
Whole Genome Shotgun Sequencing Based
Taxonomic Pro�ling Methods for
Comparative Study of Microbial

Communities

Dissertation zur Erlangung des Grades eines Doktors der
Naturwissenschaften (Dr. rer. nat.) vorgelegt von

Temesgen Hailemariam Dadi

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

Berlin 2019

Gutachter:
Prof. Dr. Knut Reinert, Freie Universität Berlin, Deutschland (1. Gutachter)
Prof. Dr. Daniel Huson, Tübingen university, Deutschland

Datum der Disputation: 29.04.2019

In memory of my Father!

4

Contents

Preface 1

Acknowledgments 5

I. Introduction 7

1. Microbial Communities 9
1.1. Types of Microbes . 9
1.2. Examples of Microbial Communities 11
1.3. Importance of Microbial Communities 12

1.3.1. Mining . 13
1.3.2. Environmental Bioremediation 13
1.3.3. Agriculture and Food . 14
1.3.4. Healthy Human Life . 14
1.3.5. Biotechnology and Medicine 14

2. Metagenomics 17
2.1. Genomics Preliminaries . 17

2.1.1. DNA Sequencing Technologies 19
2.1.2. Amplicon Sequencing . 21
2.1.3. Shotgun Sequencing . 21

2.2. Introduction to Metagenomics . 21
2.2.1. Culture-based Genomics 21
2.2.2. Advantages of Metagenomics 22

2.3. Main Questions in Metagenomics 23
2.3.1. Who is there? . 23
2.3.2. What are they doing? . 24
2.3.3. How are they doing it? . 24

3. Read-Mapping in Metagenomics 25
3.1. Assembly - Before Read-Mapping 25
3.2. Read-Mapping . 26

3.2.1. Indexing References Genomes 27
3.2.2. Popular Read Mappers . 29

3.3. Alternatives to Read-Mapping . 30

5

Contents

II. Taxonomic Profiling 31

4. Taxonomic Profiling 33
4.1. Introduction . 34
4.2. Importance of Taxonomic Pro�ling 35
4.3. Challenges . 35
4.4. Di�erent Approaches to Taxonomic Pro�ling 37
4.5. Existing Methods . 40

4.5.1. Bracken . 40
4.5.2. CLARK . 41
4.5.3. DUDes . 41
4.5.4. GOTTCHA . 41
4.5.5. Kraken . 42
4.5.6. LMAT . 42
4.5.7. MEGAN . 42
4.5.8. MetaPhlAn . 43
4.5.9. MetaPhlAn2 . 43
4.5.10. MG-RAST . 43
4.5.11. MGnify . 43
4.5.12. mOTUs . 44
4.5.13. QIIME . 44

5. SLIMM 45
5.1. SLIMM Motivation . 45
5.2. SLIMM Pipeline . 46

5.2.1. Preprocessing Module . 46
5.2.2. Read-Mapping . 49

5.3. SLIMM Algorithm . 49
5.3.1. Collect coverage information of genomes 50
5.3.2. Discard unlikely genomes based on coverage landscape . 51
5.3.3. Rede�ne reads uniqueness 52
5.3.4. Assign remaining shared reads to their LCA 53
5.3.5. Compute relative abundances based on unique reads . . . 53

5.4. SLIMM Application . 54

6. SLIMM Evaluation 55
6.1. Benchmarked Methods . 55
6.2. Datasets . 55

6.2.1. Reference Set . 55
6.2.2. Metagenomic Reads . 56

6.3. Computational Performance . 58
6.3.1. Infrastructure and Parameters 58
6.3.2. Runtime and Memory Footprint 58

6

Contents

6.4. Accuracy Evaluation . 59
6.4.1. List of Reported Organisms 59
6.4.2. Correctness of Abundance 62

6.5. Summary . 65

III. Read Mapper for Large Databases 67

7. DREAM-Yara 69
7.1. Introduction to DREAM Index Framework 69
7.2. Dynamic Operations Distributor 72
7.3. Dynamic Search Distributor . 73
7.4. DREAM Index Framework - Implementation 73

7.4.1. Mapping Metagenomic Reads 74
7.4.2. Clustering Sequences Using NCBI’s Taxonomy 75
7.4.3. k-mer Based Clustering of Sequences 76
7.4.4. Binning Dictionary and q-gram Lemma 76

7.5. Interleaved Bloom Filters (IBF) . 79
7.5.1. Bloom Filters . 79
7.5.2. Performance of the IBF on Metagenomic Data 82

7.6. FM-indices per Bin . 84
7.7. Distributed Yara - A Trivial Distribution 85
7.8. DREAM-Yara . 85
7.9. The Yara Read Mapper . 86
7.10. DREAM-Yara Adoption . 86
7.11. Summary . 88

8. DREAM-Yara Evaluation 89
8.1. Evaluation Setup . 89

8.1.1. Dataset . 89
8.1.2. Infrastructure . 90

8.2. Results . 90
8.2.1. Build and Update Indices 90
8.2.2. Read-Mapping . 93

8.3. Results Summary . 96

IV. Conclusion and Miscellaneous 97

9. Conclusion 99
9.1. Discussion . 99
9.2. Future Work . 101

7

Contents

Appendix 103
A.1. Command Line Options of select_refs.py 103
A.2. Command Line Options of collect_refs.py 104
A.3. Command Line Options of merge_refs.py 104
A.4. Command Lines Used in SLIMM Evaluation 105
A.5. Detailed Runtime Across Multiple Read-Sets 105
A.6. Extra Precision - Recall Curves . 106
A.7. Extra Scatter Plots . 110
A.8. Extra Violin Plots . 114
A.9. q-gram Lemma Threshold . 116
A.10. Reference Datasets . 117
A.11. Command Lines Used in DREAM-Yara Evaluation 118

Abstract 123

Zusammenfassung in deutscher Sprache 125

Selbstständigkeitserklärung 127

Bibliography 129

List of Figures 141

List of Tables 143

Acronyms 145

8

Preface

In this PhD thesis, I will describe two main computational methods relevant to whole
genome shotgun sequencing (WGS) based taxonomic pro�ling tools. These methods
were developed with the goal of advancing metagenomics as a means to study microbial
communities. This thesis document is organized into four parts.

Part I, introduces the reader to di�erent aspects of microbial communities (Chapter 1),
the science of metagenomics (Chapter 2) and, read mapping in metagenomics (Chapter
3). The �rst chapter gives a broader overview of microbial communities and their
importance with the intention of justifying the e�orts made to study them. In the
second chapter, I give an introduction to the science of metagenomics starting with
the basics of genomics. In the third introduction chapter, I provide a review of read
mapping with the context of metagenomics laying the ground work for the part III of
this thesis.

In the second part, I focus on the taxonomic pro�le part of my work. I start by
introducing the importance and challenges in taxonomic pro�ling. Then, I describe
di�erent approaches taken to tackle the challenges followed by a brief description of
13 di�erent taxonomic pro�ling tools. In a following chapter, I give a detail description
of SLIMM, a taxonomic pro�ling method I have developed. The last chapter of this
part presents the evaluation of SLIMM compared to existing method. Most of the work
described in taxonomic pro�ling part of this thesis is based on the following published
work.

Temesgen Hailemariam Dadi, Bernhard Y. Renard, Lothar H. Wieler,
Torsten Semmler, and Knut Reinert, SLIMM: species level identi�cation
of microorganisms from metagenomes PeerJ, 2017.
doi:10.7717/peerj.3138

The third part of the thesis is about distributed read mapping for large databases which
is composed of two chapters (Chapter 7 and Chapter 8). In Chapter 7, I introduce
the Dynamic seaRchablE pArallel coMpressed index (DREAM index) framework which
is designed to enable frequent updates of indices in read mapping. Then, I go on to
describe DREAM-Yara, a distributed read mapper based on the Dynamic seaRchablE
pArallel coMpressed index (DREAM index) framework. I will also describe the interleaved

1

http://dx.doi.org/10.7717/peerj.3138

Contents

Bloom �lters (IBF), a novel data structure I developed in the process of materializing
DREAM-Yara. Chapter 8 concludes this part of the thesis by providing an evaluation
of DREAM-Yara against existing methods highlighting the signi�cant improvements
in index creation and update time while staying competitive in read mapping quality
and speed. Results discussed in this chapters were presented at the 17th European
Conference on Computational Biology (ECCB18) and subsequently published in:

Temesgen Hailemariam Dadi, Enrico Siragusa, Vitor C. Piro, Andreas An-
drusch, Enrico Seiler, Bernhard Y. Renard, and Knut Reinert, DREAM-Yara:
an exact read mapper for very large databases with short update time
Bioinformatics, 2018.
doi:10.1093/bioinformatics/bty567

In the last part of the thesis, I conclude by giving a summarized discussion of what I
did in my PhD work accompanied by general remarks and outlook related to the thesis.

In accordance with the standard scienti�c protocol, throughout this thesis I will
use the personal pronoun we to indicate the reader and the writer, or my scienti�c
collaborators and myself.

2

http://dx.doi.org/10.1093/bioinformatics/bty567

Contents

Additional Publications

During my PhD period, I have collaborated with others in publishing the following
articles which are not covered in this thesis. My contributions involved data analysis
work using own methods and maintaining the SeqAn software library.

Łukasz Grześkowiak, Beatriz Martínez-Vallespín, Femke-Anouska Hein-
sen, Temesgen Hailemariam Dadi, Judith Radlo�, Salah Amasheh, Andre
Franke, Knut Reinert, Wilfried Vahjen, Jürgen Zentek and Robert Pieper
Formula Feeding Predisposes Neonatal Piglets to Clostridium di�cile Gut
Infection The Journal of Infectious Diseases, 2017.
doi:10.1093/infdis/jix567

Knut Reinert, Temesgen Hailemariam Dadi, Marcel Ehrhardt, Hannes
Hauswedell, Svenja Mehringer, René Rahn, Jongkyu Kim, Christopher
Pockrandt, Jörg Winkler, Enrico Siragusa, Gianvito Urgese and David
Weese The SeqAn C++ template library for e�cient sequence analysis: A
resource for programmers.
Journal of Biotechnology, 2017.
doi:10.1016/j.jbiotec.2017.07.017

Vitor C. Piro, Temesgen Hailemariam Dadi, Enrico Seiler, Knut Reinert,
and Bernhard Y. Renard, ganon: continuously up-to-date with database
growth for precise short read classi�cation in metagenomics
bioRxiv, 2018.
doi:10.1101/406017

3

http://dx.doi.org/10.1093/infdis/jix567
http://dx.doi.org/10.1016/j.jbiotec.2017.07.017
http://dx.doi.org/10.1101/406017

Acknowledgments

Writing this thesis would not have been possible without the support of many people.
First of all, I would like to thank my supervisor Knut Reinert for his continuous support,
guidance and optimism throughout my PhD work. It has been an honor for me to work
under his supervision. I also express my deepest gratitude to Bernhard Renard, Lothar
H. Wieler, and Torsten Semmler for the valuable discussions and collaborations over
the years. I also would like to thank my colleagues at the Freie Universität Berlin, for
the amazing work environment maintained throughout my stay. Thank you Leon, not
only for being the best o�ce mate, but also for the tips and explanations which are
too many to count. I highly appreciate your encouragement in the �nal thesis writing
days.

I would like to thank the IMPRS organizers Kirsten and Fabian who supported me with
administrative issues. I am specially indebted to Kirsten Kelleher, who sometimes went
beyond her responsibilities to help me. I would also like to thank my fellow IMPRS
students with whom I shared many good memories and after-work-beers.

My special thanks goes to my wife, Rahel Tesfaye, for proofreading the thesis and for
being supportive, encouraging and understanding at times of frustration. I am grateful
for my little daughter, Eden, for the refreshing joy she brought to my life. Thank you
Zizu, Fiste, Konjit and Ruthi for all the good times we had together and for being there
when needed.

5

Part I.

Introduction

7

1. Microbial Communities

Microbes, also known as microorganisms, are tiny organisms that can not be seen with
a naked human eye. In other words, we need a microscope to see them. Both terms,
i.e., microbe and microorganism, are interchangeably used to describe any living thing
which is less than a tenth of a millimeter in diameter [1]. A microbe can be either a
single cell organism or a cluster of cells as long as, this cluster is visible only with a
microscope. The science that studies microbes is known as microbiology.

1.1. Types of Microbes

Microbes span all the three domains of life, namely Bacteria, Archaea and Eucarya
[1, 2], as well as the philosophically debated “life forms,” i.e., viruses. The issue of
considering viruses living or non-living is beyond the scope of this thesis. However,
since the focus of this study is (meta)genomics and viruses invariably contain some
form of genetic information, we consider them as microbes throughout this document.
It is a common observation that molecular studies of microbes often omit those under
the domain Eucarya. However, this is usually due to the heterogeneity of organisms
under this domain both in size and type. In other words, organisms in this domain
are not solely microorganisms. In the following, we describe the di�erent group of
microbes.

De�nition 1.1. Eukaryotes are organisms composed of cells with membrane-bound
organelles most notably a membrane-bound nucleus and mitochondria. Eukaryotes
make up one of the three domains of life.

De�nition 1.2. Procaryotes opposed to eukaryotes, do not have membrane-bound
organelles. Prokaryotes cover two domains of life namely bacteria and archaea. The
majority of known microbes fall under this category.

Viruses are incredibly tiny particles composed of a protein coat surrounding other
proteins and a genetic material in the form of either ribonucleic acid (RNA) or deoxyri-
bonucleic acid (DNA). Viruses do not possess the necessary cell machinery neither to
reproduce nor to grow. They can only reproduce by infecting a host cell.

9

1. Microbial Communities

Bacteria are prokaryotic unicellular microorganisms with a cell wall. Bacteria repro-
duce using a process called binary �ssion, a form of reproduction where the DNA
material of a unicellular organism replicates and forms two virtually identical clusters.
Then, the organism’s cytoplasm splits into two around these clusters of DNA material
which later become the nucleoid of each of the new progeny.

Archaea are also prokaryotic unicellular microorganisms. They di�er from Bacteria,
their prokaryote brothers, by their cell walls. Archaea do not have peptidoglycan
cell walls [1]. These microorganisms constitute the domain Archaea also known as
Archaebacteria. They are known to thrive in extreme environments. To mention few,
some archaea species live in habitats with extremely high temperature and little or no
oxygen [1, 3].

Fungi are eukaryotic organisms that exist in wide variety of shapes and sizes. Fungi
such as yeast are microscopic and composed of a single cell. Mushrooms are also a type
of fungi which are multicellular and are large enough to be visible. Fungi reproduction
could be both asexual and sexual.

Algae are mostly aquatic eukaryotic organisms that are photosynthetic. Like fungi,
algae can be unicellular and multicellular. They reproduce both sexually and asexually.

Protozoa are a diverse group of eukaryotic unicellular organisms with animal-like
properties such as mobility and predation. They reproduce mostly through binary
�ssion. Multiple �ssions also are common reproduction mechanisms among protozoa.

Parasites are organisms that live inside or on another organism utilizing their host’s
resources. Parasites could be bacteria, viruses, protozoa and many small animals such
as worms and insects. Unlike the above �ve groups, parasites by no means represent
a taxonomic classi�cation. Nevertheless, it is a common categorization of microbes
worth mentioning.

Microbes exist as interconnected complex communities comprised of a wide variety
of species. It is virtually impossible to �nd a single species (homogeneous) microbial
community [4]. Members of communities exhibit di�erent forms of interaction with
each other. The interactions could be bene�cial, indi�erent, or detrimental to one or
both of the engaged parties [5]. In other words, community members, whether they
are clonal or not, exhibit all forms of symbiotic relations, including commensalism,
mutualism, neutralism, amensalism, competition, parasitism, and predation. Some
members of a community provide their neighbors with essential nutrients ranging
from electron donors to amino acids and vitamins. Others help by detoxifying the
habitat. The diversity in prevalence phenotype and genotype of community members
makes it complicated to study and de�ne and characterize their interaction. However,
the same interactions are vital in characterizing microbial communities [6].

The complexity of microbial communities ranges from low complexity communities

10

1.2. Examples of Microbial Communities

composed of a handful of di�erent species to high complexity communities contain-
ing thousands of di�erent microbial species. Low complexity communities inhabit
environments with extreme conditions such as extremely high temperature (up to 75
degree Celsius), high pressure and low pH. These �ndings are not surprising, since such
habitats are deemed unlivable for most life forms [3]. On the other hand, profoundly
complex microbial communities are common in environments such as soil and water.

1.2. Examples of Microbial Communities

Microbial communities of extreme environments are well studied for various scienti�c
and economic interest. Among those are microbial communities found in acid mine
drainage (AMD), acid runo� originating from the surface of mining sites [7]. These sites
are known for their low pH and high concentrations of metals and sulfate [8, 7, 9, 10].
Due to their relatively low species diversity, Baker and Ban�eld suggest using AMD
microbial communities as model systems for studying microbial community structures,
functions, biogeochemical interactions, and feedback. Other known microbial commu-
nities of extreme environments include those living under high pressure in the deepest
seabed (e.g.Mariana trench; 10,994 meters deep) and in hot vents of the deep ocean
where the water temperature can reach well above 400 °C.

Microbial communities in soil habitats are astonishingly diverse [11], containing from
thousands [11] to tens of thousands [12] di�erent species. It should be clear that there
is no representative soil microbial community across the globe. There is a considerable
di�erence between compositions of two soil microbiomes even if they are 1cm apart
[13, 6]. Bacteria and fungi are the most common types of microorganisms found in soil.
Owing to their resistance to culturing, the majority of the microbial species living in
the soil environments are either unknown or understudied. Soil microbial communities
are an integral part of the soil ecosystem and play a unique role in making vegetation
possible. For this reason, microbial species richness in soil is often used as an indicator
of soil health.

Like most of the places on the planet, freshwaters such as lakes, springs, and rivers are
not void of microorganisms. Microbes of freshwater lakes recently got the attention of
the scienti�c community. Similar to soil habitats, lakes are sanctuaries for microbes of
remarkable diversity. Analysis of community structure of Lake Lanier by Oh et al. [14]
revealed that Bacteria and Archaea cover the majority of microbes (90%). The dominant
bacterial groups found in this freshwater include phyla Proteobacteria, Actinobacteria
and Verrucomicrobia in decreasing order of relative abundance [14, 15]. Bacteria play a
signi�cant role in freshwater environments and therefore are important to the living
things living there. The quality of water in lakes and other freshwater sources is
signi�cantly tied to the composition of microbial communities in it [16, 17].

11

1. Microbial Communities

Other microbial communities that came to the spotlight are those living in the open wa-
ters around the globe. Researchers have studied microbial communities from di�erent
parts of the world’s oceans for their composition and interaction with the ecosystem.
There are a wealth of microorganisms living in ocean planktons, in di�erent depths of
the oceans as well as Sea sediments. The Tara ocean expedition, a three-year expedition
around the world oceans, aimed at exploring the global ocean biodiversity and gave
a particular focus for microbial communities among others. The follow-up studies
based on the data collected from this expedition brought compelling insight about
microbial communities of the open waters. A somewhat smaller scale studies are also
done on microbial communities of many di�erent regional seas such as the Sargasso
Sea [18, 19, 20, 21].

Host-associated microbial communities take shelter inside or on their host organism
occupying di�erent body parts [22] of their host. Except for pathogens causing illness
or even death, host-associated microbes usually exist in a positive or neutral symbiosis
with their respective host. Much research has been carried out to de�ne and characterize
host-associated microbes, categorized by di�erent body sites of the host. The majority
of these studies showed that compositions of microbial communities di�er clearly
among the various body sites [23, 24].

Among the host-associated microbes, human-associated microbes are the earliest to be
recognized. For obvious reasons, they are also the most studied. Until recent times,
it was a common understanding that the microbial cells that live in and on a human
outnumber human somatic cells ten to one [25, 22, 26, 27, 28]. However, latest studies
show that the ten to one ratio is possibly an exaggeration [26, 29] and the actual rate
is much closer to one to one, with microbes still outnumbering the human somatic
cells. Human-associated microbial communities harbor di�erent body sites such as
skin, oral cavity, vagina, and gut. Interestingly, microbial communities of various body
sites of the same host are distinct in their species composition. Another interesting
observation was the fact that microbial communities always show some degree of
di�erence from one person to the other.

1.3. Importance of Microbial Communities

Microorganisms and the communities they form are essential for all life forms. Every
naturally occurring process in the biosphere is a�ected by microbes in one way or
another. Microbes are the leading players in availing the main elements of life such as
carbon and nitrogen into forms that are usable by living things. Nitrogen �xation is an
excellent example of such activities performed by microbial communities. It is a process
of converting atmospheric nitrogen (N2) into ammonia or another nitrogen-based
compound that can be directly consumed by plants and other life forms. Nitrogen-
�xing bacteria like Azotobacter do most of the nitrogen �xation in the soil. Another

12

1.3. Importance of Microbial Communities

example is photosynthesis, where light energy is used to break down carbon dioxide
into oxygen and sugar. Surprisingly, microorganisms of the globe have a higher capacity
for photosynthesis compared to plants. Host-associated Microbial communities are
integral parts of the hosts’ life. They a�ect the health status as well as the day today
biological functioning of their host in countless ways. In this section, we will describe
some of the primary importance of microbial communities to us humans and other
life forms. However, the description below is by no means a comprehensive list of the
bene�ts of microbial communities.

1.3.1. Mining

Industrial scale mining with the help of microorganisms is a common practice, es-
pecially where the mining source involves low-grade metal ores. To make mining
from such ores economically feasible, the end product metal has to be concentrated
by a process called microbial leaching. In this process, acidophilic microbes such as
Acidithiobacillus ferrooxidans facilitate acid production and dissolution of the low-grade
ore so that it is washed to a pond where it gets further processed. Mining of copper
from covellite (CuS) and gold from minerals containing arsenic (As) and pyrite (FeS 2)
are good examples of mining that often involve microbial leaching.

1.3.2. Environmental Bioremediation

Environmental Bioremediation is the process of cleaning pollutants from the envi-
ronment using microbes. Bacteria can help to deal with contaminants such as oil,
toxic chemicals, uranium. Bioremediation involves introducing a new community of
microorganisms or creating a favorable condition for the indigenous microbial com-
munities in some fashion. The most common and successful usage of environmental
remediation is crude oil spills and hydrocarbon leakages into both aquatic and land en-
vironments. Di�erent bacterial, fungi and few algae species can break down petroleum
products. To better facilitate the cleaning process inorganic nutrients such as nitrogen
and phosphorus are added to encourage microbial growth. Some bacterial species such
as Alcanivorax borkumensis are known to grow only in the presence of oil. Alcanivorax
borkumensis secrets chemicals that make oil degradable and soluble. Microbes also
have the potential to detoxify di�erent chemicals such as pesticides introduced to the
soil. Additionally, microbes play an important role in wastewater treatment.

13

1. Microbial Communities

1.3.3. Agriculture and Food

Microorganisms play a signi�cant role in agriculture. Microbes living inside the roots
of leguminous plants such as soybeans, beans, and peas are responsible for �xing
atmospheric nitrogen into a form that these plants can uses. Due to this nitrogen
�xation, leguminous plants do not require fertilizers to grow, saving the agricultural
industry signi�cant costs and minimizing the pollution impact of fertilizer runo�.

Microbes also have a great signi�cance to the other side of agriculture, i.e., breading
of animals. The majority of animals lack the enzymes necessary to digest cellulose
and some other plant polysaccharides. It is only with the help of their gut microbial
community that animals with plant-based diets can get the energy required to sustain
life. Most of the domesticated animals including cows, sheep, and goats are ruminants.
Ruminants are herbivorous animals with a dedicated organ called rumen. This organ
is used to digest cellulose and other plant polysaccharides with the help of microbial
communities living in it. For this reason, microorganisms are invaluable to the animal
breeding industry.

The food industry is also in dept to microbes. Fermentation, anaerobic metabolism
of sugar to produce alcohol or organic acids or gases, is the primary mechanism in
which microorganisms are used to manufacture food products. The application of
fermentation ranges from the leavening of bread, brewing, vini�cation, production of
some liqueurs, vinegar yogurt and di�erent cheese products.

1.3.4. Healthy Human Life

As it is pointed out in the previous subsection, animals need microbes to break down
speci�c nutrients that they do not have the enzymes for and we humans are no
exception. Many essential enzymes are known to be produced by di�erent human
gut microbial community members. Research also shows that microbes of the gut
produce some of the essential amino acids, that our body can not synthesize adequately
by itself. Gut microbes also play a role in the development of fully-�edged adult
gastrointestinal tract that can perform e�cient nutrients uptake. They also train our
immune system enabling it to di�erentiate the commensal gut �ora from intruding
and potential pathogenic microorganism. They also serve as the �rst line of defense
against colonization by a foreign entity.

1.3.5. Biotechnology and Medicine

Microbes can e�ciently synthesize a variety of chemicals that have a broad impact on
human life. An outstanding example in the context of this work is the production of Taq

14

1.3. Importance of Microbial Communities

polymerase, a product of the thermophilic hot spring bacterium Thermus aquaticus. This
polymerase is popular in polymerase chain reaction (PCR) procedures for its stability in
high temperatures up to 95°C. This property makes it immune to the denaturation step
of the PCR. Microorganisms also play a signi�cant role in genetic engineering which
creates better breeds (high yield) of domestic animals, disease resistant and high yield
plants..

Microbes are also used in the production of di�erent medical products spanning
antibiotics, insulin and di�erent types of vaccines. Penicillin, the �rst ever antibiotics
discovered by Alexander Fleming In 1929, was a product of a fungus called Penicillium
chrysogenum. Today a wide variety of antibiotics are produced using di�erent bacterial
species such as multiple species under genus Streptomyces which are known to produce
antibiotics like tetracyclines. Microbes also help manufacture various types of human
hormones such as insulin and somatotropin (growth hormone).

15

2. Metagenomics

Metagenomics is the study of metagenomes, genetic material recovered directly from
environmental samples. Metagenomics focuses on capturing the full DNA content
of a given microbial community. By doing so, it facilitates understanding microbial
community structures and functions much deeper than it is possible via traditional
culture-based methods. Metagenomics is closely related to genomics. The term envi-
ronmental genomics is used synonymously in place of metagenomics. That is why
in this chapter we will explain what metagenomics as a �eld of science is and what
it encompasses, beginning from basic genomics methods and technologies that are
foundations to it.

2.1. Genomics Preliminaries

DNA, short for deoxyribonucleic acid, is a long macromolecule made from chained
units called nucleotides. Nucleotides, in turn, are composed of three major subunits
namely a nitrogenous base, a pentose sugar and a phosphate group. A nucleotide from
a DNA can have one of the four di�erent types of nitrogenous bases, i.e., adenine (A),
guanine (G), cytosine (C) and thymine (T). The phosphate part of the nucleotide bonds
with the sugar part of the next nucleotide to make an alternating sugar-phosphate
backbone of the DNA chain. The sequence of nucleotides in such a chain provides the
primary structure of a DNA molecule, and the corresponding sequence of nitrogenous
bases accounts for the potential of DNA to hold genetic information. In cells, DNA
exists as double-stranded molecule in which the two strands are glued to each other
by a hydrogen bond formed between complementary nitrogen bases. Adenine makes
two hydrogen bonds exclusively with thymine, and similarly, guanine makes three
hydrogen bonds exclusively with cytosine.

Furthermore, the double-stranded DNA could exist in either linear or circular form. In
both cases, DNA is packed together by a phenomenon called supercoiling. The number
of nucleotide pairs (base pairs) in a double-stranded DNA can be used to describe its
size. Due to a large number of base pairs found in a single DNA molecule, kilobase
pairs (kbp) or even megabase pairs (mbp) are used as units to represent a thousand or a
million base pairs respectively.

17

2. Metagenomics

RNA, short for ribonucleic acid, similar to DNA is a long macromolecule made
from chained units called nucleotides. There are two di�erences between DNA and
RNA molecules. The �rst di�erence is in the sugar part of the nucleotides. DNA has a
deoxyribose sugar whereas RNA has a ribose sugar which is re�ected in the naming of
the nucleic acids. The second di�erence is, in RNA, we have a uracil (U) nitrogen base
instead of thymine(T).

A genome is the total complement of hereditary or genetic information that is carried
by the organism as well as its cells. This genetic information is often stored in large DNA
molecules except for RNA viruses. Such viruses store and pass their genetic information
the form of RNA molecules. A genome is organized into physically standalone long
DNA molecules called chromosomes. In addition to chromosomal DNA, a genome of an
organism could include plasmid DNA and organellar DNA. Organellar DNA is limited
to eukaryotes and includes DNA from mitochondria and chloroplasts. A genome of
an organism provides the means to pass genetic information from an organism to its
progeny and, the genetic information in a genome is stored as a sequence of nucleotides
within one or more molecules of DNA or RNA (in case of some viruses).

Even though the genome includes other genetic elements in addition to chromosomal
DNA, most of it is organized into one or more chromosomes. While Eukaryotes
have multiple chromosomes, which are mostly linear, in their genomes, most of the
prokaryotes have a single long circular chromosome with few exceptions bearing two
or three chromosomes. Prokaryotic genomes pack millions of nucleotides within a
chromosome. For example, the K-12 strain of E. coli, a model microorganism used
for genetics has a 4.63 mbp long chromosome, and this is a typical genome size for
other prokaryotes as well. Nevertheless, genomes of prokaryotes show a considerable
variation in length ranging from 0.5 mbp to 13 mbp.

Genomics is a branch of molecular biology that studies the structure, function, evolu-
tion, and mapping or comparison of genomes. DNA sequencing, the process of calling
the nitrogen bases of a DNA molecule in sequential order, is at the core of genomics.
Genomics also involves bioinformatics algorithms and methods to make sense of the
raw sequencing data which is usually fragmented and chaotic. The bioinformatics
part of genomics includes assembling an entire genome of an organism, analyze its
structure and function or comparing it to genomes of other organisms. The recent
advances in genomics played a revolutionary role in understanding system biology and
lead to many scienti�c discoveries. The rapid development of sequencing technologies,
which are getting more accurate, faster and cheaper coupled with the development of
bioinformatics methods enabled signi�cant advances in genomics. In the next subsec-
tion, we mention some of the popular sequencing technologies and methods which are
relevant to this work.

18

2.1. Genomics Preliminaries

2.1.1. DNA Sequencing Technologies

Several DNA sequencing technologies have emerged during the last four decades,
and they showed unprecedented advances leading to a sharp decline of cost and time
needed to sequence DNA. In the following paragraphs, we describe di�erent classes
of sequencing technologies in chronological order. Each of these technologies either
resulted in a signi�cant decline of sequencing cost and time or introduced notable
di�erences in the basic principles used for sequencing.

Sanger sequencing is the �rst widely used method for sequencing genomes which
is why it has dubbed the term �rst-generation sequencing. The Sanger sequencing
method is the �rst method to introduce sequencing by synthesis, i.e., using a single-
stranded template DNA and determining the order or nucleotides while appending
nucleotides to its complementary strand in a similar manner to DNA replication. The
Sanger method utilizes a particular class of bases called dideoxyribonucleotides. These
bases inhibit the elongation of the complementary strand at a random location. Four
di�erent solutions in separate tubes represent the four nucleotides. Each tube gets
only one of the four corresponding dideoxyribonucleotides. The result is di�erent size
fragments of DNA ending in the speci�c base of the tube. The sizes of the fragments
from each of the four tubes indicate the presence of an associated nucleotide base at
a particular location. Although this sequencing method produces a relatively longer
sequencing reads (up to 700 bp) with a little error rate, it is low throughput, and high
cost coupled with the labor-intensive cloning involved could not make it the preferred
method for metagenomics [30, 31].

Next-generation sequencing (NGS), also known as second-generation sequencing,
is characterized by massive parallelization, i.e., sequencing multiple samples and a
large number of fragments from each sample all at the same time. This is made possible
due to miniaturization and fast computing capabilities. The Illumina/Solexia, and the
now discontinued Roche/454 systems are very popular among other NGS sequencing
platforms in metagenomic studies. Their popularity arises from their ability to produce
from hundreds of millions to billions of short reads at a time with a reasonably lower
cost compared to Sanger sequencing.

The massive parallelization of the sequencing process in NGS technologies is attributed
mainly to the ability to immobilize a vast number of DNA fragments on a solid sur-
face. The immobilization allows local sequencing reactions on individual fragments to
happen simultaneously and thereby resulting millions of sequences at a time. Imaging
systems require multiple �uorescent events to call a nucleotide base accurately. Am-
pli�cation of DNA template fragments locally is responsible for multiple �uorescent
events. For example, the Roche/454 system uses an ampli�cation method called emul-
sion PCR (emPCR) whereas the Illumina/Solexia systems use another variant of clonal
ampli�cation called solid-phase ampli�cation.

19

2. Metagenomics

Most of the NGS platforms implement a variant of sequencing by synthesis developed
based on the Sanger dideoxy approach. They use di�erent mechanisms to sequentially
incorporate nucleotides complementary to the template strand, one at a time. The
Illumina/Solexia platforms use a method called cyclic reversible termination (CRT) and
whereas the Roche/454 system uses a di�erent method known as single nucleotide
addition (SNA) or pyrosequencing.

In CRT �orescent-marked nucleotides with removable terminator are added to the
reaction chamber allowing DNA polymerase to incorporate just one nucleotide that is
complementary to the template base. All the clonally ampli�ed strands in a cluster get
similar nucleotides, and individual clusters get their corresponding nucleotide bases.
Next imaging system takes a snapshot of the entire surface capturing the nucleotides
of all DNA clusters corresponding to the current cycle. After that, removing and
washing away the terminators from the newly added nucleotides follows marking
the completion of one cycle. The same process is repeated multiple times until a
certain read length is reached. Having multiple fragments per cluster allows having
consensus-based con�dence in a base calling which is reported as per base quality
stores.

In SNA or pyrosequencing, in every cycle, only a single type of nucleotide is added
to millions of wells containing DNA-ampli�ed beads. Hence the name “single nu-
cleotide.” If the added nucleotides are complementary to the current template DNA,
their incorporation will release a pyrophosphate. In case of consecutive matches of
similar and matching nucleotides, a comparable number of pyrophosphate will be
released. The released pyrophosphates are then converted into visible light using a
series of enzymatic reactions with an intensity proportional to the number of freed
pyrophosphates. This process is repeated for all four nucleotides bases ensuring the
elongation of the complementary strand at least by one nucleotide.

