations and quantified 
the amounts of conjugated dienes formed during a 1‐min ox‐
ygenation period. When we fitted the obtained activity data to 
the Michaelis–Menten equation (Figure 6b), a low Km for oxygen 
(12 µM) was concluded. It should be stressed at this point that in 
quantitative terms this value is not very precise because of two 
reasons: (a) Most measurements were carried out in the oxygen 
concentration range close to oxygen saturation. (b) It is impossible 

completely exclude oxygen by flushing the reaction buffer with 
argon gas, and thus, the actual oxygen concentrations in the in‐
cubation samples are rather rough estimates. Nevertheless, our 
experimental data clearly indicate that the catalytic activity of 
MF‐LOX1 could not be improved by increasing the oxygen concen‐
trations. In other words, MF‐LOX1 exhibits a high oxygen affinity 
and this conclusion is consistent with experimental data obtained 
for different mammalian ALOX isoforms (Juranek et al., 1999).

LOXs exhibit different pH profiles but most isoforms have neu‐
tral or alkaline pH optima. Recently, an acidic LOX isoforms was iden‐
tified in M. xanthus (WP_011551853.1), which showed a pH optimum 
of 3 (Qian et al., 2017). This enzyme shares a high degree (86%) of 
amino acid identity MF‐LOX1 but it prefers linoleic acid over arachi‐
donic acid. When we recorded the pH profile MF‐LOX1 (Figure 6c), 
we observed the pH optimum at 9.5.

Finally, we determined the temperature dependence of EPA ox‐
ygenation by MF‐LOX1 (Figure 6d). Here, we observed similar cat‐
alytic activities in the temperature range between 5°C and 15°C. 
When we increased the reaction temperatures above 15°C, a steady 
decline of the catalytic activity was observed. The molecular basis 
for this unusual temperature dependence has not been explored but 
it may be related to a limited thermostability of the enzyme.

2.6 | Mutagenesis of catalytically important 
amino acids

For eukaryotic ALOX isoforms, several hypotheses explaining the 
mechanistic basis of their reaction specificities have been devel‐
oped. The Triad Concept (Borngraber et al., 1999; Ivanov et al., 2015; 
Vogel et al., 2010), which was developed for mammalian ALOX15 
orthologs, suggests that three regions of the primary structure of 
these enzymes (triad determinants) are important for their reaction 
specificities. To identify the triad determinants of MF‐LOX1, we car‐
ried out multiple sequence alignments of this enzyme with differ‐
ent mammalian ALOX15 orthologs and found that Phe353 of human 
and rabbit ALOX15 (Borngraber‐1 determinant) aligned with Gly359 
of MF‐LOX1. Similarly, Phe424 and Ile425 of MF‐LOX aligned with 
Ile418 and Met419 of human and rabbit ALOX15 (Slone determi‐
nant). Finally, Ile593 of mammalian ALOX15 orthologs (Borngraber‐2 
determinant) aligned with Ile603 of MF‐LOX1. Next, we mutated the 
two most important triad determinants (Borngraber‐1 and Sloane 
determinants) of MF‐LOX1. For this purpose, we first mutated 
Gly359 introducing a more bulky Phe, which is present at this po‐
sition in human and rabbit ALOX15. Unfortunately, the Gly359Phe 
mutant was catalytically inactive (Table 4), and thus, no functional 
conclusions could be drawn. When we applied a similar mutagenesis 
strategy to the Sloane determinants of MF‐LOX1 (creation of the 
Phe424Ile+Ile425Met double mutant), we obtained an enzyme spe‐
cies, which exhibited an almost fivefold higher catalytic activity than 
the wild‐type enzyme. However, the reaction specificity of this gain‐
of‐function mutant was identical to that of the wild‐type enzyme 
(Table 4). These data suggest that the Triad Concept (Ivanov et al., 
2015) might not be applicable for MF‐LOX1.
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Previous multiple sequence alignments have indicated that most 
S‐LOXs carry an Ala at a critical position of their primary structures. 
In contrast, most R‐LOXs involve a smaller Gly at this position and 
Ala‐to‐Gly exchange increase the relative share of R‐lipoxygenation 
products (Coffa & Brash, 2004; Coffa, Schneider, & Brash, 2005; 
Vogel et al., 2010). Although this concept was not applicable for 
zebrafish LOX1 (Haas et al., 2011; Jansen et al., 2011), we tested 
the impact of Ala410Gly exchange on MF‐LOX1 and found that this 
mutation did neither alter the catalytic activity nor the positional 
specificity of the enzyme. When we analyzed by chiral phase HPLC 
the enantiomer composition of the major reaction product formed 
by the Ala410Gly mutant, we detected dominant 12S‐HETE forma‐
tion. Thus, the enantioselectivity was neither altered by this muta‐
tion (Figure 5g). Taken together, our mutagenesis data suggest that 
MF‐LOX1 does neither follow the Triad Concept nor the Ala‐vs.‐Gly 
Hypothesis.

