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Increase in the number of new chemicals synthesized in past decades has resulted

in constant growth in the development and application of computational models for

prediction of activity as well as safety profiles of the chemicals. Most of the time, such

computational models and its application must deal with imbalanced chemical data. It is

indeed a challenge to construct a classifier using imbalanced data set. In this study, we

analyzed and validated the importance of different sampling methods over non-sampling

method, to achieve a well-balanced sensitivity and specificity of a machine learningmodel

trained on imbalanced chemical data. Additionally, this study has achieved an accuracy

of 93.00%, an AUC of 0.94, F1 measure of 0.90, sensitivity of 96.00% and specificity

of 91.00% using SMOTE sampling and Random Forest classifier for the prediction of

Drug Induced Liver Injury (DILI). Our results suggest that, irrespective of data set used,

sampling methods can have major influence on reducing the gap between sensitivity and

specificity of a model. This study demonstrates the efficacy of different sampling methods

for class imbalanced problem using binary chemical data sets.

Keywords: machine learning, DILI, sampling methods, Tox21, imbalanced data, molecular fingerprints, sensitivity-

specificity balance, SMOTE

INTRODUCTION

Increase in the number of new chemicals synthesis in past decades has resulted in constant
growth in the development and application of computational models for prediction of activity
as well as safety profiles of the chemicals (Mitchell, 2014; Banerjee et al., 2016; Hong et al.,
2017). In silico models based on quantitative structure activity relationship modeling to molecular
similarity based methods and machine learning models have been greatly successful in the field
of computational drug design (Huang et al., 2016). Most of the time, computational models and
their application must deal with imbalanced chemical datasets where one class is the majority class,
outnumbers the other class in case of binary datasets. The minority class is oftentimes the class
of interest. Constructing an accurate classifier from an imbalanced dataset is a challenging task.
Traditional classifiers by maximizing the overall prediction accuracy tend to classify the data as
majority class (Banerjee et al., 2016). Often the data comes from different sources like different
experimental labs, experimental setup, as well as post processing of data can lead to increase
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in noise in the dataset. Highly imbalanced datasets are common
in many pattern recognition tasks (López et al., 2013). For
example, in medical datasets instances of diseased patients are
typical rarer than instances of healthy individuals. Yet, it is the
rare cases that attract the most interest, as identifying them
enables the patient to be diagnosed and treated (Li et al., 2010).
More precisely in chemical datasets, the problem of imbalanced
data is common. Most of the in silico models for the prediction
of bioactivities as well as toxicity profiles had to rely on an
imbalanced dataset (Nanni et al., 2015). In binary classification,
the underrepresented class is generally referred to as minority
class, and the over represented class is referred to as majority. It
is often observed that in case of an asymmetric class distribution,
regular classifiers like support vector machine (SVM), as well as
neural network (NN) tend to ignore the minority class, and treat
them as noise resulting in a class boundary that unduly benefits
the majority class (Maltarollo et al., 2015). Recently, many in
silico models constructed on imbalanced data for prediction of
chemical activity have achieved good performances in terms of
accuracy and AUC (Drwal et al., 2015; Stefaniak, 2015; Capuzzi
et al., 2016; Mayr et al., 2016; Banerjee and Preissner, 2018).
However, very few have been able to handle the issues considering
the false negatives and false positives. The imbalanced dataset is
either dominated with positive instances or negative instances.
Therefore, specificity and sensitivity of the model is highly
important when addressing an imbalanced data set. Increase in
sensitivity increases the true positive predictions of the model
and reduces the false negatives. Similarly, improvement in the
specificity increases the true negative predictions and hence
reduces the false postives. Therefore, it is important that the gap
between the specificity and sensitivity measures of a good model
is as small as possible. In machine learning, many approaches
have been developed to handle imbalanced data (Dubey et al.,
2014; Beyan and Fisher, 2015; Pérez et al., 2016). The approach
to handle imbalanced data can be in general classified into two
broad categories as algorithmic or internal level and data or
external level (López et al., 2013). On an internal level, there is
the possibility of introducing a new design or tuning the existing
one to handle the class imbalances (López et al., 2013). The major
challenge with an internal approach is that they are specific to
a classifier and the algorithm used for the classification task.
On the external level, different types of data sampling methods
are used such as under sampling and over sampling techniques.
The external approach is straight forward, can be applied to any
classifier, and at the same time incur the cost of over-fitting
or losing the important information. This makes the external
solution more adaptable and applicable.

