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1T INTRODUCTION

Since its inception at the beginning of the 19th century, quantum mechanics has been fundamental
in understanding the physical principles of nature, explaining phenomena from black body radia-
tion and the photoelectric effect to superconductivity. This has made it possible to use quantum
effects in technical applications such as solar cells or lasers. With the technical progress of the past
years, the ability to actively control and manipulate complex quantum systems has come into reach,
leading to a second quantum revolution (8] with entirely new technological prospects: Quantum com-
puters are expected to substantially impact high-end computing, guantum cryprography protocols
may provide intrinsically secure data transmission, and guantum metrology could allow for ultra-
precise sensors. Commercial interest is growing, and a muld-billion Euro market is predicted to
emerge.m

Quantum systems, however, are very fragile and require thorough analysis if they are to be ef-
fectively harnessed for quantum technologies. Accurately modeling quantum systems is necessary
for explaining and predicting their behavior as building blocks of quantum devices. For a complete
model describing a quantum system—a guantum state—the system has to be prepared multiple
times and each time a certain guantum measurement has to be performed, resulting in data that
can be processed to infer the model. This procedure is called guantum state tomography and will be
a fundamental topic in the sections 2 and 3. With increasing size and complexity of the quantum
system, this task soon becomes infeasible in the general case. This is due to an exponential increase
of the number of modeling parameters and necessary measurements with the size of the quantum
system, making it hard to find appropriate parameters (“curse of dimensionality”"}). To cope with
this problem, elaborate signal processing techniques have to be developed and employed.

Signal processing comprises the transmission, manipulation, and representation of signals and
their underlying information. It is fundamental to a wide range of fields such as audio, image, and
video processing, telecommunication, or seismology. Signals can be continuous functions in time
or space such as voltages, magnetic fields, sound waves, angles, forces, or temperatures. For process-
ing, especially digital signal processing, such signals are typically discretized, i.e., sampled at discrete
points. Higher sampling rates generally result in higher accuracy in describing the input and the
output quantities of interest, but then require more computational resources, especially computa-
tional time and memory. With finite resources, this calls for carefully weighing effort and quality of
the output.

In the context of complex quantum systems, the basic input signals consist of quantum mea-
surements to estimate the parameters that constitute the corresponding quantum state. In general,
it is desirable to restrict the parameter set in such a way that the properties of the quantum system
are essentially preserved while keeping the processing effort manageable. Finding such “compressed
models” is not trivial and requires a certain intrinsic compressibility of the parameter space. And
yetitis notuncommon: Often in the history of physics it was vital to discard unnecessary properties



of a system to properly model particular parts of nature, such as observing the free fall in a vacuum
without drag forces. In the case of complex quantum systems, it turns out that a large part of the
entire parameter space is occupied by highly entangled quantum states, which are unlikely to ap-
pear in large parts of nature. In many cases, the remaining states, the ones of actual interest, can be
efficiently parametrized by use of tensor network states. They constitute a seminal class of quantum
states with a plethora of groundbreaking applications, allowing the development of potent quan-
tum state tomography protocols (see the publications [2] and [3] in section 3). For this, a crucial
reconstruction step relies on a class of signal processing algorithms for spectral estimation, which
provide frequency spectra for certain signals with high accuracy. Beyond quantum state tomogra-
phy, in this thesis tensor network states are employed for succinctly describing physical processes such
as quantum transport experiments (see publication [s] in appendix A). The established protocol fa-
cilitates the study of the short-time dynamics of these quantum systems by providing statistics that
are not directly accessible otherwise.

If, on the other hand, one is interested in a very general and robust procedure with very few
assumptions about the quantum state to be determined, which comes at the price of less total com-
pressibility of the parameter space, one can make use of another famous signal processing paradigm:
compressed sensing, which allows for the extraction of sparse solutions out of a higher-dimensional
parameter space using only a comparably small number of measurements/samples (section 2). With
this, signals can be recorded in a compressed way, i.c. substantially fewer input samples are required
to recover the underlying model. Compressed sensing has vastly spread in recent years, making huge
progress both in establishing provable theoretical recovery guarantees and practical applications in
all kinds of fields ranging from machine learning to radar communication. E.g., in medical imaging,
the resolution of the reconstructed images could be considerably increased while keeping scanning
times fixed.

When applying compressed sensing to practical quantum state tomography with noisy measure-
ment data, external tuning parameters arise that strongly influence the size of the model of the sys-
tem and one has to trade off model complexity with fitting quality. A maximally accurate fit of the
measurement realization at hand might seem like the best choice, however, this could also lead to
fitting features of the input signal that are just due to noise, resulting in models that are not general
enough to provide sound predictions for future measurements. Using the example of a photonic
quantum experiment, we explore different methods for overcoming this issue, providing a tool-
box for reliable quantum state reconstruction from compressed measurement data sets (see publi-
cation [1]). In principle, employing compressed sensing methods does not exclude the use of zensor
network methods—in fact, it can be desirable to profit from both if the structure at hand permits it.

The power of compressed sensing to establish sparse representations can also be of advantage
in quantum chemistry: In density functional theory, the electronic structure of complex quantum
systems such as molecules or crystals is expressed in terms of sets of certain basis functions. It is
often not clear, however, if a smaller basis subser still preserves the essential physics. Using compressed
sensing methods, compressed basis sets and hence more compressed models of the quantum systems
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Figure 1: Complex quantum systems from a signal processing perspective: Covered topics of the pub-
lications “Experimentally exploring compressed sensing quantum tomography”™, “Quantum field
tomography”?, “lowards experimental quantum-field tomography with ultracold atoms”Bl, “An ef-
ficient quantum algorithm for spectral estimation”#), “Continuous matrix product state tomography
of quantum transport experiments 7[5]) “Ouantum singular value decomposition of non-sparse low-
rank matrices”'), and the project “Compressive density functional theory”.

can be constructed, leading to reduced computational effort (see appendix A.3).

Signal processing methods can be used to productively analyze complex quantum systems. In-
terestingly, this can also be turned around by using a quantum computer—essentially a complex
quantum system—to massively, in various instances even exponentially, accelerate signal process-
ing algorithms, widening the range of problems that can be handled efficiently both for quantum
and classical applications (section 4). An exponential acceleration would mean that classical com-
putations that would take years to be carried out—even on a current supercomputer—could take
only minutes on a quantum computer. Instead of bits, quantum computers operate on quantum
bits (qubits), which can be in a superposition of both “0” and “1” and can be entangled with other
qubits. The complexity of the arising system, which, as noted above, is a curse for quantum state
reconstruction, can be a blessing for quantum computing. Working with 7 qubits essentially al-
lows to simultaneously manipulate 2 numbers, giving rise to a possibly exponential speedup for
algorithms. The downside is that in general retrieving the information, i.e., estimating the output
quantum state, is forbiddingly time-consuming, potentially undoing the achieved speedup. Quan-
tum algorithms therefore have to be carefully designed such that the output quantities are accessible
in an efficient manner. Also for this reason, the extent of the computational advantage of quantum
computers still needs to be determined.



Considering that classical semiconductor-based computer technologies are reaching their phys-
ical limits, quantum computing promises great benefits for data processing. Huge efforts are be-
ing made to realize physical implementations ranging from trapped ions and superconducting elec-
tronic circuits to photonic systems that are both robust towards noise and scalable in the number of
qubits. Due to the exponential acceleration, already a double-digit number of qubits could provide
instances of a tangible quantum advantage.

In publication [4] in section 4, a quantum algorithm for the spectral estimation of signals is
presented, providing an exponential speedup in comparison with classical algorithms. A key com-
ponent for this algorithm is the development of a quantum version of the singular value decom-
position (see publication [6] in appendix A), an important linear-algebra method with numerous
applications.

Figure 1 provides a graphical overview of the topics that are covered by the publications consti-
tuting this dissertation and combining signal processing with complex quantum systems. A brief in-
troduction to quantum state tomography is provided in section 2.1, an introduction to compressed
sensing in section 2.2, to tensor networks in section 3.1, and to quantum algorithms in section 4.
The publications [1-6] are presented in the respective sections and highlighted with gray frames.

Beyond signal processing and the thematic intersections of quantum tomography with tensor
networks and compressed sensing, there is further overlap among the respective projects: The same
algorithm that gains a quantum speedup in publication [4] constitutes an important reconstruc-
tion step in publication [2]; the publications [1], [2], [3], and [5] are concerned with inverse prob-
lems™ —inferring the underlying parameters that determine a given signal. Publication [s] also
extends the reconstruction protocol in [2] to a new class of input signals.
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The compressed sensing paradigm comprises several signal processing techniques that are essential
for estimating quantum states—i.e., performing guantum state tomography—of larger quantum
systems, where it is difficult or virtually impossible to obtain sufficiently large sets of measurement
data that would be necessary for ordinary methods to work. In the following, we provide the reader
with a brief introduction to guantum state tomography with an emphasis on its scaling behavior
for increasing size of the quantum system. This calls for signal processing methods from compressed
sensing and spectral estimation as well as incorporation of a priori physical information via rensor
network methods to manage the arising amount of data. Tensor networks will be introduced in
section 3.1. In the subsequent section 2.2, the principles of compressed sensing are summarized and
in section 2.3, publication [1]* is presented, which focuses on the application of compressed sensing
on an experimentally realized photonic quantum system The concepts in section 2.2 are also used in
the project in appendix A.3.

2.1 Quantum state tomography and the curse of dimensionality

Quantum state tomography is concerned with the appropriate modeling of a quantum system by
assigning a guantum state to it—commonly in the form of a Hilbert space vector or wave function,
a density matrix/operator, or a Wigner quasiprobability distribution. An intrinsic challenge is that
in general, together with their immanent uncertainty, quantum states cannot be determined with
just one measurement, and the measurement changes the state itself: Measuring the position of one
quantum particle may yield one position at a time, but not its underlying wave function, which de-
scribes the particle as well as where and when it will be found with which probability. We rather have
to consider a set of identically prepared particles and subsequently perform a measurement on each
particle. The information from all measurement outcomes is used to produce the quantum state—
like two-dimensional image slices (ancient Greek: Touy) are combined to create a three-dimensional
tomogram of a spatially extended object as in medical imaging. Hence the name guantum state
tomography. The quantum state provides the necessary information to make statistical predictions
about the behavior of the particle. The origins of quantum state tomography are found in quantum
optics, estimating the state of a photonic system!™. See Refs. [13, 14] for a comprehensive overview.

Quantum szate tomography is closely related to and the starting point for quantum process to-
mography!™), the estimation of processes that represent the evolution in time of an initial quantum
state and output the evolved state. For this, the process is applied to a set of known trial states, and

! Adrian Steffens, Carlos A. Riofrio, Will McCutcheon, Ingo Roth, Bryn A. Bell, Alex McMillan, Mark S. Tame, John
G. Rarity, and Jens Eisert, “Experimentally exploring compressed sensing quantum tomography”, Quantum Science and
Technology 2:025005, 2017 (DOL:10.1088/2058-9565/aa6acz). Published under a Creative Commons Attribution 3.0 License
(creativecommons.org/licenses/by/3.0), © 2017 IOP Publishing. Reproduced with permission. All rights reserved.
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the corresponding output states are estimated via state tomography. The quantum process param-
eters can be inferred from the change in the state parameters.

Quantum tomography is essential not only for a thorough understanding of many quantum
experiments!®?), but also for the fundamental operations and components of future quantum
computers (see the quantum algorithm section 4) and other quantum devices such as quantum
simulatorst”®*]. These devices are described in terms of quantum states and processes, which makes
the estimation of the latter indispensable for proper operation.

A pure quantum state |¢) of finite dimension d can be represented by a vector v in C¢. If
the state is mixed—i.e., it is not completely known in which pure state the system is—we describe
it by use of a density matrix p. One can think of it as a mixture of pure state vectors vy,...,v

,

appearing with respective classical probabilities 0 < wy,...,w, < 1 and summed up as weighted
N7 T2 ..

outer products: o = Zj:l W; Vv, Note, however, that the representation in terms of pure states

is not unique—see, e.g., Ref. [22]. By construction, the density matrix is Hermitian—po € J€; C

9% _and because of the values w; being probabilities adding up to one, it is positive semidefinite

(0 = 0, all eigenvalues are greater than or equal to zero) and has unit trace. These properties are

sufficient to characterize the set & of density matrices of dimension d:
Sa={e€Hy: o= 0tr(0)=1}. (1)

This is a convex set, with the pure states, matrices of rank r = 1, constituting its boundary. This
will be important for convex optimization methods, which are used in compressed sensing, as will be
discussed in the next section 2..2.

Quantum measurements can be modeled by a set of measurement operators Ay, ..., A,, € 7,
where each measurement operator A; corresponds to a measurement outcome that happens with

probability
P; :tr<A;A;‘£) (2)

and results in a post-measurement state proportional to 4 EA;- Since the probabilities add up to

one, the measurement operators have to fulfill the completeness relation’

m

j=1

In order to perform tomography, the quantum system is N times repeatedly prepared and subse-
quently measured, the frequency N; of each measurement outcome j is recorded (N = 3.; N;),

> With ()T, we denote the conjugate transpose of a matrix or a vector.

3 With 1, we denote the d-dimensional unit matrix. The positive operators A ]-Aj. fulfilling the completeness
relation are also called positive-operator valued measure (POVM,) elements. In publication™ in the following section 2.3,
they correspond to projectors out of eigenvectors of Hermitian matrices.
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yielding an estimate [A)]- = N;/N for the probability p;. The most straightforward way to obtain a
state estimate is to plug the probability estimates into Eq. (2), resulting in a linear equation system

tr(AjAj‘g):ﬁj,j:L...,m, (4)

which can be rewritten as
Eg=p, (s)

Cdle medz

where g € is the vectorization of o and the j-th row of the matrix £ € consists

of the vectorization of Aj,A i Inverting this equation system requires the number of measurement

outcomes 772 to be greater than or equal to the dimension of the density matrix of the state d 2 (tomo-
graphic completeness), and N substantially larger than 72 to obtain sufficiently precise p;-estimates
according to the law of large numbers. Namely, determining o up to a trace-distance error* ¢ re-
quires a sample complexity scaling with O(d*/e?) many copies to be measured.’

Due to the errors from finite counting statistics, the solution g from inverting Eq. (5) will in
general neither be positive semidefinite nor have unit trace, i.e., it will not correspond to a physical
quantum state. This is addressed by maximum likelibood estimation (MLE) methods of finding the
state that “most likely” resulted in the observed measurement data.***] To this end, a likelibood
function consisting of the product of the conditional probabilities IP(N;|) is optimized over all o
in 7. There exist efficient iterative implementations of this procedure (see, e.g., Ref. [27]).

In instances of few available measurement outcomes, an MLE fit of the state might be too re-
stricted to the specific features of the available data, leading to issues with predicting future mea-
surements and underestimation of errors.”??] Alternatively, the state together with error regions can
be obtained with Bayesian methods,??3°] which, however, require a priori knowledge about the
prior distribution of possible quantum states. More general procedures for obtaining reliable error
bounds are discussed in Refs. [31, 32].

Since superposition can occur in quantum systems, a composite quantum system o has to be
represented by the tensor product of its constituent systems 0, ® 0,®. .. (see, e.g., Ref. [22, p. 94]).
This results in an exponential increase of the required parameters with the system size—if o, repre-
sents a chain of 7 spins, its state space is in ®7:1 C? with dimension d = 2” —making it infeasible
to process or even measure the required amount of data for more complex quantum systems: the
curse of dimensionality.

* The two most commonly used distance measures for two quantum states o and o are the trace distance T(0,0) :=
1/2||o—o|l|, and the fidelity F(o,0) := ||\/Eﬁ||* =tr4/,/00,/0, Whicharerelated via 1—F < T <1—F206,
With ||A||, := tr(v/ATA), we denote the nuclear norm or trace norm of a matrix A, with 4/ denoting the unique
matrix square root of a positive semidefinite matrix o such that (,/7)* = 0.

$ Here and in the following, we make use of the Landau Big O/Omega notation® for describing the growth rate
of a function: f(x) = O(g(x)) is equivalent to limsup__ |/ (x)/g(x)] < oo; f(x) = Q(g(x)) is equivalent to
liminf,_ |/ (x)/g(x)| > 0. For example, O(d ) means a growth at most linear in d, O(log d) at most logarithmic,
O(poly d) at most polynomial, and £2(exp ) at least exponential in d. If f(x) = O(g(x)) and g(x) = O(f(x)), we
write f(x) = ©(g(x)).



There are different complementary strategies to address this issue. Often, one is not interested
in a complete characterization of the system, but rather in certain parts or properties. To certify that
the state o at hand is close to a certain target state o, one can estimate the fidelity* by performing
those types of measurements that (on average) most likely allow for the observation of deviations
of 0 and o —the more important, the more likely the measurement will be chosen.3 For many
systems of interest, this scheme requires only O(poly log d) many measurements. The same ap-
plies to certain entanglement detection procedures.” If only the predictions from a state for the
most probable observables from a distribution of observables—not all of them—are of interest, one
can employ a logarithmically scaling computational learning algorithm.% In the same direction goes
shadow tomography, using 2-outcome measurements.’”] An efficient alternative to process tomog-
raphy of quantum gates is randomized benchmarking, which provides an estimate of the error that
gates make by constructing random circuits from them and recording how much the output states
deviate from the input states.5%*]

If, however, a complete characterization of a complex quantum system still is essential, more
extensive schemes to effectively model a state with substantially fewer parameters than with an ex-
ponentially large density matrix have to be utilized. Pure states can be characterized using only O(d)
instead of d? parameters, and these can be obtained with compressed sensing—based methods°].
Although not evading the exponential parameter blowup, these methods are highly relevant for
many systems that would be inaccessible with ordinary tomographic methods.# Moreover, apart
from purity, no further assumptions about the state have to be made, resulting in very generally
applicable methods. The sampling complexity is reduced to N = O(d r?/¢?) for determining a
state o of rank 7 up to a trace-distance error ¢.1#>*) Using entangled measurements, this can be
further improved to O(d 7 /2 log(d /¢)).**) With a priori information about the state such as
internal symmetries, the parameter space can be drastically reduced to O(poly log d).[*s]

More generally, at least for low spatial dimension, most quantum states that we encounter in
nature—mixed or pure—are much less entangled and hence confined to a very small part of the
space of theoretically possible states, the “physical corner of Hilbert space”, which can be efficiently
parametrized by tensor network states.[**7) These allow for a description with O(poly log d ) param-
eters and efficient tomography protocols.!**] Tensor networks can also be employed for continuous
systems with in principle infinitely many degrees of freedom such as quantum fields. The efficient
tomography of quantum fields is the focus of the publications [2] and [3] in section 3.1.

2.2 Compressed sensing

As pointed out in the previous section, it is imperative to find “compressed” models of physical
systems for a feasible description. For this, the system needs to be representable in a compressed
way (“compressible”). For instance, a given signal vector y € C” could be composed out of very
few (s many) vector components 2; € C” out of a huge set of components {a,,...,4,}: y =
> x;a;, where many of the coefficients x; € C are zero, but it is not known a priori which ones.
A . o . . . . (L
Think, e.g., of a signal consisting of few sinusoid functions, but with unknown frequencies (/ine
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spectral estimation), or of a small set of factors that linearly contribute to an effect and the signal
vector comprising different observations: The model space (44, ... ,4,,) is large, but much less data
is needed for a complete description of the signal—just the nonzero coefficients x; together with

!

Figure 2: Inverting a linear equation system with compressed sensing: Due to the sparsity of the
parameter vector X (its gero-entries marked with gray), only a few columns of the “fat matrix” A
(with few rows and many columns) contribute to the entries of the signaly. Although there are fewer
rows than columns, the equation system has a unigue sparse solution, which can be recovered with
compressed sensing methods. This way, much shorter signals (fewer rows) can be used to determine
the high-dimensional parameter vector.

their corresponding vectors a i

The task at hand can be rewritten in the following way (cf. Fig. 2): Given a linear equation
system

Ax =y (6)

with the matrix A := (a4]...]a,) € C"*”, m < n, and x € C” being s-sparse (s K n), i.e.,
only s entries of x are nonzero: Find x.

The apparent problem is that this equation system is vastly underdetermined and the space of
(not necessarily sparse) vectors that solve the equation system large. At first sight, it is far from
clear how to find x within this space; applying the Moore-Penrose pseudoinverse to y just yields the
solution of Eq. (6) with minimum ¢ ,-norm®, which is non-sparse in general (cf. Fig. 3). It turns out
that for general A and y it is even NP-hard**) to solve the equivalent (non-convex) optimization
problem of minimizing the support of x subject to Eq. (6),

rrkin||x||o s.t. Ax =y, (7)

which essentially amounts to trying out all possible combinations of indices. The optimization

¢ For p > 1, the Zp-norm ||x||p of a vector x € C” is defined as ||x||p = ( 7:1 |x].|f’>1/P. For p = 2, we obtain
the Euclidean norm, for p = 1 the Manbattan norm, and for p = oo the maximum norm. We also use the map || - |,
which counts the nonzero indices of a vector x, ||x[|, := card({j : x; # 0}), and is not an actual norm, however, it
holds that ||x||, = limp_)O ||x||§

I0



problem Eq. (7) can, however, be well approximated by minimizing the ¢,-norm of x,

mxin||x||1 s.t. Ax =y, (8)

cf. Fig. 3. This is a convex optimization problem due to the convexity of the target function x — ||x||;
and the convexity of the constraints. Convex optimization problems are a very well-behaved type of

Figure 3: {|-norm- vs. {,-norm-minimization: impact on sparsity. Left: Minimization of the -
norm (2D norm balls {x : ||x||, = a} of different size a in blue) subject to a 1D linear constraint
(orange). The optimizing point—where the constraint intersects with the smallest feasible norm ball—
is marked in black. Right: Minimization of the {y-norm subject to the same constraint. The extreme
points of the {-balls are located at the component axes—and this is where the optimizing points are
to be found (except for the special constraints parallel to the lines of equal norm size) and only one
component 15 nonzero. This carries over to higher dimensions, where optimizers with few nonzero
entries are favored. In contrast, the solutions of the { ,-optimization problems will in general bave full
support. The set {x : ||x||y = 1} coincides with the x, and x, axis—minimizing ||x||, subject to the
constraint leads to the same optimizer as the { |-minimization.

optimization problems—e.g., any local minimum is also a global minimum—with a vast body of
optimization techniques."*" In fact, providing provable and robust reconstruction guarantees for
obtaining x by solving Eq. (8) with certain assumptions about x and A—having small coberence’ or
satisfying a restricted isometry property (R1p)® —is, what triggered the field of compressed sensing.555°]
Specifically, it can be shown!”) that x in Eq. (8) can be uniquely reconstructed if x has at most s
nonzero entries, the matrix A satisfies the R1p of order s, and its number of rows scales as

m =Q(slog(n/s)). (9)

7 For a matrix A € C”*” with normalized columns a, ||a;||, = 1 for j = 1,..., 7, its coherence” (. is defined as
w(A)= MaXy<;4i<n |<“i7“j>|'

# If for an (m X 7)-matrix A and an integer 1 < s <  there exists a constant &, € (0, 1) such that for every 7 x s
submatrix A, of A and for every s-sparse vector x holds (1— &,)||X|[3 < [|A,|[? < (1 + 3,)||x|[3, then A satisfies the
s-restricted isometry property[”] with restricted isometry constant S ;- An RIP is, e.g., fulfilled for Gaussian matrices,
i.e., matrices with independent identically Gauss distributed entries.’4]

II
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This means that much fewer observations (the rows of A, growing only linearly in the sparsity and
logarithmically in the size of the solution vector) than contributing factors (columns of A) are re-
quired, allowing for obtaining a compressed model while “sensing” only few samples, hence the
term “compressed sensing” or “compressive sensing”. The results still apply when considering noisy
signals and relaxing the constraint in Eq. (8) to a (still convex) least squares constraint

min|[x||; st [lAx—yll, <e, (10)

yielding sparse approximate solutions.

Many problems in different fields can be rewritten as compressed sensing optimization prob-
lems of the type Eq. (8), resulting in a plethora of applications in fields such as magnetic resonance
imaging (MR1)I, fast photographyt®), prediction of molecular vibrations!®”), face recognitiont,
machine learning[éz], error correction®, or radar and wireless communication!®®. For a concise in-
troduction, see, e.g., Ref. [64]; for a comprehensive, more mathematical overview, see Ref. [65].

The heuristic use of the £;-norm as a penalty or regularizing term? already dates back to the
1960s and 1970s, where it was used in spectral estimation(®® and geophysics®). A method for ob-
taining the sparse spectral support for a signal was already developed in the 18th century?®) and is
also employed in the reconstruction procedures beyond compressed sensing that are discussed in
the quantum field tomography section 3.

Compressed sensing is not only limited to the recovery of vectors x from linear equation sys-
tems: The same paradigm can also be applied to the reconstruction of low-rank matrices B € CP*”,
given only partial knowledge of it—such as a certain number of its entry values or functional values
(see Fig. 4). This is called matrix completion”>7*), which has applications from collaborative filter-
ing[m, phase retrieval74, and system identification”?) to machine learning[76]. Low-rank matrices
comprise a lot of internal structure due to the linear dependencies in their rows and columns so that
in the compressed sensing spirit only a few matrix entries suffice to estimate the remaining ones. The
underlying compressed model is found in the singular value decomposition (svp)*°

— T
B= > Si%i%; (r2)
j=1
° An equivalent formulation of Eq. (10) with regularizing term A|| - ||, for suitable A is the basis pursuit denoising
problem™®!
i A — [, + Al )

very often also called least absolute shrinkage and selection operator (LAsSO)*7.

©° For any matrix B € C™", there exists a (not necessarily unique) factorization B = USV'', with § € R e
diagonal and U € C”*” and V € C"*” unitary—the svD. It can be computed in a numerically robust manner
and plays a central role in many linear algebra applications. For positive semidefinite matrices, it coincides with the
eigendecomposition of the matrix. The diagonal elements of § are called singular values, the orthonormal columns
of U left singular vectors, the columns of V' right singular vectors. The rank of B is equal to the number of non-zero
singular values. Singular value decompositions are, e.g., used for computing the pseudo-inverse, the range, and the null
space of a matrix. See also the section quantum singular value decomposition (appendix A.2).
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Figure 4: Matrix completion: A low-rank matrix (lefl, n = 10,r = 2) is known only up to a few
entries (middle, screened values marked with gray). The low rank of the matrix corresponds to linear
dependencies and visible correlations between different columns and rows (compare, e.g., the coloring of
the second and the last column of the matrix), providing sufficient information to a close reconstruction
of the matrix (right). We can also see that a certain spreading of the screened values is important. If
Jfor instance an entire row or column is screened there is no way of reconstructing the full matrix.

withs; € Ry, #; € C™,and v; € C" for j = 1,..., 7, amounting to O(r max{m,n}) < mn
parameters—near-quadratic, low-rank matrices essentially require guadratically fewer parameters.
The optimization is formally very close to the one in Eq. (8), namely

in ||B Lt FJ(B)=y,
Jmin (1B, st .o/(B)=y ()

with the linear map .¢f : C”*” — C? and the nuclear norm ||-||,..* The analogy becomes even more

apparent when considering that||B||, isalso equal to the sum of the singular values of B, i.e., ||B||,, =
||(s;)[[; and that the linear map ./ hasa matrix representation. Moreover, Eq. (13) can be considered
to be the convex relaxation of the optimization problem ming rank(B)s.t. ./ (B) = .7} So, while
minimizing the ¢;-norm yields a sparse vector, minimizing the nuclear norm yields a matrix with
sparse singular spectrum, which is nothing else than a low-rank matrix. The big difference lies in
the unitary degrees of freedom constituted by the singular vectors in the matrix completion setting.
This also results in a different order of magnitude of the required number p of samples of B for
matrix recovery algorithms: If .¢7 fulfills a matrix restricted isometry property” and

p > cr max{m,n}, (14)

with a numerical constant ¢, then B can be reconstructed with high probability,[78’79:I which is also
consistent with the minimum number of required model parameters. A similar scaling, picking
up another logarithmic factor in 7, exists for coherence assumptions.”>*) Eq. (13) is a semidefinite
program™®™ and can be solved very efficiently.l*

™ Analogous to the vector case, a linear map fulfills the rR1p at rank r if for all matrices B of rank at most r holds
(1=3S)BIE < |-/ (B)|5 < (1—8,)||B|| with sufficiently bounded constant &, and entry-wise matrix £,-norm F
(Frobenius norm).
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2 — COMPRESSED SENSING QUANTUM TOMOGRAPHY

Pure and low-rank quantum states constitute a compressible subset of the mixed quantum
states and the benefits of compressed sensing can be harnessed for quantum state tomography*°’
by restricting the feasible set in Eq. (13) to Hermitian positive semidefinite matrices (which encom-
pass the set of quantum density matrices, Eq. (1)) and providing the constraint map .¢/ that models
quantum measurements as in Eq. (5). For positive semidefinite matrices, the singular values and
spaces coincide with the respective—positive—eigenvalues and -spaces; hence, also nuclear norm
and trace are the same. Furthermore, experimental measurements generally entail noisy data, sug-
gesting to relax the tight equality constraint to a least squares constraint. We therefore arrive at the
following optimization problem to obtain a d-dimensional close to pure (small rank 7) quantum
state o from roughly quadratically fewer measurement recordings y than full tomography:

mintro st |[Eg—y|<e. (15)
©z0

The measurements are modeled by the measurement matrix £ asin Eq. (5). The positive semidefinite
matrices form a convex cone within the set of Hermitian matrices and optimization on this set is
still efficient. The requirement tr o = 1 is not explicitly part of Eq. (15)—and would also contrast
with the goal of the objective function to minimize the trace—but it is implicitly included in the
constraints. For noisier data y, the trace of the optimizing o might differ more substantially from

one, which is handled by dividing it by its trace.

It is still challenging to provide theoretical recovery guarantees for quantum states with practi-
cally relevant measurement maps as opposed to what is achievable in practice with numerical data,
as will also be seen in the following publication [1]. If the matrix E consists of tensor products (or
rather Kronecker products) of Pauli matrices, with 72 = O(d r polylogd) it was shown that it
satisfies the rank-7 matrix restricted isometry property.* This, however, does not apply to E with
rows consisting of eigenprojectors (outer products of eigenvectors) of Pauli matrices, each projec-
tor corresponding to a measurement outcome. If o has rank one and the rows of E are built from
outer products of Gaussian vectors, O(d logd ) measurement outcomes sufficel’*)—Gaussian vec-
tors, however, are hard to implement experimentally. Closer towards experimental realization, yet
random, are guarantees for outer products of rows of Haar distributed unitary matrices.** The
randomness can be addressed by taking unitary t-designs® (partial derandomization). The rows of
unitary designs in turn are closely related to eigenvectors of Pauli operators.*)

Compressed sensing has successfully been applied for quantum state estimation in different
experimentst*>*#8] a5 well for quantum process tomography®” and is robust to noise together with
theoretical error bounds!*»?°). Since its parameter reduction essentially boils down to a square root
factor, it can only mitigate the effect of the exponential increase of the Hilbert space size. This makes
compressed sensing the ideal tool for reconstructing intermediate-sized quantum systems. For even
larger systems, additional assumptions have to be made, as will be the discussed in the subsequent
section 3.
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2.3 Experimental application and model selection

For practical quantum state tomography with experimental data, which in general is subject to noise,
the noise parameter ¢ has to be taken in to account. Its magnitude has a large impact on the min-
imizer of Eq. (15): Large values for ¢ allow the algorithm to find a state with very low rank, while
small values for ¢ restrict the feasible set of states compatible with the constraints to such an extent
that only states with high rank (and enough parameters) solve the problem. This means that the
same data could in extreme cases be modeled both by a pure (rank one) and a highly mixed (full-
rank) state. It is therefore essential to carefully choose the appropriate model parameter ¢ such that
the resulting model, the quantum state, predicts the future behavior of the quantum system best.
This is an instance of a model selection problem. In general, various statistical models could be used
to explain the outcome of an experiment. While some models may fit the specific measurement
data realization very well, they might lack the generality to predict future instances accurately. This
happens in particular in instances of overfirting, i.e., when properties of the data set at hand (due to
noise etc.) that only appear in this specific realization of the experiment are incorporated into the
model. In contrast, an underfitting model ignores features that are characteristic for the experiment
and would repeatedly appear in different measurement instances.

A plethora of methods has been developed to tackle this problem; see Ref. [91] for an intro-
duction and overview of model selection. Important tools are for example the Akaike information
criterion (a1¢)° and the Bayesian information criterion (B1C)P%, which balance the data fitting
extent with the complexity of the model by introducing penalty terms into a maximum likelihood
optimization problem that are proportional to the number of parameters of the model. The value &
directly affects the model complexity as well since the number of parameters that determine the
model o is proportional to its rank. Model selection techniques in the general quantum tomogra-
phy context have, e.g., been employed in Ref. [94] and, using A1c and BIc, in Refs. [95, 96]. The
latter methods, building on maximum likelihood estimation, however, are not directly applicable to
the compressed sensing setting. A very robust method for model selection is cross validation, where
the data set s splitinto training sets—used to create different models—and independent testing/val-
idation sets, on which the models are evaluated how well they predict the data beyond the training
set.

In the following publication [1], performing quantum state tomography via compressed sens-
ing in a noisy data regime is systematically analyzed with model selection methods on the basis of
a photonic experiment, preparing a four-qubit quantum state that could be employed as an ele-
ment of a one-way quantum computer 7). The experimentally realized quantum system was still
small enough to supply sufficient data with reliable statistics for a complete state reconstruction
with conventional methods, providing reliable reference information for estimating and certifying
the performance of different model selection parameters as well as a large playground for different
methods. The impact of the degree of incomplete information on the quality of the state reconstruc-
tion depending on the choice of the model was determined, providing a prescription for practical
compressed sensing quantum state tomography.
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Abstract

In the light of the progress in quantum technologies, the task of verifying the correct functioning of
processes and obtaining accurate tomographic information about quantum states becomes increas-
ingly important. Compressed sensing, a machinery derived from the theory of signal processing, has
emerged as a feasible tool to perform robust and significantly more resource-economical quantum
state tomography for intermediate-sized quantum systems. In this work, we provide a comprehensive
analysis of compressed sensing tomography in the regime in which tomographically complete data is
available with reliable statistics from experimental observations of a multi-mode photonic
architecture. Due to the fact that the data is known with high statistical significance, weareina
position to systematically explore the quality of reconstruction depending on the number of employed
measurement settings, randomly selected from the complete set of data, and on different model
assumptions. We present and test a complete prescription to perform efficient compressed sensing
and are able to reliably use notions of model selection and cross validation to account for experimental
imperfections and finite counting statistics. Thus, we establish compressed sensing as an effective tool
for quantum state tomography, specifically suited for photonic systems.

Introduction
Quantum technologies have seen an enormous progress in recent years. Photonic architectures have matured from
basic proof-of-principle schemes to intermediate scale quantum devices [ 1], while the robustness offered by
integrated optical devices is poised to push these systems yet further [2, 3]. Similarly, systems of two-digit trapped
ions [4] and other condensed-matter type systems such as superconducting devices are catching up at a remarkable
pace [5]. Building upon this technological development, important primitives of quantum information science are
being experimentally realised [6—10]. In light of these systems, it has become increasingly important to establish a
toolbox for tomographic reconstruction that can keep up with this rapid development: The ironic situation that is
emerging is that by now the state of large quantum systems can be manipulated with a high degree of control, but
not easily reconstructed. Clearly, these technologies and the community require further advancement of their tools
for state reconstruction. In this work, we discuss an explicit method to achieve such a reconstruction, thus
contributing to this long-term goal. Specifically, we demonstrate a comprehensive exploration of the performance
of state reconstruction in the photonic setting as one varies both the number of measurements and the noise model.
The framework of compressed sensing, a set of techniques originating from the context of classical signal
processing [11, 12], has emerged as a key protagonist in closing the gap between technology and diagnostics
[13-15]. The idea behind its functioning is rooted in the fact that a substantial amount of data encountered in
realistic situations are structured and can be characterised by significantly fewer parameters than with ad hoc
schemes. Approximately low-rank matrices are at the centre of the paradigm of matrix completion in

©2017 IOP Publishing Ltd
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compressed sensing and correspond precisely to approximately pure quantum states. Since pure quantum states
are widely regarded as the key resource for quantum information processing, such methods for reconstructing
low-rank states are especially relevant. For even larger systems, tomographic tools based on basic variational sets
are conceivable, with matrix product states [16, 17], their continuous analogues [18], and permutationally
invariant states [19] providing prominent examples. The theory of such novel tools of reconstruction is
progressing quickly. This applies, e.g., to new insights to the assignment of fair and rigorous confidence regions
[20-23] as well as economical ways of performing instances of quantum process tomography [14, 24, 25].

Exciting steps toward using compressed sensing in experimental settings have been made [19, 24, 26, 27] in the
regime in which one assumes knowledge about the basis in which sparsity is expected [24], assumes additional
structure [19] or is in the highly tomographically incomplete regime [27]. In this work, we complement the picture
for experimental tomography for medium-sized quantum systems. In its simplest formulation, compressed
sensing tomography is based on a few random expectation values of suitable observables, from which
approximately low-rank states can be accurately reconstructed [13]. This is suited for the situation in which
expectation values can be obtained with good statistical significance, although acquiring many of them may be
expensive. Still a missing piece in this picture, however, is the exploration of model selection techniques that have
to be considered in the realm of experimental imperfections and finite counting statistics in order to make
compressed sensing tomography a practical tool. Model selection allows to prevent over- and underfitting by
controlling the dimensionality of the model of the system—in our case, the rank of the density matrix.

Here, we present a comprehensive analysis of experimental data from a multi-photon, multi-mode GHZ
state source using tools of compressed sensing. Instead of working with expectation values of observables—as it
is commonly done in this context, but may amount to information loss—our experimental setup allows us to
obtain information on the individual projector level from the respective outcomes of each measurement setting.
In contrast to complementing recent work [27], we are not tied to the regime of tomographically incomplete
knowledge. This allows us to study the behaviour of the reconstruction for the entire range of measurement
settings. We quantitatively explore model selection via cross validation and compare it to the model suggested by
the anticipated noise statistics. With these tools, we provide a more systematic way to choose the appropriate
parameters for compressed sensing quantum tomography. The results then provide the reader with the toolkit
and understanding to effectively implement these methods for future quantum state tomography (QST) in
general, and specifically for photonic systems.

This work is structured as follows. We start by reviewing concepts of quantum state tomography and discuss
the specifics of compressed sensing in QST. We subsequently present our experimental setup consisting of a
four-qubit photonic system, which is used as a test bed for our tomographical approach. We continue by
discussing concepts of model selection in the context of QST and determine the appropriate model from the
experimental data. With this, we perform compressed QST and study the performance of the reconstruction
depending on the amount of collected data as well as the robustness of our method with respect to model
mismatches.

Elements of quantum state tomography

Quantum state tomography is the most commonly used method to diagnose quantum information processing
tasks. Itis used to estimate the unknown quantum state of a system from data produced by measuring an
ensemble of identically prepared systems. By fixing a basis, a general finite-dimensional quantum state can be
identified with a positive semi-definite, unit-trace matrix, the density matrix

0€Sa={x€Hai:x 70, tr(x) =1}. (1)

Here, H; C C?%4 denotes the set of Hermitian matrices, and X = 0 stands for a positive semi-definite matrix.
To determine the density matrix ¢ of a quantum system, we need to prepare sufficiently many copies of the
state from identical preparations, perform a measurement on each copy using one out of m different
measurement settings—corresponding to different observables, i.e. Hermitian matrices A7, j=1,...,m—and
count the respective number of measurement outcomes. Ideal measurements are associated with unit rank

projectors Hij) = v,fj )v,fj )% where v,fj ) is the kth normalised eigenvector of A, For each measurement setting j
the specific outcome k = 1, ..., d occurs with probability
Py = (11 0). )
Completeness, i.e. the property that the projectors sum up to unity,
d -
S =1, €)
k=1

ensures normalisation for each measurement setting j, so that 3°¢_ P, = 1. For each measurement setting j,
the outcome k corresponds to a random variable Yj ;. Repeated measurements are independent from each other,
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and are performed on Nj copies of the state for each measurement setting j, yielding the respective integer-valued
realisation y, , as observed frequency with P ¥« = Nj. Hence, for each measurement settingj, the
probability of the random variables (Yj 1, ..., ] 4) to take the configuration of measurement outcomes

(1 -++s¥;,4) Is given by

N;! ) )
P B @
T gde

following a multinomial distribution M (N;, ( JRIRE 2))- Accordingly, we will obtain the kth outcome N; Pk
times in expectation. We formalise the measurement process by introducing the linear operator

Az o Nt o)) (5)

which maps density matrices in S; to matricesin R”*“, corresponding to measurement outcomes k = 1,...,d
for different measurement settings j = 1,...,m. We emphasise that .A(¢) is not an experimental data matrix
itself; according to the law of large numbers, the frequencies in each measurement realisation

Y= (y) € N~ 4 from the experiment will converge to .A(¢) with growing number of measurements Nj, i.e.
the expectation value E (Y] «) of the random variable Y; 1 is given by

E(Y;n) = Nitr(I1{ ) ()

for each j, k. Apart from additional systematic sources of error, e.g. due to experimental imperfections, the
difference between ) and .A(¢) is due to finite counting statistics, and in many settings, this is the largest
contribution to the error.