2.7 | Biomembrane oxygenase activity

Some ALOX isoforms are capable of oxygenating membrane 
phospholipids, which leads to disruption of membrane integ‐
rity (Aldrovandi et al., 2018; Kühn et al., 1993; Pekarova, Kuhn, 
Bezakova, Ufer, & Heydeck, 2015; Schewe, Halangk, Hiebsch, & 
Rapoport, 1975; Takahashi et al., 1993). To test whether MF‐LOX1 
also exhibits biomembrane oxygenase activity, we incubated beef 
heart submitochondrial particles as model membranes with purified 
native rabbit ALOX15 and recombinant MF‐LOX1 for 15 min. After 
the incubation period, the reaction products were reduced, lipids 
were extracted, hydrolyzed and the resulting free fatty acids (sum 
of HODE + HETE isomers, linoleic acid [LA] + arachidonic acid [AA]) 
were analyzed by RP‐HPLC. To quantify the degree of membrane 
phospholipid oxygenation, we calculated the molar HODE + HETE/
LA + AA ratio (Aldrovandi et al., 2018; Kuhn, Belkner, Wiesner, & 
Brash, 1990). In Table 5, it can be seen that under our in vitro con‐
ditions the membrane oxygenase activity of rabbit ALOX15 was 
threefold higher than that of MF‐LOX1. This difference was even 
more pronounced when we normalized the membrane oxygenase 
activity to the amounts of enzyme added as catalysts. For MF‐LOX, 
we applied 7 mg/ml of purified enzyme but for rabbit ALOX15 7 µg/

ml. It should, however, been stressed that the specific fatty acid oxy‐
genase activity of the rabbit ALOX15 is orders of magnitude higher 
than that of MF‐LOX1 (Table 1).

3  | DISCUSSION

3.1 | Occurrence of LOX isoforms in different 
myxobacterial species

In bacteria, LOXs rarely occur (Horn et al., 2015) but functional 
bacterial LOXs have been identified in different cyanobacteria 
(Andreou, Göbel, Hamberg, & Feussner, 2010b; Gao, Boeglin, & 
Brash, 2010; Kim, An, Lee, & Oh, 2015; Zheng, Boeglin, Schneider, 
& Brash, 2008) and proteobacteria (Garreta et al., 2013; Kim et 
al., 2015; Vance et al., 2004). More recently, in the genome of 
M. xanthus, LOX genes have been identified (WP_011551853.1, 
WP_011551854.1, ABF 88826.1) and two of them have been shown 
to encode for distinct functional LOX isoforms, which only share 
a minor degree of amino acid conservation (Table 6) and exhibit 
distinct catalytic activities (An et al., 2018; Qian et al., 2017). In 
M. fulvus, which constitutes a different species within the bacterial 

Enzyme
Relative activity 
(%) 12‐HETE (%) 15‐HETE (%)

Wild‐type 100 95 5

BG1 (Gly359Phe) <5 — —

SL (Phe424Ile + Ile425Met) 475 95 5

CO (Ala410Gly) 109 >97.5 <2.5

Notes. BG1: Borngraber 1 determinant; CO: Coffa/Brash determinant; SL: Sloane determinants.
MF‐LOX1 was expressed as N‐terminal hexa‐his‐tag fusion protein in Escherichia coli and purified by 
affinity chromatography on Ni‐agarose as described in Experimental Procedures. The sequence de‐
terminants of MF‐LOX1 were identified by amino acid sequence alignment (Figure 1). Aliquots of the 
pooled Ni‐agarose fractions (Figure 2d) were used for activity assays and the reaction products of 
arachidonic acid oxygenation were quantified by RP‐HPLC (see Experimental Procedures).