In this study, we focus on different data sampling methods
for improving the sensitivity as well as specificity of a classifier
for prediction of compound activity. The study is based on
two different data sets, coming from two different types of

Abbreviations: AhR, aryl hydrocarbon receptor; ER-LBD, estrogen receptor

ligand binding domain; HSE, heat-shock element; NB, Naive Bayes classifier;

AUC, area under the curve; RF, random forest; TC, Tanimoto Coefficient; Tox21,

Toxicology in the twenty-first century; DILI, Drug Induced liver Injury; SMOTE,

Synthetic Minority Over-Sampling Technique.

experimental data sources. The Tox21 dataset (Huang et al.,
2016) and the Drug Induced Liver Injury (DILI) dataset
(Chen et al., 2016; Thakkar et al., 2018). Furthermore, we
introduce a new variant using maximum common feature (MCF)
fingerprints in the sampling methods based on augmented
random under and over sampling techniques. In this study, by
using SMOTE (Synthetic Minority Over-Sampling Technique)
over sampling method and Random Forest classifier, we have
achieved a DILI prediction model with an accuracy of 93.00%,
an AUC of 0.94, sensitivity of 96.00% and specificity of 91.00%.
The experiments done in this study are based on two different
data sets: four different prediction endpoints and multiple
sampling methods using a uniform classifier are able to show
the contribution of each sampling method on the predictive
performance of the model. This study highlights the importance
of reduction of gap between sensitivity and specificity in case of
models trained on imbalanced chemical dataset.

MATERIALS AND METHODS

Data Preparation
Four different types of imbalanced (havingmajority andminority
class) data sets were used in this study. The data sets were
standardized and curated as described in our previous work
(Banerjee et al., 2016). The final datasets are reported in
Table 1.

Tox21 Dataset
The Toxicology in the twenty-first Century (Tox21) dataset used
in this study is divided into three Tox21 assays (endpoints) such
as (aryl hydrocarbon receptor (AhR), estrogen nuclear receptor
alpha ligand-binding domain (ER-LBD) and heat shock protein
beta-1 (HSE). All chemical structures were downloaded from
the Tox21 Data Challenge 2014 website (https://tripod.nih.gov/
tox21/challenge/index.jsp).

The Tox21 data consisted of the same number of datasets
with three different cellular assays: NR-AhR, ER-LBD,
and HSE as endpoints, as reported in our previous study
(Banerjee et al., 2016). The Tox21 dataset can be used
as a gold standard dataset for such comparative analysis,
giving the standard experimental condition, the noise in
the data is comparatively lower than in data coming from
different sources as well as from different experimental
setup.

TABLE 1 | The distribution of active and inactive class for both training and

independent test set used in this study.

Prediction

endpoints

Training set Active/

inactive

Independent

test

Active/

inactive ratio

Tox21 AhR 6901 0.125 610 0.135

ER-LBD 6801 0.053 600 0.034

HSE 7328 0.043 610 0.039

NCTR DILI 850 0.264 95 0.266
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Drug Induced Liver Injury (DILI) Dataset
The DILI dataset was prepared using different resources such
as Liew dataset (Liew et al., 2011) , Green and Xu dataset
(Greene et al., 2010), DILIrank (Chen et al., 2016), and the
Liver Toxicity Knowledge Base Benchmark Dataset (LTKB-BD)
(Thakkar et al., 2018). The National Center for Toxicological
Research (NCTR), U.S: FDA provides the benchmark dataset
LTKB-BD. In this study, LTKB-BD dataset is used as the
standard, and data from other sources were merged, keeping the
activity/inactivity preference from LTKB-BD. The final dataset
was then curated and standardized. The final DILI dataset
contains 945 compounds (drugs).

Molecular Descriptors
To keep the analysis straight forward and more focused on
the individual contribution of the sampling methods over non-
sampling method; we used the MACCS fingerprints1 as it
was reported as relatively better descriptor for prediction of
Tox21 endpoints (Banerjee et al., 2016). MACCS fingerprints
are designed on generic substructure keys. Additionally, the
models were computed using Morgan fingerprints also known as
circular fingerprints with radius 2 (Rogers and Hahn, 2010). The
fingerprints were computed using the RDKit2 library in python.

