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1 INTRODUCTION

Since its inception at the beginning of the 19th century, quantummechanics has been fundamental
in understanding the physical principles of nature, explaining phenomena from black body radia-
tion and the photoelectric effect to superconductivity. This has made it possible to use quantum
effects in technical applications such as solar cells or lasers. With the technical progress of the past
years, the ability to actively control andmanipulate complex quantum systems has come into reach,
leading to a second quantum revolution [8] with entirely new technological prospects: Quantum com-
puters are expected to substantially impact high-end computing, quantum cryptography protocols
may provide intrinsically secure data transmission, and quantum metrology could allow for ultra-
precise sensors. Commercial interest is growing, and a multi-billion Euro market is predicted to
emerge.[9]

Quantum systems, however, are very fragile and require thorough analysis if they are to be ef-
fectively harnessed for quantum technologies. Accurately modeling quantum systems is necessary
for explaining and predicting their behavior as building blocks of quantum devices. For a complete
model describing a quantum system—a quantum state—the system has to be prepared multiple
times and each time a certain quantum measurement has to be performed, resulting in data that
can be processed to infer the model. This procedure is called quantum state tomography and will be
a fundamental topic in the sections 2 and 3. With increasing size and complexity of the quantum
system, this task soon becomes infeasible in the general case. This is due to an exponential increase
of the number of modeling parameters and necessary measurements with the size of the quantum
system, making it hard to find appropriate parameters (“curse of dimensionality”[10]). To cope with
this problem, elaborate signal processing techniques have to be developed and employed.

Signal processing comprises the transmission, manipulation, and representation of signals and
their underlying information. It is fundamental to a wide range of fields such as audio, image, and
video processing, telecommunication, or seismology. Signals can be continuous functions in time
or space such as voltages, magnetic fields, sound waves, angles, forces, or temperatures. For process-
ing, especially digital signal processing, such signals are typically discretized, i.e., sampled at discrete
points. Higher sampling rates generally result in higher accuracy in describing the input and the
output quantities of interest, but then require more computational resources, especially computa-
tional time andmemory. With finite resources, this calls for carefully weighing effort and quality of
the output.

In the context of complex quantum systems, the basic input signals consist of quantum mea-
surements to estimate the parameters that constitute the corresponding quantum state. In general,
it is desirable to restrict the parameter set in such a way that the properties of the quantum system
are essentially preservedwhile keeping the processing effortmanageable. Finding such “compressed
models” is not trivial and requires a certain intrinsic compressibility of the parameter space. And
yet it is not uncommon: Often in the history of physics it was vital to discard unnecessary properties
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of a system to properly model particular parts of nature, such as observing the free fall in a vacuum
without drag forces. In the case of complex quantum systems, it turns out that a large part of the
entire parameter space is occupied by highly entangled quantum states, which are unlikely to ap-
pear in large parts of nature. In many cases, the remaining states, the ones of actual interest, can be
efficiently parametrized by use of tensor network states. They constitute a seminal class of quantum
states with a plethora of groundbreaking applications, allowing the development of potent quan-
tum state tomography protocols (see the publications [2] and [3] in section 3). For this, a crucial
reconstruction step relies on a class of signal processing algorithms for spectral estimation, which
provide frequency spectra for certain signals with high accuracy. Beyond quantum state tomogra-
phy, in this thesis tensor network states are employed for succinctly describing physical processes such
as quantum transport experiments (see publication [5] in appendix A).The established protocol fa-
cilitates the study of the short-time dynamics of these quantum systems by providing statistics that
are not directly accessible otherwise.

If, on the other hand, one is interested in a very general and robust procedure with very few
assumptions about the quantum state to be determined, which comes at the price of less total com-
pressibility of the parameter space, one canmake use of another famous signal processing paradigm:
compressed sensing, which allows for the extraction of sparse solutions out of a higher-dimensional
parameter space using only a comparably small number ofmeasurements/samples (section 2). With
this, signals can be recorded in a compressed way, i.e. substantially fewer input samples are required
to recover the underlying model. Compressed sensing has vastly spread in recent years, making huge
progress both in establishing provable theoretical recovery guarantees and practical applications in
all kinds of fields ranging frommachine learning to radar communication. E.g., inmedical imaging,
the resolution of the reconstructed images could be considerably increased while keeping scanning
times fixed.

When applying compressed sensing to practical quantum state tomography with noisy measure-
ment data, external tuning parameters arise that strongly influence the size of the model of the sys-
tem and one has to trade off model complexity with fitting quality. A maximally accurate fit of the
measurement realization at hand might seem like the best choice, however, this could also lead to
fitting features of the input signal that are just due to noise, resulting in models that are not general
enough to provide sound predictions for future measurements. Using the example of a photonic
quantum experiment, we explore different methods for overcoming this issue, providing a tool-
box for reliable quantum state reconstruction from compressed measurement data sets (see publi-
cation [1]). In principle, employing compressed sensing methods does not exclude the use of tensor
networkmethods—in fact, it can be desirable to profit from both if the structure at hand permits it.

The power of compressed sensing to establish sparse representations can also be of advantage
in quantum chemistry: In density functional theory, the electronic structure of complex quantum
systems such as molecules or crystals is expressed in terms of sets of certain basis functions. It is
oftennot clear, however, if a smaller basis subset still preserves the essential physics. Using compressed
sensing methods, compressed basis sets and hencemore compressedmodels of the quantum systems
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1 – INTRODUCTION
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Figure 1: Complex quantum systems from a signal processing perspective: Covered topics of the pub-
lications “Experimentally exploring compressed sensing quantum tomography” [1], “Quantum field
tomography” [2], “Towards experimental quantum-field tomography with ultracold atoms” [3], “An ef-
ficient quantum algorithm for spectral estimation” [4], “Continuous matrix product state tomography
of quantum transport experiments” [5], “Quantum singular value decomposition of non-sparse low-
rank matrices” [6], and the project “Compressive density functional theory” [7].

can be constructed, leading to reduced computational effort (see appendix A.3).
Signal processing methods can be used to productively analyze complex quantum systems. In-

terestingly, this can also be turned around by using a quantum computer—essentially a complex
quantum system—to massively, in various instances even exponentially, accelerate signal process-
ing algorithms, widening the range of problems that can be handled efficiently both for quantum
and classical applications (section 4). An exponential acceleration would mean that classical com-
putations that would take years to be carried out—even on a current supercomputer—could take
only minutes on a quantum computer. Instead of bits, quantum computers operate on quantum
bits (qubits), which can be in a superposition of both “0” and “1” and can be entangled with other
qubits. The complexity of the arising system, which, as noted above, is a curse for quantum state
reconstruction, can be a blessing for quantum computing. Working with n qubits essentially al-
lows to simultaneously manipulate 2n numbers, giving rise to a possibly exponential speedup for
algorithms. The downside is that in general retrieving the information, i.e., estimating the output
quantum state, is forbiddingly time-consuming, potentially undoing the achieved speedup. Quan-
tum algorithms therefore have to be carefully designed such that the output quantities are accessible
in an efficient manner. Also for this reason, the extent of the computational advantage of quantum
computers still needs to be determined.
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Considering that classical semiconductor-based computer technologies are reaching their phys-
ical limits, quantum computing promises great benefits for data processing. Huge efforts are be-
ing made to realize physical implementations ranging from trapped ions and superconducting elec-
tronic circuits to photonic systems that are both robust towards noise and scalable in the number of
qubits. Due to the exponential acceleration, already a double-digit number of qubits could provide
instances of a tangible quantum advantage.

In publication [4] in section 4, a quantum algorithm for the spectral estimation of signals is
presented, providing an exponential speedup in comparison with classical algorithms. A key com-
ponent for this algorithm is the development of a quantum version of the singular value decom-
position (see publication [6] in appendix A), an important linear-algebra method with numerous
applications.

Figure 1 provides a graphical overview of the topics that are covered by the publications consti-
tuting this dissertation and combining signal processingwith complex quantum systems. Abrief in-
troduction to quantum state tomography is provided in section 2.1, an introduction to compressed
sensing in section 2.2, to tensor networks in section 3.1, and to quantum algorithms in section 4.
The publications [1–6] are presented in the respective sections and highlighted with gray frames.

Beyond signal processing and the thematic intersections of quantum tomography with tensor
networks and compressed sensing, there is further overlap among the respective projects: The same
algorithm that gains a quantum speedup in publication [4] constitutes an important reconstruc-
tion step in publication [2]; the publications [1], [2], [3], and [5] are concerned with inverse prob-
lems[11]—inferring the underlying parameters that determine a given signal. Publication [5] also
extends the reconstruction protocol in [2] to a new class of input signals.
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2 COMPRESSED SENSING QUANTUM TOMOGRAPHY

The compressed sensing paradigm comprises several signal processing techniques that are essential
for estimating quantum states—i.e., performing quantum state tomography—of larger quantum
systems, where it is difficult or virtually impossible to obtain sufficiently large sets of measurement
data that would be necessary for ordinarymethods to work. In the following, we provide the reader
with a brief introduction to quantum state tomography with an emphasis on its scaling behavior
for increasing size of the quantum system. This calls for signal processing methods from compressed
sensing and spectral estimation as well as incorporation of a priori physical information via tensor
network methods to manage the arising amount of data. Tensor networks will be introduced in
section 3.1. In the subsequent section 2.2, the principles of compressed sensing are summarized and
in section 2.3, publication [1]1 is presented, which focuses on the application of compressed sensing
on an experimentally realized photonic quantum systemThe concepts in section 2.2 are also used in
the project in appendix A.3.

2.1 Quantum state tomography and the curse of dimensionality

Quantum state tomography is concerned with the appropriate modeling of a quantum system by
assigning a quantum state to it—commonly in the form of a Hilbert space vector or wave function,
a density matrix/operator, or aWigner quasiprobability distribution. An intrinsic challenge is that
in general, together with their immanent uncertainty, quantum states cannot be determined with
just onemeasurement, and themeasurement changes the state itself: Measuring the position of one
quantum particle may yield one position at a time, but not its underlying wave function, which de-
scribes the particle aswell aswhere andwhen itwill be foundwithwhich probability. We rather have
to consider a set of identically prepared particles and subsequently perform ameasurement on each
particle. The information from all measurement outcomes is used to produce the quantum state—
like two-dimensional image slices (ancient Greek: τομή) are combined to create a three-dimensional
tomogram of a spatially extended object as in medical imaging. Hence the name quantum state
tomography. The quantum state provides the necessary information to make statistical predictions
about the behavior of the particle. The origins of quantum state tomography are found in quantum
optics, estimating the state of a photonic system[12]. See Refs. [13, 14] for a comprehensive overview.

Quantum state tomography is closely related to and the starting point for quantum process to-
mography[15], the estimation of processes that represent the evolution in time of an initial quantum
state and output the evolved state. For this, the process is applied to a set of known trial states, and

1 Adrian Steffens, CarlosA.Riofrío,WillMcCutcheon, IngoRoth, BrynA. Bell, AlexMcMillan,Mark S. Tame, John
G.Rarity, and Jens Eisert, “Experimentally exploring compressed sensing quantum tomography”,Quantum Science and
Technology 2:025005, 2017 (doi:10.1088/2058-9565/aa6ae2). Published under a Creative Commons Attribution 3.0 License
(creativecommons.org/licenses/by/3.0), © 2017 IOP Publishing. Reproduced with permission. All rights reserved.
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the corresponding output states are estimated via state tomography. The quantum process param-
eters can be inferred from the change in the state parameters.

Quantum tomography is essential not only for a thorough understanding of many quantum
experiments[16–19], but also for the fundamental operations and components of future quantum
computers (see the quantum algorithm section 4) and other quantum devices such as quantum
simulators[20,21]. These devices are described in terms of quantum states and processes, whichmakes
the estimation of the latter indispensable for proper operation.

A pure quantum state |ϕ〉 of finite dimension d can be represented by a vector v in Cd . If
the state ismixed—i.e., it is not completely known in which pure state the system is—we describe
it by use of a density matrix %. One can think of it as a mixture of pure state vectors v1, . . . , vr
appearing with respective classical probabilities 0 ≤ w1, . . . , wr ≤ 1 and summed up as weighted
outer products: %=

∑r
j=1 w j v j v

†
j .

2 Note, however, that the representation in termsof pure states
is not unique—see, e.g., Ref. [22]. By construction, the density matrix is Hermitian—% ∈Hd ⊂
Cd×d—andbecause of the values w j being probabilities adding up to one, it is positive semidefinite
(% � 0, all eigenvalues are greater than or equal to zero) and has unit trace. These properties are
sufficient to characterize the setSd of density matrices of dimension d :

Sd = {% ∈Hd : %� 0, tr (%) = 1}. (1)

This is a convex set, with the pure states, matrices of rank r = 1, constituting its boundary. This
will be important for convex optimizationmethods, which are used in compressed sensing, as will be
discussed in the next section 2.2.

Quantummeasurements can bemodeled by a set ofmeasurement operatorsA1, . . . ,Am ∈Hd ,
where each measurement operator Aj corresponds to a measurement outcome that happens with
probability

p j = tr (A†
j Aj%) (2)

and results in a post-measurement state proportional to Aj%A†
j . Since the probabilities add up to

one, the measurement operators have to fulfill the completeness relation3

m
∑

j=1

A†
j Aj = 1d . (3)

In order to perform tomography, the quantum system is N times repeatedly prepared and subse-
quently measured, the frequency N j of each measurement outcome j is recorded (N =

∑

j N j ),

2 With ( · )†, we denote the conjugate transpose of a matrix or a vector.
3 With 1d , we denote the d-dimensional unit matrix. The positive operators Aj A

†
j fulfilling the completeness

relation are also called positive-operator valued measure (POVM) elements. In publication[1] in the following section 2.3,
they correspond to projectors out of eigenvectors of Hermitian matrices.
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2 – COMPRESSED SENSING QUANTUM TOMOGRAPHY

yielding an estimate p̂ j = N j/N for the probability p j . The most straightforward way to obtain a
state estimate is to plug the probability estimates into Eq. (2), resulting in a linear equation system

tr (A†
j Aj%) = p̂ j , j = 1, . . . , m, (4)

which can be rewritten as
E ~%= p̂, (5)

where ~% ∈ Cd 2×1 is the vectorization of % and the j -th row of the matrix E ∈ Cm×d 2 consists
of the vectorization of A†

j Aj . Inverting this equation system requires the number of measurement
outcomes m to be greater than or equal to the dimension of the densitymatrix of the state d 2 (tomo-
graphic completeness), and N substantially larger than m to obtain sufficiently precise p j -estimates
according to the law of large numbers. Namely, determining % up to a trace-distance error4 ε re-
quires a sample complexity scaling with O(d 4/ε2)many copies to be measured.5

Due to the errors from finite counting statistics, the solution %̂ from inverting Eq. (5) will in
general neither be positive semidefinite nor have unit trace, i.e., it will not correspond to a physical
quantum state. This is addressed bymaximum likelihood estimation (mle) methods of finding the
state that “most likely” resulted in the observed measurement data.[25,26] To this end, a likelihood
function consisting of the product of the conditional probabilitiesP(N j |%) is optimized over all %
inSd . There exist efficient iterative implementations of this procedure (see, e.g., Ref. [27]).

In instances of few available measurement outcomes, an mle fit of the state might be too re-
stricted to the specific features of the available data, leading to issues with predicting future mea-
surements and underestimation of errors.[28] Alternatively, the state together with error regions can
be obtained with Bayesian methods,[29,30] which, however, require a priori knowledge about the
prior distribution of possible quantum states. More general procedures for obtaining reliable error
bounds are discussed in Refs. [31, 32].

Since superposition can occur in quantum systems, a composite quantum system %c has to be
represented by the tensor product of its constituent systems%1⊗%2⊗. . . (see, e.g., Ref. [22, p. 94]).
This results in an exponential increase of the required parameters with the system size—if%c repre-
sents a chain of n spins, its state space is in

⊗n
j=1C

2 with dimension d = 2n—making it infeasible
to process or even measure the required amount of data for more complex quantum systems: the
curse of dimensionality.

4 The twomost commonly used distancemeasures for two quantum states% and σ are the trace distance T (%,σ) :=
1/2‖%−σ‖∗ and the fidelity F (%,σ) := ‖p%pσ‖∗ = tr

pp
%σ
p
%, which are related via 1−F ≤ T ≤

p
1− F 2 [23].

With ‖A‖∗ := tr(
p

A†A), we denote the nuclear norm or trace norm of a matrix A, with pσ denoting the unique
matrix square root of a positive semidefinite matrix σ such that (pσ)2 = σ .

5 Here and in the following, we make use of the Landau Big O/Omega notation[24] for describing the growth rate
of a function: f (x) = O(g (x)) is equivalent to limsupx→∞ | f (x)/g (x)| < ∞; f (x) = Ω(g (x)) is equivalent to
liminfx→∞ | f (x)/g (x)|> 0. For example, O(d )means a growth at most linear in d , O(log d ) at most logarithmic,
O(poly d ) at most polynomial, and Ω(exp d ) at least exponential in d . If f (x) =O(g (x)) and g (x) =O( f (x)), we
write f (x) =Θ(g (x)).
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There are different complementary strategies to address this issue. Often, one is not interested
in a complete characterization of the system, but rather in certain parts or properties. To certify that
the state % at hand is close to a certain target state σ , one can estimate the fidelity4 by performing
those types of measurements that (on average) most likely allow for the observation of deviations
of % and σ—the more important, the more likely the measurement will be chosen.[33,34] For many
systems of interest, this scheme requires only O(poly log d ) many measurements. The same ap-
plies to certain entanglement detection procedures.[35] If only the predictions from a state for the
most probable observables from a distribution of observables—not all of them—are of interest, one
can employ a logarithmically scaling computational learning algorithm.[36] In the samedirection goes
shadow tomography, using 2-outcome measurements.[37] An efficient alternative to process tomog-
raphy of quantum gates is randomized benchmarking, which provides an estimate of the error that
gates make by constructing random circuits from them and recording how much the output states
deviate from the input states.[38,39]

If, however, a complete characterization of a complex quantum system still is essential, more
extensive schemes to effectively model a state with substantially fewer parameters than with an ex-
ponentially large densitymatrix have to beutilized. Pure states canbe characterizedusing onlyO(d )
instead of d 2 parameters, and these can be obtained with compressed sensing–based methods[40].
Although not evading the exponential parameter blowup, these methods are highly relevant for
many systems that would be inaccessible with ordinary tomographic methods.[41] Moreover, apart
from purity, no further assumptions about the state have to be made, resulting in very generally
applicable methods. The sampling complexity is reduced to N = O(d r 2/ε2) for determining a
state % of rank r up to a trace-distance error ε.[42,43] Using entangled measurements, this can be
further improved to O(d r/ε2 log(d/ε)).[44] With a priori information about the state such as
internal symmetries, the parameter space can be drastically reduced to O(poly log d ).[45]

More generally, at least for low spatial dimension, most quantum states that we encounter in
nature—mixed or pure—are much less entangled and hence confined to a very small part of the
space of theoretically possible states, the “physical corner of Hilbert space”, which can be efficiently
parametrizedby tensor network states.[46,47] These allow for a descriptionwithO(poly log d )param-
eters and efficient tomography protocols.[48] Tensor networks can also be employed for continuous
systems with in principle infinitely many degrees of freedom such as quantum fields. The efficient
tomography of quantum fields is the focus of the publications [2] and [3] in section 3.1.

2.2 Compressed sensing

As pointed out in the previous section, it is imperative to find “compressed” models of physical
systems for a feasible description. For this, the system needs to be representable in a compressed
way (“compressible”). For instance, a given signal vector y ∈ Cm could be composed out of very
few (s many) vector components a j ∈ Cm out of a huge set of components {a1, . . . ,an}: y =
∑

j x j a j , where many of the coefficients x j ∈ C are zero, but it is not known a priori which ones.
Think, e.g., of a signal consisting of few sinusoid functions, but with unknown frequencies (line

9



2 – COMPRESSED SENSING QUANTUM TOMOGRAPHY

spectral estimation), or of a small set of factors that linearly contribute to an effect and the signal
vector comprising different observations: The model space (a1, . . . ,an) is large, but much less data
is needed for a complete description of the signal—just the nonzero coefficients x j together with
their corresponding vectors a j .

· =

Figure 2: Inverting a linear equation system with compressed sensing: Due to the sparsity of the
parameter vector x (its zero-entries marked with gray), only a few columns of the “fat matrix” A
(with few rows and many columns) contribute to the entries of the signal y . Although there are fewer
rows than columns, the equation system has a unique sparse solution, which can be recovered with
compressed sensing methods. This way, much shorter signals (fewer rows) can be used to determine
the high-dimensional parameter vector.

The task at hand can be rewritten in the following way (cf. Fig. 2): Given a linear equation
system

Ax = y (6)

with the matrix A := (a1| . . . |an) ∈ Cm×n , m � n, and x ∈ Cm being s -sparse (s � n), i.e.,
only s entries of x are nonzero: Find x .

The apparent problem is that this equation system is vastly underdetermined and the space of
(not necessarily sparse) vectors that solve the equation system large. At first sight, it is far from
clear how to find x within this space; applying theMoore-Penrose pseudoinverse to y just yields the
solution of Eq. (6) withminimum `2-norm6, which is non-sparse in general (cf. Fig. 3). It turns out
that for general A and y it is even NP-hard [49] to solve the equivalent (non-convex) optimization
problem of minimizing the support of x subject to Eq. (6),

min
x
‖x‖0 s.t. Ax = y, (7)

which essentially amounts to trying out all possible combinations of indices. The optimization

6 For p ≥ 1, the `p-norm ‖x‖p of a vector x ∈ Cn is defined as ‖x‖p =
�
∑n

j=1 |x j |p
�1/p . For p = 2, we obtain

the Euclidean norm, for p = 1 theManhattan norm, and for p =∞ the maximum norm. We also use the map ‖ · ‖0,
which counts the nonzero indices of a vector x, ‖x‖0 := card({ j : x j 6= 0}), and is not an actual norm, however, it
holds that ‖x‖0 = limp→0 ‖x‖

p
p .
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problem Eq. (7) can, however, be well approximated by minimizing the `1-norm of x ,

min
x
‖x‖1 s.t. Ax = y, (8)

cf. Fig. 3. This is a convex optimization problem due to the convexity of the target function x 7→ ‖x‖1
and the convexity of the constraints. Convex optimization problems are a very well-behaved type of

Figure 3: `1-norm- vs. `2-norm-minimization: impact on sparsity. Left: Minimization of the `1-
norm (2d norm balls {x : ‖x‖1 = a} of different size a in blue) subject to a 1d linear constraint
(orange). The optimizing point—where the constraint intersects with the smallest feasible norm ball—
is marked in black. Right: Minimization of the `2-norm subject to the same constraint. The extreme
points of the `1-balls are located at the component axes—and this is where the optimizing points are
to be found (except for the special constraints parallel to the lines of equal norm size) and only one
component is nonzero. This carries over to higher dimensions, where optimizers with few nonzero
entries are favored. In contrast, the solutions of the `2-optimization problems will in general have full
support. The set {x : ‖x‖0 = 1} coincides with the x1 and x2 axis—minimizing ‖x‖0 subject to the
constraint leads to the same optimizer as the `1-minimization.

optimization problems—e.g., any local minimum is also a global minimum—with a vast body of
optimization techniques.[50,51] In fact, providing provable and robust reconstruction guarantees for
obtaining x by solving Eq. (8) with certain assumptions about x and A—having small coherence7 or
satisfying a restricted isometry property (rip)8 —is,what triggered the field of compressed sensing.[55,56]
Specifically, it can be shown[57] that x in Eq. (8) can be uniquely reconstructed if x has at most s
nonzero entries, the matrix A satisfies the rip of order s , and its number of rows scales as

m =Ω (s log(n/s)). (9)
7 For a matrix A∈Cm×n with normalized columns a j , ‖a j‖2 = 1 for j = 1, . . . , n, its coherence[52] µ is defined as

µ(A) =max1≤i 6= j≤n |〈ai ,a j 〉|.
8 If for an (m× n)-matrix A and an integer 1≤ s ≤ n there exists a constant δs ∈ (0,1) such that for every m× s

submatrix As of A and for every s-sparse vector x holds (1−δs )‖X ‖22 ≤ ‖As‖22 ≤ (1+δs )‖x‖22, then A satisfies the
s-restricted isometry property[53] with restricted isometry constant δs . An rip is, e.g., fulfilled for Gaussian matrices,
i.e., matrices with independent identically Gauss distributed entries.[54]
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2 – COMPRESSED SENSING QUANTUM TOMOGRAPHY

This means that much fewer observations (the rows of A, growing only linearly in the sparsity and
logarithmically in the size of the solution vector) than contributing factors (columns of A) are re-
quired, allowing for obtaining a compressed model while “sensing” only few samples, hence the
term “compressed sensing” or “compressive sensing”. The results still apply when considering noisy
signals and relaxing the constraint in Eq. (8) to a (still convex) least squares constraint

min
x
‖x‖1 s.t. ‖Ax − y‖2 < ε, (10)

yielding sparse approximate solutions.
Many problems in different fields can be rewritten as compressed sensing optimization prob-

lems of the type Eq. (8), resulting in a plethora of applications in fields such as magnetic resonance
imaging (mri)[58], fast photography[59], prediction of molecular vibrations[60], face recognition[61],
machine learning[62], error correction[53], or radar and wireless communication[63]. For a concise in-
troduction, see, e.g., Ref. [64]; for a comprehensive, more mathematical overview, see Ref. [65].

The heuristic use of the `1-norm as a penalty or regularizing term9 already dates back to the
1960s and 1970s, where it was used in spectral estimation[68] and geophysics[69]. A method for ob-
taining the sparse spectral support for a signal was already developed in the 18th century[70] and is
also employed in the reconstruction procedures beyond compressed sensing that are discussed in
the quantum field tomography section 3.

Compressed sensing is not only limited to the recovery of vectors x from linear equation sys-
tems: The same paradigm can also be applied to the reconstruction of low-rank matrices B ∈Cp×n ,
given only partial knowledge of it—such as a certain number of its entry values or functional values
(see Fig. 4). This is called matrix completion[71,72], which has applications from collaborative filter-
ing[73], phase retrieval[74], and system identification[75] to machine learning[76]. Low-rank matrices
comprise a lot of internal structure due to the linear dependencies in their rows and columns so that
in the compressed sensing spirit only a fewmatrix entries suffice to estimate the remaining ones. The
underlying compressed model is found in the singular value decomposition (svd)10

B =
r
∑

j=1

s j u j v
†
j (12)

9 An equivalent formulation of Eq. (10) with regularizing term λ‖ · ‖1 for suitable λ is the basis pursuit denoising
problem[66]

min
x
‖Ax − y‖2+λ‖x‖1, (11)

very often also called least absolute shrinkage and selection operator (lasso)[67].
10 For any matrix B ∈ Cm×n , there exists a (not necessarily unique) factorization B = U SV †, with S ∈ R+m×n

diagonal and U ∈ Cm×m and V ∈ Cn×n unitary—the svd. It can be computed in a numerically robust manner
and plays a central role in many linear algebra applications. For positive semidefinite matrices, it coincides with the
eigendecomposition of the matrix. The diagonal elements of S are called singular values, the orthonormal columns
of U left singular vectors, the columns of V right singular vectors. The rank of B is equal to the number of non-zero
singular values. Singular value decompositions are, e.g., used for computing the pseudo-inverse, the range, and the null
space of a matrix. See also the section quantum singular value decomposition (appendix A.2).
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Figure 4: Matrix completion: A low-rank matrix (left, n = 10, r = 2) is known only up to a few
entries (middle, screened values marked with gray). The low rank of the matrix corresponds to linear
dependencies and visible correlations between different columns and rows (compare, e.g., the coloring of
the second and the last column of the matrix), providing sufficient information to a close reconstruction
of the matrix (right). We can also see that a certain spreading of the screened values is important. If
for instance an entire row or column is screened there is no way of reconstructing the full matrix.

with s j ∈ R+, u j ∈ Cm , and v j ∈ Cn for j = 1, . . . , r , amounting to O(r max{m, n}) ≤ m n
parameters—near-quadratic, low-rank matrices essentially require quadratically fewer parameters.
The optimization is formally very close to the one in Eq. (8), namely

min
B∈Cp×n

‖B‖∗ s.t. A (B) = y, (13)

with the linearmapA :Cm×n→Cp and the nuclear norm ‖·‖∗.4 Theanalogy becomes evenmore
apparentwhen considering that‖B‖∗ is also equal to the sumof the singular values ofB , i.e., ‖B‖∗ =
‖(s j )‖1 and that the linearmapA has amatrix representation. Moreover, Eq. (13) can be considered
to be the convex relaxation of the optimization problemminB rank(B) s.t.A (B) = y .[77] So, while
minimizing the `1-norm yields a sparse vector, minimizing the nuclear norm yields a matrix with
sparse singular spectrum, which is nothing else than a low-rank matrix. The big difference lies in
the unitary degrees of freedom constituted by the singular vectors in thematrix completion setting.
This also results in a different order of magnitude of the required number p of samples of B for
matrix recovery algorithms: IfA fulfills a matrix restricted isometry property11 and

p ≥ c r max{m, n}, (14)

with a numerical constant c , then B can be reconstructed with high probability,[78,79] which is also
consistent with the minimum number of required model parameters. A similar scaling, picking
up another logarithmic factor in n, exists for coherence assumptions.[72,80] Eq. (13) is a semidefinite
program[81] and can be solved very efficiently.[82]

11 Analogous to the vector case, a linear map fulfills the rip at rank r if for all matrices B of rank at most r holds
(1−δr )‖B‖2F ≤ ‖A (B)‖

2
2 ≤ (1−δr )‖B‖2F with sufficiently bounded constant δr and entry-wise matrix `2-norm F

(Frobenius norm).
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2 – COMPRESSED SENSING QUANTUM TOMOGRAPHY

Pure and low-rank quantum states constitute a compressible subset of the mixed quantum
states and the benefits of compressed sensing can be harnessed for quantum state tomography[40]
by restricting the feasible set in Eq. (13) to Hermitian positive semidefinite matrices (which encom-
pass the set of quantum density matrices, Eq. (1)) and providing the constraint mapA that models
quantum measurements as in Eq. (5). For positive semidefinite matrices, the singular values and
spaces coincide with the respective—positive—eigenvalues and -spaces; hence, also nuclear norm
and trace are the same. Furthermore, experimental measurements generally entail noisy data, sug-
gesting to relax the tight equality constraint to a least squares constraint. We therefore arrive at the
following optimization problem to obtain a d -dimensional close to pure (small rank r ) quantum
state % from roughly quadratically fewer measurement recordings y than full tomography:

min
%�0

tr % s.t. ‖E ~%− y‖22 < ε. (15)

Themeasurements aremodeled by themeasurementmatrix E as in Eq. (5). Thepositive semidefinite
matrices form a convex cone within the set of Hermitian matrices and optimization on this set is
still efficient. The requirement tr% = 1 is not explicitly part of Eq. (15)—and would also contrast
with the goal of the objective function to minimize the trace—but it is implicitly included in the
constraints. For noisier data y , the trace of the optimizing %might differ more substantially from
one, which is handled by dividing it by its trace.

It is still challenging to provide theoretical recovery guarantees for quantum states with practi-
cally relevant measurement maps as opposed to what is achievable in practice with numerical data,
as will also be seen in the following publication [1]. If the matrix E consists of tensor products (or
rather Kronecker products) of Pauli matrices, with m = O(d r poly log d ) it was shown that it
satisfies the rank-r matrix restricted isometry property.[83] This, however, does not apply to E with
rows consisting of eigenprojectors (outer products of eigenvectors) of Pauli matrices, each projec-
tor corresponding to a measurement outcome. If % has rank one and the rows of E are built from
outer products of Gaussian vectors, O(d log d )measurement outcomes suffice[74]—Gaussian vec-
tors, however, are hard to implement experimentally. Closer towards experimental realization, yet
random, are guarantees for outer products of rows of Haar distributed unitary matrices.[84] The
randomness can be addressed by taking unitary t-designs[85] (partial derandomization). The rows of
unitary designs in turn are closely related to eigenvectors of Pauli operators.[86]

Compressed sensing has successfully been applied for quantum state estimation in different
experiments[41,87,88] as well for quantumprocess tomography[89] and is robust to noise together with
theoretical error bounds[42,90]. Since its parameter reduction essentially boils down to a square root
factor, it can onlymitigate the effect of the exponential increase of theHilbert space size. Thismakes
compressed sensing the ideal tool for reconstructing intermediate-sized quantum systems. For even
larger systems, additional assumptions have to be made, as will be the discussed in the subsequent
section 3.
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2.3 Experimental application and model selection

Forpractical quantumstate tomographywith experimental data, which in general is subject tonoise,
the noise parameter ε has to be taken in to account. Its magnitude has a large impact on the min-
imizer of Eq. (15): Large values for ε allow the algorithm to find a state with very low rank, while
small values for ε restrict the feasible set of states compatible with the constraints to such an extent
that only states with high rank (and enough parameters) solve the problem. This means that the
same data could in extreme cases be modeled both by a pure (rank one) and a highly mixed (full-
rank) state. It is therefore essential to carefully choose the appropriate model parameter ε such that
the resulting model, the quantum state, predicts the future behavior of the quantum system best.
This is an instance of amodel selection problem. In general, various statistical models could be used
to explain the outcome of an experiment. While some models may fit the specific measurement
data realization very well, they might lack the generality to predict future instances accurately. This
happens in particular in instances of overfitting, i.e., when properties of the data set at hand (due to
noise etc.) that only appear in this specific realization of the experiment are incorporated into the
model. In contrast, an underfitting model ignores features that are characteristic for the experiment
and would repeatedly appear in different measurement instances.

A plethora of methods has been developed to tackle this problem; see Ref. [91] for an intro-
duction and overview of model selection. Important tools are for example theAkaike information
criterion (aic)[92] and the Bayesian information criterion (bic)[93], which balance the data fitting
extent with the complexity of the model by introducing penalty terms into a maximum likelihood
optimization problem that are proportional to the number of parameters of themodel. The value ε
directly affects the model complexity as well since the number of parameters that determine the
model % is proportional to its rank. Model selection techniques in the general quantum tomogra-
phy context have, e.g., been employed in Ref. [94] and, using aic and bic, in Refs. [95, 96]. The
lattermethods, building onmaximum likelihood estimation, however, are not directly applicable to
the compressed sensing setting. A very robust method for model selection is cross validation, where
the data set is split into training sets—used to create differentmodels—and independent testing/val-
idation sets, on which the models are evaluated how well they predict the data beyond the training
set.

In the following publication [1], performing quantum state tomography via compressed sens-
ing in a noisy data regime is systematically analyzed with model selection methods on the basis of
a photonic experiment, preparing a four-qubit quantum state that could be employed as an ele-
ment of a one-way quantum computer [97]. The experimentally realized quantum system was still
small enough to supply sufficient data with reliable statistics for a complete state reconstruction
with conventional methods, providing reliable reference information for estimating and certifying
the performance of different model selection parameters as well as a large playground for different
methods. The impact of the degree of incomplete information on the quality of the state reconstruc-
tion depending on the choice of the model was determined, providing a prescription for practical
compressed sensing quantum state tomography.
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Abstract
In the light of the progress in quantum technologies, the task of verifying the correct functioning of
processes and obtaining accurate tomographic information about quantum states becomes increas-
ingly important. Compressed sensing, amachinery derived from the theory of signal processing, has
emerged as a feasible tool to perform robust and significantlymore resource-economical quantum
state tomography for intermediate-sized quantum systems. In this work, we provide a comprehensive
analysis of compressed sensing tomography in the regime inwhich tomographically complete data is
available with reliable statistics from experimental observations of amulti-mode photonic
architecture. Due to the fact that the data is knownwith high statistical significance, we are in a
position to systematically explore the quality of reconstruction depending on the number of employed
measurement settings, randomly selected from the complete set of data, and on differentmodel
assumptions.We present and test a complete prescription to perform efficient compressed sensing
and are able to reliably use notions ofmodel selection and cross validation to account for experimental
imperfections andfinite counting statistics. Thus, we establish compressed sensing as an effective tool
for quantum state tomography, specifically suited for photonic systems.

Introduction
Quantum technologies have seen an enormous progress in recent years. Photonic architectures havematured from
basic proof-of-principle schemes to intermediate scale quantumdevices [1], while the robustness offered by
integrated optical devices is poised to push these systems yet further [2, 3]. Similarly, systemsof two-digit trapped
ions [4] andother condensed-matter type systems such as superconducting devices are catching up at a remarkable
pace [5]. Buildingupon this technological development, important primitives of quantum information science are
being experimentally realised [6–10]. In light of these systems, it has become increasingly important to establish a
toolbox for tomographic reconstruction that can keepupwith this rapid development: The ironic situation that is
emerging is that bynow the state of large quantumsystems canbemanipulatedwith ahighdegree of control, but
not easily reconstructed.Clearly, these technologies and the community require further advancement of their tools
for state reconstruction. In thiswork,wediscuss an explicitmethod to achieve such a reconstruction, thus
contributing to this long-termgoal. Specifically, we demonstrate a comprehensive exploration of the performance
of state reconstruction in the photonic setting as one varies both the number ofmeasurements and the noisemodel.

The framework of compressed sensing, a set of techniques originating from the context of classical signal
processing [11, 12], has emerged as a key protagonist in closing the gap between technology and diagnostics
[13–15]. The idea behind its functioning is rooted in the fact that a substantial amount of data encountered in
realistic situations are structured and can be characterised by significantly fewer parameters thanwith ad hoc
schemes. Approximately low-rankmatrices are at the centre of the paradigmofmatrix completion in
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compressed sensing and correspond precisely to approximately pure quantum states. Since pure quantum states
arewidely regarded as the key resource for quantum information processing, suchmethods for reconstructing
low-rank states are especially relevant. For even larger systems, tomographic tools based on basic variational sets
are conceivable, withmatrix product states [16, 17], their continuous analogues [18], and permutationally
invariant states [19] providing prominent examples. The theory of such novel tools of reconstruction is
progressing quickly. This applies, e.g., to new insights to the assignment of fair and rigorous confidence regions
[20–23] aswell as economical ways of performing instances of quantumprocess tomography [14, 24, 25].

Exciting steps toward using compressed sensing in experimental settings have beenmade [19, 24, 26, 27] in the
regime inwhichone assumes knowledge about the basis inwhich sparsity is expected [24], assumes additional
structure [19]or is in the highly tomographically incomplete regime [27]. In thiswork,we complement the picture
for experimental tomography formedium-sized quantumsystems. In its simplest formulation, compressed
sensing tomography is based on a few randomexpectationvalues of suitable observables, fromwhich
approximately low-rank states can be accurately reconstructed [13]. This is suited for the situation inwhich
expectation values canbeobtainedwith good statistical significance, although acquiringmanyof themmaybe
expensive. Still amissing piece in this picture, however, is the exploration ofmodel selection techniques that have
to be considered in the realmof experimental imperfections andfinite counting statistics in order tomake
compressed sensing tomography a practical tool.Model selection allows to prevent over- andunderfitting by
controlling the dimensionality of themodel of the system—in our case, the rank of the densitymatrix.

Here, we present a comprehensive analysis of experimental data fromamulti-photon,multi-modeGHZ
state source using tools of compressed sensing. Instead of workingwith expectation values of observables—as it
is commonly done in this context, butmay amount to information loss—our experimental setup allows us to
obtain information on the individual projector level from the respective outcomes of eachmeasurement setting.
In contrast to complementing recent work [27], we are not tied to the regime of tomographically incomplete
knowledge. This allows us to study the behaviour of the reconstruction for the entire range ofmeasurement
settings.We quantitatively exploremodel selection via cross validation and compare it to themodel suggested by
the anticipated noise statistics.With these tools, we provide amore systematic way to choose the appropriate
parameters for compressed sensing quantum tomography. The results then provide the reader with the toolkit
and understanding to effectively implement thesemethods for future quantum state tomography (QST) in
general, and specifically for photonic systems.

This work is structured as follows.We start by reviewing concepts of quantum state tomography and discuss
the specifics of compressed sensing inQST.We subsequently present our experimental setup consisting of a
four-qubit photonic system,which is used as a test bed for our tomographical approach.We continue by
discussing concepts ofmodel selection in the context ofQST and determine the appropriatemodel from the
experimental data.With this, we perform compressedQST and study the performance of the reconstruction
depending on the amount of collected data aswell as the robustness of ourmethodwith respect tomodel
mismatches.

Elements of quantum state tomography
Quantum state tomography is themost commonly usedmethod to diagnose quantum information processing
tasks. It is used to estimate the unknown quantum state of a system fromdata produced bymeasuring an
ensemble of identically prepared systems. Byfixing a basis, a general finite-dimensional quantum state can be
identifiedwith a positive semi-definite, unit-tracematrix, the densitymatrix

   c c cÎ = Î ={ ( ) } ( ): 0, tr 1 . 1d d

Here, Ì ´
d

d d denotes the set ofHermitianmatrices, and c 0 stands for a positive semi-definitematrix.
To determine the densitymatrix ñ of a quantum system,we need to prepare sufficientlymany copies of the

state from identical preparations, perform ameasurement on each copy using one out ofm different
measurement settings—corresponding to different observables, i.e. Hermitianmatrices ( )A j , j= 1,K,m—and
count the respective number ofmeasurement outcomes. Idealmeasurements are associatedwith unit rank
projectorsP =( ) ( ) ( ) †v vk

j
k

j
k

j , where ( )vk
j is the kth normalised eigenvector of ( )A j . For eachmeasurement setting j

the specific outcome = ¼k d1, , occurs with probability

P≔ ( ) ( )( )p tr . 2j k k
j

,

Completeness, i.e. the property that the projectors sumup to unity,

å P =
=

( )( ) , 3
k

d

k
j

1

ensures normalisation for eachmeasurement setting j, so thatå == p 1k
d

j k1 , . For eachmeasurement setting j,
the outcome k corresponds to a randomvariable Yj k, . Repeatedmeasurements are independent from each other,
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and are performed onNj copies of the state for eachmeasurement setting j, yielding the respective integer-valued
realisation yj k, as observed frequency with å == y Nk

d
j k j1 , . Hence, for eachmeasurement setting j, the

probability of the randomvariables ¼( )Y Y, ,j j d,1 , to take the configuration ofmeasurement outcomes
¼( )y y, ,j j d,1 , is given by




!
! !

( )
N

y y
p p , 4

j

j j d
j
y

j d

y

,1 ,
,1 ,
j j d,1 ,

following amultinomial distribution ¼( ( ))N p p, , ,j j j d,1 , . Accordingly, wewill obtain the kth outcome N pj j k,

times in expectation.We formalise themeasurement process by introducing the linear operator

  P ( ( )) ( )( )N: tr , 5j k
j

j k,

whichmaps densitymatrices in d tomatrices in+
´m d, corresponding tomeasurement outcomes = ¼k d1, ,

for differentmeasurement settings = ¼j m1, , .We emphasise that ( ) is not an experimental datamatrix
itself; according to the law of large numbers, the frequencies in eachmeasurement realisation
 Î ´≔ ( )yj k

m d
, from the experiment will converge to ( )with growing number ofmeasurementsNj, i.e.

the expectation value ( )Yj k, of the randomvariable Yj k, is given by

 = P( ) ( ) ( )( )Y N tr 6j k j k
j

,

for each j k, . Apart from additional systematic sources of error, e.g. due to experimental imperfections, the
difference between  and ( ) is due tofinite counting statistics, and inmany settings, this is the largest
contribution to the error.

