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Bone mineral density assessment 
using iterative reconstruction 
compared with quantitative 
computed tomography as the 
standard of reference
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Ahi Sema Issever1

This study examines the influence of iterative reconstruction on bone mineral density (BMD) 
measurement by comparison with standard quantitative computed tomography (QCT; reference) and 
two other protocols based on filtered back projection. Ten human cadaver specimens of the lumbar 
spine with a hydroxyapatite calibration phantom underneath, were scanned with 4 protocols: 1. 
standard QCT, 2. volume scan with FBP, 3. helical scan with FBP, and 4. helical scan with IR (Adaptive 
Iterative Dose Reduction 3D (AIDR3D)). Radiation doses were recorded as CT dose index (CTDIvol) and 
BMD, signal-to-noise and contrast-to-noise ratio were calculated. Mean hydroxyapatite concentration 
(HOA) did not differ significantly between protocols, ranging from 98.58 ± 31.09 mg cm3 (protocol 
4) to 100.47 ± 30.82 mg cm3 (protocol 2). Paired sample correlations of HOA values for protocol 4 
and protocols 1, 2 and 3 were nearly perfect with coefficients of 0.980, 0.979 and 0.982, respectively 
(p < 0.004). CTDIvol were 7.50, 5.00, 6.82 (±2.03) and 1.72 (±0.50) mGy for protocols 1, 2, 3 and 4 
respectively. Objective image quality was highest for protocol 4. The use of IR for BMD assessment 
significantly lowers radiation exposure compared to standard QCT and protocols with FBP while not 
degrading BMD measurement.

Osteoporosis is a systemic skeletal disease characterized by a low bone mineral density (BMD) and an associated 
increase in the risk of fracture1. Since the prevalence of osteoporosis is increased with the aging population and 
osteoporotic fractures have a high morbidity and mortality, diagnosis of osteoporosis at an early stage becomes 
more and more important2,3.

It has been shown that BMD (milligrams per cubic centimeter) is a good predictor of fracture risk4,5. As bone 
loss first appears in trabecular bone with high turnover rates such as the vertebral body, the main concern in spi-
nal bone BMD assessment is the vertebral body6.

The only reference method accepted by the WHO to measure BMD is dual energy X-ray absorptiometry 
(DXA), a two-dimensional method which indirectly quantifies calcium from specific absorption values. DXA 
measures BMD by projection, thus also including cortical bone, spondylophytes or even aortic calcifications, 
which can lead to false negative results and is one of the main reasons why osteoporosis is underdiagnosed7–9.

A well-established alternative to DXA is quantitative computed tomography (QCT), a three-dimensional 
method which measures trabecular BMD in milligrams per cubic centimeter by indirectly quantifying 
hydroxyapatite in comparison to a reference phantom. Cortical bone, spondylophytes and aortic calcifications 
are not included in the measurement due to its three-dimensional character. In addition, QCT provides more 
information on geometric and structural parameters of bone, which contribute to skeletal strength. Nevertheless, 
a limitation of QCT is the relatively high radiation dose associated with scanning central body sites (spine and 
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hip) compared to DXA, but doses are comparable to other x-ray-based imaging methods that might be performed 
in this patient group (e.g., spinal radiographs)10.

Several studies evaluted the use of routine thoracic or abdominal CT scans for assessing BMD11–15, but opin-
ions are divided regarding the effect of contrast media on bone density measurement13,14.

In the last few years, considerable advances have been made in CT with iterative reconstruction (IR). 
Compared to filtered back projection (FBP), which for a long time was the only image reconstruction technique 
for CT but had the disadvantage of generating relatively noisy images, iterative reconstruction techniques sub-
stantially lower image noise and this can be exploited to improve image quality or to lower radiation dose16–19. 
Recent studies validated the use of IR in different imaging applications20–23.

Some studies investigated the impact of IR in musculoskeletal CT24–28 and a few studies investigated the 
impact of IR on trabecular bone microstructure assessment29–31.

We conducted a study to compare BMD determined from iteratively reconstructed CT datasets with BMD 
calculated from QCT - the standard reference method.

Methods
Study Design.  Ten human cadaver specimens of the lumbar spine without surrounding soft tissue fixed 
in 4% paraformaldehyde were obtained from body donors (five women and five men; mean age 80 years, 
range 59–92 years). The specimens were obtained from the Department of Anatomy, Charité Campus Mitte, 
Universitätsmedizin Berlin, Germany.