TA B L E  4   Mutagenesis of the putative 
sequence determinants of Myxococcus 
fulvus LOX1 (MF‐LOX1)

TA B L E  5   MF‐LOX1 does not exhibit membrane oxygenase 
activity

Enzyme
OH‐PUFA/PUFA 
ratio (mole %)

Rabbit ALOX15 0.65 ± 0.28 (n = 2)

MF‐LOX1 0.22 ± 0.03 (n = 4)

Note. Purified recombinant MF‐LOX1 (7 mg/ml) and pure native rabbit 
ALOX15 (7 µg/ml) were incubated in PBS with beef heart submitochon‐
drial membranes (1.2 mg/ml) for 15 min at room temperature. After the 
incubation period, the reaction products were reduced with NaBH4 and 
the pH was adjusted to 3.5 with acetic acid. Total lipids were extracted 
(Bligh & Dyer, 1959), ester lipids were hydrolyzed, and the resulting free 
fatty acids (sum of HODE + HETE isomers, linoleic acid [LA] + arachi‐
donic acid [AA]) were analyzed by RP‐HPLC. To quantify the degree of 
membrane phospholipid oxygenation, we calculated the molar 
HODE + HETE/LA + AA ratio (OH‐PUFA/PUFA ratio) and the data ob‐
tained for the noenzyme control were subtracted.
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genus Myxococcus, no LOX genes have been described so far. We 
recently screened the genome of M. fulvus for potential LOX genes 
and identified two potential LOX genes (WP_046712474.1 and 
SEU34910.1). The corresponding proteins share a low degree of 
amino acid identity (Table 6), and thus, they are apparently not 
closely related. In fact, human ALOX15 and human ALOX5, which 
exhibit different biological functions, share a higher degree of 
amino acid identity (40%). When we compared the amino acid iden‐
tity scores of the two putative M. fulvus LOX with the two M. xan‐
thus enzymes (Table 6), we found that the enzyme characterized in 
this study (WP_046712474.1, MF‐LOX1) only shares a low degree 
(19.7%) of amino acid identity with the well‐characterized 12S‐LOX 
of M. xanthus (An et al., 2018). In contrast, the enzyme appears to 
be more closely related to the poorly characterized M. xanthus LOX 
(Qian et al., 2017) since the amino acid identity score was close 
to 86% (Table 6). Similar identity scores were found when mouse 
(74%), rat (75%), and pig (86%) ALOX15 orthologs were compared 
with the human enzyme. Thus, it might well be that the M. fulvus 
LOX characterized here (WP_046712474.1, MF‐LOX1) may con‐
stitute the functional equivalent of MX‐LOX1 (WP_011551853.1), 
which has not been characterized very well (Qian et al., 2017). 
However, the currently available functional data do not provide 
major evidence for such a close functional relation: (a) MX‐LOX1 
has been described as acidic LOX with a pH optimum of 3.0 (Qian et 
al., 2017). In contrast, we detected an alkaline pH optimum (pHopt 
of 9.5) for MF‐LOX1 (Figure 6c). (b) MX‐LOX1 prefers linoleic acid 
over arachidonic acid (Qian et al., 2017). In contrast, we found that 
linoleic acid is a poor substrate for MF‐LOX1 when compared with 
arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid 
(Figure 5e). (c) MX‐LOX1 is rather stable and exhibits a tempera‐
ture optimum of 30°C (Qian et al., 2017). In contrast, MF‐LOX1 is 
unstable and exhibits an unusual temperature dependence with a 
Topt at 10°C. Although these kinetic parameters suggest that MX‐
LOX1 and MF‐LOX1 may not be closely related, they still might 
constitute functional equivalents in the two different Myxococcus 
species. More detailed functional characterization of MX‐LOX1 is 
needed to draw more definite conclusions.