Themost straightforward approach to determine ñ from  would be to attempt to invert the linear systemof
equations

 =( ) ( ). 7

In general, however, noise on the data  would render the reconstructed densitymatrix ̂ unphysical ( ˆ 0). A
generic (full rank) densitymatrix in d is determined by -d 12 independent real parameters. Hence, in general,
one requires at least -d 12 linearly independent equations in order to solve equation (7). This is also called
tomographic completeness and corresponds to informational completenesswith sufficient information to in
principle capture full rank states. For further notions about informational completeness under prior
information (e.g. the rank of the state is assumed to not bemaximal) see [28, 29].When dealingwith significantly
less information, specialised reconstruction techniques are important with compressed sensing being a natural
choice, whichwewill discuss in the next section.

In our system, wewill be concernedwith local Paulimeasurements on each subsystemof amulti-partite
state.Wemeasure an n-qubit system ( =d 2n) usingm differentmeasurement settings, each of which
corresponds to an n-qubit Pauli operator

s=
=
⨂ ( )( ) ( )A , 8j

i

n

i
j

1

j= 1,K,m, with s s s sÎ { }( ) , ,i
j

x y z , where s s s, ,x y z are the Paulimatrices. This is often referred to as Pauli basis

measurement. The projectors of the two-qubit operator s sÄ≔( )A z z
1 , for example, areP = ñá∣ ∣( ) 0, 0 0, 01

1 ,
P = ñá∣ ∣( ) 0, 1 0, 12

1 , P = ñá∣ ∣( ) 1, 0 1, 03
1 , andP = ñá∣ ∣( ) 1, 1 1, 14

1 . The identitymatrix can be excluded for each
qubit since it has the same eigenvectors and hence corresponding projectors as sz and does not provide any
additional information about the state. Note, that in a Pauli basismeasurement, one obtains 2n outcomes per
measurements setting, as opposed to thePauli expectation valuemeasurements, in whichwe only use one
expectation value permeasurement setting. Pauli expectation valuemeasurements (including those containing
identitymatrices) can easily be obtained fromPauli basismeasurements by simply computing the expectation
values from the projection data for eachmeasurement setting. For n qubits, there exist ≔m 3n

max different Pauli
words in total, eachwith 2n eigenvectors, which corresponds to amaximumof ·3 2n n equations in equation (7).
Each set of Pauli projectors P ¢

={ }( )
k

j
k
d

1 forfixed setting ¢j contains a subset of elements that is linearly
independent from the projectors for all other settings.Hence, any number of smaller than mmax measurement
settingswill lead to the loss of tomographic completeness.When performingQST on large systems, however, it
is of practical necessity to employ as fewmeasurement settings as possible (and often also only few repetitions
permeasurement setting). The key question arising in this context, therefore, is whether it is feasible to
reconstruct an unknown state ñwith not only <m mmax measurement settings, but a significantly smaller
subset. The need forminimising the number ofmeasurement settings is particularly pressing in architectures
such as linear optical ones, since high repetition rates and good statistics are available, while it can be tedious or
costly to alter themeasurement setting. This is indeed the case inmany practically relevant situations using
compressed sensing schemes, whichwill be discussed in the next section.
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Compressed sensing for quantum state tomography
By parameter counting, a state with rank <r d can be completely characterised by fewer than d2 parameters,
that is~rd and informational completeness could in principle be achieved using correspondingly fewer
measurement settings.However, it is far fromobvious how to acquire these parameters using fewer
measurement settings and how to do so in a robust fashion—this is the starting point for compressed sensing
[11, 30]. Originally conceived for reconstructing sparse vectors, the concept was extended to the recovery of low-
rankmatrices [31, 32] and adapted to the problemofQST [13, 33]. Here, one again considers structured
problems inwhich one can exploit the fact that inmany useful settings approximately low-rank states are of
interest. This is a reasonable assumption, sincemost quantum information experiments aim at preparing pure
states.

In order to obtain a general complex-valued low-rankmatrix frommeasurements, naïvely, onewould
searchwithin the set of low-rankmatrices for the one thatmatches themeasurement constraint, solving

 


c c =
cÎ ´

( ) ( ) ( )min rank s.t. . 9
d d

The key idea for compressed sensing inmatrix recovery is to relax thisNP-hard problem [34] into the closest
convex optimisation problem [35]

*  


c c =
cÎ ´

  ( ) ( )min s.t. . 10
d d

Wedenote the nuclear norm (better known as the trace norm in the context of reconstructions in quantum

mechanics) of amatrixχ by *c c c  ≔ ( )†tr . Such problems arewell known to be efficiently solvable [36].
The crucial question in compressed sensing is howmanymeasurements are required to satisfactorily

reconstruct the sought-aftermatrix.Many proofs rely on randomisedmeasurements schemes: In [37], it has
been shown that for a generalmap  ´: d d M withGaussian entries,  -( )M r d r3 2 copies of ñ are
provably sufficient for the recovery of ñ. Building on this and closer to our situation is the recovery guarantee
presented in [38], in which M crd copies are neededwith some constant >c 0, for   : d

M ,
 P = ¼ ( ( ))( )tr j

j M1, , ,mapping densitymatrices from d to vectors in M , with P =( ) ( ) ( ) †v vj j j , and ( )v j a
Gaussian vector for each j. In practice, numerical computations outperform these theoretical bounds.However,
there is a fundamental lower bound for the number of copies, = - -( )M r d r4 1, using a theoretically
optimal POVMwithM elements [39]. Note that—in themindset ofmeasurement settings and outcomes—the
number of outcomes k permeasurement setting j scales with the dimension of theHilbert space d. SinceM
corresponds to m d, the number ofmeasurement settings scales just with the rank, i.e. =m c r .

It is in general harder to prove comparable results for deterministicmeasurements—in our settingwith ( )v j

being eigenvectors of Pauli operators. To bridge this gap, notions of partial derandomisation have been
introduced, where ( )v j are notGaussian, but drawn from spherical designs—certain finite subsets of the d-
dimensional complex sphere—leading to similar statements [38]. Spherical designs, in turn, can be related to
eigenvectors of n-qubit Pauli operators [40]. Apart from results on the level of expectation values [41], less has
been proven for products of single-qubit eigenvectors, the setting at hand—strikingly in contrast to the great
success of the procedure in practice. These results remain stable when taking noise into account.

Themeasured data can bewritten as

     h= + = P +( ) ( ) ( ( )) ( ) ( )( )N tr , 11j k
j

j k j k j k, , ,

with  and hj k, representing the noise due tofinite counting statistics. For positive semi-definitematrices such
as quantum states, the nuclear normof amatrix reduces to the trace of thematrix. Consequently, relaxing the
equality constraint in equation (10) and including the positivity constraint, we arrive at the semi-definite
programme (SDP) [34]

 


c c e- <
c

 ( ) ( )min tr s.t. , 12
0

2
2

for some yet-to-be-determined e > 0 and · 2 representing the entrywise two-norm.This is exactly the problem
we aim to solve in order to achieve efficientQST. SDPs, being convex programmes, feature a rich theory, and
numerical implementation is easily achievable [42, 36]. Note that the procedureminimises the trace, which at
first sightmight seem contradictory to the requirement for densitymatrices to have unit trace. However, the unit
trace requirement is implicitly included in the data constraint since the probabilities in themap are
normalised. Perfect data would lead to an optimiser with trace exactly equal to one. In turn, a relaxation of this
constraint leads to a relaxation of the unit trace requirement. As a result, generically for not too small ε, the
optimalχ, denoted by ĉ, will be subnormalised, due to its location on the part of the boundary of the ε-ball with
the lowest trace. In order to obtain a physicallymeaningful reconstruction  Îˆ d, we find in our simulations
that renormalising via
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ˆ ˆ ≔ ˆ
( ˆ )

( )
tr

13

produces the highest fidelity results. To carry out the optimisation procedure, we employ the convex
optimisation solver SDPT3 4.0 [43] together withCVX [44]. For higherHilbert space dimensions,methods like
singular value thresholding [45] come into play, which typically are faster, but less accurate.

Experimental setup
The experiment is designed to prepare the four-qubit GHZ state associatedwith the state vector

y ñ = ñ + ñ∣ (∣ ∣ ) ( )H H H H V V V V
1

2
, , , , , , 14GHZ

with the qubits encoded in the polarisation degree of freedomof four photons.Here, ñ∣H and ñ∣V represent
horizontally and vertically polarised photons, respectively, hence effectively spanning a two-dimensionalHilbert
space. The experimental setup, building upon the one outlined in [46], is shown infigure 1 and consists of two
Bell pair sources which undergo a parity check or post-selected fusion [8, 47–52] to probabilistically generate the
GHZ state. Both the photon pairs, generated by spontaneous four-wave-mixing inmicrostructured fibres, and
the fusion operation are successful only probabilistically, but in a heralded fashion, i.e. a classical signal is
available signifying success of the preparation. Successful generation of the state is determined by post-selecting
only four-photon coincident events which occur at a rate of approximately 1–2 Hz. The post-selected data is
effectively free fromdark counts—noise generated by single-photon detectorsfiring erroneously in the absence
of a photon. This is due to the fact that the rate at which dark counts in nmodes occur in the coincidence window
decreases exponentially with n, i.e. four simultaneous dark counts are negligibly rare. Due to additional
experimental imperfections, however, the prepared state is non-ideal. Themain cause of deviation between the
actually prepared state and the target state arises from the distinguishability of photons partaking in the fusion
operation and inherentmixedness from the parasitic effects in the pair generation [53]. These tend to cause the
generated state to resemble a partially dephasedGHZ state [8].Measurements on the state then proceed using
single-qubit rotations (waveplates) and projections (polarising beam splitters and single-photon detectionwith
avalanche photo-diodes) usingwell-characterised bulk-optical elements allowing high-fidelitymeasurements to
be performed.

Figure 1.Experimental setup for generating the four-photon polarisation entangled states y ñ∣ GHZ , consisting of photonic crystal fibre
(PCF) sources, half-waveplates (HWPs), quarter-waveplates (QWPs), a Soleil-Babinet (SB), polarising beam splitters (PBSs) and
dichroicmirrors (DMs). The 80 MHzTi-Saph laser is split onto twoPCF sources in twisted Sagnac-loop interferometer configurations
generating polarisation entangled Bell pairs. The signal and idler photons from each source are separated byDMs and the signal
photons interfere on a PBSwith relative time between paths tD » 0, which on post-selecting a single photon in each output port
performs a fusion operation. The SB is set tomatch the phase between the ñ∣H H H H, , , and ñ∣V V V V, , , components to zero. Each
mode ismeasured by single-qubit rotations consisting of aHWPandQWP, and is projected in the ñ ñ{∣ ∣ }H V, -basis by PBSs and
avalanche photodiode detectors.
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As stated above, in order to achieve a tomographically complete basis for n qubits, one requires =m 3n
max

measurement settings. In our systemof four qubits, n=4, we havemeasured a tomographically complete set of
81 local Pauli operators. For eachmeasurement setting, around 650 four-coincident events are accumulated
within an integration time of sixminutes. Evidently, given the exponential scaling of the tomographically
complete set ofmeasurement settings, achieving such reliable statistics for larger states ( >n 4) is increasingly
demanding on resources and quickly becomes infeasible.

Model selection
The starting point for carrying out compressed sensing quantum tomography is the question of determining an
appropriate value for ε in the optimisation procedure equation (12). Essentially, larger values of ε result in
greater relaxation of the datafitting constraint, leading to lower-rank estimates ̂ ;while smaller ε values will
yield ̂ matrices with larger rank, which betterfit the particular data set. Depending on the underlying state and
the particular instance of noise in the data, the choice of εmight result in underfittingwith too coarse amodel, or
in overfitting—i.e. including parts of the noise into themodel of the state. Both extremes in general lead to states
that fail to correctly predict future data. In themost severe cases, it could happen that using the same
measurement prescription  and the same data  , the optimisation procedure in equation (12) yields a full
rank or a rank-onematrix, depending on the choice of ε.Worse still, too small a value of ε canmake the
optimisation procedure unfeasible, whereby there is no feasible state that would result in data sufficiently close
to thatmeasured. The task of determining the appropriatemodel—in our case, the value ofε—that is
statistically faithful to the data via an appropriate choice of the respective external parameters is calledmodel
selection (see e.g. [54]). Several ideas ofmodel selection have a rigorousmathematical underpinning: Particularly
well known is the Akaike information criterion (AIC) [55], providing ameasure of the relative quality of
statisticalmodels for a given set of data. For a collection ofmodels compatible with a given data set, this criterion
gives an estimate for the relative quality of eachmodel. Similarly frequently employed is the Bayesian
information criterion (BIC) [56]. Direct application of AIC andBIC to quantum tomography—an approach
followed in [15]—is problematic for larger systems since it requires rank-restrictedmaximum likelihood
estimation, leading to non-convex optimisation, which scales unfavourably with the system size. This is due to
the fact that these techniques are discrete in the sense that they explicitly restrict the rank of the densitymatrix. In
the compressed sensingmindset, the parameter that controls the rank in a continuous fashion is ε. Aswe
mentioned above, this is at the centre of our discussion.

For sufficiently small noise, a promising ansatz for identifying a suitable ε is to use the data to compute the
estimate ê ( ) according to the expectation value of

  c - =   ( ) ( ) ( ). 152
2

2
2

Assuming the noise is solely due tofinite counting statistics, i.e. the deviations frommeasurement outcomes
from the expected variance of themultinomial distribution, we obtain

  å å åh h= = = - ( ( ) ) ( ) ( ) ( ) ( )N p p1 , 16
j k

j k
j k

j k
j k

j j k j k2
2

,
,

2

,
,

,
, ,

with variance . The second step follows from  h =( ) 0j k, for each j and k. In order to compute ê from the data,
we need to approximate pj k, as y Nj k j, , which is reasonable for sufficiently largeNj according to the law of large
numbers. By equation (16), we obtain the estimate

 å åe -
= =

ˆ ( ) ≔ ( ) ( )y y N1 . 17
j

m

k

d

j k j k j
1 1

, ,

This choice of e e=ˆ ˆ ( ) scales linearly withm, the number ofmeasurements in the data set  . Note that ê
depends on the noisemodel, which in several casesmay not be sufficiently established. In our case, however, the
noisemodel is known to a high degree, which allows us to study and compare differentmethods for estimating
the parameter ε.

Complementarily, we employ a straightforward, well-establishedmodel selection technique based on cross
validation (see e.g. [57]), which ismore scalable than the use of AIC or BIC in our case. Because of its generality
and independence from the noisemodel, it can be used in a variety of scenarios. Themethodworks as follows:
The data is partitioned into independent training and testing sets. Differentmodels, i.e. different values forε, are
built from the training data and used to predict the testing data. The sought-after parameters—in our case ε—
then result from themodel corresponding to the smallest errorwith respect to the testing data.

Specifically, we randomly draw =m 10, 15, 20, 40, 60, 80 out of the =m 81max measurement settings
without replacement, corresponding to different levels of limited experimental knowledge. The respective data
sets  Î +

´( )m m d are then partitioned intofive subsets   ¼ Î +
´( ) ( )( ) ( )m m, , m d1 5 5 . The optimisation in

equation (12) is performedwith respect to every possible union of four subsets = ¹⋃ ( )( ) mi i q
i

1,
5 , = ¼q 1, , 5,
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and different ε parameters. Each reconstruction yields an estimate  eˆ ( )m q, , and the remaining subset  ( )( ) mq

is used as a testing set. The state estimate  eˆ ( )m q, , is used to compute the predictedmeasurement data
 e( ˆ ( ))m q, ,m q, and compare these with the corresponding subset of the experimentalmeasurement data

 ( )( ) mq (   +
´:m q d

m d
,

5 being the reduction of the operator to the subsets ofmeasurement settings

corresponding tom and q). The resulting distance  e - ( ˆ ( )) ( )( )m q m, ,m q
q

, 2, between the predicted and
measured data, also known as the prediction error or predicted risk, is averaged over q (fivefold cross validation),
yielding an estimate for the averaged prediction error (testing set error)

 åe e= -
=

 ( ) ( ˆ ( )) ( ) ( )( )E m m q m,
1

5
, , . 18

q
m q

q

1

5

, 2

If the corresponding optimisation problem is infeasible for a certain combination of ε,m, and q (i.e. the set of
densitymatrices that satisfy the constraint in equation (12) is empty), the prediction error is set to  ( )( ) mq

2.
For averaging, each point e( )m, is sampled 50 times.

Themean values and standard deviations of the prediction error depending on themodel parameter are
depicted infigure 2.We see that for values of ε around ê the error is smallest, which is consistent with our ansatz
and allows us to gain confidence in the assumption that themeasurement data can be effectivelymodelled by a
multinomial distribution. Themoremeasurement settings are considered, the clearer the choice of the optimal ε
becomes, with both the prediction error and its variance attaining theirminima close to e e= ˆ . For those values
of ε close to ê and sufficientlymanymeasurement settings, the prediction error e( )E m, is only slightly bigger
than the error estimate for the data ε. Here, the error arises primarily from rawmultinomial noise, ε, present in
the testing set itself and cannot be overcomewith improved reconstructionmethods.Where fewer
measurement settings are considered, less information about the state is available, resulting in large testing set
errors as well as greater variance of the state estimates, although the smallest prediction errors are still seen for ε
close to ê. As ε decreases below ê, the chance of the optimisation being infeasible increases, causing the
prediction errors to effectively increase with a greater spread attributed to different optimisation runs. As ε
increases above ê, the data fitting constraint is weakened, resulting in too coarsemodel fits and a gradually
increasing prediction error.

Using equation (17) instead of cross validation has the advantage ofmuch less computational effort and is
useful in a scenario with good statistics for eachmeasurement setting.Moreover, cross validation relies on
partially discarding data, which could aggravate the issues of having too little data, yielding poorer estimates for
ε. However, equation (16) relies on the assumption of awell identified errormodel—in our case,multinomial
noise, as verified by cross validation. In cases inwhich the errormodel is not known, cross validation can provide
amore robust estimate of ε.

Figure 2.Cross validation results. Prediction errors  e e= å -=  ( ) ( ˆ ( )) ( )( )E m m q m, 1 5 , ,q m q
q

1
5

, 2 in units of ê depending
on themodel parameter ε and on the number ofmeasurement settingsm. The standard deviation is bigger for fewermeasurement
settings and for smaller ε. The latter is due to the increasing chance of the optimisation to be infeasible for smaller ε. For ε close to ê
and sufficientmanymeasurement settings, the error is only slightly bigger than the deviation due to themultinomial distribution of
themeasurement outcomes.
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Compressed sensing tomography of theGHZ state
Having verified that the optimal value for ε is close to that computed from equation (17), we use it as input for
the compressed sensing tomography of the experimental state and compute the optimal estimate
  eˆ ≔ ˆ ( ˆ )m ,CS max of the a priori unknown experimentally prepared state ñ. The good statistics available in our
experiment allow us to estimate ñwith comparably high accuracy. In general, due to experimental
imperfections, ñ (and hence ̂ )will deviate from the target state  y yñá≔ ∣ ∣GHZ GHZ GHZ , see figure 3 for a
pictorial representation. There, we show a comparison between the densitymatrices of the target state and the
optimal compressed sensing estimate using bar plots.

The standard figure ofmerit to determine the performance of tomography is the quantum fidelity F of two
statesχ andσ, which is defined as c s cs c=( ) (( ) )F , tr 1 2 [6].Wefind that thefidelity between theGHZ
state GHZ and the estimated state ̂CS is

Figure 3.Bar plot of the densitymatrix of the target (GHZ) state rGHZ and its optimal compressed sensing estimate r̂CS. The basis is
fixed to the tensor products of one-particle vectors in the order ñ ñ ¼ ñ∣ ∣ ∣H H H H H H H V V V V V, , , , , , , , , , , , . The height of each
bar corresponds to the size of the absolute value of the respective densitymatrix entry  = j∣ ∣ej k j k, ,

i j k, and the colour to its complex
phase j p pÎ -( ],j k, . The colourmap is chosen to account for the periodicity of the phase. The fidelity of the estimate with respect to

theGHZ state is 0.855±0.006 and its purity  = ( ˆ )tr 0.60 0.01CS
2 , representing an expectedmixedness due to experimental

imperfections.
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  = ( ˆ ) ( )F , 0.855 0.006. 19GHZ CS

The uncertainty of thefidelity is determined by using the optimal compressed sensing estimate, ̂ , as input for
the generation of simulated data—parametric bootstrapping [57]—and taking the empirical standard deviation
of thefidelity values. This uncertainty determines the robustness of themethod.Obtaining a closed expression
for proper error bounds from the datawith respect to positivity constraints is hard [23, 58], while bootstrapping
and taking the empirical standard deviation gives a good estimate of uncertainty [57].

To build confidence, we also computed themaximum likelihood estimate [59], ̂MLE, using the same data
to obtain a fidelity with respect to the target state of   = ( ˆ )F , 0.843 0.004GHZ MLE , which shows that the
estimators yield similar results; as will other estimators such as least squares with positivity constraint.
Additionally, since we havemeasured a tomographically complete set of observables and the statistical
properties of themeasured data are sufficiently understood, we are able to provide an estimate of the fidelity
with respect to the target state directly from themeasured data without the need of performing tomography
and an estimate of the corresponding error bound, see the appendix for details.With this, we obtain a fidelity
of 0.845±0.005, which again is in good agreement with the results computed from the compressed sensing
estimate.We note that the standard technique for estimating the fidelity of a state with respect to a specific
target state requires estimating only the expectation values of a set of operators that form a decomposition of
the target state. For a four-qubit GHZ state, this requires aminimumof nine specific Pauli basis
measurements, as explained in the appendix. In contrast, using compressed sensing tomography, even a
random set ofmeasurement settings produces fidelity estimates with respect to the GHZ state, which quickly
approach themaximum at around 25measurement settings. Furthermore, thesemeasurement settings
suffice to compute the fidelities with respect to arbitrary states, since they allow for the estimation of the entire
state.

Compressed sensing is about employing provably fewermeasurement settings thanwith standardmethods,
while still producing satisfactory reconstructions, i.e. to effectively sense in a compressive way. Along these lines,
we explore how varying the number ofmeasurement settingsm affects thefidelity. This is shown in figure 4. In
order tomake the results independent from specificmeasurement settings, we randomly drawwithout
replacementm out ofmmax different settings 200 times and average over the resulting fidelities, thus providing a
value for a typically expected fidelity for eachm. As onewould expect intuitively, we can see that the value of the
fidelity increasesmonotonically with the number ofmeasurement settings and converges to the fidelity of the
estimate from tomographically complete data. The shaded region represents the uncertainty (± standard
deviation) in thefidelity computed via bootstrapping and displays the decreasing uncertainty with increasing
numbers ofmeasurement settings. Thefidelity already falls within the error bars of its final value for comparably
smallm.

Figure 4. Fidelity   e( ˆ ( ˆ ))F m, ,GHZ as a function of the number ofmeasurement settingsmwith uncertainty (shading) from
bootstrapping for e e= ˆ . For largem, F approaches thefidelity of GHZ and ̂ ,   =( ˆ )F , 0.855GHZ CS , getting very close already for
comparably fewmeasurement settings, and the standard deviation becomes smaller.
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Deviations from the optimal parameter
In this section, we study the effect thatmisestimating εhas in the performance of the reconstruction of the state.
We carry out this task by numerical simulation: Using the compressed sensing state estimate ̂CS, we simulate
measurement data, whichwe subsequently input to our compressed sensing reconstruction procedure, varying
both ε,m and randomly drawingmeasurement settings without replacement. If the corresponding optimisation
problem is infeasible and yields no estimate, thefidelity F is set to zero. Thefidelities   e( ˆ ˆ ( ))F m, ,CS are
averaged over data andmeasurement settings (500 different data sets and differentmeasurement settings perm
and ε).

The results for varyingm and ε in units of ê are shown infigure 5.We compare the reconstructed states to
̂CS, whichwe used to generate the simulated data.We see that asm increases, thefidelity converges to unity at
e e= ˆ (where ̂CS is defined).We are interested in howquickly our reconstructed state approaches the optimal
̂CS with fewermeasurement settings, particularly if ε ismisestimated. For instance, we see that we can obtain
average fidelities ofmore than 0.8 for only 6measurement settings. Figure 5 (top) again illustrates that e e= ˆ is
the best choice as thefidelities around this region (and away frompathologically small numbers ofmeasurement
settings, >m 3) are the highest.Moreover, we also see thatwith increasingm, the standard deviationDF of the
fidelity becomes smaller for e ê. For e e< ˆ , infeasibilities of the optimisation equation (12) that appear for
certain choices ofmeasurement settings lead to large standard deviations, which can be seen by the ridge in the
area left of e e= ˆ infigure 5 (bottom). The ridge aswell as the region of infeasibility gets close to e e= ˆ for large
m, which is reasonable sincemore information (i.e.more constraints) puts greater restrictions on the
optimisation problems. If fewermeasurement settings are considered, as in the highly tomographically
incomplete regime, overestimation of ε is less detrimental and state estimates still performwell, i.e. thefidelity is
relatively constant for  e e eˆ ˆ3 . However, asmincreases, the reconstruction becomesmore strongly
dependant on the choice of ε. Generally, we see that the higher thefidelity, the lower the standard deviation.

Figure 5. Fidelity   e( ˆ ˆ ( ))F m, ,CS depending on the number ofmeasurement settingsm and themodel parameter ε (top) and
corresponding standard deviationDF (bottom) obtained via bootstrapping. Since in compressed sensingwe aremore interested in
the regime of fewmeasurement settings and thefidelities do not change significantly for largerm, we restrict ourselves to the region
with m 20. The data are generated randomly from ̂CS and themeasurement settings perm are drawn randomly aswell. The
fidelities are averaged over different data realisations andmeasurement settings. The highest fidelities are achieved for e e» ˆ with
rapid decrease for e e< ˆ where the fraction of infeasible optimisations increases. Note that the higher thefidelity, the lower the
standard deviation.
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Discussion
In this work, we have experimentally explored the compressed sensing paradigm for quantum state tomography
as applied to the photonic setting.We have explicitly laid out amethod for applying these techniques and
reconstructed the state of a four-photon systemwith tomographically complete data available, observing a high
fidelity of the reconstructed statewith respect to the target state. The presence of noise in the data requires that
one carefully chooses appropriate constraints on the optimisation. In current applications, these parameters are
usually obtained in an ad hocway.We have provided a prescription to establish the parameters in amore
systematic way bymodelling the noise and performing cross validation, which is a generalmethod formodel
selection. The quality of the data, being afflictedwith noise predominantly attributed tofinite counting statistics,
allows us tomodel the noise via amultinomial distribution. This is a situation commonly expected for photonic
experiments with post-selected data. In fact, we observe a great agreement between estimating themodel
parameter from theoretical noisemodelling and cross validation.

Having established the appropriatemodel, we have been able to perform state reconstructionwith
tomographically incomplete data, which rapidly converges to the highestfidelity estimate as the number of
measurement settings increases. As a validity check, we have also run different estimators on the full data and
obtained similar results, showing that our compressed sensing procedure yields reasonable estimates. As is
predicted by themathematical theory of compressed sensing, we have found that the number ofmeasurement
settings needed for a satisfactory estimate of the underlying state ismuch smaller than the number of
measurements necessary for tomographic completeness.We have also carried out a comprehensive
bootstrapping analysis to build confidence in the robustness of ourmethod. In fact, we have observed that the
uncertainty in thefidelity quickly decreases with increasing number ofmeasurement settings.

Furthermore, we have studied the robustness of ourmethodwith respect to impropermodel selection and
the effects on the reconstruction.We have found that for several choices ofmodels and different numbers of
measurement settings, the performance of the reconstruction can vary dramatically. For small numbers of
measurement settings, ourmethod depends less strongly on themodel. In contrast, for large numbers of
measurement settings, it is imperative to determine the appropriatemodel for optimal performance.

Our results confirm that compressed sensing in conjunctionwith suitablemodel selection gives rise to
reliable procedures for state reconstruction leading to effective tomographywith tomographically incomplete
data. These techniques can be applied to awide range of experimental settings and provide ameans to identify
and verify appropriatemodels thereby paving theway for the future of practical quantum state tomography.
With this, we contribute to establishing compressed sensing as a practical tool for quantum state tomography in
the low-information regime.
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Appendix:fidelity estimationwith error bound

In this section, we providemore detail to thefidelity estimationwith an error boundwithout the need of
resorting to quantum state tomography. In the Pauli operator basis

 s s sÎ
=

{ ⨂ { }} ( )O O: , , , , A1l l
j

n

x y z
1

we can estimate from themeasured probabilities =p̂ y Nj k j k j, , the expansion coefficients

x = ( ) ( )O dtr A2l
l

of the prepared state ñ by a linear transformationΩ,

x = W ˆ ( )p. A3

For convenience, we denote by p̂ the row-vectorisation of thematrix with entries p̂j k, . Thefidelity with respect
to a pure target state  T can bewritten in terms of the expansion coeffcients as
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    å xx x= = W( ) ˆ ( )pF , . A4
l

l l T2
T

T T

The frequency of the d different outcomes for the jthmeasurement setting is described by amultinomial
distribution. The covariancematrix is given for eachmultinomial distribution by

d= -( ) ( ) ( )Y Y N p p pCov , . A5j k j l j j k i j j k j l, , , , , ,

Since differentmeasurement settings correspond tomutually orthonormal operators, the frequencies of
differentmeasurement settings are uncorrelated, i.e. =( )Y YCov , 0i k j l, , for ¹i j. Therefore the covariance
matrix for the probabilities p̂ can be estimated from the data as

d= --( ˆ ˆ ) ( ˆ ˆ ˆ ) ( )p p N p p pCov , . A6j k j l j j k i j j k j l, ,
1

, , , ,

Bymeans of linear error propagation, the variance of the fidelity is given by

 x x= W W( ) ( ˆ ˆ ) ( )F p pVar Cov , , A7T T2
T T

which yields an estimate of the statistical error of thefidelity estimate from the data

 D =( ) ( ) ( )F F, Var . A82
T

2

In particular, in order to estimate thefidelity with respect to theGHZ state, only nine Pauli basismeasurements
contribute. This can be seen from the expansion of theGHZdensitymatrix in the Pauli operator basis

 


 å å ås s s s s s s= + Ä Ä Ä + Ä Ä Ä
s s s sÎ

Ä
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

{ }

1

16
, A9z z x x y yGHZ

, , ,

4

Perm. Perm.x y z

where the last two sums run over all six distinct orders of the four factors of the tensor product.
To estimate thefidelity (A4), only the 16 Pauli coefficients of the prepared state are required that correspond

to the operators of the expansion(A9). From themeasurement outcomes of themeasurement setting sÄ
z

4, all
coefficients of operators containing only the identity  and sz can be estimated. Thus, only nine Pauli basis
measurements are necessary to estimate the fidelity.

Note that it is also possible to employ themeasurement outcomes of all othermeasurement settings in the
estimation of coefficients of terms that include the identity in equation (A9). In principle, it is thereby possible to
further reduce the statistical error of the estimate of those coefficients. However, for the data set considered in
this work, usingmore than ninemeasurement settings does not significantly alter the fidelity estimate.
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3 QUANTUM FIELD TOMOGRAPHY

The compressed sensing techniques that where discussed in the last section allow for the robust re-
covery of low-rank (i.e., less mixed) quantum states, decreasing the amount of measurements to
be taken and hence the experimental effort roughly by a square root factor in the Hilbert space di-
mension. This approach is feasible for intermediate-sized quantum systems, however, it reaches its
inevitable limits for even larger systems, let alone continuous systems such as quantum fields.

In contrast, tensor network states allow for incorporating physical a priori information into the
class of ansatz states for quantum tomography, making not only an exponential data reduction pos-
sible in various instances, but even allow for practical parametrizations of continuous quantum
systems. Such a parametrization is represented by the continuous matrix product states, which will
be discussed in section 3.2, after an introduction of tensor network states in section 3.1. Building
on this, we have developed a protocol for the tomography of quantum fields, which is presented in
the subsequent publication [2]12. This protocol can be used to determine the states in experimental
systems, which will be demonstrated in publication [3] in section 3.3. See also publication [5] in
appendix A.1 for an application of continuous matrix product states in quantum transport experi-
ments.

3.1 Tensor network states

Evenwith non-relativistic treatment, information in quantum systems propagateswith finite speed,
theLieb-Robinson velocity vLR. The respective, system-dependent upper bounds for the velocity are
called Lieb-Robinson bounds.[98,99] This results in a certain locality and clustering of correlations for
ground states of gapped 13 quantum lattice systems: Namely, the correlations of two local observ-
ables OA and OB at different subsystems A and B decay exponentially instead of algebraically with
their distance dist(A,B):[100]

|〈OAOB〉− 〈OA〉〈OB〉| ≤C e−dist(A,B)∆E/(2vLR)‖OA‖‖OB‖. (16)

With 〈O〉wedenote the expectation value of the observableO . This behavior is closely related to the
fact that formany quantum systems, quantum correlations between a subsystem Aand the comple-
ment subsystem B will grow not with the volume of A, but with the size of its lower-dimensional
boundary ∂ A: The entanglement entropy S(%A) := − tr(%A log2%A)

[101],14, which measures the

12Adrian Steffens, Carlos A. Riofrío, Robert Hübener, and Jens Eisert, “Quantumfield tomography”,New Journal of
Physics 16:123010, 2014 (doi:10.1088/1367-2630/16/12/123010). Published under aCreativeCommonsAttribution 3.0License
(creativecommons.org/licenses/by/3.0), © 2014 IOP Publishing.

13 A quantum system is called gapped if there is a nonzero distance ∆E between its ground state energy and the
energy of the first excited state.

14 With %A, we denote the density matrix of the reduced subsystem A, after tracing out the complement system B ,
i.e., taking the partial trace of % with respect to B : %A := trB (%).
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degree of entanglement 15 between A and B , quantifying their quantum correlations, scales linearly
with the size |∂ A| of ∂ A

S(%A) =O(|∂ A|), (17)

satisfying an area law.[102] Using Lieb-Robinson bounds, area laws have, e.g., been shown for one-
dimensional gapped systems with a unique ground state.[103]

Importantly, the states that exhibit only comparably few and rather local correlations out of
the many that can be modeled by the entire Hilbert space represent a large part of quantum states
of interest appearing in nature, and they are confined to a tiny subset of the Hilbert space: The
so-called physical corner of Hilbert space[47,104]. In the most extreme case, taking, e.g., a system
H =
⊗n

j=1C
2 of n spins, each in C2, with no correlations between the local spin systems, the

state of the system is a product state |ψ〉 =
⊗n

j=1 |ϕ j 〉 of the local spin states |ϕ j 〉. Only O(n)
parameters suffice to describe all such states—compared to the exponentially many ofH . It is rel-
atively easy to experimentally prepare such uncorrelated states. Starting from these states, it was
shown that it is hard using only local Hamiltonians to generate states that exhibit as much correla-
tions as themathematically typical state inH has: If one understands the preparation of arbitrary
states as a sequence of local interactions within a quantum circuit with a product state as input, then
such a circuit would also need to consist of exponentially many elements to produce most typical
states.[104] Hence, in practice, large parts of theHilbert space remainunreachable and—froma signal
processing perspective—constitute an unused data overhead.

Conversely, many states that appear in nature can be parametrized using quantum circuits with
O(polyN ) elements, i.e., the physical corner can be covered by polynomially many parameters,
and the suitable set of states to describe it in a compressed way is the set of tensor network states: A
general pure state |ψ〉 in a Hilbert spaceH =

⊗n
j=1C

d can be written as

|ψ〉=
d
∑

j1,..., jn=1

c j1,..., jn | j1〉⊗ · · · ⊗ | jn〉 , (18)

where the coefficient array c := (c j1,..., jn ) can be understood as a tensor of order n and local dimen-
sion d . Decomposing c into a set of m lower-order tensors c [1], . . . , c [m],

c j1,..., jn =
∑

{a[l ]
kl
}

c
[1] j1,..., jl1
a[1]1 ,...,a[1]

k1

c
[2] jl1+1,..., jl2
a[2]1 ,...,a[2]

k2

. . . c
[m] jlm−1+1,..., jlm
a[m]1 ,...,a[m]

km

(19)

15 Fixing bases {|ϕ〉A} and {|ϕ〉B} of A and B , respectively, a general pure state in HA ⊗HB can be written as
|ψ〉=
∑

j ,k c j k |ϕ j 〉A⊗ |ϕk〉B . It is called separable if there exist two vectors a and b such that c j k = a j bk for all
j and k , resulting in a product state |ψ〉 =

∑

j ,k a j bk |ϕ j 〉A ⊗ |ϕk〉B = |χ 〉A ⊗ |χ 〉B with |χ 〉A =
∑

j a j |ϕ j 〉A and
|χ 〉B =
∑

j b j |ϕ j 〉B . In this case, there are no quantum correlations between A and B . If this decomposition into
a product of subsystems does not exist, the state is called entangled and measurements on one subsystem affect mea-
surements on the other. That notion of bipartite entanglement—for a system consisting of two subsystems—can be
extended tomultipartite entanglement as well as to mixed states.
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3 – QUANTUM FIELD TOMOGRAPHY

results in a tensor network. The physical indices j1, . . . , jn get distributed among the m tensors,
which are connected to each other via contracted shared indices {a[l ]

kl
}. The dimension of each con-

tracted index connecting two tensors is called its bond dimension. A quantum state with a tensor
network decomposition of the coefficient array c as in Eq. (19) is called a tensor network state[105].
For illustration, see Fig. 5.

Figure 5: Exemplary decomposition of a 5th-order tensor into a tensor network
∑

a1,...,a5
c [1] j1, j2

a1
c [2]a1,a3,a4

c [3] j3
a2,a5

c [4] j4, j5
a3,a4,a5

. Here, we make use of a common graphical repre-
sentation for tensor networks. Each box corresponds to a tensor, each line to an index. A line
connecting two boxes corresponds to contracting the common index of the two respective tensors. The
dimension of each internal index al is called its bond dimension. Unconnected, open lines (such as
the ones labeled with j1, . . . , j5) correspond to uncontracted indices.

A particularly successful class of tensor network states for analyzing one-dimensional systems
constitute thematrix product states (mps)[106–108], which provide exact ground states of 1d quantum
Heisenberg spin model extensions, the aklt model [109] and theMajumdar–Ghosh model [110], clas-
sifications of quantumphases[111] and characterizations of quantumphase transitions[112]. Important
algorithms for finding ground states and simulating time evolution such as the density matrix renor-
malization group (dmrg)[113] and time-evolving block decimation (tebd)[114] are closely related to
mps. For reviews, see for example Refs. [115, 116]. Applications beyond quantum physics—e.g., for
machine learning or the solution of partial differential equations—are being developed aswell[117,118],
under the heading of tensor trains[119].

Other types of tensor networks include projected entangled pair states[120] (peps), which gener-
alize mps to higher spatial dimensions, tree tensor network states[121], and multiscale entanglement
renormalization ansatz (mera) states[122], which are particularly practical for describing ground
states of gaplessHamiltonians. Mixed states canbe representedbymatrix product operators[123] (mpo).
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Figure 6: Graphical representation of an mps with open boundary conditions (above) and periodic
boundary conditions (below). Above, the tensors {A[1] j1} and {A[n] jn} have only one internal index
a1 and an−1, respectively. Hence, they respectively correspond to row and column vectors.

For mps, the tensor c is factorized into products of matrices A[l ] jl ,

c j1,..., jn =
∑

a1,...,an−1

A[1] j1
a1

A[2] j2
a1,a2

A[3] j3
a2,a3

. . . A[n−1] jn−1
an−2,an−1

A[n] jn
an−1

=A[1] j1A[2] j2A[3] j3 . . .A[n−1] jn−1A[n] jn , (20)

resulting in amatrix product state

|ψ〉=
d
∑

j1,..., jn=1

A[1] j1A[2] j2 . . .A[n] jn | j1, . . . , jn〉 , (21)

see Fig. 6 for illustration.16 Each family of matrices A[l ] jl can, e.g., be associated with the l -th site
of a one-dimensional spin chain. Matrix product states can be generated from a general state by se-
quentially regrouping the indices j1, . . . , jn of c , obtaining matrices c j1,( j2,..., jn), c̃ ( j1, j2),( j3..., jn), etc.,
successively performing singular value decompositions on them and combining the resulting ma-
trices, ultimately yielding the desired matrices {A[l ] jl }.[115] Using this prescription, the magnitude
of the number of parameters in c is reflected in an exponential increase of the bond dimension
with increasing l up until l = dn/2e. Specifically (for even n) the dimensions of the matrices

16 In Eq. (21), we are given an mps with open boundary conditions and the arrays {A[1] j1} correspond to row vectors
and A[n] jn to column vectors. Contracting the first and the last site results in anmps with periodic boundary conditions,

|ψ̃〉=
∑

j1 ,..., jn

tr
�

A[1] j1 A[2] j2 . . .A[n] jn
�

| j1, . . . , jn〉 . (22)
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A[1] j1 , . . . ,A[n] jn are 1× d , d × d 2, . . . , d n/2−1 × d n/2, d n/2 × d n/2−1, . . . , d 2 × d , d × 1. The
crucial point is that for many physical states of interest, the spectra arising in the sequential sin-
gular value decompositions decay exponentially—which can be attributed to area laws[108]—and
truncations of the singular spectra yield good approximations of the original state while massively
reducing the number of required parameters: If for each site the bond dimension is fixed to b , we
obtain (n− 2)d matrices inCb×b and two vectors inCb (for the boundaries) with the total num-
ber of parameters scaling linearly instead of exponentially with the number of sites n. Tuning the
bond dimension of an mps allows for balancing out the computational operability with how well
it describes the given physical system.

There exist quantum tomography protocols that allow for efficiently—i.e., using polynomially
many parameters and still capturing the essential physics—attributing anmps to a discrete complex
quantum system.[48,124] This is already muchmore efficient than the more general compressed sens-
ing regime, as discussed in the previous section. For continuous systems such as quantum fields,
however, new concepts have to be introduced. This is the topic of the publications [2] and [3],
which will be discussed in the following.

3.2 Continuous matrix product states for quantum tomography

The continuous analogues of mps are the continuous matrix product states [125,126] (cmps). These
allow for an efficient characterization of one-dimensional quantum fields and were shown to accu-
rately describe continuous models as, e.g., the Lieb-Liniger model [125,127], its fermionic equivalent,
the Gaudin-Yang model [128,129], or the relativistic Gross-Neveu model [130]. There exist algorithms
for efficiently computing the parameter sets of a cmps approximation of the Lieb-Liniger ground
state[131,132], but the involvedmethods are not restricted to thismodel. Continuous analogues of peps
can be formulated as well[133], however, as in the discrete case, expectation values, which would be
important for tomographic protocols, are in general computationally intractable.

A cmps on an interval [0, L]with periodic boundary conditions is defined as

|ΨQ,R〉= traux

�

P e
∫ L

0 dx
�

Q(x)⊗1̂+R(x)⊗ψ̂
†
(x)
�
�

|Ω〉 . (23)

Its characteristic parameters are contained within the matrix families {Q(x) ∈ Cb×b |x ∈ [0, L]}
and {R(x) ∈Cb×b |x ∈ [0, L]}withbonddimension b . These are coupledwith theunit operator 1̂
and field operators17 ψ̂(x), respectively, that act on the Fock vacuum state |Ω〉within a path-ordered
exponentialP e, afterwhich the (b×b )-dimensionalmatrix space—the “auxiliary space”—is traced
out. The matrices R(x) can be interpreted as scattering matrices that result in a particle at position
x , while the matrices Q(x) can be related to free propagation.