Sampling Methods
Sampling techniques are widely used in the context of machine
learning models to address the negative effect of an imbalanced
training dataset. These external sampling methods are easy
to implement and can be applied to any kind of classifier.
Furthermore, depending on the individual classifier and possible
algorithmic complexities, individual classifiers can be used to
tune the model for better performance.

The following are the different data sampling methods as used
in this study:

• No Sampling: All the data were used without any
manipulation, so called ‘original dataset’.

• RandomUnder Sampling (RandUS): The data points from the
majority class are removed randomly.

• Augmented Random Under Sampling (AugRandomUS):
Random under sampling in general removes instances of the
dataset randomly. In this modified version, the randomness
was reduced by utilizing a specifically calculated fingerprint
called most common features (MCF) that incorporates all
the common features in the data set. The features in
this fingerprint are derived from MACCS fingerprints1 and
Morgan fingerprints respectively. To produce this fingerprint
the overall average frequency of all the features in the majority
class is computed. Then, for each bit position of the fingerprint
the relative frequency of ones in the complete data set is
computed. If the relative frequency of a bit position is higher
than the average frequency the respective bit position and the
frequency is saved. Following the average number of features

1MACCS Structural Keys. San Diego, CA: Accelrys. Available online at: http://

accelrys.com.
2RDKit: Open-Source Cheminformatics Software. Available online at: http://www.

rdkit.org

per fingerprint of the majority class is used to specify the
number of the features per fingerprint of the MCF fingerprint,
whereas the features themselves are specified by the saved
features having the highest relative frequencies. Subsequently
iteration is performed that is completed as soon as themajority
data set is reduced to the size of the minority data set. In each
step, a number of samples being the most similar to the MCF
fingerprint are collected in a list. Then a number of instances
is randomly chosen from the list and removed from the data
set. Thereafter, a new MCF fingerprint is computed and the
iteration is continued (Figure 1). In this way, the samples
most similar to the MCF fingerprint are removed; the loss of
variance of the majority set is decreased. In addition, the loss
of information is reduced by removing a limited number of
samples per calculated MCF fingerprints.

• Random over sampling (RandOS): Data points from the
minority class are randomly chosen and added to the existing
minority class.

• Augmented Random Over Sampling (AugRandOS): Random
oversampling in this case also follows the same principle
mentioned under the augmented random under sampling
before. Only difference in this case, in each iteration step a list
of samples most dissimilar to theMCF fingerprint is created. A
part of the list is chosen randomly to be duplicated and added
to the original data set. Since the samples most dissimilar to
MCF are duplicated the loss of variance is relatively low. Both
steps are repeated until the minority class consists of as many
samples as the majority class.

• K-Medoids Under Sampling (kMedoids1): K-medoids is a
clustering algorithm that is used to under sample the original
majority class. A medoid is itself an instance of the majority
class utilized as a cluster center that has the minimum average
dissimilarity between itself and all majority data points in its
cluster. The number of medoids is equal to the number of
majority class instances. A sample is assigned to that cluster
with which center it shares the highest similarity based on
Tanimoto coefficient (Willett, 2003). For each of the medoids
the sum of the similarities between itself and all samples
belonging to its cluster is calculated. The algorithm tries
to maximize the combination of these sums by performing
iteration. The iteration is limited to 100 steps, in each of the
iterations new medoids are randomly chosen and the overall
sum of Tanimoto similarities is calculated. The set of medoids
producing the highest sum is used as under sampled majority
class. By means of clustering by similarity, this approach
creates a subset of which each individual data point represents
a group of structurally related molecules, in turn reducing the
information lost by under sampling.

• K-Medoids Under Sampling (kMedoids2): Similarly to
kMedoids1 this method starts with randomly choosing n
samples as medoids, where n is equal to the number of data
points in the minority class. For each of the chosen medoids,
a total number of 30 iterations are assigned. In each iterative
step, a medoid is exchanged with a random majority class
sample, new clusters are computed and the cost is calculated
using Tanimoto coefficient. The final set of medoids is chosen
based on the maximum sum of similarities.
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FIGURE 1 | Schematic representation showing the design of maximum common feature (MCF) fingerprints using features derived from MACCS fingerprints.