According to the standard procedure of bone density measurement in QCT, lumbar vertebrae 1–3 were eval-
uated. Lumbar vertebra 1 of one specimen needed to be excluded due to fracture. Therefore, a total of 29 lumbar 
vertebrae were evaluated.

Scanning Technique and Image Reconstruction.  All examinations were performed on a 320-row 
CT scanner (Aquilion ONE VisionTM, Canon Medical Systems, Otawara, Japan). All specimens were fixed and 
scanned in a water bath. Underneath the water bath a hydroxyapatite (HA) calibration phantom consisting of five 
tubular inserts with varying concentrations of HA (0, 50, 100, 150 and 200 mg/cm3) was placed. The vertebrae 
were scanned and reconstructed parallel to the upper and lower plates of the vertebrae. The vendor unique IR is 
called Adaptive Iterative Dose Reduction 3D (AIDR3D), we used the level standard for reconstruction. This IR 
algorithm is a hybrid model algorithm, a full model based reconstruction algorithm was not available at the time 
we performed the scan and reconstruction. Four different scan protocols were used. Protocol 1 (QCT; sequential 
scan) serves as the reference in this study and our institute since more than 15 years. Here only the BMD value 
is of interest no volume information from the vertebrae i.e. for fracture analysis. Following parameter: 80 kVp, 
200 mAs, acquired 4 × 2 mm, reconstructed in 8 mm FBP with a soft tissue kernel (FC13) without beam harden-
ing correction. From Protocol 2 to 4 we have acquired the full vertebrae and reconstructed the same slice loca-
tion given by the sequential scan. Protocol 2 (volume scan, single gantry rotation): 80 kVp, fixed mA, acquired 
120 × 0.5 mm, reconstructed in 8 mm with FC13. Protocol 3 (helical scan): 80 kVp, automatic exposure control 
based on FBP reconstruction with an image noise level of 20, acquired 64 × 0.5 mm and Pitch of 0.83, recon-
structed in 8 mm with FC13. Protocol 4 (helical scan): 80 kVp, automatic exposure control based on AIDR3D 
standard reconstruction with an image noise level of 20, acquired 64 × 0.5 mm and Pitch of 0.83, reconstructed 
in 8 mm with FC13. The specific scan parameters are listed in Table 1. Radiation doses were recorded as CT dose 
index (CTDIvol) in mGy as this is an adequate parameter for comparison against the reference protocol, which is 
scanned in sequential scan technique. Volume acquisition information, which is mandatory for assessing struc-
tural parameter, is not part of this paper, we focusing on one single plane only.

Image Evaluation.  One radiologist reviewed all image datasets. The reviewer was a resident with 2.5 years 
of experience. No time limits were set for image review. Measurements were performed at an advanced work-
station from Canon Medical Systems, Software Version V 6 SP 0010G. Circular regions of interests (ROIs; 5 mm 
diameter) were drawn in each hydroxyapatite cylinder and a larger oval ROI in the anterior 2/3 of the vertebra. 
The ROIs in the vertebrae were drawn to be as large as possible, carefully avoiding compact bone and the venous 
plexus of the vertebra. The size and position of the ROIs were kept constant in each measurement in a vertebra. 
An example for illustration is shown in Fig. 1.

Bone Mineral Density and Markers of Objective Image Quality.  Mean attenuation (in Hounsfield 
units = HU) and standard deviation (SD) were recorded for each vertebra and the five phantom ROIs. Applying 
linear regression analysis BMD was calculated as the hydroxyapatite concentration (HOA) for each vertebra in 
each scan and reconstruction mode.