17 The field operators ψ̂(x) obey the canonical (anti-)commutation relations [ψ̂(x), ψ̂†(y)]± = δ(x − y) for
fermionic/bosonic fields. The definition in Eq. (23) can be extended to multiple fields by using sums of different field

operators together with corresponding R matrices,
∑

j R j (x)⊗ ψ̂ j (x), in the exponent.
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Continuousmatrix product states canbe constructed as the continuum limit ofmps of the form

|Ψε〉=
∑

j1,..., jn

tr(A[1] j1 , . . . ,A[n] jn ) (â†
1)

j1 . . . (â†
n) jn |Ωn〉 (24)

on discrete latticesLε ⊂ [0, L] with lattice parameter ε, n = L/ε sites, site-dependent creation
operators {â†

j } obeying [â j , â†
k
]± = δ j ,k , and matrices {A[k] jk ∈Cb×b }. Setting

A[k]0 = 1b + εQ(k ε), A[k] jk = ε jk/2R jk (k ε), â†
k
= ε1/2ψ̂†(k ε) (25)

and taking the limits ε→ 0, n(ε) = L/ε→∞ yields Eq. (23).[134] An equivalent construction of
cmps from continuous measurements is also possible.[126]

For translation invariant cmps, the matrices Q(x) and R(x) become independent of the posi-
tion x and the state is completely parametrized by 2 b 2 complex numbers. An important feature of
translation invariant cmps is that n-point correlation functions of the type

C (x1, . . . , xn) = 〈ΨQ,R | ψ̂
†(x1) . . . ψ̂

†(xm) ψ̂(xm+1) . . . ψ̂(xn) |ΨQ,R〉 (26)

can be reduced to 2- and 3-point correlation functions[135] and can be calculated in closed form as
sums of exponentially damped sinusoids,

C (x1, . . . , xn) =
b 2
∑

j1,..., jn−1=1

r j1,..., jn−1
eλ j1
(x2−x1) . . . eλ jn−1

(xn−xn−1), (27)

with r j1,..., jn−1
,λ jk
∈ C, implying that only certain 2- and 3-point correlation functions—as op-

posed to arbitrarily large n for general field states[136]—are required to in principle determine the
cmps[135]. This makes these tensor network states particularly interesting for practical quantum to-
mography. As inmany inverse problems, the quantities r andλ, however, are not straightforwardly
and, due to various gauge degrees of freedom, not uniquely related to the parameter matrices Q
and R. Since theλ values are also not linearly related to C , it is moreover not clear how to efficiently
obtain r and λ from an experimentally sampled data array C . The tomographic protocol at the
basis of the following publication [2] is therefore performed in several consecutive reconstruction
steps fromprocessing sampled correlation functions to computing thecmpsparameters in a feasible
manner. To this end, state-of-the-art signal processing algorithms for precise reconstructability—
Prony-like analysis[70,137] and thematrix pencil method [138,139]—were adapted and extended for han-
dling input signals of arbitrary dimension. Implementing a non-linear least squares based optimiza-
tion heuristic is in general not productive because of the non-convex nature of the problem and the
disadvantageous scaling of the computational effort with the number of parameters, i.e., the bond
dimension b . An important application of this protocol was to experimentally show that cmps
can be employed to adequately describe a continuous system that appears in nature. This will be
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presented in publication [3] in the subsequent section 3.3. Apart from quantum state tomography,
cmps can also be used to characterize quantum transport experiments (see the publication [5] in
appendix A.1).
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1. Introduction

Quantum theory predicts probability distributions of outcomes in anticipated quantum
measurements. The actual problem encountered in practice, however, is often not so much
concerned with predicting certain outcomes of specific measurement procedures, but rather with
reconstructing the unknown quantum state at hand that is compatible with precisely such
measurement outcomes. This task of reconstructing states based on data—possible under
certain conditions of completeness or other reasonable assumptions—is called quantum state
tomography. For finite-dimensional quantum systems, this task is feasible and is routinely used
in experiments. However, the number of parameters to be determined scales exponentially with
the system size: full quantum state tomography is highly inefficient. This is even so much less
of a problem than one might at first be tempted to think. It was one of the major insights in the
field in recent years to recognize that economical or efficient quantum state tomography is
distinctly possible for systems with many degrees of freedom. In fact, in most physically
relevant questions, fully unconstrained quantum state tomography may be said to solve the
‘wrong problem’. One is surely often not interested in arbitrary states, but only in those states
that one is expected to encounter in practice, which are naturally more restricted.

In the context of compressed sensing tomography [9, 14] or matrix product states (MPS)
tomography [1, 5, 34], identification of quantum systems with many degrees of freedom is
indeed possible. The key step is to identify the right model in which to represent the states, e.g.,
approximately low-rank states or those with clustering correlation functions. In the context of
MPS tomography, the notion of a model refers to a meaningful variational class of states that
provably captures all states exhibiting low entanglement [8, 41]. In this sense, tomography is
efficiently possible for any system size. In fact, by increasing the bond dimension, an arbitrary
state can be well approximated. Quite similar to the mindset of compressed sensing, a ‘sparsity
of commonly encountered states’ is heavily used for the benefit of tomography.

In quantum field theory, where one has to consider an infinite number of degrees of
freedom, the situation is in principle aggravated. Analogously, a moment of thought reveals that
to think about quantum field tomography in the sense of trying to ‘fill an infinite table with
numbers’ is rather ill-guided. This is not the actual problem one aims at solving in any practical
context—one again needs to identify the appropriate model and the right ‘sparsity structure’.

In this work, we introduce the concept of quantum field tomography, tomography of
continuous systems in quantum field theory, and provide a practical and feasible method for
achieving this. We do so by drawing and further developing ideas from the study of continuous
matrix product states (cMPS) [16, 35, 47], methods of how to assess higher order correlation
functions in that context [24], as well as a machinery from statistical estimation theory, such as
a Prony analysis [38] and matrix pencil methods (MPM) [21, 22], which are here brought to a
new context. In fact, these methods of estimation have not been considered before in the context
of quantum state reconstruction and are expected to be interesting in their own right. The basis
of the analysis are low-order multi-point correlation functions directly accessible in many
common current experiments.

This approach opens up a new window into grasping the physics of continuous quantum
systems in equilibrium and non-equilibrium. Instead of having to make a physical model (e.g.,
define a Hamiltonian) and checking for the plausibility of it, one can—based on data of
correlation functions—reconstruct the quantum field itself. Such an approach seems particularly
appealing when studying one-dimensional continuous bosonic models such as ultra-cold atoms
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on top of atom chips [13, 27, 28]. What is more, if only partial data is available, say, in the
absence of a phase reference frame, higher-order correlation functions of the same type can be
predicted as well. The starting point of the analysis is what is called ‘Wickʼs theorem for MPSs’
[24], which is here brought to a new level and transformed into a practical method of
reconstructing unknown cMPS from correlation function data.

This work is structured as follows. In section 2, we will give a short overview of the
concept of cMPS [16, 35, 47] as well as what can be called a ‘Wick theorem’ for this class of
states [24], aiming as a preparation for the following technical sections. In section 3, we will
describe in great technical detail how to reconstruct a field state from its low order correlation
functions and give a complete MPS description of it. The limitations of this method are
investigated in section 4. In section 5, we will demonstrate the method using simulated data
from random cMPS and apply the method to the ground state of the Lieb–Liniger model, a
prototypical integrable model in quantum field theory [3, 30]. The data used here have been
generated using a cMPS-based simulation based on the time-dependent variational principle
[6, 15, 17]. The impact of noise in real world-scenarios on the method is investigated here. In
section 6, we summarize and conclude this work.

2. Background

In this work, we are concerned with one-dimensional quantum fields with fast decaying spatial
correlations. Analogous to the case of many-body quantum systems, successfully described by
the MPS formalism, there is a variational class of states specially suited to study such systems:
the cMPS [35, 47].

2.1. cMPS

In this section, we briefly review the basics of the cMPS formalism. For a review and
comprehensive discussion of the computation of correlation functions, see, e.g., [16].

2.1.1. Basic definitions. A translationally invariant cMPS with periodic boundary conditions
and one species of bosonic particles is defined as

∫ψ Ω= Ψ⊗ + ⊗⎡
⎣⎢

⎤
⎦⎥

( )Tr e , (1)Q R
x Q R x

, aux
d ˆ ˆ ( )

L

0

†

where the collection of field operators Ψ xˆ ( ), ∈x L[0, ], obey the bosonic commutation
relations of the free field

Ψ Ψ δ= −⎡
⎣⎢

⎤
⎦⎥x y x yˆ ( ), ˆ ( ) ( ), (2)

†

Ω is the vacuum state vector, ∈ ×Q R, d d are matrices acting on an auxiliary d-dimensional
space , the ‘virtual space’, and constitute the variational parameters of the class. L is the
length of the closed physical system,  denotes the path ordering operator and Traux traces out
the auxiliary space.

The parametrization in (1) by Q and R is not unique, i.e., there is and additional gauge
freedom. Namely, when simultaneously conjugating Q and R with an invertible matrix G [16],
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= −Q G QG˜ , (3)1

= −R G RG˜ , (4)1

then the two resulting state vectors still represent the same state, i.e., all expectation values are
invariant under this transformation.

2.1.2. Related physical processes. A useful interpretation of the correlations in cMPS can be
given in terms of a d-dimensional (auxiliary) quantum system ≅ d interacting with a one-
dimensional field  [35]. The Hamiltonian of the joint system is given by

 Ψ Ψ= ⊗ + ⊗ + ⊗H x K R x R xˆ ( ) ˆ ˆ ( ) ˆ ( ), (5)
† †

where ˆ is the identity on the field, ∈ ×K d d the Hamiltonian of the free evolution of the finite

dimensional system, and Ψ⊗R xˆ ( )
†

the coupling between the system and the field with
∈ ×R d d . Note that H evolves in position, rather than time—in this picture, both are by

construction equivalent. Starting with the state vector φ Ω〉 〉| |i , where φ 〉 ∈ | i and the vacuum
Ω〉 ∈ | , and evolving over ∋L x[0, ] , we formally arrive at

 ∫φ Ω φ Ω= Ψ− ⊗ − ⊗ + ⊗  ( )U Lˆ (0, ) : e , (6)i
x K R R R x

i
i d ˆ 1

2
ˆ i ˆ ( )

L

0

† †

using the Baker–Campbell–Hausdorff formula and the fact that Ψ φ Ω⊗ 〉 〉 =R xˆ ( )| | 0i
† . By

setting

= − −Q K R Ri
1
2

, (7)†

projecting onto φ〈 ⊗ | ˆ
i to decouple  from  , and summing over a complete orthonormal

basis of all φ 〉| i , we again obtain equation (1). This shows the interpretation of the cMPS
formalism in the sequential preparation picture of MPS [36].

In this picture, we interpret K to be the Hamiltonian of a virtual particle in the auxiliary
space that mediates field interactions. Even more [35], the dynamical behaviour of the auxiliary
system  can be modelled by computing the derivative of

ρ ρ Ω Ω= ⊗  
⎡
⎣⎢

⎤
⎦⎥( )x U x L U x L( ) Tr ˆ ( , ) (0) ˆ ( , ) , (8)

†

where Tr means tracing out the physical system  . This yields the ordinary differential
equation

ρ ρ ρ ρ= − + −
+ ⎡⎣ ⎤⎦x

x K x R x R R R x
d
d

( ) i[ , ( )] ( )
1
2

, ( ) , (9)† †

which is a master equation in Lindblad form, governing the Markovian evolution of ρ, where
R plays the role of dissipative quantum jump (Lindblad) operators. Although arbitrary Q and R
lead to a valid cMPS, not all pairs give rise to an effective Hamiltonian K via equation (7). For
this, it is required that

+ + =Q Q R R 0. (10)† †

However, arbitrary Q and R can in general be transformed into a specific gauge where they fulfil
this equation.
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2.2. Correlation functions in cMPS

The mathematical relations between the n-point functions are the starting point for our
tomography algorithms, hence we give a brief summary at this point. A quantum field state can
be completely characterized by all the possible normal expectation values constructed from

Ψ̂ (. ) and Ψ̂ (. )
†

and their commutation relations. In this work, we will focus on density-like

correlation functions, i.e., for each position ∈x L[0, ]k , =k n1 ,..., , both operators Ψ xˆ ( )k
†

and
Ψ xˆ ( )k exist within the expectation values. Because of translational invariance, we can set

=x 01 without loss of generality. The expectation value

ψ Ψ Ψ Ψ Ψ ψ〈 〉x x x x| ˆ ( )... ˆ ( ) ˆ ( )... ˆ ( ) |Q R n n Q R,
†

1
† †

1 , can be computed as

τ τ = ⊗ ⊗ ⊗τ τ τ
−

⎡⎣ ⎤⎦( ) ( ) ( )C R R R R R R( ,..., ) : Tr e ... e e , (11)n
n

T T T( )
1 1

n 2 1

(see, e.g., [16]), with the transfer matrix

 = ⊗ + ⊗ + ⊗T Q Q R R: , (12)d d

and the positive distances τ = −+x xj j j1 for = −j n1 ,..., 1 and τ = −L xn n; the overline
denotes complex conjugation. Correlation functions of cMPS are given by expressions
involving only the auxiliary space. Static properties of a quantum field with one spatial
dimension are hence related to non-equilibrium properties of a zero-dimensional system. In this
sense, they have been referred to as being ‘holographic quantum states’ [35].

For a normalized cMPS, the eigenvalues of T are all complex with negative or zero real
parts, due to the analogy to quantum channels [48]. This leads to finite expectation values in the
thermodynamic limit → ∞L . Furthermore, assuming that T is diagonalizable, which is in
particular the case if its spectrum is non-degenerate, the n-point function (11) can be further
simplified to a sum of exponentially damped oscillatory terms

∑τ τ ρ= λ τ λ τ
→∞

−
=−

−
− −Clim ( ,..., ) e ... e , (13)

L

n
n

k k

d

k k k
( )

1 1

,..., 1
, ,...,

n

n
k k n n

1 1

2

1 2 1
1 1 1 1

where

ρ =
− − − −M M M... . (14)k k k k k k k, ,..., 1, , ,1n n n n1 2 1 1 1 2 1

The matrix ∈ ×M d d2 2
is defined as = ⊗− ( )M X R R X1 , where X is a change-of-basis matrix

such that −X TX1 is diagonal and compatible with the ordering of the eigenvalues λ{ }k . In the
following, we will work exclusively in the thermodynamic limit and, for simplicity, use C n( )

also to denote n-point correlation functions in this limit.
A first step to reconstruct a cMPS would be to identify ρ

−
{ }k k k, ,..., n1 2 1

and λ{ }k . That this is

in principle possible can be seen by considering the Laplace transform of C n( )

∫ τ τ= ∈τ
∞

− −
− C s ss( ) d e ( ), ,..., , (15)n n n

n
s( )

0

1 · ( )
1 1
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which has the simple form

∑
ρ

λ λ
=

− ⋯ −= −−

−

−


( ) ( )s s

s( ) . (16)n

k k

d
k k k

k k n

( )

,..., 1

, ,...,

1 1n

n

n1 1

2

1 2 1

1 1

Each of the −d n2( 1) combinations of T eigenvalues appears as a pole of  n( ) in  −n 1 together with
the corresponding residue in the numerator. If all the eigenvalues are different, i.e., the spectrum
of T non-degenerate, and all residues non-zero, then all residues are distinguishable as well.
Since the Laplace transform itself proved to be infeasible for practical reconstruction
algorithms, we will present alternative ways in the following. Independently of this, we want to
keep calling the eigenvalues λ{ }k the poles and ρ

−
{ }k k k, ,..., n1 2 1

the residues of the n-point
function. In the following, we require the spectrum of T to be non-degenerate.

The structure of the correlation functions with the residues as products of entries of one
matrix, equation (14), allows for expressing higher order correlation functions by lower order
correlation functions, very much reminding of the Wickʼs theorem in quantum field theory [24].
In this sense, we will recover M from the residues. We will describe this in detail below.

2.3. Additional symmetries

In the remainder of this work, we will make use of some symmetries that the cMPS fulfil. Here,
we briefly state them. By construction, for each non-real entry of ⊗R R and T there exists
another entry containing its complex conjugate. More precisely, one can show that

Λ Λ⊗ = ⊗R R R R (17)d d

and Λ Λ =T Td d , with

∑Λ = ⊗
=

E E: (18)d

j k

d

j k k j

, 1

, ,

and =E e ej k j k
T

, , the dyadic product of the canonical column vectors ej, [12, section 2.5].

Hence, if λ is an eigenvalue of T with eigenvector v then Λ Λ λ=T v vd d , and since Λ =( )d d
2 2,

we obtain Λ λ Λ=T v v( ) ( )d d , such that the spectrum of T is closed under complex conjugation.
This fact also follows from the channel property of cMPS as discussed in [48].

For the reconstruction algorithms we will discuss below, it is instrumental to fix an
unambiguous ordering of the eigenvalues of the transfer matrix T, which makes its diagonal
matrix D and furthermore the matrixM unambiguous, too. If we order the eigenvalues in D such
that the κ ∈ d{1 ,..., }2 real eigenvalues constitute a block and the remaining κ−d2 are
arranged in complex conjugate pairs (e.g., ordering by descending real part), then D obeys the
symmetry relation Ξ Ξ =κ κD Dd d, , with the permutation matrix

Ξ σ= ⊕ ⊕κ κ
κ

=

−⎛
⎝⎜

⎞
⎠⎟: , (19)d

j

d

x,
1

( ) 22

where σx is the x-Pauli matrix. In addition, since X consists of the eigenvectors v of T as column
vectors, Λ vd is the eigenvector of λ , when v corresponds to λ. Moreover, since Ξ κd,

interchanges the columns back, we have that Λ Ξ =κX Xd d, . Using this fact and the definition

= ⊗−M X R RX1 , we obtain the symmetry relation Ξ Ξ =κ κM Md d, , for the matrix M. This
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relation connects each entry of M with its complex conjugate and, via equation (14), each
residue with its complex conjugate. As with the poles, the set of residues is closed under
complex conjugation for density-like correlation functions. These symmetries can also be used
for a systematic least squares approach to reconstruct the poles and residues, see section 3.2.

3. State reconstruction

Having established the structure of the correlation functions in cMPS, i.e., the structure of the
data of our reconstruction problem, it remains to develop an appropriate protocol to extract the
information encoded in the data. Given an n-point density-like correlation function of order 3 or
higher corresponding to a cMPS Ψ 〉| Q R, , we will show that, in most cases, it is in principle
possible to reconstruct the parameter matrices Q and R up to an arbitrary gauge and phase, and
to reproduce all n-point functions.

We are dealing with a so-called inverse problem, a large class of problems that make ‘use
of the actual results of some measurements of the observable parameters to infer the actual
values of the model parameters’ [44]. Many inverse problems are ill-conditioned—a small
change in the measurements can lead to a huge change in the model parameters. In this chapter
we will examine the required steps for cMPS reconstruction, see figure 1, and the respective
main factors that influence their performance regarding perturbed input data. Each step will be
discussed in a separate section. We will see that in particular the first and the last step can be
notably ill-conditioned.

3.1. Reconstruction steps

The reconstruction of a generic, translationally invariant cMPS in the thermodynamic limit
comprises the following steps, which are represented in figure 1:

Figure 1. The particular reconstruction steps starting with the input data, an n-point
correlation function of a cMPS Ψ 〉| Q R, , and ending with the variational parameter
matrices Q and R, that fully characterize the state. Alternatively, the state can likewise
be described by K and R. With this knowledge, one can compute other ′n -point
correlation functions and compare with the input data to obtain evidence for a successful
reconstruction.
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(1) The first step in processing the input data is to extract the poles λ{ }k and the residues
ρ

−
{ }k k k, ,..., n1 2 1

from a density-like n-point correlation function, ⩾n 3,

∑τ τ ρ= λ τ λ τ
−

=−

−
− −C ( ,..., ) e ... e , (20)n

n

k k

d

k k k
( )

1 1

,..., 1
, ,...,

n

n
k k n n

1 1

2

1 2 1
1 1 1 1

which is measured and contains additional noise and experimental imperfections.

(2) In the second step, the matrix M is determined from the residues

ρ =
− − − −M M M... , (21)k k k k k k k, ,..., 1, , ,1n n n n1 2 1 1 1 2 1

and the matrix D is determined from the poles. This can be achieved using certain invariances
in the correlation functions that led to the formulation of Wickʼs theorem for MPSs.

(3) In the final step, the cMPS parametrization matrices Q and R can be extracted from the
matrices M and D by imposing a specific gauge. Additionally, and after another gauge
transformation, the Hamiltonian K of the auxiliary system can be computed from the
matrices Q and R.

In order to only generate and predict higher order density-like n-point functions, it is in
general sufficient to use the matrices D and M from the second step without any further
reconstruction steps. This is in general much more robust against noise than the full
reconstruction. Furthermore, we can leave out some of the poles (together with the
corresponding entries in M) that barely contribute to the n-point functions. We will follow
this approach in accompanying work when analysing experimental data [43].

3.2. Reconstructing the poles and residues

When analysing spectra of sampled linear combinations of sinusoidal functions, methods based
on integral transforms like the discrete Fourier transform seem like a natural choice. In our case,
however, we deal with exponentially damped sinusoids with potentially similar frequencies,
which results in heavy broadening and overlapping of the corresponding spectral peaks. In this
case, the damping factors would have to be determined from the corresponding peaks’ width,
and, in view of experimental data, we cannot assume too many sampled data points. Hence, the
spectral resolution would be rather low. Only for certain cases the peaks in the frequency
spectrum are sufficiently separated to directly determine the poles in a feasible way using
integral transforms.

Another class of methods for data fitting that may come to mind is based on nonlinear
(e.g., least squares) minimization approaches. Clearly, the number of parameters critically
determines the computational effort and the successful applicability of the algorithm. The
results, however, can be improved by restricting ourselves to a likely parameter region as a
result of a preceding Fourier transform. Taking into account the Λd and Ξ κd, symmetries and
assuming normalized n-point functions, the number of real parameters can be reduced to

−nd 22 . Only for unambiguous global minima (which is usually not the case for high
damping factors in combination with noise) and for very small bond dimension, we obtained
satisfactory results in acceptable time. Least squares approaches for correlation functions
with larger n are at best feasible when using Q and R as parameters, otherwise the number of
parameters would become too large. In spite of these drawbacks, a least squares algorithm
could be used as an additional refinement step with initial values from other procedures, like
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the ones discussed below; nevertheless the number of parameters is still limiting. On
the other hand, if we can only assume a small number of parameters and expect a
considerable amount of noise, the least squares method can be a robust alternative. For
example, for bond dimension d = 2, such nonlinear least squares approach can be feasibly and
successfully used.

Alternative minimization methods, e.g., simulated annealing, did not lead to
considerable improvements. However, the scaling of the computational effort with the
number of parameters can be significantly mitigated using iterative quadratic maximum
likelihood methods, but the application to correlation functions with >n 2 is not
straightforward [19, section 1.2.3].

Realizing the challenges of solving a nonlinear estimation problem, it seems logical to
exploit the structure of our particular model of the data to see if there are ways to more
efficiently solve the estimation problem. It turns out that for data structures that consist of
sums of damped oscillatory terms, it is possible to separate the estimation of poles and
residues of the function in two different linear estimation processes. In the following
sections, we describe two major approaches one can take to achieve such estimation.

3.2.1. Prony analysis. This technique is used in digital signal processing and its roots go
back to a method that was originally established by Prony in 1795 in the context of fluids
[38]. The main idea is to first recover the poles independently by determining the roots of a
polynomial computed from the signal (the correlation function) and then to insert the poles
into a system of linear equations for the coefficients, which is in principle solvable with the
usual linear algebra procedures. Pronyʼs method is a special case of linear prediction [19]
and has many further applications, e.g., as the starting point for nearest-neighbour detection
of atoms in optical lattices [26, 29]. The original method, however, is very sensitive to noise,
so that for working on experimental data we need to use several modifications, which we will
describe below. For further summaries and an introduction of the method, see for instance
[18, 31, 37].

Pronyʼs method is usually applied to -valued functions, corresponding to 2-point
functions, and for our purposes has to be extended to work with higher order n-point functions,
which can be done in a straightforward way. Therefore, in our description, we will start with the
one-dimensional case with signal function

∑τ ρ= λ τ

=

C ( ) : e . (22)
k

d

k
(2)

1

k

2

The function is sampled at a finite number of points and is available only for +N 1 points τ{ }j ,

which is τ =C C( ) :j j
(2) , =j N0 ,..., . We, thus, obtain a system of linear equations

ρ ρ+ ⋯ + =λ τ λ τ Ce e , (23)d1 0d1 0
2

2 0

ρ ρ+ ⋯ + =λ τ λ τ Ce e , (24)d1 1d1 1
2

2 1

ρ ρ
⋮

+ ⋯ + =λ τ λ τ Ce e . (25)d N1
N d N1

2
2
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Once we have identified all poles λ{ }k , we can easily solve this system and are finished with the
reconstruction. As we will see, one requirement for Pronyʼs method is to sample the signal at
equidistant points τ Δτ= j ·j , ∈j N{0 ,..., }, and with μ=λ Δτe : k

k we arrive at

μ μ μ

μ μ μ

ρ
ρ

ρ

⋯
⋯

⋮ ⋮ ⋮
⋯

⋮ =
⋮

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C

C

C

1 1 1

, (26)
d

N N
d
N

d N

1 2

1 2

1

2

0

1
2

2 2

where the poles are encoded in the (in general, non-square) Vandermonde matrix

μ= −
= +
=

 ( ): . (27)k
j

j N

k d

1
1 ,..., 1

1 ,..., 2

We must take care not to choose the sampling interval Δτ too large, since, considering the
Nyquist–Shannon sampling theorem [42], the sampling rate should in general be at least twice
the highest frequency ωsup of the signal spectrum π Δτ ω<2 ( ) 2 sup .

Vandermonde matrices will often be ill-conditioned—e.g., according to Gautschi [10], a
lower bound for the norm of the inverse matrix of  (for =N d2 and  invertible) is

∏
μ

μ μ
>

−
−

∞ ⩽ ⩽ =
≠

 ( )
max

max 1,
, (28)

l n m
m l

d
m

l m

1

1 1

2

which will get very large if two poles get close to each other. This fact hints at the intrinsic
limitations of this reconstruction method.

To determine the poles, we can regard the set μ μ{ ,..., }p1 as the roots of a polynomial d2

with real coefficients and degree d2 in the variable z,

∑

μ

=

= =
=




z a z

z

( ) ,

( ) 0 (29)

d

l

d

l
l

d k

0

2

2

2

for each =k N0 ,..., . Note that there are d2 values of μk but +d 12 of al. Such a polynomial
naturally exists—it is just the product of the linear factors μ−z( )k ,

∏ μ= −
=

 z z( ) ( ). (30)d

k

d

k
1

2

2

Our goal is to relate the set of coefficients a{ }l to the set of function values C{ }j . Once we have
all al, we can compute the roots of the corresponding polynomial (29) and obtain the poles
λ μ Δτ= ln ( )k k , =k d1 ,..., 2. To this end, we multiply the first line of equation (26) by a0, the
second by a1 and so on, and perform the sum,

∑ ∑ ∑ ∑ ∑ρ μ ρ μ= =
= = = = =

a C a a . (31)
l

d

l l

l

d

l

k

d

k k
l

k

d

k
l

d

l k
l

0 0 0 0 0

2 2 2 2 2

Now, by choice of the al, each μk is a root of  z( )d2 for all =k d1 ,..., 2 so that each sum over l
in equation (31) vanishes. Accordingly, we see that
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∑ =
=

a C 0. (32)
l

d

l l

0

2

Since μ∏ − = + ⋯= ( )z z1 ·k
d

k
d

1

2 2
, the coefficient ad2 belonging to the highest power is

equal to one. Hence, equation (32) becomes the recurrence relation

∑ = −
=

−

a C C . (33)
l

d

l l n

0

12

In order to compute the d2 coefficients −a a{ ,..., }d0 12 , we need at least d2 equations. More linear
independent equations are easy to obtain because the argument in equation (31) is still valid if
we shift Cl to +Cl m for any ∈m with + ⩽d m N2 :

∑ ∑ ∑

∑ ∑

ρ μ

ρ μ μ

=

= =

=
+

= =

+

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

a C a

a 0. (34)

l

d

l l m

l

d

l

k

d

k k
l m

k

d

k k
m

l

d

l k
l

0 0 0

0 0

2 2 2

2 2

For d2 equations the largest index that appears is −d2 2 1 and our equation system looks like

⋮
⋱ ⋮

⋮ ⋱
⋮ = −

⋮

−

−

− − −
−

+

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C C C C

C C C

C C

C

C C C

a
a

a

C

C

C

...

... ...

. (35)

d

d

d d d
d

d

d

d

0 1 2 1

1 2 3

2 3

2 3

1 2 3 2 2

0

1

1

1

2 1

2

2

2 2 2

2

2

2

2

Therefore, for d2 poles we need at least d2 2 sampling points −C C{ ,..., }d0 2 12 . The square matrix
on the left-hand side of equation (35) can be written as + = −C( )j k j k d, 0 ,..., 12 and has the form of a

Hankel matrix. If it is non-singular, the solution vector −a a( ,..., )d
T

0 12 is unique and can,
together with =a 1d2 , directly be replaced in (29), which in turn will yield the d2 poles in a
unique way. Hence, when reconstructing a function with d2 poles and residues, we need
precisely d2 2 sampling points to exactly solve the Hankel and the Vandermonde system,
provided that both matrices are not singular. This means that for small bond dimensions and
without noise the necessary resolution of the signal for a complete reconstruction is very low.

There are many established criteria for the invertibility [25, section 18] and inversion
algorithms [4, 45] of Hankel or Toeplitz matrices (equation (35) can also be rearranged as a
Toeplitz system). They are known to be potentially ill-conditioned, which reflects the inverse
nature of the problem, e.g., the spectral condition number of a real positive-definite N × N
Hankel matrix is bounded from below by −3 · 2N 6 [46]. In practice, recovering the poles is more
stable when oversampling the signal and using a higher pole estimate, i.e., working with a larger
(not necessarily square) Hankel matrix and a larger solution vector in equation (35), and solving
the equation system in a least squares sense. This boils down to applying the Moore–Penrose
pseudoinverse to the right-hand side of equation (35) to obtain the coefficients of the
polynomial, inserting the computed poles into equation (26) and discarding the + −N p1
surplus poles with the smallest associated residues.
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Note that instead of solving equation (35), we can also determine the kernel of
+ = −C( )j k j k d, 0 ,..., 12 , whose dimension is larger or equal to one due to equation (32). Only in the

latter case, which corresponds to the matrix in equation (35) being non-singular, we get a
unique (up to multiplication by a constant) solution vector a a( ,..., )d

T
0 2 . The constant does not

pose a problem because any multiple of a a( ,..., )d
T

0 2 yields the same roots of the associated

polynomial: α∑ == a z 0l
d

l
l

0

2

is equivalent to ∑ == a z 0l
d

l
l

0

2

. This method has proven to be
more robust towards noise in some cases [33] and can be generalized in an elegant way to
higher order correlation functions [39].

Unfortunately, in many cases, Pronyʼs method is highly susceptible to noise in the signal.
However, it presents a beautiful framework that shows that, in principle, it is possible to
reconstruct the poles and residues of a signal. Without noise, both poles and residues can be
determined exactly. In the next section, we describe a better algorithm for solving this type of
inverse problems, which is more stable for larger bond dimension and finer sample rates.

3.2.2. MPM. The original MPM was developed by Hua and Sarkar [21, 22] and can be directly
applied to our problem. As with the Prony algorithm, the poles are determined first and
independently from the residues. Although the MPM is related to Prony [40], it is considerably
less sensitive to noise [19, section 1.2] and can deal with higher sampling rates in a more stable
fashion. Once the poles are identified, the residues are found via a linear equation system in the
same way as in Pronyʼs method. Here, we will just describe how to determine the poles. For
simplicity, we will begin with the case of reconstructing a 2-point function and generalize to
higher order correlation functions in the following section.

A matrix pencilM of degree ∈n is a polynomial over  with matrix valued coefficients
∈ ×Mj

d d, γ γ= ∑ =M M( ) j
n

j
j

0 . As with the Prony algorithm, we start by forming the Hankel
matrix

=
⋮ ⋮ ⋮

∈

−

− − − −

− ×

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C

C C C

C C C

C C C

:

...

...

...

, (36)

P

P

N P N P N

N P P[1]

0 1 1

1 2

1 2

( )

from the experimental data points −{ }C C,..., N0 2

∑ ∑ρ ρ μ= =λ Δτ

= =

C e , (37)j

k

d

k
j

k

d

k k
j

1

·

1

k

2 2

with integers N P, , such that − >N P P d, 2. Generally, the larger the number of samples N,
the better the estimation of poles becomes. The optimal value for P regarding noise sensitivity
typically lies between N 3 and N 2 [23]. In this method, we make use of the fact that C[1] can
always be decomposed as

=  C (38)[1]
1 2
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with Vandermonde matrices


μ μ μ

μ μ μ

= ⋮ ⋮ ⋮ ∈
− − − − − −

− ×
⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1 1 ... 1

...

(39)
d

N P N P
d
N P

N P d
1

1 2

1
1

2
1 1

( )
2

2

2

and



μ μ

μ μ

μ μ

=
⋮ ⋮ ⋮

∈

−

−

−

×

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 ...

1

1 ...

, (40)

P

P

d d
P

d P
2

1 1
1

2 2
1

1
2 2

2

and the diagonal matrix ρ ρ= ( )diag ,..., d1 2 , as can easily be verified by using equation (38).

In addition to the Hankel matrix C[1], we construct a second Hankel matrix

=
⋮ ⋮ ⋮

∈+

− − + −

− ×

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C

C C C

C C C

C C C

...

...

...

, (41)

P

P

N P N P N

N P P[2]

1 2

2 3 1

1 1

( )

which in turn can be decomposed as

=   C (42)[2]
1 0 2

with μ μ= ( )diag ,..., d0 1 2 , and consider the linear matrix pencil

γ γ− = −   ( )C C (43)d
[2] [1]

1 0 22

with γ ∈ . Since all μ j of 1 and 2 are distinct for a non-degenerate spectrum of T and

− >N L L d, 2, the matrices 1 and 2 have rank d2 and we can see that

= = = =   ( ) ( ) ( )C C drank rank rank rank( ) . (44)[1] [2]
1 0 2

2

Generically, the matrix pencil γ−C C[2] [1] will have the same rank, except for
γ γ μ μ= ∈ { },...,j d1 2 . In that case, the jth row of γ−( )d0 2 is zero, hence

γ− = −( )C C drank 1, (45)[2] [1] 2

and there exists a non-trivial vector v with

γ− =( )C C v 0. (46)[2] [1]

In this form, the complex number γ can be regarded as a solution of the generalized eigenvalue
problem (GEVP) (46). This means that the d2 non-zero generalized eigenvalues of equation (46)
are exactly the exponentiated poles λ Δ λ Δe ,..., et td1 2 . Equation (46) can be solved by a generalized
Schur decomposition of the matrix pair C C{ , }[2] [1] or by solving the ordinary eigenvalue
problem
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γ=
+( )C C v v (47)[1] [2]

with the pseudoinverse
+( )C[1] of C[1] [22]. After having determined the poles this way, they

can be inserted into a linear equation system to obtain the according residues, as with Pronyʼs
method.

3.2.3. Technical improvements. Several improvements can be made to the original MPM
approach including features from other reconstruction methods, which led to algorithms like
Pro-ESPRIT and TLS ESPRIT [23], which we mention for the sake of completeness.
Modifications based on structured low rank approximations [2, 32] did not lead to significantly
better results. Here, we will focus on the so-called state space MPM, which shows the highest
robustness towards noise of all direct MPM descendants [19, 23] and is the one we prefer to
implement.

In this context, we continue with equation (46), but instead of solving it directly, we
perform additional noise filtering steps via SVD rank truncations [20]. Performing separate
SVD truncations like in the original approach has proven to be less robust than performing a
joint SVD on C[1] and ∈ − ×C N P P[2] ( ) by

Σ Σ= =( ) ( )C C U V U V V, : , (48)[1] [2] † [1] † [2] †

with a unitary matrix ∈ −UU N P( ), Σ ∈ − ×N P P( ) 2 containing the singular values of the
concatenated matrices ∈ − ×C C( , ) N P P[1] [2] ( ) 2 , and ∈ UV V P( , ) (2 )[1] † [2] † . Note that V [1] and

∈ ×V P P[2] 2 are not unitary, in contrast to the matrix V V( , )[1] † [2] † , and are not directly related
to the unitary matrices from the separate SVDs. We insert equation (48) into equation (46),
yielding

γ Σ γ− = −( ) ( )C C v U V V v, (49)[2] [1] [2] † [1] †

and see that if γ is a generalized eigenvalue of the matrix pair V V{ , }[2] † [1] † , then so it is of
C C{ , }[2] [1] . Hence, we can just work with V V{ , }[2] † [1] † (or V V{ , }[2] [1] since the set of poles of
our n-point functions is to be closed under complex conjugation), and can completely forget
about the singular values in Σ. We now filter the signal given in equation (48) by keeping the d2

largest singular values and the corresponding singular vectors of V [1] † and V [2] †:

Σ ⟼( ) ( )U V V V V, , . (50)T T
[1] † [2] † [1]† [2]†

trunc

The GEVP we want to solve now is

γ− ′ =( )V V v 0, (51)T T
[2] [1]

with the filtered eigenvalues γ′ ∈ . Since ∈ ×V V,T T
P d[1] [2] 2

and ≫P d2, there is still surplus
information we can use to SVD filter equation (51) one more time. For higher robustness, we
repeat the truncation process, applying it to the concatenated matrix ∈ ×V V( , )T T

P d[1] [2] 2 2
,

Σ Σ= ′ ′ ⟼ ′ ′′ ′ ′ ′( ) ( ) ( )V V U V V U V V, , , (52)T T T T T T
[1] [2] [1] † [2] † [1] † [2] †

trunc

with ′ ∈ UU P( ), Σ′ ∈ ×P d2 2
, ′ ∈ UV d(2 )2 , ′ ∈ ×V T

d d22 2
and ∈′ ′ ×V V,T T

d d[1] [2] 2 2
.

Equation (51) then becomes
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γ Σ γ Σ γ− ′ = ′ − ′ ↦ ′ ′ − ″′ ′ ′ ′ ′( ) ( )V V U V V U V V (53)T T T T T T
[2] [1] [2] † [1] † [2] † [1] †

with the doubly SVD filtered eigenvalues γ″ ∈ . If there is no noise, then all the d2 generalized
eigenvalues of the matrix pencil ′ ′V V{ , }T T

[2] [1] are generalized eigenvalues of ′ ′V V{ , }[2] [1] , thus
generalized eigenvalues of C C{ , }[2] [1] and nothing else than the exponentiated poles

λ Δτ λ Δτe ,..., e d1 2 . With noise, we can assume that the filtered set of eigenvalues γ″{ } provide a
better estimate than the unfiltered γ{ } [20, 23]. Since ′VT

[1] † is invertible by construction,
everything boils down to solving an ordinary eigenvalue problem:

γ= ″′ − ′( )V V v v. (54)T T
[1] 1 [2]

This concludes the description of the state space MPM, which is our preferred technique for
pole reconstruction.

3.2.4. Generalization to higher dimensions. So far, we have developed the reconstruction
techniques for 2-point correlation functions. In this section, we show how to deal with higher
order functions and generalize the previous discussion. Additionally, we show how one can
improve the signal-to-noise ratio by exploiting redundant information in the higher order
correlation functions.

If, for an n-point function, we uniformly sample each tensor index with N sampling points,
we obtain a −n( 1)-dimensional array ∈

= −−
−

−( )Cl l
l l N

N
,...,

,..., 0 ,..., 1n
n

n

1 1
1 1

1
with

∑ ρ= λ Δτ λ Δτ

=
−

−

−
− −C e ... e . (55)l l

k k

d

k k
n l l

,...,

,..., 1
,...,

( )
n

n

n

k k n n
1 1

1 1

2

1 1
1 1 1 1

To extract the poles, we carry forward the approach of Zhu and Hua [49, chapter 17.11]. We fix
one index lj of −Cl l,..., n1 1 and sum over the other indices

∑=
=

≠

−

−C Cˆ : . (56)l
j

l
i j

N

l l
( )

{ } 0,

1

,...,j

i

n1 1

The summing provides averaging and hence increases noise stability. This procedure is only
possible because the poles and the sampling interval are the same for each index of the n-point
function data array. Inserting the definition for −Cl l,..., n1 1 and separating λ Δτe lk j j from the
summation of kj yields

∑= λ Δτ

=

C Cˆ ˇ e (57)l
j

k

d

k
j l( )

1

( )
j

j

j
k j j

2

with

∑ ρ= ⋯ ⋯λ Δτ λ Δτ λ Δτ λ Δτ

=
= −

≠

−
− − + + − −Č e e e e . (58)k

j

k d

l N
i j

k k
l l l l( )

{ } 1 ,..., ,

{ } 0 ,..., 1

,...,j

i

i

n
k k j j k j j k n n

2
1 1

1 1 1 1 1 1 1 1

Equation (57) can be be regarded as the components of a 2-point function with the sought-after

poles and C{ ˇ }k
j( )
j
, which only depend on kj, as its residues. The concrete values of these effective
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residues do not matter, since in this step we are only interested in the poles. We can average

further by summing the vectors = −C( ˆ )l
j

l N
( )

0 ,..., 1j j , each corresponding to the tensor direction j,
which leads to the N-component vector

= + + ⋯ + −( ) ( ) ( )( )C C C Cˆ : ˆ ˆ ˆ . (59)l
l l

l
l

l
l

n

l

(1) (2) ( 1)

The counting indices l{ }j do not depend on j, hence we omitted the j for clearness.

The vector C( ˆ )l still corresponds to a 2-point function with the correct poles and we can
now apply the established matrix pencil, Prony or a least squares method to obtain the poles.
Additionally, the averaging results in an effective reduction of the standard deviation of the
(white) noise by a factor of − − −n N(( 1) )n 1 1. Regarding the residues, we can reshape the array
of the poles into a matrix and obtain the residues as the solution vector of the corresponding
linear equation system in the least squares sense.

3.3. Extracting M

After having determined the poles and residues of the input correlation function—our first
reconstruction step as discussed in section 3.1—the next step is to identify the matrix M. From
M together with D, the variational parameter matrices R and Q can be determined.

First, we note that conjugating M with a diagonal matrix whose first entry is equal to one
does not change the density-like correlation functions. This observation can be used to require
that =M 1j1, for =j d2 ,..., 2, which is possible if the M j1, are non-zero. For M1,1 to be equal to
one, we need to normalize the n-point function by dividing by

Ψ Ψ Ψ Ψ = Mˆ ˆ . (60)Q R Q R

n
n

,
†

, 1, 1

In particular, we obtain ρ ρ= ⋯⋯ =M1 1 ·k
n

k k, 1 ,..., 1
( )

,1
(2)

1 1 1
. For clearness, in this section we mark

the dimensions of the residues with an additional index. We can compute Mi j, for any

=i j d, 1 ,..., 2 and ⩾n 3 via

ρ

ρ

ρ

ρ
= = =

M M

M
M . (61)

j i
n

j
n

j i

j

i j j

j
i j

, , 1 ,..., 1
( )

, 1 ,..., 1
( )

,
(3)

(2)

, ,1

,1
,

From this equation we can see that we need n to be larger than three, since a 2-point function
can at best provide the first column of M.