The most straightforward approach to determine ¢ from ) would be to attempt to invert the linear system of
equations

A(o) = ). (@)

In general, however, noise on the data ) would render the reconstructed density matrix o unphysical (0 # 0). A
generic (full rank) density matrix in Sy is determined by d*> — 1independent real parameters. Hence, in general,
onerequires atleast d> — 1linearly independent equations in order to solve equation (7). This is also called
tomographic completeness and corresponds to informational completeness with sufficient information to in
principle capture full rank states. For further notions about informational completeness under prior
information (e.g. the rank of the state is assumed to not be maximal) see [28, 29]. When dealing with significantly
less information, specialised reconstruction techniques are important with compressed sensing being a natural
choice, which we will discuss in the next section.

In our system, we will be concerned with local Pauli measurements on each subsystem of a multi-partite
state. We measure an n-qubit system (d = 2") using m different measurement settings, each of which
corresponds to an n-qubit Pauli operator

n .
AD = Qa't?, 8)

i=1

j=1,...,m,with aﬁj ) e {0y 0y, 0;}, where oy, 0y, 0, are the Pauli matrices. This is often referred to as Pauli basis
measurement. The projectors of the two-qubit operator A := 0, ® 0, for example, are H(ll) =10, 00, 0],
%Y = jo, 1}0, 1], II§Y = |1, 0X1, 0], and IT{" = |1, 1)(1, 1|. The identity matrix can be excluded for each
qubit since it has the same eigenvectors and hence corresponding projectors as o, and does not provide any
additional information about the state. Note, that in a Pauli basis measurement, one obtains 2" outcomes per
measurements setting, as opposed to the Pauli expectation value measurements, in which we only use one
expectation value per measurement setting. Pauli expectation value measurements (including those containing
identity matrices) can easily be obtained from Pauli basis measurements by simply computing the expectation
values from the projection data for each measurement setting. For n qubits, there exist 11,y := 3" different Pauli
words in total, each with 2" eigenvectors, which corresponds to a maximum of 3" - 2" equations in equation (7).
Each set of Pauli projectors {H}j "}4_, for fixed setting j contains a subset of elements that is linearly
independent from the projectors for all other settings. Hence, any number of smaller than #1,,,, measurement
settings will lead to the loss of tomographic completeness. When performing QST on large systems, however, it
is of practical necessity to employ as few measurement settings as possible (and often also only few repetitions
per measurement setting). The key question arising in this context, therefore, is whether it is feasible to
reconstruct an unknown state p with not only m < ,,,, measurement settings, but a significantly smaller
subset. The need for minimising the number of measurement settings is particularly pressing in architectures
such as linear optical ones, since high repetition rates and good statistics are available, while it can be tedious or
costly to alter the measurement setting. This is indeed the case in many practically relevant situations using
compressed sensing schemes, which will be discussed in the next section.
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Compressed sensing for quantum state tomography
By parameter counting, a state with rank r < d can be completely characterised by fewer than d* parameters,
thatis ~rd and informational completeness could in principle be achieved using correspondingly fewer
measurement settings. However, it is far from obvious how to acquire these parameters using fewer
measurement settings and how to do so in a robust fashion—this is the starting point for compressed sensing
[11, 30]. Originally conceived for reconstructing sparse vectors, the concept was extended to the recovery of low-
rank matrices [31, 32] and adapted to the problem of QST [13, 33]. Here, one again considers structured
problems in which one can exploit the fact that in many useful settings approximately low-rank states are of
interest. This is a reasonable assumption, since most quantum information experiments aim at preparing pure
states.

In order to obtain a general complex-valued low-rank matrix from measurements .4, naively, one would
search within the set of low-rank matrices for the one that matches the measurement constraint, solving

min rank(y) st A(x) = . 9
X€ (Cdx d

The key idea for compressed sensing in matrix recovery is to relax this NP-hard problem [34] into the closest
convex optimisation problem [35]

min |x|k st AQ) = (10)
Xecdxd

We denote the nuclear norm (better known as the trace norm in the context of reconstructions in quantum
mechanics) of a matrix x by || x|}« = tr(\/ﬁ ). Such problems are well known to be efficiently solvable [36].

The crucial question in compressed sensing is how many measurements are required to satisfactorily
reconstruct the sought-after matrix. Many proofs rely on randomised measurements schemes: In [37], it has
been shown that for a general map A : R?*?¢ — RM with Gaussian entries, M > 3r (2d — r) copies of g are
provably sufficient for the recovery of p. Building on this and closer to our situation is the recovery guarantee
presented in [38], in which M > crd copies are needed with some constant ¢ > 0, for A : Sy — RM,

o (r(MIYP g));_;,  u,mapping density matrices from S; to vectorsin RM, with [T = v()y()T,and vV a
Gaussian vector for each j. In practice, numerical computations outperform these theoretical bounds. However,
there is a fundamental lower bound for the number of copies, M = 4r(d — r) — 1, usinga theoretically
optimal POVM with M elements [39]. Note that—in the mindset of measurement settings and outcomes—the
number of outcomes k per measurement setting j scales with the dimension of the Hilbert space d. Since M
corresponds to m d, the number of measurement settings scales just with the rank,i.e. m = c r.

Itis in general harder to prove comparable results for deterministic measurements—in our setting with v
being eigenvectors of Pauli operators. To bridge this gap, notions of partial derandomisation have been
introduced, where v\/) are not Gaussian, but drawn from spherical designs—certain finite subsets of the d-
dimensional complex sphere—leading to similar statements [38]. Spherical designs, in turn, can be related to
eigenvectors of n-qubit Pauli operators [40]. Apart from results on the level of expectation values [41], less has
been proven for products of single-qubit eigenvectors, the setting at hand—strikingly in contrast to the great
success of the procedure in practice. These results remain stable when taking noise into account.

The measured data can be written as

Y =A(0) + No) = Ntr (Y )i + (y)jes (1)

with A/ and 7  Tepresenting the noise due to finite counting statistics. For positive semi-definite matrices such
as quantum states, the nuclear norm of a matrix reduces to the trace of the matrix. Consequently, relaxing the
equality constraint in equation (10) and including the positivity constraint, we arrive at the semi-definite
programme (SDP) [34]

mintry st A — V|5 <e, (12)

X770
for some yet-to-be-determined ¢ > 0 and ||-||, representing the entrywise two-norm. This is exactly the problem
we aim to solve in order to achieve efficient QST. SDPs, being convex programmes, feature a rich theory, and
numerical implementation is easily achievable [42, 36]. Note that the procedure minimises the trace, which at
first sight might seem contradictory to the requirement for density matrices to have unit trace. However, the unit
trace requirement is implicitly included in the data constraint since the probabilities in the map A are
normalised. Perfect data would lead to an optimiser with trace exactly equal to one. In turn, a relaxation of this
constraint leads to a relaxation of the unit trace requirement. As a result, generically for not too small €, the
optimal y, denoted by §, will be subnormalised, due to its location on the part of the boundary of the -ball with
the lowest trace. In order to obtain a physically meaningful reconstruction 9 € Sy, we find in our simulations
that renormalising via

2 — COMPRESSED SENSING QUANTUM TOMOGRAPHY




10P Publishing

Quantum Sci. Technol. 2(2017) 025005 A Steffens et al

Figure 1. Experimental setup for generating the four-photon polarisation entangled states |t)G1iz), consisting of photonic crystal fibre
(PCF) sources, half-waveplates (HWPs), quarter-waveplates (QWPs), a Soleil-Babinet (SB), polarising beam splitters (PBSs) and
dichroic mirrors (DMs). The 80 MHz Ti-Saph laser is split onto two PCF sources in twisted Sagnac-loop interferometer configurations
generating polarisation entangled Bell pairs. The signal and idler photons from each source are separated by DMs and the signal
photons interfere on a PBS with relative time between paths A7 & 0, which on post-selecting a single photon in each output port
performs a fusion operation. The SB is set to match the phase between the |H, H, H, H)and |V, V, V, V) components to zero. Each
mode is measured by single-qubit rotations consisting of a HWP and QWP, and is projected in the {|H), | V') }-basis by PBSs and
avalanche photodiode detectors.

%
TR

X = (13)
produces the highest fidelity results. To carry out the optimisation procedure, we employ the convex

optimisation solver SDPT3 4.0 [43] together with CVX [44]. For higher Hilbert space dimensions, methods like
singular value thresholding [45] come into play, which typically are faster, but less accurate.

Experimental setup
The experiment is designed to prepare the four-qubit GHZ state associated with the state vector
1
[Yenz) = ﬁﬂH, H,H,H) + |V, V,V, V)) (14)

with the qubits encoded in the polarisation degree of freedom of four photons. Here, |H) and | V') represent
horizontally and vertically polarised photons, respectively, hence effectively spanning a two-dimensional Hilbert
space. The experimental setup, building upon the one outlined in [46], is shown in figure 1 and consists of two
Bell pair sources which undergo a parity check or post-selected fusion [8, 47-52] to probabilistically generate the
GHZ state. Both the photon pairs, generated by spontaneous four-wave-mixing in microstructured fibres, and
the fusion operation are successful only probabilistically, but in a heralded fashion, i.e. a classical signal is
available signifying success of the preparation. Successful generation of the state is determined by post-selecting
only four-photon coincident events which occur at a rate of approximately 1-2 Hz. The post-selected data is
effectively free from dark counts—noise generated by single-photon detectors firing erroneously in the absence
of a photon. This is due to the fact that the rate at which dark counts in # modes occur in the coincidence window
decreases exponentially with 7, i.e. four simultaneous dark counts are negligibly rare. Due to additional
experimental imperfections, however, the prepared state is non-ideal. The main cause of deviation between the
actually prepared state and the target state arises from the distinguishability of photons partaking in the fusion
operation and inherent mixedness from the parasitic effects in the pair generation [53]. These tend to cause the
generated state to resemble a partially dephased GHZ state [8]. Measurements on the state then proceed using
single-qubit rotations (waveplates) and projections (polarising beam splitters and single-photon detection with
avalanche photo-diodes) using well-characterised bulk-optical elements allowing high-fidelity measurements to
be performed.
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As stated above, in order to achieve a tomographically complete basis for n qubits, one requires #1,x = 3"
measurement settings. In our system of four qubits, n = 4, we have measured a tomographically complete set of
81 local Pauli operators. For each measurement setting, around 650 four-coincident events are accumulated
within an integration time of six minutes. Evidently, given the exponential scaling of the tomographically
complete set of measurement settings, achieving such reliable statistics for larger states (n > 4)is increasingly
demanding on resources and quickly becomes infeasible.

Model selection
The starting point for carrying out compressed sensing quantum tomography is the question of determining an
appropriate value for ¢ in the optimisation procedure equation (12). Essentially, larger values of € result in
greater relaxation of the data fitting constraint, leading to lower-rank estimates 2; while smaller € values will
yield 9 matrices with larger rank, which better fit the particular data set. Depending on the underlying state and
the particular instance of noise in the data, the choice of ¢ might result in underfitting with too coarse a model, or
in overfitting—i.e. including parts of the noise into the model of the state. Both extremes in general lead to states
that fail to correctly predict future data. In the most severe cases, it could happen that using the same
measurement prescription .A and the same data )/, the optimisation procedure in equation (12) yields a full
rank or a rank-one matrix, depending on the choice of . Worse still, too small a value of € can make the
optimisation procedure unfeasible, whereby there is no feasible state that would result in data sufficiently close
to that measured. The task of determining the appropriate model—in our case, the value of e—thatis
statistically faithful to the data via an appropriate choice of the respective external parameters is called model
selection (see e.g. [54]). Several ideas of model selection have a rigorous mathematical underpinning: Particularly
well known is the Akaike information criterion (AIC) [55], providing a measure of the relative quality of
statistical models for a given set of data. For a collection of models compatible with a given data set, this criterion
gives an estimate for the relative quality of each model. Similarly frequently employed is the Bayesian
information criterion (BIC) [56]. Direct application of AIC and BIC to quantum tomography—an approach
followed in [15]—is problematic for larger systems since it requires rank-restricted maximum likelihood
estimation, leading to non-convex optimisation, which scales unfavourably with the system size. This is due to
the fact that these techniques are discrete in the sense that they explicitly restrict the rank of the density matrix. In
the compressed sensing mindset, the parameter that controls the rank in a continuous fashion is €. As we
mentioned above, this is at the centre of our discussion.

For sufficiently small noise, a promising ansatz for identifying a suitable ¢ is to use the data to compute the
estimate & (/) according to the expectation value of

400 = V2 = [M@)]:- (15)

Assuming the noise is solely due to finite counting statistics, i.e. the deviations from measurement outcomes
from the expected variance of the multinomial distribution, we obtain

E(NW@IB) = Y B} = V00 = Y Nip (1= pp), (16)
jik jik Jok

with variance V. The second step follows from E(r; ;) = 0 for each jand k. In order to compute £ from the data,
we need to approximate p; ; as y; , /Nj, which is reasonable for sufficiently large Njaccording to the law of large
numbers. By equation (16), we obtain the estimate

m d
e =3 Zyj,k(l = ¥k /Np- (17)
j=lk=1

This choice of ¢ = () scales linearly with m, the number of measurements in the data set ). Note that &
depends on the noise model, which in several cases may not be sufficiently established. In our case, however, the
noise model is known to a high degree, which allows us to study and compare different methods for estimating
the parameter €.

Complementarily, we employ a straightforward, well-established model selection technique based on cross
validation (see e.g. [57]), which is more scalable than the use of AIC or BIC in our case. Because of its generality
and independence from the noise model, it can be used in a variety of scenarios. The method works as follows:
The data is partitioned into independent training and testing sets. Different models, i.e. different values for ¢, are
built from the training data and used to predict the testing data. The sought-after parameters—in our case e—
then result from the model corresponding to the smallest error with respect to the testing data.

Specifically, we randomly draw m = 10, 15, 20, 40, 60, 80 out of the m1,,,,x = 81 measurement settings
without replacement, corresponding to different levels of limited experimental knowledge. The respective data
sets Y(m) € R 4 are then partitioned into five subsets Z()(m), ..., 20 (m) € RT/S *d The optimisation in
equation (12) is performed with respect to every possible union of four subsets | J7_ ;.. q Z0(m),q=1,..., 5,
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E[é]

Figure 2. Cross validation results. Prediction errors E (m, €) = 1/5 Ef]: W Amqg(2(m, g, €)) — Z@(m)||, in units of & depending
on the model parameter € and on the number of measurement settings m. The standard deviation is bigger for fewer measurement
settings and for smaller €. The latter is due to the increasing chance of the optimisation to be infeasible for smaller €. For € close to &
and sufficient many measurement settings, the error is only slightly bigger than the deviation due to the multinomial distribution of
the measurement outcomes.

and different € parameters. Each reconstruction yields an estimate 9 (1, g, ) and the remaining subset Z@ (1)
is used as a testing set. The state estimate o (1, ¢, €)is used to compute the predicted measurement data

Aum,g(2 (m, g, €)) and compare these with the corresponding subset of the experimental measurement data
ZD(m) (Apq: Si— RT/ sxd being the reduction of the operator .4 to the subsets of measurement settings
corresponding to m and q). The resulting distance ||.A,,,4(2 (m, g, €)) — Z@(m)||,, between the predicted and
measured data, also known as the prediction error or predicted risk, is averaged over g (fivefold cross validation),
yielding an estimate for the averaged prediction error (testing set error)

Em &) = 3 Y Ang(20m 0, 9) = Z90m)2. (18)
q=1

If the corresponding optimisation problem is infeasible for a certain combination of ¢, 1, and g (i.e. the set of
density matrices that satisfy the constraint in equation (12) is empty), the prediction error is set to | 2@ (m)||,.
For averaging, each point (m, ¢) is sampled 50 times.

The mean values and standard deviations of the prediction error depending on the model parameter are
depicted in figure 2. We see that for values of € around ¢ the error is smallest, which is consistent with our ansatz
and allows us to gain confidence in the assumption that the measurement data can be effectively modelled by a
multinomial distribution. The more measurement settings are considered, the clearer the choice of the optimal
becomes, with both the prediction error and its variance attaining their minima close to € = . For those values
of e close to ¢ and sufficiently many measurement settings, the prediction error E (1, ¢€) is only slightly bigger
than the error estimate for the data . Here, the error arises primarily from raw multinomial noise, ¢, present in
the testing set itself and cannot be overcome with improved reconstruction methods. Where fewer
measurement settings are considered, less information about the state is available, resulting in large testing set
errors as well as greater variance of the state estimates, although the smallest prediction errors are still seen for
closeto £. As ¢ decreases below &, the chance of the optimisation being infeasible increases, causing the
prediction errors to effectively increase with a greater spread attributed to different optimisation runs. As &
increases above &, the data fitting constraint is weakened, resulting in too coarse model fits and a gradually
increasing prediction error.

Using equation (17) instead of cross validation has the advantage of much less computational effort and is
useful in a scenario with good statistics for each measurement setting. Moreover, cross validation relies on
partially discarding data, which could aggravate the issues of having too little data, yielding poorer estimates for
€. However, equation (16) relies on the assumption of a well identified error model—in our case, multinomial
noise, as verified by cross validation. In cases in which the error model is not known, cross validation can provide
amore robust estimate of .
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Estimated state

Figure 3. Bar plot of the density matrix of the target (GHZ) state pg,;;, and its optimal compressed sensing estimate pg. The basis is
fixed to the tensor products of one-particle vectors in the order |H, H, H, H), |H, H, H, V),...,|V, V, V, V). The height of each
bar corresponds to the size of the absolute value of the respective density matrix entry ;s = | le'%* and the colour to its complex
phase ¢, € (—, 7]. The colourmap is chosen to account for the periodicity of the phase. The fidelity of the estimate with respect to
the GHZ stateis 0.855 £ 0.006 and its purity tr(2&) = 0.60 + 0.01, representing an expected mixedness due to experimental
imperfections.

Compressed sensing tomography of the GHZ state
Having verified that the optimal value for € is close to that computed from equation (17), we use it as input for
the compressed sensing tomography of the experimental state and compute the optimal estimate
Ocs = 0 (Mpax, &) of the a priori unknown experimentally prepared state o. The good statistics available in our
experiment allow us to estimate o with comparably high accuracy. In general, due to experimental
imperfections, o (and hence 2) will deviate from the target state ouz = |¥uz)X¥cuz |, see figure 3 fora
pictorial representation. There, we show a comparison between the density matrices of the target state and the
optimal compressed sensing estimate using bar plots.

The standard figure of merit to determine the performance of tomography is the quantum fidelity F of two
states x and o, which is defined as F (x, o) = tr(((/x o /X )'/2) [6]. We find that the fidelity between the GHZ
state oz and the estimated state pcs is
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Figure 4. Fidelity F (oGuz, 0 (m, £))asafunction of the number of measurement settings m with uncertainty (shading) from
bootstrapping for ¢ = . For large m, Fapproaches the fidelity of oguz and 2, F (06uz, dcs) = 0.855, getting very close already for
comparably few measurement settings, and the standard deviation becomes smaller.

F(ocuz> Ocs) = 0.855 £ 0.006. (19)

The uncertainty of the fidelity is determined by using the optimal compressed sensing estimate, 2, as input for
the generation of simulated data—parametric bootstrapping [57]—and taking the empirical standard deviation
of the fidelity values. This uncertainty determines the robustness of the method. Obtaining a closed expression
for proper error bounds from the data with respect to positivity constraints is hard [23, 58], while bootstrapping
and taking the empirical standard deviation gives a good estimate of uncertainty [57].

To build confidence, we also computed the maximum likelihood estimate [59], oppg, using the same data
to obtain a fidelity with respect to the target state of F (oguz, omie) = 0.843 £ 0.004, which shows that the
estimators yield similar results; as will other estimators such as least squares with positivity constraint.
Additionally, since we have measured a tomographically complete set of observables and the statistical
properties of the measured data are sufficiently understood, we are able to provide an estimate of the fidelity
with respect to the target state directly from the measured data without the need of performing tomography
and an estimate of the corresponding error bound, see the appendix for details. With this, we obtain a fidelity
0f0.845 £ 0.005, which again is in good agreement with the results computed from the compressed sensing
estimate. We note that the standard technique for estimating the fidelity of a state with respect to a specific
target state requires estimating only the expectation values of a set of operators that form a decomposition of
the target state. For a four-qubit GHZ state, this requires a minimum of nine specific Pauli basis
measurements, as explained in the appendix. In contrast, using compressed sensing tomography, even a
random set of measurement settings produces fidelity estimates with respect to the GHZ state, which quickly
approach the maximum at around 25 measurement settings. Furthermore, these measurement settings
suffice to compute the fidelities with respect to arbitrary states, since they allow for the estimation of the entire
state.

Compressed sensing is about employing provably fewer measurement settings than with standard methods,
while still producing satisfactory reconstructions, i.e. to effectively sense in a compressive way. Along these lines,
we explore how varying the number of measurement settings m affects the fidelity. This is shown in figure 4. In
order to make the results independent from specific measurement settings, we randomly draw without
replacement 1 out of m,,,, different settings 200 times and average over the resulting fidelities, thus providing a
value for a typically expected fidelity for each m. As one would expect intuitively, we can see that the value of the
fidelity increases monotonically with the number of measurement settings and converges to the fidelity of the
estimate from tomographically complete data. The shaded region represents the uncertainty ( £ standard
deviation) in the fidelity computed via bootstrapping and displays the decreasing uncertainty with increasing
numbers of measurement settings. The fidelity already falls within the error bars of its final value for comparably
small m.
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Figure 5. Fidelity F (0cs, 0 (m, ¢)) depending on the number of measurement settings 1 and the model parameter ¢ (top) and
corresponding standard deviation AF (bottom) obtained via bootstrapping. Since in compressed sensing we are more interested in
the regime of few measurement settings and the fidelities do not change significantly for larger m, we restrict ourselves to the region
with m < 20. The data are generated randomly from 2¢s and the measurement settings per m are drawn randomly as well. The
fidelities are averaged over different data realisations and measurement settings. The highest fidelities are achieved for € ~ & with
rapid decrease for ¢ < & where the fraction of infeasible optimisations increases. Note that the higher the fidelity, the lower the
standard deviation.

Deviations from the optimal parameter
In this section, we study the effect that misestimating € has in the performance of the reconstruction of the state.
We carry out this task by numerical simulation: Using the compressed sensing state estimate o¢s, we simulate
measurement data, which we subsequently input to our compressed sensing reconstruction procedure, varying
both ¢, m and randomly drawing measurement settings without replacement. If the corresponding optimisation
problem is infeasible and yields no estimate, the fidelity Fis set to zero. The fidelities F (o¢s, @ (m, €))are
averaged over data and measurement settings (500 different data sets and different measurement settings per m
and e).

The results for varying m and ¢ in units of € are shown in figure 5. We compare the reconstructed states to
Ocs» which we used to generate the simulated data. We see that as m increases, the fidelity converges to unity at
€ = & (where Jcs is defined). We are interested in how quickly our reconstructed state approaches the optimal
Ocs with fewer measurement settings, particularly if € is misestimated. For instance, we see that we can obtain
average fidelities of more than 0.8 for only 6 measurement settings. Figure 5 (top) again illustrates that ¢ = £ is
the best choice as the fidelities around this region (and away from pathologically small numbers of measurement
settings, m > 3)are the highest. Moreover, we also see that with increasing m, the standard deviation AF of the
fidelity becomes smaller for ¢ > &.For € < &, infeasibilities of the optimisation equation (12) that appear for
certain choices of measurement settings lead to large standard deviations, which can be seen by the ridge in the
arealeftof ¢ = & in figure 5 (bottom). The ridge as well as the region of infeasibility gets close to ¢ = & for large
m, which is reasonable since more information (i.e. more constraints) puts greater restrictions on the
optimisation problems. If fewer measurement settings are considered, as in the highly tomographically
incomplete regime, overestimation of ¢ is less detrimental and state estimates still perform well, i.e. the fidelity is
relatively constantfor ¢ < € < 3 £. However, as m increases, the reconstruction becomes more strongly
dependant on the choice of €. Generally, we see that the higher the fidelity, the lower the standard deviation.
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Discussion

In this work, we have experimentally explored the compressed sensing paradigm for quantum state tomography
as applied to the photonic setting. We have explicitly laid out a method for applying these techniques and
reconstructed the state of a four-photon system with tomographically complete data available, observing a high
fidelity of the reconstructed state with respect to the target state. The presence of noise in the data requires that
one carefully chooses appropriate constraints on the optimisation. In current applications, these parameters are
usually obtained in an ad hoc way. We have provided a prescription to establish the parameters in a more
systematic way by modelling the noise and performing cross validation, which is a general method for model
selection. The quality of the data, being afflicted with noise predominantly attributed to finite counting statistics,
allows us to model the noise via a multinomial distribution. This is a situation commonly expected for photonic
experiments with post-selected data. In fact, we observe a great agreement between estimating the model
parameter from theoretical noise modelling and cross validation.

Having established the appropriate model, we have been able to perform state reconstruction with
tomographically incomplete data, which rapidly converges to the highest fidelity estimate as the number of
measurement settings increases. As a validity check, we have also run different estimators on the full dataand
obtained similar results, showing that our compressed sensing procedure yields reasonable estimates. As is
predicted by the mathematical theory of compressed sensing, we have found that the number of measurement
settings needed for a satisfactory estimate of the underlying state is much smaller than the number of
measurements necessary for tomographic completeness. We have also carried out a comprehensive
bootstrapping analysis to build confidence in the robustness of our method. In fact, we have observed that the
uncertainty in the fidelity quickly decreases with increasing number of measurement settings.

Furthermore, we have studied the robustness of our method with respect to improper model selection and
the effects on the reconstruction. We have found that for several choices of models and different numbers of
measurement settings, the performance of the reconstruction can vary dramatically. For small numbers of
measurement settings, our method depends less strongly on the model. In contrast, for large numbers of
measurement settings, it is imperative to determine the appropriate model for optimal performance.

Our results confirm that compressed sensing in conjunction with suitable model selection gives rise to
reliable procedures for state reconstruction leading to effective tomography with tomographically incomplete
data. These techniques can be applied to a wide range of experimental settings and provide a means to identify
and verify appropriate models thereby paving the way for the future of practical quantum state tomography.
With this, we contribute to establishing compressed sensing as a practical tool for quantum state tomography in
the low-information regime.
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Appendix: fidelity estimation with error bound

In this section, we provide more detail to the fidelity estimation with an error bound without the need of
resorting to quantum state tomography. In the Pauli operator basis

{Ol 1 0 € ® {ﬂ) Ox> Oy» Uz} }) (A1)
j=1

we can estimate from the measured probabilities ﬁ] K=Yk / N; the expansion coefficients
¢ = (o O/Vd) (A2)

of the prepared state p by a linear transformation €2,
§,=0p. (A3)

For convenience, we denote by p the row-vectorisation of the matrix with entries ﬁ] « The fidelity with respect
to a pure target state o1 can be written in terms of the expansion coeffcients as
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F (o1, 0) = Y €, &, =& Qp. (A4)
1

The frequency of the d different outcomes for the jth measurement setting is described by a multinomial
distribution. The covariance matrix is given for each multinomial distribution by

COV(Yj,ka Yj,l) = I\Ij(pj,k 51’,]‘ - P]',k pj,l)‘ (A5)

Since different measurement settings correspond to mutually orthonormal operators, the frequencies of
different measurement settings are uncorrelated, i.e. Cov (Y, Yj;) = Ofor i = j. Therefore the covariance
matrix for the probabilities p can be estimated from the data as

Cov(Bypo Bi) = Ni ' (Byybiy — Byabyy): (A6)
By means of linear error propagation, the variance of the fidelity is given by
Var(F?) = €, Q Cov(p, P €, (A7)
which yields an estimate of the statistical error of the fidelity estimate from the data

AF? (o, o1) = +/Var(F?). (A8)

In particular, in order to estimate the fidelity with respect to the GHZ state, only nine Pauli basis measurements
contribute. This can be seen from the expansion of the GHZ density matrix in the Pauli operator basis

Z o’®4+Zﬂ®ﬂ®0}®0}+zgx®gx®ay®a}/) (A9)

o€ {1,050,0.} Perm. Perm.

o = —
GHZ 16

where the last two sums run over all six distinct orders of the four factors of the tensor product.

To estimate the fidelity (A4), only the 16 Pauli coefficients of the prepared state are required that correspond
to the operators of the expansion (A9). From the measurement outcomes of the measurement setting o'5'%, all
coefficients of operators containing only the identity Il and o, can be estimated. Thus, only nine Pauli basis
measurements are necessary to estimate the fidelity.

Note that it is also possible to employ the measurement outcomes of all other measurement settings in the
estimation of coefficients of terms that include the identity in equation (A9). In principle, it is thereby possible to
further reduce the statistical error of the estimate of those coefficients. However, for the data set considered in
this work, using more than nine measurement settings does not significantly alter the fidelity estimate.
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The compressed sensing techniques that where discussed in the last section allow for the robust re-
covery of low-rank (i.e., less mixed) quantum states, decreasing the amount of measurements to
be taken and hence the experimental effort roughly by a square root factor in the Hilbert space di-
mension. This approach is feasible for intermediate-sized quantum systems, however, it reaches its
inevitable limits for even larger systems, let alone continuous systems such as quantum fields.

In contrast, tensor network states allow for incorporating physical a priori information into the
class of ansatz states for quantum tomography, making not only an exponential data reduction pos-
sible in various instances, but even allow for practical parametrizations of continuous quantum
systems. Such a parametrization is represented by the continunons matrix product states, which will
be discussed in section 3.2, after an introduction of tensor network states in section 3.1. Building
on this, we have developed a protocol for the tomography of guantum fields, which is presented in
the subsequent publication [2]™. This protocol can be used to determine the states in experimental
systems, which will be demonstrated in publication [3] in section 3.3. See also publication [5] in
appendix A.1 for an application of continunous matrix product states in quantum transport experi-
ments.

3.1 Tensor network states

Even with non-relativistic treatment, information in quantum systems propagates with finite speed,
the Lieb-Robinson velocity vy g. The respective, system-dependent upper bounds for the velocity are
called Lieb-Robinson bounds.!***°) This results in a certain locality and clustering of correlations for
ground states of gapped™ quantum lattice systems: Namely, the correlations of two local observ-
ables O4 and Oy, at different subsystems A and B decay exponentially instead of algebraically with
their distance dist(A, B):°°]

(0405) = (04)(Op)| < CeARAEIZN| O[] O]l (16)

With (O) we denote the expectation value of the observable O. This behavior is closely related to the
fact that for many quantum systems, quantum correlations between a subsystem A and the comple-
ment subsystem B will grow not with the volume of A, but with the size of its lower-dimensional
boundary dA: 'The entanglement entropy S(o4) := —tr(p4log, o4)'P™, which measures the

> Adrian Steffens, Carlos A. Riofrio, Robert Hiibener, and Jens Eisert, “Quantum field tomography”, New Journal of
Physics 16:123010, 2014 (DOI:10.1088/1367-2630/16/12/123010). Published under a Creative Commons Attribution 3.0 License
(creativecommons.org/licenses/by/3.0), © 2014 IOP Publishing.

¥ A quantum system is called gapped if there is a nonzero distance AE between its ground state energy and the
energy of the first excited state.

“ With o, we denote the density matrix of the reduced subsystem A, after tracing out the complement system B,
i.e., taking the partial trace of o with respect to B: o, :=trz(0).
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degree of entanglement™ between A and B, quantifying their quantum correlations, scales linearly

with the size |d A| of JA
S(e4)=O(|94A]), (17)

satisfying an area law.'”) Using Lieb-Robinson bounds, area laws have, e.g., been shown for one-
dimensional gapped systems with a unique ground state."

Importantly, the states that exhibit only comparably few and rather local correlations out of
the many that can be modeled by the entire Hilbert space represent a large part of quantum states
of interest appearing in nature, and they are confined to a tiny subset of the Hilbert space: The
so-called physical corner of Hilbert spacet*7"°4l. In the most extreme case, taking, e.g., a system
I = ®;’:1 C?of n spins, each in (2, with no correlations between the local spin systems, the
state of the system is a product state |)) = ;1:1 |g0]-> of the local spin states |(p]->. Only O(n)
parameters suffice to describe all such states—compared to the exponentially many of J. It is rel-
atively easy to experimentally prepare such uncorrelated states. Starting from these states, it was
shown that it is hard using only local Hamiltonians to generate states that exhibit as much correla-
tions as the mathematically typical state in F€ has: If one understands the preparation of arbitrary
states as a sequence of local interactions within a guantum circuir with a product state as input, then
such a circuit would also need to consist of exponentially many elements to produce most typical
states.'°4 Hence, in practice, large parts of the Hilbert space remain unreachable and—from a signal
processing perspective—constitute an unused data overhead.

Conversely, many states that appear in nature can be parametrized using quantum circuits with
O(poly N) elements, i.e., the physical corner can be covered by polynomially many parameters,
and the suitable set of states to describe it in a compressed way is the set of tensor network states: A
general pure state |} in a Hilbert space 7 = Qi1 C* can be written as

d

y=">_ vl @8], (18)

Jiran=1

where the coefficient array ¢ := (¢/1*/») can be understood as a tensor of order 7 and local dimen-
sion d. Decomposing ¢ into a set of 72 lower-order tensors c[l], eees c[”‘],

e (gt [ 41500 (i1, sl
Jtseosln 1 1 2 m—1 m
¢ Z Ca£1] Y Cﬂgz] A Cﬂgm] ] (19)
- — —e -
o}

* Fixing bases {|¢),} and {|¢),} of A and B, respectively, a general pure state in ¢, ® #}, can be written as
[4) = 2k Cik |go]~)A ®|¢y)p- It is called separable if there exist two vectors 4 and b such that ¢;;, = a,b, for all
J and k, resulting in a product state |)) = 33, v a;by|9;), ® |9op) = [x)a ®|x)p with [x), = 35 4;|p;), and
| )() B = > i b]- |§0 ]»)B. In this case, there are no quantum correlations between A and B. If this decomposition into
a product of subsystems does not exist, the state is called entangled and measurements on one subsystem affect mea-
surements on the other. That notion of bipartite entanglement—for a system consisting of two subsystems—can be
extended to multipartite entanglement as well as to mixed states.
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results in a rensor network. The physical indices |y, ..., ], get distributed among the 72 tensors,

/Ei]} The dimension of each con-

tracted index connecting two tensors is called its bond dimension. A quantum state with a tensor

which are connected to each other via contracted shared indices {«

network decomposition of the coefficient array c¢ as in Eq. (19) is called a tensor network stare™s.
For illustration, see Fig. .

7 Js i 2 Js Ja Js
c = | 22 cBl % cl4
a;
“olam|

Figure s:  Exemplary decomposition of a sth-order tensor into a tensor network
(1 (2] (3155 [417sss -

Zﬂp"-ﬂs Ca, Cayapa, Capas Cayagas- LHere, we make use of a common graphical repre-

sentation for tensor networks. Each box corresponds to a tensor, each line to an index. A line

connecting two boxes corresponds to contracting the common index of the two respective tensors. The

dimension of each internal index a; is called its bond dimension. Unconnected, open lines (such as

the ones labeled with |, ..., J5) correspond to uncontracted indices.

A particularly successful class of tensor network states for analyzing one-dimensional systems
constitute the matrix product states (Mps)'°°~*], which provide exact ground states of 1D quantum
Heisenberg spin model extensions, the 4kLT model"! and the Majumdar-Ghosh model™), clas-
sifications of quantum phases™ and characterizations of quantum phase transitions™. Important
algorithms for finding ground states and simulating time evolution such as the density matrix renor-
malization group (DMRG)'™ and time-evolving block decimation (TEBD)!* are closely related to
MPs. For reviews, see for example Refs. [115, 116]. Applications beyond quantum physics—e.g., for
machine learning or the solution of partial differential equations—are being developed as well(m7-118,
under the heading of rensor trains™.

Other types of tensor networks include projected entangled pair states"*) (pEPS), which gener-
alize MPs to higher spatial dimensions, tree tensor nerwork states™, and multiscale entanglement
renormalization ansatz (MERA) states'™, which are particularly practical for describing ground
states of gapless Hamiltonians. Mixed states can be represented by matrix product operators'! (mro).
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jl j2 jn»l jn

Al 4 gl % Sz i) 4l gl
jl fz jn—l jn
Al 4 gl % S gl 4 gl

Figure 6: Graphical representation of an a1ps with open boundary conditions (above) and periodic
boundary conditions (below). Above, the tensors {AM1} and {Al")in} bave only one internal index
ay and a,,_y, respectively. Hence, they respectively correspond to row and column vectors.

For mps, the tensor c is factorized into products of matrices Allli ,

et = ST Al ALY A ALy 4,

Ady “raxay Tt Ay gy, g T TAp_g

Afyerly_y

= A AR ABY | Al L2 (20)

resulting in a matrix product state

d
)= S AWRARE AL, @0

Tisesfp=1

see Fig. 6 for illustration.”® Each family of matrices Al can, e.g., be associated with the [-th site
of a one-dimensional spin chain. Matrix product states can be generated from a general state by se-
quentially regrouping the indices ji, ..., ,, of ¢, obtaining matrices ¢/v2+7), gl ) ls1n), etc.,
successively performing singular value decompositions on them and combining the resulting ma-
trices, ultimately yielding the desired matrices {Al!171}.7) Using this prescription, the magnitude
of the number of parameters in c is reflected in an exponential increase of the bond dimension
with increasing / up until / = [7/2]. Specifically (for even n) the dimensions of the matrices

' In Eq. (21), e are given an Mps with gpen boundary conditions and the arrays {Al'1/1} correspond to row vectors
and Al"» to column vectors. Contracting the first and the last site results in an Mps with periodic boundary conditions,

|y =D tr (AMHAPT AV ) (22)
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AU Al are 1 x d,d x d2,...,d"2 1 x d712 dni2 x d7/2=1 L d2 x d,d x 1. The
crucial point is that for many physical states of interest, the spectra arising in the sequential sin-
gular value decompositions decay exponentially—which can be attributed to area laws"**)—and
truncations of the singular spectra yield good approximations of the original state while massively
reducing the number of required parameters: If for each site the bond dimension is fixed to b, we
obtain (7 —2) d matrices in C?*? and two vectors in C? (for the boundaries) with the total num-
ber of parameters scaling linearly instead of exponentially with the number of sites 7. Tuning the
bond dimension of an MPs allows for balancing out the computational operability with how well
it describes the given physical system.

There exist quantum tomography protocols that allow for efficiently—i.e., using polynomially
many parameters and still capturing the essential physics—attributing an Mps to a discrete complex
quantum system.[**">4] This is already much more efficient than the more general compressed sens-
ing regime, as discussed in the previous section. For continuous systems such as quantum fields,
however, new concepts have to be introduced. This is the topic of the publications [2] and [3],
which will be discussed in the following.

3.2 Continuous matrix product states for quantum tomography

The continuous analogues of Mps are the continuons matrix product states'"*%) (cmps). These
allow for an efficient characterization of one-dimensional quantum fields and were shown to accu-
rately describe continuous models as, e.g., the Lieb-Liniger model [2527] it fermionic equivalent,
the Gaudin-Yang model "), or the relativistic Gross-Neven model ™). There exist algorithms
for efficiently computing the parameter sets of a CMPs approximation of the Lieb-Liniger ground
statel®3% but the involved methods are not restricted to this model. Continuous analogues of PEPs
can be formulated as well®, however, as in the discrete case, expectation values, which would be
important for tomographic protocols, are in general computationally intractable.