• Synthetic Minority Over-Sampling Technique-using Tanimoto
Coefficient (SMOTETC): The SMOTE method creates
synthetic samples of the minority class to balance the overall
data set. Depending on the amount of oversampling a number
of samples of the minority class are chosen. For each of those,
the k-nearest neighbors are identified, utilizing the Tanimoto
coefficient as similarity measure (Willett, 2003). The feature
values of the new synthetic data points are set to the value
occurring in the majority of the chosen sample and two of its
k-nearest neighbors.

• Synthetic Minority Over-Sampling Technique-using Value
Difference Metric (SMOTEVDM): This method is also based
on SMOTE, but the k- nearest neighbors are chosen using the
Value Difference Metric (VDM) as similarity measure. The
VDM defines the distance between analogous feature values
over all input feature vectors. More detailed information
on the algorithm for computing VDM can be found here
(Sugimura et al., 2008).

Model Construction
The Machine learning model was constructed using RF classifier.
As reported in the earlier study RF model performed best
(Banerjee et al., 2016). RF classifier is constructed from a
multitude of decisions trees. In this study, we have used 1,000
estimators. The training set is divided into subsets and each
of those is used to create a single classifier. A node is created

by randomly choosing a number of features of the input
vectors. The feature consisting of the most homogeneous binary
split is then used as decision node. A majority vote of all
trees is used to reach a prediction outcome. The advantage of
using RF classifier is that it tends to avoid overfitting (Hansen
et al., 2009; Flaxman et al., 2011; Díez-Pastor et al., 2015).
The implementation of the model was done using the scikit-
learn package for machine learning in python (Pedregosa et al.,
2013).

Model Performance
For training the model, a 10-fold cross-validation was used,
dividing the training dataset into 10 subsamples, keeping the
distribution of the active and inactive class balanced. For each
fold, 9 subsamples were used to train the model and the
remaining 1 subsample as test set. The final model validation
was computed using an independent test set. The performance
strength for both the cross-validation and external validation
using an independent test set, was measured using accuracy, the
area under the curve (AUC) values of the receiver operating
characteristic (ROC) curve, sensitivity, specificity, and f-measure
(Banerjee and Preissner, 2018).

Accuracy of a model is defined as its ability to differentiate the
actives and inactives cases correctly.

Accuracy =
6 True positives+ 6 True Negatives

6 Positives+ 6 Negatives
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Sensitivity describes the true positive rate i.e. the number of
positive samples that were correctly identified as positive.

Sensitivity =
6 True Positives

6 True Positives+ 6 False Positives

Specificity is the true negative rate i.e. the number of negative
samples that were correctly identified as negative.

Specificity =
6 True Negatives

6 True Negatives+ 6 False Positives

F-measure is the weighted average of precision and recall.

F −measure = 2∗
Precision∗Recall

Precision+ Recall

A receiver operating characteristic (ROC)-curve is the plotting
of the true positive rate against the false positive at various
discrimination thresholds and is commonly used in binary
classification. On the unit ROC space, a perfect prediction would
yield an AUC of 1.0 and random results will be in points along
with the diagonal with an AUC value of 0.5.

RESULTS

In this study four different data sets were used. The data
sets contain binary imbalanced chemical data provided in
Table 1. To keep the study uniform and comparable with our
previous work (Banerjee et al., 2016), we have used MACCS
molecular fingerprints and Morgan fingerprints, and Random
Forest classifier for all the models. All the models and sampling
methods were computed using python programming language
and different machine learning packages. The results were
obtained for both 10-fold cross validation and an independent
test set for each of the prediction end points. We compared
performance of the non-sampling based method with eight
different types of sampling methods (see Methods).