In practice, we may want to reduce noise by averaging over multiple independent
prescriptions for Mi j, , namely

∑
ρ

ρ
=

−
=−

−

−

M
d

1
. (62)i j n

k k

d
k k j i

n

k k j
n, 2( 3)

,..., 1

,..., , ,
( )

,..., , , 1
( )

n

n

n1 3

2

1 3

1 3

By rearranging the residues, we can express higher order expectation values in terms of
lower order:
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∏

ρ

ρ
ρ

ρ

=

=

⋯

=
=

−

− − − − − −

− − −

− −

− −
− −

+

M M M M

M M
M M

M M
M

M M

M M
M M

...

. (63)

k k
n

k k k k k k

k k k
k k

k k
k k

k k

k k
k k k

k k
r

n
k k

k

,...,
( )

1, , , ,1

1, ,
,1 1,

1, ,1
,

,1 1,

1, ,1
, ,1

,
(3)

2

2
,

(3)

(2)

n n n n n n

n n n

n n

n n

n n

r r

r

1 1 1 1 2 2 3 1

1 1 2

2 2

2 2

2 3

2 2

2 2

2 1 1

1 2

1

This is the Wickʼs theorem for MPSs [24]. At this point, we can check the validity of the
reconstructed M, since it necessarily must obey the symmetry Ξ Ξ =κ κM Md d, , for accordingly
ordered spectrum of T.

3.4. Extracting R

To obtain a complete cMPS description of the system at hand, it is necessary to reconstruct the
variational parameter matrices R and Q. We have that, by definition,

= ⊗− ( )M X R R X (64)1

and λ= = −D X TXdiag( )j
1 with the change-of-basis matrix X indeterminate. Because of the

gauge invariance of Q and R, we can determine them only up to conjugation with an invertible
matrix and therefore will not need to determine the concrete form of X at all. In this sense, there
are no specific R and Q matrices to be reconstructed. Nevertheless, we continue using the terms
R and Q, thinking, without loss of generality, of matrices that are in a specific, yet arbitrary,
gauge.

Our strategy to recover the variational parameter matrices is to choose R diagonal, which
can be done in almost all cases, and determine Q accordingly. Equivalently, one could likewise
require Q to be diagonal and determine R accordingly, but here we use the former approach. We
first diagonalize ↦ =−M Y MY M1

diag with the change-of-basis matrix Y. SinceM, as well as its
similar matrix ⊗R R, has the spectrum rr{ }i j with =i j d, 1 ,..., , where r r,..., d1 are the
eigenvalues of R, the entries ofMdiag can be reordered with a permutation matrix O such that the
resulting matrix has the form of a Kronecker product of two diagonal matrices Rrec

= ⊗−O M O R R . (65)1
diag rec rec

Since Rrec by construction is similar to R, we can write it as = −R W RWrec
1 , where W is the

change-of-basis matrix that diagonalizes R. Diagonalizing and reordering M thus yields R in a
certain gauge, namely −W RW1 , and we can identify Rrec with a reconstruction of the matrix R.

Note that XYO has a Kronecker product structure as well, which will be important for
reconstructing Q. Rewriting equation (65), we have

⊗ =− − −( )XYO R R XYO O Y MYO( ) (66)1 1 1

which is equal to ⊗R Rrec rec, and, by definition of Rrec and using a Kronecker product identity,
hence equal to
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⊗ ⊗ ⊗−( ) ( )( )W W R R W W . (67)1

There is a little subtlety in that, in general, numerical diagonalization algorithms will not
provide Y such that XYO is a Kronecker product, but usually such that each eigenvector, a
column of Y, is normalized, yielding a matrix YN. This matrix can also be written as YN = YDY

with a diagonal matrix DY, where XYDYO in general will not correspond to a Kronecker
product. This does not affect Rrec, since diagonal matrices are invariant under conjugation with
other diagonal matrices.

To determine O and extract Rrec from ⊗R Rrec rec, it is important to take into account that
multiplying R with an arbitrary complex phase factor φei does not change ⊗R R. In the same
way,  ⊗ + ⊗Q Qd d is left invariant when adding χi · d with χ ∈ to Q. Hence, the
transfer matrix remains unchanged as well. Clearly, out of density-like correlation functions, R
and Q can only be reconstructed up to these factors since Q and R only appear in these
Kronecker product terms.

By fixing φei , one diagonal entry rj of Rrec can be assumed to be real and Mdiag can be
rearranged to a Kronecker product by successively checking if for an entry M l ldiag, , the fraction

M rl l jdiag, ,
2
yields another (real) entry of Mdiag (or, in practice with noise, is sufficiently close

to it), which must be the case for a Kronecker product matrix with spectrum rr{ }i j . After
repeating this procedure for all entries of Mdiag, all eigenvalues r{ }j are determined, in a fixed
order that determines the order of Rrec and O as well. Now, it remains to determine Q, which
will be done in the next section.

3.5. Extracting Q

The second parameter matrix to be reconstructed, Q, will in general not be diagonal in the same
gauge where R is diagonal. The goal is to find Q in the appropriate gauge. First, we take the
matrix D, which contains the eigenvalues of T, subtract the reconstructed matrix M, and see that
in principle all the information about Q is stored here:

 

− = − ⊗
= ⊗ + ⊗

− −

− ( )
D M X TX X R R X

X Q Q X

· ·

. (68)d d

1 1

1

By conjugating this with the matrix YO, which is the same change-of-basis matrix that directly
led from M to ⊗R Rrec rec, we obtain

 

 

 

⊗ + ⊗

= ⊗ ⊗ + ⊗ ⊗

= ⊗ + ⊗

−

−

− −( )

( )
( )( )

XYO Q Q XYO

W W Q Q W W

W QW W QW

( )

. (69)

d d

d d

d d

1

1

1 1

We obtain in this way = −Q W QW:rec
1 in the gauge corresponding to the gauge of

= −R W RWrec
1 and thus it represents a valid set of parameters that define the state. To extract

Qrec out of equation (69), we can, as in the case of Rrec, assume one diagonal entry qj j, of Qrec to
be real, which corresponds to subtracting Im qi ( ) ·j j d, from Q. In this way, we can read each
qj j, from the corresponding diagonal entry + =q q q2j j j j j j, , , in equation (69) and subsequently
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the remaining diagonal entries. Because of the structure of equation (69) as a Kronecker sum,
the off-diagonal entries can be read off without further preparation.

The fact that Y is only determined up to multiplication with a diagonal matrix DY, as
mentioned in the previous section, does not pose an obstacle for the reconstruction of Qrec: its
gauge needs to be fixed only up to conjugation with a diagonal matrix if Rrec is in a diagonal
gauge. Furthermore, it does not matter that also the matrix M is only determined up to
conjugation with a diagonal matrix DM, which we used to require that =M 1j1, for ⩾j 2. Using

−D MDM M
1 instead of M in equation (68) and −X TX1 being diagonal, we have

− ⊗ = − ⊗− − −( ) ( )( ) ( )X TX XD R R XD XD T R R XD , (70)M M M M
1 1 1

which is equal to  ⊗ + ⊗− ( )X Q Q X˜ ˜d d
1 with =X XD˜ M . The particular structure of X or X̃

is not needed in the algorithm.
On the other hand, if we normalize the n-point function and henceM by multiplying it by a

constant, we have to be careful since −D cM , for some ∈c , will in general not result in a
matrix similar to  ⊗ + ⊗Q Qd d . Accordingly, we have to renormalize ↦M M Mˆ ·1,1 . The

number M̂1,1 can be read off the residue ρ = Mˆ ( ˆ )n n
1 ,..., 1
( )

1,1 of the n-point function before
normalizing it.

Note that computing eigenvectors, which the matrix X consists of, can be a very unstable
(in extreme cases even discontinuous) procedure, especially for higher bond dimensions, when
eigenvalues can cluster [11, cor. 7.2.6]. Hence the procedure of determining Q is highly
susceptible to noise. To improve noise stability, we can average Y by using the symmetry
property Ξ Λ =κ Y Yd d, , which follows from the symmetries of M and ⊗R Rrec rec, and use

Ξ Λ+ κY Y( ) 2d d, instead.
This concludes the reconstruction of the variational parameter matrices Q and R, which is

the last step in our reconstruction procedure, section 3.1. Additionally, it is now possible to
construct the Hamiltonian of the auxiliary system K as in equation (7) et sqq. and relate the
cMPS to a Lindblad master equation. The fact that we can reconstruct Q only up to an additive
term χi · results in K being indeterminate up to an additive term χ · . This is reasonable since
only the differences in the spectrum of the Hamiltonian are physically relevant and these are not
affected by a global shift by χ.

4. Applicability and limitations

The proposed tomography method relies on assumptions. It is hence important to know its
limitations and how to check the applicability of the method to given data. The basic
assumption is that the correlations in the data are—at least approximately—of the type found in
cMPS spatially, or equivalently of the type found in finite dimensional quantum systems whose
dynamics are given by a Lindblad equation temporally. It is hence natural to assume that our
method is applicable to settings similar to the ground states of gapped local Hamiltonians and
for fields which originate from an interaction with finite level systems—think, e.g., of a light
beam emitted by an atom trap. In this section, we aim to give a description of ways to gain
confidence and check the consistency of the estimates obtained by our reconstruction methods
for quantum fields.

Since it is our goal to produce usable estimation tools for experimental applications, it is
very important to have a clear understanding of how to determine whether or not a particular
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reconstruction was successful or even if the cMPS ansatz is applicable to a particular situation.
In this context, we can recognize two different scenarios that can occur: (1) the idealized case,
where the data actually comes from a cMPS, and (2) a realistic case, in which the data comes
from a physical system (not a cMPS, but possibly well approximated by one) and is in general
noisy. In the following, we will discuss both in more detail.

In the ideal case, data will be produced by a generic cMPS of unknown bond dimension d.
From the 2-point correlation function, following the reconstruction methods discussed in
section 3.2.2, we can extract an estimation of d by computing the rank of the (sufficiently sized)
ansatz Hankel matrix in equation (36). Even if noise is present in the signal, an estimation of the
bond dimension can be obtained, because noise-induced singular values are small. Since some
of the elements of matrix M can be zero, some of the residues ρ corresponding to poles λ can
also be zero, thereby hiding those poles. Correlators with different n, on the other hand, can
reveal these poles at some point, but not necessarily so. Having found all the poles there are,
also implying access to the whole matrix M, is indicated by an agreement of the poles of all
available n-point functions. One should keep in mind, though, that one will never be able to
verify this, even in the idealized case, with a finite amount of data, as it possible to construct a
state which agrees with a given cMPS on e.g., a finite number of n-point functions but differs
elsewhere. However, a non-increase of the set of poles over a wide range of n-point functions is
sufficient to build confidence in the correctness of the reconstruction. It is a satisfactory feature
of our method that we can quantify the confidence of the reconstruction in this way.

In contrast, a priori information about the number of expected poles and a guarantee that
the number and numerical values of residues and poles will be consistent for all n-point
functions is not available in most real-world tomographic settings. In fact, when data comes
from an experiment, we expect a description in terms of cMPS to be possible only in an
approximate sense. A similar situation is known for discrete MPS in a lattice setting, where an
exact description of a state can be found only if its Schmidt rank is finite. However, many states
whose Schmidt numbers form a fast decaying sequence allow for an efficient description with
discrete MPS. Even if the physical system is well approximated by a cMPS in this sense, in
general we expect to have an infinite number of poles to recover. However, only a small number
of them will be associated to residues that are big enough to contribute to the correlation
functions. The number of relevant residues and poles can be identified by looking for singular
values of Hankel matrix equation (36) greater than an appropriate threshold. The tomographer,
hence, has to formulate a hypothesis about the relevance of the observed poles and try to gain
confidence in his/her assumption. The desired situation to observe in practice is that the
recovered poles do not change too much (i.e., they are within some threshold, e.g., previously
determined by the noise level) independently of the correlation function used to extract them.

In summary, if the set of poles has to be extended time and again over a wide range of
correlation functions, the assumption that the state can be described by a cMPS is clearly
wrong. In particular, such a situation would tell us that the cMPS ansatz is not a good model for
the particular system and data set. Along the lines of the discussion above, in practice, what we
propose to check and gain confidence of the applicability of our methods is the following. Use
lower order correlation functions to extract a cMPS description of the system, use the
reconstructed cMPS to predict higher order functions and compare them to available measured
ones. This way, we can check the consistency of the reconstruction procedure and the validity
of the cMPS ansatz for the field state under investigation.

20

New J. Phys. 16 (2014) 123010 A Steffens et al

57



5. Applications

In this section, we show how the formalism developed so far can be applied to real world
scenarios. We demonstrate the applicability in two basic settings. First, we generate correlation
functions similar to data obtainable in current experimental settings. For this, we use simulated
data to study the performance of the reconstruction method in situations in which noise is
present. Second, we analyse the applicability of our techniques to the Lieb–Liniger model,
which is a well-known and well-investigated model in one-dimensional non-relativistic field
theory.

5.1. Simulations and error analysis

Before typical noise models can be taken into consideration, we ask what kind of problems we
are most likely to encounter. As we have seen, given an arbitrary cMPS n-point function with
non-degenerate spectrum, its poles and residues can be obtained by matrix pencil or Pronyʼs
methods, provided there is sufficient accuracy. We keep in mind that formally it is required that
T has a non-degenerate spectrum, which is, however, the case for almost all randomized T.
Also, it is possible that M contains elements of value zero, which is, likewise, not to be
expected. On the other hand, there are other more practical obstacles related to concrete
implementation features of the numerical algorithms discussed above.

5.1.1. Typical problems to be expected. The identification of the poles when determining the
matrices M and D is the most critical part of our procedure. More concretely, we face the
problem of resolving maxima of the Laplace transform of the correlations in the complex plane.
We do not do this directly, but the challenges remain the same.

The problem is to discern poles that lie close to each other and to identify poles that have
comparatively small residues. Moreover, we might face large damping factors, which results in
a broadening of the peaks in the Fourier spectrum. The required accuracy for the correct
identification of poles and residues hence critically depends on the position of the poles λ{ }j in
the complex plane and the ratio between damping factor λRe ( )j and frequency λIm ( )j . Not
surprisingly, all these issues are aggravated for higher bond dimensions; the n-point functions
consist of a larger number of oscillatory components, typically in the vicinity of other poles.
Moreover, the reconstruction of the residues will also be affected if the poles are close to each
other. This happens because the corresponding linear Vandermonde system of equations
becomes more ill-conditioned.

When reconstructing Q from the matrix M, we face another type of typical problem.
Determining R does not lead to significant additional numerical problems since it mainly
involves an ordinary diagonalization procedure, whereas for reconstructing Q, we need the
eigenvectors of M, which are very susceptible to perturbations of the matrix.

In the following, we want to test the robustness of our method by analysing typical noise
cases independently. First, as a preparatory step, we generate typical cMPS. Second, we
examine how the reconstruction of the poles is affected by adding noise to the input correlation
functions. Third, we survey the reconstructability of R and Q when the input for this
reconstruction step, the matrixM, is perturbed. Fourth, we study the influence of the presence of
additional fields.
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5.1.2. Generating typical cMPS. In this section, we give a recipe to generate correlation
functions with structural features on a desired length scale, based on a randomization-ansatz for
the Q and R matrices. This is in principle a non-trivial task, as the length scales and damping of
the fluctuations are directly derived from the spectrum of T, which depends nonlinearly on the
entries of Q and R.

We make the ansatz of generating Q and R as complex Gaussian random matrices with
mean μ and standard deviation σ—i.e., real and imaginary part of the entries are independently
and identically normally distributed according to μ σ ( , )—and renormalize Q such that all
eigenvalues of T have real part ⩽0. This results in a roughly uniform distribution of the
eigenvalues of T within a disc left of the imaginary axis, which is not entirely unexpected when
considering Girkoʼs circular law [7] and the Kronecker product structure of T. The damping
factors of the poles are of the same magnitude as their frequencies or larger, which is not the
case if oscillations are actually to be observed and moreover aggravates the identification of
such poles and increases the accuracy requirements.

In a more refined ansatz, we hence consider sampling K and R instead, from the same
distribution, which leads to a drastically higher concentration of poles close to the imaginary
axis, when scaling both matrices with a small number η, see figure 2, where we show a
comparison of distributions of the poles in the complex plane between the naïve and the refined
method of randomly sampled cMPS. This scaling of the matrices does not constitute a gauge of
the cMPS but rather a transformation to another cMPS, see [47]. Matrix Q is mapped to

η η−R R Ki1

2
2 † , see equation (7), such that for small η the eigenvalues of Q will typically feature

much larger imaginary part than real part, since the spectrum of K is real and the R R† term adds
to Q in second order in η. This carries over to the construction of T, where ⊗R R also appears
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Figure 2. Distribution of the poles of the transfer matrices in the complex plane for 400
cMPS samples with bond dimension d = 4. The real and imaginary part of the entries of
K and R are i.i.d. with  (0, 1) (a) and  (0, 0.01) (b). In (b), most damping factors
corresponding to the real parts of the poles are much smaller than the respective
imaginary parts, which correspond to the frequencies components of the correlation
functions. This will lead to significantly better reconstructability properties of
the cMPS.
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in second order in η as opposed to  ⊗ + ⊗Q Q, which are first order. Overall, for small η
most damping factors become smaller than the frequencies by several orders of magnitude, a
property expected to hold if oscillations are observed. Moreover, a distinct peak structure in the
Fourier transform emerges, and the poles and residues of T are sufficiently separated and can be
determined even with moderate amounts of noise present.

5.1.3. Effects of noisy correlation functions. Typical experimentally measured signals have
inaccurate read-out of the signal. We model such noisy situations as Gaussian noise, and study
the effect on the reconstruction procedure by adding noise to correlation functions originating
from a cMPS.

In particular, we apply the MPM to the noisy amputated 2-point function

τ τ Ψ τ Ψ Ψ Ψ τ Ψ Ψ τ+ = − +C w wˆ ( ) ( ) ˆ ( ) ˆ (0) ˆ (0) ˆ ( ) ˆ (0) ˆ (0) ( ), (71)k k k k k
(2) † † † 2

evaluated at 200 points τk, for cMPS with elements of R K, sampled from  (0, 0.01). The

white noise function w is sampled from  C(0, mean(| ˆ |)/SNR)
(2)

, where SNR is the signal-to-
noise ratio.

In figure 3, p is the percentage of pole sets with λ λ λ− <=mean |( ˜ )/ | 0.1j d j j j2 ,..., 2 as a

function of the SNR, where λ{ }j are the original poles, and λ{ ˜ }j the pole estimates. Each point
is computed for 5000 runs of our numerical experiment to gather enough statistics. What we
observe is that for bond dimension d = 2, our reconstruction procedure is robust to reasonable
amounts of noise. However, for bond dimension d = 3, we see that the robustness is much
smaller, which hints to the practical limitations of our reconstruction procedure. The results can,
for example, be improved by increasing the sampling rates, however this can be difficult to
achieve in experiments.

Note that in both cases shown in figure 3 our procedure behaves as expected from a proper
estimator as a function of the SNR: the lesser the noise, the better the reconstruction. In fact, for
zero noise, we can in general expect 100% reconstructability, independent of the bond
dimension. As already mentioned, for higher order correlation functions, >n 2, the
reconstructability of the poles does not necessarily deteriorate—independent of the bond
dimension d. In fact, since one can average over all projections that fix all but one τ, a
significant part of the noise is effectively averaged out.

5.1.4. Reconstructability of Q and R when perturbing M. In this section, we look at the next
step in the reconstruction process: recovering the cMPS parametrization matrices Q and R from
an imperfectly recovered matrix M. We do so by simulating M and perturbing it directly, rather
than using a reconstructed M matrix from noisy correlation functions. We do it this way to have
control over the size of the perturbation and thus to separate these two different stages of the
reconstructed problem and investigate their effect separately.

For this purpose, we prepare matrices R and Q with entries sampled from  (0, 1), then
calculate T and M, and perturb M with an error matrix Δ. The perturbation has to be carefully
designed in order to retain the symmetry Ξ Ξ= κ κM Md d, , of the unperturbed matrix M. This is
related to the fact that for any valid reconstruction of a density-like correlation function the
residues together with the entries of the matrix M necessarily are either real or appear in pairs of
complex conjugates, see section 2.3. Perturbing with the matrix
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Δ Δ Ξ Δ Ξ= + κ κ( ):
1
2

(72)d d0 , 0 ,

with real and imaginary parts of the entries of Δ0 sampled from − M(0, 2 mean(| |))1 2 ensures
the required symmetry since Δ Ξ Δ Ξ= κ κd d, , . Furthermore, since the first row of M is set to one
due to normalization and this should not be changed for perturbed input, the first row of Δ is set
to zero.

From the reconstructed matrices Q̃ and R̃ from ϵΔ= +M M˜ with scaling parameter
ϵ ∈ + we build the transfer matrix T̃ and compare its spectrum with the spectrum of the

original T. The ratio of samples with mean deviation σ T( ˜ ) to σ T( ) not larger than 10% as a
function of ϵ is depicted in figure 4 for bond dimensions d = 2 (blue) and d = 3 (green). As the
error ϵ grows, the ratio of successfully reconstructed Q and R matrices drops for both bond
dimensions. However, the d = 2 case is clearly more robust to perturbations. Additionally, we
want to point out that any potential deviation of the spectra of T and T̃ is almost certainly due to
the reconstruction of Q.

5.1.5. Effects of additional interactions. As discussed earlier in section 2.1.2, typical
correlations under consideration can be seen as originating from processes where a field state is
generated by an interaction with a finite dimensional system, and can be described by a

Figure 3. Application of the matrix pencil method to the signal vector with

components τ τ+C wˆ ( ) ( ))k k
(2)

for d = 2 (above) and d = 3 (below). p is the
percentage of pole sets with λ λ λ− <=max |( ˜ ) | 0.1j d j j j2 ,..., 2 (blue) and

λ λ λ− ∑ − <−
=d( 1) |( ˜ ) | 0.1j

d
j j j

2 1
2

2

(green) as a function of the signal-to-noise

ratio, each point summarizing 5000 runs, where λ{ }j are the original poles, and λ{ ˜ }j

the pole estimates.

24

New J. Phys. 16 (2014) 123010 A Steffens et al

61



Lindblad equation. In the ideal case, where the finite dimensional system interacts only with the
field we measure, we obtain correlations which are perfectly described by a cMPS, or
equivalently by a Lindblad equation with one Lindblad operator. In the case where the finite
dimensional system interacts with other systems or fields, which we might not even know of,
the Lindblad equation is altered and supplemented by more Lindblad operators, which
correspond to the other systems or fields. In this case, the transfer matrix takes the form [35]

  ∑= ⊗ − ⊗ + T K Ki i , (73)
j

j

where

 = ⊗ − ⊗ − ⊗ ( )R R R R R R
1
2

2 (74)j j j j j j j
† †

and the additional fields are represented by the terms with ⩾j 2. Each of the two latter
summands in  j are connected to Q via equation (7). The matrixM remains ⊗R R1 1, because it
comes from measuring the field corresponding to it, but now in the diagonal basis of a different
T than the one for a single field.

In order to analyse the sensitivity of reconstructing the variational parameter matrices, we
consider one additional perturbation field. More additional fields within the same order of
magnitude yield very similar outcomes. This results in   ϵ= ⊗ − ⊗ + + T K Ki i 1 2. In
this section, we study how well the spectrum of K can be matched depending on the scaling
parameter ϵ ∈ +. Analogous to the last section, we prepare cMPS by randomly generating K,
R1, and R2 with elements whose real and imaginary parts are sampled from  (0, 1). We then
generate M matrices and from this reconstruct R1,rec and an effective Qrec, assuming only a
single field. From R1,rec and Qrec we compute Krec and compare the differences of its
eigenvalues, Δκ κ κ= −+˜ ˜ ˜j j j1 , with the differences of the eigenvalues κ j of the actual K. Only
the differences are reconstructable, see section 3.5. The reconstruction of K is said to be
successful if

Figure 4. Reconstructability of Q depending on the perturbation of M: ratio p out of

5000 samples per point with λ λ λ− ∑ − <−
=d( 1) |( ˜ ) | 0.1j

d
j j j

2 1
2

2

as a function of ϵ

with λ σ= T{ ˜ } ( ˜ )j for d = 2 (blue) and d = 3 (green). Q̃ and R̃ depend on ϵΔ= +M M˜ .
As ϵ → 0 we have that →p 1.
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Δκ Δκ
Δκ
−

<
= −

max
˜

10%. (75)
j d

j j

j1 ,..., 1

The reconstruction rate, depending on ϵ and the bond dimension, is shown in figure 5. For
ϵ → 0 (single field case) all cMPS can be reconstructed. As the size of the additional field
approaches the size of the main field, the reconstruction rate drops to zero. The smaller the bond
dimension, the more perturbation by additional fields can be tolerated. We conclude that for
sufficiently small additional fields, a successful reconstruction is in principle still feasible.
Moreover, for d = 2, the most robust case, this is true even if the additional fields are merely one
order of magnitude smaller than the main field.

5.2. The Lieb–Liniger model

In this section, we analyse the applicability of the results discussed above to the Lieb–Liniger
model [30]. The model describes the dynamics of a one-dimensional system of bosons
interacting via a delta-potential. In second quantization, the Hamiltonian describing such a
model is given by

∫ Ψ Ψ Ψ Ψ Ψ Ψ= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H x

x

x

x

x
c x x x xd

d ˆ ( )
d

d ˆ ( )
d

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) , (76)
†

† †

where ∈x L[0, ] is the position coordinate and c is the interaction strength.
For our application, we generate (Q,R) parametrizations of cMPS approximations for

several bond dimensions of the Lieb–Liniger ground state for particular values of interaction
strength c by using the algorithm and implementation of Hase [17]. This algorithm is an
adaptation of the time-dependent variational principle for quantum lattices [15] to the
continuous case (compare also [6]). It relates to an imaginary time evolution that exponentially
damps all excited components of an initial state vector Ψ 〉| d( ) (a cMPS with bond dimension d)
with increasing imaginary time and produces the ground state eigenvector of a Hamiltonian H,
by applying −e Hti with ∈t i to Ψ 〉| d( ) . The convergence of the energy of Ψ 〉−e |Ht di ( ) indicates
the approach to the cMPS ansatz ground state vector, which we denote by Θ 〉| Q R

d
,

( ) , together with

Figure 5. Reconstruction rate p depending on the size of an additional field and the
bond dimension d from 5000 cMPS samples per point.
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its characterizing matrices Q and R. Several interesting structural properties of the state in the
cMPS representation are revealed, signifying a symmetry in the model: degeneracies and a
block structure of the matrix M. These features emerge in the integrable Lieb–Liniger case, and
do not appear in Gaussian-sampled cMPS as described above. These features, which will be
discussed more in detail in the following, appear regardless of the bond dimension and
interaction strength used. Moreover, they do not depend on the algorithm used to obtain the
ground state.

5.2.1. Degeneracies in the eigenvalue structure of M. The topic of this section is to
characterize the structure of the spectrum of M by understanding the degeneracy structure R in
the exactly integrable case. In the case at hand, since all two-fold degenerate eigenvalues are
equally spread into one of both blocks each, one is able to predict the spectrum of R from M
even without reconstructing the second block. In our simulations, it is seen that the eigenvalues
of Q and R appear in ⌊ ⌋d 2 pairs q q{ , }j j

[1] [2] and r r{ , }j j
[1] [2] with

χ= + = φq q r ri , e , (77)j j j j
[1] [2] [1] [2] i

respectively, for each pair j, with χ ϕ ∈, independent of j. If d is odd, the two remaining
unpaired eigenvalues take the form χ= +q q̂ i and = φr r̂ei , respectively, with ∈q rˆ, ˆ . We
can simplify the structure by performing the transformations

χ↦ − ↦ φ−Q Q R Ri , e , (78)d
i

which leave the transfer matrix T and all density-like n-point functions invariant. This ensures
that the pairs now consist of complex conjugates and the spectra of Q and R are closed under
complex conjugation, which we want to require for the further argument.

Since the spectrum of M by construction is the same as that of ⊗R R (up to a
normalization constant and each λ σ∈ ⊗( )R R can be written as r r·j k with certain

=j k d, 1 ,..., , the appearance of complex conjugate pairs in the spectrum of R implies twofold
degeneracies for the according eigenvalues in the spectrum of M as products of R eigenvalues,
especially

= =r r r r r r . (79)j k j k k j
[1] [1] [2] [2] [2] [2]

Not all eigenvalues are degenerate: r rj j
[1] [2] and r rj j

[2] [1] are complex conjugates, but since j = k,
there are no other combinations that yield the same values. Assuming that R does not contain
any other degeneracies, M will comprise d non-degenerate eigenvalues and −d d2 eigenvalues
that are twofold degenerate each.

5.2.2. Block structure. Another structural observation we can make for the matrix M of the
ground state of the Lieb–Liniger Hamiltonian is the fact that it can be transformed to a block
diagonal matrix. We do this by simply grouping vanishing and non-vanishing elements in M
and interchanging its rows and columns correspondingly, which amounts to a basis
permutation. This way, we define the matrix = ⊕□M M M: 1 2, where M1 and M2 are block
matrices and relate to the non-vanishing and vanishing residues of the cMPS. The block
structure of □M and the fact that eT is diagonal imply a block structure of their products, which
carries over to the correlation functions, lets M2 decouple completely, and hence disappear from
the reconstruction.
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We can see why all the residues corresponding to M2 vanish for every n-point function in
the following way. Let us assume we reordered M and formed □M by performing the basis
permutations described above, and we consider a pole λl of the cMPS. For an arbitrary n-point
function, each residue which contains the index l at least once can be written as

ρ = □ □ □ □
− + − − + −M M M M... ... (80)k k l k k k k l l k k,..., , , ,..., 1, , , , 1j j n j j n1 1 1 1 1 1 1 1

with = −j n2 ,..., 2.
We take ζ∈ +l d{ 1 ,..., }2 , where ζ is the dimension of M1, i.e., λl corresponds to a pole

associated with M2. In this situation, we note that two things can happen. Either ζ⩽+k j 1 , and

=□
+

M 0l k, j 1
since the entry is located in the lower left block of □M , which contains just zeros,

and thus the entry vanishes. Or ζ>+k j 1 , and there exists an entry □
+

Mk k,m m 1
with >m j, ζ>km ,

and ζ⩽+km 1 such that =□
+

M 0k k,m m 1
. This has to eventually happen since the last entry in the

residue expression is of the form □
−

Mk , 1n 1
and ζ⩽1 . Clearly, the residue vanishes again, and so

does for the boundary indices =k l1 or =−k ln 1 .

5.2.3. Reconstruction. Because of the block structure of M, we conclude that there is no direct
way of obtaining all poles of cMPS approximations of the Lieb–Liniger ground state from an n-
point density-like correlation function. In this case, the p-number [24], which is defined as the
minimum order for a p-point function of a cMPS to reveal all poles, is infinite. There is a useful
connection between the degeneracies in the spectrum of M and its block structure for the Lieb–
Liniger model. It turns out that all the non-degenerate eigenvalues are related to □M entries in
the first block, while the degenerate pairs are distributed such that always one eigenvalue is
associated with the first block and the other with the second. This way, since only the first block
contributes to any density-like correlation function, all degeneracies are effectively lifted, and
hence full reconstruction is possible. Since all eigenvalues of M that appear in the vanishing
second block also appear in the visible first block one can in principle determine the spectrum of
R even without full knowledge of M. The same holds for the spectrum of Q since also −D M
has the same spectral properties. For reconstructing both R and Q in the corresponding gauge,
however, our procedure requires full knowledge of M. But again, note that for full
reconstruction of the density-like correlation functions, this full knowledge is not required here.

This structure disappears if integrability is broken, and hence in a neighbourhood around
the (cMPS approximation of the) Lieb–Liniger ground state. Imaginary time evolution gives us
a notion of distance to the limit of the approximation process, as we can, e.g., observe
convergence of matrix entries along imaginary time paths. The block structure and degeneracy
become more clearly defined the closer one gets to the limit point. Ultimately, at the limit point
of the imaginary time evolution, the degeneracies and block structure of M will prevent our
methods to recover a full cMPS description in terms of matrices Q and R of the system. On the
other hand, for each state along such a path, we can in principle apply our reconstruction
method. The closer we get, the better all characteristic parameters can be reconstructed although
the more ill-conditioned the problem becomes. A reconstruction of the n-point functions of
arbitrary order is still possible, as it is based on the observable blocks of the matrices D and M
alone and determining these quantities is in principle possible. Since the second block does not
contribute to any n-point function, the applicability of ‘Wickʼs theorem’ for (continuous) MPSs
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is maintained even in this case and we still can successfully predict higher order from lower
order correlation functions.

6. Summary and outlook

In this work, we have introduced the concept of quantum field tomography. In spite of the
inherent difficulties of attempting to reconstruct a continuous system, i.e., a system with infinite
degrees of freedom, we have shown that this task can be done when only a relevant class of
naturally occurring states is considered. This is physically well motivated since one expects
naturally appearing states not to be of the most general form but restricted to a smaller class of
states. This is clearly the case in physical applications in which, for example, MPSs have been
shown to be a very successful model to describe correlations and dynamics. Here, we
concentrated on developing tomographic tools for one-dimensional continuous many-body
systems or quantum fields.

For this purpose, we employed the continuous generalization of the MPS variational class
of states: the continuous MPS formalism. Based on this formalism and the predicted structure of
the relevant data, i.e., the correlation functions, we developed a procedure to extract a best fit
cMPS using state of the art statistical estimation tools. In this way, we are able to deliver a
working and readily applicable tool to study this type of system. The procedure we offer can
indeed be seen as the natural way to think of efficient quantum field tomography. This does not
mean, however, that for tasks of direct estimation of fidelities and properties of states,
alternative methods may not be advisable. The machinery here aims at reconstructing the states
as such.

Formally, we have used the cMPS framework to describe the structure of correlation
functions that can in principle be measured in experiments. Having identified this basic
structure, we defined the tools needed to extract the pertinent information from the data. For this
purpose, we employed the MPM as a viable way to determine the variational parameters of the
cMPS from a correlation function. We showed that one can successfully extract a cMPS
description of a system in principle for arbitrary bond dimensions. However, for noisy signals,
one is in general limited to lower bond dimension approximations. Generally, this approach is
applicable to states with low entanglement, similarly to matrix-product states approximating
states that satisfy an area law for suitable Renyi entanglement entropies. In the discrete case, the
connection of having ‘low entanglement’ and being approximable with a MPS of low bond
dimension has been fully rigorously fleshed out already [8, 41]. In the continuous case, this
connection is surely equally plausible, but is awaiting a similar fully rigorous treatment.

Moreover, we have given an in-depth study of the applicability of the reconstruction tools
and their robustness for different noise models. Extensive numerical simulations were employed
which provide at least empirical confidence of the performance of the reconstruction tools. We
found that for the cases studied in this work, our methods are reasonably robust to noise when
searching for low bond dimension cMPS estimates.

It is important to note that the methods developed in this work are likewise readily
applicable to the translationally invariant discrete MPS case. Since in reality one deals with
discrete (sampled) data even if the system is continuous in nature, all the methods developed
here carry to the discrete case of MPSs, reflecting a finite lattice spacing, with minimal
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modifications. Furthermore, there is evidence that the approach taken here reveals insight into
the structure of the underlying model as such and can detect signatures of integrability.

The novel methods proposed in this work open a new avenue to explore continuous
systems of many particles in both equilibrium and non-equilibrium. It constitutes a step towards
assessing strongly correlated models with a topographic mindset, without having to make a
model of the system in the first place: instead, one asks what the state is that is most compatible
with the data found. This is a most healthy mindset specifically in the context of emergent
quantum technologies, where one aims at assessing the state of a quantum system without
making overly strong assumptions in the first place. In quantum information science, quantum
state tomography is already a pillar on which the field rests, a technique routinely applied in
most experiments. The present work opens up perspectives to think of quantum field
tomography of strongly correlated quantum systems, as they feature in dynamical quantum
simulators. Specifically in this context, the tools presented here can be used for partial
benchmarking of analog quantum simulators. To fully explore the potential of such an approach
to study many-body systems out of equilibrium constitutes a truly exciting perspective.
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3.3 Tomography of ultracold Bose gases

As noted in the previous section, the class of continuous matrix product states can be used to effec-
tively describe various different theoreticalmodels. How theywouldperform in a real-world setting,
however, has not been analyzed so far. In the following, we present a first undertaking to efficiently
characterize an experimentally prepared quantum system using cmps and provide predictions for
quantities that could independently be accessed and certified from the experiment.

In the experiment at the basis of the following publication [3]18, an ultracold gas of 87Rb atoms
is localized using an atom-chip[140], amagneticmicro-trap on a chip permitting very compact setups.
The gas is transversally split into two mutually coherent halves, which corresponds to performing
a sudden quench—abruptly changing the system parameters towards a new Hamiltonian—and re-
sults in an approximately pure state out of equilibrium.

One-dimensional ultracold Bose gases play a prominent role in experimentally analyzing the
equilibration behavior in quantummany-body systems[141–143]. How and if closed quantum systems
reach an equilibrium state that is close to a thermal state proportional to e−βH (forHamiltonian H
and inverse temperatureβ) is a nontrivial andparticularly interestingquestion, considering the time
evolution of quantum states being governed by unitary transformations versus the monotonous
increase of entropy with time according to the second law of thermodynamics (see, e.g., Ref. [144]
for an overview).

The effectively one-dimensional ultracold Bose gas at hand can be captured by the Lieb-Liniger
model, whose low-energy states, in turn, are well-approximated by cmps with limited bond di-
mension.[125,145] This suggests the adaptation of the quantum field tomography protocol in publi-
cation [2] for determining the state of the system. The input n-point correlation functions, taking
the form

C (x1, . . . , xn) =Re
­

ei
�

θ̂x1
−θ̂x2

+θ̂x3
− ...+θ̂xn−1

−θ̂xn

�
·

, (28)

were obtained by measuring via matter-wave interferometry the relative local phase difference θx

at longitudinal position x . Using the polar decomposition ψ̂†(x) = n̂(x)1/2 eθ̂x , the correlation
functions can be reduced to a form as in Eq. (27). Specifically, reading in and processing 2-point
and 4-point correlation functions allowed for a partial quantum-field reconstruction of the state of
the system.19 Using the reconstructed parameters, predictions about higher-order statistical behav-
ior could be made: 6-point correlation functions could be produced that were in very good agree-
ment with the ones directly obtained from the experiment, thus building further confidence in the
suitability of the tomographic protocol. The robustness of the procedure was analyzed in a boot-

18Adrian Steffens, Mathis Friesdorf, Tim Langen, Bernhard Rauer, Thomas Schweigler, Robert Hübener, Jörg
Schmiedmayer, Carlos A. Riofrı́o, and Jens Eisert, “Towards experimental quantum-field tomography with ultracold
atoms”, Nature Communications 6:7663, 2015 (doi:10.1038/ncomms8663). Published under a Creative Commons Attri-
bution 4.0 International License (creativecommons.org/licenses/by/4.0), © 2015 Springer Nature Publishing AG.

19 Namely, the matrices M for applying Wick’s theorem for matrix product states [135] for computing higher-order
statistics from lower-order statistics could be recovered.
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strapping [146,147] manner by varying the input data and recording the statistics of the corresponding
output parameters, yielding effective error bars.

The reconstruction was performed for different times after the initial state preparation and we
observed that with time, the agreement between the predicted correlation functions and the exper-
imentally determined ones deteriorated. Whether this change is due to increasing noise or to en-
tanglement growth, which happens in quenched systems[102,148] and requires to accordingly increase
the bond dimension of the modeling cmps, has to be investigated in future studies. If additionally,
with increasing control over the experimental error, the cmps parameter matrices Q and R were
obtained, it would furthermore be possible to efficiently numerically evolve the cmps in time[132]
and to compute correlation functions for future times. It would be fascinating to relate this to
the experimental values and ideally retrace the equilibration process of ultracold Bose gases. Due
to experimental imperfections, the system is not perfectly translation invariant. Extending the to-
mographic protocol to also incorporate position-dependent features would be highly desirable to
increase the accuracy in describing the state and its predictive power.

Note that directly applying a compressed sensing based quantum tomography protocol, as dis-
cussed in section 2.2, to this setup would have been entirely infeasible due to the extraordinary size
of the involved density and measurement matrices without requiring tensor network properties.
The strength of compressed sensing tomography rather lies in its broad scope concerning quantum
systems of intermediate size.
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C
omplex quantum systems with many degrees of freedom
can now be controlled with unprecedented precision,
giving rise to applications in quantum metrology1,

quantum information1,2 and quantum simulation3,4. This holds
true specifically for architectures based on trapped ions5 and
ultracold atoms3,6–8, where large system sizes can now routinely
be realized, while still maintaining control down to
the level of single constituents. In the light of this development,
the mindset has shifted when it comes to the assessment and
verification of preparations of quantum states. Traditionally,
experiments are being used as a vessel to test the validity of
theoretical models by comparing their predictions to specific
experimental output. With quantum experiments of many
degrees of freedom becoming significantly more accurate, an
attitude of ‘quantum engineering’ and quantum simulation is
taking over. Compared with the traditional mindset, one does not
compare the experimental data to predictions from theoretical
models, but rather uses the full capabilities of the experimental
setup as an investigative tool for the physical situation at hand.
Triggered by this development and driven by the goal to
maximize the information extracted from the experiment, the
standards in quantum system identification have substantially
risen. Quantum-state tomography9–11 fulfils this need for precise
and model-independent quantum-state identification. It asks the
question: given data, what is the unknown quantum state
compatible with those data? Maybe unsurprisingly, the interest
in the field of quantum system identification and quantum-state
tomography has exploded in recent years10–13.

For many degrees of freedom, unqualified quantum state
tomography must be inefficient in the system size, as exponen-
tially many numbers need to be specified. This problem has given
way to the insight that practically only the states found in
experiments need to be reconstructed, which form only a small
subset of the full Hilbert space14,15. Accordingly, more efficient
tomography tools9 have been developed, ranging from quantum
compressed sensing10 (for states of approximately low rank), over
permutation-invariant tomography, to matrix-product state
tomography11–13,16. These approaches are based on using the
right ‘data set’ having the appropriate ‘sparsity structure’ to
capture quantum many-body systems. For discrete systems,
matrix-product states efficiently capture the low-energy
behaviour of locally interacting models and a large body of
literature in the condensed-matter context backs up this intuition
of the ‘physical corner of Hilbert space’14,15,17.

In this work, we consider continuous systems, in which the
tomographic problem is aggravated due to the fact that, in
principle, infinitely many degrees of freedom need to be
reconstructed. On the basis of the notion of sparsity, we present
a novel quantum-field tomography procedure relying on the class
of continuous matrix-product states (cMPS)18,19. This approach
will allow us to give evidence that the state encountered in the
laboratory is well approximated by a representative of this class.

Results
Quantum-field tomography. We apply our procedure to non-
equilibrium experiments of a continuous quantum gas of one
species of bosonic particles whose correlation behaviour can be
captured by translation invariant states of the form

CQ;R

�� �
¼ Traux Pe

R L

0
dx Q� 1̂þR� ĉyðxÞð Þ

� �
Oj i: ð1Þ

Here ĉðxÞ, xA[0, L] are the canonical bosonic field operators, Oj i
is the vacuum state vector, Q, RACd� d are matrices acting on an
auxiliary d-dimensional space and completely parametrize the
state. L is the length of the closed physical system, P denotes

the path ordering operator and Traux traces out the auxiliary
space. The bond dimension d takes the same role as the bond
dimension for matrix-product states: Low entanglement states
are expected to be well approximated by cMPS of low bond
dimension; in turn, for suitably large d, every quantum-field state
can be approximated.