A cmPs on an interval [0, L] with periodic boundary conditions is defined as

|\IJQ,R> = Wk <°@ efOL dx< Jol+R( ®¢ >> |Q> . (23)

Its characteristic parameters are contained within the matrix families {Q(x) € C?**|x e [0, L]}
and {R(x) € Cb*? |x € [0, L]} with bond dimension . These are coupled with the unit operator i

and field operators” gﬁ , respectively, that act on the Fock vacuum state [(2) within a path-ordered
exponential & e, after which the (5 X b )-dimensional matrix space—the “auxiliary space”—is traced
out. The matrices R(x) can be interpreted as scattering matrices that result in a particle at position
x, while the matrices Q(x) can be related to free propagation.

7 The field operators gbA(x) obey the canonical (anti-)commutation relations [ ¢ ¢T ). = 8(x — ) for
fermionic/bosonic fields. The definition in Eq. (23) can be extended to multiple fields by using sums of different field

operators together with corresponding R matrices, 3 R (x) ® ¢ j(x), in the exponent.
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Continuous matrix product states can be constructed as the continuum limit of MPs of the form

)= > Al Ay @l @fyn|a,) (24)
TiseessTn
on discrete lattices £, C [0, L] with lattice parameter ¢, 7 = L/« sites, site-dependent creation
operators {é\;} obeying [ﬁj,ﬁZ]i = &'} > and matrices {Al*Le € €P*P), Setting

AR =1, 4 cQ(ke), ARk =ce2Rik(k ), ‘2/: = El/zgﬁ(k £) (25)

and taking the limits ¢ — 0, 7(¢) = L/e — oo yields Eq. (23).**] An equivalent construction of
cMPs from continuous measurements is also possible.l"”®]

For translation invariant cMPs, the matrices Q(x) and R(x) become independent of the posi-
tion x and the state is completely parametrized by 2 5? complex numbers. An important feature of
translation invariant cMPs is that z-point correlation functions of the type

Clxpyeens,) = (Yo | 1) (e, §xn) - ) [T ) (26)

can be reduced to 2- and 3-point correlation functions™] and can be calculated in closed form as
sums of exponentially damped sinusoids,

bZ
_ 2: A (x—x;) A (x,—x, )
C(xl,...,xn)_ ' : 7']'1""’]'71716 7SNt VA N P R , (27)
Jireosin—1=1
with Vi iy /1]‘/6 € C, implying that only certain 2- and 3-point correlation functions—as op-

posed to arbitrarily large 7 for general field statest3%l—are required to in principle determine the
cmrst. This makes these tensor network states particularly interesting for practical quantum to-
mography. Asin many inverse problems, the quantities 7 and A, however, are not straightforwardly
and, due to various gauge degrees of freedom, not uniquely related to the parameter matrices Q
and R. Since the A values are also not linearly related to C, it is moreover not clear how to efficiently
obtain 7 and A from an experimentally sampled data array C. The tomographic protocol at the
basis of the following publication [2] is therefore performed in several consecutive reconstruction
steps from processing sampled correlation functions to computing the CMPS parameters in a feasible
manner. To this end, state-of-the-art signal processing algorithms for precise reconstructability—
Prony-like analysisw’l”J and the matrix pencil method (138,59]__were adapted and extended for han-
dling input signals of arbitrary dimension. Implementing a non-linear least squares based optimiza-
tion heuristic is in general not productive because of the non-convex nature of the problem and the
disadvantageous scaling of the computational effort with the number of parameters, i.e., the bond
dimension . An important application of this protocol was to experimentally show that cmps
can be employed to adequately describe a continuous system that appears in nature. This will be
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presented in publication [3] in the subsequent section 3.3. Apart from quantum state tomography,
cMPs can also be used to characterize quantum transport experiments (see the publication [s] in
appendix A.1).
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Abstract

We introduce the concept of quantum field tomography, the efficient and reliable
reconstruction of unknown quantum fields based on data of correlation func-
tions. At the basis of the analysis is the concept of continuous matrix product
states (cMPS), a complete set of variational states grasping states in one-
dimensional quantum field theory. We innovate a practical method, making use
of and developing tools in estimation theory used in the context of compressed
sensing such as Prony methods and matrix pencils, allowing us to faithfully
reconstruct quantum field states based on low-order correlation functions. In the
absence of a phase reference, we highlight how specific higher order correlation
functions can still be predicted. We exemplify the functioning of the approach
by reconstructing randomized cMPS from their correlation data and study the
robustness of the reconstruction for different noise models. Furthermore, we
apply the method to data generated by simulations based on cMPS and using the
time-dependent variational principle. The presented approach is expected to
open up a new window into experimentally studying continuous quantum sys-
tems, such as those encountered in experiments with ultra-cold atoms on top of
atom chips. By virtue of the analogy with the input—output formalism in
quantum optics, it also allows for studying open quantum systems.
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1. Introduction

Quantum theory predicts probability distributions of outcomes in anticipated quantum
measurements. The actual problem encountered in practice, however, is often not so much
concerned with predicting certain outcomes of specific measurement procedures, but rather with
reconstructing the unknown quantum state at hand that is compatible with precisely such
measurement outcomes. This task of reconstructing states based on data—possible under
certain conditions of completeness or other reasonable assumptions—is called quantum state
tomography. For finite-dimensional quantum systems, this task is feasible and is routinely used
in experiments. However, the number of parameters to be determined scales exponentially with
the system size: full quantum state tomography is highly inefficient. This is even so much less
of a problem than one might at first be tempted to think. It was one of the major insights in the
field in recent years to recognize that economical or efficient quantum state tomography is
distinctly possible for systems with many degrees of freedom. In fact, in most physically
relevant questions, fully unconstrained quantum state tomography may be said to solve the
‘wrong problem’. One is surely often not interested in arbitrary states, but only in those states
that one is expected to encounter in practice, which are naturally more restricted.

In the context of compressed sensing tomography [9, 14] or matrix product states (MPS)
tomography [1, 5, 34], identification of quantum systems with many degrees of freedom is
indeed possible. The key step is to identify the right model in which to represent the states, e.g.,
approximately low-rank states or those with clustering correlation functions. In the context of
MPS tomography, the notion of a model refers to a meaningful variational class of states that
provably captures all states exhibiting low entanglement [8, 41]. In this sense, tomography is
efficiently possible for any system size. In fact, by increasing the bond dimension, an arbitrary
state can be well approximated. Quite similar to the mindset of compressed sensing, a ‘sparsity
of commonly encountered states’ is heavily used for the benefit of tomography.

In quantum field theory, where one has to consider an infinite number of degrees of
freedom, the situation is in principle aggravated. Analogously, a moment of thought reveals that
to think about quantum field tomography in the sense of trying to ‘fill an infinite table with
numbers’ is rather ill-guided. This is not the actual problem one aims at solving in any practical
context—one again needs to identify the appropriate model and the right ‘sparsity structure’.

In this work, we introduce the concept of quantum field tomography, tomography of
continuous systems in quantum field theory, and provide a practical and feasible method for
achieving this. We do so by drawing and further developing ideas from the study of continuous
matrix product states (cMPS) [16, 35, 47], methods of how to assess higher order correlation
functions in that context [24], as well as a machinery from statistical estimation theory, such as
a Prony analysis [38] and matrix pencil methods (MPM) [21, 22], which are here brought to a
new context. In fact, these methods of estimation have not been considered before in the context
of quantum state reconstruction and are expected to be interesting in their own right. The basis
of the analysis are low-order multi-point correlation functions directly accessible in many
common current experiments.

This approach opens up a new window into grasping the physics of continuous quantum
systems in equilibrium and non-equilibrium. Instead of having to make a physical model (e.g.,
define a Hamiltonian) and checking for the plausibility of it, one can—based on data of
correlation functions—reconstruct the quantum field itself. Such an approach seems particularly
appealing when studying one-dimensional continuous bosonic models such as ultra-cold atoms

39




New J. Phys. 16 (2014) 123010 A Steffens et al

on top of atom chips [13, 27, 28]. What is more, if only partial data is available, say, in the
absence of a phase reference frame, higher-order correlation functions of the same type can be
predicted as well. The starting point of the analysis is what is called “Wick’s theorem for MPSs’
[24], which is here brought to a new level and transformed into a practical method of
reconstructing unknown ¢cMPS from correlation function data.

This work is structured as follows. In section 2, we will give a short overview of the
concept of cMPS [16, 35, 47] as well as what can be called a “Wick theorem’ for this class of
states [24], aiming as a preparation for the following technical sections. In section 3, we will
describe in great technical detail how to reconstruct a field state from its low order correlation
functions and give a complete MPS description of it. The limitations of this method are
investigated in section 4. In section 5, we will demonstrate the method using simulated data
from random cMPS and apply the method to the ground state of the Lieb—Liniger model, a
prototypical integrable model in quantum field theory [3, 30]. The data used here have been
generated using a cMPS-based simulation based on the time-dependent variational principle
[6, 15, 17]. The impact of noise in real world-scenarios on the method is investigated here. In
section 6, we summarize and conclude this work.

2. Background

In this work, we are concerned with one-dimensional quantum fields with fast decaying spatial
correlations. Analogous to the case of many-body quantum systems, successfully described by
the MPS formalism, there is a variational class of states specially suited to study such systems:
the cMPS [35, 47].

2.1. cMPS

In this section, we briefly review the basics of the cMPS formalism. For a review and
comprehensive discussion of the computation of correlation functions, see, e.g., [16].

2.1.1. Basic definitions. A translationally invariant cMPS with periodic boundary conditions
and one species of bosonic particles is defined as

‘VIQ,R> = Traux|:Pe/Ode(Q®i+R®Yw(X)):| |-Q>’ (1)

where the collection of field operators llf’(x), x € [0, L], obey the bosonic commutation
relations of the free field

¥, ¥ ) | =60 -, 2)
[ ]

| Q) is the vacuum state vector, Q, R € C%*¢ are matrices acting on an auxiliary d-dimensional
space A, the ‘virtual space’, and constitute the variational parameters of the class. L is the
length of the closed physical system, P denotes the path ordering operator and Tr,,, traces out
the auxiliary space.

The parametrization in (1) by Q and R is not unique, i.e., there is and additional gauge
freedom. Namely, when simultaneously conjugating Q and R with an invertible matrix G [16],
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0 =G7'0G, €)
R = G™'RG, )

then the two resulting state vectors still represent the same state, i.e., all expectation values are
invariant under this transformation.

2.1.2. Related physical processes. A useful interpretation of the correlations in cMPS can be
given in terms of a d-dimensional (auxiliary) quantum system .4 = C¢ interacting with a one-
dimensional field F [35]. The Hamiltonian of the joint system is given by

Ho)=K®lr +R® ¥ (x) + R' @ ¥(x), (5)
where 1 is the identity on the field, K € C%*¢ the Hamiltonian of the free evolution of the finite

dimensional system, and R ® Pt (x) the coupling between the system and the field with
R € €%, Note that H evolves in position, rather than time—in this picture, both are by
construction equivalent. Starting with the state vector lg; )|€2), where lgp;) € A and the vacuum
12) € F, and evolving over [0, L] © x, we formally arrive at

0 )10) = peni )y s(koir-rirsirira ), o) ©)

using the Baker—Campbell-Hausdorff formula and the fact that R" ® l1A’(x)|goi>l.(2) = 0. By
setting

U, L)

Q:—M—%W& (7)

projecting onto (¢;| ® iy to decouple A from F, and summing over a complete orthonormal
basis of all lg;), we again obtain equation (1). This shows the interpretation of the cMPS
formalism in the sequential preparation picture of MPS [36].

In this picture, we interpret K to be the Hamiltonian of a virtual particle in the auxiliary
space that mediates field interactions. Even more [35], the dynamical behaviour of the auxiliary
system .4 can be modelled by computing the derivative of

) 24
pat0) = Ter| U 1)(p, 0 @ 12)(@1) 0" 1) | ®)
where Trr means tracing out the physical system F. This yields the ordinary differential
equation

. 1
a0 = =iIK, )] + RpWR = [ KR, p0)] ©)

dx

which is a master equation in Lindblad form, governing the Markovian evolution of p ,, where
R plays the role of dissipative quantum jump (Lindblad) operators. Although arbitrary Q and R
lead to a valid cMPS, not all pairs give rise to an effective Hamiltonian K via equation (7). For
this, it is required that

0+ Q0"+ RR=0. (10)

However, arbitrary Q and R can in general be transformed into a specific gauge where they fulfil
this equation.

bl
+
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2.2. Correlation functions in cMPS

The mathematical relations between the n-point functions are the starting point for our
tomography algorithms, hence we give a brief summary at this point. A quantum field state can
be completely characterized by all the possible normal expectation values constructed from

‘f/(. ) and ‘f’T(. ) and their commutation relations. In this work, we will focus on density-like
correlation functions, i.e., for each position x; € [0, L], k = 1,...,n, both operators ' (x¢) and

lIA/(xk) exist within the expectation values. Because of translational invariance, we can set
x1=0 without loss of generality. The expectation value

(I/IQ’RWAIT (x1)... P (x,,)‘f’(x,,)... P (xl)Iy/Q’R) can be computed as
CO (@ taot) = Tr[ ™ (R @ R)...e™(R @ R)e™ (R @ R) ], (11)

(see, e.g., [16]), with the transfer matrix
T=0®1;,+1,0+R QR, (12)

and the positive distances 7; = x4 — x; for j=1,.,n -1 and 7, = L — x,; the overline
denotes complex conjugation. Correlation functions of cMPS are given by expressions
involving only the auxiliary space. Static properties of a quantum field with one spatial
dimension are hence related to non-equilibrium properties of a zero-dimensional system. In this
sense, they have been referred to as being ‘holographic quantum states’ [35].

For a normalized cMPS, the eigenvalues of T are all complex with negative or zero real
parts, due to the analogy to quantum channels [48]. This leads to finite expectation values in the
thermodynamic limit L — oo. Furthermore, assuming that 7 is diagonalizable, which is in
particular the case if its spectrum is non-degenerate, the n-point function (11) can be further
simplified to a sum of exponentially damped oscillatory terms

dZ
lim C™ (zq,..., 7,1) = Z oo kn,leﬂm] e Tamt (13)
L—>
Koo kno1=1
where
Proieroriny = M M,y -+ M1 (14)

The matrix M € C4*4" is defined as M = X~ (17 ® R)X , where X is a change-of-basis matrix
such that X~!TX is diagonal and compatible with the ordering of the eigenvalues {A; }. In the

following, we will work exclusively in the thermodynamic limit and, for simplicity, use C™
also to denote n-point correlation functions in this limit.
A first step to reconstruct a cMPS would be to identify {p; ,, }and{4;}. That this is

in principle possible can be seen by considering the Laplace transform of C™

£ () = / & l2eSTCW(z), 51, sn; € C, (15)
0

3

— QUANTUM FIELD TOMOGRAPHY 42,




New J. Phys. 16 (2014) 123010 A Steffens et al

which has the simple form

Pl e ket
LY(s) = : 16
D 2 A T (1o

Each of the "~V combinations of T eigenvalues appears as a pole of £ in C"~! together with
the corresponding residue in the numerator. If all the eigenvalues are different, i.e., the spectrum
of T non-degenerate, and all residues non-zero, then all residues are distinguishable as well.
Since the Laplace transform itself proved to be infeasible for practical reconstruction
algorithms, we will present alternative ways in the following. Independently of this, we want to
keep calling the eigenvalues {4;} the poles and {p; ,, , '} the residues of the n-point
function. In the following, we require the spectrum of 7 to be non-degenerate.

The structure of the correlation functions with the residues as products of entries of one
matrix, equation (14), allows for expressing higher order correlation functions by lower order
correlation functions, very much reminding of the Wick’s theorem in quantum field theory [24].
In this sense, we will recover M from the residues. We will describe this in detail below.

2.3. Additional symmetries

In the remainder of this work, we will make use of some symmetries that the cMPS fulfil. Here,
we briefly state them. By construction, for each non-real entry of R @ R and T there exists
another entry containing its complex conjugate. More precisely, one can show that

AR @ RA;, =R ®R 17)
and Ay TAd =T, with

d
Ad = D Ejx ® Ex; (18)
Jk=1

and Ej; = e; ekT, the dyadic product of the canonical column vectors e;, [12, section 2.5].

Hence, if 1 is an eigenvalue of T with eigenvector v then A;TA v = Av, and since (A;)? = 12,
we obtain T (A4¥) = 1 (A4¥), such that the spectrum of T is closed under complex conjugation.
This fact also follows from the channel property of cMPS as discussed in [48].

For the reconstruction algorithms we will discuss below, it is instrumental to fix an
unambiguous ordering of the eigenvalues of the transfer matrix 7, which makes its diagonal
matrix D and furthermore the matrix M unambiguous, too. If we order the eigenvalues in D such
that the x € {1,...,d?} real eigenvalues constitute a block and the remaining d? — x are
arranged in complex conjugate pairs (e.g., ordering by descending real part), then D obeys the
symmetry relation Z;,DZ,, = D with the permutation matrix

(d*—x)/2
Ed,K = JlK () ( 61 Gx} (19)
j=
where o, is the x-Pauli matrix. In addition, since X consists of the eigenvectors v of T as column
vectors, A,V is the eigenvector of A, when v corresponds to A. Moreover, since =,
interchanges the columns back, we have that A;X =, , = X. Using this fact and the definition

M = X"'R ® RX, we obtain the symmetry relation =, MZ;, = M for the matrix M. This
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Figure 1. The particular reconstruction steps starting with the input data, an n-point
correlation function of a ¢cMPS ¥, ), and ending with the variational parameter

matrices Q and R, that fully characterize the state. Alternatively, the state can likewise
be described by K and R. With this knowledge, one can compute other n’-point
correlation functions and compare with the input data to obtain evidence for a successful
reconstruction.

relation connects each entry of M with its complex conjugate and, via equation (14), each
residue with its complex conjugate. As with the poles, the set of residues is closed under
complex conjugation for density-like correlation functions. These symmetries can also be used
for a systematic least squares approach to reconstruct the poles and residues, see section 3.2.

3. State reconstruction

Having established the structure of the correlation functions in cMPS, i.e., the structure of the
data of our reconstruction problem, it remains to develop an appropriate protocol to extract the
information encoded in the data. Given an n-point density-like correlation function of order 3 or
higher corresponding to a cMPS ¥, z), we will show that, in most cases, it is in principle
possible to reconstruct the parameter matrices Q and R up to an arbitrary gauge and phase, and
to reproduce all n-point functions.

We are dealing with a so-called inverse problem, a large class of problems that make ‘use
of the actual results of some measurements of the observable parameters to infer the actual
values of the model parameters’ [44]. Many inverse problems are ill-conditioned—a small
change in the measurements can lead to a huge change in the model parameters. In this chapter
we will examine the required steps for cMPS reconstruction, see figure 1, and the respective
main factors that influence their performance regarding perturbed input data. Each step will be
discussed in a separate section. We will see that in particular the first and the last step can be
notably ill-conditioned.

3.1. Reconstruction steps

The reconstruction of a generic, translationally invariant cMPS in the thermodynamic limit
comprises the following steps, which are represented in figure 1:

3
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(1) The first step in processing the input data is to extract the poles {/lk} and the residues

{P k... k,_, } from a density-like n-point correlation function, n > 3,
CO s Ta)) = D0 Pt py ENT @t Tim, (20)
|

which is measured and contains additional noise and experimental imperfections.
(2) In the second step, the matrix M is determined from the residues

Prrkyoikns = Mk, M, 1k, o Mig 1 (21)

and the matrix D is determined from the poles. This can be achieved using certain invariances
in the correlation functions that led to the formulation of Wick’s theorem for MPSs.

(3) In the final step, the cMPS parametrization matrices Q and R can be extracted from the
matrices M and D by imposing a specific gauge. Additionally, and after another gauge
transformation, the Hamiltonian K of the auxiliary system can be computed from the
matrices Q and R.

In order to only generate and predict higher order density-like n-point functions, it is in
general sufficient to use the matrices D and M from the second step without any further
reconstruction steps. This is in general much more robust against noise than the full
reconstruction. Furthermore, we can leave out some of the poles (together with the
corresponding entries in M) that barely contribute to the n-point functions. We will follow
this approach in accompanying work when analysing experimental data [43].

3.2. Reconstructing the poles and residues

When analysing spectra of sampled linear combinations of sinusoidal functions, methods based
on integral transforms like the discrete Fourier transform seem like a natural choice. In our case,
however, we deal with exponentially damped sinusoids with potentially similar frequencies,
which results in heavy broadening and overlapping of the corresponding spectral peaks. In this
case, the damping factors would have to be determined from the corresponding peaks’ width,
and, in view of experimental data, we cannot assume too many sampled data points. Hence, the
spectral resolution would be rather low. Only for certain cases the peaks in the frequency
spectrum are sufficiently separated to directly determine the poles in a feasible way using
integral transforms.

Another class of methods for data fitting that may come to mind is based on nonlinear
(e.g., least squares) minimization approaches. Clearly, the number of parameters critically
determines the computational effort and the successful applicability of the algorithm. The
results, however, can be improved by restricting ourselves to a likely parameter region as a
result of a preceding Fourier transform. Taking into account the A; and =, , symmetries and
assuming normalized n-point functions, the number of real parameters can be reduced to
nd? — 2. Only for unambiguous global minima (which is usually not the case for high
damping factors in combination with noise) and for very small bond dimension, we obtained
satisfactory results in acceptable time. Least squares approaches for correlation functions
with larger n are at best feasible when using Q and R as parameters, otherwise the number of
parameters would become too large. In spite of these drawbacks, a least squares algorithm
could be used as an additional refinement step with initial values from other procedures, like
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the ones discussed below; nevertheless the number of parameters is still limiting. On
the other hand, if we can only assume a small number of parameters and expect a
considerable amount of noise, the least squares method can be a robust alternative. For
example, for bond dimension d = 2, such nonlinear least squares approach can be feasibly and
successfully used.

Alternative minimization methods, e.g., simulated annealing, did not lead to
considerable improvements. However, the scaling of the computational effort with the
number of parameters can be significantly mitigated using iterative quadratic maximum
likelihood methods, but the application to correlation functions with n > 2 is not
straightforward [19, section 1.2.3].

Realizing the challenges of solving a nonlinear estimation problem, it seems logical to
exploit the structure of our particular model of the data to see if there are ways to more
efficiently solve the estimation problem. It turns out that for data structures that consist of
sums of damped oscillatory terms, it is possible to separate the estimation of poles and
residues of the function in two different linear estimation processes. In the following
sections, we describe two major approaches one can take to achieve such estimation.

3.2.1. Prony analysis. This technique is used in digital signal processing and its roots go
back to a method that was originally established by Prony in 1795 in the context of fluids
[38]. The main idea is to first recover the poles independently by determining the roots of a
polynomial computed from the signal (the correlation function) and then to insert the poles
into a system of linear equations for the coefficients, which is in principle solvable with the
usual linear algebra procedures. Prony’s method is a special case of linear prediction [19]
and has many further applications, e.g., as the starting point for nearest-neighbour detection
of atoms in optical lattices [26, 29]. The original method, however, is very sensitive to noise,
so that for working on experimental data we need to use several modifications, which we will
describe below. For further summaries and an introduction of the method, see for instance
[18, 31, 37].

Prony’s method is usually applied to C-valued functions, corresponding to 2-point
functions, and for our purposes has to be extended to work with higher order n-point functions,
which can be done in a straightforward way. Therefore, in our description, we will start with the
one-dimensional case with signal function

d?

CO(r):= ) prehs. (22)
k=1

The function is sampled at a finite number of points and is available only for N + 1 points {z; },
which is C®(z;):= C;, j = 0,..,N. We, thus, obtain a system of linear equations

plellro 4o pdzelldzm = Cy, 23)

plell‘n + e + pdze/ldz‘l'l = C], (24)

ple/llfzv + .+ pdzeid”N = CN~ (25)
9
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Once we have identified all poles {1, }, we can easily solve this system and are finished with the
reconstruction. As we will see, one requirement for Prony’s method is to sample the signal at
equidistant points 7; = j - Az, j € {0,..., N}, and with ettt =:p, we arrive at

1 r - 1 12 Co
B B @
PR o
where the poles are encoded in the (in general, non-square) Vandermonde matrix
% :=(u,j—‘)j=1 ..... N4 Q27)

k=1,..,d?

We must take care not to choose the sampling interval Az too large, since, considering the
Nyquist—Shannon sampling theorem [42], the sampling rate should in general be at least twice
the highest frequency sy, of the signal spectrum 2z /(A7) < 2wyyp .

Vandermonde matrices will often be ill-conditioned—e.g., according to Gautschi [10], a
lower bound for the norm of the inverse matrix of V (for N = d? and V invertible) is

4> max( 1, Hn‘
!WWL>2%£1\;_%R’ 29
m#l

which will get very large if two poles get close to each other. This fact hints at the intrinsic
limitations of this reconstruction method.

To determine the poles, we can regard the set {4, ..., 4, } as the roots of a polynomial P>
with real coefficients and degree d” in the variable z,

d2
Pe() = Y aiz,
=0
Pz =p)=0 (29)

for each k = 0,..., N. Note that there are d” values of u, but d> + 1 of a;. Such a polynomial
naturally exists—it is just the product of the linear factors (z — ),

dZ
P =[] @ - wo- (30)
k=1

Our goal is to relate the set of coefficients {a; } to the set of function values {C; }. Once we have
all a;, we can compute the roots of the corresponding polynomial (29) and obtain the poles
A =In(u)/Az,k=1,.., d?. To this end, we multiply the first line of equation (26) by ay, the
second by a; and so on, and perform the sum,

d? &2 & &2 d?

2aiCi= Y Y = Yope Jamy (31

=0 1=0 k=0 k=0 1=0

Now, by choice of the a;, each i, is aroot of Pp2(z) forallk = 1,..., d? so that each sum over [
in equation (31) vanishes. Accordingly, we see that

10
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dZ
qu=0. (32)
=0

Since HZZ:I (Z - ,uk) =1z + .., the coefficient a,> belonging to the highest power is
equal to one. Hence, equation (32) becomes the recurrence relation
d>-1
> aC=-C, (33)
1=0

In order to compute the d” coefficients {ag,...,aqs2_1}, we need at least & equations. More linear

independent equations are easy to obtain because the argument in equation (31) is still valid if
we shift C; to Cy,, for any m € N with d*> + m < N:

d2 2 d2

I+ m
zalcl+m = Zal zpkﬂk
1=0 =0 k=0

d? d?
= z/’k”km Zamkl =0. (34)
k=0 =0
For d” equations the largest index that appears is 2d>— 1 and our equation system looks like
C() Cl C2 Cdz—l a C
2
G G G : a? c d
G G- : (= (35)
) Car-s agq2-1 Car—1
Cd2_1 C2d2_3 C2d2_2

Therefore, for d* poles we need at least 2d2 sampling points { Cy,..., Coz2_; }. The square matrix
on the left-hand side of equation (35) can be written as (Cj4x);jk=o0..,42~1 and has the form of a

.....

Hankel matrix. If it is non-singular, the solution vector (ag,....,ag21)" is unique and can,
together with a2 = 1, directly be replaced in (29), which in turn will yield the ¢ poles in a
unique way. Hence, when reconstructing a function with d* poles and residues, we need
precisely 2d*> sampling points to exactly solve the Hankel and the Vandermonde system,
provided that both matrices are not singular. This means that for small bond dimensions and
without noise the necessary resolution of the signal for a complete reconstruction is very low.

There are many established criteria for the invertibility [25, section 18] and inversion
algorithms [4, 45] of Hankel or Toeplitz matrices (equation (35) can also be rearranged as a
Toeplitz system). They are known to be potentially ill-conditioned, which reflects the inverse
nature of the problem, e.g., the spectral condition number of a real positive-definite N x N
Hankel matrix is bounded from below by 3 - 2V~ [46]. In practice, recovering the poles is more
stable when oversampling the signal and using a higher pole estimate, i.e., working with a larger
(not necessarily square) Hankel matrix and a larger solution vector in equation (35), and solving
the equation system in a least squares sense. This boils down to applying the Moore—Penrose
pseudoinverse to the right-hand side of equation (35) to obtain the coefficients of the
polynomial, inserting the computed poles into equation (26) and discarding the N + 1 — p
surplus poles with the smallest associated residues.

11
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Note that instead of solving equation (35), we can also determine the kernel of
(Cjsk)jk=0..,4>—1, whose dimension is larger or equal to one due to equation (32). Only in the
latter case, which corresponds to the matrix in equation (35) being non-singular, we get a
unique (up to multiplication by a constant) solution vector (ag,...,a42)". The constant does not
pose a problem because any multiple of (ay,...,as2)" yields the same roots of the associated

polynomial: 271 0 a;7' = 0 is equivalent to Zfi 0 a;7' = 0. This method has proven to be
more robust towards noise in some cases [33] and can be generalized in an elegant way to
higher order correlation functions [39].

Unfortunately, in many cases, Prony’s method is highly susceptible to noise in the signal.
However, it presents a beautiful framework that shows that, in principle, it is possible to
reconstruct the poles and residues of a signal. Without noise, both poles and residues can be
determined exactly. In the next section, we describe a better algorithm for solving this type of
inverse problems, which is more stable for larger bond dimension and finer sample rates.

3.22. MPM. The original MPM was developed by Hua and Sarkar [21, 22] and can be directly
applied to our problem. As with the Prony algorithm, the poles are determined first and
independently from the residues. Although the MPM is related to Prony [40], it is considerably
less sensitive to noise [19, section 1.2] and can deal with higher sampling rates in a more stable
fashion. Once the poles are identified, the residues are found via a linear equation system in the
same way as in Prony’s method. Here, we will just describe how to determine the poles. For
simplicity, we will begin with the case of reconstructing a 2-point function and generalize to
higher order correlation functions in the following section.

A matrix pencil 9 of degree n € N is a polynomial over C with matrix valued coefficients
M; e C™ M(y) = Y _ ,M;y’. As with the Prony algorithm, we start by forming the Hankel

ji=0
matrix
Co Ci ... Cp_y
C[]] — C1 C2 CP e C(N_P)XP, (36)
Cy_p-1 Cn_p ... Cy22
from the experimental data points { Co,...,C N_2}
d? d?
Cj= Yoppe™ ™ = Y puf, (37)
k=1 k=1

with integers N, P, such that N — P, P > d>. Generally, the larger the number of samples N,
the better the estimation of poles becomes. The optimal value for P regarding noise sensitivity
typically lies between N/3 and N/2 [23]. In this method, we make use of the fact that C!' can
always be decomposed as

cM = YRV, (38)

12

49




New J. Phys. 16 (2014) 123010 A Steffens et al

with Vandermonde matrices

1 1 1
Hy Hy Ha2 s
V= : : € CW-Pxd (39)
’ulN—P—l 'uzN—P—l Iudl\zl—P—l
and
Loy .. ,ulP_l
P-1
=l e, (40)
L oy . ,udlz_ !

and the diagonal matrix R = diag( Pl eees pdz), as can easily be verified by using equation (38).

In addition to the Hankel matrix C'1, we construct a second Hankel matrix

C C, .. Cp
sz C:Z C“B CP.+1 EC(N_P)XP, (41)
Cn-p Cn-pt+1 ... Cn-1

which in turn can be decomposed as

C = VRV, Y, (42)
with Vy = diag(;tl seees U dz), and consider the linear matrix pencil
CP — yCM = VR (Vy — y12) V2 (43)

with y € C. Since all y; of V} and V), are distinct for a non-degenerate spectrum of 7" and

N — L, L > d?, the matrices V) and V, have rank d* and we can see that
rank( C“]) = rank(Cm) = rank( VRV V,) = rank(R) = d°. (44)
Generically, the matrix pencil C?! — yC!! will have the same rank, except for
y=v¢€ {,u] yeees M2 } In that case, the jth row of (VO - ledz) is zero, hence
rank( cll - yC[”) =d*-1, (45)
and there exists a non-trivial vector v with
(¢ = e}y =0, 6)

In this form, the complex number y can be regarded as a solution of the generalized eigenvalue
problem (GEVP) (46). This means that the d* non-zero generalized eigenvalues of equation (46)
are exactly the exponentiated poles e*4’ ..., e#*4!, Equation (46) can be solved by a generalized
Schur decomposition of the matrix pair {C?, C!'} or by solving the ordinary eigenvalue
problem
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(C[11)+C[2]v = (47)

with the pseudoinverse (C “])+ of C [22]. After having determined the poles this way, they

can be inserted into a linear equation system to obtain the according residues, as with Prony’s
method.

3.2.3. Technical improvements. Several improvements can be made to the original MPM
approach including features from other reconstruction methods, which led to algorithms like
Pro-ESPRIT and TLS ESPRIT [23], which we mention for the sake of completeness.
Modifications based on structured low rank approximations [2, 32] did not lead to significantly
better results. Here, we will focus on the so-called state space MPM, which shows the highest
robustness towards noise of all direct MPM descendants [19, 23] and is the one we prefer to
implement.

In this context, we continue with equation (46), but instead of solving it directly, we
perform additional noise filtering steps via SVD rank truncations [20]. Performing separate
SVD truncations like in the original approach has proven to be less robust than performing a
joint SVD on C!'! and C?1 € CV-P*P by

(C[ll’ C[Z]) = yzyt=: UZ(V“H, V[ZH‘) 48)

with a unitary matrix U € UN — P), £ € CV=PX2F containing the singular values of the
concatenated matrices (C!!l, C121y € CWV-P*2P apd (VT vI2IT)y € U(2P). Note that VIl and
V2l € €P*?P are not unitary, in contrast to the matrix (VI VI217) and are not directly related
to the unitary matrices from the separate SVDs. We insert equation (48) into equation (46),
yielding

(C[z] _ },Cm)v - UZ(VDH - yv[l]’r)v’ (49)

and see that if y is a generalized eigenvalue of the matrix pair { V12", VIIT}, then so it is of
{C2, ¢} Hence, we can just work with { VI2IT, VIIT} (or {VI2] VIl1} since the set of poles of
our n-point functions is to be closed under complex conjugation), and can completely forget
about the singular values in . We now filter the signal given in equation (48) by keeping the d*
largest singular values and the corresponding singular vectors of V1T and V217

trunc

Uz (VT v — (v, ViR, (50)
The GEVP we want to solve now is
(VP =iy =0, 1)

with the filtered eigenvalues y’ € C. Since V}!!, V! € € *d* and P > d?, there is still surplus
information we can use to SVD filter equation (51) one more time. For higher robustness, we

repeat the truncation process, applying it to the concatenated matrix (V}!, V}ZJ) € CPx2d’,

trunc

(Vi v = v (v VI o s (v v (52)

with U’ € UP), X' € CP<’ v e UQd?), V'p € €92 and VM1 v, 12 e gd™*a,
Equation (51) then becomes
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VT['Z] _ 7//V]/"[l] — U’Z(V,[zl T }/,V,[IH-) — U/T ZIT(VI/"[Z] T }/”V%HH-) (53)

with the doubly SVD filtered eigenvalues y” € C. If there is no noise, then all the d* generalized
eigenvalues of the matrix pencil {V}m, V}“J} are generalized eigenvalues of { v’y }, thus
generalized eigenvalues of {C?, C!!} and nothing else than the exponentiated poles
ehdr  eh?A7 With noise, we can assume that the filtered set of eigenvalues {y”} provide a
better estimate than the unfiltered {y} [20, 23]. Since V}”” is invertible by construction,
everything boils down to solving an ordinary eigenvalue problem:

’ —-1_
(va") v =g (54)

This concludes the description of the state space MPM, which is our preferred technique for
pole reconstruction.

3.2.4. Generalization to higher dimensions. So far, we have developed the reconstruction
techniques for 2-point correlation functions. In this section, we show how to deal with higher
order functions and generalize the previous discussion. Additionally, we show how one can
improve the signal-to-noise ratio by exploiting redundant information in the higher order
correlation functions.

If, for an n-point function, we uniformly sample each tensor index with N sampling points,

. . . n—1 .
we obtain a (n — 1)-dimensional array (Cll ,,,,, l”")l Lo Nt e CV" with
o~ Loeos In-1=0 5., N—
Chotin = Dy P, gl efhmiboite, (55)
kiyeskno1=1

To extract the poles, we carry forward the approach of Zhu and Hua [49, chapter 17.11]. We fix
one index [; of Cj, _ ; , and sum over the other indices

N-1
&= Y G (56)
{1i}=0,
i#
The summing provides averaging and hence increases noise stability. This procedure is only
possible because the poles and the sampling interval are the same for each index of the n-point
function data array. Inserting the definition for C,__; , and separating e*/’4* from the
summation of k; yields

d2
A0 ) A1
G = Y Cp el (57)
with
ék(i) = Z P eliAT ehiliATe A lindr e duilide - (58)
J Toeees n—1
(ki}y=1,..., d?
(1i}=0,.,N—1
i#j

Equation (57) can be be regarded as the components of a 2-point function with the sought-after
poles and (C k(j) }, which only depend on k;, as its residues. The concrete values of these effective
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residues do not matter, since in this step we are only interested in the poles. We can average

. A () . . . .
further by summing the vectors (C,E,/ )z,:o ,,,,, N—1, each corresponding to the tensor direction j,
which leads to the N-component vector

(€)= (&") + (&) + =+ (&"7"). (59)
l 1 l

The counting indices {/;} do not depend on j, hence we omitted the j for clearness.

The vector (C)) still corresponds to a 2-point function with the correct poles and we can
now apply the established matrix pencil, Prony or a least squares method to obtain the poles.
Additionally, the averaging results in an effective reduction of the standard deviation of the
(white) noise by a factor of ((n — 1)N"~!)~!. Regarding the residues, we can reshape the array
of the poles into a matrix and obtain the residues as the solution vector of the corresponding
linear equation system in the least squares sense.

3.3. Extracting M

After having determined the poles and residues of the input correlation function—our first
reconstruction step as discussed in section 3.1—the next step is to identify the matrix M. From
M together with D, the variational parameter matrices R and Q can be determined.

First, we note that conjugating M with a diagonal matrix whose first entry is equal to one
does not change the density-like correlation functions. This observation can be used to require
that M, ; = 1for j = 2,..., d?, which is possible if the M, ; are non-zero. For M | to be equal to
one, we need to normalize the n-point function by dividing by

Py

n
(0|90 |Yor ) =M. (60)
In particular, we obtain pk(]")1 = L 1My, = p,((lz). For clearness, in this section we mark
the dimensions of the residues with an additional index. We can compute M;; for any

i,j=1,.,d*>and n > 3 via
(n) 3)
pj,ni, Lot Pii MM,
w e = Mij. ©D
Pi1,.1 P Mj,l

From this equation we can see that we need n to be larger than three, since a 2-point function
can at best provide the first column of M.

In practice, we may want to reduce noise by averaging over multiple independent
prescriptions for M;;, namely

42
Pr,

1 -!‘.’ .
Mi; = 42n=3) Z ) ) (62)
Kvnkno3=1Phy ks j, 1

By rearranging the residues, we can express higher order expectation values in terms of
lower order:
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/’k(f?..,kn,, =M, M, ks My, s ks My
M. M My, 1Mk, ,
= Mk, k,,,l,kn,zm knn,kn_3
Mkz,lMl,kzM u
m ko ki My, 1

n-2 p(3)

=o0uTT =5 (63)
r=2 pk,

This is the Wick’s theorem for MPSs [24]. At this point, we can check the validity of the
reconstructed M, since it necessarily must obey the symmetry 5, M=, . = M for accordingly
ordered spectrum of T.

3.4. Extracting R

To obtain a complete cMPS description of the system at hand, it is necessary to reconstruct the
variational parameter matrices R and Q. We have that, by definition,

M=X"'R ® R)X (64)

and D = diag(4;) = X~'TX with the change-of-basis matrix X indeterminate. Because of the
gauge invariance of Q and R, we can determine them only up to conjugation with an invertible
matrix and therefore will not need to determine the concrete form of X at all. In this sense, there
are no specific R and Q matrices to be reconstructed. Nevertheless, we continue using the terms
R and Q, thinking, without loss of generality, of matrices that are in a specific, yet arbitrary,
gauge.