Third-generation sequencing technologies are the most recent sequencing tech-
nologies characterized by the ability to sequence a single DNA molecule e�ectively
avoiding the need to do DNA ampli�cation. These sequencing technologies produce
long sequencing reads (up to tens of thousands base pairs long) in a short period. The
nanopore sequencer by Oxford Nanopore Technologies and the Single Molecule Real-
Time (SMRT) sequencer by Paci�c Biosystems are leading examples of third-generation
sequencing technologies. Even though the long reads produced by these sequencers
are attractive, these reads have relatively higher per base error rates. Higher error rates,
limited availability, and being still under constant development limit the application of
third-generation sequencing technologies in metagenomics to being complementary
to NGS methods.

20

2.2. Introduction to Metagenomics

2.1.2. Amplicon Sequencing

A speci�c part of a genome or even gene can be targeted, ampli�ed and sequenced.
Such type of sequencing is called amplicon sequencing, and the selectively ampli�ed
fragments are called amplicons. Using amplicon sequencing to target the 16S rRNA
molecules of prokaryotes and 18S rRNA of eukaryotes, one can study the diversity of
microbial communities. The conserved nature of 16S rRNA genes across prokaryotes
makes them easy targets for amplicon sequencing, whereas the presence of enough
di�erences among species enables the detection and quanti�cation of member organ-
isms. This method is cheaper compared to sequencing the entire environmental DNA
because multiple samples can be sequenced at the same time using NGS sequencers
such as the Illumina’s MiSeq on desk sequencer. The main drawbacks of amplicon
sequencing in a microbial community analysis are: 1) it is limited to identi�cation of
microorganisms and 2) it is subjected to PCR bias.

2.1.3. Shotgun Sequencing

Shotgun sequencing is a DNA library preparation method in which a long DNA
molecule is randomly fragmented into smaller pieces suited for the sequencing tech-
nology. This method is used across generations of sequencing technologies. whole
genome shotgun sequencing (WGS) is one form of shotgun sequencing in which
the fragments span across the complete genome of an organism1. After sequencing,
bioinformatics algorithms are used to get the original sequence by putting the frag-
ments together. The main focus of this thesis will be the development of bioinformatics
methods that facilitate the analysis of WGS data in particular which are our main
contributions. The newly developed methods will be described in later chapters of this
thesis particularly in Chapter 5 and 7).

2.2. Introduction to Metagenomics

2.2.1. Culture-based Genomics

In microbiology, the term culturing refers to the laboratory procedure of growing mi-
croorganisms in arti�cial medium containing nutrients. For microorganisms, growing
means to increase the population in contrast to increase the size of individual organisms.
Often, this process is manipulated by carefully choosing the nutrients or by setting

1The term whole metagenome shotgun sequencing (WGMS) is sometimes used to extend the same
method to environmental sequencing. But due to lack of consensus in the terminology and the
popularity of the term WGS, in this thesis we use just WGS in metagenomics context.

21

2. Metagenomics

the environmental conditions such as pH and temperature towards favoring a single
species so that only that particular species prevail. The end product of such process
is called pure culture or clonal culture. The individual organisms in pure culture
are clones of one species, and if some individuals belong to a di�erent species in the
culture, they are considered impurities. Culturing helps to zoom into a single type of
microbe and consequently amplify it to understand the characteristics of that microbe
better. Even though pure cultures are useful for di�erent purposes in microbiology,
they can also function as sources of DNA in studying the genome of a microorganism.

From a pure culture, DNA can be extracted, sequenced and then analyzed computa-
tionally with relative ease due to the prior information that the DNA stems from a
single species. For example, starting from a pure culture of a microbe, one can extract
and sequence their DNA, and assemble the resulting sequence fragments (reads) to get
the complete genome of the microbe. Credit to this approach, about 1000 bacterial, 100
archaeal and 2000 viral genomes are available in public databases such as GenBank.
Culturing also helps to get enough DNA material for sequencing resulting in better
coverage of the genome, which is helpful for downstream computational algorithms.

2.2.2. Advantages of Metagenomics

Despite being a crucial way for studying individual microbes and their characteristics,
culture-based studies are limited to a tiny fraction (less than 1%) of microbes that
are cultivable to begin with [32, 33, 23]. The resistance to culturing comes from the
complex nature of microbial communities and the network of interactions among
them. Without this interaction, most of the microbes will not survive, which makes it
impossible to cultivate them separately. It is also di�cult to replicate the exact physical
conditions for optimal microbial growth, especially in the case of extremophiles, i.e.,
organisms that thrive in an extreme environment. These reasons make it impossible
to perform a genomic study on the majority of microorganisms using pure culture as
well as to pro�le or characterize a given microbial community regarding diversity and
individual member abundances.

Metagenomics, on the other hand, follows a culture free approach whereby all genetic
materials come directly from the environment. This direct extraction will provide a
close to complete snapshot of genetic materials of all types of organisms at the site
including those that can not be cultured in a laboratory. In addition to capturing the
genomes or unculturable microorganisms, metagenomics helps to understand microbial
communities of great importance and the complex ecological interactions happening
in them. Moreover, this helps to capture the ordinary and routine living condition
of microbial communities in their natural environment as opposed to culture-based
genomics.

Another advantage of metagenomics over culture-based studies is that it does not

22

2.3. Main Questions in Metagenomics

involve the labor-intensive task of culturing itself. Even if the technology exists to
grow each species from a microbial community, the process of culturing them all is a
tedious manual, if not impossible, task primarily when the communities are composed
of a large number of species.

Even though metagenomics is a crucial tool for studying microbial communities and
has numerous advantages over culture-based methods, the former will not completely
replace the later. Culture-based methods will remain essential and compliment metage-
nomic studies. Metagenomic studies will also help advance our capabilities of culturing
to a broader spectrum of species through a better understanding of environmental
conditions required to grow additional species in the laboratory.

2.3. Main �estions in Metagenomics

Metagenomics as a �eld of science attempts to answer di�erent questions about a
microbial community using genetic material extracted directly from their living envi-
ronment. The following three fundamental questions about a microbial community
community constitute most of the �eld. 1) who is there? 2) What are they doing? 3)
How are they doing it? Answering these questions helps �rst to understand and then
utilize microbial communities of a particular interest. Some of the application areas
where microbial communities are used are described in section 1.3.

Among the questions mentioned above the �rst one, i.e., who is there? is within the
scope of this thesis and will be discussed in depth in chapter 4. Nevertheless, we will
give a rather short overview of all the three questions in the following subsections.

2.3.1. Who is there?

The types of member microorganisms living in it can be a good starting point to study
a given microbial community. Types could be as speci�c as species or even strains or
as generic as superkingdom. In between, there are di�erent levels groupings called
taxonomic ranks. In metagenomics studies, it is essential to identify which types
of organisms are living in the sample under investigation and enumerate them on a
given taxonomic level. It is also equally important to know the relative abundances of
di�erent taxa. This process of �rst enumerating the types of organisms and calculating
the relative abundance of each type is called taxonomic pro�ling. We will provide a
more detailed discussion on taxonomic pro�ling in chapter 4.

23

2. Metagenomics

2.3.2. What are they doing?

Microbial communities a�ect and shape their surrounding ecosystem in many ways.
It is strongly desirable to study the activities of microbial communities as a whole in
their natural habitat alongside with identifying the types of member organisms. The
activities include what kind of metabolites they are consuming from and releasing to
their living medium. In metagenomics, it is possible to identify the proteins encoded
by the collective DNA of the community without knowing from which organism that
DNA originates.

In functional metagenomics, DNA is isolated from the environment, cloned and then
expressed in the host organism to identify the enzymes encoded by the environmental
DNA. The expression data helps to identify some of the proteins that can be produced
by microbial communities. The results from functional metagenomics can also help to
annotate sequences obtained using sequence-based metagenomics [34].

2.3.3. How are they doing it?

What are the mechanisms enabling microorganisms to a�ect their environment in speci�c
ways? This question is complicated and involves understanding the network of inter-
action between di�erent groups of member microorganisms intertwined in di�erent
forms of symbiosis. The more diverse a microbial community is, the more challenging
it gets to enumerate and understand all the metabolic pathways in the community.
Nevertheless, with the help of statistical models and bioinformatic tools, it is possible to
shed some light on the microbial activities and metagenomics is an excellent addition
to the methods required for this quest.

24

3. Read-Mapping in Metagenomics

Currently, NGS technologies are the most popular and economically feasible methods of
choice to carry out both genomic and metagenomic studies involving DNA sequencing.
One thing all NGS technologies have in common is that they involve fragmentation of
DNA molecules into manageable small parts. The fragmentation process is entirely
random, and there is no information about the relative origin of individual fragments
within the DNA molecule. Sequencers turn these short fragments into DNA sequences
of corresponding size. The resulting, often short, sequences are called sequencing reads
or just reads.

Whether we use shotgun sequencing to target the entire DNA content of the sample or
amplicon sequencing to sequence a small part of a genome, the output from sequencers
is millions sequencing reads. The sequencers also accompany these short sequences
with base quality scores measuring the probability of calling the individual pairs
wrongly. These short reads by themselves are not informative unless they are rigorously
processed using a serious of bioinformatic analysis. The analysis could be putting
the pieces together to get a somewhat complete sequence of the original genome or
targeted gene in case of amplicon sequencing (assembly), or it could be mapping reads
to their original location in a reference genome (read-mapping). Assembly has to be
done at least once per organism to get a reference genome �rst and thereby enable
the later, i.e., read-mapping. In the following, we give a general overview of genome
assembly and discuss read-mapping. Read-mapping is discussed in detail since it is
within the scope of our contribution and therefore the scope of this thesis.

3.1. Assembly - Before Read-Mapping

The enormous amount of data produced by NGS technologies need a pipeline of cutting
age bioinformatic solutions to achieve the desired research goals. E�cient algorithms
are needed to process and make sense of millions of fragmented short reads. The
�rst natural step after sequencing the DNA of an organism is to construct its entire
genome by overlapping the resulting short reads. This process is called (de novo)
genome assembly. The ultimate goal during assembly is to have one long sequence
of nucleotides per each DNA molecule (e.g., chromosome) making up the organism’s
genome. It is often di�cult to reach a �nal assembly of chromosome level due to the

25

3. Read-Mapping in Metagenomics

computational challenges posed by repetitive regions inside the genome. This di�culty
forces assemblers produce several contigs which are way shorter than chromosomes
as a �nal result.

In a single-genome assembly of NGS short reads, all sequence fragments originate
from a single organism, and there is a relatively uniform depth of coverage spanning
the genome. This type of information coupled with consensuses by high-quality base
pairs helps to resolve the ambiguity of repetitive regions within the genome. There
exist several de novo genome assemblers that utilize data structures such as de Bruijn
graphs and implement di�erent algorithms. SPAdes [35], Velvet [36], ABySS [37], and
MaSuRCA [38] assemblers are few popular ones.

Using culturing methods to isolate, grow, and sequence the genome of a single microbial
species many high-quality genomes assemblies are made available to the scienti�c
community. The assemblers mentioned above are designed having single-genome-
sequencing in mind. In contrast, metagenomics studies deal with multiple types of
organisms, hence multiple genomes, and we can not assume uniform coverage due
to unknown varying copy numbers from each type of organisms. These challenges
make it di�cult to get good quality assemblies resulting in somewhat incomplete and
low-quality genome assemblies. The only exceptions are DNA samples taken from
very low complexity microbial communities where the number of distinct microbial
species are meager. From DNA sequences extracted from such samples, researchers
successfully de novo assembled genomes of previously unknown species. However,
there exist some genome assembly programs that designed explicitly for metagenomic
shotgun sequences and built upon existing single genome assemblers. MetaVelvet [39]
which is built upon the Velvet assembler is a good example.

Once a reference genome of an organism is constructed via de novo assemblers, it can
be used for a multitude of other applications including reference assisted assembly
(e.g., the accompanying assembler of SOAP2 read mapper [40]). Reference assisted
assembly is computationally less expensive compared to de novo assembly. It is done
by �rst mapping the short reads against an existing reference genome and �nding
consensus-based contigs from the overlapping reads. The resulting contigs can, in
turn, be used to carry out variant calling between the new sample and the reference
or perform genome-wide association studies. Another common usage of reference
genomes is in read-mapping, which is discussed in detail in the following section.

3.2. Read-Mapping

Read-mapping is the process of locating one or more regions in a sequence that
are similar to relatively much shorter sequences, dubbed reads. We call the larger
sequence(s) that we search into subject sequences or simply subjects, whereas the term

26

3.2. Read-Mapping

query represents shorter fragments, that are being searched. The degree of similarity
between queries and mapping regions of subject sequences varies from identical to
having several mismatches, insertions, and deletions. Nevertheless, it is desirable to
report regions with the highest similarity.

Given a set of subject sequences G, and a set of short sequencing reads R and an error
threshold or ε, for every read ri ∈ R a read-mapping problem �nds all the mapping
locations L jp : 0 ≤ l jp < |g j| within all of the subject sequences g j ∈ G, where ri

matches with ε or less number of di�erences with a segment of g j that starts at location
L jp.

3.2.1. Indexing References Genomes

Classical approximate string matching algorithms have a complexity proportional
to the length of the subject text [41, 42]. However, considering how big the subject
text and the millions of queries in read-mapping, these algorithms are impractical to
be adopted for read-mapping. Instead, a supporting index data structures which are
created by preprocessing mostly the subject sequences are used to speedup the read-
mapping process. Su�x trees [43] and su�x arrays [44] (space e�cient alternatives)
are among the �rst support data structures used to speedup read-mapping. These
data structures provide a means to locate exact matches of seeds which are smaller
stretches in a read. An exact match between a seed and a reference can be used as a
starting point for approximate read-mapping. Su�x trees and su�x arrays have a time
complexity of O(m + occ) and O(m + occ+ log n) to locate all occurrences of a pattern P
respectively. Where m is the length of P and n is the length of the subject sequence, and
occ is the number of occurrences of the P in the subject sequence [45]. Despite having
an optimal runtime complexity, both data structures require an enormous amount of
memory, i.e., Θ(n log n) bits. This memory requirement is asymptotically larger than
the size of the genome which takes 2.n bits assuming we can save a nucleotide using 2
bits. The memory requirement is prohibitively large even for the human genome [46].

The FM-index by Ferragina and Manzini [47] is the �rst index structure which is fast
and memory e�cient (proportional to the size of the subject sequence). It utilizes
the Burrows-Wheeler transform of a text. The original text can be generated from an
FM-index, making it also preferable for storage. Due to its appealing feature, i.e., fast
search speed and low memory requirement, FM-Index become popular among modern
day read mappers.

Another category of support data structures (indices) uses hash tables to store short
sequences of length k known as k-mers and their corresponding locations in subject
sequences. In this approach, the hash tables provide answers to the locations of k-mers
within the subject sequence (s). The value of k determines the size of the hash table, and
the heterogeneity of sequence(s) used. It is essential to consider the size and diversity

27

3. Read-Mapping in Metagenomics

of subject sequences and the implementation of search strategies when choosing the
length of k. The k-mer should be discriminative enough not to occur everywhere and
small enough to be used as a seed for approximate string matching.

The data structures mentioned above provide a means of locating exact matches of
fragments of a read with time complexity linear and sub-linear time to the length of the
fragments. After locating the fragments, searches can be narrowed down to segments
of the subject text using various �ltering strategies. The cost of creating such index
data structures is considerably high. However, due to the static nature of genomes,
indexes can be built and stored on disk to be used repeatedly. The repeated usage of
an index data structure once it is built guarantees the high cost of building the index
amortizes over time.

In single organism genomics, read-mapping deals with a single reference genome
containing a handful of chromosomes. The repeats in a genome are a result of gene
recombination attributed to years of evolution. These repeats lead to multiple matching
locations for a read which in turn causes ambiguity. The size of the reference genome
ranges from a few thousand base pairs long in the case of viruses to billions of base
pairs long. Without any preprocessing, it is prohibitively slow to locate all of the
mapping locations of a read across the length of a genome(s). The standard solution to
this problem is to construct di�erent types of indices from a reference genome and
use it for mapping sequencing reads. The indexing procedure is often time-consuming
and also requires relatively higher computational resources. This cost gets even higher
when the size of the database gets larger. However, once we have indexed a reference
genome, and stored the resulting index on a disc, it can be used to map sequencing
reads from multiple samples by merely loading it to memory without the need to
rebuild it.

Contrary to single organism genomics in metagenomics, read-mapping has to deal with
a set of references containing thousands of reference genomes. Although microbial
genomes are small in size compared to mammalian genomes, their combined size could
easily exceed the size of the biggest mammalian genome. As stated above, the larger
the reference set is, the more di�cult it gets to construct a corresponding index from
it which is necessary to perform an approximate search. Another challenge unique
to metagenomics is that the presence of similar genomes representing closely related
species that present the same challenge as repeats within genomes. Due to this, a
signi�cant portion of metagenomic sequencing reads end up with a large number of
mapping locations spanning a sheer number of genomes. From an indexing perspective,
the ever-growing reference set of genomes due to new assemblies undermines the
indexing process as one has to rebuild an index every time a new genome pops up. We
address this problem in chapter 7 of this thesis.

28

3.2. Read-Mapping

3.2.2. Popular Read Mappers

In this subsection, we describe the notable features of popular read mappers and
their unique features. We will also highlight the underlying methods used in the
development of the tools as well as their strengths and shortcomings from mapping
metagenomic reads to reference sequences of microbial genomes. We do not intend to
make an exhaustive review of the individual read mappers, nor we make a comparison
between them. However, we included four of the read mappers below in our exhaustive
benchmarking process presented in chapter 8. We are aware that there are many more
read mappers available. However, listing all of them is beyond the scope of this thesis.

Bowtie2 [48] is among the most popular read mapper, and it uses the FM-index to
index reference genomes. Bowtie2 can handle alignments with large gaps. The latest
version of Bowtie2 supports a parallel construction of indices which is an appealing
feature in metagenomic read-mapping due to the size of reference databases. On the
other hand, Bowtie2 does not guarantee to �nd all mapping locations for individual
reads, which is a common phenomenon in metagenomic read-mapping due to having
many similar genomes in the reference set.

BWA-SW [49] works by indexing both the reference and query sequences using FM-
indices. It uses a heuristic algorithm to speedup alignment at the cost of probably
missing some correct/better matches. BWA-MEM is a very popular read mapper
available within the BWA software package which is more suited to longer and error-
prone reads. BWA-MEM uses maximal exact matches for seeding to restrict the search
space.

GEM [50]is a fast and sensitive read mapper that deploys a strata based mapping
strategy. It uses pigeonhole-like �ltering strategy using seeds which tolerate errors.
The authors of GEM claim that it always perform complete searches, although our
benchmarking (chapter 8) did not wholly corroborate with this claim. GEM missed
a subtle amount of matches within its speci�ed parameters. The exhaustive search
performed by GEM for each read to report all mapping locations is desirable when
mapping metagenomic reads against microbial reference genomes as multiplying reads
are common occurrences.

Bitmapper [51] is an all-mapper which uses a hash table based index to locate small
seeds (k-mers). It does �ltering using the pigeonhole principle. It uses a modi�ed Gene
Myers’ bit-vector algorithm to speedup the veri�cation step where a read is checked
whether it can align in a candidate location within the edit distance threshold.

mrsFAST [52] uses a collision-free hash table index to store k-mers of a genome and a
list of their corresponding locations. mrsFast claims to be faster than existing methods
while it accommodates only substitution errors. It uses the pigeonhole principle for

29

3. Read-Mapping in Metagenomics

�ltration. Within a given threshold, mrsFast reports all the mapping locations of a read
accommodating only for substitution errors.

Hobbes 2 [53] is another hash table based fully sensitive read mapper. Hobbes 2 can
handle indel and mismatch errors. Hobbes uses a �ltering strategy based on the q-gram
lemma with the help of an additional q-gram index to generate candidate locations
and uses dynamic programming to extend them to a full alignment.

Yara Mapper [54] is an ultra-fast and fully sensitive read mapper of the SeqAn library
[55]. Yara’s �ltering strategy uses spaced seeds in combination with the pigeonhole
principle. The ultra-fast speed of Yara, its unmatched recall rate of alignments within a
given error threshold, and its option to de�ne strata based mapping results are among
the reasons that makes it an attractive choice for metagenomic read-mapping.

3.3. Alternatives to Read-Mapping

In certain metagenomic pipelines such as taxonomic pro�ling or read assignment,
the mapping location of a read within the stretch of a reference genome might be
unnecessary depending on the required information for downstream analysis. In a
taxonomic assignment of reads, mapping locations are ignored because it su�ces to
know whether or not a read has a mapping location in the genome. Such approaches
save a signi�cant amount of time and computing resources required by a precise
read alignment to the exact matches and mismatches and all the mapping locations.
Note that in procedures like this there is no need to list all the mapping locations
exhaustively.

Another alternative to read-mapping is pseudo-alignment where the locality of a read
is computed without the need to compute the complete base by base mapping of a
read against a reference genome. Doing so e�ectively avoids the need for dynamic
programming which is a time-consuming task. This concept was �rst introduced in
Kalisto [56] for RNA-Seq and later adopted in meta-Kalisto [57] for taxonomic pro�ling.

30

Part II.

Taxonomic Profiling

31

4. Taxonomic Profiling

Rhodopire
llula baltic

a
Borrelia burgdorferi

Treponema denticola

Treponema pallidum

Leptospira interro
gans 56601

Campylobacter jejuni

Helicobacter pylori 26695

P
se

ud
om

on
as

 a
er

ug
in

os
a

R
alstonia solanacearum P

se
ud

om
on

as
 s

yr
in

ga
e

X
an

th
om

on
as

 c
am

pe
st

ris

B
radyrhizobium

 japonicum

R
hizobium

 loti

R
hizobium

 m
eliloti

N
eisseria m

eningitidis B

B
ordetella bronchiseptica

B
ordetella parapertussis

B
ordetella pertussis

C
hrom

obacterium
 violaceum

Esc
heric

hia co
li K

12

Salm
on

ell
a

typ
hi

Sal
m

on
el

la
 ty

ph
im

ur
iu

m

Shigella fle
xneri 2

a 301

Ye
rs

in
ia

 p
es

tis
 C

O
92

V
ib

rio
 c

ho
le

ra
e

V
ib

rio
 p

ar
ah

ae
m

ol
yt

ic
us

V
ib

rio
 v

ul
ni

fic
us

 C
M

C
P

6
H

ae
m

op
hi

lu
s

in
flu

en
za

e

H
ae

m
op

hi
lu

s
du

cr
ey

i

P
as

te
ur

el
la

 m
ul

to
ci

da

C
oxiella burnetii

R
ickettsia conorii

R
ickettsia prow

azekii

Chla
m

yd
ia

tra
ch

om
at

is

Bac
te

ro
id

es
 th

et
ai

ot
ao

m
icr

on

Por
ph

yr
om

on
as

 g
in

gi
va

lis

W
olinella succinogenes

Desulfovibrio vulgaris

N
itrosom

onas europaea

Bdellovibrio bacteriovorus

R
hodopseudom

onas palustris

C
hl

or
ob

iu
m

 te
pi

du
m

Synechocystis sp. PCC6803

Prochlorococcus marinus SS120

S
taphylococcus epiderm

idis

Deinococcus radiodurans

S
tr

ep
to

co
cc

us
 m

ut
an

s

S
tr

ep
to

co
cc

us
 p

ne
um

on
ia

e
T

IG
R

4

S
tre

pt
oc

oc
cu

s
py

og
en

es
 M

1

E
nt

er
oc

oc
cu

s
fa

ec
al

is

La
ct

oc
oc

cu
s

la
ct

is

B
ac

ill
us

 s
ub

til
is

C
lostridium

 acetobutylicum

C
lostridium

 perfringens

C
lostridium

 tetani

La
ct

ob
ac

ill
us

 p
la

nt
ar

um Listeria m
onocytogene

s E
G

D

Listeria innocua

Corynebacterium diphtheriae

Corynebacterium glutamicum

Mycobacterium bovis
Mycobacterium leprae

Mycobacterium paratuberculosis

Streptomyces coelicolor

M
ycoplasm

a gallisepticum

M
ycoplasm

a genitalium
M

ycoplasm
a pneum

oniae
M

ycoplasm
a pulm

onis

Methanococcus jannaschii

Methanosarcina mazei
Methanosarcina acetivorans
Archaeoglobus fulgidus

Pyrococcus furiosus

Sulfolobus solfataricus

Thermoplasma acidophilum

Methanopyrus kandleri

Thermotoga maritima

X
ylella fastidiosa 9a5c

Arabidopsis thaliana

Oryza sativa
Schizosaccharomyces pombe

Saccharomyces cerevisiae

Leishmania major

Caenorhabditis briggsae

Caenorhabditis elegans

Drosophila melanogaster

Danio rerio

G
allus gallus

Pan troglodytes

H
om

o sapiens

M
us m

usculus

Rattus norvegicus

Pyrobaculum aerophilum

M
ycoplasm

a penetrans

Pyrococcus abyssi

B
rucella m

elitensis

B
rucella suis

Takifugu rubripes

Helicobacter hepaticus

Synechococcus elongatus

Gloeobacter violaceus

Eremothecium gossypii

Streptomyces avermitilis

La
ct

ob
ac

ill
us

 jo
hn

so
ni

i

Geobacter sulfurreducens

Plasmodium falciparum

W
ig

gl
es

w
or

th
ia

 b
re

vi
pa

lp
is

Methanococcus maripaludis

M
ycoplasm

a m
ycoides

Leptospira interro
gans L1-130

Dictyostelium discoideum

Cyanidioschyzon merolae

Thermoplasma volcanium

Pyrococcus horikoshii

Aeropyrum pernix

Fi
br

ob
ac

te
r s

uc
ci

no
ge

ne
s

Prochlorococcus marinus CCMP1378

Aquifex aeolicus
Halobacterium sp. NRC-1

N
eisseria m

eningitidis A

W
olbachia sp. wM

el

S
he

w
an

el
la

 o
ne

id
en

si
s

P
ho

to
ba

ct
er

iu
m

 p
ro

fu
nd

um
Prochlorococcus marinus MIT9313

Fusobacterium nucleatum

Mycobacterium tuberculosis CDC1551

Mycobacterium tuberculosis H37Rv

Esc
heric

hia co
li O

157:H
7

Chla
m

yd
op

hil
a

ca
via

e

Chl
am

yd
ia

 m
ur

id
ar

um

Synechococcus sp. WH8102

Helicobacter pylori J99

B
ac

ill
us

 h
al

od
ur

an
s

X
an

th
om

on
as

 a
xo

no
po

di
s

Bu
ch

ne
ra

 a
ph

id
ic

ol
a

Sg

P
hytoplasm

a O
nion yellow

s

Nostoc sp. PCC 7120

Sulfolobus tokodaii

Chlamyd
ia pneumoniae AR39

Chlamyd
ia pneumoniae C

W
L029

B
uc

hn
er

a
ap

hi
di

co
la

 A
P

S

Therm
oanaerobacter tengcongensis

U
reaplasm

a parvum

B
uc

hn
er

a
ap

hi
di

co
la

 B
p

Chlamyd
ia pneumoniae J1

38

Ph
ot

or
ha

bd
us

 lu
m

in
es

ce
ns

Corynebacterium efficiens

Esc
heric

hia co
li E

DL933

C
aulobacter crescentus

S
taphylococcus aureus M

u50
S

taphylococcus aureus N
315

Nanoarchaeum equitans

P
se

ud
om

on
as

 p
ut

id
a

S
tr

ep
to

co
cc

us
 p

ne
um

on
ia

e
R

6

Anopheles gambiae

A
grobacterium

 tum
efaciens W

ashU

A
grobacterium

 tum
efaciens C

ereon

Chlamyd
ophila

 pneumoniae T
W

183

O
ce

an
ob

ac
ill

us
 ih

ey
en

si
s

X
ylella fastidiosa 70096

4

Giardia lamblia

S
tre

pt
oc

oc
cu

s
py

og
en

es
 M

G
A

S
82

32

Ye
rs

in
ia

 p
es

tis
 K

IM

Methanobacterium thermautotrophicum

St
re

pt
oc

oc
cu

s
py

og
en

es
 S

SI
-1

V
ib

rio
 v

ul
ni

fic
us

 Y
J0

16

S
taphylococcus aureus M

W
2

Corynebacterium glutamicum 13032

B
ac

ill
us

 a
nt

hr
ac

is

Shigella fle
xneri 2

a 2457T

S
tre

pt
oc

oc
cu

s
py

og
en

es
 M

G
A

S
31

5

Tropheryma whipplei Twist

B
lo

ch
m

an
ni

a
flo

rid
an

us

Salm
on

ell
a

en
te

ric
a

Gemmata obscurig
lobus

S
tre

pt
oc

oc
cu

s
ag

al
ac

tia
e

V

S
tre

pt
oc

oc
cu

s
ag

al
ac

tia
e

III

Bifidobacterium longum

Esc
heric

hia co
li O

6

Tropheryma whipplei TW08/27

B
ac

ill
us

 c
er

eu
s

A
T

C
C

 1
09

87
B

ac
ill

us
 c

er
eu

s
A

T
C

C
 1

45
79

Ye
rs

in
ia

 p
es

tis
 M

ed
ie

va
lis

Solibacter usitatus

Cryptosporidium hominis

Acidobacterium capsulatum

Dehalococcoides ethenogenes

Thermus thermophilus

Listeria m
onocytogene

s F
2365

M
ycoplasm

a m
obile

Thalassiosira pseudonana

Domains

Bacteria
Eukaryota
Archaea

Figure 4.1.: Tree of life produced by iTOL [58]. Di�erent colors indicate the three
domains of life namely Archeae, Bacteria, and Eukaryota. The labels on leaf nodes
represent di�erent species.

33

4. Taxonomic Pro�ling

4.1. Introduction

Biologists classify and organize living things into a hierarchical structure called tax-
onomic tree. Taxonomic trees re�ect phylogenetic relationship. The taxonomic tree
of life (�gure 4.1) is organized using several hierarchical levels commonly known as
taxonomic ranks. There are seven principal taxonomic ranks namely domain, phylum,
class, order, family, genus, and species listed from generic to speci�c. Although not
clearly de�ned there exist as well intermediate ranks such as super-order or sub-species
which are more generic or more speci�c to a corresponding rank respectively. Each
node in a taxonomic tree denotes a taxon (plural taxa) which represents a group of
organisms exhibiting similar characteristics. All the subgroups under a node, i.e.,
the branch of a tree starting from that node, form a clade. In addition to exhibiting
similar properties, organisms belonging to a clade are believed to be evolved from a
common ancestor (see �gure 4.2). Similarly, organisms belonging to the same clade
have more similar genomes than those from a di�erent clade. This genetic similarity is
crucial in the identi�cation of microorganisms using DNA sequences obtained through
di�erent NGS techniques. In metagenomics, the term taxonomic pro�ling refers to the

Domain
Bacteria Archaea Eukaryota

Phylum
Proteobacteria Balneolaeota Acidobacteria

Class
Gamma-
proteobacteria

Alpha-
proteobacteria

Beta-
proteobacteria

Order
Entero-
bacterales Chromatiales Orbales

Family
Entero-
bacteriaceae Budviciaceae Yersiniaceae

Genus
Escherichia Salmonella Shigella

Species
Escherichia
coli

Escherichia
sp. A422

Escherichia
albertii

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4.2.: A partial view of a taxonomic tree. All the seven priincipal taxonomic
ranks are shown with few examples.

process of determining the composition of a given microbial community as a list of
di�erent biological taxa that make up the community and their relative abundance.
The taxonomic pro�le of a microbial community is important due to the need to study
species diversity of a single microbial community (i.e., alpha diversity) and the degree

34

4.2. Importance of Taxonomic Pro�ling

to which a composition of microbial community changes [59]. The growing interest
in studying microbial communities (see in section 1.3 for details) and the increasing
availability of NGS data calls for e�cient and robust taxonomic pro�ling methods.

There are two aspects of taxonomic pro�ling, qualitative and quantitative. An excellent
taxonomic pro�ler has to deal with both adequately. The qualitative aspect deals
with identifying the di�erent group of microorganisms residing in the community.
Whereas the quantitative aspect often deals with the prevalence or relative abundance
of individual groups in the community. The resolution of a taxonomic pro�le depends
on the choice of taxonomic rank/level.

4.2. Importance of Taxonomic Profiling

In scienti�c �elds such as microbiology and ecology, there is a growing interest in
studying the diversity of a microbial community residing in a speci�c habitat. Such
diversity, which is known as alpha diversity [59], can be inferred using methods
in metagenomics starting from sequencing the genetic material taken directly from
the environment and analyzing it using suitable taxonomic pro�ling methods. Such
tools enable the characterization of any given microbial community through their
composition. Taxonomic pro�ling tools could also demonstrate the presence of a
pathogen in the mix.

On the other hand, comparative metagenomics studies can be performed using tax-
onomic pro�les of multiple microbial communities or multiple pro�les of a single
community at di�erent time points. Such studies have a wide range of applications
from probiotics to personalized medicine. The utilization of the gut microbial com-
position of farm animals such as pigs as an indicator of animal health in the animal
industry is a more speci�c example.

For reasons mentioned above, quanti�cation of microorganisms using DNA sequenc-
ing reads obtained by Next-Generation Sequencing (NGS) has become a subject of
growing interest in the �eld of microbiology. The publication of numerous taxonomic
pro�ling tools within the last decade only shows how appealing the subject indeed
is. Lindgreen et al. [60] considered 14 di�erent sequence classi�cation tools based on
various approaches in a recent review of such methods.

4.3. Challenges

There exist a multitude of di�erent challenges making taxonomic pro�ling a compli-
cated task. However, most of the challenges derive from either the absence of high-

35

4. Taxonomic Pro�ling

quality reference genomes or the extreme similarity observed among the genomes of
related species. In spite of the extensive e�orts made to maintain public databases of
reference genomes there remains a gap in providing a non-redundant but yet complete
set of reference genomes spanning a wide range of microbial species.