We employ our reconstruction procedure to perform quantum
state tomography for a one-dimensional (1D) system of ultracold
Bose gases, an architecture that provides one of the prime setups
for exploring the physics of interacting quantum fields6,20,21. The
experiment consists of a large 1D quasi-condensate that is
trapped using an atom chip22. To bring the system out of
equilibrium, a split transversal to the condensate direction is
performed. The subsequent out-of-equilibrium dynamics after the
quench leads to apparent equilibration, prethermalization and
thermalization6,23,24. In the middle of the trap, the system can be
well approximated by two parallel quantum fields that are
homogeneous and translationally invariant.

The experiment proceeds by performing a joint time-of-flight
measurement of the two quasi-condensates. Since the experimen-
tally measured images are single-shot measurements, repeating
the experiment many times with identical initial conditions allows
to extract the phase difference ŷx of the two quasi-condensates at
different longitudinal position x and construct higher order
correlation functions6,25. The phase correlation functions are
defined as

C nð Þ x1; . . . ; xnð Þ¼ Re ei ŷx1 � ŷx2 þ ŷx3 � ... þ ŷxn� 1 � ŷxnð Þ
D E

; ð2Þ

where ŷx are the measured phase differences and the angular
brackets denote the ensemble average (Methods section).

To capture these correlation function in terms of a cMPS, we
use a description in terms of effective field operators for the phase
difference

ĉy xð Þ ¼ n̂ xð Þ
1
2eŷx ð3Þ

where n̂ are density operators. As no density information could
be obtained from the experiment in its current form,
the expectation value of these operators remains unknown and
our work is a partial reconstruction of the state. However, the
obtained cMPS contains its full phase correlation behaviour.

Using this description, we can write an n-point phase
correlation functions as

C nð Þ x1; . . . ; xnð Þ¼ Re n̂ x1ð Þ�
1
2ĉy x1ð Þĉ x2ð Þn̂ x2ð Þ�

1
2 . . .

D E
:

ð4Þ
Since it is sufficient for performing the tomography procedure, we
will use the correlation information of the normal ordered subset
with x1rx2r?rxn of the even-order correlation functions. In
the cMPS language, assuming translation invariance and the
thermodynamic limit, this can be reformulated as

CðnÞ t1; . . . ; tn� 1ð Þ ¼

Xd2

fkjg¼1

rk1; ... ;kn� 1
elk1 t1 . . . elkn� 1 tn� 1

ð5Þ

with tk¼ xkþ 1� xk,

rk1; ... ;kn� 1
¼ M� 1

1;kn� 1
Mkn� 1;kn� 2

. . . M� 1
k2;k1

Mk1;1; ð6Þ

lk being the eigenvalues of the transfer matrix T, and M being

R
1
2 � R

� 1
2 in the diagonal basis of T (Methods section)16. The

reconstruction proceeds by first extracting the eigenvalues lk from
the two-point correlation function and in a second step, determining
a compatible M matrix26 from the four-point correlators.
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Data analysis. We find that a cMPS with d¼ 2, corresponding to
four reconstructed poles and a 4� 4 matrix M, matches the
data. This indicates that the correlation function has a simple
structure as one would expect from such local physical
interactions (specifically based on previously explored
descriptions in terms of a Luttinger liquid theory6).
More importantly, no previously known theoretical description
of the physical situation at hand is needed since the cMPS
ansatz can be applied to any locally interacting quantum field.
To estimate the performance of the reconstruction of the
four-point correlation function, we use the mean relative
deviation (Methods section), and find a small error of 1.4%,
which is of the same magnitude as the experimental errors6.

Approximating a correlation function can be done in many
ways and it is, a priori, not clear that one has truly
gained knowledge about the state. The advantage of the cMPS
ansatz is that the approximation performed is sufficient to
fully reconstruct the phase correlation behaviour of the cMPS.
We build trust in the reconstructed state by using it to
predict higher order correlation functions, which in turn can
be experimentally checked. This provides an excellent
benchmark for our procedure and allows us to estimate the
quality of our guess for the unknown experimental state.
Specifically, we obtain an error of 3.2% for the six-point
function (Fig. 1), estimated with bootstrapping techniques.
This shows that the reconstruction of the full correlation
behaviour of the state was successful, providing a proof-of-
principle application for efficient state tomography of interacting
many-body quantum fields.

We have performed our reconstruction of the six-point
correlator for different hold times after the quench and observe
that the fit quality drops substantially with increasing time
with mean relative deviations of 3.2%, 10.7% and 34.1% for
times t¼ 3, 7 and 23 ms, respectively (Fig. 2). There are several
possible explanations for this decrease in reconstruction quality.
While quantum-field tomography necessarily has to rely on a
finite-dimensional ‘data set’, it is clear that not all situations
can be captured equally well by the approach proposed here.
This method applies to states of low entanglement, a situation
expected to be present for ground states or states in
non-equilibrium following quenches for short times. It will
surely be difficult to capture highly entangled or thermal
states, which are expected to have a high description complexity,
with these tools26.

Discussion
The physics of sudden quenches in discrete settings is usually
connected to a linear entanglement growth with time15,23,27,
while for each time satisfying an area law in space15. Note that
while the continuous physical system at hand can be well
captured with a free Tomonaga–Luttinger liquid model28,29, the
states of the system can still be strongly entangled, in the sense
that entanglement entropies across any real-space cut of the
system are, in principle, arbitrarily large. It is precisely this spatial
entanglement that will surely influence the quality of tensor
network descriptions of the state and that is a key factor for the
quality of any cMPS reconstruction26. Since our cMPS
reconstruction with d¼ 2 is only well-suited for states with low
entanglement, a similar entanglement buildup for the performed
sudden quench of quantum fields would be a natural explanation.
Indeed, such light cone dynamics for the correlations of these
systems6,30,31 have recently been made explicit experimentally.
Such entanglement growth could conceptually be unveiled by
investigating how the fit quality changes when the bond
dimension is increased. Given the structure of the data set
(analysis contained in the Methods section) and the increase of
experimental errors with hold time, the exploration of this
observation lies outside the scope of this work, but is surely an
interesting topic for the near future.

Experimental imperfections or the remaining actual tempera-
ture could be other sources for the decrease in fit quality with
hold time, as they lead to a mixed state, thus impeding our
description in terms of pure states. Previous studies, however,
successfully described the system in terms of a pure state
Luttinger liquid, even for long evolution times31. Moreover, the
experimental data was taken in the middle of the trap, where,
initially, the assumption of translational invariance holds up to
excellent accuracy. For long hold times after the quench, however,
regions outside of the center of the trap will have an influence on
the behaviour of the system in the middle6, thus making the data
less translational invariant (Methods section).

The work presented here is surely a first step in the direction
of a larger programme, advocating a paradigm change in
the evaluation of experimental data from atomic-optical
architectures. Instead of comparing predictions of an assumed
theoretical model with data, one puts the data into the focus
of attention and attempts a reconstruction in the mindset of
quantum tomography. This, in particular, seem an important
development in the context of quantum simulators, which have
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Figure 1 | Projections of the measured and predicted six-point correlation function. We show projections of the relevant sections of the (a) experimental

and (b) predicted six-point function for a hold time after the quench of t¼ 3 ms. This image shows the volumetric elements of certain projections

of the high-dimensional six-point correlation function array and demonstrates a great overall agreement between experimental data and the predicted

correlation data. In c, the absolute difference between the experimental and the predicted data points for the projection C(4)(0, 2, x3, x4) is shown as a bar

plot, the statistical uncertainties of the data as a transparent mesh. More quantitatively, as a figure of merit for measuring the performance of the

reconstruction, we use the mean relative deviation over all indices belonging to the relevant simplex of the data with x1r x2 r � � �r x6 (Methods section)

and find a mean error of 2.5% and a maximum relative deviation of 9.1%.
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the potential to address questions on interacting quantum
systems that are inaccessible with classical means. While partial
information of the results of a quantum simulator can easily be
accessed, a full read-out necessarily corresponds to performing
quantum tomography where feasible tools are still lacking. The
present work offers a step forward and presents a novel tool to
obtain and build trust in the complete results of a quantum
simulation without having to include any information of the
underlying Hamiltonian of the system.

Methods
Experiment. A single specimen of an ultracold gas of 87Rb atoms is prepared using
evaporative cooling on an atom chip. The final temperature and the chemical
potential of the gas are both well below the first radially excited state of the
trapping potential, implementing a 1D bosonic system that is well approximated by
the Lieb–Liniger model. The systems contain several thousand atoms and spread
over sizes as large as 100 mm. A sudden global quench is realised by transversally
splitting the gas into two mutually coherent halves32, leading to an out-of-
equilibrium, approximately pure state. The setup in principle allows for different
splitting procedures, in particular an experimental scheme to test the Unruh effect
with a specially modelled split has recently been proposed33. Subsequently, this
non-equilibrium system is let to evolve in the trap for a variable hold time. Its
dynamical states are probed using matter wave interferometry in time-of-flight,
which enables the direct measurement of the local relative phase yx. Since the
experimentally measured images are single-shot measurements, repeating the
experiment many times with identical initial conditions allows to measure not only
the mean of the correlations, but also higher order correlation functions are
accessible6. The corresponding correlation functions are constructed by averaging
over B150 experimental realizations.

We are restricted to even-order correlation functions in the experiment. The
reason for this is the fact that many experimental realizations are needed to
construct the correlation functions. Each of these experimental realizations
provides us with a measurement of the relative phase yx¼f(x)þj. Here f is the
actual fluctuating phase that contains the interesting many-body physics and j is a
small global phase diffusion that is random in every experimental realization32.
This global phase diffusion results from small shot-to-shot fluctuations in the
electrical currents that create the trapping potential. These cause small random
imbalances of the double well, leading to random and unknown values for j. For
the even-order correlation functions only differences between the y at different
positions need to be evaluated. Consequently, the global shifts j cancel
automatically. However, for odd-order correlation functions contributions Beij

remain. Hence, the measured result does not only contain the pure dynamics, but is
significantly perturbed by the unknown fluctuations of j.

Reconstruction procedure. To make the correlation function in equation 2
directly accessible to our reconstruction procedure, we write it in terms of field
operators ĉðxÞ. For this purpose, we use the fact that ŷx commutes for different
positions and employ the polar decomposition to construct an effective field
operator

ĉyðxÞ ¼ n̂ðxÞ1=2eiŷx ; ð7Þ

where n̂ðxÞ ¼ ĉyðxÞĉðxÞ is taken to be the density of one of the two condensates.
The construction ensures that these effective field operators indeed fulfil the correct
commutation relations. Equation 4 follows immediately.

In the cMPS formalism, the translationally invariant correlation functions in
equation 4 can be directly calculated in terms of the cMPS variational parameter
matrices R and Q in the thermodynamic limit as

CðnÞ x1; . . . ; xnð Þ ¼ Tr
�

lim
L!1

eTðL� xnÞðR
1
2 � R

� 1
2ÞeTtn� 1 :

. . . ðR�
1
2 � R

1
2ÞeTt2 ðR

1
2 � R

� 1
2ÞeTt1 ðR�

1
2 � R

1
2Þ
�

with the transfer matrix

T :¼ Q � 1d þ 1d � QþR � R; ð9Þ
and positive distances tj¼ xjþ 1� xj for j¼ 1,y,n� 1. The overline denotes
complex conjugation. This form of the correlator can be derived by the
correspondences between field operators and variational matrices as described in
refs 18,19.

By writing all the matrices in the basis where the transfer matrix T is diagonal
and performing the limit L-N, the correlation function takes the form

CðnÞ t1; . . . ; tn� 1ð Þ ¼
Xd2

fkjg¼1

rk1 ; ... ;kn� 1
elk1 t1 . . . elkn� 1 tn� 1 : ð10Þ

The lk are the eigenvalues of the transfer matrix T, also known as poles and the
pre-factors, usually refered to as residues, are

rk1 ; ... ; kn� 1
¼ M� 1

1;kn� 1
Mkn� 1 ;kn� 2

. . . M� 1
k2 ;k1

Mk1 ;1; ð11Þ

with

M ¼ X � 1ðR
1
2 � R

� 1
2ÞX; ð12Þ

where X has been chosen such that X� 1TX is diagonal16,26. For a fixed bond
dimension, there are in general d2 poles and M 2 Cd2�d2

. Note that this is different
from the definition in ref. 26 where the matrix M stems from density-like
correlation functions

Ô ¼
Y

j

n̂j: ð13Þ

There, according to the calculus of cMPS correlation functions, the field
operator term for each position corresponds to the matrix R � R.

Note that equating two consecutive indices kj, kjþ 1 in the n-point function in
equation 10 leads to a (n� 2)-point function, as expected from equation 2.
Specifically, there are many equivalent projections of a four-point function that
correspond to two-point functions. However, due to imperfections (that is,
deviations from translational invariance), the experimental realizations of these
projections are not identical. Averaging over the projections leads an expression of
the same form of a two-point correlation function from a translationally invariant
cMPS as follows,

Cð2Þ tð Þ ¼
Xd2

k¼1

rkelkt: ð14Þ

The reconstruction starts by extracting the eigenvalues lk from the averaged two-
point correlation function using a least-squares fit and under the assumption of
translational invariance for the modelled system. The suitable bond dimension for
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as indicated in the figures. This increase of the deviation with hold time could be seen as an indicator for the non-equilibrium processes in the system

(see main text), but is presumably also related to the increase in s.e. in the experiment, as indicated by the error bars (Methods section).
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the data at hand can already be judged at this point, by analysing the structure of
the two-point correlation function. To determine all entries of M, n-point functions
with n42 have to be taken into account, since for n¼ 2, only the entries M1,k

� 1 and
Mk,1 appear, see equation 15. Since multiplying M with a constant and conjugating
it with a diagonal matrix whose first entry is equal to one leaves all properties
considered in this work invariant, we can require that M1,k¼ 1 for each k¼ 1,y,
d2 (refs 16,26). The remaining independent entries of the M matrix are fixed by
included four-point correlation data. For this, we use a Nelder–Mead simplex
algorithm that varies the parameters of the M matrix, and calculates the
corresponding residues according to

rk1 ;k2 ;k3
¼ M� 1

1;k3
Mk3 ;k2

M� 1
k2 ;k1

Mk1 ;1
: ð15Þ

Each choice of an M matrix thus gives a prediction for the four-point correlators
and the agreement with the experimental data is taken as the quality indicator for
the algorithm. Working with a cMPS with bond dimension d¼ 2 and relying on a
set of 100 random initial numerical seeds proved to be sufficient for approximating
the measurement data well. Taking into account the gauge and symmetry
arguments26, the employed cMPS, with bond dimension d¼ 2 in terms of lk and
M, has 15 independent parameters in total.

As discussed in the main text, we see a significant decrease of the fit quality with
hold time. There are many issues entering here. One would naturally expect that
entanglement entropies after the sudden quench grow over time leading to the
need for a larger bond dimension. This is presumably the case, but in our analysis,
this is mostly masked by two other effects. First, the statistical error in the
experiment increases substantially with the hold time, making the data for longer
times considerably less reliable (Fig. 2) and also questioning our fit in terms of a
pure state. What is more, the translational invariance assumption is slowly violated
as the hold time increases. This is not surprising, since the light-cone-like dynamics
of the trapped system give good reason to believe that trap effects need time to
enter the center part of the system. As a quantitative probe to estimate how
translational invariant the data are, we consider the two-point correlation function
at 21 different points and calculate the variance over those different positions for
variable distances. The mean of those variances gives a good indicator on how
much the two-point function varies depending on the position it is evaluated at.
We find for the hold times t¼ 3, 7 and 23 ms deviations from translational
invariance of 0.3� 10� 2, 5.4� 10� 2 and 8.3� 10� 2, clearly indicating that for
longer hold times, our assumption of translational invariance is considerably less
accurate. Given these limitations of the data set and the fact that the two-point
functions averaged over different positions does not possess a rich enough
structure, we feel that using a bond dimension larger than d¼ 2 would be
overfitting. Let us point out that this is by no means a limitation of our method as
such, as reconstructions with higher bond dimension could easily be performed
using matrix-pencil methods as described in ref. 26.

Quantifying the statistical compatibility and error analysis. To quantify the
error of our tomography procedure, we use the relative mean deviation with respect
to the fitted (reconstructed) data,

E ¼ Sj j � 1
X
x2S

C xð Þ�Crec xð Þj j2

Crec xð Þj j2

 !1=2

; ð16Þ

where S is the set of all data points x¼ (x1,y, xn) with x1rx2r?rxn, and |S|
denotes the number of elements in S. In addition, to estimate the robustness of our
algorithm, we employ a bootstrapping method (see, for example, ref. 34). Namely,
starting with the reconstructed four-point function from the experimental data, we
add Gaussian noise with zero mean and s.d. given by the statistical uncertainties
from the experiment. Subsequently, we perform our cMPS tomography procedure
and reconstruct the six-point function. We repeated this procedure 100 times and
computed the entry-wise relative standard deviation of the six-point functions. For
the average over all entries, we obtain a deviation of 1.1% (with a maximum relative
s.d. of 2.8%). This confirms that our reconstruction procedure is robust to the
errors we expect in the experiment.

References
1. Wineland, D. J. & Leibfried, D. Quantum information processing and

metrology with trapped ions. Laser Phys. Lett. 8, 175–188 (2011).
2. Schindler, P. et al. Experimental repetitive quantum error correction. Science

332, 1059–1061 (2011).
3. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold

quantum gases. Nat. Phys. 8, 267–276 (2012).
4. Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat.

Phys. 8, 264–266 (2012).
5. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8,

277–284 (2012).
6. Langen, T., Geiger, R., Kuhnert, M., Rauer, B. & Schmiedmayer, J. Local

emergence of thermal correlations in an isolated quantum many-body system.
Nat. Phys. 9, 640–643 (2013).

7. Hofferberth, S., Lesanovky, I., Fischer, B., Schumm, T. & Schmiedmayer, J.
Non-equilibrium coherence dynamics in one-dimensional bose gases.
Nature 449, 324–327 (2007).

8. Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated
strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325–330 (2012).

9. Paris, M. & Rehacek, J. Quantum state estimation, Lecture Notes in Physics
(Springer, 2004).

10. Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state
tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010).

11. Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1,
149–155 (2010).

12. Baumgratz, T., Gross, D., Cramer, M. & Plenio, M. B. Scalable reconstruction of
density matrices. Phys. Rev. Lett. 111, 020401 (2013).

13. Ohliger, M., Nesme, V. & Eisert, J. Efficient and feasible state tomography of
quantum many-body systems. N. J. Phys. 15, 015024 (2013).

14. Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state
representations. Quant. Inf. Comp. 5 & 6, 401–430 (2006).

15. Eisert, J., Cramer, M. & Plenio, M. B. Area laws for the entanglement entropy.
Rev. Mod. Phys. 82, 277–306 (2010).
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4 QUANTUM ALGORITHMS

Classical computers have becomeorders ofmagnitude fasterwithin the last decades, laying the foun-
dation for the digital revolution. However,Moore’s law, which roughly states that the performance
of computers doubles about every two years and has accurately been describing the technological
progress in computational power since the 1970s, is nearing its end[149]: The elements on integrated
circuits have reached sizes of just few nanometers, the same scale as atomic diameters, and quantum
effects such as unwanted quantum tunneling make the physical limitations of the current silicon-
based technology apparent. Yet, even polynomially scaling problems become infeasible to compute
for sufficiently large problem size.

To overcome a possible standstill, different approaches are being explored ranging frommateri-
als[150] to 3d integration of chips[151]. Beyond this, quantum effects could instead be harnessed with
a fundamentally different architecture—by using quantum computers, promising large, in some in-
stances even exponential speedups for algorithms. First discussed by Richard Feynman in the con-
text of efficiently simulatingquantumsystems[20], a general frameworkhasbeendeveloped[21,22,152,153],
and possible physical implementations with, e.g., cold trapped ions[154] or photons[155] are being in-
vestigated20.

Instead of working with bits that can have either the state “0” or the state “1”, a quantum com-
puter will work on quantumbits (qubits), which can be in the quantum state |0〉, the quantum state
|1〉 or any superposition

|ϕ〉= α |0〉+β |1〉 (29)

with α,β ∈ C and |α|2+ |β|2 = 1 for normalization. One can think of |0〉 and |1〉 as the ground
state and the excited state of a two-level system. An n-qubit state consists of the tensor product of
its constituting n single-qubit states. Quantum computations are performed by operations on a
(multiple) qubit state |ϕ〉 that can be modeled by a unitary operator U = e−iH t (preserving the
norm of |ϕ〉) with a Hamiltonian H acting on |ϕ〉 for the time t . General unitary operations can
be decomposed into single- and two-qubit operations, resulting in quantum circuits consisting of
easier to realize quantum gates.[22] Theoutcomes of the computations are obtained bymeasuring the
evolved quantum state.

The state of a qubit can be represented by a vector (α,β) ∈C2 consisting of its two amplitudes
α and β, whereas a state |ϕ1〉 ⊗ |ϕ2〉 ⊗ · · · ⊗ |ϕn〉 with n qubits requires a vector in C(2n) for de-
scription, i.e., 2n complex parameters (up to normalization)—as opposed to n numbers for classical
bits. What is an obstacle for estimating a state via quantum tomography, as discussed in section 2.1,
is a feature for quantum computations: The evolution of an n qubit state takes place in an exponen-
tially larger Hilbert space, in principle allowing for the simultaneous manipulation of 2n numbers,
which is also called quantum parallelism. However, reading out the computed information in form

20 A photonic system for potential quantum computations is also the experiment at the basis of publication [1] (see
section 2.3).
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of a general quantum state (again requiring quantum tomography) is hard and algorithms on a
quantum computer need to be carefully designed to output efficiently obtainable results—not ex-
ponentially large state vectors—which poses an important condition for quantum algorithms. For
example, the n-qubit quantum Fourier transform, providing the Fourier transformof a signal of size
2n encoded in the amplitudes of a quantum state, requires onlyΘ(n2) quantum gates, whereas the
classical fast Fourier transform (fft) needs Θ(n 2n) operations for processing a signal of the same
size.[22] Quantum algorithms like the famous Shor algorithm for integer factorization21, which build
on the quantum Fourier transform, hence output an amplitude overlap or a qubit-wise measurable
product state, consisting of uncorrelatedqubits that canbemeasured independently andhencewith
effort linearly in the number of qubits.

But also accessing the inputdataneeds tobe sufficiently fast. The input could alwaysbeprovided
by the output of a previous quantum subroutine as a superposition in a quantum state. Other
approaches involve quantum random access memory (qram)[158,159], which supplies input signals via
quantum superpositions of memory cells and allows for an access time logarithmic in the data size.
Quantum computers are susceptible to noise and decoherence, calling for quantum error correction
protocols, such as stabilizer codes [160], which include appending ancillary qubits to the signal qubits.
A succinct list of conditions on constructing quantum computers is presented in Ref. [161].

Polynomial quantum speedups are of interest as well: Grover’s algorithm[162] is employed for
searching an unsorted databasewithN entries just inO(

p
N ) steps and can be generalized to ampli-

tude amplification [163], iteratively evolving an input quantum state to the subspace associated with
the desired solution of a problem. Building on this, an interesting set of quantum algorithms is
presented in Ref. [164], providing a quadratic quantum speedup for semidefinite programs and
connecting quantum computing with compressed sensing. With a quantum semidefinite solver,
matrix completion problems as in Eq. (13) and in particular the compressive quantum state tomog-
raphy problem Eq. (15) could be solved on a quantum computer. Using methods from shadow
tomography[37], certain semidefinite problems can even be exponentially accelerated.[165]

A new class of quantum algorithms was sparked by a method[166] that allowed for the inver-
sion of a linear equation system Ax = y with sparse matrix A∈RN×N using only O(poly logN )
operations—as opposed to O(N ) classically.22 Applications and extensions included quantum ver-
sions of least squares data fitting[168,169], support vector machines [170] for determining a separating
hyperplane between two classes of data points, an important tool for machine learning, and princi-
pal component analysis [171] for determining the leading eigenspaces of a matrix. The latter paper also
expanded the scope of viablematrices in this class of quantum algorithms to dense (i.e., non-sparse),
low-rank, positive semidefinite matrices.

21 The computational effort for factorizing an n-bit integer, up to logarithmic factors, is O(n3) using Shor’s quan-
tum algorithm versus eO(n1/3) using the best known classical algorithm[156]. Since the classical computational complex-
ity of integer factorization is yet unknown, polynomially scaling classical algorithms for this problem could theoret-
ically be possible. Providing provable (superpolynomial) quantum speedups is a major topic of the field of quantum
supremacy [157].

22 This concerns sparse matrices; general matrices currently require O(nk ), with k ≈ 2.37, classical operations.[167]
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A veritable “quantum algorithm zoo”[172] has emerged in recent years, including algorithms for,
e.g., subset finding[173] or analyzing electrical networks[174]. See Ref. [175] for a quantum algorithm
overview. Still, due to the intrinsic challenges in developing quantum algorithms, so far only few
quantum analogues of classical signal processing algorithms exist.

The following publication [4]23 also builds on Ref. [166], complementing the quantum algo-
rithm zoo with a procedure that provides a quantum speedup for the spectral estimation of a signal
and scales polynomially in the logarithmof the signal size. At its core lies amatrix pencil method [139],
similar to the one employed in publication [2] (see section 3.2), which had to be modified for an ef-
ficient quantum implementation. Special care was taken to meet the requirements for the feasible
applicability of the arising unitary operations, the robust invertibility of the utilized matrices, and
fast input/output, as emphasized in Ref. [176]. In the process, new methods were developed that
could become useful components for future quantum algorithms. This work is also connected to
the quantum singular value decomposition publication [6], which is presented in appendix A.2.

23Adrian Steffens, Patrick Rebentrost, ImanMarvian, Jens Eisert, and Seth Lloyd, “An efficient quantum algorithm
for spectral estimation”, New Journal of Physics 19:033005, 2017 (doi:10.1088/1367-2630/aa5e48). Published under a Cre-
ative Commons Attribution 3.0 License (creativecommons.org/licenses/by/3.0), © 2017 IOP Publishing.
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Abstract
Wedevelop an efficient quantum implementation of an important signal processing algorithm for
line spectral estimation: thematrix pencil method, which determines the frequencies and damping
factors of signals consisting offinite sums of exponentially damped sinusoids. Our algorithmprovides
a quantum speedup in a natural regimewhere the sampling rate ismuch higher than the number of
sinusoid components. Along theway, we develop techniques that are expected to be useful for other
quantumalgorithms aswell—consecutive phase estimations to efficientlymake products of
asymmetric low rankmatrices classically accessible and an alternativemethod to efficiently
exponentiate non-Hermitianmatrices. Our algorithm features an efficient quantum–classical division
of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step,
requiringmuch fewer parameters, can operate classically.We show that frequencies and damping
factors can be obtained in time logarithmic in the number of sampling points, exponentially faster
than known classical algorithms.

1. Introduction

Algorithms for the spectral estimation of signals consisting offinite sums of exponentially damped sinusoids
have a vast number of practical applications in signal processing. These range from imaging andmicroscopy [1],
radar target identification [2], nuclearmagnetic resonance spectroscopy [3], estimation of ultrawide-band
channels [4], quantum field tomography [5, 6], power electronics [7], up to the simulation of atomic systems [8].
If the damped frequencies (poles) are known andmerely the concomitant coefficients are to be identified, linear
methods are readily applicable. In the practically relevant task inwhich the poles are to be estimated from the
data aswell, however, one encounters a nonlinear problem, and significantlymore sophisticatedmethods have
to be employed.

There are various so-called high resolution spectral estimation techniques that provide precisely such
methods: they includematrix pencilmethods(MPM) [9],Prony’smethod [10],MUSIC [11],ESPRIT [12], and
atomic norm denoising [13]. These techniques are superior to discrete Fourier transform (DFT) in instances with
damped signals and close frequencies or small observation time >T 0 [14–16] and are preferred over of the
Fourier transform in those applications laid out in [1–5, 7, 8]: theDFT resolution in the frequency domain wD is
proportional to T1 , which is especially critical for poles that are close to each other. If the poles are sufficiently
damped and close, they cannot be resolved byDFT independently ofT. Nonlinear least-squares fitting of the
poles or considering higher-order derivatives of the Fourier transform is in general relatively imprecise, sensitive
to noise, or unefficient. Nonlinear algorithms such as theMPMcan still detect poles, whereDFT fails, but are
limited to signals composed offinitelymany damped sinusoids.

With regard to quantum algorithms dedicated to tasks of spectral estimation—algorithms to be run on a
quantum computer—the celebrated quantumFourier transform (QFT) [17] provides an exponential speedup
towards the fastest known classical implementations ofDFT for processing discretized signals ofN samples:
classical fast Fourier transform algorithms, on the one hand, takeQ N Nlog( ) gates [18], whereasQFT takes

OPEN ACCESS

RECEIVED

19October 2016

REVISED

21 January 2017

ACCEPTED FOR PUBLICATION

3 February 2017

PUBLISHED

1March 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

83



Q Nlog2( ) gates to produce a quantum state encoding the Fourier coefficients in its amplitudes. TheQFT
constitutes a key primitive in various quantum algorithms. In particular, it paved theway for quantum speedups
for problems such as prime factoring or order-finding [19]. Regarding spectral estimation, however, QFT
inherits the abovementioned properties of its classical counterpart.

The aimof this work is to develop a quantum version of a powerful spectral estimation technique, theMPM,
providing an analogous quantum speedup from O Npoly( ) to O Npoly log( ) for data given in a suitable format.
Hereto, wemake use of the fact that establishing eigenvalues and eigenvectors of low-rankmatrices—
constitutingmajor steps in this algorithm—can be achieved very fast on quantum computers [20]. Given signal
data either via the amplitudes of a quantum state or stored in a quantum randomaccessmemory (QRAM) [21–
23], phase estimation of thesematrices can be performed directly. For exponentiating non-sparse operators for
phase estimation, we employ quantumprincipal component analysis (QPCA) [20] and a recently developed
oracle-basedmethod [24]. In an additional step, we employ a quantum linearfitting algorithm [25, 26] to
determine the summing coefficients and hence all parameters that determine the signal function. In this sense,
we can understand our algorithm also as an instance of a nonlinear quantumfitting algorithm in contrast to
linear curve fitting algorithms [25, 26]. Furthermore, our algorithm can also be employed as a sub-routine in a
higher quantum algorithm that requires spectral estimation as an intermediate step.We expect the developed
methods to provide valuable novel primitives to be used in other quantumalgorithms aswell.

2. The classicalmatrix pencil algorithm

We start by briefly recapitulating the original (classical)matrix pencil algorithmbefore in section 3, we turn to
showing how to implement a quantum version of this algorithm in order to gain an exponential speedup.MPM
[9] comprise a family of efficient signal processing algorithms for spectral estimation and denoising of
equidistantly sampled complex-valued functions f of the type

 å å= l a b

= =

-f t c c t Te e e , 0 , 1
k

p

k
t

k

p

k
t t

1 1

ik k k( ) ≕ ( )

with the poles l a b= - + Îik k k , damping factors a Î +k , frequencies b Îk , and coefficients Îck

for = ¼k p1, , , where Îp is the number of poles. The damping results in a broadening of the spectral lines
towards Lorentzian curves. Real-valued functions as a special case can be analyzed aswell: here, for each
= ¼k p1, , either l Îc,k k —these terms are non-oscillatory—or there exist l ¢ ¢c,k k such that *l l=¢k k and
*=¢c ck k . Clearly, such signals, inwhich the number of poles p is small andfinite, are ubiquitous, or in other

instances provide an exceedingly well approximation of the underlying signal.

Algorithm1.Matrix pencil algorithm.

Data:Discretized signal with components = å l
=

Df c ej k
p

k
t j

1
k · , = ¼ -j N0, , 1,

Re l lÎc , , 0k k k( ) .

Result: Frequencies l =k k
p

1{ } and coefficients =ck k
p

1{ } .

begin

Create theHankelmatrices + - =F fj k j k
N1

2 , 1
2≔ ( )( ) and + - =F fj k j k

N2
1 , 1

2≔ ( )( ) from the signal and compute their (truncated) singular decom-
positions = =F U S V i, 1, 2i i i i( ) ( ) ( ) ( ) † .

Solve the generalized eigenvalue problem m=U F V w S wk k k
1 2 1 1( ) † ( ) ( ) ( ) . The p frequencies lk{ } can directly be obtained from the p eigen-

values mk{ }.
Create theVandermondematrixW from the eigenvalues mk{ }and invert the linear equation system =Wc fj( ) to obtain the coeffi-
cients ck{ }.

The idea ofMPM is to determine the poles lk{ } independently from the coefficients ck{ }and compare the
discretized signal with its translates. Assume that all ck are nonzero and l l¹j k for ¹j k. First, sample the
function f equidistantly,

å= l
=
-

=

Df f f c, e , 2j j
N

j
k

p

k
t j

0
1

1

k( ) ( )·

with sampling intervalD >t 0. In general, the higher the number of samplesN, themore robust the procedure
becomes towards noise and the higher the frequencies that can be reconstructed (Nyquist–Shannon sampling
theorem [27])—at the expense of computational effort. For clearness, assume thatN is even. From the sampled
signal, create theHankelmatrices Î ´F F, N N1 2 2 2( ) ( ) , defined as

2
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Note that for complex signals, thematrices F 1( ) and F 2( ) are symmetric but in general notHermitian. In other
implementations, F 1( ) and F 2( ) do not even need to be square. To keep the notation clear, we proceedwith
squarematrices as just defined. Set m l Dek

tk≔ for = ¼k p1, , . It is easy to see that F 1( ) can be factorized as

=F M D M 5c
T1 ( )( )

with theVandermondematrix Î ´M N p2 ,
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and diagonalmatrix Î=
´D cdiagc k k

p p p
1≔ (( ) ) . Thematrix F 2( ), on the other hand, can be decomposed as

= mF M D D M 7c
T2 ( )( )

with m Îm =
´D diag k k

p p p
1≔ (( ) ) . Note that equations (5) and(7) are neither the eigenvalue nor the singular

value decomposition of F 1( ) and F 2( ), respectively; the column vectors ofM do not even have to be orthogonal.
We can see from these equations that both F 1( ) and F 2( ) have rank p, whichwill in general also be the case for the
linearmatrix pencil [28]

g g- = -m F F M D D M , 8c
T2 1 ( ) ( )( ) ( )

unless g Î matches an element of the set m =k k
p

1{ } . Hence, all mk are solutions of the generalized eigenvalue
problem (GEVP)

g=F v F v, 92 1 ( )( ) ( )

with Îv N 2. Thematrix pair F F,2 1( )( ) ( ) is in general regular and accordingly results in N 2 generalized
eigenvalues [29]—not all of these correspond to a mk. There are different extensions that take care of this issue
and increase algorithmic stability (see, e.g., [30]). Tomake the algorithm accessible to an efficient quantum
implementation, wewill consider a specificMPMvariant, the directMPM [9]: wemake use of the singular value
decompositions of F 1( ) and F 2( ), keeping only the nonzero singular values and the corresponding singular
vectors,

= Î ´F U S V U V, , , 10i i i i i i N p2 ( )( ) ( ) ( ) ( ) † ( ) ( )

with Î ´S i p p( ) for =i 1, 2. This singular value decomposition of aHankelmatrix of size orderN×N is the
time-critical step of the entire algorithm and it scales withQ N Nlog2( ) using state-of-the-art classical
algorithms [31, 32].WemultiplyU 1( ) † from the left andV 1( ) from the right to

g g- = -F F F U S V 112 1 2 1 1 1 ( )( ) ( ) ( ) ( ) ( ) ( ) †

and see that the resulting equivalent GEVP

g=U F V w S w, 121 2 1 1 ( )( ) † ( ) ( ) ( )

with Îw p, yields exactly m =k k
p

1{ } as eigenvalues and via l m= Dtlogk k( ) the corresponding poles. The
eigenvalues can be retrieved inQ p3( ) steps using theQZ algorithm [33]. Although in general it can be
numerically favorable to solve theGEVPdirectly [29], S 1( ) is an invertible diagonalmatrix and it is in practice
sufficient to solve the equivalent ordinary eigenvalue problem

g=-S U F V w w. 131 1 1 2 1( ) ( )( ) ( ) † ( ) ( )

The coefficients ck{ }are linearly related to the signal and can be obtained by plugging m =k k
p

1{ } into an
overdeterminedVandermonde equation system,
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and computing the least squares solution
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in terms of the 2-norm, 2· , e.g. via applying theMoore–Penrose pseudoinverse + -W W W W1≔ ( )† † to the
signal vector f. Thus, all parameters that determine the signal are reconstructed.

3.Quantum implementation

In the following, we describe how to implement an efficient quantum analogue of theMPM.

Algorithm2.Quantummatrix pencil algorithm.

Data:Discretized signal with components = å l
=

Df c ej k
p

k
t j

1
k · , = ¼ -j N0, , 1,

Re l lÎc , , 0k k k( ) either fromQRAMor encoded in a quantum state.

Result: Frequencies l =k k
p

1{ } and coefficients =ck k
p

1{ } .

begin

Perform concatenated phase estimations via exponentiatingHermitianmatrices  F F,1 2( ) ( ) that contain thematrices F 1( ), F 2( ), respectively,

yielding the p biggest singular values and the overlaps á ñu uj k
1 2{ ∣ }( ) ( ) and á ñv vj k

1 2{ ∣ }( ) ( ) of the according left and right singular vectors.

Construct the accordingmatrices and solve the eigenvalue problem classically to obtain the poles lk{ }.
Build a fittingmatrix from the poles and obtain the coefficients ck{ }via quantum linearfitting.

For an efficient quantumalgorithm,we assume that the number of poles p is constant and small relative to
the number of samplesN, which is a natural setting since in practice, we are often interested in damped line
spectrawith fewer constituents and higher sampling rates for robustness towards noise. The guiding idea is to
condense all arrays of size O N( ) in equation (13) into arrays of size O p( ) by rewriting thefirst term in
equation (12),

as
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with   Î ´, p p. The singular values sk
j{ }( ) will be obtained via quantumphase estimation [34, 35], the

overlaps á ñv vk
i

l
j∣( ) ( ) via two concatenated quantumphase estimations. The eigenvalue problem equation (13),

  g=-S S w w, 171 1 2( ) ( )( ) ( )

is nowdetermined by p2 2 complex and p2 real numbers, and can easily be evaluated classically inQ p3( )
operations, yielding the required poles l m= Dtlogk k( ) for = ¼k p1, , . Thus, as other efficient quantum
algorithms [36, 37], the classical result is a low-dimensional read-out quantity. Otherwise, the read-out costs
would neutralize any performance gain in the algorithm. After that, the poles are used as input for a quantum
linearfitting algorithm yielding the coefficients ck{ }. In the following, we describe the individual steps of the
quantumalgorithm in detail.We start by discussing the quantumpreparation of theHankelmatrices.

3.1. Accessing the data
In order to realize a quantum speedup, the signal has to be accessible in a fast and coherent way—otherwise, the
read-in process alonewould be too costly. The data input for thematrix pencil algorithm consists of a time series

4
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=
-fj j

N
0
1( ) .We consider two crucially different approaches of data access/availability for the quantumalgorithm,

with themain focus of this work being on thefirst approach:

(i) The signal is stored in a quantum accessible form such as quantum RAM. In other words, we are provided
with access to the operation

ñ ñ ñ ñj j f0 18j∣ ∣ ∣ ∣ ( )

for = ¼ -j N0, , 1, with the signal values encoded in binary form in the second quantum register. In

order to create theHankelmatrix = Î+ + - =
´F fi

j k i j k
N N N

3 , 1
2 2 2( )( ) and =i 1, 2, we can perform the

following operationwith straightforward indexmanipulations,

ñ ñ ñ ñ ñ ñ ñ ñ+ + -j k i j k i f0 19j k i 3∣ ∣ ∣ ∣ ⟼ ∣ ∣ ∣ ∣ ( )

for = ¼j k N, 1, , 2. The ancilla prepared in ñi∣ , =i 1, 2, will be used in an entirely classicalmanner. This
operation can be used to simulateHankelmatrices via the non-sparsematrix simulationmethods of
[24, 38].
Oneway to implement signal access in equation (18) is viaQRAM [21, 22]. As discussed in [21, 22], the
expected number of hardware elements that are activated in aQRAMcall is O Npoly log( ). For each
memory call, the amount of required energy and created decoherence thus scales logarithmically with the
memory size. Note that because of their peculiar structure, ´N N( )-Hankelmatrices require only O N( )
elements to be stored. In comparison, a general s-sparsematrix requires storage of O Ns( ) elements.

(ii) As a second approach, we have been givenmultiple copies of particular quantum state vectors encoding the
data in their amplitudes. This approach does not require quantumRAMandoperates using the quantum
principal component algorithm(QPCA). Importantly, ourmethod then compares to theQFT in the sense
that it operates on a given initial state that contains the data to be transformed.
The states that are processed byQPCA correspond to positive semidefinitematrices, which is in general not
the case for theHankelmatrices F i( ). Adding a sufficiently scaled unitmatrix would enforce positivity, but
the resultingmatrix would not have the required low rank anymore. It turns out, however, that by
employing a new type of extendedmatrix, we can useQPCA to compute singular value decompositions of
indefinitematrices andmake it applicable for our algorithm, as isfleshed out in appendix B. The given state
vectors have to be of a particular form such as

åc ñ = ñ ñ ñ + ñ
=C

j k F a F F
1

0 1 , 20i

i
j k

N

j k
i i i i

j k
, 1

2

, ,∣ ∣ ∣ ( ∣ ( ) ∣ ) ( )( )
( )

( ) ( ) ( ) † ( )

with = +   C F a F Fi i i i i
2
2 2

2
2( )( ) ( ) ( ) ( ) † ( ) and a known scaling constant a i( ) such that

=-a O F Fmaxi
j k

i i
j k

1
, ,( ) ( ∣( ) ∣)( ) ( ) † ( ) , where F i

2
( ) is the Frobenius normof F i( ). This state includes in its

amplitudes information about theHankelmatrix F i( ) and F Fi i( ) † ( ). The particular formof c ñi∣ ( ) will become
clear in the next section. The advantages of thematrix pencil algorithmover the usual Fourier transform
come at a price in the quantum algorithm:we require availability of the state vectors c ñi∣ ( ) instead of the
signal state vector å ñf jj j∣ .

In the next section, we showhow the operation in equation (18) or, alternatively,multiple copies of c ñi∣ ( ) can
be used to efficiently simulate aHermitianmatrix that encodes the eigenvalues and associated eigenvectors of the
Hankelmatrices.

3.2. Simulating theHankelmatrices
Wewould like to obtain the singular values and vectors of F 1( ) and F 2( ) with a quantum speedup via phase
estimation, which for real signals correspond, up to signs, to their eigenvalues and vectors. Since the procedure is
the same for F 1( ) and F 2( ), for clarity wewill drop the index in this section and use F for bothmatrices. Phase
estimation requires the repeated application of powers of a unitary operator generated by aHermitianmatrix to
find the eigenvalues and eigenvectors of thatmatrix. Thus, we need to connect bothHankelmatrices, generally
non-Hermitian, toHermitianmatrices. Depending on the input source discussed in the previous section, this is
done in different ways.

Generally, since F is not sparse, we cannotmake use of the sparse simulation techniques described in [39].
Although bothmatrices have low rank p N , theywill in general not be positive definite, so thatQPCA [20]
cannot readily be used either. Note that although F F† and FF† are positive definite, provide the correct singular
vectors of F, and can be efficiently exponentiated, the phase relations between left and right singular vectors,
which are necessary for thematrix pencil algorithm, are not preserved. This insight can be taken as yet another
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motivation to look formore general efficientmethods to exponentiatematrices that exhibit a suitable structure,
such as being low-rank, sparse or having a low tensor rank.