Our strategy to recover the variational parameter matrices is to choose R diagonal, which
can be done in almost all cases, and determine Q accordingly. Equivalently, one could likewise
require Q to be diagonal and determine R accordingly, but here we use the former approach. We
first diagonalize M — Y~MY = Miag With the change-of-basis matrix Y. Since M, as well as its
similar matrix R ® R, has the spectrum {rir;} with i,j=1,...,d, where n,...,7; are the
eigenvalues of R, the entries of Mg;,, can be reordered with a permutation matrix O such that the
resulting matrix has the form of a Kronecker product of two diagonal matrices R,

O_IMdiagO = Erec ® Riec. (65)

Since R, by construction is similar to R, we can write it as Ry, = W'RW, where W is the
change-of-basis matrix that diagonalizes R. Diagonalizing and reordering M thus yields R in a
certain gauge, namely W~'RW, and we can identify R,.. with a reconstruction of the matrix R.

Note that XYO has a Kronecker product structure as well, which will be important for
reconstructing Q. Rewriting equation (65), we have

XYO)'(R ® R)XYO = O~'Y~'MYO (66)

which is equal to Riec ® Ryec, and, by definition of R, and using a Kronecker product identity,
hence equal to
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(W W) (RQR)(W W) (67)
There is a little subtlety in that, in general, numerical diagonalization algorithms will not
provide Y such that XYO is a Kronecker product, but usually such that each eigenvector, a
column of Y, is normalized, yielding a matrix Y. This matrix can also be written as Yy = YDy
with a diagonal matrix Dy, where XY DyO in general will not correspond to a Kronecker
product. This does not affect R, since diagonal matrices are invariant under conjugation with
other diagonal matrices.

To determine O and extract R, from Rc ® Ry, it is important to take into account that
multiplying R with an arbitrary complex phase factor ¢ does not change R ® R. In the same
way, 0 ®Il,;+1;® Q is left invariant when adding iy - 1; with y € R to Q. Hence, the
transfer matrix remains unchanged as well. Clearly, out of density-like correlation functions, R
and Q can only be reconstructed up to these factors since Q and R only appear in these
Kronecker product terms.

By fixing e, one diagonal entry rj of Ry can be assumed to be real and Myi,, can be
rearranged to a Kronecker product by successively checking if for an entry My;,e ;; the fraction

‘Mdiagyu /rj‘ yields another (real) entry of My, (or, in practice with noise, is sufficiently close
to it), which must be the case for a Kronecker product matrix with spectrum {7r;}. After
repeating this procedure for all entries of My;,,, all eigenvalues {r;} are determined, in a fixed

order that determines the order of R.. and O as well. Now, it remains to determine Q, which
will be done in the next section.

3.5. Extracting Q

The second parameter matrix to be reconstructed, Q, will in general not be diagonal in the same
gauge where R is diagonal. The goal is to find Q in the appropriate gauge. First, we take the
matrix D, which contains the eigenvalues of 7, subtract the reconstructed matrix M, and see that
in principle all the information about Q is stored here:

D-M=XTX-X'"RQ®QR-X
=X(0®l,+1,® 0)X. (68)

By conjugating this with the matrix YO, which is the same change-of-basis matrix that directly
led from M to Ryec ® Rrec, We obtain

XYO) (0 ® Iy + 1, ® Q)XYO
=(Wew) (0®L+1,®Q)WeW
=WloOW 1, + 1, ® (W“QW). (69)

We obtain in this way Q. := W™!QW in the gauge corresponding to the gauge of

R = W™IRW and thus it represents a valid set of parameters that define the state. To extract
Orec out of equation (69), we can, as in the case of R,.., assume one diagonal entry g i of Qrec tO

be real, which corresponds to subtracting i Jm (g; ;) - 14 from Q. In this way, we can read each
g;; from the corresponding diagonal entry g, ; + ¢;; = 2q;; in equation (69) and subsequently
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the remaining diagonal entries. Because of the structure of equation (69) as a Kronecker sum,
the off-diagonal entries can be read off without further preparation.

The fact that Y is only determined up to multiplication with a diagonal matrix Dy, as
mentioned in the previous section, does not pose an obstacle for the reconstruction of Q,e: its
gauge needs to be fixed only up to conjugation with a diagonal matrix if R, is in a diagonal
gauge. Furthermore, it does not matter that also the matrix M is only determined up to
conjugation with a diagonal matrix D,,, which we used to require that M; ; = 1for j > 2. Using

D,;;'MD,, instead of M in equation (68) and X~!'TX being diagonal, we have
X~'TX - (XDy)™'(R ® R)XDy = (XDy)" (T = R ® R)XDu, (70)

which is equal to X~ (Q Rl;+1; ® Q)X with X = XD,,. The particular structure of X or X
is not needed in the algorithm.

On the other hand, if we normalize the n-point function and hence M by multiplying it by a
constant, we have to be careful since D — cM, for some ¢ € R, will in general not result in a
matrix similarto 0 ® 1, + 1; ® O. Accordingly, we have to renormalize M — ML] - M. The

) = (M, ;)" of the n-point function before

number Ml,l can be read off the residue ﬁ](
normalizing it.

Note that computing eigenvectors, which the matrix X consists of, can be a very unstable
(in extreme cases even discontinuous) procedure, especially for higher bond dimensions, when
eigenvalues can cluster [11, cor. 7.2.6]. Hence the procedure of determining Q is highly
susceptible to noise. To improve noise stability, we can average Y by using the symmetry
property E,,YA, =Y, which follows from the symmetries of M and Riec ® Rie, and use
(Y + E£4,YAy)/2 instead.

This concludes the reconstruction of the variational parameter matrices Q and R, which is
the last step in our reconstruction procedure, section 3.1. Additionally, it is now possible to
construct the Hamiltonian of the auxiliary system K as in equation (7) et sqq. and relate the
c¢MPS to a Lindblad master equation. The fact that we can reconstruct Q only up to an additive
term iy - 1 results in K being indeterminate up to an additive term y - 1. This is reasonable since
only the differences in the spectrum of the Hamiltonian are physically relevant and these are not
affected by a global shift by y.

4. Applicability and limitations

The proposed tomography method relies on assumptions. It is hence important to know its
limitations and how to check the applicability of the method to given data. The basic
assumption is that the correlations in the data are—at least approximately—of the type found in
cMPS spatially, or equivalently of the type found in finite dimensional quantum systems whose
dynamics are given by a Lindblad equation temporally. It is hence natural to assume that our
method is applicable to settings similar to the ground states of gapped local Hamiltonians and
for fields which originate from an interaction with finite level systems—think, e.g., of a light
beam emitted by an atom trap. In this section, we aim to give a description of ways to gain
confidence and check the consistency of the estimates obtained by our reconstruction methods
for quantum fields.

Since it is our goal to produce usable estimation tools for experimental applications, it is
very important to have a clear understanding of how to determine whether or not a particular
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reconstruction was successful or even if the cMPS ansatz is applicable to a particular situation.
In this context, we can recognize two different scenarios that can occur: (1) the idealized case,
where the data actually comes from a cMPS, and (2) a realistic case, in which the data comes
from a physical system (not a cMPS, but possibly well approximated by one) and is in general
noisy. In the following, we will discuss both in more detail.

In the ideal case, data will be produced by a generic cMPS of unknown bond dimension d.
From the 2-point correlation function, following the reconstruction methods discussed in
section 3.2.2, we can extract an estimation of d by computing the rank of the (sufficiently sized)
ansatz Hankel matrix in equation (36). Even if noise is present in the signal, an estimation of the
bond dimension can be obtained, because noise-induced singular values are small. Since some
of the elements of matrix M can be zero, some of the residues p corresponding to poles A can
also be zero, thereby hiding those poles. Correlators with different n, on the other hand, can
reveal these poles at some point, but not necessarily so. Having found all the poles there are,
also implying access to the whole matrix M, is indicated by an agreement of the poles of all
available n-point functions. One should keep in mind, though, that one will never be able to
verify this, even in the idealized case, with a finite amount of data, as it possible to construct a
state which agrees with a given cMPS on e.g., a finite number of n-point functions but differs
elsewhere. However, a non-increase of the set of poles over a wide range of n-point functions is
sufficient to build confidence in the correctness of the reconstruction. It is a satisfactory feature
of our method that we can quantify the confidence of the reconstruction in this way.

In contrast, a priori information about the number of expected poles and a guarantee that
the number and numerical values of residues and poles will be consistent for all n-point
functions is not available in most real-world tomographic settings. In fact, when data comes
from an experiment, we expect a description in terms of cMPS to be possible only in an
approximate sense. A similar situation is known for discrete MPS in a lattice setting, where an
exact description of a state can be found only if its Schmidt rank is finite. However, many states
whose Schmidt numbers form a fast decaying sequence allow for an efficient description with
discrete MPS. Even if the physical system is well approximated by a cMPS in this sense, in
general we expect to have an infinite number of poles to recover. However, only a small number
of them will be associated to residues that are big enough to contribute to the correlation
functions. The number of relevant residues and poles can be identified by looking for singular
values of Hankel matrix equation (36) greater than an appropriate threshold. The tomographer,
hence, has to formulate a hypothesis about the relevance of the observed poles and try to gain
confidence in his/her assumption. The desired situation to observe in practice is that the
recovered poles do not change too much (i.e., they are within some threshold, e.g., previously
determined by the noise level) independently of the correlation function used to extract them.

In summary, if the set of poles has to be extended time and again over a wide range of
correlation functions, the assumption that the state can be described by a cMPS is clearly
wrong. In particular, such a situation would tell us that the cMPS ansatz is not a good model for
the particular system and data set. Along the lines of the discussion above, in practice, what we
propose to check and gain confidence of the applicability of our methods is the following. Use
lower order correlation functions to extract a cMPS description of the system, use the
reconstructed cMPS to predict higher order functions and compare them to available measured
ones. This way, we can check the consistency of the reconstruction procedure and the validity
of the cMPS ansatz for the field state under investigation.
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5. Applications

In this section, we show how the formalism developed so far can be applied to real world
scenarios. We demonstrate the applicability in two basic settings. First, we generate correlation
functions similar to data obtainable in current experimental settings. For this, we use simulated
data to study the performance of the reconstruction method in situations in which noise is
present. Second, we analyse the applicability of our techniques to the Lieb—Liniger model,
which is a well-known and well-investigated model in one-dimensional non-relativistic field
theory.

5.1. Simulations and error analysis

Before typical noise models can be taken into consideration, we ask what kind of problems we
are most likely to encounter. As we have seen, given an arbitrary cMPS n-point function with
non-degenerate spectrum, its poles and residues can be obtained by matrix pencil or Prony’s
methods, provided there is sufficient accuracy. We keep in mind that formally it is required that
T has a non-degenerate spectrum, which is, however, the case for almost all randomized T.
Also, it is possible that M contains elements of value zero, which is, likewise, not to be
expected. On the other hand, there are other more practical obstacles related to concrete
implementation features of the numerical algorithms discussed above.

5.1.1. Typical problems to be expected. The identification of the poles when determining the
matrices M and D is the most critical part of our procedure. More concretely, we face the
problem of resolving maxima of the Laplace transform of the correlations in the complex plane.
We do not do this directly, but the challenges remain the same.

The problem is to discern poles that lie close to each other and to identify poles that have
comparatively small residues. Moreover, we might face large damping factors, which results in
a broadening of the peaks in the Fourier spectrum. The required accuracy for the correct
identification of poles and residues hence critically depends on the position of the poles {4;} in
the complex plane and the ratio between damping factor JRe (4;) and frequency Jm (4;). Not
surprisingly, all these issues are aggravated for higher bond dimensions; the n-point functions
consist of a larger number of oscillatory components, typically in the vicinity of other poles.
Moreover, the reconstruction of the residues will also be affected if the poles are close to each
other. This happens because the corresponding linear Vandermonde system of equations
becomes more ill-conditioned.

When reconstructing Q from the matrix M, we face another type of typical problem.
Determining R does not lead to significant additional numerical problems since it mainly
involves an ordinary diagonalization procedure, whereas for reconstructing O, we need the
eigenvectors of M, which are very susceptible to perturbations of the matrix.

In the following, we want to test the robustness of our method by analysing typical noise
cases independently. First, as a preparatory step, we generate typical cMPS. Second, we
examine how the reconstruction of the poles is affected by adding noise to the input correlation
functions. Third, we survey the reconstructability of R and Q when the input for this
reconstruction step, the matrix M, is perturbed. Fourth, we study the influence of the presence of
additional fields.
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Figure 2. Distribution of the poles of the transfer matrices in the complex plane for 400
cMPS samples with bond dimension d = 4. The real and imaginary part of the entries of
K and R are i.i.d. with N (0, 1) (a) and N (0, 0.01) (b). In (b), most damping factors
corresponding to the real parts of the poles are much smaller than the respective
imaginary parts, which correspond to the frequencies components of the correlation
functions. This will lead to significantly better reconstructability properties of
the cMPS.

5.1.2. Generating typical cMPS. 1In this section, we give a recipe to generate correlation
functions with structural features on a desired length scale, based on a randomization-ansatz for
the O and R matrices. This is in principle a non-trivial task, as the length scales and damping of
the fluctuations are directly derived from the spectrum of 7, which depends nonlinearly on the
entries of Q and R.

We make the ansatz of generating Q and R as complex Gaussian random matrices with
mean p and standard deviation 6—i.e., real and imaginary part of the entries are independently
and identically normally distributed according to N (i, 6)—and renormalize Q such that all
eigenvalues of T have real part <0. This results in a roughly uniform distribution of the
eigenvalues of T within a disc left of the imaginary axis, which is not entirely unexpected when
considering Girko’s circular law [7] and the Kronecker product structure of 7. The damping
factors of the poles are of the same magnitude as their frequencies or larger, which is not the
case if oscillations are actually to be observed and moreover aggravates the identification of
such poles and increases the accuracy requirements.

In a more refined ansatz, we hence consider sampling K and R instead, from the same
distribution, which leads to a drastically higher concentration of poles close to the imaginary
axis, when scaling both matrices with a small number 7, see figure 2, where we show a
comparison of distributions of the poles in the complex plane between the naive and the refined
method of randomly sampled cMPS. This scaling of the matrices does not constitute a gauge of
the cMPS but rather a transformation to another cMPS, see [47]. Matrix Q is mapped to
%anTR — inK, see equation (7), such that for small # the eigenvalues of Q will typically feature

much larger imaginary part than real part, since the spectrum of K is real and the R'R term adds
to Q in second order in 7. This carries over to the construction of 7, where R ® R also appears
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in second order in # as opposed to @ ® 1 + 1 ® Q, which are first order. Overall, for small #
most damping factors become smaller than the frequencies by several orders of magnitude, a
property expected to hold if oscillations are observed. Moreover, a distinct peak structure in the
Fourier transform emerges, and the poles and residues of T are sufficiently separated and can be
determined even with moderate amounts of noise present.

5.1.3. Effects of noisy correlation functions. Typical experimentally measured signals have
inaccurate read-out of the signal. We model such noisy situations as Gaussian noise, and study
the effect on the reconstruction procedure by adding noise to correlation functions originating
from a cMPS.

In particular, we apply the MPM to the noisy amputated 2-point function

R R R R R R n 2
P @) + w) = <W*<rk)vf*<0)a"(0>wrk>> - <‘P*(0>a"<0>> + w(m), (71)

evaluated at 200 points 7;, for cMPS with elements of R, K sampled from A (0, 0.01). The

white noise function w is sampled from A (0, mean(lé (Z)I)/SNR), where SNR is the signal-to-
noise ratio.

In figure 3, p is the percentage of pole sets with meanj_, _4I(4; — /Tj)//ljl <0.1as a
function of the SNR, where {4;} are the original poles, and {2 ;} the pole estimates. Each point
is computed for 5000 runs of our numerical experiment to gather enough statistics. What we
observe is that for bond dimension d = 2, our reconstruction procedure is robust to reasonable
amounts of noise. However, for bond dimension d = 3, we see that the robustness is much
smaller, which hints to the practical limitations of our reconstruction procedure. The results can,
for example, be improved by increasing the sampling rates, however this can be difficult to
achieve in experiments.

Note that in both cases shown in figure 3 our procedure behaves as expected from a proper
estimator as a function of the SNR: the lesser the noise, the better the reconstruction. In fact, for
zero noise, we can in general expect 100% reconstructability, independent of the bond
dimension. As already mentioned, for higher order correlation functions, n > 2, the
reconstructability of the poles does not necessarily deteriorate—independent of the bond
dimension d. In fact, since one can average over all projections that fix all but one 7, a
significant part of the noise is effectively averaged out.

5.1.4. Reconstructability of Q and R when perturbing M. In this section, we look at the next
step in the reconstruction process: recovering the cMPS parametrization matrices Q and R from
an imperfectly recovered matrix M. We do so by simulating M and perturbing it directly, rather
than using a reconstructed M matrix from noisy correlation functions. We do it this way to have
control over the size of the perturbation and thus to separate these two different stages of the
reconstructed problem and investigate their effect separately.

For this purpose, we prepare matrices R and Q with entries sampled from A (0, 1), then
calculate T and M, and perturb M with an error matrix A. The perturbation has to be carefully
designed in order to retain the symmetry M = =, , M Z,, of the unperturbed matrix M. This is
related to the fact that for any valid reconstruction of a density-like correlation function the
residues together with the entries of the matrix M necessarily are either real or appear in pairs of
complex conjugates, see section 2.3. Perturbing with the matrix
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Figure 3. Application of the matrix pencil method to the signal vector with
components é(z)(‘[k) + w(z)) for d = 2 (above) and d = 3 (below). p is the
percentage of pole sets with max;—p .l(4; — /Tj)//l_,-l < 0.1 (blue) and

d? - 1)_12j12|(ﬂj — }:j)/ﬂjl < 0.1 (green) as a function of the signal-to-noise
ratio, each point summarizing 5000 runs, where {1} are the original poles, and {/T_,-}
the pole estimates.

A= %(Ao + Z4B0Z0x) (72)

with real and imaginary parts of the entries of Ay sampled from N (0, 2~/

mean(IM)) ensures
the required symmetry since A = =, A &, . Furthermore, since the first row of M is set to one
due to normalization and this should not be changed for perturbed input, the first row of A is set
to zero.

From the reconstructed matrices O and R from M = M + eA with scaling parameter
€ € R* we build the transfer matrix 7 and compare its spectrum with the spectrum of the
original 7. The ratio of samples with mean deviation ¢ (T) to ¢ (T) not larger than 10% as a
function of ¢ is depicted in figure 4 for bond dimensions d = 2 (blue) and d = 3 (green). As the
error € grows, the ratio of successfully reconstructed Q and R matrices drops for both bond
dimensions. However, the d = 2 case is clearly more robust to perturbations. Additionally, we
want to point out that any potential deviation of the spectra of T and T is almost certainly due to

the reconstruction of Q.
5.1.5. Effects of additional interactions. As discussed earlier in section 2.1.2, typical

correlations under consideration can be seen as originating from processes where a field state is
generated by an interaction with a finite dimensional system, and can be described by a
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Figure 4. Reconstructability of Q depending on the perturbation of M: ratio p out of

5000 samples per point with (d* — 1)‘1272: ;= /Tj)/ijl < 0.1 as a function of €
with {1;} = o(T) for d =2 (blue) and d = 3 (green). O and R depend on M = M + €A.

As ¢ —» 0 we have that p - 1.

Lindblad equation. In the ideal case, where the finite dimensional system interacts only with the
field we measure, we obtain correlations which are perfectly described by a cMPS, or
equivalently by a Lindblad equation with one Lindblad operator. In the case where the finite
dimensional system interacts with other systems or fields, which we might not even know of,
the Lindblad equation is altered and supplemented by more Lindblad operators, which
correspond to the other systems or fields. In this case, the transfer matrix takes the form [35]

T=iK®1-1®iK+ YR (73)
J

where
1 _ -
R,:5(2R,®Rj—R]TRJ»®J1—J1®RJTRJ») (74)

and the additional fields are represented by the terms with j > 2. Each of the two latter
summands in R ; are connected to Q via equation (7). The matrix M remains R| ® R;, because it
comes from measuring the field corresponding to it, but now in the diagonal basis of a different
T than the one for a single field.

In order to analyse the sensitivity of reconstructing the variational parameter matrices, we
consider one additional perturbation field. More additional fields within the same order of
magnitude yield very similar outcomes. This results in 7T =iK ® 1 - 1 ® iK + R + ¢R,. In
this section, we study how well the spectrum of K can be matched depending on the scaling
parameter ¢ € R*. Analogous to the last section, we prepare cMPS by randomly generating K,
R, and R, with elements whose real and imaginary parts are sampled from N (0, 1). We then
generate M matrices and from this reconstruct R .. and an effective Q.., assuming only a
single field. From R; ;. and Q.. we compute K.. and compare the differences of its
eigenvalues, AXK; = ;| — K;, with the differences of the eigenvalues «; of the actual K. Only
the differences are reconstructable, see section 3.5. The reconstruction of K is said to be
successful if
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Figure 5. Reconstruction rate p depending on the size of an additional field and the
bond dimension d from 5000 cMPS samples per point.

AIZ']' —AKj

< 10%. (75)

Kj

The reconstruction rate, depending on ¢ and the bond dimension, is shown in figure 5. For
€ — 0 (single field case) all cMPS can be reconstructed. As the size of the additional field
approaches the size of the main field, the reconstruction rate drops to zero. The smaller the bond
dimension, the more perturbation by additional fields can be tolerated. We conclude that for
sufficiently small additional fields, a successful reconstruction is in principle still feasible.
Moreover, for d = 2, the most robust case, this is true even if the additional fields are merely one
order of magnitude smaller than the main field.

5.2. The Lieb—Liniger model

In this section, we analyse the applicability of the results discussed above to the Lieb—Liniger
model [30]. The model describes the dynamics of a one-dimensional system of bosons
interacting via a delta-potential. In second quantization, the Hamiltonian describing such a
model is given by

B AP AP @) ot st s
H= [a] S0 T 0P 0P P o | (76)

where x € [0, L] is the position coordinate and c is the interaction strength.

For our application, we generate (Q,R) parametrizations of cMPS approximations for
several bond dimensions of the Lieb—Liniger ground state for particular values of interaction
strength ¢ by using the algorithm and implementation of Hase [17]. This algorithm is an
adaptation of the time-dependent variational principle for quantum lattices [15] to the
continuous case (compare also [6]). It relates to an imaginary time evolution that exponentially
damps all excited components of an initial state vector |¥@) (a cMPS with bond dimension d)
with increasing imaginary time and produces the ground state eigenvector of a Hamiltonian H,
by applying e # with ¢ € iR to |¥?). The convergence of the energy of e |¥@) indicates

the approach to the cMPS ansatz ground state vector, which we denote by I@g)R), together with
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its characterizing matrices Q and R. Several interesting structural properties of the state in the
cMPS representation are revealed, signifying a symmetry in the model: degeneracies and a
block structure of the matrix M. These features emerge in the integrable Lieb—Liniger case, and
do not appear in Gaussian-sampled cMPS as described above. These features, which will be
discussed more in detail in the following, appear regardless of the bond dimension and
interaction strength used. Moreover, they do not depend on the algorithm used to obtain the
ground state.

5.2.1. Degeneracies in the eigenvalue structure of M. The topic of this section is to
characterize the structure of the spectrum of M by understanding the degeneracy structure R in
the exactly integrable case. In the case at hand, since all two-fold degenerate eigenvalues are
equally spread into one of both blocks each, one is able to predict the spectrum of R from M
even without reconstructing the second block. In our simulations, it is seen that the eigenvalues
of Q and R appear in |d/2] pairs {qj“‘, qjm} and {r["!, r?1} with

g = g iy, A= Plew, (77)
respectively, for each pair j, with y, ¢ € R independent of j. If d is odd, the two remaining
unpaired eigenvalues take the form g = § + iy and r = fel?, respectively, with 4, # € R. We
can simplify the structure by performing the transformations

O~ Q—iyly, R~ Re™?, (78)

which leave the transfer matrix 7 and all density-like n-point functions invariant. This ensures
that the pairs now consist of complex conjugates and the spectra of Q and R are closed under
complex conjugation, which we want to require for the further argument.

Since the spectrum of M by construction is the same as that of R ® R (up to a
normalization constant and each A € 0(17 ® R) can be written as 7j -, with certain
J,» k=1,...,d, the appearance of complex conjugate pairs in the spectrum of R implies twofold
degeneracies for the according eigenvalues in the spectrum of M as products of R eigenvalues,
especially

Tl
Tj

I = r]m = r,!zlrjm. (79)

A

Not all eigenvalues are degenerate: r][”r][z] and rj[z] r][” are complex conjugates, but since j = k,
there are no other combinations that yield the same values. Assuming that R does not contain
any other degeneracies, M will comprise d non-degenerate eigenvalues and d?> — d eigenvalues

that are twofold degenerate each.

5.2.2. Block structure.  Another structural observation we can make for the matrix M of the
ground state of the Lieb—Liniger Hamiltonian is the fact that it can be transformed to a block
diagonal matrix. We do this by simply grouping vanishing and non-vanishing elements in M
and interchanging its rows and columns correspondingly, which amounts to a basis
permutation. This way, we define the matrix MU := M; @ M,, where M, and M, are block
matrices and relate to the non-vanishing and vanishing residues of the cMPS. The block
structure of MO and the fact that e” is diagonal imply a block structure of their products, which
carries over to the correlation functions, lets M, decouple completely, and hence disappear from
the reconstruction.
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We can see why all the residues corresponding to M, vanish for every n-point function in
the following way. Let us assume we reordered M and formed MU by performing the basis
permutations described above, and we consider a pole 4; of the cMPS. For an arbitrary n-point
function, each residue which contains the index [/ at least once can be written as

_ ] | | |
Pl sk orokins = MiTky o M iMoo My (80)

Jj+1°
with j=2,.,n— 2.

We take [ € {{ + 1,...,d?}, where ( is the dimension of M, i.e., A; corresponds to a pole
associated with M,. In this situation, we note that two things can happen. Either k;,; < £, and
Mf

and thus the entry vanishes. Or k;.; > {, and there exists an entry MF ko, Withm > j k> C,

= 0 since the entry is located in the lower left block of MU, which contains just zeros,

j+1

and k,,+1 < ¢ such that MF k.1 = 0- This has to eventually happen since the last entry in the

residue expression is of the form ME_I’ 1and 1 < . Clearly, the residue vanishes again, and so
does for the boundary indices k; = [ or k,,—; = [.

5.2.3. Reconstruction. Because of the block structure of M, we conclude that there is no direct
way of obtaining all poles of cMPS approximations of the Lieb—Liniger ground state from an n-
point density-like correlation function. In this case, the p-number [24], which is defined as the
minimum order for a p-point function of a cMPS to reveal all poles, is infinite. There is a useful
connection between the degeneracies in the spectrum of M and its block structure for the Lieb—
Liniger model. It turns out that all the non-degenerate eigenvalues are related to MU entries in
the first block, while the degenerate pairs are distributed such that always one eigenvalue is
associated with the first block and the other with the second. This way, since only the first block
contributes to any density-like correlation function, all degeneracies are effectively lifted, and
hence full reconstruction is possible. Since all eigenvalues of M that appear in the vanishing
second block also appear in the visible first block one can in principle determine the spectrum of
R even without full knowledge of M. The same holds for the spectrum of Q since also D — M
has the same spectral properties. For reconstructing both R and Q in the corresponding gauge,
however, our procedure requires full knowledge of M. But again, note that for full
reconstruction of the density-like correlation functions, this full knowledge is not required here.

This structure disappears if integrability is broken, and hence in a neighbourhood around
the (cMPS approximation of the) Lieb—Liniger ground state. Imaginary time evolution gives us
a notion of distance to the limit of the approximation process, as we can, e.g., observe
convergence of matrix entries along imaginary time paths. The block structure and degeneracy
become more clearly defined the closer one gets to the limit point. Ultimately, at the limit point
of the imaginary time evolution, the degeneracies and block structure of M will prevent our
methods to recover a full cMPS description in terms of matrices Q and R of the system. On the
other hand, for each state along such a path, we can in principle apply our reconstruction
method. The closer we get, the better all characteristic parameters can be reconstructed although
the more ill-conditioned the problem becomes. A reconstruction of the n-point functions of
arbitrary order is still possible, as it is based on the observable blocks of the matrices D and M
alone and determining these quantities is in principle possible. Since the second block does not
contribute to any n-point function, the applicability of “Wick’s theorem’ for (continuous) MPSs

28

6s




New J. Phys. 16 (2014) 123010 A Steffens et al

is maintained even in this case and we still can successfully predict higher order from lower
order correlation functions.

6. Summary and outlook

In this work, we have introduced the concept of quantum field tomography. In spite of the
inherent difficulties of attempting to reconstruct a continuous system, i.e., a system with infinite
degrees of freedom, we have shown that this task can be done when only a relevant class of
naturally occurring states is considered. This is physically well motivated since one expects
naturally appearing states not to be of the most general form but restricted to a smaller class of
states. This is clearly the case in physical applications in which, for example, MPSs have been
shown to be a very successful model to describe correlations and dynamics. Here, we
concentrated on developing tomographic tools for one-dimensional continuous many-body
systems or quantum fields.

For this purpose, we employed the continuous generalization of the MPS variational class
of states: the continuous MPS formalism. Based on this formalism and the predicted structure of
the relevant data, i.e., the correlation functions, we developed a procedure to extract a best fit
cMPS using state of the art statistical estimation tools. In this way, we are able to deliver a
working and readily applicable tool to study this type of system. The procedure we offer can
indeed be seen as the natural way to think of efficient quantum field tomography. This does not
mean, however, that for tasks of direct estimation of fidelities and properties of states,
alternative methods may not be advisable. The machinery here aims at reconstructing the states
as such.

Formally, we have used the cMPS framework to describe the structure of correlation
functions that can in principle be measured in experiments. Having identified this basic
structure, we defined the tools needed to extract the pertinent information from the data. For this
purpose, we employed the MPM as a viable way to determine the variational parameters of the
cMPS from a correlation function. We showed that one can successfully extract a cMPS
description of a system in principle for arbitrary bond dimensions. However, for noisy signals,
one is in general limited to lower bond dimension approximations. Generally, this approach is
applicable to states with low entanglement, similarly to matrix-product states approximating
states that satisfy an area law for suitable Renyi entanglement entropies. In the discrete case, the
connection of having ‘low entanglement’ and being approximable with a MPS of low bond
dimension has been fully rigorously fleshed out already [8, 41]. In the continuous case, this
connection is surely equally plausible, but is awaiting a similar fully rigorous treatment.

Moreover, we have given an in-depth study of the applicability of the reconstruction tools
and their robustness for different noise models. Extensive numerical simulations were employed
which provide at least empirical confidence of the performance of the reconstruction tools. We
found that for the cases studied in this work, our methods are reasonably robust to noise when
searching for low bond dimension cMPS estimates.

It is important to note that the methods developed in this work are likewise readily
applicable to the translationally invariant discrete MPS case. Since in reality one deals with
discrete (sampled) data even if the system is continuous in nature, all the methods developed
here carry to the discrete case of MPSs, reflecting a finite lattice spacing, with minimal
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modifications. Furthermore, there is evidence that the approach taken here reveals insight into
the structure of the underlying model as such and can detect signatures of integrability.

The novel methods proposed in this work open a new avenue to explore continuous
systems of many particles in both equilibrium and non-equilibrium. It constitutes a step towards
assessing strongly correlated models with a topographic mindset, without having to make a
model of the system in the first place: instead, one asks what the state is that is most compatible
with the data found. This is a most healthy mindset specifically in the context of emergent
quantum technologies, where one aims at assessing the state of a quantum system without
making overly strong assumptions in the first place. In quantum information science, quantum
state tomography is already a pillar on which the field rests, a technique routinely applied in
most experiments. The present work opens up perspectives to think of quantum field
tomography of strongly correlated quantum systems, as they feature in dynamical quantum
simulators. Specifically in this context, the tools presented here can be used for partial
benchmarking of analog quantum simulators. To fully explore the potential of such an approach
to study many-body systems out of equilibrium constitutes a truly exciting perspective.
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3.3 Tomography of ultracold Bose gases

As noted in the previous section, the class of continuous matrix product states can be used to effec-
tively describe various different theoretical models. How they would perform in a real-world setting,
however, has not been analyzed so far. In the following, we present a first undertaking to efficiently
characterize an experimentally prepared quantum system using cmPs and provide predictions for
quantities that could independently be accessed and certified from the experiment.

In the experiment at the basis of the following publication [3]**, an ultracold gas of ¥Rb atoms
is localized using an atom-chip#°J, a magnetic micro-trap on a chip permitting very compact setups.
The gas is transversally split into two mutually coherent halves, which corresponds to performing
a sudden guench—abruptly changing the system parameters towards a new Hamiltonian—and re-
sults in an approximately pure state out of equilibrium.

One-dimensional ultracold Bose gases play a prominent role in experimentally analyzing the
equilibration behavior in quantum many-body systems™~#3]. How and if closed quantum systems
reach an equilibrium state that is close to a thermal state proportional to e PH (for Hamiltonian H
and inverse temperature [3) isa nontrivial and particularly interesting question, considering the time
evolution of quantum states being governed by unitary transformations versus the monotonous
increase of entropy with time according to the second law of thermodynamics (see, e.g., Ref. [144]
for an overview).

The effectively one-dimensional ultracold Bose gas at hand can be captured by the Lieb-Liniger
model, whose low-energy states, in turn, are well-approximated by cmps with limited bond di-
mension.*#$] This suggests the adaptation of the quantum field tomography protocol in publi-
cation [2] for determining the state of the system. The input 7-point correlation functions, taking
the form

A A

Clxr. )= Re <ei(6X1—exz+ex3—...+axn_l—ex,, ) > , (28)

were obtained by measuring via matter-wave interferometry the relative local phase difference %) .

at longitudinal position x. Using the polar decomposition ng(x) = A(x)"/2e?%, the correlation
functions can be reduced to a form as in Eq. (27). Specifically, reading in and processing 2-point
and 4-point correlation functions allowed for a partial quantum-field reconstruction of the state of
the system.” Using the reconstructed parameters, predictions about higher-order statistical behav-
ior could be made: 6-point correlation functions could be produced that were in very good agree-
ment with the ones directly obtained from the experiment, thus building further confidence in the
suitability of the tomographic protocol. The robustness of the procedure was analyzed in a boot-

¥ Adrian Steffens, Mathis Friesdorf, Tim Langen, Bernhard Rauer, Thomas Schweigler, Robert Hiibener, Jorg
Schmiedmayer, Carlos A. Riofrio, and Jens Eisert, “Towards experimental quantum-field tomography with ultracold
atoms”, Nature Communications 6:7663, 2015 (DOI:10.1038/ncomms8663). Published under a Creative Commons Attri-
bution 4.0 International License (creativecommons.org/licenses/by/4.0), © zo1s Springer Nature Publishing AG.

* Namely, the matrices M for applying Wick’s theorem for matrix product states™ for computing higher-order
statistics from lower-order statistics could be recovered.
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strapping™+>™*7) manner by varying the input data and recording the statistics of the corresponding
output parameters, yielding effective error bars.

The reconstruction was performed for different times after the initial state preparation and we
observed that with time, the agreement between the predicted correlation functions and the exper-
imentally determined ones deteriorated. Whether this change is due to increasing noise or to en-
tanglement growth, which happens in guenched systems[loz’“‘s] and requires to accordingly increase
the bond dimension of the modeling cmPs, has to be investigated in future studies. If additionally,
with increasing control over the experimental error, the cMPs parameter matrices Q and R were
obtained, it would furthermore be possible to efficiently numerically evolve the cmps in timel™
and to compute correlation functions for future times. It would be fascinating to relate this to
the experimental values and ideally retrace the equilibration process of ultracold Bose gases. Due
to experimental imperfections, the system is not perfectly translation invariant. Extending the to-
mographic protocol to also incorporate position-dependent features would be highly desirable to
increase the accuracy in describing the state and its predictive power.

Note that directly applying a compressed sensing based quantum tomography protocol, as dis-
cussed in section 2.2, to this setup would have been entirely infeasible due to the extraordinary size
of the involved density and measurement matrices without requiring tensor network properties.
The strength of compressed sensing tomography rather lies in its broad scope concerning quantum
systems of intermediate size.
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The experimental realization of large-scale many-body systems in atomic-optical
architectures has seen immense progress in recent years, rendering full tomography tools for
state identification inefficient, especially for continuous systems. To work with these
emerging physical platforms, new technologies for state identification are required. Here we
present first steps towards efficient experimental quantum-field tomography. Our procedure
is based on the continuous analogues of matrix-product states, ubiquitous in condensed-
matter theory. These states naturally incorporate the locality present in realistic
physical settings and are thus prime candidates for describing the physics of locally
interacting quantum fields. To experimentally demonstrate the power of our procedure, we
quench a one-dimensional Bose gas by a transversal split and use our method for a partial
quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our
technique to play an important role in future studies of continuous quantum many-body
systems.
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omplex quantum systems with many degrees of freedom

can now be controlled with unprecedented precision,

giving rise to applications in quantum metrology’,
quantum information!? and quantum simulation®*. This holds
true specifically for architectures based on trapped ions® and
ultracold atoms>°-8, where large system sizes can now routinely
be realized, while still maintaining control down to
the level of single constituents. In the light of this development,
the mindset has shifted when it comes to the assessment and
verification of preparations of quantum states. Traditionally,
experiments are being used as a vessel to test the validity of
theoretical models by comparing their predictions to specific
experimental output. With quantum experiments of many
degrees of freedom becoming significantly more accurate, an
attitude of ‘quantum engineering’ and quantum simulation is
taking over. Compared with the traditional mindset, one does not
compare the experimental data to predictions from theoretical
models, but rather uses the full capabilities of the experimental
setup as an investigative tool for the physical situation at hand.
Triggered by this development and driven by the goal to
maximize the information extracted from the experiment, the
standards in quantum system identification have substantially
risen. Quantum-state tomography”~!! fulfils this need for precise
and model-independent quantum-state identification. It asks the
question: given data, what is the unknown quantum state
compatible with those data? Maybe unsurprisingly, the interest
in the field of quantum system identification and quantum-state
tomography has exploded in recent years!9~13,

For many degrees of freedom, unqualified quantum state
tomography must be inefficient in the system size, as exponen-
tially many numbers need to be specified. This problem has given
way to the insight that practically only the states found in
experiments need to be reconstructed, which form only a small
subset of the full Hilbert space!®!>. Accordingly, more efficient
tomography tools® have been developed, ranging from quantum
compressed sensing!? (for states of approximately low rank), over
permutation-invariant tomography, to matrix-product state
tomography! 171316 These approaches are based on using the
right ‘data set’ having the appropriate ‘sparsity structure’ to
capture quantum many-body systems. For discrete systems,
matrix-product states efficiently capture the low-energy
behaviour of locally interacting models and a large body of
literature in the condensed-matter context backs up this intuition
of the ‘physical corner of Hilbert space’141>17,

In this work, we consider continuous systems, in which the
tomographic problem is aggravated due to the fact that, in
principle, infinitely many degrees of freedom need to be
reconstructed. On the basis of the notion of sparsity, we present
a novel quantum-field tomography procedure relgying on the class
of continuous matrix-product states (cMPS)'®1°, This approach
will allow us to give evidence that the state encountered in the
laboratory is well approximated by a representative of this class.

Results

Quantum-field tomography. We apply our procedure to non-
equilibrium experiments of a continuous quantum gas of one
species of bosonic particles whose correlation behaviour can be
captured by translation invariant states of the form

[¥or) = Traux Pefodx(QMM@']ﬁ(x)) Q). (1)

Here y/(x), x€ [0, L] are the canonical bosonic field operators, |(2)
is the vacuum state vector, Q, Re C4% 4 are matrices acting on an
auxiliary d-dimensional space and completely parametrize the
state. L is the length of the closed physical system, P denotes

2

the path ordering operator and Tr,,, traces out the auxiliary
space. The bond dimension d takes the same role as the bond
dimension for matrix-product states: Low entanglement states
are expected to be well approximated by ¢cMPS of low bond
dimension; in turn, for suitably large d, every quantum-field state
can be approximated.

We employ our reconstruction procedure to perform quantum
state tomography for a one-dimensional (1D) system of ultracold
Bose gases, an architecture that provides one of the prime setups
for exploring the physics of interacting quantum fields®2%2!. The
experiment consists of a large 1D quasi-condensate that is
trapped using an atom chip®?2. To bring the system out of
equilibrium, a split transversal to the condensate direction is
performed. The subsequent out-of-equilibrium dynamics after the
quench leads to apparent equilibration, prethermalization and
thermalization®232%, In the middle of the trap, the system can be
well approximated by two parallel quantum fields that are
homogeneous and translationally invariant.