When it comes to the similarity among reference genomes, it creates a challenge by
making the assignment of sequencing reads to their origin ambiguous. The ambiguity
gets worse when one wants to perform taxonomic pro�ling at higher resolution,
i.e., at lower taxonomic ranks such as species as well as strains which is desirable.
Figure 4.3 illustrates the extent of challenges posed by homologous genomic regions of
closely related microorganisms. We merely took three sets of 20 di�erent genomes and
analyzed the number of unique 25-mers. Each set contains representative genomes
from di�erent genera species and strains within a single family, genus and species
respectively. As it is shown in the plot, the average number of new 25-mers introduced
along with an addition of a new genome is 16% for the strains set and 27% for species
set. Only the set of genomes representing di�erent genera exhibited a signi�cant
di�erence (84% per genome).

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8
·107

Number of genomes

N
um

be
ro

fu
ni
qu

e
25
-m

er
s strains within a species

species within a genus
genera within a family

Figure 4.3.: The number of unique 25-mers from multiple genomes representing
di�erent strains, species and genera belonging to a single species, genus and family
respectively. The amount of new 25-mers introduced along with an additional genome
re�ects how similar the genomes are.

Another challenge in taxonomic pro�ling comes from a pronounced range of vari-
ation in the relative abundance of individual groups in a microbial community. A
high degree of variation in relative abundance creates di�culties to detect the least
abundant microorganisms and to di�erentiate noise from the right signal. In other

36

4.4. Di�erent Approaches to Taxonomic Pro�ling

words, it is di�cult to detect under-represented members of a microbial community by
metagenomic shotgun sequencing because the share of reads originating from these
organisms is often lower than those assigned to a false positive genome due to sequence
homology. This problem gets worse due to the high degree of variation in publicly
available genome sequence quality and length of di�erent microbes. The problems
mentioned above make the identi�cation and quanti�cation of microbial communities
a non-trivial task [61].

Due to the hurdles discussed above, especially the challenges posed by the homology of
sequences among genomes of closely related microorganisms, several taxonomic pro-
�ling tools developed in earlier days produce taxonomic pro�les at a higher taxonomic
rank such as genus. Consequently, accuracy benchmarks were often performed at the
genus or higher level of the taxonomic ranks. This choice is due to the shortcomings of
many earlier tools to report species-level taxonomic pro�le with acceptable accuracy.
However, a species-level resolution of microbial communities is desirable, and more
modern taxonomic pro�ling tools o�er species-level identi�cation [62, 63, 60, 64].

4.4. Di�erent Approaches to Taxonomic Profiling

Although there are other ways of performing taxonomic pro�ling on a given mi-
crobial community, in the scope of this text, taxonomic pro�ling is limited to DNA
sequencing-based methods. There are two major approaches to obtain DNA sequences
for taxonomic pro�ling, namely 16S-rDNA1 sequencing, and WGS sequencing. The
major di�erence lies in the DNA library preparation before sequencing. In WGS we
blindly shred all the DNA extract sequences it directly whereas in 16S-rDNA we selec-
tively amplify the 16S genes which are present in all prokaryotes by taking advantage
of the conserved nature of this gene to design a universal primer across all prokaryotes.
The follow-up analysis of a 16S-rDNA uses the variable regions within the gene to
di�erentiate one organism from the other. Metagenomic sequences obtained in both
approaches need a corresponding computational pipeline speci�c to the approach
except for few taxonomic pro�ling methods that can handle sequences generated in
both ways.

Both methods have their strengths and weaknesses. Since the 16S is very short (around
1500 bases long) compared to a typical genome of prokaryotes, one can sequence
many samples in one run via multiplexing. This fact gives 16S-rDNA based studies a
cost advantage over the WGS counterpart. Consequently, using 16S-rDNA methods,
it is economically feasible to study hundreds and thousands of samples. Another

116S based methods are limited to prokaryotes. A similar method based on 18S rDNA is used to identify
eukaryotes. If one wants to detect both prokaryotes and eukaryotes in a community via amplicon
sequencing, the ampli�cation process needs to be done separately.

37

4. Taxonomic Pro�ling

advantage of 16S-rDNA based sequencing is the presence of well-maintained and
matured reference database which helps the taxonomic pro�ling process [65, 66, 67, 68].

On the other hand, the presence of speci�c microorganisms interferes with the PCR
process [69, 70] and certain primes favor 16S sequences of a particular group of organ-
isms or disfavor others [71, 72, 73, 74], creating an arti�cial bias in both identi�cation
and quanti�cation of a given microbial community. Moreover, the variations in the
16S genes are insu�cient to discriminate microorganisms at species or strain level
[75, 76]. Additionally, 16S-rDNA based methods are limited to prokaryotes as the gene
is found only in prokaryotes which excludes viral and eukaryotic microorganisms such
as fungi from the identi�cation process. The limitation mentioned above of 16S-rDNA
sequencing are naturally inexistent in WGS methods making WGS based taxonomic
pro�ling a method of choice when the sequencing cost is bearable [77, 78, 19].

To tackle the challenges presented by ambiguous sequences (reads) that originate
from genomic locations shared among multiple groups of organisms, Most taxonomic
pro�ling tools implement two distinct approaches. The �rst approach is to prepare a
signature-based database with sequences that are unique to a clade. In this approach,
taxonomic clades are uniquely represented by sequences that do not share common
regions with other clades of the same taxonomic rank. If we obtain the input sequence
via 16S-rDNA sequencing, we have such a unique signature database for free. The
16S-rDNA of microorganisms contains alternating variable regions among organisms.
However, in the case of WGS sequencing, one should curate, prepare and store this
signature database comprised of marker genes in advance. Even if this approach uses
the fraction of metagenomic data from the sequencer, it can guarantee to have only
a unique assignment of sequencing reads to a clade. Tools like MetaPhlAn2 [79],
GOTTCHA [80] and mOTUs [81] use this approach. The second approach works using
the full set of reference sequences available as a database and assigning ambiguous
reads to their lowest common ancestor (LCA) in a taxonomic tree. Kraken [82], a k-mer
based read binning method, is an example of such an approach.

Both approaches mentioned above have certain advantages and disadvantages. The
former has an advantage in speed and precision, but it is limited to utilizing the reads
that can be mapped uniquely to the curated regions. The latter approach, on the
other hand, su�ers from the lack of uniquely-mapped reads at higher (more speci�c)
taxonomic ranks since they are assigned to the LCA. Recent methods such as DUDes
[62], SLIMM [83], and Bracken [84] follow a more elaborate routine to solve read
ambiguity.

Depending on the method of choice for DNA sequencing, i.e., either 16S-rDNA or
WGS, there are numerous existing taxonomic pro�ling tools available. Some tools take
only one of 16S-rDNA or WGS data as their input. Few tools can handle both types of
sequencing data. In the following section, we will enlist and provide a short description
of 13 di�erent tools. We are aware that, there are other taxonomic pro�ling tools out
there and this is not a comprehensive list by no means. We included tools for this text

38

4.4. Di�erent Approaches to Taxonomic Pro�ling

in a way that: a) we can cover di�erent approaches and sequencing techniques; b) we
included the most popular and better performing taxonomic pro�lers. Table 4.1 gives
a quick overview of di�erent taxonomic pro�lers along with the type of sequencing
they can handle and what kind of databases they use.

39

4. Taxonomic Pro�ling

Tool Seq-Type Database Alphabet Requires
AlignmentWGS 16S Full

Genomes
Marker
Genes

k-mer
based

DNA Protein

Bracken 3 3 3 3

CLARK 3 3 3

DUDes 3 3 3 3

MGnify. 3 3 3 3 3

GOTTCHA 3 3 3 3

Kraken 3 3 3 3

LMAT 3 3 3

MEGAN 3 3 3 3 3

MetaPhlAn 3 3 3 3

MetaPhlAn2 3 3 3 3

MG-RAST 3 3 3 3 3

mOTUs 3 3 3

SLIMM 3 3 3 3

QIIME 3 3 3

Table 4.1.: A short summary of existing taxonomic pro�ling methods and their
key features. The table shows the type of sequence the taxonomic pro�lers support
(WGS/16S) and the database type they use. It also shows if a tool is alignment based or
not

4.5. Existing Methods

Based on the �nal output of a method there are two categories of metagenomic classi-
�cation tools, i.e., a read binning method and a taxonomic pro�ling method. A read
binning method assigns every single read to a node in a taxonomic tree, whereas a
taxonomic pro�ling method tries to report which organisms or clades are present in
the sample with or without having to assign every read to a corresponding taxon.
There exists an overlap between the two categories making it possible for some read
binning methods to be used as a taxonomic pro�ling tool as well.

4.5.1. Bracken

Bracken [84] is a taxonomic pro�ler that focuses in better estimation of abundances
at species level by using the read assignment output provided by Kraken (described
below in sub section 4.5.5) as an input. It probabilistically redistributes reads originally
assigned to a parent taxon back to the children and by that achieving a better read
count and consequently reporting more close to real abundance values. Bracken uses a
database of overlapping k-mers associated with a taxonomic node which is LCA to all
the genomes containing that k-mer. See the subsection 4.5.5 for more detail.

40

4.5. Existing Methods

4.5.2. CLARK

CLARK [85] focuses on classifying reads to target taxonomic groups with improved
accuracy while staying fast. It uses a k-mer database extracted from reference genomes
excluding k-mers belonging to multiple taxonomic groups (targets). The authors argue
that the remaining unique to target k-mers can be used as signatures for assigning
reads to targets. CLARK assigns reads to a group that has the maximum number of
shared k-mers in the database. While building the database of CLARK users should
decide at which taxonomic level they want to classify the sequencing reads. CLARK
also o�ers a feature to exclude k-mers with a small number of occurrences in a group
and con�dence scores for read assignment. This approach makes CLARK fast and
memory friendly.

4.5.3. DUDes

DUDes [62] uses a new top-down approach, i.e., utilizing the deepest uncommon
descendent (DUD) in contrast to many methods that use the LCA method to resolve
ambiguous reads mapping to multiple groups. Starting from a node at a higher level of
a taxonomic tree, which has fewer ambiguities since groups are more distinct at such
levels, DUDes tries to go for deeper taxonomic levels, even when ambiguities exist.
DUDes uses alignment �les (SAM format) obtained by mapping NGS reads against
reference genomes using a read mapper of choice. The ability to perform well with a
small fraction of NGS read-set is an appealing feature o�ered by DUDes.

4.5.4. GOTTCHA

GOTTCHA [80] is another taxonomic pro�ling tool that focuses on reducing the false
discovery rate (FDR) of member microorganisms. To achieve its goal of low FDR,
GOTTCHA uses databases containing unique segments of reference genomes dubbed
as “unique genomes”. GOTTCHA’s databases are precomputed and made available for
download. One should note that the selection of “unique genomes” is dependent on the
target taxonomic rank which means, di�erent databases for di�erent taxonomic levels.
After quality trimming NGS reads, GOTTCHA generates non-overlapping 30-mers
from the reads and search for their exact matches using the BWA read mapper in
its database. Using this matches, it creates coverage pro�le of the “unique genomes”.
These coverage pro�les are then used by GOTTCHA to create taxonomic pro�les. We
want to point out that taxonomic pro�les generated by GOTTCHA are indeed highly
speci�c, but they miss out many true-positives when the microbial communities are
complex and diverse, i.e., contain a large number of species.

41

4. Taxonomic Pro�ling

4.5.5. Kraken

Kraken [82] uses a pre-computed k-mer database that maps a k-mer and its correspond-
ing node in a taxonomic tree. A node for a k-mer represents the LCA of all reference
sequences that contain that k-mer. In order to make the k-mer lookup process faster,
Kraken deploys a k-mer minimizer concept where k-mers sharing the same minimizer
are stored close to each other e�ectively making the retrieval process cache in a friendly
way. During read assignment, it looks up all the overlapping k-mers of a read in the
hash table and classi�es the read to a taxonomic node with the highest number k-mer
hits. Whenever there is a tie between two nodes, Kraken resolves this by taking lowest
common ancestor of the two. Kraken is a very fast read binning method, which is also
often used to do taxonomic pro�ling. However, it is worth mentioning that it is not
suited for abundance estimation.

4.5.6. LMAT

Similar to Kraken, LMAT [78] uses a database of k-mers extracted from a set of genomes.
The database contains a mapping between each k-mer and the LCA of all the genomes
containing it. A supplementary marker library called kML is generated by taking a
subset of the k-mers and arranging them into disjoint sets. Any set that contains less
than a thousand k-mer is excluded and k-mers whose LCA lies above the family rank
are not considered. This library contains the most discriminative and informative
k-mers reportedly. During a taxonomic assignment, a read goes to a node which is the
LCA of most of the overlapping k-mers of that read. LMAT can also perform functional
assignments to metagenomic reads.

4.5.7. MEGAN

MEGAN [86] takes the output of BLAST or similar programs including alignment
output from short-read mappers, where metagenomic shotgun reads are mapped
against protein reference databases (e.g., NCBI-nr) as an input. MEGAN then employs a
simple LCA algorithm to assign reads to a taxonomic unit in the NCBI taxonomy using
the alignment result obtained on the preprocessing step. The interactive graphical
user interface of MEGAN enables users to explore a microbial community dipper.
MEGAN also o�ers the possibility to compare multiple taxonomic pro�les supported
by graphical and statistical outputs. In addition to taxonomic-pro�ling, MEGAN also
o�ers functional metagenome analysis on using di�erent databases such as the SEED
[87] hierarchy.

42

4.5. Existing Methods

4.5.8. MetaPhlAn

MetaPhlAn [88] utilizes a large set of marker genes unique to a species or other
higher level clade to map WGS metagenomic reads using the Bowtie [89] read mapper.
MetaPhlAn then uses the mapping result and turn it to a taxonomic pro�le. This
approach guarantees a unique match per read elevating the problem of ambiguity. The
fraction of mapped reads is small compared to the total number of sequenced reads as
the unique marker genes used for mapping are also a small fraction of the complete
reference genomes. The fact that ambiguous reads are less critical for the process
of taxonomic pro�ling and the computational performance gained justi�es the low
alignment rate.

4.5.9. MetaPhlAn2

MetaPhlAn2 is an improvement over MetaPhlAn by including more marker genes that
span more species and markers that discriminate even between di�erent strains of the
same species. Additionally, MetaPhlAn2 supports eukaryotic and viral quanti�cation
and strain tracking. It also has improved speed as it uses Bowtie2 [48] instead of its
predecessor.

4.5.10. MG-RAST

The MG-RAST webserver [90] o�ers a multitude of analysis for metagenomic sequenc-
ing data. The sequencing type can be either WGS or 16S-rDNA. After registering,
users can upload their data sets for analysis and get a taxonomic pro�le as well as
functional assignments. The taxonomic pro�les provided by MG-RAST are generated
by comparing sequences to both nucleotide and protein databases. For 16S-rDNA based
sequences, MG-RAST o�ers three di�erent alternative databases namely Greengenes
[67], RDP II [91] and the European 16S RNA database [92].

4.5.11. MGnify

The European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-
EBI) o�ers a free holistic web service to perform taxonomic pro�ling under its EBI
Metagenomics web service [93] which now has a new name called MGnify. The user
is required to upload his/her raw sequencing reads to the European Nucleotide Archive
(ENA) together with standard metadata. The uploaded data then will go through a
series of data analysis pipelines including quality control and adapter trimming steps
using various open source tools. We recommend the reader to read the publication

43

4. Taxonomic Pro�ling

by Mitchell et al. to get a closer look on which analysis steps are available and which
tools are used by the web service. At the end of the analysis, taxonomic pro�les and
other statistics are displayed accompanied by di�erent graphical presentations.

4.5.12. mOTUs

mOTUs [81] uses single copy universal marker genes to achieve a species-level abun-
dance resolution of microbial communities. Like 16S-rRNA genes, these genes are
universal across species but have only a single copy per genome alleviating the bias
due to copy number variation of 16S-rDNA based methods. After scanning a large set
of reference genomes for 10 of such universal marker genes, the hits were clustered to
form “metagenomic operational taxonomic units (mOTUs). mOTUs computes taxo-
nomic pro�les based on the mapping result of metagenomic shotgun sequencing reads
against this mOTUs database.

4.5.13. QIIME

QIIME [94] is an integrated software suite that contains a collection of scripts and other
third-party applications to perform a range of analysis on amplicon data. QIIME have
several scripts that can perform various quality control and data analysis at various
stages of the taxonomic pro�ling process. In QIIME 16S-rDNA or other amplicon
sequences are clustered into OTUs in a process called OTU picking which serves
as a basis for taxonomic pro�ling. QIIME features di�erent OTU picking strategies
namely de novo, closed-reference, and open-reference OTU picking strategies. De
novo OTU picking works by clustering reads in the absence of references whereas in
closed-reference OTU picking clusters are formed on the bases of existing OTUs with
references and unclustered reads are left out from further analysis. In open-reference
OTU picking, on the other hand, unclustered reads will be subjected to de novo OTU
picking. Then, taxonomic pro�les are inferred based on the number of reads in the
individual clusters taking the copy number of 16S genes into account. QIIME also does
functional assignments based on the KEGG [95] functional database.

44

5. SLIMM

In this chapter, we will present species level identi�cation of microorganisms from
metagenomes (SLIMM), a novel and easy to use taxonomic pro�ling method, that better
addresses the problem of ambiguous reads. As we are going to demonstrate in the
coming sections of this chapter our novel approach enables SLIMM to outperform
its competitors in both speci�city and sensitivity as well as in calling the correct
relative abundance of discovered species. As the name implies, SLIMM is well suited
to perform taxonomic pro�les at species level resolution. However, SLIMM can also
produce taxonomic pro�les at higher levels of taxonomy such as genus upon the
users’ request. SLIMM is open source and freely available for download from https:
//github.com/seqan/slimm.

5.1. SLIMM Motivation

As discussed in the previous chapter, one of the main challenges in taxonomic pro�ling
comes from shared regions of genomes among reference sequences. Existing tools deal
with this either by reducing the reference genomes to a much smaller representative
marker genes that are unique per clade or by simply assigning sequencing reads
mapping to multiple references to the LCA. Both approaches have their shortcomings.
The former has to rely on the presence of reads overlapping with the selected unique
marker genes which are only a tiny fraction of the complete genome. This causes
signi�cantly less abundant organism to be easily overlooked. The latter approach, on
the other hand, assigns a majority of the reads to a higher rank, leaving the lower
level taxonomic assignment sparse. Consequently, taxonomic pro�les at lower level
taxa (higher resolution) are biased and less accurate. Besides, there is a high chance
of missing a species just because there exists another highly similar species is in the
database, and all of the reads, mapping to it are pushed up to a higher level taxa.

Another issue we wanted to address is the accuracy of abundances reported for in-
dividual species. In addition to reporting all the member organisms of a microbial
community, an excellent taxonomic pro�ler should assign accurate relative abun-
dances to the detected organisms. This property is crucial when one does comparative
metagenomics across multiple communities or across di�erent time point of the same
community. Computing correct abundance pro�le of a microbial community using

45

https://github.com/seqan/slimm
https://github.com/seqan/slimm

5. SLIMM

next-generation sequencing (NGS) necessitates considering the number of genomes rep-
resenting a member organism in a database and their sizes and the possibility of reads
shared by an organism that is not present but have a close relative in the community.

With these ideas in mind, we designed SLIMM to be an accurate taxonomic pro�ler in
the context of both listing the correct member organisms and reporting their corre-
sponding abundances. To achieve such accuracy we utilize the read coverage landscape
of genomes and exclude reference genomes with poor coverage from consideration.
By doing so, SLIMM e�ectively increases the number of quasi-unique reads available
at lower taxonomic ranks. We also engineered SLIMM to be computationally e�cient
by reducing its runtime and memory footprint.

5.2. SLIMM Pipeline

The core algorithm of SLIMM requires two inputs. The primary input is an align-
ment/mapping �le in SAM or BAM format, obtained by aligning short metagenomic
shotgun sequencing reads against a library of reference genomes of interest. A sec-
ondary input that we refer to as the SLIMM database is also instrumental for the
taxonomic analysis. This database holds the taxonomic information related to all the
reference sequences being considered. The information stored inside SLIMM database
includes the names and hierarchical relations of all taxonomic clades covered by the
set of references used to perform read-mapping. The database is built by extracting
a subset of NCBI’s taxonomic tree speci�c to the genomes under consideration and
a mapping from accession numbers to a taxonomic identi�er (tax_id). The SLIMM
pre-processor facilitates all these inputs required to run the core algorithm of SLIMM.
Figure 5.1 illustrates an overview of the SLIMM pipeline, and we will provide a detailed
description of the individual steps in the following subsections.

5.2.1. Preprocessing Module

SLIMM preprocessing module is designed to make the process of assembling a set of
reference genomes easy. It includes three python scripts that enable the user to select
download and prepare reference genomes from the NCBI’s RefSeq (ftp://ftp.ncbi.nlm.
nih.gov/genomes/refseq) or GenBank (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/)
databases in highly con�gurable manner. These three scripts, namely select_refs.py,
collect_refs.py, and merge_refs.py can be executed sequentially to obtain a single multi
FASTA �le that contains the desired set of references ready to be used by a read mapper
of choice either directly or after creating a suitable index. In the following, we will
describe all of the three python scripts and the features they o�er.

46

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/

5.2. SLIMM Pipeline

NCBI

SLIMM preprocessor

• Select group(s) of microbes
(Archaea, Bacteria, Viruses)

• Seamlessly update references
(only di�s)

• Reduce the taxonomic informa-
tion to the interest groups

• Include draft genomes?

Ref. Genomes/
Sequences

SLIMM
DB

WGS reads

Quality control

�ltered reads

Read Mapper

SAM alignment

SLIMM Algorithm

Taxonomic Pro�le
NAME Rel.Abund No. Reads
BAC 1 30% 20,000
BAC 2 6% 4,000
BAC 3 3% 2,000
BAC 4 2% 1,333

Figure 5.1.: SLIMM Pipeline: The preprocessing module of SLIMM downloads/updates
all available genomes of a particular interest group and creates a corresponding SLIMM
database containing names and taxonomic assignments of the selected genomes. A
read mapper is then used to map reads to these reference sequences. Then SLIMM
algorithm uses the mapping results to produces taxonomic pro�le reports.

47

5. SLIMM

select_refs.py allows users to con�gure their reference set based on their interest.
Users have the option to select which group(s) of organisms (i.e., Bacteria, Archaea,
Viroids, and fungi) to include in their reference set. They have additional option to
include individual species by providing a list of taxonomic ids making it convenient
to include host genomes or possible contaminants in the reference set. Users can also
choose between RefSeq and GenBank databases. They can decide to use only complete
genomes or consider genomes with any level of assembly. There is also an option to
consider only a single genome per species in case one is interested in doing species
level assembly. In the end, the script produces a list of genomes and their corresponding
download URL accompanied by di�erent metadata.

select_refs.py enables users to compile a non-redundant reference database through
multiple con�gurable options. By adjusting the parameters to this scripts, it is possible
to cover a large number of species without making the cumulative size of reference
genomes too high. One can also make a compromise between covering a wide range of
species and the quality (level of assembly) of genomes to consider. For more information
see the command line options of this script listed in appendix A.1.

collect_refs.py takes the list produced by select_refs.py and download the genomes
into local directory. We implemented a mechanism to avoid downloading the same �le
multiple times by providing an option to provide a local bu�er directory that contains
already download �les. For each entry in the list, collect_refs.py checks this bu�er
directory for a presence of the corresponding �le before attempting to download it. If
it exists, it simply creates a symbolic link in the output directory e�ectively optimizing
disc and network usage. This feature is attractive when one needs to create multiple
sets with overlapping reference content. For more information see appendix A.2.

merge_refs.py takes the individual FASTA �les produced by collect_refs.py and merge
them in a speci�c way. The individual �les are representative genomes of a single
taxonomic unit, but they contain multiple FASTA entries due to incomplete assembly or
plasmids. Merge_refs.py excludes all plasmids and merge the remaining FASTA entries
coming from one �le by adding a sequence of N’s between them. This procedure avoids
meaningless read mappings at the merging point of two contigs. The �nal result is a
single multi FASTA �le containing multiple entries equal to the number of �les as well
as the number of genomes in the set. The exhaustive lilts of options for this script are
shown in appendix A.3.

SLIMM database builder (slimm_build) is an auxiliary program that takes a FASTA
�le and the NCBI taxonomic mapping �les, namely names.dmp and nodes.dmp available
at ftp://ftp.ncbi.nih.gov/pub/taxonomy, to create a SLIMM database speci�c to the list
of organisms represented by genomes inside the FASTA �le. Since we only generate
taxonomic reports for a one of the seven major taxonomic ranks namely superkingdom
(domain), phylum, class, order, family, genus, and species, we purged the taxonomic
tree from intermediate ranks and kept only these taxonomic ranks. The SLIMM
database contains 1. the mapping from reference genomes accessions and the associated

48

ftp://ftp.ncbi.nih.gov/pub/taxonomy

5.3. SLIMM Algorithm

taxonomic identi�er 2. the taxonomic lineage from a taxonomic identi�er all the way
to the rank of superkingdom (domain). The length of the linage is always seven. This
reduction saves a signi�cant amount of computational time as assigning a read to its
LCA is computationally expensive. The resulting SLIMM database serves as a second
important input for the main SLIMM program.

5.2.2. Read-Mapping

As it is discussed before, SLIMM’s primary input is an alignment/mapping �le in SAM
or BAM format containing a list of sequencing reads and their mapping location within
one or multiple genomes. In order to obtain such a SAM or BAM input �le, one has to
perform read-mapping using a read mapper of choice. A read mapper takes a set of
short sequencing reads (queries), does an approximate search in one or more reference
sequences (subject) and report the mapping locations for each read. In our case, query
sequences are short metagenome shotgun sequencing reads, and the subject is a library
of reference genomes representing di�erent microorganisms. Such a library can be
assembled using SLIMMs’ preprocessing scripts. Once the reference library is ready, it
has to be indexed by the indexing module of the read mapper of choice. There exist
read mappers that can use the FASTA �le directly. However, such read mappers are
not suited for large databases as they will be extremely slow. After performing the
standard quality control on WGS metagenomic reads, the resulting �ltered reads will
be mapped against the indexed reference genomes using the chosen read-mapping
program.

The Read-mapping can be done using a read mapper of choice. Nevertheless, SLIMMs’
overall pipeline could bene�t from a faster but yet accurate read mapper as this pre-
processing step is relatively time-consuming. It is crucial to allow the read-mapping
program output secondary alignments because 1) it is very likely to have a sequencing
read mapped to multiple targets, 2) a read might have multiple best hits and 3) the best
hit of a read might not be its true origin. It is up to SLIMM to resolve this ambiguity
using coverage landscape information as shown in Figure 5.3.

In our preliminary experiments, we tried Bowtie 2 [48] and Yara [54] because they are
fast read mappers with multi-threading options. Since the Yara read mapper is several
times faster, does not employ heuristics and its resulting alignments produced better
pro�les in some of the cases, we used it as the default mapper for this study.

5.3. SLIMM Algorithm

As introduced in the previous section, the SLIMM algorithm utilizes a read alignment
�le in SAM/BAM format. Then it parses and processes the alignment records in the

49

5. SLIMM

input �le to produce a taxonomic pro�le after performing major operations described
in �gure 5.2 sequentially. The following subsection describes each of the individual
steps in detail.

Collect coverage information of each reference genome1

Discard unlikely genomes based on coverage landscape2

Rede�ne reads uniqueness after discarding unlikely genomes3

Assign remaining shared reads to their LCA4

Compute relative abundances based on unique reads5

Figure 5.2.: The main algorithmic steps of SLIMM. SLIMM discards spurious genomes
based on coverage landscape information collected in the form of read coverage depth.
Then read uniqueness is recalculated considering freed reads.

5.3.1. Collect coverage information of genomes

After parsing the SAM/BAM input �les, we identify which reads are mapped to which
reference genomes. Then we separate the reads uniquely assigned to a single reference
sequence from those assigned to multiple reference sequences. We consider reads that
are mapped to multiple locations within a reference as uniquely mapped. During this
stage, SLIMM collects information like the number of reference genomes with mapping
reads, the total number of reads and the average read length, which It latter uses to
discard reference genomes. We then map reads into bins of speci�c width across each
reference genome based on the location of their mapping. The binning is done twice,
once for mapped reads in general and once only for uniquely mapped reads. The user
has the option to set the width of a bin. However, SLIMM uses the average length
of sequencing reads as a default value for bin width. Higher bin width implies fewer
bins across genomes and faster runtime, but it could lead to underrepresentation of
coverage information which in turn is based on whether a bin is empty or not. The bin
number corresponding to a read mapped to a reference given by the central position
of its mapping location divided by the width of the bins (integral part only).

50

5.3. SLIMM Algorithm

Formally, The bin number i of a read mapped to a reference genome starting from loci
Ls all the way to loci Le is given by:

i =

⌊Ls + Le

2 × w

⌋
(5.1)

Where w is the bin width used to partition references.

All mapped reads will be binned to a single bin using equation 5.1 including those reads
that lie on bin borders. This process is done twice, �rst using all sequencing reads and
then using only uniquely mapping sequencing reads. After binning is completed the
next step is to calculate genome coverage C as the percentage of the genome length
covered by non zero bins according to equation 5.2. We also compute the average
coverage depth D as a function of the sum of read length within a bin divided by the
width of a bin as shown in equation 5.3.

C =

∣∣∣B1
∣∣∣

|B| × 100 (5.2)

D =

∑|B|
i=1

∑ni
j=1

∣∣∣Ri j

∣∣∣
|B| (5.3)

Where
∣∣∣B1

∣∣∣ is the number of bins with 1 or more reads, |B| is the total number of bins
in the reference, ni is the number of reads in bin i and

∣∣∣Ri j

∣∣∣ is the length of read in
nucleotides bases.

5.3.2. Discard unlikely genomes based on coverage landscape

The main di�erence between SLIMM and other taxonomic pro�lers is that, SLIMM
utilizes the coverage information of reference genomes to exclude false positive hits
mainly due to homologous regions among reference genomes. Figure 5.3 depicts how
SLIMM decides to exclude a reference genome with mapping reads from consideration.
For instance, it is clear that reference genomes G3 and G4 are closely related and share
homologous regions. They are identical except for bins 3 and 5. When we bin-map
sequencing reads against genomes, we see that both genomes have similar coverage by
shared reads except in bin 3 and bin 5 exactly where the two genomes di�er. Moreover,
G4 is covered by unique reads around bins where G3 is missing any mapped reads.
This scenario indicates that G3 is indeed a spurious hit and got all of those mapped
reads due to its homology with G4. When it comes to G2, it has poor coverage both by
shared and unique reads making it another false hit.

51

5. SLIMM

Practically we use a percentile based threshold to discard reference sequences with low
coverage percentages. The threshold is calculated based on a user-de�ned percentile
(default 0.001) of all coverage percentages of the genomes. In other words, after sorting
the reference sequences based on their coverage percentages in descending order we
take the top N sequences that cover 99.999% of the sum of all coverage percentages.
This step is done for both coverage percentage by reads that mapped on multiple
references and uniquely mapped reads. This process eliminates many genomes even if
they have a lot of reads mapping to them as long as they do not have a good enough
coverage. Furthermore, this method was also proven to eliminate reference sequences
that acquire a stack of reads only in one or two bins across their genomes which could
be a result of either a sequencing artifact or homologous region in the genome among
distant relatives (G3 in �gure 5.3).

shared reads unique reads

G1 3

G2 7

G3 7

G4 3

C G A A C A T G G A C A C A A A C T G G T C C A C C T G G G C C T G G G T G T C T A T C A G G T C C

G T G G C C C A G C C G G C G T C C C G C G A G G A C A G G T C G G C G G C C T C T A T A T C C G A

A C C C C T A C A G G A G T G C C C C T C T C G C C G T G G T C C G G G T C G A T C A C C G C G T C

A C C C C T A C A G G A G T G G G G C C T G G G C C G T A G G G C A C G T C G A T C A C C G C G T C

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7

Figure 5.3.: A simpli�ed illustration of how SLIMM uses reference �ltering based on
coverage information: G2 and G3 could not pass the �ltering steps because they did
not contain enough coverage by uniquely mapped reads and all reads respectively.

5.3.3. Redefine reads uniqueness

We have described how we excluded genomes that have sequencing reads mapped to
them but are unlikely to be the source of those mapped reads. Once we have done
that we can rede�ne the uniqueness of each reads within the scope of the remaining
genomes. For example, all the shared reads mapping to G3 in �gure 5.3 will be free
once we exclude G3 and will probably be uniquely mapping to G4. Depending on

52

5.3. SLIMM Algorithm

the number of genomes we manage to exclude, our total number of unique reads will
increase signi�cantly. This reevaluation of reads uniqueness increases the number
of uniquely mapped reads assigned to lower-level clades in a taxonomic tree and is
shown to enhance the abundance estimation of reported clades.

5.3.4. Assign remaining shared reads to their LCA

After discarding unlikely reference genomes and rede�ning read uniqueness, there
will be sequencing reads that are still shared among the remaining reference genomes.
SLIMM assigns these shared reads to the LCA of the reference genomes that are sharing
them. LCAs are computed based on the NCBI taxonomic tree contained in the SLIMM
database generated at the pre-processing stage. Note that this process could result in
a higher number of reads assigned to clades of a rank compared to clades of a lower
rank.

5.3.5. Compute relative abundances based on unique reads

The last step of the SLIMM algorithm is computing the relative abundance of each
clade (taxonomic unit) at the desired rank. The relative abundance of a clade at a rank
A(c, r) is de�ned as the number of reads that are assigned to that clade Nc divided by
the total number of reads assigned to any clade at the same rank Nr, i.e.,

A(c, r) =
Nc

Nr
(5.4)

Additionally, we report extra information alongside with the relative abundance such
as an aggregated coverage depth of each clade de�ned as in equation 5.5, the original
number of reads assigned to a reference (shared and unique) and the revised number
of unique reads after the exclusion of unlikely genomes.