For the oracular setting (i), we construct aHermitianmatrix F and apply the unitary operator - e F ti to an
initial quantum state. Hereto, we employ the ‘extendedmatrix’

⎡
⎣⎢

⎤
⎦⎥ Î ´F F

F
0

0
, 21N N≔ ( )†

which isHermitian by construction. Its eigenvalues correspond to the singular values = ¼s j N, 1, , 2j , of F
and its eigenvectors are proportional to  Îu v,j j

N( ) . Importantly, the phase relations between left and right
singular vectors are preserved. Note that an operation analogous to equation (18) for the extendedmatrix can be
easily constructed from equation (18). Themethod developed in [24] allows us to exponentiate non-sparse
Hermitianmatrices in this oracular setting. Following their discussion, equation (19) ismapped to the
corresponding entry of amodified swapmatrix SF , resulting in thematrix

å ñá Ä ñá Î
=

´S F k j j k . 22F
j k

N

j k
N N

, 1
,

2 2≔ ∣ ∣ ∣ ∣ ( )

In [24], it is shown that performing infinitesimal swap operations with SF on an initial state r sÄ with auxiliary
state r =N1 j k

N
, 1≔ ( ) is equivalent to just evolvingσ in timewith theHamiltonian F for smallD >t 0, i.e.

r s sÄ »- D D - D D  tr e e e e . 23S t S t F t N F t N
1

i i i iF F( ) ( )

Themodified swapmatrix SF is one-sparse within a quadratically larger space and can be efficiently
exponentiatedwith themethods in [39–41]with a constant number of oracle calls and run time

~
O Nlog( ),

wherewe omit polylogarithmic factors inO by use of the symbol
~
O . Achieving an accuracy e > 0 for the

eigenvalues requires

⎛
⎝⎜

⎞
⎠⎟e

 
O

F
24max

2

2
( )

steps in the algorithm [24], where F max denotes themaximal absolute element of F . The phase estimation is
performed as discussed in [42] to obtain the e1 2 scaling compared to the e1 3 scaling of the original work
[20, 24]. Note that in our setting = QF 1j k,∣ ∣ ( ) and in particular = Q F 1max ( ). The run time is the number of

stepsmultiplied by the run time of the swapmatrix simulation, i.e. e~
O Nlog 2( ). In appendix A, we discuss an

alternative approach for efficientmatrix exponentiation developed in [38], and check its applicability to our
algorithm.

In setting (ii), wherewe are givenmultiple copies of state vectors, we proceed in a different way employing
QPCA. The state vector cñ∣ can be reduced to a particular quantumdensitymatrix as

⎡
⎣⎢

⎤
⎦⎥c cñá

C

FF a F F F

a F F F a F F F F
G

1
. 25

2
∣ ∣ ⟼ ( )

( ) ( )( )
≕ ( )

† †

† † † †

With quantities = +   C F a F F2
2 2

2
2( )† and =-a O F Fmaxj k j k

1
, ,( ∣( ) ∣)† as before. In the sameway,

⎡
⎣⎢

⎤
⎦⎥


C

a F F F F a F F F

a F F F FF
G

1
26

2 ( )( ) ( )
( )

≕ ( )
† † †

† † †

can be prepared froma permuted state vector cñ∣ . Thematrix

+ Z G G 2 27≔ ( ) ( )

is positive semi-definite with unit trace by construction, just as required by theQPCA. Invoking the singular
value decomposition of =F USV †, its eigenvalues in terms of the singular values of F are given by

s as C1 2j j
2 2( ) ( ), its eigenvectors are  Îu v,j j

N( ) . ThematrixZhas twice the rank of F. The application of
QPCA then allows resolving its eigenvalues to an accuracy e > 0 using

⎜ ⎟⎛
⎝

⎞
⎠e

O
1

28
2

( )

copies of cñ∣ and cñ∣ [20] for a total run time of again e~
O Nlog 2( ). In appendix B, we provide further details on

thismethod.
Both the oracular and theQPCA setting can be employed in quantumphase estimation to obtain the

singular values and associated singular vectors of theHankelmatrices in quantum form. Phase estimation allows
the preparation of
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å b ñ ñ
=

s u v, , 29
k

p

k k k k
1

2

∣ ∣ ( )

where =F USV † is the singular value decompositionwith right and left singular vectors uk and vk. The
associated singular value sk is encoded in a register. The bk arise from the choice of the initial state. The next
section describes concretely how consecutive phase estimation steps are used for thematrix pencil algorithm as a
building block to obtain the signal poles and expansion coefficients.

3.3. Twofold phase estimation
In this section, we describe how to obtain the singular vector overlaps j k,{ }and j k,{ }. Hereto, we perform two
concatenated phase estimation procedures to obtain states that encode these overlaps in their amplitudes, which
are essentially determined by tomography. It is important to pay attention to the correct phase relations between
the overlaps. Phase estimation is applied to a specific initial state and an additional eigenvalue register. Initial
states with large overlapwith the eigenstates of F , equation (21), orZ, equation (27), respectively, can be
prepared efficiently. For example, ñáFF FFtr 0 0( )∣ ∣† † or ñáF F F Ftr 1 1( )∣ ∣† † are suitable initial states and can be
prepared from the oracle equation (18) [20]. For both initial states, the tracewith an eigenvector ñu v,k k∣ is
s så2k j j

2 2( ). Alternatively, if we have been givenmultiple copies of cñ∣ , we can simply takeZ to be the initial
state [20].

We append two registers for storing the singular values to the initial state, obtaining yñ ñ ñ0 0 0∣ ∣ ∣ with the
notation ñ ¼ ñ0 0, , 0∣ ≔ ∣ , and perform the phase estimation algorithmwith - De S ti

F
2˜( ) as a unitary operator to

obtain a state proportional to

å yá ñ ñ ñ ñ
=

u v s u v, 0 , , 30
k

p

k k k k k
1

2
2 2

0
2 2 2∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( )

where for clarity we order the eigenspaces such that positive singular values are putfirst, i.e. = -+s sk p k
2 2( ) ( ),

=+u uk p k
2 2( ) ( ), and = -+v vk p k

2 2( ) ( ) for = ¼k p1, , . To obtain the overlaps of thematricesU 1( ) andU 2( ), the v-part

of the eigenvector of F 2( ) is projected out, yielding

å åy
n

yñ = á ñ ñ ñ ñ ñ ñ ñ
= =

u v s u g s u
1

, 0 , 0 0 , 0 31
k

p

k k k k
j

p

k k k1
1 1

2
2 2

0
2 2

1

2
2 2∣ ∣ ∣ ∣ ∣ ≕ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( )

with normalization factor n Î +1 and å == g 1k
p

k1
2 2∣ ∣ . Each singular value Î +sk

2( ) can be determined

efficiently from this with accuracy es in a runtime of esO Nlog 3˜ ( ) (see section 3.2).We need to determine the
amplitudes gk{ }, which have to be removed from the overlap values. For this, we essentially perform standard
tomography of the quantum state equation (31). The singular register vectors ñ =sk k

p2
1

2{∣ }( ) are pairwise
orthogonal, so that the amplitudes =gk k

p
1{ } can be efficiently obtained—up to a global complex phase Jei 1—via

measurements e.g. of the form

ñá ñá ñ + ñ á + á ñ - ñ á + ás s s s s s s s s s s s, , , i i , 32k k k k k k k k k k k k
2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2 1 2 1 2

∣ ∣ ∣ ∣ (∣ ∣ )( ∣ ∣) (∣ ∣ )( ∣ ∣) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

with probabilities

Re Im* *+ + + +g g g g g g g g g g, , 2 , 2 , 33k k k k k k k k k k
2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( ) ( )

respectively. Suppose gk1
is known. Then gk2

can easily be obtained from equation (33). Hence, byfixing one

global phase Jei 1 (e.g. corresponding to = +g g1 1
! ∣ ∣ ), all values =gk k

p
1

2{ } are unambiguously determined.
Requiring an accuracy

 e = g g 34g
1 2( ) ( ) ( )

of the probabilities in equation (33) for = ¼k p1, , , denoting expected value and variance with  and ,
respectively andwith xg the reciprocal of the smallest probability, we require x eO g g

2( )measurement repetitions
for each amplitude.We thus have established the values

y
n

= á ñ = ¼J
J

g u v k pe ,
e

, 1, , 2 . 35k k k
i 2 2

0

i

1

1
1

∣ ( )( ) ( )

Next, the state vector y ñ1∣ is used as input for a second phase estimation procedurewith - De S ti
F

1( ) as unitary
operator, yielding
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å

å

y
n

yñ = á ñá ñ ñ ñ ñ

ñ ñ ñ

=

=

u v u v u s s u v

h s s u v

1
, , , 0 ,

, 36

j k

p

k k j j k j k j j

j k

p

j k j k j j

2
2 , 1

2
2 2

0
1 1 2 1 2 1 1

, 1

2

,
1 2 1 1

∣ ∣ ∣ ∣ ∣ ∣

≕ ∣ ∣ ∣ ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

with normalization factor n Î +2 andå == h 1j k
p

j k, 1
2

,
2∣ ∣ . The inner product á ñu v u, , 0j j k

1 1 2∣( ) ( ) ( ) reduces to

á ñu uj k
1 2∣( ) ( ) with vectors in N . The sameway as above, we determine the singular values sj

1{ }( ) and the values

y
n

= á ñá ñ = ¼J
J

h u v u u j k pe ,
e

, , 1, , 2 , 37j k k k j k,
i 2 2

0
1 2

i

2

2
2

∣ ∣ ( )( ) ( ) ( ) ( )

up to eh with global phase Jei 2 with x eO h h
2( ) repetitions for each amplitude.Dividing the values in equation (37)

by the ones in equation (35), we obtain

   n n= á ñ = ¼J Ju u j k pe e , , 1, , 2 , 38j k j k,
i 1 2 i∣ ( )( ) ( )

with J J J-2 1≔ , n n n1 2≔ and accuracy e e~ +g h. The established overlaps

á ñ á ñ á ñ á ñ+ + + +u u u u u u u u, , , 39j k j p k j k p j p k p
1 2 1 2 1 2 1 2∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

correspond to the samematrix entry of  for = ¼j k p, 1, , and can be averaged over. This way, thematrix  is
determined up to a global phase and a normalization factor. Repeating the entire procedure, butwith projecting
out the u-part,

ñ ñ = ¼u v v k p, 0, , 1, , 2 , 40k k k
2 2 2∣ ∣ ( )( ) ( ) ( )

yields all overlaps á ñ =v vj k j k
p1 2
, 1{ ∣ }( ) ( ) , the entries of  , up to a factor  n Jei . Note that

á ñ = -á ñ = -á ñ = á ñ+ + + +v v v v v v v v 41j k j p k j k p j p k p
1 2 1 2 1 2 1 2∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

for = ¼j k p, 1, , because the v-parts of the F i( ) eigenvectors from = ¼k p1, , and = + ¼k p p1, , 2 have
opposite signs. For real-valued signals andHermitian F i( ), we can perform the procedurewith - De S ti F i( ) instead
of - De S ti

F
i( ) and do not need to project the u- and v-parts.

In summary, we have determined the singular values formingmatrix S i( ) to accuracy es in time e~
sO p 2( ). In

addition, we have determined the overlaps of the right and left singular vectors of the twoHankelmatrices F 1( )

and F 2( ). The required number of repetitions is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

e
x

e
x= +n O

p p
42

g
g

h
h2

2

2
( )

for obtaining the entries of  and analogously n for obtaining the entries of  .With

⎛
⎝⎜

⎞
⎠⎟e

= ~
fn O

Nlog
43

2
( )

for the cost of the phase estimation, this leads to a total run time of

⎛
⎝⎜

⎞
⎠⎟ 

x
e

+ = ~
fn n n n O

p
Nlog , 44

2

4
≔ ( ) ( )

with x x xmax ,g h≔ { }. The performance scales as =n O Npoly log( ) for example in the following regime:
first, the number of poles is small compared toN, which is a natural regime, asmentioned above; second,
regarding ξ, if the overlaps are not too small, x = O Npoly log ;( ) and third, an error e = O N1 poly log( ) can
be tolerated.

3.4. Solving the small classical problem
Having determined the values via phase estimation, the reconstructed eigenvalue equation (17)now reads

     n n g=J J+ -w S S w we . 45i 1 1 2ˆ ≔ ( ) ( )( ) ( ) ( )

All (scaled)matrix entries of equation (45) are available classically andwe can solve the problemwith a classical
algorithm [33] runningwith time O p3( ). The errors in thematrix entries are amplifiedwithin the entries of the
matrix product entries j k,

ˆ by a factor of ppoly at worst. Taking the inverse of S 1( ) amounts to inverting its
diagonal entries, hence the relative errors of -S j j

1
,
1( )( ) are unchanged. These are only small if the effective singular

values of F 1( ) (the ones bigger than a suitable threshold q1) are sufficiently bigger than zero, resulting in a
condition number of S 1( ) bounded by qSmaxj j j,

1
1( )( ) .  as well as the perturbedmatrix   = + Dˆ will in

general not be normal, but diagonalizable:  l= -X Xdiag j
1( ) . According to the Bauer–Fike theorem [43], we

can order the eigenvalues lj{ ˆ }of ̂ such that
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 l l k- - X 46j j 2∣ ˆ ∣ ( ) ˆ ( )

for = ¼j p1, , , where k -   X X X2
1

2( ) ≔ is the condition number ofX, which represents the amplification
factor of thematrix perturbation towards the perturbation of the eigenvalues. Thematrix perturbation
contributes linearly, while the condition number ofX, which is independent of the perturbation D , is related
to the condition of the underlying inverse spectral estimation problem. This could in principle be ill-conditioned
(e.g. for the reconstruction of extremely small or highly damped spectral components relative to the other ones),
but we aremore concernedwith problems that are also of interest in the classical world and hence sufficiently
well-conditioned. Note that p, the number of poles, is small by assumption so that this classical step does not
pose a computational bottleneck for the algorithm. For noisy signals, the rank of F i( ) will in general be larger
than p, F i( ) could even be full rank—for not too large noise, however, the additional noise components will
remain small such that the effective rankwill still be at p. Since only the biggest components of F i( ) are taken into
account, this results in a rank-p approximation that is best in the Frobenius norm sense (Eckart–Young theorem
[44]) and an effective noisefiltering of the underlying signal.

The eigenvalues gk of equation (45) are determined up to    j j n n- + -e i log( ) ( ), which corresponds to a
uniform translation of all poles.We can take care of this ambiguity by introducing an additional reference pole
l 0ref ≔ (corresponding to the eigenvalue m = 1ref ) that has to be incorporated into the original signal. This can
easily be achieved by adding any constant to the original signal vector (its normalizability is not affected). Since
for exponentially damped signalsRe l 0k( ) holds for each k, the eigenvalue gref corresponding to the
reference polewill still be identifiable as the onewith the biggest absolute value gk∣ ∣. Simply dividing all gk by gref
(corresponding to the transformation    l l j j n nD D + + +t t i logk k ( ) ( ) for each k) then yields the
correct values mk{ }and poles.

3.5.Quantum linearfitting
We feed the poles back into the quantumworld by using the quantumfitting algorithmdescribed in [25, 26] to
obtain the coefficients ck{ } in O N plog( ( ) ) steps and hence the entire parametrization of the input function.We
consider real and imaginary parts of the signal f, the poles l a bD - +t ik k k≕ and the coefficients

= +c a bik k k separately, and equation (14) becomes

=~
W c f 47˜ ˜ ( )

with

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

b b b b

b b b b

b b b b

b b b b

=

- -

- -~ ~ ~ ~

~ ~ ~ ~

~

a a a a

a a a a

a a a a

a a a a

- - - -

- - - -

- - - -

- - - -

~ ~ ~ ~

~ ~ ~ ~

   

   

W
N N N N

N N N N

:

e cos 0 ... e cos 0 e sin 0 ... e sin 0

e cos ... e cos e sin ... e sin

e sin 0 ... e sin 0 e cos 0 ... e cos 0

e sin ... e sin e cos ... e cos

,

p p

N N
p

N N
p

p p

N N
p

N N
p

0
1

0 0
1

0

1 1

0
1

0 0
1

0

1 1

p p

p p

p p

p p

1 1

1 1

1 1

1 1

( · ) ( · ) ( · ) ( · )

( · ) ( · ) ( · ) ( · )
( · ) ( · ) ( · ) ( · )

( · ) ( · ) ( · ) ( · )

· · · ·

· · · ·

· · · ·

· · · ·

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

Re Im

Im Re

Re

Re

Im

Im

Re

Re

Im

Im

  
m m

m m
=

-
Î Î Î~

- -

- -
´

~

~









W w c

c

c

c

c

f

f

f

f

f

, , ,j k
k
j

k
j

k
j

k
j

N p p

p

p N

N

N
,

1 1

1 1
2 2

1

1

2

0

0

2≔ ( )
( ) ( )

( ) ( )
˜ ≔ ˜ ≔

and -~
N N 1≔ . The vector 2-normof the kth columnof

~
W can be established in closed form as

a a
-
-

> =
a

a

-

-
N

1 e

1 e
, if 0, and , if 0. 48

N

k k

2

2

k

k
( )

Hence,
~ W 2 can be computed in time O p( ).Wewill rescale the solution for c such thatwe can assume that

=~ W 12 . The norms ofmatrices
~ W 2 for real-valued signals can be calculated aswell by combining the

norms of the kthwith the +k p( )th column. Since each row consists of p2 elements, the rownorms can be
computed in O p( ) aswell.

Since a a b b,k k≔ ( ) ≔ ( ) are known,we can construct a quantumoracle, providing quantum access to the
matrix entries a bw ,j k, ( ),

a b a b a bñ ñ ñ ñ ñ ñ ñ ñ ñ ñj k j k w0 , . 49j k,∣ ∣ ∣ ∣ ∣ ⟼ ∣ ∣ ∣ ∣ ∣ ( ) ( )
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Thematrix
~
W can be prepared as a state vector

å åñ = ñ ñ
= =

w w j k 50
j

N

k

p

j k
1

2

1

2

,∣ ∣ ∣ ( )

following the procedure described in [26]with time x z~
O N ppoly log log 1W( ( ) ( )), where ζ is the accuracy of

the preparation of ñw∣ and

x    w wmax min . 51W j j2 2≔ ( )

Here, we set
~
O g N O g N g Npoly log( ( )) ≔ ( ( ) ( ( ))) for functions g. For the preparation of ñf∣ ˜ , we require time

x z~
O Npoly log log 1f( ( ) ( ))with

x f fmax min . 52f j j≔ ∣ ˜ ∣ ∣ ˜ ∣ ( )

With ñw∣ and ñf∣ prepared, we then can proceed as described in [26, theorems2 and 3] and obtainwith
probability bigger than 2/3 an estimate ĉ in time

k x e k x k x e e+ F + F F
~
O N p p ppoly log 2 2W f W f W W

3 2 2 6 5 4( ( ) ( ( ) ) ), with 2-norm accuracy ε,

k = ~ ~+   W WW 2 2, and normΦ of the projection of f̃ onto the column space of
~
W , the fit quality.

Importantly, we can estimate the quality of thefit with time x x k e e+
~
O N ppoly log 2f W W

3 4( ( )( ( ) ) ). Note
that sampling ĉ is efficient because it comprises O p( ) components. Altogether, we have determined the sought-
after coefficients and hence all parameters that characterize the signal f in Npoly log . This concludes the
description of the quantummatrix pencil algorithm.

4. Summary anddiscussion

Wehave developed a quantum implementation of an important algorithm for spectral estimation, theMPM,
taking a tool from signal processing to the quantumworld and significantly improving upon the effort required.
Given the arguable scarcity of quantum algorithmswith this feature, progress in this respect seems highly
desirable. The quantumMPM is a useful alternative toQFT inmany practical applications such as imaging or
simulation of atomic systems, in the sameway that classicalMPMs and related algorithms are useful alternatives
to the classical Fourier transform. This is especially the case for signals with close damped poles and limited total
sampling time. The presented algorithm can be applied to classical data to solve the classical problem at hand.

For a signal given byN equidistant samples, we havemade use of the fact that the eigenvalue problem
equation (17) consisted of largematrices of size O N( ) that could, however, be contracted intomanageable
matrices of size O p( ) via concatenated use quantumphase estimations in O Npoly log( ). This justifies the use
of a quantumversion of theMPMas opposed to quantum versions of related algorithms like Pronyʼsmethod,
where the p quantities leading the corresponding poles are determined in a later step, during the fitting of the
coefficients, and the critical stepwould already be O Npoly( ).

The quantumphase estimationwas shown to be implementable in two complementary ways: either by
retrieving the input signal via quantumoracle calls such as quantumRAM, or by usingmultiple copies of a state
with the signal encoded in its amplitudes forQPCA. The developed extendedmatrix construction for indefinite
matrices significantly expands the set ofmatrices that can be exponentiated viaQPCA. SinceQPCA so far solely
relied on positive semidefinitematrices, we expect this to be a useful newprimitive also for other quantum
algorithms.

The actual step to determine the poles from an eigenvalue problemof a p×pmatrix can be performed
classically since p is assumed to be small. Subsequently, feeding back the established poles into a quantum fitting

algorithm allows the coefficients of the signal again to be determined efficiently in
~
O Npoly log( ). This way, we

have an effective division of labor between classical and quantum algorithms, to the extent that such a hybrid
algorithm is possible efficiently. Classical intermediate steps are for example reminiscent of quantum error
correction, where error syndromes aremeasured and the quantum state is processed according to the classical
measurement results [45].

In order to create an efficient quantum algorithm, it is essential to adress certain caveats, which are succinctly
listed inAaronson [46] using the example of the groundbreakingwork in [47]: both for theQRAMand the
QPCA setting, the input data can be accessed quickly enough and theHankelmatrices can be exponentiated
efficiently—due to being sparse in a quadratically larger space or by fulfilling theQPCA requirements,
respectively. For this, it is necessary that the entries of theHankelmatrices and hence the input signal have a
similarmagnitudeQ 1( ). Furthermore, for twofold phase estimation, as for general phase estimation, we need to
be able to prepare initial states that provide sufficiently large overlapwith the states we use for further processing.
In theQRAM setting as well as in theQPCA setting, one can employ initial states that are closely related to the
input signal. Analogously, the overlaps in thematrices  and  need to be sufficiently large. Reading-out the
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O N( ) components of the state vectors would foil the achieved quantum speedup; however, as in [36, 37], the
number of necessary output quantities in our algorithm is condensed down to O p( ). Each output can be
determinedwith time

~
O Npoly log( ( )), provided that Vandermondematrix

~
W from the established

frequencies is sufficiently well-conditioned, analogous to the requirements related to the condition number in
thematrix inversion algorithm [47]. Naturally, we are interested in sufficiently well-behaved signals where a
classicalMPMalgorithm could in principle reconstruct all of its components, excluding e.g. highly damped or
relatively small terms, whichmanifest themselves again in the conditioning of thematrix inversion. In this
respect, the quantumMPM inherits the properties related to the conditioning of its classical analogue.

The outlined procedure is generalizable to arbitrary signal dimensions d, i.e. signals of the type
¼ = å l l

¼ = ¼
+ +f t t c, , ed k k

p
k k

t t
1 , , 1 , ,

...
d d

k kd d

1 1
1 1( ) , with Îc pd by suitable tensor contractions of the array of

signal samples ¼ =
-fj j j

N
, , 0

1

d l1
( ){ } [5] orfixing all time indices but one and applying theMPMon the remaining

vector. This yields the sought-after poles since they are the same for the different time indices ti. For time index-
dependent poles, one can consider ‘enhancedmatrices’—embeddings ofHankelmatrices that correspond to
one-dimensional projections of themultidimensional signal within a larger blockHankelmatrix—as in [48].
There aremany potential applications for this, e.g. in radar imaging and geophysics [49].

Beyond the potential use of reducing the computation time of theMPM in its classical applications or
classical postprocessing in quantum applications, it is alsoworthwhile to consider the possibilities in a pure
quantum setting: these include the examination of quantum systems that feature a discrete set of damped
oscillations such as the vibronicmodes ofmolecules in a condensed-phase environment where the data—as
opposed towhat is usually done—would also have to be taken in a quantum coherentmanner in order to replace
quantumRAMor to build a state as in appendix B and subsequently be processed by the quantumMPM.

We expect themethods and primitives thatwe develop and introduce here to be highly useful alsowhen
devising other quantumalgorithms. This includes the new ideas on the computation of overlaps by suitably
concatenating quantumphase estimation procedures and on the efficient exponentiation of a novel type of
structuredmatrices on a quantum computer.We hope that the present work stimulates such further research.
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AppendixA. Alternative non-sparse quantumoraclemethod

Berry et al present amethod to exponentiatematrices sublinear in the sparsity [38]. In this section, we
summarize the performance and requirements of thismethod and the application to the low-rankHankel
matrices of the present work. The number of oracle queries for simulating amatrix such as theHermitian F i( ) in
equation (21) is given by

eLO t s , A13 2
tot( ) ( )

where s is the sparsity and ε is the error. The quantity L > 0tot depends on the norms of thematrix as
L = LLLtot 1 max with the spectral norm L = ¥ F i( ) , themaximumcolumn sumnorm L =  F i

1 1
( ) , and the

maximummatrix element L =  F i
max max

( ) . The conditions for this towork are given by  eLt ,

 L
L L

t
s

, A2
max 1

( )

and L L1.
We confirm that under reasonable assumptions the low-rank non-sparseHankelmatrices under

consideration in this work can be simulatedwith O Nlog( ) queries. Assume that the signal is reasonably small

with not toomany zeros. This implies that thematrix F i( ) is non-sparse with = Qs N( ) and the individual
elements scale as = QF 1jk

i ( )( )
. If we assume that the signal is generated by a few (in fact, p) components, then the

matrix is low rankwith rank p2 . Since l= å =   F N Ftr i
j
p

j
i2

1
2 2 2

max
2(( ) )( ) ( ) , we have that the significant

eigenvalues scale as l = Q Nj ( ), =j p1, ..., 2 . These assumptions have the following straightforward
implications:

(i) The spectral norm (largest eigenvalue) is L = Q N( ),
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(ii) the induced 1-norm (maximum column sum) is L = Q N1 ( ), and

(iii) themaximumelement is L = Q 1max ( ).

Thus, L = Q Ntot
2( ) and the total number of queries is eQO t N3 2 3( ( ) ).We need time = Qt N1( ) to

resolve the eigenvalues l = Q Nj ( ) via phase estimation. Thus, at an error ε, we need eO 1( ) queries, which is
again efficient.

We show thatwe can satisfy the conditions as follows. Sincewe have = Qt N1( ) already fromphase
estimation, we can assume that with constant effort  e eL = Qt N( ). Next, by using (i)–(iii) and
= Qs N( ), we have

⎜ ⎟⎛
⎝

⎞
⎠ L

L L
= Qt

s N

1
. A3

max 1

( )

The third criterion L L1 is satisfied byGershgorinʼs theorem, since the eigenvalues are bounded by the
maximum sumof the absolute elements in a row/column.

Appendix B.Matrix exponentiation viaQPCA

In this appendix, we present an alternativeway to efficiently exponentiate indefinitematrices, in order to give
more substance to ideas of exponentiating structuredmatrices while at the same time preserving a phase
relationship. Since exponentiatingmatrices Î ´F N N2 2 while a preserving phase relationship is key to the
above algorithm and is expected to be important in other quantumalgorithms, we briefly present an alternative
method that accomplishes this task viaQPCA. Thismethod compares to theQFT in the sense that it operates on
a given initial state that contains the data to be transformed in its amplitudes without queryingQRAM.We
assume thatwe have been presentedwithmany copies of the state vector

åcñ = ñ ñ ñ + ñ
=C

j k F a F F
1

0 1 , B.1
j k

N

j k j k
, 1

2

, ,∣ ∣ ∣ ( ∣ ( ) ∣ ) ( )†

with +   C F a F F2
2 2

2
2≔ ( )† and -a O F Fmaxj k j k

1
, ,≔ ( ∣( ) ∣)† . Thematrix F takes the role of F 1( ) and F 2( ) of the

main text, so again the classical index i is suppressed. Note that even though a is exponentially small, the
individual amplitudes of this state are of similar size. Reducing the state in terms of the k index leads to

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟* *å åc cñá = ñá ¢ ñ + ñ á + á

¢ =
¢ ¢

C
j j F a F F F a F Ftr

1
0 1 0 1 .

j j k

N

j k j k j k j k2
, 1

2

, , , ,(∣ ∣) ∣ ∣ ( ∣ ( ) ∣ )( ∣ ( ) ∣)† †

Inmatrix form, this reduced densitymatrix is written as

⎡
⎣⎢

⎤
⎦⎥G

C

FF a F F F

a F F F a F F F F

1
. B.2

2
≔ ( )

( ) ( )( )
( )

† †

† † † †

By the use of the singular value decomposition of =F USV †, thismatrix—positive semi-definite by
construction—can bewritten as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=G

C
U

V
S a S

a S a S
U

V

1 0
0

0
0

. B.3
2 3

3 2 4
( )

†

†

In precisely the sameway, we are givenmultiple copies of the state

åcñ = ñ ñ ñ + ñ
=


C

j k a FF F
1

0 1 . B.4
j k

N

j k j k
, 1

2

, ,∣ ∣ ∣ ( ( ) ∣ ∣ ) ( )† †

Again reducing the state in terms of the k index leads to

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟* *å åc cñá = ñá ¢ ñ + ñ á + á

¢ =
¢ ¢ 

C
j j a FF F a FF Ftr

1
0 1 0 1 ,

j j k

N

j k j k j k j k2
, 1

2

, , , ,(∣ ∣) ∣ ∣ ( ( ) ∣ ∣ )( ( ) ∣ ( ) ∣)† † † †

leading to thematrix

⎡
⎣⎢

⎤
⎦⎥

G
C

a FF FF a FF F

a F FF F F

1
, B.5

2

≔ ( )( ) ( )
( )

( )
† † †

† † †
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which can be decomposed as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=G

C
U

V
a S a S
a S S

U
V

1 0
0

0
0

. B.6
2 4 3

3 2
( )

†

†

Thematrix

+ Z G G
1

2
B.7≔ ( ) ( )

has still low rank, as it has just twice the rank of F. Its eigenvectors are  Îu v,j j
N( ) and its eigenvalues in

terms of the singular values of F are given by s as C1 2j j
2 2( ) ( ) since

⎡
⎣⎢

⎤
⎦⎥=

+
+

Z
C

FF a FF FF a FF F

a F FF a F F F F F F

1

2

2

2
B.8

2

2

( )( )
( )( )

( )
† † † †

† † † † †

and

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

+
+ 

=
+ 

 
=  

C

FF a FF FF a FF F

a F FF a F F F F F F

u

v

C

s a s as u

as s a s v C
s as

u

v

1

2

2

2

1

2

2

2

1

2
1 . B.9

j

j

j j j j

j j j j
j j

j

j

2

2

2 2 4 3

3 2 2 4
2 2

( )( )
( )( )

( )

( )
( ) ( )

† † † †

† † † † †

This renders standardQPCA [20] readily applicable and allows us to determine the singular spectra ofmatrices
F, even if they are indefinite, by constructing the positive semidefinitematrixZ.
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5 CONCLUSION AND OUTLOOK

Signal processing overlaps with complex quantum systems in many different places. On the one
hand, modern signal processing algorithms are vital for handling the large amounts of data that
the description of large quantum systems entails. On the other hand, with the rise of quantum
computing in sight, the opportunity emerges to accelerate established signal processing routines
with a superpolynomial quantum speedup. In this sense, the goal of this undertakingwas to harness
signal processing for quantum applications and, vice versa, to use quantum systems for the benefit
of signal processing.

Using signal processing techniques like compressed sensing, the limits for fully estimating gen-
eral mixed quantum states can be substantially pushed further. When dealing with experimental
data, which is prone to noise, external parameters have to be introduced, leading to ambiguous re-
sults. By making use of model selection techniques, these ambiguities could be lifted, as was argued
in section 2.3. Still, the curse of dimensionality can only be mitigated because the amount of data is
just reduced by a square root factor, as opposed to the exponential increase of the size of theHilbert
space. This is essentially due to the basically lossless compression character of compressed sensing.
Nevertheless, compressed sensing is of prime importance in handling intermediate-sized quantum
systems.

Making further assumptions about the entanglement and purity of the state, yielding higher
compression rates for the underlyingmodels, tensor networkmethods (section 3.1) can be employed
for quantum tomography. Continuous systems, however, in principle possess infinitely many de-
grees of freedom, posing conceptual challenges abouthowanefficient tomographic procedure should
even look like. With the introduction of continuous matrix product states (cmps), a promising
ansatz class appeared, featuring n-point correlation functions that can be expressed in terms of the
parameter matrices that determine the respective state. In the translation invariant case, only two
finite-dimensional matrices suffice to completely parametrize the state; nevertheless, cmps can ade-
quately model various quantum systems in the low energy regime.[125,129] The relationship between
the cmps parameters and the correlation functions is not straightforward, however, and a series of
reconstruction steps is required to fully determine the state within a tomographic protocol. Impor-
tantly, in the initial step, the correlation functions have to be treated with adapted signal processing
methods for accurate spectral estimation—Prony’s method andmatrix pencil methods. We further-
more extended these methods to handle signals of arbitrary dimension instead of just one-dimen-
sional (time) intervals. The resulting tomographic protocol allowing for the estimation of quantum
field states was presented in section 3.2.

Regarding the experimental realization of quantum field tomography procedures, one-dimen-
sional ultracold Bose gases, which represent systems central for experimentally analyzing thermal
equilibration in the quantum regime, are perfect candidates. Using lower-order correlation func-
tions as input, cmps parameters could be determined to robustly make predictions about higher-
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order statistics that coincidedwith the values directly established from the experiment, resulting in a
successfulmodeling of an ultracold Bose gas quantum systemwith a cmps (see section 3.3). With in-
creasing time, the agreement between the predicted and themeasured statistics deteriorated, which,
beyond signal deterioration due to noise, could be attributed to the entanglement growth after sud-
den quenches and the entailing required increase in model parameters.

An extension of the cmps protocol to counting probabilities as input with an application in a
quantum transport experiment is discussed in the coauthored publication in appendixA.1, allowing
for a closer look on the short-time dynamics of the system. So far, the waiting time distributions for
two consecutively transported electrons could only be accessed for emission rates in the kilohertz
frequency range. By use of the cmps protocol, determining waiting time distributions would in
principle also be possible in the gigahertz range.

A complementary approach for dealingwith the inevitable curse of dimensionality—yet not for
state estimation, but for ab initio calculations of the electronic structure of quantum systems—is
density functional theory, which requires certain sets of basis ansatz functions. Following the ap-
proach to be published, presented in appendix A.3, these sets can substantially be reduced with
compressed sensing methods, while still retaining the necessary accuracy. This enables one to effec-
tively accelerate computations or tackle larger systems with higher precision.

In contrast, classical signal processing algorithms could massively benefit from using physical
effects in complex quantum systems to accelerate computations, i.e. from an effective implementa-
tion on a future quantum computer. Quantum computers, however, have a fundamentally different
architecture compared to classical computers and quantum algorithms have to obey entirely differ-
ent rule sets in order to efficiently solve problems. This makes it challenging to design a quantum
analogue for any classical algorithm.

Spectral estimation algorithms are ubiquitous from nuclear magnetic resonance spectroscopy
to image processing. It is therefore highly desirable to explore potential quantum speedups. Ama-
trix pencil method, similar to the one employed for cmps tomography, proved to be the right can-
didate for this, allowing for a speedup from O(N 3) operations to O(poly logN ) operations (sec-
tion 4). At its heart lies a generalized eigenvalue problem, which has to be reformulated such that
the required quantities can be obtained efficiently via quantum state tomography. Along the way,
novel quantumalgorithm techniques like concatenated phase-estimation and encodingnon-positive
semidefinite matrices into density matrices for determining their singular spaces were developed.

An important building block for such quantum algorithms is the efficient simulation of the
involvedmatrices as part of a unitary transformation that acts on quantum states; a method that ex-
pands the class of simulatable matrices is discussed in the coauthored publication in appendix A.2.
This moreover enables one to perform singular value decompositions of non-sparse low-rank ma-
trices with an exponential quantum speedup.

Still, quantum algorithms are not expected tomake all computational problems efficiently trac-
table. It is to this day unknown whether the complexity class bqp (bounded error quantum poly-
nomial time), the class consisting of all problems that can efficiently be solved on a quantum com-
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puter, contains the class ofNP-complete problems, the class consisting of the computationally hard-
est problems in NP such as the traveling salesman problem.[22] The best known classical methods
to solve NP-complete problems boil down to searching algorithms, which, importantly, can be
quadratically accelerated by building onGrover’s algorithm [162].

For future projects, it would be exciting to extend the quantum field tomography protocol
to continuous states that are not translation-invariant, allowing for the description of many new
systems and a more accurate characterization of systems that are only approximately translation-
invariant. Using the cmps parameter matrices from a complete tomography, the time evolution
of the state can accurately be simulated[132]. This again opens new paths of describing physical pro-
cesses, such as thermal equilibration, and connecting model and experiment. Still, most investi-
gations are conducted on one-dimensional systems, which are considerably easier to handle than
high-dimensional ones. Another step forward could lie in the development of recovery protocols
for two-dimensional systems that can be captured by continuous peps[133].

Tensor network and compressed sensing methods are not mutually exclusive, and there are
many starting points for combining both paradigms. In particular, it seems very appealing to in-
troduce notions of compressed sensing to cmps tomography, unifying both approaches. An in-
teresting ansatz would be to extend atomic norm denoising methods[177] to exponentially decaying
signals. Other quickly developing fields related to compressed sensing include biconvexmethods[178]
together with blind deconvolution [179]. This is connected to the self-calibration setting[180] where,
e.g., in the case of quantum tomography, neither the state nor the measurement matrices are ex-
actly known (see for example Ref. [181]). Notions of rank minimization and entry-wise sparsity
can be combined as well.[178] Moreover, settings with gradually revealed information/measurements
are analyzed (“streaming”).[182] Already explicitly storing measurement matrices in memory poses
substantial challenges—a more implicit approach is presented in Ref. [183]. Going beyond vectors
and matrices, tensor completion is investigated.[184] All these approaches promise great theoretical
and practical progress andmany experiments could greatly benefit from including such compressed
sensing ideas.

With the introduction of a fully-fledged quantum version of the singular value decomposi-
tion (appendix A.2) and together with the new tools developed for the quantum matrix pencil
method, various quantum analogues of classical algorithms with svd as their central component
will become easier to realize. An example could be singular value thresholding [82], a compressed
sensing routine, which is used for efficiently performing matrix completion.

Asquantumsystemswill play a crucial role in future technology, tools such as theonespresented
in this thesis will become ever more important. With this work, we believe we have contributed to
the understanding and development of efficient and practicalmethods for system identification and
quantum computation.
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A.1 Quantum transport experiments

Continuous matrix product states can be generated using a sequential preparation procedure via
continuousmeasurements, as described inRef. [126]: Aone-dimensional continuous quantum sys-
temwith Fock spaceF in the initial vacuum state |Ω〉 is coupled with a finite-dimensional auxiliary
systemA ∼=Cb in the initial state |ϕ0〉. One can think ofA as a resonating cavity with b internal
levels and a particle source that emits a particle every time step ε for a time interval [0, L]. Between
emitting two particles, the system evolves freely according to a Hamiltonian K(t ) ∈Cb×b , and the
measurement process is modeled by matrices R(t ) ∈Cb×b , resulting in the total Hamiltonian

Ĥε(t ) =K(t )⊗ 1̂+ ε1/2
L/ε
∑

k=1

δ(t − kε)
�

i R(L− kε)⊗ â†
L/ε−k
− i R†(L− kε)⊗ âL/ε−k

�

. (30)

Integrating the Schrödinger equation, settingQ(t ) =−iK(t )−1/2 R†(t )R(t ), anddecouplingF
andA by projecting onto 〈ϕL|⊗ 1̂, we arrive in the limit ε→ 0 at the cmps definition for |ΨQ,R〉
in Eq. (23).

By tracing out the physical system F instead of the auxiliary systemA and computing the
derivative, we obtain a differential equation for the resulting reduced density matrix % inA ,

d
dt
ρ(t ) = − i [K(t ),ρ(t )] + R†(t )ρ(t )R(t ) − 1

2
[R†(t )R(t ),ρ(t )]+, (31)

which is amaster equation inLindblad form, implying dissipative dynamics in the auxiliary system.
This makes it interesting to connect the auxiliary system to the dynamics of systems that can be
characterized by a cmps, which is done in the following publication [5] in the context of quantum
transport experiments.

In the underlying experimental setup of the following publication [5]24, separate electrons tun-
nel through a single-level quantum dot[185]. We have developed a protocol for estimating the param-
eters that determine the system based on counting probabilities, extending the protocol presented
in section 3.2, which uses spatial correlation functions as input. With the established cmps model,
it is furthermore possible to accurately predict system statistics like higher-order correlation func-
tions and the waiting time distribution (wtd), modeling the statistics of time interval between the
transport of two consecutive electrons. When emitting electrons with a rate in the kilohertz fre-
quency range, a direct determination of the wtd from the experiment is still possible with current
experimental techniques. This allowed us to compare thewtdwith the one estimated by our cmps

24GéraldineHaack, Adrian Steffens, Jens Eisert, andRobertHübener, “Continuousmatrix product state tomography
of quantum transport experiments”,New Journal of Physics 17:113024, 2015 (doi:10.1088/1367-2630/17/11/113024). Published
under a Creative Commons Attribution 3.0 License (creativecommons.org/licenses/by/3.0), © 2015 IOP Publishing.
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protocol, revealing high consistency between both signals. When moving on to even higher emis-
sion frequencies in the gigahertz range, a direct experimental estimation of the wtd is not feasible,
while, however, the cmps approach still remains valid, whichmakes it possible to uncover the short-
time dynamics of systems in higher frequency regimes.
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Abstract
In recent years, a close connection between the description of open quantum systems, the input–
output formalismof quantumoptics, and continuousmatrix product states (cMPS) in quantum field
theory has been established. The latter constitute a variational class of one-dimensional quantum field
states and have been shown to provide an efficient ansatz for performing tomography of open
quantum systems. So far, however, the connection between cMPS and open quantum systems has not
yet been developed for quantum transport experiments in the condensed-matter context. In this
work, wefirst present an extension of the tomographic possibilities of cMPS by demonstrating the
validity of reconstruction schemes based on low-order counting probabilities compared to previous
schemes based on low-order correlation functions.We then showhow fermionic quantum transport
settings can be formulatedwithin the cMPS framework. Our procedure, via themeasurements of low-
order correlation functions only, allows us to gain access to quantities that are not directlymeasurable
with present technology. Emblematic examples are high-order correlations functions andwaiting
time distributions (WTD). The latter are of particular interest since they offer insights into short-time
scale physics.We demonstrate the functioning of themethodwith actual data, opening up theway to
accessingWTDwithin the quantum regime.

1. Introduction

Continuousmatrix product states (cMPS) have recently been recognized as powerful and versatile descriptions of
certain one-dimensional quantumfield states [1–3]. As continuum limits of theMPS—awell-established type of
tensor network states underlying the density-matrix renormalisation group [4]—they introduce the intuition
developed in quantum latticemodels to the realmof quantum fields, offering similar conceptual and numerical
tools. In the cMPS framework, interacting quantum fields such as those described by Lieb–Linigermodels have
been studied, both in theory [1, 5, 6] and in the context of experiments with ultra-cold atoms [7].

On a formal level, cMPS are intricately related toMarkovian open quantum systems [1, 2]: the open quantum
system takes the role of an ancillary system in a sequential preparation picture of cMPS. Elaborating on this
formal analogy, cMPS can capture properties offields that are coupled to afinite dimensional open quantum
system. This connection has been fleshed out already in the description of fermionic quantumfields [8] and of
light emitted from cavities in cavity-QED [2, 9] in the quantumoptical context, under the keyword of the input–
output formalism [10].