Tox21
The Toxicology in the twenty-first Century (Tox21) dataset is
divided into three Tox21 assays (endpoints) such as NR-AhR,
ER-LBD, and HSE. All chemical structures were downloaded
from the Tox21 Data Challenge 2014 website (https://tripod.nih.
gov/tox21/challenge/index.jsp). Since the data is obtained from a
standard experimental setup, it serves as a gold standard dataset
for such analysis, assuming the experimental noise associated
with the dataset is negligible. From the cross-validation results
of all the three endpoints it is evident that non-sampling when
compared to sampling methods performs equally well in terms
of accuracy and AUC (Figures 2, 3). However, non-sampling
method seems to perform poorly in terms of sensitivity and
performs well in terms of specificity. This is because of the
imbalanced data, the classifier tends to be biased toward the
majority (negative) class, a problem non-sampled data cannot
address. This gives rise to the question of false positives
and false negatives. On the other hand, different sampling
methods seem to handle the issue of sensitivity (true positives)

without compromising on the other performance measures
such as accuracy, AUC and specificity. Sampling methods
used in this study like augmented random oversampling that
incorporates most common feature (MCF) fingerprints perform
equally well in terms of all the measures for all the three
end points (Figures 2, 3). However, the standard deviation
of sensitivity is high in these sampling methods. Similarly,
SMOTE-TC and SMOTE-VDM achieved good performance
in all the parameters. Since, the data set is dominated by
negative instances; it is expected to have low sensitivity and
high specificity. The challenge was to increase the sensitivity
without compromising on the accuracy, AUC and specificity.
The external validation results of the Tox21 dataset for NR-
AhR suggests SMOTE-TC sampling method reached superior
performance compared to non-sampling and other sampling
methods (Figure 3). Similarly, this is true for SR-HSE end points.
In case of ER-LBD, the observation is opposite. Most of the
under sampling techniques including the k-medoids methods
perform well in terms of sensitivity; however there is a sharp
decrease in specificity (Supplementary Figures 1–4). The over
sampling methods like SMOTE-TC and SMOTE-VDM perform
equal to the non-sampling method in terms of accuracy, AUC
and specificity. However, the sensitivity of this model is low.
This could be because the chemical space of ER-LBD is highly
conserved as we have seen in our previous study (Banerjee
et al., 2016). Therefore, increasing the number of instances
in this dataset by over sampling does not help, as the data
is homogenous and rare events are not captured completely.
It is also observed that the positives in the external set are
highly diverse or similar to the negative class instances when
compared to the training set. Furthermore, F1 measure values
are higher for the sampling methods for all the three prediction
endpoints compared to non-sampling method (provided as
Supplementary Figure 5). Similar performance can be observed
in case of Morgan fingerprints, sampling methods performed
better compared to non-sampling methods with respective to
balance between specificity and sensitivity and F1 measure
(see Supplementary Figure 6) in the cross-validation. In case
of classifiers trained on real datasets, it is often observed
that where actives (minority class examples) in the training
sets and test sets are very different. As a result, the internal
cross-validation score might be higher compared to that of
the external scores as seen in case of F1 measures for the
ER-LBD model (Supplementary Figure 5). In such cases using
adversarial cross-validation or CLUSTER cross-validation can
provide an interesting solution (Mayr et al., 2016; Banerjee et al.,
2018). Comparison between the performances of the models
based on MACCS and Morgan fingerprints are provided as
Supplementary Figures 8–10 for AR-AhR, ER-LBD, and HSE
respectively.

DILI
The DILI dataset was obtained from sources like DILIrank (Chen
et al., 2016), and the NIH LiverTox database (Thakkar et al.,
2018) and were normalized and curated to be used in this study
as explained in our previous work (Drwal et al., 2015). It is well
known that the mechanisms of DILI are not only complicated but
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FIGURE 2 | Performance measures for cross-validation -AhR (A), ER-LBD

(B), and HSE (C) models based on Random Forest Classifier and MACCS

fingerprints.

at the same time diverse. This makes it even more challenging
to produce an optimal prediction. However, the DILI chemical
space contains certain common substructures that were used
to train the model. In this case, the dataset was dominated
by negative class samples making it imbalanced. Hence it is
interesting to validate if the sampling methods can be helpful.