Protocol
Acquisition 
technique kVp

Time [s]* 
Current [mA]

Reconstruction 
algorithm

Covered axial 
thickness (mm)

Image thickness 
(mm)

CTDIvol 
[mGy]

1 (QCT) Axial 80 200 FBP 8 8 7.5

2 Volume 80 200 FBP 60 8 5.0

3 Helical 80 Variable-AEC FBP 64 8 6,8

4 Helical 80 Variable- AEC iterative 64 8 1,7

Table 1.  Acquisition technique and scan parameters of the four CT scan protocols used in this study. Protocol 
1 (QCT) served as reference. AEC (Automatic Exposure Control) adapts the tube current to the body shape and 
tissue absorption. The modulation ranges from 10 mA to 800 mA.
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For objective assessment of image quality, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were 
calculated as follows:

=
=
= −

Image noise (IN) SD of HU 0mg/cm HA phantom
SNR mean vertebral HU/IN
CNR (HU Mean HU Mean )/IN

3

bone phantom HOA 50

Statistical Analysis.  Means and standard deviations for HOA and CTDIvol as well as IN, SNR and CNR 
were calculated for all protocols. Differences in means between protocol 4 and all other protocols were tested for 
significance, using Student’s t-test for paired samples, including calculation of paired sample correlation coef-
ficients. To account for multiple comparisons (n = 12), Bonferroni correction was applied. Therefore, the sig-
nificance level assumed for all tests was p < 0.004. All analyses were performed using SPSS Version 22 (IBM 
Corporation, New York, USA).

The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

The entire study design and conduct were approved by the Charité ethics committee (EA1/031/17). Before 
death, all donors had given written consent to dedicate their bodies to research. All methods were carried out in 
accordance with relevant guidelines and regulations.

Results
Bone Mineral Density and Radiation Dose.  Mean HOA did not differ significantly between protocols, 
ranging from 98.58 ± 31.09 mg cm3 (protocol 4) to 100.47 ± 30.82 mg cm3 (protocol 2). Paired sample correlations 
of HOA values for protocol 4 versus protocols 1, 2 and 3 were nearly perfect with coefficients of 0.980, 0.979 and 
0.982, respectively (p < 0.004). A graphical representation of mean HOA values is presented in Fig. 2. Radiation 
doses expressed as CTDIvol were 7.50, 5.00, 6.82 (±2.03) and 1.72 (±0.50) mGy for protocols 1, 2, 3 and 4, 
respectively. The difference between protocol 4 and the other protocols was statistically significant (p < 0.004). A 
graphical representation of these results is presented in Fig. 3.

Figure 1.  Image evaluation and analysis: Circular regions of interests (ROIs; 5 mm diameter) were drawn in 
each hydroxyapatite cylinder and a bigger oval ROI in the anterior 2/3 of the vertebra.

Figure 2.  Mean HOA [mg cm3]. Boxplot with quartiles. Protocol 1 (=orange), protocol 2 (=blue), protocol 3 
(=red), protocol 4 (=green). Outliers labeled by vertebral ID.
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Markers of Objective Image Quality.  Mean values of markers of objective image quality are compiled 
in Table 2. The results show that image quality was significantly higher for protocol 4 compared with QCT and 
protocols with filtered back projection.

Discussion
The aim of our study was to evaluate the effect of IR on bone mineral density assessment and its different scan 
mode acquisition in comparison to standard (sequential) QCT and protocols reconstructed with FBP. Our results 
show that the use of IR for bone mineral density assessment significantly increases objective image quality and 
significantly decreases radiation dose compared to standard QCT and protocols with FBP while, most impor-
tantly in the context of our current study, the measured BMD remains the same. This goes in line with a recent 
study of Mei et al. who analyzed the effect of lower tube currents and sparse samplings on BMD and quantitative 
bone microstructure assessment in-vivo. They showed that there was no significant change in BMD when analyz-
ing the reduced projections even at 10% sampling rate, whereas lowering tube current to 10% resulted in an aver-
age 38% higher BMD values, suggesting sparse sampling to be a more robust dose reduction approach for BMD 
measurements29. On the other hand, Anitha et al. showed that radiation dose (by tube exposure reduction) could 
be reduced to 64% with no impact on strength estimates obtained from finite-element- (FE-) analysis and no 
significant difference in volume quantification32. Evidence of the dose reduction potential of IR is also provided 
by other studies of musculoskeletal CT: Geravaise et al. demonstrated that the radiation dose for lumbar spine CT 
imaging could be reduced by 52%33. In a retrospective CT study of the cervical spine using FBP and IR, Geyer et 
al. found that the estimated mean effective dose decreased from 2.38 mSv (FBP) to 1.10 mSv (IR), concluding that 
radiation dose can be reduced to the level of plain radiography27. In our cohort we could reduce the radiation dose 
by 77% without a loss of accuracy in BMD measurement.