3.2 | Low iron content and limited catalytic activity

Transition metal analyses of our final enzyme preparation indicated 
that recombinant MF‐LOX1 does neither involve manganese nor cop‐
per and zinc as catalytically active transition metal. Unfortunately, 
we also found that the iron content was rather low so that an iron 
load of only 5.6% was calculated for the wild‐type enzyme. This 
low iron saturation might be discussed as molecular basis for the 
low catalytic turnover rate ([3.1 ± 1.2] x 10−2 s−1). If one calculates 
the putative catalytic activity for an enzyme preparation with 100% 
iron load, a molecular turnover rate of about 0.55 ± 0.21 s−1 results. 
This value is still lower than the turnover rates determined for rabbit 
and human ALOX15 (Ivanov et al., 2015; Kühn et al., 1993), soybean 
LOX1 (Egmond et al., 1976; Maccarrone et al., 2001), and P. aerugi‐
nosa LOX (Banthiya et al., 2016; Garreta et al., 2013). The molecular 
basis for the low iron affinity of MF‐LOX1 has not been explored in 
detail. However, iron supplementation of the fermentation sample, 
which was successful for the Cyanothece sp. LOX (Andreou, Gobel, 
Hamberg, & Feussner, 2010a), did neither improve the iron load nor 
the catalytic activity of MF‐LOX1. Moreover, parallel expression of 
P. aeruginosa LOX led to a recombinant protein exhibiting an iron 
load of 100% (Banthiya et al., 2016). Since the expression levels of 
the two proteins were comparable, one can exclude that problems 
with the iron incorporating machinery are major reasons for the low 
efficiency of iron incorporation for MF‐LOX1. These data rather sug‐
gest that MF‐LOX1 protein has a low iron affinity and this property 
might be related to its 3D‐structure. It might be possible that regular 
folding of the polypeptide chain of MF‐LOX1 requires special fold‐
ing catalysts, which are present in M. fulvus but not in E. coli and Sf9 
cells. We are currently attempting to crystallize wild‐type MF‐LOX1 
and its Phe424Ile + Ile425Met double mutant to obtain direct struc‐
tural evidence for this hypothesis. Discussing the structural basis for 
the low iron affinity of MF‐LOX1, it may also be of interest that the 
C‐terminal iron‐binding cluster (His‐Ala‐Ala‐Val‐Asn; iron liganding 
amino acids are bolded) of this enzyme does not well align with the 
corresponding sequence of M. xanthus LOX2 (MX‐LOX2, Figure 1). 
However, since the sequence similarities of the two enzymes in this 

TA B L E  6   Degree of amino acid conservation of myxobacterial LOX isoforms

Enzyme
WP_011551853.1 
(MX‐LOX1)

WP_011551854.1 
(MX‐LOX2)

WP_046712474.1 
(MF‐LOX1)

SEU34910‐1 
(MF‐LOX2)

WP_011551853.1 
(MX‐LOX1)

100 19.7 85.8 21.1

WP_011551854.1 
(MX‐LOX2)

19.7 100 19.7 85.7

WP_046712474.1 
(MF‐LOX1)

85.8 19.7 100 21.4

SEU34910–1 
(MF‐LOX2)

21.1 85.7 21.4 100

Note. For the time being, two different LOX isoforms (An et al., 2018; Qian et al., 2017) have been described in Myxococcus xanthus (MX‐LOX1—
WP_011551853.1, MX‐LOX2—WP_011551854.1). When we screened the currently available bacterial genomes for LOX‐like sequences, we detected 
two potential LOX genes in M. fulvus. We carried out dual amino acid alignments and observed variable degrees of amino acid conservation between 
the different myxobacterial LOX isoforms
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particular region of the primary structure are not very pronounced, 
alignment artifacts might be possible. On the other hand, both iron 
ligand clusters of MF‐LOX1 align well with the corresponding amino 
acid of human and rabbit ALOX15, which makes alignment artifacts 
unlikely.