D(c) =

∑Nc
i=1|Ri|∑|Mc |
j=1

∣∣∣G j

∣∣∣ (5.5)

Where D(c) is coverage depth of a clade, Nc is the number of reads assigned to a clade,
|Ri| is the length of the ith read in nucleotide bases, |Mc| is the number of children
genomes under clade c that contribute at least one read and

∣∣∣G j

∣∣∣ is the length of the jth

genome in nucleotide bases.

53

5. SLIMM

5.4. SLIMM Application

In a study investigating the sudden outbreaks of Clostridium di�cile infection (CDI)
in newly born piglets, we applied SLIMM to investigate the microbial composition
of di�erent groups of piglets. Fecal samples were isolated and used for metagenome
analysis. The fecal samples were from suckling piglets, formula-fed piglets, and formula-
fed and C. di�cile–infected piglets. After generating WGS libraries and sequencing
them using the Illumina NextSeq500 system. Flexbar [96] was used to remove adapter
sequences, trim low-quality bases and subsequently remove reads shorter than 100
bases long. Reads that passed the quality �lter were mapped against a set of reference
genomes using the Yara read mapper. We used SLIMM to analyze the resulting mapping
�les and produce taxonomic pro�les. The taxonomic pro�les revealed di�erences in
diversity, evenness and number of organisms among di�erent groups of piglets. The
results were included in [97].

54

6. SLIMM Evaluation

Evaluating a computational method involves both the assessment of computational
performance and accuracy of produced results. Computational performance covers
the amount of time and resources (RAM and disk space) needed to �nish a particular
task. Using accuracy as an evaluation criterion is applicable where the methods in
question fail to produce complete or exact results in a deterministic way. The reason
could be the complexity of the problem, the absence of su�cient data, or lack of
resources (computational). Taxonomic pro�ling methods are among such methods.
In the previous chapter, we gave a detail description of SLIMM, a novel taxonomic
pro�ling method we developed. In this chapter, we will assess SLIMM’s performance
by comparing it with existing methods.

6.1. Benchmarked Methods

We picked Kraken, GOTTCHA, and mOTUs for benchmarking. The reason for choosing
these existing methods are 1) their popularity among the bioinformatics community,
2) the novelty of their approach and 3) their claimed performance compared to their
predecessors at the time of development. We refer the reader to section 4.5 of chapter
4 for a description of the considered methods.

6.2. Datasets

6.2.1. Reference Set

Two di�erent sets of reference genomes were downloaded from NCBI GenBank (ftp:
//ftp.ncbi.nlm.nih.gov/genomes/genbank/) using the SLIMM preprocessing module on
the date 21.05.2016. The �rst set contains complete reference genomes available at the
download time under the domains archaea and bacteria. We called this reference set
small_DB. It contains 4915 genomes covering 2163 di�erent species of bacteria and
archaea. The second set of references (large_DB) aims at covering a large number of
di�erent species. We achieved this by con�guring the SLIMM preprocessing module to

55

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/

6. SLIMM Evaluation

compile a single reference per species while considering draft (not complete) genomes
as well. Large_DB contains 13192 reference genomes and covers the same number of
di�erent species.

As it is described in chapter 5, we select one reference genome per species in the
following order. 1) reference genome, 2) representative genome, 3) complete genome,
4) chromosome level assembly, 5) sca�old level assembly and at last 6) contig level
assembly. Whenever more than one assembles are present in a selected category, we
consider merely the latest one. After experimenting on multiple di�erent read-sets,
the large_DB was proven to produce better quality taxonomic pro�les at the species
level. Therefore we used the large_DB as reference database in all of our benchmarks.

6.2.2. Metagenomic Reads

In order to evaluate the accuracy of SLIMM and compare it to similar methods, we
assembled 18 di�erent metagenomic read-sets from a wide variety of sources and
simulation strategies. We �rmly believe that evaluating methods with a heterogeneous
mix of multiple read-sets is necessary to prove their robustness. Moreover, by including
read-sets which are not produced by us in the evaluation process, we assure the fairness
of the evaluation process.

The �rst type of read-sets were mock community metagenomes synthetically produced
in laboratories and later sequenced using the Illumina Genome Analyzer II. We con-
sidered three metagenomic read-set of this type; the �rst two are obtained from the
Human Microbiome Project (HMP) [25] containing genomes of 22 microorganisms.
The two read-sets from HMP are similar in the species they contain. They only di�er
in the abundance distribution. One contains an even abundance distribution of the
microorganisms whereas the other contains a di�ering abundance distribution of the
22 microorganisms. The third and last read-sets in this category came from the study
[98] where they produced a synthetic community of bacteria and archaea with 64
member species.

The second type of read-sets considered are simulated metagenomes that resemble
community pro�le of a real metagenome as identi�ed by MetaPhlAn2 [79] a popular
metagenomic pro�ling tool based on clade-speci�c marker genes. We took the reported
taxonomic pro�le and used it as a basis for the simulation. This way we can ensure that
our simulated metagenomic read-set is a partial re�ection of the natural world. With
this approach we simulated two metagenomes using a human gut and a freshwater
metagenome obtained from the human microbiome project [79] and the Lake Lanier
study [14] respectively.

56

6.2. Datasets

Read-sets Number
of Reads

Read
Length

Paired Species
Count

Abun-
dance

Source
M

oc
k MG01 109.63 M 75 Yes 64 EV [98] - SRR606249

MG02 6.56 M 75 No 21 EV HMP [25] - SRR172903
MG03 7.93 M 75 No 21 ST HMP [25] - SRR172902

Mimic.Sim
MG04 18.38 M 100 Yes 40 ST HMP ([79])
MG05 18.38 M 100 Yes 134 ST Lake Lanier study ([14])

R
an

do
m

.S
im

MG06 18.38 M 100 Yes 50 EV

Randomly simulated reads
with 3 di�erent abundance
distributions and 3 di�erent
number of member organ-
isms.

MG07 18.38 M 100 Yes 50 ST
MG08 18.38 M 100 Yes 50 ST
MG09 18.38 M 100 Yes 200 EV
MG10 18.38 M 100 Yes 200 ST
MG11 18.38 M 100 Yes 200 ST
MG12 18.38 M 100 Yes 500 EV
MG13 18.38 M 100 Yes 500 ST
MG14 18.38 M 100 Yes 500 ST

C
A

M
I

MG15 7.44 M 100 Yes 199 ST Medium complexity CAMI chal-
lenge toy read-sets which are
publicly available at h�ps://data.
cami-challenge.org/participate.

MG16 7.43 M 100 Yes 199 ST
MG17 149.14 M 100 Yes 199 ST
MG18 149.03 M 100 Yes 199 ST

Table 6.1.: List of read-sets and their primary properties used in the evaluation process
of SLIMM against other existing methods

In the third category, we simulated randomly created metagenomic communities of a
diverse number of member organisms and abundance compositions using the NeSSM
[99] simulation program. We considered three communities with randomly selected
member organisms. The number of organisms in these communities is 50, 200 and
500. We then chose three di�erent ranges of relative abundances, i.e., even, [1-100]
and [1-1000]. Doing so provided us with a total of 9 randomly created metagenomes
with varying complexity both regarding diversity and in abundance di�erences. The
di�erent settings of metagenomic read-sets are essential to make sure that the tested
methods work with a broad range of inputs. To resemble an actual metagenome and
to make the taxonomic pro�ling more di�cult, we contaminated all the simulated
read-sets with real-world metagenomic reads sequenced by Illumina MiSeq. We �rst
removed the reads that could be mapped to any of the prokaryotic genomes in our
database.

The last category of read-sets contains the Medium complexity CAMI (The Critical
Assessment of Metagenome Interpretation) challenge toy read-sets that are publicly
available at https://data.cami-challenge.org/participate.

Details of all the read-sets used for evaluation can be found in Table 6.1. The table
summarizes the metagenomic read-sets and their key properties used for the evaluation
process. We believe that, this collection is representative enough for most of the
metagenomic communities that a taxonomic identi�er will have to handle.

57

https://data.cami-challenge.org/participate
https://data.cami-challenge.org/participate
https://data.cami- challenge.org/participate

6. SLIMM Evaluation

Alignment + SLIMM Kraken GOTTCHA mOTUs

Avg. Runtime (Seconds) 422.1 + 61.0 157.4 1727.1 1526.6

Peak Memory (GB) 33.67 + 5.2 102 4 1.6

Table 6.2.: Average Runtime and Memory Comparison of SLIMM against existing
methods

6.3. Computational Performance

6.3.1. Infrastructure and Parameters

We used a computer equipped with an Intel(R) Xeon(R) CPU 3.30GHz processor (32
cores) and 378GB of RAM to evaluate the computational performance of all the tools.
Run time and peak memory usage were averaged over all the read-sets, excluding the
CAMI read-sets. The CAMI read-sets are not included in the runtime and memory
comparison. That is because we could not run Kraken with large_DB on the same
machine since it required 500GB of memory. Instead, we run Kraken on a cluster
for these particular read-sets. The command line scripts used to run the individual
methods considered for benchmarking are listed in appendix A.4.

6.3.2. Runtime and Memory Footprint

Table 6.2 shows the average runtime and the average peak memory usage of the tools
across runs on 14 out of the 18 di�erent read-sets (excluding the CAMI read-set for the
reason mentioned in the previous paragraph). Without the time needed for generating
the required SAM �les SLIMM is proven to be faster than any of the other tools
considered while using a fair amount of memory footprint. With the preprocessing,
Kraken is faster than SLIMM but with a much more memory footprint. SLIMM is faster
than GOTTCHA and mOTUs. Appendix A.5 shows the individual runtime of each tool
across 14 di�erent read-sets.

58

6.4. Accuracy Evaluation

6.4. Accuracy Evaluation

6.4.1. List of Reported Organisms

After obtaining the taxonomic pro�les reported by each tool for each read-sets, we
computed three di�erent accuracy measures namely precision (speci�city), recall
(sensitivity) and F1-Score as an assessment of quality on the pro�le produced. The
comparison between generated pro�les by individual tools against the known compo-
sition of either a mock community or a simulated read-set is the basis for computing
accuracy measures. We de�ned each of the measurements as de�ned in equations 6.1 -
6.3. The values of the confusion matrix used in the equations are interpreted as it is
elaborated in Figure 6.1.

False
negatives

True
positives

False
positives

True
negatives

Database

Sample Predicted

Figure 6.1.: Elaboration of the confusion matrix values (i.e., TP, FP, TN FN) used for
evaluating the accuracy of taxonomic pro�le methods.

precision =
T P

T P + FP
(6.1)

recall =
T P

T P + FN
(6.2)

F1 S core =
2 · (precision × recall)

precision + recall
(6.3)

59

6. SLIMM Evaluation

Precision Recall F1

Read-set G OTTCHA m OTUs K raken S LIMM G OTTCHA m OTUs K raken S LIMM G OTTCHA m OTUs K raken S LIMM

M
oc

k MG01 0.9808 1.0000 0.6264 0.8923 0.8226 0.8065 0.9194 0.9355 0.8947 0.8929 0.7451 0.9134
MG02 1.0000 1.0000 0.8400 0.9545 0.9524 0.8571 1.0000 1.0000 0.9756 0.9231 0.9130 0.9767
MG03 1.0000 1.0000 0.6897 0.9524 0.8571 0.4286 0.9524 0.9524 0.9231 0.6000 0.8000 0.9524

Mimic.Sim
MG04 0.6000 0.9474 0.4250 1.0000 0.6176 0.5294 1.0000 1.0000 0.6087 0.6792 0.5965 1.0000
MG05 0.8714 0.9630 0.6650 1.0000 0.4656 0.1985 1.0000 1.0000 0.6070 0.3291 0.7988 1.0000

R
an

do
m

.S
im

MG06 0.6897 0.8718 0.4352 0.9783 0.8333 0.7083 0.9792 0.9375 0.7547 0.7816 0.6026 0.9574
MG07 0.6964 0.9091 0.4352 0.9783 0.8125 0.6250 0.9792 0.9375 0.7500 0.7407 0.6026 0.9574
MG08 0.7143 0.8824 0.4299 0.9783 0.8333 0.6250 0.9583 0.9375 0.7692 0.7317 0.5935 0.9574
MG09 0.8396 0.9286 0.7220 0.9929 0.5855 0.3421 0.9737 0.9211 0.6899 0.5000 0.8291 0.9556
MG10 0.7949 0.9574 0.7178 0.9930 0.4079 0.2961 0.9539 0.9276 0.5391 0.4523 0.8192 0.9592
MG11 0.8058 0.9464 0.7164 0.9928 0.5461 0.3487 0.9474 0.9079 0.6510 0.5096 0.8159 0.9485
MG12 0.7333 0.9773 0.8284 0.9855 0.0377 0.1473 0.9589 0.9315 0.0717 0.2560 0.8889 0.9577
MG13 0.8095 0.9811 0.8237 0.9855 0.0582 0.1781 0.9281 0.9315 0.1086 0.3014 0.8728 0.9577
MG14 0.8000 0.9811 0.9857 0.9851 0.0548 0.1781 0.9452 0.9041 0.1026 0.3014 0.9650 0.9429

C
A

M
I

MG15 0.7397 0.8000 0.7644 0.9261 0.2714* 0.1206* 0.7990 0.8191 0.3971* 0.2096 0.7813 0.8693
MG16 0.6883 0.8462 0.7027 0.8377 0.2663* 0.1106* 0.7839 0.8040 0.3841* 0.1956 0.7411 0.8205
MG17 0.4531 0.7368 0.7608 0.9302 0.1457* 0.1407* 0.7990 0.8040 0.2205* 0.2363 0.7794 0.8625
MG18 0.4839 0.7778 0.6996 0.8223 0.1508* 0.1407* 0.7839 0.8141 0.2299* 0.2383 0.7393 0.8182

Table 6.3.: Comparison of SLIMM against di�erent tools regarding precision and
recall on species-level: The highest values in each row are highlighted in strong green
for both precision and recall. *GOTTCHA and mOTUs have unfairly lower recall and
F1 values due to their database which does not contain the complete set of references
for the corresponding read-sets

Where, T P is the number of species which are originally in the sample and called by
the tools, whereas FP is the number of species which are not initially in the samples
but are yet reported by the tools. Similarly, FN are the number of species which are
initially in the sample but got missed by the tools.

Table 6.3 shows the results on accuracy of taxonomic pro�les reported by di�erent
metagenomic classi�ers including SLIMM. The table lists the precision, recall, and F1-
Score of the method on 18 di�erent read-sets. SLIMM showed a superior performance
regarding precision over the other tools (13 of the 18 cases). SLIMM and Kraken showed
comparable and good results in the recall category. SLIMM is second place exceeding
Kraken occasionally. However, Kraken produced a higher number of false positives to
attain this recall, hence the lower numbers in precision. GOTTCHA performed well
with the HMP read-sets while it underperformed in the rest of the read-sets in general.
mOTUs does not perform well in all of the read-sets. We provided F1-Score in the table
as a measure of the right balance between precision and recall. SLIMM outperforms all
the other tools both in precision and F1-Score in 17 of the 18 cases while Kraken is
slightly better in recall for the majority of the cases.

We performed a PR curve analysis to assess the robustness of methods to cuto� values.
Two read-sets were considered for this purpose, the staggered HMP mock community
read-set and one of the CAMI challenge read-sets. We �rst sorted the list of predicted
species by reported abundances in decreasing order. Then, we considered more species
from the sorted list and followed the progression of precision and recall to obtain PR

60

6.4. Accuracy Evaluation

curves in iterative way. The resulting PR curves in Figure 6.2 indicate that SLIMM has
a better recall rate than the other tools while staying precise. This is an indication that,
SLIMM is more resilient to cuto� values than the competing methods. Interestingly
GOTTCHA has not detected any false positive hits for the HMP mock community
read-set. Due to that, it stayed precise the whole time but could not achieve the recall
level of SLIMM and Kraken as it misses 2 organisms in its report. mOTUs exhibited
similar behavior, but it misses more than half of the 22 organisms in the sample.

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mOTUs GOTTCHA Kraken SLIMM

Pr
ec

isi
on

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kraken SLIMM

B.
CA

M
Ic

ha
lle

ng
e

re
ad

-s
et

(M
2-

S0
01

-in
se

rt-
18

0)

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mOTUs GOTTCHA Kraken SLIMM

A
.H

M
P

m
oc

k
co

m
m

un
ity

-
st

ag
ge

re
d

re
ad

-s
et

TPR (Recall)

Figure 6.2.: PR curves used to compare SLIMM against existing methods. True positive
rate (TPR)/recall is drawn against precision. SLIMM showed the highest performance.
GOTTCHA did not discover any false positives but is low in recall.

In a similar experiment, we investigated the e�ect of our coverage landscape based
�ltering procedure as well as the in�uence of read mappers used in the alignment
step. We have also performed a digital normalization on the raw input reads before
the alignment step following the recommendation by Piro et al.. Figure 6.3, clearly
shows that turning o� the �ltering procedure caused a signi�cant loss in performance.
The choice of read mapper also a�ects the accuracy of taxonomic pro�les produced
by SLIMM signi�cantly. Mapping results obtained using the Yara read mapper have
better precision and recall compared to those produced using Bowtie2. We believe the

61

6. SLIMM Evaluation

sensitivity of the Yara read mapper in reporting all the alignments locations of a read
within a user-de�ned mapping quality is the main reason for this. The e�ect of digital
normalization in improving the quality of taxonomic pro�les generated by SLIMM was
negligible contrary to the �ndings by Piro et al..

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

Pr
ec

isi
on

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

B.
CA

M
Ic

ha
lle

ng
e

re
ad

-s
et

(M
2-

S0
01

-in
se

rt-
18

0)
0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

A
.H

M
P

m
oc

k
co

m
m

un
ity

-
st

ag
ge

re
d

re
ad

-s
et

TPR (Recall)

Figure 6.3.: PR curves used to compare di�erent variants of SLIMM. SLIMM-DG
(with digital normalization), SLIMM-NF (without �ltration), SLIMM-NF-DG (without
�ltration but with digital normalization) and SLIMM-BOWTIE2 using the Bowtie2
read mapper are included.

6.4.2. Correctness of Abundance

Another crucial aspect of taxonomic pro�ling is how accurate the abundances assigned
to detected organisms. SLIMM’s performed better than existing methods by reporting
abundances closer to the actual abundances which are the basis of simulation. The
scatter plots in Figure 6.4 A) and B), where the true abundance of organisms used
for simulation are drawn against their predicted abundances, show that SLIMM’s
abundances are the closest to the real abundances. The two scatter plots are based

62

6.4. Accuracy Evaluation

A. Randomly Simulated - 500 Species

Pr
ed

ic
te

d
A

bu
nd

an
ce

0.000

0.002

0.004

0.006

0.000 0.002 0.004 0.006
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

mOTUs
GOTTCHA
Kraken
SLIMM

0.000

0.002

0.004

0.006

0.000 0.002 0.004 0.006
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

mOTUs
GOTTCHA
Kraken
SLIMM

B. CAMI challenge read-set (M2-S001-insert-180)

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

Kraken
SLIMM

Real Abundance

Figure 6.4.: Scatter plots showing the divergence between abundances predicted by
di�erent tools and the actual abundances used in simulation. SLIMM predicted the
abundances more accurately than the other tools. Kraken overestimates the abun-
dance values. GOTTCHA and mOTUs did not perform well in predicting the correct
abundances.

63

6. SLIMM Evaluation

on taxonomic pro�les generated by di�erent methods using one of the randomly
simulated read-set and one of the CAMI challenge read-set. From these plots, it can
be seen that SLIMM predicts the abundance more accurately. Even though it was not
originally developed for abundance estimation, the next best tool is Kraken which
slightly overestimates the true abundance. mOTUs and GOTTCHA do not perform
well at predicting the abundances. Similar plots on more read-sets are provided at A.7.

A. Randomly Simulated - 500 Species

A
bu

nd
an

ce
di

�e
re

nc
e

|p
re

di
ct

ed
-r

ea
l|

0.00

0.01

0.02

0.03

0.04

mOTUs

GOTTCHA
Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

Methods

B. CAMI challenge read-set (M2-S001-insert-180)

A
bu

nd
an

ce
di

�e
re

nc
e

|p
re

di
ct

ed
-r

ea
l|

0.00

0.01

0.02

0.03

Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

Methods

Figure 6.5.: Violin plots showing the divergence of predicted abundances from the
actual abundances. SLIMM has the lowest divergence from true abundances. SLIMM’s
abundances are better with the coverage landscape based �lter than without.

Violin plots are similar to box plots, but additionally, they visualize the density distribu-
tion of di�erent data points. The violin plots in Figure 6.5 show how good the di�erent

64

6.5. Summary

tools predicted the abundances compared to the actual abundances. In these plots, we
can see that SLIMM has the lowest divergence from true abundance values. For the
randomly simulated read-set, SLIMM has an average absolute di�erence of 0.00073,
and Kraken has an average absolute di�erence of 0.00116 which is 159% higher com-
pared to SLIMM. For the same read-set, GOTTCHA and mOTUs have an average
absolute di�erence of 0.00206 and 0.00273 respectively. SLIMM also received the most
correct (closer) abundances with absolute di�erences of �rst quartile (Q1)=0.00002
and third quartile (Q3)=0.00016. Kraken is the second-best tool in this regard with
values Q1=0.00018, Q3=0.00065.

Similar to the PR curve analysis, we did a comparison among di�erent con�gurations
of SLIMM by switching o� our novel coverage landscape �ltering (SLIMM-NF), by
applying digital normalization prior to read-mapping (SLIMM-DG), the combination
of the two (SLIMM-DG-NF) and using the Bowtie2 read mapper for alignment step
(SLIMM-BOWTIE2). The �ltering step in SLIMM is a crucial part of the method as it is
shown in the violin plots of �gure 6.5. The scatter plots of predicted vs. real abundances
in �gure 6.6 show similar evidence about the importance of the �ltering module. Other
factors such as the read mapper used and the application of digital normalization have
a small e�ect on the correctness of reported abundances. In Appendices (A.6, A.7, and
A.8), we provide plots on more read-sets.

6.5. Summary

In this chapter, we presented a detailed evaluation of SLIMM as a taxonomic pro�ling
tool. Using 18 di�erent read-set from di�erent sources and compositions, we evaluated
the accuracy of SLIMM and compared it to three other existing methods. The hetero-
geneity of read-sets and their sources, including third-party sources, is a testimony
to how rigorous our benchmark is. The results show SLIMM is a computationally
e�cient, and accurate taxonomic pro�ler which produces a precise and yet sensitive
list of member organisms of a microbial community. We have also shown the individual
relative abundances produced by SLIMM are the closest to the real abundances used
for simulation among all the methods considered in this evaluation.

Our detailed investigations on the e�ect of the new coverage based �lter reveal that,
the �lter is at the core of SLIMM’s performance. The results show this �ltration module
is crucial to create an accurate list of organisms and predict their abundances correctly.
We have also noted that using a fully sensitive read mapper such as Yara has a positive
e�ect on the taxonomic pro�ling process.

65

6. SLIMM Evaluation

A. Randomly Simulated - 500 Species

Pr
ed

ic
te

d
A

bu
nd

an
ce

0.000

0.001

0.002

0.003

0.004

0.005

0.000 0.001 0.002 0.003 0.004 0.005
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

0.000

0.001

0.002

0.003

0.004

0.005

0.000 0.001 0.002 0.003 0.004 0.005
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

B. CAMI challenge read-set (M2-S001-insert-180)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

Real Abundance

Figure 6.6.: Scatter plots showing the divergence between abundances predicted by
by di�erent variants of SLIMM and the actual abundances used in simulation.

66

Part III.

Read Mapper for Large Databases

67

7. DREAM-Yara

In this chapter, we propose and explain the DREAM index framework to address the
problem posed by relying on a single large index where databases are growing and
changing frequently. Then we describe a working implementation of the framework
which consists of three signi�cant contributions. The �rst contribution is a taxonomy
based clustering/binning method for a collection of database sequences (e.g. bacterial
genomes). Our second contribution is a novel data structure for quickly distributing
reads across bins that relies on a combination of Bloom �lters [100] and k-mer counting.
The last contribution is a distributed, parallel version of the Yara read mapper [101].
Implementation of the IBF is under review for merging in the SeqAn library. DREAM-
Yara code and software is available for download at https://github.com/temehi/dream_
yara

7.1. Introduction to DREAM Index Framework

Modern sequencing technologies brought a super-exponential growth of sequencing
capacities that led to a progressive generation of raw sequencing reads. These reads fuel
the continued growth of reference databases via either a de novo or guided assembly
of genomes. The raw sequencing reads are also often stored in public databases where
they can be re-examined for a hypothesis outside their original experimental scope.
However, our focus is on reference genome databases and how to cope with their
growing size, mainly regarding making search operations viable.

Public genomic reference databases are expanding in daily bases both in diversity
(genomes of new species) and redundancy (re-sequencing species which already have
a genome). For example, GenBank’s WGS section reference database has become
more than 25x bigger in nucleotide bases and 15x bigger in the number of sequences
in the past ten years. Even though the number of species with reference genomes
has increased, a signi�cant portion of the growth can be attributed to re-sequencing
species with an already existing genome. In case of prokaryotes, sequencing di�erent
strains of the same species is a common practice. Figure 7.1 shows the annual increase
of genome assemblies stored in GenBank. The �gure also highlights the number of
species which did not have a reference genome before. The plot clearly shows the
majority of the new sequences added to the GenBank database are not coming from

69

https://github.com/temehi/dream_yara
https://github.com/temehi/dream_yara

7. DREAM-Yara

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

1

2

3

4

5

6

7
·104

Year

N
um

be
ro

fn
ew

en
tri
es

New Species New genomes

Figure 7.1.: The number of new assemblies (genomes) added to the GenBank database
per year in the last decade. The number of new species introduced is getting relatively
smaller compared to the total number of genomes added to the database.

species new to the database. This suggests high level of sequence similarity between
multiple entries. Note that two genomes of di�erent species can also have a signi�cant
similarity depending on their taxonomic relationship.

Searching millions of sequencing reads against reference databases, considering ap-
proximate matches is ubiquitous in computational biology. The search process is
computationally expensive due to the overwhelming number of queries and the size of
the database. Traditionally this is undertaken by indexing the reference database using
either Burrows-Wheeler-Transform (BWT) based FM-indices (also often referred to as
compressed su�x arrays (CSA) [47] or hash-based indexing. Even though it is compu-
tationally expensive to build it, such an index reduces the search time dramatically.
The cost for indexing amortizes over time due to the static nature of the reference. This
assumption does not hold when databases are changing faster than the index building
process, because frequent updating of indices is required.

Most researches on indexing large genomic databases depend on a strong assumption
that once an index is built it can be used repeatedly, for a long period, without the
need for an update. A good example is the human genome (hg38) which is �ve years
old. Popular read mappers can provide an already built index of hg38 to avoid the
lengthy process of building an own index by the user. The repeated usage assumption
does not hold when we are dealing with a set of multiple reference genomes that are
changing daily (e.g., reference genomes of all prokaryotes). In general, the current

70

7.1. Introduction to DREAM Index Framework

state of the art indexing data structures are not designed considering frequent changes
of the underlying databases.

The main bottleneck comes from the static nature of the data structures used for index-
ing. The resulting index is often big, non-modular and monolithic data structure, which
makes it costly (a) to change small parts of a sequence, or (b) to add or delete complete
sequences while maintaining the ability to support fast approximate string searches.
For example, in metagenomics, this problem becomes more and more recurrent. Many
metagenomics search tools (e.g. [102, 62]) and read mappers [49, 101] use FM-indices
[47]) and have to index about 50 to 200 gigabases. Due to constant uploads from the
community, the database changes on a daily or weekly basis and thus require a newly
constructed index. Recomputing a single index of this size is quite costly regarding
space and time, even if approaches of merging BWTs are used [103, 104]. It takes about
one day to compute the index for the databases used in our experiments. On the other
hand, the ability for fast approximate searches in such an index is crucial. It is used
either directly to �nd all approximate occurrences of a (short) string or parts of it in
seed-and-extend approaches.

Dream index framework

Va
rio

us
im

pl
em

en
ta
tio

ns
of

dy
-

na
m
ic
,c
om

pr
es
se
d,

se
ar
ch
ab
le

In
di
ce
s

FM
In
de
x

Si
m
pl
e
JS
T

IJS
T

...

Dynamic
operation
distributor

: Add
- Edit
7 Delete

Approximate
search

distributor
stream
à à à

Database of Sequences
S1
.
.
.
.
.
.
.

SN

Query Sequences

Figure 7.2.: Sketch of the DREAM index framework. The red sequence piece among
the green ones symbolizes that we do not require a perfect partitioning allowing us to
use fast methods. The boxes on the right symbolize the potential use of di�erent index
implementations. Note that we use solely FM-indices in the context of this thesis.

The DREAM index framework o�ers various solutions for the problems discussed above
by introducing modularity through clustering of sequences in a reference database and
creating multiple indices on the clusters opposed to one big index. As depicted in 7.2
the DREAM index has two major components, i.e., the dynamic operations distributor,
which handles the creation of clusters and corresponding indices, and the approximate

71

7. DREAM-Yara

search distributor, which distributes search queries to a subset of indices with a potential
mapping location. The implementation of these two components of the framework can
vary depending on some key parameters of the input set (size of the input, amount of
redundancy, the importance of rebuilding time vs. search time). In the next sections, we
will present a detailed and working implementation of the DREAM index framework
with the goal of creating a scalable read mapper that can handle frequently changing
reference databases.

In a similar work, Mohamadi et al. presented a method where references are partitioned
and indexed separately based on size. Then they used on-the-�y constructed Bloom
�lters to dispatch, and map reads against the individual partitions. This approach
comes short when reference databases are rather large, and there is a need to create
many partitions. While investigating this method, we noticed two crucial bottlenecks.
First, read dispatching was ine�cient, meaning the method mapped almost all reads
against all partitions resulting in slower overall mapping time. Besides, the dispatched/-
partitioned reads are written to disc creating an additional IO overhead. Second, the
merging step to create one alignment result from individual alignment �les takes too
long.

7.2. Dynamic Operations Distributor

The dynamic operations distributor is one of the two main components in the DREAM
index framework. It is responsible for creating many small indices given a set of
database sequences (�gure 7.2). The dynamic operations distributor achieves this by
creating non-overlapping partitions of the input database. We call these partitions bins.
The e�ciency of the framework is highly dependent on the ability to create “good
quality” clusters. A high degree of similarity and redundancy inside each cluster and
a clear di�erence between di�erent clusters is considered as “good quality”. Various
clustering approaches such k-mer based sequence clustering can be employed to realize
the partitioning of large reference databases into smaller parts. The choice of clustering
strategy is highly dependent on the nature of the reference databases.

The high level of redundancy, which is common among large reference databases is
desirable for clustering. A typical example is the set of prokaryotic references genomes
which contains many strains of bacteria belonging to the same species. Reference
genomes from the 100,000 genome project [106] are also great examples of large
reference sets with a high degree of similarity. For prokaryotic genomes one can use the
existing taxonomic classi�cation to make clusters as in [107] or opt for a more complex
and taxonomy agnostic k-mer based sequence clustering. However, reference genomes
from the 100,000 genome project need a di�erent clustering/partitioning strategy than
prokaryotic genomes. For example, if we create bins based on chromosome numbers,
that would e�ectively create 23 bins. This approach can be further extended by cutting

72

7.3. Dynamic Search Distributor

the chromosomes into chunks and put chunks from the same locus into the same
bin. Since sequences belonging to the same bin are highly similar, they are naturally
amenable to compression techniques (e.g. [108, 109]). On the other hand, compression
usually makes it costly to implement the main operations on the data, namely �nding
approximate matches of (many) queries (approximate in the sense of edit distance).

After partitioning the original set of reference sequences into many smaller bins,
corresponding indices are created for each bin. The indexing method could vary as
long as it supports the desired approximate search that will follow. We address the
resulting individual indices as sub-indices, since they cover only a fraction of our
original search space. Sub-indices are computationally cheap to build due to the small
size of the bins. The dynamic operations distributor should also be able to add/remove
sequences to/from the collection of sub-indices quickly in a two-step process. The �rst
step is to decide into which bin the sequence will be added or from which it will be
removed. We decide by cross-checking the clustering strategy used to create the bins.
Then the sub-indices of an a�ected bin can be rebuilt to re�ect the changes. Updating
a sequence is equivalent to deleting the original sequence and adding the updated
version.

7.3. Dynamic Search Distributor

The second major component of the DREAM index framework is approximate search
distributor. This layer of the framework deals with the distribution of sequencing reads
among sub-indices during an approximate search. By applying a fast �ltering strategy,
it should avoid searching all sequencing reads against all sub-indices. This kind of
distribution signi�cantly reduces the number of search operations and facilitates data
parallelization. By doing so, we can compensate for the overhead created by searching
multiple small sub-indices compared to searching against a single big index. Another
purpose of the approximate search distributor is to collect and consolidate the search
results from each sub-indices. The consolidation process deals with identifying best
matches and valid matches for a read in a global context.

7.4. DREAM Index Framework - Implementation

In this section, we discuss our implementation of DREAM index framework with the
goal of creating a full-�edged read mapper with an indexing module that can handle
frequent changes in the reference database. We built the distributed read mapper on
top of the Yara read mapper which uses a standard FM-index. Many but small FM-
indices are used as sub-indices since they support fast approximate queries and give a
coarse-grained dynamization by simply rebuilding a sub-index if needed. We used a

73

7. DREAM-Yara

k k-mer space unique k-mers unique k-mers / k-mer space

12 1.68E + 07 8.39E + 06 0.5001
13 6.71E + 07 3.36E + 07 0.5000
14 2.68E + 08 1.34E + 08 0.5000
15 1.07E + 09 5.32E + 08 0.4951
16 4.29E + 09 1.85E + 09 0.4303
17 1.72E + 10 4.43E + 09 0.2576
18 6.87E + 10 7.18E + 09 0.1046
19 2.75E + 11 9.16E + 09 0.0333
20 1.10E + 12 1.03E + 10 0.0094

Table 7.1.: The k-mer content of the RefSeq prokaryotic database downloaded on the
date 2017-09-26.

novel data structure based on bloom �lters in conjunction with the q-gram lemma as
an approximate search distributor. In the following subsections, we will discuss the
implementation details of di�erent components that make up the dynamic operations
distributor and the approximate search distributor of the DREAM index framework.