To evaluate the performance, 10-fold cross-validation was
performed using the different sampling methods and non-
sampling method. From the cross-validation results it is evident
that the SMOTE-TC over sampling method outperforms other

FIGURE 3 | Performance measures for external validation -AhR (A), ER-LBD

(B), and HSE (C) models based on Random Forest Classifier and MACCS

fingerprints.

sampling methods as well as the non-sampling method. Using,
SMOTE-TC an accuracy of 93.5%, an AUC of 0.94, sensitivity
of 96.00% and specificity of 91.00% has been achieved on our
dataset (Figure 4). The standard deviation of all the measures
using SMOTE-TC is low when compared to other sampling
methods. The non-sampling method performs poorly in terms of
sensitivity and the standard deviation is high. This holds true for
both MACCS and Morgan fingerprints based respective models.
However, it is observed that MACCS keys performed slightly
better than the Morgan fingerprints (Supplementary Figure 6).
A detailed comparison between the performances of the models
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FIGURE 4 | Performance measures for cross-validation and external validation

for DILI model based on Random Forest Classifier and MACCS fingerprints.

based on MACCS and Morgan fingerprints are provided as
Supplementary Figure 7.

The external validation results of the DILI dataset show
that overall all the sampling methods have achieved greater
balanced between sensitivity and specificity measures than the
non-sampling method.

However, as expected under sampling methods increased
the sensitivity of the model while decreasing the specificity
compared to the original dataset. In contrast, over sampling
resulted in higher specificity but lower sensitivity than under
sampling approaches. Overall, the SMOTE and k-medoids
methods performed optimally good achieving accuracy above
80.00%, an AUC above 0.90 and sensitivity and specificity
above 90.00%. The k-medoids methods performed extremely
well on reducing the gap between sensitivity and specificity
(Figure 4). It is also observed that the F-measure for both
the cross-validation and external validation is higher in case
of sampling methods compare to non-sampling method (see
Supplementary Figure 5).

DISCUSSION

In this study, we present four different models based on Random
Forest classifier and eight different sampling methods. Three

TABLE 2 | Comparison of the DILI model presented in this study with other

published DILI models.

Models Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC-ROC

DILI (this study)

Random Forest and

SMOTE -TC sampling

method

93.00 96.00 91.00 0.94

(Xu et al., 2015)

Deep learning

86.90 82.50 92.90 0.95

(Zhang et al., 2016)

(Zhang et al., 2016)

Pattern recognition

method

66.00 85.00 34.00 0.55

models are based on Tox21 dataset and with respective endpoints
(NR-AhR, NR-ER-LBD, and SR-HSE). The fourth model is
trained on LiverTox database (see Methods) for the prediction
of DILI. All the models are trained using MACCS molecular
fingerprints as descriptors. One of the major outcomes of this
study is the improvement of the sensitivity of all the models
using over sampling methods like SMOTE and under sampling
methods like k-medoids techniques without compromising on
the accuracy, AUC and specificity of the models. Secondly, the
DILI model proposed in this study achieved an accuracy of
93.00%, an AUC of 0.94, sensitivity of 96.00% and specificity
of 91.00% on the cross-validation and an accuracy of 83.00%,
AUC of 0.89, sensitivity of 84.20% and specificity of 82.70% on
the independent set, using SMOTE-TC over sampling method.
Additionally, in this study a newly designed most common
features (MCF) fingerprint representation of the active space
in the respective training sets, are used to modify random
under sampling and over sampling techniques. The classifier
and the descriptor in this study, has been kept uniform to
measure the individual contribution of the sampling methods.
The study is further compared to our previous work (Banerjee
et al., 2016) and the current study outperforms in terms of
sensitivity. The DILI model proposed in this study, showed
better performance when compared to other models published
for DILI predictions (Table 2). When compared with a well
performing model for DILI prediction based on deep learning
(Xu et al., 2015), it is observed in this study that an external
tuning of data by sampling methods can produce equally
good performance even using computationally less expensive
algorithms like RF. The introduction of MCF fingerprints in
both augmented random over sampling and augmented random
under sampling methods, resulted in increase in both sensitivity
and specificity of all the models, without loss of performance
in accuracy and AUC-ROC values in the cross-validation set.
However, the same was not observed on the external validation
sets. This approach resulted in reduced sensitivity and specificity
on external sets for the ER-LBD model. It is worth mentioning
that the performance of each of the sampling methods is highly
depended on the chemical space of the respective models.
There is no clear winner among the eight sampling methods.
However, in general it is seen that sampling is a sensible way
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FIGURE 5 | Chemical Space Networks of the actives of external test set (triangle) and actives of training set (square). The CSNs reveals that mexiletine (external test

active) compound having similarity with phenoxypropazine (training set active) is incorrectly predicted by all the sampling methods as inactive. Similarily fipexide,

sunitinib (external set active) are incorrectly predicted by all the sampling methods.