The experiment proceeds by performing a joint time-of-flight
measurement of the two quasi-condensates. Since the experimen-
tally measured images are single-shot measurements, repeating
the experiment many times with identical initial conditions allows
to extract the phase difference 6, of the two quasi-condensates at
different longitudinal 2}5)05it10n x and construct higher order

correlation functions®>. The phase correlation functions are
defined as
C(n>(x1, o ‘xn): Re<ei(0xl *0;2 +[JX3 — . +[)xn,1 7[)x,,)>7 (2)

where 0, are the measured phase differences and the angular
brackets denote the ensemble average (Methods section).

To capture these correlation function in terms of a cMPS, we
use a description in terms of effective field operators for the phase
difference

V(@) = Al (3)
where 71 are density operators. As no density information could
be obtained from the experiment in its current form,
the expectation value of these operators remains unknown and
our work is a partial reconstruction of the state. However, the
obtained cMPS contains its full phase correlation behaviour.

Using this description, we can write an #n-point phase
correlation functions as

)= Re (i)~ (e (i) )
(4)

Since it is sufficient for performing the tomography procedure, we
will use the correlation information of the normal ordered subset
with x; <x, <--- <x, of the even-order correlation functions. In
the cMPS language, assuming translation invariance and the
thermodynamic limit, this can be reformulated as

C<")(x1, e

C(Yl)(’flv 7Tn71) =
& ; ; (5)
{ki}=1
with 1, =xx 41 — X%
_ -1 —1
pklw---vknfl - Ml-,kn—len—bkn—z e Mkz-,klelJ’ (6)

/. being the eigenvalues of the transfer matrix T, and M being

1
R ® Rf% in the diagonal basis of T (Methods section)®. The
reconstruction proceeds by first extracting the eigenvalues 4, from
the two-point correlation function and in a second step, determining
a compatible M matrix?® from the four-point correlators.
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Data analysis. We find that a cMPS with d =2, corresponding to
four reconstructed poles and a 4 x 4 matrix M, matches the
data. This indicates that the correlation function has a simple
structure as one would expect from such local physical
interactions  (specifically based on previously explored
descriptions in terms of a Luttinger liquid theory®).
More importantly, no previously known theoretical description
of the physical situation at hand is needed since the c¢cMPS
ansatz can be applied to any locally interacting quantum field.
To estimate the performance of the reconstruction of the
four-point correlation function, we use the mean relative
deviation (Methods section), and find a small error of 1.4%,
which is of the same magnitude as the experimental errors®.

Approximating a correlation function can be done in many
ways and it is, a priori, not clear that one has truly
gained knowledge about the state. The advantage of the cMPS
ansatz is that the approximation performed is sufficient to
fully reconstruct the phase correlation behaviour of the cMPS.
We build trust in the reconstructed state by using it to
predict higher order correlation functions, which in turn can
be experimentally checked. This provides an excellent
benchmark for our procedure and allows us to estimate the
quality of our guess for the unknown experimental state.
Specifically, we obtain an error of 32% for the six-point
function (Fig. 1), estimated with bootstrapping techniques.
This shows that the reconstruction of the full correlation
behaviour of the state was successful, providing a proof-of-
principle application for efficient state tomography of interacting
many-body quantum fields.

We have performed our reconstruction of the six-point
correlator for different hold times after the quench and observe
that the fit quality drops substantially with increasing time
with mean relative deviations of 3.2%, 10.7% and 34.1% for
times t=3, 7 and 23 ms, respectively (Fig. 2). There are several
possible explanations for this decrease in reconstruction quality.
While quantum-field tomography necessarily has to rely on a
finite-dimensional ‘data set’, it is clear that not all situations
can be captured equally well by the approach proposed here.
This method applies to states of low entanglement, a situation
expected to be present for ground states or states in
non-equilibrium following quenches for short times. It will
surely be difficult to capture highly entangled or thermal
states, which are expected to have a high description complexity,
with these tools?®.
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Discussion

The physics of sudden quenches in discrete settings is usuall;f
connected to a linear entanglement growth with time!>2327,
while for each time satisfying an area law in space!®. Note that
while the continuous physical system at hand can be well
captured with a free Tomonaga-Luttinger liquid model?®?, the
states of the system can still be strongly entangled, in the sense
that entanglement entropies across any real-space cut of the
system are, in principle, arbitrarily large. It is precisely this spatial
entanglement that will surely influence the quality of tensor
network descriptions of the state and that is a key factor for the
quality of any cMPS reconstruction®. Since our cMPS
reconstruction with d=2 is only well-suited for states with low
entanglement, a similar entanglement buildup for the performed
sudden quench of quantum fields would be a natural explanation.
Indeed, such light cone dynamics for the correlations of these
systems®3®31 have recently been made explicit experimentally.
Such entanglement growth could conceptually be unveiled by
investigating how the fit quality changes when the bond
dimension is increased. Given the structure of the data set
(analysis contained in the Methods section) and the increase of
experimental errors with hold time, the exploration of this
observation lies outside the scope of this work, but is surely an
interesting topic for the near future.

Experimental imperfections or the remaining actual tempera-
ture could be other sources for the decrease in fit quality with
hold time, as they lead to a mixed state, thus impeding our
description in terms of pure states. Previous studies, however,
successfully described the system in terms of a pure state
Luttinger liquid, even for long evolution times®!. Moreover, the
experimental data was taken in the middle of the trap, where,
initially, the assumption of translational invariance holds up to
excellent accuracy. For long hold times after the quench, however,
regions outside of the center of the trap will have an influence on
the behaviour of the system in the middle®, thus making the data
less translational invariant (Methods section).

The work presented here is surely a first step in the direction
of a larger programme, advocating a paradigm change in
the evaluation of experimental data from atomic-optical
architectures. Instead of comparing predictions of an assumed
theoretical model with data, one puts the data into the focus
of attention and attempts a reconstruction in the mindset of
quantum tomography. This, in particular, seem an important
development in the context of quantum simulators, which have

Error

40
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30
X4 (Lm)

40 0

Figure 1 | Projections of the measured and predicted six-point correlation function. \We show projections of the relevant sections of the (a) experimental
and (b) predicted six-point function for a hold time after the quench of t =3 ms. This image shows the volumetric elements of certain projections

of the high-dimensional six-point correlation function array and demonstrates a great overall agreement between experimental data and the predicted
correlation data. In ¢, the absolute difference between the experimental and the predicted data points for the projection €0, 2, X3, X4) is shown as a bar
plot, the statistical uncertainties of the data as a transparent mesh. More quantitatively, as a figure of merit for measuring the performance of the
reconstruction, we use the mean relative deviation over all indices belonging to the relevant simplex of the data with x;< x, < - - - < x¢ (Methods section)
and find a mean error of 2.5% and a maximum relative deviation of 9.1%.
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Figure 2 | Projections of the four-point correlation function. \We show projections of the four-point correlators for a hold time of (@) 3ms, (b) 7 ms and
(c) 23 ms. The quality of the cMPS ansatz decreases substantially with the hold time, with a mean relative deviation ¢ of the full four-point correlator
as indicated in the figures. This increase of the deviation with hold time could be seen as an indicator for the non-equilibrium processes in the system
(see main text), but is presumably also related to the increase in s.e. in the experiment, as indicated by the error bars (Methods section).

the potential to address questions on interacting quantum
systems that are inaccessible with classical means. While partial
information of the results of a quantum simulator can easily be
accessed, a full read-out necessarily corresponds to performing
quantum tomography where feasible tools are still lacking. The
present work offers a step forward and presents a novel tool to
obtain and build trust in the complete results of a quantum
simulation without having to include any information of the
underlying Hamiltonian of the system.

Methods

Experiment. A single specimen of an ultracold gas of 8’Rb atoms is prepared using
evaporative cooling on an atom chip. The final temperature and the chemical
potential of the gas are both well below the first radially excited state of the
trapping potential, implementing a 1D bosonic system that is well approximated by
the Lieb-Liniger model. The systems contain several thousand atoms and spread
over sizes as large as 100 um. A sudden global quench is realised by transversally
splitting the gas into two mutually coherent halves®?, leading to an out-of-
equilibrium, approximately pure state. The setup in principle allows for different
splitting procedures, in particular an experimental scheme to test the Unruh effect
with a specially modelled split has recently been proposed®>. Subsequently, this
non-equilibrium system is let to evolve in the trap for a variable hold time. Its
dynamical states are probed using matter wave interferometry in time-of-flight,
which enables the direct measurement of the local relative phase 0,. Since the
experimentally measured images are single-shot measurements, repeating the
experiment many times with identical initial conditions allows to measure not only
the mean of the correlations, but also higher order correlation functions are
accessible®. The corresponding correlation functions are constructed by averaging
over ~ 150 experimental realizations.

We are restricted to even-order correlation functions in the experiment. The
reason for this is the fact that many experimental realizations are needed to
construct the correlation functions. Each of these experimental realizations
provides us with a measurement of the relative phase 0, = ¢(x) + ¢. Here ¢ is the
actual fluctuating phase that contains the interesting many-body physics and ¢ is a
small global phase diffusion that is random in every experimental realization2.
This global phase diffusion results from small shot-to-shot fluctuations in the
electrical currents that create the trapping potential. These cause small random
imbalances of the double well, leading to random and unknown values for ¢. For
the even-order correlation functions only differences between the 0 at different
positions need to be evaluated. Consequently, the global shifts ¢ cancel )
automatically. However, for odd-order correlation functions contributions ~ e'?
remain. Hence, the measured result does not only contain the pure dynamics, but is
significantly perturbed by the unknown fluctuations of ¢.

Reconstruction procedure. To make the correlation function in equation 2
directly accessible to our reconstruction procedure, we write it in terms of field
operators Y/(x). For this purpose, we use the fact that 0, commutes for different
positions and employ the polar decomposition to construct an effective field
operator

Pl () = i) e, @)

where 7i(x) = ¥ (x)i(x) is taken to be the density of one of the two condensates.
The construction ensures that these effective field operators indeed fulfil the correct
commutation relations. Equation 4 follows immediately.

In the cMPS formalism, the translationally invariant correlation functions in
equation 4 can be directly calculated in terms of the cMPS variational parameter
matrices R and Q in the thermodynamic limit as

M (xy, %,

with the transfer matrix
T:=Q®14+1s ® Q+RQ R,

and positive distances =X~ X for j=1,...,n — 1. The overline denotes
complex conjugation. This form of the correlator can be derived by the
correspondences between field operators and variational matrices as described in
refs 18,19.

By writing all the matrices in the basis where the transfer matrix T is diagonal
and performing the limit L— oo, the correlation function takes the form

i
oot = 3 Pup €7 B (10

{11

The / are the eigenvalues of the transfer matrix T, also known as poles and the
pre-factors, usually refered to as residues, are

—1
s My My

(11)

_ M-t
K, = Mg

e Ky

Mk k

pk"' n—1"n-2
with

M=X"'R ® R)X, (12)
where X has been chosen such that X ~1TX is diag(gnazlls’%. For a fixed bond
dimension, there are in general d? poles and M € C**%_ Note that this is different
from the definition in ref. 26 where the matrix M stems from density-like
correlation functions

o=1[#
J

There, according to the calculus of cMPS correlation functions, the field
operator term for each position corresponds to the matrix R ® R.

Note that equating two consecutive indices k;, ;. in the n-point function in
equation 10 leads to a (n — 2)-point function, as expected from equation 2.
Specifically, there are many equivalent projections of a four-point function that
correspond to two-point functions. However, due to imperfections (that is,
deviations from translational invariance), the experimental realizations of these
projections are not identical. Averaging over the projections leads an expression of
the same form of a two-point correlation function from a translationally invariant
cMPS as follows,

(13)

R
CO() =3 pe. (14)
k=1

The reconstruction starts by extracting the eigenvalues /; from the averaged two-
point correlation function using a least-squares fit and under the assumption of
translational invariance for the modelled system. The suitable bond dimension for
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the data at hand can already be judged at this point, by analysing the structure of
the two-point correlation function. To determine all entries of M, n-point functions
with 7> 2 have to be taken into account, since for n =2, only the entries M{kl and
My,; appear, see equation 15. Since multiplying M with a constant and conjugating
it with a diagonal matrix whose first entry is equal to one leaves all properties
considered in this work invariant, we can require that M, ;=1 for each k=1,...,
& (refs 16,26). The remaining independent entries of the M matrix are fixed by
included four-point correlation data. For this, we use a Nelder-Mead simplex
algorithm that varies the parameters of the M matrix, and calculates the
corresponding residues according to

Prdoks = My My o My i My (15)
Each choice of an M matrix thus gives a prediction for the four-point correlators
and the agreement with the experimental data is taken as the quality indicator for
the algorithm. Working with a cMPS with bond dimension d =2 and relying on a
set of 100 random initial numerical seeds proved to be sufficient for approximating
the measurement data well. Taking into account the gauge and symmetry
arguments?S, the employed cMPS, with bond dimension d =2 in terms of / and
M, has 15 independent parameters in total.

As discussed in the main text, we see a significant decrease of the fit quality with
hold time. There are many issues entering here. One would naturally expect that
entanglement entropies after the sudden quench grow over time leading to the
need for a larger bond dimension. This is presumably the case, but in our analysis,
this is mostly masked by two other effects. First, the statistical error in the
experiment increases substantially with the hold time, making the data for longer
times considerably less reliable (Fig. 2) and also questioning our fit in terms of a
pure state. What is more, the translational invariance assumption is slowly violated
as the hold time increases. This is not surprising, since the light-cone-like dynamics
of the trapped system give good reason to believe that trap effects need time to
enter the center part of the system. As a quantitative probe to estimate how
translational invariant the data are, we consider the two-point correlation function
at 21 different points and calculate the variance over those different positions for
variable distances. The mean of those variances gives a good indicator on how
much the two-point function varies depending on the position it is evaluated at.
We find for the hold times t=3, 7 and 23 ms deviations from translational
invariance of 0.3 x 1072, 54 x 10~ 2 and 8.3 x 10~ 2, clearly indicating that for
longer hold times, our assumption of translational invariance is considerably less
accurate. Given these limitations of the data set and the fact that the two-point
functions averaged over different positions does not possess a rich enough
structure, we feel that using a bond dimension larger than d =2 would be
overfitting. Let us point out that this is by no means a limitation of our method as
such, as reconstructions with higher bond dimension could easily be performed
using matrix-pencil methods as described in ref. 26.

Quantifying the statistical compatibility and error analysis. To quantify the
error of our tomography procedure, we use the relative mean deviation with respect
to the fitted (reconstructed) data,

1/2
C(x) — Cree(x)[?
P \SI"Zl (%) ech)‘ i (16)
= G|
where S is the set of all data points x = (xy,..., x,) with x; <x,<--- <x,, and |S|

denotes the number of elements in S. In addition, to estimate the robustness of our
algorithm, we employ a bootstrapping method (see, for example, ref. 34). Namely,
starting with the reconstructed four-point function from the experimental data, we
add Gaussian noise with zero mean and s.d. given by the statistical uncertainties
from the experiment. Subsequently, we perform our cMPS tomography procedure
and reconstruct the six-point function. We repeated this procedure 100 times and
computed the entry-wise relative standard deviation of the six-point functions. For
the average over all entries, we obtain a deviation of 1.1% (with a maximum relative
s.d. of 2.8%). This confirms that our reconstruction procedure is robust to the
errors we expect in the experiment.
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4 QUANTUMALGORITHMS

Classical computers have become orders of magnitude faster within the last decades, laying the foun-
dation for the digital revolution. However, Moore’s law, which roughly states that the performance
of computers doubles about every two years and has accurately been describing the technological
progress in computational power since the 1970, is nearing its end“): The elements on integrated
circuits have reached sizes of just few nanometers, the same scale as atomic diameters, and quantum
effects such as unwanted quantum tunneling make the physical limitations of the current silicon-
based technology apparent. Yet, even polynomially scaling problems become infeasible to compute
for sufficiently large problem size.

To overcome a possible standstill, different approaches are being explored ranging from materi-
als™°J to 3D integration of chips™. Beyond this, quantum effects could instead be harnessed with
a fundamentally different architecture—by using guantum computers, promising large, in some in-
stances even exponential speedups for algorithms. First discussed by Richard Feynman in the con-
text of efficiently simulating quantum systems'**}, a general framework has been developed!?»*»%153,
and possible physical implementations with, e.g., cold trapped ions™ or photons[“’] are being in-
vestigated®®.

Instead of working with bits that can have either the state “0” or the state “1”, a quantum com-
puter will work on quantum bits (g#bits), which can be in the quantum state |0), the quantum state
|1) or any superposition

o) =alo)+ B (29
with @, 8 € C and |a|* + | B]* = 1 for normalization. One can think of |0) and |1) as the ground
state and the excited state of a two-level system. An 72-qubit state consists of the tensor product of
its constituting 7 single-qubit states. Quantum computations are performed by operations on a
(multiple) qubit state |¢) that can be modeled by a unitary operator U = e (
norm of |¢)) with a Hamiltonian / acting on |¢) for the time ¢. General unitary operations can

preserving the

be decomposed into single- and two-qubit operations, resulting in guantum circuits consisting of
easier to realize gnantum gates””) The outcomes of the computations are obtained by measuring the
evolved quantum state.

The state of a qubit can be represented by a vector (@, 3) € C? consisting of its two amplitudes
@ and B, whereas a state |¢,) ® |¢,) ® --- ® |, ) with 7 qubits requires a vector in C") for de-
scription, i.e., 2" complex parameters (up to normalization)—as opposed to 7 numbers for classical
bits. What is an obstacle for estimating a state via quantum tomography, as discussed in section 2.1,
is a feature for quantum computations: The evolution of an 7 qubit state takes place in an exponen-
tially larger Hilbert space, in principle allowing for the simultaneous manipulation of 2” numbers,
which is also called guantum parallelism. However, reading out the computed information in form

*° A photonic system for potential quantum computations is also the experiment at the basis of publication [1] (see
section 2.3).
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of a general quantum state (again requiring quantum tomography) is hard and algorithms on a
quantum computer need to be carefully designed to output efficiently obtainable results—not ex-
ponentially large state vectors—which poses an important condition for quantum algorithms. For
example, the n-qubit guantum Fourier transform, providing the Fourier transform of a signal of size
2" encoded in the amplitudes of a quantum state, requires only ©(7?) quantum gates, whereas the
classical fast Fourier transform (FFT) needs ©(7n 2™) operations for processing a signal of the same
size.””) Quantum algorithms like the famous Shor algorithm for integer factorization™, which build
on the quantum Fourier transform, hence output an amplitude overlap or a qubit-wise measurable
product state, consisting of uncorrelated qubits that can be measured independently and hence with
effort linearly in the number of qubits.

Butalso accessing the input data needs to be sufficiently fast. The input could always be provided
by the output of a previous quantum subroutine as a superposition in a quantum state. Other
approaches involve guantum random access memory (QraM)*9), which supplies input signals via
quantum superpositions of memory cells and allows for an access time logarithmic in the data size.
Quantum computers are susceptible to noise and decoherence, calling for guantum error correction
protocols, such as stabilizer codes "*°), which include appending ancillary qubits to the signal qubits.
A succinct list of conditions on constructing quantum computers is presented in Ref. [161].

Polynomial quantum speedups are of interest as well: Grover’s algorithm!®* is employed for
searching an unsorted database with N entries just in O( VN) steps and can be generalized to ampli-
tude amplification "%, iteratively evolving an input quantum state to the subspace associated with
the desired solution of a problem. Building on this, an interesting set of quantum algorithms is
presented in Ref. [164], providing a quadratic quantum speedup for semidefinite programs and
connecting quantum computing with compressed sensing. With a quantum semidefinite solver,
matrix completion problems as in Eq. (13) and in particular the compressive quantum state tomog-
raphy problem Eq. (15) could be solved on a quantum computer. Using methods from shadow
tomogmphy[37], certain semidefinite problems can even be exponentially accelerated.['%)

A new class of quantum algorithms was sparked by a method"*® that allowed for the inver-
RN*N using only O(poly log N)

operations—as opposed to O(N) classically.”* Applications and extensions included quantum ver-

sion of a linear equation system Ax =y with sparse matrix A €

sions of least squares data fitting"****?), support vector machines'7°) for determining a separating
hyperplane between two classes of data points, an important tool for machine learning, and princi-
pal component analysis ' for determining the leading eigenspaces of a matrix. The latter paper also
expanded the scope of viable matrices in this class of quantum algorithms to dense (i.e., non-sparse),
low-rank, positive semidefinite matrices.

* The computational effort for factorizing an 7-bit integer, up to logarithmic factors, is O(7*) using Shor’s quan-
tum algorithm versus 0! using the best known classical algorithm™®. Since the classical computational complex-
ity of integer factorization is yet unknown, polynomially scaling classical algorithms for this problem could theoret-
ically be possible. Providing provable (superpolynomial) quantum speedups is a major topic of the field of quantum
supremacy "7,

** This concerns sparse matrices; general matrices currently require O(nk ), with & &2 2.37, classical operations.[‘(’ﬂ
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A veritable “quantum algorithm zoo”7*) has emerged in recent years, including algorithms for,
e.g., subset finding™”? or analyzing electrical networks™*). See Ref. [175] for a quantum algorithm
overview. Still, due to the intrinsic challenges in developing quantum algorithms, so far only few
quantum analogues of classical signal processing algorithms exist.

The following publication [4]* also builds on Ref. [166], complementing the quantum algo-
rithm zoo with a procedure that provides a quantum speedup for the spectral estimation of a signal
and scales polynomially in the logarithm of the signal size. Atits core lies a matrix pencil method '),
similar to the one employed in publication [2] (see section 3.2), which had to be modified for an ef-
ficient quantum implementation. Special care was taken to meet the requirements for the feasible
applicability of the arising unitary operations, the robust invertibility of the utilized matrices, and
fast input/output, as emphasized in Ref. [176]. In the process, new methods were developed that
could become useful components for future quantum algorithms. This work is also connected to
the quantum singular value decomposition publication [6], which is presented in appendix A.2.

» Adrian Steffens, Patrick Rebentrost, Iman Marvian, Jens Eisert, and Seth Lloyd, “An efficient quantum algorithm
for spectral estimation”, New Journal of Physics 19:033005, 2017 (DOI:10.1088/1367-2630/aase48). Published under a Cre-
ative Commons Attribution 3.0 License (creativecommons.org/licenses/by/3.0), © 2017 IOP Publishing.
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Abstract

We develop an efficient quantum implementation of an important signal processing algorithm for
line spectral estimation: the matrix pencil method, which determines the frequencies and damping
factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides
aquantum speedup in a natural regime where the sampling rate is much higher than the number of
sinusoid components. Along the way, we develop techniques that are expected to be useful for other
quantum algorithms as well—consecutive phase estimations to efficiently make products of
asymmetric low rank matrices classically accessible and an alternative method to efficiently
exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum—classical division
of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step,
requiring much fewer parameters, can operate classically. We show that frequencies and damping
factors can be obtained in time logarithmic in the number of sampling points, exponentially faster
than known classical algorithms.

1. Introduction

Algorithms for the spectral estimation of signals consisting of finite sums of exponentially damped sinusoids
have a vast number of practical applications in signal processing. These range from imaging and microscopy [1],
radar target identification [2], nuclear magnetic resonance spectroscopy [3], estimation of ultra wide-band
channels [4], quantum field tomography [5, 6], power electronics [7], up to the simulation of atomic systems [8].
If the damped frequencies (poles) are known and merely the concomitant coefficients are to be identified, linear
methods are readily applicable. In the practically relevant task in which the poles are to be estimated from the
data as well, however, one encounters a nonlinear problem, and significantly more sophisticated methods have
to be employed.

There are various so-called high resolution spectral estimation techniques that provide precisely such
methods: they include matrix pencil methods (MPM) [9], Prony’s method [10], MUSIC[11], ESPRIT [12], and
atomic norm denoising [13]. These techniques are superior to discrete Fourier transform (DFT) in instances with
damped signals and close frequencies or small observation time T > 0 [14—16] and are preferred over of the
Fourier transform in those applications laid outin [1-5, 7, 8]: the DFT resolution in the frequency domain Aw is
proportional to 1 /T, which is especially critical for poles that are close to each other. If the poles are sufficiently
damped and close, they cannot be resolved by DFT independently of T. Nonlinear least-squares fitting of the
poles or considering higher-order derivatives of the Fourier transform is in general relatively imprecise, sensitive
to noise, or unefficient. Nonlinear algorithms such as the MPM can still detect poles, where DFT fails, but are
limited to signals composed of finitely many damped sinusoids.

With regard to quantum algorithms dedicated to tasks of spectral estimation—algorithms to be run on a
quantum computer—the celebrated quantum Fourier transform (QFT) [17] provides an exponential speedup
towards the fastest known classical implementations of DFT for processing discretized signals of N samples:
classical fast Fourier transform algorithms, on the one hand, take © (N log N) gates [18], whereas QFT takes

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

83




10P Publishing

NewJ. Phys. 19(2017) 033005 A Steffens et al

O (log? N) gates to produce a quantum state encoding the Fourier coefficients in its amplitudes. The QFT
constitutes a key primitive in various quantum algorithms. In particular, it paved the way for quantum speedups
for problems such as prime factoring or order-finding [19]. Regarding spectral estimation, however, QFT
inherits the above mentioned properties of its classical counterpart.

The aim of this work is to develop a quantum version of a powerful spectral estimation technique, the MPM,
providing an analogous quantum speedup from O (poly N) to O (poly log N) for data given in a suitable format.
Hereto, we make use of the fact that establishing eigenvalues and eigenvectors of low-rank matrices—
constituting major steps in this algorithm—can be achieved very fast on quantum computers [20]. Given signal
data either via the amplitudes of a quantum state or stored in a quantum random access memory (QRAM) [21-
23], phase estimation of these matrices can be performed directly. For exponentiating non-sparse operators for
phase estimation, we employ quantum principal component analysis (QPCA) [20] and a recently developed
oracle-based method [24]. In an additional step, we employ a quantum linear fitting algorithm [25, 26] to
determine the summing coefficients and hence all parameters that determine the signal function. In this sense,
we can understand our algorithm also as an instance of a nonlinear quantum fitting algorithm in contrast to
linear curve fitting algorithms [25, 26]. Furthermore, our algorithm can also be employed as a sub-routine ina
higher quantum algorithm that requires spectral estimation as an intermediate step. We expect the developed
methods to provide valuable novel primitives to be used in other quantum algorithms as well.

2. The classical matrix pencil algorithm

We start by briefly recapitulating the original (classical) matrix pencil algorithm before in section 3, we turn to
showing how to implement a quantum version of this algorithm in order to gain an exponential speedup. MPM
[9] comprise a family of efficient signal processing algorithms for spectral estimation and denoising of
equidistantly sampled complex-valued functions fof the type

) » _
f@ = ch M = ch et it 0Lt < T, (€))
k=1 k=1

with the poles \y = —ay + 1 fx € C, damping factors oy € R, frequencies G € R, and coefficients ¢, € C
for k = 1,...,p, where p € Nisthe number of poles. The damping results in a broadening of the spectral lines
towards Lorentzian curves. Real-valued functions as a special case can be analyzed as well: here, for each

k = 1,...,peither A\, ¢, € R—these terms are non-oscillatory—or there exist Ay, ¢x such that Ay = /\Z< and
¢ = ¢ Clearly, such signals, in which the number of poles p is small and finite, are ubiquitous, or in other
instances provide an exceedingly well approximation of the underlying signal.

Algorithm 1. Matrix pencil algorithm.

Data: Discretized signal with components fl = Zf:] & e)\ki"jyj =0,...N—1,
& M € C, Re(Ng) <0.
Result: Frequencies { \¢}/_; and coefficients {c}f_ ;.
begin
Create the Hankel matrices FO) := (f}+k72)§?ki yand F® .= (f]+k— 1)}\:@1 from the signal and compute their (truncated) singular decom-
positions F = UOSOVO T j =1, 2,
Solve the generalized eigenvalue problem UM TF@V® . = 4y SO wy.. The p frequencies { ¢} can directly be obtained from the p eigen-
values {11 }.
Create the Vandermonde matrix W from the eigenvalues { 14, } and invert the linear equation system We = (f}) to obtain the coeffi-
cients {cg}.

The idea of MPM is to determine the poles { \;} independently from the coefficients { ¢} and compare the
discretized signal with its translates. Assume that all ¢, are nonzero and \; = A for j = k. First, sample the
function fequidistantly,

P .
fe (5 f= Y aed, @)
k=1

with sampling interval At > 0.In general, the higher the number of samples N, the more robust the procedure
becomes towards noise and the higher the frequencies that can be reconstructed (Nyquist-Shannon sampling
theorem [27])—at the expense of computational effort. For clearness, assume that Nis even. From the sampled
signal, create the Hankel matrices F), F® ¢ CN/2 X N/2 defined as
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fo  h e fun
F(l)’=(ﬂ+k—2)?f{il:ﬁ f2 fz\{/z (3)
[
and
[ h o fun
o= G =2 b Tl @
o Fuper =

Note that for complex signals, the matrices F) and F are symmetric but in general not Hermitian. In other
implementations, F" and F® do not even need to be square. To keep the notation clear, we proceed with
square matrices as just defined. Set i, := eM2! for k = 1,...,p. Itis easy to see that F1) can be factorized as

FO = M D, M )
with the Vandermonde matrix M € CN/2 % ¢,

1 1 1
) Hy Hy el
M= (i j=0,..N2-1 = | : 3 : ©)
k=1,....p ’u{\l/Z—l ﬂé\//zfl /Lg/zfl

and diagonal matrix D, := diag((cy)f_,) € CP*F. The matrix F®, on the other hand, can be decomposed as
F® = M D, D, M %)

with D, := diag((uk)f: D € CP*P Note that equations (5) and (7) are neither the eigenvalue nor the singular
value decomposition of FV) and F@, respectively; the column vectors of M do not even have to be orthogonal.
We can see from these equations that both F) and F® have rank p, which will in general also be the case for the
linear matrix pencil [28]

F(Z)_’YF(I):MDC (D;L_V]I)MTy (8)

unless v € C matches an element of the set { 1, }f_,. Hence, all 1, are solutions of the generalized eigenvalue
problem (GEVP)

FOy =~ F)y, ©)

with v € CN/2. The matrix pair (F®, F!) is in general regular and accordingly results in N /2 generalized
eigenvalues [29]—not all of these correspond to a (1. There are different extensions that take care of this issue
and increase algorithmic stability (see, e.g., [30]). To make the algorithm accessible to an efficient quantum
implementation, we will consider a specific MPM variant, the direct MPM [9]: we make use of the singular value
decompositions of F) and F®, keeping only the nonzero singular values and the corresponding singular
vectors,

Fi) — gighyO T U yi e CN/2xp, (10)

with S € CP*P for i = 1, 2. This singular value decomposition of a Hankel matrix of size order N x Nis the
time-critical step of the entire algorithm and it scales with © (N2 log N) using state-of-the-art classical
algorithms [31, 32]. We multiply UV ¥ from the left and V() from the right to

F® _ y FO = p@) _ v uLshyt (11)
and see that the resulting equivalent GEVP

UDTFQYD 1 = ~ SO 4y, (12)

with w € CP, yields exactly {1, }_, as eigenvalues and via A, = log(y4;) /At the corresponding poles. The
eigenvalues can be retrieved in © (p?) steps using the QZ algorithm [33]. Although in general it can be
numerically favorable to solve the GEVP directly [29], SV is an invertible diagonal matrix and it is in practice
sufficient to solve the equivalent ordinary eigenvalue problem

(SO TUDIFOVD 4y = ~ 4, (13)

The coefficients { ¢} are linearly related to the signal and can be obtained by plugging {4, }/_, into an
overdetermined Vandermonde equation system,

3
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1 1 1 a fo
Weo Hl Nz “p . cz: _ f1 ) (19)
AR AT T I 1) I
and computing the least squares solution
¢:=argmin||W ¢ — f| (15)

éecr

in terms of the 2-norm, ||-|,, e.g. via applying the Moore—Penrose pseudoinverse W+ := (W W)~ W7 to the
signal vector f. Thus, all parameters that determine the signal are reconstructed.

3. Quantum implementation
In the following, we describe how to implement an efficient quantum analogue of the MPM.

Algorithm 2. Quantum matrix pencil algorithm.

Data: Discretized signal with components f] = ELI c e*kA’f,j =0,...N—1,
o M € C, Re(M\r) < 0 either from QRAM or encoded in a quantum state.

Result: Frequencies { \¢}f_, and coefficients {c}f_ .

begin

Perform concatenated phase estimations via exponentiating Hermitian matrices F W F®

that contain the matrices F(V, F®, respectively,
yielding the p biggest singular values and the overlaps { <u](1) Iu,fz)> }and { (v](” |v,£2)) } of the according left and right singular vectors.

Construct the according matrices and solve the eigenvalue problem classically to obtain the poles { A¢}.

Build a fitting matrix from the poles and obtain the coefficients { ¢} via quantum linear fitting.

For an efficient quantum algorithm, we assume that the number of poles p is constant and small relative to
the number of samples N, which is a natural setting since in practice, we are often interested in damped line
spectra with fewer constituents and higher sampling rates for robustness towards noise. The guiding idea is to
condense all arrays of size O (N) in equation (13) into arrays of size O (p) by rewriting the first term in

equation (12),
T — 0 ) ——
: ) |u) : : ") vy
2)
— (| —— 0 ) l—— P —
as
(”1(1)|u1<2)> <”1(1)|“;(;2>> 51(2) 0 <V1(2)|V1(1)> <V1(2)|V1(;1)>
: : : =USP Y, (16)
(u},”luf”) <u}§”|u}(,2)> 0 S;,Z) <v}§2)|v1(1)> (vl(,z)lvl(,l))

with &, V € CP*P. The singular values {slfj )} will be obtained via quantum phase estimation [34, 35], the
overlaps (v{"|v) via two concatenated quantum phase estimations. The eigenvalue problem equation (13),

SO TUSO Vw =~ w, a7)

is now determined by 2p? complex and 2p real numbers, and can easily be evaluated classically in © (p*)
operations, yielding the required poles Ay = log(y,) /At for k = 1,...,p. Thus, as other efficient quantum
algorithms [36, 37], the classical result is a low-dimensional read-out quantity. Otherwise, the read-out costs
would neutralize any performance gain in the algorithm. After that, the poles are used as input for a quantum
linear fitting algorithm yielding the coefficients {¢}. In the following, we describe the individual steps of the
quantum algorithm in detail. We start by discussing the quantum preparation of the Hankel matrices.

3.1. Accessing the data
In order to realize a quantum speedup, the signal has to be accessible in a fast and coherent way—otherwise, the
read-in process alone would be too costly. The data input for the matrix pencil algorithm consists of a time series

4
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; )JN:’OI. We consider two crucially different approaches of data access/availability for the quantum algorithm,
with the main focus of this work being on the first approach:

(i) The signal is stored in a quantum accessible form such as quantum RAM. In other words, we are provided
with access to the operation

17)10) = 1)1£) (18)

for j = 0,...,N — 1, with the signal values encoded in binary form in the second quantum register. In
order to create the Hankel matrix F(i> = (f;'+k+i73)fi\,]k/il c (CN/Z xN/2 andi = 1, 2, wecan perform the
following operation with straightforward index manipulations,

DMV 0) = DMV fhs i) (19)

for j, k = 1,...,N/2.Theancilla preparedin |i), i = 1, 2, will be used in an entirely classical manner. This
operation can be used to simulate Hankel matrices via the non-sparse matrix simulation methods of
[24,38].

One way to implement signal access in equation (18) is via QRAM [21, 22]. As discussed in [21, 22], the
expected number of hardware elements that are activated in a QRAM call is O (poly log N). For each
memory call, the amount of required energy and created decoherence thus scales logarithmically with the
memory size. Note that because of their peculiar structure, (N x N)-Hankel matrices require only O (N)
elements to be stored. In comparison, a general s-sparse matrix requires storage of O (Ns) elements.

(ii) Asasecond approach, we have been given multiple copies of particular quantum state vectors encoding the
data in their amplitudes. This approach does not require quantum RAM and operates using the quantum
principal component algorithm (QPCA). Importantly, our method then compares to the QFT in the sense
that it operates on a given initial state that contains the data to be transformed.

The states that are processed by QPCA correspond to positive semidefinite matrices, which is in general not
the case for the Hankel matrices F). Adding a sufficiently scaled unit matrix would enforce positivity, but
the resulting matrix would not have the required low rank anymore. It turns out, however, that by
employing a new type of extended matrix, we can use QPCA to compute singular value decompositions of
indefinite matrices and make it applicable for our algorithm, as is fleshed out in appendix B. The given state
vectors have to be of a particular form such as

N/2

— 2/) 1) (k) (F{10) + a®(FOTFO); 1)), (20)
Jci k=1 ”
with CO = (||[FD|3 + a® 2||[FPTFD|2) and aknown scaling constant a” such that
(aD)™! = O (max; | (FDTFD); |), where | F?||, is the Frobenius norm of F®. This state includes in its
amplitudes information about the Hankel matrix F® and F®F®, The particular form of | x®) will become
clear in the next section. The advantages of the matrix pencil algorithm over the usual Fourier transform
come ata price in the quantum algorithm: we require availability of the state vectors |x”) instead of the
signal state vector 3= f;| j).

Ix®) =

In the next section, we show how the operation in equation (18) or, alternatively, multiple copies of | Y} can
be used to efficiently simulate a Hermitian matrix that encodes the eigenvalues and associated eigenvectors of the
Hankel matrices.

3.2. Simulating the Hankel matrices

We would like to obtain the singular values and vectors of F) and F® with a quantum speedup via phase
estimation, which for real signals correspond, up to signs, to their eigenvalues and vectors. Since the procedure is
the same for F and F@, for clarity we will drop the index in this section and use F for both matrices. Phase
estimation requires the repeated application of powers of a unitary operator generated by a Hermitian matrix to
find the eigenvalues and eigenvectors of that matrix. Thus, we need to connect both Hankel matrices, generally
non-Hermitian, to Hermitian matrices. Depending on the input source discussed in the previous section, this is
done in different ways.

Generally, since Fis not sparse, we cannot make use of the sparse simulation techniques described in [39].
Although both matrices have low rank p < N, they will in general not be positive definite, so that QPCA [20]
cannot readily be used either. Note that although F'F and FFT are positive definite, provide the correct singular
vectors of F, and can be efficiently exponentiated, the phase relations between left and right singular vectors,
which are necessary for the matrix pencil algorithm, are not preserved. This insight can be taken as yet another
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motivation to look for more general efficient methods to exponentiate matrices that exhibit a suitable structure,
such as beinglow-rank, sparse or having a low tensor rank.

For the oracular setting (i), we construct a Hermitian matrix F and apply the unitary operator e~ 7 to an
initial quantum state. Hereto, we employ the ‘extended matrix’

F::[OL F] € CNxN, (21)
F™ 0

which is Hermitian by construction. Its eigenvalues correspond to the singular values +s;, j = 1,...,N /2, of F
and its eigenvectors are proportional to (1, £v;) € CV. Importantly, the phase relations between left and right
singular vectors are preserved. Note that an operation analogous to equation (18) for the extended matrix can be
easily constructed from equation (18). The method developed in [24] allows us to exponentiate non-sparse
Hermitian matrices in this oracular setting. Following their discussion, equation (19) is mapped to the
corresponding entry of a modified swap matrix Sz, resulting in the matrix

N
Se = S Ex k)l @ Ij)(kl € TN (22)
jok=1

In [24], itis shown that performing infinitesimal swap operations with S on an initial state p ® o with auxiliary
state p == (1 / N )ﬁ'\,]k:l is equivalent to just evolving o in time with the Hamiltonian F for small At > 0, i.e.

trl(e—iSﬁAr PR 0o eiSfAr) ~ e—iﬁAz/N - eiﬁAt/N. 23)

The modified swap matrix Sg is one-sparse within a quadratically larger space and can be efficiently
exponentiated with the methods in [39—41] with a constant number of oracle calls and run time O (log N),
where we omit polylogarithmic factors in O by use of the symbol 0. Achievinganaccuracy ¢ > 0 for the

eigenvalues requires
F?