7.4.1. Mapping Metagenomic Reads

The need to create a read mapper for metagenomic reads, which can accommodate
NCBI’s RefSeq database [27] of complete prokaryotic genomes, heavily in�uenced our
implementation of the DREAM index framework. As a result, we started by analyzing
the DNA content of RefSeq complete bacterial and archaeal genomes downloaded
on the date 2017-09-26. The dataset comprises 15,250 sequences representing 2,991
species, summing up to a total of 31.34 billion nucleotide bases. Since we use a k-mer
based pre-�lter before read-mapping, we have also analyzed the k-mer content of the
database. Table 7.1 shows the number of unique k-mers in the database in comparison
with the total number of possible k-mers (k-mer space) for the selected values of k.

We have partitioned the reference database into 64, 256 and 1024 bins using two
di�erent clustering strategies: 1) Based on the NCBI taxonomy and 2) Using a k-mer
based sequence clustering algorithm. We will discuss both approaches and present
the result of our investigation in the following section. We devised a simple metric
called e�ective binning ratio (EBR) to measure clustering e�ciency as follows. First, we
de�ne an e�ective text size ETS (T, k) of a given sequence database T in the context of
its k-mer content as the number of unique k-mers it contains. The EBR of a clustering
that creates b bins is given by

74

7.4. DREAM Index Framework - Implementation

EBR =

∑b
i=1 ETS (Ti, k)
ETS (T, k)

(7.1)

Where Ti represents the sequence in bin number i. Naturally the value of EBR is
between 1 (where all the bins contain disjoint unique k-mers) and b (when all bins have
identical unique k-mers). For a �xed value of k, a value of EBR closer to 1 indicates a
better clustering.

7.4.2. Clustering Sequences Using NCBI’s Taxonomy

The NCBI taxonomy is a form of clustering by itself where similar organisms are
grouped hierarchically. TaxSBP1 (https://github.com/pirovc/taxsbp), is an implemen-
tation of the approximation algorithm for the hierarchically structured bin packing
problem [107] based on the NCBI Taxonomy database [68]. We create bins in such a
way that they span a small number of branches of the taxonomic tree. In other words,
sequences belonging to the same species are more likely to be in the same bin. One can
easily control the number of bins as desired. This clustering method is very e�cient,
given that it uses the “pre-clustered” taxonomic tree information to generate similarly
sized groups of closely related sequences. In this work, we will consider contiguous
sequences in the given reference genomes as the smallest unit of sequences that to be
clustered into bins. That means we will not split those sequences into smaller parts.
Adding and removing sequences is also straightforward. When a new sequence arrives,
we simply add it into a bin that contains the sequence of a close relative according to
the taxonomy.

Using TaxSBP, we created three di�erent clustering of the RefSeq databases by varying
the number of bins (64, 256 and 1024) and analyzed the e�ectiveness of the clustering
using the metrics de�ned above. The results shown in table 7.2 indicate that shorter
k-mers (k<15) are not discriminating enough among clusters. The EBR corresponding
to k=19 and k=20 are less than 1.5 which indicates good clustering performed by
TaxSBP.

There are two drawbacks of taxonomic based clustering, i.e., 1) Its dependency on the
availability of a taxonomic tree. In our case-study (mapping metagenomics reads to the
RefSeq prokaryotic database) there exists an already de�ned taxonomic tree. 2) It does
not consider the real sequences similarity. Although rare, if two sequences are very
similar, but their taxonomic assignment is far apart, they will end up in di�erent bins.
In the next subsection, we discuss a k-mer based clustering which can be used in the
absence of taxonomic information and considers the actual content of the sequences
to perform clustering.

1TaxSBP is implemented and maintained by V. Piro, one of the co-authors of the DREAM-Yara paper.
The author of this thesis only used TaxSBP.

75

https://github.com/pirovc/taxsbp

7. DREAM-Yara

Method # bins
k

12 13 14 15 16 17 18 19 20

TaxSBP
64 56.58 44.90 27.15 11.95 4.65 2.27 1.52 1.24 1.13
256 180.13 109.84 49.06 17.11 5.81 2.64 1.70 1.37 1.23
1024 510.95 234.66 82.23 24.68 7.72 3.36 2.12 1.68 1.50

k-mer based
64 41.16 32.94 21.09 10.12 4.22 2.14 1.46 1.21 1.11
256 92.72 62.97 32.84 13.14 4.85 2.31 1.52 1.24 1.12
1024 180.04 103.49 45.07 15.64 5.31 2.42 1.56 1.26 1.13

Table 7.2.: The e�ective binning ratio (EBR) of clustering the RefSeq prokaryotic
database into 64, 256 and 1024 bins using TaxSBP and k-mer based clustering.

7.4.3. k-mer Based Clustering of Sequences

Using frequencies of canonical k-mers from each sequence as an input vector, we
applied a k-means clustering. The EBR of the clusters was better than that of taxonomic
based clustering (Table 7.2). However, k-means clustering produced uneven clusters.
Some of the bins were too large, which undermines the DREAM index framework. We
tried to re�ne the clustering to achieve even distribution across the bins. After we have
done the initial clustering, we further re�ned the bins that are too big and merging
the small bins. However, this approach was not e�cient, and the overall process was
computationally expensive. Besides, updating the bins were di�cult as we can not
easily decide in which bin to add a new sequence. Due to this we abandoned the small
improvement in EBR by this clustering method and used the more straightforward and
faster taxonomic based clustering (TaxSBP) for our implementation of the DREAM
index framework.

7.4.4. Binning Dictionary and q-gram Lemma

Using TaxSBP, we can partition the database text T into b bins in such a way, that a bin
Bi contains similar parts of T denoted by Ti. Sub-indices can be created fast for each
bin using Ti as an input. Updates can be performed quasi-dynamically by rebuilding
only the sub-indices a�ected by the change. This process covers the dynamic operations
distributor layer of the DREAM index framework. For the approximate search distributor
we use what we call binning dictionary together with the well-known q-gram lemma.

A binning dictionary D contains the membership information of all k-mers in the
original database across the bins for a given value of k. A binning directory returns
a binning bit vector in which the i-th bit is set if the k-mer is present in bin Bi for a
given a k-mer, a. There are three main requirements for a binning directory. 1) As it

76

7.4. DREAM Index Framework - Implementation

A C G G A C G A A C T T G C C ... A C C A GPattern P

A C G G A

C G G A C

G G A C G

G A C G A

A C G A A

C G A A C

G A A C T

A A C T T

A C T T G

C T T G C

T T G C C

...

A C C A G

7

7
7
7

7

7
7
7
7
7

Figure 7.3.: Illustration of the q-gram Lemma: One mismatch in a pattern can destroy
q q-grams (5-mers). Here, the �rst error at (G) will destroy the �rst three 5-mers. The
second error at (C), however destroys 5 5-mers

will be used for �ltration before an approximate search, a binning directory should be
su�ciently sensitive. 2) It has to be fast so that it can o�set the overhead of dealing
with b-many sub-indices. 3) It should support fast (preferably partial) updates when
there is a change in some of the bins.

Lemma 7.1. For a given k and number of errors e, there are kp =| p | −k + 1 many
k-mers in p and an approximate occurrence of p in T has to share at least t = (kp− k · e)
k-mers.

We combine our binning dictionary D with the q-gram lemma to distribute sequencing
reads across the bins for approximate search. The lemma is based on the observation
that one error can destroy at most q many q-mers. Figure 7.3 illustrates the reason
behind the q-gram lemma. Whereas �gure 7.4 shows how we can decide which bins
have a potential for an approximate match for a read in a single batch operation. First,
we zero initialize a count vector of size b. For every k-mer in a sequencing read the
binning dictionary returns a bitvector of size b. We increment the count vector at
positions where the bitvector is set. After repeating the process for all the k-mers of
the read, we check the count vector for values exceeding the threshold given by the
q-gram lemma and search the corresponding bins for the read. This process provides a
means to have an approximate search distributor within the DREAM index framework.

77

7. DREAM-Yara

0 0 0 0 0 ... 1 1 0 1 0 1 ... 0 0 0 0 0 0 ... 1 0 0 0 ...

Binning Dictionary D

Pattern p

A C G G A C G A ... A C C A G

A C G G A

C G G A C

G G A C G

...

A C C A G

0 0 0 0 1 ... 1

1 0 1 0 1 ... 1

1 1 1 1 0 ... 0

...

1 0 0 0 1 ... 0

5 2 4 0 3 ... 3

sub − bitvectors o f D
f or kmers o f pattern p

X Xpotental bins f or pattern p (threshold = 4)

S V(k1)

S V(k2)

S V(k3)

S V(kn)

Count(P)

Figure 7.4.: The q-gram lemma using binning dictionary (D). For each k-mer ki

generated from a pattern p we extract binning sub-bitvectors S V(ki) representing
the bins containing k-mer ki. For all set bits in S V(ki) we increment the counter of
corresponding bin. Bins whose counter is greater than or equals to the threshold (in
this case 4) will be searched for an approximate match for p.

78

7.5. Interleaved Bloom Filters (IBF)

7.5. Interleaved Bloom Filters (IBF)

We now discuss how we implemented an e�cient, easy to build and update binning
dictionary using a novel data structure that we named IBF. Even though we are using
b-many bloom �lters as underlying data structures, our interleaved arrangement of
the bloom �lters is di�erent than that of Mohamadi et al..

7.5.1. Bloom Filters

Bloom �lters [100] are data structures that are used to perform set membership queries
with a �exible option to trade-o� false positive rate with the size of the data structure.
It is de�ned by a bitvector of adjustable size n and a set of h independent hash functions
that map a key value, in our case a k-mer, to one of the bit positions. To insert a
k-mer to a Bloom �lter we simply set h bit positions de�ned by h hash functions to
1 (see �gure 7.5 for illustration). Bloom �lters have zero false negative rate, i.e., they
guarantee to report the presence of a member object if it is in the set. Depending on
the size of the bitvector (n), collisions could happen within a single hash function (a
hash function returning identical hash values for di�erent k-mers) or among di�erent
hash functions (two hash functions returning the same hash value for di�erent k-mers).
These collisions are the source of false positive answers by bloom �lters. However, one
can tune-down the probability of having a false positive answer to an acceptable level
by increasing the bitvector size.

0 ... 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ... n

H1(ACGTG) = 12

1

H2(ACGTG) = 23

1

H1(GTTGG) = 37

1

H2(GTTGG) = 9

1

H1(GATTG) = 23

1

H2(GATTG) = 30

1

Figure 7.5.: Adding k-mers to a Bloom �lter using two hash functions. k-mers are
added by setting bits at position returned by the hash functions. H2(ACGTG) and
H1(GATTG) both yielded 23 creating a collision.

During lookup, a k-mer is considered present in the Bloom �lter, if all h positions are
set to one. Note that a Bloom �lter can give a false positive answer if other k-mers set
the h bits. However, if the Bloom �lter size is large enough, the probability of a false
positive answer is low. A Bloom �lter of size n bits with h di�erent hash functions and
m elements inserted has the following probability of giving a false positive answer.

79

7. DREAM-Yara

p f p =

1 − (
1 − 1

n

)h·mh

. (7.2)

It is recommended to allocate su�cient space (n), such that p f p does not become too
large and hurt the precision of the answer. A good rule of thumb is to make n greater
than h × m.

In our scenario, we have b-many di�erent sets where b is the number of bins we
partitioned our reference database into, and the objects are k-mers generated from
each bin. If we use conventional Bloom �lters to answer k-mer membership queries,
we need b-many Bloom �lters and assemble the results into a binning bitvector. This
approached was used in [105] where they used a stand-alone Bloom �lters for each bin.
The problem is executing k-mer membership quires millions of times against b-many
Bloom �lters creates a computational overhead as it involves too many cash misses.

Our solution to the problem is combining b Bloom �lters (one for each bin) with
identical hash functions into a single composite Bloom �lter by interleaving them. To
put it di�erently, we replace each bit in the single Bloom �lter by a (sub)-bitvector of
size b, where the i-th bit ”belongs” to the Bloom �lter for bin Bi. We call the resulting
Bloom �lter an Interleaved Bloom Filter (IBF). The IBF has a size of b×n. When inserting
a k-mer from bin Bi into the IBF, we compute all h hash functions which point us to
the position of the block where the sub-bitvectors are and then simply set the i-th bit
from the respective beginnings. Hence, we e�ectively interleave b Bloom �lters in a
way that allows us to retrieve the binning bitvectors for the h hash functions easily.
When querying in which bins a k-mer is, we would retrieve the h sub-bitvectors and
apply a logical AND to them which results in the required binning bitvector indicating
the membership of the k-mer in the bins. This approach has a signi�cant advantage in
query time as retrieving a (sub)-bitvector is extremely cache-friendly. The procedure
is depicted in Figure 7.6.

As it is explained in the binning dictionary, we decide which bins are a potential
target for a read by applying the q-gramm lemma (lemma 7.1). The IBF tells in which
bins a given k-mer occurs by returning a binning bitvector. Hence, we can look up
each k-mer from a pattern in the IBF, retrieve the binning bitvector that marks the
k-mer’s bin-membership, and update an array of counters for each bin. If the counter
exceeds the threshold for the bin, the pattern will be searched approximately in the
bin, otherwise not. Figure 7.4 depicts this approach is where a generalized binning
dictionary is used instead of an IBF.

The IBF ful�lls all the three requirements of a binning dictionary, which is instrumental
to implement an approximate search distributor. 1) It is fully sensitive as Bloom �lters
are. 2) It is fast thanks to the cash-friendly retrieval of k-mer membership across the

80

7.5. Interleaved Bloom Filters (IBF)

0 0 0 ... 1 1 0 1 ... 0 0 0 0 ... 1 ... 1 0 0 ... 1 0 0 1 ... 0 0 0 1 ... 1

1 0 1 0 0 1 ... 0 1 0 1 0 0

. . .

0 1 0 0 0 0 ... 0 0 1 1 0 0

0 0 0 0 0 0 ... 1 0 0 0 0 0

0 1 0 0 1 0 ... 0 1 0 0 0 1

IBF

BF1

BF2

BF3

BFb

b b b b b b

|IBF| = b ∗ n

|BFb| = n

H1(ACGTACT) =

H2(ACGTACT) =

H3(ACGTACT) =

0 0 0 ... 1
0 0 1 ... 1
1 0 0 ... 1&

Bins of ACGTACT = 0 0 0 ... 1

Figure 7.6.: A schematic of the IBF. Di�erently colored Bloom �lters of length n for
the b bins are shown in the top. The individual Bloom �lters are interleaved to make
an IBF of size b × n. In the example, we retrieve 3 positions for a k-mer (ACGTACT)
using 3 di�erent hash functions. The corresponding sub bitvectors are combined with
a bitwise & giving us the needed binning bitvector.

81

7. DREAM-Yara

32 GB IBF 16 GB IBF
k 17 18 19 20 17 18 19 20

64 1.00E-08 2.00E-08 2.00E-08 2.00E-08 9.00E-08 1.20E-07 1.40E-07 1.50E-07
256 2.00E-08 2.00E-08 3.00E-08 3.00E-08 1.60E-07 1.90E-07 2.00E-07 2.10E-07
1024 1.70E-07 1.70E-07 1.70E-07 1.80E-07 1.32E-06 1.34E-06 1.37E-06 1.40E-06

Table 7.3.: Average false positive rate of bloom �lters which are interleaved within
the IBF on the bins created by TaxSBP. Three di�erent binning (64, 256 and 1024), a
range of k-mer sizes (17-20), and two bitvector sizes (16 GB and 32 GB) are shown.

bins. 3) It can be partly updated in a straightforward way to re�ect changes in bins.
Consider the contents of the ith bin has changed. First, we reset the corresponding
ith bits from every sub-bitvector of the IBF. Then we add the k-mers from the same
updated bin to the IBF. We can simultaneously update multiple a�ected bins in parallel.

7.5.2. Performance of the IBF on Metagenomic Data

Dataset: In order to check the performance of the IBF we used the NCBI’s RefSeq
database of complete prokaryotic genomes described at the beginning of this section.
The database contains 31.34 GB of DNA sequences. We build IBFs for three binning
scenarios of this database (64 bins, 256 bins, and 1024 bins) created using the TaxSBP
program. We tried both k-mers of length 19 and 20 to create the IBF. Even though
the e�ective binning ratio is better for 20-mers than it is for 19-mers (table 7.2), the
�nal �ltration e�ciency based on the q-gram lemma is comparable between the two
k-mer sizes when checked with real data. We believe, this is because the threshold
from q-gram lemma, given the number of errors and the length of reads, is higher for
19-mers, which boosted the �ltering e�ciency.

Update set: To demonstrate the partial updating of the IBF, we consider the same
database after approximately three months (downloaded on the date 2017-12-19). We
speci�cally consider the updated genomes of Escherichia Coli which sums up to 0.23
Gbp. 155 new sequences and one removed sequence were part of the update. The
update a�ected 5 out of 64 bins, 15 out of 256 bins, and 42 out of 1024 bins.

Metagenomic reads: We have downloaded a publicly available sequencing run with
SRA id SRR6504858. The source of the DNA was a human gut and the sequencing
was done by Nanfang Hospital of Southern Medical University. This read-set contains
paired sequences, 150 bases long each, produced by Illumina HiSeq X Ten instrument.
For practical reasons we considered only the forward pair of reads to evaluate the IBF.
The number of reads is 42,692,634.

82

7.5. Interleaved Bloom Filters (IBF)

IBF Max Time (hh:mm:ss) Avg.
Size Resident IBF IBF IBF Filter Reads Filter

(GB) k Mem
(GB)

build update load reads per bin Factor
64

bi
ns

16 19 16.21 1:12:45 0:06:15 0:00:33 0:41:03 313416 136
16 20 16.21 1:12:54 0:06:17 0:00:33 0:40:44 317363 135
32 19 32.21 1:19:40 0:08:21 0:01:04 0:40:43 305419 140
32 20 32.21 1:18:27 0:08:21 0:01:04 0:40:08 308439 138

25
6

bi
ns

16 19 16.20 1:12:56 0:05:51 0:00:33 0:52:10 105752 404
16 20 16.20 1:14:03 0:06:01 0:00:32 0:51:45 108344 394
32 19 32.20 1:19:54 0:07:56 0:01:04 0:48:05 102794 415
32 20 32.20 1:18:12 0:07:55 0:01:04 0:47:37 104764 408

10
24

bi
ns

16 19 16.17 1:12:40 0:04:23 0:00:33 1:34:21 51051 836
16 20 16.17 1:13:05 0:04:21 0:00:33 1:33:38 53252 802
32 19 32.17 1:18:04 0:06:14 0:01:04 1:15:54 48584 879
32 20 32.17 1:18:07 0:06:15 0:01:04 1:15:18 50058 853

Table 7.4.: Evaluation of the interleaved Bloom �lters (IBF) on multiple setup of
parameters. The evaluation is performed on the clustering the RefSeq prokaryotic
database into 64, 256 and 1024 bins using TaxSBP and k-mer values 19 and 20. The IBF
performed well for both bitvector sizes of 16 GB and 32 GB.

Infrastructure We used a workstation computer equipped with Intel(R) Core(TM) i5-
8500 CPU and 64GB of memory. Even though our implementation of the IBF supports
parallelization that scales linearly, we used a single thread to run the commands.

The results of performance evaluation on the IBF are shown in table 7.4. These Results
show that the IBF is robust to parameterization both concerning computational per-
formance and �ltering e�ciency. It took an average of approximately 1 hour and 16
minutes to build the IBF for 31GB of genomic reference database on a single thread. We
want to mention that our implementation of the IBF has a multi-threading support and
the observed speedup is close to the number of threads used. The 32GB version of the
IBF took slightly (5-7 minutes) longer to build than 16 GB version. There is virtually
no di�erence in build time associated neither with the number of bins nor with the
length of k-mers used, which indicates that the IBF is a scalable data-structure that
can easily support even larger databases.

Updating the IBF for the update set mentioned above took less than 7 minutes. This is
again on a single thread and multi-threading support is available in our implementation.
The time required for updating the IBF is independent of its size and the number of
bins. On top of a �xed amount of time required to load the data structure from disk
and save it back, the update time is only sensitive to the size of the update. As shown
in table 7.4, the amount of RAM required both to build and update the data structure is
the same as the size of the IBF bit vector with a small addition for bu�ering sequences

83

7. DREAM-Yara

and “bookkeeping”.

In order to investigate the �ltration and distribution e�ciency, we applied di�erent
con�gurations of the IBF on metagenomic reads (table 7.4). If we have done approximate
searching, without a �lter (in this case the IBF) all 42 M reads would have been
distributed to every bin. The average number of reads in the table shows that a
signi�cantly less number of reads are kept after the �ltration. In this experiment we
are looking for approximate matches up to 5 (3% of errors) mismatches. The “�lter
factor” is the ratio between number of �ltered reads per bin and the number of reads
before �ltering. In our setup the “�lter factor” is higher for the smaller value of k=19,
compared to k=20. This observation is counter-intuitive and related the dynamics of
q-gram lemma threshold in relation to the number of errors and read length. In our
example the �lter threshold is 18 ((150−19+1)−19×5) and 11 ((150−20+1)−20×5)
for for k=19 and k=20 respectively, which creates a more tight �lter for k=19. More
detail, on how the q-gram lemma behaves under di�erent read length, error rates and
k-mer sizes, is given at appendix A.9.

On the other hand the “�lter factor” gets better with a larger number of bins as the
individual bins are getting smaller and more specialized. A small increase in “�lter
factor” is observed in the 32 GB version of the IBF compared to 16 GB version. This is
due to the di�erence in the false positive rate of bloom �lter in relation to the bit vector
size(table 7.3). However the di�erence is negligible and can be ignored if one needs
to optimize for memory usage or to speedup index loading time. More performance
evaluations on the IBF, including the e�ect of parallelization, will be presented in
chapter 8 in combination with the evaluation of the DREAM-Yara read mapper.

We strongly anticipate, that the IBF will be a useful data structure for a wide range
of applications. Applications that involve set membership queries across multiple
bins/groups/sets, especially for assessing k-mer content can bene�t from the IBF.
When writing this manuscript for DREAM-Yara ([110]), it was brought to our attention
that Bradley et al. independently thought of a similar data structure in [111], although
they do not use them in conjunction with the q-gram lemma and do not employ the
strategy of interleaving them.

7.6. FM-indices per Bin

After partitioning the databases smaller partitions (bins), standard FM-indices are built
on individual bins. We call the small indices sub-indices. The sub-indices can be built
in parallel as they are independent. The main advantage of having such sub-indices is
the modularity they provide during an update operation. One needs to rebuild only
the sub-indices of a�ected bins. In our experiments, we modi�ed the indexing module
of the Yara read mapper [54, 110] to create FM-indices in parallel. In addition to the

84

7.7. Distributed Yara - A Trivial Distribution

speedup gained by multi-threading, building all sub-indices on smaller partition took
three times less time than building a single index. Multi-threaded construction of FM-
indices is not currently available in standard yara_indexer implementation. Another
advantage of building small sub-indices is the low memory footprint which makes
index construction possible on a standard laptop. Nevertheless, the short update time
remains the main advantage of creating small sub-indices.

7.7. Distributed Yara - A Trivial Distribution

Here we describe a straightforward approach of distributed read-mapping as it was
done in [105] using the sub-indices created. In this naive approach, we take our set
of reads and iteratively map them to the corresponding sub-indices of each bin as
opposed to using an approximate search distributor of the DREAM index framework.
This approach has all the advantages related to index construction and update time.
However, the overhead created by the sub-indices and the reduction mapping speed
outweighs the bene�ts (see table 8.1 in chapter 8 for more details). Another issue is
the validity of mapping results across the bins. Mapping results obtained from each
sub-indices have to be consolidated, which involves identifying the �nal best/primary
match among others. Nevertheless, we did benchmark the trivial distributed read-
mapping in combination with the Yara read mapper and called it “Distributed Yara”.
Our benchmark results indicate that the distributed indices are too slow unless they
are complemented with a smart �lter (approximate search distributor) and in memory
consolidation of mapping results. In the next section, we present our solution to the
problem as the DREAM-Yara software.

7.8. DREAM-Yara

Now, we describe the fully featured read mapper we implemented based on Yara read
mapper to support the DREAM index framework. DREAM-Yara was engineered to
counterbalance the e�ect of having multiple sub-indices 1) by using a lightweight
�lter to distribute reads into bins with a mapping potential. 2) Consolidating mapping
results before writing them to disk. In order to explain its integration with the DREAM
index framework as DREAM-Yara, in the following we provide a rough description of
the Yara read mapper itself. We limit the explanation to aspects of the read mapper
relevant to the integration process. For more detailed read, we recommend reading
publications [54, 110].

85

7. DREAM-Yara

7.9. The Yara Read Mapper

The Yara read mapper [54, 110] is currently state of the art read mapper of the SeqAn
library [55, 112]. It is an exact read mapper that reports all mapping locations of a read
within a user-de�ned error threshold in contrast to popular read mappers that deploy
a heuristic such as Bowtie 2 [48] and BWA [49]. The reason for using heuristics is
mostly related to reducing the computational time. Even if Yara mapper does not use
any heuristic, it is faster than the methods which do so. The e�ciency of Yara stems
from a well-engineered set of known computational algorithms implemented in the
SeqAn library. Yara combines known algorithmic concepts in a novel way to achieve
superior performance, which we leverage in our DREAM-Yara adoption.

Yara uses the concept of strata based mapping where stratum is de�ned by the distance
between a read and the genome at a mapping location. Matches with similar distance
fall under the same stratum. Given a maximum distance k allowed for a match, an
all-mapper should report all the matches for a stratum of distance [0, k]. For practical
purposes best+x mapping is o�ered by Yara. In best+x mapping, matches at a stratum
corresponding to the best match and x extra strata of matches will be reported. The
number of extra strata is lower than the maximum distance allowed (k). Note that a
stratum is always reported exhaustively. Yara always reports exhaustively all equally
good matches of a read. In other words, no read match with the same quality/error
will be left out, which is not the case for heuristic-based read mappers.

In the beginning, read pairs are treated independently by Yara. After reporting all the
matches, the library information (insert size of library length) is used to choose the
primary mapping location. That is if two equally viable mapping locations exist for
each pair, the one that respects the insert size is regarded as a primary match.

7.10. DREAM-Yara Adoption

We design DREAM-Yara on top of the original Yara mapper to support sub-indices.
DREAM-Yara takes bin-many FM-indices and an IBF as an additional input compared to
Yara. All the other parameters and Input settings are identical to Yara. Alignment �les
produced by DREAM-Yara are identical to those produced by the standard Yara mapper
using one BIG index which reassures users that there is no compromise concerning
mapping result quality. DREAM-Yara includes all the parameters of Yara, hence can be
con�gured to report all-mapping, best+x mapping, and best mapping similar to Yara.
DREAM-Yara inherits all the good qualities of Yara by using it as a core mapper.

The DREAM-Yara software collection is a �rst complete implementation of the DREAM
index framework. DREAM-Yara’s indexer has modules to create many sub-indices
(FM-indices) on smaller bins, and update bins that are a�ected. These modules make

86

7.10. DREAM-Yara Adoption

a dynamic operation distributor under the DREAM index framework. DREAM-Yara
uses TaxSBP to cluster sequences into a desired number of bins before indexing. The
indexer also has a sub-module that can create and update IBFs. Which for later usage
to distribute reads in a �ltered way using the q-gram lemma. In the end, it consolidates
all the mapping results obtained from individual bins and cross-validates them. The
validation process involves 1) checking the best stratum, 2) identifying the best matches
of a read across the bins, and selecting a primary match among the best matches. The
IBF based �ltration to distribute reads and the match consolidation process of DREAM-
Yara represent the approximate search distributor layer of the DREAM index framework.

By adding a �ltration layer between loading reads from a disc and performing the actual
mapping using Yara’s algorithm, we were able to counter the overhead created by using
many small indices. The signi�cant decrease in the number of approximate searches
(table 7.4) is essential for making distributed indices a viable alternative compared
to using one big index. We show this by comparing the trivial distribution of reads
without �ltering against DREAM-Yara. We present detailed results in the next chapter.

In DREAM-Yara, sequencing reads are loaded to memory in batches. Next, each read
goes through an IBF based �lter to decide which bins have a potential for a mapping
location for that read. This is done by generating all k-mers from a read and looking
them up in the bins using an IBF. For each k-mer, the IBF returns a bitvector of length
b, where b is the number of bins. The bitvector indicates in which bins the k-mer exists.
We use this bitvector to increment a count vector of length b and repeat the process
for each k-mer of the read. Then we look at the count vector to decide which of the
bins shared more k-mers than required by the q-gram lemma threshold depending on
read length and the maximum allowed mismatch/error. This process creates b di�erent
subsets out of the loaded reads representing the di�erent bins. We handle reverse
complements and paired reads in a generous fashion. That is, a read belongs to a subset
Rbi if it, or its reverse complement, or its mate pair shares enough number of k-mers
with bin Bi.

After �ltration, we use Yara’s core mapping algorithm to �nd all mapping locations
for each of the corresponding reads assigned to that bin. Then we collect mapping
results from all subsets and merge them. While merging, DREAM-Yara creates a global
ranking of all mapping locations based on mapping qualities. This ranking is the basis
to decide which matches are best matches and primary matches. Some matches which
are within parameters set by a user in a context of a bin might get discarded in the
merging process. For example, if the user wants only the best matches (strata − 0),
what was reported as the best match for a bin might not be so in a global context. In
the end, the mapping result is written to a single SAM/BAM �le. The merged mapping
�le DREAM-Yara produces is identical to that of standard Yara, provided that the same
set of parameters, reads and references are used.

87

7. DREAM-Yara

7.11. Summary

In this chapter, we presented the DREAM index framework which addresses the static
nature of indices in an approximate search. By partitioning a large set of references
into smaller clusters, we introduced modularity to the indices, enabling quick partial
updates. Besides, the total time and peak memory required to build sub-indices are
signi�cantly lower than building an equivalent big index. We mentioned that having
many-indices instead of one is against the core principle of indexing itself and will
slow down the search process. The DREAM index framework addresses this issue
using the concept of an approximate search distributor which signi�cantly reduces the
total job done by �ltering and then distributing reads.

In our implementation of a read mapper within the DREAM index framework, we used
a novel data structure called IBF as a �lter. We showed that the IBF is a scalable, fast
and robust data structure to simultaneously lookup k-mers in many bins. With the help
of the IBF, we designed and implemented a read mapper that works with distributed
indices. The next chapter focuses on the evaluation of DREAM-Yara as a read mapper
that works with distributed indices.

88

8. DREAM-Yara Evaluation

In this chapter we will present a thorough evaluation of the DREAM-Yara read mapper
we presented in the previous chapter. We evaluate DREAM-Yara by benchmarking
it against three existing read mappers, the standard Yara mapper and two trivially
distributed read mappers. The three popular read mappers considered in our evaluation
are Bowtie 2 [48], BWA-MEM [49] and, GEM [50]. The brief description of the read
mappers was provided in 3.2.2. We have included Yara read mapper in the evaluation
to help the reader understand the impact of using distributed indices within a similar
set of algorithms. The evaluation focuses on three aspects of the read mappers, i.e.,
the time required to create and update a required index, mapping speed, and mapping
sensitivity.

8.1. Evaluation Setup

8.1.1. Dataset

As metagenomic read-mapping is the main target for DREAM-Yara, we used a reference
set of archaeal and bacterial complete genome sequences downloaded from NCBI’s
RefSeq database [27]. The dataset was downloaded on 2017-09-26 and amounts to
15,250 sequences, summing up to a total of 31.34 Gbp. The database represents 2,991
species. This reference set was partitioned into 64, 256 and 1024 non-overlapping bins
using TaxSBP program for the mappers that required distributed indices. This included
DREAM-Yara, distributed Yara and DIDA-BWA. Clustering times with TaxSBP are
negligible and were not included in the evaluation process

The changes to the same database were downloaded after approximately three months
(on the date 2017-12-19). For practicality we considered sequence additions and dele-
tions speci�c to Escherichia Coli species. This 0.23 Gbp update includes one removed
sequence and 155 new sequences which we believe to be typical set of sequences for
which we want to update our index. When TaxSBP redistributes this update to the
original bins, 5 out of 64 bins, 15 out of 256 bins, and 42 out of 1024 bins were a�ected
by the change. Both the original set and the update set are similar to the ones used for
the evaluation of the IBF in the previous chapter. Information on how to download the
reference sets in di�erent binning con�guration is available at appendix A.10.

89

8. DREAM-Yara Evaluation

To evaluate the computational performance and sensitivity of the read mappers, we use
a publicly available sequencing run (SRA/ENA id: SRR6504858) submitted by Nanfang
Hospital of Southern Medical University. DNA material was extracted from fecal
material representing a gut metagenome and sequenced using an Illumina HiSeq X
Ten instrument. The resulting paired reads sequences were of length 150. Each pair
contains 42 M reads. We used only the �rst pair for practical reasons. In the case of
sensitivity benchmarks by Rabema, we used only the �rst 1 M reads as computing
full list of mapping locations using Razars3 [113] is prohibitively slow to do it for the
whole set of reads.

8.1.2. Infrastructure

All the experiments were carried out on a compute server equipped with 32 (Intel(R)
Xeon(R) CPU E5-2650 v3 2.30GHz) processors and 130GB of memory. All of the tools
were run using 8 threads with the exception of indexing modules of the BWA-MEM
and standard Yara mapper. The index building process in the two read mappers does
not o�er multi-threading support. Bowtie 2 and GEM are the only exceptions of a non-
distributed mapper with multi-threading index building. The IBF used in DREAM-Yara
is built with 18-mers and has a bit vector size of 16GB (137,438,953,472 bits). The exact
and complete commands used in this evaluation are available in appendix A.11.