to reduce the gap between sensitivity and specificity of a model.
K-medoids sampling tends to show similar behavior for all
the models, both on cross-validation and external validation
sets. Thus, reflecting that performance of sampling methods
could be highly dependent on the chemical space of the data
of respective models. To understand the strength of individual
sampling methods as well as the influence of distribution of
chemical data in model training, we analyzed the Chemical Space
Networks (CSNs) for all the models (Maggiora and Bajorath,
2014). Due to relatively large number of compounds present
in the Tox21 datasets, it is difficult to visualize network and
its interpretability. Hence, it was more prudent to visualize,
display and analyze a moderately size compound data set such
as DILI. In CSNs, compounds are represented as nodes, and
the shape of the nodes in this study represents the activity of
the compound and the color represents the compound cluster.
The edges connecting the nodes represent the pairwise similarity
relationships. For each dataset two CSNs were produced. The
first, containing the actives of the test set and training set, and
the second comprising of the actives of the test set and inactives
of the training set. This was done to analyse the compound
distributions and to assess the diversity of the compound in
both training and test data sets as well as to visualize the active
borderline cases. The CSNs were designed by clustering the
actives of the test set and actives of the training set (Figure 5)
as well as the actives of the test set and inactives of the

training set (Figure 6) using structutal similarity. It can be seen
that the active compounds of the training set are structurally
more diverse and produce more singletons compared to the
inactives, which exist in comparatively larger clusters. Since,
molecular mechanism behind drugs induced liver injury is a
highly complicated and diverse phenomenon (Liyun and Neil,
2013), the drugs which are found to be active for DILI; makes the
DILI relevant chemical space very diverse. On the other hand,
it reflects the model tend to learn the rules based on the most
of negative instances of the training data, and hence results in
better predictions of true negatives compared to true positives.
This clearly demonstrate why in case of non-sampled data, the
minority class predictions tends to have worse performance than
the majority class predictions, and the minority class predictions
are misclassified much more frequently (14 out of 20 actives
compounds) than majority class examples (not a single majority
class compound misclassified) (Table 3). Thus, it is noticed
that when learning from data sets with a high degree of class
imbalance, classifiers rarely predict the minority class (Provost
and Weiss, 2011). Therefore, introducing sampling methods like
augmented random under sampling using MCF fingerprints and
KMedoids2 improved the predictions of the minority class with a
slight decrease in the majority class predictions (Table 3). Overall
it can be said that sampling methods helps to overcome biased
behavior and complexities when training positive instances are
costly.
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FIGURE 6 | Chemical Space Networks of the actives of external test set (triangle) and inactives of training set (circle). The CSNs reveals that mexiletine (external test

active) compound having similarity with isoetharine (training set inactive) is incorrectly predicted by all the sampling methods as inactive (false negative). Similarily

fipexide, sunitinib (external set actives) are incorrectly predicted as inactive by all the sampling methods.

Additionally, it is noticed that in the case of an active
compound in the test set sharing equally high structural
similarities with active and inactive compounds of the training
set, the model fails to classify it to the right class. Such is the case
of Fipexide, which is an active DILI compound, but was wrongly
predicted by 8 different sampling methods. This is because
Fipexide shares strong similarities with active compounds
(ketaconazole and Gefitinib) as well as inactive compounds (2-
Nitropropane and Flavoxate). Similarly this can be observed in
the case with Maxiletine, Sunitinib and others shown in the
Figures 5, 6. These borderline and noisy minority class samples
in the test set are placed close to the complex, decision boundary
between the classes. Thus, they are misclassified by similar
neighbors from the opposite class located on the other side of
the boundary. It can be said that these data points can often be
outliers, which represents a rare but valid events. Therefore, they
need to be handled specially, or by re-labeling of the majority
class (negative) class instances.

Often, it is observed the specificity and sensitivity of a
classification with class imbalance problem is inversely related.
Selecting the optimal balance between the sensitivity and

specificity of a classifier is entirely dependent on the goal of the

classification task. Generally, an in silico screening method such
as DILI predictions should be highly sensitive, whereas follow-
up confirmatory methods or experimental tests should be highly
specific. Certainly, this also opens scope and needs for further
updates and training of the models; whenever new data instances

are available. Thus, justifying prediction is indeed a balancing
act between sensitivity and specificity which needs a continuous
introspection.