3.3 | Biological activity of bacterial LOX

Mammalian ALOX isoforms have been implicated in cell differentia‐
tion but also in the pathogenesis of various diseases (Haeggstrom & 
Funk, 2011; Kuhn et al., 2015). Unfortunately, much less is known on 
the biological relevance of bacterial LOXs but several scenarios have 
been suggested: (a) Biofilm formation: When planktonic bacteria rec‐
ognize specific attachment sites, when they suffer from malnutrition 
or when confronted with sublethal concentrations of antibiotics they 
form biofilms (Gupta, Sarkar, Das, Bhattacharjee, & Tribedi, 2016; 
Hoffman et al., 2005; Horn & Lackner, 2014; Karatan & Watnick, 
2009). Recent cell culture experiments suggested that PA‐LOX is re‐
quired for biofilm formation when P. aeruginosa (PA) interacts with 
host cells (Deschamps et al., 2016). The molecular basis for this phe‐
nomenon has not been studied in detail but the enzyme might be 
involved in intercellular lipid signaling. Similar communication mech‐
anisms may exist for myxobacteria since these prokaryotes exhibit a 
pronounced social behavior (Velicer, Kroos, & Lenski, 1998; Welch & 
Kaiser, 2001). (b) Invasive growth and nutrient mobilization: Bacteria 
compete with other living individuals for nutrients and one way to 
get such nutrients is lysis of competitor cells. Unfortunately, poten‐
tial target cells are protected by the plasma membranes. However, 
PA‐LOX is capable of oxidizing the membrane lipids of competitor 
cells, which leads to cellular lysis (Aldrovandi et al., 2018; Banthiya et 
al., 2016). Although the membrane oxygenase activity of MF‐LOX1 
was limited in our in vitro experiments, the in vivo situation may be 
different. (c) Evasion strategies: When bacteria infect more complex 
organisms, the hosts’ immune system fights the pathogen. However, 
some pathogens developed evasion strategies to silence the immune 
response. LOXs have been implicated in the biosynthesis of anti‐in‐
flammatory mediators, such as lipoxins, resolvins, and maresins 
(Ryan & Godson, 2010; Serhan & Chiang, 2013; Serhan, Dalli, Colas, 
Winkler, & Chiang, 2015), which downregulate the intensity of the 
inflammatory reaction. Recent in vitro experiments indicated that 
PA‐LOX exhibits lipoxin synthase activity (Banthiya et al., 2016). (d) 
Oxygen sensing: The oxygen affinity of most mammalian LOXs var‐
ies between 3 and 30 μM (Juranek et al., 1999). However, PA‐LOX 
(Kalms et al., 2017) exhibits a low oxygen affinity (Km > 400 μM). 
Since such kinetic properties are characteristic for sensor proteins 
(Berra et al., 2003), PA‐LOX might be involved in oxygen sensing. 
However, MF‐LOX1 exhibits a rather high oxygen affinity, and thus, 
its suitability to function as oxygen sensor is limited. (e) PUFA toxic‐
ity: Unsaturated fatty acids are toxic for many bacteria (Greenway & 
Dyke, 1979; Raychowdhury, Goswami, & Chakrabarti, 1985). Oleic 
acid is toxic for Streptococcus pyogenes M49 but this bacterium 
expresses a fatty acid double bond hydratase to metabolize this 
toxin (Volkov et al., 2010). Although recombinant PA‐LOX does not 

oxygenate oleic acid, it might contribute to detoxification of other 
unsaturated fatty acids.

4  | E XPERIMENTAL PROCEDURES

4.1 | Chemicals

The chemicals were obtained from the following sources: arachidonic 
acid, linoleic acid, alpha‐linolenic acid, gamma‐linolenic acid, eicosa‐
pentaenoic acid, and docosahexaenoic acid from Sigma (Taufkirchen, 
Germany); HPLC standards of 12(±)‐HETE, 12S‐HETE, 15(±)‐HETE, 
15S‐HETE, 13S‐HODE, 13(±)‐HODE from Cayman Chem. (distrib‐
uted by Biomol, Hamburg, Germany); sodium borohydride from Life 
Technologies, Inc. (Eggenstein, Germany); HPLC solvents from Baker 
(Deventer, The Netherlands); antibiotics and isopropyl‐β‐thioga‐
lactopyranoside (IPTG) from Carl Roth GmbH (Karlsruhe, Germany); 
restriction enzymes from Thermo Fisher Scientific‐Fermentas 
(Schwerte, Germany); and the E. coli strain (Rosetta(DE3) pLysS) 
from Invitrogen (Carlsbad, USA). Oligonucleotide synthesis was per‐
formed at BioTez (Berlin, Germany). Nucleic acid sequencing was 
carried out at Eurofins MWG Operon (Ebersberg, Germany).