Anothermethodological ingredient to this work is that cMPS have been identified as tools to perform
efficient quantum state tomography of quantum field systems [7, 11–14], related to other approaches of tensor
network quantum tomography [12, 15]. These efforts are in linewith the emergingmindset that for quantum
many-body and quantum field states, tomography and state reconstruction onlymake sense within a certain
statisticalmodel or a variational class of states. Importantly, in our context at hand, it turns out that cMPS can be
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reconstructed from the knowledge of low-order correlation functions alone [11, 12]. This is a very attractive
feature of cMPS: recently, a reconstruction scheme has successfully been applied to data on quantumfields
obtainedwith ultra-cold Bose gases [7]. In section 2, after introducing the cMPS formulation, wewill provide the
readerwith the key arguments thatmake this reconstruction scheme possible from low-order correlation
functions only. Read in themindset of open quantum systems, cMPS tomography can be interpreted as open
system tomography bymonitoring the environment of the open quantum system.

In this work, thesemethodological components will be put into a different physical context and substantially
developed further as illustrated infigure 1. At the heart of the analysis is a tomographic approach, applied to an
open quantum system, yet brought to a new level. In section 3, we extend the set of tomographicmethodswithin
the cMPS framework, showing that the dynamics of the ancillary system and of thewhole open quantum system
is not only accessible from low-order correlation functions, but also from low-order counting statistics.
Specifically, we prove that for generic systems, the two density functions P0 andP1—which express the
probability of detecting zero and one particle, respectively, as a function of the time since the last detection—
provide sufficient knowledge to successfully perform tomography of the open quantum system.The physical
application of the establishedmethodswill also be different from the cavity-QEDor the quantumfield context:
here, we treat fermionic quantum transport experimentswithin the cMPS framework.

In a general transport setting, a scatterer is coupled to a left reservoir (the ‘source’) and a right reservoir (the
‘drain’). Fermions (with orwithout a spin degree of freedom) can be seen as jumping in and out of the scattering
region from the source to the drain and can be described by a leaking-out fermionic quantum field. In section 4,
we showhow the dynamics of the open quantum system (scatterer and leaking-out fermionicfield) can be
encoded into a cMPS state vector. To provide the readerwith an intuition about the equivalence between the
cMPS language and amore traditionalHamiltonian formulation, wewill consider one of the simplest setups in
quantum transport: a single-level quantumdotweakly coupled to two reservoirs. These results are also valid for
transport experiments of ultra-cold fermions between a ‘hot’ and a ‘cold’ reservoir as recently realised in [16, 17].

This will clear theway formaking use of the tomographic possibilities offered by the cMPS formalism to
access various quantities in quantum transport that are not yetmeasurable with current experimental
technologies (see figure 1). Emblematic examples are higher-order charge correlation functions and the
distribution of waiting times (WTD, see section 5).

Thewaiting time is defined as the time interval between the arrivals of two consecutive electrons. Therefore,
theWTDprovides a privileged access to short-time physics, short-range interactions and the statistics of the
particles. As such, it has gained a lot of attention recently [18–25], butWTDs suffer from their difficulty to be

Figure 1.Extension and applications of cMPS based tomography (see sections 3–5). Previousworks [7, 11] have shown that
measurements of low-order correlation functionsCnwith n= 2, 3 are sufficient to access higher-order correlations using cMPS
tomography based on the cMPSmatricesM andD (right side, black arrows). Thefirst achievement of this work is the formal
demonstration thatmeasurements of low-order counting probabilities constitute an alternative tomeasurements of low-order
correlation functions for carrying out cMPS tomography (blue arrow).We show that the probabilities to detect zero or one particle (P0
andP1, respectively) are sufficient to reconstruct alternative cMPS parametermatrices and , fromwhich higher-order
correlation functions can be computed. The second achievement of this work is to extend the applicability of this cMPS framework to
quantum transport experiments. As amain illustration, we show that cMPS-based tomography provides an access to the distribution
of waiting times . The according statistics are not directlymeasurable due to experimental limitations on single-particle detectors.
However, we demonstrate with experimental data that they can in fact be reconstructed from the knowledge of low-order correlation
functions (broad blue arrows).
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measured effectively:measuringWTDs requires the detection of single events while ensuring that no events have
beenmissed—for instance, due to the dead time of the detector.

With present technologies,WTDs in transport experiments can bemeasuredwhen the injection rate of
electrons is within the kHz range as in the experiments of [26, 27]. Indeed, at those frequencies, the current trace
is resolved in time and theWTDcan be directly deduced from it. Aswewill show in section 5, theWTD reflects
the quantum statistics of the electrons. However, quantum coherence and entanglement cannot be detected at
those frequencies. To observe these quantum effects, one needs tomove to theGHz regime, which can be
achieved either withDC sources with a typical bias of tens ofmeV, orwith periodically driven sources at GHz
frequencies [28–32]. In theGHz range, the current trace cannot be resolved in time so that themeasurement of
theWTD is not feasible at present. In contrast, second- and third-order correlation functions have been proven
to be feasible [32, 33].

With these experimental constraints inmind, we propose in section 5 an indirect way to access theWTD
withmethods that arewithin reach of the experimental state of the art. Namely, the dynamics of the full open
quantum system is accessed frommeasurements of low-order correlation functions (typically second- or third-
order). This ismade possible with a cMPS formulation of the transport experiments as explained in the
following section.

We illustrate this indirect path of accessing theWTDby considering real data obtained in the experiment of
[27], where single electrons tunnel through a single-level quantumdot in the kHz regime. Both the current trace
resolved in time and the two- and three-point correlation functions have beenmeasured. The data allows us to
demonstrate a very good agreement between theWTDdeduced directly from the current trace and theWTD
obtained via our reconstruction scheme based on the data of the correlation functions. This gives substance to
our protocol based on cMPS to access theWTDwith present technologies.We claim that thismethod remains
valid in theGHz frequency range and formore complex systems such as a double quantum-dot coupled to two
reservoirs—whichwould exhibit quantum coherence effects—and for quantum transport experiments with
fermionic quantumgases.

2. Tomography of cMPS

In order to present a self-contained analysis, we start by reviewing the cMPS formulation of capturing afinite
dimensional open quantum system [2] and the tomography procedure of reconstructing the relevant cMPS
parametermatrices [11]. Consider an open quantum system (in cMPS terms the ancillary system)with
dimension d (called bond dimension in that context) and interactingwith one ormore quantum fields that are
described by field operators yaˆ for different fieldsα. Its dynamics can in general be represented by different
mathematical objects:

(a) Themaster equation in Lindblad form, which governs the evolution of the ancillary system described by its
state vector Yñ∣ defined on theHilbert space of dimension d× d. The degrees of freedomof the coupled
fields are traced out in this approach.

(b) The set of n-point correlation functions of the coupledfields.

(c) The full counting statistics of the field system, i.e. the complete set of cumulants of the probability
distribution of transferred particles. The nth cumulant of the generating function is linked to the n
moments of this distribution, which correspond to the n-point correlation function.

(d) The cMPS state vector ,cMPSy whichwe now introduce.

2.1. Reconstruction of cMPS fromcorrelation functions
An intuitive way of establishing the cMPS state vector cMPSy ñ∣ consists in starting from thewell-knownLindblad
equation. This equation describes the evolution of the state ρ in time via the Liouvillian superoperator 

K R R R R
i

,
1

2
, 2 . 1

p

1




år r r r r= = - - -
a

a a a a
=

( ){ }˙ [ ] [ ] ( )† †

Thefirst term relates to the free evolution via aHamiltonian K ,d dÎ ´ while the last two terms describe the
coupling to the environment (the according operator is known as the dissipator). Thematrices R ,d dÎa

´

p1 ,..., ,a = correspond to jump operators between the system and external quantumfields .ya{ ˆ } Thematrices
K and Ra{ }completely characterize the evolution of the system.

Making use of theChoi–Jamiołkowski isomorphism [34] (whichmaps linear superoperators from 1 to 2
to linear operators acting on 1 2 Ä ) the state ρ ismapped to a state vector rñ∣ and the Liouvillian  to the
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matrixT [1, 2]with

T Q Q R R . 2* *å= Ä + Ä + Ä
a

a a  ( )

ThematrixT d d2 2Î ´ is known as the transfermatrix and thematrixQ is defined as

Q K R Ri
1

2
. 3å= - -

a
a a ( )†

Formally, the isomorphism introduced above is defined by the following relations for an operator and the
product of operators

A B A B

,

. 4*

r r

r r

ñ

Ä ñ



 ( )
∣

∣ ( )†

Being closely connected toK and Ra{ } introduced above, the knowledge of thematrix andT and its components
provides access to the dynamics of the open quantum system, and allows to directly derive the according
Lindblad equation.

The (translationally invariant) cMPS state vector cMPSY on the interval L0,[ ] is defined in terms of the

matrices Q R, a{ }and thefield operators yaˆ
†
by

x Q R xTr exp d . 5
L

cMPS anc
0

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ò åy y= Ä + Ä Wñ

a
a a̂ ˆ ( ) ∣ ( )†

This expression is related to the path ordered exponential that arises when integrating the Lindblad
equation. The embedding of the cMPS state vector cMPSy ñ∣ into Fock space becomes clear when expanding the
path ordered exponential exp. Formore details, we refer to [3]where the authors formulate the cMPS in
different representations such as the Fock space and a path integral formulation. After integration, the ancillary
system is traced out via Tranc and the resulting term is applied to the vacuum state vector Wñ∣ , where 0y Wñ =aˆ ∣
for eachα.

Compared to the Lindblad equation, themain difference is that the degrees of freedomof the ancillary
system are traced out such that its dynamics ismapped into the dynamics of the coupled quantum fields .ya{ ˆ }
The evaluation of expectation values offield operators leads to expressions that only contain quantities from the
ancillary system, and information about the ancillary system can be inferred from according field operator
measurements. For the sake of clarity, we restrict ourselves to the case where a single coupled quantumfield,
denoted as ,ybˆ ismeasured.

The density-like correlation functions of themeasured quantumfield ybˆ then read

C n x n xx ... , 6n ncMPS 1 cMPSy y= ( ) ( )( ) ˆ ˆ ( )

where x xx , , n1 ¼≔ ( ) and n .y yb bˆ ≔ ˆ ˆ†
According to the calculus of expectation values in the cMPS setting [3],

inserting equation (5) into equation (6) in the thermodynamic limit L  ¥ leads to the expression

C M M Mx lim Tr e e e . 7n
L

D L x D x x D x 0n n n 1 1⎡⎣ ⎤⎦= ¼
¥

- - --( ) ( ) ( )( ) ( )

WithDwe denote the transfermatrixT—introduced in equation (2)—in its diagonal basis

D X TX, 81= - ( )
where the columns ofX represent the eigenvectors ofT. Analogously, thematrixM denotes R R* Äb b in the
diagonal basis ofT

M X R R X. 91 *= Äb b
- ( ) ( )

Let usmention that the knowledge ofX is in principle not necessary to reconstruct thematricesQ andR and
hence the according Lindblad equation [11].

Specifically, the second- and third-order correlation functions take the form

C x M M M MTr e e e 10D Dx

j

d

j j
x

2
1

1, ,1
j

2

⎡⎣ ⎤⎦ å= = l¥

=

( ) ( )

and

C x x M M M, e e , 11
j k

d

k k j j
x x x

3
, 1

1, , ,1
j k

2

å¢ = l l

=

¢-( ) ( )( )
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with jl{ }being the eigenvalues ofT. Due to the translation invariance of the system,we can set x 0.1 = The
tomographic possibilities of the cMPS formalism can be understood from equations (10)–(11): if the products
M M Mk k j j1, , ,1{ }are known,we can—using gauge arguments [12]—require each of thematrix elements M j1,{ } to
be equal to one, which enables us to access each Mk j, by dividing the appropriate terms:

M M M

M M M
M . 12

k k j j

j j
k j

1, , ,1

1,1 1, ,1
,= ( )

Both numerator and denominator appear as coefficients inC3 and can be determinedwith spectral estimation
procedures. Thismeans that in principle we just need to analyse a three-point function in order to obtain the
building elementsM andD of arbitrary-order correlation functions.

This reconstruction scheme demonstrates the central role of thematricesM andD to derive the different
equivalent objects that describe the dynamics of an open quantum system: the Lindblad equation, the set of n-
point correlation functions, the full counting statistics of the number of transferred particles and the cMPS state
vector. ThesematricesM andD can therefore be considered as the central quantities onwhich our
reconstruction procedure is based; this is illustrated infigure 1.

2.2. Use of the thermodynamic limit
Intuitively, it is clear that the reconstruction of thematricesM andD should gain precision by increasing the
number of correlation functionsCn onwhich the reconstruction scheme is based. The same statement is valid
when increasing the size of the set of available counting probabilities Pn. But in general, experiments will only
provide usmeasurements of low-order correlation functions, typically those of the second- and third-order
[26, 27, 33].Apriori, thismight render the reconstruction of thematricesM andD infeasible, but thework in
[12] proved that this limitation can be circumvented bymaking use of the structure of the cMPS state vector
combinedwith the thermodynamic limit.

For a given finite region I and afixed bond dimension d, all expectation values can be computed from all
correlation functions C xn ( ) taking values in thefinite range I, x x Ix ,..., .n

n
1= Ì ´( ) This contrasts with the

situation of having access to correlation functions C xn ( ) for arbitrary values of x xx ,..., ,n1= ( ) but for lown.
Here, arbitrary values x imply the thermodynamic limit, i.e. thefinite region I tends to infinity. Then indeed, low
order correlation functions (typically C C C, ,1 2 3) are sufficient to reconstruct an arbitrary expectation value of
an observable supported on I.

3. Reconstruction of cMPS from low-order counting probabilities

In this section, we extend the central role played by thematricesM andD for tomographic purposes by showing
that they (more precisely: their equivalents and ) are also accessible from low-number detector-click
statistics, i.e. the idle time probability density function P0 and the density function P1, which correspond to the
detection of zero and one particle, respectively, within a certain time interval τ.

It is well-known that correlators and counting statistics are closely related.When assuming perfect detectors,
the probability to observe n events in the time interval between t and t t+ is given [35] by the expression

P t t
n m n

t t C t t t,
1 1

d d , , , , 13n
m n

m n

t

t

t

t

m m m1 1 2ò òåt+ =
-
-

¼
t t

=

¥ - + +
 ( )( )

!
( )
( )!

( )

where the correlation functionCm has been introduced in equation (6). For a translationally invariant system,we
canwithout loss of generality set t= 0. Furthermore, when changing the integration bounds and performing the
limit L , ¥ we obtain

P P t t t C t t t0, 0 d d d , , , , , 14n n

t t

n n n
0

1
0

2
0

1 2
n1 1

ò ò òt t t+ = ¼
t -

 ( )( ) ≔ ( ) ˜ ( )

with

C t t Z Ze, , , e e e e , 15n n
T t

n
t t t

1 1
1

2 1 1
n 1 2 1    t ¼ t- - -( ) ( ) ( )˜ ≔ ( )

the canonical unit vector e1, the diagonalmatrix  of Q Q* Ä + Ä  with basis transformationmatrixY,
Y R R Y ,j j j

1 * Ä-≔ ( ) and Z Y X ,1-≔ whereXdiagonalizesT as defined in equation (8).With equations (13)–
(15), the low-order counting probabilities P0 t( ) and P1 t( )within a cMPS formulation are given by similar
expressions to equations (10) and (11), namely

P Z Z z ze e e e , 16T

j

d

j j0 1
1

1
1

1, ,1 j

2

 åt = =t m t-

=

( ) ˆ ( )
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P z z 1
e e

e , 17
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d

j j k k j k
k j

j k1
, 1

1, , ,1 , ,
k j

j

2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟åt d

m m
d t= -

-
-

+
m t m t

m t

=
( )( ) ˆ ( )

with jm{ }being the diagonal values of  and zj k,{ }being the elements of thematrixZ (with inverse
Z zj k

1
,

- ≕ (ˆ )). See appendix for details.
As a first step, we can extract fromP0 andP1 the coefficients z zj j1, ,1{ˆ }and the eigenvalues ,im{ } which give

rise to . Thematrix elements of can then in principle be determined using gauge arguments and under the
assumption that the additive components ofPn are linearly independent. From and , the cMPSmatricesQ,
R andK describing the dynamics of the open quantum system can be determined in a straightforwardway (see
appendix for details).

Let us comment on the feasibility of this reconstruction schemewith present technology. In order to
measure P0 andP1, efficient single-particle detectors without dark-counting and tiny dead-time are necessary.
Dark-counting leads to detector output pulses in the absence of any incident photonswhile the dead-time is the
time interval after a detection event duringwhich the detector cannot detect another particle. Although
significant experimental efforts have beenmade in order to improve single-photon [36] and single-electron
detectors [37, 38], the state-of-the-art for single-particle detection is not yet sufficient to perform a reliable
measurement ofP1. For themoment, these experimental constraintsmake the reconstruction scheme based on
P1 only valid on a formal,mathematical level. In the light of the recent experimental progress towards the reliable
detection of single particles, we believe that this ideawill become relevant in the future.

4. Application to fermionic quantum transport experiments

Very recent works have successfully formulated experimental setups in cavityQEDand ultra-cold Bose gases as
well as the correspondingmeasurements in terms of cMPS [7, 9]. This allowed them tomake predictions for
higher-order correlation functions that are not accessible experimentally and to investigate the ground-state
entanglement.

Here, we tackle the problemof formulating quantum transport experiments and the corresponding
measurements (average charge current, charge noise) in cMPS termsTo this end, we demonstrate that the field
that is leaking out and ismeasured in a quantum transport experiment belongs to the cMPS variational class.We
then provide an example to illustrate the equivalence between anHamiltonian and a cMPS formulation by
considering one of the simplest transport experiment, namely single electrons tunnelling through a single-level
quantumdot.We derive thefirst-order and second-order correlation functions in cMPS terms, and show that
we recover thewell-known expression of the average current and charge noise, whenwriting the cMPS state
equation (5) in terms of the parameters of the quantum system.

4.1.Quantum transport experiments in terms of cMPS
Wenow turn to a description of the physical setting under consideration.We assume here transport
experiments, where single electrons transit through a scatterer coupled to fermionic reservoirs. The reservoirs,
considered at equilibrium, are characterized by their chemical potential and their temperature via the Fermi
distribution. The bias energy and the bias temperature between the different reservoirs will set the direction of
the charge current. For the sake of simplicity, we restrict ourselves to two reservoirs, the source and the drain.
This transport setting can be described by theHamiltonian

H H H H , 18T sys res int= + +ˆ ˆ ˆ ˆ ( )

where Hsys
ˆ relates to the quantum systemunder investigation, which acts as scatterer. It is characterized by

discrete energy levels ie with occupation number operators given by d di i, ,s s
ˆ ˆ†

(di,s
ˆ and di,s

ˆ †
denote the fermionic

annihilation and creation operators for an electron on the energy level i and spin degree of freedom ,s =  ).
TheHamiltonian Hres

ˆ relates to the left and right reservoirs, and Hint
ˆ describes the interaction between the

quantum system and the reservoirs,

H E E c E c Ed , 19
L R

E

res
, , 0

, ,òå å=
a s

a s a s
= = 

aˆ ˆ ( ) ˆ ( ) ( )†

H E t E d c Ed h.c. . 20
L R i

i iint
, ,

, , , ,òå å= Ä +
a s

a s s a s
=

( )ˆ ( ) ˆ ˆ ( ) ( )†

The creation and annihilation operators of the reservoirs, caˆ and c ,â
† satisfy the canonical anti-commutation

relations and L R,a = denotes the left and right reservoirs, respectively. The amplitude t i, ,a s sets the interaction
between the quantum system and its environments.
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In order tomodel aDC source, the energy levels in the left and right reservoirs are assumed to be densely
filled up to the energies E eVF + andEF, respectively. Here,EF is the Fermi energy andV is the bias potential
applied on the ‘source’ reservoir. At zero temperature, the bias energy eV enables uni-directional transport of
electrons between the left and right reservoirs. It plays a similar role to the frequency bandwidthwhen, e.g.,
considering cavityQED setups, andfixes the energy domain overwhich electronic transport takes place.

With this assumption about the direction of propagation of the electrons (from left to right), wewill see that
equation (18) is equivalent to a generalized version of the cMPSHamiltonian introduced in [1, 2],

H Q R R , 21cMPS L L R Ry y= Ä + Ä + Ä ( )ˆ ˆ ˆ ˆ ( )†

where thematricesQ and Ra{ }and the quantum fields ya{ ˆ }have been introduced in section 2. The cMPS
Hamiltonian for quantum transport experiment reflects the direction of the current: a fermionic excitation
present on the left of the scatterer is annihilated at the scatterer as described by the quantum field Lŷ (an electron
jumps into the scatterer). Similarly, a fermionic excitation present on the right of the scatterer is created at the

scatterer as described by the quantumfield Rŷ
†
(an electron jumps out of the scatterer). The case of amulti-

terminal setup can be considered in a similar way. Showing that equations (18) and (21) are equivalent implicates
that there is a fermionic quantumfield leaking out of the scatterer to bemeasured and that it belongs to the cMPS
variational class. Such a description of the transport experiment corresponds to a fermionic version of the input-
output formalismof cavity-QED setups.

Using equation (20), the quantumfield leaking out of the quantum system, t ,Rŷ ( ) can bewritten in terms of
the creation operator in the right reservoir cR̂; the incoming quantum field can bewritten in a similar way in
terms of the creation operator in the left reservoir cL̂

t E c Ed e , L, R. 22
E

Et
,

i
,

òy a= =a s a s
-ˆ ( ) ˆ ( ) ( )† †

The Fermi sea for the electrons is taken into account in the followingway: on the right side of the scatterer, the
quantumfield satisfies t E 0,R Fy =ˆ ( ) where EF denotes the state of the Fermi sea at energyEF, whereas on the

left side of the scatterer, t E eV 0,L Fy + =ˆ ( ) where the state vector E eVF + defines the state of a Fermi sea at
energy E eV .F +

Assuming that the energy levels ie of the quantum system arewell inside the bias energywindow eV, we can

rewrite the integration over the energy domain E as E Ed d .
E

eV

0ò ò=

This assumption is the so-called large-bias limit, which is considered in order to derive themaster equation
corresponding to the tight-bindingHamiltonian. In quantumoptics, it corresponds to afinite frequency
bandwidth, which allows the use of the rotatingwave approximation [9, 10]. In the following, we assume that the
interaction amplitude is spin- and energy-independent within the interval E E eV, :F F +[ ] t E t .i, , =a s a( ) Let us
remark that the demonstration remains validwith an interaction amplitude that depends on spin and energy.
Importantly, no assumption about the coupling strength is required here.

In a rotating framewith respect to the energies of the reservoirs and after a Jordan–Wigner transformation
using the definitions of the quantumfields R,Lŷ given in equation (22), theHamiltonian in equation (18) can be
rewritten as

H H t d t h.c. . 23
i

iT sys
L,R ,

,å å y= Ä + Ä +
a s

a a s
=

 ( )ˆ ˆ ˆ ˆ ( ) ( )†

Following quantumoptics calculations—which remain valid in this case because HT
ˆ is a transport version of the

spin-bosonmodel—wefinally arrive at an effective non-HermitianHamiltonian

H H d d d t d t
i

2
24

i
i i

i
i ieff sys

L,R ,
, ,

,
R , R, L , L,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ å å å y y= - G Ä + G Ä + G Ä

a s
a s s

s
s s s s

=

 ( )ˆ ˆ ˆ ˆ ˆ ˆ ( ) ˆ ˆ ( ) ( )
† † †

with t .Ga a≔ Expressed in the eigenbasis of H ,sys
ˆ the operators diR ,G s

ˆ and diL ,G s
ˆ †

take the formofmatrices
labelled R iR, ,s and R ,iL, ,s respectively. The effective non-HermitianHamiltonian can then be rewritten in a
compact form

H Q R t R t . 25
i

i ieff
,

L, , L, R, , R,å y y= Ä + Ä + Ä
s

s s s s ( )ˆ ˆ ˆ ( ) ˆ ( ) ( )† †

When comparing this effectiveHamiltonianwith equation (21), the identification of thematrixQ and the
matrices Ra{ } is direct. For spin-less fermions, thematricesR verify R 0i, ,

2 =a s in order to satisfy the Pauli
principle. Equation (25) demonstrates that transport settings can be adequately formulatedwithin the cMPS
framework. This result is important as it clears theway for applyingmethods from cMPS tomography to
fermionic quantum transport experiments.
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4.2. Single energy-level quantumdot
To illustrate the input–output formalism and the cMPS formulation of quantum transport experiments, we
consider one of the simplest setups, namely a single energy-level quantumdot, without spin-degree of freedom,
weakly coupled to two fermionic reservoirs. Even though this experiment is characterized byMarkovian
dynamics, this example is of particular interest for this work as it has beenwidely investigated experimentally. In
section 5, wewill use real data obtained in [27] for this setup to show that cMPS tomography allows us to access
the electronic distribution of waiting times.

This simple transport experiment is sketched infigure 2 and the correspondingHamiltonian reads

H d d E d c E Hd h.c. . 26T
L R,

resòåe= + G Ä + +
a

a a
=

( )ˆ ˆ ˆ ˆ ˆ ( ) ˆ ( )† †

Assuming that we perform ameasurement on the right of the scatterer, the first two correlation functions of
the right quantumfield tRŷ ( ) read in terms of cMPSmatrices

R Rlim Tr e 27
L

TL
R R R R

⎡⎣ ⎤⎦*y yá ñ = Ä
¥

( )ˆ ˆ ( )†

and

R R R R0 0 lim Tr e e . 28
L

T L T
R R R R R R R R

⎡⎣ ⎤⎦* *y y t y t yá ñ = Ä Ät t

¥

- ( ) ( )ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† † ( )

Thematrices RR L correspond to the operators dRG ˆ and dLG ˆ†
expressed in the eigenbasis of the single-level

quantumdot, 0 , 1ñ ñ{∣ ∣ } (empty and occupied state)

R R
0 0

0
, 0

0 0
. 29L

L
R

R
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

G
= G ( )

Inserting these expressions into equation (27), we recover thewell-known expression for the steady-state
current of a single-level QD coupled to biased reservoirs [39, 40]

I . 30R R
L R

R L
ssy yá ñ =

G G
G + G

á ñˆ ˆ ≕ ˆ ( )†

Furthermore, we can derive the noise spectrum from equation (28) via theMacDonald formula [41–43]

S I2 1
2

. 31ss
L R

L R
2 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟w

w
= á ñ -

G G

G + G +( )
( ) ˆ ( )

This example aims at bridging the gap between amore traditionalHamiltonian and the cMPS formulation,
which allows towrite thesewell-known expressions in terms of the parametermatricesQ,T, and R .a{ }

5. Reconstruction ofwaiting time statistics

In this section, we address the problemof accessing the distribution of waiting times in electronic transport
experiments. Asmentioned in the introduction, a directmeasurement of theWTD in theGHz range is not yet
possible due to the lack of single-particle detectors with sufficient accuracy at those frequencies. Here, we
propose to reconstruct theWTDbased on the experimentalmeasurements of low-order correlation functions.

Figure 2. Scheme of a transport experiment through a single-level quantumdot. (a)The single-level quantumdotwith energy ε is
tunnel-coupled to two biased reservoirs with coupling strengths LG and .RG Spin-less single-electron tunnelling events take place in
the energywindow eV above the Fermi seawith energy EF. (b)The same transport experiment from the open quantum system
perspective for a cMPS formulation. The single-level dot is described by Hsys

ˆ and coupled to fermionic quantum fields Lŷ and .Rŷ
The couplingmatrices RL R depend on the parameters ,L RG see equations (24)–(25). The transport direction fixed by the biased
energy between the left and right reservoirs is ensured in the cMPS formulation by imposing E eV 0L Fy + ñ =ˆ ∣ and E 0.R Fy ñ =ˆ ∣
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The reconstruction is carried out using the cMPS framework presented in section 2 and the formulation of
transport experiments in terms of cMPS as exposed in section 4.

5.1.Definitions
The statistics of waiting times can be expressed in terms of the probability density function P0, which—as a
function of τ—expresses the probability of having detected zero particles in the interval 0, .t[ ] In terms ofP0,
theWTDhas first been derived in the context of quantum transport experiments in [20],

P
. 32

2
0

2
 t t

t
t

= á ñ
¶
¶

( ) ( ) ( )

Here, tá ñdenotes themeanwaiting time. Inserting P0 t( ) in cMPS terms (equation (16)), we arrive at an
expression for in terms of the cMPSmatricesD,  andZ defined in equations (8) and (15),

c
D Z DZ Z Ze

1
e 2 e . 33T

1
2 1 1 1 2

1   t = - + t- - -( )( ) ( )

The normalization factor c 0> ensures that d 1.
0
ò t t =

¥
( ) Equation (33) allows us to access theWTD

from themeasurements of the low-order correlation functions only via the use of the cMPS framework to
reconstruct the cMPSmatricesD,  andZ.

5.2. Results based on experimental data
Wedemonstrate our novel approach to derive theWTD from themeasurement of correlation functions using
experimental data obtained in [27] for spinless electrons tunnelling through a single-level quantumdot. This
system is also known as a single-electron transistor at the nanoscale and has been discussed in section 4.2. The
experiment in [27] has been carried out in the kHZ frequency range, where a time-resolvedmeasurement of the
current trace is possible. Although all the statistics—including correlation functions of arbitrary order aswell as
theWTD—can directly be computed from this time-resolved current trace, this experiment provides an ideal
test-bed for our proposal.We can compare theWTDobtained fromour reconstruction scheme based on cMPS
with theWTDdirectly deduced from the experimental current trace.

Due to the simplicity of the setup, our proposedmethod to access theWTDonly requires the two-point
functionC2. This one can directly be derived from the experimental spike train I (the time-resolved current
trace) and is shown infigure 3 (red dots). The rates 13.23 kHzLG = and 4.81 kHzRG = have been determined
experimentally and the correspondingC2-function agrees verywell with the analytical expressionwhen the
detector rate is taken into account [27]

C 1 e . 342
L R

L R

L Rt =
G G

G + G
- t- G +G( )( )( ) ( )

In our reconstruction scheme, the quantity L RG + G can be determined from the current spike train
autocorrelation function I I by least squaresmethods or spectral estimation procedures analogous to the
procedure described in [11]. By requiring L RG > G and using the expression of the steady-state current (see

Figure 3.Two-point correlation functionC2 for single fermions tunnelling through a single-level quantumdotwith data from [27]
(red-dotted curve). The blue curve, obtained from the reconstructed values of the parameters L,RG using a cMPS formulation of the
quantum experiment, agreeswell with the experimentalmeasurement ofC2. The deviation for small times is due to experimental
limitations in the time binwith respect towhich the current trace is resolved.
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equation (30)), LG and RG can be uniquely identified. The reconstructed values for the rates are

10.80 kHz, 35L
reconG = ( )

4.76 kHz. 36R
reconG = ( )

The differences to the values from [27] arewell within the rangewewould expect, regarding the time-resolution
in the spike train data. The curve plotted from these reconstructed values of the parameters L,RG is shown in
figure 3 in blue. The slight deviation between the experimental points and this reconstructedC2-function is due
to the discretization of the counting time intervals used in the experiment: the size of each time bin is notmuch
smaller than the time scale onwhichC2 changesmostly. This leads to an error in the estimation of the damping
factor L RG + G and explains the difference of the blue and the red dotted curves. Naturally, one could expect a
more accurate reconstruction of the parameters LG and RG when increasing the time resolution of the current
trace or of themeasurement ofC2.

From LG and ,RG the corresponding cMPSmatricesRL andRR can be constructed, as well as thematricesM
andD. In this simple case, we did not need to employ thewhole reconstruction procedure from [11]. Indeed, it is
clear from equation (34) that only two out of the four parameters that characterize the system appear:Cn only
depends on the tunnelling rates LG and RG —the eigenenergies 0 and ε of Hsys

ˆ do not contribute5. This will in
general not be the case.

ThematricesRL andRR give access to thematricesD and  by direct computation. Inserting the latter into
equation (33), theWTDcan be reconstructed and the result is plotted infigure 4 (blue curve). In order to build
confidence in our procedure, we compare this result with the experimentally accessibleWTD (red dots). Let us
recall that the transport rate is in the kHz range, hence theWTDcan directly be extracted from the current spike
train I: by sorting, counting all (discrete)waiting times between two consecutive incidents, and subsequently
normalizing the resulting histogram, one obtains the red-dottedWTD infigure 4. The slight deviation between
theWTD reconstructed via our proposal and the experimental one is again due to the discretization of the
counting time intervals. One could expect amore accurate reconstruction of theWTDwhen increasing the time
resolution of the current trace.

TheWTD infigure 4 shows elementary transport properties of single independent fermions that cannot
tunnel at the same time through the single-level quantumdot, which is consistent with the fact that 0 t ( )
for 0.t  It is important to emphasize that it is thefirst time aWTD is extracted from experimental data,
therefore bridging the gap between theoretical predictions and experiments. The good agreement of the two
curves demonstrates the potential of our cMPS-based reconstruction procedure to access theWTD from the
measurements of low-order correlation functions. This opens the route to access theWTDs in the high-
frequency domain from low-order correlation-functionsmeasurements.

Figure 4.WTDobtained from state-of-the-art experimentalmeasurements with data from [27]. The reconstructedWTDusing
equation (33) is shown in blue. Itmatches theWTDobtained directly from the time resolved experimental current trace (red dots)
well. The deviation is due to thefinite-sized time bin corresponding to the resolution of the current trace. Amore accurate
reconstruction of theWTD is expected by increasing the time resolution of the current trace or of themeasurement ofC2.

5
The eigenvectors ofT only depend on LG and ,RG this applies toML,MR and all residues aswell. Accordingly, the twonon-real poles are the

only quantities that depend on ò, however, only the residues connected to the two real poles do not vanish.When adding off-diagonal
elements toK, the termsmix and a dependency onK arises.
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6. Conclusion

In this work, we have taken an approachmotivated by cMPS to perform tomographic reconstructions of
quantum transport experiments. On a formal level, we have extended this formalism to perform a
reconstruction of unknown dissipative processes based on the knowledge of low-order counting probabilities.
We then demonstrated that cMPS is an adequate formalism to describe quantum transport experiments based
on tight-bindingHamiltonians.

This work advocates a paradigm change in the analysis of transport experiments. The traditionalmethod is
tomake explicit use of amodel to put the estimated quantities into context, amodel thatmay ormay not
precisely reflect the physical situation at hand. The cMPS approach is to not assume the formof themodel, with
the exception that the quantum state can be described by a cMPS. Such an approach is of particular interest as it
opens theway to the access of quantities that are notmeasurable experimentally with current technologies, high-
order correlation functions and distributions of waiting times.

To convincingly demonstrate the functioning of cMPS tomographic tools applied to quantum transport
experiments, we presented a simple example that consists of electrons tunnelling through a single-level quantum
dot.Making use of experimental data, we showed that we could successfully reconstruct the distribution of
waiting times from themeasurement of the two-point correlation function only. This work constitutes therefore
a significant step towards accessing thewaiting time distribution in the quantum regime experimentally, a
challenge present for several years now. Importantly, the application of our reconstruction procedure goes
beyond the interest inWTD: it also provides an access to higher-order correlation functions, which are key
quantities to better understand interacting quantum systems.

In subsequent research, it would be desirable to furtherflesh out the statistical aspects of the problem. After
all, the description in terms of cMPS constitutes a statisticalmodel. It would constitute an exciting enterprise in
its own right to identify region estimators that provide efficiently computable and reliable confidence regions
[44]when considering the problem as a statistical estimation problem, related to the framework put forth in
[45–47].We hope that the present work inspires such further studies of transport problems in themindset of
quantum tomography.
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Appendix. Reconstructionmethod from low-order counting probabilities

In this appendix, we provide further technical details on the reconstruction scheme based on themeasurement
of low-order counting probabilities, P0 andP1. The goal is to access the central cMPS parametermatrices and

. We refer tofigure 1 for a general view of the reconstructible items.We start from equation (13) in themain
text. By changing the integration bounds, we obtain equation (14),

P t t t C t t td d d , , , , ,n

t t

n n n
0

1
0

2
0

1 2
n1 1

ò ò òt t= ¼
t -

 ( )( ) ˜

where the integrandCn is altered to

C t t R R R R R R, , , lim Tr e e e e . A.1n n
L

T L t St
n n

S t t S t
1 2 2 1 1

n n 1 2 1⎡⎣ ⎤⎦* * *t ¼ Ä Ä Ät t

¥

- - - -( ) ( ) ( ) ( )˜ ≔ ( )

Note that in contrast to equation (7)where the propagatingmatrix is the transfermatrixTdefinedby equation (2)
(or equivalently its diagonal representationD), the propagatingmatrix in the exponential terms between two
measurement points now is thematrix S, which is defined by

S Q Q T R R . A.2
j

j j* *åÄ + Ä = - Ä ≔ ( )

Wecan further simplify equation (A.1) by performing the thermodynamic limit L . ¥ The spectrumofT for
a generic system consists of complex values with negative real part and only one eigenvalue being equal to zero.
When taking the limit L , ¥ all eigenvalue contributions to eT L t-( ) vanish, except the one corresponding to
the zero eigenvalue. Hence

11

New J. Phys. 17 (2015) 113024 GHaack et al

A – COAUTHORED PUBLICATIONS 130



Xe e Xlim e , A.3
L

T L T
1 1

1=t

¥

- - ( )( )

with thefirst canonical unit vector denoted by e1 and the basis transformationmatrixX to the diagonal basis ofT.
Similar toD andT, we define thematrix  as the diagonalmatrix of Swith basis transformationmatrixY:

S Y Y . A.41= - ( )
By defining thematrices Y R R Yj j j

1 * Ä-≔ ( ) for j n1 ,..., ,= and setting Z z Y Xj k,
1-≔ ( ) ≔ (with inverse

Z zj k
1

,
- ≕ (ˆ )), we arrive at equation (15),

C t t e Z Ze, , , e e e e .n n
T t

n
t t t t t

1 1
1

2 1 1
n 2 3 1 2 1     t ¼ = t- - - -( ) ( ) ( ) ( )˜

Equations (15) and (7)have a close structural resemblance: thematricesM and are similar in the linear algebra
sense, i.e., there exists a basis transformation from toM. ThematricesD and are the diagonalmatrices of the
transfermatrixT and thematrix S, respectively. It is straightforward to transformM andD into and and
vice versa: by subtractingM fromD, weobtain S (up to similarity/basis transformation), whose diagonalmatrix is

. Applying the samebasis transformation (from D M-( ) to) to thematrixM results in thematrix .
For n= 0, the counting probability function then reads

P e X Y Y X ee , A.5T D
0 1

1 1
1

St = t- -( ) ( )

which can be rewritten as a sumof complex exponential terms, with jm{ }being the eigenvalues of S as

P z z e . A.6
j

d

j j0
1

1, ,1 j

2

åt = m t

=

( ) ˆ ( )

This expression corresponds to the analogue of equation (10) in themain text. Since S is by definition aKronecker
sum of Q* andQwith eigenvalues qj

*{ }and qj{ } respectively, the spectrumof S consists of the sums q qj k
* +

with j k d, 1 ,..., .= It is closed under complex conjugation (for each element of the set its complex conjugate is
also element of the set), as well as the coefficient set z z .j j1, ,1{ˆ } This ensures thatP0 is real-valued. Being related to
Q (which consists of a skew-hermitianmatrix (with imaginary spectrum) and negative definitematrices), we
have that Re 0jm < for each j, such that all summands vanish sufficiently fast andP0 is normalizable.
Furthermore, the dominance of the damping factors over the oscillatory components ensures the positivity ofP0
(in particular, the jm with the least damping is always real-valued). Analogously, for P1 t( )we obtain

z z 1
e e

e A.7
j k

d

j j k k j k
k j

j k
, 1

1, , ,1 , ,
k j

j

2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å d

m m
d t-

-
-

+
m t m t

m t

=
( )ˆ ( )

with theKronecker delta ,j k,d

f c e . A.8
m n

m n
m

,
, nåt t= m t( ) ( )

Assuming that the terms em nt m t are linearly independent, in principle one can always single out these
contributions aswell as their corresponding prefactors c .m n, This gives us the chance to extract the coefficients
z zj j1, ,1{ˆ }and the eigenvalues im{ } from P0, provided that no coefficient is identical to zero. Rearranging the
values im{ } to a diagonalmatrix inKronecker sum form results in thematrix . One should note, however, that
efficient spectral recovery algorithms like thematrix pencil method do not straightforwardly work for functions
such asPn, n 2, where the exponential functions aremultipliedwith powers of τ.

In order to reconstruct the elements of thematrix together with the off-diagonal elements ofZ, we use a
gauge argument: All probability functions Pn are invariant under scaling and permutation of the eigenvectors in
thematricesX andY (except for the eigenvector ofT corresponding to eigenvalue zero). This allows us to require
all but one z j1,ˆ to be equal to one, and immediately obtain the according number z .j,1 The remaining coefficient
can then be determined via the normalization constraint

z z 1, A.9
j

d

j j
1

1, ,1

2

å =
=

ˆ ( )

so that all zj,1 are known. This can be used to obtain the diagonal elements j j, from . For the remaining
matrix elements, only the symmetric elements j k k j, , + (but not their constituents) are directly accessible
since

z z z z z z
e e e e

. A.10

j k

d

j j k k
k j j k

d

j j k k k k j j
k j

1, , ,1 1, , ,1 1, , ,1
j k

k j k j

, 1

2 2

  å åm m m m
-
-

= +
-
-

m t m t m t m t

¹ <=
( )ˆ ˆ ˆ ( )

However, this does not constitute a limitation for the reconstruction of thematricesQ andR of the ancillary
system. To this end, wemake use of the inner structure of . The diagonalmatrix  with eigenvalues jm can be
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reordered such that it has the form D DQ Q* = Ä + Ä  with diagonalDQ consisting of the eigenvalues ofQ.
Reordering the eigenvectors inY accordingly, we can assume that thematrixY and hence thematrixhave the
formof aKronecker product

R R . A.11rec rec* = Ä ( )

Here R rj k
d d

rec , = Î ´( ) is in general not diagonal. The symmetrized components of can then bewritten
as r r r rj k l m k j m l, , , ,* *+ and the constituents rj can be determined (up to a phase factor) by equating themwith the
coefficients in equation (A.10). The according equation system can then be solved.

The important point is thatRrec and Q DQrec ≔ are valid cMPS parametermatrices in the same gauge and
hence are sufficient for reconstructionwith the same argument as in [11, III.E]. Let us note that concrete values
of the basis transformationmatricesX andY are in fact never used or needed in the reconstruction procedure.
FromRrec andQrec, we can compute all quantities we need to establish the correlation and counting probability
functions, in particular and . RegaugingRrec andQrec such that the orthonormalization condition [1] is
fulfilled, yields a reconstruction of the freeHamiltonianKrec of the ancillary system.
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A.2 Quantum singular value decomposition

An indispensable building block for many quantum algorithms (see section 4) is quantum phase
estimation: Given a unitary operator U = e−iH∆t , exponentiating theHermitian H , and an eigen-
vector |ψ j 〉, it provides an estimate for the corresponding eigenvalue e−i 2πϕ j . More generally, using
an initial state |χ 〉with eigenvector overlaps 〈ψ j |χ 〉, the operation

|χ 〉 |0, . . . , 0〉A 7→
∑

j

〈ψ j |χ 〉 |ψ j 〉 |e
−i 2π eϕ j 〉A (32)

is performed. | · 〉A is a quantum register consisting of m qubits, each of which are initially in the
state |0〉, and ultimately provide a binary representation of e−i 2πϕ j with m binary digits. Each state
|e−i 2π eϕ j 〉A is a product state and can be read out efficiently. The operationmakes use ofHadamard
quantum gates and the (inverse) quantum Fourier transform; the latter involves the successive con-
trolled application of U on |χ 〉. For this, U needs to be efficiently simulatable, which is generally
not the case for an arbitrary unitary. Simulating U = e−iH∆t was shown to be efficient first for
Hamiltonians with local interactions[21]. More classes of Hamiltonians followed, including sparse
Hamiltonians[186] and positive-semidefinite, non-sparse, low-rank matrices[171].