CONCLUSIONS

Constructing an accurate classifier from an imbalanced chemical
dataset is indeed a challenging task. Because traditional classifiers
tend to maximize the overall prediction accuracy, they become
biased toward the majority class. Given a particular prediction
task on imbalanced data, one relevant question to ask is that
which type of sampling methods should be used? Though a
large number of sampling methods are available for addressing
the data imbalance problem, as it is typically the case, there is
no single sampling method which works best for all problems.
The choice of the data sampling methods greatly depends on
the nature of the dataset and the primary learning goal. Our
results suggest that, irrespective of data sets used, sampling
methods can have major influence on the gap between sensitivity
and specificity of a trained model over non-sampling method.
This study demonstrates the efficacy of different sampling
methods for class imbalanced problem using binary chemical
data sets.

Furthermore, it is important to state that even though
sampling methods performs better compared to non-sampling
method. However, unfortunately, there is no single method
that can work well for all problems. Such is in the case of
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TABLE 3 | Total number of false positives and false negative predicted by different non/sampling methods for DILI model based on Random Forest classifier and MACCS

fingerprints.

Active compounds

External Test set

No sampling AugRandUS randUS AugRandOS randOS kMedoids1 KMedoids2 SMOTETC SMOTEVDM

Etravirine X * * * * * * * *

Levofloxacin X X * X X X * * *

Ciprofloxacin X X X X X X * X X

Clozapine X * * X X * * X *

Milnacipram X * X X X X X X X

Nefazodone X * * X X * * * *

Mexiletine X * X X X X X X X

Sunitinib X X X X X * X X X

Pazopanib X * * X X * * X X

Alpidem X X X X X * * X X

Fipexide X X X X X X X X X

Exifone X * * X * * * * *

Atovaquone X * * X X * * X X

Trimethadione X * * X X * * X X

No of false negatives 14/20 5/20 6/20 13/20 12/20 5/20 4/20 10/20 9/20

No of false positives 0/75 39/75 14/75 0/75 2/75 15/75 17/75 3/75 3/75

X∼ actives misclassified by model trained with respective sampled dataset.
*∼ actives correctly classified by model trained with respective sampled dataset.

ER-LBD model, though sampling methods achieved overall
better scores than non-sampling method in terms of all the
performance measures. However, the overall F1 measures of
the external set for all the models were poor compared to
superior scores of the cross-validation set. It will be wise
to also state that, F1 measure is a combined metric, so it
is advisable to calculate precision and recall separately see
Supplementary Figure 11, and make a decision based on the
goal in mind. In case of binary dataset, there is always a trade-
off between precision and recall. If one chooses to optimize
precision of the model, disfavoring recall and vice-versa, this
will result in the dropping of the harmonic mean. Ideally, it
will be great to have both precision and recall as equal, making
the task often challenging. However, using different cross-
validation techniques like adversarial cross-validation, more
discriminative features, better algorithm or combination of
different algorithm, using higher weights to the minority class
besides using sampling methods can further improve the model
performance.

In this study, we analyzed and validated the importance
of different sampling methods over non-sampling method,
to achieve a well-balanced sensitivity and specificity of a
machine learning model trained on imbalanced chemical
data. Different from earlier studies, our calculations based on
sampling methods have stressed the importance of considering
different sampling methods when training a Random Forest
classifier using imbalanced chemical data sets. Here, we have
used two different datasets and four different endpoints,
the “Toxicology in the twenty-first Century’ dataset and the
Drug Induced Liver Injury dataset from NCTR. Additionally,
our study has achieved an accuracy of 93.00%, an AUC of

0.94, F1-measure of 0.90, sensitivity of 96.00% and specificity
of 91.00% using SMOTE sampling and Random Forest
classifier for the prediction of Drug Induced Liver Injury
(DILI).

The DILI model presented in this study aims to facilitate
the DILI risk prediction in humans and will be made
freely available via ProTox-II, computational toxicity prediction
platform (http://tox.charite.de/protox_II). Training and test sets
and scripts generated and/or analysed in the current study are
available from the corresponding author upon request.
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