8.2. Results

In this section, we present the benchmark results of DREAM-Yara, trivial Distribution
of Yara, the DIDA distributed indices framework using BWA-MEM as a mapper, and
other three state of the art read mappers. We organized the results in two parts. 1)
Runtime and memory consumption required to build and update indices, 2) Read map-
per performance including throughput, memory consumption during read-mapping,
and sensitivity analysis using a well de�ned benchmarking method, Rabema [114].

8.2.1. Build and Update Indices

The time and memory required to build and update indices for the metagenomic
reference database described in section 8.1.1 is listed in table 8.1. DIDA framework
using BWA, Distributed-Yara (a trivial distribution similar to the DIDA framework),
DREAM-Yara, standard Yara, Bowtie2, GEM, and BWA are included in the comparison.
The table clearly shows that the advantage of having small sub-indices in improving
the time required to build and update indices. In a standard single index scenario,
the fastest indexer took close to 10 hours, whereas the distributed indices with 1024

90

8.2. Results

bins
Time (hr:min:ss) Peak Memory

Build *Update (GB)

DIDA (BWA) 1024 56:07 2:51 0.06

Distributed-Yara 1024 49:10 3:15 8.32

DREAM-Yara
1024 1:07:03 6:43 16.15
256 1:44:02 9:42 16.16
64 1:57:01 19:04 16.32

Yara 27:17:54 *27:17:54 85.07
Bowtie 2 9:51:42 *9:51:42 89.80
BWA-MEM 19:33:24 *19:33:24 43.83
GEM 20:41:01 *20:41:01 104.00

Table 8.1.: Wall clock time and peak memory required for building and updating
indices. Peak Memory refers to the maximum resident memory occupied by a program
(all threads in case of multi-threading) during execution. ∗ Since it is not possible to
partially update indices for standard mappers, similar values as build time are reported

bins took about 1 hour. That is a ten fold speedup. As some of the read mappers used
multi-threading for indexing, we do not advise a direct comparison of reported times.
Nevertheless, we believe that parallel building of a single big index doesn’t scale well
with the number of threads. This is further supported by the results from Bowtie2 and
GEM which support multi-threading for indexing and were run with 8 threads. But
the speedup was just 1.5× for GEM and 3× for Bowtie 2.

We have evaluated DREAM-Yara in three di�erent bin setups to study the e�ect of
clustering into di�erent number of bins. As it is shown in the table more number of
bins means less index building and updating time. The values reported for the three
di�erent bin-con�guration of DREAM-Yara are aggregations of two values, one from
small FM-indices and another one from an IBF �lter. We took the sum in the case
of runtime, and the maximum of the two in the case of peak memory consumption.
That is why the build time of DREAM-YARA in 1024 bins con�guration, is slightly
higher than that of the trivial distribution (Distributed Yara). Distributed-Yara uses the
same FM-indices as DREAM-Yara, but there is no need for an IBF as no �ltration is
performed. So in the case of Distributed-Yara, we omit the time and memory related to
IBF construction. A detailed breakdown of these values is presented in table 8.2.

It took the 1024 bins version of DREAM-Yara 1 hour and 7 minutes to index 31.34 Gb of
reference sequences. That is approximately 9 times faster than the next fastest indexer
(Bowtie2) and 26 times faster than the slowest indexer (standard Yara). Distributed-Yara

91

8. DREAM-Yara Evaluation

bins
Build time (hr:min:ss) Update time (hr:min:ss) Peak Memory (GB)
IBF FM TOTAL IBF FM TOTAL IBF FM MAX

1024 17:52 49:10 1:07:03 3:28 3:15 6:43 16.15 8.32 16.15
256 21:28 1:22:33 1:44:02 3:40 6:02 9:42 16.16 12.38 16.16
64 20:04 1:36:56 1:57:01 9:23 9:41 19:04 16.32 16.32 16.18

Table 8.2.: A break down of runtime and memory for index building in DREAM-Yara
between FM-indices and an IBF.

and the DIDA framework using BWA exhibited the best time in creating and updating
indices. Despite of having the least computational requirements during indexing step,
we do not �nd them to be practical considering how slow they make the mapping
process as it is shown in the next section. DREAM-Yara is only 18 minutes slower
in creating and 3 minutes slower in updating indices than Distributed- Yara. These
di�erences are due to the time needed for building and updating the complementing
IBF which are shown in table 8.2.

Even more appealing result is the time required to update indices. As we have explained
before, in the case of standard one big index, there is no possibility to partially update
the indices. One has to build the index again from scratch irrespective of how small
change is. That is why we reported the same values under the update column of table
8.1 for the standard read mapper. This are not actual values recorded, hence the * mark
on the values. We safely assumed it would take at least the same amount of time as
the updated set is larger. On the other hand it took only few minutes to update the
a�ected sub-indices. The more bins we have, the faster incorporating the same amount
of update gets. In the 1024 bins setup updating the a�ected (42) sub-indices took less
than 7 minutes. In the 256 and 64 bins setup updating the corresponding a�ected
sub-indices took 10 and 19 minutes respectively. This is a signi�cant improvement
compared to several hours required to rebuild a single index.

Another interesting result is the extremely lower memory required to build and update
distributed indices. All the standard read mappers required an enormous amount of
memory to index the 31.34 Gbp set of reference sequences, while DREAM-Yara indexer
required 62% less memory compared to BWA which is the next best method concerning
memory. The e�ciency in memory requirement of BWA is re�ected in DIDA-BWA
which is requiring the least amount of memory o� all cases. Distributed-Yara and the
DIDA framework using BWA also have the smallest amount memory footprint. As
it is shown in table 8.2, the IBF is responsible for the peak memory consumption of
DREAM-Yara indexer. Memory consumtion reported in the table are coming from
the index construction in particular. The memory requirement of building distributed
indices is low enough to allow building it on average current day laptop, even for huge
databases.

92

8.2. Results

8.2.2. Read-Mapping

We compared the mapping speed of the read mappers using read-mapping throughput
in giga base pairs per hour (Gbp/h) and memory consumption. That is the amount
of reads mapped against a �xed set of reference sequences in one hour. Yara [s=0] is
the fastest read mapper with the highest throughput (16.59 Gbp/h) followed by GEM
(12.73 Gbp/h) and Bowtie 2 (7.71 Gbp/h). The results are shown in �gure 8.1.

0

10

20

30

40

50

60

70

0.19

17.31

57.89

47.07

41.07

53.74

28.4

M
em

or
y
[G

B]

Memory

Dis
trib

ute
d-Y

ara

DR
EA
M-
Yar

a
Yar

a
GE
M

Bo
wti

e 2

BW
A-M

EM

DID
A-B

WA
0

5

10

15

20

0.16

5.96

16.59

12.73

7.71

5.4

0.04

Read Mappers

Th
ro
ug

hp
ut

[G
bp

/h
]

Throughput

Figure 8.1.: Read mappers performance - throughput and peak memory evaluated
using 42 M metagenomic reads (SRA/ENAid: SRR6504858)

The trivial distribution of Yara using 1024 small sub-indices is 103.69× slower than
standard Yara. This does not include merging results from each bins. DIDA-BWA is the
slowest of all in mapping speed at 0.04 Gbp/h (135× slower than the standard BWA-
MEM). These numbers showcase the overhead created by having smaller sub-indices.
DREAM-Yara is only 2.78 times slower than standard Yara and competitive with the
other read mappers. DREAM-Yara showed 37× better throughput compared to the
trivial distribution of Yara. DREAM-Yara requires signi�cantly less memory during
read-mapping compared to Bowtie2, BWA and standard Yara. Its memory requirements
are second only to the trivial distribution of Yara. The results are con�rmations
that DREAM-Yara removes the bottleneck of large index reconstruction successfully
while remaining in speed and memory consumption competitive to the standard read
mappers.

The Rabema benchmark [114] can be used to measure the sensitivity of read mappers
in �nding “relevant” mapping locations of genomic reads within a reference(set). In

93

8. DREAM-Yara Evaluation

our context we de�ne all mapping location which are as good as the best mapping
location to be relevant locations. In other words, mapping locations in the best strata
are considered relevant. We refer to mapping locations with equal number of edit
distance co-optimal mapping locations. Rabema computes the sensitivity of each tool as
the fraction of relevant mapping locations found by the tool. Rabema further organizes
mapping locations into groups by their error rate then computes sensitivity within
each error rate group allowing an in-depth evaluation.

The Rabema benchmark produces two kinds of sensitivity reports, which di�er by the
weight given to matches of a read depending on the number of mapping locations that
a read has. In Absolute kind of sensitivity we simply divided the number of co-optimal
matches reported by the number of ground truth co-optimal locations. Every match
weighs equally. In a normalized sensitivity report, on the other hand, matches from
a read that maps everywhere are weighted less and a match unique to a read weighs
the best. The �nal sensitivity is given by the average sensitivity calculated for each
read. For instance, if two reads r1 and r2 map to the database with e.g. 0 errors and
assume r1 maps uniquely and r2 maps at 100 locations. Assume a read mapper �nds
the unique location of r1 and only 50 locations for r2. In the normalized sensitivity
case, Rabema will report a sensitivity of (1/1+50/100)

2 =0.75 and in the absolute sensitivity
case, it will report a sensitivity of 1+50

1+100 =0.5049.

We used RazerS 3 [113], another fully sensitive read mapper from the SeqAn library, to
build Rabema’s gold standard. RazerS 3 was run in full-sensitive mode within 5 % error
rate. Subsequently, we provided the reads as unpaired to each tool, as the Rabema
benchmark is not suited to work with paired-end reads.

Table 8.3 shows both normalized and absolute Rabema results. The left panel shows
percent scores normalized by the number of valid mapping locations. Hence, as pointed
out above, repetitive reads have less weight. Distributed-Yara, DREAM-Yara and Yara
[s=0] are 100% sensitive both in normalized and absolute sensitivity measures. In
the brake down of the sensitivity in error groups, indicated by the small numbers in
table 8.3, the full sensitivity of Yara and derivatives stays 100% for all error categories.
There is no loss in mapping sensitivity due to the distribution of mapping. To our
surprise GEM is not full-sensitive even though it claims to be so; it loses small fraction
of normalized locations starting from 2 % error rate up. Bowtie 2 and BWA are neither
fully sensitive nor designed to be so. They loose a number of co-optimal mapping
locations especially the ones with higher error rate.

In metagenomics ”repetitive” reads are often a result of multiple genomes of similar
organisms as opposed to repetitive regions in a genome. Until decisions are made
which genomes are the actual source of a read, it is desirable to gather all mapping
locations for non-trivial downstream analysis. In other words, all mapping locations
are signi�cant for downstream analysis. The right panel of table 8.3 shows Rabema
results where we considered the absolute number of co-optimal locations without any
normalization. Here, DREAM-Yara, Distributed-Yara and Standard Yara [s=0] are the

94

8.2. Results

Co-opt. locations
[% Normalized] [% Absolute]

Distributed-Yara [s=0] 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0

100.0 100.0 100.0

DREAM-Yara [s=0] 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0

100.0 100.0 100.0

Yara [s=0] 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0

100.0 100.0 100.0

GEM 99.8 100.0 100.0 99.9
99.5 99.7 94.8 96.4 100.0 99.8 95.4

74.2 67.6 79.3

Bowtie 2 99.8 99.9 100.0 99.9
99.7 99.5 97.3 81.6 80.8 90.4 89.9

67.6 63.4 81.3

BWA-MEM 99.3 100.0 100.0 99.8
98.2 93.8 90.1 85.2 83.6 92.1 93.6

81.5 72.7 84.5

DIDA-BWA 99.5 100.0 100.0 99.8
98.2 93.8 – 85.2 83.6 92.1 93.6

81.5 72.7 84.5

Table 8.3.: Rabema benchmark results on 1 M metagenomic reads (SRA/ENA id:
SRR6504858) mapped against 31.34 GB archaeal and bacterial references from NCBI’s
RefSeq database. The colored panels show the results of �nding all co-optimal mapping
locations of the reads; Big numbers show total Rabema scores, while small numbers
show marginal scores for the mapping locations at

(
0 1 2
3 4 5

)
% error rate. The left panel

shows the sensitivity of mappers normalized by the number of locations reported per
read, while the right panel shows absolute sensitivity.

95

8. DREAM-Yara Evaluation

clear winners in sensitivity. They found all co-optimal locations; GEM loses 5.6 % of
locations at 2 % error rate.

8.3. Results Summary

Our benchmark results in this chapter show that DREAM-Yara removes the bottleneck
of large index reconstruction successfully while remaining in speed and memory
consumption competitive to state-of-the-art read mappers. This is supported by the
37.25× speedup on a trivial distribution without a �lter and in memory consolidation of
results. Looking at time and space requirements for mapping, DREAM-Yara needed 56%
less memory when compared against Bowtie2, BWA and standard Yara. DREAM-Yara
allows to both create index and do read-mapping of metagenomic reads against the
complete prokaryotic reference genomes of RefSeq (31.4 Gbp) on a personal computer
as it requires only a maximum of 17 GB primary memory.

96

Part IV.

Conclusion and Miscellaneous

97

9. Conclusion

9.1. Discussion

In this thesis, we presented two computational methods that utilize WGS data for
studying microbial communities. We started by motivating the need to study microbial
communities by elaborating their importance in di�erent sectors. Then we came to the
topic of taxonomic pro�ling, which is instrumental in studying microbial communities
comparably. The ambiguity resulted from the similarity between the genomes of
di�erent microbial organisms is a challenge posed to the taxonomic pro�ling process.
SLIMM, our contribution to improving taxonomic pro�ling regarding accuracy, uses
the coverage landscape of genomes to resolve such ambiguities and achieves a high
precision in reporting member organisms at a species level. It also looks deeper into
the aspect of reporting correct abundances for detected groups and o�ers more close
to real abundances than computing methods.

Taxonomic pro�ling methods relay on reference databases which are often substantial.
Large databases might not be directly the case with marker-based methods such as
MetaPhlAn2 [79]. However, the markers themselves need to be generated from big
databases. These databases are getting larger due to cheaper and more advanced
sequencing technologies. On one hand, the rate of change made to these databases is
getting faster. On the other hand, existing methods rely on the static natures of the
indexing data structure. Researchers often justify, the high cost of creating indices and
the lack of means to incorporate changes into indices with the argument “How often
one builds an index?”. However, in metagenomics, reference databases are changing in
daily basis.

It is widely accepted that, in the context of taxonomic pro�ling, read mapping is
too slow for metagenomic reads [115]. The growing number of taxonomic classi�ers
which solely use k-mer information and avoid read alignments is a testimony for that.
However, in critical situations like diagnosis, alignment-based methods o�er a better
level of con�dence. Hence, it is essential to develop them further so that they could
catch up with the growth of databases. The growth of databases also challenges k-mer
based methods. In a recent paper, Nasko et al. investigate how the growth of databases
in�uence k-mer based methods. They argue that the growing species-to-genus ratio
will challenge read assignment at a species level. Another astonishing fact they pointed

99

9. Conclusion

out is the doubling of the number of unique 31-mers every 1.5 years. That is an
alarming rate of an increase considering the Terabyte memory requirement of k-mer
indices these tools need at the moment. There are ongoing e�orts in creating a reduced
version of metagenomic reference databases [117].

Naturally, the results of taxonomic pro�ling can only be as good as the database used.
Any taxonomic pro�ler can identify a species, using environmental sequences, if that
species has a representation in the database used. We believe, it is imperative to
consider the quadrupled number of species represented in the NCBI’s RefSeq in the
past �ve years. It is questionable to use taxonomic pro�les generated with a database
from �ve years ago. The prohibitively slow task of building indices for databases and
the tedious job of cleaning up and customization required before indexing is tempting
to use a relatively old database.

In a systematic approach to the problem, we proposed the DREAM index framework
and discussed it in this thesis. We introduced sub-indices instead of one big index in
the interest of modularity. We build sub-indices from bins formed by clustering similar
sequences together. Having multiple sub-indices enables partial updates on a�ected
part of the database. If widely applied, the DREAM index framework could help ease the
decision of using an up-to-date database. It is evident that using multiple small indices
creates a prohibitive overhead in the read mapping process. We demonstrated this
overhead using experiments involving a trivial distributed read mapping. The proposed
DREAM index framework aims to counter that using its approximate search distributor
layer, where reads are distributed for approximate search after quick �ltering.

Coming back to the problem of read-mapping in metagenomics, we presented DREAM-
Yara, a distributed index read mapper developed under the DREAM index framework.
To realize that, we needed an implementation of a lightweight �lter that distributes
reads before mapping. In the process, we came up with a novel way of using many
bloom �lters in a cache-friendly way by interleaving them and treating them as a single
bloom �lter. We named the resulting data structure a IBF. The IBF can answer k-mer
membership queries for a large number of bins simultaneously and quickly. It also
scales well to the number of bins and size of databases. Combining the IBF with the
famous q-gram lemma, we created a working implementation of an approximate search
distributor. In the end, we combined these concepts to create an in-memory distributed
version of the Yara read mapper and called it DREAM-Yara.

Sub-indices for DREAM-Yara can be created order-of-magnitude faster than the stan-
dard read mappers, and It takes only a few minutes to update them. DREAM-Yara
is competitive in speed with state-of-the-art read mappers. DREAM-Yara’s memory
requirement both to create indices and perform read mapping is low enough to allow
indexing and searching the 31GB RefSeq database of genomes in a typical desktop
computer. More importantly, updates on references can be easily incorporated to
metagenomic pipelines without the nightmare of a day-long indexing process.

100

9.2. Future Work

9.2. Future Work

We �rmly believe that DREAM-Yara will be a very practical, exact read mapper for
metagenomic short reads. Full integration of SLIMM and DREAM-Yara would result
in an accurate taxonomic pro�ler that can handle frequent changes in databases. If
DREAM-Yara is used to obtain the alignment �les required as an input in SLIMM’s
pipeline, the overall memory requirement of the pipeline will drop signi�cantly. This
will broaden the accessibility towards groups and individuals without a big computing
server. More importantly the availability of complete and up-to-date database coupled
with SLIMM’s high precision has a potential application for reliable microbiome (as
well as pathogen) surveillance.

To use DREAM-Yara in a broader context other than metagenomic read mapping,
we need a clustering method that does not require a taxonomy as an input. This is
instrumental in order to generalize the read mapper to any reference sets. A consider-
able amount of investigation of clustering methods suitable for this task is required.
Methods like Cd-hit [118] and a more recent method MeShClust [119] work well in
clustering a decent set of sequences. Whether or not they scale to more extended set of
genomes needs to be checked. In addition to scaling, to fully utilize the IBF for �ltering,
it is essential to have bin-sizes evenly distributed. The individual �lters, corresponding
to bins, in the IBF, has to be equally sized. If there are bins with signi�cantly higher
sizes than the rest, it would mean, either making all bloom �lters large enough for
these outliers or accepting the high false positive rate for the outliers. It is also essential
that, the clustering method is transparent enough to add a new sequence into existing
cluster.

The work on IBF can be further extended to di�erent applications other than read
mapping. There are ongoing e�orts to apply it in searching RNA-Seq experiments from
the SRA. Piro et al. have developed a metagenomic read classi�er using the IBF which
can easily handle the WGS (including draft genomes) version of RefSeq. If engineered
carefully and a proper clustering method is devised, it could also speed up blast like
searches.

101

Appendices

A.1. Command Line Options of select_refs.py

Command line options of select_refs.py under SLIMM pre-processing module
$ python preprocessing/select_refs.py --help
usage: select_refs.py [-h] [-g GROUPS] [-s] [-c] [-t TAXA_IDS]

[-d {refseq,GenBank}] -o OUTPUT_DIR

Selects microbial reference genomes (assemblies) to download based on various
criteria. (NB. This script does not download the actual FASTA files. Instead
it simply identifies a set of genomes/assemblies and their corresponding
download locations.)

optional arguments:
-h, --help show this help message and exit
-g GROUPS, --groups GROUPS

Which group of microbes to consider any combination of
the letters [A], [B], [V] and [F] where B = Bacteria,
A = Archaea and V = Viruses and Viroids (default: AB)

-s, --species_only download one reference per species.
-c, --complete download only complete genomes (includes chromosome

level assembly)
-t TAXA_IDS, --taxa_ids TAXA_IDS

comma separated list of taxonomic ids to be included
(in addition to --groups) into the reference database.
This way you might even add the genome of Eukaryotes.
e.g. the host genome

-d {refseq,GenBank}, --database {refseq,GenBank}
From which database references should be downloaded
(default: refseq)

-o OUTPUT_DIR, --output_dir OUTPUT_DIR
Path of a directory where (intermediate) results will
be saved

103

Appendix

A.2. Command Line Options of collect_refs.py

Command line options of collect_refs under SLIMM pre-processing module
$ python preprocessing/collect_refs.py --help
usage: collect_refs.py [-h] -t TSV_FILE [-tr {1,2,3,4,5,6,7,8,9,10}]

[-bd BUFFER_DIR] -o OUTPUT_DIR

Download reference genomes using a list compiled by select_refs.py.

optional arguments:
-h, --help show this help message and exit
-t TSV_FILE, --tsv_file TSV_FILE

Path to a TSV file containing genomes to download and
their corresponding FTP path. (a result from running
select_refs.py)

-tr {1,2,3,4,5,6,7,8,9,10}, --threads {1,2,3,4,5,6,7,8,9,10}
number of threads for downloading in parallel in the
range 1..10 (default: 1)

-bd BUFFER_DIR, --buffer_dir BUFFER_DIR
directory containing already downloaded files to avoid
repetitive downloads. Symbolic link will be created to
already existing files in this directory

-o OUTPUT_DIR, --output_dir OUTPUT_DIR
Path of a directory where (intermediate) results will
be saved

A.3. Command Line Options of merge_refs.py

Command line options of merge_refs under SLIMM pre-processing module
$ python preprocessing/merge_refs.py --help
usage: merge_refs.py [-h] -t TSV_FILE -i INPUT_DIR -o OUTPUT_FILE

Merge downloaded reference genomes into one single FASTA file. Contigs will
be delimited by a sequence of NNNs

optional arguments:
-h, --help show this help message and exit
-t TSV_FILE, --tsv_file TSV_FILE

Path to a TSV file containing genomes to download and
their corresponding FTP path. (a result from running
select_refs.py)

-i INPUT_DIR, --input_dir INPUT_DIR
Path to directory containing downloaded FASTA files.
(a result from running collect_refs.py)

-o OUTPUT_FILE, --output_file OUTPUT_FILE

104

A.4. Command Lines Used in SLIMM Evaluation

A.4. Command Lines Used in SLIMM Evaluation

The following command lines were used to run di�erent taxonomic pro�ling tools, in
order to produces the results described in chapter 6.
/usr/bin/time -v \

slimm --rank species --output-prefix ${SAMPLE_NAME} ${SLIMM_DB} ${SAMPLE_NAME}.sam

kraken-build --download-taxonomy --db ${K_DB};
kraken-build --db ${K_DB} --clean;
/usr/bin/time -v \

kraken --fastq-input --output ${SAMPLE_NAME}.kr --db ${K_DB} ${SAMPLE_NAME}.fastq
/usr/bin/time -v \

kraken-report --db ${K_DB} ${SAMPLE_NAME}.kr > ${SAMPLE_NAME}.kr.tsv

/usr/bin/time -v \
gottcha.pl --prefix ${SAMPLE_NAME} --outdir ${OUT} --database ${GOTCHA_DB} \
--input ${SAMPLE_NAME}.fastq;

/usr/bin/time -v \
mOTUs.pl --prefix ${SAMPLE_NAME} --output-directory ${OUT} ${SAMPLE_NAME}.fastq;

A.5. Detailed Runtime Across Multiple Read-Sets

The following table shows the runtime required to run SLIMM and other methods on
di�erent read-sets.

Read Mapper Taxonomic Profiler

Read-
set

Yara Bowtie2 SLIMM Kraken GOTTCHA mOTUs

M
oc

k MG01 1403 1869 4 359 8428 6551
MG02 93 474 100 68 334 211
MG03 160 893 249 74 334 288

Mimic.Sim
MG04 306 344 14 314 1813 1289
MG05 308 406 19 198 1979 1261

R
an

do
m

.S
im

MG06 373 710 50 200 1971 1286
MG07 360 674 45 201 1889 1319
MG08 368 737 53 200 1925 1285
MG09 394 723 53 193 2052 1291
MG10 424 720 54 200 2035 1336
MG11 450 726 54 196 1937 1308
MG12 414 746 61 198 2052 1300
MG13 438 792 63 204 1917 1332
MG14 418 736 61 197 2007 1315

Sum 5909 10550 880 2802 30673 21372
Average 422.1 753.6 62.9 200.1 2190.9 1526.6

105

Appendix

A.6. Extra Precision - Recall Curves

Here we show additional precision - recall curves (True Positive Rate (TPR)/recall drawn
against precision.) for 8 di�erent read-sets. SLIMM received the highest performance
for all of the read-sets shown here by detecting most of the microorganisms in each
sample while staying precise.

SLIMM vs Existing Methods

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mOTUs GOTTCHA Kraken SLIMM

Pr
ec

isi
on

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mOTUs GOTTCHA Kraken SLIMM

D.
50

0
Sp

ec
ie

s

Ra
nd

om
ly

sim
ul

at
ed

re
ad

-s
et

s

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mOTUs GOTTCHA Kraken SLIMM

C.
20

0
Sp

ec
ie

s

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mOTUs GOTTCHA Kraken SLIMM

B.
50

Sp
ec

ie
s

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mOTUs GOTTCHA Kraken SLIMM

A
.A

B-
64

re
ad

-s
et

TPR (Recall)

106

A.6. Extra Precision - Recall Curves

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kraken SLIMM

Pr
ec

isi
on

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kraken SLIMM

H
.M

2-
S0

02
-in

se
rt-

18
0

CA
M

Ic
ha

lle
ng

e
re

ad
-s

et
s

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kraken SLIMM

G.
M

2-
S0

01
-in

se
rt-

18
0

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kraken SLIMM
F.

M
1-

S0
02

-in
se

rt-
50

00

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Kraken SLIMM

E.
M

1-
S0

01
-in

se
rt-

50
00

TPR (Recall)

107

Appendix

Di�erent Versions of SLIMM

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

Pr
ec

isi
on

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

D.
50

0
Sp

ec
ie

s

Ra
nd

om
ly

sim
ul

at
ed

re
ad

-s
et

s
0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

C.
20

0
Sp

ec
ie

s

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

B.
50

Sp
ec

ie
s

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

A
.A

B-
64

re
ad

-s
et

TPR (Recall)

108

A.6. Extra Precision - Recall Curves

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

Pr
ec

isi
on

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

H
.M

2-
S0

02
-in

se
rt-

18
0

CA
M

Ic
ha

lle
ng

e
re

ad
-s

et
s

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

G.
M

2-
S0

01
-in

se
rt-

18
0

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

F.
M

1-
S0

02
-in

se
rt-

50
00

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SLIMM-NF SLIMM-DG-NF SLIMM-BOWTIE2 SLIMM-DG SLIMM

E.
M

1-
S0

01
-in

se
rt-

50
00

TPR (Recall)

109

Appendix

A.7. Extra Sca�er Plots

Here we provide additional scatter plots (true abundance in the simulation plotted against
predicted abundance) for eight di�erent read-sets.

SLIMM vs Existing Methods

Pr
ed

ic
te

d
A

bu
nd

an
ce

0.000

0.002

0.004

0.006

0.000 0.002 0.004 0.006
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

mOTUs
GOTTCHA
Kraken
SLIMM

D.
50

0
Sp

ec
ie

s

Ra
nd

om
ly

sim
ul

at
ed

re
ad

-s
et

s

0.000

0.002

0.004

0.006

0.000 0.002 0.004 0.006
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

mOTUs
GOTTCHA
Kraken
SLIMM

0.000

0.003

0.006

0.009

0.000 0.003 0.006 0.009
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

mOTUs
GOTTCHA
Kraken
SLIMM

C.
20

0
Sp

ec
ie

s

0.00

0.01

0.02

0.03

0.00 0.01 0.02 0.03
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

mOTUs
GOTTCHA
Kraken
SLIMM

B.
50

Sp
ec

ie
s

0.00

0.01

0.02

0.03

0.00 0.01 0.02 0.03
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

mOTUs
GOTTCHA
Kraken
SLIMM

A
.A

B-
64

re
ad

-s
et

Real Abundance

110

A.7. Extra Scatter Plots

Pr
ed

ic
te

d
A

bu
nd

an
ce

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

Kraken
SLIMM

H
.M

2-
S0

02
-in

se
rt-

18
0

CA
M

Ic
ha

lle
ng

e
re

ad
-s

et
s

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

Kraken
SLIMM

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

Kraken
SLIMM

G.
M

2-
S0

01
-in

se
rt-

18
0

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

Kraken
SLIMM

F.
M

1-
S0

02
-in

se
rt-

50
00

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

Kraken
SLIMM

E.
M

1-
S0

01
-in

se
rt-

50
00

Real Abundance

111

Appendix

Di�erent Versions of SLIMM
Pr

ed
ic

te
d

A
bu

nd
an

ce

0.000

0.002

0.004

0.006

0.000 0.002 0.004 0.006
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

D.
50

0
Sp

ec
ie

s

Ra
nd

om
ly

sim
ul

at
ed

re
ad

-s
et

s

0.000

0.002

0.004

0.006

0.000 0.002 0.004 0.006
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

0.0000

0.0025

0.0050

0.0075

0.0100

0.0000 0.0025 0.0050 0.0075 0.0100
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

C.
20

0
Sp

ec
ie

s

0.00

0.01

0.02

0.03

0.00 0.01 0.02 0.03
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

B.
50

Sp
ec

ie
s

0.00

0.01

0.02

0.00 0.01 0.02
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

A
.A

B-
64

re
ad

-s
et

Real Abundance

112

A.7. Extra Scatter Plots

Pr
ed

ic
te

d
A

bu
nd

an
ce

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

H
.M

2-
S0

02
-in

se
rt-

18
0

CA
M

Ic
ha

lle
ng

e
re

ad
-s

et
s

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

G.
M

2-
S0

01
-in

se
rt-

18
0

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

F.
M

1-
S0

02
-in

se
rt-

50
00

0.000

0.005

0.010

0.000 0.005 0.010
Real Abundances

Pr
ed

ic
te

d
A

bu
nd

an
ce

s

SLIMM-NF
SLIMM-DG-NF
SLIMM-BOWTIE2
SLIMM-DG
SLIMM

E.
M

1-
S0

01
-in

se
rt-

50
00

Real Abundance

113

Appendix

A.8. Extra Violin Plots

Here we provide more violin plots additional to the ones shown in 6.4.2. The violin plots show
the distribution of divergence between predicted abundances and actual abundances across
eight di�erent read-sets.

SLIMM vs Existing Methods

A
bu

nd
an

ce
di

�e
re

nc
e

N
ot

hi
ng

|p
re

di
ct

ed
-r

ea
l|

0.00

0.01

0.02

0.03

mOTUs

GOTTCHA
Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

D.
50

0
Sp

ec
ie

s

Ra
nd

om
ly

sim
ul

at
ed

re
ad

-s
et

s
0.00

0.02

0.04

0.06

mOTUs

GOTTCHA
Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

C.
20

0
Sp

ec
ie

s

0.00

0.02

0.04

0.06

mOTUs

GOTTCHA
Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

B.
50

Sp
ec

ie
s

0.000

0.025

0.050

0.075

0.100

mOTUs

GOTTCHA
Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

A
.A

B-
64

re
ad

-s
et

Methods

114

A.8. Extra Violin Plots

A
bu

nd
an

ce
di

�e
re

nc
e

N
ot

hi
ng

|p
re

di
ct

ed
-r

ea
l|

0.00

0.01

0.02

0.03

0.04

Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

H
.M

2-
S0

02
-in

se
rt-

18
0

CA
M

Ic
ha

lle
ng

e
re

ad
-s

et
s

0.00

0.01

0.02

0.03

Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

G.
M

2-
S0

01
-in

se
rt-

18
0

0.00

0.01

0.02

0.03

0.04

Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

F.
M

1-
S0

02
-in

se
rt-

50
00

0.00

0.01

0.02

0.03

0.04

Kraken

SLIMM-NF
SLIMM

Methods

A
bu

nd
an

ce
 D

if
fe

re
nc

e
(P

ri
di

ct
ed

 -
 R

ea
l)

E.
M

1-
S0

01
-in

se
rt-

50
00

Methods

115

Appendix

A.9. q-gram Lemma Threshold

A plot showing how the threshold of the q-gram lemma react on changing values of read length,
k-mer sizes, and percent error rates. The absolute errors has to be rounded up in order to
preserve the guarantee provided by the Lemma. While using DREAM-Yara, one has to choose
the maximum error rate carefully by considering the read length the k-mer used to build the
�lter and the maximum error rate desired. DREAM-Yara prompts the user when the chosen
parameters result in a threshold equal to zero. This makes the mapper extremely slow as it
turns o� the �lter.

100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Read Length

q-
gr
am

Le
m
m
a
Th

re
sh
ol
d

k
17
18
19
20

e
2% 3% 4%

116

A.10. Reference Datasets

A.10. Reference Datasets

Bellow are the clustered reference genomes used in benchmarking DREAM-Yara in chapter
8. The table lists zipped �lenames corresponding to di�erent binning sizes. Both original
clustering and update sets are listed. The �les contain the RefSeq database of prokaryotic
genomes after clustering them into the speci�ed bins. To build the full index it is enough
to concatenate the individual �les from one of the binning schemes and use them as single
multi-FASTA �le. The database �les can be downloaded from the FTP site ftp://ftp.mi.fu-berlin.
de/pub/dadi/dream_yara_data/.

Number of bins File name

Full set from
Sept. 26, 2017

64 bins A_B_refseq_20170926_taxo_64.tar.gz
256 bins A_B_refseq_20170926_taxo_256.tar.gz

1024 bins A_B_refseq_20170926_taxo_1024.tar.gz

Update set from:
Sept. 26, 2017

64 bins A_B_refseq_20170926_taxo_64_up.tar.gz
256 bins A_B_refseq_20170926_taxo_256_up.tar.gz

1024 bins A_B_refseq_20170926_taxo_1024_up.tar.gz

117

ftp://ftp.mi.fu-berlin.de/pub/dadi/dream_yara_data/
ftp://ftp.mi.fu-berlin.de/pub/dadi/dream_yara_data/

Appendix

A.11. Command Lines Used in DREAM-Yara
Evaluation

The following command lines were used in the benchmarking process of DREAM-Yara, in order
to produces the results described in chapter 8.2. We grouped the set of command lines into
indexing, read mapping, and Rabema benchmark.