Other studies focus on dose reduction with iterative reconstruction for the assessment of trabecular bone 
microstructure in multi-detector CT (MDCT)29–31. The high diagnostic value of microstructure-analysis in 
MDCT is limited by high radiation doses of about 3 mSv34. Kopp et al. showed that trabecular bone microstruc-
ture parameters assessed by low-dose IR significantly correlate with vertebral bone strength and were not signif-
icantly different to parameters assessed by standard-dose FBP in MDCT30. Mookiah et al. found that different 
exposures (80, 150, 220 and 500 mAs, 100% projections) between FBP and IR produce similar texture values 
and quality, and on the other hand, images reconstructed from sparse sampling projections (50%, 25%, 12,5%), 
standard (220 mAs, 100% projections) and reduced (150 mAs, 100% projections and 80 mAs, 100% projections) 
exposures using IR produce a texturally comparable image quality31.

In our study, objective IN was significantly lower and SNR and CNR significantly higher for protocol 4 (recon-
structed by IR) compared to the other three protocols (reconstructed by FBP). These results agree well with pub-
lished data: in a prospective study of 34 patients scanned with unenhanced CT (reconstructed with FBP, hybrid 
IR, and model-based iterative reconstruction (MBIR)) and magnetic resonance (MR) imaging for lumbar canal 
spinal stenosis, Iyama et al. found a significant reduction of image noise and a significant increase of CNR for 
MBIR compared to FBP and IR24. In a prospective study of 40 patients undergoing cervical spine CT and rand-
omized to a standard dose (SD, 120 kVp, 275 mAs) and a reduced dose group (RD, 120 kVp, 150 mAs), Becce at al. 

Figure 3.  Mean CTDIvol [mGy]. Bar charts. Protocol 1 (=orange), protocol 2 (=blue), protocol 3 (=red), 
protocol 4 (=green). Outliers labeled by vertebral ID.

Protocol Image noise SNR bone CNR bone

Protocol 1 16.40 ± 3.82 9.01 ± 3.64 5.28 ± 3.68

Protocol 2 13.22 ± 3.16 11.18 ± 4.55 6.76 ± 4.54

Protocol 3 13.27 ± 1.97 11.01 ± 3.86 6.44 ± 4.20

Protocol 4 8.48 ± 1.47 17.99* ± 7.46 10.39* ± 6.97

Table 2.  Image quality. SNR = signal-to-noise ratio; CNR = contrast-to-noise ratio. Means with standard 
deviations. *Significantly higher (p < 0.004) than in the other protocols.
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showed that IR significantly decreased image noise and increased SNR and CNR compared with FBP. Moreover, 
SNR and CNR were statistically equivalent in RD-IR and SD-FBP26.

IR could not be performed in sequential QCT at the time of acquisition and evaluation, which could have been 
an interesting comparison. In current software releases for the CT-Scanner this would be possible.

Not in the scope of our paper is the axial coverage, which is of course also important for obtaining further 
diagnostic information, such as structural analysis information and/or finite element analysis, where a fracture 
threshold can be determined. For this kind of analysis a single rotation of a volume or a helical acquisition is 
necessary to cover the whole vertebra, as a sequential scan is not sufficient. This should also be noted when com-
paring the radiation dose between protocols 1 and 4. Further radiation dose reduction is possible by reducing the 
axial scan range of protocol 2 to 4.

Another limitation of our study is the small sample size, which is due to the study design (only 10 human 
cadaver specimens of the lumbar spine could be provided by the anatomical institute during the study period). 
Second, our study can only serve as a model because the measurements made do not reflect true BMD measure-
ment in patients due to the absence of surrounding tissues in the specimens. In addition, due to the setup in the 
waterbath scattering is very homogeneous and thus artifacts that may compromise the quantification at low dose 
levels might be smaller than in an in-vivo setting.

During the time of acquisition and reconstruction of the study the latest development of iterative reconstruc-
tion, a forward projected model based iterative reconstruction solution (FIRST) was not available at site so we 
cannot judge on this.

Nevertheless, valid conclusions can be drawn and serve as basis for further studies – eventually in patients: 
bone mineral density remains the same in QCT, CT datasets reconstructed with FBP and CT datasets recon-
structed with IR, while radiation dose can be reduced significantly by IR independent of the acquisition mode.
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