4.2 | Bacterial expression and purification of MF‐
LOX1

Genomic DNA of M. fulvus was purchased from the Leibnitz‐Institute 
DSMZ (German Collection of Microorganisms and Cell Culture; Klon 
DSM 16525), and the LOX cDNA sequence (NZ_FOIB01000010 
REGION: complement 205294–207324, WP_074957772.1) was am‐
plified using specifically designed primers (upstream: GGA TCC ATG 
ACT GTC GAG TAC AAG, downstream: AAG CTT TTA GAC GGT GAT 
GCC GCA). These primers involved the recognition sequences of the 
restriction enzymes BamHI (upstream primer) and HindIII (down‐
stream primer) for convenient inclusion of the amplification product 
into the pro‐ and eukaryotic expression vectors. After amplification, 
the PCR product was purified (Nucleospin Gel and PCR Clean‐up, 
Macherey & Nagel, Düren, Germany) and cloned into a TOPO TA 
2.1 vector (Thermo Fisher Scientific, Schwerte, Germany). E. coli 
XL‐1‐Blue cells were transformed with the recombinant plasmid, and 
the resulting clones were tested for the insert after plasmid prepara‐
tion (GENEJET PL MINIPREP, Thermo Fisher Scientific, Schwerte, 
Germany) and digestion of the plasmid with BamHI and HindIII. A 
positive clone was selected and involvement of the insert was 
checked by sequencing (Eurofins Genomics, Ebersberg, Germany). 
From this LOX‐positive clone, a medium‐scale plasmid preparation 
was performed using the plasmid preparation kit Nucleobond Xtra 
Midi Plus from Macherey & Nagel. After preparative digestion of the 
recombinant plasmid with BamHI and HindIII, the digestion product 
was ligated (Rapid DNA Ligations‐kit, Thermo Fisher Scientific) into 
the expression vector pET28b (Thermo Fisher Scientific). Competent 
bacteria were transformed with the ligation mixture, plated, and 
then selected for antibiotic resistance. Two positive clones were 
picked and nucleotide sequencing confirmed proper insertion of 
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the LOX insert (pET28‐MF‐LOX1). From one of these clones, plas‐
mid DNA was prepared, the insert was sequenced, and this plasmid 
was further employed for the expression studies. In detail, bacte‐
rial expression involved the following steps: Competent E. coli cells 
(Rosetta2 DE3 pLysS or BL21 DE3) were transformed with 100 ng of 
the pET28b‐MF‐LOX1 plasmid and grown on kanamycin/chloram‐
phenicol containing agar plates. Two 1 ml bacterial precultures (LB 
medium with 50 μg/ml kanamycin/35 µg/ml chloramphenicol) were 
inoculated and grown at 37°C for 6 hr and 180 rpm agitation. This 
pre‐culture was then checked for optical density (should have an 
OD650 of 0.1–0.15 at a dilution of 1:50) and added to a 50 ml main 
culture as recommended by the vendor (BioSilta, Berlin, Germany). 
The main culture was grown overnight at 30°C and the culture was 
continuously shaken at 250 rpm in Ultra Yield flasks (BioSilta Ltd., 
St. Ives, Great Britain). Expression of the recombinant enzyme was 
induced by adding 1 mM (final concentration) IPTG to the main cul‐
ture and afterward the culture was incubated over night at 22°C and 
250 rpm agitation. Bacteria were harvested by centrifugation and 
the resulting pellet was reconstituted in 5 ml PBS containing 2 mM 
EDTA. Bacteria were lyzed by sonication (Digital Sonifier, W‐250D 
Microtip Max 70% Amp, Model 102C (CE); Branson Ultraschall, 
Fürth, Germany), cell debris was removed by centrifugation (10 min, 
15,000 g, 4°C), and the lysate supernatant was employed for fur‐
ther enzyme purification. To remove foreign bacterial proteins from 
the lysis supernatant, we carried out affinity chromatography on a 
Ni‐NTA‐Agarose column. For this purpose, the lysate supernatant 
was incubated for 1 hr at 4°C with 0.5 ml of Protino Ni‐NTA‐Agarose 
suspension (Machery & Nagel). The gel beads were then trans‐
ferred to an open bed chromatography column (Bio‐Rad, Munich, 
Germany). To remove nonspecifically bound proteins, the column 
was first eluted trice with 0.5 ml washing buffer containing 10 mM 
imidazole. Next, the column was washed thrice with 0.5 ml elution 
buffer 1 containing 25 mM imidazole to elute more tightly bound 
proteins. Finally, the histidine‐tagged (his‐tag) fusion proteins were 
eluted rinsing the column seven times with 0.3 ml of elution buffer 
containing 200 mM imidazole. The majority of the MF‐LOX1 was re‐
covered in the elution fractions 2, 3, and 4.

4.2.1 | Eukaryotic expression of MF‐LOX in the 
baculovirus–insect cell system

To improve the expression yield and the specific activity of the re‐
combinant MF‐LOX, we excised the coding region of the recombi‐
nant bacterial expression plasmid using the restriction enzymes 
BamHI/HindIII, purified the digestion product by agarose gel elec‐
trophoresis, and inserted the construct into pFastBac HT‐B (Thermo 
Fisher Scientific). Bacmid and recombinant baculovirus were pre‐
pared according to the instructions of the Bac‐to‐Bac® Baculovirus 
Expression System (Invitrogen Life Technologies/Thermo Fisher). 
Protein expression was performed using Sf9 cells (ATCC® CRL‐1711) 
and Insect XPRESS Medium (Biozym, Hessisch Oldendorf, Germany) 
containing 4 mM glutamine and 0.5% FCS. The 50 ml cell culture 
(2 x 106 cells/ml) was infected with 5 ml recombinant baculovirus 

(2nd amplification, MOI of 1) and incubated in Erlenmeyer flasks at 
27°C on a shaker platform (120–130 rpm). Cells were harvested by 
centrifugation (1,500 g, 10 min, 4°C) after 72 hr. The cell pellet was 
resuspended in 2.5 ml PBS containing 2 mM EDTA, sonicated and 
cell debris was spun down. The lysate supernatant was used for ac‐
tivity assays or further protein purification.