Indexing
Yara indexer
/usr/bin/time -v \

yara_indexer \
--output-prefix ${reference}.yara.index \
${reference}.fasta;

DREAM-Yara indexer - IBF
/usr/bin/time -v \

yara_build_filter \
--number-of-bins ${nb} \
--threads 8 --kmer-size 18 --filter-type bloom \
--bloom-size 16 --num-hash 3 \
--output-file ${reference}.dyara_taxo_${nb}.filter;

DREAM-Yara indexer - IBF - update
/usr/bin/time -v \

yara_update_filter \
--threads 8 \
${reference}.dyara_taxo_${nb}_up.filter \
${reference}_taxo_${nb}_up/*.fasta;

DREAM-Yara indexer - FM Index
/usr/bin/time -v \

yara_indexer_dis \
--threads 8 \
--output-prefix ${bin_indices_dir} <bin_ref_dir>/*.fasta;

DREAM-Yara indexer - FM Index - update
/usr/bin/time -v \

yara_indexer_dis \
--threads 8 \
--output-prefix ${bin_indices_dir}

<bin_ref_update_dir>/*.fasta;

Distributed yara indexer - FM Index
Same as DREAM-Yara indexer - FM Index

Distributed yara indexer - FM Index - update
Same as DREAM-Yara indexer - FM Index - update

Bowtie2 indexer
/usr/bin/time -v \

bowtie2-build \
--threads 8 \
${reference}.fasta \
${reference}.bowtie2.index;

. . .

118

A.11. Command Lines Used in DREAM-Yara Evaluation

BWA indexer
/usr/bin/time -v \

bwa index -a bwtsw \
-p ${reference}.bwa.index \
${reference}.fasta;

GEM indexer
/usr/bin/time -v \

gem-indexer \
--threads 8 \
-i ${reference}.fasta \
-o ${reference}.gem.index;

DIDA(-BWA) indexer
/usr/bin/time -v \

sh -c 'ulimit -n $((nb * 2));
mkdir didabwa.dir; cd didabwa.dir;
prt \

--partition ${nb} ${reference}.fasta && \
seq ${nb} | xargs -P 8 -I {} \

bwa index mref-{}.fa;'

119

Appendix

Read Mapping

Yara mapper
/usr/bin/time -v \

yara_mapper \
--threads 8 \
--error-rate 4 \
--secondary-alignments record \
--rabema-alignments \
--sensitivity full \
--version-check OFF -v \
--output-file ${algn}.yara.bam \
${reference}.yara.index \
${reads}.fastq 2> ${algn}.yara.bam.log;

Distributed Yara mapper
/usr/bin/time -v \

sh -c 'seq 0 $((${nb}-1)) | \
xargs -I {} sh -c " yara_mapper \

--threads 8 \
--error-rate 4 \
--secondary-alignments record \
--rabema-alignments \
--sensitivity full \
--version-check OFF -v \
--output-file ${algn}.distyara_taxo_${nb}/{}.bam \
${bin_indices_dir}{} ${reads}.fastq " ';

Distributed Yara mapper - Merge results
/usr/bin/time -v \

seq 0 $((${nb}-1)) | xargs -I {} \
samtools view \

-H ${algn}.distyara_taxo_${nb}/{}.bam | \
grep @SQ | \
awk -F":|\t" '{print $3"\t"$5}' > header.h;

seq 0 $((${nb}-1)) | xargs -I {} \
samtools view -\@ 8 \

-F 4 ${algn}.distyara_taxo_${nb}/{}.bam | \
samtools view \
-b -t header.h - > ${algn}.distyara_taxo_${nb}.bam;

DREAM-Yara mapper
/usr/bin/time -v \

yara_mapper_dis \
--threads 8 \
--filter-type bloom \
--reads-batch 1000000 \
--error-rate 4 \
--secondary-alignments record \
--rabema-alignments \
--sensitivity full \
--version-check OFF -v \
--output-file ${algn}.dyara_taxo_${nb}.bam \
--bloom-filter ${reference}.dyara_taxo_${nb}.filter;

${bin_indices_dir} ${reads}.fastq;

. . .

120

A.11. Command Lines Used in DREAM-Yara Evaluation

Bowtie2 mapper
/usr/bin/time -v \

bowtie2 \
-x ${reference}.bowtie2.index \
-U ${reads}.fastq \
--threads 8 -k 100 \
--end-to-end \
--rg-id none \
--rg SM:none | \
samtools view -@ 8 -bS - > ${algn}.bowtie2.bam;

BWA mapper
/usr/bin/time -v \

/bin/bwa mem \
-t 8 \
-a ${reference}.bwa.index ${reads}.fastq \
-R '@RG\tID:none\tSM:none'| \
samtools view -bS - > ${algn}.bwa.bam;

GEM mapper
/usr/bin/time -v \

sh -c ' gem-mapper \
--threads 8 \
--quality-format ignore \
-m 0.04 -e 0.04 \
-I ${reference}.gem.index.gem \
-i ${reads}.fastq && \

gem-2-sam \
--quality-format offset-33 \
--sequence-lengths \
--index ${reference}.gem.index.gem \
--expect-single-end-reads | \
samtools view -bS - > ${algn}.gem.bam';

DIDA(-BWA) mapper
/usr/bin/time -v \

sh -c 'ulimit -n $((nb * 2));
mkdir didabwa.dir;
cd didabwa.dir; dsp \
--partition ${nb} \
--threads 8 \
--alen 19 \
--bmer 19 \
--step 1 \
--fq \
--se ${reads}.fastq && \
seq ${nb} | xargs -P 8 -I {} \
sh -c "bwa mem \

-o aln-{}.sam mref-{}.fa \
mreads-{}.fastq"; \

mrg \
--partition ${nb} \
--aligner bwa \
--mode fast;'

121

Appendix

Rabema Benchmark

Rabema gold standard preparation
/usr/bin/time -v \

./bin/razers3 \
--thread-count 0 \
--percent-identity 96 \
--recognition-rate 100 \
--distance-range 0 \
--dont-shrink-alignments \
--max-hits 10000000 \
--version-check OFF -v \
--output ${algn}.razers3_gold_unprep.bam \
${reference}.fasta ${reads}.fastq;

/usr/bin/time -v \
./bin/samtools sort -@ 8 \
-n ${algn}.razers3_gold_unprep.bam \
${algn}.razers3_gold_unprep.qname;

/usr/bin/time -v \
./bin/rabema_prepare_sam \

-i ${algn}.razers3_gold_unprep.qname.bam \
-o ${algn}.razers3_gold_prep.bam;

/usr/bin/time -v \
./bin/samtools sort -@ 8 \
${algn}.razers3_gold_prep.bam \
${algn}.razers3_gold_prep.coord;

/usr/bin/time -v \
./bin/rabema_build_gold_standard \
--max-error 4 \
--distance-metric edit \
--reference ${reference}.fasta \
--in-bam ${algn}.razers3_gold_prep.coord.bam \
--out-gsi razers3_gold.e4.gsi.gz

Process results of mappers
./bin/samtools sort -@ 8 \

-n ${algn}.distyara_taxo_${nb}.bam ${algn}.distyara_taxo_${nb}.qname;
./bin/samtools sort -@ 8 \

-n ${algn}.dyara_taxo_${nb}.bam ${algn}.dyara_taxo_${nb}.qname;
./bin/samtools sort -@ 8 \

-n ${algn}.yara.bam ${algn}.yara.qname;
./bin/samtools sort -@ 8 \

-n ${algn}.bowtie2.bam ${algn}.bowtie2.qname;
./bin/samtools sort -@ 8 \

-n ${algn}.bwa.bam ${algn}.bwa.qname;
./bin/samtools sort -@ 8 \

-n ${algn}.gem.bam ${algn}.gem.qname;

Run Rabema evaluation
/usr/bin/time -v \

./bin/rabema_evaluate \
--DONT-PANIC \
--max-error 4 --trust-NM \
--distance-metric edit \
--benchmark-category all-best \
--extra-pos-tag XP \
--reference ${reference}.fasta \
--in-bam ${algn}.${mapper}.qname.bam \
--in-gsi razers3_gold.e4.gsi.gz \
--out-tsv ${algn}.${mapper}.e4.all-best.rabema_report_tsv

.

122

Abstract

Microorganisms, typically occurring as large, species diverse communities, are a ubiqui-
tous part of nature. These communities are a vital part of their environment, in�uencing
it through various layers of interaction. Host-associated microbial communities are
particularly scrutinized for their in�uence on the host’s health. Additionally, there is a
growing interest in microbial communities due to their role in livestock, agriculture,
waste treatment, mining, and biotechnology. Metagenomics is a relatively young sci-
enti�c �eld that aims to study such microbial communities based on genetic material
recovered directly from an environment. Advances in DNA sequencing have enabled
us to perform taxonomic pro�ling, i.e. to identify microbial species quantitatively and
qualitatively at increasing depth.
In whole genome shotgun sequencing (WGS), environmental DNA is taken directly
from an environment and sequenced after being fragmented, without PCR ampli�cation.
Taxonomic pro�ling methods based on such sequencing data introduce less PCR bias
compared to their amplicon based counterparts such as 16S-rDNA based pro�ling
methods. However, the challenges posed by the enormous and redundancy of databases
and the high degree homology among reference genomes of microorganisms put WGS
methods at a disadvantage. In this thesis, we will present and discuss two separate
computational methods that address both challenges.
The �rst method is a taxonomic pro�ler that leverages coverage landscapes created by
mapping sequencing reads across reference genomes to address the challenge posed
by homologous regions of genomes. By carefully evaluating the coverage pro�le of
reference genomes we drop spurious references from consideration. This �ltration
strategy results in more uniquely mapping reads to the remaining reference genomes
improving both the resolution and accuracy of the taxonomic pro�ling process. We
have also shown that this method improves the quality of relative abundances assigned
to each detected member organism.
The second method is a distributed read mapper which addresses the issue of large and
frequently changing databases by systematically partitioning it into smaller bins. It
signi�cantly reduces the time, and computational resources required to build indices
from such large databases by orders of magnitudes and updates can be performed very
quickly in a few minutes compared to days in earlier methods. To achieve a competitive
mapping speed while maintaining many small indices, we implemented a novel, fast
and lightweight �ltering data structure called interleaved bloom �lter. With that, we
are able to achieve the described improvements in the index building and updating time
without compromising the read-mapping speed.

123

Zusammenfassung in deutscher
Sprache

Mikroorganismen, typischerweise in Form von großen Gemeinschaften aus einer Viel-
zahl von Spezies, sind ein allgegenwärtiger Bestandteil unserer Umwelt. Solche Ge-
meinschaften sind ein wesentlicher Bestandteil ihrer Umgebung und beein�ussen diese
auf verschiedenen Ebenen. Besonders Wirt-assoziierte Mikroben werden wegen ihres
Ein�usses auf die menschliche Gesundheit intensiv untersucht. Darüber hinaus ent-
wickelt sich ein wachsendes Interesse an mikrobiellen Gemeinschaften wegen ihrer
Rolle in der Landwirtschaft, Abfalltechnik, im Bergbau und in der Biotechnologie. Me-
tagenomik ist ein vergleichsweise neues wissenschaftliches Feld, welches mikrobielle
Gemeinschaften auf der Basis von genetischem Material aus einer de�nierten Umge-
bung untersucht. Technische Fortschritte bei der DNA Sequenzierung haben es möglich
gemacht, auf diese Weise taxonomisches Pro�ling durchzuführen, d.h. die mikrobiellen
Spezies qualitativ und quantitativ zu erfassen.
Bei der whole genome shotgun sequencing (WGS) Methode wird die DNA aus der Probe
direkt fragmentiert und sequenziert. Taxonomische Pro�ling-Methoden, welche auf
diesem Verfahren beruhen, sind weniger anfällig für PCR Biase im Vergleich zu anderen
Methoden, wie z.B. 16S-rDNA basierten Verfahren. Allerdings stellt hierbei die enorme
Größe und Redundanz der Datenbanken sowie der hohe Grad an Homologie unter den
in den Datenbanken erfassten Organismen einen Nachteil dar. In dieser Arbeit stellen
wir zwei rechnergestützte Verfahren vor, die beide Probleme adressieren.
Die erste Methode ist ein taxonomischer Pro�ler, mit dem Ziel, die Mehrfachzuwei-
sungen von Reads zu Referenzsequenzen homologer Spezies auf der Basis der unter-
schiedlichen Abdeckungspro�le zu korrigieren. Durch die sorgfältige Auswertung der
Read-Abdeckungen werden hierbei falsch positive Referenzgenome von der Auswahl
entfernt. Durch diese Filterstrategie erhöht sich die Genauigkeit und Au�ösung des
Verfahrens, da ein größerer Teil der Reads eindeutig einem Genom zugeordnet werden
kann. Wir zeigen darüberhinaus, dass durch die Methode auch die Häu�gkeiten der
Organismen präziser bestimmt werden können.
Die zweite Methode ist ein verteilter Read-Mapper, welcher das Problem der großen und
sich häu�g ändernden Referenzdatenbanken in der Metagenomik dadurch adressiert,
dass die Referenzdatenbanken systematisch in Partitionen unterteilt werden. Hierdurch
kann der Bedarf an Rechenzeit und Speicher für die Berechnung von Indizes um Grö-
ßenordnungen verringert und Index Aktualisierungen in wenigen Minuten anstelle von
Tagen durchgeführt werden. Um trotz der hohen Zahl von kleinen Indizes eine hohe
Performanz beim alignieren der Reads zu erreichen, haben wir eine neue, schnelle und
kompakte Filter-Datenstruktur entwickelt, den interleaved bloom �lter. Dadurch sind
wir in der Lage, die beschriebenen Verbesserungen beim Erzeugen und Aktualisieren
der Indizes ohne Einbußen bei der Mapping-Geschwindigkeit zu erreichen.

125

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Ich erkläre
weiterhin, dass ich die vorliegende Arbeit oder deren Inhalt nicht in einem früheren
Promotionsverfahren eingereicht habe.

Berlin, den 28. Januar 2019
Temesgen Hailemariam Dadi

127

Bibliography

[1] T. Betsy and J. Keogh. Microbiology DeMYSTiFieD, volume 53. 2012. ISBN
0071471340. doi:10.1036/0071446508.

[2] C. R. Woese, O. Kandler, and M. L. Wheelis. Towards a natural system of
organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings
of the National Academy of Sciences, 87(12):4576–4579, 1990. ISSN 0027-8424.
doi:10.1073/pnas.87.12.4576.

[3] R. Amils, C. Ellis-Evans, and H. Hinghofer-Szalkay. Life in extreme environments.
Life in Extreme Environments, 409(September 2000):1–450, 2007. ISSN 00280836.
doi:10.1007/978-1-4020-6285-8.

[4] E. E. Allen and J. F. Ban�eld. Community genomics in microbial ecology and
evolution. Nature Reviews Microbiology, 3(6):489–498, 2005. ISSN 17401526.
doi:10.1038/nrmicro1157.

[5] K. Zengler and L. S. Zaramela. The social network of microorganisms - How
auxotrophies shape complex communities. Nature Reviews Microbiology, 16(6):
383–390, 2018. ISSN 17401534. doi:10.1038/s41579-018-0004-5.

[6] S. Mitri and K. Richard Foster. The Genotypic View of Social Interactions in
Microbial Communities. Annual Review of Genetics, 47(1):247–273, 2013. ISSN
0066-4197. doi:10.1146/annurev-genet-111212-133307.

[7] C. Méndez-García, A. I. Peláez, V. Mesa, J. Sánchez, O. V. Golyshina, and M. Ferrer.
Microbial diversity and metabolic networks in acid mine drainage habitats. Fron-
tiers in Microbiology, 6:475, 2015. ISSN 1664-302X. doi:10.3389/fmicb.2015.00475.

[8] B. J. Baker and J. F. Ban�eld. Microbial communities in acid mine drainage. FEMS
Microbiology Ecology, 44(2):139–152, 2003. ISSN 01686496. doi:10.1016/S0168-
6496(03)00028-X.

[9] L. X. Chen, M. Hu, L. N. Huang, Z. S. Hua, J. L. Kuang, S. J. Li, and W. S.
Shu. Comparative metagenomic and metatranscriptomic analyses of microbial
communities in acid mine drainage. ISME Journal, 9(7):1579–1592, 2015. ISSN
17517370. doi:10.1038/ismej.2014.245.

[10] L. xing Chen, L. nan Huang, C. Méndez-García, J. liang Kuang, Z. shuang Hua,
J. Liu, and W. sheng Shu. Microbial communities, processes and functions in
acid mine drainage ecosystems. Current Opinion in Biotechnology, 38:150–158,
2016. ISSN 18790429. doi:10.1016/j.copbio.2016.01.013.

[11] W. H. King. Isotope shift and con�guration interaction in U i. Journal of
Physics B: Atomic and Molecular Physics, 12(3):383–386, 1979. ISSN 00223700.
doi:10.1088/0022-3700/12/3/015.

129

http://dx.doi.org/10.1036/0071446508
http://dx.doi.org/10.1073/pnas.87.12.4576
http://dx.doi.org/10.1007/978-1-4020-6285-8
http://dx.doi.org/10.1038/nrmicro1157
http://dx.doi.org/10.1038/s41579-018-0004-5
http://dx.doi.org/10.1146/annurev-genet-111212-133307
http://dx.doi.org/10.3389/fmicb.2015.00475
http://dx.doi.org/10.1016/S0168-6496(03)00028-X
http://dx.doi.org/10.1016/S0168-6496(03)00028-X
http://dx.doi.org/10.1038/ismej.2014.245
http://dx.doi.org/10.1016/j.copbio.2016.01.013
http://dx.doi.org/10.1088/0022-3700/12/3/015

Bibliography

[12] T. P. Curtis, W. T. Sloan, and J. W. Scannell. Estimating prokaryotic diversity and
its limits. Proceedings of the National Academy of Sciences, 99(16):10494–10499,
2002. ISSN 0027-8424. doi:10.1073/pnas.142680199.

[13] N. Fierer. Embracing the unknown: Disentangling the complexities of the soil
microbiome. Nature Reviews Microbiology, 15(10):579–590, 2017. ISSN 17401534.
doi:10.1038/nrmicro.2017.87.

[14] S. Oh, A. Caro-Quintero, D. Tsementzi, N. DeLeon-Rodriguez, C. Luo, R. Poretsky,
and K. T. Konstantinidis. Metagenomic insights into the evolution, function, and
complexity of the planktonic microbial community of Lake Lanier, a temperate
freshwater ecosystem. Applied and Environmental Microbiology, 77(17):6000–
6011, 2011. ISSN 00992240. doi:10.1128/AEM.00107-11.

[15] R. J. Newton, S. E. Jones, A. Eiler, K. D. McMahon, and S. Bertilsson. A Guide to
the Natural History of Freshwater Lake Bacteria. Microbiology and Molecular
Biology Reviews, 75(1):14–49, 2011. ISSN 1092-2172. doi:10.1128/MMBR.00028-10.

[16] K. Deiner, J. C. Walser, E. Mächler, and F. Altermatt. Choice of capture
and extraction methods a�ect detection of freshwater biodiversity from en-
vironmental DNA. Biological Conservation, 183:53–63, 2015. ISSN 00063207.
doi:10.1016/j.biocon.2014.11.018.

[17] A. W. Reid. Digital subtraction angiography. Scottish Medical Journal, 32(6):
172–177, 1987. ISSN 1365294X. doi:10.1111/mec.12985.

[18] Llobet-Brossa, Rosselló-Mora, and Amann. Microbial Community Composition
of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization.
Applied and environmental microbiology, 64(7):2691–2696, 1998.

[19] J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen,
D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap,
M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Ho�man, R. Parsons, H. Baden-
Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith. Environmental Genome
Shotgun Sequencing of the Sargasso Sea. Science, 304(5667):66–74, 2004. ISSN
00368075. doi:10.1126/science.1093857.

[20] M. Bahram, F. Hildebrand, S. K. Forslund, J. L. Anderson, N. A. Soudzilovskaia,
P. M. Bodegom, J. Bengtsson-Palme, S. Anslan, L. P. Coelho, H. Harend, J. Huerta-
Cepas, M. H. Medema, M. R. Maltz, S. Mundra, P. A. Olsson, M. Pent, S. Põlme,
S. Sunagawa, M. Ryberg, L. Tedersoo, and P. Bork. Structure and function of
the global topsoil microbiome. Nature, 560(7717):233–237, 2018. ISSN 14764687.
doi:10.1038/s41586-018-0386-6.

[21] E. Karsenti, S. G. Acinas, P. Bork, C. Bowler, C. de Vargas, J. Raes, M. Sullivan,
D. Arendt, F. Benzoni, J. M. Claverie, M. Follows, G. Gorsky, P. Hingamp, D. Iu-
dicone, O. Jaillon, S. Kandels-Lewis, U. Krzic, F. Not, H. Ogata, S. Pesant, E. G.
Reynaud, C. Sardet, M. E. Sieracki, S. Speich, D. Velayoudon, J. Weissenbach,
P. Wincker, C. Abergel, D. Arslan, S. Audic, J. M. Aury, N. Babic, L. Beaufort,
L. Bittner, E. Boss, C. Boutte, J. Brum, M. Carmichael, R. Casotti, A. Chambouvet,
P. Chang, C. Chica, C. Clerissi, S. Colin, F. M. Cornejo-Castillo, C. Da Silva, S. De
Monte, J. Decelle, Y. Desdevises, C. Dimier, J. Dolan, M. Duhaime, X. Durrieu

130

http://dx.doi.org/10.1073/pnas.142680199
http://dx.doi.org/10.1038/nrmicro.2017.87
http://dx.doi.org/10.1128/AEM.00107-11
http://dx.doi.org/10.1128/MMBR.00028-10
http://dx.doi.org/10.1016/j.biocon.2014.11.018
http://dx.doi.org/10.1111/mec.12985
http://dx.doi.org/10.1126/science.1093857
http://dx.doi.org/10.1038/s41586-018-0386-6

Bibliography

de Madron, F. D’Ortenzio, F. D’Ovidio, I. Ferrera, L. Garczarek, M. J. Garet-
Delmas, S. Gasmi, J. M. Gasol, N. Grimsley, R. Heilig, J. Ignacio-Espinoza, J. L.
Jamet, L. Karp-Boss, M. Katinka, H. Khalili, Z. Kolber, N. Le Bescot, H. Le Go�f,
G. Lima-Mendez, F. Mahe, M. G. Mazzocchi, M. Montresor, P. Morin, B. Noel,
C. Pedros-Alio, E. Pelletier, Y. Perez, M. Picheral, G. Piganeau, O. Poirot, J. Poulain,
N. Poulton, F. Prejger, J. Prihoda, I. Probert, J. Rampal, G. Reverdin, S. Romac, J. B.
Romagnan, F. Roullier, C. Rouviere, G. Samson, S. Santini, H. Sarmento, A. Scian-
dra, S. Solonenko, L. Stemmann, L. Subirana, S. Sunagawa, A. Tanaka, P. Testor,
A. Thompson, V. Tichanne-Seltzer, L. Tirichine, E. Toulza, S. Tozzi, A. Veluchamy,
and A. Zingone. A holistic approach to marine Eco-systems biology. PLoS Biology,
9(10):7–11, 2011. ISSN 15457885. doi:10.1371/journal.pbio.1001177.

[22] C. Bombardelli, J. H. Ayuso, and R. G. Pelayo. Collision avoidance maneuver
optimization. Advances in the Astronautical Sciences, 152(7402):1857–1870, 2014.
ISSN 00653438. doi:10.1038/nature11209.

[23] C. J. Robinson, B. J. M. Bohannan, and V. B. Young. From Structure to
Function: the Ecology of Host-Associated Microbial Communities. Microbi-
ology and Molecular Biology Reviews, 74(3):453–476, 2010. ISSN 1092-2172.
doi:10.1128/MMBR.00014-10.

[24] R. E. Ley, M. Hamady, C. Lozupone, P. J. Turnbaugh, R. R. Ramey, J. S. Bircher,
M. L. Schlegel, T. A. Tucker, M. D. Schrenzel, R. Knight, and J. I. Gordon. Evolution
of mammals and their gut microbes. Science, 320(5883):1647–1651, 2008. ISSN
00368075. doi:10.1126/science.1155725.

[25] J. Peterson, S. Garges, M. Giovanni, P. McInnes, L. Wang, J. A. Schloss, V. Bonazzi,
J. E. McEwen, K. A. Wetterstrand, C. Deal, C. C. Baker, V. Di Francesco, T. K.
Howcroft, R. W. Karp, R. D. Lunsford, C. R. Wellington, T. Belachew, M. Wright,
C. Giblin, H. David, M. Mills, R. Salomon, C. Mullins, B. Akolkar, L. Begg,
C. Davis, L. Grandison, M. Humble, J. Khalsa, A. Roger Little, H. Peavy, C. Pontzer,
M. Portnoy, M. H. Sayre, P. Starke-Reed, S. Zakhari, J. Read, B. Watson, and
M. Guyer. The NIH Human Microbiome Project. Genome Research, 19(12):
2317–2323, 2009. ISSN 10889051. doi:10.1101/gr.096651.109.

[26] J. A. Gilbert, M. J. Blaser, J. G. Caporaso, J. K. Jansson, S. V. Lynch, and R. Knight.
Current understanding of the human microbiome. Nature Medicine, 24(4):392–
400, 2018. ISSN 1546170X. doi:10.1038/nm.4517.

[27] D. H. Haft, M. DiCuccio, A. Badretdin, V. Brover, V. Chetvernin, K. O’Neill, W. Li,
F. Chitsaz, M. K. Derbyshire, N. R. Gonzales, M. Gwadz, F. Lu, G. H. Marchler,
J. S. Song, N. Thanki, R. A. Yamashita, C. Zheng, F. Thibaud-Nissen, L. Y. Geer,
A. Marchler-Bauer, and K. D. Pruitt. RefSeq: An update on prokaryotic genome
annotation and curation. Nucleic Acids Research, 46(D1):D851–D860, 2018. ISSN
13624962. doi:10.1093/nar/gkx1068.

[28] D. C. Savage. Microbial Ecology of the Gastrointestinal Tract. Annual Review of
Microbiology, 31(1):107–133, 1977. doi:10.1146/annurev.mi.31.100177.000543.

[29] R. Sender, S. Fuchs, and R. Milo. Are We Really Vastly Outnumbered? Revisiting
the Ratio of Bacterial to Host Cells in Humans. Cell, 164(3):337–340, 2016. ISSN
10974172. doi:10.1016/j.cell.2016.01.013.

131

http://dx.doi.org/10.1371/journal.pbio.1001177
http://dx.doi.org/10.1038/nature11209
http://dx.doi.org/10.1128/MMBR.00014-10
http://dx.doi.org/10.1126/science.1155725
http://dx.doi.org/10.1101/gr.096651.109
http://dx.doi.org/10.1038/nm.4517
http://dx.doi.org/10.1093/nar/gkx1068
http://dx.doi.org/10.1146/annurev.mi.31.100177.000543
http://dx.doi.org/10.1016/j.cell.2016.01.013

Bibliography

[30] X. Yin, J. Zhang, and X. Wang. Sequential injection analysis system for the
determination of arsenic by hydride generation atomic absorption spectrometry,
volume 32. Pearson Education, Inc, 14 edition, 2004. ISBN 9788578110796.
doi:10.1017/CBO9781107415324.004.

[31] T. Thomas, J. Gilbert, and F. Meyer. Metagenomics - a guide from sampling
to data analysis. Microbial Informatics and Experimentation, 2(1):3, 2012. ISSN
2042-5783. doi:10.1186/2042-5783-2-3.

[32] W. R. Streit and R. A. Schmitz. Metagenomics - The key to the uncultured
microbes. Current Opinion in Microbiology, 7(5):492–498, 2004. ISSN 13695274.
doi:10.1016/j.mib.2004.08.002.

[33] N. R. C. Committee on Metagenomics: Challenges and Functional Applications.
The New Science of Metagenomics. National Academies Press, 2007. ISBN 978-0-
309-10676-4. doi:10.17226/11902.

[34] K. N. Lam, J. Cheng, K. Engel, J. D. Neufeld, and T. C. Charles. Current and
future resources for functional metagenomics. Frontiers in Microbiology, 6(OCT):
1–8, 2015. ISSN 1664302X. doi:10.3389/fmicb.2015.01196.

[35] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov,
V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V.
Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A. Pevzner. SPAdes: A
New Genome Assembly Algorithm and Its Applications to Single-Cell Sequenc-
ing. Journal of Computational Biology, 19(5):455–477, 2012. ISSN 1066-5277.
doi:10.1089/cmb.2012.0021.

[36] D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18(5):821–829, 2008. ISSN 10889051.
doi:10.1101/gr.074492.107.

[37] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol.
ABySS: A parallel assembler for short read sequence data. Genome Research, 19
(6):1117–1123, 2009. ISSN 10889051. doi:10.1101/gr.089532.108.

[38] A. V. Zimin, G. Marçais, D. Puiu, M. Roberts, S. L. Salzberg, and J. A. Yorke. The
MaSuRCA genome assembler. Bioinformatics, 29(21):2669–2677, 2013. ISSN
13674803. doi:10.1093/bioinformatics/btt476.

[39] T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara. MetaVelvet: An extension
of Velvet assembler to de novo metagenome assembly from short sequence reads.
Nucleic Acids Research, 40(20):e155, 2012. ISSN 03051048. doi:10.1093/nar/gks678.

[40] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin. The Sequence Alignment/Map format and SAM-
tools. Bioinformatics (Oxford, England), 25(16):2078–2079, 2009. ISSN 13674803.
doi:10.1093/bioinformatics/btp352.

[41] R. S. Boyer and J. S. Moore. A Fast String Searching Algorithm. Communications
of the ACM, 20(10):762–772, 1977.

[42] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast Pattern Matching in
Strings. SIAM Journal on Computing, 6(2):323–350, 1977. ISSN 15221946.
doi:10.1002/ccd.22046.

132

http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1186/2042-5783-2-3
http://dx.doi.org/10.1016/j.mib.2004.08.002
http://dx.doi.org/10.17226/11902
http://dx.doi.org/10.3389/fmicb.2015.01196
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.1093/bioinformatics/btt476
http://dx.doi.org/10.1093/nar/gks678
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1002/ccd.22046

Bibliography

[43] A. Apostolico. The myriad virtues of su�x trees. In A. Apostolico and Z. Galil,
editors, Combinatorial Algorithms on Words, volume 12, pages 85–96, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg. ISBN 978-3-642-82456-2.

[44] U. Manber and G. Myers. Su�x Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

[45] D. Gus�eld. Algorithms on strings, trees, and sequences: computer science and
computational biology, volume 28. Cambridge University Press, 1997. ISBN
0521585198. doi:10.1145/270563.571472.

[46] S. Canzar and S. L. Salzberg. Short Read Mapping: An Algorithmic Tour. Pro-
ceedings of the IEEE, 105(3):436–458, 2017. doi:10.1109/JPROC.2015.2455551.

[47] P. Ferragina and G. Manzini. Opportunistic data structures with applications.
Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
390–398, 2000. ISSN 0272-5428. doi:10.1109/SFCS.2000.892127.

[48] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2.
Nature Methods, 9(4):357–359, 2012. ISSN 15487091. doi:10.1038/nmeth.1923.

[49] H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26(5):589–595, 2010. ISSN 13674803.
doi:10.1093/bioinformatics/btp698.

[50] S. Marco-Sola, M. Sammeth, R. Guigó, and P. Ribeca. The GEM mapper: Fast,
accurate and versatile alignment by �ltration. Nature Methods, 9(12):1185–1188,
2012. ISSN 15487091. doi:10.1038/nmeth.2221.

[51] H. Cheng, H. Jiang, J. Yang, Y. Xu, and Y. Shang. BitMapper: An e�cient all-
mapper based on bit-vector computing. BMC Bioinformatics, 16(1):192, 2015.
ISSN 14712105. doi:10.1186/s12859-015-0626-9.

[52] F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E. E. Eichler, and
S. C. Sahinalp. MrsFAST: A cache-oblivious algorithm for short-read mapping.
Nature Methods, 7(8):576–577, 2010. ISSN 15487091. doi:10.1038/nmeth0810-576.

[53] J. Kim, C. Li, and X. Xie. Improving read mapping using additional pre�x grams.
BMC Bioinformatics, 15(1):42, 2014. ISSN 14712105. doi:10.1186/1471-2105-15-42.

[54] E. Siragusa. Approximate string matching for high-throughput sequencing. Thesis,
PhD Thesis, FREIEN UNIVERSITÄT BERLIN, 2015.

[55] A. Döring, D. Weese, T. Rausch, and K. Reinert. SeqAn an e�cient, generic C++
library for sequence analysis. BMC Bioinformatics, 9:11, 2008. ISSN 14712105.
doi:10.1186/1471-2105-9-11.

[56] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter. Near-optimal probabilis-
tic RNA-seq quanti�cation. Nature Biotechnology, 34(5):525–527, 2016. ISSN
15461696. doi:10.1038/nbt.3519.

[57] L. Schae�er, H. Pimentel, N. Bray, P. Melsted, and L. Pachter. Pseudoalignment
for metagenomic read assignment. Bioinformatics, 33(14):2082–2088, 2017. ISSN
14602059. doi:10.1093/bioinformatics/btx106.

[58] I. Letunic and P. Bork. Interactive tree of life (iTOL) v3: an online tool for the
display and annotation of phylogenetic and other trees. Nucleic acids research,
44(W1):W242–W245, 2016. ISSN 13624962. doi:10.1093/nar/gkw290.