£

steps in the algorithm [24], where || F ||ox denotes the maximal absolute element of F. The phase estimation is
performed as discussed in [42] to obtain the 1/? scaling compared to the 1 /&3 scaling of the original work
[20, 24]. Note that in our setting | /] = ©(1) and in particular || F||msx = ©(1). The run time is the number of
steps multiplied by the run time of the swap matrix simulation, i.e. 0 (log N /?). In appendix A, we discuss an
alternative approach for efficient matrix exponentiation developed in [38], and check its applicability to our
algorithm.

In setting (ii), where we are given multiple copies of state vectors, we proceed in a different way employing
QPCA. The state vector | x) can be reduced to a particular quantum density matrix as

1 FFf a F(F'F
Wod— | P e TR g (25)
C|a (F'F)F" a* (F'F)(F'F)
With quantities C = (||F|} + a?||F'F|}) and a~! = O (max; | (F'F); ¢|) as before. In the same way,
2 (F'F)(F'F F(F'F ~
iﬂ(*)( ) aF( )::G 26)
C | aFFFF FF?
can be prepared from a permuted state vector | Y). The matrix
Z=(G+G)/2 (27)

is positive semi-definite with unit trace by construction, just as required by the QPCA. Invoking the singular
value decomposition of F = USV'Y, its eigenvalues in terms of the singular values of F are given by

sjz (as; £ 1)? / (20), its eigenvectors are (1, £v;) € CN. The matrix Z has twice the rank of F. The application of
QPCA then allows resolving its eigenvalues to an accuracy € > 0 using

1
o) o
€
copies of | /) and | Y) [20] for a total run time of again O (log N /2). In appendix B, we provide further details on
this method.
Both the oracular and the QPCA setting can be employed in quantum phase estimation to obtain the

singular values and associated singular vectors of the Hankel matrices in quantum form. Phase estimation allows
the preparation of
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2
> Brlsid) lurs i), (29)

k=1

where F = USVT is the singular value decomposition with right and left singular vectors u; and v;. The
associated singular value s; is encoded in a register. The [ arise from the choice of the initial state. The next
section describes concretely how consecutive phase estimation steps are used for the matrix pencil algorithm as a
building block to obtain the signal poles and expansion coefficients.

3.3. Twofold phase estimation
In this section, we describe how to obtain the singular vector overlaps {I/; x} and { V), ;}. Hereto, we perform two
concatenated phase estimation procedures to obtain states that encode these overlaps in their amplitudes, which
are essentially determined by tomography. It is important to pay attention to the correct phase relations between
the overlaps. Phase estimation is applied to a specific initial state and an additional eigenvalue register. Initial
states with large overlap with the eigenstates of F, equation (21), or Z, equation (27), respectively, can be
prepared efficiently. For example, FF/tr(FF")|0)(0] or F'F /tr(F'F)|1)(1| are suitable initial states and can be
prepared from the oracle equation (18) [20]. For both initial states, the trace with an eigenvector |u, vy) is
o1 / % (7?). Alternatively, if we have been given multiple copies of | x), we can simply take Z to be the initial
state [20].

We append two registers for storing the singular values to the initial state, obtaining |0) |0) |1)o) with the
notation |0) == |0, ...,0), and perform the phase estimation algorithm with e~ 5+ * as a unitary operator to
obtain a state proportional to

2
) e) 2\, ,Q
>, v o) 10) 1) u®s vi?), (30)
k=1
where for clarity we order the eigenspaces such that positive singular values are put first, i.e. s,ﬁ)p = —s,
u, = w®,and v?, = —v{fork = 1,...,p. To obtain the overlaps of the matrices UV and U?), the v-part
of the eigenvector of F® is projected out, yielding
2
) e) 2,2 2,2
1) = = 3 (u®, v@ o) 10)Is) 1w, 0) = 3 10} Is¢”) 1*, 0) 6D

1k1 j=1

with normalization factor v; € R, and Zi‘; i[> = 1.Each singular value s € R, canbe determined
efficiently from this with accuracy €, in a runtime of O(log N/ £3) (see section 3.2). We need to determine the
amplitudes {g, }, which have to be removed from the overlap values. For this, we essentially perform standard
tomography of the quantum state equation (31). The singular register vectors { |s(2)> Ji | are pairwise

orthogonal, so that the amplitudes {g, }/_, can be efficiently obtained—up to a global complex phase ' "'—via
measurements e.g. of the form

sP) (21 152) (21 Use) + IsENUsPL+ (52D, Use) = s D UsPI+i(sD, (32)
with probabilities
I8P 18P I8P + 18P + 2 Relg g0 gl + Igil + 2 Imigy g0, (33)

respectively. Suppose g isknown. Then gk can easily be obtained from equation (33). Hence, by fixing one

global phase e! 1 (e.g. corresponding to g = + |g| ), all values { gk} ? | are unambiguously determined.
Requiring an accuracy

g = V(@' /E®) (34)

of the probabilities in equation (33) for k = 1, ..., p, denoting expected value and variance with E and V,

respectively and with & the reciprocal of the smallest probability, we require O (fg / ei,) measurement repetitions

for each amplitude. We thus have established the values

i
i 2) @ el
gei? = (u®, vmwo)V—, k=1,...,2p. (35
1
Next, the state vector [¢),) is used as input for a second phase estimation procedure with e S0 2 as unitary

operator, yielding
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) L@ 2 Dy (@
) = = 3% (i, o) (1, 0) ) ) Y, 0)
V2 jk=1
2p
Dy @0, 0
=y hj,k|sj(- ) [sP) |u} ), vj- %y (36)
k=1

with normalization factor v, € R, and Z?P,(:th, > = 1. The inner product (u}l), v}“lulgz), 0) reduces to

(ujm |uf?) with vectors in CV. The same way as above, we determine the singular values { 5;” } and the values
e = (a2, 1) () S Gk = 1,25 37

up to &, with global phase ! ¥ with O (¢, /) repetitions for each amplitude. Dividing the values in equation (37)
by the ones in equation (35), we obtain

U vy e = <uj(-1)|u,52))1/u elu, j k=1,..,2p, (38)
with ¥y == ¥, — ¥y, vy = v /2 and accuracy ~¢; + ¢, The established overlaps
Dy, @ Dy,,Q Dy, @ Dy,,Q
WO®), @@, WP, @) (39

correspond to the same matrix entry of I for j, k = 1,...,p and can be averaged over. This way, the matrix { is
determined up to a global phase and a normalization factor. Repeating the entire procedure, but with projecting
out the u-part,

lu®, v?) =10, vP),  k=1,...,2p, (40)
yields all overlaps { <V;1) lv) }ﬁ 1 the entries of V, up to a factor vy, e!””. Note that
Dy, 2 Dy ,Q Dy,2 y,Q
() = = n?) = —(vPIvd,) = (iRnd,) (1)

for j, k = 1,...,p because the v-parts of the Fo eigenvectors from k = 1,...,pandk = p + 1,...,2p have
opposite signs. For real-valued signals and Hermitian F®), we can perform the procedure with e~ 5+ 4* instead
of e+ &% and do not need to project the u- and v-parts.

In summary, we have determined the singular values forming matrix S to accuracy ¢, in time O p/ €2).In
addition, we have determined the overlaps of the right and left singular vectors of the two Hankel matrices F(V
and F@. The required number of repetitions is

2
= O[%ég + p—zsh] )
£g €l
for obtaining the entries of 2/ and analogously 1y, for obtaining the entries of V. With
no="0 (logN ) 43)
: -2

for the cost of the phase estimation, this leads to a total run time of
- _~[rrE f
n:=ng (ny + ny) = o} —1logN|, (44)

with § := max{¢,, §,}. The performance scalesas n = O (poly log N) for example in the following regime:
first, the number of poles is small compared to N, which is a natural regime, as mentioned above; second,
regarding &, if the overlaps are not too small, { = O (poly log N); and third, anerror 1/e = O (poly log N) can
be tolerated.

3.4. Solving the small classical problem
Having determined the values via phase estimation, the reconstructed eigenvalue equation (17) now reads

Fw = vyuypel@uttn) (SO)-1/ 5@ Yy = ~ . (45)
All (scaled) matrix entries of equation (45) are available classically and we can solve the problem with a classical
algorithm [33] running with time O (p?). The errors in the matrix entries are amplified within the entries of the
matrix product entries .7:'] « by afactor of poly p at worst. Taking the inverse of (") amounts to inverting its
diagonal entries, hence the relative errors of (S )]’]l are unchanged. These are only small if the effective singular
values of F( (the ones bigger than a suitable threshold 6, ) are sufficiently bigger than zero, resulting in a
condition number of S!) bounded by maxj(Sﬁv)) / 6,. F as well as the perturbed matrix 7 = F + AF willin
general not be normal, but diagonalizable: F = X diag();) X' According to the Bauer—Fike theorem [43], we
can order the eigenvalues { ;\j} of F such that
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I\ — N < wQO[IF - Fl, (46)

for j = 1,...,p,where k (X) = ||X||,||X~!||, is the condition number of X, which represents the amplification
factor of the matrix perturbation towards the perturbation of the eigenvalues. The matrix perturbation
contributes linearly, while the condition number of X, which is independent of the perturbation AF, is related
to the condition of the underlying inverse spectral estimation problem. This could in principle be ill-conditioned
(e.g. for the reconstruction of extremely small or highly damped spectral components relative to the other ones),
but we are more concerned with problems that are also of interest in the classical world and hence sufficiently
well-conditioned. Note that p, the number of poles, is small by assumption so that this classical step does not
pose a computational bottleneck for the algorithm. For noisy signals, the rank of F will in general be larger
than p, F® could even be full rank—for not too large noise, however, the additional noise components will
remain small such that the effective rank will still be at p. Since only the biggest components of F®) are taken into
account, this results in a rank-p approximation that is best in the Frobenius norm sense (Eckart—Young theorem
[44]) and an effective noise filtering of the underlying signal.

The eigenvalues ~, of equation (45) are determined up to e~i(¥u#) =108y which corresponds toa
uniform translation of all poles. We can take care of this ambiguity by introducing an additional reference pole
Aref #= 0 (corresponding to the eigenvalue 11, = 1) that has to be incorporated into the original signal. This can
easily be achieved by adding any constant to the original signal vector (its normalizability is not affected). Since
for exponentially damped signals 9te(A¢) < 0holds for each k, the eigenvalue -, ; corresponding to the
reference pole will still be identifiable as the one with the biggest absolute value |y,|. Simply dividingall y, by .
(corresponding to the transformation A\ At — A\ At + i(¢,, + ¢y,) + log(vyvy) for each k) then yields the
correct values {1, } and poles.

3.5. Quantum linear fitting

We feed the poles back into the quantum world by using the quantum fitting algorithm described in [25, 26] to
obtain the coefficients { ¢;} in O (log(N)p) steps and hence the entire parametrization of the input function. We
consider real and imaginary parts of the signal f, the poles \y At = — ay + 1 [ and the coefficients

¢ = ag + 1 by separately, and equation (14) becomes

~ ~

We=7 (47)
with
[e=a0cos(3; - 0) ... e 0cos(B,-0) —e sin(3-0) .. —e Osin(f, - 0) )
Vo e"”‘ﬁcos(ﬁl-ﬁ) e’“P'ﬁcos(ﬁp-ﬁ) — e’“l‘ﬁsin(ﬁ] Ny . — e’“ﬂ‘ﬁsin(ﬂp-ﬁ)
T e sin(s - 0) ... e in(B, - 0) e 0cos(By-0) .. e cos(B,-0) ’
e""'ﬁsin(ﬂl Ny .. e sin(8,- N eorl cos(0- N e’“ﬁ'ﬁcos(ﬁl7 -N)
Re q E}{efo
N Re ) (—Tm g~ Rec | Resy
W= (W) = ( Hi ) Hi ) € RNx» & .= Plery, fi= Uy € RN,
@Gmp) Repf Jma Jm f
Jmc, Jmfy

and N := N — 1. The vector 2-norm of the kth column of W can be established in closed form as
1 — e—anN

17*2”’ if ax >0, and N, if a4 = 0. (48)
— e

Hence, || ||, can be computed in time O (p). We will rescale the solution for ¢ such that we can assume that
W], = 1. The norms of matrices || W}, for real-valued signals can be calculated as well by combining the
norms of the kth with the (k + p)th column. Since each row consists of 2p elements, the row norms can be
computed in O (p) as well.

Since «v := (i), B = (0k) are known, we can construct a quantum oracle, providing quantum access to the
matrix entries w; x (o, 3),

|} 18)17) k) 10) — 1a) [8) 1) 1K) Wy k (v, B)). (49)
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The matrix W can be prepared as a state vector
IN 2

lw) =3 > wixlj) 1K) (50)
j=lk=1
following the procedure described in [26] with time 0 (poly log(N) p &, log(1 / ¢)), where (is the accuracy of
the preparation of |w) and

& = max|[wj |/ min [[w; ). (51)
Here, we set O (g(N)) = O (g (N)poly log(g (N))) for functions g. For the preparation of | f), we require time
O (poly log(N) & log(1/¢)) with
& = max|j‘j|/min|]‘j|. (52)

With |w) and | f) prepared, we then can proceed as described in [26, theorems 2 and 3] and obtain with
probability bigger than 2/3 an estimate ¢ in time

O (poly log(N) ki p3/2 (\/Eéf/fs + Ky & /<I> + K5 Q2p) &y /84<I>) /SCIJ), with 2-norm accuracye,

Rw = || W\|2/|| ‘F/\VJ+H2, and norm @ of the projection of f onto the column space of W, the fit quality.
Importantly, we can estimate the quality of the fit with time 6] (poly log(N)(§; + &y Q2p)? Ky / €) / €). Note
that sampling ¢ is efficient because it comprises O (p) components. Altogether, we have determined the sought-
after coefficients and hence all parameters that characterize the signal fin poly log N This concludes the
description of the quantum matrix pencil algorithm.

4. Summary and discussion

We have developed a quantum implementation of an important algorithm for spectral estimation, the MPM,
taking a tool from signal processing to the quantum world and significantly improving upon the effort required.
Given the arguable scarcity of quantum algorithms with this feature, progress in this respect seems highly
desirable. The quantum MPM is a useful alternative to QFT in many practical applications such as imaging or
simulation of atomic systems, in the same way that classical MPMs and related algorithms are useful alternatives
to the classical Fourier transform. This is especially the case for signals with close damped poles and limited total
sampling time. The presented algorithm can be applied to classical data to solve the classical problem at hand.

For a signal given by N equidistant samples, we have made use of the fact that the eigenvalue problem
equation (17) consisted of large matrices of size O (N) that could, however, be contracted into manageable
matrices of size O (p) via concatenated use quantum phase estimations in O (poly log N). This justifies the use
of a quantum version of the MPM as opposed to quantum versions of related algorithms like Prony’s method,
where the p quantities leading the corresponding poles are determined in a later step, during the fitting of the
coefficients, and the critical step would already be O (poly N).

The quantum phase estimation was shown to be implementable in two complementary ways: either by
retrieving the input signal via quantum oracle calls such as quantum RAM, or by using multiple copies of a state
with the signal encoded in its amplitudes for QPCA. The developed extended matrix construction for indefinite
matrices significantly expands the set of matrices that can be exponentiated via QPCA. Since QPCA so far solely
relied on positive semidefinite matrices, we expect this to be a useful new primitive also for other quantum
algorithms.

The actual step to determine the poles from an eigenvalue problem ofap x p matrix can be performed
classically since p is assumed to be small. Subsequently, feeding back the established poles into a quantum fitting
algorithm allows the coefficients of the signal again to be determined efficiently in 0 (poly log N). This way, we
have an effective division of labor between classical and quantum algorithms, to the extent that such a hybrid
algorithm is possible efficiently. Classical intermediate steps are for example reminiscent of quantum error
correction, where error syndromes are measured and the quantum state is processed according to the classical
measurement results [45].

In order to create an efficient quantum algorithm, it is essential to adress certain caveats, which are succinctly
listed in Aaronson [46] using the example of the groundbreaking work in [47]: both for the QRAM and the
QPCA setting, the input data can be accessed quickly enough and the Hankel matrices can be exponentiated
efficiently—due to being sparse in a quadratically larger space or by fulfilling the QPCA requirements,
respectively. For this, it is necessary that the entries of the Hankel matrices and hence the input signal have a
similar magnitude © (1). Furthermore, for twofold phase estimation, as for general phase estimation, we need to
be able to prepare initial states that provide sufficiently large overlap with the states we use for further processing.
In the QRAM setting as well as in the QPCA setting, one can employ initial states that are closely related to the
input signal. Analogously, the overlaps in the matrices I/ and V need to be sufficiently large. Reading-out the
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O (N) components of the state vectors would foil the achieved quantum speedup; however, as in [36, 37], the
number of necessary output quantities in our algorithm is condensed down to O (p). Each output can be
determined with time O (poly log(N)), provided that Vandermonde matrix W from the established
frequencies is sufficiently well-conditioned, analogous to the requirements related to the condition number in
the matrix inversion algorithm [47]. Naturally, we are interested in sufficiently well-behaved signals where a
classical MPM algorithm could in principle reconstruct all of its components, excluding e.g. highly damped or
relatively small terms, which manifest themselves again in the conditioning of the matrix inversion. In this
respect, the quantum MPM inherits the properties related to the conditioning of its classical analogue.

The outlined procedure is generalizable to arbitrary signal dimensions d, i.e. signals of the type
fty.nty) = Zfb ket Kk et it Mgl with ¢ € Cp? by suitable tensor contractions of the array of
signal samples ( fjp ];i)f\j-’)’:]() [5] or fixing all time indices but one and applying the MPM on the remaining
vector. This yields the sought-after poles since they are the same for the different time indices t;. For time index-
dependent poles, one can consider ‘enhanced matrices—embeddings of Hankel matrices that correspond to
one-dimensional projections of the multidimensional signal within a larger block Hankel matrix—as in [48].
There are many potential applications for this, e.g. in radar imaging and geophysics [49].

Beyond the potential use of reducing the computation time of the MPM in its classical applications or
classical postprocessing in quantum applications, it is also worthwhile to consider the possibilities in a pure
quantum setting: these include the examination of quantum systems that feature a discrete set of damped
oscillations such as the vibronic modes of molecules in a condensed-phase environment where the data—as
opposed to what is usually done—would also have to be taken in a quantum coherent manner in order to replace
quantum RAM or to build a state as in appendix B and subsequently be processed by the quantum MPM.

We expect the methods and primitives that we develop and introduce here to be highly useful also when
devising other quantum algorithms. This includes the new ideas on the computation of overlaps by suitably
concatenating quantum phase estimation procedures and on the efficient exponentiation of a novel type of
structured matrices on a quantum computer. We hope that the present work stimulates such further research.
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Appendix A. Alternative non-sparse quantum oracle method

Berry et al present a method to exponentiate matrices sublinear in the sparsity [38]. In this section, we
summarize the performance and requirements of this method and the application to the low-rank Hankel
matrices of the present work. The number of oracle queries for simulating a matrix such as the Hermitian F’ Din
equation (21) is given by

O ?sAwi /), (AD)

where sis the sparsity and ¢ is the error. The quantity Ay, > 0 depends on the norms of the matrix as

Aot = AA Ay with the spectral norm A = ||F U)Hoo, the maximum column sum norm A, = ||F m\h, and the
maximum matrix element Ay = ||F (’)||max . The conditions for this to work are given by At > /&,
A
Pz —, (A2)
AmaxAls
and A < A,

We confirm that under reasonable assumptions the low-rank non-sparse Hankel matrices under
consideration in this work can be simulated with O (log N) queries. Assume that the signal is reasonably small
with not too many zeros. This implies that the matrix F @ s non-sparse with s = © (V') and the individual

elements scale as 15]-(;) = O(1). If we assume that the signal is generated by a few (in fact, p) components, then the

matrix is low rank with rank 2p. Since tr((F")?) = Z?i NS NYF D2 . » we have that the significant

eigenvaluesscaleas \; = ©O(N), j = 1, ..., 2p. These assumptions have the following straightforward
implications:

(i) The spectral norm (largest eigenvalue)is A = ©(N),
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(ii) the induced 1-norm (maximum column sum)is A; = ©(N), and

(iii) the maximum elementis A,x = O(1).

Thus, Air = ©(N?) and the total number of queries is O (t3/2/ O (N?) /¢ ). We need time t = ©(1/N) to
resolve the eigenvalues \; = © (N) via phase estimation. Thus, at an error &, we need O (1/V€) queries, which is
again efficient.

We show that we can satisfy the conditions as follows. Since we have t = ©(1/N) already from phase
estimation, we can assume that with constanteffort t > e /A = © (/€ /N). Next, by using (i)—(iii) and

s = O(N),wehave
p> A ::@(lj. (A3)
AmaxAlS N

The third criterion A < A, is satisfied by Gershgorin’s theorem, since the eigenvalues are bounded by the
maximum sum of the absolute elements in a row/column.

Appendix B. Matrix exponentiation via QPCA

In this appendix, we present an alternative way to efficiently exponentiate indefinite matrices, in order to give
more substance to ideas of exponentiating structured matrices while at the same time preserving a phase
relationship. Since exponentiating matrices F € CN/2*N/2while a preserving phase relationship is key to the
above algorithm and is expected to be important in other quantum algorithms, we briefly present an alternative
method that accomplishes this task via QPCA. This method compares to the QFT in the sense that it operates on
agiven initial state that contains the data to be transformed in its amplitudes without querying QRAM. We
assume that we have been presented with many copies of the state vector

N/2
IX) = % S 1) IK) (B0} + a(F TRy 1)), (®B.1)
k=1

with C := (||F|}} + a?|F'F|}})and a~! := O (max; | (F'F); |). The matrix F takes the role of FV' and F® of the
main text, so again the classical index i is suppressed. Note that even though a is exponentially small, the
individual amplitudes of this state are of similar size. Reducing the state in terms of the k index leads to

1 _Np2 .
() (D = & [zm (7152 (Filo) + a(F'F)j,k|1>>(Fjik<0|+a<F*F>jﬁ,k<1|>].
i’ k=1
In matrix form, this reduced density matrix is written as
i i
_L[ B aEE 52)
C |a (FIF)F' a? (F'F)(F'F)

By the use of the singular value decomposition of F = USV', this matrix—positive semi-definite by
construction—can be written as

1U0]y MWPTO]
G=— ) B.3
C [ 0V [a $* atst)lo vt (8.3)

In precisely the same way, we are given multiple copies of the state
1 N2

=7 > i) 1K) @(FFD)kl0) + FJJ1). (B.4)
jk=1

Again reducing the state in terms of the k index leads to

N/2
(%) (X = % [Zm (7132 @EF;£l0) + FI 1)) @(FF (0] + (B 0¥ (1D |,
3’ k=1

leading to the matrix

2 + i i
~ % [a (FF")(FF") a (FF >F], (B.5)

G = N . .
a FT(FFT) F'F
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which can be decomposed as

~_ 1JU 0] a’st aSP{|UT o
G=— . B.6
C[O V[aS3 SZ][O v 6
The matrix
7= %(G +6) (B.7)

has still low rank, as it has just twice the rank of F. Its eigenvectors are (1, +v;) € CN and its eigenvalues in
terms of the singular values of Fare given by sz (as; £ 1)? / (2C) since

P FF' + a? (FF")(FF") 2a FF'F B.8)
2C 2a FFF? a? F'F + (F'E)(F'F) ’
and
1 | FFT + a2 (FF")(FFY) 2a FF'F uj
2C 2a FTFFT a? F'F + (FiF)(F'F) || £
2 2.4 3
1 | (57 + a’s; £ 2as7)u; 1 u;j
=T T e e 0| (B.9)
2C (2asj3 + sjz + azs?)vj 2C +v;j

This renders standard QPCA [20] readily applicable and allows us to determine the singular spectra of matrices
F, even if they are indefinite, by constructing the positive semidefinite matrix Z.

References

[1] Karski M, Forster L, Choi] M, Alt W, Widera A and Meschede D 2009 Nearest-neighbor detection of atoms in a 1d optical lattice by
fluorescence imaging Phys. Rev. Lett. 102 053001
[2] Naishadham K and Piou ] E 2008 A robust state space model for the characterization of extended returns in radar target signatures I[EEE
Trans. Antennas Propag. 56 174251
[3] Viti V, Petrucci C and Barone P 1997 Prony methods in NMR spectroscopy Int. J. Imaging Syst. Technol. 8 56571
[4] Maravic I, KusumaJ and Vetterli M 2003 Low-sampling rate UWB channel characterization and synchronization J. Commun. Netw. 5
319-27
[5] Steffens A, Riofrio C A, Hiibener R and Eisert ] 2014 Quantum field tomography New J. Phys. 16 123010
[6] Steffens A, Friesdorf M, Langen T, Rauer B, Schweigler T, Hiibener R, Schmiedmayer J, Riofrio C A and Eisert ] 2015 Towards
experimental quantum field tomography with ultracold atoms Nat. Commun. 6 7663
[7] Leonowicz Z, Lobos T and Rezmer ] 2003 Advanced spectrum estimation methods for signal analysis in power electronics IEEE Trans.
Ind. Electron. 50 514-9
[8] Andrade X, Sanders ] N and Aspuru-Guzik A 2012 Application of compressed sensing to the simulation of atomic systems Proc. Natl
Acad. Sci. 109 13928-33
[9] HuaY and Sarkar T K 1990 Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise
IEEE Trans. Signal Process. 38 81424
[10] de Prony B G R 1795 Essai éxperimental et analytique: sur les lois de la dilatabilitéde fluides élastique et sur celles de la force expansive de
lavapeur de 'alkohol, a différentes températures J. Ec. Poly. 124-76
[11] SchmidtR O 1986 Multiple emitter location and signal parameter estimation IEEE Trans. Antennas Propag. 34 276-80
[12] Roy Rand Kailath T 1989 Esprit-estimation of signal parameters via rotational invariance techniques IEEE Trans. Signal. Process. 37
984-95
[13] Bhaskar BN, Tang G and Recht B 2013 Atomic norm denoising with applications to line spectral estimation IEEE Trans. Signal. Process.
615987-99
[14] Park]Iand Kim KT 2010 A comparative study on ISAR imaging algorithms for radar target identification Prog. Electromagn. Res. 108
155-75
[15] delRio] EFand Sarkar T K 1996 Comparison between the matrix pencil method and the fourier transform technique for high-
resolution spectral estimation Digit. Signal Process. 6 108-25
[16] Baqai F A and Hua'Y 1993 Matrix pencil methods for ISAR image reconstruction 1993 IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, 1993, ICASSP-93 vol 5 (IEEE) pp 4736
[17] Nielsen M A and Chuang1 L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[18] Cooley] W and Tukey ] W 1965 An algorithm for the machine calculation of complex fourier series Math. Comput. 19 297-301
[19] Shor PW 1999 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer STAM Rev. 41
303-32
[20] Lloyd S, Mohseni M and Rebentrost P 2014 Quantum principal component analysis Nat. Phys. 10 631-3
[21] GiovannettiV, Lloyd S and Maccone L 2008 Quantum random access memory Phys. Rev. Lett. 100 160501
[22] GiovannettiV, Lloyd S and Maccone L 2008 Architectures for a quantum random access memory Phys. Rev. A78 052310
[23] De Martini F, Giovannetti V, Lloyd S, Maccone L, Nagali E, Sansoni L and Sciarrino F 2009 Experimental quantum private queries with
linear optics Phys. Rev. A80 010302
[24] Rebentrost P, Steffens A and Lloyd S 2016 Quantum singular value decomposition of non-sparse low-rank matrices arXiv:1607.05404
[25] Wiebe N, Braun D and Lloyd S 2012 Quantum algorithm for data fitting Phys. Rev. Lett. 109 050505
[26] Wang G 2014 Quantum algorithms for curve fitting arXiv:1402.0660
[27] Shannon CE 1949 Communication in the presence of noise Proc. IRE37 10-21
[28] Golub G Hand Van Loan C F 2012 Matrix Computations vol 3 (Baltimore, MD: John Hopkins University Press)

13

95




10P Publishing

New]. Phys. 19 (2017) 033005 A Steffens et al

[29] Stewart GW and Sun J-G 1990 Matrix Perturbation Theory (Computer Science and Scientific Computing) (London: Academic)

[30] HuaY and Sarkar TK 1991 On SVD for estimating generalized eigenvalues of singular matrix pencil in noise IEEE Int. Symp. Circuits
and Systems 1991 39 (IEEE) pp 892-900

[31] BrowneK, Qiao Sand WeiY 2009 A Lanczos bidiagonalization algorithm for hankel matrices Linear Algebr. Appl. 430 1531-43

[32] XuW and Qiao S 2008 A fast symmetric SVD algorithm for square hankel matrices Linear Algebr. Appl. 428 550—63

[33] Moler CB and Stewart G W 1973 An algorithm for generalized matrix eigenvalue problems STAM J. Numer. Anal. 10 241-56

[34] Kitaev AY 1995 Quantum measurements and the Abelian stabilizer problem arXiv:quant-ph/9511026

[35] CleveR, Ekert A, Macchiavello C and Mosca M 1998 Quantum algorithms revisited Proc. R. Soc. A 454 339-54

[36] Aaronson S 2009 Bqp and the polynomial hierarchy arXiv:0910.4698

[37] Rebentrost P, Mohseni M and Lloyd S 2014 Quantum support vector machine for big data classification Phys. Rev. Lett. 113 130503

[38] Berry DW and Childs A M 2012 Black-box hamiltonian simulation and unitary implementation Quantum Inf. Comput. 12 29-62

[39] Berry DW, Ahokas G, Cleve Rand Sanders B C 2007 Efficient quantum algorithms for simulating sparse hamiltonians Commun. Math.
Phys. 27035971

[40] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Exponential algorithmic speedup by a quantum walk Proc.
35th Ann. ACM Sym. Th. Comp. (ACM) pp 59-68

[41] Aharonov D and Ta-Shma A 2003 Adiabatic quantum state generation and statistical zero knowledge Proc. 35th Ann. ACM Sym. Th.
Comp. (ACM) pp 20-9

[42] Kimmel§, Lin C, Low G, Ozols M and Yoder T ] 2016 Hamiltonian simulation with optimal sample complexity arXiv:1608.00281

[43] Bauer FLand Fike C T 1960 Norms and exclusion theorems Numer. Math. 2 13741

[44] Eckart Cand Young G 1936 The approximation of one matrix by another of lower rank Psychometrika1211-8

[45] Gottesman D 2009 An introduction to quantum error correction and fault-tolerant quantum computation arXiv:0904.2557

[46] Aaronson S 2015 Read the fine print Nat. Phys. 11291-3

[47] Harrow AW, Hassidim A and Lloyd $ 2009 Quantum algorithm for linear systems of equations Phys. Rev. Lett. 103 150502

[48] HuaY 1992 Estimating two-dimensional frequencies by matrix enhancement and matrix pencil IEEE Trans. Signal Process. 40 2267-80

[49] Garello R 2013 Two-Dimensional Signal Analysis (New York: Wiley)

14

4 - QUANTUMALGORITHMS 96




5 CONCLUSIONAND OUTLOOK

Signal processing overlaps with complex quantum systems in many different places. On the one
hand, modern signal processing algorithms are vital for handling the large amounts of data that
the description of large quantum systems entails. On the other hand, with the rise of quantum
computing in sight, the opportunity emerges to accelerate established signal processing routines
with a superpolynomial quantum speedup. In this sense, the goal of this undertaking was to harness
signal processing for quantum applications and, vice versa, to use quantum systems for the benefit
of signal processing.

Using signal processing techniques like compressed sensing, the limits for fully estimating gen-
eral mixed quantum states can be substantially pushed further. When dealing with experimental
data, which is prone to noise, external parameters have to be introduced, leading to ambiguous re-
sults. By making use of model selection techniques, these ambiguities could be lifted, as was argued
in section 2.3. Still, the curse of dimensionality can only be mitigated because the amount of data is
just reduced by a square root factor, as opposed to the exponential increase of the size of the Hilbert
space. This is essentially due to the basically lossless compression character of compressed sensing.
Nevertheless, compressed sensing is of prime importance in handling intermediate-sized quantum
systems.

Making further assumptions about the entanglement and purity of the state, yielding higher
compression rates for the underlying models, tensor network methods (section 3.1) can be employed
for quantum tomography. Continuous systems, however, in principle possess infinitely many de-
grees of freedom, posing conceptual challenges about how an efficient tomographic procedure should
even look like. With the introduction of continuous matrix product states (CMPS), a promising
ansatz class appeared, featuring 72-point correlation functions that can be expressed in terms of the
parameter matrices that determine the respective state. In the translation invariant case, only two
finite-dimensional matrices suffice to completely parametrize the state; nevertheless, cMPs can ade-
quately model various quantum systems in the low energy regime.[’* The relationship between
the cMPs parameters and the correlation functions is not straightforward, however, and a series of
reconstruction steps is required to fully determine the state within a tomographic protocol. Impor-
tantly, in the initial step, the correlation functions have to be treated with adapted signal processing
methods for accurate spectral estimation— Prony’s method and matrix pencil methods. We turther-
more extended these methods to handle signals of arbitrary dimension instead of just one-dimen-
sional (time) intervals. The resulting tomographic protocol allowing for the estimation of quantum
field states was presented in section 3.2.

Regarding the experimental realization of quantum field tomography procedures, one-dimen-
sional ultracold Bose gases, which represent systems central for experimentally analyzing thermal
equilibration in the quantum regime, are perfect candidates. Using lower-order correlation func-
tions as input, cMPs parameters could be determined to robustly make predictions about higher-
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order statistics that coincided with the values directly established from the experiment, resulting ina
successful modeling of an ultracold Bose gas quantum system with a cmPs (see section 3.3). With in-
creasing time, the agreement between the predicted and the measured statistics deteriorated, which,
beyond signal deterioration due to noise, could be attributed to the entanglement growth after sud-
den quenches and the entailing required increase in model parameters.

An extension of the cMPs protocol to counting probabilities as input with an application in a
quantum transport experiment is discussed in the coauthored publication in appendix A.1, allowing
for a closer look on the short-time dynamics of the system. So far, the waiting time distributions for
two consecutively transported electrons could only be accessed for emission rates in the kilohertz
frequency range. By use of the cMPs protocol, determining waiting time distributions would in
principle also be possible in the gigahertz range.

A complementary approach for dealing with the inevitable curse of dimensionality—yet not for
state estimation, but for ab initio calculations of the electronic structure of quantum systems—is
density functional theory, which requires certain sets of basis ansatz functions. Following the ap-
proach to be published, presented in appendix A.3, these sets can substantially be reduced with
compressed sensing methods, while still retaining the necessary accuracy. This enables one to effec-
tively accelerate computations or tackle larger systems with higher precision.

In contrast, classical signal processing algorithms could massively benefit from using physical
effects in complex quantum systems to accelerate computations, i.e. from an effective implementa-
tion on a future guantum computer. Quantum computers, however, have a fundamentally different
architecture compared to classical computers and quantum algorithms have to obey entirely differ-
ent rule sets in order to efficiently solve problems. This makes it challenging to design a quantum
analogue for any classical algorithm.

Spectral estimation algorithms are ubiquitous from nuclear magnetic resonance spectroscopy
to image processing. It is therefore highly desirable to explore potential quantum speedups. A ma-
trix pencil method, similar to the one employed for cmps tomography, proved to be the right can-
didate for this, allowing for a speedup from O(N?) operations to O(poly log N) operations (sec-
tion 4). Atits heart lies a generalized eigenvalue problem, which has to be reformulated such that
the required quantities can be obtained efficiently via quantum state tomography. Along the way,
novel quantum algorithm techniques like concatenated phase-estimation and encoding non-positive
semidefinite matrices into density matrices for determining their singular spaces were developed.

An important building block for such quantum algorithms is the efficient simulation of the
involved matrices as part of a unitary transformation that acts on quantum states; a method that ex-
pands the class of simulatable matrices is discussed in the coauthored publication in appendix A.2.
This moreover enables one to perform singular value decompositions of non-sparse low-rank ma-
trices with an exponential quantum speedup.

Still, quantum algorithms are not expected to make all computational problems efficiently trac-
table. It is to this day unknown whether the complexity class BQP (bounded error quantum poly-
nomial time), the class consisting of all problems that can efficiently be solved on a quantum com-
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puter, contains the class of NP-complete problems, the class consisting of the computationally hard-
est problems in NP such as the traveling salesman problem.[“] The best known classical methods
to solve NP-complete problems boil down to searching algorithms, which, importantly, can be
quadratically accelerated by building on Grover’s algorithm [62],

For future projects, it would be exciting to extend the quantum field tomography protocol
to continuous states that are not translation-invariant, allowing for the description of many new
systems and a more accurate characterization of systems that are only approximately translation-
invariant. Using the cMPS parameter matrices from a complete tomography, the time evolution
of the state can accurately be simulated™. This again opens new paths of describing physical pro-
cesses, such as thermal equilibration, and connecting model and experiment. Still, most investi-
gations are conducted on one-dimensional systems, which are considerably easier to handle than
high-dimensional ones. Another step forward could lie in the development of recovery protocols
for two-dimensional systems that can be captured by continuous pEPSI,

Tensor network and compressed sensing methods are not mutually exclusive, and there are
many starting points for combining both paradigms. In particular, it seems very appealing to in-
troduce notions of compressed sensing to CMPS tomography, unifying both approaches. An in-
teresting ansatz would be to extend aromic norm denoising methods7”) to exponentially decaying
signals. Other quickly developing fields related to compressed sensing include biconvex methods!”*]
together with blind deconvolution (791, This is connected to the self-calibration setting[lso] where,
e.g., in the case of quantum tomography, neither the state nor the measurement matrices are ex-
actly known (see for example Ref. [181]). Notions of rank minimization and entry-wise sparsity
can be combined as well.'78] Moreover, settings with gradually revealed information/measurements
are analyzed (“streaming”).l*? Already explicitly storing measurement matrices in memory poses
substantial challenges—a more implicit approach is presented in Ref. [183]. Going beyond vectors
and matrices, tensor completion is investigated.!**] All these approaches promise great theoretical
and practical progress and many experiments could greatly benefit from including such compressed
sensing ideas.

With the introduction of a fully-fledged quantum version of the singular value decomposi-
tion (appendix A.2) and together with the new tools developed for the quantum matrix pencil
method, various quantum analogues of classical algorithms with svD as their central component
will become easier to realize. An example could be singular value thresholding **, a compressed
sensing routine, which is used for efficiently performing matrix completion.

As quantum systems will play a crucial role in future technology, tools such as the ones presented
in this thesis will become ever more important. With this work, we believe we have contributed to
the understanding and development of efficient and practical methods for system identification and
quantum computation.
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A.1  Quantum transport experiments

Continuous matrix product states can be generated using a sequential preparation procedure via
continuous measurements, as described in Ref. [126]: A one-dimensional continuous quantum sys-
tem with Fock space 7 in the initial vacuum state |(2) is coupled with a finite-dimensional auxiliary
system .o/ = C” in the initial state |¢,). One can think of .o/ as a resonating cavity with & internal
levels and a particle source that emits a particle every time step ¢ for a time interval [0, L]. Between
emitting two particles, the system evolves freely according to a Hamiltonian K(t) € C?*? and the
measurement process is modeled by matrices R(t) € C?*?, resulting in the total Hamiltonian

L/e
H.(t)=K(@t)@1+/2 > 8(t—ke) iR(L—ke)®
k=1

é\z/g—k —lRT(L—ké‘)@é/l\L/E_k) (30)

Integrating the Schrédinger equation, setting Q(¢) = —i K (¢)—1/2 R¥(¢) R(t ), and decoupling &
and ./ by projecting onto (¢; | ® ﬁ, we arrive in the limit ¢ — 0 at the cMps definition for |\IJQ,R>
in Eq. (23).

By tracing out the physical system % instead of the auxiliary system ./ and computing the
derivative, we obtain a differential equation for the resulting reduced density matrix o in .¢/,

d

S plt) = —i[K(,p(0] + R0pRE) = S[RORW, 0] ()

which is a master equation in Lindblad form, implying dissipative dynamics in the auxiliary system.
This makes it interesting to connect the auxiliary system to the dynamics of systems that can be
characterized by a cmps, which is done in the following publication [5] in the context of quantum
transport experiments.