For practical quantum algorithms, however, it is also desirable to exponentiate general, non-po-
sitive, even non-quadratic matrices A. Hamiltonians of the form

eH :=
�

0 A
A† 0

�

, (33)

as in Ref. [166], there however for sparse matrices, have positive and negative eigenvalues by con-
struction and hence cannot simply be used in the algorithm in Ref. [171] without losing relative
phase information of the eigenspaces. The following publication [6]25 helps closing this gap by pro-
viding a prescription for efficiently exponentiating Hamiltonians of the form (33) with non-sparse,
low-rankmatricesA, which need not be quadratic. The eigenvectors of eH comprise the singular vec-
tors of A and the eigenvalues the corresponding singular values. Together with the preservation of
the phase relations between the singular spaces, this paves theway for a complete quantumanalogue
of the singular value decomposition with all its entailing applications. Specifically discussed in the
publication is the Procrustes problem of finding an isometry (a matrix with orthonormal columns)
that is in a least squares sense closest to a given linear map.

As an example for a potential embedding into a larger quantum algorithm, note that the svd
also plays a central role in compressed sensing: A classical fast iterative algorithm that solves the
matrix completion problem Eq. (13) and also the compressive quantum state tomography problem

25Patrick Rebentrost, Adrian Steffens, and Seth Lloyd,“Quantum singular value decomposition of non-sparse low-
rankmatrices”,ArXiv e-prints 1607.05404, 2016 (arxiv.org/abs/1607.05404). After submission of this thesis published as
PatrickRebentrost, Adrian Steffens, ImanMarvian, and SethLloyd, Physical ReviewA 97:012327, 2018 (© 2018American
Physical Society).
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Eq. (15) (see section 2.2) alternates between fitting the ansatzmatrix to the constraints and truncating
its singular spectrum (singular value thresholding).[82] Thequantum svd could be used as a subrou-
tine in a quantum matrix completion algorithm, interfacing with a quantum version of the fitting
operation, and is expected to be faster than a more general quantum semidefinite programming
algorithm.[164]
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Quantum singular value decomposition of non-sparse low-rank matrices

Patrick Rebentrost,1,∗ Adrian Steffens,2, 1 and Seth Lloyd1,3,†

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin

3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

In this work, we present a method to exponentiate non-sparse indefinite low-rank matrices on a quantum
computer. Given an operation for accessing the elements of the matrix, our method allows singular values and
associated singular vectors to be found quantum mechanically in a time exponentially faster in the dimension
of the matrix than known classical algorithms. The method extends to non-Hermitian and non-square matrices
via embedding matrices. In the context of the generic singular value decomposition of a matrix, we discuss the
Procrustes problem of finding a closest isometry to a given matrix.

Matrix computations are central to many algorithms in op-
timization and machine learning [1–3]. At the heart of these
algorithms regularly lies an eigenvalue or a singular value de-
composition of a matrix, or a matrix inversion. Such tasks
could be performed efficiently via phase estimation on a uni-
versal quantum computer [4], as long as the matrix can be sim-
ulated (exponentiated) efficiently and controllably as a Hamil-
tonian acting on a quantum state. Almost exactly twenty years
ago, Ref. [5] paved the way for such a simulation of quantum
systems by introducing an efficient algorithm for exponentiat-
ing Hamiltonians with tensor product structure—enabling ap-
plications such as in quantum computing for quantum chem-
istry [6]. Step by step, more general types of quantum sys-
tems were tackled and performance increased: Aharonov and
Ta-Shma [7] showed a method for simulating quantum sys-
tems described by sparse Hamiltonians, while Childset al.[8]
demonstrated the simulation of a quantum walk on a sparse
graph. Berryet al. [9] reduced the temporal scaling to ap-
proximately linear via higher-order Suzuki integrators. Fur-
ther improvements in the sparsity scaling were presented in
Ref. [10]. Beyond sparse Hamiltonians, quantum principal
component analysis (qPCA) was shown to handle non-sparse
positive semidefinite low-rank Hamiltonians [11] when given
multiple copies of the Hamiltonian as a quantum density ma-
trix. This method has applications in quantum process tomog-
raphy and state discrimination [11], as well as in quantum
machine learning [12–18], specifically in curve fitting [19]
and support vector machines [20]. In an oracular setting,
Ref. [10, 21, 22] showed the simulation of non-sparse Hamil-
tonians via discrete quantum walks. The scaling in terms of
the simulated timet is t3/2 or even linear int.

In the spirit of Ref. [11], we provide an alternative method
for non-sparse matrices in an oracular setting which requires
only one-sparse simulation techniques. We achieve a run time
in terms of the matrix maximum element and at2 scaling. We
discuss a class of matrices with low-rank properties that make
the non-sparse methods efficient. Compared to Ref. [11] the
matrices need not be positive semidefinite. In order to effec-
tively treat a general non-Hermitian non-quadratic matrix, we
make use of an indefinite “extended Hermitian matrix” that
incorporates the original matrix. With such an extended ma-
trix, we are able to efficiently determine the singular value de-

composition of dense non-square, low-rank matrices. As one
possible application of our method, we discuss the Procrustes
problem [1] of finding a closest isometric matrix.

Method. We have been given anN × N dense (non-
sparse) Hermitian indefinite matrixA ∈ CN×N via efficient
oracle access to the elements ofA. The oracle either performs
an efficient computation of the matrix elements or provides
access to a storage medium for the elements such as quantum
RAM [23, 24]. Our new method simulatese−i (A/N)t on an ar-
bitrary quantum state for arbitrary timest. Note that the eigen-
values ofA/N are bounded by±‖A‖max, where‖A‖max

is the maximal absolute value of the matrix elements ofA.
This means that there exist matricesA for which the unitary
e−i (A/N)t can be far from the identity operator for a time of
order‖A‖−1

max, i.e. an initial state can evolve to a perfectly dis-
tinguishable state. For such times, the unitarye−i (A/N)t can
be well approximated by a unitary generated by a low-rank
matrix.

Let σ andρ beN -dimensional density matrices. The state
σ is the target state on which the matrix exponential ofA/N
is applied to, while multiple copies ofρ are used as ancillary
states. Our method embeds theN2 elements ofA into a Her-
mitian sparse matrixSA ∈ C

N2×N2

, which we call “modified
swap matrix” because of its close relation to the usual swap
matrix. Each column ofSA contains a single element ofA.
The modified swap matrix between the registers for a single
copy ofρ andσ is

SA =

N
∑

j,k=1

Ajk|k〉〈j| ⊗ |j〉〈k| ∈ C
N2×N2

. (1)

This matrix is one-sparse in a quadratically bigger space and
reduces to the usual swap matrix forAjk = 1 and j, k =
1, . . . , N . Given efficient oracle access to the elements, we
can simulate a one-sparse matrix such asSA with a constant
number of oracle calls and negligible error [7–9, 25]. We dis-
cuss the oracle access below. This matrix exponential ofSA is
applied to a tensor product of a uniform superposition and an
arbitrary state. PerformingSA for small∆t leads to a reduced
dynamics ofσ when expanded to terms of second order in∆t
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2

as

tr1{e−iSA∆t ρ⊗ σ eiSA∆t} = (2)

σ − i tr1{SA ρ⊗ σ}∆t + i tr1{ρ⊗ σ SA}∆t+O(∆t2).

Here, tr1 denotes the partial trace over the first register
containingρ. The firstO(∆t) term is tr1{SA ρ ⊗ σ} =
∑N

j,k=1Ajk〈j|ρ|k〉|j〉〈k|σ. Choosingρ = |~1〉〈~1|, with |~1〉 :=
1√
N

∑

k |k〉 the uniform superposition, leads totr1{SA ρ ⊗
σ} = A

N σ. This choice forρ contrasts with qPCA, whereρ
is proportional to the simulated matrix [11]. Analogously, the
secondO(∆t) term becomestr1{ρ ⊗ σ SA} = σ A

N . Thus
for small times, evolving with the modified swap matrixSA

on the bigger system is equivalent to evolving withA/N on
theσ subsystem,

tr1{e−iSA∆t ρ⊗ σ eiSA∆t} = σ − i
∆t

N
[A, σ] +O(∆t2)

≈ e−i A
N

∆t σ ei
A
N

∆t. (3)

Let ǫ0 be the trace norm of the error termO(∆t2). We can
bound this error byǫ0 ≤ 2‖A‖2max∆t

2 (see Appendix). Here,
‖A‖max = maxmn |Amn| denotes the maximal absolute ele-
ment ofA. Note that‖A‖max coincides with the largest ab-
solute eigenvalue ofSA. The operation in Eq. (3) can be per-
formed multiple times in a forward Euler fashion using mul-
tiple copies ofρ. Forn steps the resulting error isǫ = n ǫ0.
The simulated time ist = n∆t. Hence, fixingǫ andt,

n = O

(

t2

ǫ
‖A‖2max

)

(4)

steps are required to simulatee−i A
N

t. The total run time of
our method isnTA, the number stepsn is multiplied with the
matrix oracle access timeTA (see below).

We discuss for which matrices the algorithm runs effi-
ciently. Note that an upper bound for the eigenvalues ofA/N
in terms of the maximal matrix element is|λj |/N ≤ ‖A‖max.
At a simulation timet only the eigenvalues ofA/N with
|λj |/N = Ω(1/t) matter. Let the number of these eigenval-
ues ber. Thus, effectively a matrixAr/N is simulated with
tr{A2

r/N
2} =

∑r
j=1 λ

2
j/N

2 = Ω(r/t2). It also holds that
tr{A2

r/N
2} ≤ ‖A‖2max. Thus, the rank of the effectively sim-

ulated matrix isr = O(‖A‖2maxt
2).

Concretely, for the algorithm to be efficient in terms of
matrix oracle calls, we require that the number of simu-
lation stepsn is O(poly logN). Let the desired error be
1/ǫ = O(poly logN). Assuming‖A‖max = Θ(1), mean-
ing a constant independent ofN , we have from Eq. (4) that
we can only exponentiate for a timet = O(poly logN). For
such times, only the large eigenvalues ofA/N with |λj |/N =
Ω(1/poly logN) matter. Such eigenvalues can be achieved
when the matrix is dense enough, for exampleA/N hasΘ(N)
non-zeros of sizeΘ(1/N) per row. For the rank of the simu-
lated matrix in this case we find thatr = O(poly logN), thus
effectively a low-rank matrix is simulated. To summarize, we

expect the method to work well for low rank matricesA that
are dense with relatively small matrix elements.

A large class of matrices satisfies these criteria. Sample a
random unitaryU ∈ CN×N andr suitable eigenvalues of size
|λj | = Θ(N) and multiply them asU diagr(λj)U

† to con-
structA. Here,diagr(λj) is the diagonal matrix with ther
eigenvalues on the diagonal and zero otherwise. A typical ran-
dom normalized vector has absolute matrix elements of size
O(1/

√
N). The outer product of such a vector with itself has

absolute matrix elements of sizeO(1/N). Each eigenvalue
of absolute sizeΘ(N) is multiplied with such an outer prod-
uct and ther terms are summed up. Thus, a typical matrix
element ofA will be of sizeO(

√
r) and‖A‖max = O(r).

Phase estimation. Phase estimation provides a gateway
from unitary simulation to many interesting applications. For
the use in phase estimation, we extend our method such that
the matrix exponentiation ofA/N can be performed condi-
tioned on additional control qubits. With our method, the
eigenvaluesλj/N of A/N can be both positive and negative.
The modified swap operatorSA for a Hermitian matrixA
with eigendecompositionA =

∑

j λj |uj〉〈uj | is augmented
as|1〉 〈1|⊗SA, which still is a one-sparse Hermitian operator.
The resulting unitarye−i |1〉〈1|⊗SA∆t = |0〉 〈0|⊗1+ |1〉 〈1|⊗
e−iSA∆t is efficiently simulatable. This operator is applied to
a state|c〉〈c| ⊗ ρ ⊗ σ where|c〉 is an arbitrary control qubit
state. Sequential application of such controlled operations al-
lows the use phase estimation to prepare the state [25]

|φ〉 = 1
√

∑

j |βj |2
∑

|λj |

N
≥ǫ

βj |uj〉|
λj
N

〉 (5)

from an initial state|ψ〉|0 . . . 0〉 with O(⌈log(1/ǫ)⌉) control
qubits forming an eigenvalue value register. Here,βj =
〈uj |ψ〉 and ǫ is the accuracy for resolving eigenvalues. To
achieve this accuracy, phase estimation is run for a total time
t = O(1/ǫ). Thus,O(‖A‖2max/ǫ

3) queries of the oracle for
A are required, which is of orderO(poly logN) under the
low-rank assumption forA discussed above.

Matrix oracle and resource requirements.To simulate the
modified swap matrix, we employ the methods developed in
Refs. [8, 9]. First, we assume access to the original matrixA,

|j k〉|0 · · · 0〉 7→ |j k〉|Ajk〉. (6)

This operation can be provided by quantum random access
memory (qRAM) [23, 24] usingO(N2) storage space and
quantum switches for accessing the data inTA = O(log2N)
operations. Alternatively, there matrices whose elements are
efficiently computable, i.e. TA = O(poly logN). For the
one-sparse matrixSA, the unitary operation for the sparse
simulation methods [8, 9] can be simply constructed from the
oracle in Eq. (6) and is given by

|(j, k)〉|0 · · · 0〉 7→ |(j, k)〉|(k, j), (SA)(k,j),(j,k)〉. (7)

Here, we use(j, k) as label for the column/row index of the
modified swap matrix.
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We compare the required resources with those of other
methods for sparse and non-sparse matrices. For a general
N × N and s-sparse matrix,O(sN) elements need to be
stored. In certain cases, the sparse matrix features more struc-
ture and its elements can be computed efficiently [9, 25]. For
non-sparse matrices and the qPCA method in Ref. [11], only
multiple copies of the density matrix as opposed to an opera-
tion as in Eq. (6) are required for applications such as state to-
mography. For machine learning via qPCA [11, 20], the den-
sity matrix is prepared from a classical source via quantum
RAM [23, 24] and requiresO(N2) storage. In comparison,
the requirements of the method in this work are in principle
not higher than these sparse and non-sparse methods, both in
the case of qRAM access and in the case when matrix ele-
ments are computed instead of stored.

Non-square matrices.Our method enables us also to de-
termine properties of general non-square low-rank matrices
effectively. To determine the singular value decomposition of
a matrixA = UΣV † ∈ CM×N with rank r, simulating the
positive semidefinite matricesAA† andA†A via qPCA yields
the correct singular values and vectors. However, essential
information is missing, leading to ambiguities in the singular
vectors that become evident when inserting diagonal matrices
into the singular value decomposition ofAA† that change the
relative phases of the singular vectors,

AA† = UΣ2U † = UΣD†V † V DΣU † =: ÂÂ†, (8)

with D := diag(e−iϑj ), ϑj being arbitrary phases. IfAvj =
σjuj for eachj = 1, . . . , r, then

Âvj = UΣD†V †vj = σje
iϑjuj := σj ûj , (9)

which means different phase relations between left and right
singular vectors inÂ from those inA. AlthoughA and Â
still share the same singular values and even the same sin-
gular vectors up to phase factors,‖A − Â‖F will in general
(with the exception of positive semidefinite matrices, where
U = V ) not be zero or even be small: The matrixA cannot be
reproduced this way—a singular value decomposition is more
than a set of singular values and normalized singular vectors.
This affects all kinds of algorithms that require the appropriate
phase relations between each left singular vectoruj and the
according right singular vectorvj . Such applications are de-
termining the best low-rank approximation of a matrix, signal
processing algorithms discussed in Ref. [26], or determining
the nearest isometric matrix, related to the unitary Procrustes
problem, of a non-Hermitian matrix.

In order to overcome this issue, consider the “extended ma-
trix”

Ã :=

[

0 A
A† 0

]

, (10)

which was introduced for singular value computations in
Ref. [27] and recently in sparse quantum matrix inversion
in [25]. The eigenvalues of̃A correspond to{±σj} with
{σj} being the singular values ofA for j = 1, . . . , r. The

corresponding eigenvectors are proportional to(uj ,±vj) ∈
C

M+N , see Appendix. The left and right singular vectors
of A can be extracted from the firstM and lastN entries,
respectively. SincẽA is Hermitian, its eigenvectors can as-
sumed to be orthonormal:‖(uj, vj)‖2 = ‖uj‖2 + ‖vj‖2 = 1,
and(uj , vj) · (uj,−vj)† = ‖uj‖2 − ‖vj‖2 = 0, from which
follows that the norm of each of the subvectorsuj andvj is
1/

√
2, independent of their respective lengthsM andN . The

important point is that the eigenvectors of the extended matrix
preserve the correct phase relations between the left and right
singular vectors since(eiϑjuj, vj) is only an eigenvector of̃A
for the correct phaseeiϑj = 1.

The requirements for our quantum algorithm can be satis-
fied also for the extended matrix. For randomly sampled left
and right singular vectors, the matrix elements have maximal
size ofO(

∑r
j=1 σj/

√
MN), thusσj = O(

√
MN). In ad-

dition, an1/(M + N) factor arises in the simulation of the
extended matrix from the ancillary stateρ = |~1〉〈~1| as before,
which leads to the requirementσj = Θ(M +N). These two
conditions forσj can be satisfied if the matrixA is not too
skewed, i.e.M = Θ(N). In summary, by simulating the
corresponding Hermitian extended matrices, general complex
matrices of low rank can be simulated efficiently, yielding the
correct singular value decomposition.

Procrustes problem. The unitary Procrustes problem is to
find the unitary matrix that most accurately transforms one
matrix into another. It has many applications, such as in
shape/factor/image analysis and statistics [1]. We consider
non-square matrices thus consider the Procrustes problem to
find the isometrythat most accurately transforms one matrix
into another. Formally, minimize‖WB − C‖F among all
isometriesW ∈ CM×N , W †W = 1, with B ∈ CN×K and
C ∈ CM×K , whereM > N . The problem is equivalent to
the general problem of finding the nearest isometric matrix
W ∈ CM×N to a matrixA ∈ CM×N by takingA = CB†.
Since our quantum algorithm is restricted to low rank matri-
ces, letA = CB† be low-rank with rankr and singular value
decompositionA = U ΣV † with U ∈ CM×r,Σ ∈ Rr×r, and
V ∈ CN×r. The optimal solution to the Procrustes problem is
W = U V † [1], setting all singular values to one, in both the
low-rank and the full-rank situation. SinceA is assumed to be
low rank, we find apartial isometry withW †W = Pcol(V ),
with Pcol(V ) the projector into the subspace spanned by the
columns ofV . Thus,W acts as an isometry for vectors in that
subspace (see Appendix).

In a quantum algorithm, we want to apply the nearest low-
rank isometry to a quantum state|ψ〉. The state|ψ〉 is assumed
to be in or close to the subspace spanned by the columns of
V . We assume that the extended matrix forA in Eq. (10) is
given in oracular form and thatA is not too skewed such that
σj/(M + N) = Θ(1) and‖A‖max = Θ(1). We perform
phase estimation on the input state|0, ψ〉|0 . . . 0〉 and, analo-
gous to Eq. (5), obtain a state proportional to

∑

σj
M+N

≥ǫ

β±
j |uj,±vj〉| ±

σj
M +N

〉 (11)
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with β±
j = 〈uj ,±vj |0, ψ〉 = ±〈vj |ψ〉/

√
2. The sum has2r

terms corresponding to the eigenvalues of the extended ma-
trix with absolute value greater than(M + N)ǫ. Performing
a σz operation on the qubit encoding the sign of the respec-
tive eigenvalue an uncomputing the eigenvalue register yields
a state proportional to

∑

j βj |uj ,±vj〉. Projecting onto theuj
part (success probability1/2) results in a state proportional to

∑

σj
M+N

≥ǫ

|uj〉〈vj |ψ〉 ∝ U V †|ψ〉. (12)

This prepares the desired state for the non-square low-
rank Procrustes problem with accuracyǫ in runtime
O(‖A‖2max log

2(N + M)/ǫ3). Classically, performing the
singular value decomposition of a low-rankA without further
structural assumptions takes generallyO(N3).

Conclusion. The method presented here allows non-
sparse low-rank non-positive HermitianN×N matricesA/N
to be exponentiated for a timet with accuracyǫ in run time

O
(

t2

ǫ ‖A‖2max TA

)

, where‖A‖max is the maximal absolute

element ofA. The data access time isTA. If the matrix ele-
ments are accessed via quantum RAM or computed efficiently
and the significant eigenvalues ofA areΘ(N), our method
can achieve a run time ofO (poly logN) for a large class of
matrices. Our method allows non-Hermitian and non-square
matrices to be exponentiated via extended Hermitian matrices.

We have shown how compute the singular value decom-
position of a non-Hermitian non-sparse matrix on a quantum
computer directly while keeping all the correct relative phase
information. As one of the many potential applications of the
singular value decomposition, we can find the pseudoinverse
of a matrix and the closest isometry exponentially faster than
any known classical algorithm. It remains to be seen if the
time complexity of our method can be improved fromO(t2)
to an approximately linear scaling via higher-order Suzuki-
Trotter steps or other techniques. In addition, by using a (pos-
sibly unknown) ancillary state other than the uniform super-
position, the oracular setting of the present work and the to-
mography setting of [11] could be combined.
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Appendix

Norms. Denote the maximum absolute element of a ma-
trix A ∈ CN×N with ‖A‖max := maxj,k |Ajk|. The
Frobenius or Hilbert-Schmidt norm is given by‖A‖F :=
√

∑

j,k |Ajk|2 and its nuclear norm by‖A‖∗ :=
∑r

i=1 σi,

wherer is the rank andσj are the singular values.
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Modified swap matrix. The modified swap matrix is de-
fined as

SA =

N
∑

j,k=1

Ajk|k〉〈j| ⊗ |j〉〈k| ∈ C
N2×N2

. (13)

Taking Ajk → 1 leads to the original swap matrixS =
∑N

j,k=1 |k〉〈j| ⊗ |j〉〈k| ∈ CN2×N2

. TheN2 eigenvalues of
SA are

A11, A22, . . . , ANN , A12,−A12, . . . , Aj,k>j ,−Aj,k>j , . . . ,
(14)

wherek > j denotes an indexk greater thanj. The maximal
absolute eigenvalue ofSA is thusmaxj,k |Ajk| ≡ ‖A‖max,
corresponding to the maximal absolute matrix element ofA.
The square of the modified swap matrix is

(SA)
2 =

N
∑

j,k=1

|Ajk|2 |k〉〈k| ⊗ |j〉〈j| ≤ ‖A‖2max 1. (15)

Its eigenvalues are|Ajk|2 and the maximal eigenvalue is
‖A‖2max. This already points to the result that the second or-
der error of our method naturally scales with‖A‖2max, which
we will now derive.

Error analysis. In the following, we estimate the error
from the second-order term in∆t in the expansion Eq. (2).
The nuclear norm of the operator part of the second order er-
ror is

ǫρ,σ = ‖tr1{SA ρ⊗ σ SA} −
1

2
tr1{(SA)

2 ρ⊗ σ} (16)

− 1

2
tr1{ρ⊗ σ (SA)

2}‖∗.

In Ref. [11], this error was equal toǫqPCA
ρ,σ = ‖ρ − σ‖∗ ≤ 2,

which is achieved in the present algorithm by choosingA such
thatAjk = 1 for eachj, k. Here, our algorithm coincides with
the qPCA method forρ chosen as the uniform superposition.
For general low-rankA, we bound Eq. (16) via the triangle
inequality. Taking the nuclear norm of the first term results in

‖tr1{SAρ⊗ σSA}‖∗ ≤‖SAρ⊗ σSA‖∗
≤‖ρ⊗ σ‖∗‖S2

A‖∗ ≤ ‖A‖2max. (17)

The second and third term can be treated similarly. We obtain
‖tr1{(SA)

2ρ⊗ σ}‖∗ ≤ ‖A‖2max. Combining all terms yields
the bound

ǫρ,σ ≤ 2‖A‖2max. (18)

Extended matrices.We define the Hermitian extended
matrix Ã of a complex-valued, not necessarily square matrix
A ∈ CM×N as

Ã =

[

0 A
A† 0

]

∈ C
(M+N)× (M+N). (19)

Using block matrix identities for the determinant, we obtain
its characteristic polynomial

χÃ(λ) = λ|M−N | det (λ1+
√
AA†)(λ1 −

√
AA†). (20)

The eigenvalues of̃A are either zero or correspond to{±σj},
the singular values ofA for j = 1, . . . , r with an additional
sign. Hence, ifA has low rankr, thenÃ has low rank2r. The
corresponding eigenvectors are proportional to(uj ,±vj) ∈
CM+N since

[

∓σj1 A
A† ∓σj1

]

·
[

uj
±vj

]

= 0, (21)

whereuj andvj are thejth left and right singular vector ofA,
respectively. The important point is that the eigenvectors of
the extended matrix preserve the correct phase relations be-
tween the left and right singular vectors since(eiϑjuj,±vj) is
only an eigenvector of̃A for the correct phaseeiϑj = 1,
[

∓σj1 A
A† ∓σj1

]

·
[

eiϑjuj
±vj

]

=

[

∓σjeiϑjuj ±Avj
eiϑjA†uj − σjvj

]

=(eiϑj − 1)σj

[

∓uj
vj

]

. (22)

The right hand side is only equal to zero for the correct phase
eiϑj = 1.

Low-rank Procrustes. Let the isometry beW = UV †

with U ∈ CM×r andV ∈ CN×r. Assume thatM > N ,
giving orthogonal columns in the full-rank Procrustes prob-
lem (r = N ). We find for the low-rank (partial) isometry that

W †W = V U †UV † = V V † =
r

∑

j=1

~vj~v
†
j . (23)

Pick an arbitrary vector~x =
∑r

j=1 αj~vj + ~x⊥ = ~x‖ + ~x⊥.
where~x⊥ denotes the part orthogonal to the orthonormal vec-
tors~vj . Then,

W †W~x =

r
∑

j=1

αj~vj = ~x‖. (24)

Thus,W †W acts as the identity operator in the low-rank sub-
space, and projects out the space perpendicular to that sub-
space.
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A.3 Compressive density functional theory

Density functional theory[187,188] (dft) is a very successful method for determining the electronic
structure, especially the ground state properties, of a quantum many-body system, allowing to ac-
curately compute quantities such as the ionization and atomization energies or the vibrational fre-
quencies of a molecule. Complementarily to tensor network states, the key point of dft is to treat
a N -body quantum system just in terms of its electronic density %(r ) ∈ R+ at position r ∈ R3,
thus reducing the N -particle problem with the entailing curse of dimensionality (see section 2.1)
to a one-particle problem in the three spatial coordinates of %. dft works astonishingly well for
many applications and has its theoretical foundation in theHohenberg-Kohn theorems[189]. For an
overview, see, e.g., Refs. [190, 191].

Since atomic nuclei are much heavier and hence move slower than electrons, the overall Hamil-
tonian can be split into an electronic and an atomic part that can be treated consecutively (Born-
Oppenheimer approximation). The electronic Hamiltonian acting on an N -electron wave function
Ψ(r1, . . . , rN ) consists of a kinetic term T , the electron-electron interactions Vee depending on the
distances r j ,k = |r j− rk | and the electron-nucleus interactionsVext depending on r̃ j ,A= |r j− r̃A|,
and the nuclear charges ZA:

H = − 1
2

N
∑

j=1

∇2
j +
∑

1≤ j<k≤N

1
r j ,k
−

N
∑

j ,A=1

ZA

r̃ j ,A
= T +Vee+Vext. (34)

The ground state of H with ground state energy E0 could in principle be determined using the
Rayleigh-Ritz variational principle

E0 =min
|Ψ〉

〈Ψ|T +Vee+Vext|Ψ〉
〈Ψ|Ψ〉

. (35)

For high-dimensional |Ψ〉, this becomes computational infeasible. The first Hohenberg-Kohn the-
orem, however, states that the external potential is uniquely determined by the electronic density:
Vext is a unique functional of %. Since Vext also fixes the Hamiltonian H and hence the state vec-
tor |Ψ〉, there is a one-to-one correspondence between the electronic density and the multi-particle
wave function for each external potential. The correspondence is not constructive, however, and the
explicit formof the universal, system-independent functional F : % 7→ T [%]+Eee[%] is unknown.
In this sense, the computational complexity of the original problem of finding the ground state has
been passed over to the specification of the universal functional F . In fact, it has been shown that
determining F is computationally hard even on a hypothetical quantum computer[192].

Nevertheless, the functional can be suitably approximated in many practically relevant situa-
tions. Introducing a noninteracting reference system with electronic orbitals {ψ j (r )}, yielding the
same electronic density as in the original system, %(r ) =

∑N
j=1 |ψ j (r )|2, and with approximative
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kinetic energy

TKS =−
1
2

N
∑

j=1

〈ψ j |∇
2 |ψ j 〉 , (36)

followed by applying the variational principle on the formal expression of the energy functional,
results in the famousKohn-Sham equations[193]:
�

−1
2
∇2+
∫

dr ′
%(r ′)
|r − r ′|

−
N
∑

A=1

ZA

|r − r̃A|
+VXC(%(r ))
�

ψ j (r ) = ε jψ j (r ), j = 1, . . . ,N (37)

Since the electronic density%depends on theKohn-Shamorbitalsψ j , Eq. (37) has to be solved itera-
tively until the eigenvalues and the density converge (self-consistency). All remaining energetic con-
tributions without explicit analytical form are summarized in the exchange-correlation term VXC.
Well-known heuristics for VXC include local density approximation (lda) functionals such as the
Perdew-Wang functional[194], generalized gradient approximation (gga) functionals—additionally
taking gradient informationof the electronic density into account—such as thePerdew–Burke–Ernz-
erhof (pbe) functional[195], and linear combinations of lda and gga functionals with theHartree-
Fock exchange functional (so-called hybrid functionals) such as b3lyp (Becke functional, three pa-
rameters,Lee-Yang-Parr functional)[196]. The standard functionals arenot suitable for systemswhere
the density varies rapidly, such as systems with Van derWaals interactions, where further extensions
have to be in-
cluded.[197]

For practical computations, each Kohn-Sham orbital is expanded into a linear combination of
basis functions out of a dictionary of size d ≥N ,

ψ j =
d
∑

k=1

c ( j )
k
ϕk , j = 1, . . . ,N . (38)

Inserting this expansion into Eq. (37) results in the d×d real-valued generalized eigenvalue problem

H KSc ( j ) = ε j Sc ( j ), j = 1, . . . ,N (39)

with Kohn-Sham Hamiltonian H KS with components H KS
j ,k =
∫

ψ j (r ) eH
KSψk (r )d

3 r ( eH KS de-
noting the operator on the left hand side of Eq. (37)) and overlapmatrix S with components S j ,k =
∫

ψ j (r )ψk (r )d
3 r . H KS depends via the electronic density % on the coefficients c ( j )

k
correspond-

ing to the occupied orbitals (the ones with lowest energy eigenvalues ε j ) and is updated after each
iteration until the required self-consistency criteria are met. The accuracy of the dft calculations
critically relies on the employed basis set and great effort has been put into establishing suitable
basis functions[198–201] resulting in large basis set databases[202].
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In general, the computational effort for self-consistently solving Eq. (39) scales asymptotically
with O(d 3), which becomes forbidding for large systems.26 On the other hand, discarding basis
functions in general amounts to lower computational effort, but also lower accuracy.

i i
The goal of the present project is to use concepts from compressed sensing in order to identify

basis subsets that due to their considerably smaller size allow for faster computations while still re-
taining sufficient accuracy for the physical properties of interest. In the following, the principles of
the to be published project [7] are outlined.

Similar approaches outside the dft context for selecting localized Wannier functions out of a
dictionary of functions have been pursued[205,206] using an `1-regularization term (see Eq. (11)). The
optimization routine, which has to take orthogonality constraints for the orbitalsψ j into account,
was based on an Bregman-iterations algorithm[207,208] that is closely related to the Alternating Di-
rection Method of Multipliers (admm)[209]. Building on this, `1-regularized Bregman optimization
algorithms for density matrix minimization have been proposed[210,211], as well as an `1-regularized
orbitalminimizationmethod[212]—the computational advantage overmethods such as inRef. [201]
has yet to be worked out, however. Beyond ground state calculations, dft and compressed sensing
have, e.g., been combined for learning physical descriptors in materials science[213].

By arranging the generalized eigenvectors {c ( j )} that correspond to the N occupied orbitals
(ignoring electronic spin degeneracy for clarity) as column vectors of a matrix C ∈CD×N , Eq. (39)
can be reformulated as an iterative minimization problem

C l+1 = argmin
C∈RD×N

tr (H KS(C l )C C T )

subject to C T SC = 1N , (40)

where the constraint represents the orthonormality of the columns of C (corresponding to the elec-
tronic orbitals) with respect to the overlap matrix S . The minimizer of the l -th iteration C l deter-
mines H KS for the subsequent iteration until self-consistency is achieved.

Using a large dictionary of basis functions (ϕk ), many basis functions will not contributemuch
to the minimizing function, i.e., the corresponding rows in C will comprise entries close to zero,
which could be facilitated by introducing a regularization term, as in Eq. (11), consisting of the `1-
norm of the `2-norms of the row vectors of C ,

‖C‖2,1 :=
D
∑

k=1

� N
∑

j=1

C 2
k , j

�1/2

, (41)

26Making certain physical assumptions such as locality, however, one can also design linear scaling methods.[203,204]

143



A – COAUTHORED PUBLICATIONS

which is also used, e.g., inmulti-task feature learning [214]. Due to the constraint, the resulting min-
imization problem

min
C∈Rn×N

fobj(C ) := min
C∈RD×N

tr(H KS C C T )+λ‖C‖2,1

subject to C T SC = 1N . (42)

is non-convex and, thus, cannot easily be treatedwith generic convex solvers. However, the structure
at hand allows for theuse of techniques thatmakeuse of themanifold geometry andprovide efficient
optimization routines on matrix manifolds[215]. Matrices C that fulfill the constraint in Eq. (42) are
elements of the generalized Stiefel manifold

V S
N (R

n) = {C ∈Rn×N : C T SC = 1N }. (43)

Using second order derivatives, a trust region algorithm was employed that acts on generalized
Stiefel manifolds[216] and is based on the Manopt [217] toolbox implementation. The map C k 7→
H KS(C k ) was provided by accessing the ab initio molecular simulations package fhi-aims[201,218],
whose input/output functions were modified for interfacing with Matlab[219] and Manopt. The
sparsity of the minimizer C ∗ of Eq. (42) depends on the size of the regularization parameter λ > 0:
In general, larger values of λ result in a higher concentration of the entries of C ∗ within a few
rows (cf. Fig. 3), while for smaller λmore basis functions will contribute and the energy term, the
sum of the lowest N generalized eigenvalues, will be more accurate. This corresponds to the fact
that adding more basis functions to a dictionary necessarily increases the possibilities of describing
the system, however often onlymarginally. This requires to carefully tuneλ for trading off energetic
accuracy and effective basis size (see Fig. 7).

The matrix-valued gradient of the objective function fobj can be written as

∂

∂ Ci , j

�

�

�

�

�

C

fobj = 2 (H C )i , j +λ
Ci , j

‖Ci ,:‖2
, (44)

where ‖Ci ,:‖2 :=
�
∑N

l=1 C 2
i ,l

�1/2 is the `2-norm of the i -th row of the matrix C . The fourth-order
Hessian tensor with the components

∂ 2

∂ Ck ,l ∂ Ci , j

�

�

�

�

�

C

fobj =Hi ,kδ j ,l + 2λδi ,k

�

δl , j

‖Ci ,:‖2
−

Ci , j Ci ,l

‖Ci ,:‖32

�

(45)

can be treated as amatrix by grouping the indices i , j and k , l , respectively. The orbitals in fhi-aims
with orbital quantum number ` arise in groups of 2`+ 1 elements comprising the subshells with
magnetic quantum numbers m =−`, . . . ,+`. Accordingly, the objective function and its deriva-
tives have to be modified by taking the `2-norm of all rows corresponding to one orbital group.

144



10
-4

10
-3

10
-210

-4
10

-2
10

0
10

2



E
 - 

E
0 [m

eV
]

10
-4

10
-3

10
-2200

400

600



su
pp

or
t s

iz
e

Figure 7: Buying sparsity with energy at the example of the C2H4 molecule with D = 796 Gaussian
basis functions with logarithmically even-spaced exponents: The difference between the generalized
eigenvalue sum of the occupied orbitals Eλ with the one without regularization Eλ=0 is plotted as a
function of the regularization parameter λ (above) after the initial scf iteration. The corresponding
size of the distilled basis set (support size) as a function of λ is shown below. The support size is taken
to be the number of basis indices whose `2-norm is larger than 10−6. By increasing λ, as the energy
becomes less accurate, the effective basis set size becomes smaller.

The resulting minimizer C ∗ of Eq. (42) is row-wise thresholded, i.e., rows C ∗i ,: with ‖C ∗i ,:‖2 below a
λ-dependent threshold η are considered noncontributing and discarded. The remaining basis func-
tions constitute the distilled basis set, which, while substantially smaller, provides sufficient accuracy
in describing the system.

In order to demonstrate the principle, the procedure is applied to an ethylene (C2H4)molecule,
using uncontracted Gaussian-type orbitals[221],27 with logarithmically even-spaced exponents and or-
bital quantum number ` = 0, . . . , 4 as an ansatz for a generic basis set.28 As exchange-correlation
functional, the pbe functional was employed. The geometric data of the nuclei was obtained from
the nomad repository. Pulay mixing [222] was used to increase convergence speed towards self-
consistency.

As can be seen by Fig. 7, larger values for λ yield smaller effective bases and larger deviations

27 Gaussian type orbitals (gto) are centered around the nuclei of the constituting atoms with radial part consisting
of linear combinations of Gaussian functions with varying exponents and coefficients. Uncontracted gtos possess only
one Gaussian function.

28Handling more competitive basis functions such as numeric atom-centered orbital (nao) basis functions[201] is less
straightforward due to the underlying parameter structure, but has been implemented as well.
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Figure 8: Ethylene molecule C2H4: Selected basis
functions (middle row, light). Discarded indices
are marked with black. The basis set is ordered by
atom number (upper row, the first two atoms are
carbon, the remaining four hydrogen) and orbital
angular quantum number ` (lower row).

Figure 9: Resulting electronic density of the
ethylene molecule from the distilled basis set.
The carbon nuclei are marked in gray, the hy-
drogen nuclei in white. A higher electronic den-
sity corresponds to a warmer color. Created with the
rendering software Jmol [220].

from the more accurate energy of the original, larger dictionary without regularization term Eλ=0.
When exemplarily settingλ= 0.01, the basis functions are selected as shown in Fig. 8. There remain
more basis functions per atom for the carbon atoms. Furthermore, basis functions with low orbital
quantum number are preferred. The resulting basis set has a size of 292 basis functions out of orig-
inally 796 basis functions and an total energy deviation after achieving self-consistency of 12 meV
(corresponding to a relative difference of 6·10−6). Thismeans that cutting the original basis bymore
than one half affects the relative error in terms of energywith less than 10−5. For obtaining a desired
target basis size, the regularization parameter λ can be tuned accordingly. Naturally, the procedure
is not limited to ethylene, but has been successfully tested on other systems. The electronic density
of the molecule %(r ) corresponding to the reduced basis set is depicted in Fig. 9.

This illustrates how discarding larger parts of the models of molecules by use of compressed
sensing methods still can preserve their descriptive power, paving the way for smarter Kohn-Sham
orbital basis sets that allow for efficiently tackling larger quantum systems. The entire procedure
scaleswithO(D3). Thishas tobe compared to existing greedy strategies, such as theone inRef. [201]
for nao basis functions, which scales linearly in the size of the dictionary and can be interpreted as
a matching pursuit algorithm related to compressed sensing, but suggests worse performance in
identifying the relevant basis functions because of its nature of onlymaking a locally optimal choice
at each optimization step. For large dictionaries, the overlap matrix S will become singular, which
can be addressed by essentially separating the Stiefel manifold into a null space component below a
certain eigenvalue threshold of S and its complement[7].
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B.1 Abstract

The present thesis represents a cumulative dissertation and is based on four publications that high-
light the connections of signal processing with complex quantum systems from different angles.

Onone side, large quantum systems require exponentially large parameter spaces for a complete
description, calling for sophisticated techniques for handling themultitude of data. The compressed
sensing paradigm and how to adapt it for practical quantum state estimation from experimental
measurement data involving model selection methods constitutes one main topic. A further topic
pertains to tensor networks in combination with spectral estimation protocols. This yields a less
general procedure than compressed sensing regarding the range of applicable quantum states, how-
ever, substantially larger systems can be handled. In the course of the underlying publications of
this thesis, both approaches have successfully been applied within concrete experiments.

Complementarily, quantum systems can be used to massively accelerate classical algorithms by
means of future quantum computers. Due to their fundamentally different architecture, it is not
straightforward to devise quantum analogues of classical algorithms. By designing novel algorith-
mic building blocks, a quantum algorithm for spectral estimation with superpolynomial speedup
towards classical algorithms could be developed. The four major publications are supplemented by
coauthored publications in the appendix.

i i

Die vorliegende Arbeit ist kumulativ angelegt und basiert auf vier Veröffentlichungen, die die
Verbindungen von Signalverarbeitung und komplexenQuantensystemen aus verschiedenen Blick-
winkeln beleuchten.

Einerseits benötigen große Quantensysteme exponentiell große Parameterräume für eine voll-
ständige Beschreibung, was ausgefeilte Techniken zur Handhabung der Datenmengen erfordert.
Ein Schwerpunkt liegt auf dem Compressed-Sensing-Paradigma und wie dieses für die praktische
Rekonstruktion vonQuantenzuständen aus experimentellenDatenunter Einsatz vonModel-Selec-
tion-Methoden angepasst zu werden hat. Ein weiterer Schwerpunkt liegt auf Tensornetzwerken in
Verbindung mit Spektralanalyse-Methoden. Was die Breite der handhabbaren Quantenzustände
betrifft, ist dieser Ansatz weniger allgemein als Compressed Sensing, allerdings kann er weitaus
größere Systeme verarbeiten. ImRahmen der dieserArbeit zugrunde liegendenVeröffentlichungen
wurden beide Ansätze erfolgreich innerhalb konkreter Experimente angewendet.

Komplementär hierzu können Quantensysteme auch eingesetzt werden, um klassische Algo-
rithmen erheblich zu beschleunigen –mithilfe zukünftigerQuantencomputer. Durch ihren grund-
sätzlich andersartigen Aufbau ist es nicht einfach, analoge Quantenfassungen von Algorithmen zu
entwickeln. Durch die Nutzbarmachung neuartiger algorithmischer Bausteine konnte ein Quan-
tenalgorithmus zur Spektralanalyse mit superpolynomieller Beschleunigung gegenüber klassischen

147



B – MISCELLANEOUS

Algorithmen ausgearbeitet werden. Die vier Hauptveröffentlichungen werden im Appendix er-
gänzt durch Publikationen, die in Koautorschaft entstanden sind.
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