4.2.2 | Eukaryotic expression of MF‐LOX1 in 
HEK293 cells

Since expression of the MF‐LOX1 in Sf9 cells did not improve the 
specific activity of the final enzyme preparation, we attempted to 
express the protein in HEK293 cells. For this purpose, the coding 
sequence of the his‐tag fusion protein construct was excised from 
the bacterial expression plasmid and inserted into the eukaryotic 
expression vector pcDNA 3.1(−) using the XbaI and HindIII restric‐
tion sites. Subcloning was performed as described above for clon‐
ing from TOPO into pET28b. HEK293 cells were seeded in 6‐well 
plates (4 x 105 cells/well in 2 ml DMEM [P04‐01550, PAN Biotech 
GmbH, Aidenbach, Germany, supplemented with 10% FCS]) and 
grown overnight at 37°C and 5% CO2. Plasmid DNA was diluted in 
Opti‐MEM® I Reduced‐Serum Medium (Gibco/Thermo Fisher) to a 
final concentration of 2 µg/194 µl. A 6 µl TransIT‐LT1 Transfection 
Reagent (Mirus Bio LLC, distributed by VWR International GmbH, 
Darmstadt, Germany) was added and complex formation was al‐
lowed for 20–30 min. The complex formed was added to the wells 
carefully and dropwise. Cells were incubated as described above for 
48 hr and were harvested by flushing them off the well bottom with 
a pipette. After centrifugation and washing, the cells were washed 
once with PBS, and cells were redissolved in 500 µl PBS containing 
2 mM EDTA for activity assay or in sample buffer for SDS‐PAGE.

4.3 | Site‐directed mutagenesis

Site‐directed mutagenesis was performed using the Pfu Ultra II 
Hotstart 2XPCR Mastermix (Agilent Technologies, California, USA) 
as described before (Banthiya et al., 2016). After PCR aliquots of the 
reactions mixture were transformed into E. coli XL1‐Blue compe‐
tent cells (Thermo Fisher) and plated onto kanamycin agar plates. 
Five clones were picked and plasmid DNA was prepared using 
NucleoSpin Plasmid Easy Pure (Macherey‐Nagel). Nucleotide se‐
quencing (Eurofins Genomics, Ebersberg, Germany) confirmed the 
sequences of the mutant plasmid clones.

4.4 | Fatty acid oxygenase activity assays

Fatty acid oxygenase activity of wild‐type and mutant MF‐LOX1 was 
determined by HPLC quantification of the reaction products formed 
during a 3‐min incubation period. For this purpose, aliquots of the 
MF‐LOX1 preparation were incubated in 0.5 ml of PBS containing 
different concentrations of fatty acids as substrates. After the incu‐
bation period, the hydroperoxy compounds formed were reduced 
with sodium borohydride and after acidification 0.5 ml of ice‐cold 
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methanol was added. The protein precipitate was spun down and ali‐
quots of the clear supernatant were injected to RP‐HPLC for quanti‐
fication of the oxygenation products.

4.5 | HPLC analytics

HPLC analysis of the reaction products was performed on a Shimadzu 
HPLC system. Reverse phase‐HPLC (RP‐HPLC) was carried out on a 
Nucleodur C18 Gravity column (Macherey‐Nagel; 250 x 4 mm, 5 μm 
particle size) coupled with a guard column (8 x 4 mm, 5 μm particle 
size). A solvent system of methanol/water/acetic acid (85/15/0.1, 
by volume) was used at a flow rate of 1 ml/min. Peak areas were 
quantified and the chromatographic scale was calibrated by inject‐
ing known amounts of 15‐HETE (7‐point calibration). For more de‐
tailed analysis of the chemical structure of the reaction products, 
normal phase‐HPLC (SP‐HPLC) was performed on a Nucleosil 100‐5 
column (250 x 4 mm, 5 μm particle size) with the solvent system n‐
hexane/2‐propanol/acetic acid (100/2/0.1, by volume) and a flow 
rate of 1 ml/min. Hydroxylated fatty acid enantiomers were sepa‐
rated and quantified by chiral phase liquid chromatography–mass 
spectrometry (chiral LC‐MS). The polysaccharide column Amylose‐1 
(150 x 2 mm from Phenomenex Aschaffenburg) was kept at 25°C 
and the products were eluted with a linear gradient of acetonitrile/
water/glacial acetic acid (30:70:0.05, v/v/v) to acetonitrile/water/
glacial acetic acid (70:30:0.05, v/v/v) over 70 min at a flow rate of 
0.2 ml/min. Metabolites were quantified by Single‐Quad‐ESI‐MS 
(Shimadzu LCMS 2010‐EV) in negative ionization mode.