In the underlying experimental setup of the following publication [5]*#, separate electrons tun-
nel through a single-level quantum dot™®). We have developed a protocol for estimating the param-
eters that determine the system based on counting probabilities, extending the protocol presented
in section 3.2, which uses spatial correlation functions as input. With the established cMps model,
it is furthermore possible to accurately predict system statistics like higher-order correlation func-
tions and the waiting time distribution (wTD), modeling the statistics of time interval between the
transport of two consecutive electrons. When emitting electrons with a rate in the kilohertz fre-
quency range, a direct determination of the wTD from the experiment is still possible with current
experimental techniques. This allowed us to compare the wTD with the one estimated by our cmps

**Géraldine Haack, Adrian Steffens, Jens Eisert, and Robert Hiibener, “Continuous matrix product state tomography
of quantum transport experiments”, New Journal of Physics 17:113024,, 2015 (DOI:10.1088/1367-2630/17/11/113024). Published
under a Creative Commons Attribution 3.0 License (creativecommons.org/licenses/by/3.0), © 2015 IOP Publishing.
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protocol, revealing high consistency between both signals. When moving on to even higher emis-
sion frequencies in the gigahertz range, a direct experimental estimation of the wTD is not feasible,
while, however, the cmPps approach still remains valid, which makes it possible to uncover the short-
time dynamics of systems in higher frequency regimes.
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In recent years, a close connection between the description of open quantum systems, the input—
output formalism of quantum optics, and continuous matrix product states (cMPS) in quantum field
theory has been established. The latter constitute a variational class of one-dimensional quantum field
states and have been shown to provide an efficient ansatz for performing tomography of open
quantum systems. So far, however, the connection between cMPS and open quantum systems has not
yetbeen developed for quantum transport experiments in the condensed-matter context. In this
work, we first present an extension of the tomographic possibilities of cMPS by demonstrating the
validity of reconstruction schemes based on low-order counting probabilities compared to previous
schemes based on low-order correlation functions. We then show how fermionic quantum transport
settings can be formulated within the cMPS framework. Our procedure, via the measurements of low-
order correlation functions only, allows us to gain access to quantities that are not directly measurable
with present technology. Emblematic examples are high-order correlations functions and waiting
time distributions (WTD). The latter are of particular interest since they offer insights into short-time
scale physics. We demonstrate the functioning of the method with actual data, opening up the way to
accessing WTD within the quantum regime.

1. Introduction

Continuous matrix product states (c(MPS) have recently been recognized as powerful and versatile descriptions of
certain one-dimensional quantum field states [ 1-3]. As continuum limits of the MPS—a well-established type of
tensor network states underlying the density-matrix renormalisation group [4]—they introduce the intuition
developed in quantum lattice models to the realm of quantum fields, offering similar conceptual and numerical
tools. In the cMPS framework, interacting quantum fields such as those described by Lieb—Liniger models have
been studied, both in theory[1, 5, 6] and in the context of experiments with ultra-cold atoms [7].

On a formal level, cMPS are intricately related to Markovian open quantum systems [1, 2]: the open quantum
system takes the role of an ancillary system in a sequential preparation picture of cMPS. Elaborating on this
formal analogy, cMPS can capture properties of fields that are coupled to a finite dimensional open quantum
system. This connection has been fleshed out already in the description of fermionic quantum fields [8] and of
light emitted from cavities in cavity-QED [2, 9] in the quantum optical context, under the keyword of the input—
output formalism [10].

Another methodological ingredient to this work is that cMPS have been identified as tools to perform
efficient quantum state tomography of quantum field systems [7, 11-14], related to other approaches of tensor
network quantum tomography [12, 15]. These efforts are in line with the emerging mindset that for quantum
many-body and quantum field states, tomography and state reconstruction only make sense within a certain
statistical model or a variational class of states. Importantly, in our context at hand, it turns out that cMPS can be

©2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Extension and applications of cMPS based tomography (see sections 3—5). Previous works [7, 11] have shown that
measurements of low-order correlation functions C,, with n = 2, 3 are sufficient to access higher-order correlations using cMPS
tomography based on the cMPS matrices M and D (right side, black arrows). The first achievement of this work is the formal
demonstration that measurements of low-order counting probabilities constitute an alternative to measurements of low-order
correlation functions for carrying out cMPS tomography (blue arrow). We show that the probabilities to detect zero or one particle (Py
and Py, respectively) are sufficient to reconstruct alternative cMPS parameter matrices M and D, from which higher-order
correlation functions can be computed. The second achievement of this work is to extend the applicability of this cMPS framework to
quantum transport experiments. As a main illustration, we show that cMPS-based tomography provides an access to the distribution
of waiting times V. The according statistics are not directly measurable due to experimental limitations on single-particle detectors.
However, we demonstrate with experimental data that they can in fact be reconstructed from the knowledge of low-order correlation
functions (broad blue arrows).

reconstructed from the knowledge of low-order correlation functions alone [11, 12]. This is a very attractive
feature of cMPS: recently, a reconstruction scheme has successfully been applied to data on quantum fields
obtained with ultra-cold Bose gases [7]. In section 2, after introducing the cMPS formulation, we will provide the
reader with the key arguments that make this reconstruction scheme possible from low-order correlation
functions only. Read in the mindset of open quantum systems, cMPS tomography can be interpreted as open
system tomography by monitoring the environment of the open quantum system.

In this work, these methodological components will be put into a different physical context and substantially
developed further as illustrated in figure 1. At the heart of the analysis is a tomographic approach, applied to an
open quantum system, yet brought to a new level. In section 3, we extend the set of tomographic methods within
the cMPS framework, showing that the dynamics of the ancillary system and of the whole open quantum system
is not only accessible from low-order correlation functions, but also from low-order counting statistics.
Specifically, we prove that for generic systems, the two density functions Py and P;,—which express the
probability of detecting zero and one particle, respectively, as a function of the time since the last detection—
provide sufficient knowledge to successfully perform tomography of the open quantum system.The physical
application of the established methods will also be different from the cavity-QED or the quantum field context:
here, we treat fermionic quantum transport experiments within the cMPS framework.

In a general transport setting, a scatterer is coupled to aleft reservoir (the ‘source’) and a right reservoir (the
‘drain’). Fermions (with or without a spin degree of freedom) can be seen as jumping in and out of the scattering
region from the source to the drain and can be described by a leaking-out fermionic quantum field. In section 4,
we show how the dynamics of the open quantum system (scatterer and leaking-out fermionic field) can be
encoded into a cMPS state vector. To provide the reader with an intuition about the equivalence between the
cMPS language and a more traditional Hamiltonian formulation, we will consider one of the simplest setups in
quantum transport: a single-level quantum dot weakly coupled to two reservoirs. These results are also valid for
transport experiments of ultra-cold fermions between a ‘hot” and a ‘cold’ reservoir as recently realised in [16, 17].

This will clear the way for making use of the tomographic possibilities offered by the cMPS formalism to
access various quantities in quantum transport that are not yet measurable with current experimental
technologies (see figure 1). Emblematic examples are higher-order charge correlation functions and the
distribution of waiting times (WTD, see section 5).

The waiting time is defined as the time interval between the arrivals of two consecutive electrons. Therefore,
the WTD provides a privileged access to short-time physics, short-range interactions and the statistics of the
particles. As such, it has gained alot of attention recently [ 18-25], but WTDs suffer from their difficulty to be
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measured effectively: measuring WTDs requires the detection of single events while ensuring that no events have
been missed—for instance, due to the dead time of the detector.

With present technologies, WTDs in transport experiments can be measured when the injection rate of
electrons is within the kHz range as in the experiments of [26, 27]. Indeed, at those frequencies, the current trace
isresolved in time and the WTD can be directly deduced from it. As we will show in section 5, the WTD reflects
the quantum statistics of the electrons. However, quantum coherence and entanglement cannot be detected at
those frequencies. To observe these quantum effects, one needs to move to the GHz regime, which can be
achieved either with DC sources with a typical bias of tens of meV, or with periodically driven sources at GHz
frequencies [28-32]. In the GHz range, the current trace cannot be resolved in time so that the measurement of
the WTD is not feasible at present. In contrast, second- and third-order correlation functions have been proven
to be feasible [32, 33].

With these experimental constraints in mind, we propose in section 5 an indirect way to access the WTD
with methods that are within reach of the experimental state of the art. Namely, the dynamics of the full open
quantum system is accessed from measurements of low-order correlation functions (typically second- or third-
order). This is made possible with a cMPS formulation of the transport experiments as explained in the
following section.

Weillustrate this indirect path of accessing the WTD by considering real data obtained in the experiment of
[27], where single electrons tunnel through a single-level quantum dot in the kHz regime. Both the current trace
resolved in time and the two- and three-point correlation functions have been measured. The data allows us to
demonstrate a very good agreement between the WTD deduced directly from the current trace and the WTD
obtained via our reconstruction scheme based on the data of the correlation functions. This gives substance to
our protocol based on cMPS to access the WTD with present technologies. We claim that this method remains
valid in the GHz frequency range and for more complex systems such as a double quantum-dot coupled to two
reservoirs—which would exhibit quantum coherence effects—and for quantum transport experiments with
fermionic quantum gases.

2. Tomography of cMPS

In order to present a self-contained analysis, we start by reviewing the cMPS formulation of capturing a finite
dimensional open quantum system [2] and the tomography procedure of reconstructing the relevant cMPS
parameter matrices [11]. Consider an open quantum system (in cMPS terms the ancillary system) with
dimension d (called bond dimension in that context) and interacting with one or more quantum fields that are
described by field operators 1y, for different fields av. Its dynamics can in general be represented by different
mathematical objects:

(a) The master equation in Lindblad form, which governs the evolution of the ancillary system described by its
state vector | V) defined on the Hilbert space H of dimension d X d. The degrees of freedom of the coupled
fields are traced out in this approach.

(b) The set of n-point correlation functions of the coupled fields.

(c) The full counting statistics of the field system, i.e. the complete set of cumulants of the probability
distribution of transferred particles. The nth cumulant of the generating function is linked to the n
moments of this distribution, which correspond to the n-point correlation function.

(d) The cMPS state vector |tps), which we now introduce.

2.1. Reconstruction of cMPS from correlation functions
An intuitive way of establishing the cMPS state vector |¢)qvps) consists in starting from the well-known Lindblad
equation. This equation describes the evolution of the state p in time via the Liouvillian superoperator £

i )
p=Llp) = = 1K o] = = 3 ({RIRar p} = 2R0pRY). )
a=1

The first term relates to the free evolution via a Hamiltonian K € C?*4, while the last two terms describe the
coupling to the environment (the according operator is known as the dissipator). The matrices R, € C?*,
« = 1,..,, p, correspond to jump operators between the system and external quantum fields { ¢}, }. The matrices
Kand {R,, } completely characterize the evolution of the system.

Making use of the Choi—Jamiotkowski isomorphism [34] (which maps linear superoperators from H; to H,
tolinear operators actingon H; ® H,) the state p is mapped to a state vector | p) and the Liouvillian £ to the
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matrix T[1, 2] with
T=Q*®1+1®Q+ Y R¥®R,. @

a

The matrix T € C#*4 isknown as the transfer matrix and the matrix Qis defined as
. 1
Q= —iK — EZR;RQ. (3)
«

Formally, the isomorphism introduced above is defined by the following relations for an operator and the
product of operators
p1p)s
A'pB s (4% ® B)|p). @
Being closely connected to Kand {R,, } introduced above, the knowledge of the matrix and T and its components
provides access to the dynamics of the open quantum system, and allows to directly derive the according

Lindblad equation.
The (translationally invariant) cMPS state vector | Uoyps) on the interval [0, L]is defined in terms of the

matrices Q, {R,, } and the field operators 171; by

L R e
waPS> = Tranc|:7> exXp f) dX(Q @1+ ERCL ® d}(j (x)):||Q> (5)

This expression is related to the path ordered exponential that arises when integrating the Lindblad
equation. The embedding of the cMPS state vector | ¢ps) into Fock space becomes clear when expanding the
path ordered exponential P exp. For more details, we refer to [3] where the authors formulate the cMPS in
different representations such as the Fock space and a path integral formulation. After integration, the ancillary
system is traced out via Tr,, and the resulting term is applied to the vacuum state vector |2), where 1?1(, Q) =0
for each a.

Compared to the Lindblad equation, the main difference is that the degrees of freedom of the ancillary
system are traced out such that its dynamics is mapped into the dynamics of the coupled quantum fields { ¢, }.
The evaluation of expectation values of field operators leads to expressions that only contain quantities from the
ancillary system, and information about the ancillary system can be inferred from according field operator
measurements. For the sake of clarity, we restrict ourselves to the case where a single coupled quantum field,
denoted as 12@, is measured.

The density-like correlation functions of the measured quantum field s then read

Co () = ( auws| () o (0 )| rres) ©
where x := (x, ..., x,)and A1 := 1?1; 1?4«;. According to the calculus of expectation values in the cMPS setting [3],
inserting equation (5) into equation (6) in the thermodynamic limit L — oo leads to the expression
Co(x) = lim Tr [eD(L”‘")MeD(""’XH)M. . .MeD("l’U)]. @
L—oo

With D we denote the transfer matrix T—introduced in equation (2)—in its diagonal basis
D = X7'TX, ®)
where the columns of X represent the eigenvectors of T. Analogously, the matrix M denotes R} ® Rgin the
diagonal basis of T
M= X*I(R;F ® Ry)X. )

Let us mention that the knowledge of X is in principle not necessary to reconstruct the matrices Qand R and
hence the according Lindblad equation [11].
Specifically, the second- and third-order correlation functions take the form

dZ
Cy(x) = Tr [eD"QMeD"M] = 3 M Mj, e (10)
j=1
and
dZ
Cs(x, X'y = > My M ;M etet =), (11)
Jk=1
4
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with { ); } being the eigenvalues of T. Due to the translation invariance of the system, we can set x; = 0. The
tomographic possibilities of the cMPS formalism can be understood from equations (10)—(11): if the products
{M, x My jM;, | } are known, we can—using gauge arguments [ 12]—require each of the matrix elements { M, ; } to
be equal to one, which enables us to access each M ; by dividing the appropriate terms:
My My,j M — M, 12)
M IM ]M] 1
Both numerator and denominator appear as coefficients in C; and can be determined with spectral estimation
procedures. This means that in principle we just need to analyse a three-point function in order to obtain the
building elements M and D of arbitrary-order correlation functions.

This reconstruction scheme demonstrates the central role of the matrices M and D to derive the different
equivalent objects that describe the dynamics of an open quantum system: the Lindblad equation, the set of n-
point correlation functions, the full counting statistics of the number of transferred particles and the cMPS state
vector. These matrices M and D can therefore be considered as the central quantities on which our
reconstruction procedure is based; this is illustrated in figure 1.

2.2. Use of the thermodynamic limit

Intuitively, it is clear that the reconstruction of the matrices M and D should gain precision by increasing the
number of correlation functions C,, on which the reconstruction scheme is based. The same statement is valid
when increasing the size of the set of available counting probabilities P,,. But in general, experiments will only
provide us measurements of low-order correlation functions, typically those of the second- and third-order
[26,27, 33]. A priori, this might render the reconstruction of the matrices M and D infeasible, but the work in
[12] proved that this limitation can be circumvented by making use of the structure of the cMPS state vector
combined with the thermodynamic limit.

For a given finite region I and a fixed bond dimension d, all expectation values can be computed from all
correlation functions C, (x) taking values in the finite range I, x = (x1,...,x,,) C I*". This contrasts with the
situation of having access to correlation functions C,, (x) for arbitrary values of x = (x1 ,..., x,,), but for low .
Here, arbitrary values X imply the thermodynamic limit, i.e. the finite region I tends to infinity. Then indeed, low
order correlation functions (typically G, C,, C;) are sufficient to reconstruct an arbitrary expectation value of
an observable supported on I.

3. Reconstruction of cMPS from low-order counting probabilities

In this section, we extend the central role played by the matrices M and D for tomographic purposes by showing
that they (more precisely: their equivalents M and D) are also accessible from low-number detector-click
statistics, i.e. the idle time probability density function P, and the density function Py, which correspond to the
detection of zero and one particle, respectively, within a certain time interval 7.

It is well-known that correlators and counting statistics are closely related. When assuming perfect detectors,
the probability to observe n events in the time interval between tand ¢ + 7 is given [35] by the expression

( 1)m n t+7 t+7
Bt i+ 7) = Z [t (s 1) (13)
. t

—,(m —n)!

where the correlation function C,, has been introduced in equation (6). For a translationally invariant system, we
can without loss of generality set f = 0. Furthermore, when changing the integration bounds and performing the
limit L — oo, we obtain

T 151 th—1 ~
B =R 0+ = ["dn [Tdne [T dey Co(rt ), (14)
0 0 0
with

cn(’r, fiy oo fn) = elTZ’leDt"Mn "'MzeD("f’z)Mlep("”‘)Zel, (15)

the canonical unit vector e;, the diagonal matrix D of Q* ® 1 4+ 1 ® Q with basis transformation matrix Y,

M; = y-! (Rj* ® Rj)Y,and Z :== Y~ 1X, where X diagonalizes T'as defined in equation (8).With equations (13)—
(15), the low-order counting probabilities Py (7) and P, (7) within a cMPS formulation are given by similar
expressions to equations (10) and (11), namely

Po(1) = el Z7'eP7Ze, = ZZIJZJ 1ehiT, (16)
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dZ
R X e T — ey .
Pi(r) = Z Zl,]‘M]‘,ka,l (1 — éj,k)— + (Sj)kTe‘j , (17)
k=1 Pie = 1y

with { oy being the diagonal values of D and {z; ; } being the elements of the matrix Z (with inverse
Z71 = (2jx)). See appendix for details.

As a first step, we can extract from Py and P, the coefficients {2 ;z; ; } and the eigenvalues {1, }, which give
rise to D. The matrix elements of M can then in principle be determined using gauge arguments and under the
assumption that the additive components of P, are linearly independent. From M and D, the cMPS matrices Q,
Rand K describing the dynamics of the open quantum system can be determined in a straightforward way (see
appendix for details).

Let us comment on the feasibility of this reconstruction scheme with present technology. In order to
measure Py and Py, efficient single-particle detectors without dark-counting and tiny dead-time are necessary.
Dark-countingleads to detector output pulses in the absence of any incident photons while the dead-time s the
time interval after a detection event during which the detector cannot detect another particle. Although
significant experimental efforts have been made in order to improve single-photon [36] and single-electron
detectors [37, 38], the state-of-the-art for single-particle detection is not yet sufficient to perform a reliable
measurement of P;. For the moment, these experimental constraints make the reconstruction scheme based on
P, only valid on a formal, mathematical level. In the light of the recent experimental progress towards the reliable
detection of single particles, we believe that this idea will become relevant in the future.

4. Application to fermionic quantum transport experiments

Very recent works have successfully formulated experimental setups in cavity QED and ultra-cold Bose gases as
well as the corresponding measurements in terms of cMPS [7, 9]. This allowed them to make predictions for
higher-order correlation functions that are not accessible experimentally and to investigate the ground-state
entanglement.

Here, we tackle the problem of formulating quantum transport experiments and the corresponding
measurements (average charge current, charge noise) in cMPS terms To this end, we demonstrate that the field
that is leaking out and is measured in a quantum transport experiment belongs to the cMPS variational class. We
then provide an example to illustrate the equivalence between an Hamiltonian and a cMPS formulation by
considering one of the simplest transport experiment, namely single electrons tunnelling through a single-level
quantum dot. We derive the first-order and second-order correlation functions in cMPS terms, and show that
we recover the well-known expression of the average current and charge noise, when writing the cMPS state
equation (5) in terms of the parameters of the quantum system.

4.1. Quantum transport experiments in terms of cMPS

We now turn to a description of the physical setting under consideration. We assume here transport
experiments, where single electrons transit through a scatterer coupled to fermionic reservoirs. The reservoirs,
considered at equilibrium, are characterized by their chemical potential and their temperature via the Fermi
distribution. The bias energy and the bias temperature between the different reservoirs will set the direction of
the charge current. For the sake of simplicity, we restrict ourselves to two reservoirs, the source and the drain.
This transport setting can be described by the Hamiltonian

I:IT = I:Isys + I:Ires + I:Iint) (18)

where I—AIsys relates to the quantum system under investigation, which acts as scatterer. It is characterized by

discrete energy levels &; with occupation number operators given by d L-TU d; » d; ,and ﬁ,-:r” denote the fermionic
annihilation and creation operators for an electron on the energy level i and spin degree of freedom o = 1, |).
The Hamiltonian I:Ires relates to the left and right reservoirs, and H,,, describes the interaction between the
quantum system and the reservoirs,

Eq
Ao= ¥ % [ dEEL,E) e @), (19
a=L,Ro=T,| 0
A= 3 % [dB(tasoB) dip © &, (B) + he). 20)
a=L,Ri,0

The creation and annihilation operators of the reservoirs, ¢, and ¢, satisfy the canonical anti-commutation
relationsand o = L, R denotes the left and right reservoirs, respectively. The amplitude ¢, ; , sets the interaction
between the quantum system and its environments.
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In order to model a DC source, the energy levels in the left and right reservoirs are assumed to be densely
filled up to the energies Er + eV and Eg, respectively. Here, Er is the Fermi energy and V'is the bias potential
applied on the ‘source’ reservoir. At zero temperature, the bias energy eV enables uni-directional transport of
electrons between the left and right reservoirs. It plays a similar role to the frequency bandwidth when, e.g.,
considering cavity QED setups, and fixes the energy domain over which electronic transport takes place.

With this assumption about the direction of propagation of the electrons (from left to right), we will see that
equation (18) is equivalent to a generalized version of the cMPS Hamiltonian introduced in [1, 2],

Aoaws= Q@ i+ (RL @Y+ R ® 12111)) 21

where the matrices Qand { R, } and the quantum fields {12)& } have been introduced in section 2. The cMPS
Hamiltonian for quantum transport experiment reflects the direction of the current: a fermionic excitation
present on the left of the scatterer is annihilated at the scatterer as described by the quantum field ¢y (an electron
jumps into the scatterer). Similarly, a fermionic excitation present on the right of the scatterer is created at the
scatterer as described by the quantum field ¢y, (an electron jumps out of the scatterer). The case of a multi-
terminal setup can be considered in a similar way. Showing that equations (18) and (21) are equivalent implicates
that there is a fermionic quantum field leaking out of the scatterer to be measured and that it belongs to the cMPS
variational class. Such a description of the transport experiment corresponds to a fermionic version of the input-
output formalism of cavity-QED setups.

Using equation (20), the quantum field leaking out of the quantum system, 171R (t), can be written in terms of
the creation operator in the right reservoir &; the incoming quantum field can be written in a similar way in
terms of the creation operator in the left reservoir ¢

& = j; dE e B/t (B), o =L,R. 22)

The Fermi sea for the electrons is taken into account in the following way: on the right side of the scatterer, the
quantum field satisfies 12112 (t)|Eg) = 0, where | Eg) denotes the state of the Fermi sea at energy Eg, whereas on the
left side of the scatterer, ’lZJL (t)|Er + eV) = 0, where the state vector | Ez + V') defines the state of a Fermi sea at
energy Er + eV.

Assuming that the energy levels ¢; of the quantum system are well inside the bias energy window eV, we can
eV

rewrite the integration over the energy domain E as f dE = f dE.

This assumption is the so-called large-bias limit, wEhich is cor(isidered in order to derive the master equation
corresponding to the tight-binding Hamiltonian. In quantum optics, it corresponds to a finite frequency
bandwidth, which allows the use of the rotating wave approximation [9, 10]. In the following, we assume that the
interaction amplitude is spin- and energy-independent within the interval [Eg, Er + eV 1:t,,; ,(E) = t,.Letus
remark that the demonstration remains valid with an interaction amplitude that depends on spin and energy.
Importantly, no assumption about the coupling strength is required here.

In arotating frame with respect to the energies of the reservoirs and after a Jordan—-Wigner transformation
using the definitions of the quantum fields 121R)L given in equation (22), the Hamiltonian in equation (18) can be
rewritten as

Hr=Hu,oi+ 3 Z(t,,ﬁi @ U, () + h.c.). (23)
a=LRi,o
Following quantum optics calculations—which remain valid in this case because Hrisa transport version of the
spin-boson model—we finally arrive at an effective non-Hermitian Hamiltonian

q 3 i 57 4 5 5 F A N

Heff = Hsys - ? Z Zradi,gdi,a] @1+ Z ( \/FRdi,a ® YR,o (t) + \/FLdi,a ® wL,U (t)> (24)
a=LRi,0o i,o

with ¢, = \/1“_(1 . Expressed in the eigenbasis of I:LYS, the operators \ﬂ ﬁ,-,g and \/ﬁ ﬁ,-; take the form of matrices

labelled Ry ; , and Ry ; ,, respectively. The effective non-Hermitian Hamiltonian can then be rewrittenin a

compact form

A= Qe 0+ (Rl 0 ® bo(® + Ruio @ D, (), 25)

When comparing this effective Hamiltonian with equation (21), the identification of the matrix Q and the
matrices {R,, } is direct. For spin-less fermions, the matrices R verify R2; , = 0 in order to satisfy the Pauli
principle. Equation (25) demonstrates that transport settings can be adequately formulated within the cMPS
framework. This result is important as it clears the way for applying methods from cMPS tomography to

fermionic quantum transport experiments.
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a) 'y I'r I)_)_,___ e
/N /N vt R, VLlEr+eV=0
\Fr + eV
E[.‘
|| nlBr) =0 i Oho .

Figure 2. Scheme of a transport experiment through a single-level quantum dot. (a) The single-level quantum dot with energy ¢ is
tunnel-coupled to two biased reservoirs with coupling strengths I} and Ty. Spin-less single-electron tunnelling events take place in
the energy window eV above the Fermi sea with energy Eg. (b) The same transport experiment from the open quantum system
perspective for a cMPS formulation. The single-level dot is described by ﬁsys and coupled to fermionic quantum fields 9 and Pg.
The coupling matrices Ry /g depend on the parameters I /g, see equations (24)—(25). The transport direction fixed by the biased
energy between the left and right reservoirs is ensured in the cMPS formulation by imposing ¢, |E¢ + V) = 0and g |Eg) = 0.

4.2. Single energy-level quantum dot
To illustrate the input—output formalism and the cMPS formulation of quantum transport experiments, we
consider one of the simplest setups, namely a single energy-level quantum dot, without spin-degree of freedom,
weakly coupled to two fermionic reservoirs. Even though this experiment is characterized by Markovian
dynamics, this example is of particular interest for this work as it has been widely investigated experimentally. In
section 5, we will use real data obtained in [27] for this setup to show that cMPS tomography allows us to access
the electronic distribution of waiting times.

This simple transport experiment is sketched in figure 2 and the corresponding Hamiltonian reads

Br=cdd+ ¥ de(Jr_ d® E(E) + he.) + e 26)

a=L,R

Assuming that we perform a measurement on the right of the scatterer, the first two correlation functions of
the right quantum field ¢ (¢) read in terms of cMPS matrices

(Da i) = Jim Tr[e“(R;{ ® RR)] @7
and
(D % () (D) D (0)) = lim Tr [ "¢ (R @ Re)e™ (RE @ Re ) | (28)
L—

The matrices R 1, correspond to the operators /T dand Ty ' expressed in the eigenbasis of the single-level
quantum dot, {|0), |1) } (empty and occupied state)

_ 0 0 (o JT§
() (0T -

Inserting these expressions into equation (27), we recover the well-known expression for the steady-state
current of a single-level QD coupled to biased reservoirs [39, 40]

At oA 1115 N
(D) = e = e (30)

Furthermore, we can derive the noise spectrum from equation (28) via the MacDonald formula [41-43]

20 Ik

Sw) =2(I)| 1 - ——F—|.
(FL + FR) + w?

(€29)

This example aims at bridging the gap between a more traditional Hamiltonian and the cMPS formulation,
which allows to write these well-known expressions in terms of the parameter matrices Q, T, and {R,, }.

5. Reconstruction of waiting time statistics

In this section, we address the problem of accessing the distribution of waiting times in electronic transport
experiments. As mentioned in the introduction, a direct measurement of the WTD in the GHz range is not yet
possible due to the lack of single-particle detectors with sufficient accuracy at those frequencies. Here, we
propose to reconstruct the WTD based on the experimental measurements of low-order correlation functions.
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Figure 3. Two-point correlation function C, for single fermions tunnelling through a single-level quantum dot with data from [27]
(red-dotted curve). The blue curve, obtained from the reconstructed values of the parameters I7 r usinga cMPS formulation of the
quantum experiment, agrees well with the experimental measurement of C,. The deviation for small times is due to experimental
limitations in the time bin with respect to which the current trace is resolved.

The reconstruction is carried out using the cMPS framework presented in section 2 and the formulation of
transport experiments in terms of cMPS as exposed in section 4.

5.1. Definitions

The statistics of waiting times can be expressed in terms of the probability density function Py, which—as a
function of ——expresses the probability of having detected zero particles in the interval [0, 7].In terms of Py,
the WTD has first been derived in the context of quantum transport experiments in [20],

%P,
W(T) = mﬂ. (32)
or?
Here, () denotes the mean waiting time. Inserting P, (1) in cMPS terms (equation (16)), we arrive at an
expression for W in terms of the cMPS matrices D, D and Z defined in equations (8) and (15),
W(T) = le]T(DzZ’l —2DZ7'D + zflpz)el’fzel. (33)

c

o
The normalization factor ¢ > 0 ensures that f W(r)dr = 1.Equation (33) allows us to access the WTD
0

from the measurements of the low-order correlation functions only via the use of the cMPS framework to
reconstruct the cMPS matrices D, D and Z.

5.2.Results based on experimental data

We demonstrate our novel approach to derive the WTD from the measurement of correlation functions using
experimental data obtained in [27] for spinless electrons tunnelling through a single-level quantum dot. This
system is also known as a single-electron transistor at the nanoscale and has been discussed in section 4.2. The
experimentin [27] has been carried out in the kHZ frequency range, where a time-resolved measurement of the
current trace is possible. Although all the statistics—including correlation functions of arbitrary order as well as
the WTD—can directly be computed from this time-resolved current trace, this experiment provides an ideal
test-bed for our proposal. We can compare the WTD obtained from our reconstruction scheme based on cMPS
with the WTD directly deduced from the experimental current trace.

Due to the simplicity of the setup, our proposed method to access the WTD only requires the two-point
function C,. This one can directly be derived from the experimental spike train I (the time-resolved current
trace) and is shown in figure 3 (red dots). The rates I} = 13.23 kHz and Iz = 4.81 kHz have been determined
experimentally and the corresponding C,-function agrees very well with the analytical expression when the
detector rate is taken into account [27]

LI _
Co(r) = —LR_ (1 — e 7(i+T)), 34
20 = gt (1 e (i) (34)

In our reconstruction scheme, the quantity I + I can be determined from the current spike train
autocorrelation function I x I byleast squares methods or spectral estimation procedures analogous to the
procedure described in [11]. By requiring I} > I and using the expression of the steady-state current (see

9
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Figure 4. WTD obtained from state-of-the-art experimental measurements with data from [27]. The reconstructed WTD using
equation (33) is shown in blue. It matches the WTD obtained directly from the time resolved experimental current trace (red dots)
well. The deviation is due to the finite-sized time bin corresponding to the resolution of the current trace. A more accurate
reconstruction of the WTD is expected by increasing the time resolution of the current trace or of the measurement of C,.

equation (30)), I} and Iz can be uniquely identified. The reconstructed values for the rates are

[recon — 10.80 kHz, (35)
[recon — 4,76 kHz. (36)

The differences to the values from [27] are well within the range we would expect, regarding the time-resolution
in the spike train data. The curve plotted from these reconstructed values of the parameters I}  is shown in
figure 3 in blue. The slight deviation between the experimental points and this reconstructed C,-function is due
to the discretization of the counting time intervals used in the experiment: the size of each time bin is not much
smaller than the time scale on which C, changes mostly. This leads to an error in the estimation of the damping
factor I} + Iy and explains the difference of the blue and the red dotted curves. Naturally, one could expect a
more accurate reconstruction of the parameters I} and Iy when increasing the time resolution of the current
trace or of the measurement of C,.

From I} and I}, the corresponding cMPS matrices Ry and Ry can be constructed, as well as the matrices M
and D. In this simple case, we did not need to employ the whole reconstruction procedure from [11]. Indeed, it is
clear from equation (34) that only two out of the four parameters that characterize the system appear: C, only
depends on the tunnelling rates [7 and I'y—the eigenenergies 0 and ¢ of ﬁsys do not contribute’. This will in
general not be the case.

The matrices R and Ry give access to the matrices D and D by direct computation. Inserting the latter into
equation (33), the WTD can be reconstructed and the result is plotted in figure 4 (blue curve). In order to build
confidence in our procedure, we compare this result with the experimentally accessible WTD (red dots). Let us
recall that the transport rate is in the kHz range, hence the WTD can directly be extracted from the current spike
train I: by sorting, counting all (discrete) waiting times between two consecutive incidents, and subsequently
normalizing the resulting histogram, one obtains the red-dotted WTD in figure 4. The slight deviation between
the WTD reconstructed via our proposal and the experimental one is again due to the discretization of the
counting time intervals. One could expect a more accurate reconstruction of the WTD when increasing the time
resolution of the current trace.

The WTD in figure 4 shows elementary transport properties of single independent fermions that cannot
tunnel at the same time through the single-level quantum dot, which is consistent with the fact that W(7) — 0
for 7 — 0.Itisimportant to emphasize that it is the first time a WTD is extracted from experimental data,
therefore bridging the gap between theoretical predictions and experiments. The good agreement of the two
curves demonstrates the potential of our cMPS-based reconstruction procedure to access the WTD from the
measurements of low-order correlation functions. This opens the route to access the WTDs in the high-
frequency domain from low-order correlation-functions measurements.

5 The eigenvectors of T only depend on I} and T, this applies to My, My and all residues as well. Accordingly, the two non-real poles are the
only quantities that depend on €, however, only the residues connected to the two real poles do not vanish. When adding off-diagonal
elements to K, the terms mix and a dependency on K arises.

10

129




10P Publishing New]. Phys. 17 (2015) 113024 G Haacketal

6. Conclusion

In this work, we have taken an approach motivated by cMPS to perform tomographic reconstructions of
quantum transport experiments. On a formal level, we have extended this formalism to perform a
reconstruction of unknown dissipative processes based on the knowledge of low-order counting probabilities.
We then demonstrated that cMPS is an adequate formalism to describe quantum transport experiments based
on tight-binding Hamiltonians.

This work advocates a paradigm change in the analysis of transport experiments. The traditional method is
to make explicit use of a model to put the estimated quantities into context, a model that may or may not
precisely reflect the physical situation at hand. The cMPS approach is to not assume the form of the model, with
the exception that the quantum state can be described by a cMPS. Such an approach is of particular interest as it
opens the way to the access of quantities that are not measurable experimentally with current technologies, high-
order correlation functions and distributions of waiting times.

To convincingly demonstrate the functioning of cMPS tomographic tools applied to quantum transport
experiments, we presented a simple example that consists of electrons tunnelling through a single-level quantum
dot. Making use of experimental data, we showed that we could successfully reconstruct the distribution of
waiting times from the measurement of the two-point correlation function only. This work constitutes therefore
asignificant step towards accessing the waiting time distribution in the quantum regime experimentally, a
challenge present for several years now. Importantly, the application of our reconstruction procedure goes
beyond the interest in WTD: it also provides an access to higher-order correlation functions, which are key
quantities to better understand interacting quantum systems.

In subsequent research, it would be desirable to further flesh out the statistical aspects of the problem. After
all, the description in terms of cMPS constitutes a statistical model. It would constitute an exciting enterprise in
its own right to identify region estimators that provide efficiently computable and reliable confidence regions
[44] when considering the problem as a statistical estimation problem, related to the framework put forth in
[45-47]. We hope that the present work inspires such further studies of transport problems in the mindset of
quantum tomography.
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Appendix. Reconstruction method from low-order counting probabilities

In this appendix, we provide further technical details on the reconstruction scheme based on the measurement
of low-order counting probabilities, Py and P;. The goal is to access the central cMPS parameter matrices M and
D.Werefer to figure 1 for a general view of the reconstructible items. We start from equation (13) in the main
text. By changing the integration bounds, we obtain equation (14),

T 1 ty— -
B = [ dn [ [ dt Gt ),

where the integrand C,, is altered to

C. (7’, By oves tn) = lim Tr [eT(L””’T)e‘("'"R;k ® RyRf ® Ry es(””Z)Rl* ® Rles(T”‘ )] (A.1)
L—oo

Note thatin contrast to equation (7) where the propagating matrix is the transfer matrix T'defined by equation (2)

(or equivalently its diagonal representation D), the propagating matrix in the exponential terms between two

measurement points now is the matrix S, which is defined by

S=Q*®1+18Q=T-Y R @R, (A2)
j

We can further simplify equation (A.1) by performing the thermodynamic limit L — oo. The spectrum of T for
ageneric system consists of complex values with negative real part and only one eigenvalue being equal to zero.
When taking the limit L — oo, all eigenvalue contributions to e/ £ =7 vanish, except the one corresponding to
the zero eigenvalue. Hence
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lim eT¢=" = Xeje X1, (A3)

L—oo

with the first canonical unit vector denoted by e; and the basis transformation matrix X to the diagonal basis of T.
Similar to D and T, we define the matrix D as the diagonal matrix of S with basis transformation matrix Y:

S=YDY (Ad)

By defining the matrices M; = Y’I(R;k ® Rj)Y for j = 1,...,n, and setting Z = (z) = Y~1X (with inverse
Z7' =t (Z;x)), wearrive at equation (15),

Cn(r, by ooy tn) =l Z1 e /\/l,,---eD(fZ*‘S) M, eP(n-t) M, eD(T”‘)Zel.

Equations (15) and (7) have a close structural resemblance: the matrices M and M are similar in the linear algebra
sense, i.e., there exists a basis transformation from M to M. The matrices D and D are the diagonal matrices of the
transfer matrix T'and the matrix S, respectively. It is straightforward to transform M and D into M and D and
vice versa: by subtracting M from D, we obtain S (up to similarity/basis transformation), whose diagonal matrix is
D. Applying the same basis transformation (from (D — M) to D) to the matrix M results in the matrix M.

For n = 0, the counting probability function then reads

Po(r) = e XY D57 Y 1X gy, (A.5)

which can be rewritten as a sum of complex exponential terms, with {4, } being the eigenvalues of Sas
dZ
Py(1) = Zﬁl,]-zj,l el (A.6)
j=1

This expression corresponds to the analogue of equation (10) in the main text. Since Sis by definition a Kronecker
sum of Q* and Q with eigenvalues {qj* } and {g; } respectively, the spectrum of S consists of the sums qj* + q,
with j, k = 1,...,d.Itis closed under complex conjugation (for each element of the set its complex conjugate is
also element of the set), as well as the coefficient set {2} ;z;; }. This ensures that P, is real-valued. Being related to
Q (which consists of a skew-hermitian matrix (with imaginary spectrum) and negative definite matrices), we
have that Re 1i; < 0 for each j, such thatall summands vanish sufficiently fast and Py is normalizable.
Furthermore, the dominance of the damping factors over the oscillatory components ensures the positivity of Py
(in particular, the p; with the least damping is always real-valued). Analogously, for P, () we obtain

&7

s e — eHiT )
Z Z]vaj,kzk,l (1 - (S]‘,k)—7 + 5].),(7.6;1]., (A7)
k=1 P — K

with the Kronecker delta 6; ,

F) =D cmnTmeT. (A.8)
m,n

Assuming that the terms 7™"e#«7 are linearly independent, in principle one can always single out these
contributions as well as their corresponding prefactors c,, ,. This gives us the chance to extract the coefficients
{2,jzj,1} and the eigenvalues {1; } from Py, provided that no coefficient is identical to zero. Rearranging the
values { 1; } to a diagonal matrix in Kronecker sum form results in the matrix D. One should note, however, that
efficient spectral recovery algorithms like the matrix pencil method do not straightforwardly work for functions
suchas P, n > 2, where the exponential functions are multiplied with powers of 7.