133

http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1145/270563.571472
http://dx.doi.org/10.1109/JPROC.2015.2455551
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1038/nmeth.2221
http://dx.doi.org/10.1186/s12859-015-0626-9
http://dx.doi.org/10.1038/nmeth0810-576
http://dx.doi.org/10.1186/1471-2105-15-42
http://dx.doi.org/10.1186/1471-2105-9-11
http://dx.doi.org/10.1038/nbt.3519
http://dx.doi.org/10.1093/bioinformatics/btx106
http://dx.doi.org/10.1093/nar/gkw290

Bibliography

[59] N. Worathumrong and A. J. Grimes. The E�ect of o-Salicylate upon Pentose
Phosphate Pathway Activity in Normal and G6PD-De�cient Red Cells. British
Journal of Haematology, 30(2):225–231, 1975. ISSN 13652141. doi:10.1111/j.1365-
2141.1975.tb00536.x.

[60] S. Lindgreen, K. L. Adair, and P. P. Gardner. An evaluation of the accuracy and
speed of metagenome analysis tools. Scienti�c Reports, 6:19233, 2016. ISSN
20452322. doi:10.1038/srep19233.

[61] A. Brady and S. L. Salzberg. Phymm and PhymmBL: Metagenomic phylogenetic
classi�cation with interpolated Markov models. Nature Methods, 6(9):673–676,
2009. ISSN 15487091. doi:10.1038/nmeth.1358.

[62] V. C. Piro, M. S. Lindner, and B. Y. Renard. DUDes: A top-down taxonomic
pro�ler for metagenomics. Bioinformatics, 32(15):2272–2280, 2016. ISSN 14602059.
doi:10.1093/bioinformatics/btw150.

[63] M. S. Lindner and B. Y. Renard. Metagenomic pro�ling of known unknown
microbes with MicrobeGPS. PLoS ONE, 10(2):e0117711, 2015. ISSN 19326203.
doi:10.1371/journal.pone.0117711.

[64] O. E. Francis, M. Bendall, S. Manimaran, C. Hong, N. L. Clement, E. Castro-
Nallar, Q. Snell, G. B. Schaalje, M. J. Clement, K. A. Crandall, and W. E. Johnson.
Pathoscope: Species identi�cation and strain attribution with unassembled
sequencing data. Genome Research, 23(10):1721–1729, 2013. ISSN 10889051.
doi:10.1101/gr.150151.112.

[65] M. Balvočiute and D. H. Huson. SILVA, RDP, Greengenes, NCBI and OTT - how
do these taxonomies compare? BMC Genomics, 18(Suppl 2):1–8, 2017. ISSN
14712164. doi:10.1186/s12864-017-3501-4.

[66] J. R. Cole, Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown,
A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. Ribosomal Database Project:
Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42
(D1):D633–D642, 2014. ISSN 03051048. doi:10.1093/nar/gkt1244.

[67] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber,
D. Dalevi, P. Hu, and G. L. Andersen. Greengenes, a Chimera-Checked 16S rRNA
Gene Database and Workbench Compatible with ARB. Applied and Environmen-
tal Microbiology, 72(7):5069–5072, 2006. ISSN 0099-2240. doi:10.1128/AEM.03006-
05.

[68] S. Federhen. The NCBI Taxonomy database. Nucleic Acids Research, 40(D1):
D136–D143, 2012. ISSN 03051048. doi:10.1093/nar/gkr1178.

[69] Z. J. Jay and W. P. Inskeep. The distribution, diversity, and importance of 16S
rRNA gene introns in the order Thermoproteales. Biology Direct, 10(1), 2015.
ISSN 17456150. doi:10.1186/s13062-015-0065-6.

[70] K. Raymann, A. H. Moeller, A. L. Goodman, and H. Ochman. Unexplored
Archaeal Diversity in the Great Ape Gut Microbiome. mSphere, 2(1):e00026–17,
2017. ISSN 2379-5042. doi:10.1128/mSphere.00026-17.

134

http://dx.doi.org/10.1111/j.1365-2141.1975.tb00536.x
http://dx.doi.org/10.1111/j.1365-2141.1975.tb00536.x
http://dx.doi.org/10.1038/srep19233
http://dx.doi.org/10.1038/nmeth.1358
http://dx.doi.org/10.1093/bioinformatics/btw150
http://dx.doi.org/10.1371/journal.pone.0117711
http://dx.doi.org/10.1101/gr.150151.112
http://dx.doi.org/10.1186/s12864-017-3501-4
http://dx.doi.org/10.1093/nar/gkt1244
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1093/nar/gkr1178
http://dx.doi.org/10.1186/s13062-015-0065-6
http://dx.doi.org/10.1128/mSphere.00026-17

Bibliography

[71] I. C. Starke, W. Vahjen, R. Pieper, and J. Zentek. The In�uence of DNA Extraction
Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequenc-
ing of Barcoded 16S rRNA Gene Amplicons. Molecular Biology International,
2014:1–10, 2014. ISSN 2090-2182. doi:10.1155/2014/548683.

[72] F. Fouhy, A. G. Clooney, C. Stanton, M. J. Claesson, and P. D. Cotter. 16S
rRNA gene sequencing of mock microbial populations-impact of DNA extraction
method, primer choice and sequencing platform. BMC Microbiology, 16(1):123,
2016. ISSN 14712180. doi:10.1186/s12866-016-0738-z.

[73] S. Chakravorty, D. Helb, M. Burday, N. Connell, and D. Alland. A detailed
analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic
bacteria. Journal of Microbiological Methods, 69(2):330–339, 2007. ISSN 01677012.
doi:10.1016/j.mimet.2007.02.005.

[74] J. Pollock, L. Glendinning, T. Wisedchanwet, and M. Watson. The madness of
microbiome: Attempting to �nd consensus “best practice” for 16S microbiome
studies. Applied and Environmental Microbiology, 84(7):521, 2018. ISSN 10985336.
doi:10.1128/AEM.02627-17.

[75] T. Větrovský and P. Baldrian. The Variability of the 16S rRNA Gene in Bacterial
Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE,
8(2):1–10, 2013. ISSN 19326203. doi:10.1371/journal.pone.0057923.

[76] C. Yuan, J. Lei, J. Cole, and Y. Sun. Reconstructing 16S rRNA genes in
metagenomic data. Bioinformatics, 31(12):i35–i43, 2015. ISSN 14602059.
doi:10.1093/bioinformatics/btv231.

[77] M. Tessler, J. S. Neumann, E. Afshinnekoo, M. Pineda, R. Hersch, L. F. M. Velho,
B. T. Segovia, F. A. Lansac-Toha, M. Lemke, R. Desalle, C. E. Mason, and M. R.
Brugler. Large-scale di�erences in microbial biodiversity discovery between
16S amplicon and shotgun sequencing. Scienti�c Reports, 7(1):1–14, 2017. ISSN
20452322. doi:10.1038/s41598-017-06665-3.

[78] S. K. Ames, D. A. Hysom, S. N. Gardner, G. S. Lloyd, M. B. Gokhale, and
J. E. Allen. Scalable metagenomic taxonomy classi�cation using a reference
genome database. Bioinformatics, 29(18):2253–2260, 2013. ISSN 13674803.
doi:10.1093/bioinformatics/btt389.

[79] D. T. Truong, E. A. Franzosa, T. L. Tickle, M. Scholz, G. Weingart, E. Pasolli,
A. Tett, C. Huttenhower, and N. Segata. MetaPhlAn2 for enhanced metagenomic
taxonomic pro�ling. Nature Methods, 12(10):902–903, 2015. ISSN 15487105.
doi:10.1038/nmeth.3589.

[80] R. J. Sengwa, A. Madhvi, and S. Sankhla. Study of dielectric relaxation and
dipole moment of some hydrogen bonded solvent binary mixtures in 1,4-dioxane.
Indian Journal of Pure and Applied Physics, 44(12):943–952, 2006. ISSN 00195596.
doi:10.1093/nar/gkv180.

[81] S. Sunagawa, D. R. Mende, G. Zeller, F. Izquierdo-Carrasco, S. A. Berger, J. R. Kul-
tima, L. P. Coelho, M. Arumugam, J. Tap, H. B. Nielsen, S. Rasmussen, S. Brunak,
O. Pedersen, F. Guarner, W. M. De Vos, J. Wang, J. Li, J. Doré, S. Dusko Ehrlich,

135

http://dx.doi.org/10.1155/2014/548683
http://dx.doi.org/10.1186/s12866-016-0738-z
http://dx.doi.org/10.1016/j.mimet.2007.02.005
http://dx.doi.org/10.1128/AEM.02627-17
http://dx.doi.org/10.1371/journal.pone.0057923
http://dx.doi.org/10.1093/bioinformatics/btv231
http://dx.doi.org/10.1038/s41598-017-06665-3
http://dx.doi.org/10.1093/bioinformatics/btt389
http://dx.doi.org/10.1038/nmeth.3589
http://dx.doi.org/10.1093/nar/gkv180

Bibliography

A. Stamatakis, and P. Bork. Metagenomic species pro�ling using universal phy-
logenetic marker genes. Nature Methods, 10(12):1196–1199, 2013. ISSN 15487091.
doi:10.1038/nmeth.2693.

[82] D. E. Wood and S. L. Salzberg. Kraken: Ultrafast metagenomic sequence classi�-
cation using exact alignments. Genome Biology, 15(3):R46, 2014. ISSN 1474760X.
doi:10.1186/gb-2014-15-3-r46.

[83] T. H. Dadi, B. Y. Renard, L. H. Wieler, T. Semmler, and K. Reinert. SLIMM: species
level identi�cation of microorganisms from metagenomes. PeerJ, 5(3):e3138,
2017. ISSN 2167-8359. doi:10.7717/peerj.3138.

[84] J. Lu, F. P. Breitwieser, P. Thielen, and S. L. Salzberg. Bracken: estimating species
abundance in metagenomics data. PeerJ Computer Science, 3:e104, 2017. ISSN
2376-5992. doi:10.7717/peerj-cs.104.

[85] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi. CLARK: fast and accurate
classi�cation of metagenomic and genomic sequences using discriminative k-
mers. BMC Genomics, 16(1):236, 2015. ISSN 14712164. doi:10.1186/s12864-015-
1419-2.

[86] D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster. MEGAN analysis of
metagenomic data. Genome Research, 17(3):377–386, 2007. ISSN 10889051.
doi:10.1101/gr.5969107.

[87] R. Overbeek, T. Begley, R. M. Butler, J. V. Choudhuri, H. Y. Chuang, M. Co-
hoon, V. de Crécy-Lagard, N. Diaz, T. Disz, R. Edwards, M. Fonstein, E. D. Frank,
S. Gerdes, E. M. Glass, A. Goesmann, A. Hanson, D. Iwata-Reuyl, R. Jensen,
N. Jamshidi, L. Krause, M. Kubal, N. Larsen, B. Linke, A. C. McHardy, F. Meyer,
H. Neuweger, G. Olsen, R. Olson, A. Osterman, V. Portnoy, G. D. Pusch, D. A.
Rodionov, C. Rül;ckert, J. Steiner, R. Stevens, I. Thiele, O. Vassieva, Y. Ye, O. Za-
gnitko, and V. Vonstein. The subsystems approach to genome annotation and
its use in the project to annotate 1000 genomes. Nucleic Acids Research, 33(17):
5691–5702, 2005. ISSN 03051048. doi:10.1093/nar/gki866.

[88] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Hut-
tenhower. Metagenomic microbial community pro�ling using unique clade-
speci�c marker genes. Nature Methods, 9(8):811–814, 2012. ISSN 15487091.
doi:10.1038/nmeth.2066.

[89] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
e�cient alignment of short DNA sequences to the human genome. Genome
Biology, 10(3), 2009. ISSN 14747596. doi:10.1186/gb-2009-10-3-r25.

[90] E. M. Glass and F. Meyer. The Metagenomics RAST Server: A Public Resource for
the Automatic Phylogenetic and Functional Analysis of Metagenomes. Handbook
of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches,
8:325–331, 2011. ISSN 14712105. doi:10.1002/9781118010518.ch37.

[91] J. R. Cole, B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, D. M.
McGarrell, A. M. Bandela, E. Cardenas, G. M. Garrity, and J. M. Tiedje. The
ribosomal database project (RDP-II): Introducing myRDP space and quality
controlled public data. Nucleic Acids Research, 35(SUPPL. 1):169–172, 2007. ISSN
03051048. doi:10.1093/nar/gkl889.

136

http://dx.doi.org/10.1038/nmeth.2693
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.7717/peerj.3138
http://dx.doi.org/10.7717/peerj-cs.104
http://dx.doi.org/10.1186/s12864-015-1419-2
http://dx.doi.org/10.1186/s12864-015-1419-2
http://dx.doi.org/10.1101/gr.5969107
http://dx.doi.org/10.1093/nar/gki866
http://dx.doi.org/10.1038/nmeth.2066
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1002/9781118010518.ch37
http://dx.doi.org/10.1093/nar/gkl889

Bibliography

[92] J. Wuyts. The European database on small subunit ribosomal RNA. Nucleic Acids
Research, 30(1):183–185, 2002. ISSN 13624962. doi:10.1093/nar/30.1.183.

[93] A. L. Mitchell, M. Scheremetjew, H. Denise, S. Potter, A. Tarkowska, M. Qureshi,
G. A. Salazar, S. Pesseat, M. A. Boland, F. M. Hunter, P. Ten Hoopen, B. Alako,
C. Amid, D. J. Wilkinson, T. P. Curtis, G. Cochrane, and R. D. Finn. EBI
Metagenomics in 2017: Enriching the analysis of microbial communities, from
sequence reads to assemblies. Nucleic Acids Research, 46(D1):D726–D735, 2018.
ISSN 13624962. doi:10.1093/nar/gkx967.

[94] J. Gregory Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman,
E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, G. a. Huttley,
S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. a. Lozupone, D. Mcdonald, B. D.
Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. a. Walters,
J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. correspondence QIIME
allows analysis of high- throughput community sequencing data Intensity nor-
malization improves color calling in SOLiD sequencing. Nature Publishing Group,
7(5):335–336, 2010. ISSN 1548-7091. doi:10.1038/nmeth0510-335.

[95] M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. KEGG for integration
and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40
(D1):109–114, 2012. ISSN 03051048. doi:10.1093/nar/gkr988.

[96] J. T. Roehr, C. Dieterich, and K. Reinert. Flexbar 3.0 - SIMD and multi-
core parallelization. Bioinformatics, 33(18):2941–2942, 2017. ISSN 14602059.
doi:10.1093/bioinformatics/btx330.

[97] Ł. Grześkowiak, B. Martínez-Vallespín, T. H. Dadi, J. Radlo�, S. Amasheh, F. A.
Heinsen, A. Franke, K. Reinert, W. Vahjen, J. Zentek, and R. Pieper. For-
mula feeding predisposes neonatal piglets to clostridium di�cile gut infec-
tion. Journal of Infectious Diseases, 217(9):1442–1452, 2018. ISSN 15376613.
doi:10.1093/infdis/jix567.

[98] M. Shakya, C. Quince, J. H. Campbell, Z. K. Yang, C. W. Schadt, and M. Podar.
Comparative metagenomic and rRNA microbial diversity characterization using
archaeal and bacterial synthetic communities. Environmental Microbiology, 15
(6):1882–1899, 2013. ISSN 14622912. doi:10.1111/1462-2920.12086.

[99] B. Jia, L. Xuan, K. Cai, Z. Hu, L. Ma, and C. Wei. NeSSM: A Next-Generation
Sequencing Simulator for Metagenomics. PLoS ONE, 8(10), 2013. ISSN 19326203.
doi:10.1371/journal.pone.0075448.

[100] B. H. Bloom. Space/time trade-o�s in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970. doi:10.1145/362686.362692.

[101] E. Siragusa, D. Weese, and K. Reinert. Fast and accurate read mapping with
approximate seeds and multiple backtracking. Nucleic Acids Research, 41(7), 2013.
ISSN 03051048. doi:10.1093/nar/gkt005.

[102] H. Hauswedell, J. Singer, and K. Reinert. Lambda: The local aligner for mas-
sive biological data. Bioinformatics, 30(17):i349–i355, 2014. ISSN 14602059.
doi:10.1093/bioinformatics/btu439.

[103] M. J. Bauer, A. J. Cox, and G. Rosone. Lightweight BWT construction for very
large string collections. In R. Giancarlo and G. Manzini, editors, Lecture Notes in

137

http://dx.doi.org/10.1093/nar/30.1.183
http://dx.doi.org/10.1093/nar/gkx967
http://dx.doi.org/10.1038/nmeth0510-335
http://dx.doi.org/10.1093/nar/gkr988
http://dx.doi.org/10.1093/bioinformatics/btx330
http://dx.doi.org/10.1093/infdis/jix567
http://dx.doi.org/10.1111/1462-2920.12086
http://dx.doi.org/10.1371/journal.pone.0075448
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1093/nar/gkt005
http://dx.doi.org/10.1093/bioinformatics/btu439

Bibliography

Computer Science (including subseries Lecture Notes in Arti�cial Intelligence and
Lecture Notes in Bioinformatics), volume 6661 LNCS, pages 219–231, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg. ISBN 9783642214578. doi:10.1007/978-
3-642-21458-5_20.

[104] J. Sirén. Compressed Su�x Arrays for Massive Data. In J. Karlgren, J. Tarhio,
and H. Hyyrö, editors, String Processing and Information Retrieval, pages 63–74,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03784-9.

[105] H. Mohamadi, B. P. Vandervalk, A. Raymond, S. D. Jackman, J. Chu, C. P. Bres-
hears, and I. Birol. DIDA: Distributed indexing dispatched alignment. PLoS ONE,
10(4):1–14, 2015. ISSN 19326203. doi:10.1371/journal.pone.0126409.

[106] G. N. Samuel and B. Farsides. The UK’s 100,000 Genomes Project: manifesting
policymakers’ expectations. New Genetics and Society, 36(4):336–353, 2017. ISSN
14699915. doi:10.1080/14636778.2017.1370671.

[107] B. Codenotti, G. De Marco, M. Leoncini, M. Montangero, and M. Santini.
Approximation algorithms for a hierarchically structured bin packing prob-
lem. Information Processing Letters, 89(5):215–221, 2004. ISSN 00200190.
doi:10.1016/j.ipl.2003.12.001.

[108] R. Rahn, D. Weese, and K. Reinert. Journaled string tree-a scalable data structure
for analyzing thousands of similar genomes on your laptop. Bioinformatics, 30
(24):3499–3505, 2014. ISSN 14602059. doi:10.1093/bioinformatics/btu438.

[109] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann, S. Gesing, O. Kohl-
bacher, and D. Weigel. Simultaneous alignment of short reads against multiple
genomes. Genome Biology, 10(9), 2009. ISSN 14747596. doi:10.1186/gb-2009-10-
9-r98.

[110] T. H. Dadi, E. Siragusa, V. C. Piro, A. Andrusch, E. Seiler, B. Y. Renard, and
K. Reinert. DREAM-Yara: an exact read mapper for very large databases with
short update time. Bioinformatics, 34(17):i766–i772, 2018. ISSN 1367-4803.
doi:10.1093/bioinformatics/bty567.

[111] P. Bradley, H. den Bakker, E. Rocha, G. McVean, and Z. Iqbal. Real-time search
of all bacterial and viral genomic data. bioRxiv preprint, page 234955, 2017.
doi:10.1101/234955.

[112] K. Reinert, T. H. Dadi, M. Ehrhardt, H. Hauswedell, S. Mehringer, R. Rahn,
J. Kim, C. Pockrandt, J. Winkler, E. Siragusa, G. Urgese, and D. Weese. The
SeqAn C++ template library for e�cient sequence analysis: A resource for
programmers. Journal of Biotechnology, 261(September):157–168, 2017. ISSN
18734863. doi:10.1016/j.jbiotec.2017.07.017.

[113] D. Weese, M. Holtgrewe, and K. Reinert. RazerS 3: Faster, fully sensi-
tive read mapping. Bioinformatics, 28(20):2592–2599, 2012. ISSN 13674803.
doi:10.1093/bioinformatics/bts505.

[114] M. Holtgrewe, A. K. Emde, D. Weese, and K. Reinert. A novel and well-de�ned
benchmarking method for second generation read mapping. BMC Bioinformatics,
12, 2011. ISSN 14712105. doi:10.1186/1471-2105-12-210.

138

http://dx.doi.org/10.1007/978-3-642-21458-5_20
http://dx.doi.org/10.1007/978-3-642-21458-5_20
http://dx.doi.org/10.1371/journal.pone.0126409
http://dx.doi.org/10.1080/14636778.2017.1370671
http://dx.doi.org/10.1016/j.ipl.2003.12.001
http://dx.doi.org/10.1093/bioinformatics/btu438
http://dx.doi.org/10.1186/gb-2009-10-9-r98
http://dx.doi.org/10.1186/gb-2009-10-9-r98
http://dx.doi.org/10.1093/bioinformatics/bty567
http://dx.doi.org/10.1101/234955
http://dx.doi.org/10.1016/j.jbiotec.2017.07.017
http://dx.doi.org/10.1093/bioinformatics/bts505
http://dx.doi.org/10.1186/1471-2105-12-210

Bibliography

[115] F. P. Breitwieser, D. N. Baker, and S. L. Salzberg. KrakenUniq: con�dent and fast
metagenomics classi�cation using unique k-mer counts. Genome Biology, 19(1):
198, 2018. ISSN 1474-760X. doi:10.1186/s13059-018-1568-0.

[116] D. J. Nasko, S. Koren, A. M. Phillippy, and T. J. Treangen. RefSeq database growth
in�uences the accuracy of k-mer-based lowest common ancestor species identi-
�cation. Genome Biology, 19(1):165, 2018. ISSN 1474-760X. doi:10.1186/s13059-
018-1554-6.

[117] W. Zhou, N. Gay, and J. Oh. ReprDB and panDB: minimalist databases with
maximal microbial representation. Microbiome, 6(1):15, 2018. ISSN 2049-2618.
doi:10.1186/s40168-018-0399-2.

[118] W. Li and A. Godzik. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.
doi:10.1093/bioinformatics/btl158.

[119] B. T. James, B. B. Luczak, and H. Z. Girgis. MeShClust: an intelligent
tool for clustering DNA sequences. Nucleic Acids Research, 46(14):e83, 2018.
doi:10.1093/nar/gky315. URL http://dx.doi.org/10.1093/nar/gky315.

[120] V. C. Piro, T. H. Dadi, E. Seiler, K. Reinert, and B. Y. Renard. ganon: continu-
ously up-to-date with database growth for precise short read classi�cation in
metagenomics. bioRxiv, 2018. doi:10.1101/406017. URL https://www.biorxiv.org/
content/early/2018/08/31/406017.

139

http://dx.doi.org/10.1186/s13059-018-1568-0
http://dx.doi.org/10.1186/s13059-018-1554-6
http://dx.doi.org/10.1186/s13059-018-1554-6
http://dx.doi.org/10.1186/s40168-018-0399-2
http://dx.doi.org/10.1093/bioinformatics/btl158
http://dx.doi.org/10.1093/nar/gky315
http://dx.doi.org/10.1093/nar/gky315
http://dx.doi.org/10.1101/406017
https://www.biorxiv.org/content/early/2018/08/31/406017
https://www.biorxiv.org/content/early/2018/08/31/406017

List of Figures

4.1. Tree of life produced by iTOL [58]. Di�erent colors indicate the
three domains of life namely Archeae, Bacteria, and Eukaryota.
The labels on leaf nodes represent di�erent species. 33

4.2. A partial view of a taxonomic tree. All the seven priincipal taxo-
nomic ranks are shown with few examples. 34

4.3. The number of unique 25-mers from multiple genomes representing
di�erent strains, species and genera belonging to a single species,
genus and family respectively. The amount of new 25-mers intro-
duced along with an additional genome re�ects how similar the
genomes are. 36

5.1. SLIMM Pipeline: The preprocessing module of SLIMM download-
s/updates all available genomes of a particular interest group and
creates a corresponding SLIMM database containing names and
taxonomic assignments of the selected genomes. A read mapper is
then used to map reads to these reference sequences. Then SLIMM
algorithm uses the mapping results to produces taxonomic pro�le
reports. 47

5.2. The main algorithmic steps of SLIMM. SLIMM discards spurious
genomes based on coverage landscape information collected in the
form of read coverage depth. Then read uniqueness is recalculated
considering freed reads. 50

5.3. A simpli�ed illustration of how SLIMM uses reference �ltering
based on coverage information: G2 and G3 could not pass the
�ltering steps because they did not contain enough coverage by
uniquely mapped reads and all reads respectively. 52

6.1. Elaboration of the confusion matrix values (i.e., TP, FP, TN FN) used
for evaluating the accuracy of taxonomic pro�le methods. 59

6.2. PR curves used to compare SLIMM against existing methods.
True positive rate (TPR)/recall is drawn against precision. SLIMM
showed the highest performance. GOTTCHA did not discover any
false positives but is low in recall. 61

6.3. PR curves used to compare di�erent variants of SLIMM. SLIMM-
DG (with digital normalization), SLIMM-NF (without �ltration),
SLIMM-NF-DG (without �ltration but with digital normalization)
and SLIMM-BOWTIE2 using the Bowtie2 read mapper are included. 62

141

List of Figures

6.4. Scatter plots showing the divergence between abundances predicted
by di�erent tools and the actual abundances used in simulation.
SLIMM predicted the abundances more accurately than the other
tools. Kraken overestimates the abundance values. GOTTCHA and
mOTUs did not perform well in predicting the correct abundances. 63

6.5. Violin plots showing the divergence of predicted abundances from
the actual abundances. SLIMM has the lowest divergence from true
abundances. SLIMM’s abundances are better with the coverage
landscape based �lter than without. 64

6.6. Scatter plots showing the divergence between abundances predicted
by by di�erent variants of SLIMM and the actual abundances used
in simulation. 66

7.1. The number of new assemblies (genomes) added to the GenBank
database per year in the last decade. The number of new species in-
troduced is getting relatively smaller compared to the total number
of genomes added to the database. 70

7.2. Sketch of the DREAM index framework. The red sequence piece
among the green ones symbolizes that we do not require a perfect
partitioning allowing us to use fast methods. The boxes on the right
symbolize the potential use of di�erent index implementations.
Note that we use solely FM-indices in the context of this thesis. . 71

7.3. Illustration of the q-gram Lemma: One mismatch in a pattern can
destroy q q-grams (5-mers). Here, the �rst error at (G) will destroy
the �rst three 5-mers. The second error at (C), however destroys 5
5-mers . 77

7.4. The q-gram lemma using binning dictionary (D). For each k-mer
ki generated from a pattern p we extract binning sub-bitvectors
S V(ki) representing the bins containing k-mer ki. For all set bits in
S V(ki) we increment the counter of corresponding bin. Bins whose
counter is greater than or equals to the threshold (in this case 4)
will be searched for an approximate match for p. 78

7.5. Adding k-mers to a Bloom �lter using two hash functions. k-mers
are added by setting bits at position returned by the hash functions.
H2(ACGTG) and H1(GATTG) both yielded 23 creating a collision. 79

7.6. A schematic of the IBF. Di�erently colored Bloom �lters of length
n for the b bins are shown in the top. The individual Bloom �lters
are interleaved to make an IBF of size b × n. In the example, we
retrieve 3 positions for a k-mer (ACGTACT) using 3 di�erent hash
functions. The corresponding sub bitvectors are combined with a
bitwise & giving us the needed binning bitvector. 81

8.1. Read mappers performance - throughput and peak memory evalu-
ated using 42 M metagenomic reads (SRA/ENAid: SRR6504858) . 93

142

List of Tables

4.1. A short summary of existing taxonomic pro�ling methods and their
key features. The table shows the type of sequence the taxonomic
pro�lers support (WGS/16S) and the database type they use. It also
shows if a tool is alignment based or not 40

6.1. List of read-sets and their primary properties used in the evaluation
process of SLIMM against other existing methods 57

6.2. Average Runtime and Memory Comparison of SLIMM against ex-
isting methods . 58

6.3. Comparison of SLIMM against di�erent tools regarding precision
and recall on species-level: The highest values in each row are high-
lighted in strong green for both precision and recall. *GOTTCHA
and mOTUs have unfairly lower recall and F1 values due to their
database which does not contain the complete set of references for
the corresponding read-sets . 60

7.1. The k-mer content of the RefSeq prokaryotic database downloaded
on the date 2017-09-26. 74

7.2. The e�ective binning ratio (EBR) of clustering the RefSeq prokaryotic
database into 64, 256 and 1024 bins using TaxSBP and k-mer based
clustering. 76

7.3. Average false positive rate of bloom �lters which are interleaved
within the IBF on the bins created by TaxSBP. Three di�erent bin-
ning (64, 256 and 1024), a range of k-mer sizes (17-20), and two
bitvector sizes (16 GB and 32 GB) are shown. 82

7.4. Evaluation of the interleaved Bloom �lters (IBF) on multiple setup of
parameters. The evaluation is performed on the clustering the Ref-
Seq prokaryotic database into 64, 256 and 1024 bins using TaxSBP
and k-mer values 19 and 20. The IBF performed well for both
bitvector sizes of 16 GB and 32 GB. 83

8.1. Wall clock time and peak memory required for building and updat-
ing indices. Peak Memory refers to the maximum resident memory
occupied by a program (all threads in case of multi-threading) during
execution. ∗ Since it is not possible to partially update indices for
standard mappers, similar values as build time are reported 91

143

List of Tables

8.2. A break down of runtime and memory for index building in
DREAM-Yara between FM-indices and an IBF. 92

8.3. Rabema benchmark results on 1 M metagenomic reads (SRA/ENA
id: SRR6504858) mapped against 31.34 GB archaeal and bacterial
references from NCBI’s RefSeq database. The colored panels show
the results of �nding all co-optimal mapping locations of the reads;
Big numbers show total Rabema scores, while small numbers show
marginal scores for the mapping locations at

(
0 1 2
3 4 5

)
% error rate.

The left panel shows the sensitivity of mappers normalized by the
number of locations reported per read, while the right panel shows
absolute sensitivity. 95

144

Acronyms

AMD acid mine drainage 11
CRT cyclic reversible termination 20
DNA deoxyribonucleic acid 9
DREAM index Dynamic seaRchablE pArallel coMpressed index 1
EBR e�ective binning ratio 74
emPCR emulsion PCR 19
ENA European Nucleotide Archive 43
FDR false discovery rate 41
IBF interleaved Bloom �lters 1
kbp kilobase pairs 17
LCA lowest common ancestor 38
mbp megabase pairs 17
NGS next-generation sequencing 46
PCR polymerase chain reaction 15
RNA ribonucleic acid 9
SLIMM species level identi�cation of microorganisms from metagenomes 45
SNA single nucleotide addition 20
WGS whole genome shotgun sequencing 1
WGMS whole metagenome shotgun sequencing 21

145

	Preface
	Acknowledgments
	Introduction
	Microbial Communities
	Types of Microbes
	Examples of Microbial Communities
	Importance of Microbial Communities
	Mining
	Environmental Bioremediation
	Agriculture and Food
	Healthy Human Life
	Biotechnology and Medicine

	Metagenomics
	Genomics Preliminaries
	DNA Sequencing Technologies
	Amplicon Sequencing
	Shotgun Sequencing

	Introduction to Metagenomics
	Culture-based Genomics
	Advantages of Metagenomics

	Main Questions in Metagenomics
	Who is there?
	What are they doing?
	How are they doing it?

	Read-Mapping in Metagenomics
	Assembly - Before Read-Mapping
	Read-Mapping
	Indexing References Genomes
	Popular Read Mappers

	Alternatives to Read-Mapping

	Taxonomic Profiling
	Taxonomic Profiling
	Introduction
	Importance of Taxonomic Profiling
	Challenges
	Different Approaches to Taxonomic Profiling
	Existing Methods
	Bracken
	CLARK
	DUDes
	GOTTCHA
	Kraken
	LMAT
	MEGAN
	MetaPhlAn
	MetaPhlAn2
	MG-RAST
	MGnify
	mOTUs
	QIIME

	SLIMM
	SLIMM Motivation
	SLIMM Pipeline
	Preprocessing Module
	Read-Mapping

	SLIMM Algorithm
	Collect coverage information of genomes
	Discard unlikely genomes based on coverage landscape
	Redefine reads uniqueness
	Assign remaining shared reads to their LCA
	Compute relative abundances based on unique reads

	SLIMM Application

	SLIMM Evaluation
	Benchmarked Methods
	Datasets
	Reference Set
	Metagenomic Reads

	Computational Performance
	Infrastructure and Parameters
	Runtime and Memory Footprint

	Accuracy Evaluation
	List of Reported Organisms
	Correctness of Abundance

	Summary

	Read Mapper for Large Databases
	DREAM-Yara
	Introduction to DREAM Index Framework
	Dynamic Operations Distributor
	Dynamic Search Distributor
	DREAM Index Framework - Implementation
	Mapping Metagenomic Reads
	Clustering Sequences Using NCBI's Taxonomy
	k-mer Based Clustering of Sequences
	Binning Dictionary and q-gram Lemma

	Interleaved Bloom Filters (IBF)
	Bloom Filters
	Performance of the IBF on Metagenomic Data

	FM-indices per Bin
	Distributed Yara - A Trivial Distribution
	DREAM-Yara
	The Yara Read Mapper
	DREAM-Yara Adoption
	Summary

	DREAM-Yara Evaluation
	Evaluation Setup
	Dataset
	Infrastructure

	Results
	Build and Update Indices
	Read-Mapping

	Results Summary

	Conclusion and Miscellaneous
	Conclusion
	Discussion
	Future Work

	Appendix
	Command Line Options of select_refs.py
	Command Line Options of collect_refs.py
	Command Line Options of merge_refs.py
	Command Lines Used in SLIMM Evaluation
	Detailed Runtime Across Multiple Read-Sets
	Extra Precision - Recall Curves
	Extra Scatter Plots
	Extra Violin Plots
	q-gram Lemma Threshold
	Reference Datasets
	Command Lines Used in DREAM-Yara Evaluation

	Abstract
	Zusammenfassung in deutscher Sprache
	Selbstständigkeitserklärung
	Bibliography
	List of Figures
	List of Tables
	Acronyms