4.6 | Activity measurements under normoxic and 
hyperoxic conditions

To judge the oxygen affinity of MF‐LOX1, we carried out activity 
assays, in which the oxygen concentration in the reaction mixture 
was altered. For this purpose, variable volumes of oxygen saturated 
PBS (hyperoxic) were mixed with argon saturated PBS (anoxic). To 
obtain the hyperoxic solution, 50 ml PBS was flushed for 3 hr with 
pure oxygen. Similarly, 50 ml of PBS was flushed with argon to pre‐
pare the anoxic medium. Next, a photometric cuvette was filled 
with argon gas and aliquots of anaerobic PBS (0–0.7 ml) were added 
under argon atmosphere. The cuvette was closed with a plastic 
stopper containing two capillary wholes to add additives. Then, dif‐
ferent aliquots of hyperoxic PBS (oxygen saturated) were added so 
that a final reaction volume of 0.7 ml was reached. Next, 10 μL of 
a partly anaerobized methanolic solution of eicosapentaenoic acid 
was added and the reaction was started with 50 μL of partially an‐
aerobized enzyme solution.

4.7 | Membrane oxygenase activity assay

To quantify the membrane oxygenase activity of MF‐LOX1, aliquots 
of the enzyme preparations were incubated for 15 min in PBS with 
beef heart submitochondrial particles (1.2 mg membrane protein/
ml), which constitute inside‐out vesicles of inner mitochondrial 

membranes. After the incubation period, the reaction was stopped 
by the addition of sodium borohydride. Following acidification, the 
total lipids were extracted from the reaction mixtures (Bligh & Dyer, 
1959), the solvent was evaporated, and the remaining ester lipids 
were reconstituted in 1 ml of a 1:1 mixture of chloroform and metha‐
nol. Aliquots of this mixture were hydrolyzed under alkaline condi‐
tions. For this purpose, the solvent was evaporated and the remaining 
lipids were reconstituted in 0.85 ml methanol. 0.15 ml of 40% KOH 
was added and the ester lipids were hydrolyzed at 60°C for 20 min 
under argon atmosphere. Then, the samples were cooled down, acidi‐
fied with 0.15 ml acetic acid and aliquots of this mixture were injected 
into RP‐HPLC. Following the chromatograms at 235 nm, we quanti‐
fied the sum of HODE + HETE isomers. To quantify nonoxygenated 
linoleic acid and nonoxygenated arachidonic acid, we recorded the 
chromatograms at 210 nm. The chromatographic scale was calibrated 
by injecting known amounts of 15‐HETE, linoleic acid (LA), and ara‐
chidonic acid (AA). Five‐point calibration curves were established for 
each compound. Finally, we calculated the HODE + HETE/LA + AA 
ratio, which constitutes a suitable measure for the degree of mem‐
brane lipid oxygenation (Aldrovandi et al., 2018; Kuhn et al., 1990).

4.8 | Determination of the iron content and 
isoelectric focusing

The iron content of the purified MF‐LOX1 was determined by atom 
absorbance spectroscopy on a Perkin‐Elmer Life Sciences AA800 
instrument equipped with an AS800 autosampler. For calculating 
the iron load of the enzyme, the iron concentration in the enzyme 
preparation was related to the protein content.

To determine the native isoelectric point of MF‐LOX1, isoelectric 
focusing (IF) was carried out. For this purpose, a precasted IF gel 
(Bio‐Rad, Munich, Germany) was employed and isoelectric focusing 
was run for 2.5 hr on a Bromma LKB 2197 high‐voltage power supply 
electrophoresis system. Protein bands were stained with Coomassie 
blue and the following IF standards were used (phycocyanin, IP 
4.45–4.75; β‐lactoglobulin B, IP 5.1; bovine carbonic anhydrase, IP 
6.0; human carbonic anhydrase, IP 6.5; equine myoglobin, IP 6.8/7.0; 
human hemoglobin A, IP 7.1; human hemoglobin C IP 7.5; lentil lectin 
IP 7.8/8.0/8.2; cytochrome c IP 9.6).
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