In order to reconstruct the elements of the matrix M together with the off-diagonal elements of Z, we use a
gauge argument: All probability functions P, are invariant under scaling and permutation of the eigenvectors in
the matrices X and Y (except for the eigenvector of T corresponding to eigenvalue zero). This allows us to require
allbut one Z ; to be equal to one, and immediately obtain the according number z; ;. The remaining coefficient
can then be determined via the normalization constraint

dZ
YAz =1, (A.9)
=1

so thatall z; ; are known. This can be used to obtain the diagonal elements M,; ; from M. For the remaining
matrix elements, only the symmetric elements M; ;. + M, ; (but not their constituents) are directly accessible
since

d2 dZ

N eMkT — eMT R N eMkT — eMjT
Z 2 jMirzi —— = Z(zl,ij,ka,l + Zl,k./\/lk,jzj,l)i (A.10)
'J“:k' B — K j<k P — 1

However, this does not constitute a limitation for the reconstruction of the matrices Q and R of the ancillary
system. To this end, we make use of the inner structure of M. The diagonal matrix D with eigenvalues 1i; can be
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reordered such that it has the form D = Dj ® 1 + 1 ® Dq with diagonal D consisting of the eigenvalues of Q.
Reordering the eigenvectors in Y accordingly, we can assume that the matrix Y and hence the matrix M have the
form of a Kronecker product

M =R @ Rpec. (A.11)
Here Reec = (rj4) € C4*4 s in general not diagonal. The symmetrized components of M can then be written
as 171 + i1, and the constituents r; can be determined (up to a phase factor) by equating them with the
gkl k,j'm, J p P yeq g

coefficients in equation (A.10). The according equation system can then be solved.

The important point is that Ry and Q. := D are valid cMPS parameter matrices in the same gauge and
hence are sufficient for reconstruction with the same argument asin [11, IIL.E]. Let us note that concrete values
of the basis transformation matrices X and Y are in fact never used or needed in the reconstruction procedure.
From R, and Q,., we can compute all quantities we need to establish the correlation and counting probability
functions, in particular M and D. Regauging R and Q... such that the orthonormalization condition [1] is
fulfilled, yields a reconstruction of the free Hamiltonian K. of the ancillary system.
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A.2  Quantum singular value decomposition

An indispensable building block for many guantum algorithms (see section 4) is quantum phase

estimation: Given a unitary operator U = ¢ A

, exponentiating the Hermitian /7, and an eigen-
vector |¢ i ), it provides an estimate for the corresponding eigenvalue ¢ 2% More generally, using

an initial state | y ) with eigenvector overlaps (¢ ;| y ), the operation

10,00 = D L12) 1)) 27, (32)

]
is performed. | - ), is a quantum register consisting of 72 qubits, each of which are initially in the
state |0), and ultimately provide a binary representation of ¢ 1279 with m binary digits. Each state
|e_i2m;f )  is a product state and can be read out efficiently. The operation makes use of Hadamard
quantum gates and the (inverse) quantum Fourier transform; the latter involves the successive con-
trolled application of U on | y). For this, U needs to be efficiently simulatable, which is generally

—IH AL o shown to be efficient first for

not the case for an arbitrary unitary. Simulating U = e
Hamiltonians with local interactions!”. More classes of Hamiltonians followed, including sparse
Hamiltonians™*) and positive-semidefinite, non-sparse, low-rank matrices7".

For practical quantum algorithms, however, it is also desirable to exponentiate general, non-po-

sitive, even non-quadratic matrices A. Hamiltonians of the form

as in Ref. [166], there however for sparse matrices, have positive and negative eigenvalues by con-
struction and hence cannot simply be used in the algorithm in Ref. [171] without losing relative
phase information of the eigenspaces. The following publication [6]* helps closing this gap by pro-
viding a prescription for efficiently exponentiating Hamiltonians of the form (33) with non-sparse,
low-rank matrices A, which need not be quadratic. The eigenvectors of H comprise the singular vec-
tors of A and the eigenvalues the corresponding singular values. Together with the preservation of
the phase relations between the singular spaces, this paves the way for a complete quantum analogue
of the singular value decomposition with all its entailing applications. Specifically discussed in the
publication is the Procrustes problem of finding an isometry (a matrix with orthonormal columns)
that is in a least squares sense closest to a given linear map.

As an example for a potential embedding into a larger quantum algorithm, note that the svp
also plays a central role in compressed sensing: A classical fast iterative algorithm that solves the
matrix completion problem Eq. (13) and also the compressive quantum state tomography problem

*Patrick Rebentrost, Adrian Steffens, and Seth Lloyd,“Quantum singular value decomposition of non-sparse low-
rank matrices”, ArXiv e-prints 1607.05404., 2016 (arxiv.org/abs/1607.05404). After submission of this thesis published as
Patrick Rebentrost, Adrian Steffens, Iman Marvian, and Seth Lloyd, Physical Review A 97:012327, 2018 (© 2018 American
Physical Society).
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Eq. (15) (see section 2.2 alternates between fitting the ansatz matrix to the constraints and truncating
its singular spectrum (singular value thresholding).** The quantum svD could be used as a subrou-
tine in a quantum matrix completion algorithm, interfacing with a quantum version of the fitting
operation, and is expected to be faster than a more general quantum semidefinite programming
algorithm.l"¢4]
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Quantum singular value decomposition of non-spar se low-rank matrices
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In this work, we present a method to exponentiate non-sparse indefinite low-rank matrices on a quantum
computer. Given an operation for accessing the elements of the matrix, our method allows singular values and
associated singular vectors to be found quantum mechanically in a time exponentially faster in the dimension
of the matrix than known classical algorithms. The method extends to non-Hermitian and non-square matrices
via embedding matrices. In the context of the generic singular value decomposition of a matrix, we discuss the
Procrustes problem of finding a closest isometry to a given matrix.

Matrix computations are central to many algorithms in op-composition of dense non-square, low-rank matrices. As one
timization and machine learning [1-3]. At the heart of thesepossible application of our method, we discuss the Procrustes
algorithms regularly lies an eigenvalue or a singular value deproblem [1] of finding a closest isometric matrix.
composition of a matrix, or a matrix inversion. Such tasks p1athod. We have been given aiV x N dense (non-

could be performed efficiently via phase estimation on a “n"sparse) Hermitian indefinite matrix € CN*N via efficient

versal quantum computer [4], as long as the matrix can be siny5 0|6 access to the elementsifThe oracle either performs

ulated (exponentiated) efficiently and controllably as a Hamil-, ., atficient computation of the matrix elements or provides

tonian acting on a quantum state. Almost exactly twenty year§..ess 1o a storage medium for the elements such as quantum
ago, Ref. [5] paved the way for such a simulation of quantun s [23, 24]. Our new method simulates’ (4/N)* on an ar-

systems by introducing an efficient algorithm for exponentiat-bitrary quantum state for arbitrary timesNote that the eigen-
ing Hamiltonians with tensor product structure—enabling apyalues of A/N are bounded byt A| where || A||

. . . . maxs max
plications such as in quantum computing for quantum cheMis e maximal absolute value of the matrix elementsof

istry [6]. Step by step, more general types of quantum SyStyiq means that there exist matricasor which the unitary
tems were tackled and performance increased: Aharonov and.i (4/N)t «an be far from the identity operator for a time of

Ta-Shma [7] showed a method for simulating quantum sysg g /|1 | i.e. an initial state can evolve to a perfectly dis-
tems described by sparse Hamiltonians, while Ctelda. [8] tinguishable state. For such times, the unitary*/~)* can

demonstrated the simulation of a quantum walk on a sparsgy el approximated by a unitary generated by a low-rank
graph. Berryet al. [9] reduced the temporal scaling to ap- . 4rix.

proximately linear via higher-order Suzuki integrators. Fur- ) ) ) .

ther improvements in the sparsity scaling were presented in Leto andp be N-dimensional density matrices. The state
Ref. [10]. Beyond sparse Hamiltonians, quantum principap IS the target state on which the matrix exponentialgfV
component analysis (qPCA) was shown to handle non-spard® applied to, while multiple copies ofare used.as ancillary
positive semidefinite low-rank Hamiltonians [11] when given States. Our method embedsZtNéQelements ofA into a Her-
multiple copies of the Hamiltonian as a quantum density maMitian sparse matrif 4 < (C_N N which we call “modified
trix. This method has applications in quantum process tomogsWap matrix” because of its close relation to the usual swap
raphy and state discrimination [11], as well as in quantunfnatrix. Each column ob 4 contains a single element of.
machine learning [12-18], specifically in curve fitting [19] The modified swap matrix between the registers for a single
and support vector machines [20]. In an oracular settingtoPy ofp ando is

Ref. [10, 21, 22] showed the simulation of non-sparse Hamil-

tonians via discrete quantum walks. The scaling in terms of N
i i ic $3/2 H H . . 2 2
the simulated time is t°/ or even linear irt. Sa = Z Ajlk) (5] @ [5) (k| € CNXN? 1)
k=1

In the spirit of Ref. [11], we provide an alternative method
for non-sparse matrices in an oracular setting which requires
only one-sparse simulation techniques. We achieve a run timehis matrix is one-sparse in a quadratically bigger space and
in terms of the matrix maximum element antfa&caling. We  reduces to the usual swap matrix fdr, = 1 andj,k =
discuss a class of matrices with low-rank properties that make, ..., N. Given efficient oracle access to the elements, we
the non-sparse methods efficient. Compared to Ref. [11] thean simulate a one-sparse matrix suckbaswith a constant
matrices need not be positive semidefinite. In order to effechaumber of oracle calls and negligible error [7-9, 25]. We dis-
tively treat a general non-Hermitian non-quadratic matrix, wecuss the oracle access below. This matrix exponentigthas
make use of an indefinite “extended Hermitian matrix” thatapplied to a tensor product of a uniform superposition and an
incorporates the original matrix. With such an extended maarbitrary state. Performingj4 for small At leads to a reduced
trix, we are able to efficiently determine the singular value de-dynamics ot when expanded to terms of second ordeAin
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as expect the method to work well for low rank matricéghat
CiSaAL S AL are dense with relatively small matrix elements.
tri{fe " p@oe Pt = (2 A large class of matrices satisfies these criteria. Sample a

o —itr{Sap®@o}At +itri{p® 0o Ss}At + O(At?).  random unitaryy € CV*N andr suitable eigenvalues of size
] ) ~|Aj] = ©(V) and multiply them ag/ diag,.(A;) UT to con-

Here, tr; denotes the partial trace over the first registersyruct 4. Here,diag, ();) is the diagonal matrix with the
containingp. The first O(At) term istr1{Sap @ 0} = eigenvalues on the diagonal and zero otherwise. A typical ran-
> k1 Aji(dlplk) 5) (klo. Choosingp = |T)(I], with |T) == dom normalized vector has absolute matrix elements of size
V;ﬁ >4 |k) the uniform superposition, leads te; {S4 p ® O(1/+/N). The outer product of such a vector with itself has
o} = 4 0. This choice forp contrasts with gPCA, where absolute matrix elements of s_iZé(l/_N). Each eigenvalue
is proportional to the simulated matrix [11]. Analogously, the ©f @bsolute siz&(XV) is multiplied with such an outer prod-
secondO(At) term becomesr;{p ® o Sa} = o 4. Thus uct and ther terms are_summed up. Thus, a typical matrix
for small times, evolving with the modified swap matsiy, ~ element ofA will be of sizeO(y/r) and || Aflimax = O(r).

on the bigger system is equivalent to evolving WitiN' on Phasg estir.nation.. Phase estimation .provide.s a.gateway

theo subsystem, from unitary simulation to many interesting applications. For

the use in phase estimation, we extend our method such that

the matrix exponentiation ofi/N can be performed condi-

tioned on additional control qubits. With our method, the
r e i WAL 5 ol FAL (3) eigenvalues\;/N of A/N can be both positive and negative.

The modified swap operatd#, for a Hermitian matrixA

Let ¢y be the trace norm of the error ter(At®). We can  with eigendecompositiodl = > ;|u;)(u;| is augmented

bound this error by, < 2||A|2,..At? (see Appendix). Here, as|1) (1|® S4, which still is a one-sparse Hermitian operator.

| Allmax = MaX,n |Arm,| denotes the maximal absolute ele- The resulting unitary— 1115448 — 10) (0| @ 1+ [1) (1| ®

ment of A. Note that|| A||max Coincides with the largest ab- e~ 9441 js efficiently simulatable. This operator is applied to

solute eigenvalue of 4. The operation in Eq. (3) can be per- a state|c)(c| ® p ® o where|c) is an arbitrary control qubit

formed multiple times in a forward Euler fashion using mul- state. Sequential application of such controlled operations al-

tiple copies ofp. Forn steps the resulting error is= n €. lows the use phase estimation to prepare the state [25]

The simulated time is = n At. Hence, fixinge andt,

. . A
try {e T8 p @ gl SAAY — 5 g Wt (4, 0] + O(A#?)

= > HY) 6

2
n=0( Sk ) (@ VEBP AT,

) ] . ] from an initial state:)|0...0) with O([log(1/¢€)]) control
steps are required to simulate’~*. The total run time of  qupits forming an eigenvalue value register. Hebe, =
our method is:74, the number steps is multiplied with the 1, |4) and e is the accuracy for resolving eigenvalues. To

matrix oracle access tinié, (see below). . ~ achieve this accuracy, phase estimation is run for a total time
We discuss for which matrices the algorithm runs effi-;y — O(1/¢). Thus,O(]|A12,.../¢*) queries of the oracle for

max

ciently. Note that an upper bound for the eigenvalues &V A are required, which is of orde®(poly log N') under the

in terms of the maximal matrix element|is;[/N < [|Allmax-  low-rank assumption fort discussed above.

At a simulation timet only the eigenvalues ofl/N with Matrix oracle and resource requirementsTo simulate the
[Aj[/N = Q(1/t) matter. Let the number of these eigenval- modified swap matrix, we employ the methods developed in
ues ber. Thus, effectively a matrixi, /N is simulated with  Refs. [8, 9]. First, we assume access to the original matyix
tr{AZ/N?} = 327_ ) A3/N? = Q(r/t?). It also holds that

tr{A2/N?} < ||A|2,,.. Thus, the rank of the effectively sim- 4 E)0 - 0) = [5 k)| Aji). (6)

ulated matrix is- = O(|| A||?,,..t?). ) ) )
(l Allaxt”) This operation can be provided by quantum random access

Concretely, for the algorithm to be efficient in terms of . 9

matrix oracle calls, we require that the number of simu-nLeamn?urx1 (sqvaélr\:gs[?gr :ﬁeﬁ:g@tg (j)af;rnaf’(eoﬁlpag%v?nd
lation stepsn is O(polylog N). Let the desired error be q ; : g the. An= Cjog
1/e = O(polylog N). Assuming||Allmas — O(1), mean- opfer_atlons. AIternanveI_y, there matrices whose elements are
ing a constant independent 8f, we have from Eg. (4) that efficiently compu_table, €. T‘? - O(p()ly.log N). For the
we can only exponentiate for a time= O(poly log ). For one-sparse matrix 4, the unitary _operatlon for the sparse
such times, only the large eigenvalue with I -|/N - simulation methods [8, 9] can be simply constructed from the

; SOV j = . o1
Q(1/poly log N) matter. Such eigenvalues can be achieveqoracIe in Eq. (6) and is given by
when the matrix is dense enough, for exampféV hasO (V) MO0 N ). (S o

: . J, = 1(J, 23 (Sa) gy, o) (1)

non-zeros of siz&(1/N) per row. For the rank of the simu- G k] )= |G- RN 9): (Sa)ep.g0)
lated matrix in this case we find that= O(poly log N), thus ~ Here, we usé€j, k) as label for the column/row index of the
effectively a low-rank matrix is simulated. To summarize, wemodified swap matrix.
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We compare the required resources with those of othetorresponding eigenvectors are proportiona(dg, tv;) €
methods for sparse and non-sparse matrices. For a genef@*", see Appendix. The left and right singular vectors
N x N and s-sparse matrixO(sN) elements need to be of A can be extracted from the firdt/ and lastN entries,
stored. In certain cases, the sparse matrix features more struespectively. Sincel is Hermitian, its eigenvectors can as-
ture and its elements can be computed efficiently [9, 25]. Fosumed to be orthonormd|{u;, v;)||? = |lu;||® + [|v;]|? = 1,
non-sparse matrices and the gPCA method in Ref. [11], onland (u;,v;) - (u;, —v;)T = |Ju;]|? — |lv;]|* = 0, from which
multiple copies of the density matrix as opposed to an oper&ollows that the norm of each of the subvectarsandv; is
tion as in Eq. (6) are required for applications such as state to-/+/2, independent of their respective lengthsand N. The
mography. For machine learning via qPCA [11, 20], the denimportant point is that the eigenvectors of the extended matrix
sity matrix is prepared from a classical source via quantunpreserve the correct phase relations between the left and right
RAM [23, 24] and require$)(NN?2) storage. In comparison, singular vectors since'%iu;, v;) is only an eigenvector o
the requirements of the method in this work are in principlefor the correct phasé?s = 1.
not higher than these sparse and non-sparse methods, both inThe requirements for our quantum algorithm can be satis-
the case of qRAM access and in the case when matrix eldied also for the extended matrix. For randomly sampled left
ments are computed instead of stored. and right singular vectors, the matrix elements have maximal

Non-square matrices. Our method enables us also to de- size ofO(Zgz1 0j/VMN), thuso; = O(VMN). In ad-
termine properties of general non-square low-rank matricedition, an1/(M + N) factor arises in the simulation of the
effectively. To determine the singular value decomposition ofextended matrix from the ancillary staie= |1)(I] as before,

a matrixA = UV € CM*N with rankr, simulating the ~ which leads to the requiremesnt = ©(M + N). These two
positive semidefinite matrice$A’ andAf A via gPCA yields  conditions foro; can be satisfied if the matrix is not too
the correct singular values and vectors. However, essentiskewed, i.e.M = O(N). In summary, by simulating the
information is missing, leading to ambiguities in the singularcorresponding Hermitian extended matrices, general complex
vectors that become evident when inserting diagonal matrice®matrices of low rank can be simulated efficiently, yielding the
into the singular value decomposition#fAt that change the correct singular value decomposition.
relative phases of the singular vectors, Procrustes problem. The unitary Procrustes problemis to
. o find the unitary matrix that most accurately transforms one
AAT = U0 =UBDIVI VDRUT = AAT, - (8) matrix into another. It has many applications, such as in

with D := diag(e~i?7), ¥, being arbitrary phases. Hv; = shape/factor/image analysis and statistics [1]. We consider
ojuj foreachj = 1,...,r, then non-square matrices thus consider the Procrustes probler_n to
find theisometrythat most accurately transforms one matrix
Avj — UEDTVT'U]' = U].eil% uj = ojiy, (9) into another. Formally, minimiz§ W B — C||r among all

isometrieslV € CM*N Wi = 1, with B € CV*X and
which means different phase relations between left and right" ¢ CM*X whereM > N. The problem is equivalent to
singular vectors ind from those inA. Although A and A the general problem of finding the nearest isometric matrix
still share the same singular values and even the same sify ¢ CM*N to a matrixA € CM*N by takingA = CB'.
gular vectors up to phase factofisd — A||» will in general  Since our quantum algorithm is restricted to low rank matri-
(with the exception of positive semidefinite matrices, whereces, letd = C' Bt be low-rank with rank and singular value
U = V) not be zero or even be small: The matdxcannotbe  decompositiomd = U X VT withU € CM*", 5 ¢ R"*", and
reproduced this way—a singular value decomposition is morg” ¢ CN*", The optimal solution to the Procrustes problem is
than a set of singular values and normalized singular vectorgy” = U VT [1], setting all singular values to one, in both the
This affects all kinds of algorithms that require the appropriatdow-rank and the full-rank situation. Sinekis assumed to be
phase relations between each left singular veefoand the  |ow rank, we find gpartial isometry withW i = Peoi(v),
according right singular vectar;. Such applications are de- with Py, the projector into the subspace spanned by the
termining the best low-rank approximation of a matrix, signalcolumns ofl’. Thus,W acts as an isometry for vectors in that
processing algorithms discussed in Ref. [26], or determiningubspace (see Appendix).
the nearest isometric matrix, related to the unitary Procrustes In a quantum algorithm, we want to apply the nearest low-

problem, of a non-Hermitian matrix. rank isometry to a quantum statg). The state)) is assumed
In order to overcome this issue, consider the “extended mao be in or close to the subspace spanned by the columns of
trix” V. We assume that the extended matrix fon Eqg. (10) is
B 0 A given in oracular form and that is not too skewed such that
A= {AT 0 } , (10)  o;/(M + N) = O(1) and || Af|max = O(1). We perform

phase estimation on the input stée)|0. ..0) and, analo-
which was introduced for singular value computations ingous to Eg. (5), obtain a state proportional to
Ref. [27] and recently in sparse quantum matrix inversion
in [25]. The eigenvalues ofi correspond to{-c;} with Z B lug, £o5)| £ —4=) (11)

. . . ]\[ + N
{o;} being the singular values of for j = 1,...,r. The lo>e

1\I+1\
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Modified swap matrix. The modified swap matrix is de- Extended matrices.We define the Hermitian extended

fined as matrix A of a complex-valued, not necessarily square matrix
N A€ CMXN as
Sa= " Aulk)(l@ )k e CVNL (1) ~ , ,
J_ng s+lk) (1 @ 17) (k] A= ,L(l)T I(L)l c C(MA+N) x (M+N) (19)

Using block matrix identities for the determinant, we obtain

Taking A, — 1 leads to the original swap matri¥ = its characteristic polynomial

Z;\fk:l k) (j| @ |)(k| € CN**N*_ The N? eigenvalues of

Saare Xi(A) = AMNT det (AL + VAAT)(AL — VAAT). (20)
Ay, Aog, oo ANN, Arz, —Avas o A ks g — A ks '('1'21) The eigenvalues ofl are either zero or correspondfé-o; },

herek > i denot n indek areater than. The maximal the singular values ofl for j = 1,...,r with an additional
wherel > j denotes an index greater thary. The maxima sign. Hence, ifA has low rank-, thenA has low rankr. The
absolute eigenvalue &f4 is thusmax; i, |Ai] = [|Allmax,

corresponding eigenvectors are proportional(dg, +v;) €
CM+N since

x ) L] e
(Sa)? = D |4l k) (k| @ 1) (G < 1Al 1. (15) / ’
Jk=1 whereu; andv; are thejth left and right singular vector of,
Its eigenvalues aréA|? and the maximal eigenvalue is respectively. The important point is that the eigenvectors of
I the extended matrix preserve the correct phase relations be-

Al2 .- This alr ints to the result that th nd or- . . o .
1A s already points to the re at the second o tween the left and right singular vectors sirfe v, +v;) is

der error of our method naturally scales wjth |2, ., which ; ~ e
we will now derive. only an eigenvector ofl for the correct phase’s =1,

Error analysis. In the following, we estimate the error i 9.

. . ol A eWiu; FoeViu; + Av;

from the second-order term iAt in the expansion Eq. (2). ] - 7= J J J
A 3F0'7']1 ﬂ:Uj

The nuclear norm of the operator part of the second order er- :

ror is =" — 1), {:Fuu]} . (22)

1 J
epr = {84 p@ 0 S} = Stra{(Sa)* p 0} (16)

corresponding to the maximal absolute matrix element of
The square of the modified swap matrix is

e Aty — ojv;

The right hand side is only equal to zero for the correct phase
~ oo (S0 o’ =1.

2 Low-rank Procrustes. Let the isometry bedV = UV
In Ref. [11], this error was equal 154 = ||p — ol < 2, with U € CMXrandV € CNXT- Assume that\l > N,
which is achieved in the present algorithm by choosirguch ~ 91Ving orthogonal_ columns in the fuII-rank_ Prpcrustes prob-
thatA,, = 1 for eachyj, k. Here, our algorithm coincides with 18M (- = N). We find for the low-rank (partial) isometry that
the gPCA method fop chosen as the uniform superposition. ”
For general low-rankd, we bound Eq. (16) via the triangle wiw =vuluvi = vyt = Zgj{)‘;{. (23)
inequality. Taking the nuclear norm of the first term results in P

[tr1{Sap @ o Satll« <[[Sap ® oSall« Pick an arbitrary vectoF = Y°7_, o;#; + #+ = @l + 74
<lp@alllISAlx < [|A|2a- (17)  whereZ! denotes the part orthogonal to the orthonormal vec-
torsd;. Then,
The second and third term can be treated similarly. We obtain
ltr1{(S4)%p @ o }|l+ < ||Al|2,... COmbining all terms yields

the bound " Wiwz=3" a5 =, (24)
j=1
epo < 2| Al (18)

max*

Thus,WTW acts as the identity operator in the low-rank sub-
space, and projects out the space perpendicular to that sub-
space.

A — COAUTHORED PUBLICATIONS 140




A.3  Compressive density functional theory

Density functional theory™”™*] (DFT) is a very successful method for determining the electronic
structure, especially the ground state properties, of a quantum many-body system, allowing to ac-
curately compute quantities such as the ionization and atomization energies or the vibrational fre-
quencies of a molecule. Complementarily to tensor network states, the key point of DFT is to treat
a N-body quantum system just in terms of its electronic density o(7) € R, at position r € R?,
thus reducing the N-particle problem with the entailing curse of dimensionality (see section 2.1)
to a one-particle problem in the three spatial coordinates of 0. DFT works astonishingly well for
many applications and has its theoretical foundation in the Hobenberg-Kobn theorems™. For an
overview, see, e.g., Refs. [190, 191].

Since atomic nuclei are much heavier and hence move slower than electrons, the overall Hamil-
tonian can be split into an electronic and an atomic part that can be treated consecutively (Born-
Oppenbeimer approximation). The electronic Hamiltonian acting on an N-electron wave function
U(7y,...,ry) consists of a kinetic term 7, the electron-electron interactions V/,, depending on the
dependingon 7; 4 = [r; — 74|,

distances 7; ;, = [r; — 74| and the electron-nucleus interactions V.,

and the nuclear charges Z ;:

1 1 N 7z
H= =33 V+ > == D2t =T+Vot Vo (4
= 1<j<k<N ik jA=17j.A

The ground state of H with ground state energy Ej could in principle be determined using the
Rayleigh-Ritz variational principle

YT+ V, 4+ V¥
EO:mln ( | t| ) (35)
) ()
For high-dimensional |¥), this becomes computational infeasible. The first Hohenberg-Kohn the-
orem, however, states that the external potential is uniquely determined by the electronic density:
Vi 1s 2 unique functional of p. Since V,

ext ext
tor |¥), there is a one-to-one correspondence between the electronic density and the multi-particle

also fixes the Hamiltonian H and hence the state vec-

wave function for each external potential. The correspondence is not constructive, however, and the
explicit form of the universal, system-independent functional F : o — T o]+E,.[ 0] is unknown.
In this sense, the computational complexity of the original problem of finding the ground state has
been passed over to the specification of the universal functional F. In fact, it has been shown that
determining F is computationally hard even on a hypothetical quantum computer™?.
Nevertheless, the functional can be suitably approximated in many practically relevant situa-
tions. Introducing a noninteracting reference system with electronic orbitals {¢ ]-(r)}, yielding the

same electronic density as in the original system, o(7) = j\[:l | ]-(r)|2, and with approximative

141



A — COAUTHORED PUBLICATIONS

kinetic energy

N
Tys= - Z |vz 14;)s (36)

N

followed by applying the variational principle on the formal expression of the energy functional,
results in the famous Kobn-Sham equations*:

r N
<—%V2+Jd ! ‘9( ) Z Zs +VXC(@(1’))>¢] —6]¢] , 7=1,...,N (37)

[r =7l 4= I =7l

Since the electronic density o depends on the Kohn-Sham orbitals ¢/ j»Eq. (37) has to be solved itera-
tively until the eigenvalues and the density converge (self-consistency). All remaining energetic con-
tributions without explicit analytical form are summarized in the exchange-correlation term V..
Well-known heuristics for Vi include local density approximation (LDA) functionals such as the
Perdew-Wang functionalt®, generalized gradient approximation (GGa) functionals—additionally
taking gradient information of the electronic density into account—such as the Perdew—-Burke-Ernz-
erbof (PBE) functional”™?, and linear combinations of LbA and GGa functionals with the Hartree-
Fock exchange functional (so-called hybrid functionals) such as B3LYP (Becke functional, three pa-
rameters, Lee-Yang-Parr functional)'®). The standard functionals are not suitable for systems where
the density varies rapidly, such as systems with Van der Waals interactions, where further extensions
have to be in-
cluded.t®7”)

For practical computations, each Kohn-Sham orbital is expanded into a linear combination of
basis functions out of a dictionary of size d >N,

gbj:ch)gpk, j=1,...,N. (38)

Inserting this expansion into Eq. (37) results in the d X d real-valued generalized eigenvalue problem
HKSc(j):a:»Sc(f), 7=1...,N (39)

with Kohn-Sham Hamiltonian H*S with components HJKS = f(,b VH ngb p(7 (ﬁ KS de-
notlng the operator on the left hand side of Eq. (37)) and overlap matrix § with components Sip=

f(,b r)d>r. HXS depends via the electronic density o on the coefficients ¢
ing to the occupled orbitals (the ones with lowest energy eigenvalues & ]) and is updated after each

correspond-
iteration until the required self-consistency criteria are met. The accuracy of the DFT calculations

critically relies on the employed basis set and great effort has been put into establishing suitable
basis functionst?*~>°7 resulting in large basis set databases**?.
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In general, the computational effort for self-consistently solving Eq. (39) scales asymprotically
with O(d?), which becomes forbidding for large systems.*® On the other hand, discarding basis
functions in general amounts to lower computational effort, but also lower accuracy.

EYEFD

The goal of the present project is to use concepts from compressed sensing in order to identify
basis subsets that due to their considerably smaller size allow for faster computations while still re-
taining sufficient accuracy for the physical properties of interest. In the following, the principles of
the to be published project [7] are outlined.

Similar approaches outside the DFT context for selecting localized Wannier functions out of a
dictionary of functions have been pursued***°°) using an ¢ | -regularization term (see Eq. (11)). The
optimization routine, which has to take orthogonality constraints for the orbitals ¢/ j into account,
was based on an Bregman-iterations algorithm?7*°) that is closely related to the Alternating Di-
rection Method of Multipliers (spMM)P°%). Building on this, £ | -regularized Bregman optimization
algorithms for density matrix minimization have been proposed!”’>*™, as well as an ¢,-regularized
(2] _the computational advantage over methods such as in Ref. [201]
has yet to be worked out, however. Beyond ground state calculations, DFT and compressed sensing

orbital minimization method

have, e.g., been combined for learning physical descriptors in materials science*.

By arranging the generalized eigenvectors {¢(/)} that correspond to the N occupied orbitals
(ignoring electronic spin degeneracy for clarity) as column vectors of a matrix C € CP*N Eq. (39)
can be reformulated as an iterative minimization problem

C™*! = argmin tr(H®S(CY) cCT)

CeRDXN
subjectto  CTSC =1, (40)

where the constraint represents the orthonormality of the columns of C (corresponding to the elec-
tronic orbitals) with respect to the overlap matrix S. The minimizer of the /-th iteration C ! deter-
mines HXS for the subsequent iteration until self-consistency is achieved.

Using a large dictionary of basis functions (¢, ), many basis functions will not contribute much
to the minimizing function, i.e., the corresponding rows in C will comprise entries close to zero,
which could be facilitated by introducing a regularization term, as in Eq. (1), consisting of the fl—
norm of the £,-norms of the row vectors of C,

D , N 1/2
€l = > (22¢2,) (49

k=1 j:l

*Making certain physical assumptions such as locality, however, one can also design linear scaling methods.>°»>°4]
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which is also used, e.g., in multi-task fearure learning[“‘*]. Due to the constraint, the resulting min-
imization problem

min

_min f5,(C) =_min a(HCCT)+A|C||,,
e nx

Ob) CeRDxN
subjectto CTSC = 1y. (42)

is non-convex and, thus, cannot easily be treated with generic convex solvers. However, the structure
athand allows for the use of techniques that make use of the manifold geometry and provide efficient
optimization routines on matrix manifolds!”). Matrices C that fulfill the constraint in Eq. (42) are
elements of the generalized Stiefel manifold

VE(R") ={CeR"N: CTSC =1y} (43)

Using second order derivatives, a trust region algorithm was employed that acts on generalized
Stiefel manifolds™® and is based on the Manopt™! toolbox implementation. The map C* —
H®S(C*) was provided by accessing the ab initio molecular simulations package FHI-aims**""®),
whose input/output functions were modified for interfacing with Matlab”) and Manopt. The
sparsity of the minimizer C* of Eq. (42) depends on the size of the regularization parameter A > O:
In general, larger values of A result in a higher concentration of the entries of C* within a few
rows (cf. Fig. 3), while for smaller A more basis functions will contribute and the energy term, the
sum of the lowest N generalized eigenvalues, will be more accurate. This corresponds to the fact
that adding more basis functions to a dictionary necessarily increases the possibilities of describing
the system, however often only marginally. This requires to carefully tune Afor trading off energetic
accuracy and effective basis size (see Fig. 7).
The matrix-valued gradient of the objective function fobj can be written as

d

aCl',]‘

C..
foijZ(HC)i,j‘i'/l—’], (44)
”Ci,: |2

C

1/2. . .
where ||C; ||, = < 5\]:1 Cizl> /s the {,-norm of the i-th row of the matrix C. The fourth-order
Hessian tensor with the components
32
dC,,9C; j

foi = H, 18, +218 < oL Ci’fci’l> (45)
obj — i kY1 i,k -
e ! Gl NICIB

can be treated as a matrix by grouping the indices z, 7 and k,l, respectively. The orbitals in FET-aims

9

with orbital quantum number ¢ arise in groups of 2¢ + 1 elements comprising the subshells with
magnetic quantum numbers 72 = —¢, ..., +{. Accordingly, the objective function and its deriva-
tives have to be modified by taking the £,-norm of all rows corresponding to one orbital group.
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10 10~ 10
A

Figure 7: Buying sparsity with energy at the example of the C,H , molecule with D =796 Gaussian
basis functions with logarithmically even-spaced exponents: The difference between the generalized
eigenvalue sum of the occupied orbitals E ) with the one without regularization E)_ is plotted as a
function of the reqularization parameter A (above) after the initial SCF iteration. The corresponding
size of the distilled basis set (support size) as a function of A is shown below. The support size is taken
10 be the number of basis indices whose € y-norm is larger than 107°. By increasing A, as the energy
becomes less accurate, the effective basis set size becomes smaller.

The resulting minimizer C* of Eq. (42) is row-wise thresholded, i.e., rows C7'. with ||CZ: ||, below a
A-dependent threshold 7 are considered noncontributing and discarded. The remaining basis func-
tions constitute the distilled basis set, which, while substantially smaller, provides sufhicient accuracy
in describing the system.

In order to demonstrate the principle, the procedure is applied to an ethylene (C,H 4) molecule,
using uncontracted Gaussian-type orbitals? *7 with logarithmically even-spaced exponents and or-
bital quantum number ¢ =0,...,4asan ansatz for a generic basis set.®® As exchange-correlation
functional, the PBE functional was employed. The geometric data of the nuclei was obtained from
the Noa14D repository. Pulay mixing[zzz] was used to increase convergence speed towards self-
consistency.

As can be seen by Fig. 7, larger values for A yield smaller effective bases and larger deviations

*7 Gaussian type orbitals (cT0) are centered around the nuclei of the constituting atoms with radial part consisting
of linear combinations of Gaussian functions with varying exponents and coefficients. Uncontracted GTos possess only
one Gaussian function.

**Handling more competitive basis functions such as numeric atom-centered orbital (NA0) basis functions™ is less
straightforward due to the underlying parameter structure, but has been implemented as well.
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Figure 8: Ethylene molecule C,H ,: Selected basis  Figure 9: Resulting electronic density of the
functions (middle row, light). Discarded indices ethylene molecule from the distilled basis set.

are marked with black. The basis set is ordered by The carbon ””fd“ are mar kfd n gray, zibe hy-
drogen nuclei in white. A higher electronic den-
sity corresponds to a warmer color. Created with the
rendering software Jmol *2°).

atom number (upper row, the first two atoms are
carbon, the remaining four bydrogen) and orbital
angular quantum number { (lower row).

from the more accurate energy of the original, larger dictionary without regularization term E,_.
When exemplarily setting A=10.01, the basis functions are selected as shown in Fig. 8. There remain
more basis functions per atom for the carbon atoms. Furthermore, basis functions with low orbital
quantum number are preferred. The resulting basis set has a size of 292 basis functions out of orig-
inally 796 basis functions and an total energy deviation after achieving self-consistency of 12 meV
(corresponding to a relative difference of 6 107°). This means that cutting the original basis by more
than one half affects the relative error in terms of energy with less than 10=>. For obtaining a desired
target basis size, the regularization parameter A can be tuned accordingly. Naturally, the procedure
is not limited to ethylene, but has been successfully tested on other systems. The electronic density
of the molecule o(7) corresponding to the reduced basis set is depicted in Fig. 9.

This illustrates how discarding larger parts of the models of molecules by use of compressed
sensing methods still can preserve their descriptive power, paving the way for smarter Kohn-Sham
orbital basis sets that allow for efficiently tackling larger quantum systems. The entire procedure
scales with O(D?). This has to be compared to existing greedy strategies, such as the one in Ref. [201]
for Nao basis functions, which scales linearly in the size of the dictionary and can be interpreted as
a matching pursuit algorithm related to compressed sensing, but suggests worse performance in
identifying the relevant basis functions because of its nature of only making a locally optimal choice
at each optimization step. For large dictionaries, the overlap matrix § will become singular, which
can be addressed by essentially separating the Stiefel manifold into a null space component below a
certain eigenvalue threshold of § and its complement!).
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B.1 Abstract

The present thesis represents a cumulative dissertation and is based on four publications that high-
light the connections of signal processing with complex quantum systems from different angles.

On one side, large quantum systems require exponentially large parameter spaces for a complete
description, calling for sophisticated techniques for handling the multitude of data. The compressed
sensing paradigm and how to adapt it for practical quantum state estimation from experimental
measurement data involving model selection methods constitutes one main topic. A further topic
pertains to tensor networks in combination with spectral estimation protocols. This yields a less
general procedure than compressed sensing regarding the range of applicable quantum states, how-
ever, substantially larger systems can be handled. In the course of the underlying publications of
this thesis, both approaches have successfully been applied within concrete experiments.

Complementarily, quantum systems can be used to massively accelerate classical algorithms by
means of future quantum computers. Due to their fundamentally different architecture, it is not
straightforward to devise quantum analogues of classical algorithms. By designing novel algorith-
mic building blocks, a quantum algorithm for spectral estimation with superpolynomial speedup
towards classical algorithms could be developed. The four major publications are supplemented by
coauthored publications in the appendix.

&Y EFD

Die vorliegende Arbeit ist kumulativ angelegt und basiert auf vier Verdffentlichungen, die die
Verbindungen von Signalverarbeitung und komplexen Quantensystemen aus verschiedenen Blick-
winkeln beleuchten.

Einerseits bendtigen grofle Quantensysteme exponentiell grofe Parameterrdume fiir eine voll-
stindige Beschreibung, was ausgefeilte Techniken zur Handhabung der Datenmengen erfordert.
Ein Schwerpunkt liegt auf dem Compressed-Sensing-Paradigma und wie dieses fiir die praktische
Rekonstruktion von Quantenzustinden aus experimentellen Daten unter Einsatz von Model-Selec-
tion-Methoden angepasst zu werden hat. Ein weiterer Schwerpunket liegt auf Tensornetzwerken in
Verbindung mit Spektralanalyse-Methoden. Was die Breite der handhabbaren Quantenzustinde
betrifft, ist dieser Ansatz weniger allgemein als Compressed Sensing, allerdings kann er weitaus
grofere Systeme verarbeiten. Im Rahmen der dieser Arbeit zugrunde liegenden Versffentlichungen
wurden beide Ansitze erfolgreich innerhalb konkreter Experimente angewendet.

Komplementir hierzu kénnen Quantensysteme auch eingesetzt werden, um klassische Algo-
rithmen erheblich zu beschleunigen — mithilfe zukiinftiger Quantencomputer. Durch ihren grund-
sitzlich andersartigen Aufbau ist es nicht einfach, analoge Quantenfassungen von Algorithmen zu
entwickeln. Durch die Nutzbarmachung neuartiger algorithmischer Bausteine konnte ein Quan-
tenalgorithmus zur Spektralanalyse mit superpolynomieller Beschleunigung gegeniiber klassischen
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Algorithmen ausgearbeitet werden. Die vier Hauptverdftentlichungen werden im Appendix er-
ginzt durch Publikationen, die in Koautorschaft entstanden sind.
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